

Lecture Notes in Computer Science 6632
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Kenneth G. Paterson (Ed.)

Advances in Cryptology –
EUROCRYPT 2011

30th Annual International Conference
on the Theory and Applications of Cryptographic Techniques
Tallinn, Estonia, May 15-19, 2011
Proceedings

13

Volume Editor

Kenneth G. Paterson
Information Security Group (ISG)
Royal Holloway
University of London
Egham, Surrey TW20 0EX, UK
E-mail: kenny.paterson@rhul.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-20464-7 e-ISBN 978-3-642-20465-4
DOI 10.1007/978-3-642-20465-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011924899

CR Subject Classification (1998): E.3, F.2.1-2, G.2.1, D.4.6, K.6.5, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

© International Association for Cryptologic Research 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These are the proceedings of Eurocrypt 2011, the 30th in the series of European
Conferences on the Theory and Applications of Cryptographic Techniques. The
conference was organized under the auspices of the International Association for
Cryptologic Research and was held in Tallinn, Estonia, during May 15–19, 2011.

The aim of this series of conferences is to bring together leading researchers
and practitioners from academia and industry in the field of cryptography. The
conference program is intended to reflect the best of cryptographic research, in its
widest sense. This year, a deliberate attempt was made to broaden the technical
scope of the conference without making any compromise to its quality. The main
mechanism for achieving this was to select Program Committee members from as
broad a range of sub-areas of the field as possible, with the intention of sending
a clear signal to potential authors from the field as a whole. I trust that readers
of this volume find plenty to interest them here, and agree that the quality of
the papers is as high as ever.

The program consisted of 2 invited talks and 31 contributed papers. The
invited speakers were Ronald Cramer (CWI, Amsterdam and Mathematical In-
stitute, Leiden) and Phong Nguyen (INRIA and ENS). I would like to thank
them for accepting my invitation, for supplying informative abstracts for these
proceedings, and for delivering excellent talks. It was a privilege to have such
luminaries of our field as invited speakers.

The contributed papers were selected from 167 submissions. Each paper was
reviewed by at least three people, with the submissions involving Program Com-
mittee members being subjected to at least five reviews each. There was sig-
nificant online discussion about many of the papers, and a full-day Program
Committee meeting was held at Royal Holloway on January 12, 2011 to finalize
the program. The Program Committee decided to make a best paper award this
year, and the award went to Eike Kiltz, Krzysztof Pietrzak, David Cash, Ab-
hishek Jain and Daniele Venturi for their paper “Efficient Authentication from
Hard Learning Problems”.

I would like to thank all the people who helped with the conference program
and organization, particularly the General Chair, Helger Lipmaa. My heartfelt
thanks go to the Program Committee and their sub-reviewers, as listed on the
following pages, for their thoroughness during the review process. We had a
tough assignment with many submissions and tight deadlines, and the committee
members acted with utmost professionalism and attention to detail throughout.
My particular thanks are due to Henri Gilbert, the previous Program Chair,
who shared many insights with me, and to David Pointcheval, the next Program
Chair, who kindly agreed to join the committee at short notice and who acted
as a very effective “sweeper.”

VI Preface

The submission and review process was greatly simplified by the ichair soft-
ware developed by Thomas Baignères and Matthieu Finiasz. My thanks to them
for producing this software and helping me with some technical queries during
the review process. I will be sending them some Estonian delicacies by way of
thanks; I highly recommend their software to all future Program Chairs. Thanks
are also due to Tristan Findley and Jon Hart at Royal Holloway for maintaining
the submission server and for their IT support during the Program Committee
meeting.

I am grateful to the authors of all submitted papers for supporting the confer-
ence. The authors of accepted papers are thanked again for revising their papers
according to the suggestions of the reviewers and for returning latex source files
in good time. The revised versions were not checked by the Program Committee
so authors bear full responsibility for their contents. I thank the staff at Springer
for their help with producing the proceedings.

EuroCrypt 2011 was supported by the European Regional Development Fund
(ERDF) through the Estonian Centre of Excellence in Computer Science, EXCS.
I would also like to thank Guardtime, Qualcomm and Swedbank, the other
sponsors of EuroCrypt 2011, for their generous support.

Finally, I would like to thank my partner Liz and my daughter Cara for their
forbearance during a particularly hectic period.

February 2011 Kenny Paterson

Organization

Program Chair

Kenny Paterson Royal Holloway, University of London, UK

General Chairs

Helger Lipmaa Cybernetica AS, Estonia and Tallinn
University, Estonia

Sponsors

The European Regional Development Fund (ERDF)
Guardtime
Qualcomm
Swedbank

Program Committee

Michel Abdalla ENS Paris, France
Dan Bernstein University of Chicago, USA
Xavier Boyen University of Liege, Belgium
Christian Cachin IBM Research, Switzerland
Orr Dunkelman Weizmann Institute of Science, Israel
Pierrick Gaudry LORIA, France
Henri Gilbert (2010 PC chair) ANSSI, France
Jonathan Katz University of Maryland, USA
Yoshi Kohno University of Washington, USA
Benoit Libert UCL, Belgium
Anna Lysyanskaya Brown University, USA
Vadim Lyubashevsky ENS Paris, France
Alex May Ruhr University Bochum, Germany
Alfred Menezes University of Waterloo, Canada
Tatsuaki Okamoto NTT Labs, Japan
Rafail Ostrovsky UCLA, USA
Elisabeth Oswald University of Bristol, UK
Christof Paar Ruhr University Bochum, Germany
Kenny Paterson (PC chair) Royal Holloway, University of London, UK
Chris Peikert Georgia Tech, USA
David Pointcheval

(2012 PC chair) ENS Paris, France

VIII Organization

Renato Renner ETH Zürich, Switzerland
Vincent Rijmen K.U. Leuven, Belgium and TU Graz, Austria
Berry Schoenmakers TU Eindhoven, The Netherlands
Mike Scott DCU, Ireland
Hovav Shacham UCSD, USA
Thomas Shrimpton Portland State University, USA
Martijn Stam EPFL, Switzerland
Doug Stinson University of Waterloo, Canada
Frederik Vercauteren K.U. Leuven, Belgium

Sub-reviewers

Johan Aaberg
Masayuki Abe
Divesh Aggarwal
Carlos Aguilar Melchor
Elena Andreeva
Benny Applebaum
Abhishek Banerjee
Aurelie Bauer
Georg Becker
Gaetan Bisson
Andrey Bogdanov
Joppe Bos
Zvika Brakerski
Christina Brzuska
Jan Camenisch
David Cash
Dario Catalano
Nishanth Chandran
Melissa Chase
Sanjit Chatterjee
Céline Chevalier
Sherman Chow
Jeremy Clark
Baudoin Collard
Daniel Dadush
Jean Paul Degabriele
Alex Dent
Claus Diem
Marten van Dijk
Dejan Dukaric
Frederic Dupuis
Thomas Eisenbarth
Nicolas Estibals

Junfeng Fan
Pooya Farshim
Sebastian Faust
Serge Fehr
Matthieu Finiasz
Dario Fiore
Marc Fischlin
Thomas Fuhr
Philippe Gaborit
Steven Galbraith
Sanjam Garg
Praveen Gauravaram
Ran Gelles
Clint Givens
Dov Gordon
Robert Granger
Jens Groth
Esther Haenggi
Brett Hemenway
Jens Hermans
Mathias Herrmann
Florian Hess
Stefan Heyse
Dennis Hofheinz
Susan Hohenberger
S.J.A. de Hoogh
Sebastiaan Indesteege
Abhishek Jain
Antoine Joux
Yael Tauman Kalai
Koray Karabina
Timo Kasper
Aniket Kate

Eike Kiltz
Mehmet S. Kiraz
Mikkel Krigrd
A. Kumarasubramanian
Mario Lamberger
Tanja Lange
Gregor Leander
Anja Lehmann
Arjen K. Lenstra
Peter van Liesdonk
Richard Lindner
Mark Manulis
Bart Mennink
Alexander Meurer
Petros Mol
Amir Moradi
Sean Murphy
Toru Nakanishi
Gregory Neven
Phong Nguyen
Jesper Buus Nielsen
Svetla Nikova
Ryo Nishimaki
Mehrdad Nojoumian
Femi Olumofin
Adam O’Neill
Onur Özen
Carles Padro
Rafael Pass
Ludovic Perret
Thomas Peters
Duong Hieu Phan
Krzysztof Pietrzak

Organization IX

Pandu Rangan
Oded Regev
Leo Reyzin
Alfredo Rial
Thomas Ristenpart
Matthieu Rivain
Louis Salvail
Rüdiger Schack
Christian Schaffner
Martin Schläffer
Aaron Segal
Yannick Seurin
Hakan Seyaliog
Aydin Sezgin
abhi shelat
Francesco Sica

Joe Silverman
Nigel Smart
F.-X. Standaert
Damien Stehlé
Anton Stolbunov
Björn Tackmann
Katsuyuki Takashima
Stefano Tessaro
Enrico Thomae
Deniz Toz
Joana Treger
Dominique Unruh
Vinod Vaikuntanathan
Kerem Varici
Damien Vergnaud
Marion Videau

Jorge L. Villar
Ivan Visconti
Akshay Wadia
Bogdan Warinschi
Brent Waters
Gaven Watson
Severin Winkler
Christopher Wolf
Stefan Wolf
Jiang Wu
Jürg Wullschleger
Keita Xagawa
Go Yamamoto
Kan Yasuda
Ralf Zimmermann

Table of Contents

Invited Talks

The Arithmetic Codex: Theory and Applications (Abstract) 1
Ronald Cramer

Lattice Reduction Algorithms: Theory and Practice 2
Phong Q. Nguyen

Lattice-Based Cryptography

Efficient Authentication from Hard Learning Problems 7
Eike Kiltz, Krzysztof Pietrzak, David Cash, Abhishek Jain, and
Daniele Venturi

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 27
Damien Stehlé and Ron Steinfeld

Implementation and Side Channels

Faster Explicit Formulas for Computing Pairings over Ordinary
Curves . 48

Diego F. Aranha, Koray Karabina, Patrick Longa,
Catherine H. Gebotys, and Julio López

Pushing the Limits: A Very Compact and a Threshold Implementation
of AES . 69

Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and
Huaxiong Wang

Fully Leakage-Resilient Signatures . 89
Elette Boyle, Gil Segev, and Daniel Wichs

A Formal Study of Power Variability Issues and Side-Channel Attacks
for Nanoscale Devices . 109

Mathieu Renauld, François-Xavier Standaert,
Nicolas Veyrat-Charvillon, Dina Kamel, and Denis Flandre

Homomorphic Cryptography

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 129
Craig Gentry and Shai Halevi

XII Table of Contents

Homomorphic Signatures for Polynomial Functions 149
Dan Boneh and David Mandell Freeman

Semi-homomorphic Encryption and Multiparty Computation 169
Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias

Signature Schemes

Tight Proofs for Signature Schemes without Random Oracles 189
Sven Schäge

Adaptive Pseudo-free Groups and Applications . 207
Dario Catalano, Dario Fiore, and Bogdan Warinschi

Commuting Signatures and Verifiable Encryption . 224
Georg Fuchsbauer

Information-Theoretic Cryptography

Secure Authentication from a Weak Key, without Leaking
Information . 246

Niek J. Bouman and Serge Fehr

Secret Keys from Channel Noise . 266
Hadi Ahmadi and Reihaneh Safavi-Naini

Almost Optimum t -Cheater Identifiable Secret Sharing Schemes 284
Satoshi Obana

Symmetric Key Cryptography

On Linear Hulls, Statistical Saturation Attacks, PRESENT and a
Cryptanalysis of PUFFIN . 303

Gregor Leander

Domain Extension for MACs Beyond the Birthday Barrier 323
Yevgeniy Dodis and John Steinberger

Attacks and Algorithms

Statistical Attack on RC4: Distinguishing WPA . 343
Pouyan Sepehrdad, Serge Vaudenay, and Martin Vuagnoux

Improved Generic Algorithms for Hard Knapsacks 364
Anja Becker, Jean-Sébastien Coron, and Antoine Joux

Table of Contents XIII

Secure Computation

Two-Output Secure Computation with Malicious Adversaries 386
Abhi Shelat and Chih-Hao Shen

Efficient Non-interactive Secure Computation . 406
Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky,
Manoj Prabhakaran, and Amit Sahai

Towards a Game Theoretic View of Secure Computation 426
Gilad Asharov, Ran Canetti, and Carmit Hazay

Highly-Efficient Universally-Composable Commitments Based on the
DDH Assumption . 446

Yehuda Lindell

Composability

Concurrent Composition in the Bounded Quantum Storage Model 467
Dominique Unruh

Careful with Composition: Limitations of the Indifferentiability
Framework . 487

Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton

Key Dependent Message Security

Efficient Circuit-Size Independent Public Key Encryption with KDM
Security . 507

Tal Malkin, Isamu Teranishi, and Moti Yung

Key-Dependent Message Security: Generic Amplification and
Completeness . 527

Benny Applebaum

Public Key Encryption

Unbounded HIBE and Attribute-Based Encryption 547
Allison Lewko and Brent Waters

Decentralizing Attribute-Based Encryption . 568
Allison Lewko and Brent Waters

XIV Table of Contents

Threshold and Revocation Cryptosystems via Extractable Hash
Proofs . 589

Hoeteck Wee

Deniable Encryption with Negligible Detection Probability:
An Interactive Construction . 610

Markus Dürmuth and David Mandell Freeman

Author Index . 627

The Arithmetic Codex: Theory and Applications

Ronald Cramer

CWI, Amsterdam & Mathematical Institute, Leiden University, The Netherlands
http://www.cwi.nl/~cramer

Abstract. We define the notion of an arithmetic codex (or codex, for
short), and as a special case, arithmetic secret sharing. This notion en-
compasses as well as generalizes, in a single mathematical framework, all
known types of specialized secret sharing schemes from the area of se-
cure multi-party computation, i.e., the so-called (strongly) multiplicative
linear secret sharing schemes.

These schemes were first studied as an abstract primitive by Cramer,
Damg̊ard, and Maurer in the late 1990s. They showed that the “Funda-
mental Theorem of Information-Theoretically Secure Multi-Party
Computation,” the landmark 1988 result by Ben-Or, Goldwasser, and
Wigderson and, independently at the same time by Chaum, Crépeau,
Damg̊ard, admits a proof that uses this primitive as a blackbox: it is
possible to bootstrap, in a blackbox fashion, from this primitive a set
of atomic sub-protocols upon which general secure computation can be
based. They also showed when and how multiplicative schemes (but not
strongly multiplicative ones) reduce to ordinary ones and gave applica-
tions to security against non-threshold adversaries.

In 2006, Chen and Cramer showed an “asymptotically good” version
of the Fundamental Theorem, where the size of the network is unbounded
and where an adversary corrupts a constant fraction of the network, yet
the information rate of the secret sharing primitive is constant. Their re-
sult relies on a careful choice of algebraic geometric codes, in combination
with the earlier work of Cramer, Damg̊ard, and Maurer.

In 2007 this asymptotic result turned out to have a surprising appli-
cation in two-party cryptography, through the work of Ishai, Kushilevitz,
Ostrovsky and Sahai (“Multi-Party Computation in the Head”). This
first application was to zero knowledge for circuit satisfiability, but soon
after other applications to secure two-party computation and information
theory (correlation extractors) followed.

Our notion of arithmetic secret sharing is not merely a unification for
its own sake. First, it casts these schemes in terms of a dedicated “rep-
resentation” of K-algebras, thereby bringing the relevant mathematical
structure to the surface. Second, it identifies novel types of special secret
sharing schemes. And, third, there are novel cryptographic applications.

Besides presenting some elementary examples and giving an overview
of the basic theory and the main applications, we discuss a construction
of arithmetic secret sharing schemes based on a novel algebraic-geometric
paradigm that we also introduce. This talk is mainly based on several re-
cent joint works with Nacho Cascudo (CWI) and Chaoping Xing (NTU).
But in part it is also based on recent joint work with Ivan Damg̊ard
(Aarhus University) and Valerio Pastro (Aarhus University).

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, p. 1, 2011.
c© International Association for Cryptologic Research 2011

http://www.cwi.nl/~cramer

Lattice Reduction Algorithms:
Theory and Practice

Phong Q. Nguyen

INRIA and ENS, Département d’informatique, 45 rue d’Ulm, 75005 Paris, France
http://www.di.ens.fr/~pnguyen/

Abstract. Lattice reduction algorithms have surprisingly many appli-
cations in mathematics and computer science, notably in cryptology. On
the one hand, lattice reduction algorithms are widely used in public-
key cryptanalysis, for instance to attack special settings of RSA and
DSA/ECDSA. On the other hand, there are more and more crypto-
graphic schemes whose security require that certain lattice problems are
hard. In this talk, we survey lattice reduction algorithms, present their
performances, and discuss the differences between theory and practice.

Intuitively, a lattice is an infinite arrangement of points in Rm spaced with
sufficient regularity that one can shift any point onto any other point by some
symmetry of the arrangement. The simplest non-trivial lattice is the hypercubic
lattice Zn formed by all points with integral coordinates. The branch of number
theory dealing with lattices (and especially their connection with convex sets)
is known as geometry of numbers [24,41,12,5], and its origins go back to two
historical problems: higher-dimensional generalizations of Euclid’s gcd algorithm
and sphere packings.

More formally, a lattice L is a discrete subgroup of Rm, or equivalently, the
set of all integer combinations of n linearly independent vectors b1, . . . ,bn in
Rn:

L = {a1b1 + · · ·+ anbn, ai ∈ Z}.
Such a set (b1, . . . ,bn) is called a basis of the lattice. The goal of lattice reduc-
tion is to find reduced bases, that is bases consisting of reasonably short and
nearly orthogonal vectors. This is related to the reduction theory of quadratic
forms developed by Lagrange [19], Gauss [11] and Hermite [14]. Lattice reduc-
tion algorithms have proved invaluable in many fields of computer science and
mathematics (see the book [30]), notably public-key cryptanalysis where they
have been used to break knapsack cryptosystems [32] and special cases of RSA
and DSA, among others (see [26,21] and references therein).

Reduced bases allow to solve the following important lattice problems, either
exactly or approximately:

– The most basic computational problem involving lattices is the shortest vec-
tor problem (SVP), which asks to find a nonzero lattice vector of smallest
norm, given a lattice basis as input. SVP can be viewed as a geometric gen-
eralization of gcd computations: Euclid’s algorithm actually computes the

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 2–6, 2011.
c© International Association for Cryptologic Research 2011

Lattice Reduction Algorithms: Theory and Practice 3

smallest (in absolute value) non-zero linear combination of two integers, since
gcd(a, b)Z = aZ+bZ, which means that we are replacing the integers a and b
by an arbitrary number of vectors b1, . . . ,bn with integer coordinates. Since
SVP is NP-hard under randomized reductions [3] (see [17,34] for surveys on
the hardness of lattice problems), one is also interested in approximating
SVP, i.e. to output a nonzero lattice vector of norm not much larger than
the smallest norm.

– The inhomogeneous version of SVP is called the closest vector problem
(CVP); here we are given an arbitrary target vector in addition to the lattice
basis and asked to find the lattice point closest to that vector. A popular
particular case of CVP is Bounded Distance Decoding (BDD), where the
target vector is known to be somewhat close to the lattice.

The first SVP algorithm was Lagrange’s reduction algorithm [19], which solves
SVP exactly in dimension two, in quadratic time. In arbitrary dimension, there
are two types of SVP algorithms:

1. Exact algorithms. These algorithms provably find a shortest vector, but
they are expensive, with a running time at least exponential in the dimension.
Intuitively, these algorithms perform an exhaustive search of all extremely
short lattice vectors, whose number is exponential in the dimension (in the
worst case): in fact, there are lattices for which the number of shortest lat-
tice vectors is already exponential. Exact algorithms can be split in two
categories:
(a) Polynomial-space exact algorithms.They are based on enumeration

which dates back to the early 1980s with work by Pohst [33], Kannan [16],
and Fincke-Pohst [6]. In its simplest form, enumeration is simply an ex-
haustive search for the best integer combination of the basis vectors. The
best deterministic enumeration algorithm is Kannan’s algorithm [16], with
super-exponential worst-case complexity, namelynn/(2e)+o(n)polynomial-
time operations (see [13]), where n denotes the lattice dimension. The enu-
merationalgorithmsused inpractice (suchas thatofSchnorr-Euchner [37])
have aweaker preprocessing thanKannan’s algorithm [16],and theirworst-
case complexity is 2O(n2) polynomial-time operations. But it is possible to
obtain substantial speedups using pruning techniques: pruning was intro-
duced by Schnorr-Euchner [37] and Schnorr-Hörner [38] in the 90s, and re-
cently revisited by Gama, Nguyen and Regev [10], where it was shown that
one can reach a 2n/2 heuristic speedup over basic enumeration.

(b) Exponential-space exact algorithms. These algorithms have a bet-
ter asymptotic running time, but they all require exponential space 2Θ(n).
The first algorithm of this kind is the randomized sieve algorithm of Ajtai,
Kumar and Sivakumar (AKS) [4], with exponential worst-case complex-
ity of 2O(n) polynomial-time operations. Micciancio and Voulgaris [22] re-
cently presented an alternative deterministic algorithm, which solves both
CVP and SVP within 22n+o(n) polynomial-time operations. Interestingly,
there are several heuristic variants [31,23,43] of AKS with running time
2O(n), where the O() constant is much less than that of the best provable

4 P.Q. Nguyen

algorithms known. For instance, the recent algorithm of Wang et al. [43]
has time complexity 20.3836n polynomial-time operations.

2. Approximation algorithms. These algorithms are much faster than exact
algorithms, but they only output short lattice vectors, not necessarily the
shortest one: they typically output a whole reduced basis, and are therefore
lattice reduction algorithms. The first algorithm of this kind is the celebrated
algorithm of Lenstra, Lenstra and Lovász (LLL) [20,30], which can approx-
imate SVP to within a factor O((2/

√
3)n) in polynomial time: it can be

viewed as an algorithmic version of Hermite’s inequality. Since the appear-
ance of LLL, research in this area has focused on two topics:

(a) Faster LLL. Here, one is interested in obtaining reduced bases of sim-
ilar quality than LLL, possibly slightly worse, but with a smaller run-
ning time. This is achieved by a divide-and-conquer strategy (such as
in [39,18]) or by using floating-point arithmetic (such as in [36,29,25]).
The most popular implementations of LLL are typically heuristic floating-
point variants, such as that of Schnorr-Euchner [37]: see the survey [42]
on floating-point LLL.

(b) Stronger LLL. Here, one is interested in obtaining better approxima-
tion factors than LLL, at the expense of the running time. Intuitively,
LLL repeatedly uses two-dimensional reduction to find short lattice vec-
tors in dimension n. Blockwise reduction algorithms [35,7,8] obtain bet-
ter approximation factors by replacing this two-dimensional reduction
subroutine by a higher-dimensional one, using exact SVP algorithms in
low dimension. The best polynomial-time blockwise algorithm known [8]
achieves a subexponential approximation factor 2O((n log logn)/ logn): it
is an algorithmic version of Mordell’s inequality. In practice, a popular
choice is the BKZ algorithm of Schnorr-Euchner [37] implemented in
the NTL library [40], which is a heuristic variant of Schnorr’s blockwise
algorithm [35]. The article [9] provides an experimental assessment of
BKZ.

Both categories are in fact complementary: all exact algorithms known first apply
an approximation algorithm (typically at least LLL) as a preprocessing, while all
blockwise algorithms call many times an exact algorithm in low dimension as a
subroutine. Most of the SVP algorithms we mentioned can be adapted to CVP
(see for instance [1]). The provable SVP algorithms are surveyed in [27]. The
heuristic algorithms which we mentioned are such that their running time may no
longer be proved, and/or there may not be any guarantee on the output (should
the algorithm ever terminate). Heuristic algorithms can typically outperform
provable algorithms in practice, for reasons still not well understood.

Finally, it is folklore that lattice reduction algorithms behave better than their
proved worst-case theoretical bounds. In the 80s, the early success of lattice re-
duction algorithms in cryptanalysis led to the belief that the strongest lattice
reduction algorithms behaved as perfect oracles, at least in small dimension. But
this belief showed its limits in the 90s with NP-hardness results and the devel-
opment of lattice-based cryptography, following Ajtai’s worst-case/average-case

Lattice Reduction Algorithms: Theory and Practice 5

reduction [2] and the NTRU cryptosystem [15]. The articles [28,9] clarify what
can be expected in practice, based on experimental results. Such assessments are
important to better understand the gap between theory and practice, but also
to evaluate the concrete security of lattice-based cryptography.

References

1. Agrell, E., Eriksson, T., Vardy, A., Zeger, K.: Closest point search in lattices. IEEE
Trans. on Info. Theory 48(8), 2201–2214 (2002)

2. Ajtai, M.: Generating hard instances of lattice problems. In: Proc. STOC 1996,
pp. 99–108. ACM, New York (1996)

3. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions.
In: Proc. of 30th STOC. ACM, New York (1998)

4. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proc. 33rd STOC, pp. 601–610 (2001)

5. Cassels, J.: An Introduction to the Geometry of Numbers (1997)
6. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in

a lattice, including a complexity analysis. Mathematics of Computation 44(170),
463–471 (1985)

7. Gama, N., Howgrave-Graham, N., Koy, H., Nguyên, P.Q.: Rankin’s constant and
blockwise lattice reduction. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 112–130. Springer, Heidelberg (2006)

8. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality.
In: Proc. 40th ACM Symp. on Theory of Computing (STOC) (2008)

9. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

10. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010)

11. Gauss, C.: Disquisitiones Arithmeticæ, Leipzig (1801)
12. Gruber, M., Lekkerkerker, C.G.: Geometry of Numbers. North-Holland, Amster-

dam (1987)
13. Hanrot, G., Stehlé, D.: Improved analysis of Kannan’s shortest lattice vector algo-

rithm (extended abstract). In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 170–186. Springer, Heidelberg (2007)

14. Hermite, C.: Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de
la théorie des nombres. J. Reine Angew. Math. 40, 261–315 (1850)

15. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: Buhler, J.P. (ed.) ANTS III 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998)

16. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: Proc. 15th ACM Symp. on Theory of Computing (STOC), pp. 193–206
(1983)

17. Khot, S.: Inapproximability results for computational problems on lattices. In: [30]
(2010)

18. Koy, H., Schnorr, C.-P.: Segment LLL-reduction of lattice bases. In: Silverman,
J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 67–80. Springer, Heidelberg (2001)

19. Lagrange, L.: Recherches d’arithmétique. Nouv. Mém. Acad. (1773)

6 P.Q. Nguyen

20. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Ann. 261, 513–534 (1982)

21. May, A.: Using LLL-reduction for solving RSA and factorization problems: A sur-
vey. In: [30] (2010)

22. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for
most lattice problems based on voronoi cell computations. In: Proc. STOC 2010,
pp. 351–358. ACM, New York (2010)

23. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp.
1468–1480 (2010)

24. Minkowski, H.: Geometrie der Zahlen. Teubner-Verlag, Leipzig (1896)
25. Morel, I., Stehlé, D., Villard, G.: H-LLL: using householder inside LLL. In: Proc.

ISSAC 2009, pp. 271–278. ACM, New York (2009)
26. Nguyen, P.Q.: Public-key cryptanalysis. In: Luengo, I. (ed.) Recent Trends in Cryp-

tography. Contemporary Mathematics, vol. 477. AMS–RSME (2009)
27. Nguyen, P.Q.: Hermite’s constant and lattice algorithms. In: [30] (2010)
28. Nguyên, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.

(eds.) ANTS VII 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)
29. Nguyen, P.Q., Stehlé, D.: An LLL algorithm with quadratic complexity. SIAM J.

Comput. 39(3), 874–903 (2009)
30. Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm: Survey and Applications.

Information Security and Cryptography. Springer, Heidelberg (2010)
31. Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are

practical. J. of Mathematical Cryptology 2(2), 181–207 (2008)
32. Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. In: Cryptology

and Computational Number Theory. Proc. of Symposia in Applied Mathematics,
vol. 42, pp. 75–88. AMS, Providence (1990)

33. Pohst, M.: On the computation of lattice vectors of minimal length, successive
minima and reduced bases with applications. SIGSAM Bull. 15(1), 37–44 (1981)

34. Regev, O.: On the Complexity of Lattice Problems with Polynomial Approximation
Factors. In: [30] (2010)

35. Schnorr, C.-P.: A hierarchy of polynomial lattice basis reduction algorithms. The-
oretical Computer Science 53(2-3), 201–224 (1987)

36. Schnorr, C.-P.: A more efficient algorithm for lattice basis reduction. J. Algo-
rithms 9(1), 47–62 (1988)

37. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Programming 66, 181–199 (1994)

38. Schnorr, C.-P., Hörner, H.H.: Attacking the chor-rivest cryptosystem by improved
lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)

39. Schönhage, A.: Factorization of univariate integer polynomials by diophantine
aproximation and an improved basis reduction algorithm. In: Paredaens, J. (ed.)
ICALP 1984. LNCS, vol. 172, pp. 436–447. Springer, Heidelberg (1984)

40. Shoup, V.: Number Theory C++ Library (NTL) version 5.4.1,
http://www.shoup.net/ntl/

41. Siegel, C.L.: Lectures on the Geometry of Numbers. Springer, Heidelberg (1989)
42. Stehlé, D.: Floating-point LLL: theoretical and practical aspects. In: [30] (2010)
43. Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic sieve al-

gorithm for shortest vector problem. Cryptology ePrint Archive, Report 2010/647
(2010), http://eprint.iacr.org/

http://www.shoup.net/ntl/
http://eprint.iacr.org/

Efficient Authentication
from Hard Learning Problems

Eike Kiltz1,�, Krzysztof Pietrzak2,��, David Cash3,� � �,
Abhishek Jain4,†, and Daniele Venturi5,†

1 RU Bochum
2 CWI Amsterdam

3 UC San Diego
4 UC Los Angeles

5 Sapienza University of Rome

Abstract. We construct efficient authentication protocols and message-
authentication codes (MACs) whose security can be reduced to the
learning parity with noise (LPN) problem.

Despite a large body of work – starting with the HB protocol of Hopper
and Blum in 2001 – until now it was not even known how to construct
an efficient authentication protocol from LPN which is secure against
man-in-the-middle (MIM) attacks. A MAC implies such a (two-round)
protocol.

1 Introduction

Authentication is among the most basic and important cryptographic tasks. In
the present paper we construct efficient (secret-key) authentication schemes from
the learning parity with noise (LPN) problem. We construct the first efficient
message authentication codes (MACs) from LPN, but also simpler and more
efficient two-round authentication protocols that achieve a notion called active
security. Prior to our work, the only known way to construct an LPN-based MAC
was via a relatively inefficient generic transformation [17] (that works with any
pseudorandom generator), and all interactive LPN-based protocols with security
properties similar to our new protocol required at least three rounds and had a
loose security reduction. Our constructions and techniques diverge significantly
from prior work in the area and will hopefully be of independent interest.

The pursuit of LPN-based authentication is motivated by two disjoint con-
cerns, one theoretical and one practical. On the theoretical side, the LPN prob-
lem provides an attractive basis for provable security [3, 4, 6, 22, 18, 27]. It is

� Funded by a Sofja Kovalevskaja Award of the Alexander von Humboldt Founda-
tion and the German Federal Ministry for Education and Research.

�� Supported by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Starting
Grant (259668-PSPC).

� � � Supported by NSF CCF-0915675. Research done while visiting CWI Amsterdam.
† Research done while visiting CWI Amsterdam.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 7–26, 2011.
c© International Association for Cryptologic Research 2011

8 E. Kiltz et al.

closely related to the well-studied problem of decoding random linear codes, and
unlike most number-theoretic problems used in cryptography, the LPN problem
does not succumb to known quantum algorithms. On the practical side, LPN-
based authentication schemes are strikingly efficient, requiring relatively few
bit-level operations. Indeed, in their original proposal, Hopper and Blum [18]
suggested that humans could perform the computation in their provably-secure
scheme, even with realistic parameters. The efficiency of LPN-based schemes also
makes them suitable for weak devices like RFID tags, where even evaluating a
blockcipher may be prohibitive.

Each of our theoretical and practical motivations, on its own, would be suffi-
ciently interesting for investigation, but together the combination is particularly
compelling. LPN-based authentication is able to provide a theoretical improve-
ment in terms of provable security in addition to providing better efficiency than
approaches based on more classical symmetric techniques that are not related
to hard problems. Usually we trade one benefit for the other, but here we hope
to get the best of both worlds.

Before describing our contributions in more detail, we start by recalling au-
thentication protocols, the LPN problem, and some of the prior work on which
we build.

Authentication protocols. An authentication protocol is a (shared-key)
protocol where a prover P authenticates itself to a verifier V (in the context of
RFID implementations, we think of P as the “tag” and V as the “reader”). We
recall some of the common definitions for security against impersonation attacks.
A passive attack proceeds in two phases, where in the first phase the adversary
eavesdrops on several interactions between P and V , and then attempts to cause
V to accept in the second phase (where P is no longer available). In an ac-
tive attack, the adversary is additionally allowed to interact with P in the first
phase. The strongest and most realistic attack model is a man-in-the-middle at-
tack (MIM), where the adversary can arbitrarily interact with P and V (with
polynomially many concurrent executions allowed) in the first phase.

The LPN problem. Briefly stated, the LPN problem is to distinguish from
random several “noisy inner products” of random binary vectors with a random
secret vector.

More formally, for τ < 1/2 and a vector x ∈ Z�2, define the distribution
Λτ,�(x) on Z�2 × Z2 by (r, rTx ⊕ e), where r ∈ Z�2 is uniformly random and
e ∈ Z2 is selected according to Berτ , the Bernoulli distribution over Z2 with
parameter τ (i.e. Pr[e = 1] = τ). The LPNτ,� problem is to distinguish an oracle
returning samples from Λτ,�(x), where x ∈ Z�2 is random and fixed, from an
oracle returning uniform samples. It was shown by Blum et al. [4] that this is
equivalent to the search version of LPN, where one needs to compute x given
oracle access to Λτ,�(x) (cf. [21, Thm.2] for precise bounds). We note that the
search and decision variants are solvable with a linear in � number of samples
when there is no noise, i.e. when τ = 0, and the best algorithms take time 2�/ log �

when τ > 0 is treated as a constant [5, 6, 23].

Efficient Authentication from Hard Learning Problems 9

Authentication protocols from LPN. Starting with the work of Hopper
and Blum [18], several authentication protocols based on the LPN problem have
been proposed. Their original elegant protocol is simple enough for us to recall
right away. The shared secret key is a binary vector s ∈ Z�2. The interaction
consists of two messages. First V sends a random challenge r ∈ Z�2, and then P
answers with the bit z = rTs ⊕ e, where e ∈ Z2 is sampled according to Berτ .
Finally, the verifier accepts if z = rTs.

This basic protocol has a large completeness error τ (as V will reject if e = 1)
and soundness error 1/2 (as a random r, z satisfies rT·s = z with probability 1/2).
This can be reduced via sequential or parallel composition. The parallel variant,
denoted HB, is illustrated in Figure 1 (we represent several r with a matrix R
and the noise bits are now arranged in a vector e). The verifier accepts if at
least a τ ′ fraction (where τ < τ ′ < 1/2) of the n basic authentication steps are
correct.

The 2-round HB protocol is provably secure against passive attacks, but ef-
ficient active attacks are known against it. This is unsatisfying because in sev-
eral scenarios, and especially in RFID applications, an adversary will be able
to mount an active attack. Subsequently, Juels and Weis [19] proposed an ef-
ficient 3 round variant of HB, called HB+, and proved it secure against active
attacks. Again the error can be reduced by sequential repetition, and as shown
by Katz, Shin and Smith via a non-trivial analysis, parallel repetition works as
well [20, 21]. The protocol (in its parallel repetition variant) is illustrated in
Figure 2.

Despite a large body of subsequent work1 no improvements in terms of round
complexity, security or tightness of the reduction over HB+ were achieved: 3
round protocols achieving active security

√
ε (assuming LPN is ε-hard) are the

state of the art. In particular, Gilbert et al. [14] showed that HB+ can be broken
by a MIM attack. Several variants HB++ [9], HB∗ [11], HB-MP [24] were proposed
to prevent the particular attack from [14], but all of them were later shown to
be insecure [15]. In [16], a variant HB# was presented which provably resists the
particular attack from [14], but was shown susceptible to a more general MIM
attack [25].

Pτ,n(s ∈ Z�
2) Vτ ′,n(s ∈ Z�

2)
R←− R

$← Z�×n
2

e
$← Bern

τ

z := RT · s⊕ e
z−→ verify: wt(z⊕RT · s) < τ ′ · n

Fig. 1. The HB protocol, secure against passive attacks

1 cf. http://www.ecrypt.eu.org/lightweight/index.php/HB for an incomplete list
of relevant papers.

http://www.ecrypt.eu.org/lightweight/index.php/HB

10 E. Kiltz et al.

Pτ,n(s1, s2) Vτ ′,n(s1, s2)

R1
$← Z�×n

2

R1−→
R2←− R2

$← Z�×n
2

e
$← Bern

τ

z := RT
1 · s1 ⊕RT

2 · s2 ⊕ e
z−→ verify:

wt(z⊕RT
1 · s1 ⊕RT

2 · s2) ≤ τ ′ · n

Fig. 2. The HB+ protocol, secure against active attacks

1.1 Our Contribution

We provide new constructions of authentication protocols and even MACs from
LPN. Our first contribution is a two-round authentication protocol secure against
active adversaries (this is mentioned as an open problem in [19]) which more-
over has a tight security reduction (an open problem mentioned in [21]). As a
second contribution, we build two efficient MACs, and thus also get two-round
authentication protocols secure against MIM attacks, from the LPN assumption.
Unlike previous proposals, our constructions are not ad-hoc, and we give a re-
duction to the LPN problem. Our authentication protocol is roughly as efficient
as the HB+ protocol but has twice the key length. Our MACs perform roughly
the same computation as the authentication protocol plus one evaluation of a
pairwise independent permutation of an ≈ 2� bit domain, where � is the length
of an LPN secret.

2-Round Authentication with Active Security. Our first contribution is
a two-round authentication protocol which we prove secure against active attacks
assuming the hardness of the LPN problem. Our protocol diverges considerably
from all previous HB-type protocols [18, 19, 21, 16], and runs counter to the
intuition that the only way to efficiently embed the LPN problem into a two-
round protocol is via an HB-type construction.

We now sketch our protocol. In HB and its two-round variants, the prover
must compute LPN samples of the form RT · s ⊕ e, where R is the challenge
chosen by the verifier in the first message. We take a different approach. Instead
of sending R, we now let the verifier choose a random subset of the bits of s to
act as the “session-key” for this interaction. It represents this subset by sending
a binary vector v ∈ Z�2 that acts as a “bit selector” of the secret s, and we
write s↓v for the sub-vector of s which is obtained by deleting all bits from s
where v is 0. (E.g. if s = 111000,v = 011100 then s↓v = 110). The prover then
picks R by itself and computes noisy inner products of the form RT · s↓v ⊕ e.
Curiously, allowing the verifier to choose which bits of s to use in each session
is sufficient to prevent active attacks. We only need to add a few sanity-checks
that no pathological v or R were sent by an active adversary.

Our proof relies on the recently introduced subspace LPN problem [26]. In
contrast to the active-attack security proof of HB+ [21], our proof does not use

Efficient Authentication from Hard Learning Problems 11

any rewinding techniques. Avoiding rewinding has at least two advantages. First,
the security reduction becomes tight. Second, the proofs also works in a quantum
setting: our protocol is secure against quantum adversaries assuming LPN is
secure against such adversaries. As first observed by van de Graaf [29], classical
proofs using rewinding in general do not translate to the quantum setting (cf.
[31] for a more recent discussion). Let us emphasise that this only means that
there is no security proof for HB+ in the quantum setting, but we do not know
if a quantum attack actually exists.

MAC & Man-In-The-Middle Security. In Section 4, we give two construc-
tions of message authentication codes (MACs) that are secure (formally, un-
forgeable under chosen message attacks) assuming that the LPN problem is
hard. Note that a MAC implies a two-round MIM-secure authentication proto-
col: the verifier chooses a random message as challenge, and the prover returns
the MAC on the message.

As a first attempt, let us try to view our authentication protocol as a MAC.
That is, a MAC tag is of the form φ = (R, z = RT · fs(m) ⊕ e), where the
secret key derivation function fs(m) ∈ Z�2 first uniquely encodes the message m
into v ∈ Z2�

2 of weight � and then returns s↓v by selecting � bits from secret s,
according to v. However, this MAC is not secure: given a MAC tag φ = (R, z)
an adversary can ask verification queries where it sets individual rows of R to
zero until verification fails: if the last row set to zero was the ith, then the ith
bit of fs(m) must be 1. (In fact, the main technical difficulty to build a secure
MAC from LPN is to make sure the secret s does not leak from verification
queries). Our solution is to randomize the mapping f , i.e. use fs(m,b) for some
randomness b and compute the tag as φ = π(R,RT · fs(m,b) ⊕ e,b), where
π is a pairwise independent permutation (contained in the secret key). We can
prove that if LPN is hard then this construction yields a secure MAC. (The
key argument is that, with high probability, all non-trivial verification queries
are inconsistent and hence lead to reject). However, the security reduction to the
LPN problem is quite loose since it has to guess the value v from the adversary’s
forgery. (In the context of identity-based encryption (IBE) a similar idea has been
used to go from selective-ID to full security using “complexity leveraging” [7]).
In our case, however, this still leads to a polynomial security reduction when one
commits to the hardness of the LPN problem at the time of the construction.
(See the first paragraph of §4 for a discussion).

To get a strictly polynomial security reduction (without having to commit to
the hardness of the LPN problem), in our second construction we adapt a tech-
nique originally used by Waters [30] in the context of IBE schemes that has been
applied to lattice based signature [8] and encryption schemes [2]. Concretely, we
instantiate the above MAC construction with a different secret key derivation
function fs(m,b) = s0 ⊕

⊕
i:v[i]=1 si (where v = h(m,b) and h(·) is a pairwise

independent hash). The drawback of our second construction is the larger key-
size. Our security reduction uses a technique from [8, 2] based on encodings with
full-rank differences (FRD) by Cramer and Damgard [10].

12 E. Kiltz et al.

1.2 Efficiency

Figure 3 gives a rough comparison of our new protocol and MACs with the
HB,HB+ protocols and, as a reference, also the classical tree-based GGM con-
struction [17]. The second row in the table specifies the security notion that
is (provably) achieved under the LPNτ,� assumption. λ is a security param-
eter and n denotes the number of “repetitions”. Typical parameters can be
� = 500, λ = 80, n = 250. Computation complexity counts the number of bi-
nary operations over F2. Communication complexity counts the total length of
all exchanged messages2. The last row in the table states the tightness of the
security reduction, i.e. what exact security is achieved (ignoring constants and
higher order terms) assuming the LPNτ,� problem is ε-hard.

The prover and verifier in the HB,HB+ and our new protocols have to perform
Θ(� · n) basic binary operations, assuming the LPNτ,� problem (i.e., LPN with
secrets of length �) is hard. This seems optimal, as Θ(�) operations are necessary
to compute the inner product which generates a single pseudorandom bit. We
will thus consider an authentication protocol or MAC efficient, if it requires
O(� ·n) binary operations. Let us mention that one gets a length-doubling PRG
under the LPNτ,� assumption with Θ(�2) binary operations [12]. Via the classical
GGM construction [17], we obtain a PRF and hence a MAC. This PRF, however,
requires Θ(�2 · λ) operations per invocation (where λ is the size of the domain
of the PRF) which is not very practical. (Recall that � ≈ 500).

Communication vs. Key-Size. For all constructions except GGM, there is a
natural trade-off between communication and key-size, where for any constant
c (1 ≤ c ≤ n), we can decrease communication by a factor of c and increase
key-size by the factor c (cf. the full version [1] for how exactly this can be done).
For the first three protocols in the table, the choice of c does not affect the
computational efficiency, but it does so for our MACs: to compute or verify a

Construction Security Complexity Key-size Reduction
Communication Computation

HB [18] passive (2 rnd) � · n/c Θ(� · n) � · c ε (tight)
HB+ [19] active (3 rnd) � · n · 2/ c Θ(� · n) � · 2 · c √

ε

AUTH § 3 active (2 rnd) � · n · 2.1/c Θ(� · n) � · 4.2 · c ε (tight)
MAC1 § 4.1 MAC → MIM (2 rnd) � · n · 2.1/c Θ(� · n) + PIP � · 12.6 · c √ε ·Q (�)
MAC2 § 4.2 MAC → MIM (2 rnd) � · n · 1.1/c Θ(� · n) + PIP � · λ · c ε ·Q
GGM [17] PRF → MIM (2 rnd) λ Θ(�2 · λ) Θ(�) ε · λ

Fig. 3. A comparison of our new authentication protocol and MACs with the HB, HB+

protocols and the classical GGM construction. The trade-off parameter c, 1 ≤ c ≤ n
and the term PIP will be explained in the “Communication vs. Key-Size” paragraph
below. (�) See discussion in §4.

2 For MACs, we consider the communication one incurs by constructing a MIM secure
2-round protocol from the MAC by having the prover compute the tag on a random
challenge message.

Efficient Authentication from Hard Learning Problems 13

tag one has to evaluate a pairwise independent permutation (PIP) on the entire
tag of length m := Θ(� · n/c).

The standard way to construct a PIP π over Z2m is to define π(x) := a ·
x + b ∈ F2m for random a, b ∈ F2m . Thus the computational cost of evaluating
the PIP is one multiplication of two m bits values: the PIP term in the table
accounts for this complexity. Asymptotically, such a multiplication takes only
O(m logm log logm) time [28, 13], but for small m (like in our scheme) this will
not be faster than using schoolbook multiplication, which takes Θ(m2) time. For
parameters � = 500, n = 250 and trade-off c = n (which minimizes the tag-length
m) we get m ≈ 1200 for MAC1 (i.e., 1200 = 2� plus some statistical security
parameters) and m ≈ 600 for MAC2. Hence, depending on the parameters, the
evaluation of the PIP may be the computational bottleneck of our MACs.

2 Definitions

2.1 Notation

We denote the set of integers modulo an integer q ≥ 1 by Zq. We will use normal,
bold and capital bold letters like x, x, X to denote single elements, vectors
and matrices over Zq, respectively. For a positive integer k, [k] denotes the set
{1, . . . , k}; [0] is the empty set. For a, b ∈ R,]a, b[= {x ∈ R ; a < x < b}. For a
vector x ∈ Zmq , |x| = m denotes the length of x; wt(x) denotes the Hamming
weight of the vector x, i.e. the number of indices i ∈ {1, . . . , |x|} where x[i]
= 0.
The bit-wise XOR of two binary vectors x and y is represented as z = x ⊕ y,
where z[i] = x[i]⊕y[i]. For v ∈ Zm2 we denote by v its inverse, i.e. v[i] = 1−v[i]
for all i. For two vectors v ∈ Z�2 and x ∈ Z�q, we denote by x↓v the vector (of
length wt(v)) which is derived from x by deleting all the bits x[i] where v[i] = 0.
If X ∈ Z�×m2 is a matrix, then X↓v denotes the submatrix we get by deleting the
ith row if v[i] = 0. A function in λ is negligible, written negl(λ), if it vanishes
faster than the inverse of any polynomial in λ. An algorithm A is probabilistic
polynomial time (PPT) if A uses some randomness as part of its logic (i.e. A is
probabilistic) and for any input x ∈ {0, 1}∗ the computation of A(x) terminates
in at most poly(|x|) steps.

2.2 Authentication Protocols

An authentication protocol is an interactive protocol executed between a prover
P and a verifier V , both PPT algorithms. Both hold a secret x (generated using
a key-generation algorithm KG executed on the security parameter λ in unary)
that has been shared in an initial phase. After the execution of the authentica-
tion protocol, V outputs either accept or reject. We say that the protocol has
completeness error α if for all secret keys x generated by KG(1λ), the honestly
executed protocol returns reject with probability at most α.

Passive attacks. An authentication protocol is secure against passive attacks,
if there exists no PPT adversary A that can make the verifier return accept with

14 E. Kiltz et al.

non-negligible probability after (passively) observing any number of interactions
between the verifier and prover.

Active attacks. A stronger notion for authentication protocols is security
against active attacks. Here the adversary A runs in two stages. First, she can
interact with the honest prover a polynomial number of times (with concurrent
executions allowed). In the second phase A interacts with the verifier only, and
wins if the verifier returns accept. Here we only give the adversary one shot
to convince the verifier3. An authentication protocol is (t, Q, ε)-secure against
active adversaries if every PPT A, running in time at most t and making Q
queries to the honest prover, has probability at most ε to win the above game.

Man-in-the-middle attacks. The strongest standard security notion for au-
thentication protocols is security against man-in-the-middle (MIM) attacks. Here
the adversary can initially interact (concurrently) with any number of provers
and – unlike in an active attacks – also verifiers. The adversary gets to learn
the verifiers accept/reject decisions. One can construct two-round authentica-
tion schemes which are secure against MIM attacks from basic cryptographic
primitives like MACs, which we define next.

2.3 Message Authentication Codes

A message authentication code MAC = {KG,TAG,VRFY} is a triple of algorithms
with associated key space K, message space M, and tag space T .
– Key Generation. The probabilistic key-generation algorithm KG takes as input

a security parameter λ ∈ N (in unary) and outputs a secret key K ∈ K.
– Tagging. The probabilistic authentication algorithm TAG takes as input a

secret key K ∈ K and a message m ∈M and outputs an authentication tag
φ ∈ T .

– Verification. The deterministic verification algorithm VRFY takes as input
a secret key K ∈ K, a message m ∈ M and a tag φ ∈ T and outputs
{accept, reject}.

If the TAG algorithm is deterministic one does not have to explicitly define VRFY,
since it is already defined by the TAG algorithm as VRFY(K,m, φ) = accept iff
TAG(K,m) = φ.

Completeness. We say that MAC has completeness error α if for all m ∈ M
and λ ∈ N

Pr[VRFY(K,m, φ) = reject ;K ← KG(1λ) , φ← TAG(K,m)] ≤ α.

Security. The standard security notion for a MAC is unforgeability under a
chosen message attack (uf-cma). We denote by Advuf−cma

MAC (A, λ,Q), the advan-
tage of the adversary A in forging a message under a chosen message attack for
3 By using a hybrid argument one can show that this implies security even if the

adversary can interact in k ≥ 1 independent instances concurrently (and wins if the
verifier accepts in at least one instance). The use of the hybrid argument looses a
factor of k in the security reduction.

Efficient Authentication from Hard Learning Problems 15

MAC when used with security parameter λ. Formally this is the probability that
the following experiment outputs 1.

Experiment Expuf−cma
MAC (A, λ,Q)

K ← KG(1λ)
Invoke ATAG(K,·),VRFY(K,·,·) who can make up to Q queries to TAG(K, ·) and
VRFY(K, ·, ·).
Output 1 if A made a query (m, φ) to VRFY(K, ·, ·) where

1. VRFY(K,m, φ) = accept
2. A did not already make the query m to TAG(K, ·)

Output 0 otherwise.

We say that MAC is (t, Q, ε)-secure against uf-cma adversaries if for any A
running in time t in the experiment above, we have Advuf−cma

MAC (A, λ,Q) ≤ ε.

2.4 Hard Learning Problems

Let Berτ be the Bernoulli distribution over Z2 with parameter (bias) τ ∈]0, 1/2[
(i.e., Pr[x = 1] = τ if x ← Berτ). For � ≥ 1, Ber�τ denotes the distribution
over Z�2 where each vector consists of � independent samples drawn from Berτ .
Given a secret x ∈ Z�2 and τ ∈]0, 1

2 [, we write Λτ,�(x) for the distribution over
Z�2×Z2 whose samples are obtained by choosing a vector r $← Z�2 and outputting
(r, rT · x⊕ e) with e

$← Berτ .
The LPN assumption, formally defined below, states that it is hard to dis-

tinguish Λτ,�(x) (with a random secret x ∈ Z�2) from the uniform distribution.

Definition 1 (Learning Parity with Noise). The (decisional) LPNτ,� prob-
lem is (t, Q, ε)-hard if for every distinguisher D running in time t and making
Q queries, ∣∣∣Pr

[
x $← Z�2 : DΛτ,�(x) = 1

]
− Pr

[
DU�+1 = 1

]∣∣∣ ≤ ε.

Below we define the (seemingly) stronger subspace LPN assumption (SLPN for
short) recently introduced in [26]. Here the adversary can ask for inner products
not only with the secret x, but even with A ·x⊕b where A and b can be adap-
tively chosen, but A must have sufficiently large rank. For minimal dimension
d ≤ �, a secret x ∈ Z�2 and A ∈ Z�×�2 , b ∈ Z�2, we define the distribution

Γτ,�,d(x,A,b) =
{

⊥ if rank(A) < d
Λτ,�(A · x⊕ b) otherwise

and let Γτ,�,d(x, ·, ·) denote the oracle which on input A,b outputs a sample
from Γτ,�,d(x,A,b).

Definition 2 (Subspace LPN). Let �, d ∈ Z where d ≤ �. The (decisional)
SLPNτ,�,d problem is (t, Q, ε)-hard if for every distinguisher D running in time
t and making Q queries,∣∣∣Pr

[
x $← Z�2 : DΓτ,�,d(x,·,·) = 1

]
− Pr

[
DU�+1(·,·) = 1

]∣∣∣ ≤ ε,

16 E. Kiltz et al.

where U�+1(·, ·) on input (A,b) outputs a sample of U�+1 if rank(A) ≥ d and ⊥
otherwise.

The following proposition states that the subspace LPN problem mapping to
dimension d+ g is almost as hard as the standard LPN problem with secrets of
length d. The hardness gap is exponentially small in g.

Proposition 1 (From [26]). For any �, d, g ∈ Z (where � ≥ d + g), if the
LPNτ,d problem is (t, Q, ε)-hard then the SLPNτ,�,d+g problem is (t′, Q, ε′)-hard
where

t′ = t− poly(�,Q) ε′ = ε + 2Q/2g+1.

For some of our constructions, we will only need a weaker version of the SLPNτ,�,d

problem that we call subset LPN. As the name suggests, here the adversary does
not ask for inner products with A ·x⊕b for any A (of rank ≥ d), but only with
subsets of x (of size ≥ d). It will be convenient to explicitly define this special
case. For x,v ∈ Z�2, let diag(v) ∈ Z�×�2 denote the zero matrix with v in the
diagonal, and let

Γ ∗
τ,�,d(x,v) := Γτ,�,d(x, diag(v), 0�) =

{
⊥ if wt(v) < d

Λτ,�(x ∧ v) otherwise.

Definition 3 (Subset LPN). Let �, d ∈ Z where d ≤ �. The SLPN∗
τ,�,d problem

is (t, Q, ε)-hard if for every distinguisher D running in time t and making Q
queries, ∣∣∣Pr

[
x $← Z�2 : DΓ∗

τ,�,d(x,·) = 1
]
− Pr

[
DU�+1(·) = 1

]∣∣∣ ≤ ε,

where U�+1(·) on input v (where wt(v) ≥ d) outputs a sample of U�+1 and ⊥
otherwise.

Remark 1. Γ ∗
τ,�,d(x,v) samples are of the form (r, rT

↓v · x↓v ⊕ e) ∈ Z�+1
2 , where

e
$← Berτ . To compute the inner product only r↓v ∈ Z

wt(v)
2 is needed, the

remaining bits r↓v ∈ Z
�−wt(v)
2 are irrelevant. We use this observation to improve

the communication complexity (for protocols) or tag length (for MACs), by using
“compressed” samples of the form (r↓v, rT

↓v · x↓v ⊕ e) ∈ Z
wt(v)+1
2 .

3 Two-Round Authentication with Active Security

In this section we describe our new 2-round authentication protocol and prove
its active security under the hardness of the SLPN∗

τ,2�,d problem, where d =
�/(2+γ) for some constant γ > 0. (Concretely, γ = 0.1 should do for all practical
purposes).

Efficient Authentication from Hard Learning Problems 17

– Public parameters. The authentication protocol has the following public pa-
rameters, where τ, τ ′ are constants and �, n depend on the security parameter
λ.
� ∈ N length of the secret key s ∈ Z2�

2
τ ∈]0, 1/2[parameter of the Bernoulli error distribution Berτ
τ ′ = 1/4 + τ/2 acceptance threshold
n ∈ N number of parallel repetitions (we require n ≤ �/2)

– Key Generation. Algorithm KG(1λ) samples s $← Z2�
2 and returns s as the

secret key.
– Authentication Protocol. The 2-round authentication protocol with prover
Pτ,n and verifier Vτ ′,n is given in Figure 4.

Prover Pτ,n(s ∈ Z2�
2) Verifier Vτ ′,n(s ∈ Z2�

2)
v←− v

$← {x ∈ Z2�
2 : wt(x) = �}

if wt(v) 	= � abort

R
$← Z�×n

2 ; e
$← Bernτ

z := RT · s↓v ⊕ e ∈ Zn
2

(R,z)−−−→ if rank(R) 	= n reject
if wt(z⊕RT · s↓v) > n · τ ′ reject, else accept

Fig. 4. Two-round authentication protocol AUTH with active security from the LPN
assumption

Theorem 1. For any constant γ > 0, let d = �/(2+γ). If the SLPN∗
τ,2�,d problem

is (t, nQ, ε)-hard then the authentication protocol from Figure 4 is (t′, Q, ε′)-
secure against active adversaries, where for constants cγ , cτ > 0 that depend
only on γ and τ respectively,

t′ = t− poly(Q, �) ε′ = ε + Q · 2−cγ ·� + 2−cτ ·n = ε + 2−Θ(n) .

The protocol has completeness error 2−c
′
τ ·n where c′τ > 0 depends only on τ .

3.1 Proof of Completeness

For any n ∈ N, τ ∈]0, 1/2[, let

ατ,n := Pr[wt(e) > n · τ ′ : e $← Bernτ] = 2−c
′′
τ ·n (3.1)

denote the probability that n independent Bernoulli samples with bias τ contain
more than a τ ′ := 1/4 + τ/2 fraction of 1’s. The last equality in eq.(3.1) follows
from the Hoeffding bound, where the constant c′′τ > 0 depends only on τ .

We now prove that the authentication protocol has completeness error α ≤
2−�+n+ατ,n. The verifier performs the following two checks. In the first verifica-
tion step, the verifier rejects if the random matrix R does not have full rank. In
the full version [1] we prove that the probability of this event is ≤ 2−n. Now, let
e := z⊕RT ·s↓v denote the noise added by Pτ,n. Then, in the second verification
step, the verifier rejects if wt(e) > n · τ ′. From equation 3.1, we have that this
happens with probability ατ,n. This completes the proof of completeness.

18 E. Kiltz et al.

3.2 Proof of Security

We first define some terms that will be used later in the security proof. For
a constant γ > 0, let d = �/(2 + γ) (as in Theorem 1). Let α′

�,d denote the
probability that a random substring of length � chosen from a string of length
2� with Hamming weight �, has a Hamming weight less than d. Using the fact
that the expected Hamming weight is �/2 = d(1 + γ/2) = d(1 + Θ(1)), one can
show that there exists a constant cγ > 0 (only depending on γ), such that

α′
�,d :=

∑d−1
i=0

(
�
i

)(
�
�−i
)(2�

�

) ≤ 2−cγ ·�. (3.2)

For τ ′ = 1/4 + τ/2, let α′′
τ ′,n denote the probability that a random bitstring

y ∈ Zn2 has Hamming weight wt(y) ≤ n · τ ′. From the Hoeffding bound, it
follows that there exists a constant cτ > 0 (only depending on τ), such that

α′′
τ ′,n := 2−n ·

�n·τ ′�∑
i=0

(
n

i

)
≤ 2−cτ ·n. (3.3)

We now prove security of the authentication protocol. Consider an oracle O
which is either the subset LPN oracle Γ ∗

τ,2�,d(x, ·) or U2�+1(·), as defined in
Definition 3. We will construct an adversary BO that uses A (who breaks the
active security of AUTH with advantage ε′) in a black-box way such that:

Pr[BΓ∗
τ,2�,d(x,·) → 1] ≥ ε′ −Q · α′

�,d and Pr[BU2�+1(·) → 1] ≤ α′′
τ ′,n .

Thus BO can distinguish between the two oracles with advantage ε := ε′ − Q ·
α′
�,d − α′′

τ ′,n as claimed in the statement of the Theorem. Below we define BO.

Setup. Initially, BO samples

x∗ $← Z2�
2 , v∗ $← {y ∈ Z2�

2 : wt(y) = �}.

The intuition of our simulation below is as follows. Let us first assume O is
a subset LPN oracle Γ ∗

τ,2�,d(x, ·) with secret x. In the first phase we have to
produce answers (R, z) to a query v ∈ {y ∈ Z2�

2 : wt(y) = �} by A. The
simulated answers have exactly the same distribution as the answers of an
honest prover Pτ,n(s ∈ Z2�

2) where

s = (x∗ ∧ v∗)⊕ (x ∧ v∗) (3.4)

Thus one part of s’s bits come from x∗, and the other part is from the
unknown secret x (for which we use the oracle O). In the second phase we
give A the challenge v∗. As s↓v∗ = (x∗ ∧v∗)↓v∗ is known, we will be able to
verify if A outputs a valid forgery.

If O is the random oracle U2�+1(·), then after the first phase s↓v∗ = (x∗ ∧
v∗)↓v∗ is information theoretically hidden, and thus A cannot come up with
a valid forgery but with exponentially small probability.

Efficient Authentication from Hard Learning Problems 19

First phase. In the first phase BO invokes A who expects access to Pτ,n(s ∈
Z2�

2) . We now specify how BO samples the answer (R, z) to a query v ∈
{y ∈ Z2�

2 : wt(y) = �} made by A. Let

u∗ := v ∧ v∗ u := v ∧ v∗

1. BO queries its oracle n times on the input u. If the oracle’s output is ⊥
(which happens iff wt(u) < d), BO outputs 0 and stops. Otherwise let
R̂1 ∈ Z2�×n

2 , z1 ∈ Zn2 denote the n outputs of the oracle.
2. Sample R̂0

$← Z2�×n
2 and set z0 = R̂T

0 · (x∗ ∧ u∗).
3. Return (R = R̂↓v ∈ Z�×n2 , z = z0 ⊕ z1 ∈ Zn2), where R̂ is uniquely

determined by requiring R̂↓v∗ = R̂0 and R̂↓v∗ = R̂1.
Second phase. Eventually, A enters the second phase of the active attack,

expecting a challenge from Vτ ′,n(s ∈ Z2�
2).

1. BO forwards v∗ as the challenge to A.
2. A answers with some (R∗, z∗).
3. BO checks if

rank(R∗) = n and wt(z∗ ⊕R∗T · x∗
↓v∗) ≤ n · τ ′. (3.5)

The output is 1 if both checks succeed and 0 otherwise.

Claim 2. Pr[BU2�+1(·) → 1] ≤ α′′
τ ′,n.

Proof (of Claim). If R∗ does not have full rank then B outputs 0 by definition.
Therefore, we now consider the case where rank(R∗) = n.

The answers (R, z) that the adversary A obtains from BU2�+1(·) are indepen-
dent of x∗ (i.e., z = z0⊕ z1 is uniform as z1 is uniform). Since x∗

↓v∗ is uniformly
random and R∗ has full rank, the vector

y := R∗T · x∗
↓v∗ ⊕ z∗

is uniformly random over Zn2 . Thus the probability that the second verification
in eq. (3.5) does not fail is Pr[wt(y) ≤ n · τ ′] = α′′

τ ′,n.

Claim 3. Pr[BΓ∗
τ,2�,d(x,·) → 1] ≥ ε′ −Q · α′

�,d.

Proof (of Claim). We split the proof in two parts. First we show that B outputs
1 with probability ≥ ε′ if the subset LPN oracle accepts subsets of arbitrary
small size (and does not simply output ⊥ on inputs v where wt(v) < d), i.e.,

Pr[BΓ
∗
τ,2�,0(x,·) → 1] ≥ ε′. (3.6)

Then we’ll upper bound the gap between the probability that B outputs 1 in the
above case and the probability that B outputs 1 when given access to the oracle
that we are interested in as:∣∣∣Pr[BΓ

∗
τ,2�,d(x,·) → 1]− Pr[BΓ

∗
τ,2�,0(x,·) → 1]

∣∣∣ ≤ Q · α′
�,d. (3.7)

The claim then follows by the triangle inequality from the two equations above.

20 E. Kiltz et al.

Eq. (3.6) holds as:

– The answers (R, z) that BΓ∗
τ,2�,0(x,·) gives to A’s queries in the first phase

of the attack have exactly the same distribution as what A would get when
interacting with an honest prover Pτ,n(s ∈ Z2�

2) where the “simulated” secret
s is defined in eq.(3.4).

To see this, recall that on a query v from A, BΓ∗
τ,2�,0(x,·) must compute n

SLPN samples (R̂, z = R̂T · (s ∧ v) ⊕ e) and then forward the compressed
version of this samples to A (that is, (R, z = RT · s↓v ⊕ e) where R = R̂↓v,
cf. Remark 1). We next show that the z computed by B indeed have exactly
this distribution. In the first step, B queries its oracle with u = v ∧ v∗ and
obtains noisy inner products (R̂1, z1) with the part of s↓v that contains only
bits from x, i.e.,

z1 = R̂T
1 · (x ∧ u)⊕ e = R̂T

1 · (s ∧ u)⊕ e.

In the second step, B samples n inner products (R̂0, z0) (with no noise) with
the part of s↓v that contains only bits from the known x∗, i.e.,

z0 = R̂T
0 · (x∗ ∧ u∗) = R̂T

0 · (s ∧ u∗).

In the third step, B then generates (R̂, R̂T · (s ∧ v) ⊕ e) from the previous
values where R̂ is defined by R̂↓v∗ = R̂0 and R̂↓v∗ = R̂1. Using v = u⊕u∗,
we get

z = z0 ⊕ z1

= R̂T
0 · (s ∧ u∗)⊕ R̂T

1 · (s ∧ u)⊕ e

= R̂T · (s ∧ v) ⊕ e

– The challenge v∗ sent to A in the second phase of the active attack is uni-
formly random (even given the entire view so far), and therefore has the
same distribution as a challenge in an active attack.

– BΓ∗
τ,2�,0(x,·) outputs 1 if eq.(3.5) holds, which is exactly the case when A’s

response to the challenge was valid. By assumption this probability is at
least ε′.

This concludes the proof of Eq. (3.6). It remains to prove eq.(3.7). Note that
Γ ∗
τ,2�,0(x, ·) behaves exactly like Γ ∗

τ,2�,d(x, ·) as long as one never makes a query
v where wt(v ∧ v∗) < d.

Since v∗ $← {y ∈ Z2�
2 : wt(y) = �}, for any v, the probability that wt(v ∧

v∗) < d is (by definition) α′
�,d as defined in eq.(3.2). Using the union bound, we

can upper bound the probability that wt(v ∧ v∗) < d for any of the Q different
v’s chosen by the adversary as Q · α′

�,d.

3.3 Avoid Checking

One disadvantage of the protocol in Figure 4, compared to HB style protocols,
is the necessity to check whether the messages exchanged have the right from:

Efficient Authentication from Hard Learning Problems 21

Pτ,n(s ∈ Z2�
2 ,bv ∈ Z2�

2 ,bz ∈ Zn
2) Vτ ′,n(s,bv,bz)

v←− v
$← Z2�

2

R
$← Z2�×n

2 ; e
$← Bern

τ

z := RT · (s ∧ (v ⊕ bv))⊕ bz ⊕ e
z,R−−→ if wt(

(
RT · (s ∧ (v ⊕ bv))

)⊕ bz) > n · τ ′

reject otherwise accept

Fig. 5. By blinding the values v, z with secret random vectors bv,bz we can avoid
checking whether wt(v) = � and rank(R) = n as in the protocol from Figure 4

the prover checks if v has weight �, while the verifier must make the even more
expensive check whether R has full rank. Eliminating such verification proce-
dures can be particularly useful if for example the prover is an RFID chip where
even the simple verification that a vector has large weight is expensive. We note
that it is possible to eliminate these checks by blinding the exchanged messages
v and z using random vectors bv ∈ Z2�

2 and bz ∈ Zn2 respectively, as shown in
Figure 5. The security and completeness of this protocol is basically the same
as for the protocol in Figure 5. The security proof is also very similar and is
therefore omitted.

4 Message Authentication Codes

In this section, we construct two message authentication codes whose security
can be reduced to the LPN assumption. Our first construction is based on the 2-
round authentication protocol from Section 3. We prove that if the LPN problem
is ε-hard, then no adversary making Q queries can forge a MAC with probability
more than Θ(

√
ε ·Q). However, the construction has the disadvantage that one

needs to fix the hardness of the LPN problem at the time of the construction,
c.f. Remark 2. Our second construction has no such issues and achieves better
security Θ(ε ·Q). The efficiency of this construction is similar to that of the first
construction, but a larger key is required.

4.1 First Construction

Recall the 2-round authentication protocol from Section 3. In the protocol the
verifier chooses a random challenge subset v. To turn this interactive protocol
into a MAC, we will compute this v from the message m to be authenticated
as v = C(h(m,b)), where h is a pairwise independent hash function, b ∈ Zν2 is
some fresh randomness and C is some encoding scheme. The code C is fixed and
public, while the function h is part of the secret key. The authentication tag φ
is computed in the same manner as the prover’s answer in the authentication
protocol. That is, we sample a random matrix R ∈ Z�×n2 and compute a noisy
inner product z := RT · s↓v ⊕ e, where e $← Bernτ . We note that using (R, z) as
an authentication tag would not be secure, and we need to blind these values.

22 E. Kiltz et al.

This is done by applying an (almost) pairwise independent permutation (PIP)
π – which is part of the secret key – to (R, z,b) ∈ Z�×n+n+ν

2 .

Construction. The message authentication code MAC1 = {KG,TAG,VRFY}
with associated message space M is defined as follows.
– Public parameters. MAC1 has the following public parameters.

�, τ, τ ′, n as in the authentication protocol from Section 3
μ ∈ N output length of the hash function
ν ∈ N length of the randomness
C : Zμ2 → Z2�

2 encoding, where ∀ x
= x′ ∈ Zμ2 we have wt(C(x)) = �
and wt(C(x) ⊕ C(x′)) ≥ 0.9�.

– Key generation. Algorithm KG(1λ) samples s $← Z2�
2 , an (almost) pairwise

independent hash function h : M× Zν2 → Zμ2 and a pairwise independent
permutation π over Z�×n+n+ν

2 . It returns K = (s, h, π) as the secret key.
– Tagging. Given secret key K = (s, h, π) and message m ∈M, algorithm TAG

proceeds as follows.
1. R $← Z�×n2 , b $← Zν2 , e $← Bernτ
2. v := C(h(m,b)) ∈ Z2�

2
3. Return φ := π(R,RT · s↓v ⊕ e,b)

– Verification. On input a secret-key K = (s, h, π), message m ∈ M and tag
φ, algorithm VRFY proceeds as follows.
1. Parse π−1(φ) as (R ∈ Z�×n2 , z ∈ Zn2 ,b ∈ Zν2). If rank(R)
= n, then return

reject
2. v := C(h(m,b))
3. If wt(z⊕RT · s↓v) > n · τ ′ return reject, otherwise return accept

Theorem 4. For μ = ν ∈ N, a constant γ > 0 and d := �/(2 + γ), if the
SLPN∗

τ,2�,d problem is (t, nQ, ε)-hard then MAC1 is (t′, Q, ε′)-secure against uf-
cma adversaries, where

t′ ≈ t, ε = min
{
ε′/2− Q2

2μ−2 ,
ε′

2μ+1 − 2−Θ(n)
}

.

MAC1 has completeness error 2−cτ ·n where cτ > 0 depends only on τ .

Corollary 1. Choosing μ s.t. 2μ = Q2·24

ε′ in the above theorem, we get ε =
min{ε′/4, (ε′)2/(25Q2)− 2−Θ(n)}. The 2nd term is the minimum here, and solv-
ing for ε′ gives

ε′ :=
√

32 ·Q ·
√
ε + 2−Θ(n). (4.1)

Remark 2 (about μ). Note that to get security as claimed in the above corollary,
we need to choose μ as a function of Q and ε such that 2μ ≈ Q2 · 24/ε′ for ε′

as in eq.(4.1). Of course we can just fix Q (as an upper bound to the number
of queries made by the adversary) and ε (as our guess on the actual hardness
of SLPN∗

τ,2�,d). But a too conservative guess on μ (i.e. choosing μ too small)
will result in a construction whose security is worse than what is claimed in the
above corollary. A too generous guess on the other hand will make the security

Efficient Authentication from Hard Learning Problems 23

reduction meaningless (we don’t have any actual attacks on the MAC for large
μ though).

We now give an intuition for the proof of Theorem 4. For space reasons, a full
proof will only be given in the full version of this paper [1]. Every query (m, φ)
to VRFY and query m to TAG defines a subset v (as computed in the second
step in the definitions of both VRFY and TAG). We say that a forgery (m, φ) is
“fresh” if the v contained in (m, φ) is different from all v’s contained in all the
previous VRFY and TAG queries. The proof makes a case distinction and uses a
different reduction for the two cases where the forgery found by the adversary is
more likely to be fresh, or more likely to be non-fresh. In both cases we consider
a reduction BO which has access to either a uniform oracle O = U or a subset
LPN oracle O = Γ ∗. BO uses an adversary A who can find forgeries for the
MAC to distinguish those cases and thus break the subset LPN assumption. In
the first case, where the first forgery is likely to be non-fresh, we can show
(using the fact that a pairwise independent permutation is used to blind the
tag) that if BO’s oracle is O = U , even a computationally unbounded A cannot
come up with a message/tag pair (m, φ) that contains a non-fresh v. Thus we
can distinguish the cases O = U and O = Γ ∗ by just observing if A ever makes
a VRFY query (m, φ) that contains a non-fresh v (even without being able to
tell if (m, φ) is valid or not).

If the forgery found by A is more likely to be fresh, we can use a similar
argument as in the proof of our authentication protocol in the last section. An
additional difficulty here is that the reduction has to guess the fresh v ∈ Zμ2
contained in the first forgery and cannot choose it as in the protocol. This is the
reason why the reduction looses a factor 2μ.

4.2 Second Construction

We now give the construction of another MAC based on the hardness of the
LPN problem. The main difference to MAC1 from the last subsection is the
way we generate the values s(v). In the new construction, we define s(v) :=
s0 ⊕

⊕
i:v[i]=1 si, where each si is a part of the secret key. The construction

uses ideas from Waters’ IBE scheme [30], and parts of the security reduction use
simulation tricks from [8, 2] that we need to adapt to the binary case.

Construction. The message authentication code MAC2 = {KG,TAG,VRFY}
with associated message space M is defined as follows.
– Public parameters. MAC2 has the following public parameters.

�, τ, τ ′, n as in the authentication protocol from Section 3
μ ∈ N output length of the hash function
ν ∈ N length of the randomness

– Key generation. Algorithm KG(1λ) samples si
$← Z�2 (for 0 ≤ i ≤ μ) and

chooses a pairwise independent hash function h : M× Zν2 → Zμ2 , as well
as a pairwise independent permutation π over Z�×n+n+ν

2 . It returns K =
(s0, . . . , sμ, h, π) as the secret key.

24 E. Kiltz et al.

– Tagging. Given secret key K = (s0, . . . , sμ, h, π) and message m ∈ M, algo-
rithm TAG proceeds as follows.
1. R $← Z�×n2 , b $← Zν2 , e $← Bernτ
2. v := h(m,b)
3. s(v) := s0 ⊕

⊕
i:v[i]=1 si

4. Return φ := π(R,RT · s(v)⊕ e,b)
– Verification. On input a secret-key K = (s0, . . . , sμ, h, π), message m ∈ M

and tag φ, algorithm VRFY proceeds as follows.
1. Parse π−1(φ) as (R ∈ Z�×n2 , z ∈ Zn2 ,b ∈ Zν2). If rank(R)
= n, then return

reject
2. v := h(m,b)
3. s(v) := s0 ⊕

⊕
i:v[i]=1 si

4. If wt(z⊕RT · s(v)) > n · τ ′ return reject, otherwise return accept

Theorem 5. If the SLPNτ,�,� problem is (t, nQ, ε)-hard, then MAC2 is (t′, Q, ε′)-
secure against uf-cma adversaries, where

t′ ≈ t ε = min
{
ε′/2− Q2

2μ−2 ,
ε′

4Q
− 2−Θ(n)

}
.

MAC2 has completeness error 2−cτ ·n where cτ only depends on τ .

We now give an intuition for the proof of Theorem 5. For space reasons, a full
proof will only be given in the full version of this paper [1]. Similar to the proof
of Theorem 4, we distinguish fresh and non-fresh forgeries. Here the new and
interesting case is the fresh forgery. The idea is that in the reduction to the
SLPN problem we define the function s(v) = A(v) · s ⊕ b(v) (where s is the
LPN secret) such that the following holds with non-negligible probability: (i) for
each vi from the TAG queries, A(vi) has full rank � and hence the tags can be
simulated using the provided Γτ,�,�(s, ·, ·) oracle; (ii) for the first fresh forgery
we have A(v) = 0 such that s(v) is independent of s and the reduction can
check the forgery’s correctness. The above two properties allow to maintain the
simulation. The setup of the function s(·) is the crucial step and here we adapt
a technique recently introduced by Boyen [8] based on homomorphic encodings
with full-rank differences that allows us to arbitrarily control the probability
that the above simulation works.

Acknowledgements

Krzysztof would like to thank Vadim Lyubashevsky for many interesting discus-
sions on LPN while being in Tel Aviv and Eyjafjallajökull for making this stay
possible.

Efficient Authentication from Hard Learning Problems 25

References

[1] The full version of this paper will be posted on the Cryptology ePrint Archive,
http://eprint.iacr.org/

[2] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

[3] Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory 24(3), 384–
386 (1978)

[4] Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

[5] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: 32nd ACM STOC, pp. 435–440. ACM Press,
New York (May 2000)

[6] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. J. ACM 50(4), 506–519 (2003)

[7] Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

[8] Boyen, X.: Lattice mixing and vanishing trapdoors: A framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

[9] Bringer, J., Chabanne, H., Dottax, E.: HB++: a lightweight authentication pro-
tocol secure against some attacks. In: SecPerU, pp. 28–33 (2006)

[10] Cramer, R., Damgard, I.: On the amortized complexity of zero-knowledge proto-
cols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer,
Heidelberg (2009)

[11] Duc, D.N., Kim, K.: Securing HB+ against GRS man-in-the-middle attack. In:
SCIS (2007)

[12] Fischer, J.-B., Stern, J.: An efficient pseudo-random generator provably as se-
cure as syndrome decoding. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS,
vol. 1070, pp. 245–255. Springer, Heidelberg (1996)

[13] Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)
[14] Gilbert, H., Robshaw, M., Sibert, H.: An active attack against HB+ - a provably

secure lightweight authentication protocol. Cryptology ePrint Archive, Report
2005/237 (2005), http://eprint.iacr.org/

[15] Gilbert, H., Robshaw, M.J.B., Seurin, Y.: Good variants of hB+ are hard to find.
In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 156–170. Springer, Heidelberg
(2008)

[16] Gilbert, H., Robshaw, M.J.B., Seurin, Y.: HB#: Increasing the security and effi-
ciency of HB+. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
361–378. Springer, Heidelberg (2008)

[17] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33, 792–807 (1986)

[18] Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

[19] Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer,
Heidelberg (2005)

http://eprint.iacr.org/
http://eprint.iacr.org/

26 E. Kiltz et al.

[20] Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB+ protocols.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer,
Heidelberg (2006)

[21] Katz, J., Shin, J.S., Smith, A.: Parallel and concurrent security of the HB and
HB+ protocols. Journal of Cryptology 23(3), 402–421 (2010)

[22] Kearns, M.J.: Efficient noise-tolerant learning from statistical queries. J.
ACM 45(6), 983–1006 (1998)

[23] Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006)

[24] Munilla, J., Peinado, A.: HB-MP: A further step in the HB-family of lightweight
authentication protocols. Computer Networks 51(9), 2262–2267 (2007)

[25] Ouafi, K., Overbeck, R., Vaudenay, S.: On the security of hB# against a man-in-
the-middle attack. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
108–124. Springer, Heidelberg (2008)

[26] Pietrzak, K.: Subspace LWE (2010) (manuscript)
http://homepages.cwi.nl/~pietrzak/publications/SLWE.pdf

[27] Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press,
New York (2005)

[28] Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing
7 (1971)

[29] Van De Graaf, J.: Towards a formal definition of security for quantum protocols.
PhD thesis, Monreal, P.Q., Canada, AAINQ35648 (1998)

[30] Waters, B.R.: Efficient identity-based encryption without random oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

[31] Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1),
25–58 (2009)

http://homepages.cwi.nl/~pietrzak/publications/SLWE.pdf

Making NTRU as Secure as Worst-Case Problems
over Ideal Lattices

Damien Stehlé1 and Ron Steinfeld2

1 CNRS, Laboratoire LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL),
46 Allée d’Italie, 69364 Lyon Cedex 07, France

damien.stehle@gmail.com
http://perso.ens-lyon.fr/damien.stehle

2 Centre for Advanced Computing - Algorithms and Cryptography,
Department of Computing, Macquarie University, NSW 2109, Australia

ron.steinfeld@mq.edu.au
http://web.science.mq.edu.au/~rons

Abstract. NTRUEncrypt, proposed in 1996 by Hoffstein, Pipher and
Silverman, is the fastest known lattice-based encryption scheme. Its
moderate key-sizes, excellent asymptotic performance and conjectured
resistance to quantum computers could make it a desirable alternative
to factorisation and discrete-log based encryption schemes. However,
since its introduction, doubts have regularly arisen on its security. In
the present work, we show how to modify NTRUEncrypt to make it prov-
ably secure in the standard model, under the assumed quantum hard-
ness of standard worst-case lattice problems, restricted to a family of
lattices related to some cyclotomic fields. Our main contribution is to
show that if the secret key polynomials are selected by rejection from
discrete Gaussians, then the public key, which is their ratio, is statisti-
cally indistinguishable from uniform over its domain. The security then
follows from the already proven hardness of the R-LWE problem.

Keywords: Lattice-based cryptography, NTRU, provable security.

1 Introduction

NTRUEncrypt, devised by Hoffstein, Pipher and Silverman, was first presented at
the Crypto’96 rump session [14]. Although its description relies on arithmetic over
the polynomial ring Zq[x]/(xn−1) for n prime and q a small integer, it was quickly
observed that breaking it could be expressed as a problem over Euclidean lat-
tices [6]. At the ANTS’98 conference, the NTRU authors gave an improved pre-
sentation including a thorough assessment of its practical security against lattice
attacks [15]. We refer to [13] for an up-to-date account on the past 15 years of se-
curity and performance analyses. Nowadays, NTRUEncrypt is generally considered
as a reasonable alternative to the encryption schemes based on integer factorisa-
tion and discrete logarithm over finite fields and elliptic curves, as testified by its
inclusion in the IEEE P1363 standard [17]. It is also often considered as the most
viable post-quantum public-key encryption (see, e.g., [30]).

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 27–47, 2011.
c© International Association for Cryptologic Research 2011

http://perso.ens-lyon.fr/damien.stehle
http://web.science.mq.edu.au/~rons

28 D. Stehlé and R. Steinfeld

In parallel to a rising number of attacks and practical improvements on
NTRUEncrypt the (mainly) theoretical field of provably secure lattice-based cryp-
tography has steadily been developed. It originated in 1996 with Ajtai’s ac-
claimed worst-case to average-case reduction [2], leading to a collision-resistant
hash function that is as hard to break as solving several worst-case problems de-
fined over lattices. Ajtai’s average-case problem is now referred to as the Small
Integer Solution problem (SIS). Another major breakthrough in this field was the
introduction in 2005 of the Learning with Errors problem (LWE) by Regev [31]:
LWE is both hard on the average (worst-case lattice problems quantumly reduce
to it), and sufficiently flexible to allow for the design of cryptographic functions.
In the last few years, many cryptographic schemes have been introduced that are
provably as secure as LWE and SIS are hard (and thus provably secure, assuming
the worst-case hardness of lattice problems). These include CPA and CCA se-
cure encryption schemes, identity-based encryption schemes, digital signatures,
etc (see [31,28,11,5,1] among others, and the surveys [24,32]).

The main drawback of cryptography based on LWE and SIS is its limited ef-
ficiency. A key typically contains a random matrix defined over Zq for a small q,
whose dimension is linear in the security parameter; consequently, the space and
time requirements seem bound to be at least quadratic with respect to the secu-
rity parameter. In 2002, Micciancio [22] succeeded in restricting SIS to structured
matrices while preserving a worst-case to average-case reduction. The worst-case
problem is a restriction of a standard lattice problem to the specific family of
cyclic lattices. The structure of Micciancio’s matrices allows for an interpretation
in terms of arithmetic in the ring Zq[x]/(xn−1), where n is the dimension of the
worst-case lattices and q is a small prime. Micciancio’s construction leads to a
family of pre-image resistant hash functions, with complexity quasi-linear in n.
Peikert, Rosen, Lyubashevsky and Micciancio [?,18] later suggested to change
the ring to Zq [x]/Φ with a Φ that is irreducible over the rationals, sparse, and
with small coefficients (e.g., Φ = xn + 1 for n a power of 2). The resulting hash
function was proven collision-resistant under the assumed hardness of the modi-
fied average-case problem, called Ideal-SIS. The latter was itself proven at least as
hard as the restrictions of standard worst-case lattice problems to a specific class
of lattices (called ideal lattices). In 2009, Stehlé et al. [34] introduced a struc-
tured variant of LWE, which they proved as hard as Ideal-SIS (under a quantum
reduction), and allowed for the design of an asymptotically efficient CPA-secure
encryption scheme. In an independent concurrent work, Lyubashevsky et al. [20]
proposed a ring variant of LWE, called R-LWE, whose great flexibility allows for
more natural (and efficient) cryptographic constructions.

Our Results. The high efficiency and industrial standardization of NTRUEncrypt
strongly motivate a theoretically founded study of its security. Indeed, in the ab-
sence of such a study so far, its security has remained in doubt over the last 15
years since its publication. In this paper, we address this problem. We prove that
a mild modification of NTRUEncrypt is CPA-secure, assuming the quantum hard-
ness of standard worst-case problems over ideal lattices (for Φ = xn+1 with n a
power of 2). The NTRUEncrypt modifications are summarized below. We stress

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 29

that our main goal in this paper is to provide a firm theoretical grounding for
the security of NTRUEncrypt in the asymptotic sense. We leave to future work
the consideration of practical issues, in particular the selection of concrete pa-
rameters for given security levels. As for other lattice-based schemes, the latter
requires evaluation of security against practical lattice reduction attacks, which
is out of the scope of the current work.

Our main contribution is the modification and analysis of the key generation
algorithm. The secret key consists of two sparse polynomials of degrees < n
and coefficients in {−1, 0, 1}. The public key is their quotient in Zq[x]/(xn − 1)
(the denominator is resampled if it is not invertible). A simple information-
theoretic argument shows that the public key cannot be uniformly distributed
in the whole ring. It may be possible to extend the results of [4] to show that it
is “well-spread” in the ring, but it still would not suffice for showing its crypto-
graphic pseudorandomness, which seems necessary for exploiting the established
hardness of R-LWE. To achieve a public key distribution statistically close to
uniform, we sample the secret key polynomials according to a discrete Gaussian
with standard deviation ≈ q1/2. An essential ingredient, which could be of in-
dependent interest, is a new regularity result for the ring Rq := Zq[x]/(xn + 1)
when the polynomial xn+1 (with n a power of 2) has n factors modulo prime q:
given a1, . . . , am uniform in Rq, we would like

∑
i≤m siai to be within expo-

nentially small statistical distance to uniformity, with small random si’s and
small m. Note that a similar regularity bound can be obtained with an FFT-
based technique recently developed by Lyubashevsky, Peikert and Regev [21]. An
additional difficulty in the public-key ‘uniformity’ proof, which we handle via an
inclusion-exclusion argument, is that we need the si’s to be invertible in Rq (the
denominator of the public key is one such si): we thus sample according to a
discrete Gaussian, and reject the sample if it is not invertible.

Brief Comparison of NTRUEncrypt and Its Provably Secure Variant

Let RNTRU be the ring Z[x]/(xn − 1) with n prime. Let q be a medium-size
integer, typically a power of 2 of the same order of magnitude as n. Finally,
let p ∈ RNTRU with small coefficients, co-prime with q and such that the plaintext
space RNTRU/p is large. Typically, one may take p = 3 or p = x + 2.

The NTRUEncrypt secret key is a pair of polynomials (f, g) ∈ R2
NTRU that are

sampled randomly with large prescribed proportions of zeros, and with their
other coefficients belonging to {−1, 1}. For improved decryption efficiency, one
may choose f such that f = 1 mod p. With high probability, the polynomial f is
invertible modulo q and modulo p, and if that is the case, the public-key is h =
pg/f mod q (otherwise, the key generation process is restarted). To encrypt a
message M ∈ RNTRU/p, one samples a random element s ∈ RNTRU of small
Euclidean norm and computes the ciphertext C = hs+M mod q. The following
procedure allows the owner of the secret key to decrypt:

• Compute fC mod q. If C was properly generated, this gives pgs+ fM mod
q. Since p, g, s, f,M have small coefficients, it can be expected that after
reduction modulo q the obtained representative is pgs + fM (in RNTRU).

30 D. Stehlé and R. Steinfeld

• Reduce the latter modulo p. This should provide fM mod p.
• Multiply the result of the previous step by the inverse of f modulo p (this

step becomes vacuous if f = 1 mod p).

Note that the encryption process is probabilistic, and that decryption errors can
occur for some sets of parameters. However, it is possible to arbitrarily decrease
the decryption error probability, and even to eliminate it completely.

In order to achieve CPA-security we make a few modifications to the original
NTRUEncrypt (which preserve its quasi-linear time and space complexity):

1. We replace RNTRU by R = Z[x]/(xn+1) with n a power of 2. We will exploit
the irreducibility of xn + 1 and the fact that R is the ring of integers of a
cyclotomic number field.

2. We choose a prime q ≤ Poly(n) such that f = xn + 1 mod q has n distinct
linear factors (i.e., q = 1 mod 2n). This allows us to use the search to decision
reduction for R-LWE with ring Rq := R/q (see [20]), and also to take p = 2.

3. We sample f and g from discrete Gaussians over R, rejecting the samples
that are not invertible in Rq. We show that f/g mod q is essentially uniformly
distributed over the set of invertible elements of Rq. We may also choose f =
pf ′ + 1 with f ′ sampled from a discrete Gaussian, to simplify decryption.

4. We add a small error term e in the encryption: C = hs + pe + M mod q,
with s and e sampled from the R-LWE error distribution. This allows us
to derive CPA security from the hardness of a variant of R-LWE (which is
similar to the variant of LWE from [3, Se. 3.1]).

Work in Progress and Open Problems

Our study is restricted to the sequence of rings Z[x]/Φn with Φn = xn+1 with n
a power of 2. An obvious drawback is that this does not allow for much flexibility
on the choice of n (in the case of NTRU, the degree was assumed prime, which
provides more freedom). The R-LWE problem is known to be hard when Φn is
cyclotomic [20]. We chose to restrict ourselves to cyclotomic polynomials of order
a power of 2 because it makes the error generation of R-LWE more efficient, and
the description of the schemes simpler to follow. Our results are likely to hold
for more general rings than those we considered. An interesting choice could be
the cyclotomic rings of prime order (i.e., Φn = (xn − 1)/(x − 1) with n prime)
as these are large subrings of the NTRU rings (and one might then be able to
show that the hardness carries over to the NTRU rings).

An interesting open problem is to obtain a CCA secure variant of our scheme
in the standard model, while maintaining its efficiency (within constant factors).
The selection of concrete parameters based on practical security estimates for the
worst-case SVP in ideal lattices or the average-case hardness of R-LWE/Ideal-SIS
is also left as a future work.

The authors of NTRUEncrypt also proposed a signature scheme based on a
similar design. The history of NTRUSign started with NSS in 2001 [16]. Its de-
velopment has been significantly more hectic and controversial, with a series

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 31

of cryptanalyses and repairs (see the survey [13]). In a work in progress, we
construct a variant of NTRUSign with unforgeability related to the worst-case
hardness of standard problems over ideal lattices, in the random oracle model.
Our construction modifies the NTRUSign key generation and adapts the GPV
signature scheme [11] to this setting.

Like NTRUEncrypt, Gentry’s somewhat homomorphic scheme [9] also has ci-
phertexts consisting of a single ring element. It also admits a security proof under
the assumed quantum hardness of standard worst-case problems over ideal lat-
tices [10]. Our security analysis for the modified NTRUEncrypt scheme allows
encrypting and decrypting Ω(n) plaintext bits for Õ(n) bit operations, while
achieving security against 2g(n)-time attacks, for any g(n) that is Ω(log n) and
o(n), assuming the worst-case hardness of Poly(n)-Ideal-SVP against 2O(g(n))-
time quantum algorithms. The latter assumption is believed to be valid for any
g(n) = o(n). Gentry’s analysis from [10,8] can be generalized to handle 2g(n)-
time attacks while encrypting and decrypting O(g(n)) plaintext bits for Õ(n) bit
operations, under the assumed hardness of 2Ω(g(n))-Ideal-SVP against 2O(g(n))-
time quantum algorithms. The latter assumption is known to be invalid when
g(n) = Ω̃(

√
n) (using [33]), thus limiting the attacker’s strength the analysis

can handle. On the other hand, Gentry’s scheme allows homomorphic additions
and multiplications, whereas ours seems restricted to additions. Our scheme and
Gentry’s seem to be closely related, and we leave to future work the further
investigation of this relation.
Notation. We denote by ρσ(x) (resp. νσ) the standard n-dimensional Gaus-
sian function (resp. distribution) with center 0 and variance σ, i.e., ρσ(x) =
exp(−π‖x‖2/σ2) (resp. νσ(x) = ρσ(x)/σn). We denote by Exp(μ) the exponen-
tial distribution on R with mean μ and by U(E) the uniform distribution over
a finite set E . If D1 and D2 are two distributions on discrete domain E, their
statistical distance is Δ(D1;D2) = 1

2

∑
x∈E |D1(x) −D2(x)|. We write z ←↩ D

when the random variable z is sampled from the distribution D.
Remark. Due to space limitations, some proofs have been omitted; they may
be found in the full version of this paper, available on the authors’ web pages.

2 A Few Background Results

A (full-rank) lattice is a set of the form L =
∑

i≤n Zbi, where the bi’s are
linearly independent vectors in Rn. The integer n is called the lattice dimension,
and the bi’s are called a basis of L. The minimum λ1(L) (resp. λ∞

1 (L)) is the
Euclidean (resp. infinity) norm of any shortest vector of L \ 0. If B = (bi)i
is a basis matrix of L, the fundamental parallelepiped of B is the set P(B) =
{
∑

i≤n cibi : ci ∈ [0, 1)}. The volume | detB| of P(B) is an invariant of the
lattice L which we denote by detL. Minkowski’s theorem states that λ1(L) ≤√
n(detL)1/n. More generally, the k-th minimum λk(L) for k ≤ n is defined as

the smallest r such that L contains ≥ k linearly independent vectors of norm≤ r.
The dual of L is the lattice L̂ = {c ∈ Rn : ∀i, 〈c, bi〉 ∈ Z}.

32 D. Stehlé and R. Steinfeld

For a lattice L ⊆ Rn, σ > 0 and c ∈ Rn, we define the lattice Gaussian
distribution of support L, deviation σ and center c by DL,σ,c(b) = ρσ,c(b)

ρσ,c(L) , for
any b ∈ L. We will omit the subscript c when it is 0. We extend the definition
of DL,σ,c to any M ⊆ L (not necessarily a sublattice), by setting DM,σ,c(b) =
ρσ,c(b)
ρσ,c(M) . For δ > 0, we define the smoothing parameter ηδ(L) as the smallest σ > 0

such that ρ1/σ(L̂ \ 0) ≤ δ. It quantifies how large σ needs to be for DL,σ,c to
behave like a continuous Gaussian. We will typically consider δ = 2−n.

Lemma 1 ([23, Le. 3.3]). For any full-rank lattice L ⊆ Rn and δ ∈ (0, 1), we
have ηδ(L) ≤

√
ln(2n(1 + 1/δ))/π · λn(L).

Lemma 2 ([27, Le. 3.5]). For any full-rank lattice L ⊆ Rn and δ ∈ (0, 1), we
have ηδ(L) ≤

√
ln(2n(1 + 1/δ))/π/λ∞

1 (L̂).

Lemma 3 ([23, Le. 4.4]). For any full-rank lattice L ⊆ Rn, c ∈ Rn, δ ∈ (0, 1)
and σ ≥ ηδ(L), we have Prb←↩DL,σ,c [‖b‖ ≥ σ

√
n] ≤ 1+δ

1−δ2
−n.

Lemma 4 ([11, Cor. 2.8]). Let L′ ⊆ L ⊆ Rn be full-rank lattices. For any c ∈
Rn, δ ∈ (0, 1/2) and σ ≥ ηδ(L′), we have Δ(DL,σ,c mod L′;U(L/L′)) ≤ 2δ.

Lemma 5 ([11, Th. 4.1]). There exists a polynomial-time algorithm that takes
as input any basis (bi)i of any lattice L ⊆ Zn and σ = ω(

√
logn)max ‖bi‖ (resp.

σ = Ω(
√
n)max ‖bi‖), and returns samples from a distribution whose statistical

distance to DL,σ is negligible (resp. exponentially small) with respect to n.

The most famous lattice problem is SVP. Given a basis of a lattice L, it aims at
finding a shortest vector in L\0. It can be relaxed to γ-SVP by asking for a non-
zero vector that is no longer than γ(n) times a solution to SVP, for a prescribed
function γ(·). It is believed that no subexponential quantum algorithm solves the
computational variants of γ-SVP in the worst case, for any γ ≤ Poly(n). The
smallest γ which is known to be achievable in polynomial time is exponential,
up to poly-logarithmic factors in the exponent ([33,25]).

Ideal Lattices and Algebraic Number Theory

Ideal lattices. Let n a power of 2 and Φ = xn + 1 (which is irreducible
over Q). Let R be the ring Z[x]/Φ. An (integral) ideal I of R is a subset of R
closed under addition and multiplication by arbitrary elements of R. By mapping
polynomials to the vectors of their coefficients, we see that an ideal I
= 0
corresponds to a full-rank sublattice of Zn: we can thus view I as both a lattice
and an ideal. An ideal lattice for Φ is a sublattice of Zn that corresponds to
a non-zero ideal I ⊆ R. The algebraic norm N (I) is the cardinality of the
additive group R/I. It is equal to det I, where I is regarded as a lattice. Any
non-zero ideal I of R satisfies λn(I) = λ1(I). In the following, an ideal lattice
will implicitly refer to a Φ-ideal lattice.

By restricting SVP (resp. γ-SVP) to instances that are ideal lattices, we obtain
Ideal-SVP (resp. γ-Ideal-SVP). The latter is implicitly parameterized by the

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 33

sequence of polynomials Φn = xn + 1, where n is restricted to powers of 2.
No algorithm is known to perform non-negligibly better for (γ-)Ideal-SVP than
for (γ-)SVP.
Properties of the ring R. For v ∈ R we denote by ‖v‖ its Euclidean norm
(as a vector). We define the multiplicative expansion factor γ×(R) by γ×(R) =
maxu,v∈R

‖u×v‖
‖u‖·‖v‖ . For our choice of Φ, we have γ×(R) =

√
n (see [9, p. 174]).

Since Φ is the 2n-th cyclotomic polynomial, the ring R is exactly the maximal
order (i.e., the ring of integers) of the cyclotomic field Q[ζ] ∼= Q[x]/Φ =: K,
where ζ ∈ C is a primitive 2n-th root of unity. We denote by (σi)i≤n the
canonical complex embeddings: We can choose σi : P �→ P (ζ2i+1) for i ≤ n.
For any α in Q[ζ], we define its T2-norm by T2(α)2 =

∑
i≤n |σi(α)|2 and its

algebraic norm by N (α) =
∏
i≤n |σi(α)|. The arithmetic-geometric inequality

gives N (α)2/n ≤ 1
nT2(α)2. Also, for the particular cyclotomic fields we are con-

sidering, the polynomial norm (the norm of the coefficient vector of α when
expressed as an element of K) satisfies ‖α‖ = 1√

n
T2(α). We also use the fact

that for any α ∈ R, we have |N (α)| = det 〈α〉, where 〈α〉 is the ideal of R
generated by α. For simplicity, we will try to use the polynomial terminology
wherever possible.

Let q be a prime number such that Φ has n distinct linear factors modulo q
(i.e., q = 1 mod 2n): Φ =

∏
i≤n Φi =

∏
i≤n(x − φi) mod q. Let Rq = R/qR =

Zq[x]/Φ. Dirichlet’s theorem on arithmetic progressions implies that infinitely
such primes exist. Furthermore, Linnik’s theorem asserts that the smallest such q
is Poly(n), and much effort has been spent to decrease this bound (the current
record seems to be O(n5.2), see [35]). Furthermore, we can write φi as ri, where r
is a primitive (2n)-th root of unity modulo q. This implies that the Chinese
Remainder Theorem in Rq provides a natural fast Discrete Fourier Transform,
and thus multiplication of elements of Rq can be performed within O(n log n)
additions and multiplications modulo q (see [7, Ch. 8], [19, Se. 2.1]).

The R-LWE Problem

For s ∈ Rq and ψ a distribution in Rq, we define As,ψ as the distribution obtained
by sampling the pair (a, as+e) with (a, e)←↩ U(Rq)×ψ. The Ring Learning With
Errors problem (R-LWE) was introduced by Lyubashevsky et al. [20] and shown
hard for specific error distributions ψ. These are slightly technical to define (see
below), but for the present work, the important facts to be remembered are that
the samples are small (see Lemma 6), and can be obtained in quasi-linear time.

The error distributions ψ that we use are an adaptation of those introduced
in [20]. They are sampled from a family of distributions Υα that we now define.
For σ ∈ Rn with positive coordinates, we define the ellipsoidal Gaussian ρσ

as the row vector of independent Gaussians (ρσ1 , . . . , ρσn), where σi = σi+n/2
for 1 ≤ i ≤ n/2. As we want to define R-LWE in the polynomial expression
of R rather than with the so-called “space H” of [20], we apply a matrix trans-
formation to the latter Gaussians. We define a sample from ρ′σ as a sample

from ρσ, multiplied first (from the right) by 1√
2

(
1 1
i −i

)
⊗ Idn/2 ∈ Cn×n, and

34 D. Stehlé and R. Steinfeld

second by V = 1
n

(
ζ−(2j+1)k

)
0≤j,k<n. Note that vector multiplication by

matrix V corresponds to a complex discrete Fourier transform, and can be
performed in O(n logn) complex-valued arithmetic operations with the Cooley-
Tukey FFT. Moreover, it is numerically extremely stable: if all operations are
performed with a precision of p = Ω(logn) bits, then the computed output vec-
tor fl(y) satisfies ‖fl(y)− y‖ ≤ C · (log n) · 2−p · ‖y‖, where C is some absolute
constant and y is the vector that would be obtained with exact computations.
We refer to [12, Se. 24.1] for details. We now define a sample from ρ′σ as fol-
lows: compute a sample from ρ′σ with absolute error < 1/n2; if it is within
distance 1/n2 of the middle of two consecutive integers, then restart; otherwise,
round it to a closest integer and then reduce it modulo q. Finally, a distribution
sampled from Υα for α ≥ 0 is defined as ρ′σ, where σi =

√
α2q2 + xi with

the xi’s sampled independently from the distribution Exp(nα2q2).
Sampling from ρ′σ can be performed in time Õ(n). Sampling from Υα can

also be performed in expected time Õ(n), and the running-time is bounded by a
quantity that follows a geometric law of parameter < 1. Furthermore, in all our
cryptographic applications, one could pre-compute such samples off-line (i.e.,
before the message M to be processed is known).

Lemma 6. Assume that αq ≥ √n. For any r ∈ R, we have Pry←↩Υα
[‖yr‖∞ ≥

αqω(logn) · ‖r‖] ≤ n−ω(1).

We now define our adaptation of R-LWE.

Definition 1. The Ring Learning With Errors Problem with parameters q, α
and Φ (R-LWEΦq,α) is as follows. Let ψ ←↩ Υα and s←↩ U(Rq). Given access to
an oracle O that produces samples in Rq × Rq, distinguish whether O outputs
samples from As,ψ or from U(Rq ×Rq). The distinguishing advantage should be
1/Poly(n) (resp. 2−o(n)) over the randomness of the input, the randomness of
the samples and the internal randomness of the algorithm.

The following theorem indicates that R-LWE is hard, assuming that the worst-
case γ-Ideal-SVP cannot be efficiently solved using quantum computers, for
small γ. It was recently improved by Lyubashevsky et al. [21]: if the number
of samples that can be asked to the oracle O is bounded by a constant (which is
the case in our application), then the result also holds with simpler errors than
e←↩ ψ ←↩ Υα, and with an even smaller Ideal-SVP approximation factor γ. This
should allow to both simplify the modified NTRUEncrypt and to strengthen its
security guarantee.

Theorem 1 (Adapted from [20]). Assume that αq = ω(n
√

logn) (resp.
Ω(n1.5)) with α ∈ (0, 1) and q = Poly(n). There exists a randomized polynomial-
time (resp. subexponential) quantum reduction from γ-Ideal-SVP to R-LWEq,α,
with γ = ω(n1.5 logn)/α (resp. Ω(n2.5)/α).

The differences with [20] in the above formulation are the use of the polynomial
representation (handled by applying the complex FFT to the error term), the use

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 35

of Rq rather than R∨
q := R∨/q where R∨ is the codifferent (here we have R∨

q =
1
nRq), and the truncation of the error to closest integer if it is far from the middle
of two consecutive integers. The new variant remains hard because a sample
passes the rejection step with non-negligible probability, and the rounding can
be performed on the oracle samples obliviously to the actual error.
Variants of R-LWE. For s ∈ Rq and ψ a distribution in Rq, we define A×

s,ψ

as the distribution obtained by sampling the pair (a, as + e) with (a, e) ←↩
U(R×

q) × ψ, where R×
q is the set of invertible elements of Rq. When q = Ω(n),

the probability for a uniform element of Rq of being invertible is non-negligible,
and thus R-LWE remains hard even when As,ψ and U(Rq×Rq) are respectively
replaced by A×

s,ψ and U(R×
q ×Rq). We call R-LWE× the latter variant.

Furthermore, similarly to [3, Le. 2] and as explained in [21], the nonce s
can also be chosen from the error distribution without incurring any security
loss. We call R-LWE×

HNF the corresponding modification of R-LWE. We recall
the argument, for completeness. Assume an algorithm A can solve R-LWE×

HNF.
We use A to solve R-LWE×. The principle is to transform samples ((ai, bi))i
into samples ((a−1

1 ai, bi − a−1
1 b1ai))i, where inversion is performed in R×

q . This
transformation maps A×

s,ψ to A×
−e1,ψ, and U(R×

q ×Rq) to itself.

3 New Results on Module q-Ary Lattices

In this section, we present strong regularity bounds for the ring Rq. For this
purpose, we first study two families of R-modules.

3.1 Duality Results for Some Module Lattices

Let a ∈ Rm
q . We define the following families of R-modules, for I an arbitrary

ideal of Rq:

a⊥(I) := {(t1, . . . , tm) ∈ Rm : ∀i, (ti mod q) ∈ I and
∑
i

tiai = 0 mod q},

L(a, I) := {(t1, . . . , tm) ∈ Rm : ∃s ∈ Rq, ∀i, (ti mod q) = ai · s mod I}.

We also define a⊥ and L(a) as a⊥(Rq) and L(a, 〈0〉) respectively. The ideals
of Rq are of the form IS :=

∏
i∈S(x − φi) · Rq = {a ∈ Rq : ∀i ∈ S, a(φi) = 0},

where S is any subset of {1, . . . , n} (the φi’s are the roots of Φ modulo q). We
define I×S =

∏
i∈S(x− φ−1

i) ·Rq.

Lemma 7. Let S ⊆ {1, . . . , n} and a ∈ Rm
q . Let S = {1, . . . , n} \ S and a× ∈

Rm
q be defined by a×i = ai(x

−1). Then (considering both sets as mn-dimensional
lattices by identifying R and Zn):

â⊥(IS) =
1
q
L(a×, I×

S
).

36 D. Stehlé and R. Steinfeld

Proof. We first prove that 1
qL(a∗, I×

S
) ⊆ â⊥(IS). Let (t1, . . . , tm) ∈ a⊥(IS)

and (t′1, . . . , t′m) ∈ L(a∗, IS). Write ti =
∑

j<n ti,jx
j and t′i =

∑
j<n t

′
i,jx

j for
any i ≤ m. Our goal is to show that

∑
i≤m,j≤n ti,jt

′
i,j = 0 mod q. This is equiva-

lent to showing that the constant coefficient of the polynomial
∑

i≤m ti(x)t′i(x
−1)

is 0 modulo q. It thus suffices to show that
∑

i≤m ti(x)t′i(x
−1) mod q = 0 (in Rq).

By definition of the t′i’s, there exists s ∈ Rq such that (t′i mod q) = a×i · s + b′i
for some b′i ∈ I×

S
. We have the following, modulo q:∑

i≤m
ti(x)t′i(x

−1) = s(x−1) ·
∑
i≤m

ti(x)ai(x) +
∑
i≤m

ti(x)b′i(x
−1).

Both sums in the right hand side evaluate to 0 in Rq, which provides the desired
inclusion.

To complete the proof, it suffices to show that ̂L(a×, I×
S

) ⊆ 1
qa

⊥(IS). It can
be seen by considering the elements of L(a×, IS) corresponding to s = 1. ��

3.2 On the Absence of Unusually Short Vectors in L(a, IS)

We show that for a ←↩ U((R×
q)m), the lattice L(a, IS) is extremely unlikely

to contain unusually short vectors for the infinity norm, i.e., much shorter
than guaranteed by the Minkowski upper bound det(L(a, IS))

1
mn = q(1− 1

m) |S|
n

(we have det(L(a, IS)) = q(m−1)|S| because there are qn+(m−1)(n−|S|) points of
L(a, IS) in the cube [0, q − 1]mn). Note that our lower bound approaches the
Minkowski bound as |S|

n approaches 1, but becomes progressively looser as |S|
n

drops towards ≈ 1 − 1
m . Fortunately, for our applications, we will be using this

bound with |S|
n = 1−ε for some small ε, where the bound is close to being tight.

Lemma 8. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into n linear
factors modulo prime q ≥ 5. Then, for any S ⊆ {1, . . . , n}, m ≥ 2 and ε > 0,
we have λ∞

1 (L(a, IS)) ≥ 1√
n
qβ, with:

β := 1− 1
m

+
1−

√
1 + 4m(m− 1)

(
1− |S|

n

)
+ 4mε

2m

≥ 1− 1
m
− ε− (m− 1)

(
1− |S|

n

)
,

except with probability ≤ 2n(q − 1)−εn over the uniformly random choice of a
in (R×

q)m.

Proof. Recall that Φ =
∏
i≤n Φi for distinct linear factors Φi. By the Chinese

Remainder Theorem, we know that Rq (resp. R×
q) is isomomorphic to (Zq)n

(resp. (Z×
q)n) via the isomorphism t �→ (t mod Φi)i≤m. Let gIS =

∏
i∈S Φi: it is

a degree |S| generator of IS .

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 37

Let p denote the probability (over the randomness of a) that L(a, IS) contains
a non-zero vector t of infinity norm < B, where B = 1√

n
qβ. We upper bound p

by the union bound, summing the probabilities p(t, s) = Pra[∀i, ti = ais mod IS]
over all possible values for t of infinity norm < B and s ∈ Rq/IS . Since the ai’s
are independent, we have p(t, s) =

∏
i≤m pi(ti, s), where pi(ti, s) = Prai [ti =

ais mod IS].
Wlog we can assume that gcd(s, gIS) = gcd(ti, gIS) (up to multiplication by

an element of Z×
q): If this is not the case, there exists j ≤ n such that either

ti mod Φj = 0 and s mod Φj
= 0, or ti mod Φj
= 0 and s mod Φj = 0; In both
cases, we have pi(ti, s) = 0 because ai ∈ R×

q . We now assume that gcd(s, gIS) =
gcd(ti, gIS) =

∏
i∈S′ Φi for some S′ ⊆ S of size 0 ≤ d ≤ |S|. For any j ∈ S′,

we have ti = ais = 0 mod Φj regardless of the value of ai mod Φj , while for
j ∈ S \ S′, we have s
= 0 mod Φj and there exists a unique value of ai mod Φj
such that ti = ais mod Φj . Moreover for any j /∈ S, the value of ai mod Φj can
be arbitrary in Z×

q . So, overall, there are (q−1)d+n−|S| differents ai’s in R×
q such

that ti = ais mod IS . This leads to pi(ti, s) = (q − 1)d−|S|.
So far, we have showed that the probability p can be upper bounded by:

p ≤
∑

0≤d≤|S|

∑
h =

∏
i∈S′ Φi

S′ ⊆ S
|S′| = d

∑
s ∈ Rq/IS

h|s

∑
t ∈ (Rq)m

∀i, 0 < ‖ti‖∞ < B
∀i, h|ti

∏
i≤m

(q − 1)d−|S|.

For h =
∏
i∈S′ Φi of degree d, let N(B, d) denote the number of t ∈ Rq such

that ‖t‖∞ < B and t = ht′ for some t′ ∈ Rq of degree < n− d. We consider two
bounds for N(B, d) depending on d.

Suppose that d ≥ β · n. Then we claim that N(B, d) = 0. Indeed, any t = ht′

for some t′ ∈ Rq belongs to the ideal 〈h, q〉 of R generated by h and q. For
any non-zero t ∈ 〈h, q〉, we have N (t) = N (〈t〉) ≥ N (〈h, q〉) = qd, where the
inequality is because the ideal 〈t〉 is a full-rank sub-ideal of 〈h, q〉, and the last
equality is because deg h = d. It follows from the arithmetic-geometric inequality
that ‖t‖ = 1√

n
T2(t) ≥ N (t)1/n ≥ qd/n. By equivalence of norms, we conclude

that ‖t‖∞ ≥ λ∞
1 (〈h, q〉) ≥ 1√

n
qd/n. We see that d/n ≥ β implies that ‖t‖∞ ≥ B,

so that N(B, d) = 0.
Suppose now that d < β · n. Then we claim that N(B, d) ≤ (2B)n−d. Indeed,

since the degree of h is d, the vector t formed by the n− d low-order coefficients
of t is related to the vector t′ formed by the n− d low-order coefficients of t′ by
a lower triangular (n− d)× (n− d) matrix whose diagonal coefficients are equal
to 1. Hence this matrix is non-singular modulo q so the mapping from t′ to t is
one-to-one. This provides the claim.

Using the above bounds on N(B, d), the fact that the number of subsets of S
of cardinality d is ≤ 2d, and the fact that the number of s ∈ Rq/IS divisible
by h =

∏
i∈S′ Φi is q|S|−d, the above bound on p implies

p ≤ 2n max
d≤β·n

(2B)m(n−d)

(q − 1)(m−1)(|S|−d) .

38 D. Stehlé and R. Steinfeld

With our choice of B, we have 2B ≤ (q − 1)β (this is implied by n ≥ 8, q ≥ 5
and β ≤ 1). A straightforward computation then leads to the claimed upper
bound on p. ��

3.3 Improved Regularity Bounds

We now study the uniformity of distribution of (m+1)-tuples from (R×
q)m×Rq of

the form (a1, . . . , am,
∑

i≤m tiai), where the ai’s are independent and uniformly
random in R×

q , and the ti’s are chosen from some distribution on Rq concentrated
on elements with small coefficients. Similarly to [22], we call the distance of the
latter distribution to the uniform distribution on (R×

q)m×Rq the regularity of the
generalized knapsack function (ti)i≤m �→

∑
i≤m tiai. For our NTRU application

we are particularly interested in the case where m = 2.
The regularity result in [22, Se. 4.1] applies when the ai’s are uniformly ran-

dom in the whole ring Rq, and the ti’s are uniformly random on the subset
of elements of Rq with coefficients of magnitude ≤ d for some d < q. In this
case, the regularity bound from [22] is Ω(

√
nq/dm). Unfortunately, this bound

is non-negligible for small m and q, e.g., for m = O(1) and q = Poly(n). To
make it exponentially small in n, one needs to set m log d = Ω(n), which in-
evitably leads to inefficient cryptographic functions. When the ai’s are chosen
uniformly from the whole ring Rq, the actual regularity is not much better than
this undesirable regularity bound. This is because Rq contains n proper ideals
of size qn−1 = |Rq|/q, and the probability ≈ n/qm that all of the ai’s fall into
one such ideal (which causes

∑
tiai to also be trapped in the proper ideal) is

non-negligible for small m. To circumvent this problem, we restrict the ai’s to be
uniform in R×

q , and we choose the ti’s from a discrete Gaussian distribution. We
show a regularity bound exponentially small in n even for m = O(1), by using
an argument similar to that used in [11, Se. 5.1] for unstructured generalized
knapsacks, based on the smoothing parameter of the underlying lattices. Note
that the new regularity result can be used within the Ideal-SIS trapdoor gener-
ation of [34, Se. 3], thus extending the latter to a fully splitting q. It also shows
that the encryption scheme from [20] can be shown secure against subexponen-
tial (quantum) attackers, assuming the subexponential (quantum) hardness of
standard worst-case problems over ideal lattices.

Theorem 2. Let n ≥ 8 be a power of 2 such that Φ = xn+1 splits into n linear
factors modulo prime q ≥ 5. Let m ≥ 2, ε > 0, δ ∈ (0, 1/2) and t ←↩ DZmn,σ,
with σ ≥

√
n ln(2mn(1 + 1/δ))/π ·q 1

m +ε. Then for all except a fraction ≤ 2n(q−
1)−εn of a ∈ (R×

q)m, we have ηδ(a⊥) ≤
√
n ln(2mn(1 + 1/δ))/π · q 1

m +ε, and the
distance to uniformity of

∑
i≤m tiai is ≤ 2δ. As a consequence:

Δ

[(
a1, . . . , am,

∑
i≤m

tiai

)
; U

(
(R×

q)m ×Rq

)]
≤ 2δ + 2n(q − 1)−εn.

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 39

When using this result, one is typically interested in taking a small constant ε >
0, because it allows to lower the standard deviation σ and thus the required
amount of randomness. Then a tiny δ should be chosen (e.g., δ ≈ 2n(q−1)−εn), as
it drastically lowers the statistical distance upper bound, without strengthening
the standard deviation requirement much.

For each a ∈ (R×
q)m, let Da denote the distribution of

∑
i≤m tiai where t

is sampled from DZmn,σ. Note that the above statistical distance is exactly
1

|R×
q |m

∑
a∈(R×

q)m Δa, where Δa is the distance to uniformity of Da. To prove the
theorem, it therefore suffices to show a distance bound Δa ≤ 2δ, for all except
a fraction ≤ 2n(q − 1)−εn of a ∈ (R×

q)m.
Now, the mapping t �→

∑
i tiai induces an isomorphism from the quotient

group Zmn/a⊥ to its range (note that a⊥ is the kernel of t �→
∑

i tiai). The
latter is Rq, thanks to the invertibility of the ai’s. Therefore, the statistical
distance Δa is equal to the distance to uniformity of t mod a⊥. By Lemma 4, we
have Δa ≤ 2δ if σ is greater than the smoothing parameter ηδ(a⊥) of a⊥ ⊆ Zmn.
To upper bound ηδ(a⊥), we apply Lemma 2, which reduces the task to lower
bounding the minimum of the dual lattice â⊥ = 1

q · L(a×), where a× ∈ (R×
q)m

is in one-to-one correspondence with a.
The following result is a direct consequence of Lemmata 2, 4, 7 and 8. Theo-

rem 2 follows by taking S = ∅ and c = 0.

Lemma 9. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into n linear
factors modulo prime q ≥ 5. Let S ⊆ {1, . . . , n}, m ≥ 2, ε > 0, δ ∈ (0, 1/2),
c ∈ Rmn and t←↩ DZmn,σ,c, with

σ ≥
√
n ln(2mn(1 + 1/δ))/π · q 1

m
+(m−1) |S|

n
+ε.

Then for all except a fraction ≤ 2n(q − 1)−εn of a ∈ (R×
q)m, we have:

Δ
[
t mod a⊥(IS); U(R/a⊥(IS))

]
≤ 2δ.

4 A Revised Key Generation Algorithm

We now use the results of the previous section on modular q-ary lattices to
derive a key generation algorithm for NTRUEncrypt, where the generated public
key follows a distribution for which Ideal-SVP reduces to R-LWE.

4.1 NTRUEncrypt’s Key Generation Algorithm

The new key generation algorithm for NTRUEncrypt is given in Fig. 1. The secret
key polynomials f and g are generated by using the Gentry et al. sampler of dis-
crete Gaussians (see Lemma 5), and by rejecting so that the output polynomials
are invertible modulo q. The Gentry et al. sampler may not exactly sample from
discrete Gaussians, but since the statistical distance can be made exponentially
small, the impact on our results is also exponentially small. Furthermore, it can

40 D. Stehlé and R. Steinfeld

be checked that our conditions on standard deviations are much stronger than
the one in Lemma 5. From now on, we will assume we have a perfect discrete
Gaussian sampler.

By choosing a large enough standard deviation σ, we can apply the results
of the previous section and obtain the (quasi-)uniformity of the public key. We
sample f of the form p · f ′ + 1 so that it has inverse 1 modulo p, making the
decryption process of NTRUEncryptmore efficient (as in the original NTRUEncrypt
scheme). We remark that the rejection condition on f at Step 1 is equivalent to
the condition (f ′ mod q)
∈ R×

q − p−1, where p−1 is the inverse of p in R×
q .

Inputs: n, q ∈ Z, p ∈ R×
q , σ ∈ R.

Output: A key pair (sk, pk) ∈ R×R×
q .

1. Sample f ′ from DZn,σ; let f = p · f ′ + 1; if (f mod q) 	∈ R×
q , resample.

2. Sample g from DZn,σ; if (g mod q) 	∈ R×
q , resample.

3. Return secret key sk = f and public key pk = h = pg/f ∈ R×
q .

Fig. 1. Revised Key Generation Algorithm for NTRUEncrypt

The following result ensures that for some appropriate choice of parameters,
the key generation algorithm terminates in expected polynomial time.

Lemma 10. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into n linear
factors modulo prime q ≥ 5. Let σ ≥

√
n ln(2n(1 + 1/δ))/π · q1/n, for an arbi-

trary δ ∈ (0, 1/2). Let a ∈ R and p ∈ R×
q . Then Prf ′←↩DZn,σ

[(p · f ′ + a mod q)
∈
R×
q] ≤ n(1/q + 2δ).

Proof. We are to bound the probability that p · f ′ + a belongs to I := 〈q, Φk〉
by 1/q+ 2δ, for any k ≤ n. The result then follows from the Chinese Remainder
Theorem and the union bound. We have N (I) = q, so that λ1(I) ≤

√
nq1/n,

by Minkowski’s theorem. Since I is an ideal of R, we have λn(I) = λ1(I), and
Lemma 1 gives that σ ≥ ηδ(I). Lemma 4 then shows that f mod I is within
distance ≤ 2δ to uniformity on R/I, so we have p · f ′ + a = 0 mod I (or,
equivalently, f ′ = −a/p mod I) with probability ≤ 1/q + 2δ, as required. ��

As a consequence of the above bound on the rejection probability, we have the
following result, which ensures that the generated secret key is small.

Lemma 11. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into n linear
factors modulo prime q ≥ 8n. Let σ ≥

√
2n ln(6n)/π ·q1/n.The secret key polyno-

mials f, g returned by the algorithm of Fig. 1 satisfy, with probability ≥ 1−2−n+3:

‖f‖ ≤ 2n‖p‖σ and ‖g‖ ≤
√
nσ.

If deg p ≤ 1, then ‖f‖ ≤ 4
√
n‖p‖σ with probability ≥ 1− 2−n+3.

Proof. The probability under scope is lower than the probability of the same
event without rejection, divided by the rejection probability. The result follows
by combining Lemmata 3 and 10. ��

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 41

4.2 Public Key Uniformity

In the algorithm of Fig. 1, the polynomials f ′ and g are independently sampled
from the discrete Gaussian distribution DZn,σ with σ ≥ Poly(n) · q1/2+ε for an
arbitrary ε > 0, but restricted (by rejection) to R×

q − p−1 and R×
q , respectively.

We denote by D×
σ,z the discrete Gaussian DZn,σ restricted to R×

q + z.
Here we apply the result of Section 3 to show that the statistical closeness to

uniformity of a quotient of two distributions (z + p · D×
σ,y) for z ∈ Rq and y =

−zp−1 mod q. This includes the case of the public key h = pg/f mod q computed
by the algorithm of Fig. 1.

Theorem 3. Let n ≥ 8 be a power of 2 such that Φ = xn+1 splits into n linear
factors modulo prime q ≥ 5. Let ε > 0 and σ ≥ 2n

√
ln(8nq) ·q 1

2+2ε. Let p ∈ R×
q ,

yi ∈ Rq and zi = −yip−1 mod q for i ∈ {1, 2}. Then

Δ

[
y1 + p ·D×

σ,z1

y2 + p ·D×
σ,z2

mod q ; U
(
R×
q

)]
≤ 23nq−�εn�.

Proof. For a ∈ R×
q , we define Pra = Prf1,f2 [(y1+pf1)/(y2+pf2) = a], where fi ←↩

D×
σ,zi

for i ∈ {1, 2}. We are to show that |Pra − (q − 1)−n| ≤ 22n+5q−�εn� · (q −
1)−n =: ε′ for all except a fraction ≤ 22n(q−1)−εn of a ∈ R×

q . This directly gives
the claimed bound. The fraction of a ∈ R×

q such that |Pra − (q − 1)−n| ≤ ε′ is
equal to the fraction of a = (a1, a2) ∈ (R×

q)2 such that |Pra − (q − 1)−n| ≤ ε′,
where Pra = Prf1,f2 [a1f1 + a2f2 = a1z1 + a2z2]. This is because a1f1 + a2f2 =
a1z1 +a2z2 is equivalent to (y1 +pf1)/(y2 +pf2) = −a2/a1 (in R×

q), and −a2/a1
is uniformly random in R×

q when a ←↩ U((R×
q)2).

We observe that (f1, f2) = (z1, z2) =: z satisfies a1f1 + a2f2 = a1z1 + a2z2,
and hence the set of solutions (f1, f2) ∈ R to the latter equation is z + a⊥×,
where a⊥× = a⊥ ∩ (R×

q + qZn)2. Therefore:

Pra =
DZ2n,σ(z + a⊥×)

DZn,σ(z1 + R×
q + qZn) ·DZn,σ(z2 + R×

q + qZn)
.

We now use the fact that for any t ∈ a⊥ we have t2 = −t1a1/a2 so, since
−a1/a2 ∈ R×

q , the ring elements t1 and t2 must belong to the same ideal IS of Rq

for some S ⊆ {1, . . . , n}. It follows that a⊥× = a⊥\
⋃
S⊆{1,...,n},S �=∅ a⊥(IS). Sim-

ilarly, we have R×
q + qZn = Zn \

⋃
S⊆{1,...,n},S �=∅(IS + qZn). Using the inclusion-

exclusion principle, we obtain:

DZ2n,σ(z + a⊥×) =
∑

S⊆{1,...,n}
(−1)|S| ·DZ2n,σ(z + a⊥(IS)), (1)

∀i ∈ {1, 2} :DZn,σ(zi + R×
q + qZn) =

∑
S⊆{1,...,n}

(−1)|S| ·DZn,σ(zi + IS + qZn).(2)

In the rest of the proof, we show that, except for a fraction ≤ 22n(q − 1)−εn

of a ∈ (R×
q)2:

DZ2n,σ(z + a⊥×) = (1 + δ0) ·
(q − 1)n

q2n ,

42 D. Stehlé and R. Steinfeld

∀i ∈ {1, 2} : DZn,σ(zi + R×
q + qZn) = (1 + δi) ·

(q − 1)n

qn
.

where |δi| ≤ 22n+2q−�εn� for i ∈ {0, 1, 2}. The bound on |Pra−(q−1)−n| follows
by a routine computation.

Handling (1). We note that, since z ∈ Z2n, we have (for any S ⊆ {1, . . . , n}):

DZ2n,σ(z+a⊥(IS)) =
ρσ(z + a⊥(IS))

ρσ(Z2n)
=

ρσ(z + a⊥(IS))
ρσ(z + Z2n)

= DZ2n,σ,−z(a⊥(IS)).

For the terms of (1) with |S| ≤ εn, we apply Lemma 9 with m = 2. Since
|S|/n + ε ≤ 2ε, the Lemma 9 assumption on σ holds, with δ := q−n−�εn�.
We have |R/a⊥(IS)| = det(a⊥(IS)) = qn+|S|: Indeed, since a ∈ (R×

q)2, there
are qn−|S| elements of a⊥(IS) in [0, q − 1]2n. We conclude that
|DZ2n,σ,−z(a⊥(IS)) − q−n−|S|| ≤ 2δ, for all except a fraction ≤ 2n(q − 1)−εn

of a ∈ (R×
q)2 (possibly corresponding to a distinct subset of (R×

q)2 for each
possible S).

For a term of (1) with |S| > εn, we choose S′ ⊆ S with |S′| = �εn�. Then
we have a⊥(IS) ⊆ a⊥(IS′) and hence DZ2n,σ,−z(a⊥(IS)) ≤ DZ2n,σ,−z(a⊥(IS′)).
By using with S′ the above result for small |S|, we obtain DZ2n,σ,−z(a⊥(IS)) ≤
2δ + q−n−�εn�.

Overall, we have, except possibly for a fraction ≤ 22n(q−1)−εn of a ∈ (R×
q)2:∣∣∣∣DZ2n,σ(z + a⊥×)−

n∑
k=0

(−1)k
(
n

k

)
q−n−k

∣∣∣∣ ≤ 2n+1δ + 2
n∑

k=�εn�

(
n

k

)
q−n−�εn�

≤ 2n+1(δ + q−n−�εn�).

We conclude that |δ0| ≤ q2n

(q−1)n 2n+1(δ + q−n−�εn�) ≤ 22n+1(δqn + q−�εn�), as
required.

Handling (2). For the bounds on δ1 and δ2, we use a similar argument. Let i ∈
{1, 2}. The zi term can be handled like like the z term of (1). We observe that
for any S ⊆ {1, . . . , n}, we have det(IS + qZn) = q|S| and hence, by Minkowski’s
theorem, λ1(IS + qZn) ≤

√
n ·q|S|/n. Moreover, since IS + qZn is an ideal lattice,

we have λn(IS + qZn) = λ1(IS + qZn) ≤ √n · q|S|/n. Lemma 1 gives that σ ≥
ηδ(IS + qZn) for any S such that |S| ≤ n/2, with δ := q−n/2. Therefore, by
Lemma 4, for such an S, we have |DZn,σ,−zi(IS + qZn)− q−|S|| ≤ 2δ.

For a term of (2) with |S| > n/2, we choose S′ ⊆ S with |S′| = n/2. By
using with S′ the above result for small |S|, we obtain DZn,σ,−zi(IS + qZn) ≤
DZn,σ,−zi(IS′ + qZn) ≤ 2δ + q−n/2.

Overall, we have:∣∣∣∣∣DZn,σ(zi + R×
q + qZn)−

n∑
k=0

(−1)k
(
n

k

)
q−k

∣∣∣∣∣ ≤ 2n+1δ + 2
n∑

k=n/2

(
n

k

)
q−n/2

≤ 2n+1(δ + q−n/2),

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 43

which leads to the desired bound on δi (using ε < 1/2). This completes the proof
of the theorem. ��

5 NTRUEncrypt Revisited

Using our new results above, we describe a modification of NTRUEncrypt for
which we can provide a security proof under a worst-case hardness assumption.
We use Φ = xn + 1 with n ≥ 8 a power of 2, R = Z[x]/Φ and Rq = R/qR
with q ≥ 5 prime such that Φ =

∏n
k=1 Φk in Rq with distinct Φk’s.

We define our modified NTRUEncrypt scheme with parameters n, q, p, α, σ as
follows. The parameters n and q define the rings R and Rq. The parameter p ∈
R×
q defines the plaintext message space as P = R/pR. It must be a polynomial

with ‘small’ coefficients with respect to q, but at the same time we requireN (p) =
|P| = 2Ω(n) so that many bits can be encoded at once. Typical choices as used
in the original NTRUEncrypt scheme are p = 3 and p = x + 2, but in our case,
since q is prime, we may also choose p = 2. By reducing modulo the pxi’s, we can
write any element of p as

∑
0≤i<n εix

ip, with εi ∈ (−1/2, 1/2]. Using the fact
that R = Z[x]/(xn+1), we can thus assume that any element of P is an element
of R with infinity norm ≤ (deg(p)+1)·‖p‖. The parameter α is the R-LWE noise
distribution parameter. Finally, the parameter σ is the standard deviation of the
discrete Gaussian distribution used in the key generation process (see Section 4).

• Key generation. Use the algorithm of Fig. 1 and return sk = f ∈ R×
q with

f = 1 mod p, and pk = h = pg/f ∈ R×
q .

• Encryption. Given message M ∈ P , set s, e ←↩ Υα and return ciphertext C =
hs + pe + M ∈ Rq .

• Decryption. Given ciphertext C and secret key f , compute C′ = f ·C ∈ Rq and
return C′ mod p.

Fig. 2. The encryption scheme NTRUEncrypt(n, q, p, σ, α)

The correctness conditions for the scheme are summarized below.

Lemma 12. If ω(n1.5 logn)α deg(p)‖p‖2σ < 1 (resp. ω(n0.5 logn)α‖p‖2σ < 1
if deg p ≤ 1) and αq ≥ n0.5, then the decryption algorithm of NTRUEncrypt
recovers M with probability 1− n−ω(1) over the choice of s, e, f, g.

Proof. In the decryption algorithm, we have C′ = p · (gs+ ef)+ fM mod q. Let
C′′ = p · (gs + ef) + fM computed in R (not modulo q). If ‖C′′‖∞ < q/2 then
we have C′ = C′′ in R and hence, since f = 1 mod p, C′ mod p = C′′ mod p =
M mod p, i.e., the decryption algorithm succeeds. It thus suffices to give an
upper bound on the probability that ‖C′′‖∞ > q/2.

From Lemma 11, we know that with probability ≥ 1 − 2−n+3 both f and g
have Euclidean norms ≤ 2n‖p‖σ (resp. 4

√
n‖p‖σ if deg p ≤ 1). This implies

that ‖pf‖, ‖pg‖ ≤ 2n1.5‖p‖2σ (resp. 8
√
n‖p‖2σ), with probability ≥ 1− 2−n+3.

44 D. Stehlé and R. Steinfeld

From Lemma 6, both pfe and pgs have infinity norms ≤ 2αqn1.5ω(logn) · ‖p‖2σ
(resp. 8αq

√
nω(logn) · ‖p‖2σ), with probability 1− n−ω(1). Independently:

‖fM‖∞ ≤ ‖fM‖ ≤
√
n‖f‖‖M‖ ≤ 2 · (deg(p) + 1) · n2‖p‖2σ (resp. 8n‖p‖2σ).

Since αq ≥
√
n, we conclude that ‖C′′‖∞ ≤ (6+2 deg(p)) ·αqn1.5ω(logn) · ‖p‖2σ

(resp. 24αqn0.5ω(log n) · ‖p‖2σ), with probability 1− n−ω(1). ��

The security of the scheme follows by an elementary reduction from the deci-
sional R-LWE×

HNF, exploiting the uniformity of the public key in R×
q (Theo-

rem 3), and the invertibility of p in Rq.

Lemma 13. Suppose n is a power of 2 such that Φ = xn+1 splits into n linear
factors modulo prime q = ω(1). Let ε, δ > 0, p ∈ R×

q and σ ≥ 2n
√

ln(8nq) ·
q

1
2+ε. If there exists an IND-CPA attack against NTRUEncrypt that runs in

time T and has success probability 1/2+δ, then there exists an algorithm solving
R-LWE×

HNF with parameters q and α that runs in time T ′ = T + O(n) and has
success probability δ′ = δ − q−Ω(n).

Proof. Let A denote the given IND-CPA attack algorithm. We construct an
algorithm B against R-LWE×

HNF that runs as follows, given oracleO that samples
from either U(R×

q × Rq) or A×
s,ψ for some previously chosen s ←↩ ψ and ψ ←↩

Υα. Algorithm B first calls O to get a sample (h′, C′) from R×
q × Rq. Then,

algorithm B runs A with public key h = p · h′ ∈ Rq. When A outputs challenge
messages M0,M1 ∈ P , algorithm B picks b←↩ U({0, 1}), computes the challenge
ciphertext C = p · C′ + Mb ∈ Rq, and returns C to A. Eventually, when A
outputs its guess b′ for b, algorithm B outputs 1 if b′ = b and 0 otherwise.

The h′ used by B is uniformly random in R×
q , and therefore so is the public

key h given to A, thanks to the invertibility of p modulo q. Thus, by Theorem 3,
the public key given to A is within statistical distance q−Ω(n) of the public key
distribution in the genuine attack. Moreover, since C′ = h · s+ e with s, e←↩ ψ,
the ciphertext C given to A has the right distribution as in the IND-CPA attack.
Overall, if O outputs samples from A×

s,ψ, then A succeeds and B returns 1 with
probability ≥ 1/2 + δ − q−Ω(n).

Now, if O outputs samples from U(R×
q × Rq), then, since p ∈ R×

q , the value
of p ·C′ and hence C, is uniformly random in Rq and independent of b. It follows
that B outputs 1 with probability 1/2. The claimed advantage of B follows. ��

By combining Lemmata 12 and 13 with Theorem 1 we obtain our main result.

Theorem 4. Suppose n is a power of 2 such that Φ = xn+1 splits into n linear
factors modulo prime q = Poly(n) such that q

1
2−ε = ω(n3.5 log2 n deg(p)‖p‖2)

(resp. q 1
2−ε = ω(n4 log1.5 n deg(p)‖p‖2)), for arbitrary ε ∈ (0, 1/2) and p ∈ R×

q .
Let σ = 2n

√
ln(8nq) · q 1

2+ε and α−1 = ω(n1.5 log n deg(p)‖p‖2σ). If there exists
an IND-CPA attack against NTRUEncrypt(n, q, p, σ, α) which runs in time T =
Poly(n) and has success probability 1/2 + 1/Poly(n) (resp. time T = 2o(n) and

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 45

success probability 1/2 + 2−o(n)), then there exists a Poly(n)-time (resp. 2o(n)-
time) quantum algorithm for γ-Ideal-SVP with γ = O(n4 log2.5 n deg(p)‖p‖2q 1

2 +ε)
(resp. γ = O(n5 log1.5 n deg(p)‖p‖2q 1

2 +ε)). Moreover, the decryption algorithm
succeeds with probability 1−n−ω(1) over the choice of the encryption randomness.

In the case where deg p ≤ 1, the conditions on q for polynomial-time (resp. subex-
ponential) attacks in Theorem 4 may be relaxed to q

1
2−ε = ω(n2.5 log2 n · ‖p‖2)

(resp. q
1
2−ε = ω(n3 log1.5 n · ‖p‖2)) and the resulting Ideal-SVP approximation

factor may be improved to γ = O(n3 log2.5 n·‖p‖2q 1
2+ε) (resp. γ = O(n4 log1.5 n·

‖p‖2q 1
2+ε)). Overall, by choosing ε = o(1), the smallest q for which the analysis

holds is Ω̃(n5) (resp. Ω̃(n6)), and the smallest γ that can be obtained is Õ(n5.5)
(resp. Õ(n7)).

Acknowledgements. We thank G. Hanrot, V. Lyubashevsky, Khoa T. T.
Nguyen, C. Peikert, O. Regev, I. Shparlinski, J. Silverman and F. Vercauteren
for helpful discussions. The authors were partly supported by the LaRedA ANR
grant, an Australian Research Fellowship (ARF) from the Australian Research
Council under Discovery Grant DP0987734, a Macquarie University Research
Fellowship, and ARC Discovery Grant DP110100628.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of the 28th Symposium on the Theory of Computing (STOC 1996),
pp. 99–108. ACM, New York (1996)

3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

4. Banks, W.D., Shparlinski, I.E.: Distribution of inverses in polynomial rings.
Indagationes Mathematicae 12(3), 303–315 (2001)

5. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

6. Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)

7. von zur Gathen, J., Gerhardt, J.: Modern Computer Algebra, 2nd edn. Cambridge
University Press, Cambridge (2003)

8. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford
University (2009) (manuscript), http://crypto.stanford.edu/craig

9. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of STOC,
pp. 169–178. ACM, New York (2009)

10. Gentry, C.: Toward basing fully homomorphic encryption on worst-case hardness.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer, Hei-
delberg (2010)

http://crypto.stanford.edu/craig

46 D. Stehlé and R. Steinfeld

11. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proc. of STOC, pp. 197–206. ACM, New York
(2008)

12. Higham, N.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM,
Philadelphia (2002)

13. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Whyte, W.: Practical lattice-based
cryptography: NTRUEncrypt and NTRUSign. In: Chapter of [26] (2009)

14. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a new high speed public key
cryptosystem. Preprint; presented at the rump session of Crypto 1996 (1996)

15. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998)

16. Hoffstein, J., Pipher, J., Silverman, J.H.: NSS: An NTRU lattice-based signature
scheme. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 211.
Springer, Heidelberg (2001)

17. IEEE P1363. Standard specifications for public-key cryptography,
http://grouper.ieee.org/groups/1363/

18. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

19. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A modest
proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
54–72. Springer, Heidelberg (2008)

20. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings, Draft for the extended version of [20], dated 01/02/2011

22. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. Comput. Complexity 16(4), 365–411 (2007)

23. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

24. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191.
Springer, Heidelberg (2009)

25. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for
most lattice problems based on voronoi cell computations. In: Proc. of STOC, pp.
351–358. ACM, New York (2010)

26. Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm: Survey and Applications.
Information Security and Cryptography. Springer, Heidelberg (2009)

27. Peikert, C.: Limits on the hardness of lattice problems in �p norms. Comput. Com-
plexity 2(17), 300–351 (2008)

28. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector
problem. In: Proc. of STOC, pp. 333–342. ACM, New York (2009)

29. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 145–166. Springer, Heidelberg (2006)

30. Perlner, R.A., Cooper, D.A.: Quantum resistant public key cryptography: a survey.
In: Proc. of IDtrust, pp. 85–93. ACM, New York (2009)

31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
J. ACM 56(6) (2009)

http://grouper.ieee.org/groups/1363/

Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 47

32. Regev, O.: The learning with errors problem. Invited survey in CCC 2010 (2010),
http://www.cs.tau.ac.il/~odedr/

33. Schnorr, C.P.: A hierarchy of polynomial lattice basis reduction algorithms. Theor.
Comput. Science 53, 201–224 (1987)

34. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption
based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 617–635. Springer, Heidelberg (2009)

35. Xylouris, T.: On Linnik’s constant (2009) (in German),
http://arxiv.org/abs/0906.2749

http://www.cs.tau.ac.il/~odedr/
http://arxiv.org/abs/0906.2749

Faster Explicit Formulas for
Computing Pairings over Ordinary Curves

Diego F. Aranha1,�, Koray Karabina2,�, Patrick Longa3,
Catherine H. Gebotys3, and Julio López1

1 University of Campinas
{dfaranha,jlopez}@ic.unicamp.br

2 Certicom Research
kkarabina@rim.com

3 University of Waterloo
{plonga,cgebotys}@uwaterloo.ca

Abstract. We describe efficient formulas for computing pairings on or-
dinary elliptic curves over prime fields. First, we generalize lazy reduction
techniques, previously considered only for arithmetic in quadratic exten-
sions, to the whole pairing computation, including towering and curve
arithmetic. Second, we introduce a new compressed squaring formula for
cyclotomic subgroups and a new technique to avoid performing an in-
version in the final exponentiation when the curve is parameterized by a
negative integer. The techniques are illustrated in the context of pairing
computation over Barreto-Naehrig curves, where they have a particu-
larly efficient realization, and are also combined with other important
developments in the recent literature. The resulting formulas reduce the
number of required operations and, consequently, execution time, im-
proving on the state-of-the-art performance of cryptographic pairings by
28%-34% on several popular 64-bit computing platforms. In particular,
our techniques allow to compute a pairing under 2 million cycles for the
first time on such architectures.

Keywords: Efficient software implementation, explicit formulas,
bilinear pairings.

1 Introduction

The performance of pairing computation has received increasing interest in the
research community, mainly because Pairing-Based Cryptography enables ef-
ficient and elegant solutions to several longstanding problems in cryptography
such as Identity-Based Encryption [1,2], powerful non-interactive zero-knowledge
proof systems [3] and communication-efficient multi-party key agreements [4].
Recently, dramatic improvements over the figure of 10 million cycles presented
in [5] made possible to compute a pairing at the 128-bit security level in 4.38
million cycles [6] when using high-speed vector floating-point operations, and
� This work was completed while these authors were at the University of Waterloo.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 48–68, 2011.
c© International Association for Cryptologic Research 2011

Faster Explicit Formulas for Computing Pairings over Ordinary Curves 49

2.33 million cycles [7] when the fastest integer multiplier available in Intel 64-bit
architectures is employed.

This work revisits the problem of efficiently computing pairings over large-
characteristic fields and improves the state-of-the-art performance of crypto-
graphic pairings by a significant margin. First of all, it builds on the latest
advancements proposed by several authors:

– The Optimal Ate pairing [8] computed entirely on twists [9] with simpli-
fied final line evaluations [6] over a recently-introduced subclass [10] of the
Barreto-Naehrig (BN) family of pairing-friendly elliptic curves [11].

– The implementation techniques described by [7] for accelerating quadratic
extension field arithmetic, showing how to reduce expensive carry handling
and function call overheads.

On the other hand, the following new techniques are introduced:

– The notion of lazy reduction, usually applied for arithmetic in quadratic
extensions in the context of pairings, as discussed in [12], is generalized to
the towering and curve arithmetic performed in the pairing computation.
In a sense, this follows a direction opposite to the one taken by other au-
thors. Instead of trying to encode arithmetic so that modular reductions are
faster [13,6], we insist on Montgomery reduction and focus our efforts on re-
ducing the need of computing reductions. Moreover, for dealing with costly
higher-precision additions inserted by lazy reduction, we develop a flexible
methodology that keeps intermediate values under Montgomery reduction
boundaries and maximizes the use of operations without carry checks. The
traditional operation count model is also augmented to take into account
modular reductions individually.

– Formulas for point doubling and point addition in Jacobian and homoge-
neous coordinates are carefully optimized by eliminating several commonly
neglected operations that are not inexpensive on modern 64-bit platforms.

– The computation of the final exponentiation is improved with a new set of
formulas for compressed squaring and efficient decompression in cyclotomic
subgroups, and an arithmetic trick to remove a significant penalty incurred
when computing pairings over curves parameterized by negative integers.

The described techniques produce significant savings, allowing our illustrative
software implementation to compute a pairing under 2 million cycles and improve
the state-of-the-art timings by 28%-34% on several different 64-bit computing
platforms. Even though the techniques are applied on pairings over BN curves
at the 128-bit security level, they can be easily extended to other settings using
different curves and higher security levels [14].

This paper is organized as follows. Section 2 gives an overview of Miller’s
Algorithm when employed for computing the Optimal Ate pairing over Barreto-
Naehrig curves. Section 3 presents the generalized lazy reduction technique and
its application to the improvement of towering arithmetic performance. Different
optimizations to curve arithmetic, including the application of lazy reduction,

50 D.F. Aranha et al.

are discussed in Section 4. Section 5 describes our improvements on the final
exponentiation. Section 6 summarizes operation counts and Section 7 describes
our high-speed software implementation and comparison of results with the pre-
viously fastest implementation in the literature. Section 8 concludes the paper.

2 Preliminaries

An admissible bilinear pairing is a non-degenerate efficiently-computable map
e : G1 ×G2 → GT , where G1 and G2 are additive groups of points in an elliptic
curve E and GT is a subgroup of the multiplicative group of a finite field. The
core property of map e is linearity in both arguments, allowing the construction
of novel cryptographic schemes with security relying on the hardness of the
Discrete Logarithm Problem in G1,G2 and GT .

Barreto and Naehrig [11] described a parameterized family of elliptic curves
Eb : y2 = x3+b, b
= 0 over a prime field Fp, p = 36u4+36u3+24u2+6u+1, with
prime order n = 36u4+36u3+18u2+6u+1, where u ∈ Z is an arbitrary integer.
This family is rather large and easy to generate [10], providing a multitude
of parameter choices; and, having embedding degree k = 12, is well-suited for
computing asymmetric pairings at the 128-bit security level [12]. It admits several
optimal derivations [8] of different variants of the Ate pairing [15] such as R-
ate [16], Optimal Ate [8] and χ-ate [17].

Let E[n] be the subgroup of n-torsion points of E and E′ : y2 = x3 + b/ξ be
a sextic twist of E with ξ not a cube nor a square in Fp2 . For the clear bene-
fit of direct benchmarking, but also pointing that performance among variants
is roughly the same, we restrict the discussion to computing the Optimal Ate
pairing defined as in [6]:

aopt : G2 ×G1 → GT

(Q,P)→ (fr,Q(P) · l[r]Q,πp(Q)(P) · l[r]Q+πp(Q),−π2
p(Q)(P))

p12−1
n ,

where r = 6u + 2 ∈ Z; the map πp : E → E is the Frobenius endomorphism
πp(x, y) = (xp, yp); groups G1,G2 are determined by the eigenspaces of πp as
G1 = E[n] ∩ Ker(πp − [1]) = E(Fp)[n] and G2 as the preimage E′(Fp2)[n] of
E[n] ∩ Ker(πp − [p]) ⊆ E(Fp12)[n] under the twisting isomorphism ψ : E′ → E;
the group GT is the subgroup of n-th roots of unity μn ⊂ F∗

p12 ; fr,Q(P) is
a normalized function with divisor (fr,Q) = r(Q) − ([r]Q) − (r − 1)(O) and
lQ1,Q2(P) is the line arising in the addition of Q1 and Q2 evaluated at point P .

Miller [18,19] proposed an algorithm that constructs fr,P in stages by using a
double-and-add method. When generalizing the denominator-free version [20] of
Miller’s Algorithm for computing the pairing aopt with the set of implementation-
friendly parameters suggested by [10] at the 128-bit security level, we obtain
Algorithm 1. For the BN curve we have E : y2 = x3+2, u = −(262+255+1) < 0.
In order to accommodate the negative r (line 9 in Algorithm 1), it is required
to compute a cheap negation in G2 to make the final accumulator T the result
of [−|r|]Q, and an expensive inversion in the big field GT to obtain the correct

Faster Explicit Formulas for Computing Pairings over Ordinary Curves 51

pairing value f−|r|,Q(P) = (f|r|,Q(P))−1, instead of the value f|r|,Q(P) produced
at the end of the algorithm. The expensive inversion will be handled later at
Section 5 with the help of the final exponentiation.

Algorithm 1. Optimal Ate pairing on BN curves (generalized for u < 0)

Input: P ∈ G1, Q ∈ G2, r = |6u + 2| = ∑log2(r)
i=0 ri2i

Output: aopt(Q,P)
1. T ← Q, f ← 1
2. for i = �log2(r)� − 1 downto 0 do
3. f ← f2 · lT,T (P), T ← 2T
4. if ri = 1 then
5. f ← f · lT,Q(P), T ← T + Q
6. end for
7. Q1 ← πp(Q), Q2 ← π2

p(Q)
8. if u < 0 then
9. T ← −T, f ← f−1

10. end if
11. f ← f · lT,Q1(P), T ← T + Q1

12. f ← f · lT,−Q2(P), T ← T −Q2

13. f ← f (p12−1)/n

14. return f

3 Tower Extension Field Arithmetic

Miller’s Algorithm [18,19] employs arithmetic in Fp12 during the accumulation
steps (lines 3,5,11-12 in Algorithm 1) and at the final exponentiation (line 13
in the same algorithm). Hence, to achieve a high-performance implementation
of pairings it is crucial to perform arithmetic over extension fields efficiently. In
particular, it has been recommended in [21] to represent Fpk with a tower of
extensions using irreducible binomials. Accordingly, in our targeted setting we
represent Fp12 using the flexible towering scheme used in [22,5,7,10] combined
with the parameters suggested by [10]:

– Fp2 = Fp[i]/(i2 − β), where β = −1.
– Fp4 = Fp2 [s]/(s2 − ξ), where ξ = 1 + i.
– Fp6 = Fp2 [v]/(v3 − ξ), where ξ = 1 + i.
– Fp12 = Fp4 [t]/(t3 − s) or Fp6 [w]/(w2 − v).

It is possible to convert from one towering Fp2 → Fp6 → Fp12 to the other
Fp2 → Fp4 → Fp12 by simply permuting the order of coefficients. The choice
p ≡ 3 (mod 4) accelerates arithmetic in Fp2 , since multiplications by β = −1
can be computed as simple subtractions [10].

52 D.F. Aranha et al.

3.1 Lazy Reduction for Tower Fields

The concept of lazy reduction goes back to at least [23] and has been advan-
tageously exploited by many works in different scenarios [24,25,12]. Lim and
Hwang [24] showed that multiplication in Fpk , when Fpk = Fp[x]/(xk − w) is
seen as a direct extension over Fp via the irreducible binomial (xk − w) with
w ∈ Fp, can be performed with k reductions modulo p. In contrast, it would nor-
mally require either k2 reductions using conventional multiplication, or k(k+1)/2
reductions using Karatsuba multiplication. Lazy reduction was first employed in
the context of pairing computation by [12] to eliminate reductions in Fp2 multi-
plication. If one considers the tower Fp → Fp2 → Fp6 → Fp12 , then this approach
requires 2 ·6 ·3 = 36 reductions modulo p, and 3 ·6 ·3 = 54 integer multiplications
for performing one multiplication in Fp12 ; see [12,5,7].

In this section, we generalize the lazy reduction technique to towering-friendly
fields Fpk , k = 2i3j, i ≥ 1, j ≥ 0, conveniently built with irreducible bino-
mials [26]. We show that multiplication (and squaring) in a tower extension
Fpk only requires k reductions and still benefits from different arithmetic op-
timizations available in the literature to reduce the number of subfield mul-
tiplications or squarings. For instance, with our approach one now requires
2 · 3 · 2 = 12 reductions modulo p and 54 integer multiplications using the
tower Fp → Fp2 → Fp6 → Fp12 to compute one multiplication in Fp12 ; or 12
reductions modulo p and 36 integer multiplications to compute one squaring in
Fp12 . Although wider in generality, these techniques are analyzed in detail in the
context of Montgomery multiplication and Montgomery reduction [27], which
are commonly used in the context of pairings over ordinary curves. We explicitly
state our formulas for the towering construction Fp → Fp2 → Fp6 → Fp12 in
Section 3.3. To remove ambiguity, the term reduction modulo p always refers to
modular reduction of double-precision integers.

Theorem 1. Let k = 2i3j, i, j ∈ Z and i ≥ 1, j ≥ 0. Let

Fp = Fpk0 → Fpk1 = Fp2 → · · · → Fpki+j−2 → Fpki+j−1 → Fpki+j = Fpk

be a tower extension, where each extension Fpk�+1 /Fpk� is of degree either 2 or
3, which can be constructed using a second degree irreducible binomial x2 − β�,
β� ∈ Fpk� , or a third degree irreducible binomial x3 − β�, β� ∈ Fpk� , respectively.
Suppose that β� can be chosen such that, for all a ∈ Fpk� , a · β� can be computed
without any reduction modulo p. Then multiplication in Fpk can be computed
with 3i6j integer multiplications and k = 2i3j reductions modulo p for any k.

Proof. We prove this by induction on i+ j. The base case is i+ j = 1 (i = 1 and
j = 0). That is, k = 2, and we have a tower Fp → Fp2 with Fp2 = Fp[x]/(x2−β).
For any a = a0 + a1x, b = b0 + b1x ∈ Fp2 , ai, bi ∈ Fp, we can write

a · b = (a0b0 + a1b1β) + ((a0 + a1)(b0 + b1)− a0b0 − a1b1)x,

which can be computed with 3 integer multiplications and 2 reductions modulo
p (note that we ignore multiplication by β, by our assumption).

Faster Explicit Formulas for Computing Pairings over Ordinary Curves 53

Next, consider

Fp → Fp2 → · · · → Fpki+j → Fpki+j+1 ,

where ki+j+1 = 2i+13j , or ki+j+1 = 2i3j+1. In the former case, let Fpki+j+1 =
Fpki+j [x]/(x2−β) and a = a0+a1x, b = b0+b1x ∈ Fpki+j+1 , ai, bi ∈ Fpki+j . Then

a · b = (a0b0 + a1b1β) + [(a0 + a1)(b0 + b1)− a0b0 − a1b1]x, (1)

which can be computed with 3 multiplications in Fpki+j , namely a0b0, a1b1β

and (a0 + a1)(b0 + b1) (again, we ignore multiplication by β). By the induction
hypothesis, each multiplication in Fpki+j requires 3i6j integer multiplications,
and 2i3j reductions modulo p. Also, three reductions modulo p, when computing
a0b0, a1b1β and (a0 +a1)(b0 + b1), can be minimized to two reductions modulo p
(see (1)). Hence, multiplication in Fpki+j+1 can be computed with 3·3i6j = 3i+16j

integer multiplications and 2 · 2i3j = 2i+13j reductions modulo p.
The latter case, ki+j+1 = 2i3j+1, can be proved similarly, by considering

Fpki+j+1 = Fpki+j [x]/(x3 − β), and the Karatsuba multiplication formula for
degree 3 extensions instead of (1). �
It is also straightforward to generalize the procedure above to any formula other
than Karatsuba which also involves only sums (or subtractions) of products of
the form

∑
±aibj , with ai, bj ∈ Fpkl , such as complex squaring or the Chung-

Hasan asymmetric squaring formulas [28].
For efficiency purposes, we suggest a different treatment for the highest layer

in the tower arithmetic. Theorem 1 implies that reductions can be completely
delayed to the end of the last layer by applying lazy reduction, but in some
cases (when the optimal k is already reached and no reductions can be saved)
it will be more efficient to perform reductions immediately after multiplications
or squarings. This will be illustrated with the computation of squaring in Fp12
in Section 3.3.

In the Miller Loop, reductions can also be delayed from the underlying Fp2
field during multiplication and squaring to the arithmetic layer immediately
above (i.e., the point arithmetic and line evaluation). Similarly to the tower
extension, on this upper layer reductions should only be delayed in the cases
where this technique leads to fewer reductions. For details, see Section 4.

There are some penalties when delaying reductions. In particular, single-
precision operations (with operands occupying n = ��log2 p�/w� words, where
w is the computer word-size) are replaced by double-precision operations (with
operands occupying 2n words). However, this disadvantage can be minimized
in terms of speed by selecting a field size smaller than the word-size boundary
because this technique can be exploited more extensively for optimizing double-
precision arithmetic.

3.2 Selecting a Field Size Smaller Than the Word-Size Boundary

If the modulus p is selected so that l = �log2 p� < N , where N = n · w, n is
the exact number of words required to represent p, i.e., n = �l/w�, and w is

54 D.F. Aranha et al.

the computer word-size, then several consecutive additions without carry-out in
the most significant word (MSW) can be performed before a multiplication of
the form c = a · b, where a, b ∈ [0, 2N − 1] such that c < 22N . In the case of
Montgomery reduction, the restriction is given by the upper bound c < 2N · p.
Similarly, when delaying reductions the result of a multiplication without reduc-
tion has maximum value (p− 1)2 < 22N (assuming that a, b ∈ [0, p]) and several
consecutive double-precision additions without carry-outs in the MSW (and, in
some cases, subtractions without borrow-outs in the MSW) can be performed
before reduction. When using Montgomery reduction up to ∼ �2N/p� additions
can be performed without carry checks.

Furthermore, cheaper single- and double-precision operations exploiting this
“extra room” can be combined for maximal performance. The challenge is to
optimally balance their use in the tower arithmetic since both may interfere
with each other. For instance, if intermediate values are allowed to grow up
to 2p before multiplication (instead of p) then the maximum result would be
4p2. This strategy makes use of cheaper single-precision additions without carry
checks but limits the number of double-precision additions that can be executed
without carry checks after multiplication with delayed reduction. As it will be
evident later, to maximize the gain obtained with the proposed methodology
one should take into account relative costs of operations and maximum bounds.

In the case of double-precision arithmetic, different optimizing alternatives are
available. Let us analyze them in the context of Montgomery arithmetic. First,
as pointed out by [7], if c > 2N · p, where c is the result of a double-precision addi-
tion, then c can be restored with a cheaper single-precision subtraction by 2N ·p
(note that the first half of this value consists of zeroes only). Second, different op-
tions are available to convert negative numbers to positive after double-precision
subtraction. In particular, let us consider the computation c = a + l · b, where
a, b ∈ [0,mp2], m ∈ Z+ and l < 0 ∈ Z s.t. |lmp| < 2N , which is a recurrent
operation (for instance, when l = β). For this operation, we have explored the
following alternatives, which can be integrated in the tower arithmetic with dif-
ferent advantages:

Option 1: r = c + (2N · p/2h), r ∈ [0,mp2 + 2N · p/2h], h is a small integer s.t.∣∣lmp2
∣∣ < 2N · p/2h < 2N · p−mp2.

Option 2: if c < 0 then r = c + 2N · p, r ∈ [0, 2N · p].
Option 3: r = c− lmp2, r ∈ [0, (|l|+ 1)mp2], s.t. (|l|+ 1)mp < 2N .
Option 4: if c < 0 then r = c− lmp2, r ∈ [0, |lmp2|].

In particular, Options 2 and 4 require conditional checks that make the corre-
sponding operations more expensive. Nevertheless, these options may be valuable
when negative values cannot be corrected with other options without violating
the upper bound. Also note that Option 2 can make use of a cheaper single-
precision subtraction for converting negative results to positive. Options 1 and
3 are particularly efficient because no conditional checks are required. Moreover,
if l is small enough (and h maximized for Option 1) several following opera-
tions can avoid carry checks. Between both, Option 1 is generally more efficient

Faster Explicit Formulas for Computing Pairings over Ordinary Curves 55

because adding 2N · p/2h requires less than double-precision if h ≤ w, where w
is the computer word-size.

Next, we demonstrate how the different design options discussed in this section
can be exploited with a clever selection of parameters and applied to different
operations combining single- and double-precision arithmetic to speed up the
extension field arithmetic.

3.3 Analysis for Selected Parameters

For our illustrative analysis, we use the tower Fp2 → Fp6 → Fp12 constructed
with the irreducible binomials described at the beginning of this section. When
targeting the 128-bit security level, single- and double-precision operations are
defined by operands with sizes N = 256 and 2N = 512, respectively. For our
selected prime, �log2 p� = 254 and 2N · p ≈ 6.8p2. Notation is fixed as following:
(i) +,−,× are operators not involving carry handling or modular reduction for
boundary keeping; (ii) ⊕, ,⊗ are operators producing reduced results through
carry handling or modular reduction; (iii) a superscript in an operator is used
to denote the extension degree involved in the operation; (iv) notation ai,j is
used to address j-th subfield element in extension field element ai; (v) lower
case t and upper case T variables represent single- and double-precision integers
or extension field elements composed of single and double-precision integers,
respectively. The precision of the operators is determined by the precision of
the operands and result. Note that, as stated before, if c > 2N · p after adding
c = a + b in double-precision, we correct the result by computing c − 2N · p.
Similar to subtraction, we refer to the latter as “Option 2”.

The following notation is used for the cost of operations: (i) m, s, a denote
the cost of multiplication, squaring and addition in Fp, respectively; (ii) m̃, s̃, ã, ĩ
denote the cost of multiplication, squaring, addition and inversion in Fp2 , respec-
tively; (iii) mu, su, r denote the cost of unreduced multiplication and squaring
producing double-precision results, and modular reduction of double-precision
integers, respectively; (iv) m̃u, s̃u, r̃ denote the cost of unreduced multiplication
and squaring, and modular reduction of double-precision elements in Fp2 , respec-
tively. For the remainder of the paper, and unless explicitly stated otherwise, we
assume that double-precision addition has the cost of 2a and 2ã in Fp and Fp2 ,
respectively, which approximately follows what we observe in practice.

We will now illustrate a selection of operations for efficient multiplication
in Fp12 , beginning with multiplication in Fp2 . Let a, b, c ∈ Fp2 such that a =
a0 + a1i, b = b0 + b1i, c = a · b = c0 + c1i. The required operations for computing
Fp2 multiplication are detailed in Algorithm 2. As explained in Beuchat et al. [7,
Section 5.2], when using the Karatsuba method and ai, bi ∈ Fp, c1 = (a0 +
a1)(b0 + b1) − a0b0 − a1b1 = a0b1 + a1b0 < 2p2 < 2N · p, additions are single-
precision, reduction after multiplication can be delayed and hence subtractions
are double-precision (steps 1-3 in Algorithm 2). Obviously, these operations do
not require carry checks. For c0 = a0b0 − a1b1, c0 is in interval [−p2, p2] and
a negative result can be converted to positive using Option 1 with h = 2 or
Option 2, for which the final c0 is in the range [0, (2N · p/4)+ p2] ⊂ [0, 2N · p] or

56 D.F. Aranha et al.

[0, 2N · p], respectively (step 4 in Algorithm 2). Following Theorem 1, all reduc-
tions can be completely delayed to the next arithmetic layer (higher extension
or curve arithmetic).

Algorithm 2. Multiplication in Fp2 without reduction (×2, cost m̃u = 3mu+8a)
Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2

Output: c = a · b = (c0 + c1i) ∈ Fp2

1. T0 ← a0 × b0, T1 ← a1 × b1, t0 ← a0 + a1, t1 ← b0 + b1

2. T2 ← t0 × t1, T3 ← T0 + T1

3. T3 ← T2 − T3

4. T4 ← T0
 T1 (Option 1 or 2)
5. return c = (T4 + T3i)

Let us now define multiplication in Fp6 . Let a, b, c ∈ Fp6 such that a = (a0 +
a1v + a2v

2), b = (b0 + b1v + b2v
2), c = a · b = (c0 + c1v + c2v

2). The required
operations for computing Fp6 multiplication are detailed in Algorithm 3. In this
case, c0 = v0 +ξ[(a1+a2)(b1 +b2)−v1−v2], c1 = (a0 +a1)(b0 +b1)−v0−v1+ξv2
and c2 = (a0+a2)(b0+b2)−v0−v2+v1, where v0 = a0b0, v1 = a1b1 and v2 = a2b2.
First, note that the pattern sx = (ai + aj)(bi + bj) − vi − vj repeats for each
cx, 0 ≤ x ≤ 2. After multiplications using Alg. 2 with Option 1 (h = 2), we
have vi,0, vj,0 ∈ [0, (2N · p/4) + p2] and vi,1, vj,1 ∈ [0, 2p2] (step 1 of Alg. 3).
Outputs of single-precision additions of the forms (ai + aj) and (bi + bj) are in
the range [0, 2p] and hence do not produce carries (steps 2, 9 and 17 of Alg. 3).
Corresponding Fp2 multiplications rx = (ai + aj)(bi + bj) using Alg. 2 with
Option 2 give results in the ranges rx,0 ∈ [0, 2N · p] and rx,1 ∈ [0, 8p2] (steps
3, 10 and 18). Although max(rx,1) = 8p2 > 2N · p, note that 8p2 < 22N and
sx,1 = ai,0bj,1 + ai,1bj,0 + aj,0bi,1 + aj,1bi,0 ∈ [0, 4p2] since sx = aibj + ajbi.
Hence, for 0 ≤ x ≤ 2, double-precision subtractions for computing sx,1 using
Karatsuba do not require carry checks (steps 4 and 6, 11 and 13, 19 and 21).
For computing sx,0 = rx,0 − (vi,0 + vj,0), addition does not require carry check
(output range [0, 2(2N · p/4+p2)] ⊂ [0, 2N · p]) and subtraction gives result in the
range [0, 2N · p] when using Option 2 (steps 5, 12 and 20). For computing c0,
multiplication by ξ, i.e., S0 = ξs0 involves the operations S0,0 = s0,0 − s0,1 and
S0,1 = s0,0 + s0,1, which are computed in double-precision using Option 2 to
get the output range [0, 2N · p] (step 7). Similarly, final additions with v0 require
Option 2 to get again the output range [0, 2N · p] (step 8). For computing c1,
S1 = ξv2 is computed as S1,0 = v2,0 − v2,1 and S1,1 = v2,0 + v2,1, where the
former requires a double-precision subtraction using Option 1 (h = 1) to get
a result in the range [0, 2N · p/2 + 2N · p/4 + p2] ⊂ [0, 2N · p] (step 14) and the
latter requires a double-precision addition with no carry check to get a result
in the range [0, (2N · p/4) + 3p2] ⊂ [0, 2N · p] (step 15). Then, c1,0 = s1,0 + S1,0
and c1,1 = s1,1 + S1,1 involve double-precision additions using Option 2 to
obtain results in the range [0, 2N · p] (step 16). Results c2,0 = s2,0 + v1,0 and
c2,1 = s2,1 + v1,1 require a double-precision addition using Option 2 (final
output range [0, 2N · p], step 22) and a double-precision addition without carry

Faster Explicit Formulas for Computing Pairings over Ordinary Curves 57

check (final output range [0, 6p2] ⊂ [0, 2N · p], step 23), respectively. Modular
reductions have been delayed again to the last layer Fp12 .

Algorithm 3. Multiplication in Fp6 without reduction (×6, cost of 6m̃u + 28ã)
Input: a = (a0 + a1v + a2v

2) and b = (b0 + b1v + b2v
2) ∈ Fp6

Output: c = a · b = (c0 + c1v + c2v
2) ∈ Fp6

1. T0 ← a0 ×2 b0, T1 ← a1 ×2 b1, T2 ← a2 ×2 b2 (Option 1, h = 2)
2. t0 ← a1 +2 a2, t1 ← b1 +2 b2

3. T3 ← t0 ×2 t1 (Option 2)
4. T4 ← T1 +2 T2

5. T3,0 ← T3,0
 T4,0 (Option 2)
6. T3,1 ← T3,1 − T4,1

7. T4,0 ← T3,0
 T3,1, T4,1 ← T3,0 ⊕ T3,1 (≡ T4 ← ξ · T3) (Option 2)
8. T5 ← T4 ⊕2 T0 (Option 2)
9. t0 ← a0 +2 a1, t1 ← b0 +2 b1

10. T3 ← t0 ×2 t1 (Option 2)
11. T4 ← T0 +2 T1

12. T3,0 ← T3,0
 T4,0 (Option 2)
13. T3,1 ← T3,1 − T4,1

14. T4,0 ← T2,0
 T2,1 (Option 1, h = 1)
15. T4,1 ← T2,0 + T2,1 (steps 14-15 ≡ T4 ← ξ · T2)
16. T6 ← T3 ⊕2 T4 (Option 2)
17. t0 ← a0 +2 a2, t1 ← b0 +2 b2

18. T3 ← t0 ×2 t1 (Option 2)
19. T4 ← T0 +2 T2

20. T3,0 ← T3,0
 T4,0 (Option 2)
21. T3,1 ← T3,1 − T4,1

22. T7,0 ← T3,0 ⊕ T1,0 (Option 2)
23. T7,1 ← T3,1 + T1,1

24. return c = (T5 + T6v + T7v
2)

Finally, let a, b, c ∈ Fp12 such that a = a0 + a1w, b = b0 + b1w, c = a · b =
c0 + c1w. Algorithm 4 details the required operations for computing multipli-
cation. In this case, c1 = (a0 + a1)(b0 + b1) − a1b1 − a0b0. At step 1, Fp6 mul-
tiplications a0b0 and a1b1 give outputs in range ⊂ [0, 2N · p] using Algorithm 3.
Additions a0 +a1 and b0 + b1 are single-precision reduced modulo p so that mul-
tiplication (a0 +a1)(b0 +b1) in step 2 gives output in range ⊂ [0, 2N · p] using Al-
gorithm 3. Then, subtractions by a1b1 and a0b0 use double-precision operations
with Option 2 to have an output range [0, 2N · p] so that we can apply Mont-
gomery reduction at step 5 to obtain the result modulo p. For c0 = a0b0 +va1b1,
multiplication by v, i.e., T = v ·v1, where vi = aibi, involves the double-precision
operations T0,0 = v2,0−v2,1, T0,1 = v2,0+v2,1, T1 = v0 and T2 = v1, all performed
with Option 2 to obtain the output range [0, 2N · p] (steps 6-7). Final addition
with a0b0 uses double-precision with Option 2 again so that we can apply Mont-
gomery reduction at step 9 to obtain the result modulo p. We remark that, by
applying the lazy reduction technique using the operation sequence above, we

58 D.F. Aranha et al.

have reduced the number of reductions in Fp6 from 3 to only 2, or the number
of total modular reductions in Fp from 54 (or 36 if lazy reduction is employed
in Fp2) to only k = 12.

Algorithm 4. Multiplication in Fp12 (×12, cost of 18m̃u + 6r̃ + 110ã)
Input: a = (a0 + a1w) and b = (b0 + b1w) ∈ Fp12

Output: c = a · b = (c0 + c1w) ∈ Fp12

1. T0 ← a0 ×6 b0, T1 ← a1 ×6 b1, t0 ← a0 ⊕6 a1, t1 ← b0 ⊕6 b1

2. T2 ← t0 ×6 t1
3. T3 ← T0 ⊕6 T1 (Option 2)
4. T2 ← T2
6 T3 (Option 2)
5. c1 ← T2 mod6 p
6. T2,0,0 ← T1,2,0
 T1,2,1, T2,0,1 ← T1,2,0 ⊕ T1,2,1 (Option 2)
7. T2,1 ← T1,0, T2,2 ← T1,1 (steps 6-7 ≡ T2 ← v · T1)
8. T2 ← T0 ⊕6 T2 (Option 2)
9. c0 ← T2 mod6 p

10. return c = (c0 + c1w)

As previously stated, there are situations when it is more efficient to perform
reductions right after multiplications and squarings in the last arithmetic layer of
the tower construction. We illustrate the latter with squaring in Fp12 . As shown
in Algorithm 5, a total of 2 reductions in Fp6 are required when performing Fp6
multiplications in step 4. If lazy reduction was applied, the number of reduc-
tions would stay at 2, and worse, the total cost would be increased because some
operations would require double-precision. The reader should note that the ap-
proach suggested by [10], where the formulas in [28] are employed for computing
squarings in internal cubic extensions of Fp12 , saves 1m̃ in comparison with Al-
gorithm 5. However, we experimented such approach with several combinations
of formulas and towering, and it remained consistently slower than Algorithm 5
due to an increase in the number of additions.

Algorithm 5. Squaring in Fp12 (cost of 12m̃u + 6r̃ + 73ã)
Input: a = (a0 + a1w) ∈ Fp12

Output: c = a2 = (c0 + c1w) ∈ Fp12

1. t0 ← a0 ⊕6 a1, t1,0,0 ← a1,2,0
 a1,2,1, t1,0,1 ← a1,2,0 ⊕ a1,2,1

2. t1,1 ← a1,0, t1,2 ← a1,1 (steps 2-3 ≡ t1 ← v · a1)
3. t1 ← a0 ⊕6 t1
4. c1 ← (a0 ×6 a1) mod6 p, t0 ← (t0 ×6 t1) mod6 p
5. t1,0,0 ← c1,2,0
 c1,2,1, t1,0,1 ← c1,2,0 ⊕ c1,2,1

6. t1,1 ← c1,0, t1,2 ← c1,1 (steps 6-7 ≡ t1 ← v · c1)
7. t1 ← t1 ⊕6 c1

8. c0 ← t0
6 t1, c1 ← c1 ⊕6 c1

9. return c = (c0 + c1w)

Faster Explicit Formulas for Computing Pairings over Ordinary Curves 59

4 Miller Loop

In this section, we present our optimizations to the curve arithmetic. To be
consistent with other results in the literature, we do not distinguish between
simple- and double-precision additions in the formulas below.

Recently, Costello et al. [9, Section 5] proposed the use of homogeneous coor-
dinates to perform the curve arithmetic entirely on the twist. Their formula for
computing a point doubling and line evaluation costs 2m̃+7s̃+23ã+4m+1mb′.
The twisting of point P , given in our case by (xP /w2, yP /w

3) = (xP

ξ v2, yP

ξ vw),
is eliminated by multiplying the whole line evaluation by ξ and relying on the
final exponentiation to eliminate this extra factor [9]. Clearly, the main draw-
back of this formula is the high number of additions. We present the following
revised formula:

X3 = X1Y1
2

(
Y 2

1 − 9b′Z2
1
)
, Y3 =

[
1
2
(
Y 2

1 + 9b′Z2
1
)]
− 27b′2Z4

1 , Z3 = 2Y 3
1 Z1,

l = (−2Y1Z1yP)vw +
(
3X2

1xP
)
v2 + ξ

(
3b′Z2

1 − Y 2
1
)
.

(2)
This doubling formula gives the cost of 3m̃+6s̃+17ã+4m+mb′ +mξ. Moreover,
if the parameter b′ is cleverly selected as in [10], multiplication by b′ can be
performed with minimal number of additions and subtractions. For instance, if
one fixes b = 2 then b′ = 2/(1 + i) = 1− i. Accordingly, the following execution
has a cost of 3m̃ + 6s̃ + 19ã + 4m (note that computations for E and l0,0 are
over Fp and yP = −yP is precomputed):

A = X1 · Y1/2, B = Y 2
1 , C = Z2

1 , D = 3C, E0 = D0 + D1,

E1 = D1 −D0, F = 3E, X3 = A · (B − F), G = (B + F)/2,

Y3 = G2 − 3E2, H = (Y1 + Z1)
2 − (B + C),

Z3 = B ·H, I = E −B, J = X2
1

l0,0,0 = I0 − I1, l0,0,1 = I0 + I1, l1,1 = H · yP , l0,2 = 3J · xP .

(3)

We point out that in practice we have observed that m̃ − s̃ ≈ 3ã. Hence, it is
more efficient to compute X1Y1 directly than using (X1 + Y1)2, B and J . If this
was not the case, the formula could be computed with cost 2m̃+ 7s̃+ 23ã+ 4m.

Remarkably, the technique proposed in Section 3 for delaying reductions can
also be applied to the point arithmetic over a quadratic extension field. Reduc-
tions can be delayed to the end of each Fp2 multiplication/squaring and then
delayed further for those sums of products that allow reducing the number of
reductions. Although not plentiful (given the nature of most curve arithmetic for-
mulas which have consecutive and redundant multiplications/squarings), there
are a few places where this technique can be applied. For instance, doubling
formula (2) requires 25 Fp reductions (3 per Fp2 multiplication using Karatsuba,
2 per Fp2 squaring and 1 per Fp multiplication). First, by delaying reductions
inside Fp2 arithmetic the number of reductions per multiplication goes down to
only 2, with 22 reductions in total. Moreover, reductions corresponding to G2

60 D.F. Aranha et al.

and 3E2 in Y3 (see execution (3)) can be further delayed and merged, elimi-
nating the need of two reductions. In total, the number of reductions is now
20. Similar optimizations can be applied to other point/line evaluation formu-
las (see extended version [29] for optimizations to formulas using Jacobian and
homogeneous coordinates).

For accumulating line evaluations into the Miller variable, Fp12 is represented
using the towering Fp2 → Fp4 → Fp12 and a special (dense×sparse)-multiplication
costing 13m̃u+6r̃+61ã is used. During the first iteration of the loop, a squaring
in Fp12 can be eliminated since the Miller variable is initialized as 1 (line 1 in
Algorithm 1) and a special (sparse×sparse) multiplication costing 7m̃u+5r̃+30ã
is used to multiply the first two line evaluations, resulting in the revised Algo-
rithm 6. This sparser multiplication is also used for multiplying the two final
line evaluations in step 10 of the algorithm.

5 Final Exponentiation

The fastest way known for computing the final exponentiation is described
in [30]. The power p12−1

n is factored into an easy exponent (p6−1) which requires
a conjugation and an inversion; another easy exponent (p2 + 1) which requires a
p2-power Frobenius and a multiplication; and a hard exponent (p4 − p2 + 1)/n
which can be performed in the cyclotomic subgroup Gφ6(Fp2). For computing
this last power, one can write the hard exponent as follows [12]:

(p4 − p2 + 1)/n = λ3p
3 + λ2p

2 + λ1p + λ0,

where

λ3(u) = 1 , λ2(u) = 6u2 + 1,
λ1(u) = −36u3 − 18u2 − 12u + 1 , λ0(u) = −36u3 − 30u2 − 18u− 2,

and compute the individual powers by a multi-addition chain, requiring three
consecutive exponentiations by the absolute value of the curve parameter |u|, 13
multiplications, 4 squarings, 4 p-power Frobenius, 2 p2-power Frobenius and a
single p3-power Frobenius in Fp12 . These powers of Frobenius can be efficiently
computed with the formulas in [7]. In the following subsections, we explain how
to remove the expensive inversion in Fp12 mentioned at the end of Section 2; and
how the cyclotomic subgroup structure allows faster compressed squarings and
consequently faster exponentiation by |u|.

5.1 Removing the Inversion Penalty

From Algorithm 1, the Optimal Ate pairing when u < 0 can be computed as

aopt(Q,P) =
[
g−1 · h

] p12−1
n , (4)

with r = 6u+2, g = f|r|,Q(P) and h = l[−|r|]Q,πp(Q)(P) · l[−|r|Q]+πp(Q),−π2
p(Q)(P).

Lemma 1 below allows one to replace the expensive inversion g−1 with a simple
conjugation with no change in the result. This is depicted in line 9 of Algorithm 6.

Faster Explicit Formulas for Computing Pairings over Ordinary Curves 61

Lemma 1. The pairing aopt(Q,P) can be computed as
[
gp

6 · h
] p12−1

n

, with g, h

defined as above.

Proof. By distributing the power (p12 − 1)/n in terms g, h in Equation (4):

aopt(Q,P) = g
1−p12

n · h
p12−1

n = g
(1−p6)(1+p6)

n · h
p12−1

n

= g
(p12−p6)(1+p6)

n · h
p12−1

n = g
p6(p6−1)(p6+1)

n · h
p12−1

n =
[
gp

6 · h
] p12−1

n �

5.2 Computing u-th Powers in Gφ6(Fp2)

Let

g =
2∑
i=0

(g2i + g2i+1s)ti ∈ Gφ6(Fp2) and g2 =
2∑
i=0

(h2i + h2i+1s)ti

with gi, hi ∈ Fp2 . In [31], it was shown that one can compress g to C(g) =
[g2, g3, g4, g5], and the compressed representation of g2 is computed as C(g2) =
[h2, h3, h4, h5], where hi is computed as follows:

h2 = 2(g2 + 3ξB4,5),
h4 = 3(A2,3 − (ξ + 1)B2,3)− 2g4,

h3 = 3(A4,5 − (ξ + 1)B4,5)− 2g3,

h5 = 2(g5 + 3B2,3),
(5)

where Ai,j = (gi + gj)(gi + ξgj) and Bi,j = gigj . The above formula requires
4 multiplications in Fp2 . Considering the lazy reduction technique discussed in
Section 3.3, we propose another formula that is slightly faster and has a cost of
6s̃u + 4r̃ + 31ã. The formula is given as follows:

h2 = 2g2 + 3(S4,5 − S4 − S5)ξ,
h4 = 3(S2 + S3ξ)− 2g4,

h3 = 3(S4 + S5ξ)− 2g3,

h5 = 2g5 + 3(S2,3 − S2 − S3),
(6)

where Si,j = (gi + gj)2 and Si = g2
i ; also see extended version [29] for the

correctness of our formula and an explicit implementation.
When g is raised to a power via a square-and-multiply exponentiation algo-

rithm, full representation of elements (decompression) is required because, if C
is used as the compression map, it is not known how to perform multiplication
given the compressed representation of elements. Given a compressed represen-
tation of g ∈ Gφ6(Fp2) \ {1}, C(g) = [g2, g3, g4, g5], the decompression map D is
evaluated as follows (see [31] for more details):

D([g2, g3, g4, g5]) = (g0 + g1s) + (g2 + g3s)t + (g4 + g5s)t2,{
g1 = g25ξ+3g24−2g3

4g2
, g0 = (2g2

1 + g2g5 − 3g3g4)ξ + 1, if g2
= 0;
g1 = 2g4g5

g3
, g0 = (2g2

1 − 3g3g4)ξ + 1, if g2 = 0.

62 D.F. Aranha et al.

In particular, g|u| can be computed in three steps:

1. Compute C(g2i

) for 1 ≤ i ≤ 62 using (6) and store C(g255
) and C(g262

).
2. Compute D(C(g255

)) = g255
and D(C(g262

)) = g262
.

3. Compute g|u| = g262 · g255 · g.

Step 1 requires 62 squarings in Gφ6(Fp2). Using Montgomery’s simultaneous
inversion trick [32], Step 2 requires 9m̃ + 6s̃ + 22ã + ĩ. Step 3 requires 2 multi-
plications in Fp12 . The total cost is:

Exp = 62 · (6s̃u + 4r̃ + 31ã) + (9m̃ + 6s̃ + 22ã+ ĩ) + 2 · (18m̃u + 6r̃ + 110ã)
= 45m̃u + 378s̃u + 275r̃ + 2164ã+ ĩ,

Granger-Scott’s [33] formula for squaring can be implemented at a cost of 9s̃u+
6r̃ + 46ã if lazy reduction techniques are employed. With this approach, an
exponentiation costs:

Exp′ = 62 · (9s̃u + 6r̃ + 46ã) + 2 · (18m̃u + 6r̃ + 110ã)
= 36m̃u + 558s̃u + 399r̃ + 3072ã.

Hence, the faster compressed squaring formulas reduce by 33% the number of
squarings and by 30% the number of additions in Fp2 .

Algorithm 6. Revised Optimal Ate pairing on BN curves (generalized for u < 0).

Input: P ∈ G1, Q ∈ G2, r = |6u + 2| = ∑log2(r)
i=0 ri2i

Output: aopt(Q,P)
1. d← lQ,Q(P), T ← 2Q, e← 1
2. if r�log2(r)�−1 = 1 then e← lT,Q(P), T ← T + Q
3. f ← d · e
4. for i = �log2(r)� − 2 downto 0 do
5. f ← f2 · lT,T (P), T ← 2T
6. if ri = 1 then f ← f · lT,Q(P), T ← T + Q
7. end for
8. Q1 ← πp(Q), Q2 ← π2

p(Q)
9. if u < 0 then T ← −T, f ← fp6

10. d← lT,Q1(P), T ← T + Q1, e← lT,−Q2(P), T ← T −Q2, f ← f · (d · e)
11. f ← f (p6−1)(p2+1)(p4−p2+1)/n

12. return f

6 Computational Cost

We now consider all the improvements described in the previous sections and
present a detailed operation count. Table 1 shows the exact operation count for
each operation executed in Miller’s Algorithm.

Faster Explicit Formulas for Computing Pairings over Ordinary Curves 63

Table 1. Operation counts for arithmetic required by Miller’s Algorithm. (†) Work [7]
counts these additions in a different way. Considering their criteria, costs for multipli-
cation and squaring in Fp2 are 3mu + 2r + 4a and 2mu + 2r + 2a, respectively.

E′(Fp2)-Arithmetic Operation Count
Doubling/Eval. 3m̃u + 6s̃u + 8r̃ + 22ã + 4m
Addition/Eval. 11m̃u + 2s̃u + 11r̃ + 12ã + 4m

p-power Frobenius 6mu + 4r + 18a
p2-power Frobenius 2m+ 2a

Negation ã
Fp2-Arithmetic Operation Count
Add./Sub./Neg. ã = 2a

Conjugation a

Multiplication m̃ = m̃u + r̃ = 3mu + 2r + 8a†

Squaring s̃ = s̃u + r̃ = 2mu + 2r + 3a†

Multiplication by β a
Multiplication by ξ 2a

Inversion ĩ

Fp12 -Arithmetic Operation Count
Add./Sub. 6ã

Conjugation 3ã
Multiplication 18m̃u + 6r̃ + 110ã
Sparse Mult. 13m̃u + 6r̃ + 61ã
Sparser Mult. 7m̃u + 5r̃ + 30ã

Squaring 12m̃u + 6r̃ + 73ã
Cyc. Squaring 9s̃u + 6r̃ + 46ã

Comp. Squaring 6s̃u + 4r̃ + 31ã
Simult. Decomp. 9m̃+ 6s̃ + 22ã+ ĩ
p-power Frobenius 15mu + 10r + 46a
p2-power Frobenius 10m+ 2ã

Inversion 25m̃u + 9s̃u + 24r̃
+112ã + ĩ

For the selected parameters and with the presented improvements, the Miller
Loop in Algorithm 6 executes 64 point doublings with line evaluations, 6 point
additions with line evaluations (4 inside Miller Loop and 2 more at the final
steps), 1 negation in Fp2 to precompute yP , 1 p-power Frobenius, 1 p2-power
Frobenius and 2 negations in E(Fp2); and 1 conjugation, 1 multiplication, 66
sparse multiplications, 2 sparser multiplications and 63 squarings in Fp12 . The
cost of the Miller Loop is:

ML = 64 · (3m̃u + 6s̃u + 8r̃ + 22ã+ 4m) + 6 · (11m̃u + 2s̃u + 11r̃ + 12ã + 4m)
+ ã + 6mu + 4r + 18a+ 2m + 2a + 2ã + 3ã+ (18m̃u + 6r̃ + 110ã)
+ 66 · (13m̃u + 6r̃ + 61ã) + 2 · (7m̃u + 5r̃ + 30ã) + 63 · (12m̃u + 6r̃ + 73ã)
= 1904m̃u + 396s̃u + 1368r̃ + 10281ã+ 282m+ 6mu + 4r + 20a.

The final exponentiation executes in total 1 inversion, 4 conjugations, 15 multipli-
cations, 3 u-th powers, 4 cyclotomic squarings, 5 p-power Frobenius, 3 p2-power
Frobenius:

FE = 25m̃u + 9s̃u + 24r̃ + 112ã+ ĩ + 4 · 3ã + 15 · (18m̃u + 6r̃ + 110ã)
+ 3 · Exp + 4 · (9s̃u + 6r̃ + 46ã) + 5 · (15mu + 10r + 46a) + 3 · (10m + 2ã)
= 430m̃u + 1179s̃u + 963r̃ + 8456ã+ 4ĩ + 30m + 75mu + 50r + 230a.

Table 2 gives a first-order comparison between our implementation and the best
implementation available in the literature of the Optimal Ate pairing at the 128-
bit security level in the same platform. For the related work, we suppose that
lazy reduction is always used in Fp2 and then each multiplication or squaring
essentially computes a modular reduction (that is, m̃ = m̃u + r̃ = 3mu + 2r
and s̃ = s̃u + r̃ = 2mu + 2r). Note that our generalization of the lazy reduc-
tion techniques to the whole pairing computation brings the number of modu-
lar reductions from the expected 7818 (if lazy reduction was only used for Fp2
arithmetic) to just 4662, avoiding more than 40% of the total required modu-
lar reductions. The number of multiplications is also reduced by 13% and the

64 D.F. Aranha et al.

number of additions is increased by 26% due to lazy reduction trade-offs. Our
operation count for the pairing computation is apparently more expensive than
Pereira et al. [10]. However, the reader should note that, when we consider the
real cost of additions in Fp, we cannot exploit the squaring formula in Fp12 by
[28] (see Section 3.3) and a point doubling formula with fewer multiplications
(see Section 4), given the significant increase in the number of additions.

Table 2. Comparison of operation counts for different implementations of the Optimal
Ate pairing at the 128-bit security level

Work Phase Operations in Fp2 Operations in Fp

Beuchat et al.[7]
ML 1952(m̃u + r̃) + 568(s̃u + r̃) + 6912ã 6992mu + 5040r
FE 403(m̃u + r̃) + 1719(s̃u + r̃) + 7021ã 4647mu + 4244r

ML+FE 2355(m̃u + r̃) + 2287(s̃u + r̃) + 13933ã 11639mu + 9284r

This work
ML 1904m̃u + 396s̃u + 1368r̃ + 10281ã 6504mu + 2736r
FE 430m̃u + 1179s̃u + 963r̃ + 8456ã 3648mu + 1926r

ML+FE 2334m̃u + 1575s̃u + 2331r̃ + 18737ã 10152mu + 4662r

7 Implementation Results

A software implementation was realized to confirm the performance benefits re-
sulting from the introduced techniques. We implemented Fp2 arithmetic directly
in Assembly, largely following advice from [7] to optimize carry handling and
eliminate function call overheads. Higher-level algorithms were implemented us-
ing the C programming language compiled with the GCC compiler using -O3
optimization level. Table 3 presents the relevant timings in millions of cycles.
Basic Implementation employs homogeneous projective coordinates and lazy re-
duction below Fp2 . Faster arithmetic in cyclotomic subgroups accelerates the
Basic Implementation by 5%-7% and, in conjunction with generalized lazy re-
duction, it improves the Basic Implementation by 18%-22%.

Table 3. Cumulative performance improvement when using new arithmetic in cyclo-
tomic subgroups (Section 5.2) and generalized lazy reduction (Section 3.1) on several
Intel and AMD 64-bit architectures. Improvements are calculated relatively to the Basic
Implementation. Timings are presented in millions of clock cycles.

This work
Method Phenom II Impr. Core i5 Impr. Opteron Impr. Core 2 Impr.

Basic Implementation 1.907 - 2.162 - 2.127 - 2.829 -
Cyclotomic Formulas 1.777 7% 2.020 7% 2.005 6% 2.677 5%
Lazy Reduction 1.562 18% 1.688 22% 1.710 20% 2.194 22%

Table 4 compares our implementation with related work. To ensure that ma-
chines with different configurations but belonging to the same microarchitecture
had compatible performance (as is the case with Core i5 and Core i7), software
from [7] was benchmarked and the results compared with the ones reported in [7].

Faster Explicit Formulas for Computing Pairings over Ordinary Curves 65

Machines considered equivalent by this criteria are presented in the same col-
umn. We note that Phenom II was not considered in the original study and that
we could not find a Core 2 Duo machine producing the same timings as in [7]. For
this reason, timings for these two architectures were taken independently by the
authors using the available software. Observe that the Basic Implementation in
Table 3 consistently outperforms Beuchat et al. due to our careful implementa-
tion of an optimal choice of parameters (E(Fp) : y2 = x3 + 2, p = 3 mod 4) [10]
combined with optimized curve arithmetic in homogeneous coordinates [9]. When
lazy reduction and faster cyclotomic formulas are enabled, pairing computation
becomes faster than the best previous result by 28%-34%. For extended bench-
mark results and comparisons with previous works on different 64-bit processors,
the reader is referred to our online database [34].

Table 4. Comparison between implementations on 64-bit architectures. Timings are
presented in clock cycles.

Work/Platform
Beuchat et al. [7]

Operation Phenom II Core i7 Opteron Core 2 Duo
Multiplication in Fp2 440 435 443 590
Squaring in Fp2 353 342 355 479
Miller Loop 1,338,000 1,330,000 1,360,000 1,781,000
Final Exponentiation 1,020,000 1,000,000 1,040,000 1,370,000
Optimal Ate Pairing 2,358,000 2,330,000 2,400,000 3,151,000

This work
Operation Phenom II Core i5 Opteron Core 2 Duo

Multiplication in Fp2 368 412 390 560
Squaring in Fp2 288 328 295 451
Miller Loop 898,000 978,000 988,000 1,275,000
Final Exponentiation 664,000 710,000 722,000 919,000
Optimal Ate Pairing 1,562,000 1,688,000 1,710,000 2,194,000
Improvement 34% 28% 29% 30%

8 Conclusion

In this work, we revisited the problem of computing optimal pairings on ordinary
pairing-friendly curves over prime fields. Several new techniques were introduced
for pairing computation, comprised mainly in the generalization of lazy reduction
techniques to arithmetic in extensions above Fp2 and inside curve arithmetic; and
improvements to the final exponentiation consisting of a formula for compressed
squaring in cyclotomic subgroups and an arithmetic trick to remove penalties
from negative curve parameterizations. The faster arithmetic in the cyclotomic
subgroup improved pairing performance by 5%-7% and the generalized lazy re-
duction technique was able to eliminate 40% of the required modular reductions,
improving pairing performance by further 11%-17%. The introduced techniques
allow for the first time a pairing computation under 2 million cycles on 64-bit

66 D.F. Aranha et al.

desktop computing platforms, improving the state-of-the-art by 28%-34%. The
performance improvements are expected to be even higher on embedded archi-
tectures, where the ratio between multiplication and addition is typically higher.

Acknowledgements

We would like to express our gratitude to Alfred Menezes, Craig Costello, Michael
Scott, Paulo S. L. M. Barreto, Geovandro C. C. F. Pereira and Conrado P. L.
Gouvêa for useful discussions during the preparation of this work. The au-
thors thank the Natural Sciences and Engineering Research Council of Canada
(NSERC), the Ontario Centres of Excellence (OCE), CNPq, CAPES and
FAPESP for partially supporting this work.

References

1. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer,
Heidelberg (2001)

2. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems Based on Pairing over Ellip-
tic Curve. In: The 2001 Symposium on Cryptography and Information Security.
IEICE, Oiso (2001) (in Japanese)

3. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

4. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. Journal of
Cryptology 17(4), 263–276 (2004)

5. Hankerson, D., Menezes, A., Scott, M.: Identity-Based Cryptography, ch. 12, pp.
188–206. IOS Press, Amsterdam (2008)

6. Naehrig, M., Niederhagen, R., Schwabe, P.: New Software Speed Records for
Cryptographic Pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT
2010. LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010)

7. Beuchat, J.L., Díaz, J.E.G., Mitsunari, S., Okamoto, E., Rodríguez-Henríquez, F.,
Teruya, T.: High-speed software implementation of the optimal ate pairing over
barreto–naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010.
LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)

8. Vercauteren, F.: Optimal pairings. IEEE Transactions on Information The-
ory 56(1), 455–461 (2010)

9. Costello, C., Lange, T., Naehrig, M.: Faster Pairing Computations on Curves with
High-Degree Twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 224–242. Springer, Heidelberg (2010)

10. Pereira, G.C.C.F., Simplício Jr, M.A., Naehrig, M., Barreto, P.S.L.M.: A Family
of Implementation-Friendly BN Elliptic Curves. To appear in Journal of Systems
and Software

11. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime
Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–
331. Springer, Heidelberg (2006)

Faster Explicit Formulas for Computing Pairings over Ordinary Curves 67

12. Scott, M.: Implementing Cryptographic Pairings. In: Takagi, T., Okamoto, T.,
Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207.
Springer, Heidelberg (2007)

13. Fan, J., Vercauteren, F., Verbauwhede, I.: Faster Fp-arithmetic for Cryptographic
Pairings on Barreto-Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 240–253. Springer, Heidelberg (2009)

14. Freeman, D., Scott, M., Teske, E.: A Taxonomy of Pairing-Friendly Elliptic Curves.
Journal of Cryptology 23(2), 224–280 (2010)

15. Hess, F., Smart, N.P., Vercauteren, F.: The Eta Pairing Revisited. IEEE
Transactions on Information Theory 52, 4595–4602 (2006)

16. Lee, E., Lee, H.-S., Park, C.-M.: Efficient and Generalized Pairing Computation
on Abelian Varieties. IEEE Transactions on Information Theory 55(4), 1793–1803
(2009)

17. Nogami, Y., Akane, M., Sakemi, Y., Kato, H., Morikawa, Y.: Integer Variable
χ-Based Ate Pairing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008.
LNCS, vol. 5209, pp. 178–191. Springer, Heidelberg (2008)

18. Miller, V.: Uses of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

19. Miller, V.S.: The Weil Pairing, and its Efficient Calculation. Journal of Cryptol-
ogy 17(4), 235–261 (2004)

20. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-
Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
354–368. Springer, Heidelberg (2002)

21. IEEE: P1363.3: Standard for Identity-Based Cryptographic Techniques using Pair-
ings (2006), http://grouper.ieee.org/groups/1363/IBC/submissions/

22. Devegili, A.J., Scott, M., Dahab, R.: Implementing Cryptographic Pairings over
Barreto-Naehrig Curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T.
(eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)

23. Weber, D., Denny, T.F.: The Solution of McCurley’s Discrete Log Challenge. In:
Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 458–471. Springer, Hei-
delberg (1998)

24. Lim, C.H., Hwang, H.S.: Fast Implementation of Elliptic Curve Arithmetic in
GF(pn). In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 405–421.
Springer, Heidelberg (2000)

25. Avanzi, R.M.: Aspects of Hyperelliptic Curves over Large Prime Fields in Software
Implementations. In: Joye, M., Quisquater, J.J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 148–162. Springer, Heidelberg (2004)

26. Benger, N., Scott, M.: Constructing Tower Extensions of Finite Fields for Imple-
mentation of Pairing-Based Cryptography. In: Hasan, M.A., Helleseth, T. (eds.)
WAIFI 2010. LNCS, vol. 6087, pp. 180–195. Springer, Heidelberg (2010)

27. Montgomery, P.L.: Modular Multiplication Without Trial Division. Mathematics
of Computation 44(170), 519–521 (1985)

28. Chung, J., Hasan, M.: Asymmetric Squaring Formulae. In: 18th IEEE Symposium
on Computer Arithmetic (ARITH-18 2007), pp. 113–122. IEEE Press, Los Alamitos
(2007)

29. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster Ex-
plicit Formulas for Computing Pairings over Ordinary Curves. Cryptology ePrint
Archive, Report 2010/526 (2010), http://eprint.iacr.org/

http://grouper.ieee.org/groups/1363/IBC/submissions/
http://eprint.iacr.org/

68 D.F. Aranha et al.

30. Scott, M., Benger, N., Charlemagne, M., Perez, L.J.D., Kachisa, E.J.: On the Final
Exponentiation for Calculating Pairings on Ordinary Elliptic Curves. In: Shacham,
H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer, Heidelberg
(2009)

31. Karabina, K.: Squaring in Cyclotomic Subgroups. Cryptology ePrint Archive, Re-
port 2010/542 (2010), http://eprint.iacr.org/

32. Montgomery, P.: Speeding the Pollard and Elliptic Curve Methods of Factorization.
Mathematics of Computation 48, 243–264 (1987)

33. Granger, R., Scott, M.: Faster Squaring in the Cyclotomic Subgroup of Sixth
Degree Extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 209–223. Springer, Heidelberg (2010)

34. Longa, P.: Speed Benchmarks for Pairings over Ordinary Curves,
http://www.patricklonga.bravehost.com/speed_pairing.html#speed

http://eprint.iacr.org/
http://www.patricklonga.bravehost.com/speed_pairing.html#speed

Pushing the Limits: A Very Compact and a
Threshold Implementation of AES

Amir Moradi1, Axel Poschmann2,�,
San Ling2,�, Christof Paar1, and Huaxiong Wang2,�

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{moradi,cpaar}@crypto.rub.de

2 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore
{aposchmann,lingsan,hxwang}@ntu.edu.sg

Abstract. Our contribution is twofold: first we describe a very com-
pact hardware implementation of AES-128, which requires only 2400
GE. This is to the best of our knowledge the smallest implementation
reported so far. Then we apply the threshold countermeasure by Nikova
et al. to the AES S-box and yield an implementation of the AES im-
proving the level of resistance against first-order side-channel attacks.
Our experimental results on real-world power traces show that although
our implementation provides additional security, it is still susceptible to
some sophisticated attacks having enough number of measurements.

Keywords: side-channel attacks, countermeasures, secret sharing,
lightweight, ASIC.

1 Introduction

The mass deployment of pervasive devices promises many benefits such as lower
logistic costs, higher process granularity, optimized supply-chains, or location
based services among others. Besides these benefits, there are also many risks
inherent in pervasive computing: many foreseen applications are security sensi-
tive, such as wireless sensor networks for military, financial or automotive appli-
cations. With the widespread presence of embedded computers in such scenarios,
security is a striving issue, because the potential damage of malicious attacks
also increases. An aggravating factor is that pervasive devices are usually not
deployed in a controlled but rather in a hostile environment, i.e., an adversary
has physical access to or control over the devices. This adds the whole field
of physical attacks to the potential attack scenarios. Most notably are here so-
called side-channel attacks, especially Simple, Differential and Correlation Power
Analysis [6,18].

� The authors were supported in part by the Singapore National Research Foundation
under Research Grant NRF-CRP2-2007-03.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 69–88, 2011.
© International Association for Cryptologic Research 2011

70 A. Moradi et al.

1.1 Related Work

Low-power low-area implementations of the AES have been reported in [15] re-
quiring 3100 GE and 160 clock cycles and in [13] requiring 3400 GE and 1032
clock cycles. Both implementations use an 8-bit serialized data path and im-
plement only a quarter of the MixColumns operations. The first design, [15],
implements two S-boxes and performs the datapath and the key schedule op-
erations in parallel, while the latter implementation is fully serial and uses a
RAM-like architecture.

Canright has investigated very thoroughly how to implement the AES S-box
in hardware with minimal area requirements [8]. On the other hand, several
masking schemes have been proposed to create a masked AES S-box using ei-
ther multiplicative or additive approaches. A common approach is to use the
tower-field representation for an additive masking scheme because of the linear-
ity of the inversion in GF (22). The examples are [4] and [26] which are provably
secure, but in practice obvious first-order leakages have been observed [20]. Later,
Canright et al. [9] applied the idea of [26] to his very compact S-box resulting
in the most compact masked S-box to date. However, as expected its hardware
implementation still has first-order leakage [21].

1.2 Our Work

Our first contribution is a description of the smallest hardware implementation
of AES known to date. Our design goal was solely low area, and thus we were
able to set the time-area and the power-area tradeoffs differently, and in favour
for a more compact hardware realization, compared to [13] and [15]. To pursue
our goal, we have taken a holistic approach that optimizes the total design,
not every component individually. In total we achieved an implementation that
requires only 2400 GE and needs 226 clock cycles, which is to the best of our
knowledge 23% smaller than any previously published implementations.

As a second contribution, we investigate side-channel countermeasures for
this lightweight AES implementation. It turns out that when using Canright’s
representation, the only non-linear function is the multiplication in GF(22). An
example for how to share this function using only three shares has been presented
by Nikova et al. in [24]. Building on these findings, we applied the countermeasure
to our unprotected AES implementation. For this architecture we conducted a
complete side-channel evaluation based on real-world power traces that we obtain
from SASEBO. We use a variety of different power analysis attacks to investigate
the achieved level of resistance of our implementation against first order DPA
attacks even if an attacker is capable of measuring 100 million power traces.

1.3 Outline

We first give a brief introduction to Differential Power Analysis and counter-
measures in the following Section. A general overview follows a more detailed
description of the masking scheme presented in [23,24], which we use for our ex-
perimental evaluation. Subsequently in Section 3 AES and Canright’s optimized

Pushing the Limits: A Very Compact and a Threshold Implementation 71

S-box are briefly recalled, before we describe a shared AES S-box. Based on these
findings, in Section 4 we propose two hardware architectures – unprotected and
protected – of AES-128 and mount DPA attacks on its real-world power traces
in Section 5. Finally we conclude this article in Section 6.

2 Introduction to DPA

Smart cards and other types of pervasive devices performing cryptographic op-
erations are seriously challenged by side-channel cryptanalysis. Several publica-
tions, e.g., [12] have stressed that such physical attacks are an extremely prac-
tical and powerful tool for recovering the secrets of unprotected cryptographic
devices. In fact, these attacks exploit the information leaking through physical
side channels and involved in sensitive computations to reveal the key materials.

Amongst the known sources of side channels and the corresponding attacks
most notable are power analysis attacks [18]. Many different kinds of power anal-
ysis attacks, e.g., simple and differential power analysis (SPA and DPA) [18],
template-based attacks [2], and mutual information analysis [14], have been in-
troduced while each one has its own advantages and is suitable in its special
conditions. However, correlation power analysis (CPA) [6], which is a general
form of DPA, got more attention since it is able to efficiently reveal the se-
crets by comparing the measurements to the estimations obtained by means
of a theoretical power model which fits to the characteristics of the target
implementation.

2.1 Countermeasures

Generally speaking, the goal of a DPA countermeasure is to prevent a depen-
dency between the power consumption of a cryptographic device and character-
istics of the executed algorithm, e.g., intermediate values, executed operations,
and taken branches [19]. Amongst the countermeasures proposed at different
levels of design and abstraction Masking methods, which rely on randomizing
key-dependent intermediate values processed during the execution of the cipher,
are widely applied on either the algorithmic level [26] or the cell level [27]. An
n-order masking technique is in fact an (n+1, n+1) secret sharing scheme [3,31],
where all shares of the secret are required to proceed.

When an algorithmic masking scheme is applied on a microprocessor-based
platform, it is often combined by shuffling [16] which randomizes the order of
operations. Applying a masking scheme in a software implementation (micro-
processor) can be defeated by higher order attacks [11,34]. However, practical
experiences like [20] showed that still there is a first-order leakage when hard-
ware (ASIC or FPGA) is protected by a masking scheme at algorithm level.
This leakage can be exploited by sophisticated power models, e.g., toggle-count
model, or by a template-based DPA attack.

In short, currently there exists no perfect protection against DPA attacks.
However, applying appropriate countermeasures makes the attacker’s task more

72 A. Moradi et al.

difficult and expensive. Chari et al. have shown in [10] that up to n-th order DPA
attacks can be prevented by using n masks. Following this direction, Nikova et
al. extended the idea of masking with more than two shares in [23] to prevent
those attacks which use sophisticated power models, e.g., counting the glitches
occurring when the inputs of a complex combinational circuit change. They
showed that non-linear functions implemented in such a way, achieve provable
security against first-order DPA attacks and also resist higher-order attacks that
are based on a comparison of mean power consumption. Estimations of a hard-
ware implementation of these ideas are presented in [24] where an S-box of the
Noekeon cipher [17] is considered as a case study without practical evaluation of
its resistance to DPA attacks. Afterwards, the same approach is applied on the
S-box of the PRESENT cipher [5], and its resistance against first-order attacks is
verified in [28]. Since it seems to be a promising candidate for a lightweight and
side-channel resistant implementation, we have chosen this scheme to implement
the AES S-box and have a comparison (on its first-order leakage) to the masked
AES S-boxes proposed so far, e.g., [9] and [26].

3 Shared Computation of the AES S-Box Using
Composite Fields

In this section first an algorithmic description of AES is given, before the AES S-
box as described by Canright is expressed. Finally, the threshold countermeasure
of Nikova et al. is applied to the Canright AES S-box that will be used in the
next section for a protected implementation of the AES.

3.1 Algorithmic Description of AES

In November 2001 the Rijndael algorithm was chosen as the Advanced Encryp-
tion Standard (AES) by the National Institute of Standards and Technology
(NIST) [22]. AES is a symmetric block cipher, that processes data blocks of 128
bits. Three different key lengths are specified: 128, 192, and 256 bits, resulting
in 10, 12 or 14 rounds, respectively. AES is, depending on the key length, also
referred to as AES-128, AES-192, and AES-256 and in the remainder of this
article we focus on the encryption process of AES-128.

At the beginning of the algorithm, the input is copied into the State array,
which consists of 16 bytes, arranged in four rows and four columns (4 × 4 -
Matrix). At the end, the State array is copied to the output.

The bytes of the State are interpreted as coefficients of a polynomial represen-
tation of finite field elements in GF (28). All byte values in the remainder of this
article will be written in hexadecimal notation in the form {ab}. In encryption
mode, the initial key is added to the input value at the very beginning, which
is called an initial round. This is followed by 9 iterations of a normal round
and ends with a slightly modified final round. During one normal round the
following operations are performed in the following order: SubBytes, ShiftRows,
MixColumns, and AddRoundkey. The final round is a normal round without the
MixColumns stage.

Pushing the Limits: A Very Compact and a Threshold Implementation 73

SubBytes is a non-linear, invertible byte substitution and consists of two
transformations that are performed on each of the bytes independently: First
each byte is substituted by its multiplicative inverse in GF (28) (if existent),
element {00} is mapped to itself. Then the following affine transformation over
GF (2) is applied: b

′
i = bi⊕ b(i+5)mod8⊕ b(i+6)mod8⊕ b(i+7)mod8⊕ ci for 0 ≤ i ≤ 8,

where bi(ci) is the i-th bit of the byte b(c), c = {63} = 011000112.
ShiftRows cyclically shifts each row of the State by a certain offset. The first

row is not shifted at all, the second row is shifted by one, the third row by two,
and the fourth row by three bytes to the left.

MixColumns processes one column of the State at a time. The bytes are
interpreted as coefficients of a four-term polynomial over GF (24). Each column
is multiplied modulo x4 + 1 with a fixed polynomial a(x) = {03}x3 + {01}x2 +
{01}x+ {02}. This can be written as the following matrix multiplication, where
s′(x) = a(x)⊗ s(x):⎡⎢⎢⎣

S′
0,c

S′
1,c

S′
2,c

S′
3,c

⎤⎥⎥⎦ =

⎡⎢⎢⎣
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎤⎥⎥⎦
⎡⎢⎢⎣
S0,c
S1,c
S2,c
S3,c

⎤⎥⎥⎦for 0 ≤ c ≤ 3.

AddRoundKey adds the 128-bit round key generated from KeyExpansion to
the 128-bit State. It is a simple XOR-addition of the round key and the State.

KeyExpansion derives 10 round keys from the initial key iteratively. The key
is grouped into four words w0, w1, w2, and w3, that consist of four bytes each.
w3 is cyclically shifted to the left by one byte. The result is bytewise substituted
by the S-box and then a round constant RCon is XOR-added. Finally the result
is XOR added to w0 yielding w′

0. w′
1 is obtained by XOR adding w′

0 with w1,
w′

2 = w′
1 ⊕ w2 and w′

3 = w′
2 ⊕ w3. The new key state or round key RKi is then

formed by RKi = w′
0|w′

1|w′
2|w′

3. The round constants RConi are derived by the
following equation: RConi = xi mod m(x), where i denotes the round number,
0 ≤ i ≤ 9 and the irreducible polynomial m(x)= x8 +x4 +x3 +x+1. For further
details on AES, the interested reader is referred to [29].

3.2 Canright’s Representation of the AES S-Box

Canright investigated the hardware requirements of the AES S-box very thor-
oughly in [8]. He proposed a very compact S-box that is composed of smaller
fields. As one can see from Fig. 1 the input to the S-box is transformed by a linear
mapping that changes the basis from GF(28) to GF(28)/GF(24)/GF(22) (please
ignore pipelining and register remarks in this step, these issues are addressed in
Section 3.3 and in Section 5). The output is transformed by a linear mapping
that combines the basis change back to GF(28) and the inverse mapping of the
AES S-box. Beside two 4-bit XORs, a GF(24) inverter (center module), a GF(24)
square-scaler (top left module) and three instances of a GF(24) multiplier (right
and bottom left) are required. The GF(24) square-scaler uses a normal basis
(Γ 4, Γ) and only consists of wiring and three XOR gates. The GF(24) inverter
uses a normal basis (Γ 4, Γ) and consists of 5 XOR gates, some wiring and three

74 A. Moradi et al.

�
-1

N

 �

2

�
2

N

 �

�
2 N

 �

li
n
.

m
a
p

N

 �

N

 �

in
v
.

li
n
.

m
a
p

2
bi

t
4

bi
t

8
bi

t
P

ip
el

in
in

g
st

ag
e

G
F
(2

4
)

s
q
u
a
re

-s
c
a
le
r

G
F
(2

4
)

m
u
lt
ip
li
e
r

G
F
(2

4
)
in
v
e
rt
e
r

G
F
(2

4
)

m
u
lt
ip
li
e
r

G
F
(2

4
)

m
u
lt
ip
li
e
r

2
bi
t

4
bi
t

8
bi
t

P
ip
el
in
in
g
st
ag
e

R
eg
is
te
r

R
em
as
ke
d
R
eg
is
te
r

F
ig

.1
.

C
om

po
si
te

fie
ld

re
pr

es
en

ta
ti
on

of
th

e
A

E
S

S-
bo

x,
as

de
sc

ri
be

d
in

[8
].

T
he

th
ic

k
lin

ed
re

ct
an

gl
es

ar
e

m
ul

ti
pl

ie
rs

in
G

F
(2

2
),

th
e

on
ly

no
n-

lin
ea

r
pa

rt
s.

Pushing the Limits: A Very Compact and a Threshold Implementation 75

instances of a GF(22) multiplier (thick lined rectangles)1. The GF(24) multiplier
consists of nine XOR gates, some wiring and three parallel instances of a GF(22)
multiplier.

3.3 A Shared AES S-Box

To apply the threshold countermeasure of Nikova et al. [24] we need to share
the non-linear functions of the algorithms, while the linear functions are simply
implemented s times in parallel, where s denotes the amount of shares. Partic-
ularly interesting are realizations with minimal amount of shares, i.e., s = 3,
because they require the fewest hardware resources. Having a closer look on the
representation of Canright, it turns out that the only non-linear parts of the
AES S-box are the multipliers in GF(22). In [24] an exemplary realization of
this multiplier using only three shares has been presented. It is noteworthy to
point out that the threshold countermeasure requires registers between different
stages of shared functions. As can be seen from Fig. 1, Canright’s S-box repre-
sentation requires in total five pipelining stages. Note that not only the output
of the shared functions, but all signals have to be pipelined. This implies that
in total we need to store 174 bits, which as we will see in Section 4 will increase
the area requirements even further (please ignore remasked register remarks in
this step, this issue is discussed in Section 5).

4 Hardware Architectures

This section is dedicated to the description of the different hardware profiles that
we will attack in the next section. For this purpose we first introduce the design
flow used before we detail the hardware architectures, and finally summarize the
implementation results.

4.1 Design Flow

We used Mentor Graphics ModelSimXE 6.4b and Synopsys DesignCompiler ver-
sion A-2007.12-SP1 for functional simulation and synthesis of the designs to the
Virtual Silicon (VST) standard cell library UMCL18G212T3 [33], which is based
on the UMC L180 0.18μm 1P6M logic process with a typical voltage of 1.8 V. We
used Synopsys Power Compiler version A-2007.12-SP1 to estimate the power
consumption of our ASIC implementations. For synthesis and for power estima-
tion we advised the compiler to keep the hierarchy and use a clock frequency
of 100 KHz, which is a widely used operating frequency for RFID applications.
Note that the wire-load model used, though it is the smallest available for this
library, still simulates the typical wire-load of a circuit with a size of around
10 000 GE.

To substantiate our claims on the efficacy of the proposed countermeasures,
we implemented the ASIC cores on SASEBO to obtain and evaluate real-world
1 Note that the inverse in GF(22) only consists of some wiring.

76 A. Moradi et al.

power traces. For design synthesis, implementation and configuration of SASEBO
we used Xilinx ISE v10.1.03 WebPACK. In a typical application scenario the
cryptographic core would be part of an integrated ASIC, hence for the power
measurements on SASEBO we embedded the cryptographic core in a framework
that handles the communication between the two FPGAs.

4.2 A Very Compact Implementation of AES

The most area consumption typically occurs for storing the intermediate state,
because typically flip-flops are used, which have high area requirements. In the
technology we used, a single-input, positive edge triggered D flip-flop requires 5
GE and can store 1 bit. If you have more than one input, e.g. the output from
SubBytes, the ouput from ShiftRows and the output from MixColumns, you need
multiplexers. A Multiplexer for a selection from two inputs to one output (2-to-1
MUX) costs 2.33 GE per bit. Scan flip-flops combine a D flip-flop and a 2-to-1
MUX for 6 GE per bit. That is a saving of 1.33 GE per bit of storage. For
the AES this sums up to 340 GE. Scan flip flops have been used before, e.g. in
implementations of PRESENT [30] and KATAN/KTANTAN [7].

Based on the properties of scan flip-flops (2 inputs “for free”), we designed
the architecture for our tinyAES implementation. As can be seen in Fig. 3, both
the State array and the Key array each consist of a 16 stage 8-bit width shift
register. Each of the stages comprises 8 scan flip-flops (cells 00 to 33) with two
inputs. One input receives the output of the previous stage, while the other
one contains the result of ShiftRows, which comes for free in our design, since

key

State
[gReg-8/128]

Key
[gReg-8/128]

data_in

data_out
8

mask mk2
[gReg-8/128]

mask mk1
[gReg-8/128]

mask md1
[gReg-8/128]

mask md2
[gReg-8/128]

mk2

mk1

S2

S3

S1

md1

md2

8

8

8

8

8

8

8

8

8

MK1

MK2

K

S-Box

S2 S3 S1

8 8 8

8 8 8

done Unprotected
data + key masking

8

8

8

K

MK1

MK2

S1

S2

S3

8

8

8

8

8

8

Fig. 2. Hardware architectures of both implementations of a serialized AES-128
encryption-only core

Pushing the Limits: A Very Compact and a Threshold Implementation 77

shifting is done by wiring. Instead of adding one 2-to-1 MUX for every cell
of the State array, we designed our architecture in a way that we only need
one additional MUX for every row. These are the 4 2-to-1 MUXes (each 8-bit
width) on the right hand side of the cells (03) to (33), accounting for 75 GE
instead of 300 GE. This choice is strongly related to the choice of parallelism of
the MixColumns operation. Both [13] and [15] implemented MixColumns in a
serialized way, that is, it takes 4 clock cycles to calculate one column. We opted
to implement MixColumns not in a serialized way, because, as we are going to
show below, the hidden overhead is larger than the potential savings.

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

32

8

8

8

8

8

8

8

8

8

8

32

S
B
o
u
t

SBin

c
o
l

8

8

8

8

32

c
o
l

32

c
o
l

32

c
o
l

32

32

MixColumnsState

(a) State array with ShiftRows and MixColumns

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

8

8

8

8

8

selXOR

SBout

input

8

RCon
8

SBin 8 8 8

r
o
u
n
d
k
e
y

8

(b) Key array

Fig. 3. Architectures of storage modules for the State and the Key arrays

The Key array consists of a similar 128 flip-flop array as the State array, but
the wiring between the registers is different. There are two shifting directions:
horizontal and vertical. The current 8-bit chunk of the round key is output during
the horizontal shifting, while the S-box look-up for the key schedule is performed
during vertical shifting. Note that the RotWord operation is implemented by
taking the output of the (13) cell instead of the (03) cell as the input for the
S-box look-up. The S-box output is XORed to the round constant RCon and
the output of the (00) cell. Once all four S-box look ups have been performed
the first column of the key state contains already the new roundkey, but the
other three columns do not. The remaining steps of the key update is performed
during the output of the round key chunk by XORing the output of cell (00)
to the output of cell (01) as the new input of cell (00). Once the whole row is
output, i.e., every fourth clock cycle, the feedback XOR is not required, and thus
the output of cell (00) is gated with an AND gate. Note that on top of the cost
for storage (768 GE) and the calculation and storage of the round constant (89
GE), in our implementation the whole key schedule requires only one 8-bit AND
gate (11 GE), an 8-bit XOR gate with two inputs (19 GE) and an 8-bit XOR
gate with three inputs (35 GE). We believe that our results are very close to a
theoretical optimum. This is reflected in the area savings compared to previous
results: 924 GE2 vs. 1076 in [15]. [13] uses a RAM-like storage, which includes
2 The key expansion unit of [15] also contains the Round Counter generation, thus in

order to have a fair comparison, we have to add the area for both: 835+89=924 GE.

78 A. Moradi et al.

both, the State and the Key arrays. Thus for a fair comparison we have to add
both modules together: 1678 GE vs. 2040 GE in [13].

In our architecture, MixColumns is realized by four instances of a module
called col, which outputs the result of the first row of the MixColumns matrix.
Since the matrix used is circulant, one can use the same module and just rotate
the input accordingly. Note that in hardware rotation can be realized by simple
wiring and comes nearly for free. By serializing MixColumns, one can save 75%
of the area (280 GE). Also, 3 of the 4 MUXes on the right hand side of every
row can be discarded, and the 32-bit width 2-to-1 MUX (75 GE) at the right
hand side of the dashed line in Fig. 3 could be shrinked to an 8-bit width 2-
to-1 MUX (19 GE), leading to savings of 112 GE. So in total, the potential
savings for the whole design (not only MixColumns) are 392 GE. However, one
needs to temporarily store at least 3 of the output bytes, because we cannot
over-write the input bytes, before all four output bytes are calculated. That is a
storage overhead of 5×24 = 120 GE. Since the MixColumns matrix is circulant,
we need to rotate the input to the col module with a different offset for every
output byte. This can be implemented by simple wiring (see the right hand side
of col in Fig. 3), followed by a 32-bit width 4-to-1 MUX (192 GE) to select
the correct input. In summary, the potential savings are in this case reduced
to 80 GE, while at the same time one needs far more complex control logic
to orchestrate the control signals for the MUXes and the additional temporary
storage flip-flops (see below).

Instead of using a Finite State Machine (FSM), we rather spent considerable
amount of time and effort to decrease the area requirements for the control logic
for the unprotected version (Profile 1). The control signals are derived from a
5-bit LFSR with taps at bit position 1 and 5 that has a cycle length of 21. This is
exactly the amount of cycles required to perform one round of AES and the key
schedule: 16 cycles for AddRoundKey, 1 for ShiftRows (during which the Key state
is not clocked) and 4 for the parallel execution of MixColumns and SubWord.
Every time a cycle is completed a pulse is generated that is used to control
the MUXes and the clock gating logic. Simple Boolean logic is used to derive all
control signals from this pulse, such that in total only 73 GE are required for the
control logic. In [15] no details about the control logic are given, and 220 GE are
required for both control logic and “others”. Thus a fairer comparison is 80 GE
vs. 220 GE. As a consequence of a very serialized implementation, a RAM-like
storage, and usage of an FSM, [13] requires 400 GE for control logic (including
the round constant generation) compared to 162 GE for our implementation.
Similar to [15], we used Canright’s description of the AES S-box [8], which is
the smallest known.

Our envisioned target application is a very constrained device, e.g. a low-cost
passive RFID-tag or similar. By re-ordering the input and output bytes, it is pos-
sible to reduce the area significantly, to be precise by 13.5%. As a consequence,
our implementation requires an input and output ordering that is row-wise,
i.e., S00|S01|S02|S03|S10 . . .S32|S33 and not column-wise (S00|S10|S20|S30|S01 . . .
S23|S33), where Sij denotes one byte of the input/output with 0 ≤ i, j ≤ 3.

Pushing the Limits: A Very Compact and a Threshold Implementation 79

If column-wise ordering is needed, 20 additional 8-bit wide 2-to-1 MUXes are
required (373 GE). In fact with our approach we forward the effort of re-ordering
the bytes to the other communication party. In an RFID scenario this will most
likely be a reader or a database server, which is by far not as constrained as
a passive RFID tag. Hence, the costs for the byte re-ordering are marginal.
Furthermore, when two devices with our AES implementation communicate, no
byte re-ordering is needed at all. We believe that this re-ordering does not pose
a severe problem in practice, while at the same time results in an attractive area
saving.

4.3 A Threshold Implementation of AES

If we share both the data path and the key schedule we obtain the threshold
version (profile 2). The additional hardware requirements for this profile are
depicted in Fig. 2 by the dashed lines. For this profile we need four randomly
generated masks (md1, md2, mk1, mk2), which are XORed to the data chunk and
the key chunk. The unmasking step is performed by simply XORing all three
shares yielding the output (data_out). The state of the masks also needs to be
maintained, which leads to two more instantiations of both the State and the
Key module (mask md1, mask md2, mask mk1 and mask mk2). Furthermore, the
S-box is now replaced by a shared S-box module that contains five pipelining
stages (see Fig. 1). This delays the computation of the round keys and, as a
consequence, the pipeline needs to be emptied in every encryption round. Thus
profile 2 needs 25 clock cycles for one round and uses a small FSM to derive the
control signal (77 GE).

4.4 Performance Figures

Table 1 summarizes the implementation figures of both profiles. The upper part
gives a detailed breakdown of the area requirements both in absolute and relative
values. The lower part lists the smallest achievable area requirements, power
estimations, clock cycles, and throughput at 100 KHz.

Profile 1 (unprotected) has an area footprint of 2400 GE of which 70% are
required to store the key and the data state. MixColumns and S-box are the other
two main contributors to the area requirements. Profile 2 (threshold version)
increases the area demands more than four-fold to 10793 GE. The main reason for
this is the S-box, which increases more than 10 fold and now occupies a whopping
35% of the area. This increment mainly comes from the 13-fold increment of the
GF(22) multiplier (13 GE vs. 173 GE) and the four pipelining stages that need
to store an additional 174 bits (870 GE).

Profile 1 requires 21 clock cycles per round and 16 clock cycles to output the
result (226 clock cycles in total). Profile 2 needs 4 additional clock cycles per
round, due to the pipelining stages in the S-box, which leads to a total of 266
clock cycles (18% increment). Please note that the time required can be reduced
by 16 clock cycles for additional 21 GE for profile 1 and 64 GE for profile 2 by
adding another XOR gate for the final KeyAdd allowing to interleave consecutive

80 A. Moradi et al.

Table 1. Breakdown of the post-synthesis implementation results for both architec-
tures of a serialized AES-128 encryption-only core

Profile 1 Profile 2
Goal AES-128 (unprotected) (threshold version)

% GE % GE

Area

sequential: Round constant 3 89 0.5 89
State array 32 843 8 843
Key array 32 835 8 842
md1 array 8 843
md2 array 8 843
mk1 array 8 842
mk2 array 8 842

combinational: MUXes 5 128 3 376
KeyAdd 1 21 0.5 64
S-box 9 233 35 4071/4244∗

MixCol 14 373 10 1120
control 3 72 0.5 77
other 1 7 0.5 89

compile simple sum 100 2601 100 10941/11114∗

compile ultra sum 2400 GE 10793/11031∗ GE
cycles 226 clk 266 clk
power @100 KHz 3.7 μA 13.4 μA
throughput @100 KHz 57 Kbps. 48 Kbps.

Area compile ultra sum 2421 GE

and cycles 210 clk

Speed power @100 KHz 3.7 μA
throughput @100 KHz 61 Kbps.

∗ Using remasked registers excluding PRNGs (explained in Section 5)

message blocks. The power consumption was estimated at 100 KHz and a supply
voltage of 1.8V. The unprotected implementation (profile 1) requires 3.7 μA and
thus is suitable for passive RFID-tags. For profile 2, however, this figure increases
more than threefold to 13.4 μA, which might already decrease the reading range
of a passive RFID tag. If required, power saving techniques might be applied to
reduce the power consumption at the cost of additional area. Please note that
power figures for different standard-cell libraries cannot be compared in a fair
manner. Furthermore, power estimates vary greatly depending on the simulation
method used and effort spent. Therefore we did compare our power figures with
previous works.

5 Experimental Results

In addition to the performance and area consumption features of our thresh-
old implementation, we have implemented the whole AES encryption design on
an FPGA-based platform and analyzed the actual power consumption traces
to practically investigate its resistance to first-order DPA attacks. Later in this

Pushing the Limits: A Very Compact and a Threshold Implementation 81

section the platform used and the measurement setup are introduced, then prac-
tical results are shown to validate the desired security levels.

5.1 Measurement Setup

A SASEBO (Side-channel Attack Standard Evaluation Board) which is partic-
ularly designed for side-channel attack experiments [1] has been used as the
measurement platform. It contains an xc2vp7 Virtex-II Pro FPGA [35] as the
crypto FPGA, clocked at a frequency of 3MHz3, to implement the design. A
LeCroy WP715Zi 1.5GHz oscilloscope at a sampling rate of 1GS/s and a differ-
ential probe which captures voltage drop of a 1Ω resistor at VDD (1.8V) path
are used as the measurement equipments to collect the power traces.

5.2 Side-Channel Resistance

In order to find the leakage points and have a reference to fairly judge about the
power analysis resistance of our implementation, we have switched off the mask
generators and kept all masks as zero to prevent randomization by masking.
100 000 traces are collected from this implementation while encrypting random
plaintexts. As expected and also observed in [20], CPA attacks which use a HW
model predicting the S-box input or output are not able to recover the secrets
of hardware implementations. What should directly lead to a successful attack
is a CPA using HD model which predicts bit flips on a part of the state register
when S-box outputs are overwritten to each other. Therefore, two consecutive
key bytes, i.e., 216 hypotheses, should be guessed. The results of such an attack,
which shows the amount of information leakage related to register updates, is
depicted by Fig. 4(a). Note that to reduce the attack complexity we have given
a favor to the attacker by knowing a key byte and reducing the key hypotheses
to 28. As shown in Fig. 4(b), around 30 000 traces are sufficient to perform a
successful attack. Because of the pipeline architecture of the S-box the correct
key guess appears at more than one clock cycle in the attack results. Also, a
mutual information analysis attack using the same distinguisher, i.e., HD of the
register updates, is efficiently capable of recovering the secret. The results of
this attack are shown in Fig. 5(a) and Fig. 5(b). It is noteworthy to mention
that those four clock cycles in which the secret leaks clearly in both Fig. 4 and
Fig. 5 are when the intermediate results of the target S-box computation are
consecutively stored in the pipeline registers of the shared S-box.

In order to observe the combinational circuit leakage a correlation-enhanced
collision attack, presented in [21], is mounted by getting average over the ac-
quired traces based on the plaintext bytes, and correlating the mean traces after
alignment based on the clock cycles when the target S-boxes are computed. In
fact, this attack is very similar to a template-based DPA attack using only the
mean vectors of the templates and avoiding the profiling step. The result of this

3 This frequency of operation is selected to prevent overlapping power peaks of con-
secutive clock cycles and hence to simplify the attacks.

82 A. Moradi et al.

(a) (b)

Fig. 4. CPA attack results when the mask generators are off by means of a HD model
(a) using 100K measurements and (b) at point 5.1μs over the number of traces

attack presented in Fig. 6 shows that the leakage of the combinational circuit,
i.e., the S-box instance, also leads to successfully revealing the linear difference
between two key bytes.

In the second step we have measured 5 million traces while the random number
generators are turned on and work normally. The plaintext bytes are randomly
selected, and the masks are shared neither between the plaintext and key bytes
nor between computation rounds of encryptions. In short, there is no mask reuse
in our target design. All attacks, mounted on the first step when the random
number generators were off, are repeated on the new measurements. The CPA
attack using HD, whose result is shown in Fig. 7(a), is expectedly not successful
since registers are masked by means of three shares and the predicted HD does
not fit to the register updates. However, the registers which contain the shares
are updated at the same time, and their information leakages through power
consumption are inherently summed up. As observed in [32] the sum of shared
registers leakages is not independent of the actual (unshared) value, and a mu-
tual information analysis is expected to recover the secret. We have repeated the
last mutual information analysis attack by means of a HD model as the distin-
guisher. The corresponding attack result is shown in Fig. 7(b), but it still cannot
distinguish the correct hypothesis. This might be related to the number of traces;
in other words, 5 million traces seem to be not enough due to the amount of
switching and electronic noise in our platform. However, the same issue has been
addressed in [25], where it is argued that the combinational functions following
the registers change the distribution of shared register leakages leading to failed
mutual information analysis attacks.

On the other hand, repeating the last correlation collision attack, whose re-
sults are given in Fig. 7(c) and Fig. 7(d), led to revealing the secret using around

(a) (b)

Fig. 5. MIA attack results when the mask generators are off by means of a HD model
(a) using 100K measurements and (b) at point 5.1μs over the number of traces

Pushing the Limits: A Very Compact and a Threshold Implementation 83

(a) (b)

Fig. 6. Correlation collision attack results when the mask generators are off (a) using
100K measurements and (b) at point 4.8μs over the number of traces

3.5 million traces. Since this attack recovers the first-order leakage of combina-
tional circuits, it shows that our shared S-box still has first-order leakage. During
the investigation of this issue (as also addressed in [25]) we have realized that
the values which are saved in the intermediate registers of our shared S-box are
not uniformly distributed. This means, property 3 illustrated in [23] and [25]
does not hold although we have used the shared multiplication in GF(22) pro-
posed by the original authors. The problem arises when the output of the shared
multiplication modules which have some shared inputs are mixed by means of
the linear functions. In fact, the correction terms which have been added to the
shared multiplications to provide uniformity are canceled out. It is actually a
practical evidence showing that if the uniformity property does not hold, the
leakage of the combinational circuit caused by the glitches leads to a recover-
able first-order leakage. Since searching through all possible correction terms
and their combination to check whether they lead to a uniform distribution in
our design was a very time consuming task, we could neither check all possible
cases nor could we find a suitable case. Instead, (as also addressed in [25]) we
have tried to use random fresh masks inside each pipeline stage when required.
The scheme we have used to add fresh masks, so-called remasking, is shown by
Fig. 8. We have simulated our shared S-box and tried to find the minimum cases

(a) (b)

(c) (d)

Fig. 7. Attack results when the mask generators are working using 5 million traces (a)
CPA using a HD model, (b) MIA using a HD model, (c) correlation collision attack,
and (d) correlation collision attack at point 4.45μs over the number of traces

84 A. Moradi et al.

a1

a2

a3

m2

m1

b1

b2

b3

clk

Fig. 8. Remasking scheme for a 3-share case

where remasking is required, and finally yielded the design shown in Fig. 1; the
remasked registers are marked by ○.

Finally 100 million traces have been acquired from the last design when all ran-
dom number generators worked normally and the plaintext bytes were randomly
selected. It should be noted that the fresh masks for the remasked registers are
provided by means of LSFRs which have enough period considering 100 million
measurements. All the attacks illustrated have been repeated here on all mea-
sured traces. A CPA and an MIA using a HD model on S-box outputs are still
not applicable; their results are depicted in Fig. 9(a) and Fig. 9(b) respectively.
Also, we have performed a third-order CPA attack by cubing the power traces
and correlating the results to predictions of a HD model in order to recover the

(a) (b)

(c) (d)

(e) (f)

Fig. 9. Attack results when the mask generators are working and the remasked registers
are applied using 100 million traces (a) CPA and (b) MIA and (c) third-order CPA
using a HD model on S-box outputs, (d) correlation collision attack, (e) MIA using a
HD model on S-box input, and (f) MIA at point 4.7μs over the number of traces

Pushing the Limits: A Very Compact and a Threshold Implementation 85

leakage of the inherently summed shared register updates. The result of this at-
tack shown in Fig. 9(c) indicates that 100 million traces are still not enough for
such a higher-order attack. The correlation collision attack is also not applica-
ble. Its results are shown in Fig. 9(d). This means that our target design could
prevent the first-order leakage under Gaussian assumption since correlation col-
lision attack applies only the mean traces4. This confirms the statement given
in [25] that the average power leakage of a threshold implementation should be
independent of the processed values.

We examined several models and performed a couple of mutual information
attacks, and finally could make the secret distinguishable using HD of the S-box
input. Using this model, similar to correlation collision attacks, the linear differ-
ence between two key bytes can be recovered. The result of this attack is shown
by Fig. 9(e) and Fig. 9(f), and indicates that the secret gets distinguishable using
more than 80 million traces.

6 Conclusions

While implementations of cryptographic algorithms in pervasive devices seriously
face area and power constraints, their resistance against physical attacks has to
be taken into account. Unfortunately, nearly all side-channel countermeasures
introduce power and area overheads which are proportional to the values of the
unprotected implementation. Therefore, this fact prohibits the implementation
of a wide range of proposed countermeasures and also limits possible cipher
candidates for ubiquitous computing applications.

Most of the countermeasures proposed for implementing a side-channel resis-
tant AES in hardware remained unfortunately with a first-order leakage. In this
article we have applied a recently proposed secret sharing-based masking scheme
to the AES S-box in order to improve the first-order resistance. Decomposition
of the AES S-box into a series of S-boxes of algebraic degree two and splitting
them into (at least) three shares is a challenging task. However, we have used
the architecture of the smallest AES S-box and have shared the non-linear op-
eration which is a GF (22) multiplier. To separate the glitches of different parts
of the circuit we have designed the S-box in five pipeline stages by adding four
sets of intermediate registers and applying a remasking scheme on some selected
registers.

Our proposed hardware architecture for the AES reduces the area require-
ments to only 2400 GE, which is 23% smaller than the smallest previously pub-
lished. After the secret sharing based countermeasure has been applied, the area
requirements are 11031 GE, while the timing overhead compared to our un-
protected implementation with a similar architecture is only 18%. According to
practical side-channel investigations, masking the state and the key registers by
means of two shares each could improve the resistance against the considered
(most well-known) first-order DPA attacks. Our protected implementation offers
4 In fact, we continued the measurements till 400 million, and still this type of attack

was not feasible.

86 A. Moradi et al.

128-bit standardized security with improved side-channel resistance for around
11 000 GE.

Acknowledgment

The authors would like to thank Akashi Satoh and Research Center for Infor-
mation Security (RCIS) of Japan for the prompt and kind help in obtaining
SASEBOs, and François-Xavier Standaert for his fruitful and helpful comments
and suggestions.

References

1. Side-channel attack standard evaluation board (sasebo), Further information are
http://www.rcis.aist.go.jp/special/SASEBO/index-en.html

2. Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-channel Attacks. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 2–16. Springer, Heidelberg
(2003)

3. Blakley, G.R.: Safeguarding Cryptographic Keys. In: National Computer Confer-
ence, pp. 313–317 (1979)

4. Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In:
Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83.
Springer, Heidelberg (2004)

5. Bogdanov, A., Leander, G., Knudsen, L., Paar, C., Poschmann, A., Robshaw, M.,
Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher. In: Pail-
lier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007)

6. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

7. DeCannière,C.,Dunkelman,O.,Knežević,M.:KATANandKTANTAN—AFamily
ofSmallandEfficientHardware-OrientedBlockCiphers. In:Clavier,C.,Gaj,K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

8. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

9. Canright, D., Batina, L.: A Very Compact “Perfectly Masked” S-Box for AES.
In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008.
LNCS, vol. 5037, pp. 446–459. Springer, Heidelberg (2008), the corrected version
is available at Cryptology ePrint Archive, Report 2009/011
http://eprint.iacr.org/2009/011

10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

11. Coron, J.-S., Prouff, E., Rivain, M.: Side Channel Cryptanalysis of a Higher Or-
der Masking Scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 28–44. Springer, Heidelberg (2007)

12. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the Power of Power Analysis in the Real World: A Complete Break of
the KeeLoq Code Hopping Scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 203–220. Springer, Heidelberg (2008)

http://www.rcis.aist.go.jp/special/SASEBO/index-en.html
http://eprint.iacr.org/2009/011

Pushing the Limits: A Very Compact and a Threshold Implementation 87

13. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of
Sand. IEE Proceedings of Information Security 152(1), 13–20 (2005)

14. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

15. Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and Imple-
mentation of Low-Area and Low-Power AES Encryption Hardware Core. In: DSD,
pp. 577–583 (2006)

16. Herbst, C., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resis-
tant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

17. Daemen, G.J., Peeters, M., Rijmen, V.: The Noekeon Block Cipher. In: First Open
NESSIE Workshop (2000)

18. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

19. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

20. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

21. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis
Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 125–139. Springer, Heidelberg (2010)

22. National Institute of Standards and Technology (NIST). Announcing the Advanced
Encryption Standard (AES). Federal Information Processing Standards Publica-
tion 197 (November 2001)

23. Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-
Channel Attacks and Glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

24. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

25. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlin-
ear Functions in the Presence of Glitches. Journal of Cryptology (2010) (in press),
doi:10.1007/s00145-010-9085-7

26. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

27. Popp, T., Mangard, S.: Masked Dual-Rail Pre-charge Logic: DPA-Resistance With-
out Routing Constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 172–186. Springer, Heidelberg (2005)

28. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.:
Side-Channel Resistant Crypto for less than 2,300 GE. Journal of Cryptology
(2010) (in press), doi: 10.1007/s00145-010-9086-6

29. Rijmen, V., Daemen, J.: The Design of Rijndael: AES. The Advanced Encryption
Standard, 1st edn. Springer, Heidelberg (2002)

30. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implementa-
tions for Smart Devices – Security for 1000 Gate Equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer,
Heidelberg (2008)

88 A. Moradi et al.

31. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

32. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The World is Not Enough: Another Look on Second-
Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129.
Springer, Heidelberg (2010)

33. Virtual Silicon Inc. 0.18 μm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 μm Generic II Technology:
0.18μm (July 2004)

34. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

35. Xilinx: Virtex-II Pro and Virtex-II ProX Platform FPGAs: Complete Data Sheet
(November 2007),
http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf

http://www.xilinx.com/support/documentation/data_sheets/ds083.pdf

Fully Leakage-Resilient Signatures

Elette Boyle1,�, Gil Segev2,��, and Daniel Wichs3,� � �

1 Massachusetts Institute of Technology, Cambridge, MA 02139, USA
eboyle@mit.edu

2 Microsoft Research, Mountain View, CA 94043, USA
gil.segev@microsoft.com

3 New York University, New York, NY 10012, USA
wichs@cs.nyu.edu

Abstract. A signature scheme is fully leakage resilient (Katz and Vaik-
untanathan, ASIACRYPT ’09) if it is existentially unforgeable under an
adaptive chosen-message attack even in a setting where an adversary
may obtain bounded (yet arbitrary) leakage information on all interme-
diate values that are used throughout the lifetime of the system. This is a
strong and meaningful notion of security that captures a wide range of
side-channel attacks.

One of the main challenges in constructing fully leakage-resilient sig-
nature schemes is dealing with leakage that may depend on the random
bits used by the signing algorithm, and constructions of such schemes are
known only in the random-oracle model. Moreover, even in the random-
oracle model, known schemes are only resilient to leakage of less than
half the length of their signing key.

In this paper we construct fully leakage-resilient signature schemes
without random oracles. We present a scheme that is resilient to any
leakage of length (1 − o(1))L bits, where L is the length of the signing
key. Our approach relies on generic cryptographic primitives, and at the
same time admits rather efficient instantiations based on specific number-
theoretic assumptions. In addition, we show that our approach extends to
the continual-leakage model, recently introduced by Dodis, Haralambiev,
Lopez-Alt and Wichs (FOCS ’10), and by Brakerski, Tauman Kalai, Katz
and Vaikuntanathan (FOCS ’10). In this model the signing key is allowed
to be refreshed, while its corresponding verification key remains fixed,
and the amount of leakage is assumed to be bounded only in between
any two successive key refreshes.

� Research supported by the US National Defense Science and Engineering Grad-
uate Fellowship. This work was partially completed while visiting the Weizmann
Institute of Science.

�� This work was partially completed while the author was a Ph.D. student at the
Weizmann Institute of Science, and supported by the Adams Fellowship Program
of the Israel Academy of Sciences and Humanities.

� � � This work was partially completed while visiting the Weizmann Institute of
Science.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 89–108, 2011.
c© International Association for Cryptologic Research 2011

90 E. Boyle, G. Segev, and D. Wichs

1 Introduction

One of the main goals of research in the foundations of cryptography is designing
systems that withstand adversarial behavior. Given a cryptographic task, such
as public-key encryption, one must formalize an attack model specifying a class
of adversaries, and define a notion of security capturing what it means to break
the system. Within such a framework, it is then possible to rigorously analyze
the security of cryptographic systems.

Starting with the seminal work of Goldwasser and Micali [18], various and
increasingly strong attack models and notions of security have been proposed.
Over the years, however, theoreticians and practitioners began to notice that a
large class of realistic attacks, called side-channel attacks, are not captured by
the existing models. In such attacks, the adversary may learn some additional
information about the internal secret state of a system, by measuring various
properties resulting from specific physical implementations (e.g., timing informa-
tion, detection of internal faults, electromagnetic radiation, power consumption
etc.). As a result, it has become an important research agenda to extend the stan-
dard models to capture such side-channel attacks, and to design cryptographic
systems whose security guarantees can be rigorously analyzed and clearly stated
in these stronger models. Our work focuses on the model of memory attacks,
and its bounded-leakage and continual-leakage variants, which we describe next
(several other models are described in the full version).
Memory attacks: bounded-leakage and continual-leakage. The model of memory
attacks was introduced by Akavia, Goldwasser, and Vaikuntanathan [1]. Its main
premise is that the adversary can learn arbitrary information about the secret
state of a system, subject only to the constraint that the amount of information
learned is somehow bounded. More precisely, the adversary can adaptively select
arbitrary poly-time computable functions fi : {0, 1}∗ → {0, 1}λi and learn the
value of fi applied to the internal state of the system, subject only to some
constraint on the output sizes λi.

The work of [1] assumes that there is an a priori determined leakage bound
λ, which bounds the overall amount of information learned by the adversary
throughout the entire lifetime of the system to be

∑
i λi ≤ λ. We call this the

bounded leakage model. Usually the leakage bound λ is also related to the secret-
key size, so that a relatively large fraction λ/|sk| of the secret key can be leaked. A
great deal of research has gone into devising various cryptographic primitives in
this model, such as public-key and identity-based encryption schemes, signature
schemes, and more (see [30,26,3,2,28,8,14]).

A drawback of the bounded-leakage model is that, if a system is being used
continually for a sufficiently long time, then the amount of leakage observed by
the attacker may exceed any a-priori determined leakage bound. Hence, we would
like to bound the rate of leakage rather than the overall amount of leakage. If we
do not bound the overall leakage, then any static piece of information that stays
unmodified on the system can eventually be fully recovered by the adversary.
Hence the secret keys of such systems must be periodically refreshed. Recently,
Dodis et al. [13] and Brakerski et al. [10] suggested the continual-leakage model,

Fully Leakage-Resilient Signatures 91

in which a scheme periodically self-refreshes its internal secret key, while the
corresponding public key remains fixed. In this model, only the amount of leakage
seen by the adversary in between any two successive refreshes is assumed to be a
priori bounded by some leakage bound λ1. However, there is no a-priori bound on
the overall amount of information seen by the adversary throughout the lifetime
of the system.

We note that in both the bounded-leakage model and the continual-leakage
model the adversary may be able to learn partial, but yet arbitrary, information
on the entire secret key. This is in contrast with other models, where either the
leakage is assumed to be of “low complexity” (such as AC0 circuits) [25,16], or
certain secret values are assumed to be leak-free.

Leakage-resilient signature schemes. In this paper we study the security of sig-
nature schemes in the bounded-leakage and continual-leakage models. Signature
schemes in the bounded-leakage model were proposed by Alwen, Dodis, and
Wichs [3] and by Katz and Vaikuntanathan [26], who focused mainly on leak-
age of (only) the signing key of the scheme. Specifically, a signature scheme is
leakage-resilient in the bounded-leakage model if it is existentially unforgeable
against an adaptive chosen-message attack [19] even when adversarially chosen
functions of the signing key are leaked in an adaptive fashion. Signature schemes
satisfying this notion of security were constructed both based on generic cryp-
tographic primitives in the standard model [26] and based on the Fiat-Shamir
transform [17] in the random-oracle model [26,3].

Although this notion of leakage resilience already captures some attacks, it
does not fully capture general leakage attacks, which may depend on the en-
tire internal state of the system. In particular, the problem is that both of the
signature scheme constructions from [26,3] are randomized and hence the inter-
nal state includes, in addition to the secret-key, all of the random coins used
by the signing algorithm2. The prior schemes may therefore be vulnerable to
leakage-attacks that (also) depend on this randomness.

This was already noted by Katz and Vaikuntanathan [26], who put forward
the stricter notion of a fully leakage-resilient signature schemes (in the bounded-
leakage model). This notion requires a signature scheme to remain existentially
unforgeable under an adaptive chosen-message attack even when the adversary
obtains bounded leakage information on all intermediate values used by the
signer throughout the lifetime of the system, including the secret-keys and inter-
nal random coins (the notion can be naturally extended to the continual-leakage
model [13,10]). This stronger notion seems to better capture real attacks, relying

1 If the time between refreshing is fixed, we can think of this as bounding the rate of
leakage.

2 No known deterministic or public-coin constructions of leakage-resilient signatures
are known. Without leakage, the signing algorithm of any signature scheme can be
made deterministic by using, as its random coins, the output of a pseudorandom
function (PRF) applied to the message, where the seed of the PRF is made part of
the secret key. However, in the setting of key leakage, this transformation may no
longer be secure since the seed to the PRF can also leak.

92 E. Boyle, G. Segev, and D. Wichs

on e.g. timing or power consumption patterns, since these likely do depend on
the internal randomness.

Currently, however, the known constructions of fully leakage-resilient signa-
ture schemes are proven secure only in the random-oracle model [3,10,13,26].
Moreover, even in the random-oracle model, known schemes are either resilient
to leakage of at most half the length of the signing key [3,13,26], or require re-
freshing of the signing key after every few invocation of the signing algorithm,
even when no leakage occurs [10] (this is required even in the bounded-leakage
model, where refreshing is not part of the typical functionality). In the standard
model, only constructions of “one-time” signatures3 from [26] are known to be
fully leakage resilient.

In a concurrent and independent work, Malkin, Teranishi, Vahlis and Yung
[29] propose a alternate signature scheme in the continual-leakage model. Al-
though the two schemes appear very different at first, they can be seen as sepa-
rate instantiations of a common strategy, which we will explain shortly.

1.1 Our Contributions

We construct the first fully leakage-resilient signature schemes without random
oracles. We first present a scheme in the bounded-leakage model that is resilient
to any leakage of (1 − o(1))L bits, where L is the bit-length of the signing key.
Our scheme is based on generic cryptographic primitives, and is inspired by the
approach of Katz and Vaikuntanathan [26] (although their scheme is resilient
to leakage from the signing key only). Moreover, we show that our construction
can be instantiated based on specific number-theoretic assumptions to yield a
rather efficient scheme.

We then extend our approach to the continual-leakage model by relying on any
continual leakage-resilient one-way relation, a primitive recently introduced by
Dodis, Haralambiev, Lopez-Alt and Wichs [13]. Our resulting signature scheme
construction inherits the leakage resilience properties of the underlying one-way
relation with respect to leakage allowed between successive key updates and dur-
ing the refreshing algorithm. In particular, instantiating our scheme with exist-
ing constructions of the one-way relations from [13,10] yields schemes that are re-
silient to leakage of logarithmic length from the random bits used by the refreshing
algorithm, and any leakage of length (1 − o(1))L bits between any two key re-
freshes based on the Symmetric External Diffie-Hellman (SXDH) assumption, or
(1/2− o(1))L bits between refreshes based on the Decisional-Linear assumption.

Finally, we note that our approach yields the first separation between the
bounded-leakage model and the noisy-leakage model, which was formalized by
Naor and Segev [30] and later refined by Dodis et al. [13, Definition 7.2]. Noisy
leakage is a realistic generalization of bounded leakage, in which the leakage is
not necessarily of bounded length, and it is only guaranteed that the secret key

3 Such schemes can only be used to sign a single message (or, more generally, some
a priori bound t on the number of messages). The amount of leakage-resilience is
Θ(L/t) bits, and thus degrades with t.

Fully Leakage-Resilient Signatures 93

still has some min-entropy even given the leakage. This settles an open problem
posed by Naor and Segev.

1.2 Overview of Our Approach

In this section we present an overview of our approach for constructing fully
leakage-resilient signature schemes. We focus here on our construction in the
bounded-leakage model, as it already emphasizes the main ideas underlying our
approach, and we refer the reader to the full version of the paper for an overview
of our construction in the continual-leakage model. We begin by describing more
clearly the notion of a fully leakage-resilient signature scheme in the bounded-
leakage model. Then, we briefly describe the leakage-resilient signature scheme
of Katz and Vaikuntanathan [26], which serves as our starting point, and explain
the main challenges in constructing fully leakage-resilient signature schemes. The
main part of this overview then focuses on our construction.

Modeling fully leakage-resilient signature schemes. A signature scheme is fully
leakage-resilient in the bounded-leakage model if it is existentially unforgeable
against an adversary that can obtain both signatures on any message of her
choice, and bounded leakage information on all intermediate values used by the
signer throughout the lifetime of the system.

This is formalized by considering an experiment that involves a signer and an
adversary. First, the signer invokes the key-generation algorithm and obtains a
verification key vk and a signing key sk. At this point, a value state is initialized
to contain the random coins that were used by the key-generation algorithm.
The adversary is given the verification key vk and can adaptively submit two
types of queries: signing queries, and leakage queries. A signing query consists of
a message m, and is answered by invoking the signing algorithm with the signing
key and the message. Following each such query, the random coins that were used
by the signing algorithm are added to the state. A leakage query consists of a
leakage function f , and is answered by applying f to the value state. The leakage
functions have to be efficiently computable, and the sum of their output lengths
has to be upper bounded by a predetermined parameter λ. The adversary is
successful if she outputs a pair (m∗, σ∗), where m∗ is a message with which she
did not issue a signing query, and σ∗ is a valid signature on m∗ with respect to
vk. We refer the reader to Section 3 for a formal definition.

The Katz-Vaikuntanathan scheme. The Katz-Vaikuntanathan signature scheme
[26] relies on a second-preimage resistant (SPR) function F : {0, 1}μ(n) →
{0, 1}κ(n) (for some κ(n) < μ(n)), a CPA-secure public-key encryption scheme,
and a (unbounded simulation-sound) NIZK proof system4. The signing key is a

4 A function F is second-preimage resistant if, given a random input x it is hard to
find x′ 	= x such that F(x′) = F(x). See Definition 2.1 in Section 2. We note that
when F is only assumed to be a one-way function, the scheme may not always be
resilient to leakage, but it is nevertheless existentially unforgeable under an adaptive
chosen-message attack. In this case the scheme can be viewed as a variant of the
Bellare-Goldwasser signature scheme [4].

94 E. Boyle, G. Segev, and D. Wichs

random x ∈ {0, 1}μ(n), and the verification key is a triplet (y = F(x), pk, crs),
where pk is a public key for the encryption scheme, and crs is a common-reference
string for the proof system. A signature on a message m consists of a ciphertext
c which is an encryption of m||x using pk, and a proof that the ciphertext c is
indeed an encryption of m||x′, for some x′ ∈ F−1(y)5.

This scheme is leakage resilient in the bounded-leakage model. That is, it
satisfies the weaker variant of the above notion of security, where the leakage is
allowed to depend on the signing key only. The security of the scheme is based
on three main properties:

1. A typical verification key has many possible secret keys. Specifically, the set
F−1(y) is of size roughly 2μ(n)−κ(n).

2. The “real” signatures of the scheme are computationally indistinguishable
from “fake” signatures, which are statistically independent of the signing
key. This follows from the semantic security of the encryption scheme and
from the zero knowledge of the proof system. Specifically, a “fake” signature
on a message m can be produced by encrypting m||0n, and then using the
NIZK simulator to generate the proof.

3. Given the decryption key corresponding to pk, any valid forgery produced by
the adversary can be used to extract a preimage x′ of y. This follows from
the soundness of the proof system, which guarantees that the adversary’s
forgery is a “real” signature6 and therefore the corresponding ciphertext can
be decrypted to a valid preimage x′.

These three properties are used to prove the security of the scheme as follows.
Assume there is an adversary that breaks the scheme. Then, given a random
pre-image x of y, we can run this adversary and (by the third property) extract
some valid preimage x′ from the adversary’s signing forgery with a reasonable
probability. This would break second-preimage resistance of F as long as we
can argue that x′
= x. To do so, we use the second property to replace “real
signatures” with “fake signatures” without affecting the probability of recovering
some valid preimage x′. But now, the signing queries do not reveal any additional
information about x, given y. So the only correlated information on x that the
adversary sees is the value y = F (x) of size κ(n) and the leakage of size λ.
Therefore, if λ ≤ μ(n) − κ(n)− ω(log(n)), then the adversary has (information
theoretically) super-logarithmic uncertainty about the value of x and hence the
probability of extracting x′ = x from her forgery is negligible.

The main challenges. The security proof of the Katz-Vaikuntanathan scheme
relies on the argument that, given many signatures of chosen messages and λ
bits of leakage from the signing key x, the value x is still hard to guess by

5 Katz and Vaikuntanathan show that it is actually possible to encrypt only x (in-
stead of m||x), and include m as a label in the statement that is proved using the
NIZK proof system. However, for making this informal description more intuitive,
we consider here an encryption of both m and x.

6 In fact, a stronger notion called simulation-soundness is required, because the ad-
versary gets to see several fake proofs before generating her signature.

Fully Leakage-Resilient Signatures 95

the adversary. However, when the leakage may depend also on the randomness
used by the signing algorithm, this is no longer true, and in fact the scheme
is insecure in general. The main problem is that, in the above argument, we
crucially used the ability to switch “real” signatures for “fake” signatures. This
step, in turn, relied on the security of the encryption scheme and the zero-
knowledge property of the proofs. However, we cannot rely on these properties if
the adversary can also leak on the random coins of the encryption scheme and the
proof system! Consider, for example, an instantiation of the scheme with a CPA-
secure encryption scheme defined as Encpk(m||x) = (Enc′pk(s),PRG(s)⊕ (m||x)),
where Enc′ is secure encryption scheme, and PRG is a pseudorandom generator
that is applied on a random seed s. Leaking the seed s, whose length may
be arbitrarily shorter then λ, completely reveals the signing key x. A similar
instantiation for the proof system can be shown to have a similar effect when
the leakage may depend on the randomness used by the prover7.

Our approach. A natural observation is that the above problems can be avoided if
the “real” and “fake” signatures cannot be distinguished even given the random
coins used to generate them. Remember that fake signatures are statistically
independent of the secret key x, while real signatures allow us to extract some
preimage using an appropriate trapdoor (decryption key).

The first idea toward achieving the above is to replace the (unbounded
simulation-sound) NIZK proof system with a statistical non-interactive witness-
indistinguishable (SNIWI) argument system.Onone handwe relax the (unbounded
simulation-sound) zero knowledge property to witness indistinguishability, and on
the other hand we require that proofs generatedusing differentwitnesses are statis-
tically indistinguishable from each other. In particular, this guarantees that even
a correctly generated proof is statistically independent of the witness (in our case
the signing key x) used to generate it.

The harder part lies in getting an encryption scheme where the ciphertexts are
independent of the message (in our case, the signing key x) that they encrypt.
In particular, this clearly contradicts the decryptability of a ciphertext. We could
imagine using known lossy encryption schemes, where the encryption key pk can
be generated in one of two indistinguishable modes: “injective” mode which al-
lows for decryptability, and “lossy” mode where ciphertexts statistically hide the
message. But remember that we need to satisfy the following two properties si-
multaneously: (1) the ability to answer the adversary’s signing queries with fake
signatures that reveal no information about x, (2) the ability to extract a witness
x′ from the adversary’s forgery. By setting the pk to be in either injective or lossy
mode, we can achieve either property, but not at the same time! The main tool
used in resolving this conflict is to design a partitioned-lossy encryption scheme,
where the encryption of some messages is lossy while that of others is injective.

7 Note that even a leakage function with only one output bit can be easily used to
distinguish an encryption of m||x from an encryption of m||0n, or to distinguish the
prover of the proof system from the simulator of the proof system. Thus, technically
speaking, it seems that at no point in time during the various experiments of the
security proof it is possible to change the way signing queries are answered.

96 E. Boyle, G. Segev, and D. Wichs

A selectively-unforgeable signature scheme. For the reader’s intuition, we first
show how to achieve a weaker notion of signature security that we refer to
as selective unforgeability under a chosen-message attack. For this notion, we
assume the adversary specifies the message m∗ on which she plans to forge a
signature in advance, before receiving the verification key. The signing queries
and leakage are still adaptive.

To achieve this notion of security, we introduce the concept of an all-lossy-
but-one (ALBO) public-key encryption scheme. This is a tag-based public-key
encryption scheme, where the encryption procedure takes as input a tag t in
addition to the message. The key-generation procedure takes as input a special
tag t∗ and produces a key pair (pk, sk) such that encrypting under the tag t∗

allows for efficient decryption with sk, but encryption under any other tag t
= t∗

statistically hides the encrypted message. We call t∗ the injective tag, and any
other tag a lossy tag8. The only computational requirement is that the public
key hides the injective tag t∗ that was used for its generation.

We now modify the Katz-Vaikuntanathan signature scheme by using an ALBO
encryption scheme instead of a standard CPA-secure scheme. To sign m, we en-
crypt (only) the signing key x under the tag t = m. We use a SNIWI argument
system instead of a simulation-sound NIZK to generate the proof. To argue se-
curity, we note that since the adversary’s forgery message m∗ is chosen ahead
of time, we can generate the encryption key pk such that t∗ = m∗ is the only
injective tag, without affecting the adversary’s ability to forge – this change is
indistinguishable even given full view of the signing key x and randomness of
signing. Now we are in a situation where all the signing queries for m
= m∗

yield signatures which are statistically independent of the signing key x, while
the forgery can be used to extract some preimage x′. Therefore, we can argue
as before: the bounded leakage on the secret key x and randomness of signing is
short enough that x must have entropy left given this leakage, and therefore the
outcome x′ = x is unlikely.

The full scheme. So far we described our approach as leading to the rather
weak notion of selective unforgeability under a chosen-message attack. Our ac-
tual scheme is fully leakage-resilient according to the stronger notion that was
discussed in the beginning of this section (i.e., where the adversary is allowed
to adaptively choose m∗ after seing vk and responses to all signing and leakage
queries).

We note that, in the random-oracle model, there is a simple generic transfor-
mation from selective security to full security by signing the output of the random
oracle applied to the message. Alternatively, in the standard model, there is a
simple transformation with exponential security loss by simply “guessing” the
forgery: this can yield fully secure schemes under some exponential hardness as-
sumptions by using complexity-leveraging. Lastly, there is a completely generic
transformation due to [9] (abstracting a non-generic approach of [23]) by hash-
ing the message with a chameleon hash function [27] and signing each prefix of

8 We note that our notion is the opposite of the notion of an all-but-one lossy trapdoor
function, where there is one lossy tag and all the other tags are injective.

Fully Leakage-Resilient Signatures 97

the hash separately. Unfortunately, this results in long signatures. All of these
generic techniques also work in the setting of full-leakage resilience. We present
an alternative that does not suffer from the above disadvantages.

For our actual scheme, we follow the approach of Boneh and Boyen [5] for
transforming selectively-secure identity-based encryption schemes into fully se-
cure ones using an admissible hash function (see Section 2.3). This relies on
a slightly more refined “partitioning strategy” than the “all-but-one” strategy
used for the selectively-secure scheme. In particular, we introduce the notion of
a R-lossy public-key encryption scheme. This is a generalization of an ALBO
encryption scheme where the set of possible tags is partitioned into injective
tags and lossy tags according to a relation R (in particular, there may be more
than one injective tag). The main idea of this approach is to ensure that, with
polynomial probability, all of the adversary’s signing queries will fall into the
“lossy” partition, while the forgery falls into the “injective” partition.

Comparison to [29]. An alternate way to view our combination of a SNIWI
paired with a partitioned lossy encryption is as a tag-based proof system that
is partitioned to be extractable for some tags and statistically witness indistin-
guishable for others. Our main result shows how to build fully leakage-resilient
signatures from such a proof system. The work of [29] can be seen as an alter-
nate instantiation of this strategy which relies on Groth-Sahai NIZKs [22]. These
NIZKs are either statistically witness indistinguishable or extractable depending
on the choice of the CRS. In the reduction in [29], the CRS of the Groth-Sahai
NIZK is derived from the tag in a clever way (using the Waters Hash [33]) so as
to give an alternate useful partitioning of lossy/extractable tags.

1.3 Paper Organization

In Section 2 we introduce some preliminaries and notation. Section 3 contains
a definition of security in the bounded-leakage model. In Section 4 we intro-
duce R-lossy public-key encryption schemes, a tool used in our constructions.
Section 5 contains the construction and intuition for the security proof of our
signature scheme in the bounded-leakage model. Finally, in Section 6 we discuss
several concluding remarks and open problems. We refer the reader to the full
version of the paper for a specific instantiation of our scheme based on the Linear
assumption and the extension of our scheme to the continual-leakage model.

2 Preliminaries

In this section we present some basic tools that are used in our constructions.

2.1 Second-Preimage Resistance

A family of efficiently computable functions is a pair of polynomial-time algo-
rithms (KeyGen,F), where KeyGen is a probabilistic algorithm that on input 1n

outputs a description s ∈ {0, 1}∗ of a function F(s, ·) : {0, 1}μ(n) → {0, 1}κ(n).

98 E. Boyle, G. Segev, and D. Wichs

Such a family is second-preimage resistant (SPR) if given a randomly chosen
input x ∈ {0, 1}μ(n) and a description of a randomly chosen function s ←
KeyGen(1n), it is computationally infeasible to find an input x′ ∈ {0, 1}μ(n)

such that x′
= x and F(s, x) = F(s, x′). This is a weakening of the notion of a
family of universal one-way hash functions introduced by Naor and Yung [31],
in which the input x is allowed to be chosen in an adversarial manner (but still
independently of the function description s).

Definition 2.1 (Second-preimage resistance). A family F = (KeyGen,F)
of efficiently computable functions is second-preimage resistant if for any prob-
abilistic polynomial-time algorithm A is holds that

Pr
[
Fs(x′) = Fs(x) ∧ x′
= x

∣∣∣∣s← KeyGen(1n), x← {0, 1}μ(n)

x′ ← A(s, x)

]
< ν(n) ,

for some negligible function ν(n), where the probability is taken over the choice
of x← {0, 1}μ(n) and over the internal randomness of KeyGen and A.

In addition, we say that F = (KeyGen,F) is a family of public-coin second-
preimage resistant functions, if it satisfies Definition 2.1 even when the algorithm
A takes as input also the internal randomness that was used by KeyGen(1n) for
sampling the function. We refer the reader to [24] for more details on public-coin
hash functions.

For any integer functions μ(n) and κ(n) that are polynomially related, the
existence of universal one-way hash functions (and therefore also of second-
preimage resistant functions) with domain {0, 1}μ(n) and range {0, 1}κ(n) is
known to be equivalent to that of one-way functions [32]. As noted by Katz and
Vaikuntanathan [26], standard constructions of universal one-way hash functions
are public coin. In practice, such public-coin functions can be constructed rather
easily from various number-theoretic assumptions. For example, if the discrete
log problem is hard in some group G of prime order p, the family of functions
fg1,...,gk

: Zkp → G defined as fg1,...,gk
(x1, . . . , xk) =

∏k
i=1 g

xi

i is second-preimage
resistant (and even collision resistant), where g1, . . . , gk ∈ G are chosen uniformly
and independently at random by the key-generation algorithm.

We note that for public-coin SPR functions, there is actually no need for an
explicit key-generation algorithm. Without loss of generality one can define a
single function F′

r(x) = (r,Fs(x)), where s = KeyGen(1n; r), and this is also SPR
with the same amount of “lossiness” as the family F .

2.2 Statistical Non-interactive Witness-Indistinguishable Argument
Systems

A non-interactive argument system for a language L with witness relation RL is a
triplet of algorithms (CRSGen,P,V), where CRSGen is an algorithm generating a
common reference string crs, and P and V are the prover and verifier algorithms,
respectively. The prover takes as input a triplet (crs, x, w), where (x,w) ∈ RL,
and outputs a proof π. The verifier takes as input a triplet (crs, x, π) and either

Fully Leakage-Resilient Signatures 99

accepts or rejects. In this paper we consider a setting where all three algorithms
run in probabilistic polynomial time. The two requirements of an argument sys-
tem are completeness and soundness with respect to efficient cheating provers.
Informally, for every (x,w) ∈ RL the prover generates proofs that are always ac-
cepted by the verifier, and for every x /∈ L any efficient cheating prover has only a
negligible probability of convincing the verifier to accept. An argument system is
called statistical witness indistinguishable if for any x ∈ L and any two witnesses
w0
= w1 such that (x,w0), (x,w1) ∈ RL, the proofs generated by P(crs, x, w0)
and P(crs, x, w1) are statistically indistinguishable given the common reference
string.

Definition 2.2 (SNIWI argument system). A statistical non-interactive
witness-indistinguishable argument system for a language L with witness re-
lation RL is a triplet of probabilistic polynomial-time algorithms (CRSGen,P,V)
such that the following properties hold:

1. Perfect completeness: For every (x,w) ∈ RL it holds that

Pr [V(crs, x,P(crs, x, w)) = 1] = 1 ,

where crs ← CRSGen(1n), and the probability is taken over the internal ran-
domness of CRSGen, P, and V.

2. Adaptive soundness: For every probabilistic polynomial-time prover P∗ it
holds that

Pr
[
V(crs, x, π) = 1 ∧ x
∈ L

∣∣∣∣ crs ← CRSGen(1n)
(x, π) ← P∗(1n, crs)

]
< ν(n) ,

for some negligible function ν(n)
3. Statistical witness indistinguishability: There exists a probabilistic poly-

nomial-time algorithm CRSGenWI such that:
– The distributions {CRSGen(1n)} and {CRSGenWI(1n)} are computa-

tionally indistinguishable.
– For any triplet (x,w0, w1) such that (x,w0) ∈ RL and (x,w1) ∈ RL, the

distributions {crs,P(crs, x, w0)} and {crs,P(crs, x, w1)} are statistically
indistinguishable, when crs ← CRSGenWI(1n).

For our construction we are interested in SNIWI argument systems for NP. Such
an argument system is implied by the construction of Groth, Ostrovsky and
Sahai [21] that satisfies the stronger notion of a perfect non-interactive zero-
knowledge argument system. Their construction can be based on the hardness
of either the Decisional Subgroup problem [7] or the Decisional Linear problem
[6]. As pointed out by Groth et al. we note that in their Linear-based construction
the algorithm CRSGen admits oblivious sampling (specifically, the distribution
of the common reference string is statistically-close to the uniform distribution),
which is a technical property that is required for our construction in the bounded
leakage model.

100 E. Boyle, G. Segev, and D. Wichs

2.3 Admissible Hash Functions

The concept of an admissible hash function was first defined by Boneh and Boyen
[5] to convert a natural selectively-secure identity-based encryption scheme into
a fully-secure one. In this paper we use such hash functions in a similar manner
to convert a selectively-secure signature scheme (where the adversary declares
the message to be forged ahead of time, before receiving the verification key) into
a fully secure one. The main idea of an admissible hash function is that it allows
the reduction in the proof of security to secretly partition the message space
into two subsets, which we will label as red (R) and blue (B), such that there is a
noticeable probability that all of the messages in the adversary’s signing queries
will be in the blue set, but the forgery will be on a message in the red set. This is
useful if the simulator can efficiently answer signing queries in the blue set, yet
break some hard problem given a valid forgery on a message from the red set.
Our exposition and definition of admissible hash function follow that of Cash,
Hofheinz, Kiltz, and Peikert [11].

For K ∈ {0, 1,⊥}τ(n), we define the function FK : {0, 1}τ(n) → {R, B} which
“colors” the space {0, 1}τ(n) of tags in the following way:

FK(y) :=
{
R if ∀ i ∈ {1, . . . , τ(n)} : Ki = yi or Ki = ⊥
B otherwise

For any u = u(n) < τ(n), we let Ku,n denote the uniform distribution over
{0, 1,⊥}τ(n) conditioned on exactly u positions having ⊥ values. (Note, if K is
chosen from Ku,n, then the map FK(·) colors exactly 2u values red.) We would
like to pick a distribution Ku,n for choosing K so that, there is a polynomial
probability for any set of tags y0, . . . , yq of y0 being colored “red” and all other
tags being colored “blue”. Unfortunately, this cannot happen if we allow all tags.
Instead, we will need to rely on a special hash function the maps messages x to
tags y.

Let H = {Hn}n∈N be a hash-function ensemble, where each H ∈ Hn is a
polynomial-time computable function H : {0, 1}∗ → {0, 1}τ(n). For each H ∈
Hn, we define the function FK,H : {0, 1}∗ → {R, B}, which “colors” the space
{0, 1}∗ according to FK,H(x) = FK(H(x)).

Definition 2.3 (Admissible hash function [5,11]). We say that H is an
admissible hash-function ensemble if for every H ∈ H there exists a set badH
of string-tuples such that the following two properties hold:

– For every probabilistic polynomial-time algorithm A there exists a negligible
function ν(n) satisfying

Pr[(x0, . . . , xq) ∈ badH | H ← Hn, (x0, . . . , xq)← A(1n, H)] ≤ ν(n) .

– For every polynomial q = q(n) there is a polynomial p = p(n) and an effi-
ciently computable u = u(n) such that, for every H ∈ Hn and (x0, . . . , xq)
∈
badH with x0
∈ {x1, . . . , xq}, we have:

Pr
K←Ku,n

[FK,H(x0) = R ∧ FK,H(x1) = · · · = FK,H(xq) = B] ≥ 1
p(n)

.

Fully Leakage-Resilient Signatures 101

We note that for the application to identity-based encryption [5,11] the bad sets
badH are required to be efficiently recognizable, but this is not required for our
application. In addition, we say that H is a public-coin admissible hash-function
ensemble, if it satisfies Definition 2.3 even when the algorithm A takes as input
also the internal randomness that was used by KeyGen(1n) for sampling the
function.

The work of Boneh and Boyen [5] shows how to construct admissible hash
functions from collision-resistant hash functions. Moreover, if the underlying
collision-resistant hash functions are public coin, then so are the resulting admis-
sible hash functions. As already mentioned in Section 2.1, public-coin
collision-resistant hash functions can be constructed rather easily from various
number-theoretic assumptions.

3 Modeling Leakage-Resilient Signature Schemes

A signature scheme is a triplet (KeyGen, Sign,Verify) of probabilistic polynomial-
time algorithms with syntax:

– (vk, sk)← KeyGen(1n) outputs a verification key and signing key.
– σ ← Signsk(m) signs a message m using the singing key sk.
– Verifyvk(m,σ) ∈ {0, 1} outputs a bit deciding wether σ is a valid signature

for m.

We require perfect correctness, which states that for any valid key pair (vk, sk)
output by KeyGen and any message m ∈ {0, 1}∗ we have Verifyvk(m, Signsk(m))
= 1.

A signature scheme is fully leakage-resilient (FLR) in the bounded-leakage
model if it is existentially unforgeable against an adversary that can obtain
both signatures on any message of her choice, and bounded leakage information
on all intermediate values used by the key-generation algorithm and the signer
throughout the lifetime of the system. To model this, we define a variable state
which includes all secret-state used by the system so far. Initially, we set state
to be the random-coins of the KeyGen algorithm (note that we do not need to
explicitly add sk to the state, since it can be easily computed from it by any
leakage function). On each signing query made by the adversary, we append
the random-coins of the signing algorithm to the state. The adversary can leak
arbitrary information about state as long as the amount is overall-bounded.

Definition 3.1 (FLR security — bounded leakage). A signature scheme
Π = (KeyGen, Sign,Verify) is λ-fully-leakage-resilient in the bounded-leakage
model if for any probabilistic polynomial-time adversary A it holds that the prob-
ability of the event Successλ-FLR

Π,A (n) is negligible in n, where this event is defined
via the following experiment:

1. Sample r← {0, 1}∗, compute (vk, sk) = KeyGen(1n; r), and set state = {r}.
2. The adversary A receives as input the pair (1n, vk), and can adaptively query

a signing oracle and a leakage oracle that are defined as follows:

102 E. Boyle, G. Segev, and D. Wichs

– Signing queries. The signing oracle receives as input a message mi,
samples ri ← {0, 1}∗, and then computes σi ← Signsk(mi; ri). It updates
state := state ∪ {ri} and outputs σi.

– Leakage queries. The leakage oracle receives as input a description of
an efficiently computable function fj : {0, 1}∗ → {0, 1}λj , and outputs
fj(state). We call λj the output length of the j-th leakage function.

3. The adversary A outputs a pair (m∗, σ∗).
4. Successλ-FLR

Π,A (n) denotes the event in which:
– Verifyvk(m

∗, σ∗) = 1.
– m∗ was not queried to the signing oracle.
– The sum of output lengths of all leakage functions is at most λ(n).

For the definition of security within the continual-leakage model, we refer the
reader to the full version of the paper.

4 R-Lossy Public-Key Encryption

In this section we introduce the notion of an R-lossy public-key encryption
scheme. Informally, such a scheme is a tag-based public-key encryption scheme
where the set of possible tags is partitioned into two subsets: injective tags, and
lossy tags. When a message is encrypted under an injective tag, the resulting
ciphertext can be correctly decrypted using the secret key. On the other hand,
when encrypted under a lossy tag, the ciphertext statistically hides the message.
The partitioning of the tags in defined by a binary relation R ⊆ K × T : the
key-generation algorithm receives as input an initialization value K ∈ K and
this partitions the set tags T so that t ∈ T is injective if and only if (K, t) ∈ R.
More, formally, we require that the relation R ⊆ K × T consists of a sequence
of efficiently (in n) recognizable sub-relations Rn ⊆ Kn × Tn.

The only computational requirement of an R-lossy public-key encryption
scheme is that the public key of the encryption scheme hides the initializa-
tion value K. That is, public keys produced by different initialization values are
computationally indistinguishable.

Definition 4.1 (R-lossy PKE). Let R ⊆ K × T be an efficiently computable
binary relation. An R-lossy public-key encryption scheme is a triplet of proba-
bilistic polynomial-time algorithms (KeyGen,Enc,Dec) such that:

1. Key generation: For any initialization value K ∈ Kn, the key-generation
algorithm KeyGen on input (1n,K) outputs a secret key sk and a public key
pk.

2. Decryption under injective tags: For any initialization value K ∈ Kn
and tag t ∈ Tn such that (K, t) ∈ Rn, and for any message m ∈ {0, 1}�(n),
it holds that

Pr
[
Dectsk(Enctpk(m)) = m

]
> 1− ν(n) ,

for some negligible function ν(n), where (sk, pk) ← KeyGen(1n,K), and the
probability is taken over the internal randomness of KeyGen, Enc and Dec.

Fully Leakage-Resilient Signatures 103

3. Lossiness under lossy tags: For any initialization value K ∈ Kn and tag
t ∈ Tn such that (K, t) /∈ Rn, for every pair (sk, pk) of keys produced by
KeyGen(1n,K), and for every two messages m0,m1 ∈ {0, 1}�(n), the distri-
butions Enctpk(m0) and Enctpk(m1) are statistically indistinguishable.

4. Indistinguishability of initialization values: For every sequence of pairs
{(Kn,K

′
n)}n∈N

such that Kn,K
′
n ∈ Kn, the two ensembles {pk : (sk, pk)

← KeyGen(1n,Kn)}n∈N and {pk : (sk, pk) ← KeyGen(1n,K ′
n)}n∈N are com-

putationally indistinguishable.

As with the other primitives that are used in our construction, we need to be
able to obliviously sample public keys in a way that is computationally indis-
tinguishable from those produced by KeyGen(1n, ·). Specifically, we require that
there exists a sequence of initialization values {Kn}n∈N such that the ensemble
{pk : (sk, pk)← KeyGen(1n,Kn)}n∈N is computationally indistinguishable from
the uniform distribution over {0, 1}∗. Note that by the indistinguishability of
initialization values property defined above, this in fact holds for every sequence
{Kn}n∈N.

For our constructions of fully leakage-resilient signature schemes we consider
two relations: the equality relation REQ, and the more general “bit-matching”
relation RBM that is defined below.
The relation REQ. The relation REQ is the equality relation for binary tags of
length τ(n) bits. That is, Kn = Tn = {0, 1}τ(n), and (K, t) ∈ REQ

n if and only if
K = t. An REQ-lossy encryption is just an all-but-one-lossy (ALBO) public-key
encryption scheme, a primitive discussed in the introduction. In this case there
is one injective tag, corresponding to the value of K used during initialization,
and all the other tags are lossy.
The relation RBM. The bit-matching relationRBM is a generalization of equality,
which allows for more complex partitions. For Kn = {0, 1,⊥}τ(n), Tn = {0, 1}τ(n)

define (K, t) ∈ RBM
n ⊆ Kn×Tn iff for every i ∈ {1, . . . , τ(n)} it holds that Ki = ti

or Ki = ⊥. That is, given some fixed initialization value K, the set of injective
tags t are exactly those whose bits match K in all positions i for which Ki
= ⊥.
Notice that, if K does not contain any ⊥ symbols, then there is a single injective
tag t = K and all other tags are lossy. Therefore RBM-lossy encryption is a strict
generalization of REQ-lossy encryption.

In our signature scheme construction, the RBM-lossy encryption will be used
in combination with an admissible hash function (discussed in Section 2.3). The
admissible hash function gives us a way to map messages to encryption tags such
that, with high probability over an appropriate distribution of K, all signing
queries map to lossy tags while the forgery maps to an injective tag.
Constructions. In the full version, we propose two constructions of RBM-lossy
public-key encryption schemes9. Our first construction is rather generic and is
based on any lossy public-key encryption scheme. In turn, this implies RBM-lossy
public-key encryption schemes can be based on a variety of number-theoretic
9 We note that rather straightforward variants of these constructions yield REQ-lossy

public-key encryption schemes.

104 E. Boyle, G. Segev, and D. Wichs

assumptions. Our second construction is based on a specific number-theoretic
assumption (the DDH assumption10) and is significantly more efficient than our
generic construction.

5 A Signature Scheme in the Bounded-Leakage Model

In this section we present our construction of a fully leakage-resilient signature
scheme in the bounded-leakage model (see Definition 3.1). We use the following
primitives in a generic manner:

– Let F = (KeyGenSPR,F) be a family of public-coin second-preimage resistant
functions Fs(·) : {0, 1}μ(n) → {0, 1}κ(n) for some κ(n) < μ(n) (see Section
2.1).

– Let H be a public-coin admissible hash function ensemble (see Section 2.3).
– Let E = (KeyGenRBM ,Enc,Dec) be an RBM-lossy public-key encryption sch-

eme (see Section 4).
– Let Π = (CRSGen,P,V) be a SNIWI argument system for the language

L = {(s, y, pk, t, C) : ∃x, ω st C = Enctpk(x;ω) and Fs(x) = y}

(see Section 2.2).

We assume that the distribution of public keys and common-reference strings
produced by the algorithms KeyGenRBM and CRSGen, respectively, are compu-
tationally indistinguishable from the uniform distribution over {0, 1}∗11. Define
the signature scheme S = (KeyGen, Sign,Verify):

– Key generation: On input 1n, the algorithm KeyGen samples a uniformly
distributed x ← {0, 1}μ(n), a function description s ← KeyGenSPR(1n) from
the SPR family, and computes y = Fs(x). Then, it samples a description of
an admissible hash function H ← Hn, and samples pk ← {0, 1}∗ and crs ←
{0, 1}∗ to be used as a public key for the RBM-lossy encryption scheme and
a common-reference string for the SNIWI argument system, respectively. It
outputs the signing key sk = x and the verification key vk = (s, y,H, pk, crs).

– Signing: On input message m, the algorithm Sign computes an encryption
C = Enc

H(m)
pk (x;ω) of x under the tag H(m) using fresh randomness ω.

Then, it invokes the prover of the argument system to obtain a proof π ←
P(crs, (s, y, pk,H(m), C), (x, ω)), and outputs the signature (C, π).

– Verifying: On input message m and signature σ = (C, π), the algorithm
Verify invokes the verifier of the argument system and outputs 1 if and only
if V(crs, (s, y, pk,H(m), C), π) = 1.

10 Our construction easily generalizes to rely on the d-Linear assumption for any d ≥ 1.
11 More generally, we just require “oblivious”sampling, but we will assume uniform

distribution for simplicity. See Appendix 2.

Fully Leakage-Resilient Signatures 105

Theorem 5.1. Assuming the existence of the schemes F , H, E and Π with
properties described above, the scheme S = (KeyGen, Sign,Verify) is λ-fully-
leakage-resilient in the bounded-leakage model for any λ = μ(n)−κ(n)−ω(logn).
The relative leakage is given by λ/|sk| ≈ (1 − κ(n)/μ(n)) = (1 − o(1)) for an
appropriate choice of κ(n) = o(μ(n)).

Due to space limitations the proof of Theorem 5.1 is left to the full version of
the paper, and we only give a short proof outline here.

Proof outline. Suppose there is an adversary who breaks the security of the
scheme. We can then use the adversary to break the security of the SPR func-
tion as follows. Choose a random crs for the SNIWI argument honestly, and a
(pk, sk) pair for RBM-lossy public-key encryption using an initialization value K
sampled from an appropriate distribution (dictated by the admissible hash func-
tion, depending on the number of signing queries the adversary makes). Given
a random challenge x from the SPR challenger, we embed y = F(x), crs, pk into
the verification key and then run the forging adversary, using x to answer all
its signing/leakage queries. If the adversary’s forgery is on a message m∗ that
corresponds to a injective tag of the encryption scheme, then we use sk to de-
crypt a (hopefully second preimage) x′ from the adversary’s forged signature.
We argue that, with polynomial probability, we do recover a second preimage
x′
= x, using the following steps:

– Using the partitioning argument of Boneh-Boyen [5], there is a noticeable
probability that the all of the adversary’s signing queries correspond to
“lossy” tags while the forgery corresponds to an “injective” tag. Here we
rely on the property that the initialization value K is hidden by the public-
key. We call an execution where the above occurs a “good execution.”

– In a good execution, the adversary’s forgery can be decrypted to a valid
preimage x′ ∈ F−1(y), by the soundness of the SNIWI argument.

– Information theoretically, the probability of x′ = x in a good execution is
negligible, since the adversary just doesn’t have enough information about x.
That is, the signature-query responses are independent of x, and the leakage-
query responses and the verification key y are too short. This is formalized
with an entropy argument.

6 Concluding Remarks and Open Problems

Deterministic leakage-resilient signatures. An alternative approach for construc-
ting fully leakage-resilient signature schemes is constructing a signature scheme
that is resilient to leakage from the signing key, and has a deterministic signing
algorithm (this is indeed the idea underlying the fully leakage-resilient one-time
signature schemes of Katz and Vaikuntanathan [26]). In general, the signing
algorithm of any signature scheme can be made deterministic by using as its
random coins the output of a pseudorandom function applied to the message.
This requires, however, that the signing key will include also the key of the
pseudorandom function, and therefore it is not clear that such a transformation
can preserve leakage resilience.

106 E. Boyle, G. Segev, and D. Wichs

Bounded leakage vs. noisy leakage. In some scenarios it is not always possible
to assume that the total amount of leakage is upper bounded by λ bits. This
motivated the approach of Naor and Segev [30] (later refined by Dodis et al.
[13, Definition 7.2]) who considered the more general notion of noisy leakage,
in which the leakage is not necessarily of bounded length, but is guaranteed to
reduce the average min-entropy of the secret key by at most λ. Although our
schemes are secure with respect to bounded leakage, they are in fact insecure
with respect to noisy leakage. This seems to be the first separation between
bounded leakage and noisy leakage, and this settles an open problem posed by
Naor and Segev.

Specifically, in our schemes the public key for theRBM-lossy encryption scheme
is sampled obliviously as a uniformly random string pk ∈ {0, 1}∗. For our spe-
cific constructions based on the DDH or Linear assumptions (see full version),
this can be easily seen to imply that with an overwhelming probability all pos-
sible tags for the RBM-lossy scheme are lossy. An analysis almost identical to
that presented in the security proofs of our schemes then shows that a leakage
function that simply outputs a signature on any message m∗ is a valid leak-
age function with respect to noisy leakage (yet clearly invalid with respect to
bounded leakage).

Modeling hard-to-invert leakage for signature schemes. In the setting of public-
key encryption a more general model of leakage was formalized by only assuming
that the decryption key cannot be efficiently recovered given the leakage (see
[15,12,20,8] and the references therein). For signature schemes, however, it is not
clear how to meaningfully formalize such an attack model. It would be interesting
to formalize hard-to-invert leakage for signature schemes (especially when any
intermediate value may leak, and not only the signing key), and to construct
schemes that are leakage resilient in such a model.

Acknowledgements

We thank Moni Naor, Brent Waters, and the Eurocrypt ’11 referees for many
useful comments on this work.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key en-
cryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

Fully Leakage-Resilient Signatures 107

4. Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)

5. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

7. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

8. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability (or: Quadratic Residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010)

9. Brakerski, Z., Tauman Kalai, Y.: A framework for efficient signatures, ring sig-
natures and identity based encryption in the standard model. Cryptology ePrint
Archive, Report 2010/086 (2010)

10. Brakerski, Z., Tauman Kalai, Y., Katz, J., Vaikuntanathan, V.: Cryptography re-
silient to continual memory leakage. In: Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science, pp. 501–510 (2010)

11. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

12. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

13. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science, pp. 511–520 (2010)

14. Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. Cryptology ePrint Archive, Report 2010/154
(2010)

15. Dodis, Y., Tauman Kalai, Y., Lovett, S.: On cryptography with auxiliary input.
In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
pp. 621–630 (2009)

16. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

17. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

18. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

19. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

20. Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness
of the learning with errors assumption. In: Proceedings of the 1st Symposium on
Innovations in Computer Science, pp. 230–240 (2010)

108 E. Boyle, G. Segev, and D. Wichs

21. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

22. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

23. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009)

24. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash
functions need secret coins? In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 92–105. Springer, Heidelberg (2004)

25. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

26. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

27. Krawczyk, H., Rabin, T.: Chameleon signatures. In: Proceedings of the Network
and Distributed System Security Symposium (NDSS) (2000)

28. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives prov-
ably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 382–400. Springer, Heidelberg (2010)

29. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual
leakage on memory and computation (2010) (manuscript)

30. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

31. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, pp. 33–43 (1989)

32. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
pp. 387–394 (1990)

33. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

A Formal Study of Power Variability Issues and
Side-Channel Attacks for Nanoscale Devices

Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon,
Dina Kamel, and Denis Flandre

UCL Crypto Group, Université catholique de Louvain,
Place du Levant 3, B-1348, Louvain-la-Neuve, Belgium

Abstract. Variability is a central issue in deep submicron technologies,
in which it becomes increasingly difficult to produce two chips with the
same behavior. While the impact of variability is well understood from
the microelectronic point of view, very few works investigated its signif-
icance for cryptographic implementations. This is an important concern
as 65-nanometer and smaller technologies are soon going to equip an
increasing number of security-enabled devices. Based on measurements
performed on 20 prototype chips of an AES S-box, this paper provides
the first comprehensive treatment of variability issues for side-channel
attacks. We show that technology scaling implies important changes in
terms of physical security. First, common leakage models (e.g. based on
the Hamming weight of the manipulated data) are no longer valid as the
size of transistors shrinks, even for standard CMOS circuits. This impacts
both the evaluation of hardware countermeasures and formal works as-
suming that independent computations lead to independent leakage. Sec-
ond, we discuss the consequences of variability for profiled side-channel
attacks. We study the extend to which a leakage model that is carefully
profiled for one device can lead to successful attacks against another
device. We also define the perceived information to quantify this con-
text, which generalizes the notion of mutual information with possibly
degraded leakage models. Our results exhibit that existing side-channel
attacks are not perfectly suited to this new context. They constitute an
important step in better understanding the challenges raised by future
technologies for the theory and practice of leakage resilient cryptography.

Introduction

Side-channel attacks are one of the most important threats against modern cryp-
tographic implementations. Since the apparition of power [11] and electromag-
netic analysis [6,21], the design and evaluation of countermeasures allowing to
withstand such physical attacks has become an increasingly important research
topic. The security assessment of commercial products (such as smart cards)
has also implied major developments in the industry of secure hardware de-
vices. Various solutions purposed to increase the security against side-channel
attacks have been proposed, at different abstraction levels. They range from the
modification of the hardware [31] to generic techniques using the formalism of

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 109–128, 2011.
c© International Association for Cryptologic Research 2011

110 M. Renauld et al.

modern cryptography [20]. Significant progresses have also been made in better
understanding the statistical aspects of power analysis and its connection with
countermeasures such as masking and hiding, as detailed in the DPA book [14].

By contrast to classical cryptanalyis, that targets abstract mathematical ob-
jects, side-channel cryptanalysis is implementation-specific. The gain of such a
specialization is a significantly increased power. Cryptographic algorithms that
are assumed (or proven) secure against classical adversaries, even with intensive
time and memory complexities, often turn out to be completely insecure against
physical attacks, if implemented in an unprotected device. As a consequence,
technological dependencies are at the core of both the theory and practice of
side-channel analysis. On the one hand, solutions to attack cryptographic im-
plementations are most efficient if they can exploit a good understanding of the
underlying physics. On the other hand, solutions to (provably) ensure the secu-
rity of leaking devices need to rely on assumptions that correctly capture the
peculiarities of actual hardware. In this paper, we tackle this issue of technolog-
ical dependency and show that some of the common assumptions used in power
analysis attacks are not going to hold anymore in future cryptographic hardware.

In particular, the scaling of the CMOS technology, that is the basis of most
present microelectronic devices, is a permanent trend since the apparition of
integrated circuits in the late 1950s. Shrinking transistors is generally motivated
by the need of increased performances and reduced energy per operation. But
when reaching the nanometer scale, two major detrimental side effects also arise.
First, the relative importance of so-called static currents increases (i.e. energy is
consumed, even if no computation is performed) [25]. Second, device variability
becomes important (i.e. it becomes increasingly difficult to engineer identical
chips) [1,17]. As a consequence, the goal of this paper is to investigate the impact
of these effects, with a focus on power variability, from the point of view of side-
channel attacks. More precisely, our contributions are as follows.

1. A classical tool in DPA is to use Pearson’s correlation coefficient in order to
compare key-dependent leakage predictions with actual measurements per-
formed on a chip [2]. These (so-called) correlation attacks are most efficient
if a good leakage model is available for the predictions. And a very common
solution is to use the Hamming weight (or distance) of the manipulated data
for this purpose. We show that such models are not accurate anymore for
65-nanometer and smaller technologies. Hence, their use may lead to over-
estimate the security of a (protected or unprotected) implementation.

2. Recent works in the area of leakage resilient cryptography frequently assume
that independent computations lead to independent leakage. We put forward
that this assumption is not fulfilled anymore for 65-nanometer technologies.
In particular, we show that linear leakage models that only depend on the
input/output bits of an S-box are not able to capture parasitical effects
occurring during the computations. We then discuss the consequences of
this observation and highlight that they are different for works such as [5],
which assume independence at the gate level, and works such as [4], which
assume independence at a larger scale, e.g. between functional blocks.

A Formal Study of Power Variability Issues and Side-Channel Attacks 111

3. Profiled attacks, e.g. using templates [3] or stochastic models [27], are an
important class of side-channel attacks in which an adversary first charac-
terizes a target device (in order to obtain a precise knowledge of the leakage
probability distributions), and then uses this knowledge in a very powerful
online phase. In this context, it is important to know whether a profile ob-
tained from one device can be used against other similar devices. We discuss
this question in light of the increased variability of recent technologies. For
this purpose, we define the perceived information, which is a generalization
of the mutual information that allows quantifying degraded leakage models.

4. Finally, we provide a careful empirical evaluation of both the information
leakage and the success rates of various implementations and attacks. Our
results are based on a set of 20 implementations of the same AES S-box in
a 65-nanometer low-power CMOS technology. We use these experiments to
discuss the impact of the power supply on the information leakage, and the
selection of meaningful time samples in the traces. We also take advantage
of this case study to compare real measurement traces with simulated ones.

Summarizing, while an important literature covers the impact of nanoscale tech-
nologies from a microelectronic point of view, e.g. [7], only a few works consider
its consequences in terms of security. To the best of the authors’ knowledge, the
simulated experiments in [13] are the only available reference. In this paper, we
extend these preliminary investigations, and show that technology scaling implies
new challenges for the theory and practice of side-channel attacks, that are not
completely solved by present statistical tools, proof techniques and assumptions.

1 Preliminaries

1.1 Target Implementation

Our analysis is based on simulated and actual power traces obtained from the
execution of an AES Rijndael S-box, full-custom designed in a low power 65-
nanometer CMOS technology, and measured under two different supply voltages:
1.2V and 0.5V. We used an area-optimized S-box architecture based on compos-
ite field arithmetic, described in [16], of which the design is detailed in [9].

Measurements were performed on 20 prototype chips implementing this S-
box, each of them made of 1,530 transistors in static CMOS logic style, with
a maximum logic depth of 22. The S-box delay is 3 ns at 1.2V supply voltage,
meaning a maximum operating frequency of 200 MHz (taking a security margin
of 2 ns). This maximum clock frequency drops down below 10 MHz when de-
creasing the supply to 0.5V. In our experiments, we monitored the voltage drop
on a resistor introduced in the supply circuit of the chips, using a high sampling
rate oscilloscope (1 Gsample/second), while running the chip at 2 MHz (moti-
vated by interface constraints of our prototype board). Post-layout simulations
were performed using Spice models provided by the same industrial foundry as
for actual measurements, for the chosen technology node.

112 M. Renauld et al.

1.2 Notations

Let a power trace l be the output of a leakage function L. In our experiments, the
leakage function will essentially depend on three input arguments: X,C and N .
The (discrete) random variable X denotes the input value of the S-box under
investigation, the (discrete) random variable C denotes the index of the chip
under investigation, the (continuous) random variable N denotes the noise in
the measurements. As a result, we denote the random variable representing the
leakage traces as L(., ., .), where the arguments are written as capital letters if
they are variable, and as small caps if they are fixed. For example, l(x, c, n) is
a single measurement trace, corresponding to input x and chip c; L(x, c,N) is a
random variable representing the noisy traces corresponding to input x and chip
c. We also denote the tth time sample in a leakage trace as Lt(x, c, n). Finally, it
is sometimes convenient to consider noise-free mean traces, that are defined as:

L(X,C) = E
n
L(X,C, n),

where E denotes the mean operator, which is to be replaced by a sample mean
operator (denoted as Ê) when applied to actual measurement traces. Simulation
environments such as Spice do not directly allow parametrizing the noise level
in the power traces. Therefore, they provide noise-free traces by default. In this
case, and in order to analyze the impact of noise on the security of our AES S-
box, our evaluations considered an additive Gaussian noise (which is a reasonable
starting point for the simulated analysis of side-channel attacks). We denote with
N (l|μ, σ2) the probability density function (pdf) of a normal random variable L
with mean μ, variance σ2

n and evaluated on input x. It yields:

Lt(X,C,N) = Lsimt (X,C) + N,

where N has mean 0 and variance σ2
n. When considering multiple time samples

in the traces (i.e. Lt1:td(X,C,N)), the mean and variance are replaced by a mean
vector and a covariance matrix. Our simulated evaluations assume the same noise
distribution for all inputs, chips and time samples. By contrast, when considering
actual power traces, the noise is directly present in the measurements obtained
from the oscilloscope. In this case, our evaluations characterized its distribution,
in order to take possible correlation between different time samples into account.

As an illustration, Figure 9 in Appendix A shows noise-free power traces
corresponding to 4 different inputs, measured for 10 different chips, under 1.2V
and 0.5V supply voltages, obtained from simulations and actual measurements.

1.3 Noise Distribution

The preliminary analysis of a set of leakage traces usually starts with the char-
acterization of the noise. For this purpose, we first applied the filtering described
in Appendix B, in order to remove some parasitic frequencies from the traces.
Then, we tested the distribution of the residual noise. In recent works on side-
channel attacks, this distribution is usually assumed to be normal, with mean

A Formal Study of Power Variability Issues and Side-Channel Attacks 113

zero and variance σ2
n [14]. Using a normality test like the Pearson’s chi-square

test telled us that, formally, the residual noise does not exactly follow a normal
distribution. However, the ratio between the entropy of the estimated normal
distribution and its Kullback-Leibler divergence with the actual distribution is
smaller than 0.5%, meaning that the residual noise distribution is very close to
Gaussian. As will be seen in the following section, this assumption is also vali-
dated from a side-channel point of view, when comparing the information leakage
computed with the actual noise distribution and with a Gaussian estimate.

1.4 Physical Variability

The power consumption traces of an electronic device can be divided into a static
part and a dynamic part. These parts can be informally identified by visual
inspection: the static power corresponds to the constant parts of the traces, the
dynamic power corresponds to their variable parts. Dynamic power is usually the
most useful in side-channel attacks, because its strong input-dependency can be
used to accumulate information about a secret value manipulated by a device.
As discussed in [10], physical variability of the dynamic energy in nanoscale
devices can be explained by capacitance fluctuations that are magnified when the
computation delays increase, because of the random glitches that are generated
by variability-induced unbalanced logic paths. In the following, we will mainly
be interested in two parameters that influence the physical variability.

First, the supply voltage can be scaled down, resulting in a reduced dynamic
power at the cost of an increased delay, hence implying a higher variability.
Second, different time samples can be selected in the traces. Because of the
impact of the computation delays on the random glitches in these traces, the
samples corresponding to the beginning of the computations have less variability
than the ones corresponding to the end of the computations. These parameters
can be illustrated by looking at the variance of the power traces, over the input
plaintexts and chips, in Figure 1. One can see that the variance over the chips
(caused by physical variability) increases when moving from 1.2V to 0.5V supply
voltage. In addition, for the 0.5 supply, i.e. when variability becomes significant,
this variance is quite localized in the late time samples. Note that this effect is
particularly visible when considering the actual measurements.

1.5 Dimensionality Reduction

One difficult task when performing a side-channel attack is to select the samples
of interest in the traces. Many heuristics have been proposed for this purpose. A
straightforward solution is to apply the attacks to all the samples in the traces
and to select the samples where they perform best. This is possible, e.g. when ap-
plying Kocher’s DPA [11], correlation attacks [2] or template attacks [3] (as long
as the templates are only built for a reduced number of samples). Alternatively,
it is also possible to use dimensionality reduction techniques such as Principal
Component Analysis (PCA) or Linear Discriminant Analysis (LDA) [29]. These
are linear transforms that can be used to project the traces in a subspace of small

114 M. Renauld et al.

Fig. 1. Variances of the power traces over the input plaintexts and chips. Left: 1.2V
power supply, Right: 0.5V power supply / Up: simulations, Down: actual measurements.

dimensionality, with the goal of “summarizing” the useful information in a few
samples. PCA uses the inter-class variance as optimization criteria, while LDA
uses the ratio between inter- and intra-class variance. Figure 11 in Appendix
C plots the eigenvectors corresponding to the principal component produced by
PCA and LDA, for simulated traces. It shows that physical variability makes the
application of PCA irrelevant, as it cannot distinguish between inter-plaintext
and inter-chip variances. By contrast, LDA does a good job in this case, and
only selects early time samples in the traces, where inter-plaintext variance is
large and inter-chip variance is small. In order to simplify the interpretation of
the results, our analyzes in the following sections will reduce the dimensionality
by selecting one to three meaningful time samples, with small, medium and large
variability (examples are give in the upper left part of Figure 9 in Appendix A).

2 Information Theoretic Analysis

The goal of this paper is to investigate how inter-chip variability affects the ap-
plication of side-channel attacks. For this purpose, we start with an information
theoretic analysis. As detailed in [28], it allows to quantify the security of an
implementation against an adversary who can perfectly profile the leakage pdf.
In our context, we will consider the information between a secret S-box input X
and the corresponding leakage L. We analyzed three types of leakage. First, we
used simulations L1

t = Lsimt (X,C) + N . Second, we used actual measurements
L2
t = Lt(X,C,N). Third, we considered a hybrid situation combining the average

traces obtained from the oscilloscope with simulated noise: L3
t = Lt(X,C) +N .

A Formal Study of Power Variability Issues and Side-Channel Attacks 115

Interestingly, the presence of inter-chip variability implies new concerns re-
garding the profiling of a leakage pdf. In our 65-nanometer technology, two pieces
of silicon implementing the same functionality can give rise to different power
consumptions. And this variability can even occur intra-chip, e.g. two S-boxes
within the same implementation of the AES can have different leakage models.
As a consequence, this section will focus on two main scenarios. In the first one,
the profiling and attack are performed on the same chip. This scenario reflects
the classical assumption that two chips produced from the same design leak in a
similar way. It corresponds to a worst case situation in which all the information
leaked by an implementation can be exploited by the adversary. In the second
(more realistic) one, different chips are used for profiling and attacking. We study
the possibility of building templates from a set of n chips and to attack a n+1th

chip, in order to infer the effect of process variability. Doing this, we introduce a
new notion of “perceived information”, which allows capturing the information
loss that is due to the degradation of an adversary’s templates.

This section will also consider two additional questions. First, we evaluate the
assumption of “independent leakage” that is frequently required by formal secu-
rity analyzes in physically observable cryptography, e.g. [4,5]. Then, we discuss
the notion of model soundness and its relation with the scenarios of standard
DPA attacks [2,3,11,15] and algebraic side-channel attacks [23,24,26].

2.1 Worst Case Scenario: Profiling and Attacking the Same Chip

Analyzing the information leakage of a cryptographic implementation first re-
quires to choose a profiling technique, in order to estimate the leakage pdf. In this
section, we use the template attacks introduced in [3], which are the most generic
solution for this purpose1. Template attacks essentially work in two steps. In a
first profiling phase, the adversary builds 256 Gaussian templates, denoted as
P̂rmodel[L|x] = N (l|μ̂x,c,N , σ̂2

x,c,N), corresponding to the 256 maximum likelihood
estimates of the conditional density functions Prchip[L|x]. Then, in a second on-
line phase, he uses these templates to recover information from a leaking chip,
for which he will select the maximum likelihood input candidate:

x̃ = argmax
x∗

P̂rmodel[x∗|l]. (1)

The information theoretic analysis introduced in [28] consists in evaluating the
posterior probability of different inputs and computing the mutual information:

MI(X ;L) = H[X]−
∑
x∈X

Pr[x]
∑
l∈L

Prchip[l|x]. log2 Prchip[x|l], (2)

where Prchip[x|l] is derived from Prchip[l|x] using Bayes’ formula and X ,L are
the sets of all possible input values and leakage. In practice, the real leakage
distribution is a priori unknown, both for adversaries and evaluators. Hence, the

1 An alternative is to use stochastic models [27] and is discussed later in the paper.

116 M. Renauld et al.

probability of the leakage l conditioned on input x is replaced by a sample esti-
mate P̂rchip[l|x] (i.e. typically, one divided by the number of measured traces).
And the probability of the input x conditioned on leakage l is replaced by the
adversary’s model estimate P̂rmodel[l|x]. In general, one assumes that the adver-
sary’s model is reasonably close to the actual chip leakages, which allows to for-
mally compute the mutual information. As demonstrated in [30] in the context of
the masking countermeasure, the mutual information provides an excellent indi-
cator of the template adversary’s success rate. However, if the adversary’s model
degrades for some reason, and differs from the actual chip leakage distribution,
the mutual information cannot be computed anymore. In order to capture such
situations, we introduce the following definition of perceived information:

P̂I(X ;L) = H[X]−
∑
x∈X

Pr[x]
∑
l∈L

P̂rchip[l|x]. log2 P̂rmodel[x|l]. (3)

When profiling and attacking the same chip with sufficiently accurate templates,
P̂rchip[l|x] and P̂rmodel[l|x] are the same, and the perceived information reverts to
the mutual information. From a side-channel point of view, the intuitive meaning
of the perceived information is close to the one of mutual information: it captures
the information about a latent variable X obtained when observing leakages L,
generated according to a density Prchip[L|x], and interpreted with the model
P̂rmodel[L|x]. This implies that the perceived information is lower or equal to the
mutual information, and may have a negative value, meaning that the leakage is
misinterpreted by the adversary’s model. In this case, the side-channel attacks do
not converge towards their correct result (i.e. they don’t output the correct key).
The perceived information can also decrease with measurement noise. Such a
counterintuitive behavior will be observed in the next sections: less measurement
noise may increase the misinterpretations of the model, as the probability of the
correct event P̂rmodel[x|l] will be closer to zero in this case. Note finally that, in
the case of simulations, the sum over the leakages l, in Equations (2) and (3),
becomes an integral, as an analytical description of the pdf is available.

The results of our analysis for the worst case scenario where we profile and
attack the same chip are displayed in Figure 2 (averaged over 20 chips), with
models using 1, 2 or 3 samples (denoted as 1D, 2D and 3D in the plots). They
do not exhibit deviations from previous information theoretic analyzes (e.g. the
perceived information is always positive). They also confirm the intuition that
reducing the power supply reduces the information leakage, and that higher
dimension leakage provides more information to the adversary [22]. In fact, the
most interesting observations in these experiments relate to simulations:

1. Simulated noise. As witnessed by the right part of the figure, average mea-
surements plus simulated noise (i.e. L3

t) provide an excellent approximation
of actual measurements with real noise (i.e. L2

t), from an information leakage
point of view. This is in line with our observation of Section 1.3.

2. Simulated traces. As witnessed by the differences between the left and right
parts of the figure, the information leakage of simulated traces reasonably
corresponds to the one of actual traces at 1.2V, and exhibit more deviations

A Formal Study of Power Variability Issues and Side-Channel Attacks 117

Fig. 2. Mutual information between an input X and corresponding leakage L in func-
tion of the noise std. deviation, for 1D, 2D and 3D leakages. Left: simulations. Right
curves: measurements + simulated noise. Right stars: measurements.

at 0.5V (i.e. when variability increases). This can be explained by the diffi-
culty to capture all physical effects in simulation models (including the ones
related to our measurement setup). While the intuitions given by simula-
tions are sound (e.g. decreasing the supply voltage reduces the information
leakage) the numerical values they provide need to be considered with care.

In the rest of the paper, we will systematically consider averaged measurements
plus simulated noise in our evaluations, since this behaves very similarly to the
actual measurements while allowing modifications in noise levels2.

2.2 A Note about the “Independent Leakage” Assumption

An important assumption found in several formal works in the area of leakage
resilient cryptography is that independent computations give rise to independent
leakage. Our experiments suggest that such an assumption may not hold in prac-
tice. One first reason for this, discussed in [18], is cross-talk: the current flowing
in one wire of a bus may significantly influence the one of adjacent wires, both in
terms of delays and power consumption. More generally, the coupling between
any locally connected parts of an integrated circuit, like our S-box implementa-
tion, has an important impact in this respect. For example, the leakage traces
of different chips in Figure 9 are significantly different. The main cause of these
different shapes are glitches, i.e. random transitions at the gates inputs/outputs
that are caused by signals arriving at different times. As these arrival times de-
pend on all the paths of the signals before they reach a gate, glitches are a clear
expression of leakage dependencies between different parts of a circuit.

In general, it is difficult to quantify the exact impact of each type of coupling
that can occur within an integrated circuit. This is because only the combination
of all these effects can be observed in a measurement trace. However, it is possible
2 For each experiment, we additionally checked that simulated noise did not introduce

any significant deviation from the real measurement noise, as in Figure 2.

118 M. Renauld et al.

to show that simple models that are linear combinations of the S-box input or
output bits are not able to capture the full complexity of the leakage samples in
our traces. The stochastic models introduced by Schindler et al. [27] are a very
useful tool to quantify this claim. The principle of stochastic models is to perform
a regression in order to find the function L̂t =

∑
αi ·gi(x) that will best approach

the actual leakage function, with [g1(x), g2(x), . . . , gN(x)] representing the basis
used in the regression. If one uses the S-box output bits as base vectors, the
approximated function will be linear. And by adding quadratic, cubic, . . . terms
in the basis, it is possible to refine the approximation. Eventually, a stochastic
model using all possible terms of degree equal to or smaller than 8 has enough
degrees of freedom to assign an independent value to the leakage of each S-box
input, i.e. it is strictly equivalent to the exhaustive construction of 256 templates.

Note that, when evaluating the information leakage with a stochastic model
using small bases, the model used by the adversary P̂rmodel[L|x] may not any-
more correspond to the actual leakage pdf P̂rchip[L|x]. This happens, e.g. if the
stochastic model is not able to capture all the leakage dependencies in the traces.

The left part of Figure 3 plots the information leakage corresponding to differ-
ent stochastic models. For low noise standard deviations and low degree bases, it
shows that the stochastic models are not accurate, as the perceived information
decreases below zero. The figure also exhibits that the impact of adding terms
in the basis varies with the time samples. Again, the intuitive meaning of the
non linear terms in the basis is not easy to give, as they relate to various phys-
ical effects. As illustrated in the right part of Figure 3, a combinatorial circuit
connects several gates and any intermediate value may be used as an additional
base vector. But our experiments at least show that, for any time sample in
the traces, even late ones that are mainly influenced by the S-box output bits,
various features cannot be predicted by a linear combination of those bits.

These observations have important consequences for formal works in the area
of physically observable cryptography. First, they contradict the assumption in
[5], where the security proof requires that different gates generate independent

Fig. 3. Left: mutual information between an input X and corresponding leakage L, in
function of the noise, obtained using stochastic models with bases containing functions
of various degrees of the S-box output bits (1.2V supply). Right: gates combination.

A Formal Study of Power Variability Issues and Side-Channel Attacks 119

leakage. In general, it is unlikely that this condition can hold for locally connected
parts of a circuit. The integration of coupling effects (e.g. leakage functions with
quadratic, cubic, . . . terms) in such analyzes is an interesting scope for further
research. More theoretically, our experiments suggest that the assumption in
[4,19] may not always hold either. These works assume independence at a higher
abstraction level, e.g. by requiring that two PRGs lead to independent leakage.
In view of the importance of coupling in deep submicron technologies, fulfilling
this requirement would at least require to ensure a sufficient (time or space)
distance between their executions, so that local dependencies become negligible.

2.3 Realistic Scenario: Profiling and Attacking Different Chips

As inter-chip variability increases in recent CMOS technologies, the worst-case
analysis in the previous section no longer corresponds to an actual attack sce-
nario. This is because the templates profiled for one implementation may not
be optimal anymore for attacking other implementations. As a consequence, we
now concentrate on a more realistic situation, where one profiles and attacks
different chips. The success rate of the side-channel key recovery will then es-
sentially depend on the extent to which the templates built during profiling are
sufficiently close to the actual power consumption of the target implementation.
Again, this can be measured with the perceived information. But in order to
build sound leakage models P̂rmodel[L|x], we first need to improve the profiling,
in order to take the process variability into account. For this purpose, a natural
approach is to extend the template profiling as illustrated in Figure 4. That
is, classical template attacks estimate the conditional leakage distributions with
P̂rmodel[L|x] = N (l|μ̂x,c,N , σ̂2

x,c,N), where μ̂x,c,N (resp. σ̂2
x,c,N) denotes the sam-

ple mean (resp. variance) of the leakage variable, for a fixed plaintext x, chip c
and a random noise N . In order to take the inter-chip variability into account,
one can simply accumulate these sample means and variances, considering mul-
tiple chips rather than a single one. This means using the following estimates:

P̂rmodel[L|x] = N (l|μ̂x,C,N , σ̂2
x,C,N),

Fig. 4. Example of a template built from 1 chip (top) and 4 chips (bottom)

120 M. Renauld et al.

where σ̂2
x,C,N = σ̂2

x,c,N + σ̂2
x,C,0 when (additive) simulated noise is used for N .

The left part of figure 5 shows the information leakage of different templates,
obtained using different sets of profiling chips. It shows that variability has im-
portant consequences for the application of side-channel attacks. First, we see
that profiling a large set of chips allows avoiding situations in which the per-
ceived entropy is negative (see, e.g. the “10 vs. 1” curve). But this is at the cost
of a reduced information leakage: by inferring the inter-chip variability directly
into the templates, one also obtains models that are less accurate for any single
chip. This can be observed by the significantly higher information curve of the
worst case scenario (denoted as “1 vs. 1 (same chip)”). Second, the right part
of the figure illustrates the effect of the selected time sample on the attack: the
information decreases both when the input variability decreases (time sample 75
to 110) and when the chip variability increases (time sample 75 to 300).

Fig. 5. Left: information theoretic analysis for various sets of learning chips (1.2V
supply). Right: information theoretic analysis for various time samples (0.5V supply).

It is essential to properly understand the meaning of these different curves.
What they essentially show is that modeling inter-chip variability with a straight-
forward extension of template attacks (as we did in this section) leads to signifi-
cant information losses. Hence, it underlines the need to develop new side-channel
distinguishers, that can better cope with such situations. One possible solution,
discussed in the next section, is to use non-profiled distinguishers and to perform
model estimation “on-the-fly”, while performing the attacks.

Another important remark is that these experiments do not reduce the rele-
vance of the worst case curve in security evaluations: perfectly profiling one chip
and evaluating the perceived information in this context (i.e. the mutual infor-
mation), remains useful to determine the security limits of an implementation.
From a cryptographic designer point of view, the good news is that technology
scaling will generally make this limit harder to reach for actual adversaries.

2.4 Model Soundness versus DPA Soundness

The previous section suggests that inter-chip variability makes the building of
accurate templates a challenging task. There exist cases in which the adversary’s

A Formal Study of Power Variability Issues and Side-Channel Attacks 121

leakage model is not even sound, in the sense that it leads to negative perceived
information values. Following [28], a leakage model is sound if the asymptotic
success rate of a Bayesian adversary exploiting it in order to recover a secret
target value equals one. In our present case study, the model is sound if all
inputs x can be recovered thanks to their corresponding leakage.

This definition of soundness is very strict: a single inversion in the templates
(e.g. μ̂xi,C,N < μ̂xj ,C,N when μxi,C,N > μxj ,C,N) is enough for a model not
to be sound. However, it is of particular interest for the application of algebraic
side-channel attacks [23,24,26], in which errors in the leakage information usually
makes the solving of the system of equations containing the secret key impossible.
As a consequence, we now discuss solutions to obtain sound leakage models.

For this purpose, we use the notion of key class. That is, in the previous
section, we always considered leakage models built for all the 256 possible S-
box inputs x. However, it is also possible to build less informative models, by
considering a lower number of templates. Formally, we define a function δ : X →
S that maps each input value x to a key class s = δ(x). The number of key
classes can be equal (in the case of an identity mapping δ(x) = x) or lower than
the number of possible inputs: |S| ≤ |X |. The mutual information between a
mapping variable S = δ(X) and an input variable X , is defined as:

I(X ;S) = H[S]−H[S|X] = H[S].

Given a key class variable S, it is then possible to check the soundness of the
corresponding leakage model with the conditional entropy matrix defined in [28]:

Ĥs,s∗ = −
∑
l∈L

P̂rchip[l|s] log2 P̂rmodel[s∗|l],

=

⎛⎜⎜⎝
ĥ1,1 ĥ1,2 ... ĥ1,|S|
ĥ2,2 ĥ2,2 ... ĥ2,|S|
...

ĥ|S|,1 ĥ|S|,2 ... ĥ|S|,|S|

⎞⎟⎟⎠ ,

where s and s∗ respectively denote the correct key class and a key class candi-
date. The model is sound if and only if the minimum value for each line of the
matrix is the diagonal value ĥi,i. Having defined these tools, we can study the
tradeoff between the informativeness of a key class I(X ;S) and the soundness
of the corresponding leakage model P̂rmodel[L|s]. For this purpose, we considered
consecutive key classes with |S| = 256, 255, . . .1, with the mapping function δ
grouping close leakages, and the templates built from a set of 5 chips, as illus-
trated in the left part of Figure 6. The right part of the figure then shows how
the informativeness and soundness of these successive key classes evolves with
the error probability of the template attack that we define as:

Prerror = Pr[argmax
s∗

P̂rmodel[s∗|l]
= s]. (4)

It illustrates that it is possible to build a key class with 6 possible values for
which the model P̂rmodel[L|s] is sound. Such a key class could be directly used in

122 M. Renauld et al.

Fig. 6. Left: building more robust / less informative models. Right: maximum infor-
mation provided by a model in function of the classification error rate (1.2V supply).

an algebraic side-channel attack. We note, however, that the same comment as
in the previous section applies. Namely, classical template attacks are probably
not the best solution to build sound and informative leakage models.

To conclude this section, we finally mention that model soundness is a nec-
essary condition for successful algebraic side-channel attacks. But for standard
DPA types of attacks [15], it is only a sufficient condition. That is, standard
DPA attacks will generally exploit the leakage corresponding to the execution of
the S-box for several plaintexts, i.e. S(x⊕ k), in order to recover the secret key
k. Hence, from an information theoretic point of view, the relevant metric is no
more P̂I(X ;L) but P̂I(K;X,L), with conditional entropy matrix:

Ĥk,k∗ = −
∑
x∈X

Pr[x]
∑
l∈L

P̂rchip[l|x, k] log2 P̂rmodel[k∗|l, x],

where k and k∗ denote the correct key and a key candidate. As each line of
the matrix is computed by averaging over 256 possible inputs x, even some
misclassified traces do not always prevent a successful DPA. In other words,
DPA-soundness, corresponding to a matrix Ĥk,k∗ with minimum diagonal, is
a much weaker requirement than model soundness. In our setting, even the
identity mapping δ(x) = x gave rise to successful DPA attacks using templates.
The analysis of this scenario will be investigated in the next section.

3 Security Analysis

The previous section provided an extensive evaluation of the information leakage
of an AES S-box implemented in a 65-nanometer CMOS technology. It shows
that inter-chip variability makes the straightforward application of profiled at-
tacks (such as using templates, or stochastic models) less efficient than when
variability can be neglected. In this section, we perform the second part of the
evaluation framework in [28], i.e. security analysis. For this purpose, we analyze

A Formal Study of Power Variability Issues and Side-Channel Attacks 123

Fig. 7. Left: Probability of soundness for a template attack. Right: Expected number
of messages to reach a 0.9 success rate for a sound template attack (1.2V supply).

the success rates of various distinguishers in a standard DPA setting, in order
to determine the impact of variability in this context. Namely, we performed:

– Template attacks, using exactly the profiling described in Section 2.3.
– Correlation attacks [2] with a Hamming weight leakage model3.
– Mutual Information Analysis (MIA) attacks, using a Hamming weight leak-

age model and an identity leakage model (corresponding to 7 out of 8 S-box
output bits). Our implementation of MIA followed the guidelines given in
[8]: we used histogram-based pdf estimation, with 32 (linearly-spaced) bins,
which allowed us to deal with the weak accuracy of our leakage models.

– Non-profiled attacks using stochastic models generated “on-the-fly” , with
the linear bases described in Section 2.2. That is, we used exactly the profiling
techniques proposed in [27], but this profiling was done for each key candidate
separately. The attack then proceeds as carefully described in [12]: each time
the adversary gains a new trace, he repeats the profiling and tests his key
dependent models directly on the set of available traces.

Figure 7 illustrates the effect of variability on template attacks, for a 1.2V supply
voltage. Its left part shows that attacks may not work at all, when the profiling
done for a chip is used to attack a significantly different chip. But as discussed
in the previous section, one reaches DPA-soundness easily, by profiling on more
than 4 chips. The right part of the figure shows that the number of traces to
attack is low once a sound model is available, and lower bounded by the worst
case curve corresponding to a perfect model. Moving to 0.5V supply would lead
to similar conclusions, with both curves slightly translated on the right.

Figure 8 shows the results of various non-profiled attacks. Its right part con-
tains results of a correlation attack against each of our 20 chips. It underlines
that the Hamming weight leakage model only allows to reach a 100% success rate
for a few of these chips. Hence, it cannot be used to evaluate the security of a

3 This is equivalent to a Hamming distance model, corresponding to the transitions
between a pre-charge of the S-box input to zero and its evaluation on input x.

124 M. Renauld et al.

Fig. 8. Left: success rates of a various non profiled attacks averaged over 20 chips.
Right: success rates of the correlation attacks for each of the 20 chips (1.2V supply).

cryptographic implementation in this case. The left part of the figure illustrates
the average success rates (over the 20 chips) of our different non-profiled attacks.
It suggests that attacks performing “on-the-fly” model estimation, such as using
stochastic models or MIA, are a promising approach for dealing with variability.

4 Conclusions and Open Problems

Process variability in nanoscale devices raises new challenges for the theory and
practice of side-channel attacks. Experiments performed on 20 prototype chips
show that former DPA attacks are not perfectly adequate to evaluate the security
of an implementation in this context. In the absence of variability, adversaries
could first profile (or assume) a leakage model, and then exploit this model in
an online attack. With the increase of process variability, it becomes necessary
to infer the correct leakage model for each target implementation. The deep in-
tegration of recent microelectronic circuits also increases the coupling between
their interconnected parts, with consequences on the “independent leakage” as-
sumption that is frequently required in formal works on leakage resilience. Hence,
developing new techniques to deal with this new attacks scenario is essential, in
order to avoid overestimating the security levels of actual products.

Acknowledgements. M. Renauld is a PhD student funded by the Walloon
region SCEPTIC project. F.-X. Standaert is an associate researcher of the Bel-
gian fund for scientific research (FNRS - F.R.S). N. Veyrat-Charvillon is a post-
doctoral researcher funded by the Walloon region SCEPTIC project. D. Kamel
is a PhD student funded by the Walloon region E.USER project.

References

1. Bowman, K.A., Tang, X., Eble, J.C., Menldl, J.D.: Impact of extrinsic and intrinsic
parameter fluctuations on CMOS circuit performance. IEEE Journal of Solid State
Circuits 35(8), 1186–1193 (2002)

A Formal Study of Power Variability Issues and Side-Channel Attacks 125

2. Brier, É., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

4. Dziembowski, S., Pietrzak, K.: Leakage-Resilient Cryptography. In: Proceedings of
FOCS 2008, Philadelphia, Pennsylvania, USA, pp. 293–302 (October 2008)

5. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting Cir-
cuits from Leakage: the Computationally-Bounded and Noisy Cases. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010)

6. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

7. Ghosh, S., Roy, K.: Parameter Variation Tolerance and Error Resiliency: New
Design Paragigm for the Nanoscale Era. The Proceedings of the IEEE 98(10),
1718–1751 (2010)

8. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

9. Kamel, D., Standaert, F.-X., Flandre, D.: Scaling Trends of the AES S-box Lower
Power Consumption in 130 and 65 nm CMOS Technology Nodes. In: The Proceed-
ings of ISCAS 2009, Taipei, Taiwan (May 2009)

10. Kamel, D., Hocquet, C., Standaert, F.-X., Flandre, D., Bol, D.: Glicth-Induced
Within Die Variations of Dynamic Energy in Voltage-Scaled Nano-CMOS Circuits.
In: The Proceedings of ESSCIRC 2010, Seville, Spain (September 2010)

11. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

12. Lemke-Rust, K.: Models and Algorithms for Physical Cryptanalysis, PhD Thesis,
Ruhr University Bochum, Germany (June 2007)

13. Lin, L., Burleson, W.: Analysis and Mitigation of Process Variation Impacts on
Power-Attack Tolerance. In: The Proceedings of DAC 2009, San Francisco, CA,
USA, pp. 238–243 (July 2009)

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks. Springer, Heidelberg
(2007)

15. Mangard, S., Oswald, E., Standaert, F.-X.: One for All - All for One: Unifying
Standard DPA Attacks, Cryptology ePrint Archive: Report 2009/449

16. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A Systematic Evaluation of
Compact Hardware Implementations for the Rijndael SBOX. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 323–333. Springer, Heidelberg (2005)

17. Nassif, S., Bernstein, K., Frank, D.J., Gattiker, A., Haensch, W., Ji, B.L., Nowak,
E., Pearson, D., Rohrer, N.J.: High Performance CMOS Variability in the 65nm
Regime and Beyond. In: The Proceedings of IEDM 2007, Washington DC, USA,
pp. 569–571 (December 2007)

18. Nieuwland, A.K., Katoch, A., Meijer, M.: Reducing Cross-Talk Induced Power
Consumption and Delay. In: Macii, E., Paliouras, V., Koufopavlou, O. (eds.) PAT-
MOS 2004. LNCS, vol. 3254, pp. 179–188. Springer, Heidelberg (2004)

19. Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)

126 M. Renauld et al.

20. Pietrzak, K.: Provable Security for Physical Cryptography. In: The Proceedings of
WEWORC 2009, Graz, Austria (July 2009)

21. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

22. Regazzoni, F., Cevrero, A., Standaert, F.-X., Badel, S., Kluter, T., Brisk,
P., Leblebici, Y., Ienne, P.: A Design Flow and Evaluation Framework for
DPA-Resistant Instruction Set Extensions. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 205–219. Springer, Heidelberg (2009)

23. Renauld, M., Standaert, F.-X.: Algebraic Side-Channel Attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer,
Heidelberg (2010)

24. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic Side-Channel At-
tacks on the AES: Why Time also Matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)

25. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms
and leakage reduction techniques in deep-submicrometer CMOS circuits. Proceed-
ings of the IEEE 91(2), 305–327 (2003)

26. Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic Side-Channel Analysis
in the Presence of Errors. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 428–442. Springer, Heidelberg (2010)

27. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

28. Standaert, F.-X., Malkin, T.G., Yung, M.: A Unified Framework for the Analysis
of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

29. Standaert, F.-X., Archambeau, C.: Using Subspace-Based Template Attacks to
Compare and Combine Power and Electromagnetic Information Leakages. In: Os-
wald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer,
Heidelberg (2008)

30. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The World is Not Enough: Another Look on Second-
Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129.
Springer, Heidelberg (2010)

31. Tiri, K., Verbauwhede, I.: Securing encryption algorithms against dpa at the logic
level: Next generation smart card technology. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003)

A Formal Study of Power Variability Issues and Side-Channel Attacks 127

A Exemplary Leakage Traces

Fig. 9. Illustrative noise-free leakage traces corresponding to 4 inputs and 10 chips.
Left: 1.2V supply, Right: 0.5V supply / Up: simulations, Down: actual measurements.

B Preprocessing of the Traces

Side-channel attacks exploit information about the internal state of a computing
device that is leaked, e.g. through power consumption traces. These power traces
also contain some noise, either due to unpredictable physical effects, or to other
forms of perturbations such as measurement artifacts (outliers) or parasitic sig-
nals (interference). The influence of this second source of noise can sometimes
be reduced by processing the power traces prior to the actual attack.

The top curve in the left part of Figure 10 illustrates the autocorrelation of a
power trace. It measures the linear correlation between the trace and its shift by
τ time samples. The autocorrelation function shows two mixed components: reg-
ularly spaced peaks (around τ = 1000, 2000, etc.) and some periodic sinusoidal
component with period close to 2000. Roughly speaking, the correlation peaks
which correspond to successive clock cycles of the chip, correspond to the useful
signal. By contrast, the periodic sinusoidal component is a parasitic that can
be filtered. An example of filtered trace is given in the bottom curve of the left
part of Figure 10. And the impact of this preprocessing on the distribution of
the residual noise (estimated with histograms) is in the right part of the figure.
It clearly illustrates the gain in terms of noise standard deviation.

128 M. Renauld et al.

Fig. 10. Left: autocorrelation of the signal before (top) and after (bottom) preprocess-
ing of the traces. Right: residual noise distribution with/without preprocessing.

C PCA and LDA Eigenvectors

Fig. 11. PCA (middle) and LDA (below) applied to simulated traces at 1.2V (above)

Implementing Gentry’s Fully-Homomorphic
Encryption Scheme

Craig Gentry� and Shai Halevi�

IBM Research

Abstract. We describe a working implementation of a variant of Gen-
try’s fully homomorphic encryption scheme (STOC 2009), similar to
the variant used in an earlier implementation effort by Smart and Ver-
cauteren (PKC 2010). Smart and Vercauteren implemented the underly-
ing “somewhat homomorphic” scheme, but were not able to implement
the bootstrapping functionality that is needed to get the complete scheme
to work. We show a number of optimizations that allow us to implement
all aspects of the scheme, including the bootstrapping functionality.

Our main optimization is a key-generation method for the underlying
somewhat homomorphic encryption, that does not require full polyno-
mial inversion. This reduces the asymptotic complexity from Õ(n2.5) to
Õ(n1.5) when working with dimension-n lattices (and practically reduc-
ing the time from many hours/days to a few seconds/minutes). Other
optimizations include a batching technique for encryption, a careful anal-
ysis of the degree of the decryption polynomial, and some space/time
trade-offs for the fully-homomorphic scheme.

We tested our implementation with lattices of several dimensions, cor-
responding to several security levels. From a “toy” setting in dimension
512, to “small,” “medium,” and “large” settings in dimensions 2048,
8192, and 32768, respectively. The public-key size ranges in size from
70 Megabytes for the “small” setting to 2.3 Gigabytes for the “large”
setting. The time to run one bootstrapping operation (on a 1-CPU 64-
bit machine with large memory) ranges from 30 seconds for the “small”
setting to 30 minutes for the “large” setting.

1 Introduction

Encryption schemes that support operations on encrypted data (aka homomor-
phic encryption) have a very wide range of applications in cryptography. This
concept was introduced by Rivest et al. shortly after the discovery of public key
cryptography [12], and many known public-key cryptosystems support either
addition or multiplication of encrypted data. However, supporting both at the
same time seems harder, and until very recently all the attempts at constructing
so-called “fully homomorphic” encryption turned out to be insecure.

In 2009, Gentry described the first plausible construction of a fully homomor-
phic cryptosystem [3]. Gentry’s construction consists of several steps: He first

� Supported by DARPA grant DARPA-BAA 10-81.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 129–148, 2011.
c© International Association for Cryptologic Research 2011

130 C. Gentry and S. Halevi

constructed a “somewhat homomorphic” scheme that supports evaluating low-
degree polynomials on the encrypted data, next he needed to “squash” the de-
cryption procedure so that it can be expressed as a low-degree polynomial which
is supported by the scheme, and finally he applied a “bootstrapping” transforma-
tion to obtain a fully homomorphic scheme. The crucial point in this process is
to obtain a scheme that can evaluate polynomials of high-enough degree, and at
the same time has decryption procedure that can be expressed as a polynomial of
low-enough degree. Once the degree of polynomials that can be evaluated by the
scheme exceeds the degree of the decryption polynomial (times two), the scheme
is called “bootstrappable” and it can then be converted into a fully homomorphic
scheme.

Toward a bootstrappable scheme, Gentry described in [3] a somewhat homo-
morphic scheme, which is roughly a GGH-type scheme [6,8] over ideal lattices.
Gentry later proved [4] that with an appropriate key-generation procedure, the
security of that scheme can be (quantumly) reduced to the worst-case hardness
of some lattice problems in ideal lattices.

This somewhat homomorphic scheme is not yet bootstrappable, so Gentry
described in [3] a transformation to squash the decryption procedure, reducing
the degree of the decryption polynomial. This is done by adding to the public
key an additional hint about the secret key, in the form of a “sparse subset-
sum” problem (SSSP). Namely the public key is augmented with a big set of
vectors, such that there exists a very sparse subset of them that adds up to the
secret key. A ciphertext of the underlying scheme can be “post-processed” using
this additional hint, and the post-processed ciphertext can be decrypted with a
low-degree polynomial, thus obtaining a bootstrappable scheme.

Stehlé and Steinfeld described in [14] two optimizations to Gentry’s scheme,
one that reduces the number of vectors in the SSSP instance, and another that
can be used to reduce the degree of the decryption polynomial (at the expense
of introducing a small probability of decryption errors). We mention that in
our implementation we use the first optimization but not the second1. Some
improvements to Gentry’s key-generation procedure were discussed in [9].

1.1 The Smart-Vercauteren Implementation

The first attempt to implement Gentry’s scheme was made in 2010 by Smart
and Vercauteren [13]. They chose to implement a variant of the scheme using
“principal-ideal lattices” of prime determinant. Such lattices can be represented
implicitly by just two integers (regardless of their dimension), and moreover
Smart and Vercauteren described a decryption method where the secret key
is represented by a single integer. Smart and Vercauteren were able to imple-
ment the underlying somewhat homomorphic scheme, but they were not able
to support large enough parameters to make Gentry’s squashing technique go
through. As a result they could not obtain a bootstrappable scheme or a fully
homomorphic scheme.
1 The reason we do not use the second optimization is that the decryption error

probability is too high for our parameter settings.

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 131

One obstacle in the Smart-Vercauteren implementation was the complexity
of key generation for the somewhat homomorphic scheme: For one thing, they
must generate very many candidates before they find one whose determinant
is prime. (One may need to try as many as n1.5 candidates when working with
lattices in dimension n.) And even after finding one, the complexity of computing
the secret key that corresponds to this lattice is at least Θ̃(n2.5) for lattices in
dimension n. For both of these reasons, they were not able to generate keys in
dimensions n > 2048.

Moreover, Smart and Vercauteren estimated that the squashed decryption
polynomial will have degree of a few hundreds, and that to support this procedure
with their parameters they need to use lattices of dimension at least n = 227(≈
1.3×108), which is well beyond the capabilities of the key-generation procedure.

1.2 Our Implementation

We continue in the same direction of the Smart-Vercauteren implementation
and describe optimizations that allow us to implement also the squashing part,
thereby obtaining a bootstrappable scheme and a fully homomorphic scheme.

For key-generation, we present a new faster algorithm for computing the secret
key, and also eliminate the requirement that the determinant of the lattice be
prime. We also present many simplifications and optimizations for the squashed
decryption procedure, and as a result our decryption polynomial has degree
only fifteen. Finally, our choice of parameters is somewhat more aggressive than
Smart and Vercauteren (which we complement by analyzing the complexity of
known attacks).

Differently from [13], we decouple the dimension n from the size of the integers
that we choose during key generation. Decoupling these two parameters lets
us decouple functionality from security. Namely, we can obtain bootstrappable
schemes in any given dimension, but of course the schemes in low dimensions
will not be secure. Our (rather crude) analysis suggests that the scheme may be
practically secure at dimension n = 213 or n = 215, and we put this analysis to
the test by publishing a few challenges in dimensions from 512 up to 215.

1.3 Organization

We give some background in Section 2, and then describe our implementation
of the underlying “somewhat homomorphic” encryption scheme in Sections 3
through 7. A description of our optimizations that are specific to the bootstrap-
ping functionality appears in the full version of this report [5].

2 Background

Notations. Throughout this report we use ‘·’ to denote scalar multiplication and
‘×’ to denote any other type of multiplication. For integers z, d, we denote the
reduction of z modulo d by either [z]d or 〈z〉d. We use [z]d when the operation

132 C. Gentry and S. Halevi

maps integers to the interval [−d/2, d/2), and use 〈z〉d when the operation maps
integers to the interval [0, d). We use the generic “z mod d” when the specific
interval does not matter (e.g., mod 2). For example we have [13]5 = −2 vs.
〈13〉5 = 3, but [9]7 = 〈9〉7 = 2.

For a rational number q, we denote by �q� the rounding of q to the nearest
integer, and by [q] we denote the distance between q and the nearest integer.
That is, if q = a

b then [q] def= [a]b
b and �q� def= q − [q]. For example,

⌈13
5

⌋
= 3

and [135] = −2
5 . These notations are extended to vectors in the natural way:

for example if q = 〈q0, q1, . . . , qn−1〉 is a rational vector then rounding is done
coordinate-wise, �q� = 〈�q0� , �q1� , . . . , �qn−1�〉.

2.1 Lattices

A full-rank n-dimensional lattice is a discrete subgroup of Rn, concretely repre-
sented as the set of all integer linear combinations of some basis B=(b1, . . . , bn)∈
Rn of linearly independent vectors. Viewing the vectors bi as the rows of a matrix
B ∈ Rn×n, we have: L = L(B) = {y ×B : y ∈ Zn} .

Every lattice (of dimension n > 1) has an infinite number of lattice bases. If
B1 and B2 are two lattice bases of L, then there is some unimodular matrix U
(i.e., U has integer entries and det(U) = ±1) satisfying B1 = U ×B2. Since U is
unimodular, | det(Bi)| is invariant for different bases of L, and we may refer to
it as det(L). This value is precisely the size of the quotient group Zn/L if L is an
integer lattice. To basis B of lattice L we associate the half-open parallelepiped
P(B)← {

∑n
i=1 xibi : xi ∈ [−1/2, 1/2)}. The volume of P(B) is precisely det(L).

For c ∈ Rn and basis B of L, we use c mod B to denote the unique vector
c′ ∈ P(B) such that c − c′ ∈ L. Given c and B, c mod B can be computed
efficiently as c−�c×B−1�×B = [c×B−1]×B. (Recall that �·� means rounding
to the nearest integer and [·] is the fractional part.)

Every full-rank lattice has a unique Hermite normal form (HNF) basis where
bi,j = 0 for all i < j (lower-triangular), bj,j > 0 for all j, and for all i > j bi,j ∈
[−bj,j/2,+bj,j/2). Given any basis B of L, one can compute HNF(L) efficiently
via Gaussian elimination. The HNF is in some sense the “least revealing” basis
of L, and thus typically serves as the public key representation of the lattice [8].

Short vectors and Bounded Distance Decoding. The length of the shortest nonzero
vector in a lattice L is denoted λ1(L), and Minkowski’s theorem says that for any
n-dimensional lattice L (n > 1) we have λ1(L) <

√
n·det(L)1/n. Heuristically, for

random lattices the quantity det(L)1/n serves as a threshold: for t" det(L)1/n

we don’t expect to find any nonzero vectors in L of size t, but for t# det(L)1/n

we expect to find exponentially many vectors in L of size t.
In the “bounded distance decoding” problem (BDDP), one is given a basis B of

some lattice L, and a vector c that is very close to some lattice point of L, and the
goal is to find the point in L nearest to c. In the promise problem γ-BDDP, we
have a parameter γ > 1 and the promise that dist(L, c) def= minv∈L{‖c− v‖} ≤
det(L)1/n/γ. (BDDP is often defined with respect to λ1 rather than with respect
to det(L)1/n, but the current definition is more convenient in our case.)

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 133

Gama and Nguyen conducted extensive experiments with lattices in dimen-
sions 100-400 [2], and concluded that for those dimensions it is feasible to solve
γ-BDDP when γ > 1.01n ≈ 2n/70. More generally, the best algorithms for solving
the γ-BDDP in n-dimensional lattices take time exponential in n/ log γ. Specif-
ically, currently known algorithms can solve dimension-n γ-BDDP in time 2k

up to γ = 2
μn

k/ log k , where μ is a parameter that depends on the exact details of
the algorithm. (Extrapolating from the Gama-Nguyen experiments, we expect
something like μ ∈ [0.1, 0.2].)

2.2 Ideal Lattices

Let f(x) be an integer monic irreducible polynomial of degree n. In this paper,
we use f(x) = xn + 1, where n is a power of 2. Let R be the ring of integer
polynomials modulo f(x), R def= Z[x]/(f(x)). Each element of R is a polynomial
of degree at most n − 1, and thus is associated to a coefficient vector in Zn.
This way, we can view each element of R as being both a polynomial and a
vector. For v(x), we let ‖v‖ be the Euclidean norm of its coefficient vector.
For every ring R, there is an associated expansion factor γMult(R) such that
‖u×v‖ ≤ γMult(R) · ‖u‖ ·‖v‖, where × denotes multiplication in the ring. When
f(x) = xn+1, γMult(R) is

√
n. However, for “random vectors” u,v the expansion

factor is typically much smaller, and our experiments suggest that we typically
have ‖u× v‖ ≈ ‖u‖ · ‖v‖.

Let I be an ideal of R – that is, a subset of R that is closed under addition
and multiplication by elements of R. Since I is additively closed, the coefficient
vectors associated to elements of I form a lattice. We call I an ideal lattice to
emphasize this object’s dual nature as an algebraic ideal and a lattice2. Ideals
have additive structure as lattices, but they also have multiplicative structure.
The product IJ of two ideals I and J is the additive closure of the set {v ×
w : v ∈ I,w ∈ J}, where ‘×’ is ring multiplication. To simplify things, we
will use principal ideals of R – i.e., ideals with a single generator. The ideal
(v) generated by v ∈ R corresponds to the lattice generated by the vectors
{vi def= v × xi mod f(x) : i ∈ [0, n − 1]}; we call this the rotation basis of the
ideal lattice (v).

Let K be a field containing the ring R (in our case K = Q[x]/(f(x))). The
inverse of an ideal I ⊆ R is I−1 = {w ∈ K : ∀v ∈ I,v ×w ∈ R}. The inverse
of a principal ideal (v) is given by (v−1), where the inverse v−1 is taken in the
field K.

2.3 GGH-Type Cryptosystems

We briefly recall Micciancio’s “cleaned-up version” of GGH cryptosystems [6,8].
The secret and public keys are “good” and “bad” bases of some lattice L. More
specifically, the key-holder generates a good basis by choosing Bsk to be a basis of

2 Alternative representations of an ideal lattice are possible – e.g., see [11,7].

134 C. Gentry and S. Halevi

short, “nearly orthogonal” vectors. Then it sets the public key to be the Hermite
normal form of the same lattice, Bpk

def= HNF(L(Bsk)).
A ciphertext in a GGH-type cryptosystem is a vector c close to the lattice

L(Bpk), and the message which is encrypted in this ciphertext is somehow em-
bedded in the distance from c to the nearest lattice vector. To encrypt a mes-
sage m, the sender chooses a short “error vector” e that encodes m, and then
computes the ciphertext as c← e mod Bpk. Note that if e is short enough (i.e.,
less than λ1(L)/2), then it is indeed the distance between c and the nearest
lattice point.

To decrypt, the key-holder uses its “good” basis Bsk to recover e by setting
e ← c mod Bsk, and then recovers m from e. The reason decryption works is
that, if the parameters are chosen correctly, then the parallelepiped P(Bsk) of
the secret key will be a “plump” parallelepiped that contains a sphere of radius
bigger than ‖e‖, so that e is the point inside P(Bsk) that equals c modulo L. On
the other hand, the parallelepiped P(Bpk) of the public key will be very skewed,
and will not contain a sphere of large radius, making it useless for solving BDDP.

2.4 Gentry’s Somewhat-Homomorphic Cryptosystem

Gentry’s somewhat homomorphic encryption scheme [3] can be seen as a GGH-
type scheme over ideal lattices. The public key consists of a “bad” basis Bpk of
an ideal lattice J , along with some basis BI of a “small” ideal I (which is used
to embed messages into the error vectors). For example, the small ideal I can
be taken to be I = (2), the set of vectors with all even coefficients.

A ciphertext in Gentry’s scheme is a vector close to a J-point, with the
message being embedded in the distance to the nearest lattice point. More specif-
ically, the plaintext space is {0, 1}, which is embedded in R/I = {0, 1}n by en-
coding 0 as 0n and 1 as 0n−11. For an encoded bit m ∈ {0, 1}n we set e = 2r+m
for a random small vector r, and then output the ciphertext c ← e mod Bpk.

The secret key in Gentry’s scheme (that plays the role of the “good basis” of
J) is just a short vector w ∈ J−1. Decryption involves computing the fractional
part [w × c]. Since c = j + e for some j ∈ J , then w × c = w× j + w × e. But
w × j is in R and thus an integer vector, so w × c and w × e have the same
fractional part, [w × c] = [w × e]. If w and e are short enough – in particular,
if we have the guarantee that all of the coefficients of w × e have magnitude
less than 1/2 – then [w × e] equals w × e exactly. From w × e, the decryptor
can multiply by w−1 to recover e, and then recover m ← e mod 2. The actual
decryption procedure from [3] is slightly different, however. Specifically, w is
“tweaked” so that decryption can be implemented as m ← c − [w × c] mod 2
(when I = (2)).

The reason that this scheme is somewhat homomorphic is that for two ci-
phertexts c1 = j1 + e1 and c2 = j2 + e2, their sum is j3 + e3 where j3 =
j1 + j2 ∈ J and e3 = e1 + e2 is small. Similarly, their product is j4 + e4 where
j4 = j1 × (j2 + e2) + e1 × j2 ∈ J and e4 = e1 × e2 is still small. If fresh en-
crypted ciphertexts are very very close to the lattice, then it is possible to add and

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 135

multiply ciphertexts for a while before the error grows beyond the decryption
radius of the secret key.

The Smart-Vercauteren Variant. Smart and Vercauteren [13] work over
the ring R = Z[x]/fn(x), where fn(x) = xn + 1 and n is a power of two. The
ideal J is set as a principal ideal by choosing a vector v at random from some
n-dimensional cube, subject to the condition that the determinant of (v) is
prime, and then setting J = (v). It is known that such ideals can be implicitly
represented by only two integers, namely the determinant d = det(J) and a root
r of fn(x) modulo d. (An easy proof of this fact “from first principles” can be
derived from our Lemma 1 below.) Specifically, the Hermite normal form of this
ideal lattice is

HNF(J) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d 0 0 0 0
−r 1 0 0 0
−[r2]d 0 1 0 0
−[r3]d 0 0 1 0

. . .
−[rn−1]d 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1)

It is easy to see that reducing a vector a modulo HNF(J) consists of evaluat-
ing the associated polynomial a(x) at the point r modulo d, then outputting
the vector 〈[a(r)]d, 0, 0, . . . , 0〉 (see Section 5). Hence encryption of a vector
〈m, 0, 0, . . . , 0〉 with m ∈ {0, 1} can be done by choosing a random small polyno-
mial u(x) and evaluating it at r, then outputting the integer c← [2u(r) + m]d.

Smart and Vercauteren also describe a decryption procedure that uses a single
integer w as the secret key, setting m← (c−�cw/d�) mod 2. Jumping ahead, we
note that our decryption procedure from Section 6 is very similar, except that
for convenience we replace the rational division cw/d by modular multiplication
[cw]d.

3 Key Generation

We adopt the Smart-Vercauteren approach [13], in that we also use principal-
ideal lattices in the ring of polynomials modulo fn(x) def= xn+1 with n a power of
two. We do not require that these principal-ideal lattices have prime determinant,
instead we only need the Hermite normal form to have the same form as in
Equation (1). During key-generation we choose v at random in some cube, verify
that the HNF has the right form, and work with the principal ideal (v). We have
two parameters: the dimension n, which must be a power of two, and the bit-
size t of coefficients in the generating polynomial. Key-generation consists of the
following steps:

1. Choose a random n-dimensional integer lattice v, where each entry vi is
chosen at random as a t-bit (signed) integer. With this vector v we associate
the formal polynomial v(x) def=

∑n−1
i=0 vix

i, as well as the rotation basis:

136 C. Gentry and S. Halevi

V =

⎡⎢⎢⎢⎢⎢⎣
v0 v1 v2 vn−1

−vn−1 v0 v1 vn−2
−vn−2 −vn−1 v0 vn−3

. . .
−v1 −v2 −v3 v0

⎤⎥⎥⎥⎥⎥⎦ (2)

The i’th row is a cyclic shift of v by i positions to the right, with the “overflow
entries” negated. Note that the i’th row corresponds to the coefficients of the
polynomial vi(x) = v(x) × xi (mod fn(x)). Note that just like V itself, the
entire lattice L(V) is also closed under “rotation”: Namely, for any vector
〈u0, u1, . . . , un−1〉 ∈ L(V), also the vector 〈−un−1, u0, . . . , un−2〉 is in L(V).

2. Next we compute the scaled inverse of v(x) modulo fn(x), namely an integer
polynomial w(x) of degree at most n− 1, such that w(x) × v(x) = constant
(mod fn(x)). Specifically, this constant is the determinant of the lattice
L(V), which must be equal to the resultant of the polynomials v(x) and
fn(x) (since fn is monic). Below we denote the resultant by d, and denote
the coefficient-vector of w(x) by w = 〈w0, w1, . . . , wn−1〉. It is easy to check
that the matrix

W =

⎡⎢⎢⎢⎢⎢⎣
w0 w1 w2 wn−1

−wn−1 w0 w1 wn−2
−wn−2 −wn−1 w0 wn−3

. . .
−w1 −w2 −w3 w0

⎤⎥⎥⎥⎥⎥⎦ (3)

is the scaled inverse of V , namely W × V = V ×W = d · I. One way to
compute the polynomial w(x) is by applying the extended Euclidean-GCD
algorithm (for polynomials) to v(x) and fn(x). See Section 4 for a more
efficient method of computing w(x).

3. We also check that this is a good generating polynomial. We consider v to be
good if the Hermite-Normal-form of V has the same form as in Equation (1),
namely all except the leftmost column equal to the identity matrix. See below
for a simple check that the v is good, in our implementation we test this
condition while computing the inverse.

It was observed by Nigel Smart that the HNF has the correct form when-
ever the determinant is odd and square-free. Indeed, in our tests this condi-
tion was met with probability roughly 0.5, irrespective of the dimension and
bit length, with the failure cases usually due to the determinant of V being
even.

Checking the HNF. In Lemma 1 below we prove that the HNF of the lattice
L(V) has the right form if and only if the lattice contains a vector of the form
〈−r, 1, 0, . . . , 0〉. Namely, if and only if there exists an integer vector y and an-
other integer r such that

y × V = 〈−r, 1, 0, . . . , 0〉

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 137

Multiplying the last equation on the right by W , we get the equivalent condition

y × V ×W = 〈−r, 1, 0 . . . , 0〉 ×W (4)
⇔ y×(dI)=d · y = −r · 〈w0, w1, w2, . . . , wn−1〉+ 〈−wn−1, w0, w1, . . . , wn−2〉

In other words, there must exists an integer r such that the second row of W
minus r times the first row yields a vector of integers that are all divisible by d:

−r · 〈w0, w1, w2, . . . , wn−1〉+ 〈−wn−1, w0, w1, . . . , wn−2〉 = 0 (mod d)
⇔ −r · 〈w0, w1, w2, . . . , wn−1〉 = 〈wn−1,−w0,−w1, . . . ,−wn−2〉 (mod d)

The last condition can be checked easily: We compute r := w0/w1 mod d (as-
suming that w1 has an inverse modulo d), then check that r ·wi+1 = wi (mod d)
holds for all i = 1, . . . , n− 2 and also −r · w0 = wn−1 (mod d) . Note that this
means in particular that rn = −1 (mod d). (In our implementation we actually
test only that last condition, instead of testing all the equalities r · wi+1 = wi
(mod d).)

Lemma 1. The Hermite normal form of the matrix V from Equation (2) is
equal to the identity matrix in all but the leftmost column, if and only if the lattice
spanned by the rows of V contains a vector of the form r = 〈−r, 1, 0 . . . , 0〉.

Proof. Let B be the Hermite normal form of V . Namely, B is lower triangular
matrix with non-negative diagonal entries, where the rows of B span the same
lattice as the rows of V , and the absolute value of every entry under the diagonal
in B is no more than half the diagonal entry above it. This matrix B can be
obtained from V by a sequence of elementary row operations, and it is unique.
It is easy to see that the existence of a vector r of this form is necessary: indeed
the second row of B must be of this form (since B is equal the identity in all
except the leftmost column). We now prove that this condition is also sufficient.

It is clear that the vector d·e1 = 〈d, 0, . . . , 0〉 belongs to L(V): in particular we
know that 〈w0, w1, . . . , wn−1〉 × V = 〈d, 0, . . . , 0〉. Also, by assumption we have
r = −r · e1 + e2 ∈ L(V), for some integer r. Note that we can assume without
loss of generality that −d/2 ≤ r < d/2, since otherwise we could subtract from
r multiples of the vector d · e1 until this condition is satisfied:

〈−r 1 0 . . . 0〉
−κ· 〈 d 0 0 . . . 0〉
= 〈[−r]d 1 0 . . . 0〉

For i = 1, 2, . . . , n− 1, denote ri
def= [ri]d. Below we will prove by induction that

for all i = 1, 2, . . . , n− 1, the lattice L(V) contains the vector:

ri
def= − ri · e1 + ei+1 = 〈−ri, 0 . . . 0, 1, 0 . . .0〉︸ ︷︷ ︸

1 in the i+1′st position

.

138 C. Gentry and S. Halevi

Placing all these vectors ri at the rows of a matrix, we got exactly the matrix B
that we need:

B =

⎡⎢⎢⎢⎢⎢⎣
d 0 0 0
−r1 1 0 0
−r2 0 1 0

. . .
−rn−1 0 0 1

⎤⎥⎥⎥⎥⎥⎦ . (5)

B is equal to the identity except in the leftmost column, its rows are all vectors
in L(V) (so they span a sub-lattice), and since B has the same determinant as
V then it cannot span a proper sub-lattice, it must therefore span L(V) itself.

It is left to prove the inductive claim. For i = 1 we set r1
def= r and the

claim follow from our assumption that r ∈ L(V). Assume now that it holds for
some i ∈ [1, n− 2] and we prove for i + 1. Recall that the lattice L(V) is closed
under rotation, and since ri = −rie1+ei+1 ∈ L(V) then the right-shifted vector
si+1

def= −rie2 + ei+2 is also in L(V)3. Hence L(V) contains also the vector

si+1 + ri · r = (−rie2 + ei+2) + ri(−re1 + e2) = = −rir · e1 + ei+2

We can now reduce the first entry in this vector modulo d, by adding/subtracting
the appropriate multiple of d·e1 (while still keeping it in the lattice), thus getting
the lattice vector

[−r · ri]d · e1 + ei+2 = − [ri+1]d · e1 + ei+2 = ri+1 ∈ L(V)

This concludes the proof.

Remark 1. Note that the proof of Lemma 1 shows in particular that if the Her-
mite normal form of V is equal to the identity matrix in all but the leftmost
column, then it must be of the form specified in Equation (5). Namely, the first
column is 〈d,−r1,−r2, . . . ,−rn−1〉t, with ri = [ri]d for all i. Hence this matrix
can be represented implicitly by the two integers d and r.

3.1 The Public and Secret Keys

In principle the public key is the Hermite normal form of V , but as we explain
in Remark 1 and Section 5 it is enough to store for the public key only the two
integers d, r. Similarly, in principle the secret key is the pair (v,w), but as we
explain in Section 6.1 it is sufficient to store only a single (odd) coefficient of w
and discard v altogether.

4 Inverting the Polynomial v(x)

The fastest known methods for inverting the polynomial v(x) modulo fn(x) =
xn + 1 are based on FFT: We can evaluate v(x) at all the roots of fn(x) (either
3 This is a circular shift, since i ≤ n− 2 and hence the rightmost entry in ri is zero.

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 139

over the complex field or over some finite field), then compute w∗(ρ) = 1/v(ρ)
(where inversion is done over the corresponding field), and then interpolate w∗ =
v−1 from all these values. If the resultant of v and fn has N bits, then this
procedure will take O(n log n) operations over O(N)-bit numbers, for a total
running time of Õ(nN). This is close to optimal in general, since just writing out
the coefficients of the polynomial w∗ takes time O(nN). However, in Section 6.1
we show that it is enough to use for the secret key only one of the coefficients of
w = d · w∗ (where d = resultant(v, fn)). This raises the possibility that we can
compute this one coefficient in time quasi-linear in N rather than quasi-linear
in nN . Although polynomial inversion is very well researched, as far as we know
this question of computing just one coefficient of the inverse was not tackled
before. Below we describe an algorithm for doing just that.

The approach for the procedure below is to begin with the polynomial v
that has n small coefficients, and proceed in steps where in each step we halve
the number of coefficients to offset the fact that the bit-length of the coefficients
approximately doubles. Our method relies heavily on the special form of fn(x) =
xn + 1, with n a power of two. Let ρ0, ρ1, . . . , ρn−1 be roots of fn(x) over the
complex field: That is, if ρ is some primitive 2n’th root of unity then ρi = ρ2i+1.
Note that the roots ri satisfy that ρi+ n

2
= −ρi for all i, and more generally for

every index i (with index arithmetic modulo n) and every j = 0, 1, . . . , logn, if
we denote nj

def= n/2j then it holds that(
ρ

i+ nj/2

)2j

=
(
ρ2i+nj+1)2j

=
(
ρ2i+1)2j

· ρn = − (ρ 2j

i
) (6)

The method below takes advantage of Equation (6), as well as a connection be-
tween the coefficients of the scaled inverse w and those of the formal polynomial

g(z) def=
n−1∏
i=0

(
v(ρi)− z

)
.

We invert v(x) mod fn(x) by computing the lower two coefficients of g(z), then
using them to recover both the resultant and (one coefficient of) the polyno-
mial w(x), as described next.

Step one: the polynomial g(z). Note that although the polynomial g(z) is defined
via the complex numbers ρi, the coefficients of g(z) are all integers. We begin by
showing how to compute the lower two coefficients of g(z), namely the polynomial
g(z) mod z2. We observe that since ρi+ n

2
= −ρi then we can write g(z) as

g(z) =

n
2 −1∏
i=0

(v(ρi)− z)(v(−ρi)− z)

=

n
2 −1∏
i=0

(
v(ρi)v(−ρi)︸ ︷︷ ︸

a(ρi)

−z(v(ρi) + v(−ρi)︸ ︷︷ ︸
b(ρi)

) + z2

)
=

n
2 −1∏
i=0

(
a(ρi)− zb(ρi)

)
(mod z2)

140 C. Gentry and S. Halevi

We observe further that for both the polynomials a(x) = v(x)v(−x) and b(x) =
v(x) + v(−x), all the odd powers of x have zero coefficients. Moreover, the
same equalities as above hold if we use A(x) = a(x) mod fn(x) and B(x) =
b(x) mod fn(x) instead of a(x) and b(x) themselves (since we only evaluate these
polynomials in roots of fn), and also for A,B all the odd powers of x have zero
coefficients (since we reduce modulo fn(x) = xn + 1 with n even).

Thus we can consider the polynomials v̂, ṽ that have half the degree and only
use the nonzero coefficients of A,B, respectively. Namely they are defined via
v̂(x2) = A(x) and ṽ(x2) = B(x). Thus we have reduced the task of computing
the n-product involving the degree-n polynomial v(x) to computing a product of
only n/2 terms involving the degree-n/2 polynomials v̂(x), ṽ(x). Repeating this
process recursively, we obtain the polynomial g(z) mod z2. The details of this
process are described in Section 4.1 below.

Step two: recovering d and w0. Recall that if v(x) is square free then d =
resultant(v, fn) =

∏n−1
i=0 v(ρi), which is exactly the free term of g(z), g0 =∏n−1

i=0 v(ρi).
Recall also that the linear term in g(z) has coefficient g1 =

∑n−1
i=0

∏
j �=i v(ρi).

We next show that the free term of w(x) is w0 = g1/n. First, we observe that g1
equals the sum of w evaluated in all the roots of fn, namely

g1 =
n−1∑
i=0

∏
j �=i

v(ρj) =
n−1∑
i=0

∏n−1
j=0 v(ρj)
v(ρi)

(a)
=

n−1∑
i=0

d

v
(
ρi
) (b)

=
n−1∑
i=0

w
(
ρi
)

where Equality (a) follows since v(x) is square free and d = resultant(v, fn), and
Equality (b) follows since v(ρi) = d/w(ρi) holds in all the roots of fn. It is left
to show that the constant term of w(x) is w0 = n

∑n−1
i=0 w(ρi). To show this, we

write

n−1∑
i=0

w
(
ρi
)

=
n−1∑
i=0

n−1∑
j=0

wjρ
j
i =

n−1∑
j=0

wj

n−1∑
i=0

ρji
(�)
=

n−1∑
j=0

wj

n−1∑
i=0

(ρj)2i+1 (7)

where the Equality (�) holds since the i’th root of fn is ρi = ρ2i+1 where ρ is a
2n-th root of unity. Clearly, the term corresponding to j = 0 in Equation (7) is
w0 ·n, it is left to show that all the other terms are zero. This follows since ρj is
a 2n-th root of unity different from ±1 for all j = 1, 2, . . . , n− 1, and summing
over all odd powers of such root of unity yields zero.

Step three: recovering the rest of w. We can now use the same technique to
recover all the other coefficients of w: Note that since we work modulo fn(x) =
xn + 1, then the coefficient wi is the free term of the scaled inverse of xi × v
(mod fn).

In our case we only need to recover the first two coefficients, however, since
we are only interested in the case where w1/w0 = w2/w1 = · · · = wn−1/wn−2 =
−w0/wn−1 (mod d), where d = resultant(v, fn). After recovering w0, w1 and

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 141

d = resultant(v, fn), we therefore compute the ratio r = w1/w0 mod d and verify
that rn = −1 (mod d). Then we recover as many coefficients of w as we need
(via wi+1 = [wi · r]d), until we find one coefficient which is an odd integer, and
that coefficient is the secret key.

4.1 The Gory Details of Step One

We denote U0(x) ≡ 1 and V0(x) = v(x), and for j = 0, 1, . . . , logn we de-
note nj = n/2j. We proceed in m = logn steps to compute the polynomials
Uj(x), Vj(x) (j = 1, 2, . . . ,m), such that the degrees of Uj, Vj are at most nj−1,
and moreover the polynomial gj(z) =

∏nj−1
i=0 (Vj(ρ2j

i) − zUj(ρ2j

i)) has the same
first two coefficients as g(z). Namely,

gj(z)
def=

nj−1∏
i=0

(
Vj(ρ2j

i)− zUj(ρ2j

i)
)

= g(z) (mod z2). (8)

Equation (8) holds for j = 0 by definition. Assume that we computed Uj, Vj
for some j < m such that Equation (8) holds, and we show how to compute

Uj+1 and Vj+1. From Equation (6) we know that
(
ρi+nj/2

)2j

= −ρ2j

i , so we can
express gj as

gj(z) =
nj/2−1∏

i=0

(
Vj(ρ2j

i)− zUj(ρ2j

i)
) (

Vj(−ρ2j

i)− zUj(−ρ2j

i)
)

=
nj/2−1∏

i=0

(
Vj(ρ2j

i)Vj(−ρ2j

i)︸ ︷︷ ︸
=Aj(ρ2j

i)

−z
(
Uj(ρ2j

i)Vj(−ρ2j

i) + Uj(−ρ2j

i)Vj(ρ2j

i)︸ ︷︷ ︸
=Bj(ρ2j

i)

))
(mod z2)

Denoting fnj (x) def= xnj + 1 and observing that ρ 2j

i is a root of fnj for all i, we
next consider the polynomials:

Aj(x) def= Vj(x)Vj(−x) mod fnj (x) (with coefficients a0, . . . , anj−1)

Bj(x) def= Uj(x)Vj(−x) + Uj(−x)Vj(x) mod fnj (x) (with coefficients b0, . . . , bnj−1)

and observe the following:

– Since ρ 2j

i is a root of fnj , then the reduction modulo fnj makes no difference
when evaluating Aj , Bj on ρ 2j

i . Namely we have Aj(ρ2j

i) = Vj(ρ2j

i)Vj(−ρ2j

i)
and similarly Bj(ρ2j

i) = Uj(ρ2j

i)Vj(−ρ2j

i) + Uj(−ρ2j

i)Vj(ρ2j

i) (for all i).
– The odd coefficients of Aj , Bj are all zero. For Aj this is because it is obtained

as Vj(x)Vj(−x) and for Bj this is because it is obtained as Rj(x) + Rj(−x)
(with Rj(x) = Uj(x)Vj(−x)). The reduction modulo fnj (x) = xnj + 1 keeps
the odd coefficients all zero, because nj is even.

142 C. Gentry and S. Halevi

We therefore set

Uj+1(x) def=
nj/2−1∑
t=0

b2t
· xt, and Vj+1(x) def=

nj/2−1∑
t=0

a2t
· xt,

so the second bullet above implies that Uj+1(x2) = Bj(x) and Vj+1(x2) = Aj(x)
for all x. Combined with the first bullet, we have that

gj+1(z)
def=

nj/2−1∏
i=0

(
Vj+1(ρ2j+1

i)− z · Uj+1(ρ2j+1

i)
)

=
nj/2−1∏
i=0

(
Aj(ρ2j

i)− z · Bj(ρ2j

i)
)

= gj(z) (mod z2).

By the induction hypothesis we also have gj(z) = g(z) (mod z2), so we get
gj+1(z) = g(z) (mod z2), as needed.

5 Encryption

To encrypt a bit b ∈ {0, 1} with the public key B (which is implicitly repre-
sented by the two integers d, r), we first choose a random 0,±1 “noise vector”
u

def= 〈u0, u1, . . . , un−1〉, with each entry chosen as 0 with some probability q

and as ±1 with probability (1 − q)/2 each. We then set a
def= 2u + b · e1 =

〈2u0 + b, 2u1, . . . , 2un−1〉, and the ciphertext is the vector

c = a mod B = a−
(⌈

a×B−1⌋×B
)

=
[
a×B−1]︸ ︷︷ ︸

[·] is fractional part

× B

We now show that also c can be represented implicitly by just one integer. Recall
that B (and therefore also B−1) are of a special form

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d 0 0 0 0
−r 1 0 0 0

−[r2]d 0 1 0 0
−[r3]d 0 0 1 0

. . .
−[rn−1]d 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and B−1 =

1
d
·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
r d 0 0 0

[r2]d 0 d 0 0
[r3]d 0 0 d 0

. . .
[rn−1]d 0 0 0 d

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Denote a = 〈a0, a1, . . . , an−1〉, and also denote by a(·) the integer polyno-
mial a(x) def=

∑n−1
i=0 aix

i. Then we have a × B−1 =
〈
s
d , a1, . . . , an−1

〉
for

some integer s that satisfies s = a(r) (mod d). Hence the fractional part of
a × B−1 is

[
a×B−1

]
=

〈
[a(r)]d
d , 0, . . . , 0

〉
, and the ciphertext vector is

c =
〈

[a(r)]d
d , 0, . . . , 0

〉
× B = 〈[a(r)]d, 0, . . . , 0〉. Clearly, this vector can

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 143

be represented implicitly by the integer c
def=

[
a(r)

]
d

=
[
b + 2

∑n−1
i=1 uir

i
]
d
.

Hence, to encrypt the bit b, we only need to evaluate the noise-polynomial u(·)
at the point r, then multiply by two and add the bit b (everything modulo d).
We now describe an efficient procedure for doing that.

5.1 An Efficient Encryption Procedure

The most expensive operation during encryption is evaluating the degree-(n−1)
polynomial u at the point r. Polynomial evaluation using Horner’s rule takes
n − 1 multiplications, but it is known that for small coefficients we can reduce
the number of multiplications to only O(

√
n), see [1,10]. Moreover, we observe

that it is possible to batch this fast evaluation algorithm, and evaluate k such
polynomials in time O(

√
kn).

We begin by noting that evaluating many 0,±1 polynomials at the same
point x can be done about as fast as a naive evaluation of a single polynomial.
Indeed, once we compute all the powers (1, x, x2, . . . , xn−1) then we can evaluate
each polynomial just by taking a subset-sum of these powers. As addition is
much faster than multiplication, the dominant term in the running time will be
the computation of the powers of x, which we only need to do once for all the
polynomials.

Next, we observe that evaluating a single degree-(n − 1) polynomial at a
point x can be done quickly given a subroutine that evaluates two degree-
(n/2−1) polynomials at the same point x. Namely, given u(x) =

∑n−1
i=0 uix

i, we
split it into a “bottom half” ubot(x) =

∑n/2−1
i=0 uix

i and a “top half” utop(x) =∑n/2−1
i=0 ui+ d/2x

i. Evaluating these two smaller polynomials we get ybot = ubot(x)
and ytop = utop(x), and then we can compute y = u(x) by setting y = xn/2ytop +
ybot. If the subroutine for evaluating the two smaller polynomials also returns
the value of xn/2, then we need just one more multiplication to get the value of
y = u(x).

These two observations suggest a recursive approach to evaluating the 0,±1
polynomial u of degree n − 1. Namely, we repeatedly cut the degree in half
at the price of doubling the number of polynomials, and once the degree is
small enough we use the “trivial implementation” of just computing all the
powers of x. Analyzing this approach, let us denote by M(k, n) the number
of multiplications that it takes to evaluate k polynomials of degree (n − 1).
Then we have M(k, n) ≤ min(n − 1, M(2k, n/2) + k + 1). To see the bound
M(k, n) ≤M(2k, n/2)+k+1, note that once we evaluated the top- and bottom-
halves of all the k polynomials, we need one multiplication per polynomial to
put the two halves together, and one last multiplication to compute xn (which is
needed in the next level of the recursion) from xn/2 (which was computed in the
previous level). Obviously, making the recursive call takes less multiplications
than the “trivial implementation” whenever n− 1 > (n/2− 1) + k + 1. Also, an
easy inductive argument shows that the “trivial implementation” is better when
n− 1 < (n/2− 1) + k + 1. We thus get the recursive formula

144 C. Gentry and S. Halevi

M(k, n) =
{
M(2k, n/2) + k + 1 when n/2 > k + 1
n− 1 otherwise.

Solving this formula we get M(k, n) ≤ min(n−1,
√

2kn). In particular, the num-
ber of multiplications needed for evaluating a single degree-(n− 1) polynomial
is M(1, n) ≤

√
2n.

We comment that this “more efficient” batch procedure relies on the assump-
tion that we have enough memory to keep all these partially evaluated polynomi-
als at the same time. In our experiments we were only able to use it in dimensions
up to n = 215, trying to use it in higher dimension resulted in the process being
killed after it ran out of memory. A more sophisticated implementation could
take the available amount of memory into account, and stop the recursion earlier
to preserve space at the expense of more running time. An alternative approach,
of course, is to store partial results to disk. More experiments are needed to
determine what approach yields better performance for which parameters.

5.2 The Euclidean Norm of Fresh Ciphertexts

When choosing the noise vector for a new ciphertext, we want to make it as sparse
as possible, i.e., increase as much as possible the probability q of choosing each
entry as zero. The only limitation is that we need q to be bounded sufficiently
below 1 to make it hard to recover the original noise vector from c. There are two
types of attacks that we need to consider: lattice-reduction attacks that try to
find the closest lattice point to c, and exhaustive-search/birthday attacks that try
to guess the coefficients of the original noise vector (and a combination thereof).
Pure lattice-reduction attacks should be thwarted by working with lattices with
high-enough dimension, so we concentrate here on exhaustive-search attacks.

Roughly, if the noise vector has � bits of entropy, then we expect birthday-type
attacks to be able to recover it in 2�/2 time, so we need to ensure that the noise
has at least 2λ bits of entropy for security parameter λ. Namely, for dimension n
we need to choose q sufficiently smaller than one so that 2(1−q)n ·

(
n
qn

)
> 22λ.

Another “hybrid” attack is to choose a small random subset of the powers of r
(e.g., only 200 of them) and “hope” that they include all the noise coefficients.
If this holds then we can now search for a small vector in this low-dimension
lattice (e.g., dimension 200). For example, if we work in dimension n = 2048 and
use only 16 nonzero entries for noise, then choosing 200 of the 2048 entries, we
have probability of about (200/2048)16 ≈ 254 of including all of them (hence we
can recover the original noise by solving 254 instances of SVP in dimension 200).
The same attack will have success probability only ≈ 2−80 if we use 24 nonzero
entries.

For our public challenges we chose a (somewhat aggressive) setting where the
number of nonzero entries in the noise vector is between 15 and 20. We note that
increasing the noise will have only moderate effect on the performance numbers
of our fully-homomorphic scheme, for example using 30 nonzero entries is likely
to increase the size of the key (and the running time) by only about 5-10%.

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 145

6 Decryption

The decryption procedure takes the ciphertext c (which implicitly represents
the vector c = 〈c, 0, . . . , 0〉) and in principle it also has the two matrices V,W .
The vector a = 2u + b · e1 that was used during encryption is recovered as
a ← c mod V =

[
c × W/d

]
, and then outputs the least significant bit of the

first entry of a, namely b := a0 mod 2.
The reason that this decryption procedure works is that the rows of V (and

therefore also of W) are close to being orthogonal to each other, and hence the
operator l∞-norm of W is small. Namely, for any vector x, the largest entry
in x × W (in absolute value) is not much larger than the largest entry in x
itself. Specifically, the procedure from above succeeds when all the entries of
a ×W are smaller than d/2 in absolute value. To see that, note that a is the
distance between c and some point in the lattice L(V), namely we can express
c as c = y × V + a for some integer vector y. Hence we have[

c × W/d
]
× V =

[
y × V ×W/d + a×W/d

] (�)
=
[
a × W/d

]
× V

where the equality (�) follows since y×V ×W/d is an integer vector. The vector[
a × W/d

]
×V is supposed to be a itself, namely we need

[
a × W/d

]
×V = a =(

a ×W/d
)
×V . But this last condition holds if and only if [a×W/d

]
= (a×W/d),

i.e., a ×W/d is equal to its fractional part, which means that every entry in
a×W/d must be less than 1/2 in absolute value.

6.1 An Optimized Decryption Procedure

We next show that the encrypted bit b can be recovered by a significantly
cheaper procedure: Recall that the (implicitly represented) ciphertext vector
c is decrypted to the bit b when the distance from c to the nearest vector in
the lattice L(V) is of the form a = 2u + be1, and moreover all the entries in
a ×W are less than d/2 in absolute value. As we said above, in this case we
have [c ×W/d] = [a ×W/d] = a ×W/d, which is equivalent to the condition
[c×W]d = [a×W]d = a×W. Recall now that c = 〈c, 0, . . . , 0〉, hence

[c×W]d = [c · 〈w0, w1, . . . , wn−1〉]d = 〈[cw0]d, [cw1]d, . . . , [cwn−1]d〉 .

On the other hand, we have

[c×W]d = a×W = 2u×W + be1×W = 2u×W + b · 〈w0, w1, . . . , wn−1〉 .

Putting these two equations together, we get that any decryptable ciphertext c
must satisfy the relation

〈[cw0]d, [cw1]d, . . . , [cwn−1]d〉 = b · 〈w0, w1, . . . , wn−1〉 (mod 2)

In other words, for every i we have [c · wi]d = b · wi (mod 2). It is therefore
sufficient to keep only one of the wi’s (which must be odd), and then recover the
bit b as b := [c · wi]d mod 2.

146 C. Gentry and S. Halevi

7 How Homomorphic Is This Scheme?

We ran some experiments to get a handle on the degree and number of monomials
that the somewhat homomorphic scheme can handle, and to help us choose
the parameters. In these experiments we generated key pairs for parameters n
(dimension) and t (bit-length), and for each key pair we encrypted many bits,
evaluated on the ciphertexts many elementary symmetric polynomials of various
degrees and number of variables, decrypted the results, and checked whether or
not we got back the same polynomials in the plaintext bits.

80 100 120 140 160 180 200 220 240
0

10

20

30

40

50

60

70

80

Number of variables

La
rg

es
t s

up
po

rt
ed

 d
eg

re
e

Number of variables vs. degree

bitlength=64
bitlength=128
bitlength=256

64 128 256 384
10

16

32

64

128

bit−length of coefficients in generating polynomial

La
rg

es
t s

up
po

rt
ed

 d
eg

re
e

bit−length vs. degree

128 variables
256 variables

m =#-of-variables m = 64 m = 96 m = 128 m = 192 m = 256
t =bit-length

t = 64 13 12 11 11 10
t = 128 33 28 27 26 24
t = 256 64 76 66 58 56
t = 384 64 96 128 100 95

Cells contain the largest supported degree for every m, t combination

Fig. 1. Supported degree vs. number of variables and bit-length of the generating
polynomial, all tests were run in dimension n = 128

More specifically, for each key pair we tested polynomials on 64 to 256 vari-
ables. For every fixed number of variables m we ran 12 tests. In each test we
encrypted m bits, evaluated all the elementary symmetric polynomials in these
variables (of degree up to m), decrypted the results, and compared them to the
results of applying the same polynomials to the plaintext bits. For each setting
of m, we recorded the highest degree for which all 12 tests were decrypted to the
correct value. We call this the “largest supported degree” for those parameters.

Implementing Gentry’s Fully-Homomorphic Encryption Scheme 147

In these experiments we used fresh ciphertexts of expected Euclidean length
roughly 2 ·

√
20 ≈ 9, regardless of the dimension. This was done by choosing each

entry of the noise vector u as 0 with probability 1− 20
n , and as ±1 with proba-

bility 10
n each. With that choice, the degree of polynomials that the somewhat-

homomorphic scheme could evaluate did not depend on the dimension n: We
tested various dimensions from 128 to 2048 with a few settings of t and m,
and the largest supported degree was nearly the same in all these dimensions.
Thereafter we tested all the other settings only in dimension n = 128.

The results are described in Figure 1. As expected, the largest supported de-
gree grows linearly with the bit-length parameter t, and decreases slowly with the
number of variables (since more variables means more terms in the polynomial).

These results can be more or less explained by the assumptions that the de-
cryption radius of the secret key is roughly 2t, and that the noise in an evaluated
ciphertext is roughly cdegree×

√
#-of-monomials, where c is close to the Euclidean

norm of fresh ciphertexts (i.e., c ≈ 9). For elementary symmetric polynomials,
the number of monomials is exactly

(
m
deg

)
. Hence to handle polynomials of degree

deg with m variables, we need to set t large enough so that 2t ≥ cdeg×
√(

m
deg

)
, in

order for the noise in the evaluated ciphertexts to still be inside the decryption
radius of the secret key.

Trying to fit the data from Figure 1 to this expression, we observe that c
is not really a constant, rather it gets slightly smaller when t gets larger. For
t = 64 we have c ∈ [9.14, 11.33], for t = 128 we have c ∈ [7.36, 8.82], for t = 256
we get c ∈ [7.34, 7.92], and for t = 384 we have c ∈ [6.88, 7.45]. We speculate
that this small deviation stems from the fact that the norm of the individual
monomials is not exactly cdeg but rather has some distribution around that size,
and as a result the norm of the sum of all these monomials differs somewhat
from

√
#-of-monomials times the expected cdeg.

Acknowledgments. We thank Nigel Smart for many excellent comments. We also
thank the CRYPTO reviewers for their helpful comments and Tal Rabin, John
Gunnels, and Grzegorz Swirszcz for interesting discussions.

References

1. Avanzi, R.M.: Fast evaluation of polynomials with small coefficients modulo an
integer. Web document (2005),
http://caccioppoli.mac.rub.de/website/papers/trick.pdf

2. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EU-
ROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

3. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st ACM Symposium on Theory of Computing – STOC 2009, pp. 169–178.
ACM, New York (2009)

4. Gentry, C.: Toward basing fully homomorphic encryption on worst-case hard-
ness. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer,
Heidelberg (2010)

http://caccioppoli.mac.rub.de/website/papers/trick.pdf

148 C. Gentry and S. Halevi

5. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. Cryptology ePrint Archive, Report 2010/520 (2010),
http://eprint.iacr.org/

6. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

7. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010)

8. Micciancio, D.: Improving lattice based cryptosystems using the hermite normal
form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001)

9. Ogura, N., Yamamoto, G., Kobayashi, T., Uchiyama, S.: An improvement of key
generation algorithm for gentry’s homomorphic encryption scheme. In: Echizen, I.,
Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 70–83. Springer,
Heidelberg (2010)

10. Paterson, M.S., Stockmeyer, L.J.: On the number of nonscalar multiplications nec-
essary to evaluate polynomials. SIAM Journal on Computing 2(1), 60–66 (1973)

11. Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to average-case
connection factors. In: Proceedings of the 39th Annual ACM Symposium on Theory
of Computing – STOC 2007, pp. 478–487. ACM, New York (2007)

12. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press,
London (1978)

13. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

14. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

http://eprint.iacr.org/

Homomorphic Signatures for Polynomial Functions

Dan Boneh� and David Mandell Freeman��

Stanford University
{dabo,dfreeman}@cs.stanford.edu

Abstract. We construct the first homomorphic signature scheme that is capable
of evaluating multivariate polynomials on signed data. Given the public key and a
signed data set, there is an efficient algorithm to produce a signature on the mean,
standard deviation, and other statistics of the signed data. Previous systems for
computing on signed data could only handle linear operations. For polynomials
of constant degree, the length of a derived signature only depends logarithmically
on the size of the data set.

Our system uses ideal lattices in a way that is a “signature analogue” of Gen-
try’s fully homomorphic encryption. Security is based on hard problems on ideal
lattices similar to those in Gentry’s system.

Keywords: Homomorphic signatures, ideals, lattices.

1 Introduction

While recent groundbreaking work has shown how to compute arbitrary functions on
encrypted data [17,33,12], far less is known about computing functions on signed data.

Informally, the problem of computing on signed data is as follows. Alice has a nu-
merical data set m1, . . . ,mk of size k (e.g., final grades in a course with k students).
She independently signs each datum mi, but before signing she augments mi with a tag
and an index. More precisely, Alice signs the triple (“grades”,mi, i) for i = 1, . . . , k
and obtains k independent signatures σ1, . . . , σk . Here i is the index of mi in the data
set and the tag “grades” serves as a label that names the data set and binds its members
together. For convenience we write σ := (σ1, . . . , σk). The data set and the k signatures
are stored on some untrusted remote server.

Later, the server is asked to compute authenticated functions of the data, such as the
mean or standard deviation of subsets of the data. To compute a function f , the server
uses an algorithm Evaluate(pk, ·, f, σ) that uses σ and f to derive a signature σ on the
triple (

“grades”, m := f(m1, . . . ,mk), 〈f〉
)
, (1.1)

where 〈f〉 is an encoding of the function f , i.e., a string that uniquely describes the
function. Note that Evaluate does not need the original messages — it only acts on
signatures. Now the pair (m,σ) can be published and anyone can check that the server
correctly applied f to the data set by verifying that σ is a signature on the triple (1.1).

� Supported by NSF, DARPA, and AFOSR.
�� Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 149–168, 2011.
c© International Association for Cryptologic Research 2011

150 D. Boneh and D.M. Freeman

The derived signature authenticates both the function f and the result of applying f to
the data. The pair (m,σ) can be used further to derive signatures on functions of m and
other signed data. We give precise definitions of the system’s syntax and security below.

Our focus here is on functions that perform arithmetic operations on the data set,
such as mean, standard deviation, and other data mining algorithms. Current methods
for computing on signed data can handle only linear functions [23, 11, 38, 7, 16, 6].
In these systems, given k independently signed vectors v1, . . . ,vk defined over some
finite field Fp, anyone can compute a signature on any vector v in the Fp-linear span
of {v1, . . . ,vk}, and no one without the secret key can compute a valid signature on a
vector v outside this span. The original motivation for these linear schemes comes from
the network coding routing mechanism [14].

In this paper we present the first signature system that supports computing polyno-
mial functions on signed data. Specifically, our system supports multivariate polynomi-
als of bounded degree. For a constant-degree polynomial with bounded coefficients, the
length of a derived signature only depends logarithmically on the size of the data set.
Thus, for example, given a signed data set as input, anyone can compute a short signa-
ture on the mean, standard deviation, least squares fit, and other functions of arbitrary
subsets of the data. Note that computing standard deviation requires only a quadratic
multivariate polynomial; other applications, discussed in Section 2.4, may require cubic
or higher degree polynomials. While our system intrinsically computes on data defined
over a finite field Fp, it can be used to compute on data defined over the integers by
choosing a sufficiently large field size p.

Our system’s functionality and security derive from properties of certain integer lat-
tices. As a “warm-up” to our main result, we describe in Section 4 a linearly homomor-
phic scheme built from random integer lattices that uses the same underlying ideas as
our polynomial scheme. Interestingly, this construction gives a homomorphic system
over F2 that allows linear functions of many more inputs than the best previous such
system [6]. In Section 6 we show how replacing the random lattices in the linear scheme
with ideal lattices leads to a polynomially homomorphic scheme — our main result.

We note that a trivial solution to computing on signed data is to have the server send
the entire data set to the client along with all the signatures and have the client compute
the function itself. With our constructions only the output of the function is sent to the
client along with a short signature. Beyond saving bandwidth, this approach also limits
the amount of information revealed to the client about the data set, as formalized in
Section 2.2.

Related work. Before delving into the details of our construction, we mention the re-
lated work on non-interactive proofs [26, 37, 20] where the prover’s goal is to output a
certificate that convinces the verifier that a certain statement is correct. Micali’s com-
putationally sound (CS) proofs [26] can solve the problem discussed above as follows:
Alice signs the pair (τ,D) where D is a data set and τ is a short tag used to name D.
She sends D, τ and the signature σ to the server. Later, for some function f , the server
publishes

(
τ, σ, t := f(D), π

)
where π is a short proof that there exists a data set

D such that t = f(D) and that σ is a valid signature by Alice on (τ,D). This tuple
convinces anyone that t is the result of applying f to the original data set D labeled τ
by Alice. Security is proved using Valiant’s witness extractor [37] to extract a signature

Homomorphic Signatures for Polynomial Functions 151

forgery from a cheating server. The construction of π uses the full machinery of the PCP
theorem and soundness is in the random oracle model. Note that computational sound-
ness is sufficient in these settings since the server is given signed data and is therefore
already assumed to be computationally bounded.

Our approach eliminates the proof π. The server only publishes (τ, σ′, t := f(D)
)
,

where σ′ is derived from σ and authenticates both t and f . Constructing σ′ is straightfor-
ward and takes about the same amount of work as computing f(D). Moreover, anyone
can further compute t′ := g(t) = g(f(D)) for some function g and use σ′ to derive
a signature on t′ and the function g(f(·)). While further computation can also be done
with CS proofs [37], it is much simpler with homomorphic signatures.

More recently Goldwasser, Kalai, and Rothblum [20] and Gennaro, Gentry, and
Parno [15] show how to outsource computation securely. In both [15] and [20] (in the
non-interactive setting) the interaction between the server and the client is tailored to the
client and the client uses a secret key to verify the results. In our settings the server con-
structs a publicly verifiable signature on the result and anyone can verify that signature
using Alice’s public key.

We also mention another line of related work that studies “redactable” signatures [35,
22,21,4,29,28,10,9,8,1,31]. These schemes have the property that given a signature on
a message, anyone can derive signatures on subsets of the message. Our focus here is
quite different — we look at computing arithmetic functions on independently authenti-
cated data, rather than computing on a subset of a single message. We also require that
the derived signature explicitly authenticate the computed function f .

1.1 Overview of Our Techniques

The intersection method. Our system uses two n-dimensional integer lattices Λ1 and
Λ2. The lattice Λ1 is used to sign the data (e.g., a student’s grade or the result of a
computation), while the lattice Λ2 is used to sign a description of the function f applied
to the data. The message space for these signatures is Zn/Λ1, which for the lattices we
consider is simply a vector space over the finite field Fp for some prime p.

A signature in our system is a short vector σ in Zn in the intersection of Λ1 + u1
and Λ2 + u2 for certain u1,u2 ∈ Zn. In other words, we have σ = u1 mod Λ1 and
σ = u2 mod Λ2. Loosely speaking, this single signature σ “binds” u1 and u2 — an
attacker cannot generate a new short vector σ′ from σ such that σ = σ′ mod Λ1 but
σ
= σ′ mod Λ2. We refer to this method of jointly signing two vectors u1 and u2 as
the intersection method.

More precisely, let τ be a tag,m be a message, and 〈f〉 be an encoding of a function f .
A signature σ on a triple (τ,m, 〈f〉) is a short vector in Zn satisfying σ = m mod Λ1
and σ = ωτ (〈f〉) mod Λ2. Here ωτ is a hash function defined by the tag τ that maps
(encodings of) functions to vectors in Zn/Λ2. This ωτ not only must preserve the ho-
momorphic properties of the system, but also must enable simulation against a chosen-
message adversary. Note that the Λ1 component of the signature σ is essentially the
same as a Gentry-Peikert-Vaikuntanathan signature [19] on the (unhashed) message m.

It is not difficult to see that these signatures are additively homomorphic. That is,
let σ1 be a signature on (τ,m1, 〈f1〉) and let σ2 be a signature on (τ,m2, 〈f2〉). With an
appropriate hash function ωτ , we can ensure that σ1 + σ2 is a signature on

152 D. Boneh and D.M. Freeman(
τ, m1 + m2, 〈f1 + f2〉

)
. If we set Λ1 = (2Z)n, we obtain a more efficient linearly

homomorphic signature over F2 than previously known [6].
Now let g ∈ Z[x] be a polynomial of degree n and let R be the ring Z[x]/(g). Then

R is isomorphic to Zn and ideals in R correspond to integer lattices in Zn under the
“coefficient embedding.” We choose our two lattices Λ1 and Λ2 to be prime ideals p
and q in R and a signature on the triple (τ,m, f) to be a short element in R such that
σ = m mod p and σ = ωτ (〈f〉) mod q. With this setup, let σ1 and σ2 be signatures on
(τ,m1, 〈f1〉) and (τ,m2, 〈f2〉) respectively. Then for an appropriate hash function ωτ ,

σ1 + σ2 is a signature on
(
τ, m1 + m2, 〈f1 + f2〉

)
and

σ1 · σ2 is a signature on
(
τ, m1 ·m2, 〈f1 · f2〉

)
.

More generally, we can evaluate any bounded degree polynomial with small coefficients
on signatures. In particular, the quadratic polynomial v(m1, . . . ,mk) :=

∑k
i=1(kmi −∑k

i=1 mi)2 that computes a fixed multiple of the variance can easily be evaluated this
way. Anyone can calculate the standard deviation from v(m1, . . . ,mk) and k by taking
a square root and dividing by k.

Our use of ideal lattices is a signature analogue of Gentry’s “somewhat homomor-
phic” encryption system [17]. Ideal lattices also appear in the lattice-based public key
encryption schemes of Stehle, Steinfeld, Tanaka, and Xagawa [34] and Lyubashevsky,
Peikert, and Regev [25] and in the hash functions of Lyubashevsky and Micciancio [24].

Unforgeability. Loosely speaking, a forgery under a chosen message attack is a valid
signature σ on a triple (τ,m, 〈f〉) such that m
= f(m1, . . . ,mk), where m1, . . . ,mk

is the data set signed using tag τ . We show that a successful forger can be used to solve
the Small Integer Solution (SIS) problem in the lattice Λ2, which for random q-ary
lattices and suitable parameters is as hard as standard worst-case lattice problems [27].
When Λ2 is an ideal lattice we can then use the ideal structure to obtain a solution to
the Shortest Independent Vectors Problem (SIVP) for the (average case) distribution of
lattices produced by our key generation algorithm. As is the case with existing linearly
homomorphic signature schemes, our security proofs are set in the random oracle model,
where the random oracle is used to simulate signatures for a chosen message attacker.

Privacy. For some applications it is desirable that derived signatures be private. That
is, if σ is a signature on a message m := f(m1, . . . ,mk) derived from signatures on
messages m1, . . . ,mk, then σ should reveal no information about m1, . . . ,mk beyond
what is revealed by m and f . Using similar techniques to those in [6], it is not difficult to
show that our linearly homomorphic signatures satisfy a privacy property (also defined
in [6]) called weak context hiding. Demonstrating this property amounts to proving that
the distribution obtained by summing independent discrete Gaussians depends only on
the coset of the sum.

Interestingly, we can show that our polynomially homomorphic signature is not pri-
vate. It is an open problem either to design a polynomially homomorphic signature
scheme that is also private, or to modify our scheme to make it private.

Length efficiency. We require that derived signatures be not much longer than the
original signatures from which they were derived; we define this requirement precisely
in Section 2.3. All of our constructions are length efficient.

Homomorphic Signatures for Polynomial Functions 153

2 Homomorphic Signatures: Definitions and Applications

Informally, a homomorphic signature scheme consists of the usual algorithms KeyGen,
Sign, Verify as well as an additional algorithm Evaluate that “translates” functions on
messages to functions on signatures. If σ is a valid set of signatures on messages m,
then Evaluate(f, σ) should be a valid signature for f(m).

To prevent mixing of data from different data sets when evaluating functions, the
Sign, Verify, and Evaluate algorithms take an additional short “tag” as input. The tag
serves to bind together messages from the same data set. One could avoid the tag by
requiring that a new public key be generated for each data set, but simply requiring a
new tag for each data set is more convenient.

Formally, a homomorphic signature scheme is as follows:

Definition 2.1. A homomorphic signature scheme is a tuple of probabilistic,
polynomial-time algorithms (Setup, Sign,Verify,Evaluate) as follows:

– Setup(1n, k). Takes a security parameter n and a maximum data set size k. Outputs
a public key pk and a secret key sk. The public key pk defines a message spaceM,
a signature space Σ, and a set F of “admissible” functions f : Mk →M.

– Sign(sk, τ,m, i). Takes a secret key sk, a tag τ ∈ {0, 1}n, a message m ∈ M and
an index i ∈ {1, . . . , k}, and outputs a signature σ ∈ Σ.

– Verify(pk, τ,m, σ, f). Takes a public key pk, a tag τ ∈ {0, 1}n, a message m ∈ M,
a signature σ ∈ Σ, and a function f ∈ F , and outputs either 0 (reject) or 1 (accept).

– Evaluate(pk, τ, f, σ). Takes a public key pk, a tag τ ∈ {0, 1}n, a function f ∈ F ,
and a tuple of signatures σ ∈ Σk, and outputs a signature σ′ ∈ Σ.

Let πi : Mk → M be the function πi(m1, . . . ,mk) = mi that projects onto the ith
component. We require that π1, . . . , πk ∈ F for all pk output by Setup(1n, k).

For correctness, we require that for each (pk, sk) output by Setup(1n, k), we have:

1. For all tags τ ∈ {0, 1}n, all m ∈M, and all i ∈ {1, . . . , k},
if σ ← Sign(sk, τ,m, i), then with overwhelming probability
Verify(pk, τ,m, σ, πi) = 1 .

2. For all τ ∈ {0, 1}n, all tuples m = (m1, . . . ,mk) ∈ Mk, and all functions f ∈ F ,
if σi ← Sign(sk, τ,mi, i) for i = 1, . . . , k, then with overwhelming probability

Verify
(
pk, τ, f(m), Evaluate

(
pk, τ, f, (σ1, . . . , σk)

)
, f
)

= 1.

We say that a signature scheme as above is F -homomorphic.

While the Evaluate algorithm in our schemes can take as input derived signatures them-
selves produced by Evaluate, doing so for a large number of iterations may eventually
reach a point where the input signatures to Evaluate are valid, but the output signature
is not. Therefore, to simplify the discussion we limit the correctness property to require
only that Evaluate produce valid output when given as input signatures σ produced by
the Sign algorithm.

154 D. Boneh and D.M. Freeman

For ease of exposition we describe our systems as if all data sets consist of exactly
k items. It is straightforward to apply the systems to data sets of size � for any � ≤ k,
simply by interpreting a function on � variables as a function on k variables that ignores
the last k− � inputs. The definitions of unforgeability and privacy below can be adapted
accordingly.

2.1 Unforgeability

The security model for homomorphic signatures allows an adversary to make adaptive
signature queries on data sets of his choosing, each containing (up to) k messages,
with the signer randomly choosing the tag τ for each data set queried. Eventually the
adversary produces a message-signature pair (m∗, σ∗) as well as an admissible function
f and a tag τ∗. The winning condition captures the fact that there are two distinct types
of forgeries. In a type 1 forgery, the pair (m∗, σ∗) verifies for some data set not queried
to the signer; this corresponds to the usual notion of signature forgery. In a type 2
forgery, the pair (m∗, σ∗) verifies for some data set that was queried to the signer, but
for which m∗ does not equal f applied to the messages queried; in other words, the
signature authenticates m∗ as f(m) but in fact this is not the case.

Our security model requires that all data in a data set be signed at once; that is, the
adversary cannot request signatures on new messages after seeing signatures on other
messages in the same data set.

Definition 2.2. A homomorphic signature scheme S = (Setup, Sign,Verify,Evaluate)
is unforgeable if for all k the advantage of any probabilistic, polynomial-time adversary
A in the following game is negligible in the security parameter n:

Setup: The challenger runs Setup(1n, k) to obtain (pk, sk) and gives pk to A. The
public key defines a message space M, a signature space Σ, and a set F of admissible
functions f : Mk →M.

Queries: Proceeding adaptively, A specifies a sequence of data sets mi ∈ Mk. For
each i, the challenger chooses τi uniformly from {0, 1}n and gives to A the tag τi and
the signatures σij ← Sign(sk, τi,mij , j) for j = 1, . . . , k.

Output: A outputs a tag τ∗ ∈ {0, 1}n, a message m∗ ∈ M, a function f ∈ F , and a
signature σ∗ ∈ Σ.

The adversary wins if Verify(pk, τ∗,m∗, σ∗, f) = 1 and either

(1) τ∗
= τi for all i (a type 1 forgery), or
(2) τ∗ = τi for some i but m∗
= f(mi) (a type 2 forgery).

The advantage of A is the probability that A wins the security game.

2.2 Privacy

As in [6] we define privacy for homomorphic signatures using a variation of a definition
of Brzuska et al. [9]. The definition captures the idea that given signatures on a number

Homomorphic Signatures for Polynomial Functions 155

of messages derived from two different data sets, the attacker cannot tell which data set
the derived signatures came from, and furthermore that this property holds even if the
secret key is leaked. We call signatures with this privacy property weakly context hiding.
The reason for “weak” is that we assume the original signatures on the data set are not
public. The concept is similar to that of witness indistinguishability [13], where in our
setting we treat the original data set as the witness.

Ahn et al. [1] define a stronger notion of privacy, called strong context hiding, that
requires derived signatures to be distributed as independent fresh signatures on the same
message; this requirement ensures privacy even if the original signatures are exposed.

Definition 2.3. A homomorphic signature scheme S = (Setup, Sign,Verify,Evaluate)
is weakly context hiding if for all k, the advantage of any probabilistic, polynomial-time
adversaryA in the following game is negligible in the security parameter n:

Setup: The challenger runs Setup(1n, k) to obtain (pk, sk) and gives pk and sk to A.
The public key defines a message space M, a signature space Σ, and a set F of admis-
sible functions f : Mk →M.

Challenge:A outputs (m∗
0, m

∗
1, f1, . . . , fs) with m∗

0, m
∗
1 ∈ Mk. The functions f1, . . . ,

fs are in F and satisfy

fi
(
 m∗

0
)

= fi
(
 m∗

1
)

for all i = 1, . . . , s.

In response, the challenger generates a random bit b ∈ {0, 1} and a random tag τ ∈
{0, 1}n. It signs the messages in m∗

b using the tag τ to obtain a vector σ of k signatures.
Next, for i = 1, . . . , s the challenger computes a signature σi := Evaluate(pk, τ, fi, σ)
on fi(m∗

b). It sends the tag τ and the signatures σ1, . . . , σs toA. Note that the functions
f1, . . . , fs can be output adaptively after m∗

0, m
∗
1 are output.

Output: A outputs a bit b′.

The adversaryA wins the game if b = b′. The advantage of A is the probability that A
wins the game.

Winning the weak context hiding game means that the attacker was able to determine
whether the challenge signatures were derived from signatures on m∗

0 or from signatures
on m∗

1. We say that the signature scheme is s-weakly context hiding if the attacker
cannot win the privacy game after seeing at most s signatures derived from m∗

0 or m∗
1.

2.3 Length Efficiency

We say that a homomorphic signature scheme is length efficient if for a fixed security
parameter n, the length of derived signatures depends only logarithmically on the size k
of the data set. More precisely, we have the following:

Definition 2.4. Let S = (Setup, Sign,Verify,Evaluate) be a homomorphic signature
scheme. We say that S is length efficient if there is some function μ : N → R such
that for all (pk, sk) output by Setup(1n, k), all m = (m1, . . . ,mk) ∈ Mk, all tags
τ ∈ {0, 1}n, and all functions f ∈ F , if

σi ← Sign(pk, τ,mi, i) for i = 1, . . . , k,

156 D. Boneh and D.M. Freeman

then for all k > 0, the derived signature σ := Evaluate
(
pk, τ, f, (σ1, . . . , σk)

)
has bit

length at most μ(n) · log k with overwhelming probability.

2.4 Applications

Before describing our constructions we first examine a few applications of computing
on signed data. In the Introduction we discussed applications to computing statistics on
signed data, and in particular the examples of mean and standard deviation. Here we
discuss more complex data mining algorithms.

Least squares fits. Recall that given an integer d ≥ 0 and a data set {(xi, yi)}ki=1
consisting of k pairs of real numbers, the degree d least squares fit is a polynomial
f ∈ R[x] of degree d that minimizes the quantity

∑k
i=1(yi − f(xi))2. The vector of

coefficients of f is denoted by f and is given by the formula

 f = (XTX)−1XT y ∈ Rd+1,

where X ∈ Rk×(d+1) is the Vandermonde matrix of the xi, whose jth column is the vec-
tor (xj−1

1 , . . . , xj−1
k), and y is the column vector (y1, . . . , yk). The degree d is usually

small, e.g. d = 1 for a least squares fit with a line.
Using homomorphic signatures, a server can be given a set of individually signed

data points and derive from it a signature on the least squares fit f (or more precisely,
a signature on the vector of coefficients f). If the signature is length efficient, then for
fixed d the length of the derived signature depends only logarithmically on the number
of data points k. If the signatures are private, then the derived signature on f reveals
nothing about the original data set beyond what is revealed by f .

We consider two types of data sets. In the first type, the x-coordinates are universal
constants in Z and need not be signed. For example, the data set might contain the tem-
perature on each day of the year, in which case the x-coordinates are simply the days
of the year and need not be explicitly included in the data. Only the y-coordinates are
signed. Then the least squares fit is simply a linear function of y, namely f := A · y for
some fixed matrix A. The signature on f can thus be derived using any linearly homo-
morphic signature scheme. To handle fractional entries in A we can pre-multiply A by
a known scalar to cancel denominators.

The second type of data set is one in which both thex-coordinate and the y-coordinate
are signed. More precisely, an integer data set {(xi, yi)}ki=1 is signed by signing all 2k
values separately (but with the same tag) to obtain 2k signatures. The server is given
the data set and these 2k signatures. In the full version of this paper [5] we show that a
homomorphic signature scheme for polynomials of degree d2+d+1 over the integers is
sufficient for deriving a signature on the least squares fit. In particular, for a least squares
fit using a line it suffices for the signature to be homomorphic for cubic polynomials.

In summary, linearly homomorphic signatures are sufficient when the x-coordinates
are absolute constants and polynomially homomorphic signatures are needed for gen-
eral data sets.

More advanced data mining. If we had fully homomorphic signatures (i.e., support-
ing arbitrary computation on signed data), then an untrusted server could run more

Homomorphic Signatures for Polynomial Functions 157

complex data mining algorithms on the given data set. For example, given a signed data
set, the server could publish a signed decision tree (e.g., as generated by the ID3 algo-
rithm [32]). Length efficiency means that the length of the resulting signature depends
only logarithmically on the size of the data set. If the signatures were private, then pub-
lishing the signed decision tree would leak no other information about the original data
set.

3 Preliminaries

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q. If q is
prime, Zq is a field and is denoted by Fq . We let Z�×nq denote the set of �× n matrices
with entries in Zq . We say a function f(n) is negligible if it is O(n−c) for all c > 0,
and we use negl(n) to denote a negligible function of n. We say f(n) is polynomial if
it is O(nc) for some c > 0, and we use poly(n) to denote a polynomial function of n.
We say an event occurs with overwhelming probability if its probability is 1− negl(n).
The function lg x is the base 2 logarithm of x.

Lattices. An n-dimensional lattice is a full-rank discrete subgroup of Rn. Standard
results on lattices that we use appear in the full version of this paper [5]. Here we note
briefly that our schemes will use an algorithm SamplePre [19, Theorem 5.9] that takes
as input a basis T of an n-dimensional lattice Λ, a parameter ν, and a vector t ∈ Zn, and
outputs a vector in the coset Λ+ t sampled from a Gaussian distribution. SamplePre is
itself built from an algorithm SampleGaussian [19, Theorem 4.1] that outputs a vector
in the lattice Λ sampled from a Gaussian distribution.

Our linearly homomorphic schemes will use “q-ary” lattices defined as follows: for
any integer q ≥ 2 and any A ∈ Z�×nq , we define Λ⊥

q (A) :=
{
e ∈ Zn : A · e =

0 mod q
}

. Our schemes will use an algorithm TrapGen [3, Theorem 3.2] that samples
an (almost) uniformly random matrix A ∈ Z�×nq along with a “short” basis for Λ⊥

q (A).

Complexity assumption. We define a generalization of the now-standard Small Integer
Solution (SIS) problem, which is to find a short nonzero vector in a certain class of
lattices.

Definition 3.1. Let L = {Ln} be a distribution ensemble of integer lattices, where
lattices in Ln have dimension n. An instance of the L-SISn,β problem is a lattice Λ←
Ln. A solution to the problem is a nonzero vector v ∈ Λ with ‖v‖ ≤ β.

If B is an algorithm that takes as input a lattice Λ, we define the advantage of B,
denoted L-SIS-Adv[B, (n, β)], to be the probability that B outputs a solution to an
L-SISn,β problem instance Λ chosen according to the distribution Ln.

We say that the L-SISn,β problem is infeasible if for all polynomial-time algorithms
B, the advantage L-SIS-Adv[B, (n, β)] is a negligible function of n.

When Ln consists of Λ⊥
q (A) for uniformly random A ∈ Z�×nq , the L-SISn,β problem

is the standard SISq,n,β problem defined by Micciancio and Regev [27]. For this distri-
bution of lattices, an algorithm that solves the L-SISn,β problem can be used to solve
worst-case problems on arbitrary �-dimensional lattices [27, §5].

158 D. Boneh and D.M. Freeman

4 Homomorphic Signatures for Linear Functions over Small
Fields

As a “warm-up” to our polynomially homomorphic scheme, we describe a signature
scheme that can authenticate any linear function of signed vectors defined over small
fields Fp. Previous constructions can only achieve this functionality for vectors defined
over large fields [11, 7] or for a small number of vectors [6]. In particular, our scheme
easily accommodates binary data (p = 2). Linearly homomorphic signatures over F2
are an example of a primitive that can be built from lattices, but cannot currently be
built from discrete-log or RSA-type assumptions. In the full version of this paper [5]
we describe a variant of the scheme in which the data can take values in large fields Fp.

Security is based on the SIS problem on q-ary lattices for some prime q; Micciancio
and Regev [27], building on the work of Ajtai [2], show that this problem is as hard as
standard worst-case problems on arbitrary lattices of dimension approximately n/ lg q.
The system in this section is only secure for small p, specifically p = poly(n) with
p ≤ √q/nk for data sets of size k.

Overview of the scheme. Since our system builds on the “hash-and-sign” signatures of
Gentry, Peikert, and Vaikuntanathan [19], let us recall how GPV signatures work in an
abstract sense. The public key is a lattice Λ ⊂ Zn and the secret key is a short basis of
Λ. To sign a message m, the secret key holder hashes m to an element H(m) ∈ Zn/Λ
and samples a short vector σ from the coset of Λ defined by H(m). To verify σ, one
checks that σ is short and that σ mod Λ = H(m).

Recall that in a homomorphic signature scheme we wish to authenticate triples
(τ,m, 〈f〉), where τ is a “tag” attached to a data set, m is a message in Fnp , and 〈f〉
is an encoding of a function f acting on k-tuples of messages. We encode a linear func-
tion f : (Fnp)k → Fnp defined by f(m1, . . . ,mk) =

∑k
i=1 cimi by interpreting the ci

as integers in (−p/2, p/2] and defining 〈f〉 := (c1, . . . , ck) ∈ Zk.
To authenticate both the message and the function as well as bind them together, we

compute a single GPV signature that is simultaneously a signature on the (unhashed)
message m ∈ Fnp and a signature on a hash of 〈f〉.

This dual-role signature is computed via what we call the “intersection method,”
which works as follows. Let Λ1 andΛ2 be n-dimensional integer lattices withΛ1+Λ2 =
Zn. Suppose m ∈ Zn/Λ1 is a message and ωτ is a hash function (depending on the tag
τ) that maps encodings of functions f to elements of Zn/Λ2. Since the message m
defines a coset of Λ1 in Zn and the hash ωτ (〈f〉) defines a coset of Λ2 in Zn, by the
Chinese remainder theorem the pair

(
m, ωτ (〈f〉)

)
defines a unique coset of Λ1 ∩ Λ2

in Zn. We can thus use a short basis of Λ1 ∩ Λ2 to compute a short vector in this coset;
i.e., a short vector σ with the property that σ mod Λ1 = m and σ mod Λ2 = ωτ (〈f〉).
The vector σ is a signature on (τ,m, 〈f〉).

The Sign(sk, τ,m, i) algorithm uses the procedure above to generate a fresh sig-
nature on the triple (τ,m, 〈πi〉) where πi is the ith projection function defined by
πi(m1, . . . ,mk) = mi and encoded as 〈πi〉 = ei, the ith unit vector in Zk.

The homomorphic property is now obtained as follows. To authenticate the linear
combination m=

∑k
i=1 cimi for integers ci, we compute the signature σ :=

∑k
i=1 ciσi.

If k and p are sufficiently small, then σ is a short vector. Furthermore, we have

Homomorphic Signatures for Polynomial Functions 159

σ mod Λ1 =
∑k

i=1 cimi = m , and

σ mod Λ2 =
∑k

i=1 ciωτ (〈πi〉) =
∑k

i=1 ciωτ (ei).

Now suppose that ωτ is linear, namely
∑k

i=1 ciωτ (ei) = ωτ
(
(c1, . . . , ck)

)
for all

c1, . . . , ck in Z. Then since (c1, . . . , ck) is exactly the encoding of the function f de-
fined by f(m1, . . . ,mk) =

∑k
i=1 cimi, the signature σ authenticates both the message

m and the fact that it was computed correctly (i.e., via f) from the original messages
m1, . . . ,mk.

The linearly homomorphic scheme. We now describe the scheme.

Setup(1n, k). On input a security parameter n and a maximum data set size k, do the
following:
1. Choose two primes p, q = poly(n) with q ≥ (nkp)2. Define � := �n/6 log q�.
2. Set Λ1 := pZn.
3. Use TrapGen(q, �, n) to generate a matrix A ∈ F�×nq along with a short basis Tq

of Λ⊥
q (A). Define Λ2 := Λ⊥

q (A) and T := p ·Tq .
4. Set ν := p ·

√
n log q · logn.

5. Let H : {0, 1}∗ → F�q be a hash function (modeled as a random oracle).
6. Output the public key pk := (Λ1, Λ2, ν, k,H) and the secret key sk = T.

The public key pk defines the following system parameters:
– The message space is Fnp and signatures are short vectors in Zn.
– The set of admissible functionsF is all Fp-linear functions on k-tuples of messages

in Fnp .

– For a function f ∈ F defined by f(m1, . . . ,mk) =
∑k

i=1 cimi, we encode f by
interpreting the ci as integers in (−p/2, p/2] and defining 〈f〉 = (c1, . . . , ck) ∈ Zk .

– To evaluate the hash function ωτ on an encoded function 〈f〉 = (c1, . . . , ck) ∈ Zk,
do the following:
(a) For i = 1, . . . , k, compute αi ← H(τ‖i) in F�q .

(b) Define ωτ (〈f〉) :=
∑k

i=1 ciαi ∈ F�q.

Sign(sk, τ,m, i). On input a secret key sk, a tag τ ∈ {0, 1}n, a message m ∈ Fnp , and
an index i, do:
1. Compute αi := H(τ‖i) ∈ F�q . Then, by definition, ωτ (〈πi〉) = αi.
2. Compute t ∈ Zn such that t mod p = m and A · t mod q = αi.
3. Output σ ← SamplePre(Λ1 ∩ Λ2,T, t, ν) ∈ (Λ1 ∩ Λ2) + t .

Verify(pk, τ,m, σ, f). On input a public key pk, a tag τ ∈ {0, 1}n, a message m ∈ Fnp ,
a signature σ ∈ Zn, and a function f ∈ F , do:
1. If all of the following conditions hold, output 1 (accept); otherwise output 0 (reject):

(a) ‖σ‖ ≤ k · p2 · ν
√
n.

(b) σ mod p = m.
(c) A · σ mod q = ωτ (〈f〉).

Evaluate(pk, τ, f, σ). On input a public key pk, a tag τ ∈ {0, 1}n, a function f ∈ F
encoded as 〈f〉 = (c1, . . . , ck) ∈ Zk , and a tuple of signatures σ1, . . . , σk ∈ Zn, output
σ :=

∑k
i=1 ciσi.

160 D. Boneh and D.M. Freeman

In the full version of this paper [5], we show that this linearly homomorphic signature
scheme is correct with overwhelming probability and that it is length efficient; i.e., the
bit length of a derived signature depends logarithmically on the data set size k.

Unforgeability. We will show that an adversary that forges a signature for the linearly
homomorphic scheme can be used to compute a short vector in the lattice Λ2 chosen in
Step 3 of Setup. By [3, Theorem 3.2], the distribution of matrices A used to define Λ2
is statistically close to uniform over F�×nq . Thus the distribution of lattices Λ2 output
by Setup is statistically close to the distribution of challenges for the SISq,n,β problem
(for any β). Our security theorem is as follows.

Theorem 4.1. If SISq,n,β is infeasible for β = k · p2 · n logn
√

log q, then the linearly
homomorphic signature scheme above is unforgeable in the random oracle model.

Sketch of Proof. Let A be an adversary that plays the security game of Definition 2.1.
Given a challenge lattice Λ2 := Λ⊥

q (A) for A ∈ Z�×nq , we simulate the Sign algorithm
on input (τ,m, i) for random τ by sampling a short vector σ from a Gaussian distribu-
tion on Λ1 + m and defining H(τ‖i) := A · σ mod q. Then σ is a valid signature on
(τ,m, i). Other queries to H are answered similarly, but with a random message m. The
Gaussian parameter ν is large enough so that H(τ‖i) is statistically close to uniform
in F�q .

Eventually A outputs a tag τ∗, a message m∗, a function f encoded as 〈f〉 =
(c1, . . . , ck) ∈ Zk , and a signature σ∗. Let σi be the short vector chosen when pro-
gramming H(τ∗‖i), and let σf :=

∑
i ciσi. We claim that if A outputs a valid forgery,

then with high probability the vector σ∗−σf is a nonzero vector in Λ2 of length at most
β; i.e., a solution to the SISq,n,β problem.

Suppose A outputs a type 2 forgery, so the simulator has generated signatures σ =
(σ1, . . . , σk) on messages m = (m1, . . . ,mk) using the tag τ∗. First observe that the
verification condition (1a) implies that ‖σ∗‖ and ‖σf‖ are both less than k · p2 ·ν

√
n, and

therefore ‖σ∗ − σf‖ ≤ β. Next observe that if the forgery is valid, then m∗
= f(m).
The verification condition (1b) implies that (σ∗ − σf) mod p = m∗ − f(m)
= 0,
and thus σ∗ − σf
= 0. On the other hand, verification condition (1c) implies that
A · σ∗ mod q = A · σf mod q, and thus σ∗ − σf ∈ Λ2. The argument for a type 1
forgery is similar, using random messages m instead of queried ones. ��

Worst-case connections. By [19, Proposition 5.7], if q ≥ β · ω(
√
n logn), then the

SISq,m,β problem is as hard as approximating the SIVP problem in the worst case to
within β · Õ(

√
n) factors. Our requirement in the Setup algorithm that q ≥ (nkp)2

guarantees that q is sufficiently large for this theorem to apply. While the exact worst-
case approximation factor will depend on the parameters k and p, it is polynomial in n
in any case.

Comparison with prior work. Boneh and Freeman [6] describe a linearly homomor-
phic signature scheme that can authenticate vectors over Fp for small p, with unforge-
ability also depending on the SIS problem. However, for their system to securely sign k
messages, the SISq,2n−k,β problem must be difficult for β = Õ(k3/2·k!·(n/ lg q)k/2+1),
and therefore their system is designed to only sign a constant number of vectors per

Homomorphic Signatures for Polynomial Functions 161

data set (k = O(1)) while maintaining a polynomial connection to worst-case lattice
problems. On the other hand, for the same value of q our system remains secure when
signing k = poly(n) vectors per data set.

Privacy. We now show that our linearly homomorphic signature scheme is weakly
context hiding. Specifically, we show that a derived signature on a linear combination
m′ =

∑k
i=1 cimi depends (up to negligible statistical distance) only on m′ and the ci,

and not on the initial messages mi. Consequently, even an unbounded adversary cannot
win the privacy game of Definition 2.3. The proof of the following theorem can be
found in the full version of this paper [5].

Theorem 4.2. Suppose that ν defined in the Setup algorithm satisfies ν > ps+1 ·
ks · ω(

√
logn). Then the linearly homomorphic signature scheme described above is

s-weakly context hiding for data sets of size k.

5 Background on Ideal Lattices

A number field is a finite-degree algebraic extension of the rational numbers Q. Any
number field K can be represented as Q[x]/(f(x)) for some monic, irreducible polyno-
mial f(x) with integer coefficients (and for each K there are infinitely many such f).
The degree of a number field K is its dimension as a vector space over Q, and is also the
degree of any polynomial f definingK . For any given f , the set {1, x, x2, . . . , xdeg f−1}
is a Q-basis for K , and we can therefore identify K with Qn by mapping a polynomial
of degree less than n to its vector of coefficients. By identifying K with Qn using this
“coefficient embedding,” we can define a length function ‖·‖ on elements of K simply
by using any norm on Qn. This length function is non-canonical — it depends explic-
itly on the choice of f used to represent K . (Here all norms will be the �2 norm unless
otherwise stated.)

Our identification of K = Q[x]/(f(x)) with Qn induces a multiplicative struc-
ture on Qn in addition to the usual additive structure. We define a parameter γf :=
supu,v∈K

‖u·v‖
‖u‖·‖v‖ . This parameter bounds how much multiplication can increase the

length of the product, relative to the product of the length of the factors. For our ap-
plications we will need to have γf = poly(n). If n is a power of 2, then the function
f(x) = xn + 1 has γf ≤

√
n (cf. [17, Lemma 7.4.3]). We will think of this f(x) as our

“preferred” choice for applications.

Number rings and ideals. A number ring is a ring whose field of fractions is a number
field K . A survey of arithmetic in number rings can be found in [36]; here we summa-
rize the key points.

Every number field has a subring, called the ring of integers and denoted by OK ,
that plays the same role with respect to K as the integers Z do with respect to Q. The
ring of integers consists of all elements of K whose characteristic polynomials have
integer coefficients. Under the identification of K with Qn, the ring OK forms a full-
rank discrete subgroup of Qn; i.e., a lattice. InsideOK is the subring R = Z[x]/(f(x)).
Under our identification of K with Qn, the ring R corresponds to Zn. In general R is a
proper sublattice of OK .

162 D. Boneh and D.M. Freeman

An (integral) ideal of R is an additive subgroup I ⊂ R that is closed under multipli-
cation by elements of R. By our identification of R with Zn, the ideal I is a sublattice
of R and is therefore also called an ideal lattice. Note that this usage of “ideal lattice”
to refer to a rank one R-module differs from that of [34,24], which use the terminology
to refer to R-modules of arbitrary rank.

An ideal I ⊂ R is prime if for x, y ∈ R, xy ∈ I implies either x ∈ I or y ∈ I . If
p is a prime ideal, then R/p is a finite field Fpe ; the integer e is the degree of p and the
prime p is the characteristic of p. An ideal I is principal if it can be written as α ·R for
some α ∈ R. In general most ideals are not principal; the proportion of principal ideals
is 1 over the size of the class group of R, which is exponential in n. The norm of an
ideal I is the size of the (additive) group R/I .

If p is a prime ideal of R, then by a theorem of Kummer and Dedekind [36, Theorem
8.2] we can write p = p ·R+h(x) ·R for some polynomial h(x) whose reduction mod
p is an irreducible factor of f(x) mod p. Writing p in this “two-element representation”
makes it easy to compute the corresponding quotient map Z[x]/(f(x)) → Fpe ; we
simply reduce a polynomial in Z[x] modulo both p and h(x). In particular, if p is a
degree-one prime, then h(x) = x− α for some integer α and the quotient map is given
by z(x) �→ z(α) mod p.

Generating ideals with a short basis. If we are to use ideals as the lattices Λ1 and Λ2
in our abstract signature scheme, we will need a method for generating ideals p and q in
R along with a short basis for p∩q (which is equal to p ·q if p and q are relatively prime
ideals). Furthermore, our security proof requires that given q without a short basis, we
can still compute a prime p with a short basis.

In our construction we generate ideals using an algorithm of Smart and Ver-
cauteren [33]. This algorithm generates a principal prime ideal p along with a short
generator g of p. We can multiply g by powers of x to generate a full-rank set of vectors
{g, xg, x2g, . . . , xn−1g} that spans p. Since ‖x‖ = 1, we have ‖xig‖ ≤ γf · ‖g‖, so if
γf is small then these vectors are all short.

Theorem 5.1 ([33, §3.1]). There is an algorithm PrincGen that takes input a monic
irreducible polynomial f(x) ∈ Z[x] of degree n and a parameter δ, and outputs a
principal degree-one prime ideal p = (p, x − a) in K := Q[x]/(f(x)), along with a
generator g of p satisfying ‖g‖ ≤ δ

√
n.

The algorithm works by sampling a random g with low norm and seeing if it generates
a prime ideal in OK . Smart and Vercauteren do not give a rigorous analysis of the
algorithm’s running time, but heuristically we expect that by the number field analogue
of the Prime Number Theorem [30, Theorem 8.9], we will find a prime ideal after trying
O(n log n log δ) values of g.

6 Homomorphic Signatures for Polynomial Functions

In this section we describe our main construction, a signature scheme that authenticates
polynomial functions on signed messages.

Homomorphic Signatures for Polynomial Functions 163

Recall the basic idea of our linearly homomorphic scheme from Section 4: messages
are elements of Zn mod Λ1, functions are mapped (via the hash function ωτ) to ele-
ments of Zn mod Λ2, and a signature on (τ,m, 〈f〉) is a short vector in the coset of
Λ1∩Λ2 defined by m and ωτ (〈f〉). To verify a signature σ, we simply confirm that σ is
a short vector and that σ mod Λ1 = m and σ mod Λ2 = ωτ (〈f〉). The homomorphic
property follows from the fact that the maps x �→ (x mod Λi) are linear maps — i.e.,
vector space homomorphisms — and therefore adding signatures corresponds to adding
the corresponding messages and (encoded) functions.

Our polynomial system is based on the following idea: what if the lattice Zn has a
ring structure and the lattices Λ1, Λ2 are ideals? Then the maps x �→ (x mod Λi) are
ring homomorphisms, and therefore adding or multiplying signatures corresponds to
adding or multiplying the corresponding messages and functions. Since any polynomial
can be computed by repeated additions and multiplications, adding this structure to our
lattices allows us to authenticate polynomial functions on messages.

Concretely, we let F (x) ∈ Z[x] be a monic, irreducible polynomial of degree n.
We define the number field K = Q[x]/(F (x)) and let OK be the lattice in Qn corre-
sponding (via the coefficient embedding) to the ring of integers of K . We now let Λ1
and Λ2 be (degree one) prime ideals p, q ⊂ OK of norm p, q respectively. We fix an
isomorphism from OK/p to Fp by representing p as pOK + (x − a)OK and mapping
h(x) ∈ OK to h(a) mod p ∈ Fp, and similarly for OK/q ∼= Fq. We can now sign
messages exactly as in the linearly homomorphic scheme.

In our linearly homomorphic scheme we used the projection functions πi as a gener-
ating set for admissible functions, and we encoded the function f =

∑
ciπi by its coef-

ficient vector (c1, . . . , ck) (with the ci interpreted as integers in (−p/2, p/2]). When we
consider polynomial functions on Fp[x1, . . . , xk], the projection functionsπi are exactly
the linear monomials xi, and we can obtain any (non-constant) polynomial function by
adding and multiplying monomials. If we fix an ordering on all monomials of the form
xe11 · · ·x

ek

k , then we can encode any polynomial function as its vector of coefficients,
with the unit vectors ei representing the linear monomials xi for i = 1, . . . , k.

The hash function ωτ is defined exactly as in our linear scheme: for a function f in
Fp[x1, . . . , xk] whose encoding is 〈f〉 = (c1, . . . , c�) ∈ Z�, we define a polynomial
f̂ ∈ Z[x1, . . . , xk] that reduces to f mod p. We then define ωτ (〈f〉) = f̂(α1, . . . , αk),
where αi ∈ Fq are defined to be H(τ, i) for some hash function H .

We use the same lifting of f to f̂ ∈ Z[x1, . . . , xk] to evaluate polynomials on signa-
tures; specifically, given a polynomial f and signatures σ1, . . . , σk ∈ K on messages
m1, . . . ,mk ∈ Fp, the signature on f(m1, . . . ,mk) is given by f̂(σ1, . . . , σk).

Recall that for v1,v2 ∈ OK , the length of v1 ·v2 is bounded by γF ·‖v1‖·‖v2‖. Thus
if we choose F (x) so that γF is polynomial in n, then multiplying together a constant
number of vectors of length poly(n) produces a vector of length poly(n). It follows that
the derived signature f(σ1, . . . , σk) is short as long as the degree of f is bounded and
the coefficients of f are small (when lifted to the integers). The system therefore can
support polynomial computations on messages for polynomials with small coefficients
and bounded degree.

The polynomially homomorphic scheme. We now describe the scheme formally.

164 D. Boneh and D.M. Freeman

Setup(1n, k). On input a security parameter n and a maximum data set size k, do the
following:

1. Choose a monic irreducible polynomial F (x) ∈ Z[x] of degree n with γF =
poly(n).
Let K := Q[x]/(F (x)) be embedded in Qn via the coefficient embedding.
Let R = Zn be the lattice corresponding Z[x]/(F (x)) ⊂ OK .

2. Run the PrincGen algorithm twice on inputs F, n to produce distinct principal
degree-one prime ideals p = (p, x − a) and q = (q, x − b) of R with generators
gp, gq, respectively.

3. Let T be the basis {gpgq, gpgqx, . . . , gpgqx
n−1} of p · q.

4. Define ν := γ2
F · n3 logn. Choose integers y = poly(n) and d = O(1).

5. Let H : {0, 1}∗ → Fq be a hash function (modeled as a random oracle).
6. Output the public key pk = (F, p, q, a, b, ν, y, d,H) and secret key sk = T.

The public key pk defines the following system parameters:

– The message space is Fp and signatures are short vectors in R.
– The set of admissible functions F is all polynomials in Fp[x1, . . . , xk] with coeffi-

cients in {−y, . . . , y}, degree at most d, and constant term zero. The quantity y is
only used in algorithm Verify.

– Let � =
(
k+d
d

)
−1. Let {Yj}�j=1 be the set of all non-constant monomialsxe11 · · ·xek

k

of degree
∑

ei ≤ d, ordered lexicographically. Then any polynomial function f ∈
F is defined by f(m) =

∑�
j=1 cjYj(m) for cj ∈ Fp. We interpret the cj as integers

in [−y, y] and encode f as 〈f〉 = (c1, . . . , c�) ∈ Z�.
– To evaluate the hash function ωτ on an encoded function 〈f〉 = (c1, . . . , c�) ∈ Z�,

do the following:
(a) For i = 1, . . . , k, compute αi ← H(τ‖i).
(b) Define ωτ (〈f〉) :=

∑�
j=1 cjYj(α1, . . . , αk) ∈ Fq .

Sign(sk, τ,m, i). On input a secret key sk, a tag τ ∈ {0, 1}n, a message m ∈ Fp, and
an index i, do:

1. Compute αi := H(τ‖i) ∈ Fq .
2. Compute h = h(x) ∈ R such that h(a) mod p = m and h(b) mod q = αi.
3. Output σ ← SamplePre(p · q,T, h, ν) ∈ (p · q) + h .

Verify(pk, τ,m, σ, f). On input a public key pk, a tag τ ∈ {0, 1}n, a message m ∈ Fp,
a signature σ = σ(x) ∈ R, and a function f ∈ F , do:

1. If all of the following conditions hold, output 1 (accept); otherwise output 0 (reject):

(a) ‖σ‖ ≤ � · y · γd−1
F · (ν

√
n)d.

(b) σ(a) mod p = m.
(c) σ(b) mod q = ωτ (〈f〉).

Evaluate(pk, τ, f, σ). On input a public key pk, a tag τ ∈ {0, 1}n, a function f ∈ F
encoded as 〈f〉 = (c1, . . . , c�) ∈ Z�, and a tuple of signatures σ1, . . . , σk ∈ Zn, do:
1. Lift f ∈ Fp[x1, . . . , xk] to Z[x1, . . . , xk] by setting f̂ :=

∑�
j=1 cjYj(x1, . . . , xk).

2. Output f̂(σ1, . . . , σk).

Homomorphic Signatures for Polynomial Functions 165

In the full version of this paper [5], we show that this polynomially homomorphic sig-
nature scheme is correct with overwhelming probability and that it is length efficient;
i.e., the bit length of a derived signature depends logarithmically on the data set size k.

Unforgeability. As in our linearly homomorphic scheme from Section 4, an adversary
that can forge a signature in the above system can be used to find a short vector in the
lattice used to authenticate functions, which in this case is the ideal q.

Theorem 6.1. For fixed n, let Fn be the polynomial chosen in Step (1) of the Setup al-
gorithm above, and letLn be the distribution of ideals q output by the Smart-Vercauteren
algorithm when given input polynomial Fn(x) and parameter δ = n. Let LF be the en-
semble {Ln}. If LF -SISn,β is infeasible for

β = 2 ·
(
k+d
d

)
· y · γ3d−1

Fn

(
n3 logn

)d
,

then the polynomially homomorphic signature scheme defined above is unforgeable in
the random oracle model.

The proof of this theorem uses the same ideas as that of Theorem 4.1; details are in the
full version of this paper [5]. While Theorem 6.1 gives a concrete security result for our
system, the distribution LF of prime ideals output by the Smart-Vercauteren algorithm
is not well understood. It is an open problem to modify the system to use ideals sampled
from a distribution that admits a random self-reduction.

Privacy. The homomorphic signature scheme described above is not weakly context
hiding in the sense of Definition 2.3. To see why, consider an attacker that outputs two
data sets m∗

0 := (0, 0) and m∗
1 := (0, 1), each containing two messages in (R/p) ∼= Fp.

The attacker also outputs the function f(x, y) := x · y, which is a valid function to
request since f(m∗

0) = f(m∗
1).

The challenger chooses a random bit b in {0, 1} and generates signatures σ1, σ2 in
R for the two messages in m∗

b . It gives the attacker σ := σ1 · σ2.
Now, when b = 0 both σ1 and σ2 are in p and therefore the derived siganture σ =

σ1σ2 is in p2. However, when b = 1 we know that σ2
∈ p and therefore σ ∈ p2 only if
σ1 ∈ p2. But σ1 is in p2 with probability at most 1/2. In other words, Pr[σ ∈ p2] = 1
when b = 0, but Pr[σ ∈ p2] ≤ 1/2 when b = 1. Therefore, an adversary that outputs
b′ = 0 if σ ∈ p2 and b′ = 1 otherwise has advantage at least 1/2 in distinguishing m∗

0
from m∗

1 just given σ. Consequently the scheme is not weakly context hiding.

Using small fields. The signature scheme described above signs messages defined over
a finite field Fp, where p is exponential in n. In the full version [5], we show how to
authenticate polynomial functions of data defined over a field where p is constant or
polynomial in n, as we can for linear computations using the scheme of Section 4.

7 Conclusions and Open Problems

We have presented a homomorphic signature scheme that authenticates polynomial
functions of bounded degree on signed data.

166 D. Boneh and D.M. Freeman

There are many open problems that remain in this area. First, as we explained in
the introduction, we may desire that derived signatures not leak information about the
original data set. This privacy property can be achieved for linear functions (e.g. as in [6]
and in this paper), but is an open problem for quadratic and higher degree polynomials.

Second, the security of our scheme could be strengthened by removing the random
oracle from our construction. All current linearly homomorphic signature schemes use
the random oracle to simulate signatures during a chosen message attack. New ideas are
needed to eliminate the random oracle while preserving the homomorphic properties.

Third, it is an open problem to base the security of our system on worst case prob-
lems on ideal lattices. In particular, we wish to generate ideals for our polynomially
homomorphic signature scheme from a distribution that admits a random self-reduction.
While Gentry [18] has achieved this result for homomorphic encryption, his key gener-
ation algorithm is not suitable for our scheme: it produces an ideal q and a short vector
in q−1, whereas we require a short vector in q. One direction for future work is to con-
struct a homomorphic signature scheme that uses Gentry’s key generation algorithm;
another is to construct an algorithm that samples a uniformly random ideal q along with
a short vector in q.

Finally, our construction can be seen as a first step on the road to a fully homo-
morphic signature scheme, which could authenticate the computation of any function
on signed data. A fully homomorphic signature scheme would be a useful parallel to
existing fully homomorphic encryption systems. Current constructions of fully homo-
morphic encryption are obtained by applying a “bootstrapping” process to a scheme
that allows a limited amount of computation on encrypted data. It is unclear whether
Gentry’s bootstrapping process [17] can be applied to signature schemes such as ours.
We leave this as a beautiful open problem. Even if a fully homomorphic scheme cannot
be immediately realized, it would be useful to enlarge the set of admissible functionsF .

Acknowledgments. The authors thank Rosario Gennaro, Craig Gentry, Hugo Krawczyk,
Gil Segev, and Brent Waters for helpful discussions about this work.

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing on
authenticated data (2010) (manuscript)

2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Van
Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidel-
berg (1999)

3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS, pp. 75–
86 (2009), full version
http://www.cc.gatech.edu/˜cpeikert/pubs/shorter.pdf

4. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimer-
cati, S.D.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–
177. Springer, Heidelberg (2005)

5. Boneh, D., Freeman, D.: Homomorphic signatures for polynomial functions. Cryptology
ePrint Archive, report 2011/018 (2011), http://eprint.iacr.org/2011/018

6. Boneh, D., Freeman, D.: Linearly homomorphic signatures over binary fields and new tools
for lattice-based signatures. In: Gennaro, R. (ed.) PKC 2011. LNCS, vol. 6571, pp. 1–16.
Springer, Heidelberg (2011), full version http://eprint.iacr.org/2010/453

http://www.cc.gatech.edu/~cpeikert/pubs/shorter.pdf
http://eprint.iacr.org/2011/018
http://eprint.iacr.org/2010/453

Homomorphic Signatures for Polynomial Functions 167

7. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature schemes
for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87.
Springer, Heidelberg (2009)

8. Brzuska, C., Busch, H., Dagdelen, Ö., Fischlin, M., Franz, M., Katzenbeisser, S., Man-
ulis, M., Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable signatures for tree-
structured data: Definitions and constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010.
LNCS, vol. 6123, pp. 87–104. Springer, Heidelberg (2010)

9. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J., Schröder,
D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg (2009)

10. Chang, E.C., Lim, C.L., Xu, J.: Short redactable signatures using random trees. In: Fischlin,
M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer, Heidelberg (2009)

11. Charles, D., Jain, K., Lauter, K.: Signatures for network coding. International Journal of
Information and Coding Theory 1(1), 3–14 (2009)

12. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over
the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer,
Heidelberg (2010)

13. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: Proc. of
the 22nd ACM Symposium on Theory of Computing, pp. 416–426 (1990)

14. Fragouli, C., Soljanin, E.: Network coding fundamentals. Found. Trends Netw. 2(1), 1–133
(2007)

15. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing com-
putation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–
482. Springer, Heidelberg (2010)

16. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the integers. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 142–160. Springer,
Heidelberg (2010)

17. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University
(2009), http://crypto.stanford.edu/craig

18. Gentry, C.: Toward basing fully homomorphic encryption on worst-case hardness. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer, Heidelberg (2010)

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic
constructions. In: 40th ACM Symposium on Theory of Computing—STOC 2008, pp. 197–
206. ACM, New York (2008)

20. Goldwasser, S., Kalai, Y., Rothblum, G.: Delegating computation: Interactive proofs for mug-
gles. In: 40th ACM Symposium on Theory of Computing — STOC 2008, pp. 113–122
(2008)

21. Haber, S., Hatano, Y., Honda, Y., Horne, W., Miyazaki, K., Sander, T., Tezoku, S., Yao, D.:
Efficient signature schemes supporting redaction, pseudonymization, and data deidentifica-
tion. In: ASIACCS 2008, pp. 353–362. ACM, New York (2008)

22. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel,
B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)

23. Krohn, M., Freedman, M., Mazieres, D.: On-the-fly verification of rateless erasure codes
for efficient content distribution. In: Proc. of IEEE Symposium on Security and Privacy, pp.
226–240 (2004)

24. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp.
144–155. Springer, Heidelberg (2006)

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg
(2010)

http://crypto.stanford.edu/craig

168 D. Boneh and D.M. Freeman

26. Micali, S.: Computationally sound proofs. SIAM J. of Computing 30(4), 1253–1298 (2000);
extended abstract in FOCS 1994

27. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian mea-
sures. In: 45th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2004,
pp. 372–381. IEEE Computer Society, Washington, DC, USA (2004)

28. Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme based
on bilinear maps. In: ACM Symposium on Information, Computer and Communications
Security — ASIACCS 2006, pp. 343–354 (2006)

29. Miyazaki, K., Iwamura, M., Matsumoto, T., Sasaki, R., Yoshiura, H., Tezuka, S., Imai, H.:
Digitally signed document sanitizing scheme with disclosure condition control. IEICE Trans-
actions on Fundamentals E88-A(1), 239–246 (2005)

30. Montgomery, H.L., Vaughan, R.C.: Multiplicative number theory. I. Classical theory. Cam-
bridge Studies in Advanced Mathematics, vol. 97. Cambridge University Press, Cambridge
(2007)

31. Naccache, D.: Is theoretical cryptography any good in practice? CHES 2010 invited talk
(2010), http://www.iacr.org/workshops/ches/ches2010

32. Quinlan, J.: Induction of decision trees. Machine Learning 1, 81–106 (1986)
33. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and

ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
420–443. Springer, Heidelberg (2010)

34. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based
on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635.
Springer, Heidelberg (2009)

35. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.) ICISC
2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

36. Stevenhagen, P.: The arithmetic of number rings. In: Algorithmic Number Theory: Lattices,
Number Fields, Curves and Cryptography. Math. Sci. Res. Inst. Publ., vol. 44, pp. 209–266.
Cambridge Univ. Press, Cambridge (2008)

37. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg
(2008)

38. Zhao, F., Kalker, T., Médard, M., Han, K.: Signatures for content distribution with network
coding. In: Proc. Intl. Symp. Info. Theory (ISIT) (2007)

http://www.iacr.org/workshops/ches/ches2010

Semi-homomorphic Encryption and
Multiparty Computation

Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias

Department of Computer Science, Aarhus University and CFEM�

Abstract. An additively-homomorphic encryption scheme enables us
to compute linear functions of an encrypted input by manipulating only
the ciphertexts. We define the relaxed notion of a semi-homomorphic
encryption scheme, where the plaintext can be recovered as long as the
computed function does not increase the size of the input “too much”.
We show that a number of existing cryptosystems are captured by our
relaxed notion. In particular, we give examples of semi-homomorphic en-
cryption schemes based on lattices, subset sum and factoring. We then
demonstrate how semi-homomorphic encryption schemes allow us to con-
struct an efficient multiparty computation protocol for arithmetic cir-
cuits, UC-secure against a dishonest majority. The protocol consists of
a preprocessing phase and an online phase. Neither the inputs nor the
function to be computed have to be known during preprocessing. More-
over, the online phase is extremely efficient as it requires no cryptographic
operations: the parties only need to exchange additive shares and verify
information theoretic MACs. Our contribution is therefore twofold: from
a theoretical point of view, we can base multiparty computation on a
variety of different assumptions, while on the practical side we offer a
protocol with better efficiency than any previous solution.

1 Introduction

The fascinating idea of computing on encrypted data can be traced back at
least to a seminal paper by Rivest, Adleman and Dertouzos [RAD78] under
the name of privacy homomorphism. A privacy homomorphism, or homomor-
phic encryption scheme in more modern terminology, is a public-key encryption
scheme (G,E,D) for which it holds that D(E(a) ⊗ E(b)) = a ⊕ b, where (⊗,⊕)
are some group operation in the ciphertext and plaintext space respectively. For
instance, if ⊕ represents modular addition in some ring, we call such a scheme
additively-homomorphic. Intuitively a homomorphic encryption scheme enables
two parties, say Alice and Bob, to perform secure computation: as an example,
Alice could encrypt her input a under her public key, send the ciphertext E(a)
to Bob; now by the homomorphic property, Bob can compute a ciphertext con-
taining, e.g., E(a ·b+c) and send it back to Alice, who can decrypt and learn the

� Center for Research in the Foundations of Electronic Markets, supported by the
Danish Strategic Research Council.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 169–188, 2011.
c© International Association for Cryptologic Research 2011

170 R. Bendlin et al.

result. Thus, Bob has computed a non trivial function of the input a. However,
Bob only sees an encryption of a which leaks no information on a itself, assum-
ing that the encryption scheme is secure. Informally we will say that a set of
parties P1, . . . , Pn holding private inputs x1, . . . , xn securely compute a function
of their inputs y = f(x1, . . . , xn) if, by running some cryptographic protocol,
the honest parties learn the correct output of the function y. In addition, even
if (up to) n−1 parties are corrupt and cooperate, they are not able to learn any
information about the honest parties’ inputs, no matter how they deviate from
the specifications of the protocol.

Building secure multiparty computation (MPC) protocols for this case of dis-
honest majority is essential for several reasons: First, it is notoriously hard to
handle dishonest majority efficiently and it is well known that unconditionally
secure solutions do not exist. Therefore, we cannot avoid using some form of
public-key technology which is typically much more expensive than the standard
primitives used for honest majority (such as secret sharing). Secondly, security
against dishonest majority is often the most natural to shoot for in applications,
and is of course the only meaningful goal in the significant 2-party case. Thus,
finding practical solutions for dishonest majority under reasonable assumptions
is arguably the most important research goal with respect to applications of
multiparty computation.

While fully-homomorphic encryption [Gen09] allows for significant improve-
ment in communication complexity, it would incur a huge computational over-
head with current state of the art. In this paper we take a different road: in
a nutshell, we relax the requirements of homomorphic encryption so that we
can implement it under a variety of assumptions, and we show how this weaker
primitive is sufficient for efficient MPC. Our main contributions are:

A framework for semi-homomorphic encryption: we define the notion of a semi-
homomorphic encryption modulo p, for a modulus p that is input to the key
generation. Abstracting from the details, the encryption function is additively
homomorphic and will accept any integer x as input plaintext. However, in con-
trast to what we usually require from a homomorphic cryptosystem, decryption
returns the correct result modulo p only if x is numerically small enough. We
demonstrate the generality of the framework by giving several examples of known
cryptosystems that are semi-homomorphic or can be modified to be so by trivial
adjustments. These include: the Okamoto-Uchiyama cryptosystem [OU98]; Pail-
lier cryptosystem [Pai99] and its generalization by Damg̊ard and Jurik [DJ01];
Regev’s LWE based cryptosystem [Reg05]; the scheme of Damg̊ard, Geisler and
Krøigaard [DGK09] based on a subgroup-decision problem; the subset-sum based
scheme by Lyubashevsky, Palacio and Segev [LPS10]; Gentry, Halevi and Vaikun-
tanathan’s scheme [GHV10] based on LWE, and van Dijk, Gentry, Halevi and
Vaikuntanathan’s scheme [DGHV10] based on the approximate gcd problem.
We also show a zero-knowledge protocol for any semi-homomorphic cryptosys-
tem, where a prover, given ciphertext C and public key pk, demonstrates that
he knows plaintext x and randomness r such that C = Epk(x, r), and that x
furthermore is numerically less than a given bound. We show that using a twist

Semi-homomorphic Encryption and Multiparty Computation 171

of the amortization technique of Cramer and Damg̊ard [CD09], one can give u
such proofs in parallel where the soundness error is 2−u and the cost per instance
proved is essentially 2 encryption operations for both parties. The application
of the technique from [CD09] to prove that a plaintext is bounded in size is new
and of independent interest.

Information-theoretic “online” MPC: we propose a UC secure [Can01] protocol
for arithmetic multiparty computation that, in the presence of a trusted dealer
who does not know the inputs, offers information-theoretic security against an
adaptive, malicious adversary that corrupts any dishonest majority of the par-
ties. The main idea of the protocol is that the parties will be given additive shar-
ing of multiplicative triples [Bea91], together with information theoretic MACs
of their shares – forcing the parties to use the correct shares during the protocol.
This online phase is essentially optimal, as no symmetric or public-key cryptog-
raphy is used, matching the efficiency of passive protocols for honest majority
like [BOGW88, CCD88]. Concretely, each party performs O(n2) multiplications
modulo p to evaluate a secure multiplication. This improves on the previous
protocol of Damg̊ard and Orlandi (DO) [DO10] where a Pedersen commitment
was published for every shared value. Getting rid of the commitments we im-
prove on efficiency (a factor of Ω(κ), where κ is the security parameter) and
security (information theoretic against computational). Implementation results
for the two-party case indicate about 6 msec per multiplication (see the full
version [BDOZ10]), at least an order of magnitude faster than that of DO on
the same platform. Moreover, in DO the modulus p of the computation had to
match the prime order of the group where the commitments live. Here, we can,
however, choose p freely to match the application which typically allows much
smaller values of p.

An efficient implementation of the offline phase: we show how to replace the
share dealer for the online phase by a protocol based solely on semi-homomorphic
encryption1. Our offline phase is UC-secure against any dishonest majority, and
it matches the lower bound for secure computation with dishonest majority of
O(n2) public-key operations per multiplication gate [HIK07]. In the most efficient
instantiation, the offline phase of DO requires security of Paillier encryption and
hardness of discrete logarithms. Our offline phase only has to assume security
of Paillier cryptosystem and achieves similar efficiency: A count of operations
suggests that our offline phase is as efficient as DO up to a small constant fac-
tor (about 2-3). Preliminary implementation results indicate about 2-3 sec to
prepare a multiplication. Since we generalize to any semi-homomorphic scheme
including Regev’s scheme, we get the first potentially practical solution for dis-
honest majority that is believed to withstand a quantum attack. It is not possible
to achieve UC security for dishonest majority without set-up assumptions, and
our protocol works in the registered public-key model of [BCNP04] where we

1 The trusted dealer could be implemented using any existing MPC protocol for dis-
honest majority, but we want to show how we can do it efficiently using semi-
homomorphic encryption.

172 R. Bendlin et al.

assume that public keys for all parties are known, and corrupted parties know
their own secret keys.

Related Work: It was shown by Canetti, Lindell, Ostrovsky and Sahai [CLOS02]
that secure computation is possible under general assumptions even when con-
sidering any corrupted number of parties in a concurrent setting (the UC frame-
work). Their solution is, however, very far from being practical. For computation
over Boolean circuits efficient solutions can be constructed from Yao’s garbled
circuit technique, see e.g. Pinkas, Schneider, Smart and Williams [PSSW09].
However, our main interest here is arithmetic computation over larger fields or
rings, which is a much more efficient approach for applications such as bench-
marking or some auction variants. A more efficient solution for the arithmetic
case was shown by Cramer, Damg̊ard and Nielsen [CDN01], based on threshold
homomorphic encryption. However, it requires distributed key generation and
uses heavy public-key machinery throughout the protocol. More recently, Ishai,
Prabhakaran and Sahai [IPS09] and the aforementioned DO protocol show more
efficient solutions. Although the techniques used are completely different, the
asymptotic complexities are similar, but the constants are significantly smaller
in the DO solution, which was the most practical protocol proposed so far.

Notation: We let US denote the uniform distribution over the set S. We use
x ← X to denote the process of sampling x from the distribution X or, if X is
a set, a uniform choice from it.

We say that a function f : N → R is negligible if ∀c, ∃nc s.t. if n > nc then
f(n) < n−c. We will use ε(·) to denote an unspecified negligible function.

For p ∈ N, we represent Zp by the numbers {−�(p− 1)/2�, . . . , �(p− 1)/2�}.
If x is an m-dimensional vector, ||x||∞ := max(|x1|, . . . , |xm|). Unless differently
specified, all the logarithms are in base 2.

As a general convention: lowercase letters a, b, c, . . . represent integers and
capital letters A,B,C, . . . ciphertexts. Bold lowercase letters r, s, . . . are vectors
and bold capitals M,A, . . . are matrices. We call κ the computational security
parameter and u the statistical security parameter. In practice u can be set to
be much smaller than κ, as it does not depend on the computing power of the
adversary.

2 The Framework for Semi-homomorphic Encryption

In this section we introduce a framework for public-key cryptosystems, that sat-
isfy a relaxed version of the additive homomorphic property. Let PKE = (G,E,D)
be a tuple of algorithms where:

G(1κ, p) is a randomized algorithm that takes as input a security parameter
κ and a modulus p2; It outputs a public/secret key pair (pk, sk) and a set of
parameters P = (p,M,R,Ddσ,G). Here, M,R are integers, Ddσ is the description

2 In the framework there are no restrictions for the choice of p; however in the next
sections p will always be chosen to be a prime.

Semi-homomorphic Encryption and Multiparty Computation 173

of a randomized algorithm producing as output d-vectors with integer entries (to
be used as randomness for encryption). We require that except with negligible
probability, Ddσ will always output r with ||r||∞ ≤ σ, for some σ < R that
may depend on κ. Finally, G is the abelian group where the ciphertexts belong
(written in additive notation). For practical purposes one can think of M and
R to be of size super-polynomial in κ, and p and σ as being much smaller than
M and R respectively. We will assume that every other algorithm takes as input
the parameters P, without specifying this explicitly.

Epk(x, r) is a deterministic algorithm that takes as input an integer x ∈ Z
and a vector r ∈ Zd and outputs a ciphertext C ∈ G. We sometimes write
Epk(x) when it is not important to specify the randomness explicitly. Given
C1 = Epk(x1, r1), C2 = Epk(x2, r2) in G, we have C1 +C2 = Epk(x1 +x2, r1 +r2).
In other words, Epk(·, ·) is a homomorphism from (Zd+1,+) to (G,+)). Given
some τ and ρ we call C a (τ, ρ)-ciphertext if there exists x, r with |x| ≤ τ and
||r||∞ ≤ ρ such that C = Epk(x, r). Note that given a ciphertext τ and ρ are
not unique. When we refer to a (τ, ρ)-ciphertext, τ and ρ should be interpreted
as an upper limit to the size of the message and randomness contained in the
ciphertext.

Dsk(C) is a deterministic algorithm that takes as input a ciphertext C ∈ G
and outputs x′ ∈ Zp ∪ {⊥}.

We say that a semi-homomorphic encryption scheme PKE is correct if, ∀p:

Pr[(pk, sk,P)← G(1κ, p), x ∈ Z, |x| ≤M ; r ∈ Zd, ||r||∞ ≤ R :
Dsk(Epk(x, r))
= x mod p] < ε(κ)

where the probabilities are taken over the random coins of G and E.
We now define the IND-CPA security game for a semi-homomorphic cryp-

tosystem. Let A = (A1,A2) be a PPT TM, then we run the following experi-
ment:

(pk, sk,P)← G(1κ, p)
(m0,m1, state) ← A1(1κ, pk) with m0,m1 ∈ Zp

b← {0, 1}, C ← Epk(mb), b′ ← A2(1κ, state, C)

We define the advantage of A as AdvCPA(A, κ) = |Pr[b = b′] − 1/2|, where the
probabilities are taken over the random choices of G,E,A in the above experi-
ment. We say that PKE is IND-CPA secure if ∀ PPT A, AdvCPA(A, κ) < ε(κ).

Next, we discuss the motivation for the way this framework is put together:
when in the following, honest players encrypt data, plaintext x will be chosen
in Zp and the randomness r according to Ddσ. This ensures IND-CPA security
and also that such data can be decrypted correctly, since by assumption on Ddσ,
||r||∞ ≤ σ ≤ R. However, we also want that a (possibly dishonest) player Pi is
committed to x by publishing C = Epk(x, r). We are not able to force a player
to choose x in Zp, nor that r is sampled with the correct distribution. But our
zero-knowledge protocols can ensure that C is a (τ, ρ)-ciphertext, for concrete
values of τ, ρ. If τ < M, ρ < R, then correctness implies that C commits Pi to
x mod p, even if x, r may not be uniquely determined from C.

174 R. Bendlin et al.

2.1 Examples of Semi-homomorphic Encryption

Regev’s cryptosystem [Reg05] is parametrized by p, q, m and α, and is given by
(G,E,D). A variant of the system was also given in [BD10], where parameters
are chosen slightly differently than in the original. In both [Reg05] and [BD10]
only a single bit was encrypted, it is quite easy, though, to extend it to elements
of a bigger ring. It is this generalized version of the variant in [BD10] that we
describe here. All calculations are done in Zq. Key generation G(1κ) is done
by sampling s ∈ Znq and A ∈ Zm×n

q uniformly at random and x ∈ Zmq from a
discrete Gaussian distribution with mean 0 and standard deviation qα√

2π
. We then

have the key pair (pk, sk) = ((A,As + x), s). Encryption of a message γ ∈ Zp
is done by sampling a uniformly random vector r ∈ {−1, 0, 1}m. A ciphertext
C is then given by C = Epk(γ, r) = (a, b) = (AT r, (As + x)T r + γ �q/p�).
Decryption is given by Dsk(C) =

⌊
(b − sTa) · p/q

⌉
. Regev’s cryptosystem works

with a decryption error, which can, however, be made negligibly small when
choosing the parameters.

Fitting the cryptosystem to the framework is quite straight forward. The
group G = Znq × Zq and p is just the same. The distribution Ddσ from which
the randomness r is taken is the uniform distribution over {−1, 0, 1}m, that is
d = m and σ = 1. Given two ciphertexts (a, b) and (a′, b′) we define addition to
be (a+a′, b+b′). With this definition it follows quite easily that the homomorphic
property holds. Due to the choices of message space and randomness distribution
in Regev’s cryptosystem, we will always have that the relation M = Rp/2 should
hold. How M can be chosen, and thereby also R, depends on all the original
parameters of the cryptosystem. First assume that q · α = d

√
q with d > 1.

Furthermore we will need that p ≤ q/(4 c
√
q) for some constant c < d. Then

to bound M we should have first that M < q/(4p) and secondly that M <
p s
√
q/(2m) for some s > cd/(d−c). Obtaining these bounds requires some tedious

computation which we leave out here.
In Paillier’s cryptosystem [Pai99] the secret key is two large primes p1, p2,

the public key is N = p1p2, and the encryption function is Epk(x, r) = (N +
1)xrN mod N2 where x ∈ ZN and r is random in Z∗

N2 . The decryption function
D′
sk reconstructs correctly any plaintext in ZN , and to get a semi-homomorphic

scheme modulo p, we simply redefine the decryption as D(c) = D′(c) mod p. It
is not hard to see that we get a semi-homomorphic scheme with M = (N −
1)/2, R = ∞, d = 1,Ddσ = UZ∗

N2
, σ = ∞ and G = Z∗

N2 . In particular, note that
we do not need to bound the size of the randomness, hence we set σ = R = ∞.

The cryptosystem looks syntactically a bit different from our definition which
writes G additively, while Z∗

N2 is usually written with multiplicative notation;
also for Paillier we have Epk(x, r)+Epk(x′, r) = Epk(x+x′, r ·r′) and not Epk(x+
x′, r + r′). However, this makes no difference in the following, except that it
actually makes some of the zero-knowledge protocols simpler (more details in
Section 2.2). It is easy to see that the generalization of Paillier in [DJ01] can be
modified in a similar way to be semi-homomorphic.

In the full paper [BDOZ10] we show how several other cryptosystems are
semi-homomorphic.

Semi-homomorphic Encryption and Multiparty Computation 175

2.2 Zero-Knowledge Proofs

We present two zero-knowledge protocols, ΠPoPK, ΠPoCM where a prover P
proves to a verifier V that some ciphertexts are correctly computed and that some
ciphertexts satisfy a multiplicative relation respectively. ΠPoPK has (amortized)
complexity O(κ+u) bits per instance proved, where the soundness error is 2−u.
ΠPoCM has complexity O(κu). We also show a more efficient version of ΠPoCM

that works only for Paillier encryption, with complexity O(κ + u). Finally, in
the full paper [BDOZ10], we define the multiplication security property that we
conjecture is satisfied for all our example cryptosystems after applying a simple
modification. We show that assuming this property, ΠPoCM can be replaced by
a different check that has complexity O(κ + u).

ΠPoPK and ΠPoCM will both be of the standard 3-move form with a ran-
dom u-bit challenge, and so they are honest verifier zero-knowledge. To achieve
zero-knowledge against an arbitrary verifier standard techniques can be used. In
particular, in our MPC protocol we will assume – only for the sake of simplicity
– a functionality FRand that generates random challenges on demand. The FRand

functionality is specified in detail in the full paper [BDOZ10] and can be imple-
mented in our key registration model using only semi-homomorphic encryption.
In the protocols both prover and verifier will have public keys pkP and pkV . By
EP (a, r) we denote an encryption under pkP , similarly for EV (a, r).

We emphasize that the zero-knowledge property of our protocols does not
depend on IND-CPA security of the cryptosystem, instead it follows from the
homomorphic property and the fact that the honest prover creates, for the pur-
pose of the protocol, some auxiliary ciphertexts containing enough randomness
to hide the prover’s secrets.

Proof of Plaintext Knowledge. ΠPoPK takes as common input u ciphertexts
Ck, k = 1, . . . , u. If these are (τ, ρ)-ciphertexts, the protocol is complete and sta-
tistical zero-knowledge. The protocol is sound in the following sense: assuming
that pkP is well-formed, if P is corrupt and can make V accept with probabil-
ity larger than 2−u, then all the Ck are (22u+log uτ, 22u+log uρ)-ciphertexts. The
protocol is also a proof of knowledge with knowledge error 2−u that P knows
correctly formed plaintexts and randomness for all the Ck’s.

In other words, ΠPoPK is a ZKPoK for the following relation, except that zero-
knowledge and completeness only hold if the Ck’s satisfy the stronger condition
of being (τ, ρ)-ciphertexts. However, this is no problem in the following: the
prover will always create the Ck’s himself and can therefore ensure that they are
correctly formed if he is honest.

R
(u,τ,ρ)
PoPK = {(x,w)| x = (pkP , C1, . . . , Cu);

w = ((x1, r1), . . . , (xu, ru)) : Ck = EP (xk, rk),

|xk| ≤ 22u+log uτ, ||rk||∞ ≤ 22u+log uρ}

We use the approach of [CD09] to get small amortized complexity of the zero-
knowledge proofs, and thereby gaining efficiency by performing the proofs on u

176 R. Bendlin et al.

simultaneous instances. In the following we define m = 2u−1, furthermore Me is
an m×u matrix constructed given a uniformly random vector e = (e1, . . . , eu) ∈
{0, 1}u. Specifically the (i, k)-th entry Me,i,k is given by Me,i,k = ei−k+1 for
1 ≤ i − k + 1 ≤ u and 0 otherwise. By Me,i we denote the i-th row of Me.
The protocol can be seen in Figure 1. Completeness and zero-knowledge follow
by standard arguments that can be found in the full paper [BDOZ10]. Here we
argue soundness which is the more interesting case: Assume we are given any
prover P ∗, and consider the case where P ∗ can make V accept for both e and
e′, e
= e′, by sending z, z′, T and T′ respectively. We now have the following
equation:

(Me −Me′)c = (d− d′) (1)

What we would like is to find x = (x1, . . . , xu) and R = (r1, . . . , ru) such that
Ck = EP (xk, rk). We can do this by viewing (1) as a system of linear equations.
First let j be the biggest index such that ej
= e′j . Now look at the u × u
submatrix of Me −Me’ given by the rows j through j + u both included. This
is an upper triangular matrix with entries in {−1, 0, 1} and ej − e′j
= 0 on a
diagonal. Now remember the form of the entries in the vectors c, d and d′, we
have Ck = EP (xk, rk), Dk = EP (zk, tk), D′

k = EP (z′k, t
′
k). We can now directly

solve the equations for the xk’s and the rk’s by starting with Cu and going up.
We give examples of the first few equations (remember we are going bottom up).
For simplicity we will assume that all entries in Me −Me′ will be 1.

EP (xu, ru) = EP (zu+j − z′u+j, tu+j − t′u+j)

EP (xu−1, ru−1) + EP (xu, ru) = EP (zu+j−1 − z′u+j−1, tu+j−1 − t′u+j−1)
...

Since we know all values used on the right hand sides and since the cryptosystem
used is additively homomorphic, it should now be clear that we can find xk
and rk such that Ck = EP (xk, rk). A final note should be said about what we
can guarantee about the sizes of xk and rk. Knowing that |zi| ≤ 2u−1+log uτ ,
|z′i| ≤ 2u−1+log uτ , ||ti||∞ ≤ 2u−1+log uρ and ||t′i||∞ ≤ 2u−1+log uρ we could
potentially have that C1 would become a (22u+log uτ, 22u+log uρ) ciphertext. Thus
this is what we can guarantee.

Proof of Correct Multiplication. ΠPoCM(u, τ, ρ) takes as common input u
triples of ciphertexts (Ak, Bk, Ck) for k = 1, . . . , u, where Ak is under pkP and
Bk and Ck are under pkV (and so are in the group GV). If P is honest, he will
know ak and ak ≤ τ . Furthermore P has created Ck as Ck = akBk + EV (rk, tk),
where EV (rk, tk) is a random (23u+log uτ2, 23u+log uτρ)-ciphertext. Under these
assumptions the protocol is zero-knowledge.

Jumping ahead, we note that in the context where the protocol will be used,
it will always be known that Bk in every triple is a (22u+log uτ, 22u+log uρ)-
ciphertext, as a result of executing ΠPoPK. The choice of sizes for EV (rk, tk)
then ensures that Ck is statistically close to a random (23u+log uτ2, 23u+log uτρ)-
ciphertext, and so reveals no information on ak to V .

Semi-homomorphic Encryption and Multiparty Computation 177

Subprotocol ΠPoPK: Proof of Plaintext Knowledge

PoPK(u, τ, ρ):
1. The input is u ciphertexts {Ck = EP (xk, rk)}uk=1. We define the vectors

c = (C1, . . . , Cu) and x = (x1, . . . , xu) and the matrix R = (r1, . . . , ru),
where the rk’s are rows.

2. P constructs m (2u−1+log uτ, 2u−1+log uρ)-ciphertexts {Ai = EP (yi, si)}mi=1,
and sends them to V . We define vectors a and y and matrix S as above.

3. V chooses a uniformly random vector e = (e1, . . . , eu) ∈ {0, 1}u, and sends
it to P .

4. Finally P computes and sends z = y + Me · x and T = S + Me ·R to V .
5. V checks that d = a + Me · c where d = (EP (z1, t1), . . . , EP (zm, tm)).

Furthermore, V checks that |zi| ≤ 2u−1+log uτ and ||ti||∞ ≤ 2u−1+log uρ.

Fig. 1. Proof of Plaintext Knowledge

Subprotocol ΠPoCM: Proof of Correct Multiplication

PoCM(u, τ, ρ):
1. The input is u triples of ciphertexts {(Ak, Bk, Ck)}uk=1, where Ak =

EP (ak,hk) and Ck = akBk + EV (rk, tk).
2. P constructs u uniformly random (23u−1+log uτ, 23u−1+log uρ)-ciphertexts

Dk = EP (dk, sk) and u ciphertexts Fk = dkBk + EV (fk,yk),
where EV (fk,yk) are uniformly random (24u−1+log uτ 2, 24u−1+log uτρ)-
ciphertexts.

3. V chooses u uniformly random bits ek and sends them to P .
4. P returns {(zk,vk)}uk=1 and {(xk, wk)}uk=1 to V . Here zk = dk + ekak,

vk = sk + ekhk, xk = fk + ekrk and wk = yk + ektk.
5. V checks that Dk + ekAk = EP (zk,vk) and that Fk + ekCk = zkBk +

EV (xk,wk). Furthermore, he checks that |zk| ≤ 23u−1+log uτ , ||vk||∞ ≤
23u−1+log uρ, |xk| ≤ 24u−1+log uτ 2 and ||wk||∞ ≤ 24u−1+log uτρ.

6. Step 2-5 is repeated in parallel u times.

Fig. 2. Proof of Correct Multiplication

Summarizing, ΠPoCM is a ZKPoK for the relation (under the assumption that
pkP , pkV are well-formed):

R
(u,τ,ρ)
PoCM = {(x,w)| x = (pkP , pkV , (A1, B1, C1), . . . , (Au, Bu, Cu));

w = ((a1,h1, r1, t1), . . . , (au,hu, ru, tu)) :
Ak = EP (ak,hk), Bk ∈ GV , Ck = akBk + EV (rk, tk),

|ak| ≤ 23u+log uτ, ||hk||∞ ≤ 23u+log uρ,

|rk| ≤ 24u+log uτ2, ||tk||∞ ≤ 24u+log uτρ)}

178 R. Bendlin et al.

The protocol can be seen in Figure 2. Note that Step 6 could also be interpreted
as choosing ek as a u-bit vector instead, thereby only calling FRand once. Com-
pleteness, soundness and zero-knowledge follow by standard arguments that can
be found in the full paper [BDOZ10].

Zero-Knowledge Protocols for Paillier. For the particular case of Paillier
encryption, ΠPoPK can be used as it is, except that there is no bound required
on the randomness, instead all random values used in encryptions are expected
to be in Z∗

N2 . Thus, the relations to prove will only require that the random
values are in Z∗

N2 and this is also what the verifier should check in the protocol.
For ΠPoCM we sketch a version that is more efficient than the above, using spe-

cial properties of Paillier encryption. In order to improve readability, we depart
here from the additive notation for operations on ciphertexts, since multiplica-
tive notation is usually used for Paillier. In the following, let pkV = N . Note
first that based on such a public key, one can define an unconditionally hiding
commitment scheme with public key g = EV (0). To commit to a ∈ ZN , one
sends com(a, r) = garN mod N , for random r ∈ Z∗

N2 . One can show that the
scheme is binding assuming it is hard to extract N -th roots modulo N2 (which
must be the case if Paillier encryption is secure).

We restate the relation R
(u,τ,ρ)
PoCM from above as it will look for the Paillier case,

in multiplicative notation and without bounds on the randomness:

R
(τ,ρ)
PoCM,Paillier = {(x,w)| x = (pkP , pkV , (A1, B1, C1), . . . , (Au, Bu, Cu));

w = ((a1, h1, r1, t1), . . . , (au, hu, ru, tu)) :
Ak = EP (ak, hk), Bk ∈ ZN2 , Ck = Bak

k · EV (rk, tk),

|ak| ≤ 22u+log uτ, |rk| ≤ 25u+2 log uτ2}

The idea for the proof of knowledge for this relation is now to ask the prover to
also send commitments Ψk = com(ak, αk), Φk = com(rk, βk), k = 1 . . .u to the
rk’s and ak’s. Now, the prover must first provide a proof of knowledge that for
each k: 1) the same bounded size value is contained in both Ak and Ψk, and that
2) a bounded size value is contained in Φk. The proof for {Φk} is simply ΠPoPK

since a commitment has the same form as an encryption (with (N + 1) replaced
by g). The proof for {Ψk, Ak} is made of two instances of ΠPoPK run in parallel,
using the same challenge e and responses zi in both instances. Finally, the prover
must show that Ck can be written as Ck = Bak

k · EV (rk, tk), where ak is the value
contained in Ψk and rk is the value in Φk. Since all commitments and ciphertexts
live in the same group Z∗

N2 , where pkV = N , we can do this efficiently using a
variant of a protocol from [CDN01]. The resulting protocol is shown in Figure 3.

Completeness of the protocol in steps 1-4 of Figure 3 is straightforward by in-
spection. Honest verifier zero-knowledge follows by the standard argument: choose
e and the prover’s responses uniformly in their respective domains and use the
equations checked by the verifier to compute a matching first message D,X, Y .
This implies completeness and honest verifier zero-knowledge for the overall pro-
tocol, since the subprotocols in steps 2 and 3 have these properties as well.

Semi-homomorphic Encryption and Multiparty Computation 179

Subprotocol ΠPoCM: Proof of Correct Multiplication (only for Paillier)

1. P sends Ψk = com(ak, αk), Φk = com(rk, βk), k = 1, . . . , u to the verifier.
2. P uses ΠPoPK on Φk to prove that, even if P is corrupted, each Φk contains a

value rk with |rk| ≤ 25u+2 log uτ 2.
3. P uses ΠPoPK in parallel on (Ak, Ψk) (where V uses the same e in both runs)

to prove that, even if P is corrupted, Ψk and Ak contains the same value ak

and |ak| ≤ 22u+log uτ .
4. To show that the Ck’s are well-formed, we do the following for each k:

(a) P picks random x, y, v, γ, δ ← Z∗
N2 and sends D = Bx

k EV (y, v), X =
com(x, γx), Y = com(y, γy) to V .

(b) V sends a random u-bit challenge e.
(c) P computes za = x + eak mod N, zr = y + erk mod N .

He also computes qa, qr, where x + ea = qaN + za, y + erk = qrN + zr
a.

P sends za, zr, w = vse
kBqa

k mod N2, δa = γxαe
kgqa mod N2, and δr =

γyβe
kgqr mod N2 to V .

(d) V accepts if DCe
k = Bza

k EV (zr, w) mod N2∧XΨe
k = com(za, δa) mod N2∧

Y Φe
k = com(zr, δr) mod N2.

a Since g and Bk do not have order N , we need to explicitly handle the quotients
qa and qr, in order to move the “excess multiples” of N into the randomness
parts of the commitments and ciphertext.

Fig. 3. Proof of Correct Multiplication for Paillier encryption

Finally, soundness follows by assuming we are given correct responses in step
7 to two different challenges. From the equations checked by the verifier, we can
then easily computeak, αk, rk, βk, sk such thatΨk = com(ak, αk), Φk(rk, βk), Ck =
Bak

k EV (rk, sk).Now,by soundnessof theprotocols in steps2and3,we canalso com-
pute bounded size values a′k, r

′
k that are contained in Ψk, Φk. By the binding prop-

erty of the commitment scheme, we have r′k = rk, a
′
k = ak except with negligible

probability, so we have a witness as required in the specification of the relation.

3 The Online Phase

Our goal is to implement reactive arithmetic multiparty computation over Zp for
a prime p of size super-polynomial in the statistical security parameter u. The
(standard) ideal functionality FAMPC that we implement can be seen in Figure 6.
We assume here that the parties already have a functionality for synchronous3,
secure communication and broadcast.
3 A malicious adversary can always stop sending messages and, in any protocol for

dishonest majority, all parties are required for the computation to terminate. With-
out synchronous channels the honest parties might wait forever for the adversary
to send his messages. Synchronous channels guarantee that the honest parties can
detect that the adversary is not participating anymore and therefore they can abort
the protocol. If termination is not required, the protocol can be implemented over
an asynchronous network instead.

180 R. Bendlin et al.

We first present a protocol for an online phase that assumes access to a func-
tionality FTRIP which we later show how to implement using an offline protocol.
The online phase is based on a representation of values in Zp that are shared
additively where shares are authenticated using information theoretic message
authentication codes (MACs). Before presenting the protocol we introduce how
the MACs work and how they are included in the representation of a value in
Zp. Furthermore, we argue how one can compute with these representations as
we do with simple values, and in particular how the relation to the MACs are
maintained.

In the rest of this section, all additions and multiplications are to be read
modulo p, even if not specified. The number of parties is denoted by n, and we
call the parties P1, . . . , Pn.

3.1 The MACs

A key K in this system is a random pair K = (α, β) ∈ Z2
p, and the authentication

code for a value a ∈ Zp is MACK(a) = αa + β mod p.
We will apply the MACs by having one party Pi hold a,MACK(a) and another

party Pj holding K. The idea is to use the MAC to prevent Pi from lying about a
when he is supposed to reveal it to Pj . It will be very important in the following
that if we keep α constant over several different MAC keys, then one can add two
MACs and get a valid authentication code for the sum of the two corresponding
messages. More concretely, two keys K = (α, β),K ′ = (α′, β′) are said to be
consistent if α = α′. For consistent keys, we define K +K ′ = (α, β + β′) so that
it holds that MACK(a) + MACK′(a′) = MACK+K′(a + a′).

The MACs will be used as follows: we give to Pi several different values
m1,m2, . . . with corresponding MACs γ1, γ2, . . . computed using keys Ki =
(α, βi) that are random but consistent. It is then easy to see that if Pi claims a
false value for any of the mi’s (or a linear combination of them) he can guess an
acceptable MAC for such a value with probability at most 1/p.

3.2 The Representation and Linear Computation

To represent a value a ∈ Zp, we will give a share ai to each party Pi. In addition,
Pi will hold MAC keys Ki

a1
, . . . ,Ki

an
. He will use key Ki

aj
to check the share of

Pj , if we decide to make a public. Finally, Pi also holds a set of authentication
codes MACKj

ai
(ai). We will denote MACKj

ai
(ai) by mj(ai) from now on. Party

Pi will use mj(ai) to convince Pj that ai is correct, if we decide to make a public.
Summing up, we have the following way of representing a:

[a] = [{ai, {Ki
aj
,mj(ai)}nj=1}ni=1]

where {ai, {Ki
aj
,mj(ai)}nj=1} is the information held privately by Pi, and where

we use [a] as shorthand when it is not needed to explicitly talk about the shares
and MACs. We say that [a] = [{ai, {Ki

aj
,mj(ai)}nj=1}ni=1] is consistent, with

a =
∑

i ai, if mj(ai) = MACKj
ai

(ai) for all i, j. Two representations

[a] = [{ai, {Ki
aj
,mj(ai)}nj=1}ni=1], [a′] = [{a′i, {Ki

a′j
,mj(a′i)}nj=1}ni=1]

Semi-homomorphic Encryption and Multiparty Computation 181

Opening: We can reliably open a consistent representation to Pj : each Pi sends
ai, mj(ai) to Pj . Pj checks that mj(ai) = MAC

K
j
ai

(ai) and broadcasts OK or

fail accordingly. If all is OK, Pj computes a =
∑

i ai, else we abort. We can
modify this to opening a value [a] to all parties, by opening as above to every
Pj .

Addition: Given two key-consistent representations as above we get that

[a + a′] = [{ai + a′
i, {Ki

aj
+ Ki

a′
j
, mj(ai) + mj(a′

i)}nj=1}ni=1]

is a consistent representation of a+a′. This new representation can be computed
only by local operations.

Multiplication by constants: In a similar way, we can multiply a public con-
stant δ “into” a representation. This is written δ[a] and is taken to mean that
all parties multiply their shares, keys and MACs by δ. This gives a consistent
representation [δa].

Addition of constants: We can add a public constant δ into a representation.
This is written δ + [a] and is taken to mean that P1 will add δ to his share a1.
Also, each Pj will replace his key Kj

a1 = (αj
1, β

j
a1) by Kj

a1+δ = (αj
1, β

j
a1 − δαj

1).
This will ensure that the MACs held by P1 will now be valid for the new share
a1 + δ, so we now have a consistent representation [a + δ].

Fig. 4. Operations on [·]-representations

are said to be key-consistent if they are both consistent, and if for all i, j the
keys Ki

aj
,Ki

a′j
are consistent. We will want all representations in the following

to be key-consistent: this is ensured by letting Pi use the same αj -value in keys
towards Pj throughout. Therefore the notation Ki

aj
= (αij , β

i
aj

) makes sense and
we can compute with the representations, as detailed in Figure 4.

3.3 Triples and Multiplication

For multiplication and input sharing we will need both random single values [a]
and triples [a], [b], [c] where a, b are random and c = ab mod p. Also, we assume
that all singles and triples we ever produce are key consistent, so that we can
freely add them together. More precisely, we assume we have access to an ideal
functionality FTRIP providing us with the above. This is presented in Figure 5.

The principle in the specification of the functionality is that the environment
is allowed to specify all the data that the corrupted parties should hold, including
all shares of secrets, keys and MACs. Then, the functionality chooses the secrets
to be shared and constructs the data for honest parties so it is consistent with
the secrets and the data specified by the environment.

Thanks to this functionality we are also able to compute multiplications in
the following way: If the parties hold two key-consistent representations [x], [y],
we can use one precomputed key-consistent triple [a], [b], [c] (with c = ab) to
compute a new representation of [xy].

182 R. Bendlin et al.

Functionality FTRIP

Initialize: On input (init, p) from all parties the functionality stores the modulus
p. For each corrupted party Pi the environment specifies values αi

j , j = 1, . . . , n,
except those αi

j where both Pi and Pj are corrupt. For each honest Pi, it chooses
αi

j , j = 1, . . . , n at random.
Singles: On input (singles, u) from all parties Pi, the functionality does the fol-

lowing, for v = 1, . . . , u:
1. It waits to get from the environment either “stop”, or some data as specified

below. In the first case it sends “fail” to all honest parties and stops. In the
second case, the environment specifies for each corrupt party Pi, a share ai

and n pairs of values (mj(ai), βi
aj

), j = 1, . . . , n, except those (mj(ai), βi
aj

)
where both Pi and Pj are corrupt.

2. The functionality chooses a ∈ Zp at random and creates the representation
[a] as follows:
(a) First it chooses random shares for the honest parties such that the sum

of these and those specified by the environment is correct: Let C be the
set of corrupt parties, then ai is chosen at random for Pi 	∈ C, subject
to a =

∑
i ai.

(b) For each honest Pi, and j = 1, . . . , n, βi
aj

is chosen as follows: if Pj is
honest, βi

aj
is chosen at random, otherwise it sets βi

aj
= mi(aj)−αi

jaj .
Note that the environment already specified mi(aj), aj , so what is done
here is to construct the key to be held by Pi to be consistent with the
share and MAC chosen by the environment.

(c) For all i = 1, . . . , n, j = 1, . . . , n it sets Ki
aj

= (αi
j , β

i
aj

), and computes
mj(ai) = MAC

K
j
ai

(ai).

(d) Now all data for [a] is created. The functionality sends
{ai, {Ki

aj
, mj(ai)}j=1,...,n} to each honest Pi (no need to send

anything to corrupt parties, the environment already has the data).
Triples: On input (triples , u) from all parties Pi, the functionality does the follow-

ing, for v = 1, . . . , u:
1. Step 1 is done as in “Singles”.
2. For each triple to create it chooses a, b at random and sets c = ab. Now it

creates representations [a], [b], [c], each as in Step 2 in “Singles”.

Fig. 5. The ideal functionality for making singles [a] and triples [a], [b], [c]

To compute [xy] we first open [x]− [a] to get a value ε, and [y]− [b] to get δ.
Then, we have xy = (a + ε)(b + δ) = c + εb + δa + εδ. Therefore, we get a new
representation of xy as follows:

[xy] = [c] + ε[b] + δ[a] + εδ.

Using the tools from the previous sections we can now construct a protocol
ΠAMPC that securely implements the MPC functionality FAMPC in the UC se-
curity framework. FAMPC and ΠAMPC are presented in Figure 6 and Figure 7
respectively. The proof of Theorem 1 can be found in the full paper [BDOZ10].

Semi-homomorphic Encryption and Multiparty Computation 183

Functionality FAMPC

Initialize: On input (init , p) from all parties, the functionality activates and stores
the modulus p.

Rand: On input (rand , Pi, varid) from all parties Pi, with varid a fresh identifier,
the functionality picks r ← Zp and stores (varid , r).

Input: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other
parties, with varid a fresh identifier, the functionality stores (varid , x).

Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2

are present in memory and varid3 is not), the functionality retrieves (varid1, x),
(varid2, y) and stores (varid3, x + y mod p).

Multiply: On input (multiply, varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the functionality re-
trieves (varid1, x), (varid2, y) and stores (varid3, x · y mod p).

Output: On input (output , Pi, varid) from all parties (if varid is present in mem-
ory), the functionality retrieves (varid , x) and outputs it to Pi.

Fig. 6. The ideal functionality for arithmetic MPC

Protocol ΠAMPC

Initialize: The parties first invoke FTRIP(init, p). Then, they invoke
FTRIP(triples , u) and FTRIP(singles, u) a sufficient number of times to
create enough singles and triples.

Input: To share Pi’s input [xi] with identifier varid , Pi takes a single [a] from the
set of available ones. Then, the following is performed:
1. [a] is opened to Pi.
2. Pi broadcasts δ = xi − a.
3. The parties compute [xi] = [a] + δ.

Rand: The parties take an available single [a] and store with identifier varid .
Add: To add [x], [y] with identifiers varid1, varid2 the parties compute [z] = [x]+[y]

and assign [z] the identifier varid3.
Multiply: To multiply [x], [y] with identifiers varid1, varid2 the parties do the

following:
1. They take a triple ([a], [b], [c]) from the set of the available ones.
2. [x]− [a] = ε and [y]− [b] = δ are opened.
3. They compute [z] = [c] + ε[b] + δ[a] + εδ
4. They assign [z] the identifier varid3 and remove ([a], [b], [c]) from the set of

the available triples.
Output: To output [x] with identifier varid to Pi the parties do an opening of [x]

to Pi.

Fig. 7. The protocol for arithmetic MPC

184 R. Bendlin et al.

Theorem 1. In theFTRIP-hybrid model, the protocol ΠAMPC implements FAMPC

with statistical security against any static4, active adversary corrupting up to n−1
parties.

4 The Offline Phase

In this section we describe the protocol ΠTRIP which securely implements the
functionality FTRIP described in Section 3 in the presence of two standard func-
tionalities: a key registration functionality FKeyReg and a functionality that gen-
erates random challenges FRand

5. Detailed specifications of these functionalities
can be found in the full paper [BDOZ10].

4.1 〈·〉-Representation

Throughout the description of the offline phase, Ei will denote Epki where pki
is the public key of party Pi, as established by FKeyReg. We assume the cryp-
tosystem used is semi-homomorphic modulo p, as defined in Section 2. In the
following, we will always set τ = p/2 and ρ = σ. Thus, if Pi generates a ci-
phertext C = Ei(x, r) where x ∈ Zp and r is generated by Ddσ, C will be a
(τ, ρ)-ciphertext. We will use the zero-knowledge protocols from Section 2.2.
They depend on an “information theoretic” security parameter u controlling,
e.g., the soundness error. We will say that a semi-homomorphic cryptosystem is
admissible if it allows correct decryption of ciphertext produced in those proto-
cols, that is, if M ≥ 25u+2 log uτ2 and R ≥ 24u+log uτρ.

In the following 〈xk〉 will stand for the following representation of xk ∈
Zp: each Pi has published Ei(xk,i) and holds xk,i privately, such that xk =∑

i xk,i mod p. For the protocol to be secure, it will be necessary to ensure that
the parties encrypt small enough plaintexts. For this purpose we use the ΠPoPK

described in Section 2.2, and we get the protocol in Figure 8 to establish a set
〈xk〉 , k = 1, . . . , u of such random representations.

4.2 〈·〉-Multiplication

The final goal of the ΠTRIP protocol is to produce triples [ak], [bk], [ck] with
akbk = ck mod p in the [·]-representation, but for now we will disregard the
MACs and construct a protocol Πn-MULT which produces triples 〈ak〉 , 〈bk〉 , 〈ck〉
in the 〈·〉-representation6.

We will start by describing a two-party protocol. Assume Pi is holding a set
of u (τ, ρ)-encryptions Ei(xk) under his public key and likewise Pj is holding u

4 ΠAMPC can actually be shown to adaptively secure, but our implementation of FTRIP

will only be statically secure.
5 FRand is only introduced for the sake of a cleaner presentation, and it could easily

be implemented in the FKeyReg model using semi-homomorphic encryption only.
6 In fact, due to the nature of the MACs, the same protocol that is used to compute

two-party multiplications will be used later in order to construct the MACs as well.

Semi-homomorphic Encryption and Multiparty Computation 185

Subprotocol ΠSHARE

Share(u):
1. Each Pi chooses xk,i ∈ Zp at random for k = 1, . . . , u and broadcasts

(τ, ρ)-ciphertexts {Ei(xk,i)}uk=1.
2. Each pair Pi, Pj , i 	= j, runs ΠPoPK(u, τ, ρ) with the Ei(xk,i)’s as input.

This proves that the ciphertexts are (22u+log uτ, 22u+log uρ)-ciphertexts.
3. All parties output 〈xk〉 = (E1(xk,1), . . . , En(xk,n)), for k = 1, . . . , u, where

xk is defined by xk =
∑

i xk,i mod p. Pi keeps the xk,i and the randomness
for his encryptions as private output.

Fig. 8. Subprotocol allowing parties to create random additively shared values

Subprotocol Π2-MULT

2-Mult(u, τ, ρ):
1. Honest Pi and Pj input (τ, ρ)-ciphertexts {Ei(xk)}uk=1, {Ej(yk)}uk=1. (At

this point of the protocol it has already been verified that the ciphertexts
are (22u+log uτ, 22u+log uρ)-ciphertexts.)

2. For each k, Pi sends Ck = xk Ej(yk)+Ej(rk) to Pj . Here Ej(rk) is a random
(23u+log uτ 2, 23u+log uτρ)-encryption under Pj ’s public key. Pi furthermore
invokes ΠPoCM(u, τ, ρ) with input Ck, Ei(xk), Ej(yk), to prove that the Ck’s
are constructed correctly.

3. For each k, Pj decrypts Ck to obtain vk, and outputs zk,j = vk mod p. Pi

outputs zk,i = −rk mod p.

Fig. 9. Subprotocol allowing two parties to obtain encrypted sharings of the product
of their inputs

Subprotocol Πn-MULT

n-Mult(u):
1. The input is 〈ak〉 , 〈bk〉 , k = 1, . . . , u, created using the ΠSHARE protocol.

Each Pi initializes variables ck,i = ak,ibk,i mod p, k = 1, . . . , u.
2. Each pair Pi, Pj , i 	= j, runs Π2-MULT using as input the ciphertexts

Ei(ak,i), Ej(bk,j), k = 1, . . . , u, and adds the outputs to the private vari-
ables ck,i, ck,j , i.e., for k = 1, . . . , u, Pi sets ck,i = ck,i + zk,i mod p, and Pj

sets ck,j = ck,j + zk,i mod p.
3. Each Pi invokes ΠSHARE, where ck,i, k = 1, . . . , u is used as the numbers

to broadcast encryptions of. Parties output what ΠSHARE outputs, namely
〈ck〉 , k = 1, . . . , u.

Fig. 10. Protocol allowing the parties to construct 〈ck = akbk mod p〉 from 〈ak〉 , 〈bk〉

186 R. Bendlin et al.

Subprotocol ΠADDMACS

Initialize: For each pair Pi, Pj , i 	= j, Pi chooses αi
j at random in Zp, sends a (τ, ρ)-

ciphertext Ei(αi
j) to Pj and then runs ΠPoPK(u, τ, ρ) with (Ei(αi

j), . . . , Ei(αi
j))

as input and with Pj as verifier.
AddMacs(u):

1. The input is a set 〈ak〉 , k = 1, . . . , u. Each Pi already holds shares ak,i of
ak, and will store these as part of [ak].

2. Each pair Pi, Pj i 	= j invokes Π2-MULT(u, τ, ρ) with input Ei(αi
j), . . . , Ei(αi

j)
from Pi and input Ej(ak,j) from Pj . From this, Pi obtains output zk,i, and
Pj gets zk,j . Recall that Π2-MULT ensures that αi

jak,j = zk,i + zk,j mod p.
This is essentially the equation defining the MACs we need, so therefore,
as a part of each [ak], Pi stores αi

j , β
i
ak,j

= −zk,i mod p as the MAC key
to use against Pj while Pj stores mi(ak,j) = zk,j as the MAC to use to
convince Pi about ak,j .

Fig. 11. Subprotocol constructing [ak] from 〈ak〉

Protocol ΠTRIP

Initialize: The parties first invoke FKeyReg(p) and then Initialize in ΠADDMACS.
Triples(u):

1. To get sets of representations {〈ak〉 , 〈bk〉 , 〈fk〉 , 〈gk〉}uk=1, the parties invoke
ΠSHARE 4 times.

2. The parties invoke Πn-MULT twice, on inputs {〈ak〉 , 〈bk〉}uk=1, respectively
{〈fk〉 , 〈gk〉}uk=1. They obtain as output {〈ck〉}uk=1, respectively {〈hk〉}uk=1.

3. The parties invoke ΠADDMACS on each of the created sets of the represen-
tations. That means they now have {[ak], [bk], [ck], [fk], [gk], [hk]}uk=1.

4. The parties check that indeed akbk = ck mod p by “sacrificing” the triples
(fk, gk, hk): First, the parties invoke FRand to get a random u-bit challenge
e. Then, they open e[ak] − [fk] to get εk, and open [bk] − [gk] to get δk.
Next, they open e[ck] − [hk] − δk[fk] − εk[gk] − εkδk and check that the
result is 0. Finally, parties output the set {[ak], [bk], [ck]}uk=1.

Singles(u):
1. To get a set of representations {〈a〉}uk=1, ΠSHARE is invoked.
2. The parties invoke ΠADDMACS on the created set of representations and

obtain {[ak]}uk=1.

Fig. 12. The protocol for the offline phase

(τ, ρ)-encryptions Ej(yk) under his public key. For each k, we want the protocol
to output zk,i, zk,j to Pi, Pj , respectively, such that xkyk = zk,i + zk,j mod p.
Such a protocol can be seen in Figure 9. This protocol does not commit parties
to their output, so there is no guarantee that corrupt parties will later use their
output correctly – however, the protocol ensures that malicious parties know
which shares they ought to continue with. To build the protocol Πn-MULT, the

Semi-homomorphic Encryption and Multiparty Computation 187

first thing to notice is that given 〈ak〉 and 〈bk〉 we have that ck = akbk =∑
i

∑
j ak,ibk,j . Constructing each of the terms in this sum in shared form is

exactly what Π2-MULT allows us to do. The Πn-MULT protocol can now be seen
in Figure 10. Note that it does not guarantee that the multiplicative relation in
the triples holds, we will check for this later.

4.3 From 〈·〉-Triples to [·]-Triples

We first describe a protocol that allows us to add MACs to the 〈·〉-representation.
This consists essentially of invoking the Π2-MULT a number of times. The protocol
is shown in Figure 11. The full protocol ΠTRIP, which also includes the possibility
of creating a set of single values, is now a straightforward application of the
subprotocols we have defined now. This is shown in Figure 12. The proof of
Theorem 2 can be found in the full paper [BDOZ10].

Theorem 2. If the underlying cryptosystem is semi-homomorphic modulo p,
admissible and IND-CPA secure, then ΠTRIP implements FTRIP with computa-
tional security against any static, active adversary corrupting up to n−1 parties,
in the (FKeyReg,FRand)-hybrid model.

References

[BCNP04] Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally compos-
able protocols with relaxed set-up assumptions. In: FOCS, pp. 186–195
(2004)

[BD10] Bendlin, R., Damg̊ard, I.: Threshold decryption and zero-knowledge
proofs for lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010)

[BDOZ10] Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorhic
enryption and multiparty computation (full version). In: The Eprint
Archive, report 2010/514 (2010)

[Bea91] Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomiza-
tion. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
420–432. Springer, Heidelberg (1992)

[BOGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended
abstract). In: STOC, pp. 1–10 (1988)

[Can01] Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. In: FOCS, pp. 136–145 (2001)

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally se-
cure protocols (extended abstract). In: STOC, pp. 11–19 (1988)

[CD09] Cramer, R., Damg̊ard, I.: On the amortized complexity of zero-
knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 177–191. Springer, Heidelberg (2009)

[CDN01] Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation
from threshold homomorphic encryption. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidel-
berg (2001)

188 R. Bendlin et al.

[CLOS02] Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally com-
posable two-party and multi-party secure computation. In: STOC, pp.
494–503 (2002)

[DGK09] Damg̊ard, I., Geisler, M., Krøigaard, M.: A correction to efficient and
secure comparison for on-line auctions. IJACT 1(4), 323–324 (2009)

[DGHV10] van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully ho-
momorphic encryption over the integers. In: Gilbert, H. (ed.) EURO-
CRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

[DJ01] Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In: Kim, K.-
c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg
(2001)

[DO10] Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest ma-
jority: From passive to active security at low cost. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 558–576. Springer, Heidelberg
(2010)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
STOC, pp. 169–178 (2009)

[GHV10] Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple bgn-type cryp-
tosystem from lwe. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 506–522. Springer, Heidelberg (2010)

[HIK07] Harnik, D., Ishai, Y., Kushilevitz, E.: How Many Oblivious Transfers
Are Needed for Secure Multiparty Computation? In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 284–302. Springer, Heidelberg
(2007)

[IPS09] Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation
with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 294–314. Springer, Heidelberg (2009)

[LPS10] Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic
primitives provably as secure as subset sum. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 382–400. Springer, Heidelberg (2010)

[OU98] Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure
as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 308–318. Springer, Heidelberg (1998)

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree resid-
uosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999)

[PSSW09] Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-
party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)

[RAD78] Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy
homomorphisms. In: Foundations of Secure Computation, pp. 169–178
(1978)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. In: STOC, pp. 84–93 (2005)

Tight Proofs for Signature Schemes without
Random Oracles

Sven Schäge

Horst Görtz Institute for IT-Security
Ruhr-University of Bochum

sven.schaege@rub.de

Abstract. We present the first tight security proofs for two general
classes of Strong RSA based signature schemes. Among the affected sig-
nature schemes are the Cramer-Shoup, Camenisch-Lysyanskaya, Zhu,
and Fischlin signature scheme. We also present two bilinear variants of
our signature classes that produce short signatures. Similar to before, we
show that these variants have tight security proofs under the the Strong
Diffie-Hellman (SDH) assumption. We so obtain very efficient SDH-based
variants of the Cramer-Shoup, Fischlin, and Zhu signature scheme and
the first tight security proof of the recent Camenisch-Lysyanskaya scheme
that was proposed and proven secure under the SDH assumption. Cen-
tral to our results is a new proof technique that allows the simulator to
avoid guessing which of the attacker’s signature queries are re-used in
the forgery. In contrast to previous proofs, our security reduction does
not lose a factor of q here.

Keywords: signature class, tight security, SRSA, SDH, standard model.

1 Introduction

Provable Security and Tight Reductions. The central idea of provable
security is to design a cryptographic scheme in such a way that if an attacker
A could efficiently break its security properties then one can also construct an
efficient algorithm B, to break a supposedly hard problem. In this way, we prove
the security of the scheme by reduction from the hardness assumption. Now, if B
has almost the same success probability as A while running in roughly the same
time we say that the security reduction is tight. Otherwise, the security reduc-
tion is said to be loose. It is no secret why cryptographers are interested in tight
security proofs: besides being theoretically interesting, they allow for shorter se-
curity parameters and better efficiency. This work was also motivated by the
observation that for several of the existing Strong RSA (SRSA) based signature
schemes without random oracles we do not know if tight security proofs exist.
Those schemes which we know to have a tight security proof, also have some
limitations concerning practicability (which in turn cannot be found among the
signature schemes with a loose security reduction). In 2007, Chevallier-Mames

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 189–206, 2011.
c© International Association for Cryptologic Research 2011

190 S. Schäge

and Joye addressed this problem in the following way [6]: they took a tightly se-
cure signature scheme, the Gennaro-Halevi-Rabin scheme [10], and improved its
efficiency by re-designing one of its most time-consuming functions. The prob-
lem with such an approach is that it only affects new implementations of the
considered signature scheme. Therefore, we take the same approach as Bernstein
at EUROCRYPT ’08 who proved tight security for the original Rabin-Williams
signature scheme in the random-oracle model [2]. However, in contrast to Bern-
stein we concentrate on schemes that are secure in the standard model.

Contribution. In this work, we ask the following question: are there tight se-
curity proofs for the existing practical signature schemes by Cramer-Shoup [8],
Zhu [19], Camenisch-Lysyanskaya [4] and Fischlin [9] (which we only know to
have loose security reductions)? We answer this question in the affirmative and
present the first tight proofs for the above signature schemes. However, our re-
sult is not limited to the original schemes. In our analysis, we generalize the
schemes by Camenisch-Lysyanskaya, Fischlin and Zhu by introducing a new
family of randomization functions, called combining functions. The result of this
generalization is an abstract signature scheme termed ’combining scheme’. In
a similar way, we introduce a second general class of signature schemes called
’chameleon hash scheme’ that can be regarded as a generalization of the Cramer-
Shoup signature scheme. Then, we prove the combining signature scheme and
the chameleon hash scheme to be tightly secure under the SRSA assumption
when instantiated with any secure combining function, respectively chameleon
hash function. Finally, we show that our results do not only hold under the
SRSA assumption. We analyze whether there also exist tight security reduc-
tions for analogous schemes based on the SDH assumption in bilinear groups.
Interestingly, most of the above schemes have not been considered yet under the
SDH assumption (except for the Camenisch-Lysyanskaya scheme), although, at
the same security level, the group description is much shorter in bilinear groups
than in factoring based groups. We develop an SDH-based variant of the com-
bining signature scheme and the chameleon hash scheme and prove it to be
existentially unforgeable under adaptive chosen message attacks with a tight se-
curity reduction. In doing so, we present the first SDH-based variants of the
Fischlin, the Zhu and the Cramer-Shoup signature scheme and the first tight se-
curity proof of the SDH-based Camenisch-Lysyanskaya scheme. When instanti-
ated with existing combining functions (respectively chameleon hash functions),
we obtain short and efficient signature schemes. All our results (on the combin-
ing class) can easily be extended to signature schemes for message blocks (as
defined in [4,5]), where we can even use distinct combining functions for each
message block. Our results can be interpreted in two positive ways: 1) Existing
implementations of the affected signature schemes (with a fixed parameter size)
provide higher security than expected. 2) New implementations can have shorter
security parameters what transfers to higher efficiency.

Technical Contribution. In the existing proofs, the simulator partitions
the set of forgeries by at first guessing j ∈ {1, . . . , q} where q is the number of

Tight Proofs for Signature Schemes without Random Oracles 191

signature queries made by the attacker. Only if the attacker’s forgery shares some
common values with the answer to the j-th signature query the simulator can
break the SRSA assumption. Otherwise the simulator just aborts. The number of
signature queries rises polynomially in the security parameter and the security
proof loses a factor of q here. Our main contribution is a new technique that
renders the initial guess unnecessary. As a consequence, any forgery helps the
simulator to break the SRSA assumption. This results in a tight security proof.

Related Work. Our work is related to the existing hash-and-sign signature
schemes without random oracles that are proven secure under the SRSA or the
SDH assumption. We subsequently give a brief overview on the available results.
In 1988, Goldwasser, Micali and Rivest published the first provably secure, but
inefficient signature scheme [11]. More than a decade later, in 1999, Gennaro,
Halevi, and Rabin [10] presented a signature scheme that is secure in the stan-
dard model under the Flexible or Strong RSA assumption (SRSA). This scheme
is more efficient, both the key and the signature size are less than two group ele-
ments (à 1024 bits), but as a drawback, it relies on an impractical function that
injectively maps messages to primes [7]. Advantageously, the Gennaro-Halevi-
Rabin signature scheme is known to have a tight security proof. At the same
time and also based on the SRSA assumption, Cramer and Shoup [8] proposed
an efficient standard model signature scheme, that unlike [10] does not require to
map messages to primes. In contrast, primes can be drawn uniformly at random
from the set of primes of a given bitlength. Based on this work, Zhu [18,19],
Fischlin [9], Camenisch and Lysyanskaya [4], and Hofheinz and Kiltz [12] in the
following years presented further SRSA-based schemes. These schemes are either
more efficient than the Cramer-Shoup scheme or very suitable in protocols for
issuing signatures on committed values. In 2004, Boneh and Boyen presented the
first hash-and-sign signature scheme that makes use of bilinear groups [3]. The
big advantage of bilinear groups is the very compact representation of group ele-
ments. The Boneh-Boyen signature scheme is proven tightly secure under a new
flexible assumption, the q-Strong Diffie Hellman (SDH) assumption. In 2004,
Camenisch and Lysyanskaya also presented a signature scheme that relies on bi-
linear groups [5]. Unlike the Boneh-Boyen scheme, their scheme is proven secure
under the LRSW [14] assumption. However, in the same paper they also propose
a variant that is based on the SDH assumption in bilinear groups. The corre-
sponding security proof was provided four years later in [15,1]. Similar to the
original Camenisch-Lysyanskaya scheme the security proof of the SDH scheme
is loose.

2 Preliminaries

Before presenting our results we briefly review the necessary formal and mathe-
matical definitions. For convenience, we also describe two general setup and key
generation procedures (settings) in Section 2.7 and Section 2.8. When describing
our signature schemes in Sections 3.1, 3.2, 3.5 we will refer to the corresponding
setting and only describe the signature generation and verification algorithms.

192 S. Schäge

2.1 Notation

For a, b ∈ Z, a ≤ b we write [a; b] to denote the set {a, a+ 1, . . . , b− 1, b}. For a
string x, we write |x|2 to denote its bit length. If z ∈ Z, we write |z| to denote

the absolute value of z. For a set X , we use |X | to refer to its size and x
$← X

to indicate that x is drawn from X uniformly at random. For n ∈ N, we use
QRn to denote the set of quadratic residues modulo n, i.e. QRn = {x|∃y ∈
Z∗
n : y2 = x mod n}. If A is an algorithm we use A(x1, x2, . . .) to denote that
A has input parameters x1, x2, Accordingly, y ← A(x1, x2, . . .) means that
A outputs y when running with inputs x1, x2, PPT refers to probabilistic
polynomial-time. We write κ ∈ N to indicate the security parameter and 1κ to
describe the string that consist of κ ones. In the following, we implicitly assume
that the size of the generated key material is always polynomially dependent on
the security parameter.

2.2 Signature Scheme

A digital signature scheme S consists of three algorithms. The PPT algorithm
KeyGen on input 1κ generates a secret and public key pair (SK,PK). The PPT
algorithm Sign takes as input a secret key SK and the message m and outputs
a signature σ. Finally, the deterministic polynomial time algorithm Verify takes
a public key PK, a message m and a signature σ to check whether σ is a
legitimate signature on m signed by the holder of the secret key corresponding
to PK. Accordingly, the algorithm outputs 1 to indicate a successful verification
and 0 otherwise.

2.3 Strong Existential Unforgeability

The standard notion of security for signature schemes is due to Goldwasser, Mi-
cali and Rivest [11]. In this paper, we use a slightly stronger definition called
strong existential unforgeability. The signature scheme S = (KeyGen, Sign,Verify)
is strongly existentially unforgeable under an adaptive chosen message attack if
it is infeasible for a forger, who only knows the public key and the global pa-
rameters, to produce, after obtaining polynomially (in the security parameter)
many signatures σ1, . . . , σq on messages m1, . . . ,mq of its choice from a signing
oracle O(SK, ·), a new message/signature pair.

Definition 1. We say that S is (q, t, ε)-secure, if for all t-time adversaries A
that send at most q queries to the signing oracle O(SK, ·) it holds that

Pr
[
(SK,PK)← KeyGen(1κ), (m∗, σ∗)← AO(SK,·)(PK),

Verify(PK,m∗, σ∗) = 1

]
≤ ε,

where the probability is taken over the random coins of KeyGen and A and
(m∗, σ∗) is not among the message/signature pairs obtained using O(SK, ·) (i.e.
(m∗, σ∗) /∈ {(m1, σ1), . . . , (mq, σq)}).

Tight Proofs for Signature Schemes without Random Oracles 193

2.4 Collision-Resistant Hashing

Definition 2 (Collision-resistant hash function). Let Hk for k ∈ N be a
collection of functions of the form h : {0, 1}∗ → {0, 1}k. Let H = {Hk}k∈N. H
is called (th, εh)-collision-resistant if for all th-time adversaries A it holds that

Pr

[
h

$← Hk, (m,m′) ← A(h), m
= m′,
m,m′ ∈ {0, 1}∗, h(m) = h(m′)

]
≤ εh,

where the probability is over the random bits of A.

2.5 Chameleon Hash Function

A chameleon hash function CH = (CHGen,CHEval,CHColl) consists of three
algorithms [13]. The PPT algorithm CHGen takes as input the security parameter
κ and outputs a secret key SKCH and a public key PKCH. Given PKCH, a
random r from a randomization space R and a message m from a message space
M, the algorithm CHEval outputs a chameleon hash value c in the hash space C.
Analogously, CHColl deterministically outputs, on input SKCH and (r,m,m′) ∈
R×M×M, r′ ∈ R such that CHEval(PKCH,m, r) = CHEval(PKCH,m′, r′).

Definition 3 (Collision-resistant chameleon hash function). We say that
CH is (εCH, tCH)-collision-resistant if for all tCH-time adversaries A that are only
given PKCH it holds that

Pr

⎡⎣(SKCH, PKCH)← CHGen(1κ), (m,m′, r, r′) ← A(PKCH),
r, r′ ∈ R, m,m′ ∈M, m′
= m,

CHEval(PKCH, r,m) = CHEval(PKCH, r′,m′)

⎤⎦ ≤ εCH,

where the probability is over the random choices of PKCH and the coin tosses
of A.

We also require that for an arbitrary but fixed public key PKCH output by
CHGen, all messagesm ∈ M generate equally distributed hash values when draw-
ing r ∈ R uniformly at random and outputting CHEval(PKCH, r,m). We write
ch(r,m) to denote CHEval(PKCH, r,m) and ch−1(r,m,m′) for CHColl(SKCH, r,
m,m′) if the keys are obvious from the context. The security of chameleon hash
functions can be based on very standard assumptions like the discrete logarithm
assumption [13] or the factoring assumption [13,17] which are weaker than the
SDH, respectively the SRSA assumption.

2.6 Combining Function

In this section, we introduce a new family of functions called combining functions.
We will subsequently use the concept of combining functions to generalize several
existing signature schemes.

194 S. Schäge

Definition 4 (Combining Functions). Let Vk for k ∈ N be a collection of
functions of the form z : R ×M → Z with |Z| ≤ 2k. Let V = {Vk}k∈N. We
say that V is (tcomb, εcomb, δcomb)-combining if for all attackers A there exist
negligible functions εcomb(k) and δcomb(k) and the following properties hold for

z
$← Vk.

1. for all m ∈ M it holds that |R| = |Zm| where Zm is defined as Zm =
z(R,m). For all m ∈ M and all t ∈ Z there exists an efficient algorithm
z−1(t,m) that, if t ∈ Zm, outputs the unique value r ∈ R such that z(r,m) =
t, and ⊥ otherwise.

2. for t
$← Z and r′ $←R we have for the maximal (over all m ∈ M) statistical

distance between r′ and z−1(t,m) that

max
m∈M

{
1/2 ·

∑
r∈R

∣∣Pr[r′ = r]− Pr[z−1(t,m) = r]
∣∣} ≤ δcomb.

3. for all r ∈ R, it holds for all tcomb-time attackers A that

Pr
[
(m,m′) ← A(z, r), m,m′ ∈ M,
m
= m′, z(r,m) = z(r,m′)

]
≤ εcomb,

where the probability is taken over the random bits of A.

In the following, we assume that when used in signature schemes, z $← Vk is
chosen uniformly at random during the key generation phase.

Table 1. Examples of statistically secure combining functions. Let V = {Vk}k∈N with
Vk = {z(r,m)}, l, lr, lm ∈ N, lr > lm and p be prime.

z(r, m) R M Z combining
EX1 r + m mod p Zp Zp Zp (·, 0, 0)
EX2 r ⊕m {0, 1}l {0, 1}l {0, 1}l (·, 0, 0)
EX3 r + m [0; 2lr − 1] [0; 2lm − 1] [0; 2lr + 2lm − 2] (·, 0, 2lm−lr)

In Table 1, we present three concrete examples (EX1, EX2, EX3) of sta-
tistically secure combining functions. The following lemma shows that these
examples are valid combining functions with respect to Definition 4.

Lemma 1. EX1 and EX2 constitute (·, 0, 0)-combining functions and EX3 con-
stitutes a (·, 0, 2lm−lr)-combining function.

Proof. Let us first analyze EX1 and EX2. We have that M = R = Z = Zm for
all m ∈ M and we can efficiently compute r as r = t −m mod p or r = t ⊕m
for all given t ∈ Z and m ∈ M. Furthermore, since z is bijective in both input
parameters z−1(t,m) is uniformly distributed in R for all m ∈ M and random
t ∈ Z. Thus, δcomb = 0. Finally, since z is a bijection in the second input

Tight Proofs for Signature Schemes without Random Oracles 195

parameter, it is collision-free (property 3) in both examples and we have that
εcomb = 0. Now, let us analyze EX3. For given m ∈ M and t ∈ Z, z−1(t,m)
outputs r = t −m if t −m ∈ R and ⊥ otherwise. To show that z is collision-
free, observe that m
= m′ implies r + m
= r + m′ for all r ∈ R. To analyze
D = maxm∈M

{
1/2 ·

∑
r∈R

∣∣Pr[r′ = r]− Pr[z−1(t,m) = r]
∣∣} first note that for

t′ $← Zm, z−1(t′,m) is uniform in R since |Zm| = |R| implies that z−1(·,m)

defines a bijection from Zm to R. For t′ $← Zm and t
$← Z we get

D ≤ max
m∈M

{
1/2 ·

∑
t0∈Zm

|Pr[t′ = t0]− Pr[t = t0]|
}
≤ 2lm−lr

Three further examples of combining functions can be obtained when first ap-
plying a (th, εh)-collision-resistant hash function that maps (long) messages to
M. Lemma 2 guarantees that the results are still combining according to Defi-
nition 4. The proof of Lemma 2 is straight-forward and can be found in the full
version.

Lemma 2. Let V be a (tcomb, εcomb, δcomb)-combining function andH be a (th, εh)-

collision-resistant hash function. Then V ′ = {V ′
k}k∈N with V ′

k = {z(r, h(m))|z $←
Vk, h $← Hk} is (min{tcomb, th}, εcomb + εh, δcomb)-combining.

2.7 The Strong RSA Setting

Definition 5 (Strong RSA assumption (SRSA)). Given an RSA modu-
lus n = pq, where p, q are sufficiently large primes, and an element u ∈ Z∗

n,
we say that the (tSRSA, εSRSA)-SRSA assumption holds if for all tSRSA-time
adversaries A

Pr [(x, y) ← A(n, u), x ∈ Z∗
n, y > 1, xy = u mod n] ≤ εSRSA,

where the probability is over the random choices of u, n and the random coins
of A.

Definition 6 (SRSA setting). In this setting, KeyGen(1κ) outputs the key pair
(SK = (p, q), PK = n) for a safe modulus n = pq such that p = 2p′+1, q = 2q′+
1, and p, q, p′, q′ are primes. All computations are performed in the cyclic group
QRn. Let li = li(κ) for i ∈ {n, t, c, e,m} be polynomials. We require that |n|2 = ln
and |p′|2 = |q′|2 = ln/2 − 1. Furthermore, we assume that the (tSRSA, εSRSA)-
SRSA assumption holds. We let u, v, w be public random generators of QRn with
unknown logu v, loguw, and logv w. When using combining functions z(r,m),
we assume that M ⊆ [0; 2lm − 1], Z ⊆ [0; 2lz − 1] and R ⊆ [0; 2lr − 1]. We
let E ⊆ [2le−1; 2le − 1] denote the set of le-bit primes. Finally, we require that
lm ≤ lc, lz, lr < le < ln/2− 1.

196 S. Schäge

2.8 The Strong Diffie-Hellman Setting

Definition 7 (Bilinear groups). Let G1 =<g1>,G2 =<g2> and GT be groups
of prime order p. The function e : G1×G2 → GT is a bilinear pairing if it holds
that 1) for all a ∈ G1, b ∈ G2, and x, y ∈ Zp we have e(ax, by) = e(a, b)xy

(bilinearity), 2) e(g1, g2)
= 1GT is a generator of GT (non-degeneracy), and 3) e
is efficiently computable (efficiency). We call (G1, g1,G2, g2,GT , p, e) a bilinear
group.

Definition 8 (SDH assumption (SDH)). Let (G1, ĝ1,G2, ĝ2,GT , p, e) be
a bilinear group. We say that the (qSDH, tSDH, εSDH)-SDH assumption holds if
for all tSDH-time attackers A that are given a (qSDH + 3)-tuple of elements
W =

(
g1, g

x
1 , g

(x2)
1 , . . . , g

(xqSDH)
1 , g2, g

x
2

)
∈ GqSDH +1

1 ×G2
2 it holds that

Pr [(s, c)← A(W), c ∈ Zp, s ∈ G1, e(s, gx2g
c
2) = e(g1, g2)] ≤ εSDH,

where the probability is over the random choices of the generators g1 ∈ G1,
g2 ∈ G2, x ∈ Zp and the random bits of A.

Definition 9 (SDH setting). In the SDH setting, all computations are per-
formed in the cyclic groups of (G1, g1,G2, g2,GT , p, e) such that |p|2 = lp = lp(κ).

The PPT KeyGen(1κ) chooses x
$← Zp and outputs (SK = x, PK = gx2). We

assume that the (qSDH, tSDH, εSDH)-SDH assumption holds. Finally, we suppose
that the values a, b, c ∈ G1 are public random generators of G1 such that loga b,
loga c, and logb c are unknown. In case of combining functions z(r,m), we as-
sume that Z ⊆ Zp and R ⊆ Zp.

3 Signature Classes

For convenience, we now introduce two general signature classes. The combin-
ing signature scheme SCMB constitutes a useful abstraction of the Camenisch-
Lysyanskaya, the Fischlin, and the Zhu signature scheme using combining
functions. The chameleon signature scheme SCH can be regarded as a general
variant of the original Cramer-Shoup signature scheme where we do not specify
a concrete instantiation of the chameleon hash function.

3.1 SRSA-Based Combining Signature Scheme SCMB,SRSA

In the SRSA setting, Sign(SK,m) randomly draws r ∈ R and e ∈ E and com-

putes a signature σ = (r, s, e) on message m with s =
(
uvrwz(r,m)

) 1
e . Let us now

show that our construction generalizes the claimed signature schemes. Observe
that we can easily obtain the Fischlin scheme [9] if we instantiate the combining
function with EX2 of Table 1. Furthermore, we can also get the Camenisch-
Lysyanskaya scheme [4] using EX3. This becomes obvious if we substitute v by

Tight Proofs for Signature Schemes without Random Oracles 197

v′ = vw as uvrwr+m = u(vw)rwm = u(v′)rwm1. We note that when we use
the Camenisch-Lysyanskaya scheme with long messages we must first apply a
collision-resistant hash function to the message. What we essentially get is Zhu’s
scheme [18,19]. By Lemma 2, the resulting function is still combining. The ver-
ification routine Verify(PK,m, σ) takes a purported signature σ = (r, s, e) and
checks if se ?= uvrwz(r,m), if |e|2 = le, and if e is odd.

3.2 SDH-Based Combining Signature Scheme SCMB,SDH

We also present an SDH-based variant SCMB,SDH of the combining signature
scheme. We remark that for the Camenisch-Lysyanskaya scheme there already
exists a corresponding SDH-based variant, originally introduced in [5] and proven
secure in [15,1]. Similar to SCMB,SRSA, we obtain the SDH-based Camenisch-
Lysyanskaya scheme when instantiating the combining function with EX1. In
the same way, we can also get SDH-based variants of the Fischlin signature
scheme (using EX2) and of Zhu’s scheme (using Lemma 2). In the SDH-
based combining scheme, Sign(SK,m) at first chooses a random r ∈ R and
a random t ∈ Zp \ {−x}. It then computes the signature σ = (r, s, t) with

s =
(
abrcz(r,m)

) 1
x+t . Given a signature σ = (r, s, t), Verify(PK,m, σ) checks if

e (s, PKgt2)
?= e

(
abrcz(r,m), g2

)
.

3.3 SRSA-Based Chameleon Hash Signature Scheme SCH,SRSA

The scheme SCH,SRSA is defined in the SRSA setting. KeyGen(1κ) additionally
generates the key material (SKCH, PKCH) for a chameleon hash function. The
value PKCH is added to the scheme’s public key. (SKCH is not required. How-
ever, it may be useful when turning the signature scheme into an online-offline
signature scheme [17].) The signature generation algorithm Sign(SK,m) first
chooses a random r ∈ R and a random prime e ∈ E. It then outputs the signa-

ture σ = (r, s, e) on a message m where s =
(
uvch(r,m)

) 1
e . To verify a purported

signature σ = (r, s, e) on m, Verify(PK,m, σ) checks if e is odd, if |e|2 = le, and
if se ?= uvch(r,m).

3.4 SDH-Based Chameleon Hash Signature Scheme SCH,SDH

Let us now define a new variant of the chameleon hash signature scheme that
is based on the SDH assumption. Again, KeyGen(1κ) also adds the public key
1 To be precise, our generalization slightly differs from the Camenisch-Lysyanskaya

scheme. In the original scheme, it is required that lr = ln + lm + 160. As a result,
the authors recommend for 160 bit long messages that lr = 1346, ls = 1024, and
le = 162. In our scheme, we simply require that lm ≤ lr < le < ln/2 − 1. Then,
we can set lr = 320, ls = 1024, and le = 321 for a probability εcomb = 2−160.
Therefore, the signature size of our signature scheme is much shorter (only (320 +
1024 + 321)/(1346 + 1024 + 162) ≈ 66% of the original signature size) and the
scheme is more efficient (since shorter exponents imply faster exponentations) than
the original scheme.

198 S. Schäge

PKCH of a chameleon hash function to PK. In the SDH setting, Sign(SK,m)
first chooses a random r ∈ R and a random t ∈ Zp\{−x}. Using SK = x, it then

outputs the signature σ on m as σ = (r, s, t) where s =
(
abch(r,m)

) 1
x+t . To verify

a given signature σ = (r, s, t) on m, Verify(PK,m, σ) checks if e (s, PKgt2)
?=

e
(
abch(r,m), g2

)
. A suitable chameleon hash function can for example be found

in [13].

3.5 The Cramer-Shoup Signature Scheme SCS,SRSA

Let us now review the Cramer-Shoup signature scheme that is defined in the
SRSA setting. The Cramer-Shoup scheme SCS,SRSA additionally requires a
collision-resistant hash function h : {0, 1}∗ → {0, 1}lc . The message space is
so extended to M = {0, 1}∗. Suppose lc < le < ln/2− 1.

- KeyGen(1κ) additionally computes a random le-bit prime ẽ. The secret key
is SK = (p, q) the public key is PK = (n, ẽ).

- Sign(SK,m) first chooses a random r ∈ QRn and evaluates (the chameleon
hash function) c = rẽ/vh(m) mod n. Then it draws a random le-bit prime
e
= ẽ and computes the value s =

(
uvh(c)

)1/e
mod n. The signature is

σ = (r, s, e).
- Verify(PK,m, σ) re-computes c = rẽ/vh(m) mod n and checks whether s

?=(
uvh(c)

)1/e
mod n, if e is odd, and if |e|2 = le.

Unfortunately, the proof of the more general chameleon hash scheme class does
not formally transfer to the Cramer-Shoup signature scheme because in the
Cramer-Shoup scheme the key material of its chameleon hash function is not
chosen independently. In particular, the chameleon hash function uses the same
RSA modulus and the same value v. This requires slightly more care in the
security proof. We provide a full proof of the Cramer-Shoup signature scheme
in the full version.

4 Security

Theorem 1. The Cramer-Shoup signature scheme, the combining signature class
(in both the SRSA and the SDH setting), and the chameleon signature class (in
both the SRSA and the SDH setting) are tightly secure against adaptive chosen
message attacks. In particular, this implies that the Camenisch-Lysyanskaya,
the Fischlin, the Zhu, and the SDH-based Camenisch-Lysyanskaya scheme are
tightly secure against strong existential forgeries under adaptive chosen message
attacks.

We subsequently provide the intuition behind our security proofs. In Section 4.4,
we present a full proof of security for SCMB,SRSA, which seems to us to be the
technically most involved reduction. The proof of SCMB,SDH proceeds analo-
gously and appears in the full version. We then informally show how to transfer
our technique to SCH. In the full version we also provide a full proof of security
of the Cramer-Shoup signature scheme.

Tight Proofs for Signature Schemes without Random Oracles 199

4.1 The SRSA-Based Schemes

Let us first consider the SRSA-based schemes, where B is given an SRSA chal-
lenge (û, n) with û ∈ Z∗

n. Assume that attacker A issues q signature queries
m1, . . . ,mq ∈ M. As a response to each query mi with i ∈ [1; q], A receives a
corresponding signature σi = (ri, si, ei) ∈ R×QRn × E.

Recall that the existing security proofs for schemes of the combining class
(e.g. [9]) consider two forgers that loosely reduce from the SRSA assumption.
This is the case when it holds for A’s forgery (m∗, (r∗, s∗, e∗)) that
gcd(e∗,

∏q
i=1 ei)
= 12. Given that |e∗|2 = le this means that e∗ = ej for some

j ∈ [1; q]. Let us concentrate on the case that r∗
= rj . The proof of the remaining
case (e∗ = ej , r∗ = rj and m∗
= mj) is very similar. It additionally exploits the
properties of the combining function.

The proofs in [8,9,18,4,19] work as follows: the simulator B at first guesses

j
$← {1, . . . , q}. By construction, B can answer all signature queries but only if A

outputs a forgery where e∗ = ej it can extract a solution to the SRSA challenge.
In all other cases (if e∗ = ei for some i ∈ {1, . . . , q}\{j}), B just aborts. Since the
number of signature queries q rises polynomially in the security parameter, the
probability for B to correctly guess j in advance is q−1 and thus not negligible.
However, the security reduction loses a factor of q here.

Our aim is to improve this reduction step. Ideally, we have that any forgery
which contains e∗ ∈ {e1, . . . , eq} helps the simulator to break the SRSA assump-
tion. As a result, the simulator can completely avoid guessing. The main task is
to re-design the way B computes A’s input parameters: for every i ∈ {1, . . . , q},
we must have exactly one choice of ri such that B can simulate the signing oracle
without having to break the SRSA assumption. On the other hand, if A outputs
(m∗, (r∗, s∗, e∗)) with e∗ = ei for some i ∈ [1; q] and r∗
= ri, B must be able to
compute a solution to the SRSA challenge. Let us now go into more detail.

For simplicity, assume that B can setup A’s input parameters such that the
verification of a signature σ = (r, s, e) always reduces to

se = ûf(r) mod n. (1)

Suppose that neither û nor f : R → N are ever revealed to A. We exploit that
the ri are chosen independently at random. So, they can be specified prior to the
signature queries. Now, B’s strategy to simulate the signing oracle is to define
r1, . . . , rq such that for every i ∈ [1; q] it can compute a prime ei ∈ E with
ei|f(ri). Without having to break the SRSA assumption, B can then compute
si = ûf(ri)/ei and output the i-th signature as (ri, si, ei).

Let us now turn our attention to the extraction phase where B is given A’s
forgery (m∗, (r∗, s∗, e∗)). By assumption we have e∗ = ei for some i ∈ [1; q] and
r∗
= ri. B wants to have that gcd(e∗, f(r∗)) = D < e∗ (or f(r∗)
= 0 mod e∗)
because then it can find a solution to the SRSA challenge by computing a, b ∈
Z \ {0} with af(r∗)/D + be∗/D = 1 using extended Euclidean algorithm and
outputting
2 The proof of the case gcd(e∗,

∏q
i=1 ei) = 1 is straight-forward.

200 S. Schäge

(s∗)aûb = ûD/e
∗
, e∗/D.

B’s strategy to guarantee gcd(e∗, f(r∗)) = D < e∗ is to ensure that we have
e∗ = ei
 |f(r∗). Unfortunately, B cannot foresee r∗. Therefore, the best solution
is to design f such that ei
 |f(r∗) for all r∗
= ri.

Obviously, B makes strong demands on f . We now present our construction
of f and argue that it perfectly fulfills all requirements. We define f as

f(r) =
q∑
i=1

ri

q∏
j=1
j �=i

ej − r

q∑
i=1

q∏
j=1
j �=i

ej, (2)

for r1, . . . , rq ∈ R. Furthermore, e1, . . . , eq ∈ E must be distinct primes. First,
observe that for every k ∈ [1; q] the function reduces to f(rk) =

∑q
i=1,i�=k(ri −

rk)
∏q
j=1,j �=i ej and thus f(rk) = 0 mod ek. On the other hand, it holds for

r
= rk that f(r) = (rk − r)
∏q
j=1,j �=k ej mod ek. Since lr < le, we have that

|rk − r| < ek and as the ei are distinct primes, we finally get that gcd((rk −
r)
∏q
j=1,j �=k ej , ek) = 1 and thus f(r)
= 0 mod ek for r
= rk.

4.2 The SDH-Based Schemes

Under the SDH assumption, the situation is very similar. Here we also analyze
three possible types of forgeries (m∗, (r∗, s∗, t∗)): 1.) t∗ /∈ {t1, . . . , tq}, 2.) t∗ = ti
with i ∈ [1; q] but r∗
= ri, and 3.) t∗ = ti, r∗ = ri (but m∗
= mi) with i ∈ [1; q].
Again, we concentrate on the second case. At the beginning, B is given an SDH
challenge

(
ĝ1, ĝ

x
1 , ĝ

(x2)
1 , . . . , ĝ

(xq)
1 , g2, g

x
2

)
. This time, B chooses PK = gx2 . In the

SDH setting, Equation (1) transfers to

e(s, PKgt2) = e(ĝf(r,x)
1 , g2)⇔ sx+t = ĝ

f(r,x)
1 . (3)

In contrast to the SRSA setting, f is now a polynomial with indeterminate x

and maximal degree q. Again, B must keep f(r, x) and the ĝ
(xi)
1 secret from A.

We define

f(r, x) =
q∑
i=1

ri

q∏
j=1
j �=i

(x + tj)− r

q∑
i=1

q∏
j=1
j �=i

(x + tj),

for r1, . . . , rq ∈ R and distinct t1, . . . , tq ∈ Zp. Using the SDH challenge, B can
easily compute ĝ

f(r,x)
1 since f(r, x) has maximal degree q. Observe that it always

holds that (f(r, x)− (rk − r)
∏q
j=1,j �=k(x+ tj))/(x+ tk) ∈ Z. If r = rk, we surely

have that f(r, x)/(x + tk) ∈ Z. If r
= rk, then long division gives us D ∈ Z
with D
= 0 and a new polynomial f̃tk(r, x) with coefficients in Z such that
f(r, x) = f̃tk(r, x)(x+ tk)+D. Similar to the SRSA class, we can find a solution
to the SDH challenge from A’s forgery as(

(s∗)ĝ−f̃t∗ (r∗,x)
1

)1/D
= ĝ

1/(x+t∗)
1 , t∗.

Tight Proofs for Signature Schemes without Random Oracles 201

4.3 Security of the Chameleon Hash Signature Class

The chameleon hash class is also tightly secure in the SRSA and the SDH setting.
For convenience let ci = ch(ri,mi) for i ∈ [1; q] and c∗ = ch(r∗,m∗). Altogether
there are again three types of forgeries to consider: 1) e∗ /∈ {e1, . . . , eq} (t∗ /∈
{t1, . . . , tq}), 2) e∗ = ei (t∗ = ti) but c∗
= ci , and 3) e∗ = ei (t∗ = ti), c∗ = ci
but m∗
= mi. The proof of 1) is straight-forward and very similar to the proof
of Type I forgers of the combining class. The proof of 3) clearly reduces to the
security properties of the chameleon hash function. The proof of 2) requires our
new technique to set up f(c) (f(c, x)). Recall Section 4 where we analyzed the
equations se = ûf(c) and f(c) =

∑q
i=1 ci

∏q
j=1,j �=i ej − c

∑q
i=1

∏q
j=1,j �=i ej in

the SRSA setting (and sx+t = ĝ
f(c,x)
1 and f(c, x) =

∑q
i=1 ci

∏q
j=1,j �=i(x + tj) −

c
∑q

i=1
∏q
j=1,j �=i(x + tj) in the SDH setting).

In the proof of the combining class the ci are random values (ci = ri) that can
be specified prior to the simulation phase. In the proof of the chameleon hash
class we take a similar approach. Now the ci are the output values of a chameleon
hash function. In the initialization phase of the proof we choose q random input
pairs (m′

i, r
′
i) ∈ M×R, i ∈ [1; q] to compute the ci = CHEval(PKCH,m′

i, r
′
i).

Then we prepare the function f(c) (f(c, x)) with C = {c1, . . . , cq} and a set of
q random primes le-bit primes (random values t1, . . . , tq ∈ Zp) as in the proofs
of the combining class. Next, we embed f(c) (f(c, x)) in the exponents of the
two group elements u, v (a, b). In the simulation phase we give the simulator
SKCH to map the attacker’s messages mi to the prepared ci by computing
ri = CHColl(SKCH, r′i,m

′
i,mi). In this way we can successfully simulate the

signing oracle. In the extraction phase, the properties of the chameleon hash
function guarantee that c∗ /∈ {c1, . . . , cq} (otherwise we can break the security
of the chameleon hash function). This ensures that we can find a solution to the
SRSA challenge (SDH challenge).

4.4 Security Analysis of SCMB,SRSA

Lemma 3. In the SRSA setting, suppose the (tSRSA, εSRSA)-SRSA assumption
holds and V is a (tcomb, εcomb, δcomb)-combining function. Then, the combining
signature class as presented in Section 3.1 is (q, t, ε)-secure3 against adaptive
chosen message attacks provided that

q = qSRSA, ε ≤ 9
2
εSRSA + 3εcomb + 3qδcomb +

3q2

|E| + 9 · 22−ln/2, t ≈ tSRSA.

The proof of Lemma 3 is the first step in the proof of Theorem 1. It implies
that the original Camenisch-Lysyanskaya, the Fischlin and the Zhu’s signature
scheme are tightly secure against existential forgeries under adaptive chosen
message attacks.
3 Using explicit bounds on the prime counting function [16], we can lower bound the

number of primes in E for le ≥ 7 as |E| > (2le − 1)/(ln(2le − 1) + 2) − (2le−1 −
1)/(ln(2le−1 − 1) − 4).

202 S. Schäge

Proof. Assume that A is a forger that (q, t, ε)-breaks the strong existential un-
forgeability of SCMB,SRSA. Then, we can construct a simulator B that, by inter-
acting with A, solves the SRSA problem in time tSRSA with advantage εSRSA. We
consider three types of forgers that after q queries m1, . . . ,mq and correspond-
ing responses (r1, s1, e1), . . . , (rq, sq, eq) partition the set of all possible forgeries
(m∗, (r∗, s∗, e∗)). In the proof, we treat all types of attackers differently. At the
beginning, we let B guess with probability at least 1

3 which forgery A outputs.
Lemma 3 then follows by a standard hybrid argument. We assume that B is given
an SRSA challenge instance (û, n). Let Pr[Si] denote the success probability of
an attacker to successfully forge signatures in Game i.

Type I Forger (e∗ /∈ {e1, . . . , eq})
Game0. This is the original attack game. By assumption, A (q, t, ε)-breaks
SCMB,SRSA when interacting with the signing oracle O(SK, ·). We have that,

Pr[S0] = ε . (4)

Game1. Now, B constructs the values u, v, w using the SRSA challenge in-
stead of choosing them randomly from QRn. First, B chooses q random primes
e1, . . . , eq

$← E and three random elements t′0, t′′0
$← Z(n−1)/4 and t0

$← Z3(n−1)/4.
In the following let ē :=

∏q
k=1 ek, ēi :=

∏q
k=1,k �=i ek and ēi,j :=

∏q
k=1,k �=i,k �=j ek.

The simulator computes u = û2t0ē, v = û2t′0 ē, w = û2t′′0 ē using the SRSA chal-
lenge. Since the t0, t

′
0, t

′′
0 are not chosen uniformly at random from Zp′q′ we must

analyze the success probability for A to detect our construction. Observe that
(n− 1)/4 = p′q′ + (p′ + q′)/2 > p′q′. Without loss of generality let p′ > q′. Now,
the probability of a randomly chosen x ∈ Z(n−1)/4 not to be in Zp′q′ is

Pr[x $← Z(n−1)/4, x /∈ Zp′q′] = 1− |Zp′q′ |
|Z(n−1)/4|

<
1

q′ + 1
< 2−(|q′|2−1) .

With the same arguments we can show that t0 is also distributed almost uni-
formly at random in Zp′q′ and Z3p′q′ . Since the ei are primes smaller than p′ and
q′ it holds that ei
 |p′q′. Therefore, the distribution of the generators is almost
equal to the previous game and we get by a union bound that

Pr[S1] ≥ Pr[S0]− 3 · 2−(ln/2−2) . (5)

Game2. Now, B simulates O(SK, ·) by answering A’s signature queries. Subse-
quently, set zj = z(ej,mj) and z∗ = z(e∗,m∗). The simulator B sets PK = n
and for all j ∈ {1, . . . , q} it chooses a random rj ∈ R and outputs σj = (rj , sj , ej)

with sj = (uvrjwzj)
1

ej = û2(t0+t′0rj+t′′0 zj)ēj . The distribution of the so computed
values is equal to the previous game and

Pr[S2] = Pr[S1] . (6)

Game3. Now, considerA’s forgery (m∗, (r∗, s∗, e∗)). Define ê = (t0+t′0r∗+t′′0z∗).
For A’s forgery it holds that (s∗)e

∗
= û2ēê. We also have that

Tight Proofs for Signature Schemes without Random Oracles 203

gcd(e∗, 2ēê) = gcd(e∗, ê) since by assumption we know gcd(e∗, 2ē) = 1. We
will now analyze the probability for the event gcd(e∗, ê) < e∗ to happen. If
gcd(e∗, ê) = e∗ (or ê = 0 mod e∗) B, simply aborts and restarts. Since |e∗|2 = le,
it holds that gcd(e∗, p′q′) < e∗. Write t0 ∈ Z3(n−1)/4 as t0 = t0,1 + p′q′t0,2 where
t0,2 ∈ [0; 2] and t0,1 ∈ [0, p′q′ − 1] and observe that A’s view is independent
from t0,2. Let T = ê − p′q′t0,2. We now argue that there exists at most one
t̃0,2 ∈ [0; 2] such that T + t̃0,2p

′q′ = 0 mod e∗. This is crucial because if A
produces forgeries with T + t̃0,2p

′q′ = 0 mod e∗ for all t̃0,2 ∈ [0; 2] it always
holds that gcd(e∗, ê) = e∗ and B cannot extract a solution to the SRSA chal-
lenge (using the techniques described below). Assume there exists at least one
such t̃0,2. Then, we have that T + t̃0,2p

′q′ = 0 mod e∗. Let us analyze the re-
maining possibilities t̃0,2 ± 1 and t̃0,2 ± 2 as A = T + t̃0,2p

′q′ ± p′q′ mod e∗

and B = T + t̃0,2p
′q′ ± 2p′q′ mod e∗. Since gcd(e∗, p′q′) < e∗ we know that

p′q′
= 0 mod e∗. As T + t̃0,2p
′q′ = 0 mod e∗ we must have that A
= 0 mod e∗.

Also, because e∗ is odd we know that 2p′q′
= 0 mod e∗ and thus B
= 0 mod e∗.
So, because there can only exist at most one t̃0,2 ∈ [0; 2] with gcd(e∗, ê) = e∗ and
since this t̃0,2 is hidden fromA’s view, A’s probability to output it is at most 1/3.
This means that with probability at least 2/3, B has that gcd(e∗, ê) = d < e∗.
Using A’s forgery (m∗, (r∗, s∗, e∗)), B can break the SRSA assumption by com-
puting a, b ∈ Z with gcd(e∗/d, 2ēê/d) = ae∗/d + b2ēê/d = 1 and

ûd/e
∗

= ûa(s∗)b, e∗/d.

Finally, we have that
Pr[S3] ≥ 2 · Pr[S2]/3 (7)

and
Pr[S3] = εSRSA . (8)

Plugging in Equations (4)–(8), we get that ε ≤ 3
2εSRSA + 3 · 22−ln/2.

Type II Forger (e∗ = ei and r∗
= ri)
We only present the differences to the previous proof.

Game1. First, B randomly chooses q distinct le-bit primes e1, . . . , eq and q
random elements r1, . . . , rq ∈ R. Additionally, it chooses three random ele-
ments t0, t

′
0, t

′′
0 from Z(n−1)/4. Next, B computes u = û2(t0 ē+

∑ q
i=1 riēi), v =

û2(t′0ē−
∑q

i=1 ēi), and w = û2t′′0 ē using the SRSA challenge. Again,

Pr[S1] ≥ Pr[S0]− 3 · 2−(ln/2−2) . (9)

Game2. Now B simulates the signing oracle O(SK, ·). On each signature query
mj with j ∈ {1, . . . , q}, B responds with σj = (rj , sj , ej) using the precomputed
rj and ej and computing sj as

sj = û2((t0+t′0rj+t′′0 zj)ēj+
∑ q

i=1,i�=j
(ri−rj)ēi,j) .

204 S. Schäge

Since we have chosen the ei to be distinct primes we have by a union bound that

Pr[S2] ≥ Pr[S1]−
q2

|E| . (10)

Game3. Now consider A’s forgery (m∗, (r∗, s∗, e∗)). By assumption there is an
i ∈ {1, . . . , q} with e∗ = ei and ri
= r∗. Then we have that(

(s∗) · û−2((t0+t′0r∗+t′′0 z
∗)ēi+

∑ q
j=1,j �=i(rj−r∗)ēi,j)

)ei

= û2(ri−r∗)ēi .

Since |ri − r∗| < ei and ei is an odd prime, we get gcd(2(ri − r∗), ei) = 1 and as
before we can compute û

1
ei which is a solution to the SRSA challenge.

Pr[S3] = εSRSA . (11)

Summing up Equations (9)–(11), we get ε ≤ εSRSA + q2/|E|+ 3 · 22−ln/2.

Type III Forger (e∗ = ei and r∗ = ri)
There are only minor differences as compared to the previous proof.

Game1. First, B randomly chooses q le-bit primes e1, . . . , eq and q random
z1, . . . , zq ∈ Z, Then, B draws three random elements t0, t

′
0, t

′′
0 from Z(n−1)/4.

Next, B computes u, v, and w as u = û2(t0ē+
∑ q

i=1 ziēi), v = û2t′0ē, and w =
û2(t′′0 ē−

∑ q
i=1 ēi).

Pr[S1] ≥ Pr[S0]− 3 · 2−(ln/2−2) . (12)

Game2. This game is equal to the previous game except that we require the ei
to be all distinct. We have that

Pr[S2] ≥ Pr[S1]−
q2

|E| . (13)

Game3. Now B simulates the signing oracle. For each queries mj with j ∈
{1, . . . , q}, B computes rj = z−1(zj ,mj). If rj /∈ R, B aborts. Otherwise it
outputs the signature σj = (rj , sj , ej) with sj being computed as

sj = (uvrjwzj)
1

ej = û2((t0+t′0rj+t′′0 zj)ēj+
∑ q

i=1,i�=j(zi−zj)ēi,j) .

The properties of the combining function guarantee that the rj are statistically
close to uniform over R such that,

Pr[S3] ≥ Pr[S2]− qδcomb . (14)

Game4. This game is like the previous one except that B aborts whenever there
is a collision such that zi = z(ri,mi) = z(ri,m∗) = z∗ for some ri. Observe that
we must have m∗
= mi, otherwise A just replayed the i-the message/signature
pair. For all tcomb-time attackers this happens with probability at most εcomb.
Therefore,

Pr[S4] ≥ Pr[S3]− εcomb . (15)

Tight Proofs for Signature Schemes without Random Oracles 205

Consider A’s forgery (m∗, (r∗, s∗, e∗)). By assumption, there is one index i ∈
{1, . . . , q} with e∗ = ei and r∗ = ri. For this index it holds that(

(s∗) · û−2((t0+t′0r∗+t′′0 z
∗)ēi+

∑ q
j=1,j �=i

(zj−z∗)ēi,j)
)ei

= û2(zi−z∗)ēi .

Since we have excluded collisions, it follows that zi
= z∗. As |zi − z∗| ≤ ei, B
can compute û

1
ei as a solution to the SRSA challenge. Finally,

Pr[S4] = εSRSA . (16)

Equations (12)–(16) show ε ≤ εSRSA + εcomb + qδcomb + q2/|E|+ 3 · 22−ln/2.

Acknowledgement. I would like to thank Mathias Herrmann, Tibor Jager,
Eike Kiltz, and Maike Ritzenhofen for useful comments on earlier drafts of this
paper and the anonymous referees of EUROCRYPT’11 for helpful comments
and suggestions.

References

1. Au, M.H., Susilo, W., Mu, Y.: Constant-size dynamic k-TAA. In: Prisco, R.D.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 111–125. Springer, Heidelberg
(2006)

2. Bernstein, D.J.: Proving tight security for rabin-williams signatures. In: Smart,
N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 70–87. Springer, Heidelberg
(2008)

3. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

4. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

5. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M.K. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

6. Chevallier-Mames, B., Joye, M.: A practical and tightly secure signature scheme
without hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp.
339–356. Springer, Heidelberg (2006)

7. Coron, J.S., Naccache, D.: Security analysis of the gennaro-halevi-rabin signature
scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 91–101.
Springer, Heidelberg (2000)

8. Cramer, R., Shoup, V.: Signature schemes based on the Strong RSA assumption.
ACM Trans. Inf. Syst. Secur. 3(3), 161–185 (2000)

9. Fischlin, M.: The cramer-shoup strong-RSA Signature scheme revisited. In:
Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer, Heidelberg
(2002)

10. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–
139. Springer, Heidelberg (1999)

206 S. Schäge

11. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

12. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

13. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS. The Internet Society,
San Diego (2000)

14. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer,
Heidelberg (2000)

15. Okamoto, T.: Efficient blind and partially blind signatures without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer,
Heidelberg (2006)

16. Rosser, B.: Explicit bounds for some functions of prime numbers. American Journal
of Mathematics 63(1), 211–232 (1941)

17. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)

18. Zhu, H.: New digital signature scheme attaining immunity to adaptive-chosen mes-
sage attack. Chinese Journal of Electronics 10(4), 484–486 (2001)

19. Zhu, H.: A formal proof of Zhu’s signature scheme. Cryptology ePrint Archive,
Report 2003/155 (2003), http://eprint.iacr.org/

http://eprint.iacr.org/

Adaptive Pseudo-free Groups and Applications�

Dario Catalano1, Dario Fiore2,��, and Bogdan Warinschi3

1 Dipartimento di Matematica e Informatica, Università di Catania, Italy
catalano@dmi.unict.it

2 École Normale Supérieure, CNRS - INRIA, Paris, France
dario.fiore@ens.fr

3 Dept. Computer Science, University of Bristol, UK
bogdan@cs.bris.ac.uk

Abstract. In this paper we explore a powerful extension of the notion
of pseudo-free groups, proposed by Rivest at TCC 2004. We identify,
motivate, and study pseudo-freeness in face of adaptive adversaries who
may learn solutions to other non-trivial equations before having to solve
a new non-trivial equation.

We present a novel, carefully crafted definition of adaptive pseudo-
freeness that walks a fine line between being too weak and being un-
satisfiable. We show that groups that satisfy our definition yield, via a
generic construction, digital and network coding signature schemes.

Finally, we obtain concrete constructions of such schemes in the RSA
group by showing this group to be adaptive pseudo-free. In particular, we
demonstrate the generality of our framework for signatures by showing
that most existing schemes are instantiations of our generic construction.

1 Introduction

Background. The search for abstractions that capture the essential security
properties of primitives and protocols is crucial in cryptography. Among other
benefits, such abstractions allow for modular security analysis, reusable and scal-
able proofs. The random oracle model [3], the universal composability frame-
work [7] and variants [1,2,17] of the Dolev-Yao models [9] are results of this
research direction. Most such abstractions (the above examples included) tackle
mostly primitives and protocols and are not concerned with the more basic
mathematical structures that underlie current cryptographic constructions. One
notable exception is the work on pseudo-free groups, a notion put forth by Ho-
henberger [14] and later refined by Rivest [18]. In this paper we continue the
investigation of this abstraction.

Roughly speaking, a computational group G (a group where the group opera-
tions have efficient implementations) is pseudo-free if it behaves as a free group
as far as a computationally bounded adversary is concerned. More specifically, a

� A full version of this paper is available at http://eprint.iacr.org/2011/053
�� Work partially done while student at University of Catania.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 207–223, 2011.
c© International Association for Cryptologic Research 2011

http://eprint.iacr.org/2011/053

208 D. Catalano, D. Fiore, and B. Warinschi

group is pseudo-free if an adversary who is given a description of the group can-
not find solutions for non-trivial equations. Here, non-triviality means that the
equation does not have a solution in the free group. For instance, in a pseudo-
free group given a random element a it should be hard to find a solution for
an equation of the form xe = a, when e
= 1, or for the equation x2

1x
4
2 = a5,

but not for the equation x1x
3
2 = a5. This last equation is trivial since it can be

solved over the free group (it has x1 = a2, x2 = a as solution in the free group)
and a solution in the free group immediately translates to a solution over G.
The notion of pseudo-freeness generalizes the strong RSA assumption (when G
is an RSA group) but also numerous other assumptions currently used in cryp-
tography; see [18] for further details. Rivest’s conjecture that the RSA group is
pseudo-free was largely settled by Micciancio [16] who proved that this is indeed
the case when the RSA modulus is the product of two safe primes.

In its most basic form that had been studied so far, the notion of pseudo-
free groups did not lend itself easily to applications. The problem is that in
most of the interesting uses of the RSA group the adversary is not only given a
description of the group, but often he is allowed to see solutions to non-trivial
equations before having to come up with his own new equation and solution. This
is the case for example in RSA-based signature schemes where one can think of a
signature as the solution to some non-trivial equation. A chosen-message attack
allows the adversary access to an oracle that solves (non-trivial) equations over
the group, and a forgery is a solution to a new equation.

This problem was recognized early on by Rivest [18] who also left as open
problems the design of a notion of pseudo-freeness for adaptive adversaries and,
of course, whether such groups exist. In this paper we put forth such a notion,
prove that the RSA group is adaptive pseudo-free, and exhibit several applica-
tions for adaptive pseudo-free groups. We detail our results next.
Adaptive pseudo-free groups. We first extend the notion of pseudo-freeness
to adaptive adversaries. Informally, we consider an adversary that can see solu-
tions for some equations and has as goal solving a new non-trivial equation. As
explained above, this scenario captures typical uses of groups in cryptography.

Our definition involves two design decisions. The first is to fix the type of
equations for which the adversary is allowed to see solutions and how are these
equations chosen: too much freedom in selecting these equations immediately
leads to potentially unsatisfiable notions, whereas too severe restrictions may
not model the expected intuition of what an adaptive adversary is and may not
allow for applications. In the definition that we propose, equations are selected
from a distribution over the set of equations. Importantly, the distribution de-
pends on a parameter supplied by the adversary. This models the idea that in
applications, the adversary may have some control over how the equations are
selected. Different choices for this distribution lead to a variety of adversaries
from very weak ones where no equation is provided (precisely the setting of
pseudo-freeness proposed earlier), to a setting where the adversary has no influ-
ence on the choice of equations, and ending with the very strong notion where
the adversary basically selects the equations on his own.

Adaptive Pseudo-free Groups and Applications 209

The second issue is to define what is a non-trivial equation in the adaptive
setting. Indeed, previous definitions of triviality do not apply since in our new
setting the adversary knows additional relations between the group elements
which in turn may help him in solving additional equations. We define non-
triviality in a way motivated by existing uses of groups in cryptography and an
analysis of equations over quotients of free groups. Our definition is for the case
of univariate equations but can be easily extended to multivariate equations as
well as systems of equations.
Generic constructions for signatures. Our definition of pseudo-freeness
is parametrized by a distribution over equations. We show that for any distri-
bution in a class of distributions that satisfy certain criteria, one can construct
secure digital signatures and network coding signature schemes. The require-
ments on the distribution include the ability to efficiently check membership
in the support of the distribution, and a property on the distribution of the
exponents in the equation.

Our generic construction for network coding signatures is secure in the vanilla
model based only on the adaptive pseudo-freeness of the underlying group. Any
instantiation of such groups would thus yield network signature schemes secure in
the standard model. Indeed, given the instantiation that we discuss below, our
framework yields the first RSA-based network coding homomorphic signature
scheme secure in the standard model.
The RSA group is adaptive pseudo-free. Next, we turn to proving that
the RSA group is adaptive pseudo-free. We do so for a class of distributions
closely related but slightly more general than the distributions that yield signa-
tures schemes. We show that an adversary that contradicts pseudo-freeness of
the RSA group with respect to the distribution can be used to contradict the
strong RSA assumption. We also prove that the RSA group is pseudo-free for a
weaker version of adaptive adversaries who output their inputs to the distribu-
tion non-adaptively, but in this case the proof is for a larger class of distributions.

We do not attempt to prove adaptive pseudo-freeness of the RSA group for
multivariate equations. While this is potentially an interesting topic for further
research, we are not aware of cryptographic applications where such equations
are used.
Instantiations. An appealing interpretation of the proof of adaptive pseudo-
freeness for the RSA group is that it distills the core argument that underlies
the typical security proofs for signatures based on the strong RSA assumption.
Each such proof explains how a signature forgery can be used to break strong
RSA. In this sense our proof is a generalization to a broader (abstractly defined)
set of equations rather than the particular equations that define an individual
signature scheme.

Indeed, we show that almost all strong RSA signature schemes are instances
of our generic construction. We explain how to obtain the schemes by Cramer
and Shoup [8], Fischlin [10], Camenisch and Lysyanskaya [6], Zhu [19], Hofheinz

210 D. Catalano, D. Fiore, and B. Warinschi

and Kiltz [13]1, and that by Gennaro, Halevi, and Rabin [11] by instantiating
our generic distribution in appropriate ways. The security of all of these schemes
follows as a corollary from the security of our generic construction.
Other related work. In [13] Hofheinz and Kiltz introduced the notion of
programmable hash function (PHF), an information theoretic tool that, when
used in groups where the discrete logarithm is hard, allows for black box proofs
for various cryptographic constructions dealing with adaptive attacks. Among
other things they show how to construct generic signatures from the strong RSA
assumption. Still, PHF and adaptive pseudo free groups seem to abstract away
different aspects of strong-RSA based signatures (for instance PHF can deal with
bilinear groups while our framework allows to encompass network signatures).

1.1 Preliminaries and Notation

In our work we use the notion of division intractable functions. Informally, a
function H is division intractable if an adversary A cannot find x1, x2, . . . , xt, y
such that: y
= xi and H(y) divides the product of the H(xi)’s. It is easy to see
that this notion is satisfied by any function that maps inputs to (distinct) prime
numbers. Such mappings can be instantiated without making any cryptographic
assumptions (see [5] for a construction), but they are not very efficient in practice.
Gennaro et al. introduced in [11] the notion of division intractable hash functions
and also showed how to get practical implementations of them.

For lack of space, we defer the interested reader to the full version for other
standard definitions and notations used throughout the paper.

2 Static Pseudo-free Groups

As warm up, we recall the notion of pseudo-free groups as introduced by
Rivest [18]. To distinguish it from the notions that we develop in this paper
we refer to the older notion as static pseudo-free groups.
Free abelian groups. For any set of symbols A = {a1, a2, . . . , am} we write
A−1 for the set of symbols A−1 = {a−1

1 , a−1
2 , . . . , a−1

m }. Let X = {x1, . . . , xn}
and A = {a1, . . . , am} be two disjoint sets of variables and constant symbols.
An equation over X with constants in A is a pair λ = (w1, w2) ∈ (X∗ × A∗).
We usually write an equation λ = (w1, w2) as w1 = w2 and looking ahead (we
will only consider these equations over abelian groups), we may also write it as
xe11 xe22 · · ·xen

n = as11 as22 · · · asm
m where {e1, . . . , en} and {s1, . . . , sm} are integers.

Let (G, ·) be an arbitrary abelian group and α : A→ G be an interpretation of
the constants in A as group elements. We write λα for the equation λ interpreted
over G via α. An evaluation ψ : X → G is a solution for λα if

ψ(x1)e1 · · ·ψ(xn)en = α(a1)s1 · · ·α(am)sm .

1 We remark that for the case of Hofheinz-Kiltz signatures our framework captures a
variant of the main instantiation with non-optimized params. Extending the frame-
work to deal with smaller eponents is an interesting open problem.

Adaptive Pseudo-free Groups and Applications 211

Any equation λ over X and A can be viewed as an equation over the free group
F(A) via the interpretation 1A : A → F(A) that maps a to a. It can be easily
shown [18,16] that the equation λ1A has a solution in F(A) if and only if ∀i =
1, . . . ,m, it holds gcd(e1, . . . , en) | si. We call such equations trivial, in the sense
that these equations have solutions over the free group. All of the other equations
are deemed non-trivial.
Static pseudo-free groups. A computational group consists of a (finite) set
of representations for the group elements together with efficient implementations
for the two group operations. Informally, a computational group is pseudo-free if
it is hard to find an equation which is unsatisfiable over the free group, together
with a solution in the computational group. It is worth noting that if the order of
the group is known then finding solutions for non-trivial equations may be easy.
Therefore, the notion of pseudo-free groups holds for families G = {GN}N∈Nk

of
computational groups where N is chosen at random from the set of indexes Nk

(typically these are the strings of length k) and the corresponding order ord(GN)
is hidden to the adversary.

In the following we recall the formal definition given by Micciancio in [16]
(which is similar to that of Rivest [18]). The adversary that is considered in the
following definition is static (in that it is only allowed to see a description of the
group, but obtains no further information). To distinguish this class of groups
from others that we define in this paper we call them static pseudo-free groups.

Definition 1 (Static Pseudo-Free Groups [16]). A family of computational
groups G = {GN}N is static pseudo-free if for any set A of polynomial size
|A| = p(k) (where k is a security parameter), and PPT algorithm A, the following
holds. Let N ∈ Nk be a randomly chosen group index, and define α : A→ GN by
choosing α(a) uniformly at random in GN , for each a ∈ A. Then, the probability
(over the selection of α) that on input (N,α) adversary A outputs an equation
λ and a solution ψ for λα is negligible in k.

3 Adaptive Pseudo-free Groups

A rough definition. The notion described above requires an adversary to pro-
duce a solution for some non-trivial equation only given some randomly chosen
generators to be used in the equation, but no additional information. In con-
trast, the notion that we develop attempts to capture the idea that an adversary
against the computational group gets to see several equations with solutions,
and then attempts to solve a new non-trivial equation. A typical cryptographic
game that captures this situation involves an adversary A who works against a
Challenger as follows.

Setup. The Challenger chooses a random instance of the computational group
GN (by picking a random index N

$← Nk) from a family G = {GN}N∈Nk
.

Then he fixes an assignment α : A→ GN for the set of constants and gives
(α,GN) to the adversary.

212 D. Catalano, D. Fiore, and B. Warinschi

Equations queries. In this phase the adversary is allowed to see non-trivial
equations together with their solutions.

Challenge. At some point the adversary is supposed to output a new “non-
trivial” equation λ∗ (defined by (e∗, s∗)) together with a solution ψ∗.

Notice that the above description incorporates an assumption that we make for
simplicity, namely that all equations are univariate. In general, any univariate
equation over A is of the form: xe = as11 as22 · · ·asm

m . For the case of static pseudo-
free groups, this restriction is justified by a lemma that was proved by Micciancio
in [16]. Informally the lemma says that any (multivariate) equation and solution
(λ, ψ) can be efficiently transformed into a univariate equation and solution
(λ′, ψ′). Whilst we extend the definition of trivial equations to the multivariate
case (for lack of space it is given in the full version of the paper), it would
be interesting to see if a similar lemma is possible in the context of adaptive
pseudo-freeness.

The general definition of pseudo-freeness that we sketched above leaves open
two important points: 1) How are the equations for which the adversary sees
solutions produced? and 2) What does “non-trivial equation” mean when other
equations and solutions are given? We discuss and give answers to these two
problems in Sections 3.1 and 3.2 respectively.

3.1 A Spectrum of Adaptive Adversaries

The second phase of the above generic game requires that adversaries be given
non-trivial equations together with their solutions, so we need to clarify how
are these equations produced. Here we identify a whole spectrum of possible
choices. The weakest definition one might consider is one where the adversary
does not have any control over these equations. For instance, this means that,
whenever the Challenger is queried in the second phase, the Challenger chooses
an equation λi (more precisely it chooses its exponents (ei, si)) and gives λi
and its solution in G, ψi, to the adversary. Unfortunately, in such a game the
adversary is not really adaptive: it may receive all the equations and solutions
at once.

The strongest possible notion, and perhaps the most natural one, would be
to consider an adversary that is allowed to choose equations λi (namely their
respective exponents (ei, si)) in any way it wants. In particular the choice of the
equations can be done in an adaptive way, namely A asks for an equation, sees
its solutions, then chooses another equation and so on. We call this definition
“Strong Adaptive Pseudo-freeness”. Unfortunately this choice seems to lead to
an unrealizable notion2. We therefore settle on an intermediary variant where
the adversary is allowed to be adaptive, but still cannot choose the equations in
a completely arbitrary way. Instead, we consider a setting where the equations
are selected from the set of all equations according to some distribution over
which the adversary has some limited control. We formulate this limitation via
2 For example, it is not clear at all if a group like Z∗

N can be proved strongly-adaptive
pseudo-free under any reasonable assumption (e.g. Strong RSA).

Adaptive Pseudo-free Groups and Applications 213

a parametric distribution ϕ over the set of all possible equations. Sampling from
such a distribution requires some parameter M of some appropriate length which
is provided by the adversary. The distribution then produces a tuple of m + 1
integers which for expressivity we write (e, s). Here e is an integer (the exponent
for the variable) and s is a vector of m integers (the exponents for the generators).
The idea is that once the parameter M is fixed, ϕ(M) is some fixed distribution
from which (e, s) are drawn. Notice that the two ends of the spectrum can be
modeled via appropriate choices of ϕ.

3.2 Non-trivial Equation w.r.t. Other Equations

Our definition of adaptive pseudo-freeness requires an adversary to find a solu-
tion to a non-trivial equation. In the original setting of Rivest, non-triviality of
an equation simply meant that the equation has no solution in the free group. In
our setting, non-triviality is less clear: the adversary is already given solutions for
some equations which may lead to solutions for other equations that are difficult
to solve otherwise. In this section we develop a notion of triviality for equations
given solutions to other equations. Our ultimate goal is to characterize, using
the world and vocabulary afferent to free groups those equations that cannot be
solved in the computational group.
General deducibility modulo equations. We frame the discussion in
slightly more general terms to obtain a framework suitable for talking about
non-triviality of both univariate and multi-variate equations.

Let F be the free abelian group generated by the set {a1, a2, . . . , am} and let
Λ ⊆ F ×F be an arbitrary binary relation on F that models equalities between
words in F (equations with solutions can be thought of as such relations). We
therefore aim to characterize the set of all equalities that can be derived from
Λ. Recall that eventually these equalities are interpreted over computational
groups, hence there are two ways for an adversary to derive new equalities.
The first is to use the group operations and their properties. For example, if
Λ = {a1a2 = a2

1a4}, then it can also be derived that a1a
2
2 = a2

1a4a2 = a3
1a

2
4, where

the first equality is obtained by simply multiplying a2 to the known equation,
and the second equality follows using the commutativity of F and the known
equality. The second possibility reflects an ability that computational adversaries
have (when working against computational groups). Specifically, if an equality
of the form wq1 = wq2 can be derived in a computational group, then the equality
w1 = w2 can also be derived (provided that q is relatively prime with the order
of the group). Furthermore, since we search for an abstraction independent of
the order of the group, we have to consider the above possibility for any q. The
following definition is motivated by the above discussion.

Definition 2. Let F be a freely generated abelian group and let Λ ⊆ F × F be
an arbitrary binary relation on F . Let ≡Λ be the smallest congruence on F that:

– Λ ⊆≡Λ
– ∀q ∈ N, ∀w1, w2 ∈ F , wq1 ≡Λ wq2 =⇒ w1 ≡Λ w2.

214 D. Catalano, D. Fiore, and B. Warinschi

Then, w1 and w2 are trivially equal with respect to Λ if w1 ≡Λ w2.

Next, we derive an explicit description for ≡Λ. Let

Λ = {(w1,1, w2,1), (w1,2, w2,2), . . . , (w1,t, w2,t)}.

Consider the binary relation RΛ on F defined by: (w1, w2) ∈ RΛ if and only
if there exist l1, l2, . . . , lt ∈ Q such that w1 = w2 · Πt

i=1(w
−1
1,i · w2,i)li . Here,

exponentiation of a word w = as11 as22 . . .asn
n with a rational number l = p/q is

defined (in the obvious way) if and only if q divides gcd1≤i≤n p · si. The following
proposition states that ≡Λ and RΛ are one and the same relation. Its proof is in
the full version of the paper.

Proposition 1. Let RΛ and ≡Λ defined as above. Then (w1, w2) ∈ RΛ if and
only if (w1, w2) ∈≡Λ.

Trivial equations. Using the notion of deducibility modulo equations devel-
oped above we can now specify the class of equations that we consider trivial
(given solutions for the equations in some set Λ). For simplicity, we focus on the
case of univariate equations which is more relevant for the cryptographic appli-
cations of this paper. The definition easily extends to the case of multivariate
equations (for completeness this variation is given in the full version). Assume
that we are given a set of equations

Λ =
{
xek = a

sk
1

1 · · ·a
sk

m
m

}t
k=1

together with {φk}tk=1, their corresponding solutions. (Notice that these are
equations in a computational group; solutions for these equations may simply
not exist in a free group). Let F be the the free abelian group generated by
{φ1, φ2, . . . , φt, a1, a2, . . . , am} (interpreted as symbols). The equations in Λ in-
duce a binary relation on F which (by a slight abuse of notation) we also call

Λ. So Λ = {(φek

k , a
sk
1

1 · · · a
sk

m
m) | 1 ≤ k ≤ t}. The following definition simply is a

particular instance of Definition 2 to the case of univariate equations.

Definition 3. Equation xe
∗

= a
s∗1
1 · · · a

s∗m
m is trivial with respect to Λ if the equa-

tion has a solution over F/ ≡Λ.

We use the characterization of ≡Λ that we gave earlier to explicitly determine
the class of trivial equations. Let

xe
∗

= a
s∗1
1 · · · a

s∗m
m (1)

be an equation that has a solution over F/Λ. Let φ = φk1
1 · · ·φkt

t av11 · · · avm
m be

such a solution. From the explicit characterization of ≡Λ there exists l1, . . . , lt
in Q such that

(φk1
1 · · ·φkt

t av11 · · · avm
m)e

∗
= a

s∗1
1 a

s∗2
2 · · · a

s∗m
m ·Πt

i=1

(
φei

i ·Πm
k=1a

−si
k

k

)li
(2)

Adaptive Pseudo-free Groups and Applications 215

Since equality is standard equality over F , the relation above translates (via
symbol by symbol matching of exponents) into the following requirement. Equa-
tion (1) has a solution if there exist v1 · · · vm, k1 · · · kt in Z and l1, . . . , lt ∈ Q
such that:

1. kie
∗ = ei · li (for all 1 ≤ i ≤ t)

2. vie
∗ = s∗i −

∑t
j=1 ljs

(j)
i (for all 1 ≤ i ≤ m)

The converse of the above statement is also true: if integers v1, · · · vm,
k1, . . . , kt and rationals l1, · · · , lt exist such that Equation 2 holds then
φ = φk1

1 · · ·φkt
t av11 · · · avm

m is a solution for Equation (1) over F/ ≡Λ.
Finally, we express these two conditions in a more compact matrix form

which will be simpler to use in our proofs. Given the set of equations Λ ={
xek = a

sk
1

1 · · ·a
sk

m
m

}t
k=1

we define the following quantities:

Σ =

⎡⎢⎣ s1
1 · · · st1
...

...
s1
m · · · stm

⎤⎥⎦ and E =

⎡⎢⎢⎢⎢⎣
1/e1 0

1/e2

0
. . .

1/et

⎤⎥⎥⎥⎥⎦
These quantities are dependent on Λ but we do not show the dependency ex-
plicitly to avoid heavy notation.

Proposition 2 (Trivial equation w.r.t. a set of equations). Equation λ∗ :
xe

∗
= a

s∗1
1 · · · a

s∗m
m is trivial w.r.t Λ if and only if:

∃k ∈ Zt, V ∈ Zm : e∗(ΣEk + V) = s∗

where s∗ = [s∗1 · · · s∗m]T .

The proposition follows by simply setting li = ki
e∗
ei

for all 1 ≤ i ≤ t.

3.3 A Definition of Adaptive Pseudo-free Groups

The definition of adaptive pseudo-freeness that we give below is for a set A of
m generators, a computational group {GN}N and is parameterized by a distri-
bution ϕ(·) as discussed in Section 3.1.

Setup. The Challenger chooses a random instance of the computational group
GN (by picking a random index N

$← Nk) from a family G = {GN}N∈Nk
.

Then he fixes an assignment α : A→ GN for the set A of generators and a
specific parametric distribution ϕ for the exponents. The adversary is given
in input the assignment α : A → GN and the descriptions of the computa-
tional group and the parametric distribution ϕ.

Equations queries. In this phase the adversary is allowed to adaptively query
the Challenger on equations and see their solutions. More precisely, A con-
trols the queried equations via the parametric distribution ϕ. Namely, for

216 D. Catalano, D. Fiore, and B. Warinschi

each query it chooses a parameter Mi and hands it to the Challenger. The
Challenger runs (ei, si)←ϕ(Mi), computes the solution ψi for the equation

λi, which is xei = a
si
1

1 · · ·a
si

m
m and gives (ψi, ei, si) to A.

Challenge. Once the adversary has seen the solutions, then it is supposed to
output an equation λ∗ (defined by (e∗, s∗)) together with a solution ψ∗. We
say that A wins this game if λ∗ is a non-trivial equation.

Definition 4 (Adaptive pseudo-free groups). G is a family of adaptive
pseudo-free groups w.r.t. distribution ϕ, if for any set A of polynomial size, any
PPT adversary A wins in the game above with at most negligible probability.

We restate several of the reasons that justify the above definition. Although
the definition is parametrized by a distribution, we feel this is the right way of
modeling an adversary who is adaptive but not all-powerful. As explained, by
varying the distribution one obtains a large spectrum of potentially interesting
instantiations, starting with static pseudo-freeness all the way to strong adap-
tive pseudo-freeness. Finally, we show that for some fixed distributions adaptive
pseudo-freeness implies immediately secure signature schemes.

4 Applications of Adaptive Pseudo-free Groups

In this section we show that adaptive pseudo-free groups yield interesting cryp-
tographic applications. Specifically, we prove that any group that is pseudo-free
with respect to a distribution φ from a class of of parametric distributions that
we specify immediately yields a secure signature scheme. We also explain how
to adapt the distribution and the proof to obtain the analogous result for (non-
strongly) unforgeable schemes.

4.1 Signatures from Adaptive Pseudo-free Groups

The class of parametric distributions ϕ�. In this section we introduce a
specific class of parametric distributions ϕ� : {0, 1}� → Z1+m × {0, 1}a(�). For
any input M ∈ {0, 1}� and an integer �, ϕ�(M) outputs a tuple (e, s, r) such
that:

– r is a binary string taken according to some efficiently samplable distribution
Dr (that may depend on M), for which collisions happen with at most
negligible probability;

– e = H(r) where H : {0, 1}a(�) → {0, 1}b(�) is a division intractable function
(see Section 1.1) and a(·) and b(·) are polynomials;

– s1 = 1;
– si ∈ Ze (i.e. si < e) ∀i = 2, . . . ,m for some efficiently samplable distribution

Dsi .

Also we require that ϕ�(M) produces an output (e, s, r) for which one can effi-
ciently tell that it belongs to the support of ϕ�(M). Formally, we require that ϕ�

Adaptive Pseudo-free Groups and Applications 217

is equipped with an efficient algorithm V erϕ�
(·, ·, ·, ·) that, on input (e, s, r,M),

outputs 1 if (e, s, r) is in the support of ϕ�(M) and 0 otherwise. Moreover we
require V erϕ�

(e, s, r,M) to be such that, for all PPT adversaries A the following
probability is at most negligible

Pr
[
(e, s, r,M1,M2)←A(ϕ�) : M1
= M2 ∧ V erϕ�

(e, s, r,M1) = 1
∧V erϕ�

(e, s, r,M2) = 1

]
Signature scheme construction. We now show how to build a signature
scheme from any family of groups G that is adaptive pseudo-free w.r.t. ϕ̂ ∈ ϕ�.

Let ϕ̂ be a parametric distribution taken from the class ϕ� and let G be a
family of groups that is adaptive pseudo-free w.r.t. ϕ̂. Then we have the following
signature scheme PFSig = (KG, Sign,Ver):

KG(1k). Let A = {a1, . . . , am} and X = {x} be the sets of constants variable
symbols. The key generation algorithm selects a random group G from G,
fixes an assignment α : A → G for the symbols in A and finally it sets
vk = (X,A, α,G, ϕ̂) as the public verification key and sk = ord(G) as the
secret signing key. The input space of ϕ̂, M, is taken as the message space
of the signature scheme.

Sign(sk,M). The signing algorithm proceeds as follows:
– (e, s, r)←ϕ̂(M)
– Use ord(G) to solve the equation xe = as11 · · ·asm

m . Let ψ : X → G be
the satisfying assignment for x. The algorithm outputs σ = (e, s, r, ψ) as
the signature for M .

Ver(vk,M, σ). To verify a signature σ for a messageM , the verification algorithm
proceeds as follows:
– Check if V erϕ̂(e, s, r,M) = 1 and if the equation xe = as11 · · ·asm

m is
satisfied in G by ψ(x).

– If both the checks are true, output 1, otherwise 0.

Security of the signature scheme. In this section we prove the security of
the proposed signature scheme under the assumption that G is adaptive pseudo-
free w.r.t. ϕ̂. In particular we can state the following theorem (whose proof is
omitted for lack of space):

Theorem 1. If G is a family of adaptive pseudo-free groups w.r.t. distribution
ϕ̂ ∈ ϕ�, then the signature scheme PFSig is strongly-unforgeable under chosen-
message attack.

Notice that if one relaxes a bit the requirements on the parametric distribution
ϕ̂, Theorems 1 leads to different flavors of digital signature schemes. For instance,
one might consider the distribution ϕ̂′, which slightly generalizes the parametric
distribution ϕ̂ as follows. ϕ̂′ is exactly as ϕ̂ with the only difference that s2 is
chosen uniformly in ZB for some value B > e. It is easy to rewrite the proof of
Theorem 1 in order to show the following

Corollary 1. If G is a family of adaptive pseudo-free groups w.r.t. distribution
ϕ̂′, then the signature scheme PFSig is unforgeable under chosen-message attack.

218 D. Catalano, D. Fiore, and B. Warinschi

Informally what this corollary is saying is that by (slightly) generalizing the
parametric distribution one gets a signature scheme where unforgeability is guar-
anteed only for previously unsigned messages (i.e. the scheme is not strongly
unforgeable).

4.2 Network Coding Signatures from Adaptive Pseudo-free Groups

In this section we show that our framework allows to encompass network coding
signature schemes as defined and constructed by [4,12]. In particular, by com-
bining previous theorems with ideas from [12] we construct the first RSA-based
network coding homomorphic signature scheme provably secure without ran-
dom oracle. In the following we will represent files V to be signed as collections
(v(1), . . . , v(m)) where each v(i) is a n-dimensional vector of the form (v1, . . . , vn).
To sign V the signer signs every single vector v(i) separately. Informally this is
done using a signature scheme that allows some form of (controlled) malleability.
In this way, if we interpret signatures as solutions of non trivial equations, one
can easily compute solutions for any linear combination of the given equations.
This simple observation, when combined with ideas from [12], can be used to
construct a secure signature scheme for network coding without random oracles.

Our Network Coding Signature Scheme. For lack of space we defer the
interested reader to the full version of this paper or to the works [4,12] for a
background on network coding signatures. Here we describe our network coding
signature scheme. First, however, we discuss some additional details required
to properly present the scheme. As already mentioned, a file to be signed is
expressed as a set of vectors (v(1), . . . , v(m)) of n components each. Such vectors
will be prepended with m unitary vectors u(i) (of m components each). Let us
denote with w(i) the resulting vectors.

Using a similar notation as [12] we denote with Q = {0, . . . , q − 1} (for some
prime q) the set from which coefficients are (randomly) sampled. We denote
with L an upper bound on the path length from the source to any target. By
these positions B = mqL denotes the largest possible value of u-coordinates in
(honestly-generated) vectors. Moreover denoting with M an upper bound on the
magnitude of the coordinates of initial vectors v(1), . . . , v(m), we set B∗ = MB.

Let ϕN be the following parametric distribution. It takes as input some, large
enough, random identifier fid, a vector space V and a bound B∗. Let �s be a
security parameter and � be an integer such that 2� > B∗, compute e = H(fid)
where H : {0, 1}∗ → {0, 1}� is a division intractable function. Next, for each
v(i) = (v(i)

1 , . . . , v
(i)
n) ∈ V it proceeds as follows. First it samples (uniformly and

at random) a �+ �s-bit random integer si and outputs (si, u(i), v(i)). The global
output of ϕN is then (e, {(si, u(i), v(i))}mi=1).

Notice that ϕN is a simple extension of distribution ϕ̂′ described above. It is
straightforward to show that it fits the requirements of corollary 1 as well.

Let G be a family of groups that is adaptive pseudo-free w.r.t. ϕN . Then we
have the following signature scheme NetPFSig:

NetKG(1k, n). Let A = {g, g1, . . . , gn, h1, . . . , hm} and X = {x} be the sets of
constants variable symbols. The key generation algorithm selects a random

Adaptive Pseudo-free Groups and Applications 219

group G from G, fixes an assignment α : A → G for the symbols in A
and finally it sets vk = (X,A, α,G, ϕN) as the public verification key and
sk = ord(G) as the secret signing key. The input space of ϕN , M, is taken
as the set of m-dimensional vectors whose components are positive integers
of magnitude at most M .

Sign(sk, V). The signing algorithm proceeds as follows. A random identifier fid
for the vector space V is chosen. Next, it runs ϕN (V,B∗, fid) to get back
(e, {(si, u(i), v(i))}mi=1). Finally, for i = 1 to m, it uses ord(G) to solve the
equation

xei = gsi

m∏
j=1

h
u
(i)
j

j

n∏
j=1

g
v
(i)
j

j

Let ψ : X → G be the satisfying assignment for xi and σi = (e, si,
u(i), v(i), fid, ψ) the signature for w(i). The algorithm outputs σ = (σ1, . . .σm)
as the signature for V .

Ver(vk, V, σ). To verify a signature σ for a vector space V , the verification algo-
rithm proceeds as follows
– Check if V erϕN (e, V,B∗, fid, {(si, u(i), v(i))}mi=1) = 1,3 and if the equa-

tions xei = gsig
v
(i)
1

1 · · · gv
(i)
n
n hu

(i)

1 · · ·hu
(i)
m
m are all satisfied in G by ψ(xi).

– If all the checks are true, output 1, otherwise 0.
Combine(vk, fid, w1, . . . , w�, σ1, . . . , σ�). To combine signatures σi, corresponding

to vectors wi sharing the same fid, a node proceeds as follows.
– It discards any wi having u coordinates negative or larger than B/(mq),

or having v coordinates negative or larger than B∗/(mq). Without loss
of generality we keep calling w1, . . .w� the remaining vectors.

– It chooses random α1, . . .α� ∈ Q, set w =
∑�

i=1 αiwi and it outputs the
signature σ = (e, s, w, fid, ψ) on w which is obtained by computing

ψ =
�∏
i=1

ψαi

i , s =
�∑
i=1

αisi

One can easily rewrite the proof of corollary 1 to prove the following.

Theorem 2. If G is a family of adaptive pseudo-free groups w.r.t. distribution
ϕN , then the NetPFSig signature scheme described above is a secure (homomor-
phic) network coding signature.

5 The RSA Group Is Adaptive Pseudo-free

In Section 3 we have defined the notion of adaptive pseudo-free groups and in
Section 4 have shown a class of parametric distributions (called ϕ�) that allows

3 We implicitly assume that the V erϕN verification algorithm rejects immediately if
any of the u coordinates is negative or larger than B, or if any of the v coordinates
is negative or larger than B∗.

220 D. Catalano, D. Fiore, and B. Warinschi

to build signatures from the sole assumption that a family of groups is adaptive
pseudo-free w.r.t. ϕ̂ ∈ ϕ�. At this stage, it is therefore interesting to find a
computational group candidate to be proved adaptive pseudo-free. As proved by
Micciancio in [16], the only group that we know to be pseudo-free is the RSA
group Z∗

N of integers modulo N , where N is the product of two “safe” primes
and the sampling procedure takes elements from QRN . Therefore we aim to
prove adaptive pseudo-freeness for the same group.

A parametric distribution ϕ̂. First of all we need to define the specific
parametric distribution for which we will prove adaptive pseudo-freeness of the
RSA group.

Let us consider the following ϕ̂ :M→ Z×Zm × {0, 1}∗, where M = {0, 1}�.
For any input M ∈M, ϕ̂(M) outputs a tuple (e, s, r) that is defined as follows:

– r is a random binary string, taken from some sufficiently large input domain.
– e = H(r) where H : {0, 1}∗ → {0, 1}� is a division intractable function.
– s1 = 1.
– s2 is uniformly distributed in Ze.
– For 3 ≤ i ≤ m, each si is taken with an arbitrary (but efficiently samplable)

distribution Dsi in Ze such that the tuple s3, . . . , sm is binding to M4.

The verification algorithm V erϕ̂(e, s, r,M) checks that e = H(r) and that
s3, . . . , sm are binding w.r.t. M . It is straightforward to verify that ϕ̂ is con-
tained in the class ϕ� defined in section 4.1.

We state the following theorem (the proof is omitted for lack of space).

Theorem 3. If the Strong-RSA Assumption holds, then Z∗
N is adaptive pseudo-

free w.r.t. ϕ̂.

As a corollary of the above theorem we can prove adaptive pseudo-freeness of
the RSA group w.r.t. two new parametric distributions ϕ̂s, ϕ̂ch
= ϕ̂ which still
are within the class ϕ� defined in section 4.1. In particular ϕ̂s is a variant of
ϕ̂ where: s2 = 0 and for all i = 3 to m, si ∈ {0, . . . , p} such that p is at most
polynomial in the security parameter (and of course p < e).

Corollary 2. If the Strong-RSA Assumption holds, then Z∗
N is adaptive pseudo-

free w.r.t. ϕ̂s.

The proofs follows from that of Theorem 3. The intuition here is that when the
si’s are small they can be guessed in advance with non-negligible probability.

Instead ϕ̂ch is a variant of ϕ̂ where: s2 = 0 and s3, . . . , sm ∈ Ze are obtained
as output of a chameleon hash function CH(M ;R) computed on the parameter
M and with randomness R.

Corollary 3. If the Strong-RSA Assumption holds, and CH is a chameleon
hash function, then Z∗

N is adaptive pseudo-free w.r.t. ϕ̂ch.

4 This means that there exists an efficient algorithm that on input (M, s3, . . . , sm)
outputs 1 if s3, . . . , sm are created w.r.t. M .

Adaptive Pseudo-free Groups and Applications 221

The proof is the same as in Corollary 2. The intuition here is that one can use the
chameleon property of CH in the simulation to “prepare” the si’s in advance.

Weak adaptive pseudo-freeness of the RSA group. One may also con-
sider a weaker notion of adaptive pseudo-freeness where the adversary is forced
to choose the parameters M1, . . . ,M t of its queries at the beginning of the game,
i.e. before receiving the description of the group from the challenger. In the full
version of the paper we show that the proof of Theorem 3 still holds even w.r.t.
a slightly more general distribution than ϕ̂ where the entire tuple (e, s2, . . . , sm)
needs to be bound to M . It is then trivial to see that starting from a weak-
adaptive pseudo-free group our results of section 4.1 lead to the construction of
signature schemes that are weakly-secure.

6 A Framework for Strong RSA-Based Signatures

In this section we show that, by appropriately instantiating the parametric dis-
tribution ϕ̂, Theorems 1 and 3 yield essentially all the known constructions of
Strong RSA-based digital signatures in the standard model (to the best of our
knowledge). Due to space limits we only briefly summarize these results. Precise
details are in the full version.

Cramer-Shoup’s signatures [8]. While Cramer-Shoup’s scheme seems based
on the difficulty of solving a system of two equations, we observe that for only
one of these two equations the signing process is required to find a solution
(using the secret key) while the other equation is, de facto, a chameleon hash
function computed on the message. Their scheme is then a special case of
our general framework applying via Corollary 3.

Fischlin’s signatures [10]. Fischilin’s scheme can be seen as a special case of
our framework as the distribution of its exponents fits the case of ϕ̂, for
which Theorem 3 applies.

Camenisch-Lysyanskaya’s signatures [6]. This signature can be seen as an
instance of our framework since its distribution is an instance of ϕ̂′, for which
Corollary 1 applies.

Zhu’s signatures [19,20]. Zhu’s scheme is captured by our general framework
as the distribution of its exponents is a special instance of ϕ̂.

Hofheinz-Kiltz’s signatures [13]. Hofheinz and Kiltz show in [13] how to use
programmable hash functions to get a new efficient signature scheme based
on Strong RSA. It is not hard to notice that the security of their scheme
basic scheme5 emerges from Corollary 2.

Gennaro-Halevi-Rabin’s signatures [11]. The scheme in [11] fits our frame-
work for weakly-secure signature scheme (see section 5) when using a distri-
bution in which e = H(m) and H is a division intractable hash function.

5 By basic scheme here we mean the version of the HK scheme where the public
exponents are set as 160-bit primes. The interesting thing about the analysis made
in [13], is that, by using programmable hash functions, one can consider much smaller
primes (i.e. 70 bit long ones). The present formulation of our framework, however,
does not allow for such an optimization.

222 D. Catalano, D. Fiore, and B. Warinschi

A new network signature from Strong RSA. It is easy to see that combin-
ing the results of Theorem 3 and Theorem 2 we obtain a concrete instantiation
of the network coding signature scheme given in Section 4.2 whose security is
thus based on Strong RSA in the standard model. We notice that our scheme is
not as efficient as the one proposed by Gennaro et al. in [12], but it is secure in
the standard model.

7 Conclusion

In this paper we have introduced a formal definition of adaptive pseudo-freeness.
We have shown that under reasonable conditions the RSA group is adaptive
pseudo-free for moduli that are products of safe primes, and exhibited the first
direct cryptographic applications of adaptive pseudo-free groups: under some
mild conditions, pseudo-free groups yield secure digital signature schemes.

There are several interesting problems that we have not addressed. Here we
enumerate some of them. The first obvious one, originally posed by Rivest, is
what other groups used in cryptography are pseudo-free. A new construction
would lead, via our framework, to new signature schemes for example. Our results
for RSA are only for univariate equations. It should be interesting to either
justify this restriction through an analogue of Micciancio’s Lemma, or, if this is
not possible, extend our study to multi-variate equations. The one-more RSA
inversion problem has a strong flavor of adaptive pseudo-freeness but does not
fit our framework. In particular, its relation with the strong RSA problem is an
interesting open problem. Nevertheless, studying the relation between these two
problems within our framework seems to be an interesting direction. Finally,
we manage to prove adaptive pseudo-freeness for a large class of parametric
distributions sufficient for cryptographic applications. It should be interesting
to understand how far one can go with the limitations that we impose on the
adversary by trying to enlarge this class.

Acknowledgements. We thank Eike Kiltz for clarifications regarding [13] as
well as for useful suggestions. The work described in this paper has been sup-
ported in part by the European Commission through the ICT programme under
contract ICT-2007-216676 ECRYPT II.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 20(3), 395 (2007)

2. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with
nested operations. In: ACM CCS 2003, Washington D.C., USA, October 27-30, pp.
220–230. ACM Press, New York (2003)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, Fairfax, Virginia, USA, November 3-5, pp.
62–73. ACM Press, New York (1993)

Adaptive Pseudo-free Groups and Applications 223

4. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: Signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

5. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

6. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

7. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, Las Vegas, Nevada, USA, October 14-17, pp. 136–145.
IEEE Computer Society Press, Los Alamitos (2001)

8. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
In: ACM CCS 1999, Kent Ridge Digital Labs, Singapore, November 1-4, pp. 46–51.
ACM Press, New York (1999)

9. Dolev, D., Yao, A.C.: On the security of public key protocols. In: FOCS, pp. 350–
357 (1981)

10. Fischlin, M.: The Cramer-Shoup strong-RSA signature scheme revisited. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 116–129. Springer,
Heidelberg (2002)

11. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–
139. Springer, Heidelberg (1999)

12. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
142–160. Springer, Heidelberg (2010)

13. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008)

14. Hohenberger, S.: The cryptographic impact of groups with infeasible inversion.
Master’s thesis, Massachusetts Institute of Technology, EECS Dept. (2003)

15. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000, San Diego, Cali-
fornia, USA, February 2-4. The Internet Society, San Diego (2000)

16. Micciancio, D.: The RSA group is pseudo-free. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 387–403. Springer, Heidelberg (2005)

17. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of
active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151.
Springer, Heidelberg (2004)

18. Rivest, R.L.: On the notion of pseudo-free groups. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 505–521. Springer, Heidelberg (2004)

19. Zhu, H.: New digital signature scheme attaining immunity to adaptive chosen-
message attack. Chinese Journal of Electronics 10(4), 484–486 (2001)

20. H. Zhu. A formal proof of Zhu’s signature scheme. Cryptology ePrint Archive,
Report 2003/155 (2003), http://eprint.iacr.org/

http://eprint.iacr.org/

Commuting Signatures and Verifiable Encryption

Georg Fuchsbauer�

Dept. Computer Science, University of Bristol, UK
georg@cs.bris.ac.uk

Abstract. Verifiable encryption allows one to encrypt a signature while
preserving its public verifiability. We introduce a new primitive called commuting
signatures and verifiable encryption that extends this in multiple ways, such as
enabling encryption of both signature and message while proving validity. More
importantly, given a ciphertext, a signer can create a verifiably encrypted signa-
ture on the encrypted (unknown) message, which leads to the same result as first
signing the message and then verifiably encrypting the message/signature pair;
thus, signing and encrypting commute. Our instantiation is based on the recently
introduced automorphic signatures and Groth-Sahai proofs, which we show to
be homomorphic. We also prove a series of other properties and provide a novel
approach to simulation.

As an application, we give an instantiation of delegatable anonymous creden-
tials, a primitive introduced by Belenkiy et al. Our construction is arguably sim-
pler than theirs and it is the first to provide non-interactive (and thus concurrently
secure) issuing and delegation protocols, which are significantly more efficient.
Moreover, the size of our credentials and the cost of verification are less than half
of those of the previous instantiation. All our constructions are proven secure in
the standard model under known non-interactive assumptions.

Keywords: Verifiably encrypted signatures, blind signatures, anonymous cre-
dentials, Groth-Sahai proofs.

1 Introduction

Verifiably encrypted signatures let us sign a message, encrypt the signature, and make
a proof asserting that the ciphertext contains a valid signature. Suppose the message is
only available as an encryption. We cannot make a signature on the plaintext, as this
would contradict the security of the encryption scheme1. But could we instead, given a
ciphertext, produce a verifiable encryption of a signature on the plaintext?

We show that such a functionality is feasible and moreover give a practical instantia-
tion of it. We then use this new primitive to build the first non-interactively delegatable
anonymous credential scheme: given an encrypted public key, a delegator can make a
verifiably encrypted certificate for the key, which acts as a credential.

� Work done while at École normale supérieure, Paris, France. The author has been supported
by the French ANR 07-TCOM-013-04 PACE Project, the European Commission through the
ICT Program under Contract ICT-2007-216676 ECRYPT II and EPSRC Grant EP/H043454/1.

1 Given two messages and the encryption of one of them, a signature on the plaintext could be
used to decide which one was encrypted.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 224–245, 2011.
c© International Association for Cryptologic Research 2011

Commuting Signatures and Verifiable Encryption 225

Delegatable Anonymous Credentials. Access control that respects users’ privacy con-
cerns is a challenging problem in security. To gain access to resources, a participant
must prove to possess the required credential issued by an authority. To increase man-
ageability of the system, the authority usually does not issue credentials directly to each
user, but relies on intermediate layers in the hierarchy. For example, a system adminis-
trator issues credentials to webmasters for using his server; the latter may then create
forums and delegate rights to moderators, who can give posting privileges to users.

Web-based social network services are enjoying a huge popularity and represent an-
other area of application for credentials. Registered users can be given credentials to
access services, which they delegate to introduce and recommend friends and friend of
friends. The recent rise of concern about protection of privacy in such networks moti-
vates anonymous credentials: a user can obtain a credential and prove possession of it
without revealing neither her identity nor that of the user who delegated it to her.

In practice, (non-anonymous) delegation of rights is usually realized by certifying
(i.e., signing) the public key of the delegated user. Consecutive delegation leads to a
certification chain, consisting of public keys and certificates linking them, starting with
the original issuer of the credential. A user in the chain can delegate the credential by
signing the delegatee’s public key and appending the certificate to the credential.

Anonymous credentials [Cha85, Dam90, Bra99, LRSW00, CL01, CL04, BCKL08]
aim to provide a functionality similar to certificates without revealing information about
the user’s identity when obtaining or showing a credential. However, the goal of recon-
ciling delegatability and anonymity remained elusive—until recently. Chase and Lysyan-
skaya [CL06] show theoretical feasibility of delegatable anonymous credentials, but
their size is exponential in the number of delegations. A breakthrough was then made
in [BCC+09], where Belenkiy et al. (BCCKLS) introduce a new approach using a non-
interactive zero-knowledge (NIZK) proof system [BFM88] with randomizable proofs:
anyone can transform such a proof into a new proof of the same statement that cannot
be linked to the original one. A credential is a proof of knowledge of a certification chain
that can be randomized before being delegated or shown, which guarantees anonymity
and unlinkability.

In their model, each user holds a secret key which can be used to produce multiple
unlinkable pseudonyms Nym. A user A can be known to user O as Nym(O)

A and to B as
Nym(B)

A . Given a credential issued by O for Nym(O)

A , A can transform it into a credential
from O for Nym(B)

A and show it to B. Moreover, A can delegate the credential to user
C, known to A as Nym(A)

C . C can then show a credential from O for Nym(D)
C to user D

(without revealing neither Nym(C)

A nor Nym(A)

C), or redelegate it. Delegation preserves
anonymity, in that delegator and delegatee learn nothing more about each other than
their respective pseudonyms. This is formalized by requiring that there exist a simulator
that can produce pseudonyms and credentials for them without knowing any secrets.

In the instantiation of [BCC+09], delegation is fairly complex and interactive—in
contrast to non-anonymous credentials, where it suffices to know a user’s public key
in order to issue or delegate a credential to her. We bridge this gap by giving an in-
stantiation that enables non-interactive delegation: given a pseudonym Nym, a dele-
gator can produce a ready credential for the holder of Nym without any interaction.
Note that a non-interactive delegation protocol immediately yields security against

226 G. Fuchsbauer

concurrent attacks, where an adversary might simultaneously run protocols for dele-
gating and being delegated credentials with honest users. This was not considered in
the BCCKLS model.

Commuting Signatures. Our main building block for non-interactively delegatable
anonymous credentials is a new primitive we call commuting signature and verifiable
encryption (or commuting signature for short), which we sketch in the following and
formally define in Section 3. It combines a digital signature scheme, an encryption
scheme and a proof system with the following properties: given a verification key vk, a
message M and a signature Σ on M under vk, we can encrypt any subset of {vk,M,Σ}
and add a proof (which leaks no more information) that the plaintexts are a key, a mes-
sage and a valid signature—which makes the encryptions verifiable.

For consistency with the Groth-Sahai methodology [GS08], we also say commitment
instead of encryption, as their commitments to group elements, which we will use,
are extractable, i.e., we can recover the committed value (and thus “decrypt”) using
an extraction key. An extractable commitment to a signature together with a proof of
validity is a proof of knowledge (PoK) of a signature, and at the same time a verifiably
encrypted signature (VES) [BGLS03, RS09]2.

We denote committing to signatures by Com, committing to messages by ComM,
and proving validity by Prove. A proof for a committed signature is denoted by π̃, and
for a committed message by π̄. If both are committed, we write π, and if the verification
key is committed too, we write π̂ (“∼” for signature and “∧” for vk). Besides allowing
us to prove validity of committed values, a commuting signature scheme provides the
following functionalities, neither of which requires knowledge of the extraction key:

SigCom. Given a commitment CM to a message M and a signing key sk, SigCom
produces a commitment cΣ to a signature Σ on M under sk, and a proof π that the
content of cΣ is a valid signature on the content of CM .

AdCS . Given a commitment CM to M , a signature Σ on M and a proof π̄ of validity
of Σ on the content of CM , we can make a commitment cΣ to Σ using randomness
ρΣ . Then AdCS (“adapt when committing to signature”) allows us to adapt π̄ to a
proof for CM and cΣ : given (CM , Σ, ρΣ, π̄) it returns a proof π that the content
of cΣ is a valid signature on the content of CM . AdDS (“adapt proof when de-
committing”) does the converse: given a committed message CM , a committed
signature cΣ together with the used randomness ρΣ , and a proof π for CM and cΣ ,
AdDS outputs a proof π̄ of validity of the signature Σ on the committed message.

AdCM. Analogously we define proof adaptation for the message. Given M , a commit-
ment cΣ to a signature on M and a proof of validity π̃, AdCM transforms the proof
to the case when the message is committed as well. AdDM is given commitments
CM to a message M and cΣ to a signature, the randomness ρM for CM and a
proof π. It adapts π to a proof π̃ that the content of cΣ is a valid signature on M .

AdCK. We can also adapt proofs when (de)committing to the verification key. Given
commitments CM and cΣ , a proof of validity π w.r.t. a verification key vk, and

2 While for VES, encryption suffices to be one-way (opacity means it is hard to extract a signa-
ture), we require verifiable encryptions of different signatures to be indistinguishable.

Commuting Signatures and Verifiable Encryption 227

�

�
�

�

����������
����������

����������
��������

��
���

���������������������
���������������������

M, Σ

M

CM

CM , Σ, π̄

M, cΣ , π̃

CM , cΣ , π

Sign(sk, ·)

XX(sk, ·)

ComM,

Prove

ComM

Com, Prove

Com, AdCS

AdDS(ρΣ , ·)

ComM,

AdCM

AdDM(ρM , ·)

SigCom(sk, ·)

Fig. 1. Diagram representing a system of commuting signatures and verifiable encryption

randomness ρvk, AdCK outputs a proof π̂ that the content of cΣ is a signature on
the content of CM valid under vk given as a commitment cvk with randomness
ρvk. AdDK is given (vk, ρvk,CM , cΣ , π̂) and adapts the proof π̂ for (cvk,CM , cΣ),
where cvk commits to vk with randomness ρvk, to a proof for (vk,CM , cΣ).

We require that committing, signing and the above functionalities all commute with
each other, that is, it does not matter in which order they are executed; e.g., signing a
message, committing to the message and the signature, and proving validity yields the
same as committing to the message and then running SigCom. Thus, the diagram in
Figure 1 commutes. Note that due to the argument given in Footnote 1, there cannot
exist a functionality XX that is given a commitment CM to a message M and a secret
key sk, and outputs a signature Σ on M .

Besides verifiably encrypted signatures, commuting signatures imply blind signa-
tures, and moreover CL signatures [CL02] and P-signatures [BCKL08], both building
blocks for protocols providing privacy. They let a user obtain a signature on a commit-
ted value from a signer by running an issuing protocol. The user can then make a proof
of knowledge of that signature, which is verifiable given the commitment. SigCom pro-
vides a non-interactive issuing, which directly gives the user a (randomizable) proof of
knowledge of such a signature (see the full version [Fuc10]).

Instantiating Commuting Signatures. Blind signatures [Cha83, PS96] enable a user
to obtain a signature on a message in a way that the signer cannot link the resulting
message/signature pair to its issuing. In [Fuc09, AFG+10] the author gives an efficient
implementation with round-optimal issuing [Fis06], where after sending information
to the signer, the user can immediately derive the blind signature from the signer’s re-
sponse. In this scheme, the user randomizes the message, makes (extractable) commit-
ments to the message and the randomness, and adds a witness-indistinguishable (WI)
proof that the commitments contain the correct values.

The user sends these values to the signer, who learns nothing about the message from
them. The signer fabricates a “pre-signature”, which the user, knowing the values used
to randomize the message, can transform into a signature on the message. The actual

228 G. Fuchsbauer

blind signature is a WI proof of knowledge (PoK) of this signature, which prevents the
signer from linking it to the signing session. This PoK is instantiated with Groth-Sahai
(GS) commitments and proofs [GS08] for pairing-product equations (PPE), and the
message space consists of pairs of group elements.

We require a lot more: the signer, without knowing the randomness used to hide the
message, should not only make a commitment to a signature (which he cannot know—
Footnote 1) on an unknown message, but in addition give a proof that this signature is
valid. While the described blind signature scheme has the nice property that during is-
suing the user obtains an actual signature on the message, we show that its true potential
has not yet been exploited. We first observe that the values the user sends to the signer
for a blind signature can be seen as a commitment to the message. We then show that
they actually suffice for the signer to directly—without the help of the user—construct
a proof of knowledge of a signature on the message.

This is made possible by the specific structure of the signature, the fact that the com-
mitments are homomorphic and a series of properties of the proof system. We prove
that, besides being randomizable, Groth-Sahai proofs are homomorphic3 w.r.t. the state-
ment they prove (the product of two proofs is a proof for the product of the equations
they prove), they are independent of parts of the statement—in some cases even of the
committed value—, and there are ways to “blindly” transform a proof for one statement
into a proof for another statement.

Instantiating Delegatable Anonymous Credentials. Belenkiy et al. [BCC+09] show
that Groth-Sahai (GS) proofs can be randomized and combine them with an authenti-
cation scheme for secret keys to construct delegatable credentials. A pseudonym Nym
is a commitment to the user’s secret key and a credential is a proof of knowledge of an
authentication chain. To issue or delegate, the issuer and the user jointly compute a PoK
of an authenticator on the content of the user’s pseudonym. In the case of delegation, the
issuer prepends her own credential, after randomizing it. Their authentication scheme
must satisfy strong security notions (F-unforgeability and certification security), since
secret keys cannot be extracted from the commitments, and an adversary against it must
be allowed to ask for authenticators on as well as under the attacked key.

We avoid these notions and interactivity of delegation by following a more modular
approach replacing the authenticators on secret keys by commuting signatures on ver-
ification keys. The underlying signatures are automorphic [Fuc09], which means that
they are Groth-Sahai compatible and their verification keys lie in the message space—
which is a requirement for delegation. A credential is then a chain of verification keys
and certificates (as in the non-anonymous case), which are all given as commitments
completed with proofs of validity.

Commuting signatures enable non-interactive issuing and delegation: given a user’s
pseudonym NymU (i.e., a commitment to his verification key), the issuer can produce a
commitment cΣ to a signature on the value committed in NymU and a proofπ of validity
using SigCom. In the case of issuing, the credential is (cΣ , π) and is verified by check-
ing π on the issuer’s public key, NymU and cΣ . In the case of delegation, the issuer also
randomizes her own credential credI , yielding a credential credI

′ on her pseudonym
NymI that is unlinkable to credI . Running AdCK, the issuer adapts the proof π (which

3 For linear equations the homomorphic property of GS proofs was also noted in [DHLW10].

Commuting Signatures and Verifiable Encryption 229

is valid under her verification key) to a proof π̂ of validity of the signature contained in
cΣ on the content of the pseudonym NymU under the content of the issuer’s pseudonym
NymI . The credential for the user is then credI

′ ‖NymI ‖ (cΣ , π̂).

Comparing Our Results to Previous Ones. Replacing the authenticators from the
BCCKLS scheme with our automorphic signatures already more than doubles the effi-
ciency. In the full version [Fuc10] we revise the approach to achieving simulatability of
credentials. Groth and Sahai show how to simulate proofs of satisfiability of equations,
consisting of commitments and proofs for the committed values, which are produced by
the simulator. However, in order to simulate credentials for a given pseudonym, the sim-
ulator has to construct proofs for given commitments. Belenkiy et al. therefore double
some of the commitments and provide proofs of consistency. We show that our creden-
tials can be directly simulated even if some of the commitments are fixed beforehand.

Finally, our issuing (and delegation) protocol is significantly more efficient. While in
[BCC+09], the issuer and the user run a complex two-party protocol using homomor-
phic encryption and interactive ZK proofs, in our instantiation the issuer simply sends
a PoK of a signature. Both schemes are proven secure under the SXDH assumption
and different “hidden” variants of the strong Diffie-Hellman assumption [BB04] (which
are thus “q-type” assumptions): BB-CDH and BB-HSDH, introduced in [BCC+09], for
their scheme and ADH-SDH [AFG+10] for ours (see Section 4.1).

Automorphic signatures were combined with GS proofs in [AFG+10] to construct
anonymous proxy signatures (APS) [FP08]. They also allow one to prove rights in an
anonymous way, but there is no anonymity between the delegator and the delegated user.
If in our credential scheme we give the extraction key to a tracing authority, and define
a proxy signing algorithm similar to delegation but outputting a committed signature on
a clear message, we get an instantiation of APS with mutually anonymous delegation.

Subsequent to our work, Blazy et al. [BFPV11] defined a primitive similar to com-
muting signatures, called extractable signatures on randomizable ciphertexts. While
their instantiation solely relies on the decision linear assumption (DLIN) [BBS04], it is
only efficient for small message spaces due to bit-by-bit techniques.

2 Preliminaries

We briefly recall the definitions and security requirements for the relevant primitives
from the literature (and refer to the full version [Fuc10] for more details).

Commitments. We will use a (non-interactive) randomizable extractable commitment
scheme Com which is composed of the algorithms Setup, Com, RdCom, ExSetup,
Extr, and WISetup. By V we denote the space of “committable” values, by R the ran-
domness space and by C the space of commitments. On input the security parameter 1λ,
Setup and WISetup output a commitment key ck, and ExSetup outputs (ck, ek), where
ck is distributed as the output of Setup; ek is called the extraction key. On input ck, a
message M ∈ V and randomness ρ ∈ R, Com outputs a commitment c ∈ C.

The scheme is perfectly binding, i.e., for any ck ← Setup and any c ∈ C there ex-
ists exactly one M ∈ V s.t. c = Com(ck,M, ρ) for some ρ. If (ck, ek) ← ExSetup
then Extr(ek, c) extracts that value M from c. The keys output by WISetup are compu-
tationally indistinguishable from those output by Setup and generate perfectly hiding

230 G. Fuchsbauer

commitments: for any ck∗ ← WISetup, c ∈ C and M ∈ V , there exists a ρ ∈ R s.t.
c = Com(ck∗,M, ρ). Finally, we have RdCom(ck,Com(ck,M, ρ), ρ′) = Com(ck,M,
ρ + ρ′); thus RdCom randomizes commitments4.

Proofs for Committed Values. We define a proof system that allows one to prove that
committed values satisfy an equation. The proofs are constructed from the committed
values and the used randomness, and they are witness indistinguishable, which means
they do not reveal which satisfying values were used. Given a proof for a set of com-
mitments, the proof can be adapted to a randomization of the commitments without
knowledge of the committed values.

A randomizable witness-indistinguishable proof system Proof for a commitment
scheme Com for a class E of equations consists of the algorithms Prove, Verify and
RdProof. On input ck, an equation E ∈ E , values M1, . . . ,Mn ∈ V satisfying E
and ρ1, . . . , ρn ∈ R, Prove outputs a proof π for the values Com(ck,M1, ρ1), . . . ,
Com(ck,Mn, ρn). On input ck, E, c1, . . . , cn and π, Verify outputs 0 or 1, indicating
rejection or acceptance of π. Every proof generated for commitments to values satisfy-
ing an equation is accepted by Verify. Given ck, c1, . . . , cn, a proof π for (c1, . . . , cn)
and E, and ρ′1, . . . , ρ

′
n ∈ R, algorithm RdProof outputs a proof for the randomiza-

tions c′i := RdCom(ck, ci, ρ′i); in particular, RdProof(ck,E, (c1, ρ
′
1), . . . , (cn, ρ

′
n), π)

is distributed as Prove(ck,E, (M1, ρ1 + ρ′1), . . . , (Mn, ρn + ρ′n)).
Soundness states that if there is a valid proof for a set of commitments for E ∈ E

then Extr extracts a set of values satisfying E. Witness indistinguishability is defined as
follows: if the commitment key is output by WISetup then a set of commitments and
a valid proof for them for an equation E reveals nothing, in an information-theoretical
sense, about the committed values, except that they satisfy E.

Signatures. A signature scheme Sig consists of the following algorithms: SetupS takes
as input the security parameter 1λ and outputs parameters pp, which define a message
spaceM. On input pp, KeyGenS outputs a pair (vk, sk) of verification and signing key.
For M ∈ M, Sign(sk,M) outputs a signature Σ, which is verified by Ver(vk,M,Σ).
If pp ← SetupS and (vk, sk) ← KeyGenS(pp) then Ver(vk,M, Sign(sk,M)) = 1 for
all M ∈ M. Strong unforgeability means that given vk and an oracle that queried on a
message Mi returns a signature Σi on Mi, it is infeasible to output a pair (M,Σ), s.t.
Ver(vk,M,Σ) = 1 and (M,Σ)
= (Mi, Σi) for all i.

We require that Sig be compatible with Com and Proof : the messages, verifica-
tion keys and signatures are composed of values in V (the value space of Com) and
the signature verification predicate is a conjunction of equations from E (the class of
equations for Proof). We note that from a compatible triple (Com,Proof ,Sig) one
can easily construct a verifiably encrypted signature scheme; see [Fuc10].

For our application to delegatable credentials we require furthermore that Sig be au-
tomorphic, that is, besides being compatible, its verification keys must lie in its message
spaceM. We let EVer denote the verification equations for Sig. When, for example, Σ
is considered a variable we write EVer(vk,M,·)(Σ).

4 Commitment schemes with two types of keys were called perfectly hiding with extraction in
[GOS06] and strongly computationally hiding in [BCKL08]. Note that a scheme Com with
the described properties is at the same time a lossy encryption scheme [BHY09].

Commuting Signatures and Verifiable Encryption 231

3 Commuting Signatures and Verifiable Encryption

Commuting signatures extend a commitment scheme Com, an associated proof sys-
tem Proof and a compatible signature scheme Sig by the following functionalities:
ComM is a commitment scheme with the same keys as Com and whose message
space is that of Sig. SigCom takes a ComM commitment and a signing key, and pro-
duces a commitment to a signature on the committed message and a proof of validity.
SmSigCom simulates SigCom and is given a signature instead of the signing key. More-
over, the algorithms AdC and AdD adapt proofs when (de)committing to a signature
(subscript S), a message (subscriptM) or a verification key (subscript K).

Definition 1. A system of commuting signatures and verifiable encryption consists
of an extractable commitment scheme Com = (Setup,Com,RdCom,ExSetup,Extr,
WISetup) with value space V and randomness space R, a randomizable WI proof
system Proof = (Prove,Verify,RdProof) for Com, a compatible signature scheme
Sig=(SetupS,KeyGenS, Sign,Ver) and the following algorithms. We let ck ← Setup,
ppS ← SetupS, (vk, sk) ← KeyGenS(ppS), M ∈ M, μ ∈ RM and pp := (ck, ppS).

ComM. On input pp, a message M ∈ M and μ ∈ RM, algorithm ComM outputs
a commitment C in CM, the space of commitments. RdComM takes inputs pp, C
and μ′ ∈ RM and outputs a randomized commitment C′. On input ek output by
ExSetup, and C, ExtrM outputs the committed value M . We require ComM :=
(Setup,ComM,RdComM,ExSetup,ExtrM,WISetup) to be a commitment scheme
as defined in Section 2 and to be compatible with Proof , i.e., Prove and RdProof
accept inputs fromRM and Verify accepts ComM commitments.

AdCS(pp, vk,C, (Σ, ρ), π̄). If Verify(ck,EVer(vk,·,Σ),C, π̄) = 1 then the algorithm
outputs π which is distributed as [Prove(ck,EVer(vk,·,·), (M,μ), (Σ, ρ))], where M
and μ are such that C = ComM(pp,M, μ).

AdDS(pp, vk,C, (Σ, ρ), π). If Verify(ck,EVer(vk,·,·),C,Com(ck, Σ, ρ), π) = 1 then the
algorithm outputs π̄ which is distributed as [Prove(ck,EVer(vk,·,Σ), (M,μ))], where
M and μ are such that C = ComM(pp,M, μ).

AdCM(pp, vk, (M,μ), cΣ , π̃). If Verify(ck,EVer(vk,M,·), cΣ , π̃) = 1 then the algorithm
outputs π which is distributed as [Prove(ck,EVer(vk,·,·), (M,μ), (Σ, ρ))], where Σ
and ρ are such that cΣ = Com(ck, Σ, ρ).

AdDM(pp, vk, (M,μ), cΣ , π). If Verify(ck,EVer(vk,·,·),ComM(pp,M, μ), cΣ , π) = 1,
the algorithm outputs π̃ which is distributed as [Prove(ck,EVer(vk,M,·), (Σ, ρ))],
where Σ and ρ are such that cΣ = Com(ck, Σ, ρ).

AdCK(pp, (vk, ξ),C, cΣ , π). If Verify(ck,EVer(vk,·,·),C, cΣ , π) = 1, the algorithm out-
puts π̂ which is distributed as [Prove(ck,EVer(·,·,·), (vk, ξ), (M,μ), (Σ, ρ)))], where
M,μ,Σ and ρ are such that C = ComM(pp,M, μ) and cΣ = Com(ck, Σ, ρ).

AdDK(pp, (vk, ξ),C, cΣ , π̂). If Verify(ck,EVer(·,·,·),Com(ck, vk, ξ),C, cΣ , π̂) = 1, the
algorithm outputs π, distributed as [Prove(ck,EVer(vk,·,·), (M,μ), (Σ, ρ)))], where
M,μ,Σ and ρ are such that C = ComM(pp,M, μ) and cΣ = Com(ck, Σ, ρ).

232 G. Fuchsbauer

SigCom(pp, sk,C). If C ∈ CM then the algorithm outputs a commitment to a signature
and a proof of validity (cΣ , π) which is distributed as[

Σ←Sign(sk,M); ρ←R :
(
Com(ck, Σ, ρ),Prove(ck,EVer(vk,·,·), (M,μ), (Σ, ρ))

)]
where M and μ are such that C = ComM(pp,M, μ).

SmSigCom(pp, ek, vk,C, Σ). Assume (ck, ek) ← ExSetup. If Ver(vk,ExtrM(ek,C),
Σ) = 1 then the algorithm outputs (cΣ , π) which is distributed as [ρ ← R :
(Com(ck, Σ, ρ), Prove(ck,EVer(vk,·,·), (M,μ), (Σ, ρ)))], where M and μ are such
that C = ComM(pp,M, μ).

By Algs :=(AdCS,AdDS,AdCM,AdDM,AdCK,AdDK, SigCom, SmSigCom) we de-
note the algorithms of the system that extend Com,Proof ,Sig and ComM. When
verifying a signature Σ on a message M by Ver(vk,M,Σ), we implicitly assume that
Ver also checks whether M ∈M. Analogously, we assume that when verifying a proof
of validity by running Verify on EVer and C, it checks whether C ∈ CM.

Definition 1 implies that running SigCom on a commitment to M yields the same
(the output is distributed identically) as running Σ←Sign(sk,M), ComM on M , Com
on Σ and Prove for EVer(vk,·,·); or running Sign, ComM on M and Prove for EVer(vk,·,Σ),
and then Com on Σ and AdCS , etc. This means that the diagram in Figure 1 commutes.

SmSigCom allows us to prove the following unforgeability property: Consider an
adversary that is given (pp, ek, vk) for (vk, sk) ← KeyGenS and access to an oracle that
on input Ci returns (ci, πi)←SigCom(pp, sk,Ci). Then it cannot output a valid triple
(C, cΣ , π) such that the committed message/signature pair is different from every pair
committed in (Ci, ci) from the oracle calls. Commuting signatures moreover yield a
round-optimal blind signature scheme: The user sends a commitment to the message to
the signer, who runs SigCom to produce (cΣ , π). The user computes a proof π̃ for cΣ
and M via AdDM, and outputs (cΣ , π̃) as the blind signature (see [Fuc10]).

4 Instantiation of the Building Blocks

4.1 Bilinear Groups and Assumptions

A bilinear group is a tuple G = (p,G1,G2,GT , e, G1, G2) where G1,G2 and GT

are cyclic groups of prime order p; G1 and G2 generate G1 and G2, respectively; and
e : G1 × G2 → GT is an efficient non-degenerate bilinear map: ∀X ∈ G1 ∀Y ∈ G2
∀ a, b ∈ Z : e(Xa, Y b) = e(X,Y)ab, and e(G1, G2) generates GT .

We denote group elements by capital letters and assume two fixed generators G and
H of G1 and G2, respectively. We call a pair (A,B) ∈ G1 × G2 a Diffie-Hellman
pair (w.r.t. (G,H)), if there exists a ∈ Zp such that A = Ga and B = Ha. We let
DH := {(Ga, Ha) | a ∈ Zp} denote the set of DH pairs. Using the bilinear map e,
DH is efficiently decidable by checking e(G−1, B) e(A,H) = 1. We will make the
following assumptions.

Assumption 1 (SXDH). The Symmetric External Diffie-Hellman assumption for G
states that given (G1, G

r
1, G

s
1, G

t
1) for random r, s ∈ Zp, it is hard to decide whether

t = rs or t is random; likewise, given (G2, G
r′
2 , Gs′

2 , Gt′
2) for random r′, s′ ∈ Zp, it is

hard to decide whether t′ = r′s′ or t′ is random.

Commuting Signatures and Verifiable Encryption 233

The q-Asymmetric Double Hidden Strong Diffie-Hellman assumption (ADH-SDH) was
introduced in [AFG+10] and proven to hold in the generic-group model for any type
of pairing. It was shown in [FPV09] that under the q-SDH assumption [BB04], given
q − 1 tuples ((K · Gvi)1/(x+ci), ci, vi) for random ci, vi ← Zp, it is hard to produce a
new tuple of this form. Similarly to q-HSDH [BW07], ADH-SDH states that if ci and
vi are given in a hidden form (F ci , Hci, Gvi , Hvi), it is intractable to produce another
such tuple ((K ·Gv)1/(x+c), F c, Hc, Gv, Hv).

Assumption 2 (q-ADH-SDH). For randomly chosen G,F,K ← G1, H ← G2 and
x, ci, vi ← Zp, given (G,F,K,X=Gx; H,Y =Hx) and, for 1 ≤ i ≤ q − 1,(

Ai = (K ·Gvi)
1

x+ci , Bi = F ci , Di = Hci , Vi = Gvi , Wi = Hvi
)
,

it is hard to output ((K ·Gv)1/(x+c), F c, Hc, Gv, Hv) with (c, v)
= (ci, vi) for all i.

The next assumption is a weak variant of the various flexible CDH assumptions, gen-
eralized to asymmetric bilinear groups. It was also introduced in [AFG+10] and shown
to be implied by DDH in G1, and thus by SXDH.

Assumption 3 (AWF-CDH). Given random generators G ← G1 and H ← G2, and
A = Ga for a← Zp, it is hard to output (Gr, Gra, Hr, Hra) with r
= 0.

4.2 Groth-Sahai Proofs and Automorphic Signatures

Commitments. We instantiate Com, defined in Section 2, by the commitment scheme
based on SXDH from [GS08]. Setup, on input G = (p,G1,G2,GT , e, G1, G2), outputs
a commitment key ck ∈ G2×2

1 × G2×2
2 . Value and randomness space are defined as

V := G1 ∪ G2 and R := Z2
p. Com(ck, X, r) takes randomness r ∈ R and an element

X ∈ V ; commitments to G1-elements are in G2
1 and commitments to G2-elements are

in G2
2. We have Com(ck, X, r) ◦· Com(ck, X ′, r′) = Com(ck, X · X ′, r + r′), where

“ ◦· ” denotes component-wise multiplication; the commitments are thus homomorphic.
RdCom(ck, c, r′) returns c′ := c ◦· Com(ck, 1, r′), which for c = Com(ck, X, r) is

c′ = Com(ck, X, r+ r′). ExSetup constructs ck as in Setup and in addition outputs the
used randomness as ek, and Extr(ek, c) outputs the committed value. WISetup produces
a commitment key ck∗ that is indistinguishable from outputs of Setup under the SXDH
assumption. Commitments under ck∗ are independent of the committed value.

Proofs for Committed Values. In order to instantiate Proof for Com, we use the
proof system from [GS08], which was shown to be randomizable in [BCC+09]. The
class of equations E for our proof system are pairing-product equations (PPE). A PPE
over variables X1, . . . , Xm ∈ G1 and Y1, . . . , Yn ∈ G2 is an equation of the form5

E(X1, . . . , Xm; Y1, . . . , Yn) :
n∏
j=1

e(Aj , Yj)
m∏
i=1

e(Xi, Bi)
m∏
i=1

n∏
j=1

e(Xi, Yj)γi,j = tT , (1)

5 For a more concise exposition we will underline the variables of an equation.

234 G. Fuchsbauer

defined by Aj ∈ G1, Bi ∈ G2, γi,j ∈ Zp, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and
tT ∈ GT . We refer to [GS08] or [Fuc10] for a description of the implementations
of the following: Prove, which chooses internal randomness Z ← Z2×2

p , and out-
puts π ∈ G2×2

2 ×G2×2
1 (we write Prove(ck,E, (Xi, ri)mi=1, (Yj , sj)

n
j=1; Z) if we want

to make Z explicit); RdProof(ck,E, (ci, ri)mi=1, (dj , sj)
n
j=1, π), which adapts a proof

π to the new commitments output by RdCom(ck, ci, ri) and RdCom(ck,dj , sj); and
Verify(ck,E, c, d, π).

Signatures. We instantiate Sig with the automorphic signature scheme presented in
[AFG+10]. It is compatible, as signature components are in the space for committed
values V = G1 ∪G2, and the verification equations are pairing-product equations, thus
in E . Moreover, the verification keys lie in its message space, the set of Diffie-Hellman
pairs. Under q-ADH-SDH and AWF-CDH (which is implied by SXDH), Sig is strongly
unforgeable against adversaries making up to q − 1 adaptive chosen-message queries,
as shown in [Fuc09].

Scheme 1 (Sig). SetupS has input a bilinear group G and outputs random generators
F,K, T ← G1. The message space is DH := {(Gm, Hm) |m ∈ Zp}.
KeyGenS chooses x← Zp and outputs vk = (Gx, Hx) and sk = x.

Sign has input a secret key x and a message (M,N) ∈ DH. It chooses c, r ← Zp and
outputs(

A := (K · T r ·M)
1

x+c , B := F c, D := Hc, R := Gr, S := Hr
)

.

Ver on input a verification key (X,Y) ∈ DH, a message (M,N) ∈ DH and a signa-
ture (A,B,D,R, S) outputs 1 if and only if the following equalities hold:

e(A, Y ·D) = e(K ·M,H) e(T, S)
e(B,H) = e(F,D)
e(R,H) = e(G,S)

(2)

Under SXDH and ADH-SDH, Com,Proof and Sig are instantiations of the primi-
tives defined in Section 2. Note that if we based GS proofs on DLIN instead of SXDH,
the security of our constructions would follow from DLIN, ADH-SDH and AWF-CDH,
which can all be made for bilinear groups of every type (1, 2 and 3) from [GPS08].

5 Additional Properties of Groth-Sahai Proofs

We identify four properties of Groth-Sahai (GS) proofs which will allow us to instanti-
ate commuting signatures. We refer to [Fuc10] for the proofs and further results. First,
proofs are independent of the right-hand side of the equation, and if the equation does
not contain pairings of two variables, i.e., γij = 0 for all i, j in (1), then they are even
independent of the committed values.

Lemma 1. For any equation E ∈ E the output of Prove(·,E, ·, ·) is independent of tT .

Lemma 2. Proofs for equations for which γij = 0 for all i, j depend only on the
randomness of the commitments.

Commuting Signatures and Verifiable Encryption 235

Groth-Sahai (GS) proofs are homomorphic w.r.t. the equations, in that the product of
two proofs is a proof for the “product of the respective equations”. More precisely,
given two equations

E :
∏n
i=1 e(Ai, Yi)

∏m
i=1 e(Xi, Bi)

∏m
i=1

∏n
j=1 e(Xi, Yj)γi,j = tT

E′ :
∏n′

i=1 e(A
′
i, Y

′
i)
∏m′

i=1 e(X
′
i, B

′
i)
∏m′

i=1
∏n′

j=1 e(X
′
i, Y

′
j)
γ′

i,j = t′T

and a proof π for commitments (c, d) for E and a proof π′ for commitments (c′, d′)
for E′, then π′′ := π ◦· π′ is a proof for commitments ((c, c′), (d, d′)) and equation
E′′ defined as

∏
e(Ai, Yi)

∏
e(A′

i, Y
′
i)
∏

e(Xi, Bi)
∏

e(X ′
i, B

′
i)
∏∏

e(Xi, Yj)γi,j

·
∏∏

e(X ′
i, Y

′
j)
γ′

i,j = t′′T (for arbitrary t′′T ∈ GT).

Lemma 3. For E,E′ and E′′ as above, if π = Prove(ck,E, (Xi, ri)mi=1, (Yj , sj)
n
j=1;Z)

and π′ = Prove(ck,E′, (X ′
i, r

′
i)
m′
i=1, (Y

′
j , s

′
j)
n′
j=1; Z

′) then the following equation holds:

π ◦· π′ = Prove(ck,E′′, (Xi, ri)mi=1, (X
′
i, r

′
i)
m′
i=1, (Yj , sj)

n
j=1, (Y

′
j , s

′
j)
n′
j=1; Z + Z ′).

Given a proof for an equation, one can commit to its constants and adapt the proof.
Consider E(X1, . . . , Xm; Y1, . . . , Yn) as in (1) and a proof π for E and commitments
(c1, . . . , cm; d1, . . . ,dn). Then π is also a proof for E′(X,Ak; Y) defined as∏n

i=1
i�=k

e(Ai, Yi)
∏m
i=1 e(Xi, Bi)

∏m
i=1

∏n
j=1 e(Xi, Yj)γi,j e(Ak, Yk) = tT

and commitments (c1, . . . , cm,Com(ck, Ak, 0); d1, . . . ,dn). We have thus:

Lemma 4. Let π ← Prove
(
ck,E, (Xi, ri)mi=1, (Yj , sj)

n
j=1

)
, ci = Com(ck, Xi, ri) and

dj = Com(ck, Yj , sj) for all i, j. Then RdProof
(
ck,E′, (ci, 0)mi=1, (Com(ck, Ak, 0), r),

(dj , 0)nj=1, π
)

yields a proof that is distributed as Prove
(
ck,E′, (Xi, ri)mi=1, (Ak, r),

(Yj , sj)nj=1

)
. An analogous result holds for committing to a constant Bk ∈ G2.

6 Instantiation of Commuting Signatures

We explain how to implement commuting signatures; due to space constraints we refer
to [Fuc10] for more details and the proofs. In [Fuc09, AFG+10], a blind signature
scheme is constructed from the scheme Sig (Scheme 1) as follows. Given parameters
(G,H,F,K, T) and a message (M,N) ∈ DH := {(Gm, Hm) |m ∈ Zp}, the user
chooses a random t ← Zp and blinds the first message component by the factor T t.
He then sends the following to the signer: U := T t ·M , commitments cM , cN , cP and
cQ to M,N,P := Gt and Q := Ht, respectively; and proofs πM , πP and πU proving
(M,N), (P,Q) ∈ DH and well-formedness of U . With

EDH(M,N) : e(G−1, N) e(M,H) = 1 (3)

EU (M,Q) : e(T−1, Q) e(M,H−1) = e(U,H)−1 (4)

πM proves EDH(M,N), πP proves EDH(P,Q), and πU proves EU (M,Q), which
asserts U = T t ·M .

236 G. Fuchsbauer

The signer replies with a “pre-signature” on U , defined in (6) below, which the user
converts into a signature and outputs a GS proof of knowledge of it. Now to turn this
into a commuting signature, there are two key observations.

1. The values C := (cM , cN , πM , cP , cQ, πP , U, πU) the user sends to the signer can
be considered as a commitment to the message (M,N), which is extractable and
randomizable, and which perfectly hides the message when the values are produced
under a key ck∗ ←WISetup.

2. As Com is homomorphic, the values cP and cQ contained in the commitment C to
(M,N) can be used by the signer to compute commitments to an actual signature.
Moreover, below we show how πP and πU can be used to make a proof of validity
using Lemmas 1, 2, 3 and 4.

For the blind signature scheme in [Fuc09], the values cP , cQ, πP and πU are mainly
needed in the proof of unforgeability, when the simulator extracts the message, queries
it to its signing oracle and then uses P and Q to turn the signature into a pre-signature.
We show that these values can be directly used by the signer to produce commitments
to the signature components and even a proof of validity.

Commitments to Messages. To instantiate ComM, we define a commitment to a mes-
sage (M,N) ∈ DH as C discussed above. For parameters pp = (G, ck, F,K, T) the
space of valid commitments is thus defined as

CM(pp) :=
{
(cM , cN , πM , cP , cQ, πP , U, πU)

∣∣ Verify(ck,EDH, cM , cN , πM)

∧ Verify(ck,EDH, cP , cQ, πP) ∧ Verify(ck,EU , cM , cQ, πU)
}

,

and the randomness space is RM := Zp × R4. The algorithms ComM,RdComM and
ExtrM defining ComM are given in Figure 2.

Committing to a Signature on a Committed Message and Proving Validity. We
now show how the signer can use the values in C to produce a proof of knowledge
(cA, cB, cD, cR, cS , πA, πB , πR) of a signature (A,B,D,R, S) (i.e., a verifiably en-
crypted signature) on the message committed in C. The proofs πA, πB and πR attest
that the values committed in (cA, cB, cD, cR, cS) and cM contained in C satisfy the
verification equations in (2):

EA(A,M ; S,D) : e(T−1, S) e(A, Y)e(M,H−1) e(A,D) = e(K,H)

EB(B; D) : e(F−1, D) e(B,H) = 1

ER(R; S) : e(G−1, S) e(R,H) = 1

(5)

In the blind signature scheme, after receiving C, the signer checks the proofs contained
in it, and then produces a pre-signature, which is constructed as a signature on U , but
on a message that lacks the second component: choose c, r← Zp and compute

A := (K · T r · U)1/(x+c) B := F c D := Hc R′ := Gr S′ := Hr (6)

Since U := T t ·M , we have A = (K · T r · U)1/(x+c) = (K · T r+t ·M)1/(x+c), which
is the first component of a signature on (M,N) with randomness r + t. Knowing t,

Commuting Signatures and Verifiable Encryption 237

ComM on input pp, (M, N) ∈ DH, (t, μ, ν, ρ, σ) ∈ RM sets P = Gt, Q = Ht and returns

cM := Com(ck, M, μ) cN := Com(ck, N, ν) πM ← Prove(ck, EDH, (M, μ), (N, ν))

cP := Com(ck, P, ρ) cQ := Com(ck, Q, σ) πP ← Prove(ck, EDH, (P, ρ), (Q,σ))

U := T t ·M πU ← Prove(ck, EU , (M, μ), (Q, σ))

RdComM has input pp, C and (t′, μ′, ν′, ρ′, σ′) ∈ RM, and returns C′. It replaces t by t + t′

setting U ′ := U · T t′ , ĉP := cP ◦· Com(ck, Gt′ , 0), and ĉQ := cQ ◦· Com(ck, Ht′ , 0). It then
replaces the remaining randomness (μ, ν, ρ, σ) by (μ + μ′, ν + ν′, ρ + ρ′, σ + σ′), setting

c′
M := RdCom(ck, cM , μ′) π′

M ← RdProof(ck, EDH, (cM , μ′), (cN , ν′), πM)

c′
N := RdCom(ck, cN , ν′)

c′
P := RdCom(ck, ĉP , ρ′) π′

P ← RdProof(ck, EDH, (ĉP , ρ′), (ĉQ, σ′), πP)

c′
Q := RdCom(ck, ĉQ, σ′) π′

U ← RdProof(ck, EU , (cM , μ′), (ĉQ, σ′), πU)

ExtrM(ek,C = (cM , cN , πM , cP , cQ, πP , U, πU)) outputs (Extr(ek, cM), Extr(ek, cN)).

SigCom(pp, sk,C). Parse C as (cM , cN , πM , cP , cQ, πP , U, πU) and sk as x. If πM , πP and
πU are valid then choose c, r ← Zp and α, β, δ, ρ′, σ′ ← Z2

p and compute the following values:

A := (K · T r · U)
1

x+c cB := Com(ck, F c, β) cR := cP ◦· Com(ck, Gr, ρ′)

cA := Com(ck, A,α) cD := Com(ck, Hc, δ) cS := cQ ◦· Com(ck, Hr, σ′)

π′
A := πU ◦· Prove(ck, EA† , (A, α), (Hc, δ); 0) (with EA† being Equation (9))

πA ← RdProof(ck, EA, (cA, 0), (cD, 0), (cM , 0), (cS , σ′), π′
A)

πR ← RdProof(ck, ER, (cR, ρ′), (cS, σ′), πP) πB ← Prove(ck, EDH, (F c, β), (Hc, δ))

Return (cA, cB , cD, cR, cS , πA, πB , πR).

Fig. 2. Committing to messages and making commitments to a signature on a committed value

the user can fabricate an actual signature on (M,N) from the pre-signature by setting
R := R′ · Gt = Gr+t and S := S′ · Ht = Hr+t. (A,B,D,R, S) is then a signature
on (M,N) with randomness (c, r + t).

Let μ, ρ and σ denote the randomness of the respective commitments cM , cP and
cQ, contained in C. Since the commitments are homomorphic, the signer can—without
knowing P = Gt and Q = Ht—compute commitments to R and S from cP and cQ:

cR := Com(ck, R′, 0) ◦· cP = Com(ck, R, ρ)
cS := Com(ck, S′, 0) ◦· cQ = Com(ck, S, σ)

(7)

The signer then chooses α, β, δ ←R, and makes the remaining commitments:

cA := Com(ck, A, α) cB := Com(ck, B, β) cD := Com(ck, D, δ) (8)

The vector cΣ := (cA, cB , cD, cR, cS) is thus a commitment to the signature Σ =
(A,B,D,R, S) on (M,N). It remains to construct proofs πA, πB and πR for the 3

238 G. Fuchsbauer

equations in (5)—without knowledge of the randomnessμ, ρ and σ of the commitments
cM , cR and cS! This can be done by observing the following:

1. Equation ER(R; S) is actually EDH(R; S) from (3). Since by (7) cR and cP have
the same randomness ρ, and cS and cQ have the same randomness σ, and since by
Lemma 2 proofs for EDH are independent of the committed values, πP (the proof
for cP and cQ for EDH) is also a proof for cR and cS ; we thus set πR := πP .

2. Lemmas 1 and 2 yield that proofs for EU (Equation (4)) only depend on the ran-
domness of the commitments. Since cS = Com(ck, S, σ) and cQ = Com(ck, Q, σ)
have the same randomness, πU is not only a proof for EU (M ;Q) but also for

EU†(M ; S) : e(T−1, S) e(M,H−1) = tT

(for an arbitrary tT ∈ GT)6 for cM and cS . Moreover, the signer, knowing A,D,
α and δ, can produce a proof πA† ← Prove(ck,EA† , (A,α), (D, δ)) for

EA†(A; D) : e(A, Y) e(A,D) = tT (9)

(for any tT). Since the product of the left-hand sides of EU†(M ;S) and EA†(A;D)
is the left-hand side of EA(A,M ; S,D) from (5), Lemma 3 yields that πA :=
πU ◦· πA† is a proof for EA.

We have thus shown how the signer can construct πA and πR. The remaining proof πB
can be made regularly, since the required randomness (β, δ) was chosen by the signer.
Finally, to get a random proof of knowledge, the signer randomizes all commitments
and proofs using RdCom and RdProof as defined in Section 4.2. Algorithm SigCom,
with some optimizations, is summarized in Figure 2.

Instantiation of SmSigCom. This algorithm is similar to SigCom but instead of the
signing key sk it is given a signature (A,B,D,R, S) and the extraction key. It pro-
ceeds like SigCom but starting from a signature instead of producing a pre-signature:
choose α, β, δ, ρ′, σ′ ← R and set cA, cB and cD as in (8); use ek to extract P and
Q from C and set cR := cP ◦· Com(ck, R · P−1, ρ′) = Com(ck, R, ρ + ρ′) and
cS := cQ ◦· Com(ck, S · Q−1, σ′) = Com(ck, S, σ + σ′). Now πA, πB and πR can
be computed as in SigCom in Figure 2.

Instantiations of Proof Adaptation for Committing and Decommitting. We define
equations EÃ and EĀ and recall EA, which all represent the first verification equation
in (2) but with different elements being variables.

EA(A,M ; S,D) : e(T−1, S) e(A, Y)e(M,H−1) e(A,D) = e(K,H)

EÃ(A; S,D) : e(T−1, S) e(A, Y) e(A,D) = e(K ·M,H)

EĀ(M) : e(M,H−1) = e(A, Y ·D)−1e(K,H) e(T, S)

6 Technically, πU is only a proof for EU† when tT is s.t. M and S satisfy it. However, since the
proofs are independent of the right-hand side, the prover need not know the appropriate tT .

Commuting Signatures and Verifiable Encryption 239

With EB and ER defined in (5) we can write the following

EVer((X,Y), · , ·)((M,N), (A,B,D,R, S))
≡ EA(A,M ; S,D) ∧ EB(B; D) ∧ ER(R; S) (10)

EVer((X,Y),(M,N), ·)(A,B,D,R, S) ≡ EÃ(A; S,D) ∧ EB(B; D) ∧ ER(R; S) (11)

EVer((X,Y), · ,(A,B,D,R,S))(M,N) ≡ EĀ(M) (12)

AdCS transforms proofs π̄ for EVer(vk,·,Σ) (12) into proofs π for EVer(vk,·,·) (10), AdCM
transforms proofs π̃ for EVer(vk,(M,N),·) (11) into proofs π for EVer(vk,·,·), whereas AdDS
and AdDM do the converse.

Since the product of the left-hand sides of EÃ and EĀ is the left-hand side of EA, by
Lemma 3 we have πA = πÃ ◦· πĀ, which lets us transform proofs for equations EÃ
and EĀ into proofs for EA and vice versa, and thus implement the four algorithms. Note
that when a proof is multiplied by a freshly generated proof, it is uniformly distributed:
by Lemma 3, if Z is the internal randomness of the proof and Z ′ that of the fresh proof
then the randomness of the product of proofs is Z +Z ′. However, when reusing a proof
it must be randomized first.

AdCS(pp, vk,C, ((A,B,D,R, S), (α, β, δ, ρ, σ)), π̄). Proof π̄ being for (12), it sets

πÃ ← Prove(ck,EÃ, (A,α), (S, σ), (D, δ))
πB ← Prove(ck,EB, (B, β), (D, δ))
πR ← Prove(ck,ER, (R, ρ), (S, σ))

for EB and ER defined in (5). It then returns π := (πÃ ◦· πĀ, πB, πR).

AdDS(pp, vk,C, ((A,B,D,R, S), (α, β, δ, ρ, σ)), π). The proof π is of the form (πA,
πB, πR). The algorithm sets πÃ ← Prove(ck,EÃ, (A,α), (S, σ), (D, δ)) and re-
turns π̄ := πA(πÃ (where “(” denotes componentwise division, i.e., multiplying
every component of πA with the inverse of that component of πÃ).

AdCM(pp, vk, ((M,N), (t, μ, ν, ρ, σ)), (cA, cB , cD, cR, cS), π̃). The proof π̃ is of the
form (πÃ, πB, πR). The algorithm returns π := (πÃ ◦· πĀ, π′

B, π
′
R) with

πĀ ← Prove(ck,EĀ, (M,μ))
π′
B ← RdProof(ck,EB, (cB, 0), (cD, 0), πB)

π′
R ← RdProof(ck,ER, (cR, 0), (cS , 0), πR)

AdDM(pp, vk, ((M,N), (t, μ, ν, ρ, σ)), (cA, cB , cD, cR, cS), π). The proofπ is of the
form (πA, πB, πR). The algorithm computes πĀ, π

′
B and π′

R as for AdCM above,
and returns π̃ := (πA (πĀ, π

′
B, π

′
R).

Instantiation of AdCK and AdDK. A commitment cvk to vk = (X,Y) ∈ DH is
defined as (Com(ck, X, ξ),Com(ck, Y, ψ),Prove(ck,EDH, (X, ξ), (Y, ψ))). The equa-
tions for EVer(·, · , ·)((X,Y), (M,N), (A,B,D,R, S)), i.e., when the key, the message
and the signature are committed, are represented by

EÂ(A,M ; S, Y,D) : e(T−1, S) e(M,H−1) e(A, Y)e(A,D) = e(K,H) ,

240 G. Fuchsbauer

and EB and ER from (5). Given a commitment C to a message, a commitment cΣ =
(cA, cB, cD, cR, cS) to a signature, (X,Y) and a proof π = (πA, πB , πR) of validity,
by Lemma 4 the component πA can be adapted to πÂ for cY = Com(ck, Y, ψ) setting

πÂ ← RdProof
(
ck,EÂ, (cA, 0), (cM , 0), (cS , 0), (Com(ck, Y, 0), ψ), (cD, 0), πA

)
.

To adapt a proof to a decommitment of cvk, we have to reset the randomness of cY to
0. AdDK does thus the converse: it sets

πA ← RdProof(ck,EÂ, (cA, 0), (cM , 0), (cS , 0), (Com(ck, Y, 0),−ψ), (cD, 0), πÂ) .

We conclude this section by summarizing the results by the following theorem.

Theorem 1. Under the ADH-SDH and the SXDH assumption,
(
Com,Proof ,Sig,

ComM,AdCS,AdDS,AdCM,AdDM,AdCK,AdDK, SigCom, SmSigCom
)

is a system
of commuting signatures and verifiable encryption as defined in Definition 1.

7 Non-interactively Delegatable Anonymous Credentials

7.1 The BCCKLS Model

Functionality. We give an overview of the model for delegatable credentials defined in
[BCC+09]. The system parameters are set up by a trusted party. Every user generates
a secret key sk, of which they can publish pseudonyms Nym. Any user can become
originator of a credential by publishing a pseudonym NymO as the public key. To issue
or delegate a credential, the issuer and the user (both known to each other under their
respective pseudonyms) run a protocol at the end of which the user holds a credential.
The holder can produce a credential proof for any of his pseudonyms, which proves
that the owner of that pseudonym holds a credential rooted at a public key NymO.

In our non-interactive instantiation we have the following: To delegate (or to issue) a
credential to a user known to the delegator under NymU , the delegator produces (without
interacting with the user) a ready credential proof for NymU . The user can turn this
credential proof into a credential, which (as in the BCCKLS model) she can then use to
make a credential proof for another pseudonym.

A (non-interactively) delegatable anonymous credential system consists of the fol-
lowing algorithms. On input 1λ, SetupC generates the parameters pp, which are input to
all other algorithms. KeyGenC generates user secret keys sk, of which NymGen outputs
pseudonyms Nym and auxiliary information aux related to Nym.

Issuing and delegation is done via Issue, which on input the issuer’s secret key skI ,
pseudonym NymI and corresponding auxI , a level-L credential cred for the
issuer rooted at NymO (if L = 0 then cred = ε) and a user pseudonym NymU ,
outputs a credential proof credproof for NymU . From this the user can obtain a cre-
dential cred by running Obtain on his secret key skU , pseudonym NymU and auxU ,
the issuer’s and delegator’s pseudonyms NymO and NymI , respectively, and credproof .
Running CredProve on (pp,NymO, cred, sk,Nym, aux, L) permits a user to make a cre-
dential proof for the pseudonym Nym related to sk and aux. CredVerify verifies a proof

Commuting Signatures and Verifiable Encryption 241

credproof rooted at NymO for Nym. Note that CredProve outputs a credproof for the
user that runs it, while Issue outputs a credproof for the user one issues or delegates to.

Security. Security is defined by correctness, anonymity and unforgeability. Run hon-
estly, Issue and Obtain must produce credentials on which, for all user pseudonyms,
CredProve outputs a proof that is accepted by CredVerify.

Anonymity means that an adversary interacting with honest users cannot distinguish
the real game from an ideal game: There are simulated parameters which are indistin-
guishable from the real ones but lead to pseudonyms, credentials and proofs that are
independent of users’ secret keys. Given a trapdoor for these parameters, Issue,Obtain
and CredProve can be simulated without the secret inputs cred, sk and aux.

To break unforgeability, an adversary must produce a proof that some Nym has a
credential although such a credential has never been issued to any pseudonym of the
owner of Nym. To formalize the notion of “owner”, Belenkiy et al. define an algorithm
that extracts from a pseudonym a user identity vk, which is uniquely defined by the
secret key. Moreover, from a credential proof it extracts the identities that represent the
underlying delegation chain. We say that a forgery occurs if the adversary produces a
credential for authority vk0 from which are extracted (vk1, . . . , vkL−1, vkL) such that
vkL−1 is an honest user that never delegated a level-L credential rooted at vk0 to vkL.

7.2 Our Instantiation

In the instantiation from [BCC+09] the system parameters are a Groth-Sahai (GS) com-
mitment key and parameters for an authentication scheme. Each user holds a secret key
sk for the authentication scheme, and a pseudonym is a GS commitment to f(sk) for
a one-way function f . To issue and delegate, the issuer and the user run an interactive
two-party protocol to compute a proof of knowledge of an authenticator on the user’s
secret key, which is valid under the issuer’s secret key. A credential is then a chain of
pseudonyms and committed authenticators with GS proofs of validity.

We replace the authenticators (consisting of 11 group elements and verified by 8
pairing-product equations) by automorphic signatures (5 group elements satisfying 3
PPEs). A non-anonymous level-L credential for vkL rooted at vk0 is a chain of veri-
fication keys and signatures (Σ1, vk1, Σ2 . . . , vkL−1, ΣL), where Σi is a signature on
vki under vki−1. To achieve anonymity, the keys and signatures in the credential are
committed to and proofs of validity are added. Using commuting signatures, given a
commitment to a key, the issuer can directly make a commitment to a signature on it
and a validity proof. This is what enables non-interactive delegation.

However, merely signing user keys does not suffice, as the issuer of a credential
might want to add public information to the credential, such as attributes. For delegat-
able credentials it is also required to include the originator’s pseudonym and the dele-
gation level in each certificate to prevent combining different credentials and changing
the order within a credential.

In the full version [Fuc10] we therefore give a simple extension of Sig: Scheme Sig′′

has message space Zp ×M, allowing the signer to specify a public value in addition
to M . Its parameters contain one additional group element, but the signatures have the
same size as those of Sig. We also define SigCom′′, an adaptation of SigCom which

242 G. Fuchsbauer

has the public value in Zp as additional input, and show that all the other algorithms
defined in Definition 1 and instantiated in Section 6 work equally for Sig and Sig′′7.

Our Scheme. Let H : CM × N → Zp be a collision-resistant hash function. Then our
scheme Cred can be sketched as follows: SetupC generates a key for Com and param-
eters for Sig′′; KeyGenC outputs a signing key for Sig′′; and given such a key, NymGen
outputs a commitment to the corresponding verification key and the used randomness
as auxiliary information. A level-L credential proof from Nym0 for NymL has the form

credproof = (c1, π1,Nym1, c2, π2, . . . ,NymL−1, cL, πL) ,

where ci is a commitment to a Sig′′ signature Σi on the public value H(Nym0, i) and
the key committed in Nymi, valid under the key committed in Nymi−1; and πi is a proof
of validity of Σi. We call credproof a credential if it is valid on a “trivial” NymL, i.e.,
when NymL = Com(ck, vkL, 0).

CredProve takes a credential and turns it into a credential proof for NymL by ran-
domizing all its components, using as randomness for the last component the value aux
s.t. NymL = Com(ck, vkL, aux). CredVerify verifies a credproof by checking the proofs
contained in it. Given a level-L credential, Issue extends it by one level making a cre-
dential proof for the delegatee’s pseudonym NymL+1: In case of a delegation (L > 0),
it first makes a credproof for the issuer’s pseudonym NymI ; otherwise credproof := ε.
Running SigCom′′ on skI , H(Nym0, L + 1) and NymL+1, it produces (cL+1, π

′
L+1),

a verifiably encrypted signature under vkI . It then runs AdCK on (vkI , auxI) to adapt
π′
L+1 to a proof πL+1, which is valid for the committed verification key NymI . Finally,

Issue outputs credproof ‖NymI ‖ (cL+1, πL+1). Obtain turns a level-L credential proof
into a credential by adapting the randomness to make it valid for a trivial NymL.

Simulatability. While unforgeability of our scheme is implied by the soundness of
Proof and unforgeability of Sig′′, anonymity is shown as follows. We generate the
simulated parameters by replacing Setup with WISetup; this makes the commitments
perfectly hiding and thus pseudonyms and credential proofs independent of secret keys.

We then have to simulate issuing and CredProve for pseudonyms of the adversary’s
choice. This essentially means to simulate credential proofs for given Nym’s; thus, sim-
ulating commitments to a signature and a proof of validity w.r.t. commitments to a key
and to a message which are both given to the simulator.

While Groth and Sahai [GS08] show simulation of proofs of satisfiability of equa-
tions, where the simulator produces all the commitments, we require a novel type of
simulation: given commitments to certain variables of an equation, we have to simulate
the remaining commitments and the proof of validity. In the full version [Fuc10] we
show that this can be done for a class E ′ ⊂ E of equations, in which the equations for
validity of committed signatures fall. We call a commuting signature scheme simulat-
able if given a commitment to a key and a commitment to a message the simulator can
create a verifiably encrypted signature for them.

In [Fuc10] we define a simulatable variant of our scheme from Section 6. We also
give a formal description of our credential scheme Cred and a proof of the following.

7 Note that replacing SigCom by SigCom′′ in the construction of a blind signature at the end of
Section 3 yields a partially blind signature [AF96].

Commuting Signatures and Verifiable Encryption 243

Theorem 2. Let (Com,Proof ,Sig′′,ComM,Algs) be a system of commuting sig-
natures which is automorphic and simulatable, and let H be a collision-resistant hash
function. Then Cred is a secure delegatable anonymous credential scheme.

8 Conclusion

We introduced and instantiated commuting signatures and verifiable encryption. Given
an encryption C of M and a signing key, they let us produce an encryption cΣ of a
signature on M and a proof that cΣ contains a valid signature on the content of C.
We used them to give the first instantiation of delegatable anonymous credentials with
non-interactive issuing and delegation and believe that they are a useful tool in the
construction of privacy-preserving primitives that will find further applications.

Acknowledgements

The author would like to thank David Pointcheval, Elizabeth Quaglia and Damien
Vergnaud for many helpful discussions and the anonymous referees of CCS 2010 and
EUROCRYPT for their valuable comments.

References

[AF96] Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto, T.
(eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg
(1996)

[AFG+10] Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

[BB04] Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

[BCC+09] Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidel-
berg (2009)

[BCKL08] Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 356–374. Springer, Heidelberg (2008)

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC, pp. 103–112. ACM Press, New York (1988)

[BFPV11] Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomiz-
able ciphertexts. In: Gennaro, R. (ed.) PKC 2011. LNCS, vol. 6571, pp. 403–422.
Springer, Heidelberg (2011)

[BGLS03] Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

244 G. Fuchsbauer

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009)

[Bra99] Brands, S.: Rethinking public key infrastructure and digital certificates—building
privacy. PhD thesis, Eindhoven Inst. of Tech., The Netherlands (1999)

[BW07] Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15.
Springer, Heidelberg (2007)

[Cha83] Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum Press, New York
(1983)

[Cha85] Chaum, D.: Security without identification: Transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

[CL01] Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

[CL02] Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–
289. Springer, Heidelberg (2003)

[CL04] Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

[CL06] Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006)

[Dam90] Damgård, I.: Payment systems and credential mechanisms with provable secu-
rity against abuse by individuals. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 328–335. Springer, Heidelberg (1990)

[DHLW10] Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS, pp. 511–520. IEEE Computer Society, Los
Alamitos (2010)

[Fis06] Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006)

[FP08] Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Ostrovsky, R.,
De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 201–217.
Springer, Heidelberg (2008)

[FPV09] Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Transferable constant-size fair E-
cash. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888,
pp. 226–247. Springer, Heidelberg (2009)

[Fuc09] Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application
to round-optimal blind signatures. Cryptology ePrint Archive, Report 2009/320
(2009), http://eprint.iacr.org/2009/320, an extended abstract ap-
peared as part of [AFG+10]

[Fuc10] Fuchsbauer, G.: Commuting signatures and verifiable encryption and an applica-
tion to non-interactively delegatable credentials. Cryptology ePrint Archive, Report
2010/233 (2010), http://eprint.iacr.org/2010/233

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for
NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358.
Springer, Heidelberg (2006)

[GPS08] Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

http://eprint.iacr.org/2009/320
http://eprint.iacr.org/2010/233

Commuting Signatures and Verifiable Encryption 245

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

[LRSW00] Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer,
Heidelberg (2000)

[PS96] Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer,
Heidelberg (1996)

[RS09] Rückert, M., Schröder, D.: Security of verifiably encrypted signatures and a con-
struction without random oracles. In: Shacham, H., Waters, B. (eds.) Pairing 2009.
LNCS, vol. 5671, pp. 17–34. Springer, Heidelberg (2009)

Secure Authentication from a Weak Key,
without Leaking Information

Niek J. Bouman and Serge Fehr

Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
{n.j.bouman,serge.fehr}@cwi.nl

Abstract. We study the problem of authentication based on a weak key
in the information-theoretic setting. A key is weak if its min-entropy is
an arbitrary small fraction of its bit length. This problem has recently
received considerable attention, with different solutions optimizing differ-
ent parameters. We study the problem in an extended setting, where the
weak key is a one-time session key that is derived from a public source
of randomness with the help of a (potentially also weak) long-term key.
Our goal now is to authenticate a message by means of the weak session
key in such a way that (nearly) no information on the long-term key is
leaked. Ensuring privacy of the long-term key is vital for the long-term
key to be re-usable. Previous work has not considered such a privacy
issue, and previous solutions do not seem to satisfy this requirement.

We show the existence of a practical four-round protocol that pro-
vides message authentication from a weak session key and that avoids
non-negligible leakage on the long-term key. The security of our scheme
also holds in the quantum setting where the adversary may have limited
quantum side information on the weak session key. As an application
of our scheme, we show the existence of an identification scheme in the
bounded quantum storage model that is secure against a man-in-the-
middle attack and that is truly password-based: it does not need any
high entropy key, in contrast to the scheme proposed by Damg̊ard et al.

1 Introduction

1.1 The Problem

We consider the problem of achieving authentic communication over a public
channel that might be under the control of an active adversary. We study this
problem in the information-theoretic setting, i.e. we assume the adversary to be
computationally unbounded.

Specifically, we consider the following scenario. Alice and Bob share a long-
term key W . When needed, Alice and Bob can extract a weak session key XW

from an auxiliary source of randomness with the help of W . It should be guar-
anteed by the property of the auxiliary source that a potential adversary Eve
who does not know W has limited information on the weak session key XW .
This is formalized by requiring that Hmin(XW |WE) ≥ k for some parameter k,
where E denotes Eve’s side information. Examples of where this scenario occurs

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 246–265, 2011.
c© International Association for Cryptologic Research 2011

Secure Authentication from a Weak Key, without Leaking Information 247

naturally are the bounded storage model, where W determines which part of the
huge string to read, or the quantum setting, where W determines in which basis
to measure some quantum state.

The goal now is to authenticate a message μ from Alice to Bob with the help
of the weak session key XW , in such a way that (1) Eve cannot tamper with
μ without being detected, and (2) Eve learns (nearly) no information on the
long-term key W . We stress that property (2) is vital for Alice and Bob to be
able to re-use W . Note that once Alice and Bob can do message authentication
with a weak key, then they can also do key agreement, simply by doing standard
randomness extraction where the seed for the extractor is communicated in an
authentic way.

We want to emphasize that, by assumption, every new session key XW for
the same long-term key W contains fresh randomness, provided by the auxiliary
source. Therefore, the goal above does not contradict the well-known impossi-
bility result of re-using an authentication key without refreshing. Also note that
we do not specify how exactly the auxiliary source of randomness produces XW

from W ; on the contrary, we want security no matter how XW is obtained, as
long as XW contains enough min-entropy (given the adversary’s information
and W).

1.2 Related Work

Let n be the bitsize of the key (in our case, the session key) and k its min-
entropy (in bits). It was proved by Dodis and Wichs [9] that non-interactive
authentication is impossible when k ≤ n/2, even when the parties have access
to local non-shared randomness, which we will assume. For a good overview of
earlier work on the case where k > n/2, we refer to [9].

The first protocol for interactive authentication from arbitrarily weak keys is
due to Renner and Wolf [15]. It requires Θ(�) rounds of interaction to authen-
ticate an �-bit message. In [9], an authentication protocol from arbitrarily weak
keys is described that only needs two rounds of interaction, which is optimal (in
terms of the number of rounds). Chandran et al. [2] focus on minimizing entropy
loss and describe a privacy amplification protocol that is optimal with respect to
entropy loss (up to constant factors). Their construction needs a linear number
of rounds (linear in the security parameter).

The case where Alice and Bob share highly-correlated, but possibly unequal
keys – the “fuzzy” case – is addressed in [16] and improved upon by Kanukurthi
and Reyzin [11], but also covered by [9] and [2].

We stress that none of these works address the case where the weak key is
obtained from a long-term key and where security of the long-term key needs to
be guaranteed.

1.3 Our Contributions

We propose a new four-round protocol for message authentication with a weak
session key XW . We prove that our protocol satisfies security and long-term key

248 N.J. Bouman and S. Fehr

privacy, meaning that the adversary Eve cannot tamper with the authenticated
message without being detected, nor does she learn any (non-negligible amount
of) information on the long-term key W . Our proofs also apply in the quantum
setting, where Eve’s bounded knowledge on XW may be in the form of a quantum
state.

We also discuss how our techniques can be applied in the fuzzy case, where
there are some errors between Alice and Bob’s weak session keys. Finally, we
outline how our scheme can be used to improve an existing password-based
identification scheme in the bounded-quantum-storage model (more details on
this application are given below).

1.4 Application

Our main application is to password-based identification in the bounded quan-
tum storage model, as proposed by Damg̊ard et al. [4]. Two identification schemes
were proposed in [4], Q-ID, which is only secure against dishonest Alice or Bob,
and Q-ID+, which is also secure against against a man-in-the-middle (MITM)
attack. However, only Q-ID is truly password-based; in Q-ID+, Alice and Bob, in
addition to the password, also need to share a high-entropy key. By incorporat-
ing our new techniques into Q-ID+, we show the existence of a truly password-
based identification scheme in the bounded-quantum-storage model with security
against MITM attacks.

Based on Q-ID+, Damg̊ard et al. also propose an authenticated quantum key
distribution scheme in the bounded quantum storage model, which, in contrast
to standard quantum key distribution schemes, does not require authenticated
communication but has the authentication “built in”1. Our relaxation on the
required key material in Q-ID+ also affects their authenticated quantum key
distribution scheme and circumvents the need for a high entropy key. As a re-
sult, we obtain a truly password-based authenticated quantum key distribution
scheme in the bounded-quantum-storage model.

1.5 Organization of the Paper

The paper is structured as follows. In Section 2 we introduce notation, give some
standard definitions and introduce the security definition that our authentication
protocol should fulfill. Then, in Section 3, we describe an existing authentication
protocol that we use as a basis for our protocol. We also explain there why this
existing protocol does not fulfill our security definition, and we discuss some steps
how we extend that protocol. This ultimately leads to our own protocol AUTH,
which is introduced in Section 4. In the same section, we present an important
lemma that is used in the security proof to deal with a certain circularity issue.
Section 5 consists of the proofs for security and privacy. In Section 6 we argue
that our authentication protocol can also be used in the fuzzy case and finally
1 Furthermore, in contrast to using standard quantum key distribution in combination

with standard authentication, in the authenticated quantum key distribution scheme
the authentication keys can be re-used.

Secure Authentication from a Weak Key, without Leaking Information 249

Section 7 discusses our application. Most results related to instantiating our
protocol can be found in the full version of this paper [1].

2 Notation and Preliminaries

We prove security of our scheme in the presence of a quantum adversary with
quantum side information, and below we introduce some suitable notations. How-
ever, we stress that most of the notation and the proofs can also be understood
from a purely classical information-theoretical point of view.

The state of a quantum system X is given by a density matrix ρX , i.e., a
positive-semidefinite trace-1 matrix acting on some Hilbert spaceHX . We denote
the set of all such matrices, acting on HX , by P(HX). In the special case where
ρX is diagonal, X is called classical, and in this case we can understand X as
a random variable, where its distribution PX is given by the diagonal entries of
ρX . In this case, we tend to slightly abuse notation and write X ∈ X to indicate
that the range of the random variable X is X .

If X is part of a bi-partite system XE, then X is called classical if the density
matrix ρXE of XE is of the form ρXE =

∑
x PX(x)|x〉〈x|⊗ρE|X=x, where PX is a

probability distribution, {|x〉}x forms an orthonormal basis ofHX , and ρE|X=x ∈
P(HE). In this case, X can be understood as random variable, and system E is
in state ρE|X=x exactly if X takes on the value x. We therefore sometimes also
speak of a random variable X and a quantum system E. To simplify notation,
we often write ρxE instead of ρE|X=x. Readers that are unfamiliar with quantum
information can safely think of E as being classical as well, in which case the
ρE|X=x’s are all diagonal, with the probabilities of the conditional distributions
PE|X(·|x) as diagonal entries.

The distance between two states ρX , σX ∈ P(HX) is measured by their trace
distance 1

2‖ρX−σX‖1, where ‖·‖1 is the L1 norm2. In case of classical states, i.e.,
ρX and σX correspond to distributions PX and QX , the trace distance coincides
with the statistical distance 1

2

∑
x |PX(x)−QX(x)|.

In the following definitions, we consider a bi-partite system XE with classical
X . X is said to be random and independent of E if ρXE = ρU ⊗ ρE , where ρU
is the fully mixed state on HX (i.e., U is classical and - as random variable -
uniformly distributed). In case of classical E, this is equivalent to PXE = PU ·PE
(in the sense that PXE(x, e) = PU (x) · PE(e) ∀x, e). The following definition
measures how far away XE is from such an ideal situation.

Definition 1 (Distance to Uniform). The distance to uniform of X given E
is defined as

d(X |E) := 1
2‖ρXE − ρU ⊗ ρE‖1.

If also E is classical, then d(X |E) simplifies to

d(X |E) = 1
2

∑
x,e

|PXE(x, e)−PU (x)PE(e)| =
∑
e

PE(e) 1
2

∑
x

∣∣PX|E(x|e)−PU (x)
∣∣.

2 Defined by ‖A‖1 := trace(
√

A†A), where A† denotes the Hermitian transpose.

250 N.J. Bouman and S. Fehr

It is not too hard to show that for a tri-partite system XYE with classical X
and Y

d(X |Y E) =
∑
y∈Y

PY (y) d(X |E, Y =y).

From this, the following lemma follows immediately.

Lemma 1. For any y: d(X |E, Y =y) ≤ d(X |Y E)/PY (y).

Definition 2 (Guessing Probability). The guessing probability of X given
E is defined as

Guess(X |E) := sup
{Mx}x

∑
x

PX(x)tr(Mx ρ
x
E),

where the supremum is over all POVMs {Mx}x on HE.

In case also E is classical, Guess(X |E) simplifies to the standard average guessing
probability

Guess(X |E) =
∑
e

PE(e)max
x

PX|E(x|e).

Definition 3 (Min-Entropy). The min-entropy of X given E is defined as

Hmin(X |E) := − logGuess(X |E).

This definition coincides with the definition introduced by Renner [13], as shown
by [12]; in case of a classical E, it coincides with the classical definition of
conditional min-entropy (see e.g. [7]).

Definition 4. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-strong
extractor, if for any bipartite quantum system XE with classical X and with
Hmin(X |E) ≥ k, and for a uniform and independent seed Y , we have

d
(
Ext(X,Y)

∣∣Y E
)
≤ ε .

Note that we find “extractor against quantum adversaries” a too cumbersome
terminology; thus we just call Ext a (strong) extractor, even though it is a
stronger notion than the standard notion of a (strong) extractor. When nec-
essary, we distinguish between the two notions by saying that an extractor is or
is not secure against quantum side information.

A well-known example of a strong extractor (that is secure against quantum
side information) is a two-universal hash function h : {0, 1}n×{0, 1}d→ {0, 1}q.
Indeed, for any XE with classical X , and for Y an independent seed, uniformly
distributed on {0, 1}d privacy amplification [14] guarantees that

d(h(X,Y)|Y E) ≤ 1
2

√
2q−Hmin(X|Y E) =

1
2

√
2q Guess(X |Y E).

Secure Authentication from a Weak Key, without Leaking Information 251

2.1 Security Definition

In the scope of this paper, an authentication protocol is understood as a classical
protocol between two parties Alice and Bob. Alice inputs a message μ and a weak
session key XW , and Bob inputs a message μ′ and the same session key XW . At
the end of the protocol, Bob announces a Boolean decision whether to “accept”
or “reject”. The weak session key XW may depend arbitrarily on a long-term
key W . During the execution of the protocol, an adversary Eve has full control
over the communication between Alice and Bob.

We require the protocol to fulfill the following formal definition.

Definition 5. Let E◦, E denote Eve’s respective a priori and a posteriori quan-
tum systems, where the latter includes Bob’s decision on whether to accept or
reject. A (n, k,m, δ, ε) message authentication protocol with long-term-key pri-
vacy is defined to satisfy the following properties:
Correctness: If there is no adversary Eve present, then for any message
μ ∈ {0, 1}m and μ′ = μ, and for any (distribution of the) key XW ∈ {0, 1}n,
Bob accepts with certainty.
Security: If Hmin(XW |WE◦) > k, then for any μ, μ′ ∈ {0, 1}m with μ
= μ′,
the probability that Bob accepts is at most δ.
Long-Term-Key Privacy: If ρWE◦ = ρW ⊗ ρE◦ and Hmin(XW |WE◦) > k,
then

1
2
‖ρWE − ρW ⊗ ρE‖1 ≤ ε .

3 The Dodis-Wichs Authentication Scheme

Here, we describe a slightly modified version of the two-round message authen-
tication protocol due to Dodis and Wichs [9]. Our construction will be based
on this protocol. We start by giving a few definitions that are crucial for the
understanding of the protocol by Dodis and Wichs.

Definition 6 (Epsilon Look-Aheadness). Let t, � be positive integers. Let
A := (A1, . . . , At) and B := (B1, . . . , Bt) be random variables over ({0, 1}�)t,
and let E be a quantum system. For all i ∈ {0, . . . , t− 1} let εi be defined as

εi := d
(
Ai+1 . . .At

∣∣B1 . . .BiE
)
.

The ordered pair (A,B) is ε-look-ahead conditioned on E if ε ≥ maxi εi.

Definition 7 (Look-Ahead Extractor). laExt : {0, 1}n×{0, 1}d → ({0, 1}�)t
is called a (k, ε)-look-ahead extractor if for any random variable X ∈ {0, 1}n and
quantum system E with Hmin(X |E) ≥ k the following holds. Let S ∈ {0, 1}d be a
independent and uniformly distributed seed, and let S̃ ∈ {0, 1}d be adversarially
chosen given S and E; this may involve a (partial) measurement of E, resulting
in the new state E′. Then, the ordered pair (R, R̃) where R = (R1, . . . , Rt) :=
laExt(X ;S) and R̃ = (R̃1, . . . , R̃t) := laExt(X ; S̃) is ε-look-ahead conditioned on
S, S̃ and E′.

252 N.J. Bouman and S. Fehr

Informally, a look-ahead extractor has the property that even if the adversary
is allowed to modify the seed, when given the first i blocks of the key that
is extracted using the modified seed, the remaining blocks of the key that is
extracted using the correct seed still look random.

Definition 8 (Look-ahead security). A family of functions

{MACk : {0, 1}m → {0, 1}s}

indexed by keys k ∈ ({0, 1}�)t is an (ε, δ) look-ahead secure MAC if for any pair
of fixed and distinct messages μA, μB ∈ {0, 1}m, μA
= μB, and any ordered pair
of random variables (K,K ′) ∈ ({0, 1}�)2t satisfying the look-ahead property with
parameter ε conditioned on quantum system E,

Guess
(
MACK(μB)

∣∣MACK′(μA)E
)
< δ .

We are now ready to present the Dodis and Wichs message authentication proto-
col DW-MAC. The protocol we present here is slightly modified in that we assume
that Alice has already sent her message μA to Bob, who has received it as μB
(possibly
= μA). This modification is for simplicity, and because we do not aim
at minimizing the number of rounds. XW is the weak key, known to both Alice
and Bob. The function laExt: {0, 1}n×{0, 1}d→ ({0, 1}�)t is a (k, ε)-look-ahead
extractor and MACk : {0, 1}m → {0, 1}s is a (ε, δ) look-ahead secure MAC.

Protocol DW-MAC

Alice(XW , μA) Bob(XW , μB)

R ∈R {0, 1}d
R	

K := laExt(XW ; R) K := laExt(XW ; R)
TA := MACK(μA) TB := MACK(μB)

TA

accept if: TA = TB

else: abort

Security of DW-MAC follows immediately from the definitions of the underlying
building blocks: laExt ensures that Alice and Bob’s versions of the key K satisfy
the look-ahead property, and in this case it is guaranteed that MAC acts as a
secure MAC, even when Alice’s key was modified.

However, in our setting where we additionally want to maintain privacy of
the long-term key W , which may arbitrarily depend on XW , DW-MAC does not
seem to be good enough — unless Eve remains passive. Indeed, if Eve does
not manipulate the communicated seed R, then by the assumed lower bound
on Hmin(XW |WE), it follows that the extracted K on Bob’s side is close to
random and independent of W (and E), and thus T leaks no information on W .

Secure Authentication from a Weak Key, without Leaking Information 253

However, if Eve manipulates the seed R (for instance replaces it by a value of
her choice), then there is no guarantee anymore that K, and thus T , does no
leak information on W .

Another and more subtle way for Eve to (potentially) learn information on
W is by not manipulating the message, i.e., have μA = μB, but manipulate the
seed R and try to obtain information on W by observing if Bob accepts or not.

3.1 Towards Achieving Key-Privacy

We give here some intuition on how we overcome the above privacy issues of
DW-MAC with respect to the long-term key W . Similarly to our notation TA and
TB to distinguish between the tag computed by Alice and by Bob, respectively,
we write RA and RB etc. to distinguish between Alice and Bob’s values of R etc.,
which may be different if Eve actively manipulates communicated messages.

A first approach to prevent leakage through TA is to one-time-pad encrypt
TA. The key for the one-time-pad is extracted by means of a strong extractor
Ext from XW , where Alice chooses the seed:

Alice Bob
R	

S ∈R {0, 1}k
Z := Ext(XW ;S)
Q := TA ⊕ Z S,Q

Z := Ext(XW ;S)
accept if: Q = TB ⊕ Z

In the above protocol (and also below), we understand TA and TB to be computed
as in DW-MAC. Note that since it is Alice who chooses the seed S and since
Hmin(XW |WE) is lower bounded, ZA is guaranteed to be (close to) random and
independent of W (and E), and thus hides all information that TA might leak
on W . However, this modification renders the security of the scheme invalid. For
instance, we cannot exclude that by modifying the seed S appropriately, Eve can
enforce ZB = TB, so that she only needs to send Q = 0 to have Bob convinced.

In order to re-gain security while still preventing information to leak through
TA, we let Bob choose a random non-zero “multiplier” for the one-time pad
key Z:

Alice Bob
R	

S ∈R {0, 1}k C ∈R {0, 1}k \ {0}k
Z := Ext(XW ;S)

S

C	

abort if C = 0
Q := T ⊕ C · Z Q

Z := Ext(XW ;S)
accept if: Q = TB ⊕ C · Z

254 N.J. Bouman and S. Fehr

The multiplication C · Z is to be understood in the corresponding binary field.
Leakage through TA is still prevented since a non-zero multiple of a good one-
time-pad key is still a good one-time-pad key. Furthermore, for security, we can
intuitively argue as follows. Consider a snapshot of an execution of the protocol
after S has been communicated. We now give Eve the value TA for free; this only
makes her stronger. By the security of the underlying DW-MAC scheme, we know
that it is hard for Eve to guess TB. Now, assuming that there exist two distinct
values for C for which Eve can predict the corresponding value QB = TB⊕C ·ZB,
it follows immediately that Eve can actually predict TB; a contradiction. Hence,
there can be at most one value for Bob’s choice of C for which Eve can guess
QB reasonably well.

We point out that the above intuitive reasoning involves rewinding; this is
fine in the classical but fails in the quantum setting (see e.g. [17]). Thus, in
our formal security proof where we allow Eve to maintain a quantum state, we
have to reason in a different way. As a consequence, in the actual protocol, Q is
computed in a slightly different way.

One issue that is still unsolved is that Bob’s decision to accept or reject may
also leak information on W when μA = μB and Eve modifies one (or both) of
the seeds R and S. Note that this is not an issue if μA
= μB because then,
by the security, Bob rejects with (near) certainty. For instance it might be that
changing the first bit of S changes Z or not, depending on what the first bit of
XW is. Thus, by changing the first bit of S and observing Bob’s decision, Eve
can learn the first bit of XW , which may give one bit of information on W . The
solution to overcome this problem is intuitively very simple: we use MAC not
only to authenticate the actual message, but also to authenticate the two seeds
R and S. Then, like in the case μA
= μB, if Eve changes one of the seeds then
Bob’s decision is determined to be reject. Note that this modification introduces
a circularity: the key K, which is used to authenticate the seed R (amongst the
message and S) is extracted from XW by means of the seed R. However, it turns
out that we can deal with this.

4 Main Construction

We now turn to our construction for the message authentication protocol with
long-term-key privacy (Definition 5). In the construction, we will use DW-MAC as
a building block. Informally speaking, the basic idea is to encrypt the authenti-
cation tag from DW-MAC using a one-time pad, which prevents key leakage. The
key for this one-time pad is established in a challenge-response sequence, from a
mix of local and shared randomness. Additionally, we use the DW-MAC protocol
to authenticate some of the extractor seeds that appear in the construction, to
prevent key-leakage from Bob’s accept/reject decision.

Let laExt : {0, 1}n × {0, 1}d → ({0, 1}�)t be a (kK , εK) look-ahead extractor.
Let Ext : {0, 1}n × {0, 1}v → {0, 1}q be a (kZ , εZ)-strong extractor. Let MAC :
({0, 1}�)t×({0, 1}m×{0, 1}d×{0, 1}v)→ {0, 1}s be a (ε, λ+ε) look-ahead secure
MAC, for any ε > 0. Let XW be the session key, shared among Alice and Bob,

Secure Authentication from a Weak Key, without Leaking Information 255

and satisfy Hmin(XW |WE◦) > max(kK+q, kZ). The “⊕” symbol represents bit-
wise addition modulo 2. Multiplication, denoted by “·”, should be understood as
multiplication in the corresponding finite field: GF(2s) or GF(2q). We write [b]q
for the q most significant bits of the bit-string b. Protocol AUTH is shown below.

Protocol AUTH

Alice(XW , μA) Bob(XW , μB)

R ∈R {0, 1}d
R	

K := laExt(XW ; R) K := laExt(XW ; R)
S ∈R {0, 1}v

S

Z := Ext(XW ; S) Z := Ext(XW ; S)
TA := MACK((μA, R, S)) TB := MACK((μB, R, S))

U ∈R {0, 1}s, V ∈R {0, 1}q \ {0}q
U,V	

if U, V = 0: abort
Q := [U · TA]q ⊕ V · Z

Q

accept if: Q = [U · TB]q ⊕ V · Z
else: abort

In the full version of this paper [1], we show how to instantiate the building
blocks (due to space restrictions we have only included the part about instanti-
ating the MAC in the present version, in Appendix A) to obtain a scheme with
reasonable parameters. In doing so, we use similar techniques as [9], except that
we replace the strong extractors that are part of the look-ahead extractor con-
struction by extractors that are proven secure against quantum side information
(by [6]).

Depending on the parameters of an instantiation of AUTH and on the bitsize of
μA, it might be beneficial, or could even be necessary, to authenticate a hash of
the tuple (μA, R, S), instead of authenticating the tuple itself. In this case, we let
Alice choose a small seed for an almost universal hash function and apply MACK
to this seed and the hash of the the tuple (μA, R, S) (with respect to this seed).
We will actually make use of this suggested modification when instantiating
AUTH.

Before going into the security proof for protocol AUTH, we resolve here the
circularity issue obtained by authenticating the seed R that was used to extract
the authentication key K.

Lemma 2. Consider a MAC that is (ε, λ + ε)-look-ahead-secure for any ε. Let
K,K ′,MA,MB be arbitrary random variables and E a quantum state, and let the
ordered pair (K,K ′) ∈ ({0, 1}�)2t satisfy the look-ahead property with parameter
ε conditioned on MA,MB, E and the event MA
= MB. Then,

Guess
(
MACK(MB)

∣∣MACK′(MA)MAMBE,MA
= MB
)
< λ + tε.

256 N.J. Bouman and S. Fehr

Proof. We condition on MA = mA and MB = mB and assume throughout the
proof that mA
= mB. Because (K,K ′) may depend on (MA,MB), conditioning
on fixed values for the latter implies that (K,K ′) is not necessarily ε-look-ahead
anymore. Let εmA,mB be the maximum over i ∈ [t] of the following expression,

εmA,mB,i := d(Ki+1 . . .Kt

∣∣K ′
1 . . .K ′

iE,MA =mA,MB =mB).

Hence, by Definition 6, (K,K ′) is εmA,mB-look-ahead conditioned on E and the
events MA = mA and MB = mB. Note that averaging εmA,mB,i over mA and
mB (conditioned on them being distinct) results in

εi = d(Ki+1 . . .Kt|K ′
1 . . .K ′

iMAMBE,MA
=MB
)
≤ ε .

Furthermore, note that by conditioning on fixed and distinct values for MA and
MB, we fulfill the requirements for MAC look-ahead security from Definition 8.
I.e. we can conclude that

Guess
(
MACK(MB)

∣∣MACK′(MA)E,MA = mA,MB = mB
)
< λ + εmA,mB .

It now follows that

Guess
(
MACK(MB)

∣∣MACK′(MA)MAMBE,MA
= MB
)

=
∑

mA,mB

PMAMB|MA �=MB(mA,mB)

· Guess
(
MACK(MB)

∣∣MACK′(MA)E,MA = mA,MB = mB
)

<
∑

mA,mB

PMAMB|MA �=MB(mA,mB) (λ + max
i∈[t]

εmA,mB,i)

≤ λ +
∑

mA,mB

PMAMB|MA �=MB(mA,mB)
∑
i∈[t]

εmA,mB,i

= λ +
∑
i∈[t]

∑
mA,mB

PMAMB|MA �=MB(mA,mB) εmA,mB,i

= λ +
∑
i∈[t]

εi ≤ λ +
∑
i∈[t]

ε = λ + tε.

This concludes the proof.

5 Proofs of Security and Privacy

In this section we show that protocol AUTH fulfills the properties listed in Defini-
tion 5. First of all, note that it is easy to see from the protocol description that
the correctness property is satisfied, we do not elaborate further on this here.

Throughout the proofs, let E◦ be Eve’s quantum side information before exe-
cuting AUTH. Ei, where i ∈ {1, . . . , 4}, represents Eve’s (quantum) side informa-
tion after the ith round of communication, and hence includes the communicated

Secure Authentication from a Weak Key, without Leaking Information 257

random variables up to this ith round. E represents Eve’s side information after
executing AUTH, including Bob’s decision to accept or reject (E4 does not include
this decision). Furthermore, like in Section 3.1, we write RA and RB etc. for Alice
and Bob’s respective values for R etc.

Theorem 1 (Security). Assuming that Hmin(XW |WE◦) > kK + q, Protocol
AUTH fulfills the security property defined in Definition 5 with

δ ≤ 3 · 2−q +
1
2

√
2q(λ + t εK).

In fact, we will prove a slightly stronger statement than the security statement,
which will be of use also in the proof of the key privacy statement. Let MA :=
(μA, RA, SA) and MB := (μB, RB, SB). We will prove that in protocol AUTH, if
Hmin(XW |WE◦) > kK +q, and conditioned on the event MA
= MB, Bob rejects
except with probability

δ′ ≤ 3 · 2−q +
1
2

√
2q(λ + t εK/Pr[MA
= MB]).

Note that this expression reduces to the simpler expression of Theorem 1 when
proving security, because in that case μA
= μB (by Definition 5) which implies
that Pr[MA
= MB] = 1.

Proof. Consider the phase in protocol AUTH after the second round of communi-
cation. Assume that ZA and TA are given to the adversary (this will only make
her stronger). Let KA := laExt(XW ;RA) and KB := laExt(XW ;RB).

From the chain rule, and by subsequently using that RB and SA are sampled
independently, it follows that

Hmin(XW |ZAWE2) ≥ Hmin(XW |WE2)− q ≥ Hmin(XW |WE◦)− q.

By assumption on the parameters, i.e. Hmin(XW |WE◦) > kK +q, it follows that
(KB,KA) is εK-look-ahead conditioned on ZA,W and E2. In order to apply
Lemma 2, we additionally condition on the event MA
= MB. By Lemma 1, it
is guaranteed that εK grows at most by a factor 1/Pr[MA
= MB] as a result of
this conditioning. We now apply Lemma 2 and conclude that

Guess(TB|TAZAWE2,MA
= MB) ≤ λ + t εK/Pr[MA
= MB].

The next step is to view QB := [UB · TB]q ⊕ VB · ZB as the output of a strong
extractor, with seed (UB, VB). Indeed, it is straightforward to verify that h :
{0, 1}s× {0, 1}q × {0, 1}s× {0, 1}q → {0, 1}q, which maps (t, z, u, v) to [u · t]q ⊕
v · z, is a universal hash function (with random seed (u, v)). Thus, we can apply
privacy amplification. One subtlety is that in protocol AUTH, VB is random in
{0, 1}q \ {0}q, rather than in {0, 1}q. However, this affects the overall state by
at most an additive term 2−q, and thus, by triangle inequality, the distance-to-
uniform by at most 2 · 2−q:

258 N.J. Bouman and S. Fehr

d(QB|UBVBTAZAWE2,MA
= MB)

≤ 1
2

√
2qGuess(TBZB|TAZAWE2,MA
= MB) + 2 · 2−q

≤ 1
2

√
2qGuess(TB|TAZAWE2,MA
= MB) + 2 · 2−q

≤ 1
2

√
2q(λ + t εK/Pr[MA
= MB]) + 2 · 2−q.

Finally, we have that

δ′ = Guess
(
QB

∣∣QAWE3,MA
= MB
)

≤ Guess
(
QB

∣∣UBVBTAZAWE2,MA
= MB
)

≤ 2−q + d(QB|UBVBTAZAWE2,MA
= MB)

≤ 3 · 2−q + 1
2

√
2q(λ + t εK/Pr[MA
= MB]).

Theorem 2 (Long-Term-Key Privacy). Assuming that Hmin(XW |WE◦) >
max(q+kK , kZ), Protocol AUTH fulfills the long-term-key privacy property defined
in Definition 5 with

ε ≤ 6 · 2−q +
√

2q
(
λ + t εK

)
+ εK + 2 εZ .

Proof. We first prove that none of the messages exchanged during the protocol
leaks information about W . Then, we show that in our protocol Bob’s decision
on whether to accept or reject neither leaks information about W .

Because RB is sampled independently of XW , and by the chain rule, it follows
that

Hmin(XW |WE1[UA · TA]q) ≥ Hmin(XW |WE◦)− q.

By assumption on the parameters in the statement of the proposition, i.e. that
Hmin(XW |WE◦) > q + kZ , and by the properties of Ext it follows that

d(ZA|WE2[UA · TA]q) ≤ d(ZA|SAWE1[UA · TA]q) ≤ εZ .

By the fact that UB and VB are sampled independently, the following also holds

d(ZA|WE3[UA · TA]q) ≤ εZ .

Then, by security of the one-time pad, by the fact that Eve cannot gain infor-
mation on W by computing QB, and by assumption that ρWE◦ = ρW ⊗ E◦,

1
2‖ρWE4 − ρW ⊗ ρE4‖1 ≤ 1

2‖ρWE3QA − ρW ⊗ ρE3QA‖1 ≤ εZ .

This completes the first part of the proof.
It remains to show that Bob’s decision to accept or reject cannot leak (a sub-

stantial amount of) information about W . To show this, we make the following
case distinction. In case μA
= μB, the security proof applies and Bob rejects ex-
cept with probability δ ≤ 3 · 2−q + 1

2

√
2q(λ + t εK). It now immediately follows

that
1
2‖ρWE4 − ρWE‖1 ≤ δ, and 1

2‖ρW ⊗ ρE4 − ρW ⊗ ρE‖1 ≤ δ.

Secure Authentication from a Weak Key, without Leaking Information 259

Hence, in case μA
= μB (by the triangle inequality),

1
2‖ρWE − ρW ⊗ ρE‖1 ≤ εZ + 2δ.

We now turn to the case μA = μB and we analyze for two disjoint events.
Conditioned on MA
= MB, the strengthened version of the security statement
applies, i.e.

δ′ ≤ 3 · 2−q + 1
2

√
2q
(
λ + t εK/Pr[MA
= MB]

)
,

and again by applying the triangle inequality, we obtain

1
2‖ρWE|MA �=MB − ρW ⊗ ρE|MA �=MB‖1 ≤ εZ + 2δ′.

Secondly, we analyze for the event MA = MB. Nevertheless, we start this analysis
without conditioning on MA = MB. (We’ll condition on this event later in the
proof.) Since SA is sampled at random and independently of XW , and since
Hmin(XW |WE◦) > kZ , it follows that

d(ZA|SAWE◦) < εZ .

By the chain rule (and the independent choice of SA),

Hmin(XW |ZAWE2) ≥ Hmin(XW |WE◦)− q > kK ,

and thus
d(KB|RBZASAWE◦) < εK .

From the above, and the independent choices of RB and SA, it follows that

1
2‖ρKBZARBSAWE◦ − ρU ⊗ ρU ′ ⊗ ρRB ⊗ ρSA ⊗ ρW ⊗ ρE◦‖1 ≤ εK + εZ .

where ρU is the fully mixed state on HKB and ρU ′ is the fully mixed state on
HZA , and therefore that

1
2‖ρKBZAWE2 − ρU ⊗ ρU ′ ⊗ ρW ⊗ ρE2‖1 ≤ εK + εZ .

We now condition on MA = MB. Note that conditioned on this event, KA =
KB and ZA = ZB, and therefore, from here on, we omit the subscripts for
these random variables and simply write K and Z. From Lemma 1 (noting that
whether the event MA = MB holds is determined by E2), we get

1
2‖ρKZWE2|MA=MB − ρU ⊗ ρU ′ ⊗ ρW ⊗ ρE2|MA=MB‖1 ≤

εK + εZ
Pr[MA = MB]

.

UB and VB are chosen uniformly at random and independent of the rest (and
also independently of the event MA = MB). Furthermore, since E is computed
from (KZE4) alone, it follows that

1
2‖ρWE|MA=MB − ρW ⊗ ρE|MA=MB‖1 ≤

εK + εZ
Pr[MA = MB]

.

260 N.J. Bouman and S. Fehr

We now combine the analyses for the two disjoint events, and conclude that in
case μA = μB,

1
2‖ρWE − ρW ⊗ ρE‖1
≤ Pr[MA
= MB] 1

2‖ρWE|MA �=MB − ρW ⊗ ρE|MA �=MB‖1
+ Pr[MA = MB] 1

2‖ρWE|MA=MB − ρW ⊗ ρE|MA=MB‖1
= Pr[MA
= MB] (εZ + 2δ′) + εK + εZ

≤ Pr[MA
= MB]
[
εZ + 6 · 2−q +

√
2q
(
λ + t εK/Pr[MA
= MB]

)]
+ εK + εZ

≤ 6 · 2−q +
√

2q
(
λ + t εK

)
+ εK + 2 εZ.

Note that we have computed two upper bounds on 1
2‖ρWE − ρW ⊗ ρE‖1, for

two distinct cases: μA
= μB and μA = μB. Obviously, the weaker (larger) upper
bound holds in both cases, and we finally conclude that

1
2‖ρWE − ρW ⊗ ρE‖1 ≤ 6 · 2−q +

√
2q
(
λ + t εK

)
+ εK + 2 εZ .

6 The Fuzzy Case

Up to here, we assumed a scenario where Alice and Bob share identical copies
of the session key XW . Let us now consider the “fuzzy” case, where Alice and
Bob hold keys that are only close in some sense, but not necessarily equal. This
kind of scenario naturally arises when Alice and Bob obtain their session keys
in the presence of noise. For simplicity and with our application (Section 7) in
mind, we use the Hamming distance to measure closeness between keys.

Consider the following simple approach. Let Bob’s key be called XW . Before
executing the authentication scheme, Bob sends some error correcting informa-
tion (like the syndrome of XW with respect to some error correcting code) to
Alice, so that she can correct the errors in her key, X ′

W , or vice versa. Unfortu-
nately, Eve may of course also modify this error-correcting information, so that
Alice might not correct X ′

W correctly, in which case our scheme is not guar-
anteed to work. However, as proved in [9], this approach does work if one uses
alternating-extraction-based instantiations of look-ahead extractors. For this so-
lution to work it is important that both XW and X ′

W have sufficient min-entropy,
and that Bob sends the error correcting information to Alice (i.e. the error-
correction information must be sent in the same direction as the seed for the
look-ahead extractor). The same holds in our setting where Eve is allowed to
have quantum side information.

One subtlety is that the error correcting information must not leak informa-
tion about W , to preserve the privacy property. Exactly this problem is addressed
in [8], and is generalized to the quantum setting in [10]. Note that it is straight-
forward to upper bound the min-entropy loss in XW (and X ′

W) due to error
correction: by the chain rule this is at most the bitsize of the error-correction
information.

Secure Authentication from a Weak Key, without Leaking Information 261

7 Application: Password-Based Identification in the
Bounded Quantum Storage Model

Our main application is to password-based identification in the bounded quan-
tum storage model. Damg̊ard et al. proposed in [4] two password-based identi-
fication schemes, Q-ID andQ-ID+. The former is truly password based but does
not protect against a man-in-the-middle attack, whereas the latter is secure
against a man-in-the-middle attack but is not truly password-based, because
the “User” U and “Server” S need to additionally share a secret high-entropy
key3. We sketch here how our authentication scheme leads to a truly password-
based identification scheme in the bounded quantum storage model with security
against man-in-the-middle attacks.

The idea of Q-ID and Q-ID+ is as follows. U sends n BB84 qubits Hθ|x〉 =
Hθ1 |x1〉⊗ · · ·⊗Hθn |xn〉 to S, who measures them in basis c(w) ∈ {0, 1}n, where
w is the common password and c is some appropriate code with large minimal
distance d. Then, U announces the basis θ ∈ {0, 1}n used for the BB84 qubits.
This allows U and S to compute the string xw consisting of all the positions of
x with θi = c(w)i, i.e., where U and S used the same basis. Then, U needs to
convince S that he indeed knows (the same) string xw . Damg̊ard et al. show a way
to do this which is guaranteed to not leak any information on w to a potentially
dishonest U or S. Security against a dishonest U holds unconditionally, whereas
security against a dishonest S holds in the bounded quantum storage model
(where S is assumed to have limited quantum storage). At the core of the latter
proof is a lower bound on the min-entropy of xw from the dishonest server’s
point of view, which follows from the uncertainty relation from [5].

To make the protocol secure against man-in-the-middle attacks, some way is
needed to protect the (classical and quantum) communication against tampering.
In order to detect tampering with the communicated qubits, U and S choose a
random sample of the qubits and verify that on those no tampering took place.
In order to detect tampering with the classical communication, Damg̊ard et al.
propose to use a so-called extractor MAC. Such a MAC is similar to a standard
information-theoretic MAC, and as such requires a high-entropy key, but is also
an extractor. The way in which this extractor MAC is used in Q-ID+ allows to
re-use the high-entropy key.

7.1 Our Approach

Our approach of obtaining security against man-in-the-middle attacks without a
high-entropy key is now simply to do the authentication of the classical commu-
nication by applying protocol AUTH of Section 4, using xw as weak session key.
Our privacy property guarantees that the authentication does not leak infor-
mation on the password w. We stress that previous schemes for authentication
based on weak keys would (potentially) leak here information on w.
3 The high entropy key is only needed to protect against a man-in-the-middle attack,

security against dishonest U and S only relies on the password and holds even if the
dishonest party knows the high entropy key.

262 N.J. Bouman and S. Fehr

There are a couple of subtleties to be taken care of with our approach. If the
quantum communication is noisy (which it is in realistic scenarios) or if the man-
in-the-middle attacker modifies some of the qubits (but few enough so that he is
not detected) or θ, then U and S’s versions of xw are not identical. Thus, we are
in the fuzzy case. As discussed in Section 6, this is not a problem as long as the
error-correcting information is sent from Bob to Alice, which means from S to U
in the identification setting, and as long as we have lower bounds on both U and
S’s versions of xw (from the attacker’s point of view). The first requirement is
easily taken care of, we just perform the error correction in the required direction;
from S to U . In order to guarantee that both versions of xw have sufficient
min-entropy (the analysis of Damg̊ard et al. only guarantees min-entropy in U ’s
version), we modify the scheme as follows. Instead of measuring the BB84 qubits
in basis c(w), S measures them in a random basis θ̂ and announces the difference
r = c(w)⊕ θ̂. Then, U and S update the code c by shifting every code word by r,
so that with respect to the updated code c′, S has actually measured the BB84
qubits in basis c′(w). This trick has also been used in [3], though for a different
reason, and has no real effect on the analysis of the scheme. However, as we show
below, it enables us to argue that also S’s version of xw has lower-bounded min-
entropy, and therefore the authentication of the classical messages is guaranteed
to work, which implies security of our password-based identification scheme.

Recall that security against a dishonest U or a dishonest S requires that
the dishonest party can exclude at most one possibility for the password w (in
one execution of the attack); indeed, this is the best we can hope for, because
the dishonest party can always try to guess w. For password-based man-in-the-
middle security, we require that the attacker can exclude at most two possibilities
for the password. Again, this is the best we can hope for, because in a man-in-
the-middle attack, the attacker can (but of course does not have to) individually
attack U and S, and in both attacks he can try to guess w. This is the man-in-
the-middle security that we achieve with our scheme.

We first outline our scheme below and then argue (informally) why it is se-
cure. From here, we use upper case letters for the random variables that describe
the values x, θ, w, etc. in a (purified) execution of the protocol. It follows from
the analysis of Q-ID+ in [4] (which still applies under the shifted-codeword mod-
ification outlined above) that there exists a W ′ (independent of W) such that
unless W ′ = W , there is min-entropy in X restricted to IW from Eve’s point of
view.

For X ′ we reason as follows. Consider two possibilities for W ; say w1 and
w2. We focus on the positions where c(w1)
= c(w2) (which will be the same
positions when replacing c by c′). We now fix θ; the following will hold for any
choice of θ (chosen by U). From the uncertainty relation of [5] it follows that,
approximately,

Hmin(X ′
12|Θ̂) ≥ d/2,

where X ′
12 is the restriction of X ′ to the positions where c(w1)
= c(w2), and

remember that d represents the minimum distance of c. Because X ′ and Θ̂ are
independent of W , and, in turn, R is determined by Θ̂ and W , we have that

Secure Authentication from a Weak Key, without Leaking Information 263

1. U picks x, θ ∈R {0, 1}n and sends the n-qubit state Hθ|x〉 to S.
2. S picks θ̂ ∈R {0, 1}n and measures Hθ|x〉 in basis θ̂. Let x′ be the outcome.

S computes and sends r := θ̂ ⊕ c(w) to U . We define c′(w) := c(w) ⊕ r and
Iw := {i : θi =c′(w)i}.

3. U sends θ and f ∈R F to S.
4. S picks g ∈ G, j ∈R J and a random subset T ⊂ {1, . . . , n} of size �, computes

s := synj(x′|Iw) and test′ := x′|T , and sends g, j, s and T to U .
5. U sets test := x|T , recovers x′|Iw from x|Iw with the help of s, and sends test and

z := f(x′|Iw)⊕ g(w) to S.
6. Using weak key x′|Iw , U authenticates all communicated classical messages, i.e.

r, θ, f, g, j, s, T, test, z, using AUTH, towards S.
7. S accepts if and only if (1) AUTH accepts, (2) test coincides with test′ wherever the

bases coincide (up to some allowed noise level), and (3) z = f(x′|Iw)⊕ g(w).

Hmin(X ′
12|Θ̂WR) ≥ d/2. To additionally condition on Eve’s quantum system E,

we apply the storage bound q and conclude that Hmin(X ′
12|Θ̂WRE) ≥ d/2− q.

Since F is independently chosen, we may additionally condition on F .
Let Θ̃ be the (possibly) adversarially modified version of θ, which is sent in

step 3. The adversary obtains Θ̃ as a quantum measurement on FRE, so we
may condition on Θ̃ instead of E without lowering the bound. Now, because
of the conditioning on Θ̂Θ̃WFR, we can replace X ′

12 by the pair X ′
1X

′
2 in the

min-entropy bound, where X ′
1 consists of the positions where Θ̃ = c′(w1) and

similarly X ′
2. (The entropy cannot decrease by not restricting to the positions

c(w1)
= c(w2) anymore.) Thus,

Hmin(X ′
1X

′
2|Θ̂Θ̃WFR) ≥ d/2− q,

and therefore in particular

Hmin(X ′
1X

′
2|Θ̃FR) ≥ d/2− q.

This holds for any w1 and w2, so that the entropy splitting lemma [4] implies
the existence of W ′′ (independent of W), so that unless W ′′ = W , there is
lower-bounded min-entropy in X ′ restricted to IW from Eve’s point of view
after step 3. Note that at the point where X ′|IW is actually used to run protocol
AUTH, Eve will have obtained additional information (i.e. during step 4 and 5).
However, it is not hard to upper-bound the min-entropy loss in X ′|IW due to
this additional information, so that with the right choice of parameters there is
still lower bounded min-entropy.

We have argued that both X |IW and X ′|IW , or, respectively X ′
W and XW in

the terminology of Section 6, have lower-bounded min-entropy from Eve’s point
of view. Furthermore, in our proposed identification scheme above, S sends the
error-correcting information to U . Together, this guarantees the security of AUTH
when applied in the fuzzy case. Although in the original protocol (Q-ID+) the
error-correction information is sent in the other direction, reversing this direction
is allowed because the authentication makes sure that no message is modified.

264 N.J. Bouman and S. Fehr

Now, security follows from the analysis of Q-ID+ [4] (as well as from [3] regarding
the shifted-codeword modification).

Acknowledgment

We would like to thank Krzysztof Pietrzak for interesting discussions and valu-
able comments regarding this work.

References

1. Bouman, N.J., Fehr, S.: Secure authentication from a weak key, without leaking
information (full version). Cryptology ePrint Archive (2011),
http://eprint.iacr.org/2011/034

2. Chandran, N., Kanukurthi, B., Ostrovsky, R., Reyzin, L.: Privacy amplification
with asymptotically optimal entropy loss. In: STOC 2010: Proceedings of the 42nd
ACM Symposium on Theory of Computing, pp. 785–794. ACM, New York (2010)

3. Damg̊ard, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the
security of quantum protocols via commit-and-open. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg (2009)

4. Damg̊ard, I., Fehr, S., Salvail, L., Schaffner, C.: Secure identification and QKD in
the bounded-quantum-storage model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 342–359. Springer, Heidelberg (2007)

5. Damg̊ard, I.B., Fehr, S., Renner, R., Salvail, L., Schaffner, C.: A tight high-order
entropic quantum uncertainty relation with applications. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 360–378. Springer, Heidelberg (2007)

6. De, A., Portmann, C., Vidick, T., Renner, R.: Trevisan’s extractor in the presence
of quantum side information. arXiv (2009), http://arxiv.org/abs/0912.5514

7. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

8. Dodis, Y., Smith, A.: Correcting errors without leaking partial information. In:
STOC 2005: Proceedings of the 37th Annual ACM Symposium on Theory of Com-
puting, pp. 654–663. ACM, New York (2005)

9. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: STOC 2009: Proceedings of the 41st Annual ACM Sympo-
sium on Theory of Computing, pp. 601–610 (2009)

10. Fehr, S., Schaffner, C.: Randomness extraction via δ-biased masking in the presence
of a quantum attacker. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 465–
481. Springer, Heidelberg (2008)

11. Kanukurthi, B., Reyzin, L.: Key agreement from close secrets over unsecured
channels. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 206–223.
Springer, Heidelberg (2009)

12. König, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-
entropy. IEEE Transactions on Information Theory 55(9), 4337–4347 (2009)

13. Renner, R.: Security of Quantum Key Distribution. Ph.D. thesis, ETH Zürich
(Switzerland) (2005)

14. Renner, R., König, R.: Universally composable privacy amplification against quan-
tum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425.
Springer, Heidelberg (2005)

http://eprint.iacr.org/2011/034
http://arxiv.org/abs/0912.5514

Secure Authentication from a Weak Key, without Leaking Information 265

15. Renner, R., Wolf, S.: Unconditional authenticity and privacy from an arbitrarily
weak secret. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 78–95.
Springer, Heidelberg (2003)

16. Renner, R., Wolf, S.: The exact price for unconditionally secure asymmetric
cryptography. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 109–125. Springer, Heidelberg (2004)

17. Van De Graaf, J.: Towards a formal definition of security for quantum protocols.
Ph.D. thesis, Univ. de Montreal, Quebec, Canada (1998)

A Security and Instantiation of MAC

To construct a MAC with look-ahead security, we adopt the construction given
in [9]. Because our look-ahead security definition, Definition 8, is slightly weaker
than the one given in [9] (in that both μA and μB are fixed), we obtain a better
security parameter, as argued below.

With respect to a different aspect, the requirement on the MAC for our con-
struction is somewhat stronger, because we need a “universal” MAC which is
(ε, λ+ ε)-look-ahead secure for any ε ≥ 0 (and some λ). (This requirement stems
from the proof of Lemma 2.) It turns out that the construction from [9] in the
light of our weaker security definition does satisfy this property.

Proposition 1. For any positive integers m and �, there exists a family of
functions {MACk : {0, 1}m → {0, 1}s}, indexed by keys k ∈ ({0, 1}�)t, that is
(ε, 2−� + ε) look-ahead secure for any ε > 0, where t = 4m and s = 2m�.

The proof of the statement that MACk is (ε, 2−� + ε) look-ahead secure for any
ε > 0 largely follows the proof of Lemma 15 Appendix E.3 of [9] (and still applies
in the quantum setting). However, our modification (of fixing both μA and μB
before executing DW-MAC) overcomes the need for a union bound over all possible
messages μB in that original proof, and hence saves us a factor of 2m.

For completeness, we very briefly describe the idea of the construction here.
MACk(μ) outputs some of the blocks ki of the key k = (k1, . . . , kt); where the
choice of this subset is determined by μ. Furthermore, the construction guaran-
tees that for any two distinct messages μ and μ′, there exists an index i◦ < t
such that MACk(μ) outputs more blocks ki with i > i◦ than MACk(μ′) does.
From the look ahead property, it follows that given k′1, . . . , k′i◦ , the remaining
blocks ki◦+1, . . . , kt are (close to) random. Then, from the choice of i◦ and from
the chain rule we conclude that when given MACk′(μ′), the tag MACk(μ) still
contains at least (nearly) � bits of min-entropy.

Secret Keys from Channel Noise

Hadi Ahmadi and Reihaneh Safavi-Naini

Department of Computer Science, University of Calgary, Canada
{hahmadi,rei}@ucalgary.ca

Abstract. We study the problem of unconditionally secure Secret Key
Establishment (SKE) when Alice and Bob are connected by two noisy
channels that are eavesdropped by Eve. We consider the case that Alice
and Bob do not have any sources of initial randomness at their disposal.
We start by discussing special cases of interest where SKE is impossible
and then provide a simple SKE construction over binary symmetric chan-
nels that achieves some rates of secret key. We next focus on the Secret
Key (SK) capacity and provide lower and upper bounds on this capac-
ity. We prove the lower bound by proposing a multi-round SKE protocol,
called the main protocol. The main protocol consists of an initialization
round and the repetition of a two-round SKE sub-protocol, called the
basic protocol. We show that the two bounds coincide when channels do
not leak information to the adversary. We apply the results to the case
that communicants are connected by binary symmetric channels.

1 Introduction

In cryptography, it is commonly assumed that parties have access to sources
of randomness for their randomized protocols. It is also common to assume
that this randomness is perfect, represented as a sequence of independently and
uniformly random bits. Noting that, in many scenarios, the distribution of the
random source is either biased or unknown, Dodis and Spencer [10] initiated the
study of building cryptographic primitives using imperfect random sources. They
focussed on symmetric-key encryption and message authentication and showed
that in both cases the corresponding sources do not require perfect randomness.

In practice, generating randomness with high entropy needs specialized hard-
ware and/or software as well as access to complex processes that could be hard
to obtain, e.g., when devices with low computational resources are considered.
A natural question is then whether the need for a separate random source can
be eliminated from a particular cryptographic task. Obviously, cryptography is
not possible without randomness. For devices with communication capability
however, channel noise is an attractive resource for providing randomness.

Physical communication channels are noisy and can be viewed as potential re-
sources to produce randomness. Wyner’s pioneering work [18] showed that chan-
nel noise can be used to provide perfect security in message transmission. This
work started a long line of research that relies on channel noise for constructing
cryptographic primitives and it shares the vision of Crépeau and Kilian [7] that,

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 266–283, 2011.
c© International Association for Cryptologic Research 2011

Secret Keys from Channel Noise 267

“Noise, on the other hand, breeds disorder, uncertainty, and confusion. Thus, it
is the cryptographer’s natural ally.”

Wyner’s work and, to our knowledge, all cryptographic systems that use noisy
channels as a resource also assume access to sources of initial randomness. In
this paper, we initiate the study of cryptographic systems without making this
assumption. We consider the case that the algorithms have hardwired and public
constant strings, such as IDs, and the only resource for randomness is channel
noise. One may ask whether, in such a setting, a particular cryptographic prim-
itive exists and, if it does, whether it is sufficiently efficient to be of practical
interest. We focus on the basic task of Secret Key Establishment (SKE) in the
presence of a passive adversary and pose the following question:

Question 1. Can Alice and Bob establish a shared secret key, without having
access to initial randomness, by communicating over noisy channels that leak
information to an eavesdropping adversary, Eve? In the case of a positive answer,
are there efficient constructions to generate secret keys in practice?

To the best of our knowledge, this paper is the first work to consider SKE with
no initial randomness.

1.1 Our Work

We focus on Question 1 and study SKE over a pair of independent Discrete
Memoryless Broadcast Channels (DMBCs). We refer to this setup as 2DMBC.
SKE in this setup has been studied in [2]; however, again, it was assumed that
Alice and Bob have access to initial randomness. We assume Alice and Bob have
fixed strings, a and b, respectively. We also assume a full-duplex model of com-
munication where, in each communication round, Alice and Bob send sequences
of the same length. This communication model is used to simplify the presen-
tation of our results; the results can be easily adapted to half duplex-channels
where, in each communication round, either Alice or Bob sends a sequence.
Impossibility results: Beyond doubt, SKE without initial randomness is im-
possible if the channels between the parties are noise free. In Section 3, we
discuss special cases of 2DMBC where SKE is impossible despite the existence
of noise in the system. These special cases include (1) one-way communication,
(2) when one DMBC is completely noise free, and (3) when one DMBC is noisy
but returns two identical outputs. We note that the possibility of SKE in the
above cases has been already proved [8, 12, 9] with the assumption that initial
randomness is available to the parties.

SKE Construction: We give a positive answer to Question 1 by considering an
example scenario where each DMBC consists of two independent Binary Sym-
metric Channels (BSCs). We propose a two-round SKE construction that uses
three simple primitives, a von Neumann randomness extractor, a binary error-
correcting code, and a universal hash function. The protocol works as follows.
In round 1, Alice sends a constant (all-zero) sequence to Bob; Bob receives a
noisy string and uses the von Neumann extractor to derive a uniformly random
binary sequence from it. In round 2, Bob splits the uniform sequence into two

268 H. Ahmadi and R. Safavi-Naini

sub-sequences, encodes them separately, and sends the codewords to Alice. Alice
decodes her received sequence to find the two sub-sequences. Finally, Alice and
Bob apply universal hashing to the sub-sequences to derive a secure secret key.

Bounds on the SK capacity: We formalize the 2DMBC model and focus on
the general description of a SKE protocol over a 2DMBC. We define the Secret
Key (SK) capacity of a 2DMBC as the highest SK rate that all possible SKE
protocols can achieve. This leads to the following question:

Question 2. What is the SK capacity of a given 2DMBC?

Towards answering Question 2, we provide lower and upper bounds on the SK
capacity of a 2DMBC. We prove the lower bound by showing that there exists
a SKE construction to achieve it. We describe a multi-round SKE protocol,
referred to as the main protocol, that consists of an initialization round, followed
by repeated use of a two-round protocol, which we call the basic protocol.

The initialization round bootstraps the main protocol by providing Alice and
Bob with some pieces of “independent randomness”. By independent random-
ness, we mean a random variable that is independent of all variables collected by
other parties. The randomness is derived from channel noise and is required for
executing one iteration of the basic protocol. Each iteration of the basic protocol
uses the fresh randomness derived in the previous iteration, and simultaneously
serves two purposes: it (1) derives new pieces of independent randomness for
Alice and Bob (for the next iteration), and (2) derives a part of the secret key.
To accomplish these two purposes, the basic protocol uses two new deterministic
primitives, which we refer to as secure block code and secure equipartition, re-
spectively. Each iteration of the basic protocol achieves a fixed key rate. During
the initialization round however, no secret key bit is derived. Since the channel
uses in the initialization round can be amortized over the number of the consecu-
tive invocations of the basic protocol, the SK rate tends towards that of a single
basic protocol execution. Compared to other possible ways of key establishment
(see Section 1.2 for an example), the protocol described in this paper achieves
the highest rate, hence resulting in a tighter lower bound on the SK capacity.

The lower bound shows that positive SK rates are achievable when both DM-
BCs are in favor of the legitimate parties. More interestingly, it shows that this
condition, although sufficient, is not necessary and there are cases where both
DMBCs are in favor of Eve, yet it is possible to establish secure shared key.

We also provide an upper bound on the SK capacity and show that the lower
and the upper bounds coincide in the case that the channels do not leak any
information to the adversary. This corresponds to the problem of common ran-
domness generation over independent noisy channels, studied in [15], where the
common randomness capacity was derived.

Discussion: The communication scenario considered in this paper naturally oc-
curs in real life. All physical channels are noisy and in most cases, esp., in wireless
communication, they are easy to eavesdrop. Assuming no initial randomness is
also natural when communicating nodes, e.g., mobile devices, do not have ac-
cess to specialized hardware and complex processes. Our results show that, in

Secret Keys from Channel Noise 269

the absence of initial randomness, nodes can start with constant strings such as
their pre-stored IDs and “distill” randomness from channel noise.

Our work initiates a new direction of research: existence and construction of
cryptographic primitives when the only resource for randomness is channel noise.
We note that converting a cryptographic primitive that uses noisy channel as a
resource and allows Alice and Bob to have sources of initial randomness, to the
case that they do not have such a source is not straightforward.

The lower bound proof given in this paper uses an existential argument. How-
ever, attempts to design efficient while optimal primitives for secure equipartition
and secure block code can be directly applied to the main SKE protocol design
to achieve SK rates close to the lower bound. This is an interesting direction for
future research similar to the work in [5] that attempts to apply theoretical SKE
results in [18, 12] in practice.

It is remarkable that the SKE construction given for binary symmetric chan-
nels can be viewed as a relaxed version of the main protocol where a simplified
one-round basic protocol is used only once. The von Neumann extractor plays
the role of (secure) equipartition in deriving independent randomness while the
combination of coding and universal hashing is to replace the secure block code.
Of course, using these efficient but non-optimal primitives does not let SK rates
reach close enough to the lower bound. We discuss this more clearly by compar-
ing the construction SK rates with the lower bound results.

1.2 Related Work

The problem considered in this paper has relations to a part of prior work, in
particular, secure message transmission and key agreement over noisy channels,
key agreement using correlated randomness, and common randomness generation
over noisy channels. In the following, we briefly clarify these relations.

Exploiting channel noise to provide security functionalities is pioneered by
Wyner [18] who proposed an alternative to Shannon’s model of secure commu-
nication [14]. Wyner’s work initiated a long line of research on utilizing channel
noise to construct information theoretically secure cryptographic primitives in-
cluding SKE [1,8, 11, 12, 13], Oblivious Transfer (OT) [7], and Bit Commitment
(BC) schemes [4]. In all these works however, access to initial randomness is
assumed and removing this assumption will require revisiting the results and
examining the existence of the primitives.

Maurer [12], concurrently with Ahlswede and Csiszár [1], studied the problem
of key agreement over a public discussion channel when Alice and Bob have
initial correlated randomness, where they derived lower and upper bounds on
the SK capacity. Key agreement using correlated randomness and a one-way
noisy channel has been discussed in [11, 13].

The following two works are closely related to the setting in this paper, while
neither can provide a solution to the problem. Venkatesan and Anantharam [15]
considered shared randomness generation over a pair of independent channels
and acquired the common randomness capacity. The authors noted that their
results could not be applied to the case where the channels are eavesdropped

270 H. Ahmadi and R. Safavi-Naini

by Eve – the setting that is considered in this paper. In [2], we considered
SKE in the 2DMBC setup and provided bounds on the SK capacity. That work,
however, assumed the availability of free independent randomness without which
the proofs will not be valid. Assuming no initial randomness, one may of course
use the results in [2] to design a protocol as follows. Alice and Bob first execute an
initialization round to derive the required amount of independent randomness.
Next, they run the protocol in [2] to establish a secret key. Compared to this,
our main protocol potentially increases the SK rate up to two times, through
iteration. The particular novelty of the basic protocol is that it combines the
dual tasks of secure key derivation and randomness generation.

1.3 Notation

We use calligraphic letters (X), uppercase letters (X), and lowercase letters
(x) to denote finite alphabets, Random variables (RVs), and their realizations
over sets, respectively. Xn is the set of all sequences of length n (so called n-
sequences) with elements from X . Xn = (X1, X2, . . . , Xn) ∈ Xn denotes a ran-
dom n-sequence in Xn. In case there is no confusion about the length, we use
X to denote a random sequence and x to denote a realization in Xn. While
describing a multiple round protocol, we may use Xn:r (or X:r) to indicate a
random n-sequence that is sent, received, or obtained in round r. ‘||’ denotes the
concatenation of two sequences. For a value x, we use (x)+ to show max{0, x}
and, for an integer N , we use [N] to show the set of integers {1, 2, . . . , N}. All
logarithms are in base 2 and, for 0 ≤ p ≤ 1, h(x) = −p log p− (1− p) log(1− p)
denotes the binary entropy function.

1.4 Paper Organization

Section 2 describes SKE over 2DMBCs and delivers the security definitions. In
Section 3, we provide the impossibility results and the simple SKE construction
over BSCs. Section 4 summarizes our main results on the SK capacity. In Section
5, we describe the main protocol that achieves the lower bound. Section 6 studies
the SKE results for the case of BSCs and Section 7 concludes the paper.

2 Problem Statement

The 2DMBC setup is shown in Fig. 1(a). There is a forward DMBC from Alice
to Bob and Eve, denoted by (Xf ,Yf ,Zf , PYf ,Zf |Xf

), and a backward DMBC
from Bob to Alice and Eve, denoted by (Xb,Yb,Zb, PYbZb|Xb

). The parties have
deterministic computation systems.

To establish a secret key, Alice and Bob follow a SKE protocol with t commu-
nication rounds where, in round r, each channel is used nr times. The protocol
is defined by a sequence of deterministic function pairs, (fr, gr)t−1

r=1, and a pair
of (deterministic) key derivation functions (φA, φB) such that

fr : Yσr−1
f → Xnr

f , φA : Ynf → S ∪ {⊥}, (1)

gr : Yσr−1
b → Xnr

b , φB : Ynb → S ∪ {⊥}, (2)

Secret Keys from Channel Noise 271

F dX YfForward
DMBC

Eve

Xf

BobAlice Zf

f

Zb
XbBackward

DMBC
Yb

(a) General 2DMBC

Xf
Yf

1p
BSC

2p
BSC

Eve BobAlice

Xb

Zf

Yb

Zb
2p

BSC

1p
BSC

1p

(b) Independent BSCs

Fig. 1. The 2DMBC setup (a) in general and (b) in the case of independent BSCs

where σj =
∑j

i=0 ni, ⊥ indicates the error symbol, and n = σt−1 is the total
number of channel uses. The protocol takes as input a pair, (a,b) ∈ Xn0

f ×Xn0
b , of

constant and publicly known sequences. In a communication round r, Alice and
Bob send the nr-sequences X:r

f and X:r
b and receive Y:r

b and Y:r
f , respectively.

Eve receives (Z:r
f ,Z

:r
b). The input sequences are calculated as

X:r
f =

{
a, r = 0
fr(V :r−1

A) 1 ≤ r ≤ t− 1
, X:r

b =

{
b, r = 0
gr(V :r−1

B) 1 ≤ r ≤ t− 1
. (3)

V :r−1
A , V :r−1

B , and V :r−1
E are, respectively, the views of Alice, Bob and Eve, at

the end of round r − 1, i.e.,

V :r−1
A = (Y:i

b)r−1
i=1 , V :r−1

B = (Y:i
f)r−1
i=1 , and V :r−1

E = (Z:i
f ,Z

:i
b)r−1
i=1 . (4)

We have not included constants and deterministic functions that are applied
to the variables in the views, since they do not contain any information (ran-
domness). When the t rounds of communication are completed, Alice and Bob
calculate their secret keys respectively as

SA = φA(V :t−1
A), and SB = φB(V :t−1

B). (5)

Let V iewE = V :t−1
E be Eve’s view at the end of the protocol.

Definition 1. For Rsk ≥ 0 and 0 ≤ δ ≤ 1, the SKE protocol Π is (Rsk, δ)-
secure if there exists a random variable S ∈ S such that the following require-
ments are satisfied:

Randomness:
H(S)
n

≥ Rsk − δ, (6a)

Reliability: Pr(SA = SB = S) ≥ 1− δ, (6b)

Secrecy:
H(S|V iewE)

H(S)
≥ 1− δ. (6c)

Definition 2. The Secret-Key (SK) capacity Csk is defined as the largest Rsk ≥
0 such that, for any arbitrarily small δ > 0, there exists an (Rsk, δ)-secure SKE
protocol.

272 H. Ahmadi and R. Safavi-Naini

3 SKE in Special Cases of 2DMBC

3.1 Impossibility Results for Special Cases

We revisit a number of well-studied SKE scenarios that can be viewed as special
cases of 2DMBC. We argue that, without initial randomness available to parties,
SKE is impossible in these cases irrespective of the channel specification.

One-way communication: Consider a case that one of the DMBCs, say the
backward DMBC, always returns constant values at its outputs. This implies
one-way communication over the forward channel. Irrespective of the protocol,
Alice will never have a single bit of randomness in her view and, without ran-
domness, she cannot have a secret key. Note that this special case is essentially
the one-way DMBC setting of Csiszár and Körner [8], with the difference that
no initial randomness is provided to the parties.

One channel is noiseless and public: Without loss of generality, assume
that the backward DMBC has this property. For any SKE protocol as described
in Section 2, we have X:r

b = Y:r
b = Z:r

b for each round r. This suggests that,
overall, Eve’s view includes Alice’s view (see (4)). Eve can simply use Alice’s
key derivation function φA on her view to calculate SA. This setting is proved
to allow positive SK rates when parties have access to initial randomness [12].

One channel is noisy but returns two identical outputs: Assume that
this property holds for the backward DMBC. In this case, X:r

b may be different
from the outputs and we only have Y:r

b = Z:r
b . This is sufficient to argue that

Eve’s view includes Alice’s view; hence, the impossibility of SKE.

3.2 An SKE Protocol for Binary Symmetric Channels

Assume that the 2DMBC consists of four independent binary symmetric chan-
nels (BSCs) as illustrated in Fig. 1(b). The main channels have bit error proba-
bility p1, while both Eve’s channels have bit error probability p2. We describe a
two-round SKE construction that uses the primitives described below.

The von Neumann randomness extractor [16]: This extractor takes a
binary sequence of even length and output a variable length sequence that has
uniform distribution. For an input Bernoulli sequence Y = (Y1Y2, Y3Y4, . . . ,
Ym−1Ym) of even length m, where P (Yi = 1) = p, the von Neumann extractor
divides the sequence into m/2 pairs of bits and uses the following mapping on
each pair

00→ Λ, 01→ 0, 10→ 1, 11 → Λ,

where Λ represents no output. The output sequence is the concatenation of the
mapped bits. It is easy to observe that the extractor is computationally efficient
and the output bits are independently and uniformly distributed.

While the von Neumann extractor does not return a fixed-length output, it
can be used to design a function Ext : {0, 1}m → {0, 1}l ∪ {⊥} that derives a

Secret Keys from Channel Noise 273

l-bit uniform string from an m-bit Bernoulli sequence. The Ext function runs
the von Neumann extractor on the m-bit sequence Y. If the output length is less
l, it returns ⊥; otherwise, it returns the first l bits of the output. The probability
that, for an m-bit Bernoulli sequence with P (Yi) = p, Ext returns ⊥ equals

Pr(Errext) =
l−1∑
i=0

(m
2
i

)
(2p(1− p))i (1− 2p(1− p))

m
2 −i . (7)

An (n, k) binary error correcting channel code: We denote the encoding

and the decoding functions by Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n →
{0, 1}k, respectively. There are efficient (n, k) error correcting codes that can
correct nearly up to t = (n − k)/2 bits of error. When used over a BSC with
error probability p, the decoding error probability of such codes equals

Pr(nerr > t) =
n∑

i=t+1

(
n

i

)
pi (1− p)n−i. (8)

Universal class of hash functions: A class H of (hash) functions h : A → B
is universal [6], if for any distinct x1, x2 ∈ A, the equality h(x1) = h(x2) happens
with probability at most 1/|B|, provided that h is uniformly at random selected
from H. For the purpose of our SKE construction design, we use the following
universal class of hash function proposed in [17].

H = {hc : GF (2k) → {0, 1}s, c ∈ GF (2k)},

where hc(x) returns the first s bits of c.x, and the product is in the polyno-
mial representation of GF (2k). The hashing function is efficient in time and in
memory.

Protocol description: Using the above primitives, the SKE protocol proceeds
as follows. Alice sends her constant sequence Xf = a = (0)m over the forward
DMBC. Bob and Eve receive the m-sequences Yf and Zf (m is even). Bob
views this as an m-bit Bernoulli sequence, Yf = (Yf,1, . . . , Yf,m), with P (Yf,i =
1) = p1 and finds U = Ext(Yf). If U = ⊥, the error Errext occurs; otherwise,
Bob splits the l-bit U into two independent and uniform k-bit sequences U1
and U2, where k = l/2. He calculates the n-bit codewords X1b = Enc(U1) and
X2b = Enc(U2) and sends them over the backward DMBC where Alice and Eve
receive (Y1b,Y2b) and (Z1b,Z2b), respectively. Alice calculates the k-sequences
Û1 = Dec(Y1b) and Û2 = Dec(Y2b). The error event Errenc1 (resp. Errenc2)
occurs when Û1
= U1 (resp. Û2
= U2). Next, Alice and Bob use universal
hashing for privacy amplification, i.e., to derive keys that are secure against
Eve. The secret key is S = hC(U1) where C = U2. Bob calculates SB = S and
Alice calculates SA = hĈ(Û1) where Ĉ = Û2.

The above protocol provides Alice and Bob with s uniformly random bits
of key. The rate of key establishment is calculated as the number of the key

274 H. Ahmadi and R. Safavi-Naini

bits divided by the number of channel uses, i.e., Rsk = s
m+2n . Due to lack of

space, we omit the argument on reliability and secrecy of the construction. For
a detailed analysis, we refer to the full version in [3].

Table 1 shows the construction parameters for SKE over BSCs with p1 = 0.1
and p2 = 0.2 when the secret key length is s = 100 and the security parameter
δ has different values. According to this table, the achievable SK rate by this
construction is about Rsk = 0.015 bits per channel use.

Table 1. The SKE parameters with respect to δ values for s = 100

δ n k l m Rsk

10−1 404 300 600 5230 0.0166
10−2 458 330 660 5430 0.0158
10−3 508 358 716 5590 0.0151
10−4 560 388 776 5730 0.0146

Remark 1. Assuming the full-duplex communication model allows Alice and
Bob to run, in parallel, another execution of the protocol in the reverse direction.
This will double the SK rate achieved by this construction, i.e., Rsk = 0.03.

Remark 2. This construction is given to show the feasibility of efficient SKE
with no initial randomness. Using more optimal primitives, one may achieve
higher secret key rates.

4 Results on the SK Capacity

We provide lower and upper bounds on the SK capacity as defined in Section 2.
Let the RVs Xf , Yf , Zf and Xb, Yb, Zb denote the channel probability distribu-
tions PYf ,Zf |Xf

and PYb,Zb|Xb
, respectively.

Theorem 1. The SK capacity is lower bounded as

C2DMBC
sk ≥ max

μ≥0,PXf
,PXb

{LboundA + LboundB}, (9)

where

LboundA =
1

1 + μ
(μ(I(Yb; Xb)− I(Yb; Zb)) + γ1(I(Xf ; Yf)− I(Xf ; Zf))+) , (10)

LboundB =
1

1 + μ
(μ(I(Yf ; Xf)− I(Yf ; Zf)) + γ2(I(Xb; Yb)− I(Xb; Zb))+) , (11)

γ1 = min{1,
H(Yb|Xb, Zb) + μ(H(Yb|Xb)−H(Xf))

I(Xf ; Yf)
}, (12)

γ2 = min{1,
H(Yf |Xf , Zf) + μ(H(Yf |Xf)−H(Xb))

I(Xb; Yb)
}, (13)

such that

H(Yb|Xb, Zb) > μH(Xf), I(Xf ; Yf) > μH(Yb|Xb), (14)

H(Yf |Xf , Zf) > μH(Xb), I(Xb; Yb) > μH(Yf |Xf). (15)

Secret Keys from Channel Noise 275

Proof. See Section 5 and [3, Appendix A].

The lower bound (9) is achieved by the so-called main protocol, which consists
of an initialization round followed by iteration of the so-called basic protocol.
The full duplex channel allows Alice and Bob to run two instances of the basic
protocol in parallel. These two instances achieve the key rates LboundA and
LboundB, respectively. The key rate achieved in the second round of the basic
protocol depends on the DMBC parameters (i.e., I(Xf ;Yf) − I(Xf ;Zf) and
I(Xb;Yb) − I(Xb;Zb)), while that of the first round depends on the “inverse”
DMBC parameters (i.e., I(Yf ;Xf) − I(Yf ;Zf) and I(Yb;Xb) − I(Yb;Zb)). The
real value μ is the ratio between the number of channel uses in the first and the
second rounds. The real values γ1 and γ2 are to restrict the amount of achievable
key rate as a function of the randomness obtained from channel noise.

When both DMBCs are in favor of Alice and Bob, i.e., I(Xf ;Yf)− I(Xf ;Zf)
and I(Xb;Yb)−I(Xb;Zb) are positive, LboundA and LboundB will be positive by
simply choosing μ = 0. This implies a positive SK capacity. When the channels
are in favor of Eve, the lower bound may remain positive if the inverse DMBCs
are in favor of Alice and Bob. The study of the lower bound for BSCs in Section
6 shows clearly the existence positive SK rates in the latter case (see Fig. 2).

Theorem 2. The SK capacity is upper bounded as

C2DMBC
sk ≤ max

PXf
,PXb

{UboundA + UboundB}, where (16)

UboundA = min{H(Yb|Xb, Zb), I(Xf ; Yf |Zf)}, and (17)

UboundB = min{H(Yf |Xf , Zf), I(Xb; Yb|Zb)}. (18)

Proof. See [3, Appendix B].

Theorem 3 shows that the two bounds coincide when the two DMBCs do not
leak information. The resulting value matches the common randomness capacity
of a pair of independent Discrete Memoryless Channels (DMCs), given in [15].

Theorem 3. When the DMBCs do not leak information to Eve, the bounds
coincide and the SK capacity equals

C2DMBC
sk = max

PXf
,PXb

{min{H(Yb|Xb), I(Xf ; Yf)}+ min{H(Yf |Xf), I(Xb; Yb)}}. (19)

Proof. See [3, Appendix C].

5 The Main SKE Protocol: Achieving the Lower Bound

We noted that the bound in Theorem 1 is achieved by the main protocol. The
main protocol contains 2t + 1 rounds and does not assume any initial random-
ness. The protocol starts with an initialization round (round 0) that provides
Alice and Bob with some amount of independent randomness. This round is
followed by t iterations of a two-round sub-protocol, called the basic protocol.
The basic protocol takes some independent randomness from Alice and Bob and

276 H. Ahmadi and R. Safavi-Naini

returns to them a secret key part and some new independent randomness. The
independent randomness that is produced in iteration 1 ≤ r ≤ t−1 (resp. round
0) will be used in iteration r + 1 (resp. iteration 1). The secret key parts are
finally concatenated to give the final secret key. The main protocol relies on
the existence of two primitives, referred to as secure equipartition and secure
block code. In the following, we provide definitions and theorems to support the
existence of these primitives, and then we describe the main protocol.

5.1 Preliminaries

Definition 3. For a probability distribution PX over the set X , a sequence xn ∈
Xn is called ε-typical if |− 1

n logP (xn)−H(X)| < ε, where P (xn) =
∏n
i=1 P (xi).

Definition 4. An (n,M, ε)-block code for the DMC (X ,Y, PY |X) is a set
{(ci, Ci) : i ∈ [M]} such that ci ∈ Xn, (Ci)Mi=1 partitions Yn, and Pn

Y |X(Y n =
Ci|Xn = ci) ≥ 1− ε.

We define a secure block code for a DMBC as a composition of a block code and
a function that we refer to as a key derivation function, and is used to achieve
secure shared key between two parties in the presence of an adversary.

Definition 5. An (n,M,K, ε)-secure block code for theDMBC (X ,Y,Z, PY Z|X)
consists of an (n,M, ε)-block code for the DMC (X ,Y, PY |X) as above, a partition
of (ci)Mi=1 into (Kj)Kj=1, and a key derivation function φs : (ci)Mi=1 → [K] defined
as φs(ci) = j iff ci ∈ Kj, such that if Xn is uniformly selected from (ci)Mi=1 and
S = φs(Xn) then H(S|Zn)/ logK ≥ 1− ε.

Although the above definition of a secure block code as a primitive is new to
the literature, the work on secure message transmission or key agreement over
one-way DMBCs [18,8] implicitly studies the existence of such a primitive. The
results in [18,8] let us conclude the following.

Lemma 1. For any PX , Rc < I(X ;Y), Rsc < Rc − I(X ;Z), and large enough
n, there exists an (n,M,K, ε)-secure block code for the DMBC (X ,Y,Z, PY Z|X)
with ε-typical codewords ci such that M = �2nRc�, K = �2nRsc�, and ε =
max{2n(Rc−I(X;Y)), 2n(Rsc−(Rc−I(X;Z)))} → 0.

Proof. See [18, Theorem 2] and [8, Corrollary 1].

Lemma 1 indicates that, for the above DMBC, there exists a secure block code
that achieves key rates up to I(X ;Y)− I(X ;Z). In the following, we extend this
result by showing that the number of such secure block codes is such that any
Xn as input to the channel belongs to at least one of them.

Lemma 2. For any PX , Rc < I(X ;Y), Rsc < Rc − I(X ;Z), large enough
R′ > H(X) − Rc, and large enough n, there exist N (not necessarily dis-
tinct) (n,M,K, ε)-secure block codes for the DMBC (X ,Y,Z, PY Z|X) with ε-
typical codewords, such that M = �2nRc�, K = �2nRsc�, N = �2nR′�, and
ε = max{2n(Rc−I(X;Y)), 2n(Rsc−(Rc−I(X;Z)))} → 0; furthermore, the probability
that a randomly selected ε-typical sequence Xn ∈ Xn belongs to at least one of
the codes is at least 1− e−γ, where γ = 2n(R′+Rc−H(X)−ε) →∞.

Secret Keys from Channel Noise 277

Proof. See [3, Appendix D]

For a DMBC, a secure equipartition is a primitive to derive uniform randomness
that is independent of both input and Eve’s received sequence.

Definition 6. An (M, ε)-secure equipartition of C ⊆ Yn w.r.t. c ∈ Xn over the
DMBC (X ,Y,Z, PY Z|X) is an (M, ε)-equipartition of C over the DMC
(X ,Y, PY |X) and a randomness derivation function ψt : C → [M]∪⊥ defined as
ψt(yn) = j if yn ∈ C(j) and ψt(yn) = ⊥ if yn ∈ C(e), such that if Xn = c and
T = ψt(Y n), then H(T |Xn = c, Zn)/ logM ≥ 1− ε.

The following lemma shows the existence of a secure equipartition over the
DMBC that achieves randomness rates up to H(Y |XZ) bits per channel use.

Lemma 3. For any PX , typical c ∈ Xn, C ⊆ Yn of size less than 2nH(Y),
Rse < H(Y |XZ), and large enough n, there exists an (M, ε)-secure equipartition
over the DMBC (X ,Y,Z, PY Z|X) such that M = �2nRse� and

ε =
3I(Y ;X,Z)h(ε′)
H(Y |XZ)− ε′

→ 0, where ε′ = 2n(Rse−H(Y |XZ)).

Proof. See [3, Appendix E].

To describe of the main protocol, we shall use the notion of an inverse DMBC
that implies a virtual channel defined as follows.

Definition 7. Given a distribution PX , for a DMBC (X ,Y,Z, PY Z|X), we de-
fine its corresponding inverse DMBC as (Y,X ,Z, PXZ|Y) where PXZ|Y is cal-
culated from the joint distribution PXY Z .

5.2 Description of the Main Protocol

Let PXf
, PXb

, and μ be chosen such that the conditions (14) and (15) are
satisfied. The conditions can be rephrased as

n2H(Yb|Xb, Zb) ≥ n1(H(Xf) + α), n2I(Xf ; Yf) ≥ n1(H(Yb|Xb) + α), (20)

n2H(Yf |Xf , Zf) ≥ n1(H(Xb) + α), n2I(Xb; Yb) ≥ n1(H(Yf |Xf) + α), (21)

where α > 0 is a sufficiently small real constant, to be determined from δ,
and n1 and n2 are sufficiently large positive integers such that n1 = μn2, and
1/α = o(min{n1, n2}); in other words, 2−αmin{n1,n2} approaches zero. Define

R1f = H(Xf)− α, Rcf = I(Xf ; Yf)− α, Rscf = I(Xf ; Yf)− I(Xf ; Zf)− 2α,
Ref = H(Yf |Xf), R+

ef = H(Yf |Xf) + 2α, Rsef = H(Yf |Xf , Zf)− α,
Rscf−1 = I(Yf ; Xf) −I(Yf ; Zf)− 2α.

(22)

R1b = H(Xb)− α, Rcb = I(Xb; Yb)− α, Rscb = I(Xb; Yb)− I(Xb; Zb)− 2α,
Reb = H(Yb|Xb), R+

eb = H(Yb|Xb) + 2α, Rseb = H(Yb|Xb, Zb)− α,
Rscb−1 = I(Yb; Xb) −I(Yb; Zb)− 2α.

(23)

278 H. Ahmadi and R. Safavi-Naini

Each iteration of the two-round basic protocol uses the 2DMBC channel n1 times
in the first round and n2 times in the second round; i.e. in total n1 + n2. In the
second round, Alice (resp. Bob) sends two sequences of lengths n21A and n22A
(resp. n21B and n22B), where n21A + n22A (= n21B + n22B) = n2 and,

n21A =
1

Rcf
min{n2Rcf , n2Rseb + n1Reb − n1R1f}, (24)

n21B =
1

Rcb
min{n2Rcb, n2Rsef + n1Ref − n1R1b}. (25)

Using the above quantities, we define,

M1A = �2n1Rcb�, M21A = �2n21ARcf �,
K1A = �2n1R

scb−1 �, K21A = �2n21ARscf �,
NA = �2n1R+

eb�,
L1A = �2n1R1f �, L2A = �2n21ARcf−n1Reb�, LA = L1A.L2A,
Γ21A = min{LA, �2n21BRseb�}, Γ22A = �2n22B Rseb�, ΓA = Γ21A.Γ22A.

(26)

M1B = �2n1Rcf �, M21B = �2n21B Rcb�,
K1B = �2n1R

scf−1 �, K21B = �2n21B Rscb�,
NB = �2n1R+

ef �,
L1B = �2n1R1b�, L2B = �2n21BRcb−n1Ref �, LB = L1B .L2B ,
Γ21B = min{LB , �2n21ARsef �}, Γ22B = �2n22ARsef �, ΓB = Γ21B .Γ22B .

(27)

Using (22)-(26), one can observe that LA = ΓA and LB = ΓB in the above. Let
the set Xn1

f,ε = {xf,1, . . . ,xf,L1A} be obtained by independently selecting L1A
sequences in Xn1

f . Similarly define Xn1
b,ε = {xb,1, . . . ,xb,L1B} ⊆ Xn1

b . Let Alice
and Bob have two fixed public integers ua ∈ [Γ21A] and ub ∈ [Γ21B] as well as
two fixed public sequences a ∈ Xn22A

f and b ∈ Xn22B

b , respectively. Let uA,split :
[Γ21A] × [Γ22A] → [L1A] × [L2A] and uB,split : [Γ21B] × [Γ22B] → [L1B] × [L2B]
be arbitrary bijective mappings.

Define the inverse forward DMBC (Yf ,Xf ,Zf , PXf ,Zf |Yf
) and the inverse

backward DMBC (Yb,Xb,Zb, PXb,Zb|Yb
) according to Definition 7. Letting ε =

2−min(n1,n21A,n21B)α → 0 and γ = 2n1(α−ε) →∞, and using Lemmas 1, 2, and 3
we arrive at the following.

– For the inverse forward DMBC, there exist NB (n1,M1B,K1B, ε)-secure
block codes {djf,i,D

j
f,i : 1 ≤ i ≤ M1B, 1 ≤ j ≤ NB} with the key derivation

functions φjs,B , such that a randomly selected ε-typical sequence in Ynf is in
at least one of the codes with probability at least 1− e−γ .

– For the inverse backward DMBC, there exist NA (n1,M1A,K1A, ε)-secure
block codes {djb,i,D

j
b,i : 1 ≤ i ≤ M1A, 1 ≤ j ≤ NA} with the key derivation

functions φjs,A, such that a randomly selected ε-typical sequence in Ynb is in
at least one of the codes with probability at least 1− e−γ .

Secret Keys from Channel Noise 279

– For the forward DMBC, there exists an (n21A,M21A,K21A, ε)-secure block
code {cf,i, Cf,i : 1 ≤ i ≤ M21A} with the key derivation function φs,A;
furthermore, for each (cf,i, Cf,i) there exists a (Γ21B , ε)-secure equipartition
{Cf,i(e), Cf,i(1), . . . , Cf,i(Γ21B)} with the randomness derivation function ψiB .

– For the backward DMBC, there exists an (n21B,M21B,K21B, ε)-secure block
code {cb,i, Cb,i : 1 ≤ i ≤ M2B} with the key derivation function φs,B ;
furthermore, for each (cb,i, Cb,i) there exists a (Γ21A, ε)-secure equipartition
{Cb,i(e), Cb,i(1), . . . , Cb,i(Γ21A)} with the randomness derivation function ψiA.

– For the forward DMBC, for (a,Yf), there exists a (Γ22B, ε)-secure equiparti-
tion {Yf (e),Yf (1), . . . ,Yf (Γ22B)} with the randomness derivation function
ψB.

– For the backward DMBC, for (b,Yb), there exists a (Γ22A, ε)-secure equipar-
tition {Yb(e),Yb(1), . . . ,Yb(Γ22A)} with the randomness derivation function
ψA.

The initialization round (round 0): Alice and Bob send the constant n2-
sequences X:0

f = (cf,ua ||a) and X:0
b = (cb,ub

||b) over their channels and receive the
noisy versions Y:0

b = (Y1b||Y2b) and Y:0
f = (Y1f ||Y2f), respectively. Eve also

receives Z:0
f and Z:0

b . In this round, no secret key is established; however, to derive
independent randomness, Alice and Bob calculate U :0

A = (ψub

A (Y1b)||ψA(Y2b))
and U :0

B = (ψua

B (Y1f)||ψB(Y2f)), respectively. They next calculate (U :0
1A, U

:0
2A) =

uA,split(U :0
A) and (U :0

1B, U
:0
2B) = uB,split(U :0

B), where the first and the second parts
are respectively used in the first and the second rounds of iteration 1.

The basic protocol (iteration 1 ≤ r ≤ t): There are two rounds, 2r − 1
and 2r, where the protocol uses the 2DMBC n1 and n2 times, respectively. In
round 2r−1, Alice and Bob send X:2r−1

f = xf,U :2r−2
1A

and X:2r−1
b = xb,U :2r−2

1B
, and

receive Y:2r−1
b and Y:2r−1

f , respectively. Eve also receives Z:2r−1
f and Z:2r−1

b .
Alice finds (IA, JA) such that Y:2r−1

b = dJA

b,IA
, i.e., the IA-th codeword in

the JA-th secure block code over the inverse backward DMBC; similarly, Bob
obtains (IB , JB) such that Y:2r−1

f = dJB

f,IB
. Round 2r−1 may also be interpreted

as follows. Alice and Bob have encoded IA ∈ [M1A] and IB ∈ [M1B] to the
codewords dJA

b,IA
and dJB

b,IB
; they have sent them over the inverse DMBCs but have

not mentioned which block code they belong to. Thus, round 2r is primarily used
for sending the block code labels, i.e., JA ∈ [NA] and JB ∈ [NB]. That round is
also used to send the pieces of randomness, U :2r−2

2A ∈ [L2A] and U :2r−2
2B ∈ [L2B],

as well as the deterministic sequences, a and b.
In the beginning of round 2r, Alice and Bob respectively calculate QA ∈

[M21A] and QB ∈ [M21B] as (note that M21A = NA.L2A and M21B = NB.L2B)

QA = L2AJA + U :2r−2
2A , and QB = L2BJB + U :2r−2

2B . (28)

They next use the key derivation functions (in the secure block code) to calcu-
late key parts S:2r

A = φs,A(QA) and S:2r
B = φs,B(QB). In this round, Alice and

Bob send the n2-sequences X:2r
f = (cf,QA ||a) and X:2r

b = (cb,QB ||b) and receive
Y:2r
b = (Y1b||Y2b) and Y:2r

f = (Y1f ||Y2f), respectively. Eve also receives Z:2r
f

280 H. Ahmadi and R. Safavi-Naini

and Z:2r
b . Using the secure block code for the forward DMBC, Bob obtains Q̂A

such that Y1f ∈ Cf,Q̂A
and calculates Ŝ:2r

A = φs,A(Q̂A); similarly, Alice obtains
Q̂B such that Y1b ∈ Cb,Q̂B

and calculates Ŝ:2r
B = φs,B(Q̂B). To produce ran-

domness for the next iteration, Alice and Bob use their secure equipartitions to
calculate U :2r

A = (ψQ̂B

A (Y1b)||ψA(Y2b)) and U :2r
B = (ψQ̂A

B (Y1f)||ψB(Y2f)), re-
spectively. The randomness pieces are then split into (U :2r

1A , U :2r
2B) = uA,split(U :2r

A)
and (U :2r

1B , U :2r
2B) = uB,split(U :2r

B). The above calculations are to derive indepen-
dent randomness and secret key parts from round 2r. The following is for deriving
a key part out of round 2r − 1. Firstly, the parties calculate

Û :2r−2
2A = Q̂A mod (L2A), ĴA = (Q̂A − Û :2r−2

2A)/L2A, (29)

Û :2r−2
2B = Q̂B mod (L2B), ĴB = (Q̂B − Û :2r−2

2B)/L2B . (30)

The quantities ĴA ∈ [NA] and ĴB ∈ [NB] are used to find which secure block
codes need to be considered over the inverse DMBCs in round 2r − 1. More
precisely, Alice finds ÎB such that X:2r−1

f ∈ DĴB

f,ÎB
and Bob finds ÎA such that

X:2r−1
b ∈ DĴA

b,ÎA
. As for the establishment of the secret key part, Alice calculates

S:2r−1
A = φJA

s,A(dJA

b,IA
) and Ŝ:2r−1

B = φĴB

s,B(dĴB

f,ÎB
), and Bob calculates Ŝ:2r−1

A =

φĴA

s,A(dĴA

b,ÎA
) and S:2r−1

B = φJB

s,B(dJB

f,IB
). The total secret key part in iteration r

is
(
S:2r−1
A , S:2r

A , S:2r−1
B , S:2r

B

)
. Overall, the main protocol uses the 2DMBC n =

(2t+1)(n1 +n2) times to establish S = (S:r
A , S

:r
B)2tr=1. By following this protocol,

Alice calculates SA = (S:r
A , Ŝ

:r
B)2tr=1 and Bob calculates SB = (Ŝ:r

A , S
:r
B)2tr=1. In [3,

Appendix A], we show that the main algorithm satisfies the three requirements
given in Definition 1 and achieves the lower bound in Theorem 1.

6 The SK Capacity for Binary Symmetric Channels

Consider the case that each DMBC consists of independent BSCs with error
probabilities p1 and p2, i.e., the special case discussed in Section 3.2 (see Fig.
1(b)). Following the lower bound expression (9) in Theorem 1, and letting Xf

and Xb to be uniform binary RVs, we conclude the following lower bound on the
SK capacity in the case of BSCs, CBSC

sk .

CBSC
sk ≥ 2 maxμ≥0{Lbound}, such that (31)

Lbound = 1
1+μ (μ(h(p1 + p2 − 2p1p2)− h(p1)) + γ(h(p2)− h(p1))+) , (32)

γ = min{1, h(p1)
1−h(p1)

− μ}, μ ≤ min{h(p1),
1−h(p1)
h(p1)

}. (33)

In general, μ ≥ 0 is a non-negative real number. However, we show in [3] that
only three selections of μ, that is μ ∈ {0,M1,M2} (with M1 and M2 defined in
(34)) can lead to the lower bound (31).

Secret Keys from Channel Noise 281

M1 =
h(p1)

1− h(p1)
− 1 and M2 = min{h(p1),

1− h(p1)
h(p1)

}, (34)

In other words, the lower bound in (31) is simplified to

CBSC
sk ≥ 2 max

μ∈{0,M1,M2}
{Lbound}. (35)

This makes it easy to calculate the lower bound. Following the upper bound (16)
in Theorem 2 for the above setting, we arrive at

CBSC
sk ≤ 2 max

PXf
,PXb

{UboundA, UboundB}, where (36)

UboundA = min{h(p1), H(Yf |Zf)− h(p1)}, and (37)

UboundB = min{h(p1), H(Yb|Zb)− h(p1)}. (38)

One can easily observe that, for uniform Xf and Xb, UboundA and UboundB
reach their highest values, respectively. The upper bound is simplified as

CBSC
sk ≤ 2 min{h(p1), h(p1 + p2 − 2p1p2)− h(p1)}. (39)

Fig. 2 graphs the two bounds, (35) and (39), for different probability values
p1 and p2. Fig. 2(a) illustrates the changes in the two bounds with respect to
0 ≤ p2 ≤ 0.5 when p1 = 0.1. The bounds coincide when p2 = 0 or when p2 = 0.5.
When p2 = 0 all information sent over the 2DMBC is seen by Eve and SKE is
impossible; so, both bounds equal zero. When p2 = .5, the setup does not leak
any information to Eve and, from Theorem 3, the two bounds are expected to
coincide. Fig. 2(b) graphs the changes of the two bounds when 0 ≤ p1 ≤ 0.5 and
p2 = 0.2. When the main channels are noiseless (p1 = 0) or completely noisy
(p1 = 0.5), the two bounds coincide at zero and so SKE is impossible. In the
former case, no randomness exists in the system and, in the latter, there is no
chance of reliable communication. The graphs also show the possibility of SKE
even when both DMBCs are in favor of Eve. This can be observed in Fig. 2(a)
for values of 0 < p2 < 0.1 and in Fig. 2(b) for values of 0.2) < p1 < 0.5.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eve’s channel bit error probability (p2)

B
ou

nd
s o

n
C

skB
SC

Upper bound
Lower bound

(0.2, 0.4468)

(0.2, 0.7155)

(a) The bounds w.r.t p2 for p1 = 0.1

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The main channels error probability (p1)

B
ou

nd
s o

n
C

B
SC

sk

Upper bound
Lower bound(0.1, 0.7155)

(0.1, 0.4468)

(b) The bounds w.r.t. p1 for p2 = 0.2

Fig. 2. The relationship between the two bounds with respect to p1 and p2

282 H. Ahmadi and R. Safavi-Naini

In Section 3.2, we have provided a simple SKE construction. For the values
p1 = 0.1 and p2 = 0.2, the construction achieves the SK rate 3%. As depicted
in Fig. 2, the two bounds on the SK capacity for these probability values are
about 45% and 72%, respectively. This reveals how the example construction of
Section 3.2 works far from optimal achievable rates. As noted earlier, one can
improve the performance of the protocol by using more suitable primitives.

7 Conclusion

This paper has raised the question of building cryptographic functionalities over
noisy channels when there is no initial randomness available to the parties of
a system. We focused on two-party secret key establishment (SKE) where the
communicants are connected by independent noisy broadcast channels that leak
information to an adversary. We formalized the problem and defined the secret
key capacity. We discussed some special cases where SKE is impossible, and then
provided a concrete construction for binary symmetric channels. We obtained
lower and upper bounds on the secret key capacity and showed that they coin-
cide when the channels do not leak information to Eve. For the case of binary
symmetric channels, we simplified the bounds and showed the gap between the
rate achieved by the concerted construction and the rate proved to be achiev-
able by optimal primitives. It would be interesting to design constructions with
higher SK rates. Our work also suggests the question of the existence of other
cryptographic primitives when channel noise is the only resource for randomness.

References

1. Ahlswede, R., Csiszár, I.: Common randomness in information theory and cryptog-
raphy. Part I: secret sharing. IEEE Transaction Information Theory 39, 1121–1132
(1993)

2. Ahmadi, H., Safavi-Naini, R.: Secret key establishment over a pair of indepen-
dent broadcast channels. In: International Symposium Information Theory and its
Application (2010); Full version on the arXiv preprint server, arXiv:1001.3908

3. Ahmadi, H., Safavi-Naini, R.: Secret keys from channel noise. Technical Reports
2011/056, Cryptology ePrint archive, http://eprint.iacr.org/2011/056

4. Barros, J., Imai, H., Nascimento, A.C.A., Skludarek, S.: Bit commitment over
Gaussian channels. In: IEEE International Symposium Information Theory, pp.
1437–1441 (2006)

5. Bloch, M., Barros, J., Rodrigues, M.R.D., McLaughlin, S.W.: Wireless information
theoretic security. IEEE Transaction Information Theory 54, 2515–2534 (2008)

6. Carter, J.L., Wegman, M.N.: Universal Classes of Hash Functions. Journal of Com-
puter and System Sciences 18, 143–154 (1979)

7. Crépeau, C., Kilian, J.: Weakening security assumptions and oblivious transfer. In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 2–7. Springer, Heidelberg
(1990)

8. Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE
Transaction Information Theory 24, 339–348 (1978)

http://eprint.iacr.org/2011/056

Secret Keys from Channel Noise 283

9. Csiszár, I., Narayan, P.: Common randomness and secret key generation with a
helper. IEEE Transaction Information Theory 46, 344–366 (2000)

10. Dodis, Y., Spencer, J.: On the (non)universality of the one-time pad. In: IEEE
Annual Symposium FOCS, pp. 376–388 (2002)

11. Khisti, A., Diggavi, S., Wornell, G.: Secret key generation with correlated sources
and noisy channels. In: IEEE International Symposium Information Theory, pp.
1005–1009 (2008)

12. Maurer, U.: Secret key agreement by public discussion from common information.
IEEE Transaction Information Theory 39, 733–742 (1993)

13. Prabhakaran, V., Eswaran, K., Ramchandran, K.: Secrecy via sources and chan-
nels - a secret key - secret message rate trade-off region. In: IEEE International
Symposium Information Theory, pp. 1010–1014 (2008)

14. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical
Journal 28, 656–715 (1948)

15. Venkatesan, S., Anantharam, V.: The common randomness capacity of a pair of
independent discrete memoryless channels. IEEE Transaction Information The-
ory 44, 215–224 (1998)

16. von Neumannm, J.: Various techniques used in connection with random digits.
National Bureau of Standards Applied Math Series 12, 36–38 (1951)

17. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)

18. Wyner, A.D.: The wire-tap channel. Bell System Technical Journal 54, 1355–1367
(1975)

Almost Optimum t-Cheater Identifiable
Secret Sharing Schemes

Satoshi Obana

NEC
obana@bx.jp.nec.com

Abstract. In Crypto’95, Kurosawa, Obana and Ogata proposed a k-
out-of-n secret sharing scheme capable of identifying up to t cheaters
with probability 1 − ε under the condition t ≤ �(k − 1)/3�. The size of
share |Vi| of the scheme satisfies |Vi| = |S|/εt+2, which was the most
efficient scheme known so far. In this paper, we propose new k-out-of-
n secret sharing schemes capable of identifying cheaters. The proposed
scheme possesses the same security parameters t, ε as those of Kurosawa
et al.. The scheme is surprisingly simple and its size of share is |Vi| =
|S|/ε, which is much smaller than that of Kurosawa et al. and is almost
optimum with respect to the size of share; that is, the size of share is only
one bit longer than the existing bound. Further, this is the first scheme
which can identify cheaters, and whose size of share is independent of
any of n, k and t. We also present schemes which can identify up to �(k−
2)/2�, and �(k−1)/2� cheaters whose sizes of share can be approximately
written by |Vi| ≈ (n ·(t+1) ·23t−1 · |S|)/ε and |Vi| ≈ ((n · t ·23t)2 · |S|)/ε2,
respectively. The number of cheaters that the latter two schemes can
identify meet the theoretical upper bound.

Keywords: Secret Sharing, Cheater Identification, Reed-Solomon Code,
Universal Hash.

1 Introduction

Secret sharing scheme is a cryptographic primitive in which a secret is divided
into shares and distributed among participants in such a way that only a qualified
set of participants can recover the secret. It is a fundamental building block for
many cryptographic protocols and is often used in the general composition of
secure multiparty computations. Because of their importance in cryptography it
has been studied actively for more than three decades since the seminal papers
by Shamir [23] and Blakley [3].

Cheating prevention is one of the main topics in secret sharing schemes.
Tompa and Woll first considered a secret sharing scheme capable of detecting
the presence of cheating when invalid shares are submitted in the secret recon-
struction phase [25]. For the problem of detecting cheating, the upper bound
of the size of share and efficient constructions have been actively studied so far
[1,2,6,9,16,19].

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 284–302, 2011.
c© International Association for Cryptologic Research 2011

Almost Optimum t-Cheater Identifiable Secret Sharing Schemes 285

Secret sharing schemes that not only detect the presence of cheating but also
identify cheaters who submit invalid shares are also a hot topic in this area. Rabin
and Ben-Or proposed a k-out-of-n secret sharing scheme capable of identifying
cheaters [21]. The size of share |Vi| of their scheme is |Vi| = |S|3n−2 where
|S| denotes the size of secret1. In [12], Kurosawa, Obana and Ogata showed
that when the number of cheater t satisfies t ≤ �(k − 1)/3� the share size is
greatly reduced compared to that of [21]. The size of share of their scheme is
|Vi| = |S|/εt+2, which until now has been the most efficient scheme, despite the
fact that the bit length of their scheme is still linear to the number of cheaters.
The lower bound of share size is given by Kurosawa et al. as follows [12]:

|Vi| ≥
|S| − 1

ε
+ 1 (1)

where ε denotes the successful cheating probability of cheaters. Though, the sizes
of shares of all the existing schemes are far from the above bound.

In this paper, we first present efficient k-out-of-n threshold secret sharing
schemes capable of identifying up to t cheaters under the condition t ≤ �(k −
1)/3�. While this condition is the same as that of Kurosawa et al. [12], the share
size is dramatically reduced compared to [12]. Namely, the share size of the
first scheme satisfies |Vi| = |S|/ε and is only one bit longer than the bound of
eq. (1). We also present a scheme with the desired property that the successful
cheating probability of cheaters can be determined without regard to the size
of the secret, which is not the case in the first scheme. Further, we present
k-out-of-n threshold schemes capable of detecting up to t cheaters such that
t ≤ �(k− 2)/2� and t ≤ �(k− 1)/2�, respectively. The numbers of cheaters these
two schemes can identify reach the theoretical limit when k is even and for any
k, respectively. The sizes of share of the schemes can be approximately written
by |Vi| ≈ (n · t · 23t−1 · |S|)/ε and |Vi| ≈ ((n · t · 23t)2 · |S|)/ε2, respectively, which
are also much smaller than that of Kurosawa et al. despite the difference of their
cheater identifiabilities.

We note that secret sharing schemes against cheating are strongly related
to secure message transmission schemes as mentioned in [11,13]. Therefore, we
believe that ideas used to construct proposed schemes will help to construct
secure message transmission schemes.

The rest of the paper is organized as follows. In Section 2, we briefly re-
view models of secret sharing schemes capable of identifying cheaters, and we
discuss related work. In Section 3, we present almost optimum schemes which
can identify up to �(k − 1)/3� cheaters. In Sections 4 and 5, we give efficient
schemes which can identify up to �(k− 2)/2� cheaters and �(k− 1)/2� cheaters,
respectively. In Section 6, we summarize our work.

1 Throughout the paper, we use notations |X | and X to denote the cardinality of a set
X and a random variable over X , respectively.

286 S. Obana

2 Preliminaries

2.1 Secret Sharing Schemes

In the model of secret sharing schemes, there are n participants P = {P1, . . . , Pn}
and a dealer D. The model consists of two algorithms: ShareGen and Reconst. The
share generation algorithm ShareGen takes a secret s ∈ S as input and outputs a
list (v1, v2, . . . , vn). Each vi ∈ Vi is called a share and is given to a participant Pi.
In a usual setting, ShareGen is invoked by the dealer. The secret reconstruction
algorithm Reconst takes a list of shares and outputs a secret s ∈ S.

The set of participants who are allowed to reconstruct the secret is character-
ized by an access structure Γ ⊆ 2P ; that is, participants Pi1 , . . . , Pik are allowed
to reconstruct the secret if and only if {Pi1 , . . . , Pik} ∈ Γ (for instance, the
access structure of a k-out-of-n threshold secret sharing scheme is defined by
Γ = {A | A ⊆ 2P , |A| ≥ k}.) A secret sharing scheme is called perfect if the
following two conditions are satisfied for the output (v1, . . . , vn) of ShareGen(ŝ)
where the probabilities are taken over the random tape of ShareGen.

1. if {Pi1 , . . . , Pik} ∈ Γ then Pr[Reconst(vi1 , . . . , vik) = ŝ] = 1,
2. if {Pi1 , . . . , Pik}
∈ Γ then Pr[S = s | Vi1 = vi1 , . . . , Vik = vik] = Pr[S = s] for

any s ∈ S.

We note that only perfect secret sharing schemes are dealt with in this paper.

2.2 t-Cheater Identifiable Secret Sharing Schemes

A secret sharing scheme capable of identifying cheaters was first presented by
Rabin and Ben-Or [21]. They considered the scenario in which cheaters who do
not belong to the access structure submit forged shares in the secret reconstruc-
tion phase. Such cheaters will succeed if they cannot be identified as cheaters in
reconstructing the secret.

As with ordinary secret sharing schemes, this model consists of ShareGen and
Reconst. The share generation algorithm ShareGen is the same as that in the
ordinary secret sharing schemes. Two types of secret reconstruction algorithms
have been defined so far depending on whether identification of the cheater is
done privately or publicly. We will use Reconst(pri) and Reconst(pub) to denote
secret reconstruction algorithms which identify cheaters privately and publicly,
respectively. A secret reconstruction algorithm Reconst(pri) takes a share called
a base share and a list of shares as input and outputs a pair of a secret and a
set of cheaters; that is, if no cheater is identified Reconst(pri) outputs a pair (s, ∅)
where s is a secret reconstructed. If Reconst(pri) finds cheaters and the secret s
can be reconstructed from valid shares submitted, it outputs (s, L) (where s ∈ S
and L
= ∅ is a set of cheaters submit invalid shares,) otherwise (i.e. if a secret
cannot be reconstructed from valid shares,) it outputs (⊥, L) where ⊥(
∈ S) is
a special symbol indicating that cheating was detected and, again, L is a set of
cheaters. In Reconst(pri), the base share becomes a basis for deciding whether a
participant submitting a share to Reconst(pri) is a cheater. On the other hand,
Reconst(pub) identifies cheaters without a trusted share: it takes a list of shares

Almost Optimum t-Cheater Identifiable Secret Sharing Schemes 287

as input and outputs a pair of a secret and a set of cheaters. We require that
the algorithms ShareGen and Reconst satisfy the following correctness condition:

Pr[(v1, . . . , vn)← ShareGen(s); (ŝ, L)← Reconst(vi1 , . . . , vim) : s = ŝ ∧ L = ∅] = 1

for any s ∈ S, for any i1, . . . , im such that m ≥ k.
The security of the model can be formalized by the following simple game

defined for any k-out-of-n threshold secret sharing scheme SS = (ShareGen,
Reconst) and for any (not necessarily polynomially bounded) Turing machine
A(t) = (A(t)

1 ,A
(t)
2), where A(t) represents t cheaters Pi1 , . . . , Pit who try to cheat

honest participants Pit+1 , . . . , Pim where m ≥ k.

Game(SS,A(t))
s← S; // according to the probability distribution over S.
(v1, . . . , vn) ← ShareGen(s);
(i1, . . . , it) ← A

(t)
1 ();

(v′i1 , . . . , v
′
it
, it+1, . . . , im) ← A

(t)
2 (vi1 , . . . , vit);

Cheaters Pij succeeds in cheating if Reconst fails to identify Pij as a cheater
when a secret reconstructed is not identical to the original one. In the public
model, we will denote successful cheating probability of Pij against SS(pub) by
ε(SS(pub),A(t), Pij) where ε(SS(pub),A(t), Pij) is define as follows:

ε(SS(pub), A(t), Pij) = Pr[(s′, L)← Reconst(pub)(v′
i1 , . . . , v′

it
, vit+1 , . . . , vik) : ij 	∈ L].

On the other hand, in the private model, successful cheating probability of
Pij is defined for each P� submitting base share. Therefore, we will define such
probability ε(SS(pri),A(t), Pij , Pi�) by

ε(SS(pri), A(t), Pij , Pi�)

= Pr[(s′, L)← Reconst(pri)(vi� , (v
′
i1 , . . . , v′

it
, vit+1 ,

vi�∨. . ., vik)) : ij 	∈ L]

where the first argument vi� of Reconst(pri) denotes a base share. The probabili-
ties are taken over the distribution of S, and over the random tapes of ShareGen
and A(t). Note that the above game implicitly assumes simultaneous secret re-
construction; that is, all the participants submit their shares simultaneously to
secret reconstruction algorithm in reconstructing the secret. Therefore, so-called
“rushing adversary” who tries to forge its share after observing shares of honest
participants is not allowed in this model.

Cheaters in this model can be classified into two classes: non-critical cheaters
and critical cheaters. Non-critical cheaters only disclose their information to
other cheaters or forge their shares in such a way that their forgeries do not
cause the secret reconstruction algorithm to reconstruct a different secret from
the original one. On the other hand, critical cheaters submit forged shares which
cause the secret reconstruction algorithm to reconstruct a different secret from
the original one. In this paper we focus on identifying only critical cheaters since

288 S. Obana

the goal of the cheaters in the models considered is to make other participants
reconstruct an invalid secret. The formal definition of a critical cheater for public
cheater identification models are given as follows:

Definition 1. Let (v1, . . . , vn) be output of ShareGen(pub)(s). A participants Pj
who submit v′j to Reconst(pub) is called a critical cheater if and only if there exist
i1, i2, . . . , ik−1 such that

Pr[(s′, L)← Reconst(pub)(vi1 , . . . , vik−1 , v
′
j) : s′
= s ∧ s′ ∈ S]
= 0 .

In the case of private cheater identification model, a critical cheater may vary
according to a participant who submit base share.

Definition 2. Let (v1, . . . , vn) be output of ShareGen(pri)(s). A participants Pj
who submit v′j to Reconst(pri) is called a critical cheater against P� if and only if
there exist i1, i2, . . . , ik−2 such that

Pr[(s′, L)← Reconst(pri)(v�, (vi1 , . . . , vik−2 , v
′
j)) : s′
= s ∧ s′ ∈ S]
= 0 .

Based on the above definition, we define the security of secret sharing schemes
capable of identifying cheaters for both public and private models as follows:

Definition 3. A (k, n) threshold secret sharing scheme SS(pub) = (ShareGen(pub),

Reconst(pub)) is called a (t, ε) cheater identifiable secret sharing scheme with pub-
lic cheater identification if ε(SS(pub),A(t), Pj) ≤ ε for any A(t) representing set
of t or less cheaters P, for any critical cheater Pj ∈ P.

Definition 4. A (k, n) threshold secret sharing scheme SS(pri) = (ShareGen(pri),

Reconst(pri)) is called a (t, ε) cheater identifiable secret sharing scheme with pri-
vate cheater identification if ε(SS(pri), A(t), Pj , P�) ≤ ε for any A(t) representing
set of t or less cheaters P, for any critical cheater Pi ∈ P and for any honest
participant P�.

We note that (t, ε) publicly cheater identifiable schemes for ε < 1 exist only if
t ≤ �(k−1)/2� whereas (k−1, ε) cheater identifiable scheme with private cheater
identification can be constructed. This is because cheaters can easily generate
arbitrary number of consistent shares by invoking ShareGen with forged secret s′

as input and distribute them among the cheaters in publicly cheater identifiable
schemes. In this case, it is impossible to identify cheaters unless we can determine
cheaters on a majority basis.

We also note that the model of (t, ε) cheater identifiable secret sharing scheme
is different from that of the verifiable secret sharing (VSS for short) in the sense
that the dealer is honest in the (t, ε) cheater identifiable secret sharing whereas
the dealer may cheat in the VSS.

2.3 Related Work

In this subsection, we briefly review a known bound and constructions of (t, ε)
cheater identifiable secret sharing schemes and related topics.

Almost Optimum t-Cheater Identifiable Secret Sharing Schemes 289

The capability to identify cheaters in secret sharing schemes was first pointed
out by McEliece and Sarwate [15]. Namely, they observed that a list of shares of
Shamir’s (k, n) threshold secret sharing scheme constitutes a codeword of Reed-
Solomon code. Therefore, if k + 2t + 1 shares containing up to t invalid shares
are submitted in reconstructing a secret, the secret reconstruction algorithm
can identify all cheaters with probability 1. However, this observation does not
directly lead to constructing (t, ε) cheater identifiable secret sharing schemes
since k + 1 or more shares are required to identify cheaters.

(t, ε) cheater identifiable (k, n) secret sharing scheme with private cheater
identification are presented in various literature. Here, we will briefly review
previous results. In [21,22], Rabin and Ben-Or presented a scheme on which they
constructed a verifiable secret sharing scheme. The property of their scheme can
be summarized by the following proposition:

Proposition 1 [21,22]. There exists (k−1, ε) cheater identifiable (k, n) thresh-
old secret sharing scheme with private cheater identification with parameter
|S| = p, ε = 1/p, and |Vi| = p3n−2 where p is a prime power.

Carpentieri proposed a scheme in which the size of share is reduced compared
to [21,22]:

Proposition 2 [5]. There exists (k − 1, ε) cheater identifiable (k, n) threshold
secret sharing scheme with private cheater identification with parameter |S| = p,
ε = 1/p, and |Vi| = pk+2(n−1) where p is a prime power.

Ogata and Kurosawa proposed an elegant scheme in which the size of share is
independent of n:

Proposition 3 [18]. There exists (k− 1, ε) cheater identifiable (k, n) threshold
secret sharing scheme with private cheater identification with parameter |S| = p,
ε = (k − 1)/(p− 1), and |Vi| = p2k+1 where p is a prime power.

We note that the schemes in [21,22] (Proposition 1) and [5] (Proposition 2) are
secure even when cheater knows shares of n−1 participants whereas the scheme
in [18] (Proposition 3) ensures security against cheaters who know at most k− 1
shares.

With respect to a scheme with public cheater identification, Kurosawa, Obana
and Ogata presented an efficient scheme whose share size only depends on the
maximum number of cheaters [12]. The properties of their scheme can be sum-
marized as follows:

Proposition 4 [12]. If t ≤ �(k − 1)/3�, there exists (t, ε) cheater identifiable
(k, n) threshold secret sharing scheme with public cheater identification with pa-
rameter |S| = p, ε = 1/q and |Vi| = p·qt+2 where p, q are prime powers satisfying
q ≥ n · p− t 2.

In [12], Kurosawa et al. also showed a lower bound of share size for (t, ε) cheater
identifiable secret sharing schemes with both publicly and privately cheater iden-
tification as follows:
2 Though this limitation is not addressed in [12], it follows directly from Bush bound

on orthogonal array of strength t + 1.

290 S. Obana

Proposition 5 [12]. The size of share for (t, ε) cheater identifiable (k, n) thresh-

old secret sharing schemes is lower bounded by |Vi| ≥
|S| − 1

ε
+ 1 .

However, share sizes of existing schemes are far from the above bound. Therefore,
it was not clear whether the above bound is tight.

3 Publicly Cheater Identifiable Schemes for t ≤ �k−1
3

�
In this section, we present two efficient (t, ε) cheater identifiable (k, n) threshold
secret sharing schemes with public cheater identification under the condition
t ≤ �(k − 1)/3�. The first scheme is almost optimum with respect to the share
size; that is, the bit length of shares of the scheme is only one bit longer than the
lower bound of Proposition 5. The second scheme, even though the share size
is slightly larger than the first scheme, possesses a particular merit in that the
successful cheating probability of cheaters can be chosen without regard to the
size of the secret, which is the case neither in the first scheme nor in the scheme
of [12].

As with the scheme in [12], the proposed scheme uses Reed-Solomon code
to identify cheaters. The major difference between the scheme in [12] and the
proposed scheme is as follows. In [12], a share of each participant consists of (1)
a share of Shamir’s (k, n) secret sharing for a secret, (2) a share of Shamir’s (t, n)
secret sharing scheme for a key of strongly universal hash functions of strength
t + 1 (please refer to [24] for the definition,) and (3) a hash value of (1) under
the key (2). Here, Reed-Solomon code is used in (2) to make cheaters impossible
to alter the value of the key, which is used to examine the validity of shares
(as pointed out in [15], (t, n) secret sharing scheme is equivalent to codeword of
generalized Reed-Solomon code). Since the size of key of the strongly universal
hash function of strength t+ 1 is as large as 1/εt+1 the share size of the scheme
in [12] grows linear with the number of cheaters. On the other hand, a share of
the proposed scheme only consists of (1) a share of Shamir’s (k, n) secret sharing
for a secret, and (2) a hash value of (1) computed by a strongly universal hash
function of strength t+1. Interestingly, the key used to compute hash values is not
explicitly shared among the participants but is recovered from the hash values
in the secret reconstruction phase by utilizing the error correction capability
of Reed-Solomon code. This is made possible by choosing a strongly universal
hash family based on polynomials over a finite field. Since the size of hash value
is equal to 1/ε in the proposed scheme, we see that the share size |Vi| of the
proposed scheme satisfies |Vi| = |S|/ε, which is independent of any of k, n and
t. The detailed description of the first scheme is given in the next subsection.

3.1 An Almost Optimum Scheme

The share generation algorithm ShareGen and the secret reconstruction algorithm
Reconst of the first scheme are described as follows where p and q are prime
powers such that q ≥ n · p and ψ : GF(p) × {1, . . . , n} → GF(q) is an injective
function (e.g. ψ(x, y) = (y − 1) · p + x for prime numbers p, q.)

Almost Optimum t-Cheater Identifiable Secret Sharing Schemes 291

Share Generation: On input a secret s ∈ GF(p), the share generation algorithm
ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) ∈ GF(p)[X] of degree k − 1 such that
fs(0) = s.

2. Generate a random polynomial C(x) ∈ GF(q)[X] of degree t.
3. Compute vi = (fs(i), C(ψ(fs(i), i))) and output (v1, . . . , vn).

Secret Reconstruction and Cheater Identification: On input a list of m (≥ k)
shares ((vs,i1 , vC,i1), . . . , (vs,im , vC,im)), the secret reconstruction algorithm
Reconst output a secret or a list of identities of cheaters as follows.

1. Reconstruct Ĉ(x) from (vC,i1 , . . . , vC,im) using an error correction algorithm
of generalized Reed-Solomon Code (e.g. Berlekamp algorithm.)

2. Check if vC,ij = Ĉ(ψ(vs,ij , ij)) holds (for 1 ≤ j ≤ m.) If vC,ij
= Ĉ(ψ(vs,ij , ij))
then ij is added to the list of cheaters L.

3. If |L| ≤ m− k then reconstruct fs(x) from (k or more) shares vij such that
ij
∈ L using Lagrange interpolation, and output (fs(0), L) if deg(fs) ≤ k−1,
otherwise Reconst output (⊥, L). Reconst also output (⊥, L) if |L| > m − k
holds.

Security of the proposed scheme can be summarized by the following theorem.

Theorem 1. If t ≤ �(k − 1)/3� then the proposed scheme is a (t, ε) cheater
identifiable secret sharing scheme with public cheater identification such that

|S| = p, ε = 1/q, q ≥ n · p, |Vi| = p · q (= |S|/ε) .

Proof. First, we show that the scheme is perfect. It is well known that vs,i1 , . . . ,
vs,ik do not reveal any information about the secret since each vs,i is a share
of Shamir’s k-out-of-n secret sharing scheme. Further, it is easy to see that the
knowledge about vC,i does not leak any information about the secret since the
polynomial C(x) is completely independent of the secret s.

Next we show that the scheme is (t, ε) cheater identifiable. The following two
facts are key to prove (t, ε) cheater identifiability of the scheme:

1. (C(x1), C(x2), . . . , C(xk)) is a codeword of the Reed-Solomon Code with
minimum distance k − t. Therefore, if k − t > 2t (i.e. t ≤ �(k − 1)/3�) then
C(x) can be reconstructed even when t points are forged.

2. A family of functions {C(x) | C(x) ∈ GF(q)[X], deg(C(x)) ≤ t} is a strong
class of universal hash functions GF(q) → GF(q) with strength t + 1; that
is, the following equality holds for any distinct x1, . . . , xt, xt+1 ∈ GF(q) and
for any y1, . . . , yt, yt+1 ∈ GF(q).

Pr[C(xt+1) = yt+1 | C(x1) = y1, . . . , C(xt) = yt] = 1/q . (2)

Without loss of generality, we can assume P1, . . . , Pt are cheaters who coopera-
tively try to fool the other participants by forging (part of) their shares. Suppose
that P1 is a critical cheater who is told the values v2, . . . , vt (i.e. the shares of

292 S. Obana

P2, . . . , Pt) and submits invalid share v′1 = (v′s,1, v
′
C,1) such that v′s,1
= vs,1. P1 is

not identified as a cheater only if he submits v′C,1 such that v′C,1 = C(ψ(v′s,1, 1))
since Reconst can recover the original C(x) even when t shares are forged. Fur-
ther, since {C(x) | C(x) ∈ GF(q)[X], deg(C(x)) ≤ t} is a strong class of universal
hash functions and ψ(v′s,1, 1) is different from any of ψ(vs,i, i) (1 ≤ i ≤ t,) the
following equation holds:

Pr[C(ψ(v′s,1, 1)) = v′C,1 | C(ψ(vs,i, i)) = vC,i (for 1 ≤ i ≤ t)] = 1/q

where the probability is taken over the random choice of C(x). Since the above
discussion holds for any critical cheater Pi (1 ≤ i ≤ t,) we see that no critical
cheater can succeed in cheating without being identified with probability better
than 1/q. ��

It should be noted that the size of share of the proposed scheme is independent
of any of n, k and t, though, there is an implicit limitation on the parameter that
ε < 1/(n · |S|) must holds. This is similar limitation of Shamir’s secret sharing
scheme which implicitly requires |S| > n.

3.2 A Scheme with Flexible Parameter Choice

As we noted in the previous section, there is such a limitation in the first scheme
that the successful cheating probability of cheaters must be smaller than 1

n·|S| .
This limitation is not desirable, especially when we want to share a secret with
large size. Consider the situation in which we want to share a 1M bit secret
(i.e. |S| = 2220

,) with the first scheme. In this case, the share size becomes as
large as 2M bit with a security level of ε < 1/2220

whereas ε = 1/2128 will
be sufficient in real life. The second scheme is useful in such a situation since
the successful cheating probability of cheaters can be chosen without regard to
the size of the secret and the share size can be made reasonable in the second
scheme. For example, when we share a 1M bit secret with the second scheme
with ε = 1/2128, the share size is only (1M+282) bit.

The basic idea of the second scheme is same as the first scheme. We introduce
the following trick to the first scheme so that we can determine |S| and ε flexibly.
In the first scheme, the random polynomial C(x) must be chosen from GF(q)[X]
such that q ≥ n · |S| in order to ensure ψ(vi, i)
= ψ(vj , j) for any distinct
(i, vi) and (j, vj), which causes ε ≤ 1

n·|S| . In the second scheme, we introduce
almost universal hash function (e.g. [24]) φe : S → GF(p) (where S = GF(pN))
and modify the input of C(x) (Cs(x) in the second scheme) to ψ(φe(vi), i) where
ψ : GF(p)×{1 . . . , n} is an injective function. The use of φe allows ψ(φe(vi), i) =
ψ(φe(v′i), i) with small probability, though, the limitation of ε < 1

n·|S| can be
eliminated since the range of φe is chosen flexibly by choosing the parameter
p,N and introduce a universal hash family φe(x0, . . . , xN−1) =

∑N−1
i=0 xi · ei

defined over GF(p). The share generation algorithm and the secret reconstruction
algorithm of the second scheme are described as follows:

Almost Optimum t-Cheater Identifiable Secret Sharing Schemes 293

Share Generation: On input a secret (s0, . . . , sN−1) ∈ GF(pN), the share gener-
ation algorithm ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) ∈ GF(pN)[X] of degree k−1 such that
fs(0) = s.

2. Generate e ∈ GF(p) randomly and construct a random polynomial Ce(x) ∈
GF(p)[X] of degree t such that Ce(0) = e.

3. Generate random polynomials Cs(x) ∈ GF(q)[X] of degree t such that q ≥
n · p.

4. Compute vs,i = (vs,i,0, . . . , vs,i,N−1) = fs(i) where vs,i,j ∈ GF(p) (for 0 ≤
j ≤ N − 1), vCe,i = Ce(i) and vCs,i = Cs(ψ(

∑N−1
j=0 vs,i,j · ej , i)).

5. Compute vi = (vs,i, vCe,i, vCs,i) and output (v1, . . . , vn).

Secret Reconstruction and Cheater Identification: On input a list of m (m ≥ k)
shares ((vs,i1 , vCe,i1 , vCs,i1), . . . , (vs,im , vCe,im , vCs,im)) the secret reconstruction
algorithm Reconst outputs a secret or a list of identities of cheaters as follows.

1. Reconstruct Ĉs(x)and Ĉe(x) from (vCs,i1 , . . . , vCs,im) and (vCe,i1 , . . . , vCe,im),
respectively using an error correction algorithm of Reed-Solomon code.

2. Check if vCe,ij = Ĉe(ij) (for 1 ≤ j ≤ m.) If vCe,ij
= Ĉe(ij) then ij is added
to the list of cheaters L.

3. Compute ê = Ĉe(0).
4. Check if vCs,ij = Ĉs(ψ(

∑N−1
�=0 vs,ij ,� · ê�, ij)) holds (for 1 ≤ j ≤ m.) ij is

added to the list of cheaters L if this is not the case.
5. If |L| ≤ m− k then reconstruct fs(x) from (k or more) shares vij such that

ij
∈ L using Lagrange interpolation, and output (fs(0), L) if deg(fs) ≤ k−1,
otherwise Reconst output (⊥, L). Reconst also output (⊥, L) if |L| > m − k
holds.

Security of the proposed scheme can be summarized by the following theorem.
Note that the successful cheating probability ε can be chosen without regard to
|S| by selecting the value of p appropriately.

Theorem 2. If t ≤ �(k − 1)/3� then the proposed scheme is a (t, ε) cheater
identifiable secret sharing scheme with public cheater identification such that

|S| = pN , ε = (N − 1)/p+ 1/q ≤ N/p, q ≥ n · p, |Vi| = pN+1 · q .

Proof. As in the proof of Theorem 1, we can assume P1, . . . , Pt are cheaters
who cooperatively try to fool the other participants by forging (part of) their
shares. Suppose that P1 is a critical cheater who submits invalid share v′1 =
(v′s,1, v′Ce,1, v

′
Cs,1) such that v′s,1
= vs,1. Since (vCe,i1 , . . . , vCe,im) is a codeword

of Reed-Solomon Code capable of correcting up to t errors, t cheaters cannot al-
ter the value of e. Therefore, P1 is not identified as a cheater only if he submits
(v′s,1, v′Ce

, v′Cs,1) such that v′Cs,1 = Cs(ψ(
∑N−1

�=0 v′s,i,� ·e�, 1)) where e is uniformly
and randomly distributed over GF(p). There are two cases to consider in com-
puting such probability. In the first case suppose that P1 forged its share in a
way that v′Cs,1
= vCs,1. In this case, successful cheating probability ε1 of P1 who

294 S. Obana

knows that vCs,i = Cs(ψ(
∑N−1

�=0 vs,i,� · e�, i)) hold for 1 ≤ i ≤ t is computed as
follows (for simplicity we will denote

∑N−1
�=0 vs,i,� · e� by φe(vs,i).)

ε1 = Pr[v′Cs,1 = Cs(ψ(φe(v′s,1), 1)) | vCs,i = Cs(ψ(φe(vs,i), i)) (for 1 ≤ i ≤ t)]
= Pr[φe(vs,i)
= φe(v′s,i)]

·Pr

[
v′Cs,1 = Cs(ψ(φe(v′s,1), 1))

∣∣∣∣∣vCs,i = Cs(ψ(φe(vs,i), i)) (for 1 ≤ i ≤ t),
φe(vs,i)
= φe(v′s,i)

]
≤ 1/q

where the last inequality directly follows from the fact that {Cs} is a family of
a strong class of strongly universal hash function with strength t + 1 (see the
proof of Theorem 1 for details.)

Next we consider the second case in which P1 forged its share in a way that
v′Cs,1 = vCs,1 holds. In this case ε1 is computed as follows.

ε1 = Pr[v′Cs,1 = Cs(ψ(φe(v′s,1), 1)) | vCs,i = Cs(ψ(φe(vs,i), i)) (for 1 ≤ i ≤ t)]
= Pr[φe(vs,i) = φe(v′s,i)] + Pr[φe(vs,i)
= φe(v′s,i)]

·Pr

[
v′Cs,1 = Cs(ψ(φe(v′s,1), 1))

∣∣∣∣∣vCs,i = Cs(ψ(φe(vs,i), i)) (for 1 ≤ i ≤ t),
φe(vs,i)
= φe(v′s,i)

]
≤ Pr[φe(vs,i) = φe(v′s,i)] + 1/q ≤ (N − 1)/p+ 1/q

where the last two inequalities follows from the property of a strong class of
universal hash functions and the well-known fact that a polynomial of degree
N − 1 (e.g. φe) has at most N − 1 roots. It is easy to see that the successful
cheating probability of any critical cheater is upper bounded by N/p since (N −
1)/p+ 1/q ≤ N/p holds. ��

Note that the bit length of shares log |Vi| is approximately log |S|+ 2 log(1/ε)+
2 log log |S| in the above scheme. Therefore, we can determine size of the secret
and successful cheating probability flexibly only by paying log(1/ε)+2 log log |S|
additional bits compared to the bound.

4 A Publicly Cheater Identifiable Scheme for t ≤ �k−2
2

�
In this section we show that we can construct a very efficient publicly cheater
identifiable scheme even when the number of cheaters t does not satisfy t ≤
�(k − 1)/3�. More precisely, we present a publicly cheater identifiable scheme
whose secret reconstruction algorithm can catch up to �(k − 2)/2� cheaters.
We note that the cheater identifiability of the scheme is nearly optimum since
t = �(k − 1)/2� is the theoretical upper bound for public cheater identification.
Furthermore, the size of share |Vi| of the proposed scheme is much smaller than
that of [12] despite the difference of their cheater identifiabilities.

The share generation algorithm of the proposed scheme is exactly the same
as the one presented in §3.1. To identify more than (k − 1)/3 cheaters, the

Almost Optimum t-Cheater Identifiable Secret Sharing Schemes 295

secret reconstruction algorithm examines the consistency of all the possible
(
k
t+2

)
subsets of k shares input to the algorithm. Here, the consistency of t+ 2 shares
(vs,ij , vC,ij) (1 ≤ j ≤ t + 2) is examined by verifying whether t + 2 points
(ψ(vs,ij , ij), vC,ij) (1 ≤ j ≤ t + 2) lie on a polynomial of degree t. The intuition
behind the idea is as follows. Suppose t cheaters try to fool the reconstruction
algorithm by forging their shares. Since we assume t ≤ �(k − 2)/2�, there are at
least t+ 2 unforged shares input to the reconstruction algorithm. Therefore, we
can guarantee that (1) there exists at least one subset of consistent shares of size
t + 2 (i.e. shares which does not contain a forged share,) and (2) any subsets of
size t + 2 contain at least two unforged shares. We will make use of these facts
to catch cheaters since t + 2 shares containing both forged and unforged shares
can be consistent only with very low probability. The detailed description of the
proposed reconstruction algorithm is described as follows.

Secret Reconstruction and Cheater Identification for t ≤ �(k−2)/2�: On input a
list of m (≥ k) shares ((vs,i1 , vC,i1), . . . , (vs,im , vC,im)), the secret reconstruction
algorithm Reconst output a secret or a list of identities of cheaters as follows.

1. If t ≤ (m − 1)/3 holds, outputs (s, L) ← Reconst(3t+1)((vs,i1 , vC,i1), . . . ,

(vs,im , vC,im)), where Reconst(3t+1) denotes the secret reconstruction algo-
rithm for t ≤ �(k − 1)/3� (i.e. Reconst presented in §3.1.)

2. Otherwise, let L← {i1, . . . , im} and repeat the following steps 2a–2b for all
subsets I ⊆ {i1, . . . , im} such that |I| = t + 2.
(a) Compute cI by cI =

∑
i∈I vC,i ·

∏
j∈I
j �=i

1
ψ(vs,i,i)−ψ(vs,j ,j)

, where cI is the

coefficient of xt+1 of the polynomial C(x) constructed from the t + 2
points (ψ(vs,i, i), vC,i) (i ∈ I.)

(b) If cI = 0 holds, then L← L \ I (i.e. remove I from the list of cheaters.)
Note that cI = 0 holds if all of t+ 2 shares are unforged since we choose
random polynomial C(x) of degree t in the share generation algorithm.

3. If |L| ≤ m−k holds then reconstruct fs(x) from (k or more) shares vs,ij such
that ij
∈ L using Lagrange interpolation, and output (fs(0), L) if deg(fs) ≤
k − 1, otherwise Reconst output (⊥, L). Reconst also output (⊥, L) if |L| >
m− k holds.

Security of the proposed scheme can be summarized by the following theorem.

Theorem 3. If t ≤ �(k − 2)/2� then the proposed scheme is a (t, ε) cheater
identifiable secret sharing scheme with public cheater identification such that

|S| = p, ε =
(t + 1) · 23t−1

p
, q ≥ n · p, |Vi| = p · q (≈ n·(t+1)·23t−1·|S|

ε) .

Proof. As in the proof of Theorem 1, we can assume P1, . . . , Pt are cheaters who
cooperatively try to fool the other participants Pt+1, . . . , Pm by forging (part
of) their shares. Suppose that P1 is a critical cheater who submits invalid share
v′1 = (v′s,1, v

′
C,1) such that v′s,1
= vs,1. We will show that the probability that the

successful cheating probability of P1 is upper bounded by ε (= (t+1)·23t−1

p).

296 S. Obana

From the proof of Theorem 1, it is easy to see that, if t ≤ (m − 1)/3 holds,
the successful cheating probability of P1 is upper bounded by q(< ε) since we
can apply error correction algorithm of the generalized Reed-Solomon codes to
(v′C,1, . . . , v

′
C,t, vC,t+1, . . . , vC,m).

Now we will show the proposed reconstruction algorithm can catch cheaters
with probability better than 1− ε even against t > (k− 1)/3 cheaters. It suffices
to show that the probability that there exists at least one subset I ⊆ {1, . . . ,m}
such that (1) 1 ∈ I, (2) |I| = t + 2, and (3) cI = 0, is lower bounded by ε.

Toward showing the above, we will first show that the probability ε(I) that
cI = 0 holds for given I is lower bounded by (t+1)/p for any I such that 1 ∈ I
and |I| = t+ 2. Without loss of generality, we can assume I = {�1, �2, . . . , �t+2}
and P�1 . . . , P�t′ (t′ ≤ t) are cheaters.

To evaluate ε(I), we will analyze the structure of cI . Here, we will use the
notation ψi to denote ψ(vs,i, i) and the notation X ′ to indicate the variable X
is owned and controlled by the cheaters.

cI =
∑
�i∈I

vC,�i ·
∏

�j∈I
j �=i

1
ψ�i − ψ�j

=
t′∑

i=1

v′
C,�i
·

t′∏
j=1
j �=i

1
ψ′

�i
− ψ′

�j

t+2∏
j=t′+1

1
ψ′

�i
− ψ�j

+
t+2∑

j=t′+1

vC,�j ·
t′∏

i=1

1
ψ�j − ψ′

�i

t+2∏
i=t′+1

i�=j

1
ψ�j − ψ�i

We will rewrite v′C,�i
·
∏t′

j=1,j �=i
1

ψ′
�i
−ψ′

�j

by Ai where each Ai is determined by

the shares submitted by the cheaters and is known to the cheaters. Furthermore,
to make the proof clearer, we replace vC,i by C(ψi) where C(x) is a polynomial
chosen by the dealer in the share generation phase.

cI =
t′∑

i=1

Ai ·
t+2∏

j=t′+1

1
ψ′

�i
− ψ�j

+
t+2∑

j=t′+1

C(ψ�j) ·
t′∏

i=1

1
ψ�j − ψ′

�i

t+2∏
i=t′+1

i�=j

1
ψ�j − ψ�i

(3)

With the knowledge about shares owned by the cheaters, the number of possible
candidates for (ψ�t′+1

, . . . , ψ�t+2 , C) becomes pt−t
′+2× qt−t

′+1 since (1) ψ�i (t′ +
1 ≤ i ≤ t + 2) look randomly, uniformly and independently distributed over
the set Ψ�i = {ψ(vs,�i , �i) | vs,�i ∈ GF(p)} even with the knowledge of cheaters,
and (2) (ψ�t′+1

, vC,�t′+1
), . . . , (ψ�t+1 , vC,�t+1) uniquely determines the polynomial

C(x).
Now, we will estimate the upper bound of the number of (ψ�t′+1

, . . . , ψ�t+2 , C)
with which cI = 0. For any fixed (ψ�t′+1

, . . . , ψ�t+1 , C) = (ψ̂�t′+1
, . . . , ψ̂�t+1 , Ĉ),

eq (3) is rewritten as follows:

cI =
t′∑
i=1

Âi
ψ′
�i
− ψ�t+2

+
t+1∑

j=t′+1

B̂j

ψ̂�j − ψ�t+2

+Ĉ(ψt+2) ·
t′∏
i=1

1
ψ�t+2 − ψ′

�i

t+1∏
i=t′+1

1

ψ�t+2 − ψ̂�i

Almost Optimum t-Cheater Identifiable Secret Sharing Schemes 297

where Âi = Ai ·
∏t+1
j=t′+1

1
ψ′

�i
−ψ̂�j

, B̂j = Ĉ(ψ̂�j) ·
∏t′

i=1
1

ψ̂�j
−ψ′

�i

·
∏t+1
i=t′+1

1
ψ̂�j

−ψ̂�i

are constant once ψ′
�i

(1 ≤ i ≤ t′), ψ̂�j (t′ + 1 ≤ j ≤ t + 1), and Ĉ are fixed. It
is easy to see that there are at most t + 1 values of ψ�t+2 with which cI = 0.
Therefore, the upper bound of the number of zeros of eq. (3) can be evaluated
as follows:

|{(ψ�t′+1
, . . . , ψ�t+2 , C) | cI = 0 holds}|

≤ |{(ψ�t′+1
, . . . , ψ�t+1) | ψ�i ∈ Ψ�i (t′ + 1 ≤ i ≤ t + 1)}|

×|{C(x) | C(ψ�i) = vC,�i (1 ≤ i ≤ t′)}| × (t + 1) = pt−t
′+1 · qt−t′+1 · (t + 1)

Therefore, the lower bound of ε(I) is given as follows: ε(I)≤ pt−t′+1·qt−t′+1·(t+1)
pt−t′+2·qt−t′+1 =

(t + 1)/p.
From the above inequality and the fact that the number of subsets I of

{1, . . . , 3t} such that 1 ∈ I and |I| = t + 2 is equal to
(3t−1
t+1

)
, the successful

cheating probability ε is given as follows:

ε = Pr[there exists I such that cI = 0, 1 ∈ I, |I| = t + 2]

≤
∑

{
I
∣∣∣ 1∈I,
|I|=t+2

} ε(I) =
∣∣∣∣{I ∣∣∣∣ 1 ∈ I,

|I| = t + 2

}∣∣∣∣ · ε(I) ≤
(

3t− 1
t + 1

)
· t + 1

p
≤ (t + 1) · 23t−1

p

The size of share satisfies |Vi| = p · q and is approximately written by |Vi| ≈
n·(t+1)·23t−1|S|

ε since q ≈ n · p and p ≤ (t+1)·23t−1

ε . ��

Though size of share grows exponentially with the number of cheaters, the size
of share is much smaller compared to Kurosawa et al. [12] whose size of share is
as large as |S|/εt+2 (note that 1

ε # 2.) Even compared to the theoretical lower
bound of eq. (1), the bit length of the proposed scheme is only 3t+ log t+ logn
bit longer. On the other hand, the drawback of the proposed reconstruction
algorithm is its computational inefficiency. In fact the reconstruction algorithm
requires to compute Lagrange interpolation

(3t
t+2

)
times to identify cheaters.

However, in the usual setting, the cheater identification of the proposed scheme
is still feasible. Consider, for example, the situation where we want to catch up
to 10 cheaters (i.e. t = 10). The number of Lagrange interpolation we have to
invoke is

(30
12

)
= 4, 118, 725, which is indeed feasible even by the current personal

computer.
We should note that the similar (brute force search) technique can be applied

to the scheme given in the section §3.2.

5 A Publicly Cheater Identifiable Scheme for t ≤ �k−1
2

�
The scheme presented in Section 4 meets the theoretical upper bound t = �(k−
1)/2� on number of cheaters that a scheme can identify when the threshold k
is even. This is because �(k − 2)/2� = �(k − 1)/2� holds for even k. When k is

298 S. Obana

odd, on the other hands, the scheme will fail to catch �(k−1)/2�(> �(k−2)/2�)
cheaters. In this section we present a publicly cheater identifiable scheme which
can catch �(k− 1)/2� cheaters. The size of shares |Vi| of the proposed scheme is
not so small as the scheme for t ≤ �(k − 2)/2�, though, the size of shares of the
scheme is still much smaller than that of [12].

Here, we will review the scheme presented in the previous section to explain
the idea behind the proposed scheme for t ≤ �(k − 1)/2�. The reconstruction
algorithm of the scheme for t ≤ �(k − 2)/2� identifies cheaters by checking the
degree of the polynomial reconstructed from t + 2 points. Using this technique,
it can be ensured that (1) t+ 2 points containing forged share cannot construct
a polynomial with degree less than or equal to t and, (2) t+ 2 points containing
no forged share construct a polynomial with degree less than or equal to t.
Unfortunately, we cannot apply this technique when t = �(k − 1)/2� since any
t + 2 shares contain at least one forged share and we cannot find set of honest
shares (and, therefore, cannot identify cheaters correctly.)

To make it possible to find honest shares by examining consistency of t + 1
shares, a share vi of the proposed scheme consists of vi = (vs,i, vC0,i, vC1,i) where
vs,i is a share of Shamir’s k-out-of-n scheme and vC0,i, vC1,i are the points on the
polynomials C0(x) =

∑t
i=0 a0,ix

i and C1(x) =
∑t

i=0 a1,ix
i such that a0,0 = a1,t.

Then we can verify the consistency of t + 1 shares by examining the equality
â0,t = â1,t where â0,0 and â1,t are coefficients of x0 and xt of polynomials Ĉ0

and Ĉ1, respectively, where Ĉ0 and Ĉ1 are polynomials reconstructed from t+1
shares. Since an additional element (i.e. vC1,i) is required in the proposed scheme,
the size of share is larger than that of the scheme for t ≤ �(k − 2)/2�.

The share generation algorithm ShareGen and the secret reconstruction algo-
rithm Reconst of the proposed scheme are described as follows where p and q
are prime powers such that q ≥ n · p and ψ : GF(p) × {1, . . . , n} → GF(q) is an
injective function.

Share Generation: On input a secret s ∈ GF(p), the share generation algorithm
ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomial fs(x) ∈ GF(p)[X] of degree k − 1 such that
fs(0) = s.

2. Generate random polynomials C0(x) =
∑t

i=0 a0,ix
i, C1(x) =

∑t
i=0 a1,ix

i ∈
GF(q)[X] such that the a0,0 = a1,t.

3. Compute vi = (fs(i), C0(ψ(fs(i), i)), C1(ψ(fs(i), i))) and output (v1, . . . , vn).

Secret Reconstruction and Cheater Identification: On input a list of m (≥ k)
shares ((vs,i1 , vC0,i1 , vC1,i1), . . . , (vs,im , vC0,im , vC1,im)), the secret reconstruction
algorithm Reconst output a secret or a list of identities of cheaters as follows.

1. If t ≤ �(m− 1)/3� holds, outputs (s, L) ← Reconst(3t+1)((vs,i1 , vC0,i1), . . . ,

(vs,im , vC0,im)), where Reconst(3t+1) denotes the secret reconstruction algo-
rithm for t ≤ �(k − 1)/3� (i.e. Reconst presented in §3.1.)

2. Otherwise, let L← {i1, . . . , im} and repeat the following steps 2a–2b for all
subsets I ⊆ {i1, . . . , im} such that |I| = t + 1.

Almost Optimum t-Cheater Identifiable Secret Sharing Schemes 299

(a) Compute aI,0 and aI,1 as follows:

aI,0 =
∑

�∈I vC0,� ·
∏

j∈I
j �=�

−ψ(vs,j ,j)
ψ(vs,�,�)−ψ(vs,j,j)

aI,1 =
∑

�∈I vC1,� ·
∏

j∈I
j �=�

1
ψ(vs,�,�)−ψ(vs,j,j)

where aI,0 and aI,1 are coefficients of x0 and xt of the polynomials C0(x)
and C1(x) constructed from the t+1 points (ψ(vs,i, i), vC0,i) (i ∈ I) and
(ψ(vs,i, i), vC1,i) (i ∈ I), respectively.

(b) If aI,0 = aI,1 holds then L ← L \ I (i.e. remove I from the list of
cheaters.)

3. If |L| ≤ m−k holds then reconstruct fs(x) from (k or more) shares vs,ij such
that ij
∈ L using Lagrange interpolation, and output (fs(0), L) if deg(fs) ≤
k − 1, otherwise Reconst output (⊥, L). Reconst also output (⊥, L) if |L| >
m− k holds.

Security of the proposed scheme can be summarized by the following theorem.

Theorem 4. If t ≤ �(k − 1)/2� then the proposed scheme is a (t, ε) cheater
identifiable secret sharing scheme with public cheater identification such that

|S| = p, ε =
t · 23t

p
, q ≥ n · p, |Vi| = p · q2 (≈ (n·t·23t)2·|S|

ε2) .

Proof. The proof is similar to that of Theorem 3 except that we pay attention
to the 0-th and the t-th degree coefficients of polynomials C0(x) and C1(x),
respectively, in analyzing the security of the proposed scheme.

As in the proof of Theorem 3, we can assume P1, . . . , Pt are cheaters who
cooperatively try to fool the other participants Pt+1, . . . , Pm by forging (part
of) their shares. Suppose that P1 is a critical cheater who submits invalid share
v′1 = (v′s,1, v

′
C0,1, v

′
C1,1) such that v′s,1
= vs,1. We will show that the probability

that the successful cheating probability of P1 is upper bounded by ε (= t·23t

p).
From the proof of Theorem 1, it is easy to see that, if t ≤ (m − 1)/3 holds,

the successful cheating probability of P1 is upper bounded by q(< ε).
Now we will show the proposed reconstruction algorithm can catch cheaters

with probability better than 1−ε even against t = �(k−1)/2� cheaters. It suffices
to show that the probability that there exists at least one subset I ⊆ {1, . . . ,m}
such that (1) 1 ∈ I, (2) |I| = t + 1, and (3) aI,0 = aI,1, is lower bounded by ε.

Toward showing the above, we will first show that the probability ε(I) that
aI,0 = aI,1 holds for given I is lower bounded by 2t/p for any I such that 1 ∈ I
and |I| = t+ 1. Without loss of generality, we can assume I = {�1, �2, . . . , �t+1}
and P�1 . . . , P�t′ (t′ ≤ t) are cheaters.

To evaluate ε(I), we will analyze the structures of aI,0 and aI,1. As in the
proof of Theorem 3, we will use the notation ψi to denote ψ(vs,i, i) and the no-
tation X ′ to indicate the variable X is owned and controlled by the cheaters. By
the similar discussion to the proof of Theorem 3, aI,0 and aI,1 can be rewritten
as follows:

300 S. Obana

aI,0 =
t′∑

i=1

A0,i ·
t+1∏

j=t′+1

−ψ�j

ψ′
�i
− ψ�j

+
t+1∑

j=t′+1

C0(ψ�j) ·
t′∏

i=1

−ψ′
�i

ψ�j − ψ′
�i

t+1∏
i=t′+1

i�=j

−ψ�i

ψ�j − ψ�i

(4)

aI,1 =
t′∑

i=1

A1,i ·
t+1∏

j=t′+1

1
ψ′

�i
− ψ�j

+
t+1∑

j=t′+1

C1(ψ�j) ·
t′∏

i=1

1
ψ�j − ψ′

�i

t+1∏
i=t′+1

i�=j

1
ψ�j − ψ�i

(5)

With the knowledge about shares owned by the cheaters, the number of possi-
ble candidates for (ψ�t′+1

, . . . , ψ�t+1 , C0, C1) becomes pt−t
′+1 × q2(t−t′)+1 since

(1) ψ�i (t′ + 1 ≤ i ≤ t + 1) look randomly, uniformly and independently dis-
tributed over the set Ψ�i = {ψ(vs,�i , �i) | vs,�i ∈ GF(p)} even with the knowl-
edge of cheaters, and (2) (ψ�t′+1

, vC0,�t′+1
, vC1,�t′+1

) . . . (ψ�t , vC0,�t , vC1,�t) and
(ψ�t+1 , vC0,�t+1) uniquely determines the polynomials C0(x) and C1(x) such that
a0,t = a1,t holds.

Now, we will estimate the upper bound of the number of (ψ�t′+1
, . . . , ψ�t+1 , C0,

C1) with which aI,0 = aI,1. By the similar discussion to the proof of Theo-
rem 3, we can show that, for any fixed (ψ�t′+1

, . . . , ψ�t , C0, C1) = (ψ̂�t′+1
, . . . ,

ψ̂�t , Ĉ0, Ĉ1), eq. (4) and eq. (5) are rewritten as follows:

aI,0 =
t′∑

i=1

−Âi,0 · ψ�t+1

ψ′
�i
− ψ�t+1

+
t∑

j=t′+1

−B̂j,0 · ψ�t+1

ψ̂�j − ψ�t+1

+Ĉ0(ψt+1) ·
t′∏

i=1

−ψ�t+1

ψ�t+1 − ψ′
�i

t∏
i=t′+1

−ψ�t+1

ψ�t+1 − ψ̂�i

aI,1 =
t′∑

i=1

Âi,1

ψ′
�i
− ψ�t+1

+
t∑

j=t′+1

B̂j,1

ψ̂�j − ψ�t+1

+Ĉ1(ψt+1) ·
t′∏

i=1

1
ψ�t+1 − ψ′

�i

t∏
i=t′+1

1
ψ�t+1 − ψ̂�i

where Âi,0, B̂j,0, Âi,1 and B̂j,1 are constant once ψ′
�i

(1 ≤ i ≤ t′), ψ̂�j (t′ + 1 ≤
j ≤ t), Ĉ0, and Ĉ1 are fixed. We see that there are at most 2t values of ψ�t+1

with which aI,0 = aI,1 since solving ψ�t+1 such that aI,0(ψ�t+1) = aI,1(ψ�t+1) is
equivalent to solving the equation AI(ψ�t+1) = 0 for a polynomial AI of degree
2t where AI is uniquely determined from aI,0 and aI,1. Therefore, the upper
bound of the number of (ψ�t′+1

, . . . , ψ�t+1 , C0, C1) such that aI,0 = aI,1 can be
evaluated as follows:

|{(ψ�t′+1
, . . . , ψ�t+1 , C0, C1) | aI,0 = aI,1 holds}|

≤ |{(ψ�t′+1
, . . . , ψ�t) | ψ�i ∈ Ψ�i (t′ + 1 ≤ i ≤ t)}|

×
∣∣∣∣{(C0(x), C1(x))

∣∣∣∣C0(ψi) = vC0,i, C1(ψi) = vC1,i (1 ≤ i ≤ t′),
a0,0 = a1,t

}∣∣∣∣× 2t

= pt−t
′
· q2(t−t′)+1 · 2t

Almost Optimum t-Cheater Identifiable Secret Sharing Schemes 301

Therefore, we see that ε(I) is lower bounded by ε(I) ≤ 2t/p since ε(I) ≤
pt−t′ ·q2(t−t′)+1·2t
pt−t′+1·q2(t−t′)+1 = 2t/p holds.

From the above inequality and the fact that the number of subsets I of
{1, . . . , 3t} such that 1 ∈ I and |I| = t + 1 is equal to

(3t−1
t

)
, the successful

cheating probability ε is given as follows:

ε = Pr[there exists I such that ΔcI = 0, 1 ∈ I, |I| = t + 1]

≤
∑

{I| 1∈I,
|I|=t+1 }

ε(I) =
∣∣∣∣{I ∣∣∣∣ 1 ∈ I,

|I| = t + 1

}∣∣∣∣ · ε(I) ≤
(

3t− 1
t

)
· t
p
≤ t · 23t

p

The size of share satisfies |Vi| = p · q and is approximately written by |Vi| ≈
(n·t·23t)2|S|

ε2 since q ≈ n · p and p ≤ t·23t

ε . ��

6 Conclusion

In this paper, we present efficient (t, ε) cheater identifiable (k, n) threshold secret
sharing schemes under the conditions t ≤ �(k − 1)/3�, t ≤ �(k − 2)/2� and
t ≤ �(k− 1)/2�, respectively. The schemes which can catch �(k − 1)/3� cheaters
are the first schemes whose share size is independent of any of n, k and t. Further,
in one of these schemes, the share size is almost optimum in the sense that the
bit length of the share is only one bit longer than the bound given in [12]. The
schemes which can catch t ≤ �(k − 2)/2� cheaters and t ≤ �(k − 1)/2� cheaters
are, though the bit length of shares grows linear to the number of cheaters,
shown to be much more efficient with respect to the size of share compared to
[12] and the other schemes with private cheater identification.

In our future work, we will focus on finding an efficient scheme under the
condition t ≤ �(k − 1)/2� such that the size of share is independent of any of
n, k and t, and the computational cost for identifying cheaters is small.

References

1. Araki, T.: Efficient (k, n) Threshold Secret Sharing Scheme Secure against Cheating
from n−1 Cheaters. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007.
LNCS, vol. 4586, pp. 133–142. Springer, Heidelberg (2007)

2. Araki, T., Obana, S.: Flaws in Some Secret Sharing Schemes against Cheating. In:
Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp.
122–132. Springer, Heidelberg (2007)

3. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979, National
Computer Conference, vol. 48, pp. 137–313 (1979)

4. Brickell, E.F., Stinson, D.R.: The Detection of Cheaters in Threshold Schemes.
SIAM Journal on Discrete Mathematics 4(4), 502–510 (1991)

5. Carpentieri, M.: A Perfect Threshold Secret Sharing Scheme to Identify Cheaters.
Designs, Codes and Cryptography 5(3), 183–187 (1995)

302 S. Obana

6. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of Algebraic
Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer,
Heidelberg (2008)

7. Carpentieri, M., De Santis, A., Vaccaro, U.: Size of Shares and Probability of
Cheating in Threshold Schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 118–125. Springer, Heidelberg (1994)

8. Cramer, R., Damg̊ard, I., Fehr, S.: On the Cost of Reconstructing a Secret, or VSS
with Optimal Reconstruction Phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 503–523. Springer, Heidelberg (2001)

9. Cabello, S., Padró, C., Sáez, G.: Secret Sharing Schemes with Detection of Cheaters
for a General Access Structure. Designs, Codes and Cryptography 25(2), 175–188
(2002)

10. den Boer, B.: A Simple and Key-Economical Unconditional Authentication
Scheme. Journal of Computer Security 2, 65–71 (1993)

11. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly Secure Message Transmis-
sion. Journal of the ACM 40(1), 17–47 (1993)

12. Kurosawa, K., Obana, S., Ogata, W.: t-Cheater Identifiable (k, n) Secret Sharing
Schemes. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 410–423.
Springer, Heidelberg (1995)

13. Kurosawa, K., Suzuki, K.: Almost Secure (1-Round, n-Channel) Message Trans-
mission Scheme. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 99–112.
Springer, Heidelberg (2009)

14. MacWilliams, F., Sloane, N.: The Theory of Error Correcting Codes. North
Holland, Amsterdam (1977)

15. McEliece, R.J., Sarwate, D.V.: On Sharing Secrets and Reed-Solomon Codes. Com-
munications of the ACM 24(9), 583–584 (1981)

16. Obana, S., Araki, T.: Almost Optimum Secret Sharing Schemes Secure Against
Cheating for Arbitrary Secret Distribution. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 364–379. Springer, Heidelberg (2006)

17. Ogata, W., Kurosawa, K.: Optimum Secret Sharing Scheme Secure against Cheat-
ing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 200–211.
Springer, Heidelberg (1996)

18. Ogata, W., Kurosawa, K.: Provably Secure Metering Scheme. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 388–398. Springer, Heidelberg (2000)

19. Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum Secret Sharing Scheme Secure
against Cheating. SIAM Journal on Discrete Mathematics 20(1), 79–95 (2006)

20. Pedersen, T.: Non-interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

21. Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority. In: Proc. STOC 1989, pp. 73–85 (1989)

22. Rabin, T.: Robust Sharing of Secrets When the Dealer is Honest or Cheating.
Journal of the ACM 41(6), 1089–1109 (1994)

23. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613
(1979)

24. Stinson, D.R.: On the Connections between Universal Hashing, Combinatorial
Designs and Error-Correcting Codes. Congressus Numerantium 114, 7–27 (1996)

25. Tompa, M., Woll, H.: How to Share a Secret with Cheaters. Journal of
Cryptology 1(3), 133–138 (1989)

On Linear Hulls, Statistical Saturation Attacks,
PRESENT and a Cryptanalysis of PUFFIN

Gregor Leander

DTU Mathematics
Technical University of Denmark

G.Leander@mat.dtu.dk

Abstract. We discuss complexities of advanced linear attacks. In par-
ticular, we argue why it is often more appropriate to examine the me-
dian of the complexity than the average value. Moreover, we apply our
methods to the block ciphers PUFFIN and PRESENT. For PUFFIN,
a 128 bit key cipher, we present an attack which breaks the cipher for
at least a quarter of the keys with a complexity less than 258. In the
case of PRESENT we show that the design is sound. The design crite-
ria are sufficient to ensure the resistance against linear attacks, taking
into account the notion of linear hulls. Finally, we show that statisti-
cal saturation attacks and multi dimensional linear attacks are almost
identical.

1 Introduction

Block ciphers are probably one of the most studied objects in cryptography in
general. The security of block cipher seems well understood and quite a number
of secure and efficient block ciphers are available today. The AES is of course
the most studied and analyzed block cipher at present, but many other inter-
esting proposals have been made. Recently, there has been a trend to design
block ciphers that are not suitable for every environment, but rather tailored
to special platforms and/or purposes. What all those designs have in common
is that nowadays a detailed analysis against known cryptanalytic methods is
almost mandatory when presenting a new design.

One of those known attacks is of course Matsui’s linear attack [1]. However,
despite its discovery more than 15 years ago, linear cryptanalysis seems to be less
understood in comparison to, for example, differential attacks. In particular, for
advanced linear attacks, such as attacks using so called linear hulls or multidi-
mensional cryptanalysis, we still do not understand completely how to estimate
their running time correctly. Concerning linear attacks using linear hulls Murphy
[2] points out very fundamental problems when estimating the impact of those
attacks.

Besides the well known cryptanalytic methods, some new attacks appeared
recently, and among those are the so called statistical saturation attack. In a nut-
shell, the main idea of statistical saturation attacks is to use a poor diffusion in
a block cipher by fixing certain input bits in the plaintext and disregarding some

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 303–322, 2011.
c© International Association for Cryptologic Research 2011

304 G. Leander

of the output bits. While this method currently provides the best attacks against
the lightweight block cipher PRESENT, a method to estimate its complexity
correctly is missing.

This lack of a deeper understanding is especially surprising as the study of
block ciphers is one of the classical fields of cryptography. One would expect
that the necessary tools to precisely –and formally correctly – formulate attack
complexities have been already developed. However, this is apparently not always
the case.

1.1 Our Contributions

In Section 3 of this paper we discuss in detail the problems pointed out by
Murphy [2] on linear hulls. However, we do not quite agree with the conclusion
that linear hulls do not exist. On the contrary, we explain why linear hulls (when
defined correctly) always exist and always have to be taken into account when
statements about the attack complexity are made. In order to be able to make
meaningful statements about the attack complexity we explain why a paradigm
shift from discussing average complexities to discussing medians of complexities
is necessary. As we will explain, this holds not only for attacks that make use of
linear hulls, but actually also for linear attacks based on a single linear trail. We
present methods on how one can, in many cases, compute good approximations
of the median of the complexities.

As an example, we apply our methods to cryptanalyze the block cipher PUF-
FIN (see Section 4). We present an attack on full round PUFFIN, a block cipher
with a 128 bit key, that allows us to recover 4 bits of the last round key for at
least a quarter of the keys with a complexity below 258.

In Section 5 we use our methods to understand the resistance of PRESENT

to linear cryptanalysis. Most interestingly we show that the design principle
of PRESENT is sound, in the sense that any sbox and any bit permutation
fulfilling the design criteria of PRESENT yield to a cipher secure against this
type of linear attacks. In order to do so, we present a link between optimal bit
permutations and central digraphs which is interesting in itself. Central digraphs
are classical combinatorial objects (see for example [3]) and the link allows us
to answer natural questions about optimal permutations. Most importantly, this
link allows us to classify all optimal bit permutations. This classification then
allows us to get a deeper understanding of the block cipher PRESENT.

Finally, in Section 6 we solve the problem of estimating the biases (or ca-
pacities) in statistical saturation attacks. Using a theorem on the Fourier trans-
formations of restrictions of Boolean functions, we demonstrate that statistical
saturation attacks are in principle identical to multi dimensional linear attacks.
In particular, this link allows us to evaluate the bias used in statistical saturation
attacks using well studied tools and well established theory, a major drawback
of statistical saturation attacks so far. Furthermore, we believe that this link
makes it possible to apply statistical saturation attacks to other ciphers.

On Linear Hulls, Statistical Saturation Attacks 305

2 Preliminaries

In this section, we fix our notation and recall known identities between the bias
of a function, the correlation and the Fourier transformation. After doing so, we
recall the basic concept of linear hulls and statistical saturation attacks.

2.1 Bias, Correlation and Fourier Transformation

We denote by F2 the binary field with two elements and by Fn2 the n-dimensional
vector space over F2. The canonical inner product on Fn2 is denoted by 〈·, ·〉, i.e.

〈(a0, . . . , an−1), (b0, . . . , bn−1)〉 :=
n−1∑
i=0

aibi.

We note that all linear mappings, i.e. all linear functions, l : Fn2 → F2 can be
described as �(x) = 〈a, x〉 for a suitable a ∈ Fn2 . Given a vector a ∈ Fn2 we denote
by wt(a) its Hamming weight, i.e. wt(a) = |{0 ≤ i < n | ai = 1}|. Given a
(vectorial Boolean) function F : Fn2 → Fm2 the Fourier coefficient of F at the
pair (a, b) ∈ Fn2 ×Fm2 is defined by

F̂ (a, b) =
∑
x

(−1)〈b,F (x)〉+〈a,x〉.

Given the probability p of the linear approximation 〈a, x〉 of 〈b, F (x)〉, i.e.

p =
wt(〈b, F (·)〉+ 〈a, ·〉)

2n

the bias εF (a, b) of the linear approximation 〈a, x〉 of 〈b, F (x)〉 is defined as

p =
1
2

+ εF (a, b)

which can be rewritten as

εF (a, b) =
wt(〈b, F (·)〉 + 〈a, ·〉)

2n
− 1

2
.

The relation between the Fourier transformation of F and the bias of a linear
approximation is derived using

wt(〈b, F (·)〉+ 〈a, ·〉)) = 2n−1 − F̂ (a, b)
2

, (1)

which implies

εF (a, b) = − F̂ (a, b)
2n+1 .

Moreover, due to scaling reasons, it is often helpful to talk about the correlation
coefficient of F . This is defined by

CF (a, b) = 2εF (a, b) = − F̂ (a, b)
2n

306 G. Leander

Given a vectorial Boolean function F : Fn2 → Fm2 , the value used to determine
the complexity of both multidimensional linear attacks and statistical saturation
attacks is

Cap(F) =
∑
y∈Fm

2

(2−n|{x ∈ Fn
2 | F (x) = y}| − 2−m)2

2−m

which is called capacity in [4]. In [5] the squared euclidian distance was used
which is defined as

D(F) =
∑
y∈Fm

2

(
2−n|{x ∈ Fn

2 | F (x) = y}| − 2−m
)2

and differers from Cap(F) by a factor of 2m, i.e. D(F) = 2−m Cap(F).
There is an important, and well known, relation between the capacity (or the

squared Euclidian distance) and the Fourier transformation of F which we will
use below (see for example [6]).

Lemma 1

Cap(F) = 2−2n
∑
b�=0

(
F̂ (0, b)

)2
=
∑
b�=0

(
ĈF (0, b)

)2

2.2 Linear Trails, Correlations and Linear Hull

Consider a mapping F : Fn2 → Fn2 given as the composition of mappings, i.e.
F = Fn ◦ Fn−1 ◦ · · · ◦ F1. The correlation CF (a, b) can in this case be computed
using linear trails. A linear trail consists of an input mask a and output mask
b and a vector U = (u1, . . . , ur−1) with ui ∈ Fn2 . The correlation of the trail is
defined as

CF (a, b, U) = CF1(a, u1)CF2(u1, u2) · · ·CFr−1(ur−2, ur−1)CFr (ur−1, b).

Now, using correlation matrices [7] or the Fourier transformation of composite
mappings [8], one can prove that

CF (a, b) =
∑

U∈(Fn
2)r−1

CF (a, b, U).

In contrary to the piling-up lemma [1], no assumption of any kind has to be made
for this equation to hold. In the case where F corresponds to a key-alternating
iterative block cipher, that is when all Fi are the same up to an addition of a
round key, one can rewrite the previous equation as

CF (a, b) =
∑

U∈(Fn
2)r−1

(−1)sU |CF (a, b, U)|, (2)

On Linear Hulls, Statistical Saturation Attacks 307

where the signs sU ∈ {0, 1} depend on the sign of CF (a, b, U) and on the round
keys. More importantly, the value |CF (a, b, U)| is independent of the round keys
and the only influence of changing the keys is a change of the signs sU . Again,
no assumption is necessary for Equation 2 to hold. What we understand as the
linear hull is in fact nothing other than Equation 2.

An assumption that will be necessary to understand the distribution of the
biases in a linear attack is the following.

Assumption 1. The signs sU in Equation 2 are independently and uniformly
distributed with respect to the key.

Note that assuming independent round keys does not necessarily imply As-
sumption 1. This is only the case when all trails U with non-zero correlation
CF (a, b, U) are linearly independent. In any case, it is important to verify ex-
perimentally for each cipher at hand, that Assumption 1 holds, before it can be
applied.

Another important result we are going to use (cf. Theorem 1 in [6] and The-
orem 7.9.1 in [7]) is the following.

Proposition 1. Let F be the encryption function of a key alternating block
cipher and assume that all round keys are independent. The average squared
bias (resp. correlation) between an input and an output mask is the sum of the
squared biases (resp. correlations) over all linear trails between the input and the
output mask, i.e.

1
|K|CF (a, b)2 =

∑
U∈(Fn

2)r−2

CF (a, b, U)2

2.3 Statistical Saturation Attacks

In this section we briefly outline the idea of statistical saturation attacks. We
refer to [5] for details. Given an encryption function

e : Fn2 → Fn2

statistical saturation attacks study the distribution of e when some of its inputs
are fixed. While in general one can imagine the restriction to the coset of any
subspace E ⊂ Fn2 for the inputs and any subspace E′ ⊂ Fn2 for the output, for
simplicity we restrict ourselves to the case where one fixes the last s bits in the
inputs and considers only the first t bits of the output. Thus we write

e : Fr2×Fs2 → Ft2×Fu2 (3)

e(x, y) =
(
e(1)(x, y), e(2)(x, y)

)
(4)

where r + s = t + u = n and e(1)(x, y) ∈ Ft2, e
(2)(x, y) ∈ Fu2 . For convenience we

denote by hy the restriction of e by fixing the last s bits to y and considering
only the first t bits of the output, that is

308 G. Leander

hy : Fr2 → Ft2

hy(x) = e(1)(x, y) (5)

In a statistical saturation attack one considers the capacity of hy, and the attack
complexity is usually a constant times 1/Cap(hy).

Applying Lemma 1 to hy we can rewrite the capacity of hy in terms of Fourier
coefficients of hy.

Cap(hy) = 2−2r
∑
b∈Ft

2

(
ĥy(0, b)

)2
=
∑
b∈Ft

2

(
Chy(0, b)

)2
. (6)

One fundamental problem in statistical saturation attacks is that a useful method
to estimate this capacity was missing. However, in Section 6 we show that in
fact statistical saturation attacks are closely related to multi-dimensional linear
attacks and in particular this link provides the missing method to estimate the
capacity of hy.

3 On the Linear Hull Effect

Linear hulls have been studied already in [9] and since then have been used in
a number of papers. The main idea is to consider several, sometimes a lot of,
linear trails with the same input and output mask to decrease the complexity of
linear attacks using Matsui’s Algorithm 2. However, as Murphy [2] pointed out
nicely, there are (at least) two problems often appearing in the literature. In this
section we first recall those two very fundamental problems, and discuss their
impact on the complexity of linear attacks. While our starting point is clearly
the work of Murphy, our conclusions are quite orthogonal. More precisely, we
think that a better statement than Murphy’s conclusion that there is no linear
hull effect is that there is always a linear hull effect and we always have to deal
with this. We furthermore propose methods that allow us to make meaningful
statements about the running time of linear attacks. In particular we show the
following.

Theorem 2. Under Assumption 1 in a linear attack using a single trail with
squared bias ε2, at least half of the keys yield to a squared bias of at least ε2.
Thus, the complexity of this linear attack is less than c/ε2 in more than half of
the cases, where c is a small constant.

In a linear attack using many linear trails with the same squared bias ε2i = ε2

at least one quarter of the keys yield to a squared bias of at least 0.46 ·
∑

i ε
2
i .

Thus, the complexity of this linear attack is less than 2.2c/(
∑

i ε
2
i) in more than

a quarter of the cases, where c is a small constant.

The first problem Murphy points out comes from an incorrect formalization.
Consider the simplest case of two linear trails with the same input and output
mask, but different intermediate masks. The piling-up lemma is used to estimate
the bias (say ε1, ε2) for each of the equations. We assume that ε1
= 0 and ε2
= 0.

On Linear Hulls, Statistical Saturation Attacks 309

Denoting by α the input mask, by β the output mask and by γ1, γ2 the two key
masks, we end up with the following two equations

〈α, p〉+ 〈β, c〉 = 〈γ1,K〉 and 〈α, p〉+ 〈β, c〉 = 〈γ2,K〉
where the first equation holds with a bias ε1 and the second with a bias ε2. So
far, so good, but now consider any fixed (extended) key K. There are mainly
two cases to consider. First, one could have a key such that 〈γ1,K〉 = 〈γ2,K〉. In
this case one gets the same equation twice, implying that ε1 = ε2. On the other
hand, a different key could yield 〈γ1,K

′〉 = 〈γ2,K
′〉 + 1, and in this case we

conclude that ε1 = −ε2. As it is very likely that there is at least one key for each
of the cases, the only possible choice for the biases is ε1 = ε2 = 0, contradicting
our assumption. What went wrong? Where does the mistake come from? The
main point here is that, by applying the piling-up lemma, one implicitly assumes
independent and uniform distribution in each round. However, having the first
trail at hand, we already know that the inputs are non-uniformly distributed,
and thus this assumption is wrong. It is important to notice the difference to
the approach using correlation matrices, that is Equation 2. Here no assumption
about independent or uniform distribution is involved. Thus, one actually always
deals with the expression

CF (a, b) =
∑

U∈(Fn
2)r

CF (a, b, U).

but separating the different trails is not possible. This is why the correct con-
clusion is that there is always a linear hull effect and we have to deal with this.

So far, we recaptured the first of the two problems pointed out by Murphy,
and apply the (known) theory of correlation matrices to overcome it. Now, let us
have a closer look at Murphy’s second point, which we present slightly differently.
Assume someone found one linear trail with a non-zero bias ε. Usually, the
conclusion is that an attack based on this bias (lets say using Matsui second
algorithm) is a constant times 1/ε2. But what if the attacker overlooked another
trail with the same absolute bias. The correct correlation is given by

CF (u, v) = ((−1)s1 + (−1)s2)2ε,

where the value of s1 and s2 depend on the extended key. Then, assuming a
random behavior of the signs, the total bias would be zero for half of the keys.

There are two important remarks to make. First, the absolute bias is actually
key dependent and secondly the average complexity is formally infinite. Again,
to make the point very clear, the original attack did not take any linear hull effect
into account and this is the reason why the claim about the attack complexity is
wrong.

Now the attacker tries to do better and can actually show that all other trails
have a (much) smaller bias. Still, for some (maybe only one) keys the biases
could cancel and the average complexity is again infinite.

Thus, due to the linear hull effect, which is always there, estimating the av-
erage complexity of the attack seems very difficult (and often turns out to be
infinite).

310 G. Leander

In the example, where there are exactly two trails with the same bias, the
attack will still work for half of the keys (and for this half even faster than
estimated by looking at only one trail). This leads directly to a natural way to
overcome this problem. Namely, instead of studying the average complexity, the
median of the complexities should be studied.

Definition 1. The median of the complexities C̃ is the value such that, for
half of the keys the complexity of the attack is less than or equal to C̃. More
generally, one could study the complexity Cp defined as the complexity such that
the probability that for a given key the attack complexity is lower than Cp, is p.

Note that C̃ = C1/2.
Studying the complexity Cp instead of the average complexity has several

advantages. First, given the median of the biases ε̃, the median of the complexity
is simply c/ε̃2 (as the inverse is a monotone function). Secondly, the median
(or general Cp) is actually a more interesting value to know than the average
complexity, especially in the case where the latter is infinite.

Finally, let us see what happens when we ignore or overlook trails in the com-
putation of CF (u, v). This was exactly where the trouble started for the average
complexity. Let us assume we take n trails with correlations γi into account.
Furthermore, let us denote by γp the correlation such that the probability that
a given key yields a correlation larger or equal to γp is p, given the n trails. That
is

ProbK

(∣∣∣∣∣∑
i

(−1)siγi

∣∣∣∣∣ > |γp|
)

=
1
2
.

Denoting the correlations of the remaining trails by ηj , we get

CF (u, v) =

(∑
i

(−1)siγi

)
+

⎛⎝∑
j

(−1)s
′
jηj

⎞⎠ .

With a probability of 1/2 the sum
∑

j(−1)s
′
jηj has the same sign as the sum∑

i(−1)siγi. Thus

ProbK(|CF (u, v)| > |γp|) ≥
p

2
. (7)

This inequality implies that the probability of having a complexity less than a
given bound, might actually be smaller than estimated due to linear trails that
have not been taken into account. However, this probability drops by at most a
factor of 2.

Coming back to the case where an attacker just considered one trail with
bias ε. As we saw, it is not possible to conclude anything meaningful about the
average, but using the above considerations, one can conclude that for at least
half of the keys the data complexity is below c/ε2.

One important point not discussed so far is how to estimate the medians of
the correlations. Here we consider two cases. First, in an attack where only a

On Linear Hulls, Statistical Saturation Attacks 311

few trails are used, one can easily compute the median by running through all
possible values for the signs. This gets infeasible when there are too many trails.
However, in the case where one deals with many trails with the same absolute
correlation, one can estimate the median nicely by using a normal approximation,
as explained below. In Section 4 we furthermore show by example, how one can
estimate the median in the case of many trails with different absolute values.

3.1 Many Trails with the Same Absolute Value

As already done before (see [10]) in the case of many linear trails with the same
absolute value, the distribution of the correlation

CF (a, b) =
∑

U∈(Fn
2)r−2

(−1)sU |CF (a, b, U)| =
∑
i

(−1)si2εi,

where εi are the absolute biases of the trails, can be approximated by a normal
distribution. This approximation implicitly makes use of Assumption 1. Clearly,
this assumption has to be justified for each cipher by experiments (and we do
so below for the block cipher PUFFIN). Denoting by X the random variable
corresponding to the bias, we will approximate its distribution by

X ∼ N (0,
∑

ε2i),

that is, X is normally distributed with mean zero and variance σ2 :=
∑

ε2i . The
probability density function is thus given by

f(x) =
1√

2πσ2
e−

1
2σ2 x

2
.

Again, when trying to compute the average complexity of the attack, that is, the
mean value of the random variable c/X2, it turns out that this value is formally
infinite. Therefore, and for reasons outlined above, we focus on the median of the
squared biases corresponding to the random variable Y := X2. Denoting by F
the cumulative distribution function of X , the cumulative distribution function
G of Y = X2 can be computed as

G(t) = Prob(Y ≤ t) = Prob(−
√
t ≤ X ≤

√
(t))

= F (
√
t) + F (−

√
t)− 1 = 2F (

√
t)− 1.

Using the relation to the normal distribution (or ask maple) we can simplify
G(t) to

G(t) = erf(

√
t

2σ2)

where erf is the Gauss error function. The median ε̃2 of Y is by definition the
value ε̃2 such that G(ε̃2) = 1

2 . We get

erf(

√
ε2m
2σ2) =

1
2

312 G. Leander

and using the approximation erf−1(1/2) ≈ 0.48 we conclude that ε2m ≈ 0.46σ2 .
For completeness, we can furthermore compute the mean of Y as E[Y] = σ2

which naturally corresponds to Proposition 1 (without using the normal approx-
imation).

Thus, using the normal approximation and Equation 7 we can conclude that
for a quarter of the keys the attack has a complexity lower than a small con-
stant times 1/(0.46σ2) ≈ 2.21/σ2. A similar calculation shows that fraction of
approximately 0.317 of the keys lead to an attack complexity of a small constant
times σ2.

4 Linear Hulls and PUFFIN

This section applies the ideas outlined above to the block cipher PUFFIN [11].
PUFFIN, a very PRESENT like SP-network, is a 64 bit block cipher with 32
rounds and a 128 bit master key. The only components we are interested in
here are the linear layer and the sbox-layer. The linear layer is the following bit
permutation.

The sbox-layer consists of 16 parallel executions of a single 4 bit sbox given by
the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] D 7 3 2 9 A C 1 F 4 5 E 6 0 B 8

The main difference to PRESENT is that all components are involutions,
thus allowing to save area when implementing the decryption circuit. For more
details on PUFFIN we refer to [11].

We show how one can estimate quite precisely the distribution of the biases
and thus in particular estimate the median of the attack complexity. Applying
Theorem 2, our results indicate that, for at least a quarter of the keys, PUFFIN
can be broken with a complexity less than 258. Because everything in our attack,
except the estimation of the attack complexity, is a standard application of
Matsui’s second algorithm, we skip some details of the attack.

4.1 Linear Trails in PUFFIN

We focus only on trails, where all intermediate masks have Hamming weight
one, i.e we have exactly one active sbox in each round. As it turns out, the
highest median of biases can be expected for the input and output mask e1 =
0x2000000000000000, that is between the first (counting from zero) bit of the
plaintext and the first bit of the ciphertext. The number of all such trails together

On Linear Hulls, Statistical Saturation Attacks 313

with their absolute squared correlation can easily be computed for up to 31
rounds. Those results are summerized below. An entry t in this table at level �
and round r means that there are 2t one bit trails, each with an absolute bias
of 2−r−l. Note that there is exactly one trail with maximal absolute bias of 2−r

and this trail is not included in the table.
Round\Level 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

4 2.00 - 1.00 - - - - - - - - - - - - - -
5 2.81 - 2.58 - - - - - - - - - - - - - -
6 3.32 - 4.00 2.00 1.00 - - - - - - - - - - - -
7 3.81 - 5.13 3.32 4.09 2.58 - - - - - - - - - - -
8 4.17 - 6.00 4.58 5.95 4.46 3.32 - - - - - - - - - -

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
28 7.70 - 13.41 12.69 17.88 18.04 21.51 22.05 24.47 25.18 26.89 27.63 28.84 29.50 30.34 30.87 31.41
29 7.80 - 13.61 12.90 18.19 18.36 21.91 22.48 24.98 25.72 27.52 28.30 29.58 30.30 31.22 31.81 32.43
30 7.89 - 13.80 13.09 18.47 18.66 22.30 22.89 25.48 26.25 28.12 28.94 30.30 31.07 32.06 32.71 33.41
31 7.99 - 13.99 13.29 18.76 18.95 22.67 23.28 25.95 26.75 28.70 29.55 30.99 31.80 32.86 33.57 34.34

4.2 Approximation of the Bias Distribution

In the case of PUFFIN we use a normal approximation to approximate the many
linear trails for levels greater than 1. Denote by σ2 the sum of squares of all those
biases, i.e.

σ2 =
∑
i

ε2i ,

where εi runs through all one bit linear trails of level greater than 1 and smaller
than 19. We denote the bias of the unique trail with maximal absolute bias by
η. In order to incorporate this one maximal biased trail as well, we expect that
the cumulative distribution function G of the total bias as is given by

G(t) =
1
2

(F (t− η) + F (t + η)) , (8)

where F is the cumulative distribution function of N (0, σ2).
In order to justify the approximation, that is the implicit assumption on the

random behavior of the signs, we experimentally compute the bias for 1000 keys
for rounds 7 to 10. The results are shown in Figure 1.

Note that one reason for the small difference is that the estimates for very
small biases are wrong, due to a naturally limited amount of samples. Apart
from this small error, the distributions are quite close and in particular the
median is predicted very precisely. Using Equation 8 one can easily compute the
median numerically (using for example Maple). It turns out that the base two
logarithm of the medians of the squared biases is almost an affine function. A
good approximation of the median of the square bias for r rounds is given by
2−1.71r−3.13. In particular, applying Theorem 2 this implies that for a quarter of
the keys, the data complexity of attacking r rounds of PUFFIN is proportional
to 21.71(r−1)+3.13. Experimental results for 7 to 12 round attacks (again using
1000 randomly chosen keys per round) indicate that using 4 ·21.71(r−1)+3.13 gives
full gain, that is it recovers four key bits of the last round key successfully, in
over 40% of the cases. In particular for r = 32, that is for the full PUFFIN, we
get a complexity of about 258.

314 G. Leander

(a) 7 rounds (b) 8 rounds

(c) 9 rounds (d) 10 rounds

Fig. 1. Theoretical estimates vs. experimental bias for 7 to 10 rounds. The experimental
data is based on 1000 randomly chosen keys for each round.

We expect that this is not the optimal attack. For example partial decryption
of two instead of only one round might further reduce the data complexity (at the
cost of increasing the computational complexity). Another improvement is likely
obtained by applying the below mentioned statistical saturation attack (however
estimating the exact data requirements is difficult). As the main objective of this
section was to demonstrate how one can estimate the distribution of biases in
the case of many linear trails, and use this finally to allow meaningful statements
about the behavior of a linear attack, those improvements are out of scope of
this paper and we leave them as a topic for further investigation.

5 Linear Hulls and PRESENT

PRESENT is a 64-bit block cipher developed by A. Bogdanov et al. [12] and was
designed to be particular suitable for low-cost devices like RFID-tags. There are
two versions, a 80 bit key version, called PRESENT-80 and a 128 bit version
PRESENT-128. PRESENT is an substitution-permutation-network with 31
rounds and one final key exclusive-or at the end.

In the substitution layer (called sBoxLayer in PRESENT) a single 4-bit to
4-bit sbox is applied 16 times in parallel. The action of the sbox in hexadecimal
notation is given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The permutation layer (called pLayer in PRESENT) is given as a simple bit
permutation. Bit i of the current state is moved to bit position P (i), where

P (i) =
{

16× i mod 63 for 0 ≤ i ≤ 62
63 for i = 63

On Linear Hulls, Statistical Saturation Attacks 315

The sbox in PRESENT S : F4
2 → F4

2 has been chosen to fulfill several criteria
(see [12] for details) to ensure resistance against differential and linear crypt-
analysis. We call a sbox fulfilling these criteria optimal.

Compared to a general linear layer the permutation layer of PRESENT pro-
vides relatively low diffusion. However, as stated in [12], for a bit permutation
the pLayer is optimal in the sense that full dependency is reached already after
a minimal number of rounds. After three rounds each of the 64 input bits in-
fluence each of the 64 output bits. For convenience we call such a permutation
optimal.For more details on PRESENT we refer to [12].

5.1 Linear Attacks on PRESENT

Several papers discussed linear attacks on PRESENT. In [10] linear hulls where
used to attack up to 25 rounds. Moreover, in [6] a multi dimensional linear
attack on up to 26 rounds of PRESENT is described. The main reason why
linear cryptanalysis works against up to 26 rounds of PRESENT is the relative
high number of linear trails with only one active sbox per round. As the number
of those linear trails was not discussed in [12] an important question is how
sound the design of PRESENT is, when taking linear hulls into account. For
a, b ∈ {0, . . . , 63} we denote by N(a, b) the number of linear trails starting with
the input bit a, ending with the output bit b and with exactly one active sbox
per round.

5.2 On the Choice of Sbox and Permutation in PRESENT

Here we are interested in understanding the influence of the choice of the sbox
and the bit permutation on the maximal number of trails N(a, b). As explained
below, using classification results on optimal sboxes and central digraphs, we
can conclude that

– Given the PRESENT bit permutation, the PRESENT sbox is among the
8% worst of all optimal sboxes.

– Given the PRESENT sbox, the PRESENT bit permutation was the worst
among roughly 221 optimal permutations tested.

It should be noted that the PRESENT bit permutation is a natural choice,
also reflected by the fact that it corresponds to what is known as the standard
example in central digraphs (see below). However, the sbox in PRESENT was
selected among all possible optimal sboxes as one with the smallest hardware
circuit. We leave it as a topic for further investigation to explore, if there is a
correlation between the size of the hardware circuit and the number of trails.

Furthermore, using those classification results we conclude that there is not a
particular good bit permutation nor a particular good sbox. The number of one
bit linear trails is mainly determined by the combination of both.

Most importantly, the results outlined below imply that the design principle
of PRESENT is sound, in the following sense.

Fact 3. For no combination of an optimal sbox and an optimal bit permutation,
a linear attack based on one bit trails seems possible on 31 rounds.

316 G. Leander

Influence of the Sbox. In this section we fix the bit permutation to the
one used in PRESENT and compute the maximal number of trails for various
choices of the sbox. Up to adding constants before and after the sbox, which
clearly does not change any of these criteria and furthermore does not change
the number of linear one bit trails, there are exactly 8064 such sboxes (see for
example [13]). For each possible sbox fulfilling these criteria we computed the
maximal number of one bit trails over all input/output bit combination for 31
rounds. It turns out that there are only 31 possible values for this maximum,
ranging from 0 to approx 239. In Table 1 the number of sboxes (out of the 8064
possible ones) for each of the 30 possible values for the maximum of trails is
shown. The PRESENT sbox has a maximal trail number of approx. 238.17 and
thus is among the 8 percent worst optimal sboxes with this respect.

Table 1. Maximal number of trails (log2 maxa,b N(a, b)) vs number of sboxes (out of
8064) with the given trail number. In all cases the PRESENT bit permutation was
used.

Maximal Number of Trails −∞ 0 3.000 6.965 7.754 9.509 9.965 10.75 12.26
Number of sboxes 96 1056 192 48 48 192 768 48 48

Maximal Number of Trails 15.00 16.47 17.42 19.42 21.47 21.71 22.86 24.29 25.25
Number of sboxes 144 48 48 816 96 48 48 96 864

Maximal Number of Trails 25.30 25.54 25.75 26.03 26.04 26.08 26.33 26.34 26.37
Number of sboxes 96 96 192 96 96 96 96 96 96

Maximal Number of Trails 26.60 27.00 38.17 39.47
Number of sboxes 96 1728 384 192

Influence of the Bit Permutation. Different choices of an optimal bit per-
mutation might result in different resistance against linear attacks. Below, we
discuss the influence of the bit permutation on the number of one bit linear
trails.

The first problem one encounters is, that it is actually not straight forward
to find a permutation of 64 bits that, in a PRESENT style SP-network, yield
to full dependency after three rounds. Optimal permutations are very rare and
a naive trial to construct such objects is likely to fail. However, there is an
interesting link to well studied objects in graph theory, namely central digraphs,
that allows us to overcome this obstacle.

Definition 2. Let n be an integer and D be a directed graph with n vertices. D
is said to be a central digraph if there is a unique oriented path of length two
between any two of its vertices.

It is known (see [3]) that central digraphs exist only for n = k2 and necessarily
every vertex has in and out degree 4.

Any optimal bit permutation gives rise to a central digraph as follows. Think-
ing about the 16 sboxes as 16 vertices, we add a directed arc from vertex i to

On Linear Hulls, Statistical Saturation Attacks 317

vertex j if and only if there is an output bit of sbox i that gets mapped to an
input bit of sbox j. Clearly, each of the 16 vertices has in and out degree 4. Being
an optimal bit permutation now translates to the fact that each vertex (that is
each sbox) can be reached from each vertex (that is any other sbox) in exactly
two steps. A counting argument shows that such a path has to be unique and
therefore the resulting graph is indeed a central digraph.

On the other hand, the converse construction, works as well. That is, given a
central digraph of order 16 we can easily construct a optimal bit permutation.
Note that this correspondence is unique only up to a permutation of the input
and output bits of each sbox, as clearly permuting the input and output bits of
an sbox does not change the corresponding graph (neither the optimality of the
permutation). We thus have the following theorem.

Theorem 4. Up to a permutation of the input and output bits of each sbox
there is a one to one correspondence between optimal permutations of 64 bits
and central digraphs of order 16.

It is interesting to note that the PRESENT bit permutation actually corre-
sponds to what is known as the “standard example” in terms of central di-
graphs. The vertex set of the standard example consists of all pairs (x, y) with
1 ≤ x, y ≤ k and we let (x, y) → (x′, y′) precisely when y = x′.

Using this link a couple of interesting questions can be easily answered. For
example, one might want to avoid optimal permutations where a bit coming
from one sbox gets mapped to the same sbox in the next round. However, it is
well known (see for example [3]) that every central digraph on k2 vertices has
exactly k loops. This translate to the property that an optimal permutation on
64 bits will map exactly 4 input bits (coming from 4 distinct sboxes) back into
the source sbox. Furthermore, for implementation reasons, one might want to
chose a optimal permutation that is an involution. Again, it follows from the
theory of central digraphs, that such a permutation does not exist.

For our purpose, the most interesting fact about central digraphs is that a
classification of all central digraphs of order 16 is known (see [14]) and the
actual number of (non-isomorphic) central digraphs of order 16 is reasonable
small. Up to isomorphism there are precisely 3492 central digraphs of order 16.
Thus, this link allows us to compare a great variety of choices for the optimal
bit permutation.

We fixed the sbox to the one specified by PRESENT and computed the
number of trails for all the 3492 possible central digraphs. Here, we randomly
assigned the 4 incoming vertices and the 4 outgoing vertices to input and output
bits of the sbox in 1000 different ways for each of the 3492 central digraphs. The
result is shown in Table 2.

Again, the PRESENT permutation gives a maximal number of trails of ap-
prox 238.17 and is therefore the worst of all 3492 · 1000 ≈ 221 cases.

Influence of both Components. In a next step, instead of fixing the sbox
and varying the permutation we varied both, that is we run through all 8064
possible sboxes and all 3492 possible central digraphs, again with 1000 randomly

318 G. Leander

Table 2. Maximal number of trails (�log2 maxa,b N(a, b)�) vs number of optimal per-
mutations (out of 3492 · 1000) with the given trail number. In all cases the PRESENT

sbox was used.

�Trails 1 2 3 4 5 6 7 8 9 10
�permu. 2 5 7 8 16 21 46 51 86 144
�Trails 11 12 13 14 15 16 17 18 19 20
�permu. 234 351 559 990 1780 3260 5951 11187 21033 39284
�Trails 21 22 23 24 25 26 27 28 29 30
�permu. 71712 125520 205411 313402 431188 524990 553858 494911 359864 205508
�Trails 31 32 33 34 35 36 37 38
�permu. 87875 26257 5344 941 184 18 1 1

chosen permutations for the input and output bits of each sbox. As this is far
too much data to be included in the paper, we only give parts of in the picture
below.

There are two important observations to make. First, all curves follow pretty
much the same pattern. This is to say there is no specially good or bad choice
of sbox or bit permutation, only the combination of both can be good or bad.
Second, in non of the 3492 ·8064 ·1000≈ 234 cases the number of trails was high
enough to allow a linear attack based on one bit trails for 31 rounds.

6 Understanding Statistical Saturation Attacks

In this section we show how the capacity of statistical saturation attacks can be
explained using tools from linear cryptanalysis. The main technical ingredient is
an identity between the Fourier transform of a Boolean function and the biases
of its restrictions (cf. Theorem V.1 in [15], see also Proposition 9 in [16])

Proposition 2 (Theorem V.1 in [15]). Let f : Fn2 → F2 be a Boolean func-
tion. Furthermore, let E and E′ be subspaces of Fn2 such that E ∩E′ = {0} and
whose direct sum equals Fn2 . For every a ∈ Fn2 let ha be the restriction of f to the
coset a+E (ha can be identified with a function on Fk2 where k is the dimension
of E. Then

On Linear Hulls, Statistical Saturation Attacks 319

∑
u∈E⊥

(
f̂(u)

)2
= |E⊥|

∑
a∈E′

(
ĥa(0)

)2
. (9)

Here E⊥ is the orthogonal space of E.
Recall that we consider the encryption function e : Fn2 → Fn2 and its restric-

tions by fixing the last s bits of the input and considering only the first t bits
of its output, that is the function hy(x) defined by Equation 5. For statistical
saturation attacks we are interested in the capacity given by Equation 6. Using
the proposition above, we now state the main result of this Section.

Theorem 5. With the above notation, the average capacity in statistical sat-
uration attacks where the average is taken over all possible fixations is given
by

Cap(hy) = 2−s
∑
y∈Fs

2

Cap(hy) = 2−2n
∑

a∈{0}×Fs
2,b∈Ft

2 ×{0}
(ê(a, b))2

=
∑

a∈{0}×Fs
2,b∈Ft

2 ×{0}
(Ce(a, b))

2
.

Proof. By definition

C(hy) = 2−s
∑
y∈Fs

2

Cap(hy) = 2−s
∑

a∈{0}×Fs
2,b∈Ft

2

2−2r
(
ĥa(0, b)

)2
(10)

Applying identity (9) to all component function 〈b, e〉 (and its restrictions 〈b, hy〉)
where we choose E = Fr2×{0} and E′ = E⊥ = {0} × Fs2 yields∑

u∈{0}×Fs
2

(ê(u, b))2 = 2s
∑

a∈{0}×Fs
2

(
ĥa(0, b)

)2

Using this we deduce from (10).

Cap(hy) = 2−2s−2r
∑

u∈{0}×Fs
2,b∈Ft

2 ×{0}
(ê(u, b))2

as claimed. ��

In general, statistical saturation attacks work well if one can identify subspaces
U,U ′′ ∈ Fn2 (where U corresponds to output masks and U ′ to input masks) such
that the sum

∑
u∈U ′,U∈E (ê(u, b))2 is big. Moreover, Theorem 5 allows us to

estimate the capacity, which is a first step in estimating the attack complexity
of a statistical saturation attack.

From this point of view, statistical saturation attacks are very closely related
to multi dimensional linear attacks. Especially, the statistical saturation attack
on PRESENT presented in [5] and the multi dimensional linear cryptanalysis
on PRESENT presented in [6] are in principle the same attack.

320 G. Leander

6.1 Statistical Saturation Attacks on PRESENT

For a description of PRESENT we refer to Section 5 and for more details to
[12].

In this section we take a closer look at the statistical saturation trails used in
[5] and explain its capacity using the above link to linear attacks. A picture of
the trail used in [5] is given below.

In this trail the bits (counting from right to left, starting with 0)

S = {21, 22, 25, 26, 37, 38, 41, 42}

are fixed. At the output the same set of bits is used to compute the bias. In light
of Theorem 5 this corresponds to taking e : F64

2 → F64
2 and its restrictions by

fixing the 8 bits of the trail and restricting the output to the 8 bits in the trail
as well hy : F56

2 → F8
2 .

Defining E = span{ei | i ∈ S}, where ei ∈ F64
2 is the canonical basis vector

with a single one at position i (counting from zero), Theorem 5 states that

Cap(hy) =
∑
a,b∈E

(Ce(a, b))
2
.

To compute this capacity, we have to compute the correlation coefficients Ce(a, b)
for a, b ∈ E.

Like in Section 5 we restrict to a, b of weight one. This was done as well in
[10,6], the argument being that it can be expected that those correlation coeffi-
cients have a much higher absolute value. Again, this assumptions is confirmed
by the experimental data, see below. Given a, b ∈ E of weight one, we recalled in
Section 5 that there are many possible linear trails, starting with the input mask
a and ending in the output mask b where all intermediate masks have weight
one as well. Recall that we denoted the number of these linear trails by N(a, b).
Furthermore it is easy to compute the exact number of such paths for any pair
(a, b).

The correlation Ce(a, b, Ui) of the linear trails Ui, using the fact that in each
round the bias is 2−3, is given by Ce(a, b, Ui) = 2−2R. Applying Proposition 1,
the average square correlation is given by(

Ce(a, b)
)2

= 2−4RN(a, b),

On Linear Hulls, Statistical Saturation Attacks 321

and

C(hy) =
∑
a,b∈E

(
Ce(a, b)

)2 ≈ 2−4R
∑

a,b∈E
wt(a)=wt(b)=1

N(a, b) (11)

We compared experimental computations of C(hy), averaged over 100 different
keys and 10 different values of y for each key with the results of the approximation
(11). Except for the first two rounds the experimental date follow quite closely
the approximation.

Round 2 3 4 5 6 7 8 9
log2

∑
N(a, b) 5.00 6.00 7.32 8.64 9.97 11.34 12.72 14.10

approx. (11) −11.00 −14.00 −16.68 −19.36 −22.03 −24.66 −27.28 −29.90
experimental −10.38 −13.82 −16.27 −18.90 −21.60 −24.13 −26.78 −29.26

The next observation that is immediate from looking at the numbers N(a, b) is
that this trail is likely to not be the best choice. Indeed, using the trail defined by
fixing the same input bits as before, i.e. using S = {21, 22, 25, 26, 37, 38, 41, 42}
but this time restricting the output to the bits S′ = {21, 23, 29, 31, 53, 55, 61, 63}
gives better results theoretically. Defining E′ = span{ei | i ∈ S′}, the sum∑

a∈E,b∈E′ N(a, b) is higher compared to the original trail (for example the ca-
pacity for 9 rounds is 2−29 instead of 2−29.9). Again, we verified this behavior
experimentally and the experimental data confirm the approximations used quite
nicely.

7 Conclusion and Further Work

We explained in detail why an estimate of the complexity of linear attacks is
difficult and statements on the average complexity are often wrong. This is a
very fundamental problem and we conclude that a paradigm shift from studying
the average complexity to studying the median of the complexity is necessary. To
simplify statements on the median, an important problem for further research is
to give a general lower bound of the median in terms of the capacities of trails.
In the case where the correlation for all trails have the same absolute value, this
is not too difficult. However, as shown in Section 3 in this case an approximation
by a suitable normal distribution provides nice results anyway.

Furthermore, we explained in Section 6 that statistical saturation attacks are
almost identical to multidimensional linear attacks. This link allowed us to nicely
estimate the average capacity of statistical saturation attacks. Of course, know-
ing only the average capacity for statistical saturation and multidimensional
linear attacks suffers from the same problems as knowing the average in linear
attacks. Namely, a useful statement on the running time is difficult. One impor-
tant topic of further research is therefore to extend the ideas outlined in Section
3 to these cases.

Acknowledgment. The author likes to thank Sean Murphy for very valuable
comments.

322 G. Leander

References

1. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

2. Murphy, S.: The Effectiveness of the Linear Hull Effect. Technical Report, RHUL-
MA-2009-19 (2009)

3. Knuth, D.: Notes on central groupoids. J. Combin. Theory 8, 376–390 (1970)
4. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of matsui’s al-

gorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009)

5. Collard, B., Standaert, F.X.: A statistical saturation attack against the block ci-
pher present. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 195–210.
Springer, Heidelberg (2009)

6. Cho, J.Y.: Linear cryptanalysis of reduced-round present. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

7. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

8. Carlet, C.: Vectorial (multi-output) Boolean Functions for Cryptography. Cam-
bridge University Press, Cambridge (to appear)

9. Nyberg, K.: Linear approximation of block ciphers. In: Santis, A.D. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

10. Ohkuma, K.: Weak keys of reduced-round present for linear cryptanalysis. In: Ja-
cobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 249–265. Springer, Heidelberg (2009)

11. Cheng, H., Heys, H.M., Wang, C.: Puffin: A novel compact block cipher targeted
to embedded digital systems. In: Fanucci, L. (ed.) DSD, pp. 383–390. IEEE, Los
Alamitos (2008)

12. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: Present: An ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

13. Leander, G., Poschmann, A.: On the classification of 4 bit s-boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007)

14. Kündgen, A., Leander, G., Thomassen, C.: Switchings, extensions, and reductions
in central digraphs (2010) (preprint)

15. Canteaut, A., Carlet, C., Charpin, P., Fontaine, C.: On cryptographic properties of
the cosets of r(1, m). IEEE Transactions on Information Theory 47(4), 1494–1513
(2001)

16. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes (to
appear)

Domain Extension for MACs Beyond the Birthday
Barrier

Yevgeniy Dodis1 and John Steinberger2

1 Department of Computer Science, New York University
dodis@cs.nyu.edu

2 Institute for Theoretical Computer Science, Tsinghua University, China
jpsteinb@gmail.com

Abstract. Given an n-bit to n-bit MAC (e.g., a fixed key blockcipher) with MAC
security ε against q queries, we design a variable-length MAC achieving MAC
security O(εq poly(n)) against queries of total length qn. In particular, our con-
struction is the first to break the “birthday barrier” for MAC domain extension
from noncompressing primitives, since our security bound is meaningful even for
q = 2n/poly(n) (assuming ε is the best possible O(1/2n)). In contrast, the pre-
vious best construction for MAC domain extension for n-bit to n-bit primitives,
due to Dodis and Steinberger [11], achieved MAC security of O(εq2(log q)2),
which means that q cannot cross the “birthday bound” of 2n/2.

1 Introduction

Most primitives in symmetric-key cryptography are built from block ciphers, such as
AES. In this paper, we will concentrate on the question of designing variable-input-
length (VIL) message authentication codes (MACs) from block ciphers. This question
is very well studied, as we survey below. However, with few exceptions, most existing
constructions and their analyses make the following two assumptions: (a) Pseudoran-
domness: the block cipher is modeled as a pseudorandom permutation (PRP); and (b)
Secrecy of Intermediate Results: the attacker only learns the input/output behavior
of the corresponding VIL-MAC, but does not learn any of the intermediate results. As
observed by Dodis et al. [9, 10, 11], each of these assumptions might either be unnec-
essarily strong, or simply too unrealistic in the following two scenarios.

DOMAIN EXTENSION OF MACS. This is our main question. Since the desired MAC
primitive only needs to be unpredictable, it would be highly desirable to only assume
that the block cipher is unpredictable as well, as opposed to pseudorandom. Indeed, it
seems that assuming the block cipher is unpredictable is a much weaker assumption than
assuming full pseudorandomness: to break the latter, all one needs to do is to predict one
bit of “random-looking” information about the block cipher with probability just a little
over 1/2, while the former requires one to fully compute the value of the block cipher
on a new point with non-trivial probability. For example, in the non-uniform model,
any block cipher (in fact, even non-trivial pseudorandom generator) with an n-bit key
can be very efficiently distinguished from random with advantage 2−n/2 [8, 11]. To the
best of our knowledge, no such lower bounds are known for breaking unpredictability,
meaning that close to 2−n MAC security might be possible for such a block cipher.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 323–342, 2011.
c© International Association for Cryptologic Research 2011

324 Y. Dodis and J. Steinberger

To put it differently, while we hope that existing block ciphers are actually PRPs, it
seems quite reasonable to assume that their MAC security could be noticeably better
than their PRP security. Thus, if we can design a VIL-MAC whose security is tightly
related to the unpredictability of the block cipher, this VIL-MAC might be more secure
than the MAC whose analysis assumes the pseudorandomness of the cipher.

Of course, one might hope that existing block-cipher based VIL-MACs, such as
CBC-MAC [5, 26] and HMAC [3, 6] (whose compression function, under the hood,
also uses a block cipher), are already secure when the block cipher is unpredictable.
Unfortunately, as detailed in Dodis et al. [9, 10, 11] (see especially [11]), this is not
the case: with few exceptions mentioned shortly, standard constructions are completely
insecure when instantiated with unpredictable block ciphers, — often despite having
simple proofs of security when one models the block cipher as a PRP.

RESILIENCE TO SIDE-CHANNELS. Even if the block cipher is a very good PRP, in
practice many cryptographic implementations fall prey to various forms of side-channel
attacks [13, 15, 16, 17, 28], where the physical realization of a cryptographic primitive
can leak additional information, such as the computation-time, power-consumption, ra-
diation/noise/heat emission etc. Thus, hardware people are paying special attention to
securing block ciphers, such as AES, against such side-channel attacks. Although this
might be a daunting task, it appears reasonable that specialized hardware implementa-
tions of AES might be pretty resistent to common forms of side-channel attacks. On the
other hand, when the block cipher is used in some more complicated application, such
as the design of a VIL-MAC, it might be hard or impractical to design a specialized
“leakage-resilient” implementation for each such application, instead of doing so for a
single, fixed-length building block (such as AES). Motivated by these considerations,
Dodis et al. [9, 10, 11] proposed the model where the internals of the block cipher im-
plementation are assumed secure, as usual, but all the external input/output behavior of
the block cipher could potentially leak to the attacker (say, via side-channel attack).

To give this model a name while simultaneously making it more general, we say that a
construction of a (deterministic) MAC P using some lower level keyed primitive(s) f is
transparent (w.r.t. f), if (a) the key forP only consists of one of more keys for f ; (b) when
making a queryM toP , the attacker not only getsP (M), but also gets all the input/output
pairs for every call to f made during the evaluation of P (M). Since P is deterministic
and all keys reside “inside” f , this indeed provides the attacker with the entire transcript
of P (M), short of what is happening during the calls to f . Coming back to our setting,
we are interested in building a transparent VIL-MAC out of a block cipher. As we will
see, this question is highly non-trivial even if the block cipher is assumed pseudorandom,
let alone unpredictable. Indeed, as observed by [9, 10, 11], most existing VIL-MACs,
including CBC-MAC [5, 26] and HMAC [3, 6], are completely insecure when the inter-
mediate results are leaked, even when instantiated with a PRP.

OUR MAIN RESULT. Motivated by these applications, we ask the same question as
Dodis et al. [9, 10, 11], which simultaneously addresses both of the above concerns.
Question 1. Can one build a transparent VIL-MAC P out of a block cipher f which is
only assumed unpredictable?

As already mentioned, most standard VIL-MACs built from block ciphers fail to ad-
dress either MAC-preservation or transparency (even with a PRP). So we turn to the

Domain Extension for MACs Beyond the Birthday Barrier 325

known secure approaches. As it turns out, all of them followed the principle of An and
Bellare [2] of first constructing a compressing Weakly Collision Resistant (WCR)1 hash
functionF fromm to n bits, for some fixedm > n, then iterating this fixed-length WCR
F using some variant of the Merkle-Damgård transform, and finally composing the out-
put with a freshly keyed block cipher. As argued by Preneel and van Oorschot [27], any
construction of this kind can achieve at most birthday security. Translated to the MAC-
preservation setting, even if our original MAC f cannot be forged with probability ε using
q queries, the resulting VIL-MAC P cannot have security greater than O(εq2), meaning
that q cannot cross 2n/2, even is ε is assumed to be (the best possible) 1/2n.

Interestingly, even achieving birthday security turns out to be challenging when the
block cipher is only assumed unpredictable. The first secure construction of Dodis and
Puniya [10], based on the Feistel network, only achieved security O(εq6). The bound
was then improved to O(εq4) by Dodis, Pietrzak and Puniya [9] using the “enhanced
CBC” construction. Finally, Dodis and Steinberger [11] showed (nearly) birthday se-
curity Õ(εq2) using a new analysis of the Shrimpton-Stam [29] compression function.
All these constructions were also transparent.

We ask the question if it is possible to build (hopefully, transparent) VIL-MACs from
block ciphers with beyond birthday security. Most ambitiously, if f cannot be forged
with probability ε using q queries, we would like to build a VIL-MAC P with security
close to O(εq), meaning our security is meaningful even for values of q approaching
2n, provided ε is assumed to be (the best possible) 1/2n. As our main result, we answer
this question in the affirmative. Informally (see Section 4 for more details),

Theorem 1. There exist fixed polynomials a(n) and b(n) and a construction P of a
transparent VIL-MAC from an n-bit block cipher f , such that the rate2 of P is a(n) and
the MAC security ε′ of P against q′ queries of total length qn is at most O(b(n)qε),
where ε is the MAC-security of f against q queries. In particular, this bound is mean-
ingful for q (and q′) approaching 2n.

OTHER RELATED WORK. As we mentioned, the question of achieving beyond-birthday
security for building VIL-MACs from unpredictable block ciphers was open prior to our
work. In fact, the only domain extension results for MACs with beyond birthday secu-
rity we obtained just recently by Yasuda [31] and Lee and Steinberger [18]. However,
both results started with a shrinking MAC from strictly more than 2n to n bits. As we
will see below, building such shrinking MACs (with beyond birthday security) from
unpredictable block ciphers is highly non-trivial, and will be one of the key challenges
we resolve on route to proving our main result. (However, we note that our result does
not3 simply reduce to building a 2n to n bit MAC from an n-bit to n-bit MAC.)

Another related area is that of for building VIL pseudorandom functions (PRFs)
with beyond birthday security from PRPs, or more generally, fixed-length PRFs.
In particular, several such constructions were found by [1, 4, 20, 23, 24, 25]. However,
it is easy to see that none of them work either for the MAC domain extension, or even

1 WCR security states that it is infeasible to find collisions in F given oracle access to F .
2 Defined as the average number of calls to the block cipher f per n-bit input block.
3 We cannot just build (say) a beyond birthday 3n to n bit MAC and then compose it with the

beyond birthday VIL-MAC constructions of [18, 31], as each construction would lose a factor
of q in exact security, resulting in already known “birthday” security O(εq2).

326 Y. Dodis and J. Steinberger

for building VIL-MACs (let alone PRFs) when the intermediate computation results are
leaked. For example, the corollary of our main result, giving a transparent VIL-MAC
from a (q, εprp)-secure PRP with security εprp + Õ(q/2n), appears to be new.

Perhaps the closest work to ours is a paper of Maurer and Tessaro [22], who showed
how to build a variable-length random oracle from an n-to-n bit random oracle. Their
construction, analyzed in the indifferentiability framework of [7, 21], has fixed poly-
nomial rate (just like our construction) and security 2(1−δ)n, for any δ > 0. However,
the two settings appear incomparable. On the one hand, the Maurer-Tessaro paper has
to build an “indifferentiability simulator” for their setting (which required “input ex-
traction” not required in our setting). However, they assumed a truly random function,
and could use various probability calculations in deriving their result. In our setting,
the block cipher is only unpredictable, and we have to make an explicit reduction to
unforgeability, which makes matters substantially more delicate.

1.1 Outline of Our Construction

Our construction is quite involved, although we abstract it into several self-contained
layers. As a side benefit, some of these layers (see below) are of potentially independent
interest, and could be used for other purposes.

STEP 1: REDUCING TO 3n-TO-2n WCR AND 2n-TO-n MAC. First, we notice that
the above mentioned birthday limitation [27] of the An-Bellare approach no longer
holds provided we build a WCR hash function F from m to 2n bits (for some m > 2n,
say m = 3n). Namely, “birthday on 2n bits” might still give good enough security 2n.
However, even if we succeed in doing so with beyond birthday security (which will
be one of our key results), we now also have to build a “final” MAC G from 2n to n
bits. Thus, using known techniques but with different parameters (see Lemma 1 and
Figure 1), our problem reduces to building beyond birthday WCR F from 3n to 2n bits
and a beyond birthday MAC G from 2n to n bits.

STEP 2: REDUCING TO COVER-FREE FUNCTIONS. It so turns out that both of these
tasks—i.e. the construction of the WCR function F and the construction of the MAC
G—can be achieved from a more powerful (keyed) primitive which we introduce, called a
cover-free function. Informally, akeyed functiong from{0, 1}m (recall, we will havem=
3n) to ({0, 1}n)t (for some parameter t), where g(s)= (z1(s), . . . , zt(s)) ∈ ({0, 1}n)t,
is called cover-free (CF) if, given oracle access to g, it is infeasible to produce a sequence
of (distinct) queries s1, s2, . . . , sq ∈ {0, 1}m such that, for some 1 ≤ j ≤ q, z�(sj) ∈
{z�(s1), . . . , z�(sj−1)} for all � ∈ [t]. In other words, for each new query sj one of the
coordinates of g(sj) must be “uncovered” by previous coordinates of that index. The
case t = 1 corresponds to the standard m to n bit WCR security, however better (and in
particular beyond-birthday) cover-free security can be achieved with larger values of t.

First, as depicted on the left side of Figure 2, we can compose a CF g with t indepen-
dently keyed block ciphers f1, . . . ft, by setting G(s) = f1(z1) ⊕ . . . ⊕ ft(zt), where
g(s) = (z1, . . . , zt). We show that the resulting G is easily seen to be a secure MAC
from m bits to n bits. More precisely, the MAC security of G is tightly related to the
CF security of g and the MAC security of f (see Lemma 2). Intuitively, a new forgery
for G will give a new forgery for at least one of the f�’s, by the CF security of g. Since
m = 3n > 2n, this already gives us the needed 2n to n bit MAC.

Domain Extension for MACs Beyond the Birthday Barrier 327

More interestingly, as depicted on the right side of Figure 2, we show how to compose
a CF function g with 2t independently keyed block ciphers f1, . . . ft, f

′
1, . . . , f

′
t (in a

variant of the “double-pipe” mode of [19]) to get a WCR function F from m bits to 2n
bits. Moreover, the WCR security of F will be “roughly”O(ε′ + qε), where ε′ is the CF
security of g and ε is the MAC security of f (see Lemma 3). Thus, as long as we can build
CFgwith security ε′ close toO(qε), the WCR security ofF will also be such. The proof of
this result critically uses the bin-filling bin-guessing games of Dodis and Steinberger [11].

Summarizing the discussion above, our task of building a VIL-MAC P thus reduces
to building a CF function g with security ε′ ≈ O(qε) where ε is the MAC security of the
underlying n-bit to n-bit primitive f . We also wish to build the CF function g with t as
small as possible (which is relevant since the efficiency of P , including the size of the
key, is proportional to t). See Lemma 4.

STEP 3: BUILDING CF FUNCTIONS. This is, by far, the most involved part of our con-
struction. The inspiration for this construction came from the afore-mentioned paper of
Maurer and Tessaro [22], who showed how to build a VIL random oracle from an n-to-n
bit random oracle. As we mentioned already, the setting of [22] is incomparable to our
setting, especially since we cannot assume that our block cipher is (pseudo)random.
However, our actual construction of CF functions is quite similar to the correspond-
ing “cover-free” layer of the construction of [22], although we made some changes
(actually, simplifications) to the construction of [22], and our analyses are completely
different. Our CF construction has three layers which we informally call combinatorial,
cryptographic and algebraic. An impatient reader can look at Figure 3 for a concrete
example (with t = 3 and other notation explained below).

STEP 3A: USING INPUT-RESTRICTING FAMILIES. This purely combinatorial step is
precisely the same as in [22], and is also the most expensive step of our construction.
We will use an unkeyed function E from {0, 1}m to ({0, 1}n)r (here r is a parameter)
called an input-restricting function family (IRFF; see Definition 1). Intuitively, an IRFF
has the property that after any q queries s1 . . . sq to E, the number Q of new inputs s
for which the r-tuple E(s) is covered by the union of E(s1), . . . , E(sq) is “not much
larger” than q, and this should be true even when q is almost 2n. Recall, our final goal
is to ensure that it is hard to produce any such new input s. While IRFFs do not (and
cannot!)4 quite get us there, they ensure that there are not that many choices for the
attacker of which new inputs to “cover” by old inputs.

We discuss the known constructions of IRFFs in Section 4, but mention that the con-
structions of IRFFs are completely combinatorial, and closely related to constructions
of certain types of highly unbalanced bipartite expander graphs. While well-studied,
these types of expander graphs are not yet completely understood, and in particular the
“extreme” setting of parameters relevant to our case has not been the object of much
attention. Therefore, although the existence of IRFFs with “good parameters” is known
(and lead to the asymptotic bound claimed in Theorem 1), the concrete constructions
are pretty inefficient. Nevertheless, as these parameters and efficiency are improved by
future research in computational complexity, so will our final construction.

4 Because they do not have a key and do not rely on any computational assumptions.

328 Y. Dodis and J. Steinberger

STEPS 3B-C: ADDING CONFUSION AND MIXING. Recall, IRFFs convert our input s
into an r-tuple (x1. . . . , xr). To get the final t-tuple (z1, . . . , zt) for our CF function g, we
can imagine repeating the following two-step precedure (steps 3b and 3c) t times, each
time with a freshly keyed block cipher F (so the total number of block cipher keys for g
will be t). First, we pass all r values x1, . . . , xr through the block cipher F (“confusion
step”), getting the values y1. . . . , yr. This is the cryptographic “confusion” layer. Then
we algebraically “mix” all 2r values (x1 . . .xr, y1 . . . yr) through a fixed, degree-r mul-
tivariate polynomialp (see Equation 3). This gives us one of the t outputs values z1 . . . zt.

The intuition for these last two steps is hard to explain (and, indeed, our analysis is
quite involved). At a high level, the confusion step (evaluating F(x1) . . .F(xr)) is cer-
tainly needed to make a reduction to unforgeability, while the mixing step uses the fact
that low-degree polynomials have few roots, so a “non-trivial” collision on the output
of p will enable one to guess one of the values y� we are trying to forge. Of course, the
difficulty is to make a successful guess for when and where the non-trivial collision to p
will happen, with probability roughly 1/Q, where Q is the guarantee given by IRFF (so
Q is close to q). It turns out, there is a trivial strategy to make such a guess with “birth-
day” probability 1/Q2 ≈ 1/q2, even when t = 1. Of course, such probability is too low,
and this is why we repeat steps 3b-c t times, for an appropriately chosen parameter t.
We then show that the required guessing strategy can be reduced to the analysis of two
bin-filling bin-guessing games. The relevance of such games to the domain extension
of MACs was first introduced by Dodis and Steinberger [11]. Unfortunately, these two
games are significantly more complicated than the game of [11] or than the game used
in the proof of Lemma 3. Nevertheless, as our most involved technical step, we show
that both games can be won with probability roughly 1/(Q ·Q1/t). Thus, by choosing
t > logQ (say, t = n), we get the desired bound O(1/Q) ≈ O(1/q).

EFFICIENCY. Our final VIL-MAC construction uses 5t keys for f , where we recall that
the minimal value of t ≈ log q ≤ n. Theoretically, we can reduce key material down
to a single key for f , by “keying” f via fixed, reserved input bits. Namely, to simulate
(at most) 5n keys this way we need to reserve �log2(5n)� bits of input (and “truncate”
the same number of bits in the output), effectively reducing the block length of the
construction from n down to n′ = n − �log2(5n)�. Due to the output truncation, we
now also need to guess the missing �log2(5n)� output bits not returned by our forger,
incurring an (acceptable) additional O(n) degradation of the security bound.

OurfinalVIL-MACalso achieves rate roughly proportional toO(rt) = O(rn).Achiev-
ing a low value of r (coming from the combinatorial IRFF part) is more problematic (see
Section 4), although existentially one can also make r = O(n). So the best rate we can
hope to achieve using our approach is O(n2). Therefore, we primarily view our result as
an important feasibility result, much like the result of Maurer and Tessaro [22]. Never-
theless, our feasibility opens the door for future, potentially more efficient constructions.

2 Preliminaries

A keyed function family is a map f : {0, 1}κ ×Dom(f) → {0, 1}v where Dom(f) ⊆
{0, 1}∗. The strings in {0, 1}κ are the keys of f and we write fk(x) for f(k, x) for
k ∈ {0, 1}κ and x ∈ Dom(f).

Domain Extension for MACs Beyond the Birthday Barrier 329

For MACs we consider the following game, where A is a halting adversary with
oracle access to fk:

Game Forge(A, f):
k ← {0, 1}κ; (x, y) ← Afk

If x ∈ Dom(f), fk(x) = y and x was not a query of A then A
wins, otherwise A looses.

We define the insecurity of f as a MAC to be

InSecmac
f (T, q, μ) := max

A
Pr[A wins Forge(A, f)]

where the maximum is taken over all adversaries A making at most q queries of total
combined length at most μ (after padding, if any) and of “running time” at most T . The
“running time” is defined to be the total running time of the experiment, including the
time necessary to compute the answers to A’s queries. Moreover we “bill” the final ver-
ification query fk(x) (and its length) to A (so that A must in fact make q − 1 queries if
x ∈ Dom(f); seen another way, we ask A to verify its own forgery, if it attempts one).
When f has fixed input length (i.e.Dom(f) = {0, 1}m for somem ∈ N) thenμ is a func-
tion of q and it is convenient to elide the last argument, writing InSecmac

f (T, q) instead
of InSecmac

f (T, q, μ).
The weak collision resistance or “wcr” security of a function family f is measured

as the maximum advantage of an adversary in finding a collision for a randomly keyed
member of f when given oracle access to this member. We write InSecwcr

f (T, q) for the
maximum such advantage over all adversaries A making at most q queries of running
time at most T . (Here we do not measure the total query length, as we will only measure
the wcr security of fixed input length constructions.) We skip a formal pseudocode-
based definition of this standard notion, but mention that the adversary must make the
queries verifying its collision, not merely output a colliding pair.

Given a block length n and a message x, we let Padn(x) be a suffix-free encoding
of x of length a multiple of n bits (for example, the standard Merkle-Damgård padding
of x, which appends the length of x as the last block5). Furthermore, given two keyed
compression functions F : {0, 1}κ1×{0, 1}3n → {0, 1}2n, G : {0, 1}κ2×{0, 1}2n →
{0, 1}n we define a keyed function MD[F,G] : {0, 1}κ1+κ2 × {0, 1}∗ → {0, 1}n by

MD[F,G]k∗1 ,k∗2 (x) = Gk∗2 (Fk∗1 (xb‖Fk∗1 (xb−1 · · ·Fk∗1 (x1‖02n) · · ·)))
where Padn(x) = x1x2 · · ·xb and each xi has n bits, for all k∗1 ∈ {0, 1}κ∗

1 , k∗2 ∈
{0, 1}κ2 (see Fig. 1).

The proof of the following (standard) lemma is given in in the full version [12]:

Lemma 1. Let F : {0, 1}κ1×{0, 1}3n → {0, 1}2n,G : {0, 1}κ2×{0, 1}2n → {0, 1}n,
and consider MD[F,G] as a function of key space {0, 1}κ1+κ2 . Then, for q = μ/n,

InSecmac
MD[F,G](T, q̃, μ) ≤ InSecwcr

F (T, q) + InSecmac
G (T, q)

Informally speaking, Lemma 1 reduces our task to building, from an n-bit to n-bit prim-
itive f , compression functions F and G such that F has beyond-birthday wcr security

5 This limits the message length to at most 2n blocks, but this is not a serious limitation for
practical values of n.

330 Y. Dodis and J. Steinberger

0n

0n

Fk∗
1

x1

Fk∗
1

x2

Fk∗
1

x3

� � � Fk∗
1

xb

Gk∗
2

Fig. 1. A high-level view of our construction MD[F, G]. The input x is padded in a suffix-free
manner into n-bit blocks x1, . . ., xb. All wires shown carry n-bit values. Fk∗

1
: {0, 1}3n →

{0, 1}2n and Gk∗
2

: {0, 1}2n → {0, 1}n are compression functions keyed by independent keys
k∗
1 , k∗

2 .

and G has beyond-birthday mac security, where these securities must be based only the
mac security of f (i.e., breaking the wcr security of F must imply breaking the mac
security of f , and breaking the mac security of G must likewise imply breaking the
mac security of f).

To the latter end we introduce in this paper the notion of a cover-free keyed function
family g : {0, 1}κ × {0, 1}m → ({0, 1}n)t. Here t is a parameter of the definition and
we write the output of gk(x) as (zk1 (x), . . ., zkt (x)) ∈ ({0, 1}n)t where zki (x) ∈ {0, 1}n
for each i; later we will simply write (z1(x), . . . , zt(x)) when the dependence on a key
k is understood. In the cover-free game, an adversary adaptively queries gk on distinct
points s1, s2, . . . ∈ {0, 1}m, and wins if for some j each block of output of gk(sj) is
“covered” by a previous output, in the sense that zk� (sj) ∈ {zk� (si) : i < j}, 1 ≤ � ≤ t.
The following game formalizes this:

Game Cover(A, g):
k ← {0, 1}κ;
If Agk makes distinct queries s1, . . . , sq ∈ {0, 1}m to gk such that

zk� (sj) ∈ {zk� (si) : i < j}, 1 ≤ � ≤ t, for some j ≤ q,
Then A wins; Otherwise, A looses.

We define the cover-free (CF) insecurity of g as

InSeccover
g (T, q) := max

A
Pr[A wins Cover(A, g)]

where the maximum is taken over all adversariesA making at most q queries and of run-
ning time at most T , with the same conventions as above on the running time. We (infor-
mally) say that a function family is cover-free to mean it has small cover-free insecurity.

Given a (cover-free) function family g : {0, 1}κ × {0, 1}m → ({0, 1}n)t where
the �-th block of gk is given by the function zk� : {0, 1}m → {0, 1}n and a function
family f : {0, 1}κ′ × {0, 1}n → {0, 1}n we define the composed function family
f ◦ g : {0, 1}κ+tκ′ × {0, 1}m → {0, 1}n by

(f ◦ g)kk1···kt(s) =
t⊕

�=1

fk�
(zk� (s))

where k ∈ {0, 1}κ and k1, . . . , kt ∈ {0, 1}κ
′
, and kk1 · · · kt is a shorthand for the

concatenation of k, k1, . . . , kt. See Figure 2. We also define a parallel composition

Domain Extension for MACs Beyond the Birthday Barrier 331

gk
m

n

�

�

�

fk1

fk2

fkt

n
gk

m

�

�

�

fk′
1

fk′
2

fk′
t

n

�

�

�

fk1

fk2

fkt

n

Fig. 2. On the left, the composition (f ◦g)kk1...kt : {0, 1}m → {0, 1}n. On the right, the parallel
composition (f ◦ g)kk1···ktk′

1···k′
t

: {0, 1}m → {0, 1}2n .

f ◦ g : {0, 1}κ+2tκ′ × {0, 1}m → {0, 1}2n of f and g, defined by

(f ◦ g)kk1···ktk′1···k′t(s) = (f ◦ g)kk1···kt(s)‖(f ◦ g)kk′1···k′t(s).

In other words, f ◦ g is simply the concatenation of two functions f ◦g instantiated with
the same g-key but independent f -keys.

Recall that our construction MD[F,G] takes as parameters keyed compression func-
tions F :{0, 1}κ1×{0, 1}3n → {0, 1}2n and G : {0, 1}κ2 ×{0, 1}2n → {0, 1}n. Given
a cover-free function family g : {0, 1}κ × {0, 1}3n → ({0, 1}n)t and a function family
f : {0, 1}κ′ × {0, 1}n → {0, 1}n, we will set κ1 = κ + 2tκ′, κ2 = κ + tκ, and define

Fk∗1 (s) = (f ◦ g)k∗1 (s) (1)

Gk∗2 (r) = (f ◦g)k∗2 (0
n‖r) (2)

for all s ∈ {0, 1}3n, r ∈ {0, 1}2n, k∗1 ∈ {0, 1}κ1, k∗2 ∈ {0, 1}κ2 . The specification
of our construction is thus now reduced to defining the cover-free function family g.
We note that the n-bit to n-bit function family f is a parameter of the scheme (not
constructed from any lower-level primitive) whereas g must be instantiated from f , and
its cover-free security reduced to the mac security of f ; see the next section for details
on the construction of g.

Recall that, by Lemma 1, we are interested in bounding InSecwcr
F (T, q) and

InSecmac
G (T, q) in terms of InSecmac

f (T, q). Towards this goal, we give two lemmas
that upper bound InSecwcr

f◦g(T, q) and InSecmac
f◦g (T, q) as a function of InSeccover

g (T, q)
and InSecmac

f (T, q). The proofs of both lemmas are given in the full version [12].

Lemma 2. Let g : {0, 1}κ×{0, 1}m → ({0, 1}n)t, f : {0, 1}κ′ ×{0, 1}n → {0, 1}n.
Then

InSecmac
f◦g (T, q) ≤ InSeccover

g (T, q) + t · InSecmac
f (T, q).

332 Y. Dodis and J. Steinberger

Lemma 3. Let g : {0, 1}κ×{0, 1}m → ({0, 1}n)t, f : {0, 1}κ′ ×{0, 1}n → {0, 1}n.
Then

InSecwcr
f◦g(T, q) ≤ InSeccover

g (T, q) + 2tq log q · InSecmac
f (T + Õ(q), q).

(We note that, unlike Lemmas 1 and 2, the proof of Lemma 3 is not a triviality. In
particular, it requires the analysis of a balls-and-bins game of the type used in [11].)
Combining Lemmas 1, 2 and 3 we directly obtain:

Lemma 4. Let g : {0, 1}κ× {0, 1}3n → ({0, 1}n)t, f : {0, 1}κ′ × {0, 1}n → {0, 1}n
and let F , G be as in (1), (2). Then, if q = μ/n,

InSecmac
MD[F,G](T, q̃, μ) ≤ 2 · InSeccover

g (T, q)+ (2tq log q+ t) · InSecmac
f (T + Õ(q), q)

Lemma 4 reduces our problem to constructing the cover-free function family g from the
function family f such that InSeccover

g (T, q) can be bounded in terms of InSecmac
f (T, q).

This is the topic of the next section, and the paper’s main technical achievement.
When a keyed function is built from a smaller primitive, where the function’s key

consists of a finite set of keys for the smaller primitive (which is potentially called
several times with different keys), the notions of MAC, WCR and cover-free securities
naturally extend to a transparent model, where the adversary receives a full transcript
of the function’s computation at each query, up to calls to the primitive (namely, calls to
the lower-level primitive appear as oracle calls in the transcript, so as not to reveal the
primitive’s keys). In fact, all results and proofs of this paper can be (easily) interpreted
and are valid in this stronger “transparent” model. However, to keep the presentation
simple, we will not further remind this from here on.

3 Building Cover-Free Function Families from MACs

This section contains our main result, the construction of a cover-free function family
based on n-bit to n-bit primitives, that achieves beyond-birthday security assuming only
good MAC security from the primitives. We note in passing that an unkeyed function g :
{0, 1}m → ({0, 1}n)t cannot be cover-free against information-theoretic adversaries
unless t2n ≥ 2m or unless t is as large as the desired query security, which gives values
of t that are too large to be practical for most settings.

Our construction uses the notion of an input-restricting function family (IRFF), in-
troduced by Maurer and Tessaro [22]. The following definition is slightly modified for
our purposes.

Definition 1. Let K = K(n) ≤ 2n and let m > n. A (m,n, r, δ,K)-IRFF is a set E of
functions E1, . . . , Er : {0, 1}m → {0, 1}n such that (i) r ≥ 2 and Eh(s)
= Eh′(s) for
all s ∈ {0, 1}m and all h
= h′, (ii) for all s
= s′ ∈ {0, 1}m there exists h ∈ {1, . . . , r}
such that Eh(s)
= Eh(s′), and (iii) for any subset U ⊆ {0, 1}n such that |U| ≤ rK we
have ∣∣{s ∈ {0, 1}m : Eh(s) ∈ U for all h = 1 . . . r}

∣∣ ≤ δ|U|.

Domain Extension for MACs Beyond the Birthday Barrier 333

m
p

n

E2

n

F1

F2

F3
p

n

E1

n

F1

F2

F3

p
n

Fig. 3. Illustration of the cover-free function ZE,r,t
m,n : {0, 1}m → ({0, 1}n)t for parameters

r = 2, t = 3. Additional wires not shown on the diagram carry the input of each Fi to the i-th
copy of p.

The constructions of input-restricting function families are discussed in Section 4.
Our cover-free function family is also adapted from [22]. The construction takes

as parameters m ≥ n as well as integers r, t ≥ 1 and a (m,n, r, δ,K)-IRFF E =
{E1, . . . , Er}. Let F1, . . . ,Ft be n-bit to n-bit primitives (later to be instantiated as
members of function family f : {0, 1}κ×{0, 1}n → {0, 1}n, possibly fixed-key block-
ciphers). The construction also uses a (concrete, unkeyed) function p : {0, 1}2rn →
{0, 1}n described below. Let ZE,r,t

m,n : {0, 1}m → ({0, 1}n)t be defined by

ZE,r,t
m,n (s) = (z1(s), . . . , zt(s))

where
z�(s) = p(E1(s), . . . , Er(s),F�(E1(s)), . . . ,F�(Er(s)))

for 1 ≤ � ≤ t (see Figure 3). From ZE,r,t
m,n we obtain a keyed function family of signature

{0, 1}tκ×{0, 1}m → ({0, 1}n)t by instantiating each F� with a member of a function
family f : {0, 1}κ × {0, 1}n → {0, 1}n; however, we opt for the unkeyed notation (in
which F1, . . . ,Ft are implicitly keyed) when possible to reduce notational overhead.

As for the function p, it is the polynomial

p(x1, . . . , xr, y1, . . . , yr) =
r∑
j=1

r∑
i=1

xiy
i
j (3)

where x1, . . . , yr are n-bit strings treated as elements of the field F2n . The only prop-
erties of p that matter are the two following:

I. Invertibility. For any 1 ≤ j ≤ r and any values x1, . . . , xr, y1, . . . , yj−1,
yj+1, . . . , yr, z ∈ F2n such that x1, . . . , xr are not all zero, there are few val-
ues yj such that p(x1, . . . , xr, y1, . . . , yr) = z, and these values yj are efficiently
enumerable.

334 Y. Dodis and J. Steinberger

II. Collision Invertibility. For any 1 ≤ j, j′ ≤ r and any values x1, . . . , xr,
y1, . . . , yj−1, yj+1, . . . , yr, x′

1, . . . , x
′
r, y′1, . . . , y

′
j′−1, y

′
j′+1, . . . , y

′
r ∈ F2n such

that (x1, . . . , xr)
= (x′
1, . . . , x

′
r) there are few values yj = y′j′ such that

p(x1, . . . , xr, y1, . . . , yr) = p(x′
1, . . . , x

′
r, y

′
1, . . . , y

′
r),

and these values are efficiently enumerable.

Both properties are easily verifiable from the fact that p(x1, . . . , xr , y1, . . . , yr) is a
polynomial of yj of the type c + x1yj + · · · + xry

r
j , where c does not depend on yj .

Maurer and Tessaro use a different construction instead of p which does not obviously
satisfy either property above, that requires enlarging the set of functions {F�} to a set
{F�,v} where v ranges from 1 to �m/n + 1�.

To state our main theorem, let InvTime(E , q) be the amount of time required to list
the values {s ∈ {0, 1}m : Eh0(s) = v and Eh(s) ∈ U for h
= h0} for any given
h0 ∈ [r], v ∈ {0, 1}n and set U ⊆ {0, 1}n such that |U| ≤ rq. We have:

Theorem 2. Let E be a (m,n, r, δ,K)-IRFF, let f : {0, 1}κ × {0, 1}n → {0, 1}n be a
function family, and consider ZE,r,t

m,n as a keyed function family of key space {0, 1}κt by
setting F� = fk�

for any k1 · · · kt ∈ {0, 1}κt. Then

InSeccover
ZE,r,t

m,n
(T, q) ≤ 6rQt3Q1/t · InSecmac

f (Tmac, q) (4)

for any q ≤ K , where Q = qrδ and

Tmac = T + Õ(Qt) + qrInvTime(E , q) + RootTimer(n)

where RootTimer(n) is the time required to find all the roots of a polynomial of degree
r in a field of size F2n . In particular, when t = n and q ≤ 2n/(rδ), we have

InSeccover
ZE,r,t

m,n
(T, q) ≤ (12r2δn3) · q · InSecmac

f (Tmac, q)

Proof. Let A′ be an adversary for the game Cover(·,ZE,r,t
m,n) that runs in time T and that

has success probability εA′ . It suffices to design an adversaryB for the game Forge(·, f)
with advantage at least

εA′(6rQt3Q1/t)−1

and that runs in time Tmac.
B has access to a random member fk0 of f . B chooses t random keys k1, . . . , kt ∈

{0, 1}κ, and selects a random index �0 ∈ [t]. Then B simulates A′ with oracle ZE,r,t
m,n ,

instantianting the function F� with fk�
if �
= �0 and instantianting F�0 with fk0 , using

its oracle. Moreover B proceeds to “forget” the value of �0, treats each of the functions
F� as an oracle, and tries to forge any one of them (predicting their output on an un-
queried input), making only one such forgery attempt during the game. Since B has
chance 1/t of forging F�0 if it does make a correct forgery, it suffices for B to make
such a forgetful forgery with chance at least

εA′(6rQt2Q1/t)−1

in order for it to forge fk0 with chance at least εA′(6rQt3Q1/t)−1.

Domain Extension for MACs Beyond the Birthday Barrier 335

It is easier to consider a modified version of A′, which we call simply A, that directly
issues F-queries rather than ZE,r,t

m,n -queries; more precisely, A issues a sequence of
queries x1, . . ., xq′ where q′ ≤ qr and each xj ∈ {0, 1}n; B answers the query xj with
the tuple (F1(xj), . . . ,Ft(xj)). We can assume A never makes the same query twice.
We let Qi = {xj : j ≤ i} and let Si = {s ∈ {0, 1}m : Eh(s) ∈ Qi for 1 ≤ h ≤ r} for
0 ≤ i ≤ q′ (with Q0 = S0 = ∅). Note that

|Si| ≤ |Sq′ | ≤ |Qq′ |δ ≤ qrδ = Q

by the input-restricting property of E . We also let ΔSi = Si\Si−1 for 1 ≤ i ≤ q′

and put z�(C) = {z�(s) : s ∈ C} for any C ⊆ {0, 1}m (which B can compute after
it answers A’s i-th query as long as C ⊆ Si). We say A “wins the generous cover-free
game” at the i-th query if there exists an s ∈ Si such that z�(s) ∈ z�(Si\{s}) for
1 ≤ � ≤ t. Clearly, there exists an A of same running time as A′ whose advantage εA
in the generous game is at least as great as εA′ , since A can simply simulate A′ and
ask the various F-queries needed to compute the answers to A′’s queries; by definition,
A wins if A′ wins Cover(A′,ZE,r,t

m,n). (It is easy to check that if A′ makes (distinct)
queries z1, . . . zj ∈ {0, 1}m such that z�(sj) ∈ {z�(si) : i < j}, then A wins the
generous cover-free game by the time it has finished asking the queries necessary to
compute the answer to the query sj of A′.) Thus it is sufficient to have B forge one of
the F-functions with probability at least εA(6rQt2Q1/t)−1. We now view B as simply
answering A’s F-queries (as opposed to computing answers to ZE,r,t

m,n -queries) though
in reality B is running the whole computation, including the simulation of A′ by A.

We view each value s ∈ Si as a “bin” with t “slots”; the �-th slot of bin s “receives
a ball” or “becomes full” at query j ≥ i if s ∈ Sj (namely, if the bin already exists at
that point), if z�(s) ∈ z�(Sj\{s}), and if either s /∈ Sj−1 or z�(s) /∈ z�(Sj−1\{s}).
Once a bin receives a ball in a slot, the slot remains full. A slot cannot receive more than
one ball, and bins are never removed; we note that no bins exist at the start, and that
|ΔSi| bins are added at the i-th query. Under these definitions, A wins the “generous”
cover-free game precisely if some bin becomes full (i.e., all its slots become full). It is
helpful to picture A and B as playing an adversarial game in which A wins if it fills a
bin without B forging one of the functions F1, . . . ,Ft, and where B wins otherwise (in
fact, we may even picture A as choosing the answers to its queries, while B observes
and tries to guess an answer before it is revealed).

We say that ball � of a bin s ∈ ΔSi is “early” if z�(s) ∈ z�(Si\{s}) and “late” oth-
erwise; thus a ball is early if and only if it is added to a bin at the same A-query which
creates the bin. B plays one of two different forging strategies with equal probability.
The first strategy is designed to prevent too many early balls from appearing in bins
while the second strategy is designed to prevent A from filling a bin (the second strat-
egy only functions well if not too many early balls appear in bins, whence the necessity
of the first strategy). We name the two strategies “early prevention” and “late preven-
tion”; despite these names, we emphasize the two strategies are not played sequentially;
instead, B flips a coin at the start to decide which strategy to use.

We start by describing B’s early prevention strategy. Let Q = qrδ; as noted above,
Q ≥ |Sq′ |, so Q is an upper bound for the total number of bins created during the
game. The goal of B’s early prevention strategy is to prevent A from creating, for every

336 Y. Dodis and J. Steinberger

1 ≤ k ≤ t, Q1−k/t or more bins that each have k or more early balls in them. In
other words, we only require this strategy to work (i.e. forge a function F� with “good
enough” probability) if there is some 1 ≤ k ≤ t such that Q1−k/t or more bins are
created with k or more early balls in them.

We model the early prevention strategy via a slightly simplified balls-in-bins game
described below. To connect this balls-in-bins game with the “real” game played by B
and A, it is helpful to first review the process via which bins are created and early balls
are added to them. Consider a query xi made by A. Then

ΔSi = {s ∈ {0, 1}m : Eh0(s) = xi for some h0 ∈ [r] and Eh(s) ∈ Qi−1 for h
= h0}

and the elements of ΔSi are the new bins created by this query. Each bin s ∈ ΔSi
has t slots and the “value” z�(s) of the �-th slot of s is revealed when B makes the
query F�(xi); after the value z�(s) is revealed, an early ball is added to the �-th slot of s
according to whether there exists an s′ ∈ Si\{s} such that z�(s) = z�(s′) or not (notice
that z�(s′) is known at this point for all s′ ∈ Si). Thus, the process of filling the newly
created bins with early balls consists in t “phases” (the queries F1(xi), . . . ,Ft(xi),
which are made sequentially by B), where the �-th phase simultaneously reveals the
values of the �-th slots of all the new bins, and whether these slots receive early balls or
not. The following balls-in-bins game thus abstracts the process of creation of new bins
and early balls:

‘EARLY PREVENTION’ BALLS-AND-BINS GAME. This game is played between two
adversaries A and B. Parameters are integers t, q′, Q ≥ 1. Rules are as follows:

– The game proceeds in q′ rounds. At round i, A announces some number vi ≥ 0 of
bins such that

∑
j≤i vj ≤ Q.

– At the beginning of each round the vi bins are empty. Each bin has t slots. Each
round consists of t phases. At the �-th phase, A reveals which of the vi bins have
their �-th slot “filled” by a “ball”.

– Before each phase of each round, B is allowed to secretly predict a bin that will
receive a ball at that phase; B wins if it makes a correct guess, but it is only allowed
to make one guess during the entire game.

– Let bk,i be the number of bins that receive k or more balls at round i, and let
bk =

∑
i bk,i where the sum is taken over all the rounds. Then A is required to fill

bins such that bk ≥ Q1−k/t for at least one value of k, 1 ≤ k ≤ t.

In the full version [12] we exhibit a strategy for B that gives it at least (t2Q1/t)−1

chance of winning the above game, regardless of A’s strategy. Thus, if Q1−k/t or more
bins each receive k or more early balls for some 1 ≤ k ≤ t, and if B uses this strategy,B
has chance (t2Q1/t)−1 of correctly predicting, before the answer to some query F�(xi)
is given, that the value returned by this query will result in slot � of some (specific)
bin s ∈ ΔSi receiving an early ball. To guess F�(xi), B further chooses a random
s′ ∈ Si\{s}, and solves z�(s) = z�(s′) in order to guess F�(xi) (since s receives an
early ball in slot � precisely when there exists an s′ ∈ Si\{s} such that z�(s) = z�(s′)).
To see that z�(s) = z�(s′) is really “solvable” two different cases must be considered,
according to whether s′ ∈ ΔSi or not. If s′ /∈ ΔSi then s′ was created by an earlier
A-query and the value of its slots are known, in particular the value z�(s′) of its �-th slot

Domain Extension for MACs Beyond the Birthday Barrier 337

is known. Let xh = Eh(s) for 1 ≤ h ≤ r, let h0 ∈ [r] be the unique index such that
xh0 = xi and let yh = F�(xh) for 1 ≤ h ≤ r. Then all the values x1, . . . , xr, y1, . . . ,
yr are known to B except for the value yh0

, which it needs to guess using the equation

p(x1, . . . , xr, y1, . . . , yr) = z�(s′). (5)

By condition (i) of Definition 1 (x1, . . . , xr)
= (0, . . . , 0) so, by the ‘Invertibility’ prop-
erty of p, there are few values yh0

that solve (5). More precisely, since p(x1, . . . , yr) is a
nonzero polynomial of degree at most r in yh0

,B has to choose from the at most r roots of
p(x1, . . . , yr)− z�(s′), where z�(s′) is just a constant. In the second case, s′ ∈ ΔSi and
z�(s′) is not known (like z�(s), it is about to be revealed). Let x′

h = Eh(s′), let h′
0 ∈ [r]

be the unique index such that x′
h′
0

= xi and let y′h = F�(x′
h) for 1 ≤ h ≤ r. Then all the

values x′
1, . . . , x

′
r, y′1, . . . , y′r are known to B except y′h′

0
, and B needs to solve

p(x1, . . . , xr, y1, . . . , yr) = p(x′
1, . . . , x

′
r, y

′
1, . . . , y

′
r) (6)

(this is z�(s) = z�(s′)) for yh0
, y′h0

(or at least for yh0
). But yh0

= y′h0
; since xh0 =

x′
h′
0

= xi; also, by the injectivity of E , (x1, . . . , xr)
= (x′
1, . . . , x

′
r), so it follows by the

‘Collision Invertibility’ property of p that there are few values yh0
= y′h′

0
solving (6); in

fact these are the at most r different roots of p(x1, . . . , yr)− p(x′
1, . . . , y

′
r), considered

as a polynomial in yh0
= y′h′

0
. The term RootTimer(n) in Theorem 2 accounts for B’s

root-finding costs, which are incurred only once in the computation.
Naturally, B’s further guessing of s′ and of the correct root yh0

erodes its probability
of making a correct forgery even it has correctly guessed an early ball is about to be
added to a bin slot, but it is easy to bound this erosion: B has chance at least 1/|Si| ≥
1/Q of correctly guessing s′ and chance at least 1/r of correctly guessing the root.
Thus, if Q1−k/t or more bins each receive k or more early balls for some 1 ≤ k ≤ t
and if B is using its ‘early prevention’ strategy (which we have just finished describing),
then B has chance at least

1
rQt2Q1/t

of forging. As B uses this strategy with probability 1
2 , we can therefore assume that

fewer than Q1−k/t bins receive k early balls for every 1 ≤ k ≤ t, or else B already
reaches the requisite probability of success of εA(6rQt2Q1/t)−1.

We now discuss B’s ‘late prevention’ strategy. Here B attempts to prevent A from
filling a bin with t balls by guessing the arrival of late balls. We note that, if a query
F�(xi) results in some late ball being placed in the �-th slot of bin s, then s /∈ ΔSi (by
definition of ‘late’) and so the values z1(s), . . . , zt(s) are already known prior to the
answer of the query F�(xi). Moreover the fact that the query F�(xi) results in a late
ball appearing in bin s means there is some s′ ∈ ΔSi such that (i) Eh0(s′) = xi for
some h0 ∈ [r], (ii) the queries F�(Eh(s′)) have already been made6 for h
= h0, and
(iii) z�(s) = z�(s′) (the value z�(s′) will become known when F�(xi) is answered).
Let x′

1 = E1(s′), . . . , x′
r = Er(s′) (so x′

h0
= xi) and y′1 = F�(x′

1), . . . , y
′
r = F�(x′

r),

6 This means A has made the queries Eh(s′) for h 	= h0 so that, in fact, all queries F�′(Eh(s′))
for 1 ≤ �′ ≤ t and h 	= h0 have already been made (not just �′ = �).

338 Y. Dodis and J. Steinberger

all of which are known to B except y′h0
. Then, if B has correctly guessed a late ball is

going to appear in the �-th slot of bin s and has correctly guessed the value of s′ ∈ ΔSi,
it can predict F�(xi) by solving

p(x′
1, . . . , x

′
r, y

′
1, . . . , y

′
r) = z�(s) (7)

for y′h0
, for which there are at most r solutions. (This is the second (and last) place

we require the ‘Invertibility’ property of p.) Given these observations, the following
balls-and-bins game clearly models B’s ‘late prevention’ task, up to but not including
guessing the root of (7):

‘LATE PREVENTION’ BALLS-AND-BINS GAME. This game is played between two
adversaries A and B. Parameters are integers t, q′, Q ≥ 1. Rules are as follows:

– The game involves “bins” with t slots each, where each slot can contain either
contain a ball or not. At the beginning of the game, there are no bins. Bins are
added to the game as described below, and never removed.

– The game proceeds in q′ rounds, each of which consists of t “phases”.
– At the beginning of round i,A announces some number vi ≥ 0 such that

∑
j≤i vj ≤

Q. If vi = 0, the round is skipped.
– At phase � of round i, 1 ≤ � ≤ t, A chooses a subset (possibly empty) of the

currently existing bins that do not yet have a ball in their �-th slot, and places balls
in all of their �-th slots, simultaneously. Moreover, A labels each ball placed with
a number from 1 to vi. (Multiple balls with the same label are allowed, and not all
labels are required to appear.)

– At the end of round i, A introduces vi new bins to the game, each possibly al-
ready containing some balls. Throughout the game, the total number of new bins
introduced with k or more balls already in them must be less than Q1−k/t for all
1 ≤ k ≤ t.

– Before each phase of each round, B is allowed to secretly predict a bin that will
receive a ball at that phase and a label for that ball; B wins if it guesses both
correctly. It is only allowed to make one guess during the game.

– A must fill some bin with t balls by the end of the game.

We note that the new bins introduced at the end of round i correspond to the elements
of ΔSi and that vi corresponds to |ΔSi|. The “label” for a ball placed in a bin s at
phase � corresponds to an element s′ ∈ ΔSi such that z�(s) = z�(s′), discussed above.
(In the ‘real game’ between B and A several such elements s′ may exist, so that more
accurate modelization would allow A to choose a nonempty list of labels rather than a
single label for each ball; however, seeking to minimize the guessing advantage of B,
A would automatically make each of these lists a singleton anyway.)

In the full version [12] we exhibit a strategy for B in the ‘late prevention’ game that
succeeds with probability (3Qt2Q1/t)−1 regardless of A’s strategy. The ‘late preven-
tion’ strategy of B consists simply of coupling the B-strategy mentioned above with a
guessing of the root of (7). Thus, as long as fewer than Q1−k/t bins receive k or more
early balls for 1 ≤ k ≤ t, as long as A fills some bins with t balls and as long as B uses
its late prevention strategy, B has chance at least

1
3rQt2Q1/t

Domain Extension for MACs Beyond the Birthday Barrier 339

of forging. Since B uses the ‘late prevention’ strategy with probability 1
2 , this concludes

the proof.

4 Implications

Replacing g in Lemma 4 by our cover-free function ZE,r,t
m,n and using Theorem 2 with

m = 3n, we obtain:

Theorem 3. Let E be a (3n, n, r, δ,K)-IRFF, let f : {0, 1}κ × {0, 1}n → {0, 1}n,
and consider ZE,r,t

3n,n as a keyed function family of key space {0, 1}κt like in Theorem 2.

Define F , G by (1), (2) with g = ZE,r,t
3n,n. Then

InSecmac
MD[F,G](T, q̃, μ) ≤ 12rQt3Q1/t · InSecmac

f (Tmac, q) (8)

+ (2tq log q + t) · InSecmac
f (T + Õ(q), q)

where q = μ/n and Q = qrδ as long as q ≤ K , and where

Tmac = T + Õ(Qt) + qrInvTime(E , q) + RootTimer(n).

In particular, when t = n and Q ≤ 2n (i.e. q ≤ 2n/rδ) and q ≤ K we have

InSecmac
MD[F,G](T, q̃, μ) ≤ 24r2δn3q · InSecmac

f (Tmac, q) (9)

+ (2nq log q + n) · InSecmac
f (T + Õ(q), q)

By default we shall apply the second part of Theorem 3, choosing t = n. In order to
interpret (9) we need to know what values of r, δ and K are achievable via IRFFs and
to know InvTime(E , q) for those IRFFs, as this term dominates Tmac.

The question of instantiating the IRFF E was already studied by Maurer and Tessaro
[22], who reduced it to the construction of certain types of highly unbalanced bipartite
expander graphs. While well-studied, these types of expander graphs are not yet com-
pletely understood, and in particular the setting of parameters relevant to our case has
not been the object of much attention. Here we mention bounds achieved by two explicit
constructions as well as those achieved by a non-explicit, probabilistic construction. In
all cases we set m = 3n. We note that InvTime(E , q) can always be upper bounded
by q3 by appending three functions to the IRFF that read off each block of input via
the identity. Moreover, we can easily enforce condition (i) of Definition 1 as long as
r ≤ 2n. Since the family sizes r in question are anyway polynomial in n, we assume
these tweaks without further mention.

Existential construction. A probabilistic construction [22] achieves a (3n, n, r, δ,K)-
IRFF E with r = O(n), δ ≈ 1 and K = Ω(2n

n). In this case Q = qrδ = O(nq). Then
the right-hand side of (9) becomes

340 Y. Dodis and J. Steinberger

O(n5q) · InSecmac
f (Tmac, q).

Assuming InSecmac
f (Tmac, q) ≈ 1/2n, MD[F,G] achieves query security up to q =

Ω(2n/n5). However, this construction is inexplicit.

Expanders of [30]. Expanders of Ta-Shma, Umans and Zuckerman yield an explicit
(3n, n, r, δ,K)-IRFF E with r = poly(n), δ = poly(n) and K = Ω(2n

poly(n)). In this
case Q = qpoly(n). The right-hand side of (9) becomes

O(poly(n)q) · InSecmac
f (Tmac, q).

Assuming InSecmac
f (Tmac, q) ≈ 1/2n we can then achieve query security up to q =

Ω(2n/poly(n)). (We note this construction is strictly better from all standpoints than
the one presented by Maurer and Tessaro [22].)

Expanders of [14]. Expanders of Guruswami, Umans and Venkatesan yield an explicit
(3n, n, r, δ,K)-IRFF E with r = nO(1

ε), δ = poly(n) and K = 2n(1−ε) for any ε ∈
(0, 1). In this case Q = qpoly(n)nO(1

ε). We can set t = log(Q) = log q + O(1
ε logn).

For constant ε the right-hand side of (9) again becomes

O(poly(n)q) · InSecmac
f (Tmac, q).

Assuming InSecmac
f (Tmac, q) ≈ 1/2n the insecurity thus remains negligible as long as

q ≤ K = 2n(1−ε). The advantage of this construction is that it affords efficient inver-
sion time of O(q poly(n)) (as opposed to O(q3) for the previous two constructions).

Interpretation. The assumption InSecmac
f (Tmac, q) ≈ 1/2n is only realistic as long

as Tmac does not allow to do an exhaustive search over the key space of f ; assuming
the latter has size 2κ ≥ 2n, this implies that our upper bounds are only meaningful if
Tmac ≈ InvTime(E , q) " 2κ (since Tmac is dominated by InvTime(E , q)). The first
two constructions, which are only known to have InvTime(E , q) = O(q3), therefore
only give a meaningful bound for q " 2κ/3. Thus, with the current understanding of
InvTime(E , q), they might become beyond birthday only if κ > 3n/2 (and approach
q ≈ 2n only if κ > 3n). However, the last construction, having InvTime(E , q) =
O(q poly(n)), yields beyond-birthday security even if κ = n, which is the case of
AES-128. Once again, though, we stress that the current limitations of our approach
are due only to the limitations in the current constructions of expander graphs, and are
not related to any “cryptographic” difficulties. Needless to say, future advances in the
constructions of expander graphs will not only improve our parameters, but will likely
have other applications in many areas of theoretical computer science.

Heuristic Instantiation. In practice, we expect to nearly match the good IRFF param-
eters of the existential construction (including r = O(n) and δ = O(1)) by simply im-
plementing each Ei : {0, 1}3n → {0, 1}n as the XOR of three (independently keyed)
fixed key blockciphers, i.e. Ei(x‖y‖z) = fki,1(x)⊕fki,2(y)⊕fki,3(z). We note that in

Domain Extension for MACs Beyond the Birthday Barrier 341

this case the 3r keys k1,1, . . . , kr,3 do not constitute key material, but are instead fixed
constants of the construction.

ACKNOWLEDGMENTS. Yevgeniy Dodis was supported by by NSF grants 1017471,
0831299, 0716690 and the Google Faculty Award. John Steinberger was supported by
the National Natural Science Foundation of China Grant 60553001, by the National
Basic Research Program of China Grant 2007CB807900, 2007CB807901 and by NSF
grant CNS 0904380.

References

1. Aiello, W., Venkatesan, R.: Foiling birthday attacks in length-doubling transformations —
Benes: a non-reversible alternative to Feistel. In: Maurer, U.M. (ed.) EUROCRYPT 1996.
LNCS, vol. 1070, pp. 307–320. Springer, Heidelberg (1996)

2. An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: Message Authentication
under Weakened Assumptions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp.
252–269. Springer, Heidelberg (1999)

3. Bellare, M.: New Proofs for NMAC and HMAC: Security without Collision-Resistance. In:
Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Heidelberg (2006)

4. Bellare, M., Goldreich, O., Krawczyk, H.: Stateless Evaluation of Pseudorandom Functions:
Security beyond the Birthday Barrier. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 270–287. Springer, Heidelberg (1999)

5. Bellare, M., Kilian, J., Rogaway, P.: The security of cipher block chaining. In: Desmedt, Y.G.
(ed.) CRYPTO 1994. LNCS, vol. 839, pp. 341–358. Springer, Heidelberg (1994)

6. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Authentication.
In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)

7. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård Revisited: How to Con-
struct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448.
Springer, Heidelberg (2005)

8. De, A., Trevisan, L., Tulsiani, M.: Time Space Tradeoffs for Attacks against One-Way Func-
tions and PRGs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 649–665. Springer,
Heidelberg (2010)

9. Dodis, Y., Pietrzak, K., Puniya, P.: A New Mode of Operation for Block Ciphers and Length-
Preserving MACs. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 198–219.
Springer, Heidelberg (2008)

10. Dodis, Y., Puniya, P.: Feistel Networks Made Public, and Applications. In: Naor, M. (ed.)
EUROCRYPT 2007. LNCS, vol. 4515, pp. 534–554. Springer, Heidelberg (2007)

11. Dodis, Y., Steinberger, J.: Message Authentication Codes from Unpredictable Block Ci-
phers. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 267–285. Springer, Heidel-
berg (2009), full version http://people.csail.mit.edu/dodis/ps/tight-
mac.pdf

12. Dodis, Y., Steinberger, J.: Domain Extension for MACs Beyond the Birthday Barrier. In: EU-
ROCRYPT 2011. LNCS, vol. 6632, pp. 323–342. Springer, Heidelberg (2011), full version
of this paper http://people.csail.mit.edu/dodis/ps/optimal-mac.pdf

13. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In: Koç,
Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer,
Heidelberg (2001)

14. Guruswami, V., Umans, C., Vadhan, S.P.: Unbalanced expanders and randomness extractors
from Parvaresh-Vardy codes. J. ACM 56(4) (2009)

http://people.csail.mit.edu/dodis/ps/tight-mac.pdf
http://people.csail.mit.edu/dodis/ps/tight-mac.pdf
http://people.csail.mit.edu/dodis/ps/optimal-mac.pdf

342 Y. Dodis and J. Steinberger

15. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feld-
man, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot attacks on encryption
keys. Commun. ACM 52(5), 91–98 (2009)

16. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and other sys-
tems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidel-
berg (1996)

17. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

18. Lee, J., Steinberger, J.: Multi-property-preserving domain extension using polynomial-based
modes of operation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 573–596.
Springer, Heidelberg (2010)

19. Lucks, S.: A failure-friendly design principle for hash functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

20. Maurer, U., Pietrzak, K.: The security of Many-Round Luby-Rackoff Pseudo-Random Per-
mutations. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 544–561. Springer,
Heidelberg (2003)

21. Maurer, U., Renner, R., Holenstein, R.: Indifferentiability, impossibility results on reduc-
tions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

22. Maurer, U., Tessaro, S.: Domain Extension of Public Random Functions: Beyond the Birth-
day Barrier. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 187–204. Springer,
Heidelberg (2007)

23. Patarin, J.: Luby-Rackoff: 7 rounds are enough for 2n(1−ε) security. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 513–529. Springer, Heidelberg (2003)

24. Patarin, J.: Security of Random Feistel Schemes with 5 or More Rounds. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)

25. Patarin, J., Montreuil, A.: Benes and Butterfly Schemes Revisited. In: ISISC 2005 (2005)
26. Petrank, E., Rackoff, C.: CBC MAC for Real-Time Data Sources. J. Cryptology 13(3), 315–

338 (2000)
27. Preneel, B., van Oorschot, P.C.: MDx-MAC and Building Fast MACs from Hash Functions.

In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 1–14. Springer, Heidelberg
(1995)

28. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and counter-
measures for smart cards. In: Attali, I., Jensen, T.P. (eds.) E-smart 2001. LNCS, vol. 2140,
pp. 200–210. Springer, Heidelberg (2001)

29. Shrimpton, T., Stam, M.: Building a Collision-Resistant Compression Function from Non-
Compressing Primitives. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 643–654.
Springer, Heidelberg (2008)

30. Ta-Shma, A., Umans, C., Zuckerman, D.: Lossless Condensers, Unbalanced Expanders, And
Extractors. Combinatorica 27(2), 213–240 (2007)

31. Yasuda, K.: A double-piped mode of operation for MACs, PRFs and PROs: Security beyond
the birthday barrier. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 242–259.
Springer, Heidelberg (2009)

Statistical Attack on RC4
Distinguishing WPA

Pouyan Sepehrdad, Serge Vaudenay, and Martin Vuagnoux

EPFL
CH-1015 Lausanne, Switzerland
http://lasecwww.epfl.ch

Abstract. In this paper we construct several tools for manipulating pools of bi-
ases in the analysis of RC4. Then, we show that optimized strategies can break
WEP based on 4000 packets by assuming that the first bytes of plaintext are
known for each packet. We describe similar attacks for WPA. Firstly, we de-
scribe a distinguisher for WPA of complexity 243 and advantage 0.5 which uses
240 packets. Then, based on several partial temporary key recovery attacks, we
recover the full 128-bit temporary key by using 238 packets. It works within a
complexity of 296. So far, this is the best attack against WPA. We believe that our
analysis brings further insights on the security of RC4.

1 Introduction

RC4 was designed by Rivest in 1987. It used to be a trade secret until it was anony-
mously posted in 1994. Nowadays, RC4 is widely used in SSL/TLS and Wi-Fi 802.11
wireless communications. 802.11 [1] used to be protected by WEP (Wired Equivalent
Privacy) which is now being replaced by WPA (Wi-Fi Protected Access) due to security
weaknesses.

WEP uses RC4 with a pre-shared key. Each packet is encrypted by a XOR to a
keystream generated by RC4. The RC4 key is the pre-shared key prepended with a 3-
byte nonce IV. The IV is sent in clear for self-synchronization. There have been several
attempts to break the full RC4 algorithm but it has only been devastating so far in this
scenario. Indeed, the adversary knows that the key is constant except the IV, which is
known. An active adversary can even alter the IV. Nowadays, WEP is considered as
being terribly weak since passive attacks can recover the full key easily by assuming
that the first bytes of every plaintext frames are known. This happens to be the case due
to protocol specifications.

In order to fix this problem, the Wi-Fi Alliance has replaced WEP by WPA [1]. Peer
authentication is based on IEEE 802.1X which accommodates a simple authentication
mode based on a pre-shared key (WPA-PSK). Authentication creates a Temporary Key
(TK). The TK then goes through the temporary key integrity protocol (TKIP) to derive
per-packet keys (PPK). The idea is that TK is derived into a TTAK key to be used for a
number of frames limited to 216. Each frame applies a simple transformation to TTAK
and a counter TSC to derive the RC4 per-packet key PPK. Again, the 3 first bytes of
the RC4 key are known (they actually depend on the counter).

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 343–363, 2011.
c© International Association for Cryptologic Research 2011

http://lasecwww.epfl.ch

344 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

In addition to the key derivation, WPA provides a packet integrity protection scheme
which prevents from replaying or altering the IV. Thus, only passive key recovery at-
tacks can be considered.

Our contribution. In this paper, we construct tools for manipulating pools of biases. With
our theory, we then analyze several statistical strategies for partial key recovery. We apply
it to recover the 8 weak bits of the WPA key TK by using 238 to 240 packets. Incidentally,
we apply our analysis to WEP and show that the best attacks so far can still be improved.
We then transform our partial key recovery attack into a practical distinguisher for WPA.
Finally, we build a full session key recovery with complexity 296 and 238 packets.

Related Work. We mention three approaches for the cryptanalysis of RC4: attacks based
on the weaknesses of the Key Scheduling Algorithm (KSA) and attacks based on the
weaknesses of the Pseudorandom Generator Algorithm (PRGA), and blackbox analysis.

As for the KSA, one of the first weaknesses published on RC4 was discovered by
Roos [32] in 1995. This correlation binds the secret key bytes to the initial state S′0.
Roos [32] and Wagner [38] identified classes of weak keys which reveal the secret key
if the first key bytes are known. This property has been largely exploited to break WEP
(see [5,9,13,18,19,33,34,35,37]). Another class of result concerns the inversion problem
of KSA: given the final state of the KSA, the problem is to recover the secret key [4,28].

Regarding PRGA, the analysis has been largely motivated by distinguishing at-
tacks [8,11,22,24] or initial state reconstruction from the keystream bytes [10,17,25,36]
with complexity of 2241 for the best state recovery attack. Relevant studies of the PRGA
reveal biases in the keystream output bytes in [23,29]. Mironov recommends in [26] that
the first 512 initial keystream bytes must be discarded to avoid these weaknesses.

Jenkins published in 1996 on his website [14] two biases in the PRGA of RC4.
These biases have been generalized by Mantin in his Master Thesis [21]. Paul, Rathi
and Maitra [30] discovered in 2008 a biased output index of the first keystream word
generated by the PRGA. Another bias on the PRGA has been experimentally discovered
by Maitra and Paul [20]. Finally, Sepehrdad, Vaudenay and Vuagnoux [33] discovered
48 new correlations in PRGA and 9 new correlations between the key bits and the key
stream. This led to the fastest attack on WEP at the moment.

In practice, key recovery attacks on RC4 must bind KSA and PRGA weaknesses to
correlate secret key words to keystream words. Some biases on the PRGA [16,30,20]
have been successfully bound to the Roos correlation [32] to provide known plaintext
attacks. Another approach is blackbox analysis, which does not require any binding.
This was exploited in [33].

In 2004, Moen, Raddum and Hole [27] discovered that the recovery of at least two
RC4 packet keys in WPA leads to a full recovery of the temporal key and the message
integrity check key. Once from the same segment of 216 consecutive packets, two keys
are successfully recovered, the Moen, Raddum and Hole attack can be applied. This
leads to a TK key recovery attack on WPA with complexity 2103 using 2 packets. Al-
most all known and new key recovery attacks on WEP could have been applied to WPA
if there were several packets using the same RC4 key. Indeed, only the Fluhrer, Mantin
and Shamir attack [9] is filtered. However, WPA uses a different secret key for every
encrypted packet. In 2009, Tews and Beck [34] found a practical attack on WPA-PSK

Statistical Attack on RC4 345

to inject data in encrypted communication. Note that this attack does not recover the en-
cryption key and need some additional quality of services features (described by IEEE
802.11e) which are not activated by default.

Structure of the paper. We first present in Section 2 RC4, WEP, and WPA, known
biases in RC4 and some tools to be able to manipulate a pool of biases for target key
bytes. Then, we study key recovery attacks to be able to recover some “weak bits” of
the temporary key in Section 3. We show applications to WEP in Section 4, then present
a distinguisher for WPA and a full temporary key recovery for WPA in Section 5.

2 Preliminaries

2.1 Description of RC4 and Notations

The stream cipher RC4 consists of two algorithms: the Key Scheduling Algorithm
(KSA) and the Pseudo Random Generator Algorithm (PRGA). The RC4 engine has
a state defined by two registers (words) i and j and one array (of N words) S defining a
permutation over ZN . The KSA generates an initial state for the PRGA from a random
key K of L words as described on Fig. 1. It starts with an array {0,1, . . . ,N−1}, where
N = 28 and swaps N pairs, depending on the value of the secret key K. At the end, we
obtain the initial state S′0 = SN−1.

Once the initial state S′0 is created, it is used by the second algorithm of RC4, the
PRGA. Its role is to generate a keystream of words of log2 N bits, which will be XORed
with the plaintext to obtain the ciphertext. Thus, RC4 computes the loop of the PRGA
each time a new keystream word zi is needed, according to the algorithm on Fig. 1. Note
that each time a word of the keystream is generated the internal state of RC4 is updated.

Notations. In this paper, we define all the operators such as addition, subtraction and
multiplication in the group ZN where N = 256 (i.e. words are bytes). Thus, x+y should
be read as (x + y) mod N.

Let Si[k] (resp. S′i[k]) denote the value of the permutation defined by array S at index
k, after round i in KSA (resp. PRGA). We also denote SN−1 = S′0. Let ji (resp. j′i) be

KSA PRGA

1: for i = 0 to N−1 do
2: S[i]← i
3: end for
4: j← 0
5: for i = 0 to N−1 do
6: j← j +S[i]+K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i← 0
2: j ← 0
3: loop
4: i← i+1
5: j ← j +S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i]+S[j]]
8: end loop

Fig. 1. RC4 KSA and PRGA Algorithms

346 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

the value of j after round i of KSA (resp. PRGA) where the rounds are indexed with
respect to i. Thus, the KSA has rounds 0,1, . . . ,N−1 and the PRGA has rounds 1,2,
The KSA and PRGA are defined by

KSA PRGA
j−1 = 0 j′0 = 0

ji = ji−1 + Si−1[i]+ K[i mod L] j′i = j′i−1 + S′i−1[i]
S−1[k] = k S′0[k] = SN−1[k]

Si[k] =

⎧⎨⎩Si−1[ji] if k = i
Si−1[i] if k = ji
Si−1[k] otherwise

S′i[k] =

⎧⎨⎩S′i−1[j′i] if k = i
S′i−1[i] if k = j′i
S′i−1[k] otherwise

zi = S′i[S
′
i[i]+ S′i[j′i]]

2.2 Description of WEP

WEP [2] uses a 3-byte IV concatenated to a secret key of 40 or 104 bits (5 or 13 bytes)
as an RC4 key. Thus, the RC4 key size is either 64 or 128 bits. In this paper, we do not
consider the 40-bit key variant. So, L = 16. We have

K = K[0]‖K[1]‖K[2]‖K[3]‖· · ·‖K[15] = IV0‖IV1‖IV2‖K[3]‖· · ·‖K[15]

where IVi represents the (i + 1)th byte of the IV and K[3]‖...‖K[15] the fixed secret
part of the key. In theory, the value of the IV should be random but in practice, it is a
counter, mostly in little-endian, and incremented by one each time a new 802.11b frame
is encrypted. Sometimes, some particular values of IV are skipped to thwart specific
attacks based on “weak IVs”. Thus, each packet uses a slightly different key. RC4 then
produces a keystream which is XORed to the plaintext to obtain the ciphertext.

It is well known [31] that a relevant portion of the plaintext is practically constant
and that some other bytes can be predicted. They correspond to the LLC header and
the SNAP header and some bytes of the TCP/IP encapsulated frame. For example, by
XORing the first byte of the ciphertext with the constant value 0xAA, we obtain the first
byte of the keystream. Thus, even if these attacks are called known plaintext attacks,
they are ciphertext only in practice.

2.3 Description of WPA

WPA includes a key hash function [12] to defend against the Fluhrer-Mantin-Shamir
attack [9], a Message Integrity Code (MIC) [7] and a key management scheme based
on 802.1X [3] to avoid key reuse and to ease the key distribution.

The 128-bit Temporal Key (TK) is a per-session key. It is derived from the key
management scheme during the authentication and is given as an input to the phase1
key hash function (key mixing algorithm) together with the 48-bit Transmitter Address
(TA) and a 48-bit TKIP Sequence Counter (TSC) which is sometimes called IV. We
will avoid this latter name to avoid confusion with the first 3 bytes of the RC4 key
(which indeed only depend on TSC but are not equal).

TK can be used to encrypt up to 248 packets. Every packet has a 48-bit index TSC
which is split into IV32 and IV16. The IV32 counter is incremented every 216 packets.

Statistical Attack on RC4 347

The packet is encrypted using a 128-bit RC4KEY which is derived from TK, TSC,
and some other parameters (e.g. device addresses) which can be assumed constant and
known by the adversary for our purpose. As for WEP, the first three bytes of RC4KEY
only depend on TSC so they are not secret. The derivation works in two phases. The
first phase does not depend on IV16 and is done once every 216 packets for efficiency
reasons. It derives a 80-bit key TTAK, called TKIP-mixed Transmit Address and Key
(TTAK) in the standard (but denoted P1K in the reference code).

TTAK = phase1(TK,TA, IV32)

The second phase uses TK and IV16 to derive a 96-bit key PPK which is then turned
into RC4KEY:

RC4KEY = phase2(TK,TTAK, IV16)

The key derivation of WPA based on a pre-shared key is depicted on Fig. 2 (without
protocol parameters such as TA).

PSK � Authentication
WPA-PSK

� TK �

TSC
�IV16

�

IV32

�
phase1 �TTAK

phase2 � RC4KEY

802.1X WPA RC4

Fig. 2. WPA Key Derivation based on Pre-Shared Key Authentication Method

The RC4KEY is simply defined from PPK, TK, and IV16 by

RC4KEY[0] = high8(IV16) RC4KEY[1] = (high8(IV16) or 0x20) and 0x7f
RC4KEY[2] = low8(IV16) RC4KEY[3] = low8((PPK[5]⊕ (TK[1]‖TK[0]))# 1)
RC4KEY[4] = low8(PPK[0]) RC4KEY[5] = high8(PPK[0])
RC4KEY[6] = low8(PPK[1]) RC4KEY[7] = high8(PPK[1])

...
...

In what follows, we denote K[i] = RC4KEY[i mod 16] and IV = K[0]‖K[1]‖K[2] to use
the same notations as in WEP. By convention,TTAK and PPK are considered as vectors
or 16-bit words. TK and RC4KEY are considered as vectors or 8-bit words. Vectors are
numbered starting from 0.

Note that a filter avoids the use of some weak IV classes. Actually, only the weak IV
class discovered by Fluhrer, Mantin, and Shamir [9].

348 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

2.4 Biases in RC4

Throughout this paper, we denote K̄[i] = K[0]+ · · ·+K[i]. We let z denote the keystream
derived from K using RC4. The first bytes of a plaintext frame are often known (see
[37]), as well as IV, the first 3 bytes of K. That is, we assume that the adversary can use
z and IV in a known plaintext attack.

We let I0 be a set of integers, which represent the key byte indices which are already
known. We call an I0-clue a value clue for all K̄ bytes whose index are in I0. To begin
with, we have I0 = {0,1,2} and clue = IV.

Given a set of indices I0 and an index i, we assume that we have a list rowRC4
i|I0 of pairs

(f̄ j, p j) in which f̄ j is a function such that for any I0-clue clue, we have

Pr
[
K̄[i] = f̄ j(z,clue)

]
= p j

For simplicity, we assume that for i, z, and clue given, all f̄ j(z,clue) are pairwise dif-
ferent. We further assume that the events K̄[i] = f̄ j(z,clue) with different i’s are in-
dependent. We will also assume that f̄ j is of form f̄ j(z,clue) = f j(h(z,clue)) where
µ = h(z,clue) lies in a domain of size Nµ. h is just a function compressing data to the
minimum necessary.

We use a list of classes of biases from Table 1 (see [33]). More specifically, we use the
rows rowRC4

i|I0 in Table 2 taken from [33]. This table applies to RC4 in general but can be

transformed for the WEP or WPA context due to L = 16. Indeed, we have K̄[i+16 j] =
K̄[i] + jK̄[15] for 0 ≤ i ≤ 15 and j = 0,1,2. We define deduce(I) to be the set of all
i’s such that we can compute K̄[i] using this property, based on the values of K̄ with
indices in I. For instance, deduce(0,1,2,5) = {0,1,2,5} and deduce(0,1,2,5,15) =
{0,1,2,5,15,16,17,18,21,31,32,33,34,37, . . .}. Next, we transform the above table
by removing some rows for keys which can be deduced and by merging rows leading to
the same key byte. Namely, we define rowi|I0 as follows: if i ∈ deduce(I0), the row has
a single “bias” f̄1(z,clue) = K̄[i] with probability p1 = 1 since K̄[i] can be computed

Table 1. Classes of Biases in RC4

I0 is the set of K̄ indices which are already known, PMP, PKI, P008, and P009 are defined in
Appendix, t is the largest integer such that 0,1, . . . ,t ∈ I0, and

σi =
t

∑
j=0

S j−1[j]+
i

∑
j=t+1

St [j]

(e.g. σi = i(i+1)
2 and t =−1 when 0 /∈ I0).

row reference f̄ p comment
i
= 1 MaitraPaul(i, I0) K̄[i] = zi+1−σi PMP(i,t) see [20]

i KleinImproved(i, I0) K̄[i] = −zi + i−σi PKI(i,t) see [37]
1 SVV bb 000 K̄[1] = z1−1 1.04237/N see [33]
2 SVV bb 003 K̄[2] = z2−3 0.65300/N see [33]

i = 16i′ SVV 008(i, I0) K̄[i] = zi− i−σi P008(i,t) see [33]
i = 16i′ SVV 009(i, I0) K̄[i] = −zi− i−σi P009(i,t) see [33]

Statistical Attack on RC4 349

Table 2. Table of Unconditional Biases in RC4 from known Key Bytes I0

i biases
0 MaitraPaul(i, I0)
1 KleinImproved(i, I0) SVV bb 000
2 KleinImproved(i, I0) MaitraPaul(i, I0) SVV bb 003
3 KleinImproved(i, I0) MaitraPaul(i, I0)
...

...
...

15 KleinImproved(i, I0) MaitraPaul(i, I0)
16 KleinImproved(i, I0) MaitraPaul(i, I0) SVV 008(i, I0) SVV 009(i, I0)
17 KleinImproved(i, I0) MaitraPaul(i, I0)
...

...
...

31 KleinImproved(i, I0) MaitraPaul(i, I0)
32 KleinImproved(i, I0) SVV 008(i, I0) SVV 009(i, I0)
33 KleinImproved(i, I0)
...

...
47 KleinImproved(i, I0)

from clue. Otherwise, the row is the concatenation of all rowRC4
i′|I0 for i′ in deduce(I0∪

{i})−deduce(I0). For instance, row2|{0,1,2} has a single bias, row5|{0,1,2} = rowRC4
5|{0,1,2},

and
row5|{0,1,2,15} = rowRC4

5|{0,1,2,15}‖rowRC4
21|{0,1,2,15}‖rowRC4

37|{0,1,2,15}

Given two lists of byte indices I0 and I = (i1, . . . , i#I), we construct a new table
Π(I|I0) in which the list of rows is rowi1|I0 , rowi2|I0,i1 , ..., rowi#I |I0,i1,i2,...,i#I−1

. For in-
stance, I0 = {0,1,2} and I is a list of key byte indices which are sequentially obtained
using biases. We assume that I0 is a minimal set in the sense that there is no strictly
smaller set with same deduce(I0). We further assume that I is a minimal set in the
sense that there is no strictly smaller set with same I ∩ I0 and deduce(I ∪ I0). For in-
stance, I = (2,3,13,14,15) is minimal for I0 = {0,1,2}, but I = (2,3,13,14,15,16) is
not. We define ν = (K̄[i])i∈I which belongs to a set of size Nν(I) = N#I . Given i ∈ I,

we let dΠ(I|I0)
i be the length of row for K̄[i] in Π(I|I0). Given a tuple (ji)i∈I such that

1 ≤ ji ≤ dΠ(I|I0)
i for all i ∈ I, by collecting together the jith bias of row i, we obtain

an agglomerated bias to compute ν from z and an I0-clue clue. Note that for technical
reasons, we may have to keep elements of I0 in I. This is why we may have rows for
i ∈ I0 in Π(I|I0) with a single bias of probability 1. We let

k(I|I0) = ∏
i∈I

dΠ(I|I0)
i

be the number of possible agglomerated biases. For convenience, we number the ag-
glomerated biases with an index � from 1 to k(I|I0) and each number defines a tuple
(ji)i∈I . So, the �th bias is defined by ν = f�(z,clue) with probability

pΠ(I|I0)
� = ∏

i∈I
pΠ(I|I0)

i, ji

350 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

where pΠ(I|I0)
i, j is the probability of the jth bias in the row corresponding to K̄[i] in

Π(I|I0).
We let Nµ(Π(I)) be N raised to the power of the number of zi bytes and I0 bytes

appearing in any of the biased equations from Π(I). E.g., Nµ(Π(3,13,14|0,1,2)) = N8

since biases for K̄[3] are based on z3 and z4, and biases for K̄[13] and K̄[14] are based
on z13, z14, and z15. We further need IV to compute St . So, we have 8 bytes in total: zi

for i ∈ {3,4,13,14,15} and IV. Given a key stream z, we define µ = hΠ(I)(z,clue) as the

vector of all zi and clue bytes which are useful. We define ν = f Π(I)
� (µ).

For simplicity, we write Π, k, Nν, Nµ, p�, h, and f� when I and I0 will be made clear
from context. That is, the range of h has size Nµ, and f� goes from a domain of Nµ

elements to a range of Nν elements.
In the following, we use

se =
k

∑
�=1

pe
� = ∑

(ji)i∈I
1≤ ji≤di

∏
i∈I

pe
i, ji = ∏

i∈I

di

∑
j=1

pe
i, j

for an integer e, and

εe =

(
k

∑
�=1

(
p�−

1
N ν

)e
) 1

e

=

(
e

∑
i=0

(e
i

)
se−i(−Nν)−i

) 1
e

εe is called the cumulated bias of order e. The table below gives a few examples of
cumulated biases.

I0 I Nν k Nµ ε1 ε2 ε4

{0,1,2} (3,13,14) 224 23 N8 2−21.37 2−22.79 2−23.40

{0,1,2} (15,3,14) 224 28.81 N20 2−16.60 2−20.79 2−22.69

{0,1,2} (15,3,13,14) 232 211.13 N23 2−21.82 2−27.19 2−29.69

2.5 Conditional Biases in RC4

We extend the notion of bias to the notion of conditional bias. We now assume that for
each i we have di functions f̄i, j and corresponding predicates ḡi, j such that

Pr
[
K̄[i] = f̄ j(z,clue)|ḡ j(z,clue)

]
= p j

for some probability p j
= 1
N . We further define

Pr [ḡ j(z,clue)] = q j

and call q j the density of the bias. For simplicity, we assume that for some given i,
z, and clue, all suggested f̄ j(z,clue) when ḡ j(z,clue) holds, are pairwise distinct. We
further assume that the events K̄[i] = f̄ j(z,clue) with different i’s are independent. We
will also assume that f̄ j and ḡ j are of form f̄ j(z,clue) = f j(h(z,clue)) and ḡ j(z,clue) =
g j(h(z,clue)) where µ = h(z,clue) lies in a domain of size Nµ.

Statistical Attack on RC4 351

We use the conditional biases in Table 5. All of them except SVV db were taken
from Korek [18] (they can be extracted from Aircrack, see [6,37]). We used some new
formulas to compute their probabilities which are given in Appendix.

Given two minimal sets of byte indices I0 and I as in the previous section, we also
make a table Π(I|I0) and collect a list of � agglomerated biases in which probabilities
and densities are multiplied. We define

s̄e =
k

∑
�=1

q�pe
� , s̄(Nx)

e =
k

∑
�=1

q�
1− q�

Nx

pe
�

and

ε̄e = e

√√√√ k

∑
�=1

q�

(
p�−

1
Nν

)e

= e

√
e

∑
i=0

(e
i

)
s̄e−i(−Nν)−i

ε̄(Nx)
e = e

√√√√ k

∑
�=1

q�
1− q�

Nx

(
p�−

1
Nν

)e

= e

√
e

∑
i=0

(e
i

)
s̄(Nx)

e−i (−Nν)−i

s̄(Nx)
e resp. ε̄(Nx)

e is the regular s̄e resp. ε̄e with a special correcting factor depending on
some value Nx. This correction may look arbitrary. It will appear in the analysis of
Section 3. The s̄ values can be computed easily by

s̄e = ∑
(ji)i∈I

∏
i∈I

qi, ji p
e
i, ji = ∏

i∈I

di

∑
j=1

qi, j p
e
i, j

In the sequel, when q�
= 1 we assume q�" 1 to approximate 1
1− q�

Nx

≈ 1+ 1
Nx−1 1q�=1. So,

we compute s̄(Nx)
e like for s̄e but add a fraction of the regular se term for unconditional

biases.

s̄(Nx)
e = ∑

(ji)i∈I

∏
i∈I

qi, ji

1− qi, ji
Nx

pe
i, ji ≈

se

Nx−1
+∏

i∈I

di

∑
j=1

qi, j p
e
i, j

The approximation is very useful to estimate s̄(Nx)
e with low complexity. Namely, we can

compute all useful ε̄e’s in time O(ed) where d is the total number of biases, although
the number of agglomerated biases k is of order d#I which can be very large.

2.6 More Definitions

We denote

ϕ(λ) =
1√
2π

∫ λ

−∞
e−

x2
2 dx =

1
2
erfc

(
− λ√

2

)
In particular, ϕ(−λ/

√
2) = 1

2erfc(λ
2).

352 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

3 Attacking Weak Bits Based on Biases

There are 8 bits of TK that we call weak because they have a simple relation with bits in
PPK. These bits consists of the 7 most significant bits of TK[0] and the least significant
bit of TK[1]. We will define statistical attacks using the following mappings:

zm, IVm h−−−−−−→ µ
f�−−−−−−→

if g�(µ)
ν π−−−−−−→ x

Here, zm is the mth keystream using IVm, µ is a compressed information to compute ν,
some RC4 key bytes which are used to compute x, some information about TK which
we want to recover using statistics. We define Nx the number of possible values for x.

3.1 First Attack: Recovering some Weak Bits of TK

We use I0 = {0,1,2} and I = (2,3,13,14). Given K̄[2], K̄[3], K̄[13], K̄[14], the adversary
can compute K[3] = K̄[3]− K̄[2] and K[14] = K̄[14]− K̄[13]. We have

PPK[5] = K[15]‖K[14]
K[3] = low8((PPK[5]⊕ (TK[1]‖TK[0]))# 1)

So, given ν = (K̄[2], K̄[3], K̄[13], K̄[14]) the adversary can compute x = high7(TK[0])
by

π(ν) = low7((K̄[3]− K̄[2])⊕ ((K̄[14]− K̄[13])# 1))

Nν = 232 is the total number of possible ν’s and Nx = 27 is the total number of possible
x’s. We have Nµ = 248, the total number of µ = h(z, IV).

We can recover the 7 weak bits as follows: for each candidate value x, each packet
m, and each � = 1, . . . ,k (corresponding to a tuple (j2, j3, j13, j14)), if agglomerated
condition g�(h(zm, IVm)) holds, we define ν = f�(h(zm, IVm)) the value of RC4 key
bytes suggested by bias � on packet m, which is correct with probability p�. We let
x = π(ν) the suggested value of x computed as explained. We let Xx,m,� be some magic
coefficient a� (to be optimized later) if π(f�(h(zm, IVm))) = x and 0 otherwise. We let
Yx = ∑n

m=1 ∑k
�=1 Xx,m,� where n is the total number of packets to be used. Clearly, the

correct value for ν is suggested with probability p� and others are obtained randomly.
We assume incorrect ones are suggested with the same probability 1−p�

Nν−1 .
If x is not the correct value, it is not suggested for sure when ν is correct. Since π is

balanced, this incorrect x has Nν
Nx

values ν belonging to the set of Nν−1 incorrect ones.

So, x is suggested with with probability Nν
Nx
× 1−p�

Nν−1 . So, the Xx,m,� for incorrect x’s are
random variables (r.v.) with expected values

a�q�Nν
1− p�

Nx(Nν−1)

if x is not the correct value.
If x is the correct value, it is suggested with probability p� for the correct ν and when

ν is one of the Nν−Nx
Nx

(incorrect) preimages of x by π. That is, with overall probability

Statistical Attack on RC4 353

p� + Nν−Nx
Nx

× 1−p�
Nν−1 . So, the Xx,m,� for the correct x are r.v. with expected values

a�q�Nν
1− p�

Nx(Nν−1)
+ a�q�

Nν p�−1
Nν−1

The difference between these two expected values is important but it is not the same
for the variance. Since every x is suggested with probability roughly q�

Nx
, we assume that

the variance of all Xx,m,� can be approximated by q�
Nx

(
1− q�

Nx

)
a2
� . Let Δ be the operator

making the difference between distributions for a good x and a bad one. We have

E(Ybad) =
n

Nx

(
1− 1

Nν

)∑
�

a�q�(1− p�)

ΔE(Y) =
n

1− 1
Nν

∑
�

a�q�

(
p�−

1
Nν

)
V (Y) ≈ n∑

�

a2
�

q�
Nx

(
1− q�

Nx

)
Where E(Ybad) denotes the expected value of an Yx variable for any bad x. Here, we
removed the subscript x of Yx in ΔE(Y) and V (Y) since these do not depend on a specific
value for x. Let λ be such that ΔE(Y) = λ

√
V (Y). The probability that the correct Yx is

lower than any wrong Yx is ρ = ϕ
(
− λ√

2

)
. That is, the expected number of wrong x’s

with larger Yx is

r = (Nx−1)ϕ
(
− λ√

2

)
(1)

So,

n = λ2
(

1− 1
Nν

)2 ∑� a2
�

q�
Nx

(
1− q�

Nx

)
(

∑�a�q�
(

p�− 1
Nν

))2

By derivating both terms of the fraction with respect to a� and equaling them, we obtain
that the optimal value is reached for

a� =
Nx

Nx−q�

(
p�−

1
Nν

)
This leads us to

E(Ybad) =
n

Ny

(
ε̄(Nx)

1 − 1

1− 1
Nν

(ε̄(Nx)
2)2

)
ΔE(Y) =

n

1− 1
Nν

(ε̄(Nx)
2)2

V (Y) ≈ n
Nx

(ε̄(Nx)
2)2

n =
λ2

Nx

(
ε̄(Nx)

2

)2

(
1− 1

Nν

)2

(2)

354 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

So we can see where the correction in ε̄(Nx)
2 appears.

The attack works as follows:

1: set I = (2,3,13,14) and I0 = {0,1,2}
2: initialize the Yx counters to 0
3: for m = 1 to n do
4: for � = 1 to k do
5: if g�(h(zm, IVm)) holds then
6: compute ν = f�(h(zm, IVm)), the suggested (K̄[2], K̄[3], K̄[13], K̄[14])
7: compute x = π(ν)
8: increment Yx by a� = Nx

Nx−q�

(
p�− 1

Nν

)
9: end if

10: end for
11: end for
12: output x = argmaxx Yx

Clearly, the time complexity is nk. The complexity is measured in terms of number of
times the if structure is executed. This should have a complexity which is essentially
equivalent to executing the phase2 key derivation. The memory complexity has the
order of magnitude of Nx. Here is a variant:

1: set I = (2,3,13,14) and I0 = {0,1,2}
2: initialize a table yµ

x to 0
3: for � = 1 to k do
4: for all possible µ such that g�(µ) holds do
5: compute x = π(f�(µ))
6: increment yµ

x by a� = Nx
Nx−q�

(
p�− 1

Nν

)
7: end for
8: end for
9: initialize the Yx counters to 0

10: for m = 1 to n do
11: for all x do
12: compute µ = h(zm, IVm)
13: increment Yx by yµ

x

14: end for
15: end for
16: output x = argmaxx Yx

Now, the time complexity is Nµk +Nxn and the memory complexity is NµNx. So, let say
that the complexity is

c = min(nk,Nµk + Nxn) (3)

The two complexity curves cross for n = Nµ
k

k−Nx
≈ Nµ when Nx " k.

For I = (2,3,13,14), we have Nν = 232, Nµ = 248, and Nx = 27. The complexities
with and without using conditional biases are summarized in Table 3. As we can see,
when ignoring the conditional biases, we need about 30% more packets but the com-
plexity is much lower because k is smaller. So, conditional biases do not seem useful in
this case.

Statistical Attack on RC4 355

3.2 Second Attack

Let I0 = {0,1,2}, I = (15,2,3,14), and x = low1(TK[1]) be the last weak bit. Given IV
and ν = (K̄[2], K̄[3], K̄[14], K̄[15]), we deduce x = π(ν) by

π(ν) = high1((K̄[3]− K̄[2])⊕ (K̄[15]− K̄[14]))

So, we apply the first attack with this I and Nx = 2. Since 15 ∈ I we have more biases.
We have r, n, and c from Eq. (1), Eq. (2) and Eq. (3).

For I = (15,2,3,14), we have Nν = 232, Nµ = 248, and Nx = 2. The complexities are
summarized in Table 3. Again, conditional biases are not very useful. We can also see
that this choice of I leads to a much better attack than the one from Section 3.1 in terms
of n but the complexity is slightly higher. This is due to a larger k.

3.3 Merging Attacks

Given two attacks with sets I1 resp. I2 for recovering independent x1 resp. x2 leading to
characteristics Y 1

x resp. Y 2
x , c1 resp. c2, n1 resp. n2, λ1 resp. λ2, one problem is to merge

the sorted lists of x1 and x2. One can follow the approach by Junod-Vaudenay [15]. We
sort pairs following their likelihood ratio, which is obtained by multiplying the likeli-
hood ratio of both terms. We assume that all Y i

x are independent, normally distributed
with variance V (Y i), and expected value either E(Y i

bad) or E(Y i
bad)+ ΔE(Y i). Given xi,

the ratio for xi being the correct value based on the observation Y i
xi is

Pr[Y i
xi |xi good]

Pr[Y i
xi |xi wrong]

=

1√
2πV (Yi)

e
−

(
Y i

xi−E(Yi
bad)−ΔE(Y i)

)2

2V(Y i)

1√
2πV(Y i)

e
−

(
Y i

xi−E(Y i
bad)

)2

2V(Y i)

= e
Y i

xi
ΔE(Y i)
V (Yi)

+ ΔE(Y i)
2V(Y i)

(ΔE(Yi)−E(Y i
bad))

So, when multiplying some terms of this form for pairs of values, sorting them by
decreasing product is equivalent to sorting them by decreasing value of

Yx1,x2 = Y 1
x1

ΔE(Y 1)
V (Y 1)

+Y 2
x2

ΔE(Y 2)
V (Y 2)

With same assumptions as in [15], we are back in the situation where Yx1,x2 is normally
distributed. We have

ΔE(Y) = V (Y) =
(ΔE(Y 1))2

V (Y 1)
+

(ΔE(Y 2))2

V (Y 2)
= (λ1)2 +(λ2)2

So, λ =
√

(λ1)2 +(λ2)2, and the average number of wrong (x1,x2) pair with higher
score than the good one is r = (N1

x N2
x −1)ϕ(− λ√

2
). Overall, we can use

n =
λ2

Nx1

(
ε̄
(N

x1)
2 (1)
1− 1

N1
ν

)2

+ Nx2

(
ε̄
(N

x2)
2 (2)
1− 1

N2
ν

)2

356 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

and c = c1 +c2 by using Eq. (3) for c1 and c2. We can use these merging rules to merge
the two previous attacks. We obtain the results from Table 3.

Table 3 shows the complexity when merging the previous attacks to recover the 8
weak bits of TK. We compare it with the attack using a merged set I directly. As we can
see, merging attacks with small I’s is much better.

Table 3. Complexities of several attacks to recover log2 Nx bits from TK. We compare them when
including conditional biases and without. We provide the number of packets n, the running time

complexity c, the expected number r of better wrong values, as well as parameters k, ε = ε̄(Nx)
2 ,

λ, and Nν. Except when Nx = 2 for which it would not make any sense, we target r = 1
2 (that is,

the correct value has the higher score in half of the cases, roughly). We used I0 = {0,1,2}.

reference I n c r Nx k ε λ Nν Nµ cond. biases
1u Section 3.1 (2,3,13,14) 240.13 243.13 1

2 27 23.00 2−21.65 3.76 232 N8 without
1c Section 3.1 (2,3,13,14) 239.70 251.87 1

2 27 212.17 2−21.44 3.76 232 N10 with
2u Section 3.2 (15,2,3,14) 236.10 244.91 1

4 2 28.81 2−18.62 0.95 232 N20 without
2c Section 3.2 (15,2,3,14) 235.98 254.35 1

4 2 218.37 2−18.56 0.95 232 N22 with
3u merge 1u+2u 239.33 248.17 1

2 28 4.08 without
3c merge 1c+2c 239.05 257.43 1

2 28 4.08 with
4u (15,2,3,13,14) 247.67 258.81 1

2 28 211.14 2−25.81 4.08 240 N23 without
4c (15,2,3,13,14) 247.36 271.37 1

2 28 224.01 2−25.65 4.08 240 N25 with

We may think that we could get better results by using the entire vector Y instead of
Yx only to compute the likelihood ratio of x. By redoing the computations, we obtain

Pr[Y |xi good]
Pr[Y |xi wrong]

=
Pr[Y |xi good]

1
Ni

x−1 ∑x
=xi Pr[Y |x good]
=

Nx−1

∑x′
=x e
(Yx′−Yx)

ΔE(Y)
V(Y)

When x is good and x′ is bad, the exponential in the sum is of order e−λ. When x is bad
and x′ is good, it has order eλ. When both are bad, it has order e±

√
λ. So, we have to com-

pare one ratio of order eλ to others of order Nx−1
eλ+(Nx−2)e±

√
λ . We know that a wrong ratio

is higher than the good one with probability ϕ(−λ/
√

2). When multiplying the inde-
pendent likelihood ratios for x1 and x2, if we approximate ∑x′1
=x1 F(x′1)∑x′2
=x2 G(x′2)≈
∑(x′1,x

′
2)
=(x1,x2) F(x′1)G(x′2), we obtain a likelihood ratio of same form based on Yx1,x2 .

This validates the above rule of the thumb for sorting pairs following their Yx1,x2 score.

4 Attack on WEP

We apply the first attack with x = ν: we only want to recover key bytes which are the
same for all packets. This attack produces a ranking of possible x’s in a form of a list L
by decreasing order of likelihood.

Statistical Attack on RC4 357

We use the following attack:

1: compute the ranking L15 for I = (15) and I0 = {0,1,2}
2: for each k̄15 in L15 do
3: run recursive attack on input k̄15

4: end for
5: stop: attack failed
recursive attack with input (k̄15, k̄3, . . . , k̄i−1):
6: if i≤ imax then
7: compute the ranking Li for I = (i) and I0 = {0, . . . , i−1,15}
8: truncate Li to its first ρi terms
9: for each k̄i in Li do

10: run recursive attack on input (k̄15, k̄3, . . . , k̄i−1, k̄i)
11: end for
12: else
13: for each k̄imax+1, . . . , k̄14 do
14: test key (k̄3, . . . , k̄14, k̄15) and stop if correct
15: end for
16: end if

Let εi = ε̄(Nx)
2 (i|0, . . . , i−1,15) for i = 3, . . . , imax and ε15 = ε̄(Nx)

2 (15|0,1,2) be the ε
used by the attack on K̄[i]. Similarly, let Nx = Nν = N, and ri, ki, λi, ci be their parameters
following Eq. (1,2,3). Let Ri be the rank of the correct k̄i value in Li. We know that

E(Ri) = ri. We can easily see that V (Ri) = ri

(
1− ri

Nx−1

)
. By using the law of large

numbers, the probability that Ri is lower than ρi is ui = ϕ

(
ρi−ri√

ri(1− ri
Nx−1)

)
so the success

probability is ∏imax
i=3 ui and the complexity is

c = c15 + r15
(
c3 + ρ3

(
c4 + ρ4

(
· · ·cimax + ρimaxN14−imax · · ·

)))

To approximate the optimal choice of ρ’s, we set ρi = ri +α
√

ri

(
1− ri

Nx−1

)
for some

α. The success probability is ϕ(α)imax−2. We can adjust α = ϕ−1(2−
1

imax−2) so that this
becomes 50% and we obtain c in terms of n. Computation shows that figures are better
for imax = 14. For this, we have α≈ 1.588. We plotted log2 c in terms of n on Fig. 3.

Note that this computation assumes real values for the ρ’s. Since they must be integer,
the real complexity may be slightly higher. For instance, with n = 4000, the plotted
complexity is 224.02. With integral values, we can try with ρi = 5 for i = 3,5,6 and
ρi = 4 for i = 4,7,8, . . . ,14. We obtain c = 224.35 and a success rate of 51%.

Note that without the conditional biases, the same analysis with 4000 gives a com-
plexity of 266. So, these biases make a huge difference in this case.

358 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000 7000 8000

C
om

pl
ex

ity
lo

g 2
c

Number of Packets n

Complexity over the Number of Packets (Success Probability 50%)

Fig. 3. Logarithmic complexity in terms of data complexity for breaking WEP

5 Attack on WPA

5.1 Distinguishing WPA

The first attack can be turned into a distinguisher as follows. The expected value and
variance of the correct Yx are roughly E(Ybad)+ λ

√
V (Y) and V (Y). The random vari-

able Yx is larger than T = E(Ybad)+λ′
√

V (Y) with probability ϕ(λ−λ′). Now, if we re-
place the WPA packets by some random sequences, the counters all have expected value
E(Ybad) and variance approximately V (Y). The probability that a given counter exceeds
T is ϕ(−λ′). The probability that any counter exceeds this is lower than Nxϕ(−λ′). So,
the condition maxx Yx > T makes a distinguisher of same n and c as in the first attack,
and with advantage larger than ϕ(λ−λ′)−Nxϕ(−λ′). We find the optimal λ′= λ

2 + lnNx
λ .

So, Adv ≥ β with

β = ϕ
(

λ
2
− lnNx

λ

)
−Nxϕ

(
−λ

2
− lnNx

λ

)
(4)

We use the same values as before and target Adv ≥ 1
2 . We use Eq. (2) for n, Eq. (3)

for c, and Eq. (4) for a lower bound β of the advantage. The performances of the dis-
tinguishers are summarized on Table 4. Again, the attack based on I = (15,2,3,14) is
better in terms of number of packets but not in terms of complexity. It works using 238

packets and complexity 247. The one based on I = (2,3,13,14) works with 30% more
packets (240) with no conditional biases but with a much better complexity 243.

5.2 Temporary Key Recovery

The results from [27] lead to an “easy” attack on WPA: guess the 96-bit PPK and the
8 weak bits of TK within an average complexity of 2103 until it generates the correct

Statistical Attack on RC4 359

Table 4. Complexities of several distinguishers for WPA. We compare them when including
conditional biases and without. We provide the number of packets n, the running time complexity

c, the bound on the advantage β, as well as parameters k, ε = ε̄(Nx)
2 or ε2, λ, and Nν. We target

β = 1
2 . We used I0 = {0,1,2}.

I n c β Nx k ε λ Nν Nµ cond. biases
1u I = (2,3,13,14) 239.85 242.85 0.5 27 23.00 2−21.65 3.41 232 N8 without
1c I = (2,3,13,14) 239.42 251.59 0.5 27 212.17 2−21.44 3.41 232 N10 with
2u I = (15,2,3,14) 237.94 246.76 0.5 2 28.81 2−18.62 1.81 232 N20 without
2c I = (15,2,3,14) 237.82 256.19 0.5 2 218.37 2−18.56 1.81 232 N22 with

keystream. Then, guess the 96-bit PPK of another packet in the same segment (with the
weak bits already known). Then, apply the method of [27] to recover TK. We improve
this attack by recovering the weak bits of TK separately: we know from Table 3 that we
can recover the weak bits of TK by using 238 packets. After having recovered the weak
bits, we note that the 96-bit PPK is now enough to recalculate RC4KEY. So, we can do
an exhaustive search on PPK for a given packet until we find the correct one generating
the packet. This works with complexity 295 on average. We do it twice to recover the
PPK of two packets in the same segment. Given these two PPK sharing the same IV32,
we recover TK by using the method of [27]. Therefore, we can recover the temporary
key TK and decrypt all packets with complexity 296. The number of packets needed to
recover the weak bits is 238.

6 Conclusion

We deployed a framework to handle pools of biases for RC4 which can be used to break
WPA. In the case of the 8 weak bits of TK, we have shown a simple distinguisher and a
partial key recovery attack working with 238 packets and practical complexity. This can
be used to improve the attack by Moen-Raddum-Hole [27] to mount a full temporary
key recovery attack of complexity 296 using 238 packets. So far, this is the best temporal
key recovery attack against WPA. In a future work we plan to study further key recovery
attacks to recover more pieces of TK with complexity lower than 296.

We have shown that conditional biases are not very helpful for breaking WPA but
they really are against WEP. Indeed, we recover keys with a success rate 50% by using
4000 packets and a complexity of 226.

References

1. ANSI/IEEE standard 802.11i, Amendment 6 Wireless LAN Medium Access Control (MAC)
and Physical Layer (phy) Specifications, Draft 3. IEEE (2003)

2. IEEE Std 802.11, Standards for Local and Metropolitan Area Networks: Wireless Lan
Medium Access Control (MAC) and Physical Layer (PHY) Specifications (1999)

3. IEEE 802.1 WG. 802.1x: Standards for Local and Metropolitan Area Networks: Port-Based
Access Control. IEEE (2001)

360 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

4. Biham, E., Carmeli, Y.: Efficient Reconstruction of RC4 Keys from Internal States. In: Ny-
berg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 270–288. Springer, Heidelberg (2008)

5. Bittau, A.: Additional Weak IV Classes for the FMS Attack (2003),
http://www.netstumbler.org/showthread.php?postid=89036#pos%t89036

6. Chaabouni, R.: Breaking WEP Faster with Statistical Analysis. Semester project. In:
EPFL/LASEC (2006)

7. Ferguson, N.: Michael: an Improved MIC for 802.11 WEP. IEEE doc. 802.11-2/020r0 (2002)
8. Fluhrer, S.R., McGrew, D.A.: Statistical Analysis of the Alleged RC4 Keystream Generator.

In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 19–30. Springer, Heidelberg (2001)
9. Fluhrer, S.R., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm of RC4.

In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 1–24. Springer,
Heidelberg (2001)

10. Golic, J.D.: Iterative Probabilistic Cryptanalysis of RC4 Keystream Generator. In: Clark,
A., Boyd, C., Dawson, E.P. (eds.) ACISP 2000. LNCS, vol. 1841, pp. 220–223. Springer,
Heidelberg (2000)

11. Golić, J.D.: Linear Statistical Weakness of Alleged RC4 Keystream Generator. In: Fumy, W.
(ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 226–238. Springer, Heidelberg (1997)

12. Housley, R., Whiting, D., Ferguson, N.: Alternate Temporal Key Hash. IEEE doc. 802.11-
02/282r2 (2002)

13. Hulton, D.: Practical Exploitation of RC4 Weaknesses in WEP Environments (2001),
http://www.dachb0den.com/projects/bsd-airtools/wepexp.txt

14. Jenkins, R.: ISAAC and RC4 (1996), http://burtleburtle.net/bob/rand/isaac.html
15. Junod, P., Vaudenay, S.: Optimal Key Ranking Procedures in a Statistical Cryptanalysis. In:

Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 235–246. Springer, Heidelberg (2003)
16. Klein, A.: Attacks on the RC4 Stream Cipher. Design, Codes, and Cryptography 48, 269–286

(2008)
17. Knudsen, L.R., Meier, W., Preneel, B., Rijmen, V., Verdoolaege, S.: Analysis Methods for

(Alleged) RC4. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 327–
341. Springer, Heidelberg (1998)

18. Korek: Next Generation of WEP Attacks? (2004),
http://www.netstumbler.org/showpost.php?p=93942&postcount=%35

19. Korek: Need Security Pointers (2004),
http://www.netstumbler.org/showthread.php?postid=89036#pos%t89036

20. Maitra, S., Paul, G.: New Form of Permutation Bias and Secret Key Leakage in Keystream
Bytes of RC4. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 253–269. Springer,
Heidelberg (2008)

21. Mantin, I.: Analysis of the Stream Cipher RC4 (2001),
http://www.wisdom.weizmann.ac.il/˜itsik/RC4/rc4.html

22. Mantin, I.: Predicting and Distinguishing Attacks on RC4 Keystream Generator. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer, Heidelberg (2005)

23. Mantin, I., Shamir, A.: A Practical Attack on Broadcast RC4. In: Matsui, M. (ed.) FSE 2001.
LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

24. Maximov, A.: Two Linear Distinguishing Attacks on VMPC and RC4A and Weakness.
In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 342–358. Springer,
Heidelberg (2005)

25. Maximov, A., Khovratovich, D.: New State Recovery Attack on RC4. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008)

26. Mironov, I.: Not So Random Shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

27. Moen, V., Raddum, H., Hole, K.J.: Weaknesses in the Temporal Key Hash of WPA. Mobile
Computing and Communications Review 8, 76–83 (2004)

http://www.netstumbler.org/showthread.php?postid=89036#pos%t89036
http://www.dachb0den.com/projects/bsd-airtools/wepexp.txt
http://burtleburtle.net/bob/rand/isaac.html
http://www.netstumbler.org/showpost.php?p=93942&postcount=%35
http://www.netstumbler.org/showthread.php?postid=89036#pos%t89036
http://www.wisdom.weizmann.ac.il/~itsik/RC4/rc4.html

Statistical Attack on RC4 361

28. Paul, G., Maitra, S.: Permutation After RC4 Key Scheduling Reveals the Secret. In: Adams,
C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 360–377. Springer, Heidel-
berg (2007)

29. Paul, S., Preneel, B.: A New Weakness in the RC4 Keystream Generator and an Approach.
In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg
(2004)

30. Paul, G., Rathi, S., Maitra, S.: On Non-Negligible Bias of the First Output Byte of RC4
towards the First Three Bytes of the Secret Key. Design, Codes, and Cryptography 49, 123–
134 (2008)

31. Postel, J., Reynolds, J.: A Standard for the Transmission of IP Datagrams over IEEE 802
Networks. RFC 1042 (1988)

32. Roos, A.: A Class of Weak Keys in RC4 Stream Cipher (sci.crypt) (1995), http://groups.
google.com/group/sci.crypt.research/msg/078a%a9249d76eacc?dmode=source

33. Sepehrdad, P., Vaudenay, S., Vuagnoux, M.: Discovery and Exploitation of New Biases in
RC4. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp.
74–91. Springer, Heidelberg (2011)

34. Tews, E., Beck, M.: Practical Attacks Against WEP and WPA. In: Proceedings of the Second
ACM Conference on Wireless Network Security WISEC 2009, Zurich, Switzerland, pp. 79–
86. ACM, New York (2009)

35. Tews, E., Weinmann, R.-P., Pyshkin, A.: Breaking 104 Bit WEP in Less Than 60 Seconds. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 188–202. Springer,
Heidelberg (2008)

36. Tomasevic, V., Bojanic, S., Nieto-Taladriz, O.: Finding an Internal State of RC4 Stream
Cipher. Information Sciences: an International Journal 177, 1715–1727 (2007)

37. Vaudenay, S., Vuagnoux, M.: Passive–only key recovery attacks on RC4. In: Adams, C.,
Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 344–359. Springer, Heidelberg
(2007)

38. Wagner, D.: Weak Keys in RC4 (sci.crypt) (1995),
http://www.cs.berkeley.edu/˜daw/my-posts/my-rc4-weak-keys

http://groups.google.com/group/sci.crypt.research/msg/078a%a9249d76eacc?dmode=source
http://groups.google.com/group/sci.crypt.research/msg/078a%a9249d76eacc?dmode=source
http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys

362 P. Sepehrdad, S. Vaudenay, and M. Vuagnoux

A Computation of Biases

Biases were computed using the following formulas:

PKI(i,t) = PJPC(i, t)+
1−PJ

N−1
(1−PC(i,t))

Table 5. Conditional Biases for RC4

If ḡi holds then K̄[i] = f̄i with probability pi. All biases except SVV db are from [18]. SVV db
is from [33].

row reference f̄ ḡ p
i A u15 2−σi z2 = 0, St [i] = 0 Kor0

1
i A s13 S−1

t [0]−σi St [1] = i, z1 = i Kor1
4

i A u13 1 S−1
t [z1]−σi St [1] = i, z1 = 1− i Kor1

2
i A u13 2 1−σi St [i] = i, St [1] = 0, z1 = i Kor0

2
i A u13 3 1−σi St [i] = i, St [1] = 1− i, z1 = St [1] Kor0

2
i A s5 1 S−1

t [z1]−σi St [1] < i, St [1] + St [St [1]] = i, z1
= St [1],
z1
= St [St [1]], St [1]
= 1

Kor1
3

i A s5 2 S−1
t [St [1]−St [2]]−σi St [1] > i, St [2] + St [1] = i, St [1] = z2,

S−1
t [St [1]−St [2]]
= 1, S−1

t [St [1]−St [2]]
= 2
Kor3

3

i A s5 3 S−1
t [2−St [2]]−σi St [1] > i, St [2] + St [1] = i, z2 = 2− St [2],

S−1
t [z2]
= 1,S−1

t [z2]
= 2
Kor2

3

i A u5 1 S−1
t [S−1

t [z1]− i]−σi St [1] = i, z1
= i, S−1
t [z1] < i, S−1

t [S−1
t [z1]−

i]
= 1, z1
= 1− i
Kor2

3

i A u5 2 1−σi S−1
t [z1] = 2, St [i] = 1 Kor0

2
i A u5 3 1−σi St [1] > −i, St [i] = i, St [1] = S−1

t [z1]− i,
S−1

t [z1]
= 1
Kor0

3

i > 4 A u5 4 S−1
t [z2]−σi St [1] = 2, St [4] + 2 = i, S−1

t [z2]
= 1,
S−1

t [z2]
= 4
Kor1

3

i A s3 S−1
t [z2]−σi St [1]
= 2, St [2]
= 0, St [2]+St [1]< i, St [2]+

St [St [2]+St [1]] = i, S−1
t [z2]
= 1, S−1

t [z2]
=
2, S−1

t [z2]
= St [1]+St [2]

Kor1
5

4 A 4 s13 S−1
t [0]−σ4 St [1] = 2, z2 = 0, St [4]
= 0 Kor1

2
4 A 4 u5 1 S−1

t [N−2]−σ4 St [1] = 2, z2
= 0, S−1
t [z2] = 0 Kor1

3
4 A 4 u5 2 S−1

t [N−1]−σ4 St [1] = 2, z2
= 0, S−1
t [z2] = 2, K[0]+K[1]+

S0[1] = 2
Kor1

3

i A neg 1a 1−σi St [2] = 0, St [1] = 2, z1 = 2 0
i A neg 1b 2−σi St [2] = 0, St [1] = 2, z1 = 2 0
i A neg 2 2−σi St [2] = 0, St [1]
= 2, z2 = 0 0
i A neg 3a 1−σi St [1] = 1, z1 = St [2] 0
i A neg 3b 2−σi St [1] = 1, z1 = St [2] 0
i A neg 4a −σi St [1] = 0, St [0] = 1, z1 = 1 0
i A neg 4b 1−σi St [1] = 0, St [0] = 1, z1 = 1 0

16 SVV db S−1
t [0]−σi zi =−16 PSVV10(i,t)

Statistical Attack on RC4 363

PMP(i,t) = PD(i)PB(i, t)P0

(
1− 1

N

)
+

1
N

P008(i,t) = P8PC(i,t)+
1−P8

N−1
(1−PC(i, t))

P009(i,t) = P9PC(i,t)+
1−P9

N−1
(1−PC(i, t))

Korb
c(i,t) = rc(t)Pb

E(i, t)+
1− rc(t)

N−1

(
1−Pb

E(i,t)
)

PSVV10(i,t) = PdbPC(i,t)+
1−Pdb

N−1
(1−PC(i,t))

where PJ = 2
N , P0 =

(
N−1

N

)N−2
, P8 = 1.05

N , P9 = 1.0338
N , Pdb = 0.038488,

Pb
A(i,t) =

(
N−b

N

)i−t−1
r1(t) =

(
N−1

N

)N−t

PB(i,t) = ∏i−t−1
k=1

N−k
N r2(t) =

(
N−2

N

)N−t−1

PC(i,t) = P1
A(i,t)PB(i,t)P0

(
1− 1

N

)
+ 1

N r3(t) =
(

N−2
N

)(
N−3

N

)N−t−1

PD(i) = (N−i−1)(N−i)
N3

(
N−2

N

)N−3+i (N−1
N

)3
r4(t) =

(
N−1

N

)(
N−2

N

)N−t−1

Pb
E(i,t) = Pb

A(i,t)PB(i,t)
(
1− 1

N

)
+ 1

N r5(t) =
(

N−4
N

)N−t

These formulas are new. Biases were originally provided with probabilities for t =−1.
Except for the Korek biases, we have checked that the probabilities match with an error
less than 4%. The accuracy of formulas for Korek biases are still unclear but orders
of magnitude are correct. They were inspired by [6]. Details on how we have got all
formulas are omitted due to lack of space.

Improved Generic Algorithms for Hard
Knapsacks

Anja Becker�,1, Jean-Sébastien Coron3, and Antoine Joux1,2

1 University of Versailles Saint-Quentin-en-Yvelines
2 DGA

3 University of Luxembourg

Abstract. At Eurocrypt 2010, Howgrave-Graham and Joux described
an algorithm for solving hard knapsacks of density close to 1 in time
Õ(20.337n) and memory Õ(20.256n), thereby improving a 30-year old algo-
rithm by Shamir and Schroeppel. In this paper we extend the Howgrave-
Graham–Joux technique to get an algorithm with running time down to
Õ(20.291n). An implementation shows the practicability of the technique.
Another challenge is to reduce the memory requirement. We describe a
constant memory algorithm based on cycle finding with running time
Õ(20.72n); we also show a time-memory tradeoff.

1 Introduction

The Knapsack Problem. Given a list of n positive integers (a1, a2, . . . , an)
and another positive integer S such that:

S =
n∑
i=1

εi · ai , (1)

where εi ∈ {0, 1}, the knapsack problem consists in recovering the coefficients εi.
The vector ε = (ε1, .., εn) is called the solution of the knapsack problem. It is well
known that the decisional version of the knapsack problem is NP-complete [4].

The first cryptosystem based on the knapsack problem was introduced by
Merkle and Hellmann [10] in 1978, and subsequently broken by Shamir [14]
using lattice reduction. For random knapsack problems the Lagarias-Odlyzko
attack [7] can solve knapsacks with density d < 0.64, given an oracle solving the
shortest vector problem (SVP) in lattices; the density of a knapsack is defined
as:

d := n
log2 maxi ai

.

The Lagarias-Odlyzko attack was further improved by Coster et al. [3] to knap-
sack densities up to d < 0.94. Since solving SVP is known to be NP-hard [1], in
practice, the shortest vector oracle is replaced by a lattice reduction algorithm
such as LLL [8] or BKZ [12].
� The first author was mainly funded by a scholarship of the Gottlieb Daimler- und

Karl Benz-Stiftung.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 364–385, 2011.
c© International Association for Cryptologic Research 2011

Improved Generic Algorithms for Hard Knapsacks 365

The Schroeppel-Shamir Algorithm. For a knapsack of density close to 1
lattice reduction algorithms do not seem to apply. Until 2009, the best algo-
rithm for such hard knapsacks was due to Schroeppel and Shamir [13] with
time complexity Õ(2n/2) and memory Õ(2n/4). This is the same running time
as the straightforward meet-in-the-middle algorithm but with a lower memory
requirement of Õ(2n/4) instead of Õ(2n/2). A drawback is that the Schroeppel-
Shamir algorithm requires sophisticated data structure such as balanced trees
which can be difficult to implement in practice. A simpler but heuristic vari-
ant of Schroeppel-Shamir was described in [5] with the same time and memory
complexity; we recall this variant in Sect. 2.1. We also recall how to solve unbal-
anced knapsack problems, where the Hamming weight of the coefficient vector
ε = (ε1, . . . , εn) can be much smaller than n.

The Howgrave-Graham–Joux Algorithm. At Eurocrypt 2010, Howgrave-
Graham and Joux introduced a more efficient algorithm [5] for hard knapsacks.
While in Schroeppel-Shamir’s algorithm the knapsack instance is divided into
two halves with no overlap, the new algorithm allows for overlaps, which in-
duces more degrees of freedom. This enables to reduce the running time down to
Õ(20.337n) while keeping the memory requirement reasonably low at Õ(20.256n).
We recall the Howgrave-Graham–Joux algorithm in Sect. 2.2.

Our Contributions. The main contribution of our paper is to extend the
Howgrave-Graham–Joux technique to get a new algorithm with running time
down to Õ(20.291n). The knapsack instance is divided in two halves with possible
overlap, as in the Howgrave-Graham–Joux algorithm, but the set of possible
coefficients is extended from {0, 1} to {−1, 0, +1}. This means that a coefficient
ε
(1)
i = −1 in the first half can be compensated with a coefficient ε

(2)
i = +1

in the second half, the resulting coefficient εi = 0 of the golden solution being
εi = ε

(1)
i + ε

(2)
i = (−1) + (+1) = 0. Adding (a few) −1 coefficients brings an

additional degree of freedom that enables to again decrease the running time; we
describe our new algorithm in Sect. 3. We show the practicality of the technique
with an implementation.

Another challenge in solving knapsack problems is to reduce the memory
requirement. We first describe a simple constant memory algorithm based on
cycle finding with running time Õ(20.75n). We show how to improve this algo-
rithm down to Õ(20.72n) running time still requiring constant memory, by using
the Howgrave-Graham–Joux technique. Eventually, we present a time-memory
tradeoff for the Schroeppel-Shamir algorithm downto Õ(2n/16) memory.

2 Existing Algorithms

2.1 The Schroeppel-Shamir Algorithm

We present the Schroeppel-Shamir algorithm [13] under the simpler heuristic
variant described in [5]. We consider a knapsack as in (1) and for simplicity we
assume that n is a multiple of 4. We write the knapsack sum S as:

366 A. Becker, J.-S. Coron, and A. Joux

S = σ1 + σ2 + σ3 + σ4

where each σi is a knapsack of n/4 elements, that is,

σ1 =
n/4∑
i=1

εiai, σ2 =
n/2∑

i=n/4+1

εiai, σ3 =
3n/4∑

i=n/2+1

εiai, σ4 =
n∑

i=3n/4+1

εiai . (2)

We guess a middle value σM of n/4 bits which leads to the equations:

σ1 + σ2 = σM mod 2n/4 and σ3 + σ4 = S − σM mod 2n/4 .

We solve the two equations separately and merge the result. More precisely, we
first construct a sorted list {σ2} of all 2n/4 possible values for σ2. Then for each
possible σ1, we use the sorted list {σ2} to find all σ2 such that σ1 + σ2 = σM
mod 2n/4. This gives a list {σ12} of knapsack values σ12 = σ1 + σ2 such that
σ12 = σM mod 2n/4; the size of the list {σ12} is heuristically Õ(2n/4) and it can
be built in time Õ(2n/4). We build the list {σ34} of knapsack values σ34 = σ3+σ4
such that σ34 = S − σM mod 2n/4 in an analogue way. Eventually, we find a
collision between the two lists {σ12} and {S − σ34} of two elements σ12 and
σ34, respectively. For the right guess of σM we have found elements such that
σ12 + σ34 = S, thereby solving the knapsack problem.

The time required to build the two lists {σ12} and {σ34} is Õ(2n/4). Then by
sorting those two lists the collision can be found in time Õ(2n/4). Since we have
to guess σM which is a n/4-bit value, the total running time is Õ(2n/2) and the
required memory is Õ(2n/4).

Unbalanced Case. We say that a knapsack is unbalanced when the Hamming
weight of the coefficient vector ε = (ε1, . . . , εn) is known and equal to � where
� significantly differs from n/2. As shown in [5], one can adapt the previous
algorithm as follows: instead of taking all possible knapsacks of n/4 elements
we only consider knapsacks of Hamming weight exactly �/4 (assuming that �
is divisible by 4). Note that if the correct solution is not perfectly balanced
between the four quarters, then such solution will be missed. This problem is
easily solved by permuting the order of the elements in the knapsacks until the
Hamming weight of each quarter is equal to �/4. As explained in [5], the expected
number of required repetitions is polynomial in n. Thus, this change does not
modify the value of the exponent in the running time.

For � = τ · n the size of the lists {σ2} and {σ4} becomes
(n/4
�/4

)
≈ 2h(τ)n/4

where:
h(x) := −x · log2 x− (1− x) · log2(1− x) .

Again, we can guess a middle value σM modulo 2h(τ)n/4; as previously the two
lists {σ12} and {σ34} can be built in time Õ(2h(τ)n/4) and a collision is found
in time Õ(2h(τ)n/4). Therefore, the total time complexity is Õ(2h(τ)n/2) and the
memory complexity is Õ(2h(τ)n/4).

Improved Generic Algorithms for Hard Knapsacks 367

2.2 The Howgrave-Graham–Joux Algorithm

We consider the knapsack (1). For simplicity we assume again that n is a multiple
of four and additionally that the Hamming weight of the coefficients εi is equal
to n/2. To find a solution x ∈ {0, 1}n, the basic idea of Howgrave-Graham and
Joux [5] is to split the knapsack into two subknapsacks of size n and of Hamming
weight n/4. In other words, we write S as the sum σ1 + σ2 of two subknapsacks
with Hamming weight n/4 chosen among the n knapsack elements,

n∑
i=1

aiyi︸ ︷︷ ︸
σ1

+
n∑
i=1

aizi︸ ︷︷ ︸
σ2

= S (3)

where yi, zi ∈ {0, 1}. Clearly, the combination of two solutions y ∈ {0, 1}n and
z ∈ {0, 1}n gives a solution to the original knapsack when the two solutions
do not overlap. In other words, we represent any xi by a binary tuple (yi, zi),
replacing 0 by (0, 0) and 1 by (1, 0) or (0, 1), respectively. As a consequence, a
single solution of the original knapsack problem decomposes into many different
representations. This is used to reduce the overall running time as described in
the following. We choose a modulus M , a random element R ∈ ZM and we only
consider decompositions such that:

σ1 =
n∑
i=1

aiyi ≡ R (mod M) and σ2 =
n∑
i=1

aizi ≡ S −R (mod M) .

Since both σ1 and σ2 are knapsacks of Hamming weight n/4 over n elements,
the expected number of solutions to each of these two modular subknapsacks is

L =

(
n
n/4

)
M

.

Assuming that the lists of solutions of the two subknapsacks can be obtained
very efficiently (in time Õ(L)), it remains to paste the partial solutions together
to obtain a solution to the original knapsack. We therefore search a collision
between the values σ1 and S−σ2, for all y and z in the two lists of solutions. Since
the expected number of such collisions is small, this can be done in Õ(L). To
minimize the overall running time, M is chosen to be as large as possible. More
precisely, one chooses M as a number close to the number of decompositions
of the original solution into two solutions of the two subknapsacks, i.e. M ≈
2n/2. Under these assumptions, the running time would be reduced down to
Õ(2h(1/4)n/2n/2) = Õ(20.3113).

However, there are several technical difficulties with this approach. First, there
is an exponentially small number of bad weights (a1, .., an) where the algorithm
fails. Second, the assumption that the list of solutions of each subknapsack can
be obtained in time Õ(L) is quite strong and difficult to achieve. [5] describes a
heuristic algorithm, supported by an implementation, and claims that it achieves

368 A. Becker, J.-S. Coron, and A. Joux

the Õ(20.3113n) running time. However, May and Meurer recently discovered a
mistake in the analysis of this algorithm [9]; they showed that the asymptotic
running time of the Howgrave-Graham–Joux algorithm is actually Õ(20.337n);
see [2] for more details.

3 New Algorithm with Better Time Complexity

3.1 Theoretical Improvement

Our basic idea is to enhance the algorithm of [5] by allowing more representa-
tions of the solution of the initial knapsack. Instead of decomposing the original
solution into two binary coefficient vectors of weight n/4, we consider decompo-
sitions that contain 0s, 1s and -1s. More precisely, we choose a parameter α and
search for decompositions containing (1/4 + α)n 1s and αn -1s. Put differently,
we split the 1s of the original solution into pairs (0, 1) or (1, 0) as before and the
0s into pairs (0, 0), (1,−1) or (−1, 1). The number of such decompositions is

ND =
(

n/2
n/4

)(
n/2

αn, αn, (1/2− 2α)n

)
.

As in Sect. 2.2, we choose a modulus M ≈ ND, a random value R modulo M
and search for solutions of the two subknapsacks

σ1 =
n∑
i=1

aiyi ≡ R (mod M) and σ2 =
n∑
i=1

aizi ≡ S −R (mod M) ,

where y and z contain (1/4 + α)n 1s and αn -1s each. The expected number of
solutions to each of these new modular subknapsacks is

L =

(
n

(1/4+α)n,αn,(3/4−2α)n

)
M

.

Using: (
n

xn, yn, (1− x− y)n

)
= Õ(2g(x,y)n)

where:

g(x, y) := −x log2 x− y log2 y − (1− x− y) log2(1 − x− y)

we obtain:

log2 L ≈ n ·
(

g(1/4 + α, α)− 1
2
− g(2α, 2α)

2

)
.

Assuming that creating the lists and searching for collisions can be done in time
Õ(L) and minimizing on α, we obtain a time complexity Õ(L) = Õ(20.151n) for
α ≈ 0.103.

This analysis shows that adding more representations of the original solution
has the potential to give better algorithms. However, there are many obstacles to

Improved Generic Algorithms for Hard Knapsacks 369

achieve such a good algorithm. A first obstacle is that the size of the modulus M
should never be larger than the size of the knapsack elements. Indeed, we want
the knapsack after reduction modulo M to behave like a random knapsack, which
is not the case if M is larger than the original knapsack elements. Thus, we want
to ensure M < 2n. Optimizing for α under this condition, we get α = 0.05677
and L ≈ 20.173n.

3.2 The Basic Building Block

Before describing our algorithm, we recall a classical basic building block that
we extensively use. This building block performs the following task: given two
lists of numbers La and Lb of respective sizes |La| and |Lb|, together with two
integers M and R, the algorithm computes the list LR such that:

LR = {x + y | x ∈ La, y ∈ Lb s.t. x + y ≡ R (mod M)} .

To solve this problem, we use a classical algorithm [16] whose description is given
in pseudo-code by Algorithm 1.

Algorithm 1. Compute list LR
Sort the lists La and Lb (by increasing order of the values modulo M);
Let Target← R;
Let i← 0 and j ← |Lb| − 1;
while i < |La| and j ≥ 0 do

Let Sum← (La[i] (mod M)) + (Lb[j] (mod M));
if Sum < Target then Increment i;
if Sum > Target then Decrement j;
if Sum = Target then

Let i0, i1 ← i;
while i1 < |La| and La[i1] ≡ La[i0] (mod M) do Increment i1;
Let j0, j1 ← j;
while j1 ≥ 0 and Lb[j1] ≡ Lb[j0] (mod M) do Decrement j1;
for i← i0 to i1 − 1 do

for j ← j1 + 1 to j0 do Append La[i] + Lb[j] to LR

end
Let i← i1 and j ← j1;

end

end
Let Target← R + M ;
Let i← 0 and j ← |Lb| − 1;
Repeat the above loop with the new target;

The complexity of Algorithm 1 is Õ(max(|La|, |Lb|, |LR|)). Moreover, assum-
ing that the values of the initial lists modulo M are randomly distributed, the
expected size of LR is |La| · |Lb|/M . However, this cannot be guaranteed in
general.

370 A. Becker, J.-S. Coron, and A. Joux

Using a slight variation of Algorithm 1, it is also possible given La and Lb
together with a target integer R to construct the set:

LR = {x + y | x ∈ La, y ∈ Lb s.t. x + y = R} .

The only differences are that we sort the lists by value (not by modular values)
and then run the loop with a single target value R (instead of 2).

3.3 Devising a Concrete Algorithm

In order to achieve a concrete algorithm along the lines of the theoretical analysis
from Sect. 3.1, we must be able to solve the subknapsacks that arise after de-
composing the original knapsack problem in a reasonably efficient manner. The
difficulty here is that a direct use of an adapted Schroeppel-Shamir algorithm is
too costly.

Instead, we use the idea of decomposing a knapsack into two subknapsacks
several times. More precisely, we introduce three levels of decomposition; see
Fig. 1 for an illustration. The first decomposition follows the method described in
Sect. 3.1, with a different (smaller) choice for the value α denoting the proportion
of -1s added on each side. At the second or middle level, we decompose each
subknapsack from the first level into two. We also add some new -1s in the
decompositions. The number of additional -1s for each of the four subknapsacks
at the middle level is controlled by a new parameter β. In the last level, we
finally decompose into a total of eight different subknapsacks. At this level, we
use a parameter γ to denote the proportion of extra -1s in the subknapsacks.

σ
(1)
ω σ

(2)
ω σ

(3)
ω σ

(4)
ω σ

(5)
ω σ

(6)
ω σ

(7)
ω σ

(8)
ω

σ
(1)
ω σ

(2)
ω σ

(3)
ω σ

(4)
ω σ

(5)
ω σ

(6)
ω σ

(7)
ω σ

(8)
ω+ + + + + + + = S

σ
(1)
κ σ

(2)
κ σ

(3)
κ σ

(4)
κ

σ
(1)
ν σ

(2)
ν

Golden solution ε
corresponding to sum σε

L(3)
κ

L(2)
ν

≡Mν R
(1)
ν

≡Mκ R
(1)
κ + R

(2)
κ

≡Mω R
(1)
ω + R

(2)
ω + R

(3)
ω + R

(4)
ω

≡Mκ R
(1)
κ

≡Mω R
(1)
ω + R

(2)
ω

γ

β

α

Fig. 1. Iterative decomposition in three steps. σ
(j)
χ : partial sum, R

(j)
χ : target value,

Mχ : modulus, α, β and γ : proportion of additional −1s.

Improved Generic Algorithms for Hard Knapsacks 371

Notation. We use a different Greek letter (ε, κ, ω or ν) to denote the coeffi-
cient vectors of each subknapsack. In the original knapsack, we carry on using
the letter ε. At the first level of decomposition, we now use ν(1) and ν(2) for
the coefficient vectors of the two subknapsacks. At the middle level, we choose
the notation κ(1) to κ(4). At the bottom level, we use the letters ω(1) to ω(8).
We then let Nχ(x) denote the number of occurrences of x ∈ {−1, 0, 1} in the
coefficient vector χ. For a knapsack of n elements, we have:

Nε(1) = n/2, Nε(−1) = 0,
Nν(1) ≈ (1/4 + α)n, Nν(−1) ≈ αn,
Nκ(1) ≈ (1/8 + α/2 + β)n, Nκ(−1) ≈ (α/2 + β)n,
Nω(1) ≈ (1/16 + α/4 + β/2 + γ)n, Nω(−1) ≈ (α/4 + β/2 + γ)n .

We always have Nχ(0) = n−Nχ(1)−Nχ(−1). Since all these numbers need to
be rounded to integers for a concrete knapsack instance, we write ≈ instead of
= above. For each of the coefficient vectors χ(j) we introduce the corresponding
partial sum:

σ(j)
χ =

n∑
i=1

χ
(j)
i ai .

To control the size of the lists of solutions that arise at each level of decompo-
sition, we introduce a modulus and target values for each of the subknapsacks.
We denote the modulus corresponding to the bottom level by Mω, we introduce
7 random values R

(j)
ω (for 1 ≤ j ≤ 7) and let R

(8)
ω = S −

∑7
j=1 R

(j)
ω . We solve

the eight modular subknapsacks:

σ(j)
ω ≡ R(j)

ω (mod Mω) for 1 ≤ j ≤ 8 .

We denote by L
(j)
ω , the list of solutions of each of these subknapsacks.

Basic Principle and Modular Constraints. To build solutions at the middle
level κ, we consider sums of two partial solutions from two neighboring lists
L

(2j−1)
ω and L

(2j)
ω containing solutions of the last level. By construction, we see

that:
σ(j)
κ = σ(2j−1)

ω + σ(2j)
ω ≡ R(2j−1)

ω + R(2j)
ω (mod Mω)

which means that all these partial sums already have some fixed value modulo
Mω. To prune the size of the lists of solutions at this level, we add an extra
constraint modulo Mκ (chosen coprime to Mω). Thus, we introduce three random
values R

(j)
κ (for 1 ≤ j ≤ 3) and let R

(4)
κ = S −

∑3
j=1 R

(j)
κ . The new lists of

solutions are denoted by L
(j)
κ .

For the first level, we proceed similarly, adding partial solutions from L
(2j−1)
κ

and L
(2j)
κ . Clearly, the resulting sums already have fixed values modulo Mκ

and Mω. Again, we introduce a modulus Mν , a random value R
(1)
ν and we let

R
(2)
ν = S −R

(1)
ν to reduce the size of the lists.

372 A. Becker, J.-S. Coron, and A. Joux

Finally, the (presumably unique) solution of the original knapsack is found
by searching for a collision of the form σ

(1)
ν + σ

(2)
ν = S with σ

(1)
ν ∈ L

(1)
ν and

σ
(2)
ν ∈ L

(2)
ν . Figure 1 illustrates the technique.

To transform this informal description into a formal algorithm and to analyze
its complexity, we need to specify how the lists L

(j)
ω are constructed. We also

explain how to merge solutions from one level to solutions at the next level and
specify the choices of the moduli Mω, Mκ and Mν in the next paragraph.

Algorithmic Details. The eight lists L
(j)
ω can be constructed using a straight-

forward adaptation of the simple birthday paradox algorithm. It suffices to split
the n elements into two random subsets of size n/2 and to assume that the
1s and -1s are evenly1 distributed between the two halves. As with the case of
binary coefficient vectors, the probability of this event is the inverse of a poly-
nomial in n. Thus by repeating polynomially many times, we recover all of L

(j)
ω

with overwhelming probability. Assuming that the elements in L
(j)
ω are random

modulo Mω, the expected size of L
(j)
ω is:

Lω =
Lω
Mω

=

(
n

Nω(1),Nω(−1),Nω(0)

)
Mω

,

where Lω is the multinomial coefficient that counts the number of ways to
choose Nω(1) 1s, Nω(−1) -1s and Nω(0) 0s among n elements. Since the num-
ber of ways to choose Nω(1)/2 1s, Nω(−1)/2 -1s and Nω(0)/2 0s among n/2
elements is ≈ L1/2

ω for large n, the running time of the construction of each L
(j)
ω

is max(|L(j)
ω |,L1/2

ω).
At the middle level, the expected size of L

(j)
κ is upper bounded by

Lκ =
Lκ

Mω ·Mκ
=

(
n

Nκ(1),Nκ(−1),Nκ(0)

)
Mω ·Mκ

.

This is only an upper bound on the expected size since the definition of Lκ
ignores the fact that we discard solutions that cannot be decomposed with the
modular constraints of the lower level.

To construct these lists, we match values from L
(2j−1)
ω and L

(2j)
ω modulo Mκ

using Algorithm 1 from Sect. 3.2. We let K
(j)
κ denote the resulting list. We then

remove inconsistent solutions from K
(j)
κ in order to produce L

(j)
κ . We say that a

solution is inconsistent when the vector ω(2j−1) +ω(2j) contains 2s or -2s and/or
does not have the number of 1s, -1s and 0s specified by Nκ(1), Nκ(−1) and Nκ(0).
According to Sect. 3.2, the cost of this step is max(|L(2j−1)

ω |, |L(2j)
ω |, |K(j)

κ |).
Proceeding in the same way, we give an upper bound on the expected size of

L
(j)
ν by

Lν =
Lν

Mω ·Mκ ·Mν
=

(
n

Nν(1),Nν(−1),Nν(0)

)
Mω ·Mκ ·Mν

.

1 Or almost evenly when the number of 1s and/or -1s are odd.

Improved Generic Algorithms for Hard Knapsacks 373

Using the same notation as above, the cost to construct the two lists L
(j)
ν is

max(|L(2j−1)
κ |, |L(2j)

κ |, |K(j)
ν |).

Finally, the last step is to apply the integer variant of Algorithm 1 to the two
integer lists L

(1)
ν and L

(2)
ν , obtaining a list K0 of (possibly inconsistent) solutions.

The cost of this step is max(|L(1)
ν |, |L(2)

ν |, |K0|).
To estimate the size of K0, we count the number of expected solutions in a

modular merge modulo the multiple of Mω ·Mκ ·Mν closest to 2n. This overesti-
mates the size of K0 since it is slightly easier to find a knapsack solution modulo
this value than a knapsack solution over the integers. This yields an estimate
equal to:

L2
ν ·

Mν ·Mκ ·Mω

2n
.

If K0 contains at least one consistent solution, we obtain a solution of the initial
knapsack problem.

To conclude the description of the algorithm, we need to specify the values
of the moduli Mω, Mκ and Mν . The key idea at this point is to choose each
modulus to ensure that each solution appearing at a given level is represented
(on average) by a single decomposition at the previous level. Indeed, if we add
a larger modular constraint, we lose solutions from one level to the next and if
we choose a smaller constraints, we construct each solution many times which
increases the overall cost. Using binomials and multinomials to compute the
number of decompositions we obtain the following conditions for the values of
the moduli:

Mω ≈
(Nκ(1)
Nκ(1)/2

)
·
(Nκ(−1)
Nκ(−1)/2

)
·
(Nκ(0)
Nω(1)−Nκ(1)/2,Nω(−1)−Nκ(−1)/2, �

)
≈

2(1/8+α+2 β−2γ log2 γ−(7/8−α−2β−2γ) log2 (7/8−α−2 β−2γ)+(7/8−α−2β) log2 (7/8−α−2β) ,

Mκ ·Mω ≈
(
Nν(1)
Nν(1)/2

)
·
(
Nν(−1)
Nν(−1)/2

)
·
(

Nν(0)
Nκ(1)−Nν(1)/2,Nκ(−1)−Nν(−1)/2, �

)
≈

2(1/4+2α−2β log2 β−(3/4−2α−2β) log2(3/4−2α−2β)+(3/4−2α) log2(3/4−2α))n ,

Mν ·Mκ ·Mω ≈
(n/2
n/4

)
·
(n/2
Nν(−1),Nν(−1), �

)
≈ 2(1/2−2α log2 α−(1/2−2α) log2(1/2−2α)+(1/2) log2(1/2))n

≈ 2(−2α log2 α−(1/2−2α) log2(1/2−2α))n .

The
 symbol in the above multinomials denotes the number of remaining ele-
ments (corresponding to 0s) after specifying the number of 1s and -1s introduced
to decompose the set of 0s from the lower level.

The overall running time of the algorithm is the maximum of the individual
costs to run Algorithm 1 and the construction of the eight lists, which gives:

Õ(max(max
j
|L(j)
ω |, max

j
L1/2
ω , max

j
|K(j)

κ |, max
j
|L(j)
κ |, max

j
|K(j)

ν |, max
j
|L(j)
ν |, |K0|)) .

374 A. Becker, J.-S. Coron, and A. Joux

Assuming that each list has a size close to its expected value (see Sect. 3.5), the
expected running time is:

T (α, β, γ) = Õ(max(Lω,L1/2
ω ,

L2
ω

Mκ
, Lκ,

L2
κ

Mν
, Lν , L

2
ν ·

Mν ·Mκ ·Mω

2n
)) .

Since none of the Kχ lists need to be stored, the amount of memory required is:

Õ(max(Lω,L1/2
ω , Lκ, Lν)) .

Finally, there is an additional, very important, parameter to consider, the proba-
bility of success psucc taken over the possible random choices of the R

(j)
χ values.

This parameter is quite tricky to estimate because it varies depending on the
initial knapsack that we are solving. As an illustration, consider the knapsack
whose elements are all equal to 0. It is clear that unless all the random R

(j)
χ are

chosen equal to 0 then the algorithm cannot succeed. As a consequence, in this
case the probability of success is very low. There are many other bad knapsacks;
however, for a random knapsack, the expected probability of success is not too
small (see Sect. 3.4 for a discussion).

Numerical Results for the Complexity Analysis. Minimizing the expected
running time T (α, β, γ) results in:

α = 0.0267, β = 0.0168, γ = 0.0029 .

With these values, we obtain:

Lω ≈ 20.532n, Lω ≈ 20.291n, Lκ ≈ 20.279n, Lν ≈ 20.217n and
Mω ≈ 20.241n, Mκ ≈ 20.291n, Mν ≈ 20.267n .

As a consequence, we find that both the time and memory complexity are equal
to Õ(20.291n). We can also check that the product of the three moduli Mω ·Mκ ·
Mν is smaller than the size of the numbers in the initial knapsack, i.e. 2n.

However, we remark that γ is so small that for any achievable knapsack size
n, the number of −1s added at the last level is 0 in practice. Thus, in order
to improve the practical choices of the number of −1s at the higher levels, it is
better to adjust the minimization with the added constraint γ = 0. This leads
to the alternative values:

α = 0.0194, β = 0.0119, γ = 0 .

With these values, we obtain:

Lω ≈ 20.463n, Lω ≈ 20.295n, Lκ ≈ 20.284n, Lν ≈ 20.234n and
Mω ≈ 20.168n, Mκ ≈ 20.295n, Mν ≈ 20.272n .

We can also remark that by choosing α = β = γ = 0, we recover the time
complexity Õ(20.337n) given by May and Meurer [9] for the algorithm of [5].
However, in our case, the memory complexity is also Õ(20.337n), which indicates
that our algorithm can probably be improved in this respect. In the full version
of the paper [2], we also consider the unbalanced case and possible extensions.

Improved Generic Algorithms for Hard Knapsacks 375

3.4 Analysis of the Probability of Success

In order to analyze the probability of success, it is convenient to bear in mind Fig.
1. We are starting from an unknown but fixed golden solution of the knapsack
and we wish to decompose it seven times. (At each step we represent the 0s, 1s
and −1s of the current coefficient vector by a tuple (i, j) where i, j ∈ {0, 1,−1}.)
For each of the seven splits, we add a modular constraint modulo a number
very close to the total number of decompositions. For example, during the top
level split, we are specifying that the sum of the left hand-side after the splitting
should be congruent to R

(1)
ν modulo Mν, to R

(1)
κ + R

(2)
κ modulo Mκ and to

R
(1)
ω + R

(2)
ω + R

(3)
ω + R

(4)
ω modulo Mω. Since the three moduli are coprime, this

is equivalent to simply specifying a value modulo Mν · Mκ · Mω. Each of the
decompositions is considered successful if the current golden solution admits at
least one way of splitting which satisfies the modular constraint. In this case, we
focus on one of the admissible solutions for which we search for a decomposition
in the level below. Fixing the solution on the left-hand side also determines the
solution of the right-hand side.

Clearly, if each of the seven decompositions succeeds, the initial solution can
be found by the algorithm. Assuming independence, the overall probability of
success is at least equal2 to the product of the probability of success of the
individual decompositions. If we do not assume independence, we can still say
that the overall probability of failure is smaller than the individual probabilities
of failure.

Purely Random Heuristic Model. One approach to the analysis of the
probability of an individual decomposition succeeding is to assume that for each
of the possible decompositions, the resulting modular sum is a random value.
We already know that there are knapsacks for which this assumption does not
hold, as illustrated by the all-zero example. This is true for a large number of
random, however, and is a very useful benchmark for the following analysis. For
simplicity, we assume here that the number of possible decompositions is equal
to the modulus M for a large set of random knapsacks.

In this case, it is well-known that for large values of M , the proportion of
modular values which are not attained after picking M random values is close
to e−1 � 0.36.

Experimental Behavior of Decompositions. In Section 5, we describe an
implementation of our algorithm on a 80-bit knapsack. To better understand
the behavior of this implementation, it is useful to determine the probability of
success of each decomposition. Three levels of decomposition occur. At the top
level, a balanced golden solution with 40 zeros and 40 ones needs to be split
into two partial solutions with 22 ones and two -1s each. At the middle level, a
golden solution with 22 ones and two -1s is to be split into two partial solutions

2 The probability can be larger, since we ignore multiple correct splits when they
occur.

376 A. Becker, J.-S. Coron, and A. Joux

0

200000

400000

600000

800000

1e+06

0 200 400 600 800 1000 1200 1400 1600 1800

Knapsack Sums
Random Values

Fig. 2. Cumulative number of knapsacks (in a million) with less than a given number
of not obtained values

with 12 ones and two -1s. Finally, at the bottom level, we split 12 ones and two
-1s into twice 6 ones and one -1.

At the top level, the number of possible decompositions of a golden solution
is larger than

(40
22

)(40
2,2,36

)
≈ 256. As a consequence, it is not possible to perform

experimental statistics of the modular values of such a large set. At the middle
level, the number of decompositions is larger than

(22
11

)(2
1

)(46
1,1,44

)
≈ 232. Thus,

it is possible to perform some experiments, but doing a large number of tests
to perform a statistical analysis of the modular values is very cumbersome. At
the bottom level, the number of decompositions of a golden solution is

(12
6

)(2
1

)
=

1848. This is small enough to perform significant statistics and, in particular,
to study the fraction of modular values which are not obtained (depending on
a random choice of 14 knapsack elements, 12 1s and two −1s, to be split). The
value of the modulus used in this experiment is 1847, the closest prime to 1848.

During our experimental study, we created one million modular subknapsacks
from 14 randomly selected values modulo 1847. Among these values 12 elements
correspond to additions and 2 to subtractions. From this set we computed (in
Z1847) all of the 1848 values that can be obtained by summing 6 out of the 12
addition elements and subtracting one of the subtraction elements. In each ex-
periment, we counted the number of values which were not obtained; the results
are presented in Fig. 2. On the vertical axis we display the cumulative number of
knapsacks which result in x or less unobtained values. To allow comparison with
the purely random model, we display the same curve computed for one million
of experiments where 1848 random numbers modulo 1847 are chosen. In par-
ticular, we see on this graph that for 99.99% of the random knapsacks we have

Improved Generic Algorithms for Hard Knapsacks 377

constructed the fraction of unobtained value stays below 2/3. This means that
experimentally, the probability of success of a decomposition at the bottom level
is, at least, 1/3 for a very large fraction of knapsacks. Assuming independence
between the probability of success of the seven splits and a similar behavior
of three levels3, we conclude that for 99.93% of random knapsacks an average
number of 37 = 2187 repetitions suffices to solve the initial problem.

Distribution of Modular Sums. When considering the decomposition of
a given golden solution (at any level), we can construct the set B of all left-
hand sides which can appear. For this set B we wish to study the distribution
of the scalar product a · x =

∑n
i=1 aixi (mod M), for given knapsack weights

ai. Let Pa1,..,an(B, c) denote the probability that a knapsack of elements a =
(a1, .., an) ∈ ZnM results in the value c modulo M for a uniformly at random
chosen solution (x1, .., xn) from B,

Pa1,··· ,an(B, c) =
1
|B|

∣∣∣∣∣
{

(x1, · · · , xn) ∈ B such that
n∑
i=1

aixi ≡ c (mod M)

}∣∣∣∣∣ .

Our main tool to theoretically study the distribution of the scalar products is
the following theorem [11, Theorem 3.2]:

Theorem 1. For any set B ⊂ ZnM , the identity:

1
Mn

∑
(a1,··· ,an)∈Zn

M

∑
c∈ZM

(
Pa1,··· ,an(B, c)− 1

M

)2

=
M − 1
M |B|

holds.

With this equation we can prove a weak but sufficient result about the proportion
of missed values during a decomposition. Let Λ > 0 be an arbitrary integer. We
want to find an upper bound for the fraction fΛ of “bad” knapsacks modulo
M with less than M/Λ obtained values. First, we remark that for a knapsack
(a1, · · · , an) that reaches less than M/Λ values, at least (Λ − 1)M/Λ values
modulo M are obtained 0 times. Since∑

c∈ZM

Pa1,··· ,an(B, c) = 1

some values c need to be obtained many times. As a consequence, we find that

∑
c∈ZM

(
Pa1,··· ,an(B, c)− 1

M

)2

≥ Λ− 1
Λ

·M · 1
M2 +

1
Λ
·M · (Λ− 1)2

M2 =
Λ− 1

M
.

3 The limited number of experiments we have performed for the middle level seem to
indicate a comparable behavior. We performed 100 experiments and the number of
not obtained values remained in the range 42% – 43.1%.

378 A. Becker, J.-S. Coron, and A. Joux

This implies that the number Nbad of “bad” knapsacks satisfies:

Nbad ≤ Mn · M − 1
(Λ − 1)|B| .

With this bound, it is possible to construct a variation of our algorithm with a
provable probability of success. Given Λ ≥ 10 as a function of n, we repeat each
split for 2 Λ random and independently picked values. The probability of failure
of such a repeated split is at most e−2 ≈ 0.135, except for a “bad” knapsack.
Thus, the global probability of failure on the seven splits is smaller than 95%. By
choosing M smaller than |B| (but close to it), we ensure that the total fraction
of bad knapsacks is at most:

7
Λ− 1

.

This fraction becomes arbitrarily small by choosing a large enough value of Λ.
Note that the running time is multiplied by (2 Λ)3, since there are three nested
levels of decompositions. If a probability of success of 5% is not sufficient, it is
possible to increase the probability by repeating the complete algorithm with
independent random numbers. A polynomial number of repetition leads to a
probability of success exponentially close to 1 (with the exception of the “bad”
knapsacks).

3.5 Analysis of the Size of the Lists

Concerning the size of the lists that occur during the algorithm, both the simple
heuristic model and the experimental results (see Section 5) predict that the size
of the lists are always very close to the theoretical values at the bottom level
and smaller (due to the overestimation) at the levels above. It remains to use
Theorem 1 to give an upper bound on the size of the various lists.

For the sizes of the lists Lχ, we can use a direct application of the theorem.
The set of concern, B, is the set of all repartitions of 1s, 0s and -1s fulfilling
the conditions of Lχ. The modulus M is the product of all active moduli at the
current and preceding levels. That is, for level ω we have M = Mω; for level κ,
M = Mω ·Mκ, and for level ν we take M = Mω ·Mκ ·Mν .

Once again, we fix an integer Λ and consider the number FΛ of knapsacks for
which more than M/(2 Λ) values c have a probability that satisfies:

Pa1,··· ,an(B, c) ≥ Λ/M .

Due to Theorem 1, we find:

FΛ
Mn

· M

2 Λ
· (Λ− 1)2

M2 ≤ M − 1
M |B| ≤

1
|B| .

As a consequence:

FΛ ≤
2 Λ

(Λ− 1)2
· M

|B| ·M
n ≤ 2 Λ

(Λ− 1)2
·Mn .

Improved Generic Algorithms for Hard Knapsacks 379

The key point is that for a knapsack which is not one of the FΛ knapsacks above
and for most values of c (all but at most M/(2 Λ)), the size of Lχ is smaller than
Λ times the expected value |B|/M , that is,

|Lχ| ≤
Λ |B|
M

.

To bound the size of the lists Kχ, we proceed slightly differently. The set B
consists of 1s, 0s and -1s that are allowed in the L lists and are matched to
construct Kχ. We write M = M1 · M2, where M1 is the product of the active
moduli for the L list and M2 is the modulus that is added when constructing Kχ.
Let σ (mod M) denote the target sum as a new modulo constraint for elements
in Kχ. Let σL (mod M1) and σR (mod M1) respectively denote the values of
the sums in the left-side and right-side lists L. Of course, we have σL + σR ≡ σ
(mod M1). We can write:

|Kχ| =
∑

c ∈ ZM
c ≡ σL (mod M1)

(|B| · Pa1,··· ,an(B, c)) · (|B| · Pa1,··· ,an(B, σ − c))

≤

⎡⎢⎢⎢⎢⎢⎣
∑

c ∈ ZM
c ≡ σL

(|B| · Pa1,··· ,an(B, c))2 ×
∑

c ∈ ZM
c ≡ σR

(|B| · Pa1,··· ,an(B, c))2

⎤⎥⎥⎥⎥⎥⎦
1/2

.(4)

Thus to estimate the size of the lists Kχ, we need to find an upper bound for
the value of sums of the form:∑

c ∈ ZM
c ≡ c1 (mod M1)

Pa1,··· ,an(B, c)2 .

To do this, it is useful to rewrite the relation from Theorem 1 as:

1
Mn

∑
(a1,··· ,an)∈Zn

M

∑
c∈ZM

Pa1,··· ,an(B, c)2 =
M + |B| − 1

M |B| .

Given Λ, we let GΛ denote the number of knapsacks for which more than
M1/(8 Λ) values c1 have a sum of squared probabilities that satisfy:∑

c ∈ ZM
c ≡ c1 (mod M1)

Pa1,··· ,an(B, c)2 ≥ Λ2

M2
1 M2

.

We find that
GΛ

Mn
· M1

8 Λ
· Λ2

M2
1 M2

≤ M + |B| − 1
M |B| ;

380 A. Becker, J.-S. Coron, and A. Joux

and as a consequence

GΛ ≤
8
Λ
· M + |B|

|B| ·Mn .

Moreover, we can check with our concrete algorithm that we always have |B| ≥ M
for the construction of the lists Kχ. Thus we have GΛ ≤ (16/Λ)Mn. For a
knapsack which is not one of the GΛ knapsacks above and for most values4

of σL mod M1, the size of Kχ is smaller than Λ2 times the expected value
|B|2/(M2

1 M2), that is,

|Kχ| ≤
Λ2 |B|2
M2

1 ·M2
.

Note, that this bound includes the case |K0|.

3.6 Provable Variant of the Concrete Algorithm

Following the ideas presented in Sect. 3.4, we can now describe a variant of our
concrete algorithm with provable probabilistic run-time and space requirements.
First, fix a large enough value of Λ. We redefine the notion of a “bad” knapsack
in this section, by saying that a knapsack is bad if it fails to fulfill one of the
three criteria developed in Sect. 3.4 and Sect. 3.5. That is, if there are too many
values that yield incorrect splits or lists of type L or K which are too large. We
find that the total fraction of bad knapsacks is smaller than

7
(

1
Λ− 1

+
2 Λ

(Λ − 1)2
+

16
Λ

)
≤ 140

Λ
for Λ ≥ 7 .

By choosing a large enough value for Λ, this fraction can become arbitrarily
small.

Once again, we consider a variation of the concrete algorithm where at each
level we repeat the choice of random numbers often enough to be successful.
For a “good” knapsack there are three ways a decomposition can fail . Firstly,
we could choose a random value which does not permit a decomposition of the
golden solution; Secondly, we could choose a random value which makes Lχ
overflow; Thirdly, we could choose a random value which makes Kχ overflow.
Note that the last two events can be detected, in which case we erase the lists
that have been constructed for this random value and turn to the next. For each
modulus, the proportion of random values which are incorrect with respect to
at least one criteria is smaller than

Λ− 1
Λ

+
1

2 Λ
+

2
8 Λ

= 1− 1
4 Λ

.

Thus by repeating each split 8Λ times, we make sure that the probability of
failure of a given split is at most e−2. Once again, this yields a global probability
of success of 5%, which becomes exponentially close to 1 by repeating polynomi-
ally many times. Given a real ε > 0, by setting Λ = 2εn we obtain the following
theorem:
4 For all but at most 2M1/(8Λ) – the factor 2 in the numerator comes from the fact

that there are two terms to bound in ((4)).

Improved Generic Algorithms for Hard Knapsacks 381

Theorem 2. For any real ε > 0 and for a fraction of at least 1 − 140 · 2−ε n
of equibalanced knapsacks with density D < 1 given by an n-tuple (a1, · · · , an)
and a target value S, if ε = (ε1, · · · , εn) is a solution of the knapsack then the
algorithm described in Sect. 3.3 modified as above finds the solution ε sought
after in time Õ(2(0.291+3ε)n).

We recall that in the theorem, the term equibalanced means that the solution ε
contains exactly the same number of 0s and 1s.

4 Memory Complexity Improvement

In this section we first show a new algorithm of constant memory requirement
and running time Õ(23n/4). We then show how to decrease its time complexity
down to Õ(20.72n) using a technique similar to Howgrave-Graham and Joux
[5]. Finally, we show a time memory tradeoff for Schroeppel-Shamir’s algorithm
down to Õ(2n/16) memory.

4.1 An Algorithm with Running Time Õ(23n/4) and Memory Õ(1)

We describe a simple algorithm that solves the knapsack problem in time Õ(23n/4)
and constant memory, using a meet-in-the-middle attack. This is done by for-
mulating the meet-in-the-middle attack as a collision search problem (see [15]);
then a constant memory cycle-finding algorithm can be used.

We define two functions f1, f2 : {0, 1}n/2 → {0, 1}n/2:

f1(x) =
n/2∑
i=1

aixi mod 2n/2, f2(y) = S −
n∑

i=n/2+1

aiyi mod 2n/2

where xi denotes the i-th bit of x, and similarly for yi. If we can find x, y ∈
{0, 1}n/2 such that f1(x) = f2(y), then we get:

n/2∑
i=1

aixi +
n∑

i=n/2+1

aiyi = S mod 2n/2 .

This gives a solution of the knapsack problem that is only valid modulo 2n/2.
Since there are heuristically Õ(2n/2) such solutions holding modulo 2n/2, and
only a single one that holds over Z, a random (x, y) such that f1(x) = f2(y)
leads to the correct knapsack solution with probability roughly 2−n/2. Below we
show that we can generate such random solution in time Õ(2n/4) and constant
memory. This gives an algorithm with total running time Õ(23n/4) and constant
memory.

From the two functions f1, f2 we define the function f : {0, 1}n/2 → {0, 1}n/2
where:

f(x) =

{
f1(x) if g(x) = 0

f2(x) if g(x) = 1

382 A. Becker, J.-S. Coron, and A. Joux

where g : {0, 1}n/2 → {0, 1} is a random bit function. Then a collision f(x) =
f(y) for f gives a desired collision f1(x) = f2(y) with probability 1/2. The
function f : {0, 1}n/2 → {0, 1}n/2 is a random function, therefore using Floyd’s
cycle finding algorithm [6] we can find a collision for f in time 2n/4 and constant
memory.

However we need to obtain a random collision whereas Floyd’s cycle finding
algorithm is likely to produce always the same collision. A simple solution is to
further randomize the function f ; more precisely we apply Floyd’ cycle-finding
algorithm to f ′ : {0, 1}n/2 → {0, 1}n/2 with f ′(x) = P (f(x)), where P is a
random permutation in {0, 1}n/2. Then a new permutation P is used every time
a new collision (x, y) is required for f .

4.2 An Algorithm with Running Time Õ(20.72n) and Memory Õ(1)

In this section we show how to slightly decrease the running time down to
Õ(20.72n), still with constant memory; for this we use the Howgrave-Graham–
Joux technique recalled in Sect. 2.1. Again for simplicity we assume that n is a
multiple of 4, and that the Hamming weight of the knapsack solution ε is exactly
n/2. As in (3) we write S as the sum σ1 +σ2 of two subknapsacks with Hamming
weight n/4 chosen among the n knapsack elements.

We let W be the set of n-bit strings of Hamming weight n/4. We have #W =
2h(1/4) � 20.81n. We define the two functions f1, f2 : W → {0, 1}h(1/4)n:

f1(y) =
n∑
i=1

aiyi mod 2h(1/4)n, f2(z) = S −
n∑
i=1

aizi mod 2h(1/4)n

where yi denotes the i-th bit of y, and similarly for zi. We consider y, z ∈ W
such that:

f1(y) = f2(z) . (5)

Since f1 and f2 are random functions heuristically there are 2h(1/4)n solutions to
(5). Moreover given the correct solution ε of the knapsack, as in Sect. 2.1 there
are

(n/2
n/4

)
� 2n/2 ways of writing this correct solution as σ1 + σ2 = S (see (3)).

All these 2n/2 solutions are solutions of (5). Therefore the probability p that a
random solution of (5) leads to the correct knapsack solution is:

p =
2n/2

2h(1/4)n � 2−.31n .

The input space of f1, f2 has size 2h(1/4)n. Therefore using the same cycle-finding
algorithm as in the previous section, a random solution of (5) can be found in
time Õ(2h(1/4)n/2). The total time complexity is therefore:

Õ(2h(1/4)n/2)/p = Õ(2h(1/4)n/2) · 2(h(1/4)−1/2)n

= Õ(2(3h(1/4)/2−1/2)n) = Õ(2.72n) .

Finally, we note that it is possible to further improve this complexity by adding
−1s in the decomposition (as in Sect. 3) but the time complexity improvement
is almost negligible.

Improved Generic Algorithms for Hard Knapsacks 383

4.3 A Time-Memory Tradeoff on Schroeppel-Shamir Down to 2n/16

Memory

The original Schroeppel-Shamir algorithm works in time Õ(2n/2) and memory
Õ(2n/4). In this section we describe a continuous time-memory tradeoff down to
Õ(2n/16) memory. That is we describe a variant of Schroeppel-Shamir with:

Running time: Õ(2(11/16−ε)n), Memory: Õ(2(1/16+ε)n)

for any 0 ≤ ε ≤ 3/16. For simplicity we first describe the algorithm with exactly
Õ(2n/16) memory. We write the knapsack as S = σ1 + σ2 + σ3 + σ4 as in (2)
where each σi is a knapsack of n/4 elements.

We guess three values R1, R2 and R3 of 3n/16-bit each and we let R4 such
that R1 + R2 + R3 + R4 = S mod 23n/16. We consider the four subknapsack
equations

σi = Ri mod 23n/16 .

We solve these four equations independently by using the original Schroeppel-
Shamir algorithm. Therefore in time Õ(2n/8) and memory Õ(2n/16) we obtain
four lists {σ1}, {σ2}, {σ3} and {σ4} satisfying the four equations. Eventually to
recover the knapsack solution we merge these four lists using the same merging
procedure as in the original Schroeppel-Shamir algorithm; since each list has size
Õ(2n/16), the merging procedure runs in time Õ(2n/8) and memory Õ(2n/16).
Since we have guessed three values of 3n/16-bit each, the total running time is:

Õ(23n/16)3 ·
(
Õ(2n/8) + Õ(2n/8)

)
= Õ(211n/16)

as required, and the memory consumption is Õ(2n/16).
It is easy to generalize the previous algorithm to memory Õ(2(1/16+ε)n) for

any 0 ≤ ε < 3/16. For this we take the Ri’s of size (3/16 − ε)n-bit each. We
can still build the four lists {σi} in time Õ(2n/8) using Schroeppel-Shamir, but
this time the size of the lists is Õ(2(1/16+ε)n), therefore it requires Õ(2(1/16+ε)n)
memory. The merging procedure now runs in time Õ(2(1/8+2ε)n), still with mem-
ory Õ(2(1/16+ε)n). Therefore the total running time is:

Õ(2(3/16−ε)n)3 ·
(
Õ(2n/8) + Õ(2(1/8+2ε)n)

)
= Õ(2(11/16−ε)n)

as required, for a memory consumption Õ(2(1/16+ε)n).
Surprisingly there remains a gap between our variant of Schroeppel-Shamir

with Õ(2n/16) memory and our constant memory algorithm from Sect. 4.1.
Namely we were unable to find a variant of Schroeppel-Shamir requiring less
than Õ(2n/16) memory, nor a cycle-based algorithm requiring more than Õ(1)
memory.

5 Implementation and Experimental Evidence

In order to verify the correctness of the algorithm presented in Sect. 3.3, we have
implemented it. We ran our implementation on 50 random knapsacks containing

384 A. Becker, J.-S. Coron, and A. Joux

Table 1. Experimental versus theoretical sizes of the intermediate lists

List type Min. size Max. size Theoretical estimate

Lω 12 024 816 12 056 576 Lω =
(80
6,1,73)
1 847

≈ 12 039 532

Kκ 61 487 864 61 725 556 L2
ω

2 352 689
≈ 61 610 489

Lκ 12 473 460 20 224 325 Lκ =
(80
12,2,66)

1 847·2 352 689
≈ 31 583 129

Kν 14 409 247 23 453 644 L2
κ

17 394 593
≈ 57 345 064

Lν 183 447 268 964 Lν =
(80
22,2,56)

1 847·2 352 689·17 394 593
≈ 592 402

K0 178 1 090 L2
ν ·1 847·2 352 689·17 394 593

280 ≈ 21 942

80 elements on 80 bits. The target sum was constructed in each case as a sum of
40 knapsack elements. For each of these knapsacks, we ran our implementation
several times, choosing new random modular constraints for each execution, until
a solution was found. We added two -1s at the first level, one -1 at the second
and none at the third level. At the same time, we collected some statistics about
the behavior of our code.

The total running time to solve the 50 knapsacks was 14 hours and 50 minutes
on a Intel R© CoreTM i7 CPU M 620 at 2.67GHz. The total number of repetitions
of the basic algorithm was equal to 280. We observed that a maximum of 16
repetitions (choice of a different random value in level ν) was sufficient to find the
solution. Also, 53% of the 50 random knapsacks needed only up to 4 repetitions.
On average, each knapsack required 5.6 repetitions.

During the execution of the 280 repetitions of the basic algorithm, we also
noted the length of the lists L and K (still containing inconsistent solutions) that
occurred at each level. The moduli were chosen as primes of size as discussed in
Sect. 3.3: Mω = 1 847, Mκ = 2 353 689, and Mν = 17 394 593. The experimental
and theoretical list sizes are given in Table 1.

We see in Table 1 that the sizes of Lω and Kκ are very close to the predicted
values and do not vary a lot. We refer to the full version of our paper [2] for a
more detailed discussion; see also [2] for implementation results on 96 bits.

Acknowledgments. We would like to thank Alexander May and Alexander
Meurer for pointing out the inconsistency issue in Howgrave-Graham–Joux al-
gorithm. We also thank Dan Bernstein for helpful comments on a preliminary
version of this work.

Improved Generic Algorithms for Hard Knapsacks 385

References

1. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In: STOC 1998, pp. 10–19 (1998)

2. Becker, A., Coron, J.-S., Joux, A.: Improved generic algorithms for hard knapsacks.
Eprint archive (2011)

3. Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.-P., Stern,
J.: Improved low-density subset sum algorithms. Computational Complexity 2,
111–128 (1992)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

5. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (2010)

6. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Seminumerical Algo-
rithms, vol. II. Addison-Wesley, Reading (1981)

7. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J.
ACM 32(1), 229–246 (1985)

8. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 515–534 (1982)

9. May, A., Meurer, A.: Personal communication
10. Merkle, R.C., Hellman, M.E.: Hiding information and signatures in trapdoor knap-

sacks. IEEE Transactions on Information Theory 24, 525–530 (1978)
11. Nguyen, P.Q., Shparlinski, I.E., Stern, J.: Distribution of modular sums and the

security of the server aided exponentiation. In: Progress in Computer Science and
Applied Logic, Final Proceedings of Cryptography and Computational Number
Theory Workshop, Singapore, vol. 20, pp. 331–224 (2001)

12. Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci. 53, 201–224 (1987)

13. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

14. Shamir, A.: A polynomial time algorithm for breaking the basic Merkle-Hellman
cryptosystem. In: CRYPTO 1982, pp. 279–288 (1982)

15. van Oorschot, P.C., Wiener, M.J.: Improving implementable meet-in-the-middle at-
tacks by orders of magnitude. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 229–236. Springer, Heidelberg (1996)

16. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

Two-Output Secure Computation with Malicious
Adversaries

Abhi Shelat and Chih-Hao Shen

University of Virginia, Charlottesville, VA 22904
{shelat,shench}@virginia.edu

Abstract. We present a method to compile Yao’s two-player garbled
circuit protocol into one that is secure against malicious adversaries that
relies on witness indistinguishability. Our approach can enjoy lower com-
munication and computation overhead than methods based on cut-and-
choose [13] and lower overhead than methods based on zero-knowledge
proofs [8] (or Σ-protocols [14]). To do so, we develop and analyze new
solutions to issues arising with this transformation:

— How to guarantee the generator’s input consistency
— How to support different outputs for each player without adding extra

gates to the circuit of the function f being computed
— How the evaluator can retrieve input keys but avoid selective failure

attacks
— Challenging 3/5 of the circuits is near optimal for cut-and-choose

(and better than challenging 1/2)

Our protocols require the existence of secure-OT and claw-free functions
that have a weak malleability property. We discuss an experimental im-
plementation of our protocol to validate our efficiency claims.

Keywords: Witness indistiguishability, Yao garbled circuits, signature
schemes.

1 Introduction

Yao [23] proposed a method that allows two honest-but-curious players—a gen-
erator (denoted by P1) with secret input x, and an evaluator (denoted by P2)
with secret input y—to jointly compute a function f(x, y) such that P1 receives
nothing and P2 receives f(x, y)1. In this paper, we propose an approach for
transforming Yao’s garbled circuit protocol for honest-but-curious players into a
protocol that is secure against malicious players. Our main goal is to improve the
efficiency of this transformation and to do so using more general assumptions.

There are two well-known methods to achieve this transformation: the commit-
and-prove and cut-and-choose. The commit-and-prove method suggested by Gol-
dreich, Micali, and Widgerson [6] only requires the weak general assumption of

1 A thorough description of this protocol can be found in Lindell and Pinkas [13].

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 386–405, 2011.
c© International Association for Cryptologic Research 2011

Two-Output Secure Computation with Malicious Adversaries 387

zero-knowledge proofs of knowledge. However, this approach requires costly NP-
reductions, which have never been implemented. On the other hand, an efficient
transformation based on the cut-and-choose method was recently proposed by
Lindell and Pinkas [13] and implemented by Pinkas et al. [20]. The general idea in
cut-and-choose is for P1 to prepare multiple copies of the circuit to be evaluated.
A randomly selected set of the circuits (called check-circuits) are then opened
to show if they were constructed correctly. Finally, the unopened circuits (called
evaluation-circuits) are evaluated by P2 and the majority of the results is taken
as the final output. This approach has only constant round complexity, but the
replication incurs both communicational and computational overhead.

The starting point for our work is the cut-and-choose method. A natural ques-
tion we aim to study is to understand the fundamental limitations (in terms of
efficiency) of the cut-and-choose method. This method does not require NP-
reductions; however, it faces other efficiency problems stemming from the new
security problems introduced by evaluating e out of s copies of the circuit. In this
paper, we address several of these issues: (1) ensuring input consistency, (2) han-
dling two-output functions, (3) preventing selective failure attacks, and (4) de-
termining the optimal number of circuits to open versus evaluate. Moreover, we
identify weak and generic properties that admit efficient solutions to these issues.
In several of the cases, using witness indistinguishable protocols suffice. Thus, in
the case of input consistency, we are able to use an extremely efficient protocol as
long as claw-free functions with a minimal malleability property exist (they do
under the standard algebraic assumptions). We will later demonstrate the bene-
fits of our approach by both asymptotic analysis of complexity and experimental
results from an implementation. We now give an overview of our contributions.

1.1 Generator’s Input Consistency

According to the cut-and-choose method, P1 needs to send e copies of her garbled
input to P2. Since the circuits are garbled, P1 could cheat by sending different
inputs for the e copies of the garbled circuit. For certain functions, there are sim-
ple ways for P1 to extract information about P2’s input (§ 3 of [13]). Therefore,
the protocol must ensure that all e copies of P1’s input are consistent.

Related work. Let n be P1’s and P2’s input size, and let s be a statistical security
parameter for the cut-and-choose method. Mohassel and Franklin [16] proposed
the equality-checker scheme, which has O(ns2) computation and communication
complexity. Woodruff [22] later suggested an expander-graph framework to give a
sharper bound to P1’s cheating probability. The asymptotic complexity is O(ns),
however, in practice, the constant needed to construct the expander graphs is
prohibitively large. Lindell and Pinkas [13] develop an elegant cut-and-choose
based construction that enjoys the simulation-based security against malicious
players. This approach requires O(ns2) commitments to be computed and ex-
changed between the participants. Although these commitments can be imple-
mented using lightweight primitives such as collision-resistant hash functions,
communication complexity is still an issue. Jarecki and Shmatikov [8] presented

388 A. Shelat and C.-H. Shen

an approach that is based on commit-and-prove method. Although only a single
circuit is constructed, their protocol requires hundreds of heavy cryptographic
operations per gate, whereas approaches based on the cut-and-choose method re-
quire only such expensive operations for the input gates. Nielsen and Orlandi [18]
proposed an approach with Lego-like garbled gates. Although it is also based on
the cut-and-choose method, via an alignment technique only a single copy of P1’s
input keys is needed for all the e copies of the garbled circuit. However, similar
to Jarecki and Shmatikov’s approach, each gate needs several group elements
as commitments resulting both computational and communicational overhead.
Lindell and Pinkas propose a Diffie-Hellman pseudorandom synthesizer tech-
nique in [14]; their approach relies on finding efficient zero-knowledge proofs for
specifically chosen complexity assumptions, which is of complexity O(ns).

Our approach to consistency. We solve this problem not by explicitly using zero-
knowledge protocols (or Σ-protocols) but by communicating merely O(ns) group
elements. Our novel approach is to first observe that witness indistinguishable
proofs suffice for consistency, and to then use claw-free functions2 that have a
weak malleability property to generate efficient instantiations of such proofs.

Intuitively, P1’s input is encoded using elements from the domain of the claw-
free collections which can later be used to prove their consistency among circuits.
The elements are hashed into random bit-strings which P1 uses to construct keys
for garbled input gates. The rest of the gates in the circuit use fast symmetric
operations as per prior work. A concrete example is to instantiate the claw-free
functions under the Discrete Logarithm assumption by letting fb(m) = gbhm

for some primes p and q such that p = 2q + 1, and distinct group elements
g and h of Z∗

p such that 〈g〉 = 〈h〉 = q. It is well-known that such a pair of
functions have efficient zero-knowledge proofs. An example instantiation of our
solution built on this pair of claw-free functions works as follows: P1 samples
[m0,1, . . . , m0,s] and [m1,1, . . . , m1,s] from f0 and f1’s domain Zq. The range
elements [hm0,1 , . . . , hm0,s] and [ghm1,1 , . . . , ghm1,s] are then used to construct
garbled circuits in the way that gbhmb,j is associated with P1’s input bit value
b in the j-th garbled circuit. The cut-and-choose method verifies that the ma-
jority of the evaluation-circuits are correctly constructed. Let [j1, . . . , je] be the
indices of these evaluation-circuits. At the onset of the evaluation phase, P1
with input bit x reveals [gxhmx,j1 , . . . , gxhmx,je] to P2 and then proves that
these range elements are the commitments of the same bit x. Intuitively, by the
identical range distribution property, P2 with fx(mx,i) at hand has no infor-
mation about x. Furthermore, after P1 proves the knowledge of the pre-image
of [fx(mx,j1), . . . , fx(mx,je)] under the same fx, by the claw-free property, P1
proves the consistency of his input keys for all the evaluation-circuits.

Furthermore, in the course of developing our proof, we noticed that witness
indistinguishable proofs suffice in place of zero-knowledge proofs. Even more
2 Loosely speaking, a pair of functions (f0, f1) are said to be claw-free if they are

(1) easy to evaluate, (2) identically distributed over the same range, and (3) hard to
find a claw. A claw is a pair of elements, one from f0’s domain and the other from
f1’s domain, that are mapped to the same range element.

Two-Output Secure Computation with Malicious Adversaries 389

generally, when the claw-free collection has a very weak malleability property
(which holds for all known concrete instantiations), sending a simple function of
the witness itself suffices. We will get into more details in §2.1.

It is noteworthy that both the committed-input scheme in [16] and Diffie-
Hellman pseudorandom synthesizer technique in [14] are special cases of our ap-
proach, and thus, have similar complexity. However, the committed-input scheme
is not known to enjoy simulation-based security, and the pseudorandom synthe-
sizer technique requires zero-knowledge proofs that are unnecessary in our case,
which means that our approach is faster by a constant factor in practice.

1.2 Two-Output Functions

It is not uncommon that both P1 and P2 need to receive outputs from a secure
computation, that is, the goal function is f(x, y) = (f1, f2) such that P1 with
input x gets output f1, and P2 with input y gets f2

3. In this case, the security
requires that both the input and output are hidden from the other player. When
both players are honest-but-curious, a straightforward solution is to let P1 choose
a random number c as an extra input, convert f(x, y) = (f1, f2) into a new
function f∗((x, c), y) = (λ, (f1⊕c, f2)), run the original Yao protocol for f∗, and
instruct P2 to pass the encrypted output f1⊕c back to P1, who can then retrieve
her real output f1 with the secret input c chosen in the first place. However,
the situation gets complicated when either of the players could potentially be
malicious. Note that the two-output protocols we consider are not fair since P2
may always learn its own output and refuse to send P1’s output. However, they
can satisfy the notion that if P1 accepts output, it will be correctly computed.

Related work. One straightforward solution is for the players to run the single-
output protocol twice with roles reversed. Care must be taken to ensure that
the same inputs are used in both executions. Also, this approach doubles the
computation and communication cost. Other simple methods to handle two-
output functions also have subtle problems. Suppose, for example, P1 encrypts
all copies of her output and has P2 send these s random strings (or encryptions)
in the last message. In a cut-and-choose framework, however, a cheating P1 can
use these random strings to send back information about the internal state of
the computation and thereby violate P2’s privacy. As an example, the cheating
P1 can make one bad circuit in which P1’s output bit is equal to P2’s first input
bit. If P2 sends all copies of P1’s output bit back to P1, then with noticeable
probability, the cheating P1 can learn P2’s first input bit. The problem remains
if instead of sending back all bits, only a randomly chosen output bit is sent.
Besides, P1 should not be convinced by a cheating P2 with an arbitrary output.

As described in [13], the two-output case can be reduced to the single-output
case as follows: (1) P1 randomly samples a, b, c ∈ {0, 1}n as extra input; (2) the
original function is converted into f∗((x, a, b, c), y) = (λ, (α, β, f2)) where α =
f1 ⊕ c is an encryption of f1 and β = a · α + b is the Message Authentication
code (MAC) of α, and (3) P2 sends (α, β) back to P1, who can then check the
3 Here f1 and f2 are abbreviations of f1(x, y) and f2(x, y) for simplicity purpose.

390 A. Shelat and C.-H. Shen

authenticity of the output α = f1⊕c. However, this transformation increases the
size of P1’s input from n bits to 4n bits. As a result, the complexity of P1’s input
consistency check is also increased. A second drawback is that the circuit must
also be modified to include extra gates for computing the encryption and MAC
function. Although a recent technique [12] can be used to implement XOR gates
“for free,” the MAC function a · α + b still requires approximately O(n2) extra
gates added to the circuit. Since all s copies of the circuit have to be modified,
this results in additional communication of O(sn2) encrypted gates. Indeed, for
simple functions, the size of this overhead exceeds the size of the original circuit.

Kiraz and Schoenmakers [11] present a fair two-party computation protocol
in which a similar issue for two-output functions arises. In their approach, P2
commits to P1’s garbled output. Then P1 reveals the two output keys for each of
her output wires, and P2 finds one circuit GCr which agrees with “the majority
output for P1.” The index r is then revealed to P1. However, informing P1 the
index of the majority circuit could possibly leak information about P2’s input. As
an anonymous reviewer has brought to our attention an unpublished follow-up
work from Kiraz [9], which elaborated this issue (in § 6.6 of [9]) and further fixed
the problem without affecting the overall performance. Particularly, in the new
solution, the dominant computational overhead is an OR-proof of size O(s), and
the dominant communicational overhead is the commitments to P1 output keys,
where the number of such commmitments is of order O(ns). Their techniques
favorably compare to our approach, but we do not have experimental data to
make accurate comparisons with our implementation.

Our approach to two-output functions. We present a method to evaluate two-
output function f without adding non-XOR gates to the original circuit for f .

In order for P2 to choose one output that agrees with the majority, similar to
Kiraz and Schoenmakers’ approach in [11], we add extra bits to P1’s input as
a one-time pad encryption key by changing the function from f(x, y) = (f1, f2)
to f∗((c, x), y) = (λ, (f1 ⊕ c, f2)), where x, c, y, f1, f2 ∈ {0, 1}n. With this extra
random input c from P1, P2 is able to do the majority function on the evaluation
output f1 ⊕ c without knowing P1’s real output f1. Next, P2 needs to prove the
authenticity of the evaluation output f1 ⊕ c that she has given to P1. Here, our
idea is that P1’s i-th output gate in the j-th garbled circuit is modified to output
0||σsk(0, i, j) or 1||σsk(1, i, j) instead of 0 or 1, where σsk(b, i, j) is a signature
of the message (b, i, j) signed by P1 under the signing key sk. In other words,
the garbled gate outputs P1’s output bit b and a signature of b, bit index i, and
circuit index j. Therefore, after the circuit evaluation, P2 hands f1 ⊕ c to P1
and proves the knowledge of the signature of each bit under the condition that
the j-index for all signatures are the same and valid (among the indices of the
evaluation-circuits). Naively, this proof would have been a proof of O(ns) group
elements. However, we will show that a witness indistinguishable proof suffices,
which reduces the complexity by a constant factor. Furthermore, by using the
technique of Camenisch, Chaabouni, and Shelat for efficient set membership
proof [4], we are able to reduce the complexity to O(n + s) group elements.

Two-Output Secure Computation with Malicious Adversaries 391

1.3 The Problem of Selective Failure

Another problem with compiling garbled circuits occurs during the Oblivious
Transfer (OT) phase, when P2 retrieves input keys for the garbled circuits. A
malicious P1 can attack the protocol with selective failure, where the keys used
to construct the garbled circuit might not be the ones used in the OT so that
P2’s input can be inferred according to her reaction after OT. For example, a
cheating P1 could use (K0, K1) to construct a garbled circuit but use (K0, K

∗
1)

instead in the corresponding OT, where K1 �= K∗
1 . As a result, if P2’s input bit

is 1, she will get K∗
1 after OT and cannot evaluate the garbled circuit properly.

In contrast, if her input bit is 0, P2 will get K0 from OT and complete the
evaluation without complaints. P1 can therefore infer P2’s input. This issue is
identified by both Mohassel and Franklin [16] and Kiraz and Schoenmakers [10].

Related work. Lindell and Pinkas [13] replace each of P2’s input bits with s ad-
ditional input bits. These s new bits are XOR’ed together, and the result is used
as the input to the original circuit. Such an approach makes the probability that
P2 must abort due to selective failure independent of her input. This approach,
however, increases the number of input bits for P2 from n to ns. Woodruff later
pointed out that the use of clever coding system can reduce the overhead to
max(4n, 8s). To be sure, Lindell, Pinkas, and Smart [15] implement the method
described in [13] and empirically confirm the extra overhead from this step. In
particular, a 16-bit comparison circuit that originally needs fifteen 3-to-1 gates
and one 2-to-1 gate will be inflated to a circuit of several thousand gates af-
ter increasing the number of inputs. Since the number of inputs determines the
number of OT operations, an approach that keeps the number of extra inputs
small is preferable. In fact, we show that increasing the number of inputs and
number of gates in the circuit for this problem is unnecessary.

Independent of our work, Lindell and Pinkas [14] propose to solve this problem
by cut-and-choose OT. This new solution indeed provides a great improvement
over [13] and shares roughly the same complexity with our solution. Furthermore,
both the cut-and-choose OT and our solution can be built upon the efficient OT
proposed by Naor and Pinkas [17] or Peikert, Vaikuntanathan, and Waters [19].
However, the particular use the latter OT in [14] needs two independently chosen
common reference strings, while our solution needs only one.

Our approach to selective failure. Inspired by the idea of committing Oblivious
Transfer proposed by Kiraz and Schoenmakers [10], we solve the problem of
selective failure by having the sender (P1 in Yao protocol) of the OT post-facto
prove that she ran the OT correctly by revealing the randomness used in the OT.
Normally, this would break the sender-security of the OT. However, in a cut-
and-choose framework, the sender is already opening many circuits, so the keys
used as inputs for the OT are no longer secret. Thus, the idea is that the sender
can prove that he executed the OT correctly for all circuits that are opened by
simply sending the random coins used in the OT protocol for those instances.
We stress that not every OT can be used here. Intuitively, a committing OT

392 A. Shelat and C.-H. Shen

is the OT with the binding property so that it is hard for a cheating sender to
produce random coins different from what she really used.

A critical point with this approach is that in order to simulate a malicious
P2, we need to use a coin-flipping protocol to pick which circuits to open. Con-
sequently, P1 cannot open the circuits to P2 until the coin-flipping is over; yet
the OT must be done before the coin-flipping in order to guarantee a proper
cut. So the order of operations of the protocol is critical to security. An efficient
committing OT based on Decisional Diffie-Hellman problem is presented in §2.3.

1.4 Optimal Cut-and-Choose Strategy

We find that most cut-and-choose protocols open s/2 out of the s copies of the
garbled circuit to reduce the probability that P1 succeeds in cheating. We show
that opening 3s/5-out-of-s is a better choice than s/2-out-of-s. In particular,
when s circuits are used, our strategy results in security level 2−0.32s in contrast
to 2−s/17 from [13] and 2−0.31s from [14]. Although the difference with the latter
work is only 1% less, we show the optimal parameters for the cut-and-choose
method in Appendix A, thereby establishing a close characterization of the limits
of the cut-and-choose method.

1.5 Comparison of Communication Complexity

We attempt to compare communication efficiency between protocols that use a
mix of light cryptographic primitives (such as commitments instantiated with
collision-resistant hash functions) and heavy ones (such as group operations that
rely on algebraic assumptions like discrete logarithm). To meaningfully do so,
we consider asymptotic security under reasonable assumptions about the growth
of various primitives with respect to the security parameter k. We assume that:

1. light cryptographic primitives have size Θ(k);
2. heavy cryptographic operations that can be instantiated with elliptic curves

or bilinear groups take size õ(k2).
3. heavy cryptographic operations that require RSA or prime order groups over

Z take size õ(k3).

The size assumption we make is quite conservative. It is based on the observa-
tion that in certain elliptic curve groups, known methods for computing discrete
logarithms of size n run in time Ln(1, 1/2). Thus, to achieve security of 2k, it
suffices to use operands of size õ(k2) by which we mean a value that is asymp-
totically smaller than k2 by factors of log(k). The computation bound follows
from the running time analysis of point multiplication (or exponentiation in the
case of Z∗

p) algorithms. As we discuss below, for reasonable security parameters,
however, the hidden constants in this notation make the difference much smaller.
Let k be a security parameter for cryptographic operations, let s be a statisti-
cal security parameter, and let |C| be the number of gates in the base circuit
computing f : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n.

Two-Output Secure Computation with Malicious Adversaries 393

– Jarecki and Shmatikov [8]: For each gate, the number of the communicated
group elements is at least 100, including the commitments of the garbled
values for input wires, the commitments of the doubly-encrypted entries,
and the ZK proof for the correctness of the gate. Moreover, for each input
or output wires, a ZK proof for conjunction/disjunction is required. Each
of the ZK proofs needs constant number of group elements. Finally, this
protocol assumes the decisional composite residuosity problem in an RSA
group; thus, each group element is of size õ(k3).

– Kiraz [9]: This approach uses an equality-checker framework that requires
O(ns2) commitments for checking P1’s input consistency. They solve the
selective failure attack with committing OT as we do. Moreover, to deal with
two-output functions, they add n extra bits to P1’s input, commit to all of
P1’s output keys, which include 2ns commitments and 2ns decommitments,
and a zero-knowledge OR-proof of size O(s).

– Lindell and Pinkas [13]: Each of the garbled gates requires 4k space for
four doubly-encrypted entries. Thus, for this approach, the communication
analysis is as follows: (1) s copies of the base circuit itself require s|C| gates;
(2) each of P1’s n input bits requires s2 light commitments for the consistency
check; (3) P2’s n input bits require max(4n, 8s) OT’s. Also, the MAC-based
two-output function computation add additional O(n2) gates to each of the
s copies of the circuit and additional 3n bits to P1’s input. Thus, the overall
communication cost to handle two-output function is O(n2sk + ns2k).

Table 1. Asymptotic Analysis of various two-party secure computation

communication

Base circuit P1’s input P2’s input Two-output

JS [8] |C| · õ(k3) n · õ(k3) n OT’s n · õ(k3)
K [9] Θ(|C| · sk) Θ(ns2k) n OT’s Θ(nsk) + Θ(s) · õ(k2)
LP07 [13] Θ(|C| · sk) Θ(ns2k) max(4n, 8s) OT’s Θ(n2sk + ns2k)
LP10 [14] Θ(|C| · sk) Θ(ns) · õ(k2) n OT’s Θ(n2sk + ns2k)
Our work Θ(|C| · sk) Θ(ns) · õ(k2) n OT’s Θ(ns) · õ(k2)

The recent work of [14] also considers a more efficient way to implement two-
party computation based on cut-and-choose OT and specific security assump-
tions. They report 13sn exponentiations and communication of 5sn + 14k + 7n
group elements. (Note we count bits above to compare commitments versus other
primitives.) Concretely, these parameters are similar to our parameters but rely
on more specific assumptions, and do not consider two-party outputs.

2 Building Blocks

For clarity purpose, the standard checks that are required for security have
been omitted. For example, in many cases, it is necessary to verify that an ele-
ment that has been sent is indeed a member of the right group. In some cases,

394 A. Shelat and C.-H. Shen

it is implicit that if a player detectably cheats in a sub-protocol, then the other
player would immediately abort execution of the entire protocol.

2.1 Consistency Check for the Generator’s Input

The cut-and-choose approach to compiling Yao circuits ensures that P1 submits
consistent input values for each copy of the evaluation-circuits. Recall that there
are e copies of the circuit which must be evaluated. Thus, for each input wire,
P1 must send e keys corresponding to an input bit 0 or 1. It has been well-
documented [16,10,22,13] that in some circumstances, P1 can gain information
about P2’s input if P1 is able to submit different input values for the e copies
of this input wire. The main idea of our solution is inspired by the claw-free
collections4 defined as follows:

Definition 1 (Claw-Free Collections in [7]). A three-tuple of algorithms
(G, D, F) is called a claw-free collection if the following conditions hold

1. Easy to evaluate: Both the index selecting algorithm G and the domain
sampling algorithm D are probabilistic polynomial-time, while the evaluating
algorithm F is a deterministic polynomial-time.

2. Identical range distribution: Let f bI (x) denote the output of F on input
(b, I, x). For any I in the range of G, the random variable f0

I (D(0, I)) and
f1
I (D(1, I)) are identically distributed.

3. Hard to form claws: For every non-uniform probabilistic polynomial-time
algorithm A, every polynomial p(·), and every sufficiently large n’s, it is true
that Pr[I ← G(1n); (x, y) ← A(I) : f0

I (x) = f1
I (y)] < 1/p(n).

With the claw-free collections, our idea works as follows: P2 first generates I
by invoking the index generating algorithm G(1k), where k is a security param-
eter. For each of her input bits, P1 invokes sampling algorithms D(I, 0) and
D(I, 1) to pick [m0,1, . . . , m0,s] and [m1,1, . . . , m1,s], respectively. P1 then con-
structs s copies of garbled circuit with range elements [f0

I (m0,1), . . . , f0
I (m0,s)]

and [f1
I (m1,1), . . . , f1

I (m1,s)] by associating f bI (mb,j) with P1’s input wire of bit
value b in the j-th garbled circuit. Let [j1, . . . , je] denote the indices of the garbled
circuits not checked in the cut-and-choose (evaluation-circuits). During the eval-
uation, P1 reveals [f bI (mb,j1), . . . , f bI (mb,je)] to P2 and proves in zero-knowledge
that P1 gets f bI (m

b
j1) and f bI (m

b
ji) via the same function f bI , for 2 ≤ i ≤ e.

However, in the course of developing our solution, we noticed that witness
indistinguishable proofs suffice in place of zero-knowledge proofs. For example,
consider the claw-free collection instantiated from the Discrete Logarithm as-
sumption, that is, let f bI (m) = gbhm, where I = (g, h, p, q) includes two primes
p and q such that p = 2q + 1, and distinct generators g and h of Z∗

p such
that 〈g〉 = 〈h〉 = q. After revealing [gbhmb,j1 , . . . , gbhmb,je] to P2, it is a natu-
ral solution that P1 proves in zero-knowledge to P2 the knowledge of (mb,ji −
mb,j1) given common input gbhmb,ji (gbhmb,j1)−1 = hmb,ji

−mb,j1 , for 2 ≤ i ≤ e.

4 It is well known that claw-free collections exist under either the Discrete Logarithm
assumption or Integer Factorization assumption [7].

Two-Output Secure Computation with Malicious Adversaries 395

The key insight here is that it is unnecessary for P1 to hide (mb,ji −mb,j1) from
P2 since [mb,j1 , . . . , mb,je] are new random variables introduced by P1 and b is
the only secret needed to be hidden from P2. Simply sending (mb,ji−mb,j1) to P2
will suffice a proof of checking P1’s input consistency without compromising P1’s
privacy. In other words, given [gbhmb,j1 , . . . , gbhmb,je , m′

2, . . . , m
′
e], if P2 confirms

that gbhmb,j1 = gbhmb,ji · hm′
i for 2 ≤ i ≤ e, then either P1’s input is consistent

so that m′
i = mb,ji −mb,j1 , or P1 is able to come up with a claw.

Note that extra work is only done for the input gates—and moreover, only
those of P1. All of the remaining gates in the circuit are generated as usual, that
is, they do not incur extra commitments. So, unlike solutions with committed
OT such as [8], asymmetric cryptography is only used for the input gates rather
than the entire circuit. To generalize the idea, we introduce the following notion.

Definition 2 (Malleable Claw-Free Collections). A four-tuple of algorithms
(G, D, F, R) is a malleable claw-free collection if the following conditions hold.

1. A subset of claw-free collections: (G, D, F) is a claw-free collection, and
the range of D and F are groups, denoted by (G1,
) and (G2, �) respectively.

2. Uniform domain sampling: For any I in the range of G, random variable
D(0, I) and D(1, I) are uniform over G1, and denoted by D(I) for simplicity.

3. Malleability: R : G1 → G2 runs in polynomial time, and for b ∈ {0, 1}, any
I in the range of G, and any m1, m2 ∈ G1, f bI (m1
m2) = f bI (m1) �RI(m2).

Consider the claw-free collection constructed above under the Discrete Loga-
rithm assumption, we know that it can become a malleable claw-free collection
simply by letting G1 = Zq, G2 = Z∗

p, and RI(m) = hm for any m ∈ G1.

2.2 Two-Output Functions

To handle two-output functions, we want to satisfy the notion that it might
be unfair in the sense that P2 could abort prematurely after circuit evaluation
and she gets her output. However, if P1 accepts the output given from P2, our
approach guarantees that this output is genuine. Namely, P2 cannot provide an
arbitrary value to be P1’s output. In particular, P2 cannot learn P1’s output
more than those deduced from P2’s own input and output.

Recall that it is a well-accepted solution to convert the garbled circuit com-
puting f(x, y) = (f1, f2) into the one computing g((x, p, a, b), y) = ((α, β), f2),
where α = f1 + p as a ciphertext of f1 and β = a · α + b as a MAC for the
ciphertext. Since P2 only gets the ciphertext of P1’s output, she does not learn
anything from the ciphertext. Also, given (α, β), P1 can easily verify the au-
thenticity of her output. However, we are not satisfied with the additional O(s2)
gates computing the MAC (s is the statistical security parameter) to each of
the s copies of the garbled circuit, which results in O(s3) extra garbled gates in
total. Indeed, the number of extra gates can easily exceed the size of the origi-
nal circuit when f is a simple function. Hence, we propose another approach to
authenticate P1’s output without the extra gates computing the MAC function.

While our approach also converts the circuit to output the ciphertext of P1’s
output, that is, from f(x, y) = (f1, f2) to f∗((c, x), y) = (λ, (f1⊕c, f2)), we solve

396 A. Shelat and C.-H. Shen

the authentication problem by the use of the public-key signature scheme and its
corresponding witness-indistinguishable proof. Each bit value of the output of
P1’s output gates is tied together with a signature specifying the value and the
location of the bit. On one hand, P2 can easily verify the signature during the
cut-and-choose phase (to confirm that the circuits are correctly constructed). On
the other hand, after the evaluation and giving P1 the evaluation result (f1⊕ c),
P2 can show the authenticity of each bit of the result by proving the knowledge
of its signature, that is, the signature of the given bit value from the right bit
location. Note that a bit location includes a bit index and a circuit index. In other
words, a bit location (i, j) indicates P1’s i-th output bit from the j-th garbled
circuit. While the bit index is free to reveal (since P1 and P2 have to conduct the
proof bit by bit anyway), the circuit index needs to be hidden from P1; otherwise,
P1 can gain information about P2’s input as we discussed above. We stress that
it is critical for P2 to provide a signature from the right location. Since during
the cut-and-choose phase, many properly signed signatures are revealed from
the check-circuits, if those signatures do not contain location information, they
can be used to convince P1 to accept arbitrary output.

Normally, an OR-proof will suffice the proof that the signature is from one of
the evaluation-circuits. Nevertheless, an OR proof of size O(s) for each bit of P1’s
n-bit output will result in a zero-knowledge proof of size O(ns). We therefore
adopt the technique from [4] in order to reduce the size of the proof to O(n+ s).
Let S = {j1, . . . , je} be the indices of all the evaluation-circuits. The idea is for P1
to send a signature of every element in S, denoted by [δ(j1), . . . , δ(je)]. By reusing
these signatures, P2 is able to perform each OR proof in constant communication.
More specifically, after the evaluation, P2 chooses one evaluation-circuit, say the
jl-th circuit, the result of which conforms with the majority of all the evaluation-
circuits. Let M = [m1, . . . ,mn] be P1’s output from the jl-th circuit. Recall that
P2 has both mi and the signature to (mi, i, jl), denoted by σ(mi, i, j), due to the
way the garbled circuits were constructed. To prove the authenticity of mi, P2
sends mi to P1, blinds signature δ(jl) and σ(mi, i, jl), and proves the knowledge
of “σ(mi, i, j) for some j ∈ S.” In other words, P2 needs to prove the knowledge
of σ(mi, i, j) and δ(j∗) such that j = j∗ for i = 1, . . . , n. The complete proof is
shown in Protocol 1. Due to the nonforgeability property of signature schemes,
P2 proves the knowledge of the signature and thus the authenticity of M.

One particular implementation of our protocol can use the Boneh-Boyen short
signature scheme [2] which is briefly summarized here. The Boneh-Boyen signa-
ture scheme requires the q-SDH (Strong Diffie-Hellman) assumption5 and bi-
linear maps6. Based on these two objects, the Boneh-Boyen signature scheme
includes a three-tuple of efficient algorithms (G, S, V) such that

5 q-SDF assumption in a group G of prime order p states that given g, gx, gx2
, . . . , gxq

,
it is infeasible to output a pair (c, g1/(x+c)) where c ∈ Z∗

p.
6 Let G1 and G2 be two groups of prime order p. A bilinear map is a map e : G1×G1 �→

G2 with the following properties: (1) for any u, v ∈ G1 and a, b ∈ Z, e(ua, vb) =
e(u, v)ab; (2) for any generator g of G1, e(g, g) 	= 1; and (3) for any u, v ∈ G1, it is
easy to compute e(u, v).

Two-Output Secure Computation with Malicious Adversaries 397

1. G(1k) generates key pair (sk, vk) such that sk = x ∈ Z∗
p and vk = (p, g, G1,

X), where G1 is a group of prime order p, g is a generator of G1, and X = gx.
2. S(sk, m) signs the message m with the signing key sk by σ(m) = g1/(x+m).
3. V (vk, m, σ) verifies the signature σ with vk by calculating e(σ, gmX). If the

result equals e(g, g), V outputs valid; otherwise, V outputs invalid.

Protocol 1. Proof of P1’s output authenticity

Common Input: ciphertext of P1’s output f1 ⊕ c = [m1, . . . , mn], the indices
of the evaluation-circuits S = {j1, . . . , je} and the public
key (p,G, g,X, Y) of the Boneh-Boyen signature scheme. In
particular, X = gx, and Y = gy.

P1 Input: the corresponding private key (x, y) of the signature scheme.
P2 Input: the signature vector [σ(b1, 1, jl), . . . , σ(bn, n, jl)] such that

σ(b, i, j) = g1/(bx+iy+j) and jl ∈ S.

P1
Z,{δ(j)}j∈S
 P2 P1 picks another generator h of G and a random z ∈ Z∗

p.
Then P1 sends [Z, δ(j1), . . . , δ(je)] to P2 such that

Z = hz and δ(j) = h1/(z+j).

P1
U1,...,Un,V	 P2 P2 picks u1, . . . , un, v ∈ Zp and computes Ui ← σ(bi, i, jl)ui

and V ← δ(jl)v. Then [U1, . . . , Un, V] is sent to P1.
P1

a1,...,an,b	 P2 P2 picks α, β1, . . . , βn, γ ∈ Zp and sends [a1, . . . , an, b] to P1,
where ai ← e(Ui, g)αe(g, g)βi and b← e(V, h)αe(h, h)γ .

P1
c
 P2 P1 picks c ∈ Zp at random and sends it to P2.

P1
zα,{zβi

},zγ	 P2 P2 sends zα ← α+c·jl, zβi ← βi−c·ui, and zγ ← γ−c·v back
to P1, who checks ai

?= e(Ui, X
miY i)c · e(Ui, g)zα · e(g, g)zβi

for i = 1, . . . , n and b
?= e(V, Z)c · e(V, h)zα · e(h, h)zγ . P1

aborts if any of the checks fails.

2.3 Committing Oblivious Transfer

The oblivious transfer (OT) primitive, introduced by Rabin [21], and extended
by Even, Goldreich, and Lempel [5] and Brassard, Crépeau and Robert [3] works
as follows: there is a sender with messages [m1, . . . , mn] and a receiver with a
selection value σ ∈ {1, . . . , n}. The receiver wishes to retrieve mσ from the sender
in such a way that (1) the sender does not “learn” anything about the receiver’s
choice σ and (2) the receiver “learns” only mσ and nothing about any other
message mi for i �= σ. Kiraz and Schoenmakers [10] introduced another notion
of OT called committing OT in which the receiver also receives a perfectly-hiding
and computationally-binding commitment to the sender’s input messages, and
the sender receives as output the values to open the commitment. Indeed, Kiraz
and Schoenmakers introduced this notion specifically for use in a Yao circuit
evaluation context. We adopt the idea behind their construction.

398 A. Shelat and C.-H. Shen

Formally, a one-out-of-two committing oblivious transfer OT 2
1 is a pair of in-

teractive probabilistic polynomial-time algorithms sender and receiver. During
the protocol, the sender runs with input messages ((m0, r0), (m1, r1)), while the
receiver runs with input the index σ ∈ {0, 1} of the message it wishes to re-
ceive. At the end of the protocol, the receiver outputs the retrieved message m′

σ

and two commitments comh(m0; r0), comh(m1; r1), and the sender outputs the
openings (r0, r1) to these commitments. Correctness requires that m′

σ = mσ for
all messages m0, m1, for all selections σ ∈ {0, 1} and for all coin tosses of the
algorithms. Here, we use the standard notion of simulation security.

Theorem 1. [19] If the Decisional Diffie-Hellman assumption holds in group
G, there exists a protocol that securely computes the committing OT 2

1.

Protocol 2 constructively proves Theorem 1. This protocol is a simple modifica-
tion of the OT protocols designed by Peikert, Vaikuntanathan, and Waters [19]
and later Lindell and Pinkas [14]. We simply add a ZK proof of knowledge in
intermediate steps. Intuitively, the receiver-security is achieved due to the Deci-
sional Diffie-Hellman assumption and the fact that the ZK proof of knowledge
is independent of the receiver’s input. On the other hand, the sender security
comes from the uniform distributions of Xi,j and Yi,j over G given that ri,j and
si,j are uniformly chosen and that the ZK proof has an ideal-world simulator
for the verifier (or the receiver in the OT). As described in [15], it is possible
to batch the oblivious transfer operations so that all n input keys (one for each
bit) to s copies of the garbled circuit are transferred in one execution.

Protocol 2. Oblivious transfer for retrieving P2’s input keys [14]

Common: A statistical security parameter s, a group G of prime order p,
and G’s generator g0

P1 Input: Two s-tuples [K0,1, . . . , K0,s] and [K1,1, . . . , K1,s].
P2 Input: σ ∈ {0, 1}

P1 Output: Commitment openings {Ki,j , ri,j , si,j}i∈{0,1},1≤j≤s

P2 Output: [Kσ,1, . . . , Kσ,s] and {comh(Ki,j ; ri,j , si,j)}i∈{0,1},1≤j≤s

P1
h0,g1,h1	 P2 P2 picks y, a ∈ Zp and sends (g1, h0, h1)← (gy

0 , ga
0 , ga+1

1) to P1.
P1

ZK PoK
	 P2 P2 proves that (h0, g1, h1) satisfies (h0 = ga
0) ∧ (h1

g1
= ga

1).
P1

g,h	 P2 P2 picks r ∈ Zp and sends g ← gr
σ and h← hr

σ to P1.
P1

{Xi,j ,Yi,j}
 P2 For i ∈ {0, 1}, 1 ≤ j ≤ s, P1 picks ri,j , si,j ∈ Zp and sends Xi,j

and Yi,j to P1, where Xi,j = g
ri,j

i h
si,j

i and Yi,j = gri,j hsi,j ·Ki,j .
P2 gets comh(Ki,j ; ri,j , si,j) = (Xi,j , Yi,j) and computes key
Kσ,j ← Yσ,j ·X−r

σ,j .

Two-Output Secure Computation with Malicious Adversaries 399

3 Main Protocol

Here we put all the pieces together to form the complete protocol. Note that
comh(K; t) denotes a perfectly-hiding commitment to K with opening t, and
comb(K; t) denotes a perfectly-binding commitment to K with opening t.

Common input: a security parameters k, a statistical security parameter
s, a malleable claw-free collection (Gclw, Dclw, Fclw, Rclw), a signature scheme
(Gsig, Ssig, Vsig), a two-universal hash function H : {0, 1}∗ → {0, 1}k, and the
description of a boolean circuit C computing f(x, y) = (f1, f2), where |x| = 2n
(including the extra n-bit random input) and |y| = |f1| = |f2| = n.

Private input: P1 has the original input x1 . . . xn and the extra random input
x = xn+1 . . . x2n, while P2 has input y = y1y2 . . . yn.
Private output: P1 receives output f1(x, y), while P2 receives output f2(x, y).

1. P2 runs the index selecting algorithm I ← Gclw(1k) and sends I to P1.
2. Committing OT for P2’s input: For every 1 ≤ i ≤ n and every 1 ≤ j ≤ s,

P1 picks a random pair of k-bit strings (K0
i,j , K

1
i,j), which is associated with

P2’s i-th input wire in the j-th circuit. Both parties then conduct n instances
of committing OT in parallel. In the i-th instance,
(a) P1 uses input ([K0

i,1, . . . , K
0
i,s], [K

1
i,1, . . . , K

1
i,s]), whereas P2 uses input yi.

(b) P1 gets the openings ([t0i,1, . . . , t
0
i,s], [t

1
i,1, . . . , t

1
i,s]) to both commitment

vectors, whereas P2 gets the vector of her choice [Kyi

i,1, . . . , K
yi

i,s] and the
commitments to both vectors, ie., [comh(K0

i,1; t
0
i,1), . . . , comh(K0

i,s; t
0
i,s)]

and [comh(K1
i,1; t

1
i,1), . . . , comh(K1

i,s; t
1
i,s)].

3. Garbled circuit construction: P1 runs the key generating algorithm
Gsig(1k) to generate a signature key pair (sk1, pk1) and the domain sam-
pling algorithm Dclw(I) to generate domain element mb

i,j , for b ∈ {0, 1},
1 ≤ i ≤ 2n, 1 ≤ j ≤ s. Next, P1 constructs s independent copies of garbled
version of C, denoted by GC1, . . . , GCs. In addition to Yao’s construction,
circuit GCj also satisfies the following:
(a) Jbi,j is associated with value b to P1’s i-th input wire, where Jbi,j is ex-

tracted from group element Fclw(b, I, mb
i,j), ie., Jbi,j=H(Fclw(b, I, mb

i,j)).
(b) Kb

i,j chosen in Step 2 is associated with value b to P2’s i-th input wire.
(c) b||Ssig(sk1, (b, i, j)) is associated with bit value b to P1’s i-th output wire.

4. For b ∈ {0, 1}, 1 ≤ i ≤ 2n, 1 ≤ j ≤ s, P1 sends circuits GC1, . . . , GCs and the
commitments to Fclw(b, I, mb

i,j), denoted by comb(Fclw(b, I, mb
i,j); r

b
i,j) to P2.

5. Cut-and-choose: P1 and P2 conduct the coin flipping protocol to generate a
random tape, by which they agree on a set of check-circuits. Let T be the re-
sulting set, that is, T ⊂ {1, . . . , s} and |T | = 3s/5. For every j ∈ T , P1 sends
to P2 P1s of garbled circuit GCj , including [Kb

1,j , . . . , K
b
n,j], [tb1,j, . . . , t

b
n,j],

[mb
1,j , . . . , m

b
2n,j], [rb1,j , . . . , r

b
2n,j], for b ∈ {0, 1}, and the random keys asso-

ciated with each wire of GCj . P2 check the following:
(a) The commitment from Step 2 is revealed to Kb

i,j with tbi,j .

400 A. Shelat and C.-H. Shen

(b) The commitment from Step 4 is revealed to Fclw(b, I, mb
i,j) with rbi,j .

(c) GCj is a garbled version of C∗ that is correctly built. In particular,

– H(Fclw(b, I, mb
i,j)) is associated with value b to P1’s i-th input wire;

– Kb
i,j is associated with bit value b to P2’s i-th input wire;

– Vsig(pk1, (b, i, j), σ(b, i, j)) = valid, where σ(b, i, j) is the signature
comes along with bit value b from P1’s i-th output wire;

– the truth table of each boolean gate is correctly converted to the
doubly-encrypted entries of the corresponding garbled gate.

If any of the above checks fails, P2 aborts.
6. Consistency check for P1’s inputs: Let e = 2s/5 and {j1, . . . , je} be

the indices of evaluation-circuits. P1 then decommits to her input keys for
the evaluation-circuits by sending ([rx1

1,j1 , . . . , r
x2n

2n,j1], . . . , [r
x1
1,je , . . . , r

x2n

2n,je]) to
P2. Let [M1,j1 , . . . , M2n,j1], . . ., [M1,je , . . . , M2n,je] be the resulting decom-
mitments. Next, P1 proves the consistency of her i-th input bit by sending
[mxi

i,j2

 (mxi

i,j1
)−1, . . . , mxi

i,je

 (mxi

i,j1
)−1] to P2, who then checks if

Mi,jl = Mi,j1 �Rclw(I, mxi

i,jl

 (mxi

i,j1
)−1), for l = 2, . . . , e.

P2 aborts if any of the checks fails. Otherwise, let Jxi

i,jl
= H(Mi,jl).

7. Circuit evaluation: For every j ∈ {j1, . . . , je}, P2 now has key vectors
[Jx1

1,j , . . . , J
x2n

2n,j] (from Step 6) representing P1’s input x and [Ky1
1,j, . . . , K

yn

n,j]
(from Step 2) representing P2’s input y. So P2 is able to do the evaluation on
circuit GCj and get P1’s output [m1,j ||σ(m1,j), . . . ,mn,j ||σ(mn,j)] and P2’s
output [n1,j , . . . ,nn,j], where mi,j ,ni,j ∈ {0, 1}. Let Mj = [m1,j, . . . ,mn,j]
and Nj = [n1,j , . . . ,nn,j] be the n-bit outputs for P1 and P2, respectively.
P2 then chooses index jl such that Mjl and Njl appear more than e/2 times
in vectors [Mj1 , . . . ,Mje] and [Nj1 , . . . ,Nje], respectively. P2 sends Mjl to
P1 and takes Njl as her final output. If no such jl exists, P2 aborts.

8. Verification to P1’s output: To convince P1 the authenticity of Mjl with-
out revealing jl, P1 generates another signature key pair (sk2, pk2). Then P1
signs the indices of all the evaluation-circuits and sends the results to P2.
In particular, P1 sends to P2 the public key pk2 and a signature vector
[δ(j1), . . . , δ(je)], where δ(j) = Ssig(sk2, j). The signature is verified by P2
by checking Vsig(pk2, j, δ(j)) = valid, for every j ∈ {j1, . . . , je}. Next, P2
proves to P1 in witness-indistinguishable sense the knowledge of σ(mi,jl , i, j)
(a signature signed with sk1) and δ(j∗) (a signature signed with sk2) such
that j and j∗ are equivalent, for 1 ≤ i ≤ n. P1 aborts if the proof is not
valid; otherwise, P1 takes Mjl ⊕ (xn+1, . . . , x2n) as her final output.

Theorem 2. Let f : {0, 1}n×{0, 1}n → {0, 1}n×{0, 1}n be any function. Given
a secure committing oblivious transfer protocol, a perfectly-hiding commitment
scheme, a perfectly-binding commitment scheme, a malleable claw-free family,
and a pseudo-random function family, the Main protocol securely computes f .

We have omitted the standard simulation-based definition of “securely computes
f” for space. Roughly, this definition requires a simulator for the corrupted

Two-Output Secure Computation with Malicious Adversaries 401

evaluator, and a simulator for the corrupted generator that is able to generate
transcripts given only oracle access to either the evaluator or generator (respec-
tively) that are indistinguishable from the transcripts produced in real interac-
tions between the corrupted generator and honest evaluator or honest generator
and corrupted evaluator. (A simulator for when both parties are corrupted is
also required but trivial.) The proof of Theorem 2 is omitted for space.

4 Experimental Results

We produced an implementation of our protocol to demonstrate its practical
benefits. Our implementation takes the boolean circuit generated by Fairplay
compiler as input. The encryption function used to construct garbled gates is
defined as EncJ,K(m) = (m⊕SHA-256(J)⊕SHA-256(K))1...k, where |J | = |K| =
|m| = k, and S1...k denotes the least significant k bits of S. Here SHA-256 is
modeled as a pseudorandom function. The choice of SHA-256 is to make a fair
comparison as it is used in [20].

Following Pinkas et. al [20], we set the security level to 2−40 and the security
parameter k (key length) to 128-bit. In the first experiment, P1 and P2 hold a 32-
bit input x = (x31x30 . . . x0)2 and y = (y31y30 . . . y0)2, respectively. They want
to compute f(x, y) = (f1, f2) such that after the secure computation, P1 receives
f1 =

∑31
i=0 xi⊕ yi, and P2 receives f2 as the result of comparison between x and

y. The 6 gates of overhead we incur in the first experiment relate to our method
for two-output functions. In the second experiment, P2 has a 128-bit message
block while P1 has a 128-bit encryption key. They want to securely compute the
AES encryption, and only P2 gets the ciphertext.

We ran our experiments on two machines: slower and fast, where slower
runs OS X 10.5 with Intel Core 2 Duo 2.8 GHz and 2GB RAM, and fast runs
CentOS with Intel Xeon Quad Core E5506 2.13 GHz and 8GB RAM. slower
is not as powerful as the machine used in [20] (Intel Core 2 Duo 3.0 GHz, 4GB
RAM), and fast is the next closest machine that we have.

Table 2 reports the best numbers from [20]. We note that [20] applies the
Garbled Row Reduction technique so that even non-XOR gates can save 25% of

Table 2. The performance comparison with [20]

Gates Time (s) Totals
Base Overhead Non-XOR Precomp OT Calc Time (s) KBytes

(f1, f2) 531 2,250 278 117 16 39 172 140,265
Ours (on slower) 531 6 237 35 15 21 71 5,513
Ours (on fast) 531 6 237 27 11 15 53 5,513

(λ,AESx(y)) 33,880 12,080 11,490 483 34 361 878 406,010
Ours (on slower) 33,880 0 11,286 138 58 69 265 190,122
Ours (on fast) 33,880 0 11,286 98 44 50 192 190,122

402 A. Shelat and C.-H. Shen

Table 3. The running time (in seconds) of two experiments on machine slower

f(x, y) = (f1, f2) f(x, y) = (λ, AESx(y))

P1 P2 Sum (s) P1 P2 Sum (s)

Precomp Time 35.4 0.0 35.4 137.7 0.0 137.7
OT Time 7.9 6.7 14.6 31.9 26.3 58.2
Cut-and-Choose 0.0 14.7 14.7 0.0 44.4 44.4
Input Check 0.0 3.0 3.0 0.0 10.0 10.0
Eval Time 0.0 3.4 3.4 0.0 14.1 14.1
Two-output 0.1 0.0 0.1 0.0 0.0 0.0

Total (s) 43.4 27.8 71.2 169.6 94.8 264.4

comm. for each stage (KBytes)

Circuit construction 2, 945 53.42%
Oblivious transfer 675 12.25%
Cut-and-choose 1, 813 32.89%
P1’s input consistency 76 1.38%
P1’s output validity 3 0.01%

Total communication 5,513 100.00%

(a)

Semi-honest Adversaries

This work [20]

No. of gates 531 531
Comm. (KBytes) 23 22

Malicious Adversaries

No. of gates 537 2, 781
Comm. (KBytes) 5, 513 167, 276

(b)

Fig. 3. (a) Communication cost for Experiment 1 by stages for our solution given
statistical security parameter s = 125 and security parameter k = 128. (b) The circuit
size and communication cost comparison with [20] (which also ensures the cheating
probability is limited below 2−40).

the communication overhead. A future version of our protocol can also reap this
25% reduction since the technique is compatible with our protocol.

Our implementation involves a program for P1 and one for P2. For the purpose
of timing, we wrote another program that encapsulates both of these programs
and feeds the output of one as the input of the other and vice versa. Timing
routines are added around each major step of the protocol and tabulated in
Table 3. This timing method eliminates any overhead due to network transmis-
sion, which we cannot reliably compare. The reported values are the averages
from 5 runs.

We implemented our solution with the PBC (Pairing Based Cryptography)
library [1] for testing. The components of our protocol, including the claw-free
collections, the generator’s input consistency check, and the generator’s output
validity check, are built on top of the elliptic curve y2 = x3+3 over the field Fq for
some 80-bit prime q. We have made systems-level modifications to the random

Two-Output Secure Computation with Malicious Adversaries 403

comm. for each stage (KBytes)

Circuit construction 99, 408 52.29%
Oblivious transfer 2, 699 1.42%
Cut-and-choose 87, 585 46.16%
P1’s input consistency 256 0.13%
P1’s output validity 0 0.00%

Total communication 190,122 100.00%

(a)

Semi-honest Adversaries

This work [20]

No. of gates 33, 880 33, 880
Comm. (KBytes) 795 503

Malicious Adversaries

No. of gates 33, 880 45, 960
Comm. (KBytes) 190, 122 406, 010

(b)

Fig. 4. (a) Communication cost for Experiment 2 by stages for our solution given
statistical security parameter s = 125 and security parameter k = 128.

bit sampling function of the PBC library (essentially to cache file handles and
eliminate unnecessary systems calls).

In Table 4, we list the results of the MAC-based two-output function handling
and ours. The MAC approach introduces extra 16,384 (1282) non-XOR gates to
the AES circuit, whereas the original AES circuit has only 11,286 non-XOR
gates. Since the number of non-XOR gates is almost doubled in the MAC-based
approach, their circuit construction and evaluation need time about twice as
much as ours. Moreover, the MAC-based approach has twice as many input bits
as ours so that the time for P1’s input consistency has doubled.

Table 4. Computation time (in seconds) of f(x, y) = (AESx(y), λ) running on machine
slower under different two-output handling methods

MAC two-output approach Our two-output approach

P1 P2 Subtotal P1 P2 Subtotal

Precomp Time 498.9 0.0 498.9 294.1 0.0 294.1
OT Time 32.0 26.3 58.3 31.9 26.2 58.1
Cut-and-Choose 0.0 158.6 158.6 0.0 185.3 185.3
Input Check 0.0 40.4 40.4 0.0 19.8 19.8
Eval Time 0.0 50.6 50.6 0.0 24.4 24.4
Two-output 0.0 0.0 0.0 0.7 0.6 1.3

Total 530.9 275.9 806.8 326.7 256.3 583.0

References

1. Pairing-Based Cryptography Library (2006), http://crypto.stanford.edu/pbc/
2. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles and the SDH

Assumption in Bilinear Groups. Journal of Cryptology 21, 149–177 (2008)

http://crypto.stanford.edu/pbc/

404 A. Shelat and C.-H. Shen

3. Brassard, G., Crépeau, C., Robert, J.M.: All-or-Nothing Disclosure of Secrets.
In: Odlyzko, A. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer,
Heidelberg (1987)

4. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership
and Range Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252. Springer, Heidelberg (2008)

5. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts.
Communications of ACM 28, 637–647 (1985)

6. Goldreich, O., Micali, S., Wigderson, A.: How to Play ANY Mental Game. In: 19th
Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM, New York
(1987)

7. Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology 9, 167–189 (1996)

8. Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Commit-
ted Inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114.
Springer, Heidelberg (2007)

9. Kiraz, M.: Secure and Fair Two-Party Computation. Ph.D. thesis, Technische
Universiteit Eindhoven (2008)

10. Kiraz, M., Schoenmakers, B.: A Protocol Issue for The Malicious Case of Yao’s
Garbled Circuit Construction. In: 27th Symposium on Information Theory in the
Benelux, pp. 283–290 (2006)

11. Kiraz, M., Schoenmakers, B.: An Efficient Protocol for Fair Secure Two-Party
Computation. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 88–105.
Springer, Heidelberg (2008)

12. Kolesnikov, V., Schneider, T.: Improved Garbled Circuit: Free XOR Gates and Ap-
plications. In: Aceto, L., Damg̊ard, I., Goldberg, L., Halldórsson, M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008)

13. Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation
in the Presence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

14. Lindell, Y., Pinkas, B.: Secure Two-Party Computation Via Cut-and-Choose Obliv-
ious Transfer. Crypto ePrint Archive (2010), http://eprint.iacr.org/2010/284

15. Lindell, Y., Pinkas, B., Smart, N.: Implementing Two-Party Computation Effi-
ciently with Security Against Malicious Adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg
(2008)

16. Mohassel, P., Franklin, M.: Efficiency Tradeoffs for Malicious Two-Party Compu-
tation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 458–473. Springer, Heidelberg (2006)

17. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 791. Springer, Heidelberg (1999)

18. Nielsen, J., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)

19. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

20. Pinkas, B., Schneider, T., Smart, N., Williams, S.: Secure Two-Party Computation
Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267.
Springer, Heidelberg (2009)

http://eprint.iacr.org/2010/284

Two-Output Secure Computation with Malicious Adversaries 405

21. Rabin, M.: How to Exchange Secrets by Oblivious Transfer. Tech. Rep. TR-81,
Harvard Aiken Computation Laboratory (1981)

22. Woodruff, D.: Revisiting the Efficiency of Malicious Two-Party Computation.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96. Springer,
Heidelberg (2007)

23. Yao, A.: Protocols for Secure Computations. In: 23rd Annual Symposium on Foun-
dations of Computer Science, pp. 160–164. IEEE Computer Society, Los Alamitos
(1982)

A Optimal Choice in Cut-and-Choose Strategy

According to the cut-and-choose strategy, P2 chooses e copies of the garbled
circuits and asks P1 to open the rest (s− e). After the verification, P2 evaluates
the rest e copies of the circuits and takes the majority output as her output. A
natural question is: Under the assumption that P1’s inputs are consistent, how
many circuits does P2 evaluate in order to minimize the probability for P1’s best
cheating strategy to succeed?

The assumption is valid due to the consistency check on P1’s input. Given
that s and e are fixed and known to P1, let b be the number of bad circuits
created by P1. A circuit is bad if either the circuit is wrongly constructed or P2’s
inputs are selectively failed via OT. The goal is to find e and b such that the
probability that P1 cheats without getting caught

(
s−b
s−e

)
/
(
s

s−e
)

is minimized.
We first claim that P1’s best cheating strategy is to produce b = �e/2� + 1

bad circuits. Indeed, if b ≤ �e/2�, P2’s output will not get affected since the
faulty outputs will be overwhelmed by majority good ones. Also, the more bad
circuits, the more likely that P1 will get caught since

(
s−(b−1)
s−e

)
>
(
s−b
s−e

)
. So the

best strategy for P1 to succeed in cheating is to construct as few bad circuits
as possible while the majority of evaluation circuits are bad, which justifies the
choice of b.

Our next goal is to find the e that minimizes Pr(e) =
(
s−� e

2 �−1
s−e

)
/
(
s

s−e
)
. To

get rid of the troublesome floor function, we will consider the case when e is
even and odd separately. When e = 2k for some k ∈ N such that k ≤ s

2 , let
Preven(k) =

(
s−k−1
s−2k

)
/
(

s
s−2k

)
. Observer that Preven(k+1)

Preven(k) = (2k+1)(2k+2)
(s−k−1)k . It is not

hard to solve the quadratic inequality and come to the result that

Preven(k + 1)
Preven(k)

≤ 1 when 0 < k ≤ 1
10

(
s− 7 +

√
(s− 7)2 − 40

)
def= α.

In other words, Preven(k) ≥ Preven(k + 1) when 0 < k ≤ α; and Preven(k) <
Preven(k + 1) when α < k ≤ s

2 . Therefore, Preven is minimal when k = �α�.
Similarly, when e = 2k + 1, the probability Prodd(k) =

(
s−k−1
s−2k−1

)
/
(

s
s−2k−1

)
is

minimal when k = �β�, where β = 1
5 (s− 7). In summary,{

Preven(e) is minimal when e = 2�α�;
Prodd(e) is minimal when e = 2�β�+ 1,

and Pr(e)’s minimum is one of them.

Efficient Non-interactive Secure Computation

Yuval Ishai1,�, Eyal Kushilevitz1,��, Rafail Ostrovsky2,� � �, Manoj Prabhakaran3,†,
and Amit Sahai2,‡

1 Dept. of Computer Science, Technion, Haifa, Israel
{yuvali,eyalk}@cs.technion.il

2 University of California, Los Angeles
{rafail,sahai}@cs.ucla.edu

3 University of Illinois, Urbana-Champaign
mmp@cs.uiuc.edu

Abstract. Suppose that a receiver R wishes to publish an encryption of her se-
cret input x so that every sender S, holding an input y, can reveal f(x, y) to R
by sending her a single message. This should be done while simultaneously pro-
tecting the secrecy of y against a corrupted R and preventing a corrupted S from
having an unfair influence on the output of R beyond what is allowed by f .

When the parties are semi-honest, practical solutions can be based on Yao’s
garbled circuit technique. However, for the general problem when the parties, or
even S alone, may be malicious, all known polynomial-time solutions are highly
inefficient. This is due in part to the fact that known solutions make a non-black-box
use of cryptographic primitives, e.g., for providing non-interactive zero-knowledge
proofs of statements involving cryptographic computations on secrets.

Motivated by the above question, we consider the problem of secure two-party
computation in a model that allows only parallel calls to an ideal oblivious trans-
fer (OT) oracle with no additional interaction. We obtain the following results.

– Feasibility. We present the first general protocols in this model which only
make a black-box use of a pseudorandom generator (PRG). All previous OT-
based protocols either make a non-black-box use of cryptographic primitives
or require multiple rounds of interaction.

– Efficiency. We also consider the question of minimizing the asymptotic num-
ber of PRG calls made by such protocols. We show that polylog(κ) calls are
sufficient for each gate in a (large) boolean circuit computing f , where κ
is a statistical security parameter guaranteeing at most 2−κ simulation er-
ror of a malicious sender. Furthermore, the number of PRG calls per gate
can be made constant by settling for a relaxed notion of security which al-
lows a malicious S to arbitrarily correlate the event that R detects cheating

� Work done in part while visiting UCLA. Supported by ERC Starting Grant 259426, ISF
grant 1361/10, and BSF grant 2008411.

�� Work done in part while visiting UCLA. Supported by ISF grant 1361/10 and BSF grant
2008411.

� � � Research supported in part from NSF grants 0830803 and 0916574, BSF grant 2008411, and
grants from Okawa Foundation, IBM, and Lockheed-Martin Corporation.

† Supported by NSF grant CNS 07-47027.
‡ Research supported in part from NSF grants 0916574, 0830803, 0716389, and 0627781,

BSF grant 2008411, a Google Research Award, a Xerox Foundation Grant, an equipment
grant from Intel, and an Okawa Foundation Research Grant.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 406–425, 2011.
c© International Association for Cryptologic Research 2011

Efficient Non-interactive Secure Computation 407

with the input of R. This improves over the state of the art also for inter-
active constant-round black-box protocols, which required Ω(κ) PRG calls
per gate, even with similar relaxations of the notion of security.

Combining the above results with 2-message (parallel) OT protocols in the CRS
model, we get the first solutions to the initial motivating question which only
make a black-box use of standard cryptographic primitives.

1 Introduction

This work is motivated by the following variant of the problem of computing on en-
crypted data [42,43]. Suppose that a receiver R wishes to publish a semantically secure
encryption of her secret input x so that any sender S, holding an input y, can reveal
f(x, y) to R by sending her a single message. (The message can be seen as an encryp-
tion of f(x, y) that the receiver can decrypt). We want this process to protect the secrecy
of y against a corrupted R and, at the same time, prevent a corrupted S from having an
unfair influence on the output of R beyond what is allowed by f . We refer to this flavor
of computing on encrypted data as non-interactive secure computation (NISC).

As a concrete motivating scenario for NISC, consider a receiver Roberta who wishes
to publish an encrypted version of her personal profile x on her public web page towards
finding a suitable partner for dating. A solution to our problem would allow an arbitrary
sender Sam, with personal profile y, to send an email message to Roberta which reveals
his verifiable contact information only if the two profiles match. (The matching criteria
can either be determined by a public algorithm which is embedded into f , or alterna-
tively specified in Roberta’s secret profile). In order to protect the secrecy of Roberta’s
profile x, its encryption should be semantically secure. In order to protect the secrecy of
Sam’s profile y, he should be ensured that no information is revealed to Roberta other
than what is implied by the output of f . Finally, to help protect Roberta against eager
senders who try to force a match, she should be ensured that every strategy of such a
sender corresponds to some valid profile y.

Standard techniques for secure computation and computing on encrypted data
perform quite well when the parties are guaranteed to be semi-honest. For instance,
practical NISC protocols in this setting can be obtained by combining Yao’s garbled
circuit technique [44,31] and any two-message oblivious transfer (OT) protocol [7,14].
Low-communication (but at this point less practical) solutions can be obtained using
homomorphic encryption for general functions [13] or for restricted classes of func-
tions [30,6,22,33].

For some of the above protocols, protecting S against a malicious R can come at a
relatively low cost. In protocols based on Yao’s construction this can be done (in the
CRS model) by using efficient 2-message UC-secure OT protocols [39] (see also [11]).
However, known techniques for protecting R against a malicious S either involve ad-
ditional rounds of interaction [32] or are highly inefficient. For instance, this is the
case if S is required to prove, using non-interactive zero-knowledge (NIZK), that he
constructed a valid garbled circuit [7,17]). Such proofs seem very costly even with the
best known NIZK techniques. Moreover, even from a qualitative point of view, such
NIZK-based solutions leave much to be desired in that they inherently require to make

408 Y. Ishai et al.

a non-black-box use of the underlying cryptographic primitives. For instance, while the
semi-honest version of Yao’s protocol can be implemented by making a black-box use
of (parallel) 2-message OT and a pseudorandom generator (PRG), this is not the case
for a NIZK-based variant which is secure against malicious senders.

The above state of affairs motivates the study of NISC protocols which only make a
black-box use of standard cryptographic primitives. We further simplify the problem by
allowing S and R to engage in parallel invocations of an ideal OT oracle, but without
allowing any additional interaction1. We refer to such a protocol as a NISC protocol
in the OT-hybrid model, or NISC/OT protocol for short. More formally, a NISC/OT
protocol for f(x, y) is a protocol which UC-securely realizes f using only parallel calls
to an ideal OT oracle.

Our main motivation for considering this a good model for NISC is the aforemen-
tioned existence of efficient UC-secure 2-message implementations of OT in the CRS
model. Indeed, using the UC composition theorem [8], NISC/OT protocols can be com-
bined with such 2-message OT protocols to yield NISC protocols in the CRS model that
have the same communication pattern as in the initial motivating example.

Additional advantages of OT-based protocols include the generality advantage of
being able to realize OT in a variety of models and under a variety of standard assump-
tions, as well as efficiency advantages such as the possibility of precomputing the neces-
sary OTs [4,2] and the possibility to amortize the cost of this precomputation [3,36,18].
See [24] for further discussion.

We turn to the feasibility question of minimizing the assumptions on which NISC/OT
protocols can be based. In the OT-hybrid model, any polynomial-time computable func-
tionality can be efficiently realized unconditionally [16,28,24]. However, it is wide open
whether the same is true for constant-round protocols. (This question is related to the
corresponding question in the honest-majority MPC setting [5], which in turn is re-
lated to other wide open questions [19]). Given the lack of progress on this front, a
second best alternative is to base general NISC/OT protocols on any one-way function,
or equivalently a PRG. As noted above, Yao’s protocol provides such a solution in the
semi-honest model. Moreover, it is shown in [24] (see Appendix B of [23]) how to get
a similar protocol in the malicious NISC/OT model; however, this protocol inherently
makes a non-black-box use of the PRG. This motivates the following main question:

Are there NISC/OT protocols for general functions which only make a black-
box use of a PRG?

A second goal of this work is to push the asymptotic efficiency limits of constant-
round black-box protocols by minimizing the number of calls to the underlying crypto-
graphic primitive. Existing constant-round black-box protocols in the OT-hybrid model
(such as [34,32] and their variants) require Ω(κ) calls to a PRG (or symmetric encryp-
tion) for each gate in the circuit, where κ is a statistical security parameter guaranteeing
at most 2−κ simulation error for a malicious sender2. This should be compared to the

1 It is also useful to allow a message from the sender to the receiver which is independent of the
receiver’s OT choices; such a message can be realized in the pure parallel-OT hybrid model at
the cost of one additional OT.

2 The “LEGO protocol” [38] reduces this overhead by a factor of log |C|, where |C| is the size
of the circuit, at the expense of employing a homomorphic commitment primitive.

Efficient Non-interactive Secure Computation 409

best protocols in the semi-honest model [44,31] which require only O(1) PRG calls per
gate.

1.1 Our Results

We obtain the following main results.

– Feasibility. We present the first general NISC/OT protocols which only make a
black-box use of a PRG. All previous protocols in the OT-hybrid model either make
a non-black-box use of cryptographic primitives [24] or require multiple rounds of
interaction (cf. [32]).

– Efficiency. We also consider the question of minimizing the asymptotic number of
PRG calls made by such protocols. We show that polylog(κ) calls are sufficient for
each gate in a (large) boolean circuit computing f , where κ is a statistical security
parameter guaranteeing at most 2−κ simulation error of a malicious sender3. Fur-
thermore, the number of PRG calls per gate can be made constant by settling for
a relaxed notion of security which allows a malicious S to arbitrarily correlate the
event that R detects cheating with the input of R.
This improves over the state of the art also for interactive constant-round black-box
protocols, which required Ω(κ) PRG calls per gate, even with similar relaxations
of the notion of security.

Combining the above results with 2-message (parallel) OT protocols in the CRS model,
we get the first solutions to the initial motivating question which only make a black-box
use of standard cryptographic primitives.

On re-using public keys. A standard security caveat that applies to many non-interactive
protocols in the public key model (cf. [29,27,12,9]) is that re-using the same receiver’s
public key for multiple sender messages may be problematic if the sender can learn
the receiver’s output on these messages. Indeed, the standard (UC-)security guarantee
of our protocols only applies when an independent receiver message is used in each
session. While the receiver’s output does not reveal additional information about the
receiver’s input (other than what is allowed by f), it may reveal information about
the secret randomness embedded in the public key, which may in turn compromise the
receiver’s security when leaking multiple outputs without refreshing the public key. Our
protocols are indeed susceptible to this type of attacks.

We stress that re-using the same public key for multiple sender messages is always
safe (in the sense of providing the natural “real-ideal” security guarantee) if the re-
ceiver refreshes the public key after revealing an output or using it in another protocol.
This seems to be a very mild requirement in many practical scenarios in which sender
messages are infrequent or can be aggregated before taking any action.

Similarly to [9], we can provide t-time reusable public keys (for which up to t out-
puts can be revealed before the key needs to be refreshed) at a much better cost than
publishing t independent public keys. We note, however, that (non-black-box) NIZK-
based NISC protocols are not susceptible at all to this type of attacks, and leave the

3 The simulation error of the receiver is close to the distinguishing advantage of the PRG (as in
Yao’s original protocol) and can be made 2−Ω(κ) by choosing a PRG with similar strength.

410 Y. Ishai et al.

possibility of obtaining a similar result using black-box constructions as an interesting
open question.

On asymptotic vs. practical efficiency. As is usual in theoretical work in cryptography,
we focus on optimizing asymptotic efficiency and do not try to optimize or even an-
alyze the underlying hidden constants. Moreover, in doing so we focus on the typical
case where the circuit size is much bigger than the input size which in turn is much
bigger than the security parameter, and sometimes ignore low-order additive terms that
depend on the smaller quantities. These optimization goals may conflict with practical
efficiency. The question of optimizing NISC protocols towards practical implementa-
tions is left for future work.

1.2 Overview of Techniques

At a high level, our NISC/OT protocols are obtained using the following modular steps:

1. Statistically secure NISC/OT protocols for NC0 functions. Here we can rely on a
previous protocol from [24] (see Appendix B of [23]). We also present an asymp-
totic efficiency improvement by applying “MPC in the head” techniques in the spirit
of [20]. This is presented in Section 3.

2. Computationally secure NISC protocols for general functions in the NC0-hybrid
model (allowing the parties a single call to an ideal NC0 functionality). Here we
combine a particular implementation of Yao’s garbled circuit construction with the
use of unconditional one-time MACs to guarantee that a malicious sender can ei-
ther deliver a correct output to the receiver or the receiver detects cheating and
aborts. However, these protocols allow a malicious sender to correlate the event of
the receiver aborting with the receiver’s input. We present two variants of the pro-
tocol: the first (Section 5) allows arbitrary correlations with the receiver’s inputs,
and is the most efficient protocol we obtain in this work. The second variant (Sec-
tion 6) is slightly less efficient but allows only correlations that can be expressed as
disjunctions of circuit wires and their negations.

3. Finally, we present (in Section 7) an efficient general reduction of full security
to security with the latter type of “correlated abort”. The idea is to transform the
original circuit into a new, randomized, circuit in which disjunctions of wires or
their negations provide essentially no information about the input. A special case
of this transformation is implicit in [25]. We reduce the general case to honest-
majority MPC in the semi-honest model and instantiate it using a recent efficient
protocol from [10].

We also present (in Section 4) a direct ad-hoc construction of NISC protocols in the
NC0-hybrid model, which is asymptotically less efficient but is somewhat simpler than
that obtained by combining steps 2 and 3 above.

2 Preliminaries

Below we define a non-interactive secure computation scheme (NISC). NISC may in-
volve a trusted setup, an ideal implementation of some (non-reactive) functionality H.
We shall refer to such an NISC scheme as NISC/H.

Efficient Non-interactive Secure Computation 411

An NISC/H scheme for a function f : X × Y → Z is a 2-party protocol between
Receiver and Sender, of the following format:

– Receiver gets an input x ∈ X and Sender gets an input y ∈ Y .
– The two parties invoke an instance of H with inputs of their choice, and Receiver

obtains outputs from H.
– Sender may send an additional message to Receiver.
– Receiver carries out a local computation and outputs f(x, y) or an error message.

The correctness and secrecy requirements of an NISC scheme can be specified in terms
of UC security. We shall denote the security parameter by κ and require that for a
protocol to be considered secure, the simulation error be 2−Ω(κ). An NISC/H scheme
for f is required to be a UC-secure realization of the following functionality Ff in the
H-hybrid model.

– Ff accepts x ∈ X from Receiver and y ∈ Y from Sender, and outputs f(x, y)
to Receiver and an empty output to Sender. If y is a special input error, then the
output to Receiver is error.

In particular, we will be interested in NISC/OT schemes, where OT stands for a func-
tionality that provides (parallel) access to multiple instances of

(2
1

)
Oblivious Transfer.

In this case, the additional message from the sender to the receiver can be implemented
using a single additional OT call.

We define a relaxed notion of security which is useful in the context of NISC, but
may also be of broader interest.

Security with input-dependent abort. Given an SFE functionality F , we define a func-
tionality F† which behaves as follows: first F† accepts a description of a predicate φ
from the adversary (e.g., in the form of a PPT algorithm); after receiving inputs from
all the parties, F† computes the outputs to the parties as F does; but before delivering
the outputs to the parties, F† runs φ with all the inputs; if φ outputs abort, then F†

replaces the output to the honest parties by the message abort. Otherwise F† delivers
the output from F to all the parties.

Though we defined security with input-dependent abort as a general security notion,
we shall exclusively focus on 2-party functionalities Ff as defined above.

Security with wire-disjunction triggered abort. For a 2-party SFE functionality F as
above, outputting f(x, y) to only Receiver, we define a functionality F‡ which is a
restriction of F† in which the algorithm φ for determining aborting is restricted to be
of the following form: φ includes a set W of pairs of the form (w, b), where w is a wire
in a fixed circuit C for computing the function f , and b ∈ {0, 1}; φ(x, y) = abort if
and only if there exists a pair (w, b) ∈ W such that when C is evaluated on (x, y), the
wire w takes the value b. We will also consider the stronger notion of input-disjunction
triggered abort where the disjunction can only involve input wires.

Protocol making a black-box use of a PRG. We are interested in NISC/OT schemes
that do not rely on any cryptographic assumption other than the security of a PRG.

412 Y. Ishai et al.

Further, the scheme should be able to use any PRG provided to it, in a black-box fashion.
Formally, we consider fully black-box reductions [41] from NISC/OT to PRG.

Towards a more concrete measure of efficiency, we require NISC/OT protocols to
be 2−Ω(κ) secure and measure complexity as a function of κ and the circuit size of f .
Security against corrupted senders will be statistical. To achieve the above goal against
a computationally bounded corrupted receiver, we need to use a PRG for which the ad-
vantage of any PPT adversary in distinguishing the output of the PRG from a random
string (of the appropriate length) is 2−Ω(κ). To this end a PRG can have a longer com-
putational security parameter, k, that defines the length of its seed (k is a function of
κ, but for simplicity we denote it as a separate parameter). The PRGs considered below
have input and output length Θ(k).

Efficiency: Communication and Cryptographic Overheads. The best known NISC/OT
scheme secure against passive corruption is provided by Yao’s garbled circuit construc-
tion (see below) and forms the benchmark for efficiency for us. There are three aspects
in which a NISC/H scheme can be more expensive compared to the garbled circuit
(over OT) scheme:

– The complexity of H. For instance, if H is the parallel OT functionality OT, then
the number of instances of

(2
1

)
OTs and the total length of the OT strings provide

natural measures of complexity ofH. (Note that a NISC/H scheme invokes a single
instance of H). If H is a more involved functionality, we shall be interested in
complexity measures related to securely realizing H.

– Communication overhead. We shall include in this any communication directly be-
tweenthetwopartiesandanycommunicationbetweenthepartiesandH.Wedefinethe
communication overhead of a NISC scheme as the ratio of total communication in the
NISC scheme and the total communication in Yao’s garbled circuit (overOT)scheme.

– Cryptographic overhead. Yao’s garbled circuit scheme makes a black-box use of
PRG. To evaluate a function that is computed by a circuit C, it uses Θ(|C|) calls to
a PRG (with input and output lengths Θ(k)). The ratio between the number of such
calls made by a NISC scheme and Yao’s garbled circuit scheme can be defined as
the cryptographic overhead of the NISC scheme.

Garbled Circuit. There are two main variants of Yao’s garbled circuit construction in
the literature, one following the original construction of Yao [44,31] and one following
the presentation in [37,1]. The former allows a negligible probability of error while
evaluating the circuit (since a “wrong” key may decrypt a ciphertext encrypted using
different key, without being detected), whereas the latter includes pointers with the keys
indicating which ciphertexts they are intended for. In this work, we follow the latter
presentation (with a few simple changes). Below we describe the version of garbled
circuit we shall use.

Consistent with our use of garbled circuits, we shall refer to two parties Receiver
(with input x) and Sender (with input y) who wish to evaluate a function represented as
a boolean circuit C, with binary gates. Given such a circuit C and input y for Sender,
the garbled circuit YC for C is constructed as follows. For each (non-output) wire w
in C, two k-bit strings K0

w and K1
w are randomly chosen, as well as a random bit rw.

The random bit rw is used to mask the values on the wires during evaluation of the

Efficient Non-interactive Secure Computation 413

garbled circuit (if w is an output wire, or an input wire belonging to Receiver, then we
set rw = 0). The garbled circuit YC consists of the following:

– For each gate g (with input wires u, v and output wire w), for each a, b ∈ {0, 1},
an encryption

Encrg,a,b
Ka⊕ru

u ,Kb⊕rv
v

(Kc⊕rw
w , c)

where c = F̃g(a, b) := Fg(a⊕ ru, b⊕ rv) ⊕ rw where u, v are the input wires to
gate g and w its output wire,4 and Encr is a symmetric-key encryption scheme with
a mild one-time semantic security guarantee (see below).

– For each input-wire w for which the value is already fixed (i.e., w is an input wire
that belongs to Sender), the pair (Kyw

w , yw ⊕ rw), where yw is the value of that
input wire.

Note that if gate g has input wires u, v and output wire w, then for any values (α, β),
given (Kx

u , a) and (Ky
v , b) where a = α⊕ ru and b = β ⊕ rv , one can obtain (Kz

w, c),
where z = Fg(α, β) and c = z ⊕ rw. Hence, given YC and (Kxw

w , xw) for each input-
wire w belonging to Receiver (note that for such w, xw ⊕ rw = xw), one can evaluate
C(x, y) (note that an output wire w has rw = 0).

The privacy guarantee of a garbled circuit is that, given x and f(x, y), it is possible to
construct a simulation (ỸC , K̃1, . . . , K̃|x|) which is computationally indistinguishable
(with at most a distinguishing advantage 2−Ω(κ)) from (YC , K1, . . . , K|x|) where YC
is the garbled circuit constructed for Sender’s input y, and Ki are keys of the form Kxw

w

where w are the input wires for Receiver.
For the above security guarantee to hold, encryption Encr only needs to be one-time

semantically secure (even if one of the two keys is revealed) [1]. But it is convenient for
us to restrict ourselves to a concrete instantiation of an encryption scheme5. A particular
instance of an encryption scheme, that satisfies the requirements for a garbled circuit,
can be defined in terms of black-box access to a pseudorandom generator or, more
conveniently, in terms of a pseudorandom function. For each key K in {0, 1}k, let the
pseudorandom function initialized with the key K be denoted by RK : [|C|] → {0, 1}k′

where [|C|] is the set of indices for the gates in the circuit C and k′ is the maximum
length of the messages to be encrypted (k + 1 above, but longer in the variants used in
some of our schemes)6. Then the encryption Encr is defined as follows:

EncrtK1,K2
(m) = m⊕RK1(t)⊕RK2(t), (1)

where t = (g, a, b) is a “tag” that is used once with any key.

4 In fact, g may have more than one output wire; in such case, they are all assigned the same
keys K0

w and K1
w.

5 The construction and analysis in [1] admits any one-time semantically secure symmetric-
key encryption scheme. Our construction here is somewhat more streamlined since we use a
specific encryption scheme.

6 Note that the domain of the inputs for PRF is small, and hence a PRG with an appropriately
long output can be used to directly implement the PRF. In fact, the PRF will be invoked on
only as many inputs as the maximum fan-out of the circuit, and needs to be defined only
for the values on which it will be invoked. Nevertheless we shall use the PRF notation for
convenience and conceptual clarity.

414 Y. Ishai et al.

3 A Statistical NISC/OT Protocol for NC0

A central building block of our protocols for general functions f is a statistically secure
protocol for “simple” functions g in which each output bit depends on just a small
number of input bits. We say that g(x, y) is d-local if each of its output bits depends on
at most d input bits. Towards an asymptotic measure of efficiency, we will (implicitly)
consider an infinite family of finite functionalities gn : {0, 1}αn×{0, 1}βn → {0, 1}γn .
We say that such a family is in NC0 if there exists an absolute constant d such that each
gn is d-local. The precise locality d of the NC0 functions we will employ is small, and
will be hidden in the asymptotic analysis.

Our general protocols for evaluating a function f(x, y) will typically require the
evaluation of NC0 functions g(a, b) where the receiver’s input a is short (comparable in
length to x) but the sender’s input b and the output are long (comparable to the circuit
size of f). We would therefore like the number of OT invocations to be comparable to
the receiver’s input length α, and the total communication complexity (in the OT-hybrid
model) to be as close as possible to the output length γ.

The semi-honest model. In the semi-honest model, there are several known techniques
for obtaining perfectly secure protocols that meet these requirements (cf. [21] and refer-
ences therein): in such protocols the number of OTs is exactly α and the total commu-
nication complexity is O(γ) (with a hidden multiplicative constant depending at most
exponentially on d). Our goal is to get similar efficiency in the malicious model without
introducing additional interaction.

Previous results. A statistically secure NISC/OT protocol for NC0 functions in the ma-
licious model is implicit in [28]. (Via known reductions, this can be extended to func-
tions in low complexity classes such as NC1 with a polynomial complexity overhead).
A more efficient protocol was given in [24] (see Appendix B of [23]). The protocol
from [24] can also provide computational security for general functions, but this re-
quires a non-black-box use of a pseudorandom generator. From here on we focus on the
case of NC0 functions.

The protocol of [24] is based on a reduction to multi-party computation (MPC) in the
semi-honest model, in the spirit of the MPC-based zero-knowledge protocols of [20].
Instantiated with standard MPC protocols, and settling for a relaxed notion of security,
discussed in Section 3.2 below, its communication complexity is Θ(γ · κ), where γ is
the output length of f and κ is a statistical security parameter guaranteeing simulation
error of 2−κ. (Here and in the following we will assume that γ � α, κ and ignore low
order terms in the efficiency analysis for simplicity).

3.1 Overview of New Protocol

We present a different approach for NISC/OT that reduces the multiplicative overhead
from Θ(κ) to polylog(κ). Our general approach employs perfectly secure MPC proto-
cols for the malicious model. The efficiency improvement will be obtained by plugging
in the recent perfectly secure protocol from [10].

Given an NC0 function g(a, b), where g : {0, 1}α × {0, 1}β → {0, 1}γ, our con-
struction has a similar high level structure to that of [24,23]:

Efficient Non-interactive Secure Computation 415

1. Start with a perfectly secure NISC/OT protocol π for g in the semi-honest model
in which the receiver uses its original α input bits a as the sequence of OT choices.
Several such protocols with a constant overhead can be found in the literature
(see [21] and references therein).

2. Use the sender’s algorithm in π to define a “certified OT” functionality COT, which
is similar to parallel OT except that it verifies that the α pairs of strings (together
with an additional witness) provided by the sender satisfy a given global consis-
tency predicate. If this verification fails, a special error message ⊥ is delivered to
the receiver.

Concretely, we will employ a COT functionality in which the sender’s witness in-
cludesitsrandomnessanditsinputb,andthepredicateverifiesthat theαpairsofstrings
are as prescribed by the protocol. (Forefficiency reasons, it may be useful to include in
thewitness thevaluesof intermediatewires in thesender’scomputation.Thisstandard
technique can be used to transform an arbitrary predicate into one in NC0).

3. Take a perfectly secure MPC protocol ΠCOT for a multi-party functionality corre-
sponding to COT, and use it to obtain a statistically secure two-party NISC/OT
protocol πCOT for COT. This is the main novel contribution of the current section,
which will be described in detail below.

4. Use πCOT for obtaining an NISC/OT protocol πg for g with security in the malicious
model. This can be done in a straightforward way by using COT to emulate π while
ensuring that the sender does not deviate from its prescribed algorithm. Note that
the protocol makes a non-black-box use of π, and thus in our black-box setting we
cannot apply it to protocols π which make use of cryptographic primitives.

3.2 Relaxing Security

A (standard) technical subtlety that we need to address is that our direct implementation
of πCOT will not realize the functionality COT under the standard notion of security, but
rather under a relaxed notion of security that we refer to as security with “input-value
disjunction (IVD) abort”. This is similar to the notion of security with wire-value dis-
junction (WVD) abort from Section 6, except that here the disjunctive predicate applies
only to input values. That is, the ideal functionality is augmented by allowing a ma-
licious sender to specify a disjunctive predicate in the receiver’s input bits (such as
x2 ∨ x̄4 ∨ x7) which makes the functionality deliver ⊥ if the receiver’s input satisfies
the predicate. (Otherwise the output of the original functionality is delivered).

A standard method for upgrading security with IVD-abort into full security is by let-
ting the receiver “secret-share” its input (cf. [28,32]). Concretely, the receiver encodes
x into a longer input x′ in a way that ensures that every disjunctive predicate in x′ is
either satisfied with overwhelming probability, or alternatively is completely indepen-
dent of x. The original functionality g is then augmented to a functionality h that first
decodes the original input and then computes g. (To prevent cheating by a malicious
receiver, the decoding function should output a valid input x for any string x′).

One can now apply any protocol πh for h which is secure with IVD-abort in order to
obtain a fully secure protocol for the original functionality g. We note that the function-
ality h will not be in NC0; thus, the overhead for realizing it unconditionally (even in
the semi-honest model) will be too big for our purposes. Instead, we apply the security

416 Y. Ishai et al.

boosting reduction only at higher level protocols which offer computational security
and rely on Yao’s garbled circuit construction. For such protocols, we only pay an ad-
ditive price comparable to the circuit size of the decoder, which we can make linear in
the input length.

We finally suggest a concrete method to encode x into x′ as above. A simple method
suggested in [28,32] is to let x′ be an additive sharing of x into κ + 1 shares (over
Fα

2). This has the disadvantage of increasing the length of x by a factor of κ, which we
would like to avoid. Better alternatives were suggested in the literature (see, e.g., [40])
but these still increase the input length by a constant factor and significantly increase
the circuit size. Instead, we suggest the following encoding method. Let G : {0, 1}δ →
{0, 1}α be a κ-wise independent generator. That is, for a random r, the bits of G(r)
are κ-wise independent. Then the encoding is defined by Enc(x) = (r1, . . . , rκ+1, x⊕
G(r1 ⊕ · · · ⊕ rκ+1)) where the ri are uniformly random strings of length δ. The corre-
sponding decoder is defined by Dec(r1, . . . , rκ+1, z) = z ⊕G(r1 ⊕ · · · ⊕ rκ+1).

The following lemma is straightforward.

Lemma 1. For every disjunctive predicate P (x′), the following holds: (1) If P involves
at most κ literals, then Pr[P (Enc(x)) = 1] is completely independent of x. (2) Other-
wise, Pr[P (Enc(x)) = 1] ≥ 1− 2−κ.

We note that efficient implementations of G can be based on expander graphs [35]. In
particular, for any constant 0 < c < 1 there is an NC0 implementation of G (with
circuit size O(α)) where δ = αc + poly(κ). Thus, in the typical case where α � κ, the
encoding size is α + o(α).

The following corollary shows that, from an asymptotic point of view, boosting se-
curity with IVD-abort into full security comes essentially for free both in terms of the
circuit size and the receiver’s input length.

Corollary 1. Let f(x, y) be a functionality with circuit size s and receiver input size
α = |x|. Then, there exists a functionality h(x′, y) and a linear-time computable en-
coding function Enc such that:

– A fully secure protocol πf for f can be obtained from any protocol πh for h which is
secure with IVD-abort by letting the parties in πf run πh with inputs x′ = Enc(x)
and y.

– The circuit size of h is s + O(α) + poly(κ).
– The receiver’s input length in h is α + o(α) + poly(κ).

3.3 Realizing COT via Robust MPC

It remains to describe an efficient protocol πCOT for COT which is secure with IVD-
abort. In this section, we reduce this task to perfectly robust MPC in the presence of an
honest majority.

We consider an MPC network which involves a sender S, n servers Pi, and 2α
receivers Ri,b, 1 ≤ i ≤ α, b ∈ {0, 1}; for simplicity, we assume that receivers do not
send, but only receive messages in the protocol. (We will later set n = O(κα)). All
parties are connected via secure point-to-point channels as well as a common broadcast
medium. Define the following multi-party version of COT: the sender’s input consists

Efficient Non-interactive Secure Computation 417

of α pairs of strings (yi,0, yi,1) and a witness w. The other players have no input. The
output of receiver Ri,b is ⊥ if P ({yi,b}, w) = 0, and otherwise it is yi,b.

Now, assume we are given an MPC protocol ΠCOT that realizes this multiparty COT
functionality and provides the following security guarantees. The adversary may attack
up to t = Ω(n) of the servers, as well as any number of the other players (sender and
receivers). For such an adversary, the protocol provides perfect correctness and, more-
over, if the adversary is semi-honest we are also guaranteed privacy. Such a protocol,
with the desired complexity, appears in [10]. We now use ΠCOT to construct a COT
protocol πCOT as follows.

1. Sender runs the MPC protocol ΠCOT “in his head” (a-la [20]), where its input (α
pairs of strings (yi,0, yi,1) and a witness w) serve as inputs for the sender S of
ΠCOT. It creates strings V1, . . . , Vn with the views of the n servers in this run, as
well as V1,0, V1,1, . . . , Vα,0, Vα,1 with the views of the 2α receivers.

2. Let u be an integer such that 1/u ∈ [t/2n, t/4n]. The sender and the receiver apply
one parallel call to an OT in which the receiver selects, for each i ∈ [n], a view
Vi,bi (where the n selection bits bi ∈ {0, 1} are the COT-receiver input) as well as
each of the n server views with probability 1/u7.

3. Receiver checks for inconsistencies among the views that it read (namely, for each
pair of views VA, VB , corresponding to players A, B, all messages from A to B
reported in VB should be consistent with what an honest A computes in ΠCOT

based on VA). If any such inconsistency is found or if any of the α selected receiver
views has a ⊥ output, then the receiver outputs ⊥; otherwise, the receiver outputs
the output of the α selected receivers.

To analyze the protocol above, first note that if both Sender and Receiver are honest
then the output of protocol πCOT is always correct (in particular, because so is ΠCOT).

Next, consider the case of a dishonest Receiver (and honest Sender). Since, we use
ideal OTs the Receiver can only choose it’s selection bits which will yield exactly one of
Vi,0, Vi,1 (for each i ∈ [n]) and each of the n server views with probability 1/u. By the
choice of u, the expected number of server views that the receiver will obtain, denoted
�, is n/u ≤ t/2 and, moreover, only with a negligible probability � > t. Whenever
� ≤ t, the privacy property of ΠCOT assures that from (semi-honest) views of � servers
and any number of receivers, no additional information (other than what the output of
those receivers contain) is learned about the input of the Sender.

Finally, consider the case of a dishonest Sender (and honest Receiver). The COT sim-
ulator, given the Sender’s view (in particular, the views of the MPC players), constructs
the inconsistency graph G, whose nodes are the MPC players and an edge between
nodes A, B whenever the corresponding views are inconsistent. In addition, G′ is the
sub-graph induced by the n nodes corresponding to the servers. The simulator starts by

7 This is based on [24] which can be done non-interactively in our model. The observation is
that it is known that

(
u
1

)
-OT non-interactively reduces to u − 1 instances of

(
2
1

)
-OT. Now,

given
(

u
1

)
-OT, a string can be transferred with probability 1/u simply by letting the sender put

the string in a random location i of a u-entry array, and send to the receiver (independently
of the receiver’s selection) an additional message with i. Also note, that with our choice of
parameters u = O(1).

418 Y. Ishai et al.

running a polynomial-time 2-approximation (deterministic) algorithm for finding min-
imal vertex-cover in the graph G′; i.e, the algorithm outputs a vertex cover B whose
size is not more than twice the size of a minimal vertex-cover B∗. Consider two case,
according to the size of B.
Case 1: |B| > t. In this case the simulator outputs ⊥ with probability 1; we argue that
in the real COT protocol, the receiver outputs ⊥ with probability negligibly less than
1. This is because |B∗| ≥ |B|/2 > t/2 and so there must be a matching in G′ of size
larger than t/4 (the size of a minimal vertex-cover of a graph is at most twice the size of
a maximal matching). This, together with the choice t = Ω(n), implies that the proba-
bility that the � servers picked by the Receiver do not contain an edge of G′ is 2−Θ(n).
In all other cases, the Receiver outputs ⊥. (A similar argument was made in [20]; for
more details, see there).
Case 2: |B| ≤ t. In this case, the COT simulator passes the views of the MPC sender
and of all servers in B to the MPC simulator. The MPC simulator extracts an effective
sender input (i.e., α pairs of strings and a witness w). If this input does not satisfy the
predicate P then output ⊥ (by the perfect correctness of ΠCOT, on such input πCOT al-
ways outputs⊥ as well). It remains to deal with the case where the predicate does hold.
For this, the COT simulator picks each server with probability 1/u (as does the honest
receiver in πCOT) and if there is any inconsistency among the set T of selected views
then the receiver outputs ⊥; otherwise, the simulator also compares the view of each
of the 2α receivers with each of the servers in T . It prepares a disjunctive predicate,
Pd, consisting of the literals corresponding to receivers which have at least one such
inconsistency (i.e., the predicate is satisfied exactly if the Receiver will select any of the
problematic views; in both cases this leads to a ⊥ output). It sends to the functionality
the input extracted by the simulator along with the predicate Pd.

To conclude, let us summarize the complexity of our construction and compare it
with the one in [23, Appendix B] (essentially the two constructions are incomparable
with advantages depending on the spectrum of parameters).

Theorem 1. The above protocol is a secure protocol with IVD abort for computing
any NC0 function g(a, b), where g : {0, 1}α × {0, 1}β → {0, 1}γ. Its communication
complexity is polylog(κ) · γ + poly(α, κ). (Recall that n = O(κα)). The number of OT
calls is O(ακ).

Theorem 2. [23] There exists a secure protocol with IVD abort for computing any
NC0 function g(a, b), where g : {0, 1}α × {0, 1}β → {0, 1}γ whose communication
complexity is O(κγ) and number of OT calls is O(α + κ).

4 A Direct Protocol for NISC/NC0

Our first construction follows a cut-and-choose approach in the spirit of previous
constant-round protocols making black-box access to cryptographic primitives [34,32].
The price we pay for this relatively simple solution is O(κ) cryptographic and commu-
nication overheads. In particular, we show the following.

Theorem 3. For any function f : X × Y → Z that has a polynomial sized circuit
C with n input wires for the first input, there exists an NC0 functionality HC with

Efficient Non-interactive Secure Computation 419

O(κk|C|)-bit long output and n + O(κ)-bit input from Receiver, such that there is an
NISC/HC scheme for FC that makes a black-box use of a PRG, invoking the PRG
O(κ|C|) times, and with O(κk|C|) total communication. (Recall that κ is a statistical
security parameter and k is a computational one).

We shall defer the proof of this theorem to Section 8, where a more general result is
presented (see Theorem 6).

5 A Lean NISC/NC0 Protocol with Input-Dependent Abort

In this section, we present a NISC scheme for F†
C , which allows input-dependent abort.

This scheme is very efficient: the communication overhead over the garbled circuit
scheme is (a small) constant and the cryptographic overhead is just 1 (allowing the
PRGs to output a slightly longer string). We shall present the scheme first as a NISC/HC

scheme, for an NC0 functionality HC , and then apply the result of Section 3 to obtain
an NISC/OT scheme.

Theorem 4. For any function f : X × Y → Z that has a polynomial sized circuit
C with n input wires for the first input, there exists an NC0 functionality HC with
O(κ|C|)-bit long output and n + O(κ)-bit input from Receiver, such that there is an
NISC/HC scheme for F†

C that makes a black-box use of a PRG, invoking the PRG
O(|C|) times, and with O(k|C|) total communication.

PROOF SKETCH: The details of the proof appears in the full version of this paper.
At a high-level, this scheme allows Receiver to verify that each pointer bit uncovered
in the garbled circuit is correct as follows: each pointer bit is tagged using a MAC
(with a key provided by Receiver). However since this bit should be kept secret until
the corresponding entry in the garbled circuit is decrypted, a share of the tag is kept
encrypted with the pointer bit, and the other share is provided to Receiver. Sender, who
does not know the MAC key, can create the one share that he must encrypt, and an NC0

functionality takes the MAC key from Receiver, computes the MAC tag and hands over
the other share to Receiver. Input dependent abort is obtained since, intuitively, the
sender can only use wrong MACs in some entries which will make the Receiver abort
in case those entries are decrypted. �

6 NISC/NC0 with Wire-Disjunction Triggered Abort

We extend the scheme in Section 5, to achieve the stronger security guarantee of secu-
rity with wire-disjunction triggered abort. Similar to the previous scheme, this scheme
ensures (partial) correctness of the garbled circuit via an NC0 functionality which pro-
vides the share of a MAC to Receiver. However, the MAC is not just on a single pointer
bit, but also on the key stored in the garbled circuit entry. This scheme has some fea-
tures of the scheme in Section 4 in that Sender provides a table of purported outputs
from a PRF, some of which will be verified by Receiver during decoding. However,
this construction avoids the O(κ) overhead, at the expense of settling for security with
wire-disjunction triggered abort.

420 Y. Ishai et al.

This construction involves a statistically secure, one-time MAC for k bit messages. It
will be important for us to implement this MAC scheme using NC0 circuits. This can be
done following [21], if the message is first encoded appropriately. Since the encoding
itself is not an NC0 functionality, we require Sender to provide the encoding, along with
values of all the wires in a circuit that computes the encoding. Then an NC0 circuit can
verify this encoding, and in parallel create the MAC tag.

In the full version we prove the following theorem.

Theorem 5. For any function f : X × Y → Z that has a polynomial sized circuit
C with n input wires for the first input, there exists an NC0 functionality HC with
O(k|C|)-bit long output and n + O(κ)-bit input from Receiver, such that there is an
NISC/HC scheme for F‡

C that makes a black-box use of a PRG, invoking the PRG
O(|C|) times, and with O(k|C|) total communication.

Compared to Theorem 4, this construction is asymptotically less efficient, since the
output of HC is longer (O(k|C|) instead of O(κ|C|), as HC will now be required to
deliver the entire garbled srcuit to Receiver).

7 From Security with WDT-Abort to Full Security

In this section, we discuss general methods for converting any NISC scheme satisfying
security with wire disjunction triggered (WDT) abort into an NISC with full security,
based on semi-honest secure MPC protocols. Our transformation formalizes and gen-
eralizes such a transformation that was given in the work of [25,26] (and our intuition
below follows their intuition) in the context of constructing stateful hardware circuits
that remain private even when an adversary can tamper with the values on wires. We
note that the construction of [25] also had to deal with multiple other issues that do not
concern us, which added complexity to their solution. Outlined below, our solution can
be seen as a simplification of their construction.

The benefit of the transformation outlined in this section over the simple majority-
based approach discussed earlier is the potential for greater efficiency. We will first
formalize the encoding notion that we use to deal with WDT attacks, then we present an
outline of our general transformation, and then show how to invoke this transformation
using known semi-honest MPC protocols from the literature to obtain higher levels of
efficiency.

Our transformation is captured by means of a new encoding, that we define below.
The details of realizing this transformation are presented in the full version.

Definition 1. (WDT-resilient encoding) A randomized circuit family C′ together with
an efficient randomized encoding algorithm family Enc and an efficient deterministic
decoding algorithm family Dec is a WDT-resilient encoding of a circuit C that takes
two inputs if the following properties hold8:

8 The entire tuple (C′, Enc, Dec) is parameterized by a statistical security parameter 1κ, which
is omitted here for simplicity of notation. Note also that this definition defines the notion of a
WDT-resilient encoding. In applications, we will require that there is an efficient deterministic
procedure that takes as input C and 1κ and outputs a tuple (C′, Enc, Dec) from such a family.

Efficient Non-interactive Secure Computation 421

(Correctness). For all (x, y) in the domain of C, we have that

Pr[Dec(C′(Enc(x), y)) = C(x, y)] = 1

(Malicious Receiver Security). There exists a randomized efficient machine RecSim
such that for every x′ in the range of Enc (but not necessarily in the image of
Enc), there exists x in the domain of Enc such that for every y such that (x, y) is
in the domain of C, the output distribution of RecSim(x′, C(x, y)) is identical to
the distribution C′(x′, y).

(WDT-Malicious Sender Security). For any set S of wires in C′ or their negations, let
DisjS [C′(Enc(x), y)] to be the event that the disjunction of the values specified
by S, when the input of C′ is (Enc(x), y), is satisfied. The probability space is over
the random gates of C′ and the randomness used by Enc.
For any such S and for all x1, x2, and y such that (x1, y) and (x2, y) are in the
domain of C, we have:

|Pr[DisjS [C′(Enc(x1), y)]]− Pr[DisjS [C′(Enc(x2), y)]]| = 2−Ω(κ).

8 Public-Code NISC

So far we only considered NISC schemes which rely on an OT oracle that gets inputs
from both the sender and the receiver. As discussed in the introduction, this can be
combined with a 2-message implementation of OT to get a protocol which does not
require any active action from the receiver except publishing an encryption of her input.

In this section we discuss this variant of NISC, called Public-Code NISC or PC-NISC
for short. In more detail, this flavor of NISC allows Receiver to publish an encoding of
her input x, and later let one or more Senders compute on the encoding of x using
their private inputs y, and send it back to her; she can decode this message and recover
the value f(x, y) (and nothing more). There could be a setup like a common reference
string (CRS), or correlated random variables.

Formally, a PC-NISC scheme for a function f : X×Y → Z consists of the following
four PPT algorithms.

– Setup: takes only the security parameter as an input and outputs a pair of strings
(σR, σS). These strings are meant to be given to the two parties (Receiver and
Sender, respectively).

– Encode: takes an input x ∈ X , and a setup string σR, and outputs a string c
encoding x (or possibly an error message, if σR appears malformed).

– Compute: takes an encoding c, an input y ∈ Y and a setup string σS and outputs
an “encoded output” (or an error message if c appears malformed).

– Decode: takes an encoded output and a setup string σR, and outputs z ∈ Z (or an
error message if the encoded output appears malformed).

Ideally, in a PC-NISC scheme, a single published encoding can be used by Receiver to
carry out multiple computations. To define the security of a PC-NISC scheme, below
we define the functionality F (T)

f , which allows T invocations before letting a corrupt
Sender manipulate the outcome.

422 Y. Ishai et al.

– F (T)
f accepts an input x from Receiver.

– Then in each round, it accepts an input y from Sender. and outputs f(x, y) to Re-
ceiver (and an empty output to Sender). If y is a special command error, the output
to Receiver is error.

– There is a bound T on the number of inputs F (T)
f accepts from corrupt Senders

before correctness is compromised. More formally, a corrupt Sender is allowed to
include with its input a command (cheat, ψ) where ψ is an arbitrary PPT algorithm,

and after T such rounds, in each subsequent such round, F (T)
f outputs ψ(x) to

Receiver.

Now, given a PC-NISC scheme Σ consider the 2-party protocol ΠΣ (in a FΣ.Setup-
hybrid model, which simply makes a fresh pair (σR, σS) available to the two parties)
in which Receiver, on input x, sends c := Σ.Encode(x, σR) to Sender; on receiving
an input y reactively from the environment, Sender sends u = Σ.Compute(c, y, σS)
to Receiver, and Receiver outputs Σ.Decode(u). We say that Σ is a secure PC-NISC

scheme if the protocol Π
FΣ.Setup

Σ is a UC secure realization of the functionality F (T)
f .

We shall be interested in NISC schemes for F (T)
f , where T = Ω(κ).

Defining PC-NISC/H. The goal of PC-NISC was to avoid the live availability of Re-
ceiver, when Sender is executing the scheme. However it is still possible to consider
such a scheme in an H-hybrid model, if the functionality H itself allows Receiver to
send an input, and subsequently have multiple rounds of independent interactions with
Sender, delivering a separate output to Receiver in each round. We shall use this con-
vention as an intermediate step in achieving PC-NISC/OT and PC-NISC/CRS schemes,
which can be specified in the plain model (i.e., without reference to a hybrid-model) in
terms of the Setup algorithm. In PC-NISC/CRS, Setup sets σR = σS to be a randomly
generated string, according to some probability distribution that will be specified by the
scheme.

In PC-NISC/OTvar, Setup outputs several instances of correlated random variables:
in each instance, Receiver gets two random bits (a0, a1) and Sender gets random bits
(b0, b1) such that a0b0 = a1 ⊕ b1

9. They can be readily used in a PC-NISC scheme Σ0
for evaluating the OT function, in which Receiver has a choice bit c, Sender has two
inputs x0 and x1, and Receiver obtains xc. Hence a NISC/OT scheme for a function f
can be easily turned into a PC-NISC/OTvar scheme for f if the number of sessions to be
supported T = 1: the Encode and Compute algorithms will incorporate Σ0.Encode
and Σ0.Compute; further, Compute will include the message sent by Sender in the
NISC/OT scheme; Decode involves first applying Σ0.Decode to obtain the outcome
of OT, before carrying out the local computation of the NISC/OT scheme.

The main challenge in constructing a PC-NISC scheme, beyond that already present
in constructing NISC schemes, is to be able to support a larger number of computations
for the same input encoding.

First, we observe that the NISC/OT scheme for NC0 functionalities from Section 3
can be extended into a PC-NISC/OTvar supporting T adding a poly(κ, T) amount to
communication and cryptographic complexities. This is done by increasing the number
of servers in the underlying MPC used in this scheme.

9 There are several equivalent formulations of such a pair of correlated random variables.

Efficient Non-interactive Secure Computation 423

In the full version we prove the feasibility result below, analogous to – indeed ex-
tending – Theorem 3.

Theorem 6. For any function f : X × Y → Z that has a polynomial sized circuit
C with n input wires for the first input, there exists an NC0 functionality H(T)

C with
O(κk|C|)-bit long output and n + O(κ)-bit input from Receiver, supporting T compu-

tations, such that there is a NISC/H(T)
C scheme for F (T)

f that makes a black-box use
of a PRG, invoking the PRG O((κ + T)|C|) times, and with O((κ + T)k|C|) total
communication.

Note that the above NISC scheme is already for F (T)
f , and can be translated to a PC-

NISC scheme for f supporting T executions, as described earlier. Thus, given this
scheme, we can combine it with a PC-NISC/OTvar for H(T)

C (also described above) to

obtain a PC-NISC/OTvar for F (T)
f . A proof of Theorem 6 is given in the full

version.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials
and their applications. In: IEEE Conference on Computational Complexity, pp. 260–274.
IEEE Computer Society, Los Alamitos (2005)

2. Beaver, D.: Precomputing Oblivious Transfer. In: Coppersmith, D. (ed.) CRYPTO 1995.
LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

3. Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In:
Proc. 28th STOC, pp. 479–488. ACM, New York (1996)

4. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 589–590. Springer, Heidelberg (1990)

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended
abstract). In: STOC, pp. 503–513. ACM, New York (1990)

6. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J.
(ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

7. Cachin, C., Camenisch, J., Kilian, J., Müller, J.: One-Round Secure Computation and Secure
Autonomous Mobile Agents. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000.
LNCS, vol. 1853, pp. 512–523. Springer, Heidelberg (2000)

8. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
Electronic Colloquium on Computational Complexity (ECCC) TR01-016 (2001), Previous
version “A unified framework for analyzing security of protocols” availabe at the ECCC
archive TR01-016. Extended abstract in FOCS 2001 (2001)

9. Chung, K.-M., Kalai, Y., Vadhan, S.P.: Improved delegation of computation using fully ho-
momorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 483–501.
Springer, Heidelberg (2010)

10. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly Secure Multiparty Computation and the
Computational Overhead of Cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

11. Damgård, I., Nielsen, J.B., Orlandi, C.: Essentially Optimal Universally Composable Obliv-
ious Transfer. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 318–335.
Springer, Heidelberg (2009)

424 Y. Ishai et al.

12. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing com-
putation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–
482. Springer, Heidelberg (2010)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178.
ACM, New York (2009)

14. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and rerandomiz-
able yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer,
Heidelberg (2010)

15. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge University
Press, Cambridge (2004)

16. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: ACM (ed.)
Proc.19th STOC, pp. 218–229. ACM, New York (1987), See [15, ch. 7] for more details

17. Horvitz, O., Katz, J.: Universally-Composable Two-Party Computation in Two Rounds. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129. Springer, Heidelberg
(2007)

18. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers Efficiently. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003)

19. Ishai, Y., Kushilevitz, E.: On the Hardness of Information-Theoretic Multiparty Computa-
tion. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 439–
455. Springer, Heidelberg (2004)

20. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty
computation. In: STOC, pp. 21–30. ACM, New York (2007)

21. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computa-
tional overhead. In: STOC, pp. 433–442. ACM, New York (2008)

22. Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In: Vadhan, S.P.
(ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)

23. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - effi-
ciently, Preliminary full version on http://www.cs.uiuc.edu/˜mmp/

24. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Oblivious Transfer – Ef-
ficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer,
Heidelberg (2008)

25. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private Circuits II: Keeping Secrets in
Tamperable Circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–
327. Springer, Heidelberg (2006)

26. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing At-
tacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidel-
berg (2003)

27. Kalai, Y.T., Raz, R.: Succinct non-interactive zero-knowledge proofs with preprocessing for
logsnp. In: FOCS, pp. 355–366. IEEE, Los Alamitos (2006)

28. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31. ACM, New
York (1988)

29. Kilian, J., Micali, S., Ostrovsky, R.: Minimum resource zero-knowledge proofs (extended
abstract). In: FOCS, pp. 474–479. IEEE, Los Alamitos (1989)

30. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database, computationally-
private information retrieval. In: FOCS, pp. 364–373. IEEE, Los Alamitos (1997)

31. Lindell, Y., Pinkas, B.: A proof of yao’s protocol for secure two-party computation. Elec-
tronic Colloquium on Computational Complexity (ECCC) (063) (2004)

32. Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation in the Pres-
ence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
52–78. Springer, Heidelberg (2007)

http://www.cs.uiuc.edu/~mmp/

Efficient Non-interactive Secure Computation 425

33. Melchor, C.A., Gaborit, P., Herranz, J.: Additively homomorphic encryption with d-operand
multiplications. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 138–154. Springer,
Heidelberg (2010)

34. Mohassel, P., Franklin, M.K.: Efficiency tradeoffs for malicious two-party computation. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 458–
473. Springer, Heidelberg (2006)

35. Mossel, E., Shpilka, A., Trevisan, L.: On epsilon-biased generators in nc0. Random Struct.
Algorithms 29(1), 56–81 (2006)

36. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, pp. 448–457 (2001)
37. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In:

ACM Conference on Electronic Commerce, pp. 129–139 (1999)
38. Nielsen, J.B., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold, O. (ed.)

TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009)
39. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable

Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571.
Springer, Heidelberg (2008)

40. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation Is
Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer,
Heidelberg (2009)

41. Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of Reducibility between Cryptographic
Primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg
(2004)

42. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. In:
Foundations of Secure Computation (Workshop, Georgia Inst. Tech., Atlanta, Ga., 1977), pp.
169–179. Academic, New York (1978)

43. Sander, T., Young, A., Yung, M.: Non-interactive cryptocomputing for NC1. In: FOCS, pp.
554–567 (1999)

44. Yao, A.C.-C.: How to generate and exchange secrets. In: Proc. 27th FOCS, pp. 162–167.
IEEE, Los Alamitos (1986)

Towards a Game Theoretic View of
Secure Computation

Gilad Asharov1,�, Ran Canetti2,��, and Carmit Hazay3

1 Department of Computer Science, Bar-Ilan University, Israel
asharog@cs.biu.ac.il

2 Department of Computer Science, Tel-Aviv University, Israel
canetti@tau.ac.il

3 Department of Computer Science, Aarhus University, Denmark
carmit@cs.au.dk

Abstract. We demonstrate how Game Theoretic concepts and formal-
ism can be used to capture cryptographic notions of security. In the re-
stricted but indicative case of two-party protocols in the face of malicious
fail-stop faults, we first show how the traditional notions of secrecy and
correctness of protocols can be captured as properties of Nash equilibria
in games for rational players. Next, we concentrate on fairness. Here we
demonstrate a Game Theoretic notion and two different cryptographic
notions that turn out to all be equivalent. In addition, we provide a sim-
ulation based notion that implies the previous three. All four notions
are weaker than existing cryptographic notions of fairness. In particular,
we show that they can be met in some natural setting where existing
notions of fairness are provably impossible to achieve.

1 Introduction

Both Game Theory and the discipline of cryptographic protocols are dedicated
to understanding the intricacies of collaborative interactions among parties with
conflicting interests. Furthermore, the focal point of both disciplines is the same,
and is algorithmic at nature: designing and analyzing algorithms for parties in
such collaborative situations. However, the two disciplines developed very differ-
ent sets of goals and formalisms. Cryptography focuses on designing algorithms
that allow those who follow them to interact in a way that guarantees some basic
concrete properties, such as secrecy, correctness or fairness, in face of adversarial,
malicious behavior. Game Theory is more open-ended, concerning itself with un-
derstanding algorithmic behaviors of “rational” parties with well-defined goals
in a given situation, and on designing rules of interaction that will “naturally”
lead to behaviors with desirable properties.

Still, in spite of these differences, some very fruitful cross fertilization be-
tween the two disciplines has taken place (see e.g. [26,8]). One very natural

� Supported by the European Research Council as part of the ERC project LAST.
�� Supported by the Check Point Institute for Information Security, BSF, ISF, and

Marie Curie grants.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 426–445, 2011.
c© International Association for Cryptologic Research 2011

Towards a Game Theoretic View of Secure Computation 427

direction is to use cryptographic techniques to solve traditional Game Theoretic
problems. In particular, the works of Dodis et al. [7], Ismalkov et al. [25,24],
Abraham et al. [1] and Halpern and Pass [23] take this path and demonstrate
how a mutli-party protocol using cryptographic techniques can be used to replace
a trusted correlation device or a mediator in mechanism design.

Another line of research is to extend the traditional Game Theoretic for-
malisms to capture, within the context of Game Theory, cryptographic concerns
and ideas that take into account the fact that protocol participants are compu-
tationally bounded, and that computational resources are costly [7,23,21].

Yetanother lineofwork is aimedatusingGameTheoretic conceptsandapproach
to amend traditional cryptographic goals such as secure and fair computation.A fo-
cal point in this direction has been the concept of rational fair exchange of secrets
(also known as rational secret sharing) [22,19,29,27,28,30,9,3]. Here the goal is to
design a protocol for exchanging secrets in a way that “rational players”will be “in-
terested” in following theprotocol,where it is assumed thatplayers are interested in
learning the secret inputs of the other playerswhile preventing others from learning
their own secrets. In fact, it is assumed that the participants have specific prefer-
ences and some quantitative prior knowledge on these preferences of the partici-
pants is known to the protocol designer. Furthermore, such prior knowledge turns
out to be essential in order to get around basic impossibility results [3,6].

These ingenious works demonstrate the benefit in having a joint theory of
protocols for collaborative but competing parties; but at the same time they
underline the basic incompatibility in the two formalisms. For instance, the (pri-
marily Game Theoretic) formalisms used in the works on rational secret sharing
do not seem to naturally capture basic cryptographic concepts, such as semantic
security of the secrets. Instead, these works opt for more simplistic notions that
are not always compatible with traditional cryptographic formalisms. In partic-
ular, existing modeling (that is used both by constructions and by impossibility
results) treats the secret as an atomic unit and consider only the case where
the parties either learnt or did not learn the secret entirely. Unlike traditional
cryptographic modeling, the option where partial information about the secret
is leaked through the execution is disregarded.

This work. We relate the two formalisms. In particular we show how Game The-
oretic formalism and concepts can be used to capture traditional cryptographic
security properties of protocols. We concentrate on the setting of two-party pro-
tocols and fail-stop adversaries. While this setting is admittedly limited, it does
incorporate the core aspects of secrecy, correctness and fairness in face of mali-
cious (i.e., not necessarily “rational”) aborts.

In this setting, we first show Game Theoretic notions of secrecy and cor-
rectness that are equivalent, respectively, to the standard cryptographic notions
of secret and correct evaluation of deterministic functions in the fail-stop set-
ting (see e.g [12]). We then turn to capturing fairness. Here the situation turns
out to be more intricate. We formulate a natural Game Theoretic notion of
fairness, and observe that it is strictly weaker than existing cryptographic no-
tions of fair two-party function evaluation. We then formulate new cryptographic

428 G. Asharov, R. Canetti, and C. Hazay

notions of fairness that are equivalent to this Game Theoretic notion, and a
simulation-based notion of fairness that implies the above three. Furthermore,
we show that these new notions can indeed be realized in some potentially mean-
ingful settings where traditional cryptographic notions are provably unrealizable.

The results in more detail. The basic idea proceeds as follows. We translate a given
protocol into a set of games, in such a way that the protocol satisfies the crypto-
graphic property in question if and only if a certain pair of strategies (derived from
the protocol) are in a (computational) Nash equilibrium in each one of the games.
This allows the cryptographic question to be posed (and answered) in Game The-
oretic language. More precisely, given a protocol, we consider the (extensive form
with incomplete information) game where in each step the relevant party can de-
cide to either continue running the protocol as prescribed, or alteratively abort the
execution. We then ask whether the pair of strategies that instruct the players to
continue the protocol to completion is in a (computational)Nash equilibrium.Each
cryptographicproperty is then captured by an appropriate set of utilities and input
distributions (namely, distributions over the types). In particular:

Secrecy. A given protocol is secret (as in, e.g. [12]) if and only if the strategy that
never aborts the protocol is in a computational Nash equilibrium with respect
to the following set of utilities and distributions over the types. For each pair
of values in the domain, we define a distribution that chooses an input for one
party at random from the pair. The party gets low payoff if the two values
lead to the same output value and yet the other party managed to guess which
of the two inputs was used. It is stressed that this is the first time where a
traditional cryptographic notion of secrecy (in the style of [16]) is captured in
Game Theoretic terms. In particular, the works on rational secret sharing do
not provide this level of secrecy for the secret. (Indeed, the solution approaches
taken there need the secret to be taken from a large domain.)

Correctness. A protocol correctly computes a deterministic function if and only if
the strategy that never aborts the protocol is in a computational Nash equilibrium
withrespect to the setofutilitieswhere theparties gethighpayoffonly if theyoutput
the correct function value on the given inputs (types), or abort before the protocol
starts; in addition, the players get no payoff for incorrect output.

Fairness. Here we make the bulk of our contributions. We first recall the basic
setting: Two parties interact by exchanging messages in order to valuate a func-
tion f on their inputs. The only allowed deviation from the protocol is abortion,
in which event both parties learn that the protocol was aborted. Consequently, a
protocol in this model should specify, in addition to the next message to be sent,
also a prediction of the output value in case the execution is aborted. (Although
the setting makes sense for any function, it may be helpful to keep in mind the
fair exchange function, where the output of each party is the input of the other.)

Current notions of fairness for two party protocols in this model (e.g., [20,18])
require there to be a point in the computation where both parties move from a
state of no knowledge of the output to a full knowledge of it. This is a strong
notion, which is impossible to realize in many situations. Instead, we would like

Towards a Game Theoretic View of Secure Computation 429

to investigate more relaxed notions of fairness, which allow parties to gradually
learn partial information on their desired outputs - but do so in a way that is
“fair”. Indeed, such an approach seems reasonable both from a game theoretic
point of view (as a zero-sum game) and from a cryptographic point of view via
the paradigm of gradual release (see e.g. [4,15,11,20,3] and the references within).

A first thing to note about such a notion of fairness is that it is sensitive to
the potential prior knowledge that the parties may have on each other’s inputs.
Indeed, a “gradual release” protocol that is “fair” without prior knowledge may
become “unfair” in a situation where one of the parties has far more knowledge
about the possible values of the inputs of the second party than vice versa.

We thus explicitly model in our security notions the knowledge that each
party has on the input of the other party. That is, we let each party has, in
addition to its own input, some additional information on the input of the other
party. Furthermore, to simplify matters and put the two parties on equal foot-
ing, we assume that the information that the parties have on the input of the
other consists of two possible values for that input. That is, each party receives
three values: its own input, and two possible values for the input of the other
party. Indeed, such information naturally captures situations where the domain
of possible inputs is small (say, binary). The formalism can also be naturally
extended to deal with domains of small size which is larger than two.

We first sketch our Game Theoretic notion. We consider the following set of
distributions over inputs (types): Say that a quadruple of elements (a0, a1, b0, b1)
in the domain of function f is valid if for all i ∈ {0, 1}, f(a0, bi) �= f(a1, bi) and
f(ai, b0) �= f(ai, b1). For each valid quadruple of values in the domain, we define
a distribution that chooses an input for one party at random from the first
two values, and an input for other party at random from the other two values.
The utility function for a party is the following: When the party aborts the
protocol, each party predicts its output. If the party predicts correctly and the
other one does not, then it gets payoff +1. If it predicts incorrectly and the
other party predicts correctly then it gets payoff -1. Else, it gets payoff 0. We
say that a protocol is Game Theoretically Fair if the strategy that never aborts
the protocol is in a computational Nash equilibrium with respect to the above
utility, applied to both parties, and any distribution from the above family.

We then consider three different cryptographic notions of fairness and inves-
tigate their relationships with the above Game Theoretic notion.

– First, we formulate a simple “game based” notion of fairness that limits
the gain of an arbitrary (i.e., not necessarily “rational”) fail-stop adversary
in a game that closely mimics the above Game Theoretic interaction. The
main difference between the notions is that in the cryptographic setting the
adversary is arbitrary, rather than rational. Still, we show that the notions
are equivalent.

– Next, we show that this notion in fact corresponds to the natural concept
of gradual release. That is, say that a protocol satisfies the gradual release
property if at any round the probability of any party to predict its output
increases only by a negligible amount. We show that a protocol is fair (as in

430 G. Asharov, R. Canetti, and C. Hazay

the above notions) if and only if it satisfies the gradual release property. We
note that the notion of gradual release is in essence the basis of the classic
protocols of Beaver, Goldwasser and Levin [4,15]. It has also been a key
tool in the work of Asharov and Lindell [3]. Due to lack of space we do not
present the definition of gradual release here; see full version [2] for a formal
description.

– Then, we formulate an ideal-model based notion of fairness that allows for
gradual release of secrets. In this notion the ideal functionality accepts a
“sampling algorithm” M from the ideal-model adversary. The functionality
then obtains the inputs from the parties and runs M on these inputs, and
obtains from M the outputs that should be given to the two parties. The
functionality then makes the respective outputs available to the two parties.
(Ie, once the outputs are available, the parties can access them at any time.)
The correctness and fairness guarantees of this interaction clearly depend on
the properties of M . We thus require that M be both “fair” and “correct”,
in the sense that both parties get correct output with roughly equal (and
substantial) probability. We then show that the new simulation based defini-
tion implies the gradual release notion. (We note that the converse does not
necessarily hold with respect to secure computation in the fail-stop model,
even disregarding fairness).

A positive result. Finally, we consider the realizability of this notion. Here, we
first assert that the impossibility results of Cleve and Asharov and Lindell [6,3]
hold even with respect to the new notions, as long as both parties are required to
receive an output. We then observe that our notion is meaningful even in the case
where the parties are not guaranteed to always learn the correct output when
played honestly. Surprisingly, in cases where the parties learn the correct out-
put with probability one half or smaller (i.e., correctness holds with probability
between 0 and 1/2), our simulation-based notion of fairness is in fact achievable
with no set-up or trusted third parties. We demonstrate a family of two-party
protocols, parameterized by this correctness probability, that realize the new
notion of fairness. For instance, for the case that correctness is guaranteed with
probability one half, we design a fair protocol where with probability one half
both parties obtain the correct output, and with probability one half both parties
obtain an incorrect value. An alternative protocol makes sure that each party
obtains a correct output with probability one half, and at each execution exactly
one party obtains the correct output value. These scenarios were not known to
be achievable before (not even by [18]), and may prove to be useful.

On the definitional choices. One question that comes to mind when considering
our modeling is why use plain Nash equilibria to exhibit correspondence between
cryptographic notions and Game Theoretic ones. Why not use, for instance,
stronger notions such as Dominant Strategy, Survival Under Iterated Deletions,
or Subgame Perfect equilibria. It turns out that in our setting of two party
computation with fail-stop faults, Nash equilibria do seem to be the concept that
most naturally corresponds to cryptographic secure protocols. In particular, in

Towards a Game Theoretic View of Secure Computation 431

the fail-stop case any Nash equilibrium is sub-game perfect, or in other words
empty threats do not hold (see more discussion on this point in the next section).

Future work. One interesting challenge is extending the results of this work to
the Byzantine case. For one, in the Byzantine case there are multiple crypto-
graphic notions of security, including various variants of simulation based no-
tions. Capturing these notions using Game Theoretic tools might shed light on
the differences between these cryptographic notions. In particular, it seems that
here the Game Theoretic formalism will have to be extended to capture arbitrary
polynomial time strategies at each decision point.In particular, it seems likely
that more sophisticated Game Theoretic solution concepts such as sub-game
perfect equilibria and computational relaxations thereof [21,31] will be needed.

Another challenge is to extend the notions of fairness presented here to address
also situations where the parties have more general, asymmetric a priori knowledge
on each other’s inputs, and to find solutions that use minimal trust assumptions on
the system. Dealing with the multi-party case is another interesting challenge.

Organization. Section 2 presents cryptographic and Game Theoretic “solution
concepts”. Section 4 presents results regarding fairness: (i) the game theoretic
notion, (ii) the equivalent cryptographic definition, (iii) a new simulation based
definition and, (iv) the study of the fairness definition. The gradual release prop-
erty, its relation to fairness and some more details are found in the full version [2].

2 The Model and Solution Concepts

We review some basic definitions that capture the way we model protocols (or,
equivalently, strategies), as well as the solution concepts we will consider — both
the cryptographic and the game theoretic ones. While most of these definitions
are known, some are new to this work.

2.1 Cryptographic Definitions

We review some standard cryptographic definitions of security for protocols.

The Fail-Stop setting. The setting that we consider in this paper is that of two-
party interaction in the presence of fail-stop faults. In this setting both parties
follow the protocol specification exactly, with the exception that any one of the
parties may, at any time during the computation, decide to stop, or abort the
computation. Specifically, it means that fail-stop adversaries do not change their
initial input for the execution, yet, they may arbitrarily decide on their output.

Cryptographic Security. We present game based definitions that capture the
notions of privacy and correctness. We restrict attention to deterministic func-
tions. By definition [12], the view of the ith party (i ∈ {0, 1}) during an execution
of π on (x0, x1) is denoted viewπ,i(x0, x1, n) and equals (xi, ri, mi

1, ..., m
i
t), where

ri equals the contents of the ith party’s internal random tape, and mi
j represents

the jth message that it received.

432 G. Asharov, R. Canetti, and C. Hazay

Definition 1 (Privacy). Let f and π be as above. We say that π privately
computes f if the following holds:
1. For every non-uniform ppt adversary A that controls party P0{

viewπ,A(z),0(x0, x1, n)
}
x0,x1,x′

1,y,z∈{0,1}∗,n∈N

c≡
{
viewπ,A(z),0(x0, x

′
1, n)

}
x0,x1,x′

1,z∈{0,1}∗,n∈N

where |x0| = |x1| = |x′
1| and f(x0, x1) = f(x0, x

′
1).

2. For every non-uniform ppt adversary A that controls party P1{
viewπ,A(z),1(x0, x1, n)

}
x0,x′

0,x1,z∈{0,1}∗,n∈N

c≡
{
viewπ,A(z),1(x′

0, x1, n)
}
x0,x′

0,x1,z∈{0,1}∗,n∈N

where |x0| = |x′
0| = |x1| and f(x0, x1) = f(x′

0, x1).

Definition 2 (Correctness). Let f and π be as above. We say that π correctly
computes f if for all sufficiently large inputs x0 and x1 such that |x0| = |x1| = n,
we have that Pr[outputπ,i ∈ {⊥◦{0, 1}∗, f(x0, x1)}] ≥ 1−μ(n), where outputπ,i �=
⊥ denotes the output returned by Pi upon the completion of π whenever the
strategy of the parties is continue, and μ is a negligible function.

2.2 Game Theoretic Definitions

We review the relevant concepts from Game Theory, and the extensions needed
to put these concepts on equal footing as the cryptographic concepts. Tradition-
ally, a 2-player (normal form, full information) game Γ = ({A0, A1}, {u0, u1})
is determined by specifying, for each player Pi, a set Ai of possible actions and
a utility function ui : A0 × A1 �→ R. Letting A

def= A0 × A1, we refer to a tuple
of actions a = (a0, a1) ∈ A as an outcome. The utility function ui of party Pi
expresses this player’s preferences over outcomes: Pi prefers outcome a to out-
come a′ if and only if ui(a) > ui(a′). A strategy σi for Pi is a distribution on
actions in Ai. Given a strategy vector σ = σ0, σ1, we let ui(σ) be the expected
utility of Pi given that all the parties play according to σ. We continue with a
definition of Nash equilibria:

Definition 3 (Nash equilibria for normal form, complete information
games). Let Γ = ({A0, A1}, {u0, u1}) be as above, and let σ = σ0, σ1 be a pair
of strategies as above. Then σ is in a Nash equilibrium if for all i and any strategy
σ′
i it holds that ui(σ′′

0 , σ′′
1) ≤ ui(σ), where σ′′

i = σ′
i and σ′′

1−i = σ1−i.

The above formalism is also naturally extended to the case of extensive form
games, where the parties take turns when taking actions. Another natural ex-
tension is to games with incomplete information. Here each player has an addi-
tional piece of information, called type, that is known only to itself. That is, the
strategy σi now takes as input an additional value xi. To extend the notion of
Nash equilibria to deal with this case, it is assumed that an a priori distribution
on the inputs (types) is known and fixed.

Towards a Game Theoretic View of Secure Computation 433

Definition 4 (Nash equilibria for extensive form, incomplete informa-
tion games). Let Γ = ({A0, A1}, {u0, u1}) be as above, and let D be a distribu-
tion over ({0, 1}∗)2. Also, let σ = σ0, σ1 be a pair of extensive-form strategies as
described above. Then σ is in a Nash equilibrium for D if for all i and any strat-
egy σ′

i it holds that ui(x0, x1, σ
′′
0 (x0), σ′′

1 (x1)) ≤ ui(x0, x1, σ0(x0), σ1(x1)), where
(x0, x1) is taken from distribution D, σi(x) denotes the strategy of Pi with type
x, σ′′

i = σ′
i and σ′′

1−i = σ1−i.

Extensions for the cryptographic model. We review the (by now standard) ex-
tensions of the above notions to the case of computationally bounded players.
See e.g. [7,26] for more details. The first step is to model a strategy as an (in-
teractive) probabilistic Turing machine that algorithmically generates the next
move given the type and a sequence of moves so far. Next, in order to capture
computationally bounded behavior (both by the acting party and, more impor-
tantly, by the other party), we move to an asymptotic treatment. That is, we
consider an infinite sequence of games. The third and last step is to relax the no-
tion of “greater or equal to” to “not significantly less than”. This is intended to
compensate for the small inevitable imperfections of cryptographic constructs.
That is, we have:

Definition 5 (Computational Nash equilibria for extensive form, in-
complete inf. games). Let Γ = ({A0, A1}, {u0, u1}) be as above, and let
D = {Dn}n∈N be a family of distributions over ({0, 1}∗)2. Let σ = σ0, σ1 be a
pair of ppt extensive-form strategies as described above. Then σ is in a Nash equi-
librium for D if for all sufficiently large n’s, all i and any ppt strategy σ′

i it holds
that ui(n, x0, x1, σ

′′
0 (n, x0), σ′′

1 (n, x1)) ≤ ui(n, x0, x1, σ0(n, x0), σ1(n, x1)) + μ(n),
where (x0, x1) is taken from distribution Dn, σi(x, n) denotes the strategy of Pi
with type x, σ′′

i = σ′
i and σ′′

1−i = σ1−1, and μ is a negligible function.

Our setting. We consider the following setting: At each step, the relevant party
can make a binary decision: Either abort the computation, in which case the other
party is notified that an abort action has been taken, or else continue running
the protocol π scrupulously. The traditional Game Theoretic modeling of games
involving such “exogenous” random choices that are not controllable by the
players involves, introduces additional players (e.g., “Nature”) to the game. In
our case, however, the situation is somewhat different, since the random choices
may be secret, and in addition each player also has access to local state that
is preserved throughout the interaction and may affect the choices. Specifically,
an action may specify a (potentially randomized) algorithm and a configuration.
The outcome of taking this action is that an output of running the said algorithm
from the said configuration, is appended to the history of the execution, and the
new configuration of the algorithm is added to the local history of the player.
More formally:

Definition 6. Let π = (P0, P1) be a two-party protocol (i.e., a pair of Inter-
active Turing Machines). Then, the local history of Pi (for i ∈ {0, 1}), during

434 G. Asharov, R. Canetti, and C. Hazay

an execution of π on input (x0, x1) and internal random tape ri, is denoted by
historyπ,i(x0, x1, n) and equals (xi, ri, mi

1, . . . , m
i
t), where mi

j represents its jthmes-
sage. The history of π during this execution is captured by (m0

1, m
1
1), ..., (m

0
t , m

1
t)

and is denoted by historyπ. The configuration of π at some point during the inter-
action consists of the local configurations of P0, P1.

Fail-stop games. We consider games of the form Γπ,u = ({A0, A1}, {u0, u1}),
where A0 = A1 = {continue,abort}. The decision is taken before the sending
of each message. That is, first the program πi is run from its current configura-
tion, generating an outgoing message. Next, the party makes a strategic decision
whether to continue or to abort. A continue action by player i means that the
outgoing message generated by πi is added to the history, and the new configu-
ration is added to the local history. An abort action means that a special abort
symbol is added to the configurations of both parties and then both π0 and π1
are run to completion, generating local outputs, and the game ends. We call such
games fail-stop games.

The utility functions in fail-stop games may depend on all the histories: the
joint one, as well as the local histories of both players. In the following sections,
it will be convenient to define utility functions that consider a special field of
the local history, called the local output of a player Pi. We denote this field
by outputπ,i. Denote by σcontinue the strategy that always returns continue.
The basic Game Theoretic property of protocols that we will be investigating is
whether the pair of strategies (σcontinue, σcontinue) is in a (computational) Nash
equilibrium in fail-stop games, with respect to a given set of utilities and input
distributions. That is:

Definition 7 (Nash protocols). Let D be a set of distribution ensembles over
pairs of strings, and let U be a set of extensive-form binary utility functions. A
two-party protocol π is called Nash Protocol with respect to U ,D if, for any u ∈ U
and D ∈ D, the pair of strategies σ = (σcontinue, σcontinue) is in a computational
Nash equilibrium for the fail-stop game Γπ,u and distribution ensemble D.

On subgame perfect equilibria and related solution concepts. An attractive solu-
tion concept for extensive form games (namely, interactive protocols) is subgame
perfect equilibria, which allow for analytical treatment which is not encumbered
by “empty threats”. Furthermore, some variants of this notion that are better
suited to our computational setting have been recently proposed (see [21,31]).
However, we note that in our limited case of fail-stop games any Nash equilib-
rium is subgame perfect. Indeed, once one of the parties aborts the computation
there is no chance for the other party to “retaliate”, hence empty threats are
meaningless. (Recall that the output generation algorithms are not strategic,
only the decision whether to abort is.)

3 Privacy and Correctness in Game Theoretic View

In this section we capture the traditional cryptographic privacy and correctness
properties of protocols using Game Theoretic notions. We restrict attention to

Towards a Game Theoretic View of Secure Computation 435

the fail-stop setting and deterministic functions with a single output. (Fairness
aside, private computation of functions with two distinct outputs can be reduced
to this simpler case; see [12] for more details.)

Privacy in Game Theoretic view. Our starting point is the notion of private
computation. A protocol is private if no (fail-stop) PPT adversary is able to
distinguish any two executions where the adversary’s inputs and outputs are the
same, even when the honest party uses different inputs in the two executions.
Our goal, then, is to define a set of utility functions that preserve this property
for Nash protocols. We therefore restrict ourselves to input distributions over
triples of inputs, where the input given to one of the parties is fixed, whereas
the input of the other party is uniformly chosen from the remaining pair. This
restriction captures the strength of cryptographic (semantic) security: even if a
party knows that the input of the other party can only be one out of two possible
values, the game does not give it the ability to tell which is the case. We then
have a distribution for each such triple.

We turn to defining the utility functions. At first glance it may seem that one
should define privacy by having each party gain whenever it learns something
meaningful on the other party’s private input. Nevertheless, it seems that it is
better to make a partylose if the other party learns anything about its secret
information. Intuitively, the reason is that it must be worthwhile for the party
who holds the data to maintain it a secret. In other words, having the other party
gain any profit when breaking secrecy is irrelevant, since it does not introduce
any incentive for the former party to prevent this leakage. (Note however that
here the utility of a party depends on events that are not visible to it during the
execution.) The following definition formalizes the above.

Definition 8 (Distribution ensemble for privacy). The distribution ensem-
ble for privacy for P0 for a two-party function f is the ensemble Dp

f = {Dp
f,n}n∈N

where Dp
f,n = {Da0,a1,b}a0,a1,b∈{0,1}n,f(a0,b)=f(a1,b), and Da0,a1,b outputs (x, b),

where x
R← (a0, a1).

Distribution ensembles for privacy for P1 are defined analogously.
Let π be a two-party protocol computing a function f . Then, for every n, a, b, c

as above and for every ppt algorithm B, let the augmented protocol for privacy
for π, with guess algorithm B, be the protocol that first runs π, and then runs
B on the local state of π and two additional auxiliary values. We assume that B
outputs a binary value. This value is interpreted as a guess for which of the two
auxiliary values is the input value of the other party.

Definition 9 (Utility function for privacy). Let π be a two-party protocol
and f be a two party function. Then, for every a0, a1, b such that f(a0, b) =
f(a1, b), and for every guessing algorithm B, the utility function for privacy for
party P0, on input x ∈ {a0, a1}, is defined by:

up
0(historyπp

Aug,B,1
(x, b, n), a0, a1, b) �→

{−1 if guessπp
Aug,B,1

= g and x = ag

0 otherwise

436 G. Asharov, R. Canetti, and C. Hazay

The utility function for party P1 is defined analogously. Note that if the history
of the execution is empty, ie, no message has been exchanged between the parties,
and the inputs of the parties are taken from a distribution ensemble for privacy,
then up

0 equals at least −1/2. This is due to the fact that P1 can only guess
x with probability at most 1/2. Therefore, intuitively, it will be rational for
P0 to participate in the protocol (rather than to abort at the beginning) only
if (and only if) the other party cannot guess the input of P0 with probability
significantly greater than 1/2. The definition of Game-Theoretic privately is as
follows:

Definition 10 (Game-Theoretic private protocols). Let f and π be as
above. Then, we say that π is Game-Theoretic private for party P0 if πp

Aug,B is
a Nash protocol with respect to up

0, u
p
1 and Dp

f and all valid ppt B.

Game-Theoretic private protocol for P1 is defined analogously. A protocol is
Game-Theoretic private if it is Game-Theoretic private both for P0 and for P1.

Theorem 11. Let f be a deterministic two-party function, and let π be a two-
party protocol that computes f correctly (cf. Definition 2). Then, π is Game-
Theoretic private if and only if π privately computes f in the presence of fail-stop
adversaries.

The proof can be found in the full version [2].

Correctness in Game Theoretic view. We continue with a formulation of a utility
function that captures the notion of correctness as formalized in Definition 12.
That is, we show that a protocol correctly computes a deterministic function if
and only if the strategy that never aborts the protocol is in a computational Nash
equilibrium with respect to the set of utilities specified as follows. The parties
get high payoff only if they output the correct function value on the given inputs
(types), or abort before the protocol starts; in addition, the players get no payoff
for incorrect output. More formally, we introduce the set of distributions for
which we will prove the Nash theorem. The distribution ensemble for correctness
is simply the collection of all point distributions on pairs of inputs:

Definition 12 (Distribution ensemble for correctness). Let f be a deter-
ministic two-party function. Then, the distribution ensemble for correctness is the
ensemble Dc

f = {Dc
n}n∈N where Dc

n = {Da,b}a,b∈{0,1}n, and Da,b outputs (a, b)
w.p. 1.

Note that a fail-stop adversary cannot affect the correctness of the protocol as
it plays honestly with the exception that it may abort. Then, upon receiving an
abort message we have the following: (i) either the honest party already learnt
its output and so, correctness should be guaranteed, or, (ii) the honest party
did not learn the output yet, for which it outputs ⊥ together with its guess for
the output (which corresponds to a legal output by Definition 2). Note that this
guess is different than the guess appended in Definition 9 of utility definition for
privacy, as here, we assume that the protocol instructs the honest party how to

Towards a Game Theoretic View of Secure Computation 437

behave in case of an abort. Furthermore, an incorrect protocol in the presence of
fail-stop adversary implies that the protocol is incorrect regardless of the parties’
actions (where the actions are continue or abort).

This suggests the following natural way of modeling a utility function for
correctness: The parties gain a higher utility if they output the correct output,
and lose if they output an incorrect output. Therefore, the continue strategy
would not induce a Nash Equilibrium in case of an incorrect protocol, as the
parties gain a higher utility by not participating in the execution. More formally:

Definition 13 (Utility function for correctness). Let π be a two-party fail-
stop game as above. Then, for every a, b as above the utility function for correctness
for party P0, denoted uc

0, is defined by:

– uc
0(historyφπ,0) = 1.

– uc
0(outputπ,0, a, b) �→

{
1 if outputπ,0 = f(a, b)
0 otherwise

where historyφπ,0 denotes the case that the local history of P0 is empty. (Namely,
P0 does not participate in the protocol).

Intuitively, this implies that the protocol is a fail-stop Game if it is correct and
vice versa. A formal statement follows below. uc

1 is defined analogously, with
respect to P1.

Theorem 14. Let f be a deterministic two-party function, and let π a two-party
protocol. Then, π is a Nash protocol with respect to uc

0, u
c
1 and Dc

f if and only if
π correctly computes f in the presence of fail-stop adversaries.

The proof can be found in the full version [2].

4 Exploring Fairness in the Two-Party Setting

Having established the notions of privacy and correctness using Game Theoretic
formalism, our next goal is to capture fairness in this view. However, this turns
out to be tricky, mainly due to the highly “reciprocal” and thus delicate nature
of this notion. To illustrate, consider the simplistic definition for fairness that
requires that one party learns its output if and only if the second party does.
However, as natural as it seems, this definition is lacking since it captures each
party’s output as an atomic unit. As a result, it only considers the cases where
the parties either learnt or did not learn their output entirely, and disregards the
option in which partial information about the output may be gathered through
the execution. So, instead, we would like to have a definition that calls a protocol
fair if at any point in the execution both parties gather, essentially, the same
partial information about their respective outputs.

Motivated by this discussion, we turn to the Game Theoretic setting with
the aim to design a meaningful definition for fairness, as we did for privacy and
correctness. This would, for instance, allow investigating known impossibility
results under a new light. Our starting point is a definition that examines the

438 G. Asharov, R. Canetti, and C. Hazay

information the parties gain about their outputs during the game, where each
party loses nominatively to the success probability of the other party guessing
its output. (This is motivated by the same reasoning as in privacy). In order to
obtain this, we first define a new set of utility functions for fairness for which we
require that the game would be Nash; see Section 4.1 for the complete details.

Having defined fairness for rational parties, we wish to examine its strength
against cryptographic attacks. We therefore introduce a new game-based defini-
tion that formalizes fairness for two-party protocols and is, in fact, equivalent to
the Game Theoretic definition; see Theorem 21.

We then introduce in Section 4.3 a new notion of simulation based definition
for capturing security of protocols that follow our game-based notion of fairness,
specified above. This new notion is necessary as (gamed-based) fair protocols
most likely cannot be simulatable according to the traditional simulation based
definition [12]. We consider the notion of “partial information” in the ideal world
alongside preserving some notion of privacy. We then prove that protocols that
satisfy this new definition are also fair with respect to game-based definition.

Finally, we consider the realizability of our notion of fairness. We then observe
that our notion is meaningful even in the case where parties are not guaranteed to
always learn the output when both parties never abort. Somewhat surprisingly,
in cases where the parties learn the output with probability one half or smaller,
our notion of fairness is in fact achievable with no set-up or trusted third parties.
We demonstrate two-party protocols that realize the new notion in this settings.
We also show that whenever this probability raises above one half, our notion of
fairness cannot be realized at all.

4.1 Fairness in Game Theoretic View

In this section we present our first definition for fairness that captures this no-
tion from a Game Theoretic view. As for privacy and correctness, this involves
definitions for utility functions, input distributions and a concrete fail-stop game
(or the sequence of games). We begin with the description of the input distri-
butions. As specified above, the input of each party is picked from a domain of
size two, where all the outputs are made up of distinct outputs. More formally,

Definition 15 (Collection of distribution ensembles for fairness). Let
f be a two-party function. Let (x0

0, x
1
0, x

0
1, x

1
1, n) be an input tuple such that:

|x0
0| = |x1

0| = |x0
1| = |x1

1| = n, and for every b ∈ {0, 1} it holds that:

– f0(x0
0, x

b
1) �= f0(x1

0, x
b
1) (in each run there are two possible outputs for P0).

– f1(xb0, x
0
1) �= f1(xb0, x

1
1), (in each run there are two possible outputs for P1).

Then, a collection of distribution ensembles for fairness Df
f is a collection of dis-

tributions Df
f = {Dx0

0,x
1
0,x

0
1,x

1
1,n
}x0

0,x
1
0,x

0
1,x

1
1,n

such that for every (x0
0, x

1
0, x

0
1, x

1
1, n)

as above, Dx0
0,x

1
0,x

0
1,x

1
1,n

is defined by

(x0, x1) ← Dx0
0,x

1
0,x

0
1,x

1
1,n

(1n), where x0
R← (x0

0, x
1
0) and x1

R← (x0
1, x

1
1).

Towards a Game Theoretic View of Secure Computation 439

Next, let πB be the protocol, where B = (B0,B1). By this notation, we arti-
ficially separate between the protocol and the predicting algorithms in case of
prematurely abort. More precisely, in the case that P0 prematurely aborts, P1
invokes algorithm B1 on its input, its auxiliary information and the history of
the execution, and outputs whatever B1 does. B0 is defined in a similar manner.
In fact, we can refer to these two algorithms by the instructions of the parties
regarding the values they need to output after each round, capturing the event
of an early abort. We stress these algorithms are embedded within the proto-
col. However, this presentation enables us to capture scenarios where one of the
parties follow the guessing algorithm as specified by the protocol, whereas, the
other party follows an arbitrary algorithm. That is, we can consider protocols
πB′ (with B′ = (B̃0,B1)) that are equivalent to the original protocol πB except
for the fact that P0 guesses its output according to B̃0 instead of B0.

We describe the fairness game ΓπB,uf for some B = (B0,B1). The inputs of the
parties, x0, x1, are selected according to some distribution ensemble Dx0

0,x
1
0,x

0
1,x

1
1

as defined in Definition 15. Then, the parties run the fail-stop game, where their
strategies instruct them in each step whether to abort or continue. In case that
a party Pi aborts, the outputs of both parties are determined by the algorithms
(B0,B1). Let outputπB′ ,i denote the output of Pi in game πB′ , then a utility
function for fairness is defined by:

Definition 16 (Utility function for fairness). Let f be a deterministic two-
party function, and let π be a two-party protocol. Then, for every x0

0, x
1
0, x

0
1, x

1
1, n

as above (cf. Definition 15), for every pair of strategies (σ0, σ1) and for every
ppt B̃0, the utility function for fairness for party P0, denoted by uf

0, is defined
by:

uf
0(σ0, σ1) �→

{
1 if outputπf

B′ ,0 =f0(x0, x1)∧ outputπf
B′ ,1 �= f1(x0, x1)

−1 if outputπf
B′ ,0 �=f0(x0, x1)∧ outputπf

B′ ,1 = f1(x0, x1)
0 otherwise

where x0, x1 are as in Definition 15 and B′ = (B̃0,B1). Moreover, the utility for
P1, uf

1 = 0.

Since the utility function of P1 is fixed, only P1 has no incentive to change its
strategy. Moreover, we consider here the sequence of games where P1 always
guesses its output according to B1, the “original” protocol. This actually means
that P1 always plays as honest, in the cryptographic point of view. We are now
ready to define a protocol that is Game-Theoretic fair for P1 as:

Definition 17 (Game-Theoretic fairness for P1). Let f and πB be as above.
Then, we say that πB is Game-Theoretic fair for party P0 if ΓπB′ ,(uf

0,u
f
1)

is a Nash

protocol with respect to (uf
0, u

f
1) and Df

f and all ppt B̃0, where B′ = (B̃0,B1).

Similarly, we define Game-Theoretic fair for party P0, where here we consider all
the protocols πB′ , for all ppt B̃1 and B′ = (B0, B̃1), and the utilities functions
are opposite (that is, the utility for P0 is fixed into zero, whereas the utility
of P1 is modified according to its guess). We conclude with the definition for
Game-Theoretic protocol:

440 G. Asharov, R. Canetti, and C. Hazay

Definition 18 (Game-Theoretic fair protocol). Let f and π be as above.
Them. we say that π is Game-Theoretic fair protocol if it is Game-Theoretic
fair for both P0 and P1.

4.2 A New Indistinguishability-Based Definition of Fairness

We now define a game-based definition (or, an indistinguishability definition) for
fairness in cryptographic settings. Again, as in the game-theoretic settings, we
assume that the protocol instructs the party what to output in case of abortion.
Our definition tests the protocol in a “fail” environment, where each party has
two possible inputs and its effective input is chosen uniformly at random from
this set. Moreover, both parties know the input tuple and the distribution over
the inputs. Before introducing the game-based definition, we first introduce non-
trivial functionalities, to avoid functionalities that one of the parties may know
the correct output without participating.

Definition 19 (Non-trivial functionalities.). Let f be a two-party function.
Then, f is non trivial if for all sufficiently large n’s, there exists an input tu-
ple (x0

0, x
1
0, x

0
1, x

1
1, n) such that |x0

0| = |x1
0| = |x0

1| = |x1
1| = n and {f0(x0, x

b
1),

f0(x0, x
b
1)}b∈{0,1}, {f1(xb0, x0

1), f1(xb0, x1
1)}b∈{0,1} are distinct values.

We are now ready to introduce our formal definition for fairness:

Definition 20 (Game-based definition for fairness.). Let f be a non-trivial
two-party function, and let π be a two-party protocol. Then, for every input tuple
(cf. Definition 19) and any ppt fail-stop adversary A, we define the following
game:
Game Fairπ,A(x0

0, x
1
0, x

0
1, x

1
1, n):

1. Two bits b0, b1 are picked at random.
2. Protocol π is run on inputs xb00 for P0 and xb11 for P1, where A sees the view

of Pi∗ .
3. Whenever A outputs a value y, P1−i∗ is given an abort message. (At this

point, P1−i∗ would write its guess for f1−i∗(xb00 , xb11 , n) on its output tape.)
4. The output of the game is:

– 1 if (i) y = f0(xb00 , xb11 , n) and (ii) P1−i∗ does not output f1(xb00 , xb11 , n).
– −1 if (i) y �= f0(xb00 , xb11 , n) and (ii) P1−i∗ outputs f1(xb00 , xb11 , n).
– 0 in any other possibility (both parties output correct outputs, or both

parties output incorrect outputs).

We say that π fairly computes f if for every ppt adversary A, there exists a
negligible function μ(·) such that for all sufficiently large inputs it holds that,

E(Fairπ,A(x0
0, x

1
0, x

0
1, x

1
1, n)) ≤ μ(n)

At first sight it may seem that Definition 20 is tailored for the fair exchange
function, i.e., when the parties trade their inputs. This is due to the fact that
the parties’ output completely reveal their inputs. Nevertheless, we note that
the definition does not put any restriction on f in this sense, and is aimed
to capture fairness with respect any nontrivial function. We continue with the
following theorem:

Towards a Game Theoretic View of Secure Computation 441

Theorem 21. Let f be a two-party function and let π be a protocol that com-
putes f correctly. Then, π is Game-Theoretic fair (in the sense of Definition 18),
if and only if π fairly computes f in the presence of fail-stop adversaries, (in the
sense of Definition 20).
The proof for this Theorem can be found in the full version [2].

4.3 A New Notion of Simulation Based Fairness

We formulate a new simulation-based notion of fair two party computation. The
goal is to capture in a simulation-based way the same concept captured by the
previous notions in this section. That is, we wish to allow the parties to obtain
“partial information” on each other’s secrets, as long as the gain of information
is “essentially the same” for both parties.

The basic idea is to consider an ideal functionality (namely, a trusted party)
which, in addition to obtaining from the parties their own inputs and a priori
information on the input of the other party, also obtains from the ideal adversary
(i.e., the simulator), a sampling ppt machine M . The functionality then runs M
on the inputs of the parties and sends the parties the outputs that M returns.
In order for our definition to make sense in the fair setting, we require that
M should be “fair” in the sense that the values obtained by the parties are
correlated with their respective outputs in essentially the same way.

For lack of space, we only sketch the highlights of this definition. See full
details in [2]. We make the following requirements from the machine M :

1. Correctness: We require that y′
0 = f0(x0, x), y′

1 = f1(x′, x1) for some
x, x′, where x0, x1 are the inputs of the parties that were sent to the trusted
party and y′

0, y1 are M ’s outputs. Namely, the sampling machine can never
output a value for some party that is uncorrelated with its input.

2. Fairness: we require that there exists a negligible function μ(·) such that
for all sufficiently large n’s it holds that:∣∣∣∣Pr [yi∗ = fi∗(x0, x1)]−

1
2

∣∣∣∣ ≤ Pr [y1−i∗ = f1−i∗(x0, x1)]−
1
2

+ μ(n) (1)

where (y0, y1) = M(x0, x1, z0, z1, r), the adversary controls party i∗ and the
probability is taken over the random coins of M .

The definition of security is now the standard one:

Definition 22. Protocol π is said to securely compute f if for every ppt adver-
sary A in the real model, there exists a ppt simulator S in the ideal model, such
that:

{nidealf,S(x)}x∈{0,1}∗ ≡ {realπ,A(x)}x∈{0,1}∗

where the ideal execution uses any (adversatively chosen) sampling machine M
that satisfies the above requirements.

Theorem 23. Let f , π be as above. Then, if π is simulatable (in the sense of
Definition 22), then π is fair with respect to the Game-Based (in the sense of
Definition 20).

442 G. Asharov, R. Canetti, and C. Hazay

4.4 The Feasibility of Our Definition

In this section, we study our new game-based cryptographic definition of fairness
in a cryptographic context. Our starting point is any correct protocol, where both
parties learn their output if playing honestly. We then show, that by relaxing
the (negligibly close to) perfect completeness requirement, which implies that
the parties should (almost) always learn their output if playing honestly, we can
fully characterize the set of two-party protocols according partial correctness.
Informally,

1. In case correctness holds with probability that is non-negligibly greater than
1/2, we present an impossibility result, saying that there does not exists
a fair protocol with this probability of correctness. This implies that the
difficulties in designing fair protocols are already embedded within the fail-
stop setting. Stating differently, these difficulties already emerge whenever
early abort is permitted.

2. On the positive side, in case correctness holds with probability that is smaller
equals to 1/2, we show how to design a fair protocol that meets our notion
of fairness. Specifically, we present a family of such protocols, parameterized
by this probability of correctness. The implications of this is that there may
be still hope for the fail-stop setting with respect to designing fair protocols.

An impossibility result. In this section we demonstrate that our game-based
definition for fairness cannot be achieved for protocols that guarantee correctness
with probability greater than 1/2. Before turning to our main theorem we present
a definition of an α-correct protocol.

Definition 24. Let f be a non-trivial two-party function, and let π be a two-
party protocol. We say that the protocol π is a α-correct for f if there exists
a negligible function μ(·) such that for all sufficiently large x0, x1, n such that
|x0| = |x1| = n,∣∣Pr[outputπ,0(x0, x1) = f0(x0, x1) ∧ outputπ,1(x0, x1)=f1(x0, x1, n)]− α

∣∣ ≤ μ(n)

where outputπ,i(x0, x1) denote the output of party Pi when invoked on input xi,
while P1−i is invoked on x1−i, and both parties are honest.

Our theorem of impossibility:

Theorem 25. Let f be a non-trivial two-party function. Then, for every non-
negligible function ε(·) and every α > 1/2+ε(n), there does not exist an α-correct
protocol which is also fair (in the sense of Definition 20), with a polynomial round
complexity.

A positive result. Interestingly, we show that for relaxed correctness (i.e.,
lower equal than 1/2), there do exist non-trivial functionalities that can be com-
puted fairly in this setting. In the following, we present a fair protocol in which
either both parties learn the correct output together, or alternatively neither

Towards a Game Theoretic View of Secure Computation 443

party obtains a correct result. The case where in each execution exactly one
party learns its correct output can also be achieved with fairness. More gener-
ally, denote by α the probability in which both parties should learn their outputs.
Then, we show that for every α ≤ 1/2, there exists an α-correct protocol that
is also fair, even in the non-simultaneous channel model. This relaxation is nec-
essary to obtain fairness, as higher α values set a threshold for achieving this
property (as shown in Section 4.4). Intuitively, the fact that each party does not
know whether it has the correct output implies that a corrupted party would
not have any incentive to abort after learning its output, since it does not give
the honest party any new information anyway.

The protocol. The protocol is invoked over tuples of inputs with the distribution
of choosing each input randomly out of a known pair. Let x0

0, x
1
0, x

0
1, x

1
1 denote

such an input tuple and denote by xtrue
0

def= f0(xb00 , xb11), xfalse
0

def= f0(xb00 , x1−b1
1),

xtrue
1

def= f1(xb00 , xb11), and xfalse
1

def= f1(x1−b0
0 , xb11).

Then, function fα; formally defined below, sets the output of the parties such
that both learn the correct output with probability α, as required from an α-
correct protocol. Moreover, the parties realize function fα via protocol παabort,
which is secure-with-abort.

The Ideal Functionality fα

– Input: P0 inserts b0, x
0
0, x

1
0, x

0
1, x

1
1. P1 inserts b1, x

0
0, x

1
0, x

0
1, x

1
1.

– The function:
• Toss a coin σ that equals 0 with probability 2α, and equals 1 with

probability 1− 2α.
• If σ = 0 (parties learn same output) do:
∗ Toss another coin τ0 uniformly at random from {0, 1}.
∗ If τ0 = 0: set the output of P0, P1 to be (xtrue

0 , xtrue
1), respectively.

∗ If τ0 = 1: set the output of P0, P1 to be (xfalse
0 , xfalse

1), respectively.
• If σ = 1 (parties learn true and false outputs) do:
∗ Toss another coin τ1 uniformly at random from {0, 1}.
∗ Set the output of Pτ1 to be xtrue

τ1 .
∗ Set the output of P1−τ1 to be xfalse

1−τ1 .

In the protocol, the parties compute the function fα using security-with-abort.
At the end of this computation, the adversary is the first to see the output. In
case that the adversary deicides to abort, the honest party guesses its output at
random from the two optional outputs. Intuitively, fairness is achieved since both
parties learn the correct output with the same probability (1/2). On the other
hand, in case where both parties play honestly, there is a correlation between the
two outputs, as required from an α-correct protocol. For a full description of the
protocol, together with a proof for the following theorem, see the full version [2].

444 G. Asharov, R. Canetti, and C. Hazay

Theorem 26. Let f be a non-trivial two-party function. Then, for every 1/2 ≥
α ≥ 0, protocol πα is an α-correct protocol in the fα-hybrid model, and is sim-
ulatable (in the sense of Definition 22).

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed Computing Meets
Game Theory: Robust Mechanisms for Rational Secret Sharing and Multiparty
Computation. In: PODC, pp. 53–62 (2006)

2. Asharov, G., Canetti, R., Hazay, C.: Towards a Game Theoretic View of Secure
Computation (full version) (in ePrint)

3. Asharov, G., Lindell, Y.: Utility Dependence in Correct and Fair Rational Secret
Sharing. Journal of Cryptology 24(1), 157–202 (2011)

4. Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: 30th
FOCS, pp. 468–473 (1989)

5. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology 13(1), 143–202 (2000)

6. Cleve, R.: Limits on the Security of Coin Flips when Half the Processors are Faulty.
In: 18th STOC, pp. 364–369 (1986)

7. Dodis, Y., Halevi, S., Rabin, T.: A Cryptographic Solution to a Game Theoretic
Problem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 112–130.
Springer, Heidelberg (2000)

8. Dodis, Y., Rabin, T.: Cryptography and Game Theory. In: Algorithmic Game
Theory. Cambridge University Press, Cambridge (2007)

9. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient Rational Secret Sharing in
Standard Communication Networks. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 419–436. Springer, Heidelberg (2010)

10. Fudenberg, D., Tirole, J.: Game Theory. The MIT Press, Cambridge (1991)
11. Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness

and composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.)
TCC 2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)

12. Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

13. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game – A
Completeness Theorem for Protocols with Honest Majority. In: 19th STOC, pp.
218–229 (1987)

14. Goldreich, O., Kahan, A.: How To Construct Constant-Round Zero-Knowledge
Proof Systems for NP. Journal of Cryptology 9(3), 167–190 (1996)

15. Goldwasser, S., Levin, L.A.: Fair computation of general functions in presence of
immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 77–93. Springer, Heidelberg (1991)

16. Goldwasser, S., Micali, S.: Probabilistic Encryption and How to Play Mental Poker
Keeping Secret All Partial Information. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

17. Goldwasser, S., Micali, S., Rachoff, C.: The Knowledge Complexity of Interactive
Proof Systems. SIAM J. Computing 18(1), 186–208 (1989)

18. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. In: STOC, pp. 413–422 (2008)

19. Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)

Towards a Game Theoretic View of Secure Computation 445

20. Gordon, S.D., Katz, J.: Partial Fairness in Secure Two-Party Computation. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer,
Heidelberg (2010)

21. Gradwohl, R., Livne, N., Rosen, A.: Sequential Rationality in Cryptographic Pro-
tocols. In: FOCS, pp. 623–632 (2010)

22. Halpern, J., Teague, V.: Efficient Rational Secret Sharing in Standard Communi-
cation Networks. In: 36th STOC, pp. 623–632 (2004)

23. Halpern, J., Pass, R.: Game Theory with Costly Computation. In: ICS, pp. 120–142
(2010)

24. Izmalkov, S., Lepinski, M., Micali, S.: Verifiably Secure Devices. In: Canetti, R.
(ed.) TCC 2008. LNCS, vol. 4948, pp. 273–301. Springer, Heidelberg (2008)

25. Izmalkov, S., Micali, S., Lepinski, M.: Rational Secure Computation and Ideal
Mechanism Design. In: 46th FOCS, pp. 585–595 (2005)

26. Katz, J.: Bridging Game Theory and Cryptography: Recent Results and Future
Directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer,
Heidelberg (2008)

27. Kol, G., Naor, M.: Games for exchanging information. In: 40th STOC, pp. 423–432
(2008)

28. Kol, G., Naor, M.: Cryptography and Game Theory: Designing Protocols for Ex-
changing Information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–
339. Springer, Heidelberg (2008)

29. Lysyanskaya, A., Triandopoulos, N.: Rationality and Adversarial Behavior in
Multi-party Computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 180–197. Springer, Heidelberg (2006)

30. Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.P.: Fairness with an Honest Minority
and a Rational Majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
36–53. Springer, Heidelberg (2009)

31. Pass, R., Shelat, A.: Renegotiation-Safe Protocols. In: Innovations in Computer
Science, ICS 2011 (2011)

Highly-Efficient Universally-Composable
Commitments Based on the DDH Assumption�

Yehuda Lindell

Department of Computer Science
Bar-Ilang University, Israel
lindell@cs.biu.ac.il

Abstract. Universal composability (a.k.a. UC security) provides very
strong security guarantees for protocols that run in complex real-world
environments. In particular, security is guaranteed to hold when the pro-
tocol is run concurrently many times with other secure and possibly inse-
cure protocols. Commitment schemes are a basic building block in many
cryptographic constructions, and as such universally composable com-
mitments are of great importance in constructing UC-secure protocols.
In this paper, we construct highly efficient UC-secure commitments from
the standard DDH assumption, in the common reference string model.
Our commitment stage is non-interactive, has a common reference string
with O(1) group elements, and has complexity of O(1) exponentiations
for committing to a group element (to be more exact, the effective cost is
that of 23 1

3
exponentiations overall, for both the commit and decommit

stages). We present a construction that is secure in the presence of static
adversaries, and a construction that is secure in the presence of adaptive
adversaries with erasures, where the latter construction has an effective
additional cost of just 5 1

3
exponentiations.

1 Introduction

Background – universal composability and efficiency. Modern crypto-
graphic protocols are run in complex environments. Many different secure and
insecure protocols are executed concurrently, and some protocols may have been
designed specifically to attack others [13]. The classic definitions of security
that consider stand-alone executions only do not guarantee security in mod-
ern real-world setting. Universal composability (or UC security) is a definitional
framework that guarantees security even if the protocol is run concurrently with
arbitrarily many other secure and insecure protocols, and even if related inputs
are used. More specifically, a UC-secure protocol behaves like an ideal execution
(where an incorruptible trusted party carries out the computation for the par-
ties) no matter what other protocols are being run by the honest parties at the
time.
� This research was supported by the European Research Council as part of the ERC

project “LAST”, and by the israel science foundation (grant No. 781/07).

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 446–466, 2011.
c© International Association for Cryptologic Research 2011

Highly-Efficient Universally-Composable Commitments 447

The UC-framework models the real-world execution environment in a far more
realistic way than the classic stand-alone definitions. As such, one would expect
the framework to be adopted by practitioners and those interested in imple-
menting cryptographic protocols that could be run in practice. In the setting of
key exchange this is indeed the case. For just two examples, the SIGMA fam-
ily of key exchange protocols that are part of IKE (the standardized Internet
key exchange protocol) and the HMQV protocol have been proven secure in the
UC-framework [5,15]. However, beyond key exchange, there seems to have been
little interest in UC-security from the applied cryptographic community. (We
stress that this is in contrast to the recent growing interest in implementations
of general and specific protocols for secure two-party and multiparty computa-
tion; see [17,2,23,20,19] for just a few examples.) There are a number of reasons
for this. We believe that one of the primary reasons is the lack of efficient UC-
secure primitives, the exception being UC-secure oblivious transfer [22]. Given
this state of affairs, it is very difficult to construct efficient UC-secure protocols
that can be reasonably implemented.

UC commitments. Commitment schemes are one of the most basic building
blocks for cryptographic protocols. A commitment scheme is made up of two
phases: a commit phase in which a committer commits to a value while keep-
ing it hidden, and a decommit phase in which the committer reveals the value
that it previously committed to. The binding property of a commitment states
that the committer is bound to a single value after the commit phase and can
only decommit to that value; the hiding property states that the receiver learns
nothing about the committed value until it is revealed. As such, a commitment
scheme has been intuitively described as a digital envelope containing the com-
mitted value: once the envelope has been closed the committer cannot change the
value, and until the envelope is opened the receiver cannot learn what is inside.
Despite this appealing description, regular commitments do not behave in this
way. For just one example, they may be malleable (e.g., it may be possible to
generate a commitment to 2x from a commitment to x, without knowing x). In
contrast, UC-secure commitments are non-malleable, cannot be copied, and are
guaranteed to remain secure irrespective of whatever other protocols are run.

Commitment schemes that are secure in the UC-framework were first pre-
sented by Canetti and Fischlin in [4]. They also showed that it is impossible
to construct UC commitments in the plain model, and thus some setup like a
common reference string is required. The commitment schemes of [4] have the
property that O(1) asymmetric operations are needed for every bit committed
to. Soon after, Damg̊ard and Nielsen [9] presented UC commitments with the
property that O(1) exponentiations are sufficient for committing to an entire
string (that can be mapped into a group element). This is a significant improve-
ment. However, the Damg̊ard-Nielsen construction suffers from a few drawbacks.
First, it requires a common reference string that grows linearly with the num-
ber of parties in the system; specifically, one group element is needed for every
party. This is a significant obstacle in implementations because it means that it
is not possible to publish a single common reference string that can then be used

448 Y. Lindell

by arbitrary parties who wish to run the protocol. Second, the Damg̊ard-Nielsen
constructions are based on the N -residuosity and p-subgroup assumptions. These
are less established assumptions than RSA and DDH, for example. Furthermore
the N -residuosity assumption, which has become accepted since its introduction
in [21], suffers from a significant computational overhead. This is due to the
fact that exponentiations are modulo N2 (at least) and thus a modulus N of
size 1536 – which is needed for reasonable security – results in exponentiations
modulo a number of length 3072 bits. In contrast, basic discrete log exponenti-
ations can be run in Elliptic curves of size 224 or 256 bits and are significantly
faster. In cryptographic protocols where many UC commitments are needed (see
below for an example), this can be a real obstacle. Our results. We present
a conceptually simple and efficient protocol for UC-secure commitments in the
common reference string model that is based on the DDH assumption. Our pro-
tocol requires O(1) regular group exponentiations and has a common reference
string with O(1) group elements for any number of parties. In addition, we have
a version that provides security in the presence of adaptive adversaries with era-
sures that has only slightly additional cost. A comparison of our result with the
construction of Damg̊ard-Nielsen, which is the previous best known, yields the
following:
– Assumptions: We rely on the standard DDH assumption, while Damg̊ard-

Nielsen rely on the N -residuosity or p-subgroup assumptions.
– Common reference string (CRS): Our common reference string contains a

description of the discrete log group, its order and 7 group elements, and
can be used by any number of parties. Thus, a single CRS can be published
for all to use. In contrast, Damg̊ard-Nielsen need a CRS with a single (ring
or group) element for every party in the system.

– Efficiency: Our protocol has a non-interactive commitment phase with just
5 exponentiations to be computed by the committer. The decommit phase is
interactive and requires both parties overall to compute 21 exponentiations.
Using optimizations for computing multi-exponentiations of the form gr · hs
the overall cost in both phases is 23 1

3 regular DDH exponentiations. In con-
trast Damg̊ard-Nielsen have an interactive commitment phase with 10 large
modulus exponentiations and a non-interactive decommit phase requiring 4
exponentiations1. Based on experiments, we estimate that our commitment
scheme is approximately 25–30 times faster than the scheme of Damg̊ard-
Nielsen. (This estimate is not based on an implementation of the schemes,
but rather a comparison of the time taken to compute 14 exponentiations
modN2 with a modulus N of size 2048 bits versus 23 1

3 Elliptic curve “ex-
ponentiations” over a field of size 256 bits, using the Crypto++ library [25].
When using a modulus N of size 1536 bits versus a curve over a field of size
224 bits, our scheme is approximately 20 times faster.)

1 The question of whether there is more cost in the commitment or decommitment
phase is significant in protocols of the cut-and-choose type where many commitments
are sent and only some of them opened. In such cases, it is preferable to use a
commitment scheme with a faster commitment phase.

Highly-Efficient Universally-Composable Commitments 449

– Adaptive security: The Damg̊ard-Nielsen construction is secure only for static
corruptions (where the set of corrupted parties is fixed before any commit-
ments are sent), whereas we also have a construction that is secure in the
presence of adaptive corruptions with erasures. (In this model, the adver-
sary can choose to corrupt parties over time, but an honest party can follow
erase instructions and it is assumed that once data is erased it cannot be
retrieved by the adversary if it later corrupts the party.) The additional cost
of achieving adaptive security is just 5 1

3 exponentiations, yielding a total of
28 2

3 . In this case, however, the majority of the work is in the commitment
stage and not in the decommitment stage.

An example – UC zero-knowledge from Sigma-protocols. Since our effi-
ciency improvement over prior work is concrete and not asymptotic, we demon-
strate its potential significance in implementations. We do this by considering the
ramification of our efficiency improvement on constructions of efficient UC-secure
zero-knowledge protocols. Many, if not most, useful efficient zero-knowledge pro-
tocols are based on Sigma protocols [8]. In the stand-alone case, transformations
from Sigma protocols to zero-knowledge and zero-knowledge proofs of knowledge
are highly efficient, requiring only a few additional exponentiations; see [10, Sec-
tion 6.5]. Unfortunately, no such efficient analogue is known for achieving UC
zero-knowledge from Sigma protocols. Rather, it is necessary to repeat the Sigma
protocol L times in order to achieve a soundness error of 2−L. In addition, 3 UC-
commitments are needed for each repetition (but only two are opened); see [12]
and [16, App. C] for a description of the transformation. Setting L = 40 for a rea-
sonable soundness error, we have that 120 UC commitments are needed for the
transformation. Assuming 47 milliseconds for our scheme and 1.35 seconds for
Damg̊ard Nielsen (based on estimates using the Crypto++ library), we have that
the additional overhead resulting from the UC commitments is 5.6 seconds for
our protocol versus 162 seconds for Damg̊ard-Nielsen (the difference is actually
even greater since 40 of the 120 commitments are not opened; see Footnote 1).
We conclude that in protocol implementations the efficiency improvement gained
by using our new UC commitment protocol can be definitive.

2 Preliminaries and Definitions

Universal composability [3] is a definition of security that considers a stand-alone
execution of a protocol in a special setting involving an environment machine Z,
in addition to the honest parties and adversary. As with the classic definition of
secure computation, ideal and real models are considered where a trusted party
carries out the computation in the ideal model and the real protocol is run in
the real model. The environment adaptively chooses the inputs for the honest
parties, interacts with the adversary throughout the computation, and receives
the honest parties’ outputs. Security is formulated by requiring the existence of
an ideal-model simulator S so that no environment Z can distinguish between
the case that it runs with the real adversary A in the real model and the case
that it runs with the ideal-model simulator S in the ideal model.

450 Y. Lindell

In slightly more detail, we denote by idealF ,SA,Z(n, z) the output of the
environment Z with input z after an ideal execution with the ideal adversary
(simulator) S and functionality F , with security parameter n. We will only
consider black-box simulators S, and so we denote the simulator by SA meaning
that it works with the adversary A attacking the real protocol. Furthermore,
we denote by realπ,A,Z(n, z) the output of environment Z with input z after
a real execution of the protocol π with adversary A, with security parameter n.
Our protocols are in the common reference string (CRS) model. Formally, this
means that the protocol π is run in a hybrid model where the parties have access
to an ideal functionality Fcrs that chooses a CRS according to the prescribed
distribution and hands it to any party that requests it. We denote an execution
of π in such a model by hybrid

Fcrs

π,A,Z(n, z). Informally, a protocol π UC-realizes a
functionalityF in the Fcrs hybrid model if there exists a probabilistic polynomial-
time simulator S such that for every non-uniform probabilistic polynomial-time
environment Z and every probabilistic polynomial-time adversary A, it holds
that {

idealF ,SA,Z(n, z)
}
n∈N;z∈{0,1}∗

c≡
{
hybrid

Fcrs

π,A,Z(n, z)
}
n∈N;z∈{0,1}∗

.

The importance of this definition is a composition theorem that states that
any protocol that is universally composable is secure when run concurrently
with many other arbitrary protocols; see [3] for definitions and details. UC
commitments. The multi-commitment ideal functionality Fmcom, which is the
functionality that we UC realize in this paper, is formally defined in Figure 1.

FIGURE 1 (Functionality Fmcom)

Fmcom proceeds as follows, running with parties P1, . . . , Pm, a parameter 1n,
and an adversary S :
– Commit phase: Upon receiving a message (commit, sid, ssid, Pi, Pj , x)

from Pi where x ∈ {0, 1}n−log2 n, record the tuple (ssid, Pi, Pj , x) and
send the messages (receipt, sid, ssid, Pi, Pj) to Pj and S . Ignore any future
commit messages with the same ssid from Pi to Pj .

– Reveal phase: Upon receiving a message (reveal, sid, ssid) from Pi: If
a tuple (ssid, Pi, Pj , x) was previously recorded, then send the message
(reveal, sid, ssid, Pi, Pj , x) to Pj and S . Otherwise, ignore.

Fig. 1. The ideal commitment functionality

For technical reasons, the length of the committed value x is n − log2 n. It
is defined in this way because our commitment involves encrypting x together
with the session identifiers sid, ssid and the parties’ identities (i, j). Now, the
encryption that we use is of a single group element that is of length n, and
so the combined length of x, sid, ssid, i, j must be n. We therefore define each
identifier and identity to be of size log2 n

4 ; this means that each comes from a
superpolynomial domain and so there are enough to ensure that the session
identifiers do not repeat and each party has a unique identity. Thus, taking x of
size n− log2 n we have that the string (x, sid, ssid, i, j) is of length n.

Highly-Efficient Universally-Composable Commitments 451

3 Efficient UC Commitments

3.1 Protocol Idea and Overview

Before describing the idea behind our construction, recall that a UC-secure com-
mitment must be both extractable (meaning that a simulator can extract the
value that a corrupted party commits to) and equivocal (meaning that a simu-
lator can generate commitments that can be opened to any value), without the
simulator rewinding the adversary. In addition, the adversary must not be able
to generate commitments that are related to commitments generated by honest
parties; thus, the commitment must be essentially non-malleable. Our protocol
is in the common reference string (CRS) model; this is justified by the fact that
UC commitments cannot be achieved in the plain model [4].

The high-level idea behind our construction is as follows. The committer com-
mits to a string by encrypting it with a CCA2-secure encryption scheme Ecca,
using a public-key pk1 that is found in the common reference string (CRS). Ob-
serve that this enables extraction because when simulating a protocol that is in
the CRS model, the simulator is allowed to choose the CRS itself. Thus, it can
choose the public key so that it knows the corresponding private decryption key.
This enables it to decrypt and obtain the committed value. Next, in order to
decommit, it is clearly not possible to reveal the value and randomness used to
encrypt, because encryptions are perfectly binding and so it is not possible to
equivocate. Thus, in order to decommit, the committer instead sends the com-
mitted value and then proves in zero knowledge that this is indeed the correct
value. At first sight, this approach may seem futile because in the UC setting it
seems no easier to construct UC zero-knowledge than UC commitments. Never-
theless, we observe that the proof need not be a full fledged UC zero-knowledge
protocol, and in particular there is no need to extract the witness from the proof.
Rather, the only property that we need is that it be possible to simulate without
rewinding. This is due to the fact that the extraction of the committed value
already took place in the commit stage and this proof is just to ensure that cor-
rupted parties decommit to the same value that they committed to. Thus, only
soundness is necessary. (Of course, the ability for a simulator to equivocate is
due to its ability to run a zero-knowledge simulator and essentially lie about the
value committed to.) The proof that we use is based on a Sigma protocol and we
make it zero knowledge (without rewinding) by having the verifier first commit
to its challenge and then run the Sigma protocol with the verifier decommitting.
In order to have a straight-line simulator we make this commitment from the
verifier be an encryption of the challenge under a different public key pk2 in the
CRS. As above, in the simulation the simulator can choose the public-key so
that it knows the corresponding private key, enabling it to extract the challenge
from the verifier. Once it has extracted the challenge, it can run the simulator
for the Sigma protocol which is perfect and straight line once given the verifier
challenge. Although intuitively appealing, this is problematic because soundness
of this transformation from a Sigma protocol to a zero-knowledge proof can only
be proven if the commitment is perfectly hiding. But this then clashes with the
requirement to have the commitment be extractable. We solve this efficiently

452 Y. Lindell

by using a dual mode cryptosystem Edual, as introduced by [22]2, although we
only need a simpler version. Such a cryptosystem has a regular key generation
algorithm and an alternative one, and has the property that it behaves as a reg-
ular public-key encryption scheme when a regular key is generated, but perfectly
hides the encrypted value when an alternative key is generated. Furthermore,
the regular and alternative keys are indistinguishable. As we will see in the
proof, this suffices for proving soundness, because at the point where soundness
is needed we no longer need to be able to extract the verifier’s challenge and
thus can replace the key in the common reference string by an alternative one.
Note that a regular key for Edual is used in a real protocol execution, and the
ability to generate an alternative key is used within the proof of security. (Note
also that we cannot use this method for the actual UC commitment because we
need to simultaneously extract and equivocate.)

The above yields the following template for UC commitments:

PROTOCOL 1 (UC-commitment template)

Common reference string: (pk1, pk2) where pk1 is the public-key of a
CCA2-secure encryption scheme, and pk2 is the public-key of a dual mode
cryptosystem, as described above.

The commit phase:

1. The committer commits to x by encrypting it under pk1 and sending the
ciphertext c = Ecca

pk1
(x; r) to the receiver (i.e., it encrypts x using random

coins r).
(Actually, x is encrypted together with a unique session identifier and the
identities of the parties, but we ignore these details here.)

The decommitment phase:

1. The committer sends x to the receiver (without revealing r)
2. Let (α, ε, z) denote the message of a Sigma protocol for proving that c is

an encryption of x (using witness r).
(a) The receiver sends c′ = Edual

pk2
(ε; r′)

(b) The committer sends α
(c) The receiver decommits to ε by sending ε and r′

(d) The committer checks that c′ = Edual
pk2

(ε; r′) and if yes, computes the
reply z for the Sigma protocol, based on (α, ε)

(e) The receiver outputs x as the decommitted value if and only if (α, ε, z)
is an accepting Sigma-protocol transcript

Before proceeding, we explain why the value x is committed to by encrypting
it under an encryption scheme that is secure under adaptive chosen-ciphertext
attacks (CCA2 secure). Specifically, we have already discussed why some no-
tion of non-malleability is needed, but CCA2-security is stronger than NM-CPA
2 We use the formulation as it appears in [22], although the idea of having alternative

keys that provide perfect hiding or regular encryption goes back earlier. Two exam-
ples of where similar notions were defined are in [11,14]. In fact, our construction of
dual encryption is exactly the same as the ambiguous commitment used in [11].

Highly-Efficient Universally-Composable Commitments 453

(non-malleability under chosen plaintext attacks). In order to understand why
we nevertheless need CCA2 security, recall that a simulator must equivocate.
Specifically, in the simulation in the ideal model, the simulator receives commit-
ment receipts that contain no information about the committed value. However,
in the real world, the adversary receives encryptions of the actual committed
value. Thus, whenever it receives a commitment receipt, the simulator encrypts 0
and hands it to the real-world adversary. Later, when the commitment is opened
and the simulator learns that it was to a value x, it cheats in the Sigma protocol
and “proves” that the encryption of 0 was actually an encryption of x. In order
to prove that encrypting 0 (as the simulator does) and encrypting x (as an hon-
est party does) makes no difference, it is necessary to reduce this to the security
of the encryption scheme. In such a reduction, an adversary attacking the en-
cryption scheme simulates the UC commitment execution such that if it received
encryptions of 0 then the result should be the same as the ideal simulation, and
if it received encryptions of real values x then the result should be the same as
a real execution with honest parties and the real adversary. To be more exact,
this reduction is carried out by running the simulator for the UC commitment
scheme and using challenge ciphertexts obtained in the encryption game instead
of the simulator generating commitments itself. Of course, in this reduction the
simulator does not choose the CCA2-secure public key to place in the CRS but
rather places the public-key that it receives as part of the encryption distin-
guishing game. However, as we have already discussed, the simulator must also
be able to extract committed values generated by the adversary by decrypting,
at the same time as we carry out this reduction. This brings us to the crux of the
problem which is that it can only carry out this decryption because it knows the
private key, and so it cannot decrypt when proving the reduction. This problem
is solved by using CCA2-secure encryption because now in the distinguishing
game the adversary is allowed to ask for decryptions of ciphertexts, and so the
simulator can decrypt the commitments from the adversary, as required.

Efficient implementations. It remains to describe how all of the elements
of the protocol can be efficiently implemented. First, we use the Cramer-Shoup
(CS) encryption scheme [7] as the CCA2-secure encryption scheme. This scheme
is defined as follows:

– CS key generation: Let (G, q, g1, g2) be such that G is a group of order
q and g1, g2 are two distinct generators. Choose x1, x2, y1, y2, z ∈R Zq at
random and compute c = gx1

1 gx2
2 , d = gy11 gy22 and h = gz1 . The public key is

(G, q, g1, g2, c, d, h) and the secret key is (x1, x2, y1, y2, z).
– CS encryption: Let m ∈ G. Then, in order to encrypt m, choose a random

r ∈R Zq, compute u1 = gr1, u2 = gr2, e = hr · m, ω = H(u1, u2, e) where
H is a collision-resistant hash function, and v = (c · dω)r. The ciphertext is
(u1, u2, e, v).

– CS decryption: Compute ω = H(u1, u2, e). If ux1
1 · ux2

2 · (uy11 · uy22)ω = v,
then output m = e/(uz1).

454 Y. Lindell

The crucial observation that we make is that in order to verify that a ciphertext
(u1, u2, e, v) is a valid encryption of a message m, it suffices to prove that there
exists a value r ∈ Zq such that

u1 = gr1 , u2 = gr2,
e

m
= hr, and v = (cdω)r.

Furthermore, since ω can be computed publicly from the public-key and cipher-
text, all the values except for r are public. Thus, we have that in order to prove
that a ciphertext encrypts some given value m, we just need to run a proof that
4 values have the same discrete log with respect to their respective bases. Highly
efficient Sigma protocols exist for this task (this is the same as proving that a
tuple is of the Diffie-Hellman form). Thus, the CCA2-secure encryption scheme
together with the required proof can both be implemented very efficiently.

It remains to show how a dual-model encryption scheme can be efficiently
implemented. We essentially use the construction of [22], but we need only their
basic cryptosystem and not their full dual-mode one. Specifically, we need the
ability to construct a fake public-key that is indistinguishable from a regular
one, so that if encryption is carried out under this key, then the encrypted value
is perfectly hidden. Such an encryption scheme can be constructed at double the
cost of El Gamal as follows:

– Dual regular key generation: Let (G, q, g1, g2) be as above. Choose ρ ∈R
Zq and compute h1 = gρ1 and h2 = gρ2 . The public key is (G, q, g1, g2, h1, h2),
and the private key is ρ.

– Dual alternative key generation: As above, except choose ρ1, ρ2 ∈R Zq
with ρ1 �= ρ2 and compute h1 = gρ11 and h2 = gρ22 .

– Dual encryption: To encrypt m ∈ G, choose random R, S ∈ Zq and com-
pute u = gR1 · gS2 and v = hR1 · hS2 ·m. The ciphertext is c = (u, v).

– Dual decryption: To decrypt (u, v), compute m = v/uρ.

In order to see that this scheme has the desired properties, observe that decryp-
tion works as in El Gamal, an alternative key is indistinguishable from a real one
by the DDH assumption, and encryption under an alternative key is perfectly
hiding since when ρ1 �= ρ2 the values u and v are independent.

Naively, the cost of encryption is 4 exponentiations which is twice that of
El Gamal. However, using the method of simultaneous multiple exponentiations
in [18, Sec. 14.6], we have that u and v can be computed at the equivalent cost
of 1 1

3 exponentiations each. Thus, the cost is 2 2
3 exponentiations.

3.2 The Actual Protocol

The full specification of our commitment scheme appears in Protocol 2. The
proof carried out in the decommitment phase is based on a Sigma protocol for
Diffie-Hellman tuples. Regarding completeness of this proof, observe that if Pi
is honest, then gz1 = gs+εr1 = gs1 · (gr1)ε = α · uε1, gz2 = gs+εr2 = gs2 · (gr2)ε = β · uε2,
hz = hs+εr = hs · (hr)ε = γ ·

(
e
m

)ε, and

(cdω)z = (cdω)s+εr = (cdω)s · ((cdω)r)ε = (cdω)s · (crdrω)ε = δ · vε.

Highly-Efficient Universally-Composable Commitments 455

PROTOCOL 2 (UC-Secure Commitment Protocol)

Common reference string: (G, q, g1, g2, c, d, h, h1, h2) where G is a group
of order q with generators g1, g2, and c, d, h ∈R G are random elements of G,
and h1 = gρ

1 , h2 = gρ
2 for a random ρ ∈R Zq. (Note that (G, q, g1, g2, c, d, h) is

a Cramer-Shoup public key, and (G, q, g1, g2, h1, h2) is the regular public key
of a dual-mode encryption scheme.)
Let G(y) be a mapping of a string y ∈ {0, 1}n to G, and assume that G−1 is
also efficiently computable.

The commit phase: Upon input (commit, sid, ssid, Pi, Pj , x) where x ∈
{0, 1}n−log2 n and sid, ssid ∈ {0, 1}log2 n/4, party Pi works as follows:
1. Pi computes m = G(x, sid, ssid, i, j). (The identities i, j can be mapped

to {0, 1}log2 n/4 and so overall (x, sid, ssid, i, j) is an n-bit string.)
2. Pi chooses a random r ∈R Zq, computes u1 = gr

1 , u2 = gr
2 , e = hr · m,

ω = H(u1, u2, e) and v = cr · drω, where H is a collision-resistant hash
function (formally, the key for the hash function can appear in the CRS;
we ignore this for simplicity).

3. Pi sets c = (u1, u2, e, v), and sends (sid, ssid, c) to Pj .
4. Pj stores (sid, ssid, Pi, Pj , c) and outputs (receipt, sid, ssid, Pi, Pj). Pj ig-

nores any later commitment messages with the same (sid, ssid) from Pi.

The decommit phase:

1. Upon input (reveal, sid, ssid, Pi, Pj), party Pi sends (sid, ssid, x) to Pj

2. Pj computes m = G(x, sid, ssid, i, j)
3. Proof of committed value: Pi proves to Pj that m is the encrypted value.

This is equivalent to Pi proving that there exists a value r such that

u1 = gr
1 , u2 = gr

2 ,
e

m
= hr, and v = (cdω)r

The proof is carried out as follows:
(a) Pj sends (sid, ssid, c′) to Pi, where c′ = (gR

1 · gS
2 , hR

1 · hS
2 · G(ε)) is a

commitment to a random challenge ε ∈R {0, 1}n, and R, S ∈R Zq.
(b) Pi computes α = gs

1, β = gs
2, γ = hs and δ = (cdω)s, and sends

(sid, ssid, α, β, γ, δ) to Pj .
(c) Pj sends the decommitment (sid, ssid, R, S, ε) to the challenge to Pi.
(d) Pi verifies that c′ = (gR

1 ·gS
2 , hR

1 ·hS
2 ·G(ε)). If no, Pi aborts. Otherwise,

Pi computes z = s + εr and sends (sid, ssid, z) to Pj .
(e) Pj outputs (reveal, sid, ssid, Pi, Pj , x) if and only if

gz
1 = α · uε

1, gz
2 = β · uε

2, hz = γ ·
(e

m

)ε

, and (cdω)z = δ · vε

Concrete efficiency: The cost of the protocol in the number of exponentiations
(all other operations are insignificant) is as follows:

1. Pi computes 5 exponentiations in order to generate the commitment, and 8
exponentiations in the decommit phase (note that 4 of these exponentiations
are in order to verify the challenge ε from Pj , and since cdω was already
computed in the commit stage only a single exponentiation is needed for δ).

2. Pj computes 0 exponentiations in the commit phase, and 13 exponentiations
in the decommit phase.

456 Y. Lindell

Overall, the parties compute 26 exponentiations. Observe that Pi can preprocess
all but 6 of its exponentiations. This is because it can compute gr1 , g

r
2, h

r, cr, dr

and gs1, g
s
2, h

s, cs, ds before m and thus ω is known. Once (x, sid, ssid, Pi, Pj) is
given and thus m can be computed, Pi just needs to compute (dr)ω to finish
the commitment and (ds)ω to finish the first message of the decommit stage.
Finally, it needs 4 more exponentiation to verify the ε sent by Pj Likewise, Pj can
preprocess 4 of its exponentiations by generating c′ ahead of time. We conclude
that the protocol requires 26 exponentiations overall, but using preprocessing the
committer Pi needs to compute only 6 exponentiations and the receiver Pj needs
to compute only 9 exponentiations. In addition, the computations gR1 · gS2 and
hR1 ·hS2 needed for computing and verifying the encryption of ε can be computed
at the cost of 1 1

3 exponentiations each, using the optimization appearing in [18,
Sec. 14.6]. Thus, the effective number of exponentiations can be reduced to 23 1

3 .

3.3 Proof of Security

Theorem 1. Assuming that the DDH assumption holds in the group G, Proto-
col 2 UC-securely realizes the Fmcom functionality in the Fcrs-hybrid model, in
the presence of static adversaries.

Proof: The intuition behind the proof of security already appears in Section 3.1.
We therefore proceed directly to the description of the simulator and the proof
of security.

The simulator S:

– Initialization step: S chooses a public-key/private-key pair for the Cramer-
Shoup cryptosystem; let (G, q, g1, g2, c, d, h) be the public-key. In addition,
S chooses a random ρ and computes h1 = gρ1 and h2 = gρ2 . S sets the CRS
to be (G, q, g1, g2, c, d, h, h1, h2).

– Simulating the communication with Z: Every input value that S re-
ceives from Z is written on A’s input tape (as if coming from Z) and vice
versa.

– Simulating the commit stage when the committer Pi is corrupted
and the receiver Pj is honest: Upon receiving (sid, ssid, c) from A as
it intends to send from Pi to Pj , the simulator S uses its knowledge of the
Cramer-Shoup secret key to decrypt c. Let m = G(x, sid′, ssid′, i′, j′) be
the result. If (sid′, ssid′, i′, j′) �= (sid, ssid, i, j) or the decryption is invalid,
then S sends a dummy commitment (commit, sid, ssid, Pi, Pj , 0) to Fmcom.
Otherwise, S sends (commit, sid, ssid, Pi, Pj , x) to Fmcom.

– Simulating the decommit stage when Pi is corrupted and Pj is
honest: S runs the honest strategy of Pj with A controlling Pi. If Pj would
output (reveal, sid, ssid, Pi, Pj , x), then S sends (reveal, sid, ssid, Pi, Pj) to
Fmcom. Otherwise, it does nothing.

– Simulating the commit stage when Pi is honest and Pj is corrupted:
Upon receiving (receipt, sid, ssid, Pi, Pj) from Fmcom, the simulator S com-
putes a Cramer-Shoup encryption c of 0, and hands (sid, ssid, c) to A, as it
expects to receive from Pi.

Highly-Efficient Universally-Composable Commitments 457

– Simulating the decommit stage when Pi is honest and Pj is cor-
rupted: Upon receiving (reveal, sid, ssid, Pi, Pj , x) from Fmcom, S works as
follows:
1. S hands (sid, ssid, x) to A, as it expects to receive from Pi.
2. S receives c′ from A and uses its knowledge of the discrete log ρ of h1, h2

(in the CRS) in order to decrypt the encryption c′ of G(ε) and obtain ε.
3. Let c = (u1, u2, e, v) be as computed by S in the commit stage. S chooses

a random z ∈R Zq and computes α = gz1/uε1, β = gz2/uε2, γ = hz/(e/m)ε

and δ = (cdω)z/vε, and hands (α, β, γ, δ) to A.
4. S receives (R′, S′, ε′) from A. If c′ �= (gR

′
1 · gS′

2 , hR
′

1 · hS′
2 · G(ε′)) then S

simulates Pi aborting the decommitment. Otherwise, ε′ = ε (this must
be the case because when the regular public-key of the dual encryption
scheme is used the encryption is perfectly binding), and S hands z to A.

Simulation in the cases that both Pi and Pj are honest is straightforward.
This is due to the fact that when both parties are honest, the simulator can
choose the value ε itself and generate a valid proof for any value needed.

Analysis of the simulation: Denoting Protocol 2 by π and recalling that it
runs in the Fcrs-hybrid model, we need to prove that for every A and every Z,{

idealFmcom,SA,Z(n, z)
}
n∈N;z∈{0,1}∗

c≡
{
hybrid

Fcrs

π,A,Z(n, z)
}
n∈N;z∈{0,1}∗

.

We prove this via a series of hybrid games.

Hybrid game hyb-game
1: In this game, the ideal functionality gives the sim-

ulator S1 the value x committed to by an honest Pi together with the regular
(receipt, sid, ssid, Pi, Pj) message. S1 works in exactly the same way as S except
that when simulating the commit stage when Pi is honest and Pj is corrupted,
it computes c as an encryption of m = G(x, sid, ssid, i, j) as an honest Pi would.
Otherwise, it behaves exactly as S in the simulation. In order to show that the
output of Z in hyb-game

1 is indistinguishable from its output in ideal, we
need to reduce the difference to the security of the encryption scheme. However,
S and S1 need to decrypt in the simulation of the commit stage when the com-
mitter Pi is corrupted and Pj is honest (see the simulator description). S and S1
can carry out this decryption because they know the Cramer-Shoup secret-key.
But, this means that security cannot be reduced to this scheme. We solve this
problem by using the fact that the Cramer-Shoup encryption scheme is CCA2-
secure. Thus, S and S1 can decrypt by using their decryption oracle. We use
the LR-formulation of CCA2-security [1]. In this formulation a bit b is randomly
chosen and the adversary can ask for many encryption challenges. Each query
consists of a pair (m0, m1) and the adversary receives back an encryption of mb

(always with the same b). The aim of the adversary is to guess the bit b. Of
course, given that this is a CCA2 game, the adversary can ask for a decryption
of any ciphertext that was not received as an encryption of one of the pairs.

Formally, we construct a CCA2 adversary Acs attacking the Cramer-Shoup
scheme as follows. Let (G, q, g1, g2, c, d, h) be the public-key given to Acs. Adver-
saryAcs chooses ρ ∈R Zq, computes h1 = gρ1 and h2 = gρ2 , and sets the CRS to be

458 Y. Lindell

(G, q, g1, g2, c, d, h, h1, h2). Then Acs simulates an execution of idealFmcom,SA,Z
with the following differences:

1. Whenever an honest Pi commits to a value x, instead of S encrypting 0 (or
S1 encrypting x), Acs generates the encryption in the ciphertext by asking
for an encryption challenge of the pair (0, G(x, sid, ssid, i, j)). The ciphertext
c received back is sent as the commitment. (Note that Acs knows x because
it runs Z and so knows the inputs handed to the honest parties.)

2. Whenever a corrupted Pi sends a commitment value (sid, ssid, c) and the
simulator needs to decrypt c, Acs queries its decryption oracle with c. If
c was received as a ciphertext challenge then Acs has the simulator send a
dummy commitment (commit, sid, ssid, Pi, Pj , 0) to Fmcom as in the case that
(sid′, ssid′, i′, j′) �= (sid, ssid, i, j) in the simulation. Since c was received as a
ciphertext challenge, indeed it holds that (sid′, ssid′, i′, j′) �= (sid, ssid, i, j)
and so this is the same.

Finally, Acs outputs whatever Z outputs.
Now, if b = 0 in the CCA2 game, then all of the commitments c generated

when the committer Pi is honest are to 0. Thus, the simulation is exactly like S
and the output of Acs is exactly that of idealFmcom,SA,Z(n, z). (Note that all
other instructions are carried out identically to S.) In contrast, if b = 1, then
the commitments generated are to the correct values x and so the simulation is
exactly like S1. Thus, the output of Acs is exactly that of hyb-game

1
SA

1 ,Z(n, z).
We conclude that{

hyb-game
1
Fmcom,SA

1 ,Z(n, z)
}
n;z

c≡
{
idealFmcom,SA,Z(n, z)

}
n;z ,

by the fact that the Cramer-Shoup encryption scheme is CCA2-secure.

Hybrid game hyb-game
2: In this game, the simulator S2 works in exactly the

same way as S1, except that when simulating the decommitment phase when
Pi is honest and Pj is corrupted, it computes the messages (α, β, γ, δ) and z in
the proof exactly as an honest Pi would. It can do this because the commitment
c sent in the commitment phase is to the correct value m = G(x, sid, ssid, i, j)
and so it can play the honest prover. The output distribution of this game is
identical to hyb-game

1 by the perfect simulation property of the proof of the
decommitment phase. This proof is based on a standard Sigma protocol that
a tuple is a Diffie-Hellman tuple and it is straightforward to verify that the
distributions are identical. We therefore have that: We conclude that{

hyb-game
2
Fmcom,SA

2 ,Z(n, z)
}
n;z

≡
{
hyb-game

1
Fmcom,SA

1 ,Z(n, z)
}
n;z

.

Completing the proof: It remains to show that the output of Z after an exe-
cution of π in the hybrid

Fcrs model is indistinguishable from its output after
the hyb-game

2 game. First, observe that the commitment and decommitment
messages in the case of an honest committer Pi are identical in both hyb-game

2

and a real protocol execution in the hybrid
Fcrs model. Thus, the only difference

between the output of Z in both cases can be due to the value x output by an
honest receiver Pj after a decommit from a corrupted sender Pi. This is due to the

Highly-Efficient Universally-Composable Commitments 459

fact that in hyb-game
2, the value x output by an honest Pj is the value sent by

S2 to Fmcom after decrypting the associated ciphertext in the commit stage using
the Cramer-Shoup secret-key. In contrast, in hybrid

Fcrs the value x output by
an honest party is that sent by A in the first step of the decommitment stage (as
long as the proof passes). These values can only be different if A can convince an
honest Pj to output x in the decommitment phase, even though the encrypted
value c sent in the commitment phase is not to m = G(x, sid, ssid, i, j). Thus,
this difference reduces to the soundness of the proof in the decommitment phase.
Recall that by the special soundness property of Sigma protocols, in the case
that c is not an encryption of m = G(x, sid, ssid, i, j), for every first message
(α, β, γ, δ) there is only a single ε for which there exists a convincing answer z.

It is tempting to conclude that since the encryption of ε is semantically se-
cure, the adversary cannot cheat in the Sigma protocol. However, this requires a
reduction and such a reduction cannot be carried out because the adversary does
not “reveal” to us whether it succeeds in the proof until we decrypt ε. Thus, one
cannot reduce the ability of the adversary to cheat to the hiding of ε (in such a
reduction, one cannot reveal ε together with the randomness used to encrypt).
However, it is possible to replace the values h1, h2 where h1 = gρ1 and h2 = gρ2
with values h1 = gρ11 and h2 = gρ22 for ρ1, ρ2 ∈R Zq. In such a case, as we have
discussed, the encryption c′ perfectly hides the value ε. Furthermore, there is no
need to ever decrypt c′ here (the simulator S2 in hyb-game

2 does not decrypt
these values). Thus, there is no problem replacing h1, h2 in this way. Finally,
recall that the alternative key h1, h2 is indistinguishable from the regular one.
Thus, defining hyb-game

3 to be the same as hyb-game
2 except that the keys

h1, h2 are different as described, and letting S3 = S2 (except again for how h1, h2
are chosen), we have{

hyb-game
3
Fmcom,SA

3 ,Z(n, z)
}
n;z

c≡
{
hyb-game

2
Fmcom,SA

2 ,Z(n, z)
}
n;z

.

We are now ready to conclude the proof. Since the encryption c′ perfectly hides
the challenge ε, the probability that A successfully proves an incorrect statement
in the decommitment stage is at most 2−n (recall that there is exactly one ε
that it can answer). Thus, the value sent by S3 to Fmcom is the same value as
that output by an honest Pj , except with negligible probability. The only other
difference is that in hyb-game

3 an alternative public-key for the dual mode
cryptosystem is used, whereas in hybrid a regular one is used. Recalling that
these keys are computationally indistinguishable, we conclude that{

hybrid
Fcrs

π,A,Z(n, z)
}
n∈N;z∈{0,1}∗

c≡
{
hyb-game

3
Fmcom,SA

2 ,Z(n, z)
}
n∈N;z∈{0,1}∗

.

Combining all of the above, we have that the output of Z with A after an
execution of π in the Fcrs-hybrid model is computationally indistinguishable
from its output after an execution with SA and Fmcom in the ideal model, and
so Protocol 2 is UC-secure in the presence of static adversaries, as required.

460 Y. Lindell

4 Adaptive Adversaries with Erasures

4.1 Background and Outline of Solution

In the setting of adaptive corruptions, the adversary can corrupt parties through-
out the computation. Upon corruption, it receives the local state of the parties,
including randomness it has used and so on. In the model with erasures, a pro-
tocol can instruct a party to erase some of its state (e.g., old keys), and in such
a case the adversary does not obtain the erased state upon corruption. Adaptive
corruptions accurately models the realistic setting where parties can be “hacked”
during a computation. As such, it is desirable to have protocols that are secure
in this model.

This model introduces significant difficulties when proving security. Specifi-
cally, observe that Protocol 2 is not secure in the presence of adaptive adversaries,
even with erasures, because the committer must store the randomness r used to
commit to x in order to run the decommitment stage. Now, in our simulation,
the simulator commits to 0, even when the commitment is really to x. However,
upon corruption in the real world, the adversary obtains r and x such that c
is encryption of x using randomness r. In the simulation, such randomness can
never be produced because c is an encryption of 0 and not of x (there does not
exist an r′ that can explain c as an encryption of x �= 0).

Achieving adaptive security. Our protocol can be modified so that it achieves
adaptive security with erasures, with little additional cost. Interestingly, the only
modifications necessary are a change in the order of operations and 1 additional
Pedersen commitment. In order to see this, recall that the problem with achiev-
ing adaptive security is that the committer cannot erase r before sending c in
the commit phase, because then it will not be able to prove the proof in the
decommit phase. However, it is possible for the parties to run most of the proof
already in the commit phase, before the commitment is even sent (actually, the
ciphertext c is committed to equivocally, but not yet revealed). That is, the com-
mitter and receiver run the zero-knowledge protocol before c is sent, without the
committer sending the last message z. In addition, the committer commits to its
first message (α, β, γ, δ) of the protocol instead of sending it in the clear. (Thus,
the receiver sends a commitment to ε; the committer sends a commitment to
(α, β, γ, δ); the receiver decommits revealing ε; finally, the committer prepares
z based on ε without sending it.) Following this preamble, the committer erases
all of its randomness, except for that needed to decommit to the first message of
the zero-knowledge protocol, and only then reveals c. This completes the com-
mit phase. The decommit phase simply consists of the committer sending the
decommitment to (α, β, γ, δ) and the message z (which has already been pre-
pared), and the receiver verifies the decommitment and that ((α, β, γ, δ), ε, z)
constitutes an accepting transcript.

Observe that before the committer sends c, nothing has actually been re-
vealed; the committer only sent a commitment to (α, β, γ, δ). Thus, this does
not affect the hiding property of the original commitment scheme. Furthermore,
the committer erases all secret state before sending c, and in particular erases the

Highly-Efficient Universally-Composable Commitments 461

random coins used to generate c. Thus adaptive corruptions make no difference
because the committer has no secret state once c is sent, and has revealed no
information before c is sent. In actuality, in order to achieve this property that
all messages sent before c are independent of x, we have to have the committer
commit to the first message of the proof using a perfectly hiding commitment
scheme. Furthermore, it needs to be adaptively secure in that upon corruption,
the prover can open it to anything that it wishes. Fortunately, this can be easily
achieved by using a Pedersen commitment Com(x) = gr · ĥx with a value ĥ that
appears in the CRS3. (Note that given the discrete log ρ̂ of ĥ it is possible to
decommit to any value desired. Specifically, commit by computing c = ga for a
known a. Now, given x we wish to find r such that c = ga = gr · ĥx. Given that
ĥ = gρ̂ this means that we need to find r such that ga = gr+ρ̂x, or equivalently
r such that a = r + ρ̂x mod q. Thus, just take r = a − ρ̂x mod q.) We remark
that although the above works, it introduces an additional difficulty because the
soundness of the Sigma protocol now also rests on the hardness of finding the
discrete log of ĥ. This requires an additional reduction; see the proof for details.
See Protocol 3 for the outline of the modified protocol.

PROTOCOL 3 (UC-commitment template for adaptive security)

Common reference string: (pk1, pk2, G, q, g, ĥ) where pk1 is the public-
key of a CCA2-secure encryption scheme, pk2 is the public-key of a dual mode
cryptosystem, and (G, q, g, ĥ) are parameters for the Pedersen commitment
scheme.

The commit phase:

1. The committer computes a commitment to x as c = Ecca
pk1(x; r), and sends

a Pedersen commitment of c to the receiver, using (g, ĥ).
2. The receiver sends c′ = Edual

pk2
(ε; r′); its commitment to the first message

of the proof.
3. The committer sends a Pedersen commitment to the first prover message

α to the receiver, computed from the ciphertext c (observe that c has not
yet been revealed).

4. The receiver decommits to ε by sending ε and r′

5. The committer checks that c′ = Edual
pk2

(ε; r′) and if yes, it computes the
reply z for the Sigma protocol, based on (α, ε).

6. The committer now erases r and the randomness used to generate α and
z, stores α, z and the randomness used to generate the Pedersen commit-
ments, and finally sends c and its decommitment to the receiver.

The decommitment phase:

1. The committer sends x, (α, z), and the randomness used to generate the
Pedersen commitment to α to the receiver.

2. The receiver outputs x as the decommitted value if and only if the Ped-
ersen commitment was to α and (α, ε, z) is an accepting Sigma-protocol
transcript.

3 We note that such a commitment is not extractable but we do not need it to be.

462 Y. Lindell

4.2 The Adaptive Protocol

The scheme that is adaptively secure with erasures appears in Protocol 4.

PROTOCOL 4 (UC-Secure Commitment – Adaptive with Erasures)

Common reference string: (G, q, g1, g2, c, d, h, h1, h2, ĥ) where all pa-
rameters are as in Protocol 2, and (G, q, g1, ĥ) are parameters for Pedersen
commitments.)

The commit phase: Upon input (commit, sid, ssid, Pi, Pj , x) where x ∈
{0, 1}n−log2 n and sid, ssid ∈ {0, 1}log2 n/4, party Pi works as follows:

1. Pi computes m = G(x, sid, ssid, i, j). (The identities i, j can be mapped
to {0, 1}log2 n/4 and so overall (x, sid, ssid, i, j) is an n-bit string.)

2. Pi chooses a random r ∈R Zq, computes u1 = gr
1 , u2 = gr

2 , e = hr · m,
ω = H(u1, u2, e) and v = cr · drω, where H is a collision-resistant hash
function (formally, the key for the hash function can appear in the CRS;
we ignore this for simplicity). Pi sets c = (u1, u2, e, v).

3. Pi chooses κ1 ∈R Zq , computes c1
ped = gκ1

1 · ĥH(c), and sends c1
ped to Pj .

4. Pj sends c′ = (gR
1 · gS

2 , hR
1 · hS

2 · G(ε)) to Pi, where ε ∈R {0, 1}n and
R, S ∈R Zq .

5. Pi computes α = gs
1, β = gs

2, γ = hs and δ = (cdω)s, and computes a
Pedersen commitment c2

ped = gκ2
1 · ĥH(α,β,γ,δ), where κ2 ∈R Zq. Pi sends

c2
ped to Pj .

6. Pj sends (R, S, ε) to Pi.
7. Pi verifies that c′ = (gR

1 · gS
2 , hR

1 ·hS
2 ·G(ε)). If no, it aborts. Otherwise, Pi

computes z = s + εr.
8. Pi erases r and s, and stores (x,α, β, γ, δ, κ2, z). Pi sends (κ1, c) to Pj .
9. Pj verifies that c1

ped = gκ1
1 ·ĥH(c). If yes, it stores (sid, ssid, Pi, Pj , c, ε, c

2
ped)

and outputs (receipt, sid, ssid, Pi, Pj). Pj ignores any later commitment
messages with the same (sid, ssid) from Pi.

The decommit phase:
1. Upon input (reveal, sid, ssid, Pi, Pj), Pi sends (x, α, β, γ, δ, κ2, z) to Pj .
2. Pj sets m = G(x, sid, ssid, i, j) and outputs (reveal, sid, ssid, Pi, Pj , x) if

and only if

c2
ped = gκ2

1 ·ĥH(α,β,γ,δ), gz
1 = α·uε

1, gz
2 = β·uε

2, hz = γ·
(e

m

)ε

, (cdω)z = δ·vε

We note one difference between the actual protocol and the intuitive explana-
tion above, regarding the Pedersen commitments. We use these commitments to
commit to group elements in G. However, the input of a Pedersen commitment is
in Zq and not G. One solution to this is to break the elements up into pieces and
separately commit to each piece. We use a different solution which is to compute
Com(m) = gr · ĥH(m) where H is a collision-resistant hash function. The commit-
ment is still perfectly hiding and can be opened to any value. The only difference is
that the binding property relies now both on the hardness of the discrete log prob-
lem (as in the standard case) and on the collision resistance of H . By convention,
in Protocol 4, all messages are sent together with (sid, ssid).

Highly-Efficient Universally-Composable Commitments 463

Efficiency. The complexity of Protocol 4 is the same as the static version
(Protocol 2) plus two additional Pedersen commitment that must be computed
and verified. Naively, this costs an additional 8 exponentiations overall. However,
again using the multiexponentiation optimization, these can be computed at
the effective cost of 5 1

3 exponentiations. Thus, we have an overall cost of 28 2
3

exponentiations.

4.3 Proof of Security

Theorem 2. Assuming that the DDH assumption holds in the group G, Proto-
col 4 UC-securely realizes the Fmcom functionality in the Fcrs-hybrid model, in
the presence of adaptive adversaries with erasures.

Proof: The proof of security is very similar to the static case, with the addition
of how to deal with adaptive corruptions. We remark that we follow the con-
vention where the only part of the commitment message not seen by the ideal
adversary is the commitment value [6]. Thus, when an honest Pi sends a mes-
sage to the Fmcom functionality, the adaptive ideal adversary knows what type
of message it is and who the intended recipient is.

Due to lack of space in this extended abstract, we sketch the main difference
between the proof here, and the proof in the static case. The main observation is
that if a committing party is corrupted before the commitment stage is finished,
then no meaningful information has been given away. This is due to the use of
Pedersen commitments and the fact that the simulator can open them to any
way it wishes by choosing ĥ so that it knows its discrete log. Furthermore, if
a committing party is corrupted after the commitment phase is finished, then
the randomness used to generate the Cramer-Shoup encryption and the Sigma
protocol prover messages has already been erased. Thus, all the simulator has
to do is to run the Sigma-protocol simulator using the proof statement based
on the commitment value obtained, and this will look exactly like an honestly
generated commitment.

Due to the above, the simulation and proof in this case of adaptive corruptions
is very similar to the case of static corruptions. However, there is one major dif-
ference regarding the last step where we must prove the soundness of the proofs
provided by corrupted parties. Specifically, we need to claim that a corrupted
party can prove an incorrect statement with probability that is at most negligi-
ble. In order to prove this, we first replace the dual mode public key with the
alternative one, as in the proof of the case of static corruptions. However, this
does not yet suffice because the adversary may be able to prove an incorrect
claim by breaking the computational binding of the Pedersen commitments (re-
call that the last message of the proof is decommitted to only after the challenge
ε is revealed). Despite this, we use the fact that the ability to decommit to two
different values is equivalent to find the discrete log of ĥ. Specifically, given cped
together with (κ, m) �= (κ′, m′) such that cped = gκ1 · ĥm = gκ

′
1 · ĥm′

, it holds that

ĥ = g
(κ−κ′)(m′−m)−1

1 and so the discrete log of ĥ is κ−κ′
m′−m which can be efficiently

computed.

464 Y. Lindell

We therefore prove soundness as follows. Assume that there exists an envi-
ronment Z, adversary A, and an input z to Z such that for infinitely many n’s,
A succeeds in proving an incorrect statement with non-negligible probability. In
this case, A will succeed in proving an incorrect statement with non-negligible
probability also in hyb-game

3. (We remark that it is possible to detect this event
because we can decrypt the Cramer-Shoup encryption and see what value was
actually encrypted.) Now, let (G, q, g1, ĥ) be parameters for a Pedersen commit-
ment. An adversary Aped attempting to break the commitment scheme receives
the parameters and works as follows. It chooses all of the values in the common
reference string like S (based on (G, q, g1)) and then simulates the hyb-game

3

experiment running Z with input z and A. If A proves an incorrect statement,
then Aped rewinds the entire execution (including Z) until the point that A sent
c2
ped. Aped then sends a different decommitment (R′, S′, ε′) to a fresh random

ε′. Note that since at this point the public key for the dual-mode cryptosystem
is the alternative one, and Aped knows the discrete logs ρ1, ρ2 of h1, h2, it can
efficiently find (R′, S′, ε′) such that c′ = (gR1 · gS2 , hR1 · hS2 ·G(ε)) even though c′

was originally generated as an encryption of some ε �= ε′. (In order to do this,
Aped also needs to know the discrete logs of g2 and G(ε), G(ε′) relative to g1, but
these value can be chosen in that way. See the explanation of the concrete dual-
mode cryptosystem at the end of Section 3.1 in order to see what equations Aped

needs to solve.) Aped then continues the execution until the point that A decom-
mits to the transcript. If it is accepting, then A must have opened the Pedersen
commitment c2

ped differently (because A can only answer one ε if the statement
is incorrect). In this case Aped has found the discrete log of ĥ and halts. Other-
wise, Aped repeatedly rewinds until A does provide an accepting transcript. This
yields an expected polynomial-time adversaryAped; a strict polynomial-time ad-
versary can be derived by just truncating the execution after enough time. We
remark that although we are working in the UC framework, Aped is allowed to
rewind in the reduction because this has nothing to do with the simulation, and
we are reducing the difference between hyb-game

3 and hybrid to the hardness
of finding the discrete log of ĥ.

Acknowledgements

We thank Ran Canetti and Benny Pinkas for helpful discussions.

References

1. Bellare, M., Rogaway, P.: Introduction to Modern Cryptography, ch. 7 (course
notes) (2007)

2. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a System for Secure Multi-Party
Computation. In: The 15th ACM CCS, pp. 257–266 (2008)

3. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In: 42nd FOCS, pp. 136–145 (2001), full version
http://eprint.iacr.org/2000/067

4. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

http://eprint.iacr.org/2000/067

Highly-Efficient Universally-Composable Commitments 465

5. Canetti, R., Krawczyk, H.: Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 143–
161. Springer, Heidelberg (2002)

6. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Two-
Party and Multi-Party Computation. In: 34th STOC, pp. 494–503 (2002), full
version http://eprint.iacr.org/2002/140

7. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Se-
cure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

8. Damg̊ard, I.: On Σ Protocols, http://www.daimi.au.dk/\simivan/Sigma.pdf
9. Damgard, I., Nielsen, J.: Perfect Hiding and Perfect Binding Universally Compos-

able Commitment Schemes with Constant Expansion Factor. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 581–596. Springer, Heidelberg (2002)

10. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols – Techniques and
Constructions, October 2010. Springer, Heidelberg (2010)

11. Hazay, C., Katz, J., Koo, C.Y., Lindell, Y.: Concurrently-Secure Blind Signatures
without Random Oracles or Setup Assumptions. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007)

12. Hazay, C., Nissim, K.: Efficient Set Operations in the Presence of Malicious Ad-
versaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 312–331. Springer, Heidelberg (2010); Full version in the Cryptology ePrint
Archive, report 2009/594

13. Kelsey, J., Schneier, B., Wagner, D.: Protocol Interactions and the Chosen Protocol
Attack. In: Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS,
vol. 1361, pp. 91–104. Springer, Heidelberg (1998)

14. Kol, G., Naor, M.: Cryptography and Game Theory: Designing Protocols for Ex-
changing Information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–
339. Springer, Heidelberg (2008)

15. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

16. Lindell, Y., Pinkas, B.: Secure Two-Party Computation via Cut-and-Choose Obliv-
ious Transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer,
Heidelberg (2011)

17. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing Two-Party Computation Effi-
ciently with Security Against Malicious Adversaries. In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 2–20. Springer, Heidelberg
(2008)

18. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1997)

19. Moran, T., Moore, T.: The Phish-Market Protocol: Securely Sharing Attack Data
between Competitors. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 222–237.
Springer, Heidelberg (2010)

20. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI - A System for Secure
Face Identification. In: the 31st IEEE Symposium on Security and Privacy, pp.
239–254 (2010)

21. Paillier, P.: Public-key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

http://eprint.iacr.org/2002/140
http://www.daimi.au.dk/$\sim $ivan/Sigma.pdf

466 Y. Lindell

22. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Com-
posable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

23. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Compu-
tation Is Practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

24. Vanstone, S.: Deployments of Elliptic Curve Cryptography. In: the 9th Workshop
on Elliptic Curve Cryptography (ECC) (2005)

25. The Crypto++ Library, http://www.cryptopp.com

http://www.cryptopp.com

Concurrent Composition in the
Bounded Quantum Storage Model

Dominique Unruh

Saarland University

Abstract. We define the BQS-UC model, a variant of the UC model, that deals
with protocols in the bounded quantum storage model. We present a statisti-
cally secure commitment protocol in the BQS-UC model that composes con-
currently with other protocols and an (a-priori) polynomially-bounded number
of instances of itself. Our protocol has an efficient simulator which is important
if one wishes to compose our protocol with protocols that are only computa-
tionally secure. Combining our result with prior results, we get a statistically
BQS-UC secure constant-round protocol for general two-party computation
without the need for any setup assumption.

Keywords: Bounded quantum storage, composability, two-party computation.

1 Introduction

Since the inception of quantum key distribution by Bennett and Brassard [2], it
has been known that quantum communication permits to achieve protocol tasks
that are impossible given only a classical channel. For example, a quantum key
distribution scheme [2] permits to agree on a secret key that is statistically se-
cret, using only an authenticated but not secret channel. (By statistical security
we mean security against computationally unbounded adversaries, also known
as information-theoretical security.) In contrast, when using only classical com-
munication, it is easy to see that such a secret key can always be extracted by a
computationally sufficiently powerful adversary. In light of this result, one might
hope that quantum cryptography allows to circumvent other classical impossibil-
ity results, possibly even allowing for statistically secure multi-party computation
protocols. Yet, Mayers [13] showed that also in the quantum setting, even statis-
tically secure commitment schemes are impossible, let alone general multi-party
computation. This is unfortunate, because from commitments one can build OT
(Bennett, Brassard, Crépeau, and Skubiszewska [3]), and from OT general multi-
party computation (Kilian [11]). A way to work around this impossibility was
found by Damgård, Fehr, Salvail, and Schaffner [6]. They showed that if we as-
sume that the quantum memory available to the adversary is bounded (we speak
of bounded quantum storage (BQS)), we can construct statistically secure com-
mitment and OT schemes. Although such a result is not truly unconditional, it
avoids hard-to-justify complexity-theoretic assumptions. Also, it achieves long-
term security: even if the adversary can surpass the memory bound after the
protocol execution, this will not allow him to retroactively break the protocol.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 467–486, 2011.
c© International Association for Cryptologic Research 2011

468 D. Unruh

Yet, we still have not reached the goal of statistically secure multi-party
computation. Although we have protocols for commitment and OT, we cannot
simply plug them into the protocols by Bennett et al. [3] and by Kilian [11]. The
reason is that it is not clear under which circumstances protocols in the BQS
model may be composed. For example, Dziembowski and Maurer [7] constructed
a protocol that is secure in the classical bounded storage model, but that looses
security when composed with a computationally secure protocol. To overcome
this remaining difficulty, works by Wehner and Wullschleger [17] and by Fehr
and Schaffner [8] give security definitions in the BQS model that enable secure
sequential composition. Both works also present secure OT protocols in their
respective settings. Based on these, we can construct secure multi-party compu-
tation protocols in the BQS model. There are, however, a few limitations. First,
since only sequential composition is supported, all instances of the OT proto-
col used by the multi-party computation need to be executed one after another,
leading to a high round-complexity. Second, interactive functionalities such as
a commitment are difficult to use: the restriction to sequential composability
requires that we have to commit and immediately open a commitment before
being allowed to execute the next commitment. Third, the security proof of their
OT protocols uses a computationally unlimited simulator. As discussed in [15],
a protocol with an unlimited simulator cannot be composed with a computation-
ally secure protocol. Fourth, since we have no concurrent composability, it is not
clear what happens if the protocols are executed in an environment where we do
not have total control about which protocols are executed at what time.

To overcome the limitations of sequential composition in the classical setting,
Canetti [4] introduced the Universal Composability (UC) model. In this model,
protocols can be arbitrarily composed, even concurrently with other protocols
and with copies of themselves. The UC model has been adapted to the quantum
setting by Ben-Or and Mayers [1] and by Unruh [14,15]. In light of the success
of the UC model, it seems natural to combine the ideas of the UC model with
those of the BQS model in order to allow for concurrent composition.

1.1 Our Contribution

We define the notion of BQS-UC-security, which is an extension of quantum-
UC-security [15]. We have composability in the following sense: If π is a secure
realization of a functionality F , and σF securely realizes G by using one instance
of F , then σπ, the result of replacing F by π, still securely realizes G. In contrast
to quantum-UC-security, however, BQS-UC-security does not allow for concur-
rent self-composition: if π is secure, this does not automatically imply that two
concurrent instances of π are secure1.
1 The reader may wonder how it can be that σ and π may compose in general while π

and π do not. Might not σ and π be the same protocol? The reason lies in the exact
conditions of the composition theorem: In order to compose, σ needs to be secure
against adversaries with a higher quantum memory bound than π tolerates. Thus σ
and π cannot be the same protocol.

Concurrent Composition in the Bounded Quantum Storage Model 469

In order to get protocols that even self-compose concurrently, we design a
commitment scheme πCOM such that n concurrent instances of πCOM securely
realize n instances of the commitment functionality in the presence of a-memory
bounded adversaries. Here a and n are arbitrary (polynomially-bounded), but
the protocol depends on a and n.

The challenging part in the construction of πCOM is that BQS-UC-security
requires the following: There must be an efficient simulator (which is allowed to
have more quantum memory than the adversary) that can extract the committed
value (extractability) or change it after the commit phase (equivocality). Prior
constructions of commitment schemes in the BQS model required computation-
ally unbounded simulators. Also, the fact that we directly analyze the concurrent
composition of several instances of πCOM requires care: In the proof, we have
hybrid networks in which instances of both πCOM and of the simulator occur.
Since the simulator uses more quantum memory than πCOM tolerates, one needs
to ensure that the simulator cannot be (mis)used by the adversary to break the
commitment.

Finally, using the composition theorem and πCOM, for any two-party function-
ality G, we get a statistically secure protocol π realizing G in the BQS model2.
The protocol is secure even when running n concurrent instances of the protocol.
(Again, this holds for any n and any memory bound, but the protocol depends on
n and the memory-bound.) The protocol is constant-round. It does not use any
quantum memory or quantum computation and thus is in the reach of today’s
technology.

A full version of this paper with complete proofs and details can be found
at [16].

2 Bounded Quantum Storage UC

2.1 The BQS-UC Model

To understand the definition of BQS-UC-security, we first have to understand the
idea underlying UC security. In the UC model, a protocol π emulates (realizes,
implements, is as secure as) another protocol ρ if any attack on π can also happen
on ρ. Thus, if ρ is secure by definition (e.g., because it contains only one trusted
machine, a so-called ideal functionality), π must also be secure. To formalize this,
we introduce the concept of an adversary and a simulator. We require that for
any adversary attacking π (real model), there is a simulator attacking ρ (ideal
model) such that the real and the ideal model are indistinguishable. To define
indistinguishability, we introduce another machine, the environment. Its task is
to try and distinguish between the real and the ideal model. The environment
provides the inputs to the protocol parties, gets their outputs, and may talk to
the adversary/simulator. We then get the following definition: π UC-emulates ρ

2 We are restricted to two-party functionalities because our construction uses a sub-
protocol by Wolf and Wullschleger [18,19] to reverse the direction of an OT; this
protocol only makes sense in a two-party setting.

470 D. Unruh

if for any adversary Adv there is a simulator Sim such that for all environments
Z, the probability that Z outputs 1 is approximately the same in the networks
π, Adv,Z and ρ, Sim,Z.

To translate this to the quantum setting, we only need to change the machine
model to allow for quantum machines instead of classical machines. Given net-
works S, S′ of quantum machines with Z ∈ S, S′, we say that S and S′ are ε-close
if |P − P ′| ≤ ε where P is the probability that Z outputs 1 in an execution of
S, and P ′ is defined analogously. Networks are negligible-close if ε is negligible,
and perfectly close if ε = 0. We call a machine M a-memory bounded if it keeps
at most a qubits of quantum memory between activations. (An activation is the
computation performed by a machine between receiving a message and sending
the immediate response.) We do not impose any limitations on the computation-
time or memory-use during a single activation of M . We write QM(M) for the
memory bound of M (i.e., QM(M) is the smallest a such that M is a-memory
bounded). A protocol π is a network not containing adversary, simulator, or
environment. The set of corruptible protocol parties is denoted partiesπ. Given
C ⊆ partiesπ, we denote by πC the protocol where all parties in C have been
replaced by corruption parties which are controlled by the adversary. For details
on the machine and the network model, we refer to the full version [16] or to [15].

We can now formulate BQS-UC-security. Intuitively, a protocol is BQS-UC-
secure if it is UC-secure for memory-bounded adversaries. To formulate this, we
need to explicitly parametrize the definition over a memory bound a. Then we
require that the total quantum memory used by environment and adversary is
bounded by a. The reason why we include the environment’s memory is that
the latter can be involved in the actual attack: If only the adversary’s memory
was bounded, the adversary could use the environment as an external storage to
perform the attack (see also our discussion on page 471)3.

It remains to decide whether the simulator should be memory bounded. If
we allow the simulator to be unbounded, composition becomes difficult: In some
cases, the simulator of one protocol plays the role of the adversary of a second
protocol. Thus, if simulators where not memory bounded, the second protocol
would have to be secure against unbounded adversaries. However, if we require
the simulator to be a-memory bounded, we will not be able to construct non-
trivial protocols: In order to perform a simulation, the simulator needs to have
some advantage over an honest protocol participant (in the computational UC
setting, e.g., this is usually the knowledge of some trapdoor). In our setting, the
advantage of the simulator will be that he has more quantum memory than the
adversary. Thus we introduce a second parameter s which specifies the amount
of quantum memory the simulator may use for the simulation. More precisely,
we allow the simulator to use s + QM(Adv) qubits because the simulator will
usually internally simulate the adversary Adv as a black-box and therefore have
to additionally reserve sufficient quantum memory to store the adversary’s state.

3 This is captured more formally by the completeness of the so-called dummy-
adversary (see the full version [16]), which shows that one can even shift the complete
attack into the environment.

Concurrent Composition in the Bounded Quantum Storage Model 471

Definition 1 (BQS-UC-security). Fix protocols π and ρ. Let a, s ∈ �0 ∪
{∞} (possibly depending on the security parameter). We say π (a, s)-BQS-UC-
emulates4 ρ iff for every set C ⊆ partiesπ and for every adversary Adv there is a
simulator Sim with QM(Sim) ≤ s+QM(Adv) such that for every environment Z
with QM(Z)+QM(Adv) ≤ a, the networks πC∪{Adv,Z} (called the real model)
and ρC ∪ {Sim,Z} (called the ideal model) are negligible-close. We furthermore
require that if Adv is quantum-polynomial-time, so is Sim.

In most cases, the behavior of the ideal protocol ρ is described by a single
machine F , the so-called ideal functionality. We can think of this functionality
as a trusted third party that perfectly implements the desired protocol behavior.
In order to apply Definition 1 to ideal functionalities (e.g., π BQS-UC-emulates
F) we have to be able to consider an ideal functionality as a protocol. Following
[4,15], we do this by introducing dummy-parties. That is, the protocol F consists
of the functionality F together with a dummy-party Ã for every party A. The
dummy-parties just forward inputs/outputs between the functionality F and
the environment. They can, however, be corrupted by the adversary/simulator.
This allows the adversary/simulator to control the inputs/outputs of that party.
When we write π BQS-UC-emulatesF , we always assume the presence of dummy-
parties in the ideal model. For details, we refer to the full version [16] or to [15].

On the Memory Bound of the Environment. In Definition 1, we impose
the memory bound on both the adversary and the environment. In this, we
differ from the modeling by Wehner and Wullschleger [17]. In their definition,
the environment (which is implicit in the definition of the indistinguishability
≡ε of quantum channels) provides the input state to protocol and adversary,
then gets the outputs of protocol and adversary, and finally the environment
has to guess whether it interacted with the real or the ideal model. During the
interaction of the protocol, the environment is not allowed to communicate with
any other machine. Between its two activations, the environment is allowed to
keep an arbitrarily large quantum state5. The interesting point here is that, in
contrast to our Definition 1, Wehner and Wullschleger do not impose the memory
bound on the environment, only on the adversary. They motivate unlimited
environments by pointing out that it is more realistic to assume that a particular
memory bound (say, 100 qubits) applies to a particular adversary (e.g., a smart
card) than to the whole environment (i.e., all computers world-wide). We believe,
however, that this reasoning has to be applied with care: Only when we have
4 Since we only consider statistical security in this work, we omit the qualifier “statisti-

cal”. Similarly, when we speak about classical-UC-security and quantum-UC-security,
we mean the statistical variant of that notion.

5 Note that strictly speaking, the formalism of [17, full version] does not model an
environment with quantum memory: For quantum channels Λ, Λ′ they define Λ ≡ε Λ′

iff for all quantum states ρ, the trace distance between Λ(ρ) and Λ′(ρ) is at most ε.
To model environments with quantum memory, we should instead require that for all
Hilbert spaces H and all quantum states ρ, the trace distance between (Λ⊗ idH)(ρ)
and (Λ′⊗ idH)(ρ) is at most ε. We believe that the latter was the intended meaning
of ≡ε.

472 D. Unruh

the guarantee that the adversary (e.g., the smart card) cannot communicate
with any other machines can we assume a smart card is limited to 100 qubits.
Otherwise, we have to assume that the smart card effectively has (in the worst
case) access to all the quantum memory of the environment. Thus, except in
very specific cases, the memory bound we assume needs to be large enough to
encompass the environment’s memory as a whole. Thus, the bound we assume
not to be surpassed by the adversary’s memory needs to be large enough that it
makes sense to assume that the environment does not surpass this bound either.
But in this case, we can safely assume in Definition 1 that the environment is
restricted by that memory bound.

We stress that even if our environment is memory bounded, we do take into
account the fact that an environment can have a quantum state that is entangled
with that of the adversary; we just limit this quantum state to the memory
bound.

We get, however, an interesting variant of our model if we follow the approach
of Wehner and Wullschleger as follows. We call a machine a-�-memory-bounded6

if its state between activations consists of two registers A and B. The register
A contains at most a qubits, and register B is unlimited but is only accessed
in the first and the last activation of B. We denote by QM�(Z) the �-memory
bound of Z. We define (a, s)-�-BQS-UC-emulation like (a, s)-BQS-UC-emulation
(Definition 1), except that we use QM�(Z) instead of QM(Z). (But we still use
QM(Adv) and QM(Sim).) We stress that our techniques also work for this
definition. All results of this section still hold with essentially unmodified proofs
(except that we always have to refer to the �-memory bound of the environment
instead memory bound). The results from Section 3 (BQS-UC commitments)
are based on the existence of certain commitment schemes that are hiding with
respect to memory bounded adversaries. We use the commitment scheme from
[12] (see Theorem 6). To extend the results from Section 3 to �-BQS-UC, we
need schemes that are hiding with respect to �-memory bounded adversaries
instead. Besides that, the proofs of the results in Section 3 stay essentially the
same (except for using �-memory bounds instead of memory bounds).

2.2 Composition

For some protocol σ, and some protocol π, by σπ we denote the protocol where
σ invokes (up to polynomially many) instances of π. That is, in σπ the machines
from σ and from π run together in one network, and the machines from σ access
the inputs and outputs of π. (That is, σ plays the role of the environment from
the point of view of π. In particular, Z then talks only to σ and not to the sub-
protocol π directly.) A typical situation would be that σF is some protocol that
makes use of some ideal functionality F , say a commitment functionality, and
then σπ would be the protocol resulting from implementing that functionality
with some protocol π, say a commitment protocol. One would hope that such
an implementation results in a secure protocol σπ. That is, we hope that if π

6 We use the symbol � because �-memory-bounded environments essentially model
indistinguishability with respect to the so-called �-norm.

Concurrent Composition in the Bounded Quantum Storage Model 473

BQS-UC-emulates F and σF BQS-UC-emulates G, then σπ BQS-UC-emulates
G. Fortunately, this is the case, as long as we pick the memory bounds in the
right way:

Theorem 2 (Composition Theorem). Let π and σ be quantum-polynomial-
time protocols and F and G be quantum-polynomial-time functionalities. Assume
that σ invokes at most one subprotocol instance. Assume that π (a, s)-BQS-UC-
emulates F and that σF (a − QM(σ) + s, s′)-BQS-UC-emulates G. Then σπ

(a−QM(σ), s + s′)-BQS-UC-emulates G.

The proof of this theorem is very similar to that in [15], except that we have to
keep track of the quantum memory used by various machines constructed in the
proof.

Notice that in this composition theorem, the outer protocol σ is only allowed
to invoke one instance of the subprotocol π. This stands in contrast to the
universal composition theorem for classical-UC [4] and for quantum-UC [15]
where any polynomially-bounded number of concurrent instances of π is allowed.
In fact, this is not just a limitation of our proof technique7. For example, assume
a protocol πA→B

COM that (a, s)-BQS-UC-emulates the commitment functionality
FA→B

COM with sender A and recipient B. Assume further that πA→B
COM does not use

any functionalities as setup. As we will see later, such a protocol exists. Now let
πB→A

COM be the protocol that results from exchanging the roles of A and B. Then
πB→A

COM (a, s)-BQS-UC-emulates FB→A
COM . Consider the concurrent composition of

πA→B
COM and πB→A

COM . In this protocol, a corrupted Bob may reroute all messages
between the Alice in the first protocol and Alice in the second protocol. Thus,
if Alice commits to a random value v in the first protocol, Bob commits to
the same value v in the second protocol without knowing it. It is easy to see
that in a concurrent composition of FA→B

COM and FB→A
COM , this is not possible.

Thus the composition of πA→B
COM and πB→A

COM does not (a′, s′)-BQS-UC-emulate
the composition of FA→B

COM and FB→A
COM (for any parameters a′, s′). To convert

this into an example of a protocol that does not even compose with itself, just
consider the protocol πA↔B

COM in which Bob may choose whether FA→B
COM or FB→A

COM
should be executed. It might be possible to make πA↔B

COM self-composable by
adding suitable tags inside the messages, but the definition of BQS-UC-security
does not enforce this.

Although BQS-UC-security does not guarantee for concurrent self-
composability, individual protocols may have this property. In order to formulate
this, we introduce the concept of the multi-session variant of a protocol. Given a
protocol π and a polynomially-bounded n, we define πn to be the protocol that
executes n instances of π concurrently.

7 In the proof, the difficulty arises from a hybrid argument where the protocol π is ex-
ecuted together in one network with the protocol ρ and the corresponding simulator.
Since the simulator may use more quantum memory than π is resistant against, we
cannot guarantee security of π in this hybrid setting and the proof cannot proceed.

474 D. Unruh

Then, from Theorem 2, we immediately get the following corollary:

Corollary 3. Let π and σ be quantum-polynomial-time protocols and F and G
be quantum-polynomial-time functionalities. Let n, m ≥ 0 be integers (depend-
ing on the security parameter). Assume that σ invokes at most m subproto-
col instances. Assume that πnm (a, s)-BQS-UC-emulates Fnm and that (σF)n

(a − nQM(σ) + s, s′)-BQS-UC-emulates Gn. Then (σπ)n (a − nQM(σ), s + s′)-
BQS-UC-emulates Gn.

3 Commitments

3.1 Extractable Commitments

In this section, we present the notion of online-extractable commitments in the
BQS model. These will be used as a building block for constructing BQS-UC
commitments in the next section.

Definition 4 ((ε, a)-BQS-hiding). Given a commitment protocol π with
sender Alice and recipient Bob, and an adversary B′ corrupting Bob, we de-
note with 〈A(m), B′〉B′ the output of B′ in an interaction between Alice and B′

where Alice commits to m.
We call π (ε, a)-BQS-hiding iff for all a-memory bounded B′ and all m1, m2 ∈

M , we have that
∣∣Pr[〈A(m1), B′〉B′ = 1]− Pr[〈A(m2), B′〉B′ = 1]

∣∣ ≤ ε. Here M
is the message space of the commitment scheme.

Instead of the binding property, we will need a stronger property: online-
extractability. This property guarantees that there is a machine (the extractor)
that, when running as the recipient of the commit protocol, is able to output
the committed value V already after the commit phase. This extractor should
be indistinguishable from an honest recipient. Note that this does not contradict
(ε, a)-BQS-hiding since we allow the extractor’s quantum memory to contain
more than a qubits. For our purposes, we will only need a definition of online-
extractability that does not impose a memory bound on the adversary. We do,
however, make the memory bound s of the extractor explicit.

Definition 5 ((ε, s)-online-extractable). Given a commitment protocol π with
sender Alice and recipient Bob, an extractor is a machine BS that, after the com-
mit phase, gives an output V ′ and then executes the (honest) code of Bob for the
open phase and outputs a value V (the accepted value). (In particular, BS needs to
provide an initial state for the program of the open phase of Bob that matches the
interaction so far.) We write V = ⊥ if the open phase fails.

For an adversary A′, we denote with 〈A′, B〉A′ (〈A′, BS〉A′) the output of A′

in an interaction between A′ and Bob (BS) where A′ is given V after Bob (BS)
terminates.

We call π (ε, s)-online-extractable iff there exists an s-memory bounded
quantum-polynomial-time extractor BS such that for all adversaries A′, we have
that

∣∣Pr[〈A′, B〉A′ = 1] − Pr[〈A′, BS〉A′ = 1]
∣∣ ≤ ε and in an interaction of A′

and BS, we have Pr[V /∈ {V ′,⊥}] ≤ ε.

Concurrent Composition in the Bounded Quantum Storage Model 475

Theorem 6 (Online-extractable commitments). For any polynomially-
bounded integers a and �, there is a constant-round 0-memory bounded
(ε, a)-BQS-hiding (ε, s)-online-extractable commitment scheme π for some
exponentially-small ε and some polynomially-bounded s. The message space of π
is M = {0, 1}�.

A protocol with the properties from Theorem 6 was constructed in [12]. They did
not, however, show that it is online-extractable. In the full version [16] we show
how their proof of the binding property can be extended to online-extractability.

3.2 BQS-UC Commitments

In this section, we present a commitment scheme πCOM that is BQS-UC-secure
for memory bound a and for n concurrent instances of πCOM. The parameters
a and n can be arbitrary, but πCOM depends on them. To state our result, we
first define the ideal functionality for commitments.

Definition 7 (Commitment). Let A and B be two parties. The functionality
FA→B,�

COM behaves as follows: Upon (the first) input (commit, x) with x ∈ {0, 1}�(k)
from A, store x and send committed to B. Upon (the first) input open from A
send (open, x) to B (unless x is still undefined). All communication/input/output
is classical. We call A the sender and B the recipient.

Note that this definition also defined the behavior of the functionality in the
case where A or B is corrupted. In this case, the adversary (or simulator) is
allowed to send/receive the inputs/outputs in the name of A or B, respectively.
For example, if A is corrupted, the adversary can decide when to commit to
what message and when to open.

Intuition. The protocol πCOM is depicted in Figure 1. Before we prove its se-
curity, we first explain the underlying intuition. In order to prove the BQS-UC-
security of πCOM, it is necessary to construct a simulator (that may use more
quantum memory than the adversary) that achieves the following: When being
in the role of the recipient, the simulator is able to extract the commitment after
the commit phase. When being in the role of the sender, the simulator should be
able to open the commitment to any value of his choosing (equivocality). The
first requirement can easily be achieved by using the online-extractable commit-
ment scheme from Theorem 6. That scheme, however, is not equivocal. In order
to make our protocol equivocal, we intentionally weaken the binding property of
the commitment. Instead of committing to a single value v, the sender commits
using a commitment scheme C2 to random values R := R1, . . . , Rm. Then he
sends v⊕F (R) with F being a universal hash function and sends the syndrome
σ of R with respect to a suitable linear code. In the open phase, the sender does
not open all commitments Ri, but instead just sends R to the recipient. The
recipient chooses a test set T , and the sender opens Ri for i ∈ T . The modi-
fied scheme is still binding: Assume the sender wishes to be able to open the
commitment with two different values. Then he has to find values R′ �= R that
both pass the recipients checks in the open phase. If R′ differs from R in many

476 D. Unruh

Parameters: Integers � (the length of the committed value), m, c < m, b, d, κ < m.
A b-block (m, κ, d)-linear code8 where S(ω) ∈ {0, 1}(m−κ)b denotes the syndrome of a
codeword ω ∈ {0, 1}mb. A family F of strongly universal hash functions F : {0, 1}mb →
{0, 1}�. All parameters may depend on the security parameter k.
Subprotocols: A commitment scheme C1 with sender Bob, and a commitment scheme
C2 with sender Alice, both 0-memory bounded (not using quantum memory)9.
Parties: The sender Alice A and the recipient Bob B.
Inputs: In the commit phase, Alice gets (commit, v) with v ∈ {0, 1}�. In the open
phase, Alice gets open. Bob gets no inputs.
Commit phase:
C1. Bob picks a random T ⊆ {1, . . . , m} with #T = c. Then Bob commits to T

using C1. (We assume some encoding of sets T that does not allow to encode sets
with #T 	= c.)

C2. Alice picks R1, . . . , Rm ∈ {0, 1}b. For each i, Alice commits to Ri using C2. (The
commitments may be performed concurrently.)

C3. Alice picks a hash function F ← F, computes p := v⊕ F (R1‖ . . . ‖Rm), computes
the syndrome σ := S(R1‖ . . . ‖Rm), and sends (F, σ, p) to Bob. (This may be done
concurrently with the commitments to Ri.)

C4. Bob outputs committed.
Open phase:
O1. Alice sends R1‖ . . . ‖Rm to Bob.
O2. Bob opens T using C1.
O3. For each i ∈ T , Alice opens Ri using C2. (The open phases may be executed

concurrently.)
O4. Bob checks that the values Ri sent by Alice match the values Ri opened by Alice

for all i ∈ T , and that σ = S(R1‖ . . . ‖Rm).
O5. Bob computes v := p ⊕ F (R1‖ . . . ‖Rm) and outputs (open, v). (I.e., Bob accepts

the opened value v.)

Fig. 1. Our commitment protocol πCOM

blocks Ri, with high probability the verifier will require that one of these Ri is
opened and the sender will be caught. If R′ and R differs in only few blocks, then
R− R′ has a low Hamming weight and is not in the code. Hence the syndrome
of R − R′ is not zero, and, since the code is linear, the syndromes of R′ and R
cannot both equal σ. Thus the sender is caught, too. Furthermore, our scheme
is online-extractable if C2 is online-extractable since the simulator can extract
the committed values R. However, we have not yet achieved the equivocality. In
order to open the commitment to a different value, the sender needs to know T
before sending R′. To achieve this, the recipient commits to T before the commit
phase (using an online-extractable commitment scheme C2). A simulator wishing
to change the value of the commitment simply extracts T . Then he knows which
Ri can be changed without being detected and can thus change F (R1, . . . , Rm)
to any value he wishes.

8 That is, a code where the code words consist of m blocks of b bit, that contains 2bκ

codewords, and where every non-zero codeword contains at least d nonzero blocks.
9 Note that this does not refer to the memory bound of the adversary. We only state

that honest Alice and Bob do not need to use quantum memory in C1 and C2.

Concurrent Composition in the Bounded Quantum Storage Model 477

Difficulties with Concurrent Composition. The main difficulty in showing
the BQC-UC-security of πCOM lies in coping with the fact that several (say n)
instances of πCOM might run concurrently. Consider for example the case that
Alice is corrupted. In this case, the adversary may produce the C2-commitments
to R1, . . . , Rm in n instances of Alice. The simulator needs to run the nm extrac-
tors to extract these commitments. Each of these extractors needs some quantum
memory s2. Thus our simulator needs nms2 bits of quantum memory. On the
other hand, we need to make sure that the C1-commitments to T , produced by
the simulator, are hiding. C1 needs to be hiding against a1-bounded adversaries
with a1 > nms2 ≥ s2 (because we cannot be sure that the memory used by the
simulator is not misused by the adversary). But then the extractor for C1 needs
to use s1 > a1 qubits; otherwise the adversary could run the extractor to break
the protocol. Similarly, we can see that when Bob is corrupted, C2 needs to be
hiding against a2-memory bounded adversaries with a2 > ns1 ≥ s1, and s2 > a2.
Thus we need a1 > s2 > a2 > s1 > a1 which is impossible.

Solving the Difficulties. The way out is to carefully track the memory used
by the simulators; it turns out that in the proof of security against corrupted
Alice, we can make sure that the adversary is not able to “misuse” the memory
of the simulator. When Alice is corrupted, we need to construct a simulator that
extracts the values v of n concurrent commitments produced by Alice, while
being indistinguishable from an execution of the honest recipient Bob. More
precisely, we show that the simulator is indistinguishable if C1 is a1-BQS-hiding
and C2 is s2-online-extractable and environment and adversary are a1-memory-
bounded. We do not require that a1 > s2, thus breaking the above-mentioned
circularity in the choices of a1, s1, a2, s2.

Let B∗ be defined like the honest Bob, except that instead of honestly running
the recipient’s code for C2, B∗ runs the extractor BS for C2 to extract the
committed values R in the C2-commitments. From R, B∗ computes a guess v′

for the committed value v. B∗ does not, however, use this guess at any point.
First, note that B∗ is indistinguishable from honest Bob: This follows from

the fact that the extractor for C2 is indistinguishable from the recipient for C2.
Furthermore, as discussed in the section “Intuition” above, extracting v will be
successful as long as Alice does not learn anything about T , i.e., as long as C1
is hiding. But C1 is only a1-BQS-hiding. And B∗ uses ms2 qubits to run the
extractors for C2, so the total memory used in the network is a1 + ms2 which
is beyond the memory bound tolerated by C1. Fortunately, however, honest
Bob runs the recipient of C2 after the end of the commit phase and before the
beginning of the open phase of C1. Thus, from the point of view of C1, the
extractors are executed within a single atomic computation. And we defined
BQS-hiding to hold even if the adversary uses unlimited memory within a single
activation. Thus the ms2 qubits used by the extractors do not break the hiding
property, and we get that B∗ guesses the right v′ with overwhelming probability.

This argument does, however, only work when a single instance of B∗ is
executed. If several instances of B∗ are executed, one instance may run the
commit or open phase of C1 concurrently with another instance’s extractors.

478 D. Unruh

Two show that n concurrent instances of B∗ extract successfully, we use the
following argument: For each j, we have that if only the j-th Bob instance
is replaced by B∗, then B∗ extracts correctly. Furthermore, Bob and B∗ are
indistinguishable, thus if we replace all the other instances of Bob by B∗, the
j-th instance still extracts correctly. Thus, for any j, if there are n instances of
B∗, then the j-th instance extracts correctly. Thus all instances of B∗ extract
correctly. And the instances of B∗ are indistinguishable from the instances of
Bob.

Finally, we can construct a simulator that runs B∗ instead of Bob and uses
the value v′ extracted by B∗ as input to the commitment functionality. Since
v = v′ with overwhelming probability, this simulator is successful.

Thus we have shown that a1 can be chosen independently of s2. This allows
to break the circularity in the choices of a1, s1, a2, s2: We first start with an arbi-
trary a = a1. Then we pick an arbitrary a1-BQS-hiding and s1-online-extractable
C1, and then an arbitrary a2 := a + ns1-BQS-hiding and s2-online-extractable
commitment C2. For the case of corrupted Bob, we then construct a simula-
tor that uses ns1 qubits and is secure against a = a2 − ns1-memory bounded
environments and adversaries. And for the case of corrupted Alice, using the
argument above, we get a simulator that uses nms2 qubits and is secure against
a = a1-bounded environments and adversaries.

The Analysis. We proceed with the formal analysis of πCOM. We first consider
the case where the recipient is corrupted.

Lemma 8. Assume that ε, δ are negligible, n, c are polynomially-bounded, and
2κb − mb − 2cb − � is superlogarithmic (in the security parameter k). Assume
that C1 is (ε, s1)-online-extractable and C2 is (δ, a + ns1)-BQS-hiding. Assume
that F is a family of affine strongly universal hash functions.

Then πnCOM (a, ns1)-BQS-UC-emulates (FA→B,�
COM)n for corrupted recipient B.

Proof. First, we describe the structure of the real and ideal model in the case
that the party B (Bob) is corrupted:

In the real model, we have the environment Z, the adversary Adv, the honest
party A (Alice), the corruption party BC . The adversary controls the corruption
party BC , so effectively he controls the communication between Alice and Bob.
The environment provides Alice’s inputs (commit, v) and open. See Figure 2 (a).

In the ideal model, we have the environment Z, the simulator Sim (to be de-
fined below), the dummy-party Ã, the corruption party BC , and the commitment
functionality FCOM. The inputs (commit, v) and open of FCOM are provided by
the dummy-party B̃ and thus effectively by the environment Z. The simulator
Sim controls the corruption party BC and hence gets the outputs committed
and (open, v) of FCOM. See Figure 2 (b).

Fix an adversary Adv. To show Lemma 8, we need to find a simulator Sim with
QM(Sim) ≤ ns1 such that, for any environment Z with QM(Z) + QM(Adv) ≤
a, the real model and the ideal model are negligible-close. This simulator is
described in Figure 3. We use the abbreviations R := R1‖ . . . ‖Rm and R′ :=
R′

1‖ . . . ‖R′
m.

Concurrent Composition in the Bounded Quantum Storage Model 479

(a)

Z A BC Adv
(commit,v)

open

(b)

Z Ã FCOM BC Sim
(commit,v)

open

(commit,v)

open

committed

(open,v)

committed

(open,v)

Fig. 2. Networks occurring in the proof of Lemma 8

To show that the real and the ideal model are negligible-close, we start with
the real model, and change the machines in the real model step-by-step until we
end up with the ideal model. In each step, we show that the network before and
after that step are negligible-close.

Game 1. We change the machine A as follows: Instead of executing the program
of the honest recipient of C1, A executes the extractor AS . �
Let T ′ denote the extracted value. The modified A does not use T ′. Since there
are up to n copies of A, and since C1 is (ε, s1)-online-extractable, the real model
and Game 1 are nε-close.

Game 2. We change the machine A to abort if the opening of T succeeds and
reveals a value T �= T ′. �
Since C1 is (ε, s1)-online-extractable, in each instance of A, this happens with
probability at most ε, thus Game 1 and Game 2 are nε-close.

Notice that the only machines that use quantum memory in Game 2 are
Z, Adv, and n copies of AS . Since AS is s1-memory bounded, and QM(Z) +
QM(Adv) ≤ a we have that the total amount of quantum memory used in
Game 2 is bounded by a + ns1.

Game 3. We change the machine A to commit to 0b instead of Ri for each
i /∈ T ′. �
To see that Game 2 and Game 3 are negligible-close, we introduce an interme-
diate hybrid game, Game 3j , in which only the first j of the commitments to
Ri, i /∈ T are replaced by commitments to 0b. Since at most a + ns1 qubits
of quantum memory are used in Game 2 and therefore also in Game 3j , and
since the C2-commitments to Ri, i /∈ T are never opened, from the fact that
C2 is (δ, a + ns1)-BQS-hiding it follows that Game 3j and Game 3j+1 are δ-
close. Note that there are, in the whole game, up to n copies of A and thus
up to nc C2-commitments to some Ri, i /∈ T . Thus Game 2 = Game 30 and
Game 3 = Game 3nc are ncδ-close.

480 D. Unruh

Commit phase (on input committed):
- When Bob commits to T using C1, the simulator runs the extractor AS for C1

instead of the honest recipient’s program. (Since C1 has recipient Alice, we write
AS, not BS .) Let T ′ denote the value extracted by AS.

- The simulator picks R1, . . . , Rm ∈ {0, 1}b. For each i, Sim commits (honestly) to
Ri (if i ∈ T) or to 0b (if i /∈ T) using C2.

- Sim picks a hash function F
R← F, picks a random p

R← {0, 1}�, computes the
syndrome σ := S(R), and sends (F, σ, p) to Bob.

Open phase (on input (open, v) with v ∈ {0, 1}�):
- Sim picks R′ ∈ {R′ : ∀i ∈ T ′.Ri = R′

i, σ = S(R′), p⊕ F (R′) = v} uniformly10.
- Sim sends R′ to Bob.
- Sim waits for Bob to open T using C1. If T 	= T ′, Sim aborts.
- For each i ∈ T ′, Sim (honestly) opens Ri using C2.

Fig. 3. Simulator Sim for the case of corrupted Bob. The program described in this
figure is executed for each instance of the n instances of πCOM. Communication with
Bob is sent to an internally simulated instance of the adversary Adv.

Game 4. We modify A to set R′ := R and to send R′ instead of R to Bob in
step O1. �
This modification is for notational purposes only, Game 3 and Game 4 are per-
fectly close.

Game 5. We modify the way A chooses F, R, R′, σ, p: In Game 4, we have F
R←

F, R
R← {0, 1}mb, σ := S(R), p := v ⊕ F (R), R′ := R. (We call this distribution

D1.) In Game 5 we use F
R← F, R

R← {0, 1}mb, p
R← {0, 1}�, σ := S(R), R′ R←

{R′ : ∀i ∈ T ′.Ri = R′
i, σ = S(R′), p ⊕ F (R′) = v} =: RF,R,p. (We call this

distribution D2.) �
To show that Game 4 and Game 5 are negligible-close, we use the following
claim:

Claim 1. Let RT := (Ri)i∈T . For any v ∈ {0, 1}�, the statistical distance be-
tween (F, RT , R′, σ, p) chosen according to D1 and (F, RT , R′, σ, p) chosen ac-
cording to D2 is at most 2cb+mb/2+�/2−κb−1.

The proof of this claim uses the fact that p is the result of applying F to a
random variable R with high min-entropy. Due to the leftover-hash-lemma [9],
p is indistinguishable from randomness. We refer to the full version [16] for the
proof. Using Claim 1 and the fact that we have n instances of A, we immediately
get that Game 4 and Game 5 are n(2cb+mb/2+�/2−κb−1)-close because the values
(Ri)i/∈T are never used by A (except indirectly through R′, σ, and p).

Finally, note that by construction of Sim, Game 5 and the ideal model are
perfectly close. Thus the real and the ideal model are γ-close with γ := 2nε +
10 Note R′ can be sampled efficiently since the conditions ∀i ∈ T ′.Ri = R′

i, σ = S(R′),
and p⊕F (R′) = v are a system of linear equations. This uses that S is the syndrome
of a linear code, and that F is a family of affine functions.

Concurrent Composition in the Bounded Quantum Storage Model 481

(a)

Adv AC B Zcommitted

(open,v)

(b)

Sim AC FCOM B̃ Z
(commit,v)

open

(commit,v)

open

committed

(open,v)

committed

(open,v)

Fig. 4. Networks occurring in the proof of Lemma 9

ncδ + n(2cb+mb/2+�/2−κb−1). Since ε, δ are negligible, and n, c are polynomially-
bounded, and 2κb−mb− 2cb− � is superlogarithmic, we have that γ is negligible.
Thus πnCOM (a, ns1)-BQS-UC-emulates (FA→B,�

COM)n in the case of corrupted Bob.
 !

Lemma 9. Assume that ε, δ are negligible, n is polynomially-bounded, and
(1 − d

m)c is negligible (in the security parameter k). Assume that C1 is (ε, a)-
BQS-hiding and that C2 is (δ, s2)-online-extractable. Assume that the code with
syndrome S has efficient error-correction.

Then πnCOM (a, nms2)-BQS-UC-emulates (FA→B,�
COM)n for corrupted sender A.

Proof. First, we describe the structure of the real and the ideal model in the
case that the party A (Alice) is corrupted:

In the real model, we have the environment Z, the adversary Adv, the cor-
ruption party AC , and the honest party B (Bob). The adversary controls the
corruption party AC , so effectively he controls the communication between Al-
ice and Bob. The environment gets Bob’s outputs committed and (open, v). See
Figure 4 (a).

In the ideal model, we have the environment Z, the simulator Sim (to be de-
fined below), the corruption party AC , the dummy-party B̃, and the commitment
functionality FCOM. The inputs (commit, v) and open of FCOM are provided by
the corruption party AC and thus effectively by the simulator Sim. The envi-
ronment Z controls the dummy-party B̃ and hence gets the outputs committed
and (open, v) of FCOM. See Figure 4 (b).

Fix an adversary Adv. To show Lemma 9, we need to find a quantum-
polynomial-time simulator Sim with QM(Sim) ≤ nms2 such that, for any en-
vironment Z with QM(Z) + QM(Adv) ≤ a, the real model and the ideal
model are negligible-close. This simulator is described in Figure 5. Note that
Sim is quantum-polynomial-time: The extractor BS is quantum-polynomial-time
by definition, and computing R∗ is possible in polynomial-time because the
code with syndrome S has efficient error-correction. Since C2 is (δ, s2)-online-
extractable and Sim uses m instances of BS per copy of B, QM(Sim) ≤ nms2.
We use the abbreviations R := R1‖ . . . Rm and similarly for R′ and R∗.

482 D. Unruh

Commit phase:
- Sim picks a random T ⊆ {1, . . . , m} with #T = c. Then Sim (honestly) commits to

T using C1.
- When Alice commits to R1, . . . , Rm, the simulator runs the extractor BS for C2 in-

stead of the honest recipient’s program. Let R′
1, . . . , R

′
m denote the extracted values.

- Sim waits for (F, σ, p) from Alice.
- Sim computes an R∗ ∈ {0, 1}mb with S(R∗) = σ and ω(R′, R∗) ≤ (d− 1)/2 (remem-

ber that ω is the block-wise Hamming distance), computes v′ := p ⊕ F (R∗), and
sends (commit, v′) to FCOM. (If no such R∗ exists, we set v′ := ⊥.)

Open phase:
- Sim waits for R from Alice.
- Sim (honestly) opens T using C1.
- For each i ∈ T , Sim waits for Alice to open Ri using C2.
- Sim checks that the values Ri sent by Alice match the values Ri opened by Alice

for all i ∈ T , and that σ = S(R1‖ . . . ‖Rm).
- Sim sends open to FCOM.

Fig. 5. Simulator Sim for the case of corrupted Alice. The program described in this
figure is executed for each instance of the n instances of πCOM. Communication with
Alice is sent to an internally simulated instance of the adversary Adv.

Before we proceed, we introduce two variants of the honest recipient B. The
machine B∗ behaves like B, but when Alice commits to R1, . . . , Rm using C2,
B∗ runs the extractor BS for C2 instead of the honest recipient’s program. Call
the extracted values R′

1, . . . , R
′
m. Further, B∗ computes an R∗ with S(R∗) = σ

and ω(R′, R∗) ≤ (d − 1)/2 and then computes v′ := p⊕ F (R∗). (If no such R∗

exists, v′ := ⊥.) In the open phase, B∗ behaves like B. In particular, B∗ outputs
(open, v), not (open, v′). That is, v′ is computed but never used.

The machine B+ behaves like B∗, but outputs (open, v′) instead of (open, v).
By definition of online-extractability, and since B∗ does not use the value

extracted by BS , we have that B and B∗ are δ-indistinguishable. More precisely,
for any network S, we have that S ∪{B} and S ∪ {B∗} are δ-close. Since online-
extractability was defined with respect to non-memory bounded adversaries, this
holds even if S is not memory bounded.

As in Lemma 8, we proceed by investigating a sequence of games.

Game 1. In the game Game 1j , the j-th instance of B is replaced by an instance
of B∗. (Note: only one instance is replaced, not the first j instances.) �
We use the following claim:

Claim 2. Let S be an a-memory bounded network. In an execution of S∪{B∗},
let v, v′ denote the values v, v′ computed by B∗. Then Pr[v /∈ {v′,⊥}] ≤ ε + (1−
d
m)c := η.

We prove this claim below. Since C1 and C2 are 0-memory bounded, we have
that the machine B is 0-memory bounded. QM(Z) + QM(Adv) ≤ a. Thus we
can apply Claim 2 to Game 1j . Hence in Game 1j , Pr[vj /∈ {v′j,⊥}] ≤ η where
vj , v

′
j are the values v, v′ computed by B∗. We write vj := ⊥ if the open phase

fails or does not take place (and hence vj is not computed by B∗).

Concurrent Composition in the Bounded Quantum Storage Model 483

Game 2. This game is defined like the real model, except that we use n instances
of B∗ instead of the n instances of B. �
Using the fact that B and B∗ are δ-indistinguishable, we get that the real model
and Game 2 are nδ-close.

Again using that B and B∗ are δ-indistinguishable, we get that
∣∣Pr[vj /∈

{v′j ,⊥} : Game 1j] − Pr[vj /∈ {v′j ,⊥} : Game 2]
∣∣ ≤ (n − 1)δ. Thus Pr[vj /∈

{v′j ,⊥} : Game 2] ≤ η + (n− 1)δ. Since this holds for all j = 1, . . . , n, we get:

Pr[∃j. vj /∈ {v′j ,⊥} : Game 2] ≤ nη + n(n− 1)δ. (1)

Game 3. This game is defined like the real model, except that we use n instances
of B+ instead of the n instances of B. �
Notice that Game 2 and Game 3 only differ in the fact that in Game 2 we use
instances of B∗ and in Game 3 instances of B+. By definition, B∗ and B+ only
differ in the value they output: B∗ outputs (open, v) and B+ outputs (open, v′).
By (1), the probability that the values v, v′ are different in some instance of B∗ is
bounded by nη+n(n−1)δ. Hence Game 2 and Game 3 are (nη+n(n−1)δ)-close.

Finally, note that by construction of Sim, Game 3 and the ideal model are
perfectly close. Thus the real and the ideal model are γ-close with γ :=
nδ + nη + n(n − 1)δ = n2δ + nε + n(1 − d

m)c. Since δ, ε are negligible, n is
polynomially-bounded, and (1 − d

m)c is negligible, we have that γ is negligible.
Thus πnCOM (a, nms2)-BQS-UC-emulates (FA→B,�

COM)n in the case of corrupted
Alice.

Proof of Claim 2. Let R, R′, R∗ and T denote the corresponding values as
computed by B∗. We abbreviate RT := (Ri)i∈T and R′

T := (R′
i)i∈T . By Bad we

denote the event that RT = R′
T and S(R) = σ and R �= R∗. By construction of

B∗, v �= ⊥ implies RT = R′
T and S(R) = σ. And v /∈ {v′,⊥} implies R �= R∗.

Thus v /∈ {v′,⊥} implies Bad . Therefore, to show Claim 2, it is sufficient to show
Pr[Bad] ≤ η in S ∪ {B∗}. To show this, we again proceed using a sequence of
games:

Game 4. An execution of S ∪ {B∗}. �

Game 5. We change B∗ to halt after receiving R from Alice. �
Then Pr[Bad : Game 4] = Pr[Bad : Game 5].

Game 6. We change B∗ to commit to some (arbitrary) fixed value T0 instead
of committing to T . �
We wish to apply the (ε, a)-BQS-hiding property of C1 in order to show that∣∣Pr[Bad : Game 5] − Pr[Bad : Game 6]

∣∣ ≤ ε. Let B1 denote the sender in the
commitment scheme C1. By definition, to commit to T (or T0), B∗ internally
runs B1. We construct an adversary A′

1 that interacts with B1. This adversary
simulates S∪{B∗} (with B∗ as in Game 5) except for the machine B1 inside B∗.
Note that in Game 5, only the commit phase of C1 is executed. We let A′

1 output
1 iff Bad happens. We define B̂1 like B1, except that B̂1 ignores its input and

484 D. Unruh

commits to T0. Let P be the probability that A′
1 outputs 1 when running with

B1, and let P̂ be the probability that A′
1 outputs 1 when running with B̂1. By

construction, P = Pr[Bad : Game 5] and P̂ = Pr[Bad : Game 6]. Thus we only
have to show that |P − P̂ | ≤ ε. To apply the (ε, a)-BQS-hiding property of C1 we
have to check that A′

1 is a-memory bounded. A′
1 simulates Z, Adv, and B∗. We

have QM(Z)+QM(Adv) ≤ a by assumption. But B∗ contains the extractor BS

for C2 which uses additional s2 qubits of quantum memory. Yet, BS is executed
after the end of the commit phase of C1. That is, B∗ is executed within a single
activation of A′

1 (since B1 is not activated any more after the commit phase).
Note that, although A′

1 might use more than a qubits during the activation in
which B∗ is simulated, it stores at most a qubits between activations. Thus A′

1
is a-memory bounded (remember that our definition of “a-memory bounded”
on page 470 only requires that the memory bound holds between activations).
Hence |P − P̂ | ≤ ε and thus

∣∣Pr[Bad : Game 5]− Pr[Bad : Game 6]
∣∣ ≤ ε.

Game 7. We change B∗ to choose T only after receiving R′. �
Since T is not used earlier by B∗, Pr[Bad : Game 6] = Pr[Bad : Game 7].
Fix values R, R′ and σ with S(R) = σ. We distinguish two cases, depending
on whether there exists an R∗ with S(R∗) = σ and ω(R∗, R′) ≤ (d − 1)/2.
Case “R∗ exists”: Since S is the syndrome of a b-block (m, κ, d)-linear code,
S(R − R∗) = 0, hence R − R∗ is a codeword. Hence R = R∗ or ω(R, R∗) ≥ d.
Using the triangle inequality and ω(R∗, R′) ≤ (d − 1)/2, we get that R = R∗

or ω(R, R′) ≥ d − (d − 1)/2 ≥ d/2. Case “R∗ does not exist”: Since no R∗ with
S(R∗) = σ and ω(R∗, R′) ≤ (d − 1)/2 exists, and since S(R) = σ, we have that
ω(R, R′) > (d− 1)/2. Hence ω(R, R′) ≥ d/2.

Thus, for any fixed choice of R, R′, σ, we have S(R) �= σ or R = R∗ or
ω(R, R′) ≥ d/2.

If R = R∗ or if S(R) �= σ, the event Bad does not occur by definition.
If ω(R, R′) ≥ d/2, we bound the probability of Bad occurring as follows:

Let D := {i : Ri �= R′
i}. Then, for random T ⊆ [m] with #T = c, we have

Pr[Bad] ≤ Pr[RT = R′
T] = Pr[T ∩D = ∅] ≤ (1− #D

m)c ≤ (1− d
m)c.

Thus for any fixed R, R′, σ we have Pr[Bad] ≤ (1 − d
m)c. By averaging over

the choice of R, R′, σ, we get Pr[Bad : Game 7] ≤ (1− d
m)c.

Summarizing, we have Pr[Bad : Game 4] ≤ ε + (1 − d
m)c = η.

This shows Claim 2. !

Using Reed-Solomon codes for S, and the extractable commitments from
Theorem 6 for C1 and C2, we can instantiate the parameters of πCOM to sat-
isfy the conditions of Lemmas 8 and 9. Thus we get the following theorem:

Theorem 10. Let �, n, and a be polynomially-bounded. Then there are choices
for the parameters of πCOM and a polynomially-bounded integer s such that
πCOM is polynomial-time, constant-round and πnCOM (a, s)-BQS-UC-emulates
(FA→B,�

COM)n.

Concurrent Composition in the Bounded Quantum Storage Model 485

General Two-Party Computation. By combining known results [19,10,15],
we get a constant-round protocol that quantum-UC-emulates any two-party func-
tionality and uses only commitments from Alice to Bob. Combining this with
our protocol πCOM, we get our final result (for details see the full version [16]):

Theorem 11 (BQS two-party computation). Let G be a classical
well-formed 11 probabilistic-polynomial-time functionality. Let n and a be
polynomially-bounded. Then there is a polynomially-bounded s and a constant-
round 0-memory bounded protocol πbqs2pc not invoking any functionality such
that πnbqs2pc (a, s)-BQS-UC-emulates Gn.

Acknowledgements. We thank Christian Schaffner and Jürg Wullschleger for
valuable discussions. This work was funded by the Cluster of Excellence “Multi-
modal Computing and Interaction”.

References

1. Ben-Or, M., Mayers, D.: General security definition and composability for quantum
& classical protocols (September 2004), http://xxx.lanl.gov/abs/quant-ph/
0409062

2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and
coin tossing. In: IEEE International Conference on Computers, Systems and Signal
Processing 1984, pp. 175–179. IEEE Computer Society, Los Alamitos (1984)

3. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.H.: Practical quantum
oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
351–366. Springer, Heidelberg (1992)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS 2001, pp. 136–145. IEEE Computer Society, Los Alamitos
(2001), full and revised version is [5]

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. IACR ePrint Archive (January 2005), full and revised version of [4],
http://eprint.iacr.org/2000/067.ps

6. Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded
quantum-storage model. In: FOCS 2005, pp. 449–458 (2005), a full version http:
//arxiv.org/abs/quant-ph/0508222

7. Dziembowski, S., Maurer, U.: On generating the initial key in the bounded-storage
model. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 126–137. Springer, Heidelberg (2004), ftp://ftp.inf.ethz.ch/pub/crypto/
publications/DziMau04b.pdf

8. Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 350–367. Springer, Heidelberg
(2009)

11 Well-formedness describes certain technical restrictions stemming from the proof by
Ishai et al. [10]: Whenever the functionality gets an input, the adversary is informed
about the length of that input. Whenever the functionality makes an output, the
adversary is informed about the length of that output and may decide when this
output is to be scheduled.

http://xxx.lanl.gov/abs/quant-ph/0409062
http://eprint.iacr.org/2000/067.ps
http://arxiv.org/abs/quant-ph/0508222
ftp://ftp.inf.ethz.ch/pub/crypto/publications/DziMau04b.pdf

486 D. Unruh

9. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999),
full version http://www.icsi.berkeley.edu/~luby/PAPERS/hill.ps

10. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious trans-
fer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
572–591. Springer, Heidelberg (2008), http://www.springerlink.com/content/
0l5v1l524816u652/

11. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC 1988, pp. 20–31.
ACM, New York (1988)

12. König, R.,Wehner, S.,Wullschleger, J.: Unconditional security from noisy quantum
storage. arXiv:0906.1030v2 [quant-ph] (June 2009)

13. Mayers, D.: Unconditionally Secure Quantum Bit Commitment is Impossible. Phys-
ical Review Letters 78(17), 3414–3417 (1997), http://arxiv.org/abs/quant-ph/
9605044

14. Unruh, D.: Simulatable security for quantum protocols (September 2004),
http://arxiv.org/ps/quant-ph/0409125

15. Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg
(2010), preprint on arXiv:0910.2912 [quant-ph]

16. Unruh, D.: Concurrent composition in the bounded quantum storage model. IACR
ePrint 2010/229 (February 2011), full version of this paper

17. Wehner, S., Wullschleger, J.: Composable security in the bounded-quantum-storage
model. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 604–615.
Springer, Heidelberg (2008), http://arxiv.org/abs/0709.0492v1

18. Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)

19. Wullschleger, J.: Oblivious-Transfer Amplification. Ph.D. thesis, ETH Zurich
(March 2007), arXiv:cs/0608076v3 [cs.CR]

http://www.icsi.berkeley.edu/~luby/PAPERS/hill.ps
http://www.springerlink.com/content/0l5v1l524816u652/
http://arxiv.org/abs/quant-ph/9605044
http://arxiv.org/ps/quant-ph/0409125
http://arxiv.org/abs/0709.0492v1

Careful with Composition:
Limitations of the Indifferentiability Framework

Thomas Ristenpart1, Hovav Shacham2, and Thomas Shrimpton3

1 Dept. of Computer Sciences, University of Wisconsin–Madison, USA
rist@cs.wisc.edu

2 Dept. of Computer Science & Engineering, UC San Diego, USA
hovav@cs.ucsd.edu

3 Dept. of Computer Science, Portland State University, USA
teshrim@cs.pdx.edu

Abstract. We exhibit a hash-based storage auditing scheme which is
provably secure in the random-oracle model (ROM), but easily broken
when one instead uses typical indifferentiable hash constructions. This
contradicts the widely accepted belief that the indifferentiability compo-
sition theorem from [27] applies to any cryptosystem. We characterize
the uncovered limitations of indifferentiability by showing that the for-
malizations used thus far implicitly exclude security notions captured
by experiments that have multiple, disjoint adversarial stages. Exam-
ples include deterministic public-key encryption (PKE), password-based
cryptography, hash function nonmalleability, and more. We formalize a
stronger notion, reset indifferentiability, that enables a composition theo-
rem covering such multi-stage security notions, but our results show that
practical hash constructions cannot be reset indifferentiable. We finish
by giving direct security proofs for several important PKE schemes.

1 Introduction

The indifferentiability framework of Maurer, Renner, and Holenstein (MRH) [27]
supports modular proofs of security for cryptosystems. A crucial application of
the framework has been to allow proofs in the random oracle model (ROM) [8]
to be transferred to other idealized models of computation, where a monolithic
random oracle is replaced by a hash function constructed from (say) an ideal
compression function. This happens via an elegant composition theorem, the
usual interpretation of which is: A proof of security for an arbitrary cryptosys-
tem using functionality F (e.g., a random oracle) continues to hold when the
cryptosystem instead uses a second functionality F ′ (e.g., a hash function built
from an ideal compression function), so long as F ′ is indifferentiable from F .

In this paper, we show that this interpretation is too generous. We uncover an
application (in the context of secure distributed storage) for which composition
fails completely. For this application there is a simple scheme provably secure
in the ROM, and yet easily broken when using typical indifferentiable hash
constructions. We then begin an exploration of the fall out.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 487–506, 2011.
c© International Association for Cryptologic Research 2011

488 T. Ristenpart, H. Shacham, and T. Shrimpton

Random oracles and indifferentiability. Let us give a bit more back-
ground on why indifferentiability has proved so useful. A wide range of practical,
in-use cryptographic schemes enjoy proofs of security in the ROM [8]; for some
schemes, ROM proofs are the only ones known. But most in-use hash-function
constructions are not suitable for modeling as a RO, even when assuming the
primitive underlying the hash function is ideal (e.g., an ideal compression func-
tion), because they admit length-extension attacks [32]. These attacks abuse the
structure of the iterative modes-of-operation underlying hash functions such as
MD5, SHA-1, and SHA-2. And the weakness they expose has led to practical
insecurities [18]. Of course, we can build hash functions that resist known length-
extension attacks, but it remains unclear whether the resulting functions would
also prevent other, unforeseen structure-abusing attacks.

Coron et al. [15] instead suggest an approach to design hash functions that
“behave like” random oracles in a provable sense. Specifically, this requires that
a hash function will provide security anywhere a random oracle would. The MRH
composition theorem seems to give exactly this, taking F = RO and F ′ = Hf ,
the latter being a hash function constructed from an (ideal) primitive f . Thus the
needed hash function property is that Hf be indifferentiable from a RO. Impor-
tantly, this approach preserves proofs of security as well: the MRH theorem trans-
ports a cryptosystem’s proof of security in the ROM to a proof of security when
using an indifferentiable hash function. A number of recent works prove construc-
tions to be indifferentiable from a RO (e.g., [1, 7, 10, 14, 16, 17, 21]), including
many candidates for the NIST SHA-3 competition. Given all this, the consensus
opinion appears to be that indifferentiability exactly captures “behaving like” a
RO, rules out structure-abusing attacks, and that once a cryptosystem is proven
in the ROM it is secure using any compatible indifferentiable hash construction.

Hash-based storage auditing. We now describe an application that shows
this consensus opinion to be wrong. In the design of secure distributed systems, the
following important problem arises: How can parties in a system verify that a stor-
age server is actually storing the files that it should be? A malicious server might
tamper arbitrarily with the data entrusted to it; a rational one might discard the
file to save space if detection is unlikely. This problem has received much attention
since being formalized in 2007 [2, 22].The particular examplewe consider in this pa-
per is inspiredby a proof-of-storage challenge-response protocol proposed as part of
an earlier system, SafeStore [23]. Consider the following protocol. The client sends
a random challenge C to the server; the server proves possession of the file M by
computing Z ← Hash(M ‖C) using a cryptographic hash function Hash and send-
ing Z to the client, who performs the same computation using her copy of M and
compares the result to that sent by the server.

Suppose, for simplicity, that both the file M and the challenge C are d bits
long, and consider the case that Hash = Hf , where f is an ideal compression
function outputting strings of length n < d bits and H returns the first n/2
bits of f(f(IV, M), C). (IV is a fixed constant string.) This construction was
shown indifferentiable from a RO in [15]. Thus, the MRH composition theorem
combined with the fact that the protocol is secure in the ROM assuredly proves

Careful with Composition: Limitations of the Indifferentiability Framework 489

that the protocol is secure when using Hf . Quite baffling, then, is the observation
that the server can cheat! The server simply computes Y ← f(IV, M) when
it first gets M , and then deletes M and stores the (shorter) Y . To answer a
challenge C, the server computes Z ← f(Y, C) and returns the first half of Z as
its response. The client’s check will succeed even though M is not stored.

The attack abuses a structural feature of typical hash functions that we call
online computability. A hash function has this property when it can process
its input in successive blocks, storing only a small amount of internal state
between blocks. This property is desirable in practice and all indifferentiable hash
constructions suggested for practical use have it (see, e.g., [1, 7, 10, 14, 16, 21]).
As our example shows, however, online computability can be abused.

Let us pause to take stock of the situation. In Section 4 we prove that the
SafeStore-inspired auditing scheme is, indeed, secure in the ROM. The proof of
indifferentiability for our Hash = Hf provided by Coron et al. [15] and the proof
of the MRH composition theorem are also both correct. But the server is still
somehow able to abuse the structure of Hf . So what is going on here?

Characterizing the problem. The gap is that the MRH theorem does not ap-
ply. The problem is subtle. Carefully revisiting the MRH theorem and its proof,
we find that (loosely speaking) they only apply when a cryptosystem’s security is
measured relative to a security game using a single, stateful adversary. For exam-
ple, left-or-right indistinguishability [19] for encryption schemes and unforgeabil-
ity under chosen message attacks [20] each use just a single, stateful adversary.
But the security of the challenge-response auditing protocol we just described is
fundamentally two-stage. In the first stage, the adversary (the server) receives the
message M , derives from M some state st that is smaller than the size of M , and
forgets M . In a second stage it attempts to answer challenges using just st. This
is an example of what we call a multi-stage game, a notion we will make formal.

In prior treatments of indifferentiability, the restriction to single-stage games
is implicit in the underlying formalization of cryptosystems and adversaries.
This restriction has not been mentioned in the literature, and our sense is that
no researchers (until now) realized it. For completeness, we restate the MRH
indifferentiability composition theorem and give its proof for single-stage games
(see Section 3).

Repercussions. We do not necessarily expect that practitioners would (or have)
deployed the hash-based auditing scheme above. One can simply use Hf (C ‖M)
to achieve (provable) security, and in fact this is the actual protocol used in Safe-
Store [23]. But the flaw this example uncovers is that the common interpretation
of composition actually encourages use of an insecure auditing mechanism. This
is exactly the opposite of how provable security should guide protocol design.

All of this casts doubt on the security of any scheme relative to a multistage
game. The scheme may well have provable security in the ROM, but this does not
imply the inexistence of dangerous structure-abusing attacks, even when using
indifferentiable hash constructions. And unfortunately the danger is widespread.
The recent security notions for deterministic [3, 5, 12], hedged [4], and efficiently

490 T. Ristenpart, H. Shacham, and T. Shrimpton

searchable [3] public-key encryption (PKE) are all multi-stage. When formalizing
password-based cryptography (e.g. [6, 33]) to allow arbitrary, hash-dependent
password sampling algorithms, one uses multi-stage games. A recently proposed
hash function nonmalleability security notion [11] is multi-stage. Interestingly,
this is the only notion (we are aware of) that formalizes security against length-
extension attacks, and so although we expect them to, we do not have proof that
current indifferentiable hash constructions resist length-extension attacks.

So, we cannot generically use indifferentiability-based composition to modu-
larly argue security in the context of multi-stage games. But it could be that
indifferentiability remains a sufficient property to establish security in settings
beyond hash-based challenge-response auditing. One might hope to prove, with-
out relying on the MRH composition theorem, that a ROM proof of (say) a
deterministic PKE scheme holds still when using any indifferentiable hash con-
struction. This seems reasonable since for the applications just listed, online
computability of the hash function does not obviously compromise security.

Yet we prove that such proofs do not exist. Namely, we show in Section 5 that
indifferentiability does not imply security in the multi-stage settings mentioned
above.

Reset indifferentiability. We present a new notion, reset indifferentiability,
that does admit a composition theorem covering both single-stage and multi-
stage games. In the indifferentiability framework, functionalities have both an
honest and an adversarial interface, e.g. F.hon, F.adv and F ′.hon, F ′.adv. Func-
tionality F ′ is indifferentiable from F if there exists a simulator S such that
no distinguisher can determine when it has access to oracles F.hon and F.adv
or to F ′.hon and SF ′.adv. Reset indifferentiability asks that no distinguisher
can differentiate those two sets of oracles, but when the distinguisher can reset
the simulator to its initial state at arbitrary times. Randomized simulators use
freshly-chosen coins after each reset.

The inability to distinguish when resets are allowed enables proving a compo-
sition theorem for multi-stage games because the resets allow one to restart the
simulator for each stage. However, it is easy to see that reset indifferentiability is
a strong property. While constructions that only require stateless, deterministic
simulators can be easily shown to achieve reset indifferentiability, it is unclear if
any non-trivial constructions requiring randomized, stateful simulators can meet
it. Moreover, there is clear intuition that typical hash constructions are unlikely
to be reset indifferentiable — they have the property of online computability.
Still, that leaves open if other efficient constructions perform better. We answer
this question in the negative, proving that a wide class of single-pass hash func-
tion domain extension constructions cannot be shown reset indifferentiable. We
leave open the problem of proving the existence (or inexistence) of a domain
extender, even an impractical one (i.e., one that makes two or more passes over
the message), that is reset indifferentiable.

Direct proofs. Having lost the MRH composition as a general way to trans-
port ROM proofs of security for multi-stage games to the setting where one uses

Careful with Composition: Limitations of the Indifferentiability Framework 491

a hash constructed from an ideal primitive, we take up consideration of a specific
security goal from public-key encryption. We prove a theorem establishing the
chosen-distribution attack (CDA) security for a number of related, ROM-secure,
PKE schemes when these are used with any indifferentiable hash function built
according to a design paradigm introduced by Dodis, Ristenpart and Shrimp-
ton [17]. The CDA security notion [4] captures message privacy of a PKE scheme
when messages and randomness are (jointly) unpredictable, but otherwise ad-
versarially controlled. In particular, this notion is the goal in the context of
deterministic PKE [3, 5, 12], hedged PKE (which provides message privacy even
in the face of poor randomness) [4, 31], and efficiently searchable encryption (an
extension of deterministic PKE) [3]. As expected, this direct proof of security
is complex because we have to work directly in the model of the ideal primitive
underlying the hash function. This case study shows that direct security results
are possible, restoring confidence that in some multi-stage settings security holds
with proposed indifferentiable hash constructions.

Other limitations. In the course of understanding the hash-based auditing
counter-example, we uncovered other subtle ways in which composition may fail
to help one establish security; a discussion of these appears in the full version [29].

Universal composability. Our results have analogous repercussions for com-
position frameworks similar to indifferentiability, such as universal composabil-
ity [13]. We discuss other frameworks in the full version [29].

Discussion. We emphasize that we are not recommending that indifferentiabil-
ity be dropped as a target of hash function design. The class of single-stage games
includes many very important ones, and even after our results indifferentiability-
based composition remains an elegant way to analyze security for these cases.
Instead, we stress that one must be careful when using composition to perform
a security analysis, ensuring that it does in fact apply as expected.

2 Preliminaries

A code-based games framework. We formalize a version of the code-based
games framework of Bellare and Rogaway [9] for representing security exper-
iments, indifferentiability, and the like. We find code-based games useful for
formalizing security definitions, in particular, because they allow us to specify
execution semantics (i.e. what runs what, and in what order). Here we give only
the most important details, deferring others to the full version of this paper. A
procedure is a sequence of statements together with zero or more inputs (vari-
ables) and zero or more outputs (variables). An unspecified procedure is one
whose pseudocode, inputs, and outputs are understood from context. An adver-
sary is an example of an unspecified procedure. Calling a procedure P means
providing it with inputs and running its sequence of statements. During its exe-
cution P may itself call other procedures. Say that the code of P expects to be
able to call k distinct procedures. We will write PQ1,Q2,...,Qk to denote that these
calls are handled by Q1, Q2, . . . , Qk. Procedures P1 and P2 are said to export the

492 T. Ristenpart, H. Shacham, and T. Shrimpton

proc. RO.hon(x):

If T[x] 	= ⊥ then
T[x]←$ {0, 1}r

Ret T[x]

proc. RO.adv(x):

Ret RO.hon(x)
proc. IP.hon(x):
Ret HP.hon(x)

proc. IP.adv(x):

Ret P.adv(x)

Fig. 1. Procedures implementing the functionality of the random oracle model (ROM)
(left) and the ideal primitive model (IPM) (right). The number r is set as appropriate
for a given context.

same interface if their inputs and outputs agree in number and type. This will
typically be clear from context.

A main procedure is a distinguished procedure that takes no inputs and has
some output. We mark it by main. No procedure may call main, and main
can access all variables of other specified procedures. (But not other unspecified
procedures.)

Variables are implicitly set initially to default values, i.e. integer variables are
set to 0, arrays are everywhere ⊥, etc. Variables are by default local, meaning
they can only be used within a single procedure. The variables used within
a procedure maintain their state between calls. A collection of procedures is
a set of one or more procedures that may instead share their variables. We
denote a collection of procedures by using a common prefix ending with a period,
e.g. (P.x, P.y, . . .) and we use the common prefix P to refer to the collection. We
will sometimes refer to the unique suffixes, e.g. x, y, as interfaces of P .

Collections of procedures will sometimes implement particular abstract func-
tionalities, for example that of some idealized primitive (e.g. a random oracle).
A functionality is a collection F = (F.hon, F.adv); the names of these interfaces,
hon and adv are suggestive as we will see in a moment. When games and ad-
versaries are given access to a functionality a model of computation is induced,
for example when the functionality is that of a random oracle, we have the
random-oracle model. Thus one can think of functionalities and models some-
what interchangeably. For this work we specifically designate two models. First
RO = (RO.hon, RO.adv), shown on the left-hand side of Figure 1, implements
a random oracle (with two interfaces) and will give rise to the random-oracle
model. Second, let P = (P.hon, P.adv) implement some (ideal) primitive that
underlies some understood construction H . Then IP = (IP.hon, IP.adv) shown
on the right-side of Figure 1 gives rise to an (ideal) primitive model. For nota-
tional compactness, each time we use IP we will specify a construction H and a
primitive P and assume these are the ones referred to in Figure 1.

For any two functionalities F1, F2, we denote by (F1, F2) the functionality
that exposes a procedure that allows querying (F1.hon, F2.hon) and a procedure
that gives access to (F1.adv, F2.adv).

A game G consists of a single main procedure, denoted “main G”, together
with a set of zero or more other specified procedures. (See for example Figure 2.)
A game can make use of a functionality F and a number of adversarial pro-
cedures A1, . . . ,Am together referred to as the adversary. We denote this by

Careful with Composition: Limitations of the Indifferentiability Framework 493

GF,A1,...,Am . We fix the convention that the main and specified procedures of G
can call F.hon and A1, . . . ,Am (but may not call F.adv) while the adversarial
procedures may call F.adv (but may not call F.hon). Thus F.adv is the adversar-
ial interface of F , and F.hon is the honest interface. For any F1,A1, . . . ,Am and
F ′

1,A′
1, . . . ,A′

m such that F1.hon, F2.hon are interface compatible and Ai,A′
i are

interface compatible for 1 ≤ i ≤ m, we can write GF1,A1,...,Am to mean running
game G with one set of external procedures and GF2,A′

1,...,A′
m to mean running

the same game but now with the second set of external procedures. Running
a game GF,A1,...,Am means executing the sequence of statements of the game’s
main procedure and the output of G is the value returned by main. We de-
note by GF,A1,...,Am ⇒ y the event that the game’s output is y, taken over the
probability space defined by the coins used to execute G and the coins used in
each invocation of the procedures F.hon, F.adv,A1, . . . ,Am. Should G and the
adversary not use F.hon, F.adv then we instead write GA1,...,Am ⇒ y. As exam-
ples, games that do not use a functionality F are given in Figure 2 while games
that do are given in Figures 3 and 4.

For any fixed functionality F and adversary A1, . . . ,Am, two games G and H
are equivalent if Pr

[
GFA1,...,Am ⇒ y

]
= Pr

[
HF,A1,...,Am ⇒ y

]
for all values y.

Resources. For simplicity, we fix the convention that each statement of a pro-
cedure runs in unit time. The running time of a procedure, then, is the maximum
number of statements executed, where the maximum is taken over all possible
inputs and over all coins used by the procedure. The number of queries of a
procedure is the maximum number of procedure calls it makes in one execution,
again with the maximum taken over all possible inputs and all possible coins
used by the procedure.

3 Indifferentiability Framework for Single-Stage Games

We describe the indifferentiablity framework [27] using games, unlike prior treat-
ments that used random systems [26, 27] or interactive Turing machines [15]. We
feel that using explicit code-based games makes understanding the limitations
of indifferentiability easier, because it will enable expressing these limitations as
syntactic conditions on the class of games considered. In addition to defining
indifferentiability, we will provide a concrete version of the composition theorem
given in [27] and characterize its limitations.

Indifferentiability. Fix two functionalities F1 and F2. When thinking of
indifferentiability from random oracles, for example, we use F1 = IP (for some
understood H, P) and F2 = RO. A distinguisher D is an adversary that outputs
a bit. A simulator is a procedure, usually denoted S. Figure 2 defines two games
Real and Ideal. Fix some value y (e.g., y = 1). The indifferentiability advantage
of D is defined as

Advindiff
F1,F2,S(D) = Pr

[
RealF1,D ⇒ y

]
− Pr

[
IdealF2,D

S ⇒ y
]
.

We use a concrete security approach, i.e. not providing a strict definition of
achieving indifferentiability. However, informally we will say that a functionality

494 T. Ristenpart, H. Shacham, and T. Shrimpton

main Real

b′←$DFunc,Prim

Ret b′

proc. Func(m):

Ret F1.hon(m)

proc. Prim(u):

Ret F1.adv(u)

main IdealS

b′←$DFunc,Prim

Ret b′

proc. Func(m):

Ret F2.hon(m)

proc. Prim(u):

Ret SF2.adv(u)

Fig. 2. The games that define indifferentiability. Adversary D and functionalities F1, F2

are unspecified. The simulator S is a parameter of the game.

F1 is indifferentiable from a functionality F2 if for any “reasonable” adversary D
there exists an “efficient” simulator S such that Advindiff

F1,F2,S(D) is “small”. The
meanings of “reasonable”, “efficient”, and “small” will be clear from context.

To get an asymptotic notion, we can assume an implicit security parameter k
throughout, and thenuse the definition of [15]:F1 is indifferentiable fromF2 if there
exists a PT simulator S such that for any PTD it is the case that Advindiff

F1,F2,S(D) is
negligible in the security parameter.Note that in [27] a different quantifier ordering
was used. It said that for all PT D there must exist a PT simulator S such that
Advindiff

F1,F2,S(D) is negligible in the security parameter. We refer to the [27] notion
as weak indifferentiability and to the [15] notion as strong indifferentiability. We
will focus on strong indifferentiability here since it implies weak.

Composition. One goal of indifferentiability is to allow the security analysis of a
cryptographic scheme when using one functionality to imply security holds when
using another. This is enabled by the following, which is a concrete security ver-
sion of the original composition theorem of Maurer, Renner, and Holenstein [27].

Theorem 1. Let G be a game expecting access to a functionality and a single
adversarial procedure. Let F1, F2 be two functionalities with compatible honest in-
terfaces. Let A be an adversary with one oracle. Let S be a simulator that exports
the same interface as F1.adv. Then there exist adversary B and distinguisher D
such that for all values y

Pr
[
GF1,A ⇒ y

]
≤ Pr

[
GF2,B ⇒ y

]
+ Advindiff

F1,F2,S(D) .

Moreover: tB ≤ tA + qA · tS , qB ≤ qA · qS , tD ≤ tG + qG,1 · tA, and qD ≤
qG,0+qG,1·qA, where tA, tB, tD are the maximum running times of A,B,D; qA, qB
are the maximum number of queries made by A and B in a single execution; and
qG,0, qG,1 are the maximum number of queries made by G to the honest interface
and to the adversarial procedure. �

The proof of Theorem 1 is readily established by adapting the proof of [27,
Th. 1]. We provide a proof here to help support our upcoming discussion.

Proof. Fix any value y. Let F = (F.hon, F.adv) be some unspecified functionality
that export the same interface as (F1.hon, F1.adv). Let indifferentiability adver-
sary D be defined as follows. Adversary D runs game G. Whenever G calls its

Careful with Composition: Limitations of the Indifferentiability Framework 495

honest interface, adversary D queries F.hon and returns the result. Whenever G
calls A, adversary D runs A for G using F.adv to answer any queries made by A.
Finally D outputs whatever G outputs. Then by construction qD ≤ qG,0+qG,1qA;
tD ≤ tG + qG,1tA; and

Pr
[

RealD ⇒ y
]

= Pr
[
GF1,A ⇒ y

]
(1)

in the case that F = F1. Now we define adversary B as follows. Adversary B
runs A. When A queries its oracle, adversary B runs S using its F2.adv oracle
to answer any queries S makes. Adversary B outputs whatever A outputs. By
construction, then, we have that qB ≤ qA ·qS ; tB ≤ tA + qA ·tS ; and

Pr
[

IdealDS ⇒ y
]

= Pr
[

GF2,AS ⇒ y
]

= Pr
[
GF2,B ⇒ y

]
(2)

in the case that F = F2. By substituting according to Equations 1 and 2 into
the definition of indifferentiability advantage we derive the advantage relation
of the theorem statement.

Single-stage games. The theorem above explicitly restricts attention to games
that only use a single adversarial procedure. At first glance, this restriction
may seem artificial. Suppose a game G expects access to adversarial procedures
A1, . . . ,Am and now consider generalizing Theorem 1 to account for G. Recall
that these adversarial procedures do not share state. In the proof, a key step is
defining the adversary B. Following that proof, for this generalization we could
define adversarial procedures B1, . . . ,Bm by Bi = AS

i for all i. One may think
a proof has been arrived at. However S is only guaranteed to simulate properly
when it maintains its state across all invocations throughout the course of the
indifferentiability game. Technically, then, the problem is that the analogue of
equation (2) for this proof attempt would fail:

Pr
[
GF2,B1,...,Bm ⇒ y

]
= Pr

[
GF2,AS

1 ,...,AS
m ⇒ y

]
�= Pr

[
IdealDS ⇒ y

]
.

This is true regardless of how we define D. In the next section, we provide a
counterexample showing that there is no hope of a proof for this generalization.

All this means that indifferentiability-based composition can only apply to
security notions defined via single-stage games, which we now define. Consider a
game that has m procedures. We say that a game is stage minimal if all games G′

that are equivalent to G use the same number of adversarial procedures. We now
restrict attention to stage minimal games. Then, an m-stage game is one that
has m stages. A single-stage game is one for which m = 1 and a multi-stage
game is one for which m > 1. Let SG be the set of all single-stage games. Note
that SG includes the games defining indifferentiability above, the classic notions
of encryption security such as IND-CPA [19] or IND-CCA [28], unforgeability
under chosen message attack UF-CMA [20], and many others.

If G is the set of all games, then we let MG = G\SG be the set of games that
are not single stage. We call any game in MG a multi-stage game. Examples
of multi-stage games include chosen distribution attack security for public-key
encryption [4] (see Figure 4), non-malleability of hash functions [11], password-
based key exchange [6], and others.

496 T. Ristenpart, H. Shacham, and T. Shrimpton

Discussion. A game that uses multiple adversarial procedures, but is equivalent
to a game with a single adversarial procedure, is not considered multi-stage by
our definition above. Many experiments are formalized with multiple adversarial
procedures, but the game forwards arbitrary adversarial state from one proce-
dure to the next. It is clear such games are actually equivalent to one with a
single adversarial procedure. Some games allow a small amount of state to be
passed directly from one adversarial procedure to the next. See for example the
hash auditing security property formalized in Figure 3. Here, however, the state
is not arbitrary —its length is a fixed constant— and so this game cannot be
written with a single adversarial procedure.

We do note, however, that we may extend Theorem 1 to cover multi-stage
games that directly share some limited amount of state, but an amount suffi-
cient to enable composition. That is, the shared state must be large enough to
transport the state of S between Bi calls (in addition to whatever other state
an adversary might use). We do not know of any examples of such multi-stage
games, and so do not spell out the details of such an extension.

Note that there are other subtleties of composition that might lead to erroneous
beliefs and claims. We provide a detailed discussion of these in the full version.

4 A Practically Motivated Counterexample

In this section we define a simple hash function property that is met by a RO,
but not met by a broad class of hash functions proven to be indifferentiable
from a RO. Together these results give a counterexample disproving the desired
generalization of Theorem 1 to multi-stage games.

Hash-based storage auditing. The property we study, denoted CRP, is
motivated by challenge-response auditing protocols for secure distributed stor-
age [23]. Consider that a client wishes to store some data M on a remote server.
It will later verify that M is in fact being stored by sending a random chal-
lenge C to the server, and then checking that the server’s response matches the
hash H(M ‖ C). Intuitively, if H is a random oracle, there is no way for the
server to “cheat”: It must actually store M , or guess the challenge in advance, if
it is to respond correctly. (Drawing the challenges from a sufficiently large space
or repeating the protocol will make the chance that the server guesses the chal-
lenges arbitrarily small.) In particular, if the server stores some state st instead
of M , and |st| % |M |, then we expect the server will fail to respond properly.
The CRP experiment in Figure 3 captures a slightly simplified version of this
example.

Informally, a CRP-secure hash function H should not admit the storage of a
short string (much shorter than the file M) that later allows the server to answer
auditing challenges C, except with negligible probability. This guarantees that
a rational server interested in saving storage space but subject to auditing will
not store some short digest in place of the file.

The following theorem shows that, as expected, a random oracle possesses
property CRP. The proof appears in the full version.

Careful with Composition: Limitations of the Indifferentiability Framework 497

main CRPF,A1,A2
p,n,s

M ←$ {0, 1}p
st←$AF.adv

1 (M)
If |st| > n then Ret false

C ←$ {0, 1}s
Z←$AF.adv

2 (st,C)
Ret

(
Z = F.hon(M ‖ C)

)
Fig. 3. Game capturing our challenge-response hash function property

Theorem 2. Fix p, n, s > 0. Let A = (A1,A2) be an adversary that makes a
total of q calls. Then

Pr
[

CRPRO,A1,A2
p,n,s ⇒ true

]
≤ q

2p−n
+

1
2r

+
q

2s

where RO provides the functionality of a random oracle with range {0, 1}r. �

Online computability and CRP. We now define a structural property of
hash functions, which we refer to as online computability. Consider a hash
function Hf : {0, 1}∗ → {0, 1}r using some underlying primitive f . Then we
say that Hf is (p, n, s)-online computable if for p, n, s > 0 there exist func-
tions Hf

1 : {0, 1}p → {0, 1}n and Hf
2 : {0, 1}n × {0, 1}s → {0, 1}r such that

Hf (M1 ‖M2) = Hf
2 (Hf

1 (M1), M2)) for any (M1, M2) ∈ {0, 1}p × {0, 1}s. More-
over, we require that the time to compute Hf

1 and Hf
2 is within a small, absolute

constant of the time to compute Hf . In words, the hash function Hf can be com-
puted in two stages, processing M1 and then M2 sequentially.

We note that most iterative hash function constructions are online com-
putable for a variety of values p, n, s. For example, the so-called NMAC con-
struction from [15]. It uses two underlying ideal objects f : {0, 1}2n → {0, 1}n
and g : {0, 1}n → {0, 1}n. Let f+ : ({0, 1}n)+ → {0, 1}n be the mapping de-
fined as follows: on input M = M1 ‖ . . . ‖Mb, for each i ∈ {1, . . . , b} compute
Vi = f(Vi−1 ‖ Mi), where V0 is some fixed n-bit string, and return Vb. Now,
let Hf,g(M) = g(f+(M)), where the domain is ({0, 1}n)+. This construction is
(p, n, s)-online computable for any p and s that are multiples of n. Say p = in for
any i and s = n. Then let Hf

1 (M1) = f+(M1) and Hf
2 (V, M2) = g(f(V, M2)).

Similarly, many other iterative constructions are online computable for such
parameters, for example EMD [7], MDP [21], the Chop and so-called HMAC
constructions [15], and numerous SHA-3 candidates.

It is clear to see that any (p, n, s)-online computable hash function cannot
be CRP for those same parameters. For the NMAC example above, let A1
output st = Hf

1 (M) = f+(M). Let A2 output H2(st, C) = g(f(st, C)). The
adversary wins with probability 1.

SafeStore and storage auditing in practice. The SafeStore protocol
used exactly the opposite ordering of N and M , specifying that audit responses

498 T. Ristenpart, H. Shacham, and T. Shrimpton

be computed by Hf (N ‖M). This construction does indeed have CRP (though
one cannot use composition to establish it). The point is that indifferentiability
appears to imply that N ‖ M and M ‖ N are equivalently secure. Given the
widespread use of hash functions as random oracles in practice (implicitly or
explicitly), we must be careful to assess each application’s security starting from
the ideal primitive underneath the hash function and only use indifferentiability-
based composition when it is truly applicable.

5 Indifferentiability Fails for Multi-stage Games

In the last section we saw how indifferentiability-based composition fails for a
particular game, this being the CRP game. Here we extend that negative result to
show how indifferentiability-based composition fails for many multi-stage games,
including ones covering security of password-based key exchange, deterministic
public-key encryption, non-malleability of hash functions, and more. To do so,
we give a general method to show that indifferentiability does not imply security
for games G ∈MG.

Our approach will be to show that one can augment any ideal primitive to
include a storage interface. This will simply take (key,value) pairs from the ad-
versary and allow retrieving values by looking up a key. This augmentation does
not affect any existing indifferentiability results involving the primitive — as we
show below, a simulator for the original ideal primitive is easily converted to a
simulator for the augmented primitive. Finally, we will show how cryptosystems
cannot meet some multi-stage notions of security in the augmented primitive
model.

Formally, let F1 be a functionality. Let St be the procedure that exposes a
hash table T. That is, on input a pair of strings (X, Y), it sets T[X] ← Y and
returns nothing. On input a string (X,⊥) it outputs T[X], which is ⊥ if T[X]
has yet to be set to another value. Then the storage-augmented functionality
F ∗

1 = (F1.hon, F ∗
1 .adv) has the same honest interface as F1 but F ∗

1 .adv exposes
both F1.adv and St. That is, F ∗

1 .adv = (F1.adv, St).
The following theorem states that if F1 is indifferentiable from some function-

ality F2, then F ∗
1 is also indifferentiable from F2. Its proof is straightforward and

appears in the full version.

Theorem 3. Let F1, F2 be functionalities and F ∗
1 be the storage-augmented ver-

sion of F1. Let SB be a simulator. Then there exists a simulator SA such that
for all distinguishers A there exists a distinguisher B such that

Advindiff
F∗

1 ,F2,SA(A) = Advindiff
F1,F2,SB(B)

B runs in time that of A and uses the same number of queries; SA runs in time
that of SB plus a small constant and uses the same number of queries. �

What Theorem 3 shows is that, as far as indifferentiability is concerned, it does
not matter if some portion of the distinguisher’s state is exported to an oracle.
The intuition behind this result is straightforward: distinguishers in indiffer-
entiability maintain state throughout the experiment and so it hardly matters

Careful with Composition: Limitations of the Indifferentiability Framework 499

whether one stores its state in an oracle or locally. But the ability to store data in
an oracle obviates security for many multi-stage games. Here are some examples
of cryptographic security goals that are not achievable in a storage-augmented
primitive model. Note that all these are feasible in the ROM.

Example: CDA security for public-key encryption. Public-key encryption (PKE)
and the chosen-distribution attack (CDA) security goal are defined in Section 7.
CDA generalizes deterministic PKE security notions [3, 5, 12], and CDA-secure
PKE is useful for efficiently search over encrypted data [3] and defense-in-depth
against randomness failures [31]. It is easy to see that if one is working in the
F ∗

1 model, this being a storage-augmented primitive model, then the security
notion is unachievable. To attack any scheme, a first-stage adversary A1 picks
(m0, m1, r) uniformly, and queries St(0, (m0, m1, r)). The second-stage adversary
A2 queries St(0,⊥) to retrieve (m0, m1, r), encrypts both messages under r,
compares the results with the challenge ciphertext, and outputs the appropriate
bit. This adversary wins with probability one.

In the full version, we give analogous results for nonmalleability of hash func-
tions [11], password-based authenticated key exchange [6], and others. Interest-
ingly, the hash function nonmalleability notion is the only formal notion that
captures resistance to length-extension attacks. This is especially troubling be-
cause provable resistance to length extension attacks was a primary motivation
for building indifferentiable hash constructions [15].

Discussion. The negative results presented in this section rely on augmenting
primitives to incorporate a storage procedure. Of course in the context of hash
function design, no one would consider using such a primitive (nor would there
necessarily be any way to instantiate one!). Rather these results are used to show
that indifferentiability cannot imply security in the context of the multi-stage
games considered.

6 Indifferentiability with Simulator Resets

We initiate the exploration of strengthenings of indifferentiability that support
composition for multi-stage games. The counter-example of Section 4 indicates
that typical indifferentiable hash constructions cannot enjoy such a notion. In-
deed, no online computable hash function can meet a strengthening whose asso-
ciated composition theorem covers the CRP game. Nevertheless, we may hope
to design new hash functions that do meet stronger notions.

We propose a strengthening of indifferentiability, called reset indifferentiabil-
ity, that immediately admits a composition theorem covering multi-stage games.

Reset indifferentiability. We define a version of indifferentiability that re-
quires simulators function even under resets. For any simulator S we define
the procedure pair

�

S = (
�

S.S,
�

S.Rst). The former procedure is simply a re-
naming of S. The latter procedure that takes no input and when run reini-
tializes all of

�

S.S’s internal variables to their initial values. Likewise, let F =
(F.hon, F.adv) be any functionality. Let functionality

−→
F = (

−→
F .hon,

−→
F .adv) =

500 T. Ristenpart, H. Shacham, and T. Shrimpton

(F.hon, (F.adv, nop)) where the procedure pair
−→
F .adv = (F.adv, nop) includes

a procedure nop that takes no input and does nothing. Let F1 and F2 be func-
tionalities. Let D be an adversary that outputs a bit (the distinguisher). Let S
be a simulator. Then we define the reset indifferentiability advantage of D as

Advreset-indiff
F1,F2,S (D) = Pr

[
Real

−→
F 1,D ⇒ y

]
− Pr

[
IdealF2,D

�S
⇒ y

]
.

For consistency with our definition of the games Real and Ideal (Figure 2), we
implicitly assume there is some distinguished symbol that, when received as
input by the procedure Prim, causes the execution of nop or

�

S.Rst, respectively.
We have the following composition theorem.

Theorem 4. Let G ∈ G. Let F1 and F2 be functionalities. Let A1, . . . ,Am be
an adversary and let SF2.adv be a simulator that exports the same interface as
F1.adv. Then there exist an adversary B1, . . . ,Bm and distinguisher D such that
for all values y

Pr
[
GF1,A1,...,Am ⇒ y

]
≤ Pr

[
GF2,B1,...,Bm ⇒ y

]
+ Advreset-indiff

F1,F2,S (D) .

Moreover: tBi ≤ tAi + qAitS , qBi ≤ qAi ·qS , tD ≤ m + tG +
∑m

i=1 qG,i ·tAi , and
qD ≤ qG,0 +

∑m
i=1 qG,i ·qAi , where tA, tB, tD are the maximum running times of

A,B,D; qA, qB are the maximum number of queries made by A and B in a single
execution; and qG,0, qG,i are the maximum number of queries made by G to the
honest interface and the ith adversarial procedure (respectively). �

The proof of the above is readily established by adapting the proof of Theorem 1.
For 1 ≤ i ≤ m, let BF2.adv

i = ASF2.adv

i . This means in particular that a separate
instance of S is used in each procedure Bi. Then define the distinguisher D, for
any compatible functionality F = (F.hon, F.adv), by modifying DF.hon,F.adv =
GF,A1,...,Am so that a reset call immediately precedes each Ai call.

Reset indifferentiability can be achieved when one establishes (conventional)
indifferentiability using a stateless and deterministic simulator. This is because
it is clear resetting such a simulator does not affect its subsequent behavior.
Unfortunately it seems challenging to achieve reset indifferentiability for all but
trivial constructions, and we will show negative results for efficient constructions
below. We leave finding non-trivial constructions, even inefficient ones, as an
open question.

On practical domain extension under resets. As mentioned above, on-
line computable hash functions cannot be reset indifferentiable. This is because
the composition theorem would then imply such a hash function met the CRP
property and the results of Section 4 rule this out. But some efficient hash con-
structions do meet the CRP property, and so the question remains if any effi-
cient construction meets reset indifferentiability. We answer this question in the
negative, ruling out a large class of “efficient” constructions from being reset
indifferentiable from a RO.

Fix some p, n, s, r > 0 such that p > n and let N = p + s. Let P be
an arbitrary ideal primitive. We restrict our attention to domain-extension

Careful with Composition: Limitations of the Indifferentiability Framework 501

constructions Hf : {0, 1}N → {0, 1}r that can be written as HP (〈M1, M2〉) =
HP

2 (HP
1 (M1) ‖M2) for any (M1, M2) ∈ {0, 1}p × {0, 1}s. Here 〈M1, M2〉 repre-

sents a unique encoding of M1, M2 into an N -bit string; H1 : {0, 1}p → {0, 1}n;
and H2 : {0, 1}n × {0, 1}s → {0, 1}r. Importantly, that p > n means that H1
is compressing. We require that the time to compute one each of the encoding,
H1, and H2 is within a small, absolute constant of the time to compute HP .
As concrete examples, all online computable functions are trivially included by
setting 〈M1, M2〉 = M1 ‖ M2. But the flexibility endowed by the arbitrary en-
coding also means we encompass a wider range of H that do not allow online
computing. For example, any single pass hash function that can be written in
the form above. On the other hand, constructions such as the zipper hash [25]
(which makes two passes over a message) are not considered.

The following theorem below shows that no construction fitting the form above
is reset indifferentiable, no matter what underlying primitive P is used. Its proof
appears in the full version.

Theorem 5. Let integers p, n, s, r, N , functionality P , and construction HP be
as just described. Let functionality RO implement a random oracle with range
{0, 1}r. There exists a reset-indifferentiability adversary D such that for all sim-
ulators S asking at most q queries,

Advreset-indiff
IP,RO,S (D) ≥ 1−

(
q

2s
+

q

2p−n
+

1
2r

)
. �

7 Deterministic, Hedged, and Efficiently-Searchable
Encryption

The results thus far reveal that schemes proven secure in the ROM may not
be secure when using practical hash function constructions, when security is
measured by a multi-stage game. As seen in Section 5 this includes numerous
important cryptographic tasks. As a first step, we here take one example, that of
deterministic, hedged, or efficiently-searchable public-key encryption, and pro-
vide a proof of security when using any one of a number of indifferentiable hash
constructions. We choose this example due to the extensive use of the ROM in
prior results and the practical importance of the schemes [3, 4, 31]. Of course
we cannot rely on Theorem 1, so our proof is done directly in the ideal primi-
tive model. Nevertheless, our main result covers a broad mix of PKE and hash
functions.

We focus on the hash construction from [17], which composes a preimage-
aware function (see below) with a fixed-input-length RO. While we can do anal-
ysis without relying on preimage-awareness, doing so simplifies and modularizes
our result. Let hf : {0, 1}∗ → {0, 1}n be a function using some underlying prim-
itive f . Let g : {0, 1}n → {0, 1}n be a function. Let Hf,g : {0, 1}∗ → {0, 1}n
be defined by Hf,g(M) = g(hf (M)). We point out that many hash functions
fall into this form, including the so-called NMAC construction [15], MCM [30],
NIRP [24], and various SHA-3 competitors.

502 T. Ristenpart, H. Shacham, and T. Shrimpton

main CDAF,A1,A2
AE

b←$ {0, 1}
(pk, sk)←$K
(m0,m1, r)←$AF.adv

1

c← EF.hon(pk, mb ; r)
b′←$AF.adv

2 (pk, c)
Ret (b = b′)

main IND-SIMF,A
AE,S

b←$ {0, 1}
(pk, sk)←$ K
b′ ← ARoS,F.adv(pk)
Ret (b = b′)

proc. RoS(m,r):

If b = 1 then
Ret EF.hon(pk, m ; r)

Ret SF.hon(pk, |m|)

main PrAF,A
H,X

x←$APrim,Ext

z ← HF.hon(x)
Ret (x 	= V[z]∧Q[z] = 1)

proc. Prim(m):

c← F.adv(m)
α← α ‖ (m, c)
Ret c

proc. Ext(z):

Q[z]← 1
V[z]← X (z, α)
Ret V[z]

Fig. 4. (Left) The non-adaptive CDA game. (Right) The IND-SIM and PrA games

Public-key encryption. Recall that a public-key encryption (PKE) scheme
AE = (K, E ,D) consists of three algorithms. Key generation K outputs a pub-
lic key, secret key pair. Encryption E takes a public key, a message m, and
randomness r and outputs a ciphertext. Decryption D takes a secret key, a ci-
phertext, and outputs a plaintext or a distinguished symbol ⊥. Following [3],
we define for any scheme AE the maximum public-key collision probability by
maxpkAE = maxw∈{0,1}∗ Pr [pk = w : (pk, sk)←$K].

CDA security. In Figure 4 we detail the security game for (non-adaptive)
chosen-distribution attacks [4]. This notion, orthogonal to the traditional notion
of IND-CPA, captures the security of a PKE scheme when the randomness r
used may not be a (sufficiently long) string of uniform bits. For the remainder
of this section, fix a randomness length ρ ≥ 0 and a message length ω > 0. An
(μ, ν)-mmr-source M is a randomized algorithm that outputs a triple of vectors
(m0,m1, r) such that |m0| = |m0| = |r| = ν, all components of m0 and m1
are bit strings of length ω, all components of r are bit strings of length ρ, and
(mb[i], r[i]) �= (mb[j], r[j]) for all 1 ≤ i < j ≤ ν and all b ∈ {0, 1}. Moreover, the
source has min-entropy μ, meaning

Pr [(mb[i], r[i]) = (m′, r′) | (m0,m1, r)←$ M] ≤ 2−μ

for all b ∈ {0, 1}, all 1 ≤ i ≤ ν, and all (m′, r′).
A CDA adversary A1,A2 is a pair of procedures, the first of which is a (μ, ν)-

mmr-source. The CDA advantage for an CDA adversary A1,A2 against scheme
AE is defined by

Advcda
AE,F (A1,A2) = 2 · Pr

[
CDAF,A1,A2

AE ⇒ true
]
− 1 .

Preimage awareness. Dodis, Ristenpart, and Shrimpton’s preimage awareness
notion [17] generalizes collision resistance to include extractability. Game PrA is
defined in Figure 4. We associate to any functionality F , hash construction H ,
extractor X , and adversary A the PrA advantage defined by

Advpra
H,F,X (A) = Pr

[
PrAF,A

H,X ⇒ true
]

.

Careful with Composition: Limitations of the Indifferentiability Framework 503

We point out that the game PrA does not abide by our convention that only the
adversary queries F.adv. Thus Theorems 1 and 4 do not apply when G = PrA.
This is not a problem for past results or for our results below, both of which do
not attempt to conclude PrA via indifferentiability-based composition.

IND-SIM security. We define a new notion of encryption scheme security that
is of technical interest because it is as an intermediate step in proving Theorem 6,
shown below. An encryption simulator for a scheme AE = (K, E ,D) is a pro-
cedure S that takes as input a public key and a message length and outputs a
ciphertext. Game IND-SIMAE ,S is shown in Figure 4. A IND-SIM adversary A
can make multiple queries, but cannot repeat any queries. It measures the ability
of an adversary to distinguish between encryptions of a chosen message under
chosen randomness and the output of a simulator S. We define the IND-SIM
advantage of an adversary A by

Advind-sim
AE,S (A) = 2 · Pr

[
IND-SIMA

AE,S ⇒ true
]
− 1 .

Note that the adversary can choose the message and also the randomness used to
encrypt it. In the standard model this security goal is unachievable if E uses no
further randomness beyond that input. However, we will use IND-SIM security
in the ROM when the adversary does not make any RO queries. In the full
version we show that for a variety of encryption schemes, IND-SIM security in
the ROM against adversaries who do not query the RO is implied by IND-CPA
security of an underlying (randomized) scheme.

CDA security for PKE. Theorem 6 below establishes CDA security of PKE
schemes that, during encryption, apply g(hf(M)) once to hash an M including
an encoding of the public key, as long as the scheme meets the IND-SIM notion
above (in the ROM). The ROM schemes for deterministic, hedged, or efficiently-
searchable encryption from [3, 4, 31] are of this form and have IND-SIM implied
by the IND-CPA security of an underlying randomized encryption scheme. We
make no assumptions about f , so the result applies both to hash functions based
on an ideal cipher and ideal compression function.

We provide some brief intuition regarding the proof. The PrA security of f+

means that, to learn anything about the value g(f+(M)), the adversary must
query f in order to compute f+(M). But the inclusion of the public key in the
message hashed by E means that the source A1 is unlikely to be able to query
any of the messages used in computing the challenge ciphertexts. Essentially
this means that E gets randomness via queries to g(f+(M)) that is hidden from
the adversary, and this allows one to use the IND-SIM property of AE to show
that ciphertexts leak no information about the challenge message, randomness
pairs. This means that A2 learns nothing about the coins used by A1, and so
the min-entropy of A1 implies that A2 has little chance of learning g(f+(M))
outputs for M ’s used in computing the challenges. The full proof appears in the
full version.
Theorem 6. Let f be a functionality and g be a FIL RO. Let Hf,g(M) =
g(hf (M)) for some procedure h. Let AE be a PKE scheme that queries Hf,g on
a single message per E invocation, that message including (an encoding of) the

504 T. Ristenpart, H. Shacham, and T. Shrimpton

public key. Let A1,A2 be a CDA adversary making at most qf queries to f and
qg queries to g and where A1 is a (μ, ν)-mmr-source. Then for any encryption
simulator S and PrA extractor X there exists an IND-SIM adversary B and a
PrA adversary C such that.

Advcda
AE,(f,g)(A1,A2) ≤ 4·Advind-sim

AE,RO,S(B)+4·Advpra
h,f,X (C)+

2νqg
2μ

+2qg·maxpkAE

B makes no random oracle queries, makes ν RoS-queries, and runs in time that
of (A1,A2). C makes at most qf primitive queries and runs in time at most that
of (A1,A2). �

Acknowledgements

Thomas Ristenpart was supported in part by Mihir Bellare’s NSF grant CCF-
0915675 and by a UCSD Center for Networked Systems grant. Hovav Shacham
was supported by the MURI program under AFOSR Grant No. FA9550-08-1-
0352 and (while at the Weizmann Institute) by a Koshland Scholars Program
postdoctoral fellowship. Thomas Shrimpton was supported by NSF CAREER
grant CNS-0845610.

We thank Mihir Bellare, Mike Dahlin, Daniele Micciancio, and Moni Naor for
helpful discussions about this work.

References

1. Andreeva, E., Mennink, B., Preneel, B.: On the indifferentiability of the grøstl
hash function. In: Garay, J.A., Prisco, R.D. (eds.) SCN 2010. LNCS, vol. 6280, pp.
88–105. Springer, Heidelberg (2010)

2. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: De Capitani di Vimercati, S.,
Syverson, P. (eds.) Proceedings of CCS 2007, pp. 598–609. ACM Press, New York
(October 2007)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

4. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged public-key encryption: How to protect against bad randomness. In:
Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer, Hei-
delberg (2009)

5. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
Definitional equivalences and constructions without random oracles. In: Wagner,
D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

7. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

Careful with Composition: Limitations of the Indifferentiability Framework 505

8. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, Fairfax, Virginia, USA,
November 3-5, pp. 62–73. ACM Press, New York (1993)

9. Bellare, M., Rogaway, P.: The security of triple encryption and a
framework for code-based game-playing proofs. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg
(2006)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008)

11. Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of non-malleable
hash and one-way functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 524–541. Springer, Heidelberg (2009)

12. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

13. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd FOCS, Las Vegas, Nevada, USA, October 14-17, pp. 136–145.
IEEE Computer Society Press, Los Alamitos (2001)

14. Chang, D., Nandi, M.: Improved indifferentiability security analysis of chopMD
hash function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 429–443.
Springer, Heidelberg (2008)

15. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

16. Dodis, Y., Reyzin, L., Rivest, R.L., Shen, E.: Indifferentiability of permutation-
based compression functions and tree-based modes of operation, with applica-
tions to MD6. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 104–121.
Springer, Heidelberg (2009)

17. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging merkle-damg̊ard for practical
applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009)

18. Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P., Luotonen, A., Sink, E., Stew-
art, L.: An Extension to HTTP: Digest Access Authentication. RFC 2069 (Pro-
posed Standard) (January 1997), Obsoleted by RFC 2617

19. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

20. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

21. Hirose, S., Park, J.H., Yun, A.: A simple variant of the merkle-damg̊ard scheme
with a permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 113–129. Springer, Heidelberg (2007)

22. Juels, A., Kaliski, B.: PORs: Proofs of retrievability for large files. In: De Capitani
di Vimercati, S., Syverson, P. (eds.) Proceedings of CCS 2007, pp. 584–597. ACM
Press, New York (October 2007)

23. Kotla, R., Alvisi, L., Dahlin, M.: SafeStore: A durable and practical storage system.
In: Chase, J., Seshan, S. (eds.) Proceedings of USENIX Technical 2007, pp. 129–
142. USENIX (June 2007)

506 T. Ristenpart, H. Shacham, and T. Shrimpton

24. Lehmann, A., Tessaro, S.: A Modular Design for Hash Functions: Towards
Making the Mix-Compress-Mix Approach Practical. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 364–381. Springer, Heidelberg (2009)

25. Liskov, M.: Constructing an ideal hash function from weak ideal compression func-
tions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375.
Springer, Heidelberg (2007)

26. Maurer, U.M.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

27. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

28. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM STOC, Baltimore, Maryland, USA, May 14-16.
ACM Press, New York (1990)

29. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations
of the indifferentiability framework. Full version of this paper

30. Ristenpart, T., Shrimpton, T.: How to build a hash function from any collision-
resistant function. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833,
pp. 147–163. Springer, Heidelberg (2007)

31. Ristenpart, T., Yilek, S.: When good randomness goes bad: Virtual machine reset
vulnerabilities and hedging deployed cryptography. In: Network and Distributed
Systems Security – NDSS 2010. ISOC (2010)

32. Tsudik, G.: Message authentication with one-way hash functions. In: Proceedings
IEEE INFOCOM 1992, vol. 3, pp. 2055–2059. IEEE, Los Alamitos (1992)

33. Yao, F.F., Yin, Y.L.: Design and analysis of password-based key derivation func-
tions. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 245–261. Springer,
Heidelberg (2005)

Efficient Circuit-Size Independent
Public Key Encryption with KDM Security

Tal Malkin1, Isamu Teranishi1,2, and Moti Yung1,3

1 Columbia University
2 NEC Japan
3 Google Inc.

{tal,moti}@cs.columbia.edu, teranisi@ah.jp.nec.com

Abstract. Key Dependent Message (KDM) secure encryption is a new
area which has attracted much research in recent years. Roughly speak-
ing, a KDM secure scheme w.r.t. a function set F provides security
even if one encrypts a key dependent message f(sk) for any f ∈ F .
We present a construction of an efficient public key encryption scheme
which is KDM secure with respect to a large function set F . Our func-
tion set is a function computable by a polynomial-size Modular Arith-
metic Circuit (MAC); we represent the set as Straight Line Programs
computing multi-variable polynomials (an extended scheme includes all
rational functions whose denominator and numerator are functions as
above). Unlike previous schemes, our scheme is what we call flexible: the
size of the ciphertext depends on the degree bound for the polynomials,
and beyond this all parameters of the scheme are completely indepen-
dent of the size of the function or the number of secret keys (users). We
note that although KDM security has practical applications, all previous
works in the standard model are either inefficient feasibility results when
dealing with general circuits function sets, or are for a small set of func-
tions such as linear functions. Efficiency of our scheme is dramatically
improved compared to the previous feasibility results.

1 Introduction

The design of public key systems that are secure against attackers who are
allowed to request ciphertexts that are a function of the system’s secret keys is a
very active area of research. The initial schemes designed in this area were called
“circular” [CL01] and allowed encryption of a secret key or a linear function of
a secret key; later, more general functions were considered and the security of
these schemes was called Key Dependent Message (KDM) security [BRS02]. In
particular, we say that a public-key encryption (PKE) scheme is KDM[F] secure
(where F is a class of function), if it is secure even against an adversary who
is given public keys pk1, . . . , pkn and has access to encryption of key dependent
messages f(sk1, . . . , skn) for adaptively selected functions f ∈ F .

Originally motivated by the fact that in some systems keys encrypt other
keys (by design or by misuse of protocols), recent research has revealed other

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 507–526, 2011.
c© International Association for Cryptologic Research 2011

508 T. Malkin, I. Teranishi, and M. Yung

important motivations for studying KDM security. On the theoretical side, KDM
security can be used to “reconcile” the two fundamental views of security, indis-
tinguishability based security and Dolev-Yao security [AR00,BRS02,ABHS05,
BPS08]. This notion also has surprising connection with other fundamental
notions, cryptographic agility [ABBC10], and obfuscation [CKVW10]. On the
practical side, KDM security is crucial for designing some recent cryptographic
protocols. For instance, this notion is used in an anonymous credential sys-
tem [CL01], where a KDM secure encryption is used to discourage delegation
of credentials. Another example is fully homomorphic encryption, where KDM
security is used to achieve the full unbounded construction of [G09].

Almost all previous work on KDM security focused on finding KDM[F] (stan-
dard model) secure public key encryption schemes for a function class F that
is as large as possible, without much consideration to efficiency. KDM secu-
rity for the largest set of functions – all functions of bounded Boolean circuit
size – was achieved by Barak, Haitner, Hofheinz and Ishai [BHHI10], following
previous works such as [BHHO08, BGK09]. However, the schemes in all these
works are quite inefficient. For instance, even the most efficient seminal scheme
of [BHHO08] requires us to compute Θ(κ) exponentiations over the underlying
group G per each bit of secret key. Here κ is a security parameter. This incurs a
factor Θ(κ2) loss over the standard ElGamal encryption where one can encrypt
κ bit by executing Θ(1) exponentiations. The work of Applebaum, Cash, Peik-
ert, and Sahai [ACPS09] is the only one which explored efficient KDM secure
schemes and proposed a much more efficient scheme than others. However, that
work is KDM-secure only for linear classes of functions. We discuss previous
work in more detail in Section 1.7.

1.1 Our Goals

Efficient Encryption with a Large Set of Queries. In this work we con-
sider the challenge of designing an efficient KDM secure scheme that allows the
attacker a large set of functions F over the secret key to draw from. The effi-
ciency of the scheme should be comparable with that of the ElGamal encryption
(at least for a constant size function family) which is a block-wise semantically
secure encryption (and dramatically better than previous KDM-secure works
[BHHO08, BGK09, BHHI10] that pay a factor of at least Θ(κ2) over ElGamal).

Constructing efficient KDM[F] secure scheme for large F is challenging, and
the techniques of previous works seem insufficient. Indeed, all previous works
in the standard model are either inefficient feasibility results or possess some
noticeable overhead [BHHO08,CCS09, BHHI10,BGK09,BG10], or for a small
set of functions such as linear functions [ACPS09].

Flexible Parameters. Another important factor which was ignored in past
investigations, is what we call flexibility parameters of a scheme, dealing with
restrictions on the choice of parameters of functions in F , and when those need to
be bounded (determined). For example, consider the number n of keys (users)
in f(sk1, . . . , skn) ∈ F . Some schemes (e.g., [BG10]) do not allow to select n

Efficient Circuit-Size Independent Public Key Encryption 509

flexibly, but rather require the maximum n to be fixed before key generation,
and KDM security proof is subject to the scheme being so restricted. Clearly,
a flexible scheme that allows unbounded (freely determined) n even after key
generation is desirable.

For flexibility determination we will consider the following parameters: number
of keys, the size of the circuit of the function, and its degree as a polynomial. For
these parameters we will ask whether they need to be determined (bounded) as
an input (1) at key generation, (2) at encryption time, or (3) remain unbounded
throughout. These are listed in order of increased flexibility, and the more flexible
a KDM-scheme is, the more desirable.

1.2 Our Results

We design block-wise encryption (i.e., a scheme encrypting messages as blocks
rather than bit by bit) that is efficient, flexible, and provides KDM-security
against a large set of functions, based on the DCR assumption.

Roughly, our scheme provides KDM security for polynomials and rational
functions (ratios of two polynomials) over a ring of integers (modulo N), with
the flexibility of allowing unbounded number of keys, circuit of unbounded size,
computing a polynomial whose degree is bounded only at encryption time. This
is the first time flexibility is defined, and the first time that KDM security has
been achieved with this level of flexibility (no dependence on number of keys,
no dependence at key generation time on the circuit, and depending only on the
degree, but not the size, of the circuit at encryption time.) We also give a general
triple mode proof framework for proving KDM security, which was implicitly used
in previous works including ours.

We elaborate on these contributions below.

1.3 Function Classes

A function f is called MAC (Modular Arithmetic Circuit) if there exists a
polynomial-size circuit for f whose inputs are variables X1, . . ., Xn and con-
stants of ZK and whose gates are +, −, or · over a ring ZK . That is, f is MAC
computable iff it can be computed from variables and constants of ZK by apply-
ing +, −, and · modulo K a polynomial number of times (this is also referred
to as a straight line program with n variables over ZK which can be viewed as
computing a polynomial function).

The set of functions MACd[K] contains functions whose total degree (as a
polynomial) is not more than d = poly(κ), and which are MAC computable
over ZK . The set of functions Q(MACd[K]) is the set of functions which can
be represented by a ratio (division) of two MAC computable functions. These
two are the sets of functions that our two schemes (for different K) will be
KDM-secure against, respectively.

Richness of Function Classes. These classes are quite large. To start with,
MACd[K] includes all functions which are represented by polynomial length
formula with total degree ≤ d, where a formula is a (well-formed) word on the

510 T. Malkin, I. Teranishi, and M. Yung

set of alphabets {X1, . . . , Xn, +, ·,m, (,), a | m ∈ Z, a ∈ ZNs−1}. Q(MACd[K])
includes all functions that are represented by such a formula that also allows
division (or inverse), such as

((2X1+X2+· · ·+Xn)10+(X1+4) · · ·(Xn+4)(X2+4X3)−1)2+3(X3
−3−2X2

2X1)2 modK.

In fact, theMACd[K] class is much richer, as such formulas can be re-interpreted
as log depth circuits, while MACs can have polynomial depth. MACs can be
simulated by a straight line program with as many variables as the depth of
the circuit (i.e., simply traverse the circuit in topological order); the result is a
polynomial and we only require its degree to be bounded (at most d). Note that
MACd[K] can contain polynomials that have exponentially many terms. The
simplest example of such a function is

f(X1, . . . , Xn) = (X1 + · · ·+ Xn)d mod K for n = poly(κ), d = poly(κ)

This function can clearly be computed by a MAC (with polynomial number of
gates), but it has an exponential number of terms {X1

ε1 · · ·Xn
εn | ε1+· · ·+εn =

d} when expanded.
On the other hand, by definition, these classes cannot compute functions that

have an exponential degree (as we need the polynomial degree for our KDM
secure construction). For example, MACd[K] does not contain f(X) = X2κ

(even though this f can be computed by a polynomial size MAC).

1.4 Properties of Proposed Schemes

We construct two efficient block-wise KDM secure PKE schemes as following:

KDM Security: Our schemes are KDM[MACd[Ns−1]] and KDM[Q(MACd[N])]
secure respectively, where N is the product of two safe primes and s ≥ 2.

Computational Costs: An encryption and a decryption of our first scheme
require only 2d+4 (d+2) exponentiations in ZNs when one encrypts (decrypts)
a ciphertext of f(sk1, . . . , skn) with degree d. (The costs double for our second
scheme).

Flexibilities of Parameters: In our schemes, for the first time, the number n of
keys of a function f(sk1, . . . , skn), the number � of {+,−, ·} in a MAC computing
f (i.e., circuit size), and the total degree d of f can be selected flexibly by an
adversary. Specifically, our schemes are KDM secure even under the condition
that an adversary can choose these parameters arbitrarily and adaptively, where
n, � are completely unrestricted, and d is needed as input at the encryption
stage. (The obvious upper bound for these parameters is the number of steps
of the adversary herself, which is some polynomial in κ.) This also means that
the party who is encrypting can choose which d to protect against for each
encryption, depending on the level of sensitivity or perceived KDM-attack risk
for that encryption.

Moreover, the efficiency of our schemes (both in terms of computational cost
and ciphertext length) do not depend on n and �. Our schemes therefore remain
efficient even if these parameters are quite big. This is in contrast with recent
schemes, as will be compared below.

Efficient Circuit-Size Independent Public Key Encryption 511

1.5 Triple Mode Proof Framework

For our security proofs, we give a general framework for proving KDM secu-
rity, the triple mode proof framework, which clarifies the structure of the proof,
and highlights the crucial parts. Intuitively, the definition of KDM security in-
volves an adversary that can access an encryption oracle, asking for encryptions
of f(sk1, . . . , skn), and getting either the correct key-dependent encryptions, or
random bit encryptions; the adversary should not be able to distinguish between
these two cases. To prove security, we need to construct a simulator which can use
any such distinguishing adversary to break the underlying assumption. However,
this is problematic, because without the secret key, it is not clear how the sim-
ulator can compute encryptions of key-dependent functions, however, with the
secret key, these two cases could be distinguishable, and breaking the underlying
assumption is no contradiction.

Our triple mode proof framework solves this issue by preparing three games
(or “modes”) for the security proof, and using two simulators, where the first
one knows the secret key but the second one does not. The first and last game
correspond to the usual key-dependent vs. random encryption, as above. The
key idea is to find an intermediate game where the encryptions are independent
of the secret key, yet it is indistinguishable from the first game even given the
secret key.

The suggested notion unifies security techniques, since it can be shown that
known standard model KDM secure schemes [BHHO08, ACPS09,BG10] as well
as ours have the structure suitable for the triple mode proof frameworks.

1.6 Techniques

Here we describe our main ideas in a way that is informal and inaccurate, yet
hopefully it provides good intuition. We use the following approach.

– Construct an efficient block-wise KDM secure scheme PKE w.r.t. moderately
large and simple set F .

– Reduce the KDM security of PKE w.r.t. the quite large and complex set
MACd[Ns−1] into KDM security of it w.r.t. F , by “compressing” the com-
plex structure of MAC into the simple structure of F .

It is important to choose F carefully, so as it is not too large or too small.
We choose F to be the set of univariate polynomials f(X) =

∑d
j=0 ajX

j , and
construct a KDM scheme w.r.t. F based on new idea, the cascaded Paillier
ElGamal and show it satisfies KDM security.

KDM scheme for uni-variate polynomials : cascaded Paillier ElGamal.
Our starting point is previous work (in particular [BG10]), which achieved

KDM-security for linear functions on bits. Transforming that to block-wise linear
functions on entire secret keys is straight forward1.
1 [BG10] did not mention this, probably because they also consider other goals such

as leakage resilience, for which they focused on bit functions.

512 T. Malkin, I. Teranishi, and M. Yung

An encryption of a message M in the resulting [BG10] scheme is ciphertext
of the form (C1, A(M)C2), where A(M) is the only part that depends on the
message (a la ElGamal encryption); concretely our starting point was [KTY09].
The KDM-security relies on the fact that when the message is a linear function
f(x) = ax + b of the secret key x, its encryption (C1, A(ax + b)C2) is indistin-
guishable from the encryption (A(a)C1, A(b)C2), which now no longer depends
on (ax+ b), but only on a, b (and thus can be simulated using the secrecy of the
key x).

To extend this to a function in F that is a degree d polynomial f(x), we
write f(x) = f ′(x)x + b, and can say, similarly to above, that the ciphertext
(C1, A(f ′(x)x + b)C2) is indistinguishable from (A(f ′(x))C1, A(b)C2). Now the
right term is independent of the secret key, and the left term does depend on
the secret key, but only as a degree d− 1 polynomial f ′(x).

Our “cascaded Paillier ElGamal” scheme thus ElGamal encrypts the left ele-
ment to get (C′

1, A(f ′(x))C′
2), and apply the same idea recursively to reduce the

degree of f ′(x) by one. We may continue recursively constructing these pairs,
each time encrypting the left element with a fresh encryption. The final ci-
phertext we output is a tuple consisting of all right elements, and the last left
element.

Reduction from MACs to Univariate Polynomials. In order to achieve
our general class, for many keys, we reduce their number by setting secret keys
sk i to the sum μ+αi of one “secret” μ and a “difference” αi from μ2. Then a mul-
tivariate polynomial f(sk1, . . . , skn) computed by an MAC can be re-interpret
as a univariate polynomial φ(μ) = f(μ + α1, . . . , μ + αn) of μ. Namely, KDM
security w.r.t. f(sk1, . . . , skn) is reduced to KDM security w.r.t. a univariate
polynomial φ(μ).

The crucial point of the above reduction is that the coefficients of φ(μ) can
be computed in polynomial time if f is an element of MACd(Ns−1). This fact
enables simulators to remain polynomial time algorithms. This is why we use
MACd(Ns−1).

The Second Scheme: Security for Quotient of MACs. A ciphertext of our
second scheme for a message M is a tuple (C′, C′′) = (Enc(MR), Enc(R)), where
Enc is the encryption of the first scheme and R is a randomly selected element.
Intuitive meanings of C′ and C′′ are the encryptions of “numerator” and the
“denominator” of a key dependent message f(

−→
sk) = f ′(

−→
sk)/f ′′(

−→
sk) computed by

two MAC computable functions f ′ and f ′′. Here
−→
sk = (sk1, . . . , skn).

Clearly, encryption (C′, C′′) of key dependent message f(
−→
sk) has the same dis-

tribution as (Enc(f ′(
−→
sk)S), Enc(f ′(

−→
sk)S)) for randomly selected S. We therefore

succeed in reducing the KDM security of the second scheme to KDM security of
the encryptions Enc(f ′(

−→
sk)S) and Enc(f ′(

−→
sk)S) of the first scheme.

2 We note this idea has been used in several previous works to handle multiple keys,
but in our case it provides much more powerful results for the class of functions,
since we start from a polynomial degree function, rather than a constant degree one.

Efficient Circuit-Size Independent Public Key Encryption 513

The only problem of the above idea is that the denominator f ′′(
−→
sk) can be 0

and therefore f = f ′/f ′′ cannot be defined in this case. But we can overcome
this problem by modifying the scheme slightly and proving the security carefully.

1.7 Related Work and Comparison to Our Schemes

Fig.1 shows the comparison among the previous schemes and ours. Here κ is the
security parameter. Note that all schemes except for [CCS09] are KDM-CPA
secure, while [CCS09] is KDM-CCA2 secure.

Explanation of Fig.1: The “size” � represents the number of gates in a MAC
(resp. in a circuit) computing a function f(sk1, . . . , skn) in the case of our
schemes (resp. [BHHI10]). The column “Flexibility of Param.” describes the
flexibilities of the parameters n, d, and � of a function f(sk1, . . . , skn). “Key-
Gen bounded” means that one has to fix the maximum of the parameter before
the key generation, KDM security holds only when the parameter is less than
the maximum, and efficiency of the scheme depends on this maximum. “Enc
bounded” means that we do not have to fix such maximums, and KDM security
hold for all values of the parameter, but the parameter is needed for encryp-
tion, and efficiency of the scheme depends on its value. “Unbounded” means the
scheme (at all stages) is independent from the value of this parameter.

The column “|Ciphertext| per |Message|” represents the ratio between the
ciphertext length and the message length.

We note that we can improve properties of known schemes in Fig.1 using
known techniques:

– Using the technique of [ACPS09], “|Ciphertext|/|Message|” of [BHHO08]
and [BG10] can be reduced to O(1).

– If one restricts the function to polynomials, [BHHI10] can be unbounded in n.

Comparison with [ACPS09]: They deal with linear functions only compared
to our larger set of MACs, and they are based on a lattice-based assumption,
LWE, while we employ the DCR assumption.

Comparison with [BHHI10, A11]: TheseschemesachieveKDMsecureschemes
w.r.t. the largest set of functions (strictly richer than ours), though their schemes
are merely a feasibility result, relying on and are application of the inefficient gen-
eral secure computation. While it is important to know the feasibility of such KDM
secure schemes, they are not comparable to schemes that are more efficient then
including the encryption of the circuit, or ,as in our scheme, independent of the
circuit size. This is especially true given the applications of such encryption
schemes. The size � of circuit is encryption bounded in [BHHI10, A11], while it
is unbounded in our scheme, which requires only the degree d to be encryption
bounded.

Comparison with [BHHO08, BGK09, BG10]: The first to achieve KDM
security without a random oracle were [BHHO08]. Their scheme was used as
a basis for [BGK09] and [BG10], who achieve KDM secure schemes w.r.t. the

514 T. Malkin, I. Teranishi, and M. Yung

Flexibility of Parameters
Functions |Ciphertext| # of max Size � Assum

per |Message| Users n deg d -ption
[BHHO08] Linear of bits O(κ) - - DDH
[CCS09] Un-
[BGK09] O(κd+1) bounded DDH

Polynomial of Bits KeyGen - LWE
[BG10] with deg= O(1) O(nκ + κd+1) KeyGen QR
+[BGK09] DCR
[BHHI10] Bounded Size O(npoly(κ) + κ�) Enc - Enc DDH
[A11] Circuit LWE

QR
[ACPS09] Linear of block O(1) - - LWE
First
Scheme MACd[Ns−1] O(d) Un- Enc Un- DCR
Second bounded bounded
Scheme Q(MACd[N])

Fig. 1. Parameters of Our Scheme and Previous Work

set of constant-degree polynomials of bits of secret keys (as we said they can
describe also blocks of keys rather than bits). The degrees of polynomials in
[BGK09, BG10] have to be bounded by small constant (because the ciphertext
lengths in these schemes grow exponentially with this degree), and therefore are
KeyGen bounded. In contrast, in our schemes the degree of the polynomials can
be polynomial and is encryption bounded, and the number of terms can be super
polynomial. For the scheme of [BG10] the number of users is KeyGen bounded,
while it is unbounded in our schemes. Finally, the schemes [BGK09, BG10] (and
to a lesser extent [BHHO08]) are quite less efficient than ours.

Other Related Works. The notion of KDM security was defined by Black, Ro-
gaway, and Shrimpton [BRS02], although Camenisch and Lysyanskaya [CL01]
independently defined a similar notion called circular encryption earlier. Ear-
lier works of KDM security were studied in the random oracle model. [BDU08]
showed that the well-known OAEP encryption is KDM secure. [HK07] generalize
the notion of KDM to pseudorandom functions.

Constructing KDM secure schemes in the standard model was a long-standing
open problem. It was partially solved by [HU08] for the case of a symmetric
key encryption. The first PKE which is KDM secure in the standard model
was proposed in the seminal work of Boneh, Halevi, Hamburg, and Ostrovsky
[BHHO08]. The first CCA2 and KDM secure PKE was proposed by [CCS09].
A general transformation starting from KDM secure PKE for a certain class of
functions and boosting it to a larger class was shown by [A11]. Examples of PKE
which satisfy semantic security but not KDM (specifically, 2-circular) security
were shown independently by [GH10] and [ABBC10].

Efficient Circuit-Size Independent Public Key Encryption 515

[HH09] showed that KDM[F] security of an encryption scheme for “quite
large” F cannot be proved as long as the reduction’s proof of security treats the
function f ∈ F and the adversary as black boxes.

The connection between the adaptive Dolev-Yao model and generalized ver-
sions of KDM security are studied by [BPS08], while further connections of KDM
security with agility and obfuscation are shown by [ABBC10] and [CKVW10],
respectively.

We refer the reader to [MTY11] for a survey on KDM security results and
applications.

2 Preliminaries

Notations and Terminologies: For a natural number n and m ≤ n, let [n]
and [m..n] be the sets {1, . . . , n} and {m, . . . , n} respectively. For a real number
x, �x� denote the largest integer not greater than x.

Polynomials and Rational Functions: For a polynomial f(X1, . . . , Xn) =∑
j1,...,jn

aj1,...,jnX1
j1 · · ·X1

jn mod K, the (total) degree deg f of f is max{
∑

k jk |
aj1,...,jn �= 0 mod K}. A rational function over ZK is a function which can be
written as f(X1, . . . , Xn)/g(X1, . . . , Xn) using two polynomials f and g over
ZK .

Paillier Group: Let N be the product of two safe primes and T be 1+N . Define
three subsets of ZNs , sets of Quadratic Residue, Square Composite Residuosity,
and Root of the Unity, as follows:

– QR[Ns] = {u2 mod Ns | u ∈ ZNs}
– SCR[Ns] = {r2N mod Ns | r ∈ QR[Ns]},
– RU [Ns] = {TM mod Ns | M ∈ [0..Ns−1]}.

Theorem 1 ([P99, DJ01, KTY09]). There exists a polynomial time com-
putable bijective homomorphism L : RU [Ns] → ZN satisfying the following
property:

∀M ∈ ZNs−1 : L(TM) = M mod Ns−1.

Moreover, the following property holds:

QR[Ns] = SCR[Ns]×RU [Ns].

Definition 2. (Decision Composite Residuosity (DCR) Assumption
[P99, DJ01]). Let s ≥ 2 be an integer. There exists a generator Gen of the
product N of two safe primes such that the following value is negligible for κ for
any polynomial time adversary A:

|Pr[N ← Gen(1κ), g ← SCR[Ns], b ← A(s, N, g) : b = 1]
−Pr[N ← Gen(1κ), g ← QR[Ns], b ← A(s, N, g) : b = 1]|.

Our DCR assumption is subtly different from the original one [P99, DJ01], where
g is taken from {rN mod N2 | r ∈ ZNs} (or ZNs) in the first (or second) game,
but ours clearly follows form the original one by squaring g.

516 T. Malkin, I. Teranishi, and M. Yung

2.1 KDM Security

Public Key Encryption Scheme: In this work, a public key encryption
scheme PKE = (Setup, Kg, Enc, Dec) has generator Setup of a system parameter
prm , such as a group description, and all users commonly use this parameter as
inputs of the other three algorithms.

Description of Functions: As in previous works, we implicitly assume that
each function f has some polynomial size description D. (In the case of our
schemes, D is an MAC or MACs computing f .) We let fD denote the function
corresponding to D.

KDM Security: For a public key encryption scheme PKE=(Setup, Kg, Enc, Dec)
and its secret key space SkSp and message space MeSp, let

F (n) ⊂ {f : SkSpn → MeSp}, F = ∪∞
n=1F (n).

To simplify, we assume that SkSp and MeSp depend only on the system param-
eter prm . For a natural number n and a bit b, consider the following game:

– GameKDMb
A[F , n] :

prm ← Setup(1κ), b′ ← AOKg,O(b)
Enc (prm , (pk j)j∈[n]), Output b′.

Above, A is allowed to make polynomial number of queries adaptively:

– If A makes the i-th query new toOKg,it generates the i-th key pairs(pk i,sk i) ←
Kg(prm) and sends pk i as an answer.

– If A makes the i-th query (i, D) to O(b)
Enc where i ∈ [n] and D is a description

of a function of F (n), the oracle answers the following C (below, o be some
fixed element of MeSp and n is the number of keys generated by OKg):

C ←
{

Encprm(pk i, fD(sk1, . . . , skn)) if b = 1
Encprm(pk i, o) Otherwise.

We say that PKE is KDM[F] secure if the following advantage is negligible for
any n and any polynomial time algorithm A.

Adv.KDMA[F] = |Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]| .

One can easily check that the above definition is independent of the choice of o,
if PKE satisfies indistinguishability.

Our definition of KDM security is stronger than that of the previous one
[BRS02, BHHO08]: Ours allows an adversary to get new key adaptively while
the previous one [BRS02, BHHO08] does not. (In other words, using the ter-
minology of Section 1.4, the number n of keys becomes “unbounded.”) Some
known schemes (e.g., [BG10]) require the maximum n to be fixed before key
generation, and KDM security can be proved only when n is less than the pre-
determined maximum. Our scheme does not require n to be fixed and therefore
can be proved under our stronger KDM security definition.

Efficient Circuit-Size Independent Public Key Encryption 517

2.2 Modular Arithmetic Circuit

Definition 3 (Modular Arithmetic Circuit (MAC)). A Modular Arith-
metic Circuit D (MAC) is a circuit whose inputs are variables X1, . . ., Xn and
constants of ZK and whose gates are +, −, or · over ZK . (We stress that the
fan-out of each gate is unbounded.) For MAC D, the number of gates in D is
called size of D.

Note that in our case MAC is equivalent to straight line program with unlimited
number of registers. Clearly, a function computed by MAC is a polynomial over
ZK . We let fD denote f when MAC D computes f .

For natural numbers n, d, and �, MACn,d,�[K] is the set of all rational func-
tions which can be computed using some MAC D with size ≤ � and deg fD ≤ d3.
Here n indicates the number of inputs of D.

3 KDM Secure Scheme w.r.t Bounded Degree MAC

Cascaded Paillier ElGamal: Our scheme, called d-cascaded Paillier ElGa-
mal, is computed recursively as follows. First, a “Paillier ElGamal” encryption
(e0, c0) = (u0

−1, TMv0) mod Ns of a message M is computed, where T = 1+N
and (u0, v0) ← (gr0 , hr0). Next, the left component ei of the ciphertext is en-
crypted by “Paillier ElGamal” encryption and (ei+1, ci+1) = (ui+1

−1, eivi+1) is
obtained for i = 1, . . . , d − 1, where (ui+1, vi+1) ← (gri+1 , hri+1). We finally let
cd+1 be ed. (Note that much of the encryption is not message dependent and
can be performed off-line given the degree bound expected, as in ElGamal, but
with much more performance gain).

The d-cascaded Paillier ElGamal encryption of message M is the tuple

C = (cd+1, cd, cd−1, . . . , c0) = (ud−1, ud−1
−1vd, ud−2

−1vd−1, . . . , T
Mv0).

Detailed Scheme: The detail of our scheme is as follows. Bellow, κ and ξ are
security parameters and s ≥ 2 and d are positive integers.

– Setup(1κ) : Generate the product N of two safe primes with �κ/2� bit lengths.

Select g
$← SCR[Ns] randomly, and output prm ← (s, N, g). (We will let T

denote 1 + N .)
– Kg(prm) : Select sk ← x

$← [2ξ · �N/4�] randomly, compute pk ← h ←
gx mod Ns, and output (pk , sk).

– Encprm(pk , M) for M ∈ ZNs−1 : Select r0, . . . , rd
$← [�N/4�] randomly and

output C ← (cd+1, . . . , c0), where

cj ←

⎧⎨⎩
TMhr0 modNs if j = 0
g−rj−1hrj modNs if j ∈ {1, . . . , d}
g−rd modNs if j = d + 1.

3 The total degrees of the polynomials may not be computable from D in polynomial
time. But this fact does not become a problem in our case, because we can easily
compute an upper bound of the total degrees from D.

518 T. Malkin, I. Teranishi, and M. Yung

– Decprm(sk , C) : Parse C as (cd+1, . . . , c0) and output

M ← L(c0c1
x · · · cd+1

xd+1
mod Ns).

Above, L is the function given in Theorem 1.

Security: We will prove the following theorem in Section 6.

Theorem 4 (KDM Security of Our Scheme w.r.t MACn,d,�[Ns−1]). For
any polynomial d, n, and � of the security parameter κ, the proposed scheme is
KDM secure with respect to MACn,d,�[Ns−1] under the DCR assumption.

Specifically, for any polynomials n, d, and � of κ, and any polynomial time
adversary A for breaking KDM security of our scheme, there exists an adversary
B for breaking the DCR problem in ZNs satisfying{

Adv.KDMA[MACn,d,�[Ns−1], n] ≤ 6Adv.DCRB + O
(
qd√
N

)
+ O

(
n
2ξ

)
,

tB ≤ tA + O(qdE) + O(q�d2κ2)

Above, q is the number of queries of A, t(·) is the number of steps of machines,
and E is a full exponentiation cost in QR[Ns].

We can show a stronger variant of Theorem 4 where an adversary can select
parameter d and � on the fly when it makes encryption queries. (Specifically,
d becomes encryption bounded and � unbounded as indicated in Section 1.4.)
The proof of this stronger security is similar to that of Theorem 4. We therefore
omit it.

4 KDM Secure Scheme w.r.t. Fraction of Bounded
Degree MACs

In this section, we give a general converter from a KDM[F] secure scheme to a
KDM[Q(F)] secure scheme, where F is a set of polynomials over ZK and Q(F)
denote the set of all rational functions f ′(

−→
X)/f ′′(

−→
X) for f, g ∈ F . By applying

this converter to our first scheme, we can get a KDM[Q(MACn,d,�[K])] secure
scheme.

A subtle but difficult problem in designing KDM[Q(F)] secure scheme is that
the denominator of f ′(

−→
sk)/f ′′(

−→
sk) can be 0 (or more generally, can be non-

invertible): This becomes problem when proving security of the scheme because
a simulator in the security proof (which does not know sk) cannot know whether
f ′′(

−→
sk) is invertible or not. We therefore have to design our scheme and prove

the security of it such that a simulator can simulate the view of adversary even
without knowing whether f ′′(

−→
sk) is invertible.

We assume the hardness of factoring of the modulus K. Then no one can find
value a ∈ ZK which is non zero but is non-invertible. (If one can find such a,

Efficient Circuit-Size Independent Public Key Encryption 519

he can factorize K by computing gcd(a, K).) Therefore, we can assume that the
value f ′′(−→x) is either invertible or 0.

We then define the function value f ′(−→x)/f ′′(−→x) with f ′′(−→x) = 0 as follows,
where 1/0 and 0/0 are special symbols.

f(−→x) =

{
1/0 if f ′′(−→x) = 0 but f ′(−→x) �= 0
0/0 if f ′′(−→x) = f ′(−→x) = 0.

Note that we are not required to consider the other case (that is, f ′′(x) is not 0
but is not invertible) due to the above discussion.

Let PKE = (Setup, Kg, Enc, Dec) be a public key encryption scheme whose
secret key and message spaces are ZK for some integer K. The scheme PKE =
(Setup, Kg, Enc, Dec) converted from PKE is as follows.

– The message space of PKE is ZK ∪ {1/0, 0/0}. Here, “1/0” and “0/0” are
special symbols.

– Setup(1κ) and Kg(prm) : The same as Setup(1κ) and Kg(prm).

– Encprm(pk , M) : Select R
$← Z∗

K randomly and set

(M ′, M ′′) ←

⎧⎪⎨⎪⎩
(MR, R) mod K if M �= 1/0, 0/0,
(R, 0) mod K if M = 1/0.
(0, 0) mod K if M = 0/0.

Compute and output

C̄ ← (C′, C′′) ← (Encprm(pk , M ′), Encprm(pk , M ′′)).

– Decprm(sk , C̄) : Parse C̄ as (C′, C′′), compute

M ′ ← Decprm(sk , C′); M ′′ ← Decprm(sk , C′′).

Output 1/0 if M ′ �= 0 and M ′′ = 0 holds. Output 0/0 if M ′ = M ′′ = 0
holds. Output M ← M ′/M ′′ mod K otherwise.

Theorem 5. Suppose that factoring of K is hard. Suppose the following property
also: for any f(

−→
X) ∈ F and R ∈ ZK , the function R · f(

−→
X) is an element of F .

Then, KDM[F] security of PKE implies KDM[Q(F)] security of PKE.

Proof. (sketch) An adversary B for KDM[F] security of PKE is constructed from
an adversary A for KDM[Q(F)] security of PKE as follows. B takes a public
parameter prm and a tuple (pk j)j∈[n] of public keys as an input and passes it
to A. If A makes a query i ∈ [n] and a pair (D′, D′′) of descriptions of MACs,

B selects S
$← Z∗

K randomly, sets E′ and E′′ to the descriptions of functions
S · fD′(

−→
X) and S · fD′′(

−→
X) respectively, makes queries (i, E′) and (i, E′′), gets

answers C′ and C′′ from the challenger, and sends (C′, C′′) back to A as an
answer to the query. If A outputs a bit b′, B outputs b′.

520 T. Malkin, I. Teranishi, and M. Yung

From the hardness of the factoring of K, the values fD′′(
−→
sk) is either invert-

ible or equal to 0. Hence, we can consider 1/fD′′(
−→
sk) mod K if fD′′(

−→
sk) �= 0.

Therefore,

(S ·fD′(
−→
sk), S ·fD′′(

−→
sk)) =

⎧⎪⎪⎨⎪⎪⎩
(fD′ (

−→
sk)

fD′′ (
−→
sk)

·R0, R0) if fD′′(
−→
sk) �= 0

(R1, 0) if fD′′(
−→
sk) = 0 but fD′(

−→
sk) �= 0

(0, 0) if fD′(
−→
sk) = fD′′(

−→
sk) = 0,

where R0 = S · fD′′(
−→
sk) and R1 = S · fD′(

−→
sk).

ThemessagewhichB shouldencrypt in theabove three cases isfD′(
−→
sk)/fD′′(

−→
sk),

1/0, and 0/0 respectively. This means that the view of A simulated by B is iden-
tical to the actual one.

The above proof does not work well if the factoring of K is easy, because A may
make query (D′, D′′) such that fD′′(sk) is not 0 but non-invertible. This means
that K cannot be Ns−1 for s ≥ 3.

5 Triple Mode Proof Framework

5.1 Overview

A triple mode proof framework is introduced to overcome the dilemma described
in Section 1.5. It has three modes called standard mode, fake mode, and hiding
mode. The standard mode is the same as the original game of KDM security.
Other two modes are as follows. (See Fig.2 also.)

Dependency of Ciphertexts sk D

Standard Mode Yes. Yes.
Fake Mode No. Yes.
Hide Mode No. No.

} Sim. knows sk .
} Sim. does not know sk .

Fig. 2. Triple Mode Proof Framework

Fake Mode: This mode allows us to compute “fake ciphertexts” using queries
(i, D) of an adversary but without using the secret keys. The fake ciphertexts
should be indistinguishable from the ciphertext of the standard mode, under the
condition that a simulator knows the secret keys.

This indistinguishability of course cannot be proved based on the hardness
related to unavailability of the secret keys. Instead, we are required to prove it
based on the secrecy of the randomness of encryptions. Showing this indistin-
guishability is the critical part of the proof of KDM security.

Hiding Mode: This mode enables us to compute “hiding ciphertexts” using
neither the queries (i, D) of an adversary nor the secret keys. The hiding ci-
phertexts should be indistinguishable from the fake ones, under the assumption

Efficient Circuit-Size Independent Public Key Encryption 521

that a simulator does not know the secret keys. Note that the simulator is not
required to know the secret keys in fact, because both the fake ciphertexts and
the hiding ones can be computed without using the secret keys. This indistin-
guishability can be shown using the standard cryptographic arguments based on
the secrecy of the secret key. Since the hiding ciphertext does not depend on the
query D of an adversary, KDM security, in turn, clearly holds.

5.2 Formal Description

A triplemodeproof framework foranencryptionschemePKE=(Setup, Kg, Enc,Dec)
is a pair of fake mode (KgFake, EncFake) and hiding mode (KgHide, EncHide). The
inputs and outputs of the algorithms are as follows.

– KgFake takes a public parameter prm and a natural number n as inputs and
outputs n key pairs (pk1, sk1), . . ., (pkn, skn) and aux .

– KgHide takes the same inputs as KgFake and outputs keys pk1, . . . , pkn and
aux .

– EncFake takes as inputs a public parameter prm , a tuple of public keys
(pk j)j∈[n], aux , a natural number i, and a description D of some function in
F and outputs C.

– EncHide takes the same inputs as KgFake except D and outputs C.

A proof of KDM security of PKE w.r.t. a functions set F proceeds by showing
that the success probability Pr[GameKDM1

A[F , n] = 1] of A in GameKDM1
A[F , n]

is the same as those in the following two games GameFakeA[F , n] and
GameHideA[F , n] but for a negligible differences.

– GameFakeA[F , n] :

prm ← Setup(1κ), ((pk j , sk j)j∈[n], aux) ← KgFake(prm , n),
b′ ← AO′

Kg,OEncFakeprm (prm , (pk j)j∈[n]), Output b′

– GameHideA[F , n] :

prm ← Setup(1κ), ((pk j)j∈[n], aux) ← KgHide(prm , n),
b′ ← AO′

Kg,OEncHideprm (prm , (pk j)j∈[n]), Output b′

Above, A is allowed to make polynomial number of queries adaptively. It can
send as queries bit string new to O′

Kg and a tuple (i, D) to OEncFakeprm and to
OEncHideprm . Here i ∈ [n] is an integer and D is a description of some function in
F . The answers from the oracles are as follows:

– O′
Kg(new) returns pk i generated by KgFake (in GameFake) or KgHide (in

GameHide).
– OEncFakeprm (i, D) returns EncFakeprm((pk j)j∈[n], aux , i, D).
– OEncHideprm (i, D) returns EncHideprm((pk j)j∈[n], aux , i).

In the final game, GameHideA[F , n], ciphertexts do not depend on f queried by
A any more. Hence, the following theorem holds.

522 T. Malkin, I. Teranishi, and M. Yung

Theorem 6. Suppose that for any polynomial time adversary A, there exists a
negligible function ε(κ) such that the differences among Pr[GameKDM1

A[F] = 1],
Pr[GameFakeA[F , n] = 1], and Pr[GameHideA[F , n] = 1] is less than ε(κ) for any
n = poly(κ), then the scheme is KDM[F] secure.

As noted, proofs of known KDM secure scheme in the standard model
[BHHO08, ACPS09, BG10] can be re-interpreted as above.

6 Security Proof of the First Scheme

6.1 Interactive Vector Lemma [BG10]

We review a lemma of [BG10] which we will use to prove KDM security of our
scheme. Let Gen(1κ) be a generator which outputs the product N of two safe
primes with the same bit lengths. Let A be a polynomial time adversary, b be a
bit, and s ≥ 2 be an integer. Define game IV1 and IV2 as follows.

– IV1 : N ← Gen(1κ), g $← SCR[Ns], b′ ← AOb(s, N, g), Output b′.
– IV2 : N ← Gen(1κ), g, h

$← SCR[Ns], b′ ← AŌb(s, N, g, h), Output b′.

In the above two games, A is allowed to make polynomial number queries. In
IV1, A can send an element δ of ZNs−1 as a query. Ob(δ) then selects r

$← [�N/4�]
randomly and returns

u∗ ←
{

T δgr mod Ns if b = 1,

gr mod Ns if b = 0.

On the other hand, A in IV2 can send an element (δ, δ̄) of ZNs−1
2 as a query.

Ōb(δ, δ̄) then selects r
$← [�N/4�] randomly and returns

(u∗, ū∗) ←
{

(T δgr, T δ̄hr) mod Ns if b = 1,

(gr, hr) mod Ns if b = 0.

For k = 1, 2, the advantage of A in IVk is defined to be

Adv.IVk[A] = |Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]|.

Lemma 1 ((DCR-based) Interactive Vector Lemma for k = 1, 2, Full
paper of [BG10]). For k = 1, 2, no polynomial time adversary can have non-
negligible advantage in IVk under the DCR assumption.

Our definition of game IVk is slightly different from those of [BG10]: The original
game takes the randomness r of gr not from [�N/4�] but [T 2] for some fixed
value T ≥ Ns. This difference is not essential, because the randomness r of the
original game is taken from [T 2] in order to be ensured that the distribution of
gr is statistically close to the uniform distribution on SCR[Ns]. It can be shown
that the same thing holds even if r is selected from [�N/4�].

Efficient Circuit-Size Independent Public Key Encryption 523

6.2 The Proof When the Number n of Keys Is 1

Before proving the security of our scheme, the game GameKDM1
A[MAC] for our

scheme with n = 1 is reviewed. (Here we simply writeMAC forMACn,d,�[Ns−1].)
An adversary A of this game takes a public parameter prm = (s, N, g) and one
public key pk = h = gx mod Ns as inputs. Whenever A sends as a query the
“description” of a function in F , namely an MAC D, the challenger sends back

C = (ud−1, ud−1
−1vd, . . . , u0

−1v1, T
fD(x)v0),

where fD is the function corresponding to D and (uk, vk) = (grk , hrk) for rk ←
�N/4�. Since the number of keys is 1, the polynomial fD can be written as
fD(Y) =

∑
j ajY

j mod Ns for some (aj)j∈[0..d]. A finally outputs a bit b′.
The security is proved based on the framework of triple mode proof framework

of Section 5. The algorithms KgFake and EncFake are defined as follows.

– KgFake(prm) : Same algorithm as Kg, except that it sets aux to the null
string.

– EncFake(prm , pk , aux , D) : Parse prm and pk as (s, N, g) and h. Take rk
$←

�N/4� and compute (uk, vk) ← (grk , hrk) for k ∈ [d]. Let fD(Y) =∑
j ajY

j mod Ns. Compute and output a “fake ciphertext”

CFake = (ud−1, T adud−1
−1vd, . . . , T

a1u0
−1v1, T

a0v0).

We show that |Pr[GameKDM1
A[MAC, 1] = 1] − Pr[GameFakeA[MAC, 1] = 1]| is

negligible. To this end, an adversary B for the game IVk with k = 1 is constructed
as follows. B takes an input (s, N, g), selects x

$← [2ξ ·�N/4�] randomly, and feeds
prm ← (s, N, g) and pk ← h ← gx to A. If A makes a query D, B computes
(aj)j∈[0..d] satisfying fD(Y) =

∑
j ajY

j mod Ns. Note that B can compute it in
polynomial time from D. B sets

δj = −
d∑

k=j+1

akx
k−(j+1),

makes queries δ0, . . . , δd−1 and gets corresponding answers u∗
0, . . . , u

∗
d−1 (where

u∗
j is T δj grj or grj). B then selects rd ← [�N/4�], computes u∗

d ← grd , computes
v∗j ← (u∗

j)
x for j = 0, . . . , d, and sends back to A

C∗ = ((u∗
d)

−1, (u∗
d−1)

−1v∗d, . . . , (u
∗
0)

−1v∗1 , T fD(x)v∗0).

If A outputs a bit b′, B outputs it and terminates. From the definition of
B, the difference between two probabilities Pr[GameKDM1

A[MAC, 1] = 1] and
Pr[GameFakeA[MAC, 1] = 1] is negligible.

The algorithms in GameHide, that is KgHide and EncHide, are defined as
follows.

– KgHide(prm) : Take pk ← h
$← QR[Ns] and outputs it. (It sets aux to the

null string.)

524 T. Malkin, I. Teranishi, and M. Yung

– EncHide(prm , pk , aux) : Parse prm and pk as (s, N, g) and pk = h. Take

rk
$← �N/4� and compute (uk, vk) ← (grk , hrk) for k ∈ [d]. Compute and

output a “hiding ciphertext”

CHide = (ud−1, ud−1
−1vd, . . . , u0

−1v1, v0).

Namely, EncHide outputs Encprm(pk , 0).

We show that |Pr[GameFakeA[MAC, 1] = 1] − Pr[GameHideA[MAC, 1] = 1]| is
negligible. To this end, an adversary B for IVk with k = 2 is constructed as
follows. B takes an input (s, N, g, h), and feeds prm ← (s, N, g) and pk ← h to
A. If A makes a query D, let fD(Y) =

∑
j ajY

j mod Ns. B then sets

(δj , δ̄j) = (0, aj)

makes queries (δ0, δ̄0), . . . , (δd, δ̄d) and gets answers (u∗
1, v

∗
1), . . . , (u∗

d, v
∗
d) (where

(u∗
j , v

∗
j) is (T 0grj , T ajhrj) or (grj , hrj)) and sends back to A

C∗ = ((u∗
d)

−1, (u∗
d−1)

−1v∗d, . . . , (u
∗
0)

−1v∗1 , v∗0).

If A outputs a bit b′, B outputs it and terminates. From the definition of
B, the difference between two probabilities Pr[GameFakeA[MAC, 1] = 1] and
Pr[GameHideA[MAC, 1] = 1] is negligible. From Theorem 6, our scheme is KDM
secure.

6.3 The Idea Behind the Proof of the General Case

Due to the lack of space, we only present the proof idea. It proceeds in a sim-
ilar way to the proof of Section 6.2, except that we make KgFake and EncFake
“reduce” n secrets (sk j)j∈[n] to only one secret μ.

Specifically, KgFake for this proof takes prm = (s, N, g) and the number n of

keys as inputs, selects μ
$← [�N/4�] and α1, . . . , αn

$← [2ξ · �N/4�] randomly, and
outputs

sk j ← xj ← μ + αj , pk j ← hj ← gxj for j ∈ [n], aux ← (αj)j∈[n]

In other words, (sk j)j∈[n] is computed from only one “secret” μ. The proof is
therefore reduced to the case where the number of secret is 1, in some sense.

The description of EncFake is also changed, in order to become consistent
with the new KgFake. Specifically, EncFake takes prm = (s, N, g), (pk j)j∈[n] =
(hj)j∈[n], and a query (i, D) of an adversary and computes (aj)j∈[0..d] ← Coeffprm

(aux , i, D). Here (aj)j∈[0..d] = Coeffprm(aux , i, D) is the tuple of ZNs−1 satisfy-
ing the following equations about polynomials of a variable Y . Below, d is the
total degree of fD.

fD(Y + α1, . . . , Y + αn) =
d∑
j=0

aj(Y + αi)j mod Ns−1.

Efficient Circuit-Size Independent Public Key Encryption 525

EncFake then outputs “fake encryption”

CFake = (ud−1, T adud−1
−1vd, . . . , T

a1u0
−1v1, T

a0v0),

where (uk, vk) = (grk , hi
rk) for rk

$← �N/4�. (We stress that vk is computed
using the i-th public key hi where i is a part of the query (i, D).)

Above, EncFake is polynomial time algorithm due to the following lemma:

Lemma 2. Given aux = (αj)j∈[n], i ∈ [n], and an MAC D, Coeffprm(aux , i, D)
can be computed in polynomial time.

KgHide and EncHide can be constructed similarly. Proofs of indistinguishabili-
ties of GameKDM1

A[MAC, n], GameFakeA[MAC, n], and GameHideA[MAC, n] are
similar to those of Section 6.2 as well.

Acknowledgments. We thank Zvika Brakerski and Yevgeniy Vahlis for several
illuminating discussions. We also thank Zvika, Shafi Goldwasser, Yael Tauman
Kalai, and anonymous Eurocrypt reviewers for helpful comments regarding the
presentation of the paper.

References

[AR00] Abadi, M., Rogaway, P.: Reconciling Two Views of Cryptography (The
Computational Soundness of Formal Encryption). In: Watanabe, O.,
Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS,
vol. 1872, pp. 3–22. Springer, Heidelberg (2000); J. Cryptology 15(2), 103–
127 (2002), J. Cryptology 20(3), 395 (2007)

[ABBC10] Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic Agility and
Its Relation to Circular Encryption. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 403–422. Springer, Heidelberg (2010)

[ABHS05] Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of Formal Encryp-
tion in the Presence of Key-Cycles. In: di Vimercati, S.d.C., Syverson,
P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 374–396.
Springer, Heidelberg (2005)

[A11] Applebaum, B.: Key-Dependent Message Security: Generic Amplification
and Completeness Theorems. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 506–525. Springer, Heidelberg (2011)

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast Cryptographic Prim-
itives and Circular-Secure Encryption Based on Hard Learning Problems.
In: C 2009, pp. 595–618 (2009)

[BDU08] Backes, M., Dürmuth, M., Unruh, D.: OAEP Is Secure under Key-
Dependent Messages. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS,
vol. 5350, pp. 506–523. Springer, Heidelberg (2008)

[BPS08] Backes, M., Pfitzmann, B., Scedrov, A.: Key-dependent message security
under active attacks - BRSIM/UC-soundness of Dolev-Yao-style encryp-
tion with key cycles. In: CSF 2007, pp. 112–124 (2008); Journal of Com-
puter Security 16(5), 497–530 (2008)

[BHHI10] Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded Key-Dependent
Message Security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 423–444. Springer, Heidelberg (2010)

526 T. Malkin, I. Teranishi, and M. Yung

[BRS02] Black, J., Rogaway, P., Shrimpton, T.: Encryption-Scheme Security in the
Presence of Key-Dependent Messages. In: Nyberg, K., Heys, H.M. (eds.)
SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

[BG10] Brakerski, Z., Goldwasser, S.: Circular and Leakage Resilient Public-Key
Encryption Under Subgroup Indistinguishability (or: Quadratic Residuos-
ity Strikes Back). In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 1–20. Springer, Heidelberg (2010), Full paper is available at eprint
2010/226

[BGK09] Brakerski, Z., Goldwasser, S., Kalai, Y.: Circular-Secure Encryption Be-
yond Affine Functions. e-print. 2009/511

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure
Encryption from Decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008)

[BV98] Boneh, D., Venkatesan, R.: Breaking RSA May Not Be Equivalent to Fac-
toring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp.
59–71. Springer, Heidelberg (1998)

[CCS09] Camenisch, J., Chandran, N., Shoup, V.: A Public Key Encryption Scheme
Secure against Key Dependent Chosen Plaintext and Adaptive Chosen Ci-
phertext Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 351–368. Springer, Heidelberg (2009)

[CL01] Camenisch, J., Lysyanskaya, A.: An Efficient System for Non-transferable
Anonymous Credentials with Optional Anonymity Revocation. In: Pfitz-
mann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer,
Heidelberg (2001)

[CKVW10] Canetti, R., Tauman Kalai, Y., Varia, M., Wichs, D.: On Symmetric En-
cryption and Point Obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 52–71. Springer, Heidelberg (2010)

[DJ01] Damg̊ard, I., Jurik, M.: A Generalization, a Simplification and Some
Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K.-
c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg
(2001)

[G09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC
2009, pp. 169–178 (2009)

[GH10] Green, M., Hohenberger, S.: CPA and CCA-Secure Encryption Systems
that are not 2-Circular Secure. e-print. 2010/144

[HH09] Haitner, I., Holenstein, T.: On the (Im)Possibility of Key Dependent
Encryption. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–
219. Springer, Heidelberg (2009)

[HK07] Halevi, S., Krawczyk, H.: Security under key-dependent inputs. In: ACM
CCS 2007, pp. 466–475 (2007)

[HU08] Hofheinz, D., Unruh, D.: Towards Key-Dependent Message Security
in the Standard Model. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 108–126. Springer, Heidelberg (2008)

[KTY09] Kiayias, A., Tsiounis, Y., Yung, M.: Group Encryption. In: Kurosawa,
K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer,
Heidelberg (2007)

[MTY11] Malkin, T., Teranishi, I., Yung, M.: Key Dependent Message Security:
Recent Results and Applications. In: ACM CODASPY (2011)

[P99] Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 223–238. Springer, Heidelberg (1999)

Key-Dependent Message Security:
Generic Amplification and Completeness

Benny Applebaum�

School of Electrical Engineering, Tel-Aviv University
benny.applebaum@gmail.com

Abstract. Key-dependent message (KDM) secure encryption schemes
provide secrecy even when the attacker sees encryptions of messages
related to the secret-key sk. Namely, the scheme should remain secure
even when messages of the form f(sk) are encrypted, where f is taken
from some function class F . A KDM amplification procedure takes an
encryption scheme which satisfies F-KDM security and boost it into a
G-KDM secure scheme, where the function class G should be richer than
F . It was recently shown by Brakerski et al. (TCC 2011) and Barak et
al. (EUROCRYPT 2010), that a strong form of amplification is possible,
provided that the underlying encryption scheme satisfies some special
additional properties.

In this work, we prove the first generic KDM amplification theorem
which relies solely on the KDM security of the underlying scheme with-
out making any other assumptions. Specifically, we show that an ele-
mentary form of KDM security against functions in which each output
bit either copies or flips a single bit of the key (aka projections) can be
amplified into KDM security with respect to any function family that
can be computed in arbitrary fixed polynomial-time. Furthermore, our
amplification theorem and its proof are insensitive to the exact setting
of KDM security, and they hold in the presence of multiple-keys and in
the symmetric-key/public-key and the CPA/CCA cases. As a result, we
can amplify the security of all known KDM constructions, including ones
that could not be amplified before.

Finally, we study the minimal conditions under which full-KDM
security (with respect to all functions) can be achieved. We show that un-
der strong notion of KDM security, the existence of cyclic-secure fully-
homomorphic encryption is not only sufficient for full-KDM security, as
shown by Barak et al., but also necessary. On the other hand, we observe
that for standard KDM security, this condition can be relaxed by adopting
Gentry’s bootstrapping technique (STOC 2009) to the KDM setting.

1 Introduction

The study of secure encryption scheme is perhaps the most central subject in
cryptography. Since the discovery of semantic security [24] till the formulation
� Work done in part a postdoc at the Weizmann Institute of Science, supported by

Alon and Koshland Fellowships.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 527–546, 2011.
c© International Association for Cryptologic Research 2011

528 B. Applebaum

of CCA-security [31,33,18], modern cryptography has successfully developed in-
creasingly stronger notions of security providing secrecy in highly adversarial
settings. Still, all these strong notions of security guarantee secrecy only as long
as the encrypted messages are independent of the secret key. This limitation
dates back to the seminal work of Goldwasser and Micali [24] who observed that
semantic security may not hold if the adversary gets to see an encryption of the
secret key. For many years, such usage scenarios were considered as “security
bugs” that should be prevented by system designers.

A decade ago, the assumption of independency between the secret key and the
encrypted data was challenged by Camenisch and Lysyanskaya [16] and Black
et al. [11]. Specifically, Camenisch and Lysyanskaya considered schemes that
remain secure under a “key cycle” usage, where we have t keys organized in a
cycle and each key is encrypted under its left neighbor. A generalization of this
notion, called key-dependent message (KDM) security, was suggested by Black
et al. Informally, an encryption is KDM(t) secure with respect to a function class
F if security holds even when the adversary can ask for an encryption of the
message M = f(sk1, . . . , skt) under the i-th public-key, where sk1, . . . , skt are
the secret keys present in the system and f is an arbitrary function in F . This
notion of security implies cyclic-security if F is expressive enough (e.g., contains
all “selector” functions), and it becomes strictly stronger when the function
class F grows. Hence, one would like to achieve KDM security while making the
function class F as large as possible.

The notion of KDM security was extensively studied in the past few years
in several flavors including the symmetric/public-key and the CPA/CCA set-
tings [16,11,26,9,12,15,8,27,25,5,14,2,10,13]. These works were motivated by the
fundamental nature of the question as well as by concrete applications includ-
ing encrypted storage systems (e.g., BitLocker [12]), anonymous credentials [16],
and realization of security proofs at the framework of axiomatic security [1,11,3].
(See [12] for more motivations and details.)

Although much is known today about KDM security both on the positive and
negative sides, it is still unclear whether a standard encryption scheme can be
transformed into a scheme which provides KDM(t) security, even with respect to
a single key (i.e., t = 1) and simple non-trivial function families (e.g., selectors)1.
Hence, it is natural to move forward and explore the possibility of building strong
KDM security given a weak form of KDM security as a primitive. This makes
sense as today, following the seminal work of Boneh et al. [12] and its follow-
ups [15,5,13], it is known that a basic form of KDM security (with respect to the
family of “affine functions”) can be achieved in several settings under various
concrete cryptographic assumptions. Therefore, following [14] we ask:

Is there a generic transformation which amplifies KDM security from a
weak family of functions F to a larger family of functions G ?

1 It is known that KDM security with respect to sufficiently rich families of functions
cannot be based on standard assumptions via fully black-box reductions [25]. How-
ever, this impossibility result (and its extension in [10]) does not hold for simple
function class (e.g., projections).

Key-Dependent Message Security: Generic Amplification and Completeness 529

The two main features of such a procedure are generality – the transformation
should work with any scheme which satisfies F -KDM security without relying
on any other additional property – and large amplification gap – ideally, F is
a very simple function class whereas G is as rich as possible. The question of
KDM amplification was recently addressed by Brakerski et al. [14] and Barak et
al. [10], who made an important progress by showing how to amplify the KDM
security of several existing schemes. While these works achieve relatively large
amplification gap, they fall short of providing full generality as they strongly rely
on additional properties of the underlying scheme (i.e., simulatable-KDM secu-
rity and entropic-KDM security – to be defined later). As a concrete example,
it is unknown how to use any of these techniques to amplify the KDM-security
of the symmetric-key encryption scheme of [5] which is based on the Learning
Parity With Noise (LPN) assumption. (See Section 1.3 for more details about
these works and their relation to our approach).

1.1 Our Results

We give an affirmative answer to the above question by providing the first generic
KDM amplification procedure. In particular, we consider the projection function
class of all functions f : (sk1, . . . , skt) �→ v in which each output bit depends on
(at most) a single bit of the input. Namely, each output bit vj is either fixed to
a constant or copies/flips an original bit of one of the keys. We show that this
elementary function family is complete in the following sense:

Theorem 1 (Completeness of projections, Informal). Let G be any func-
tion family which can be computed in some fixed polynomial time. Then, any
encryption scheme which satisfies KDM(t) security with respect to projections
can be transformed into a new encryption scheme which is KDM(t)-secure with
respect to G.

Generality. Theorem 1 assumes nothing but KDM security regarding the un-
derlying scheme. Furthermore, the theorem (and its surprisingly simple proof)
is insensitive to the exact setting of KDM security: it holds for any number of
keys (t), and in both symmetric-key/public-key and CPA/CCA settings. In all
these cases, the new scheme is proven to be secure exactly in the same setting as
the original scheme. This allows us, for example, to amplify the security of the
affine-KDM secure scheme of [5], and obtain the first symmetric-key encryption
scheme with strong KDM security based on the LPN assumption.

Large gap. Theorem 1 provides a large amplification gap. In fact, this gap can
be further expanded as follows. First, we can achieve length-dependent KDM
security [10], which means that the target family G can be taken to be the
family of all polynomial-size circuits whose size grows with their input and output
lengths via a fixed polynomial rate (e.g., the circuit size is quadratic in the input
and output lengths). This family is very powerful and it was shown to be rich

530 B. Applebaum

enough for most known applications of KDM security [10]2. (See Section 3 for
details.) In addition, in the case of CPA security (both in the public-key and
symmetric-key settings), we can weaken the requirement from the underlying
scheme and ask for KDM security with respect to projections with a single
output : namely, all Boolean functions f(sk1, . . . , skt) �→ b which output a single
bit of one of the keys, or its negation. This can be extended to the CCA setting
via the transformations of [9,15] (though in the public-key setting one has to
employ, in addition, non-interactive zero-knowledge proofs).

The relaxation to single-output projections also enables a liberal interface to
which we can easily plug previous constructions. For example, one can instantiate
our reduction with schemes that enjoy KDM security with respect to affine
functions, while almost ignoring technical details such as the underlying field
and its representation. (These details required some effort in previous works.
See the appendices in [14,10,13].) This, together with the simple proof of our
main theorem, allows to simplify the proofs of [10,13] for the existence of length-
dependent KDM secure encryption scheme under the Decisional Diffie-Hellman
(DDH) assumption [12], the Learning With Errors assumptions (LWE) [5], and
the Quadratic Residuosity (QR) assumption [13].

Given this completeness theorem, the current status of KDM security resem-
bles the status of other “complete” primitives in cryptography such as one-way
functions or oblivious transfer [32,19]: We do not know how to build these prim-
itives from generic weaker assumptions, however, any instantiation of them suf-
fices for an entire world of applications (i.e., all symmetric-key primitives in
the case of one-way functions, and generic secure-computation in the case of
oblivious transfer, cf. [22,23]).

Beyond length-dependent security. Although length-dependent KDM security
seems to suffice for most applications, one can strive for an even stronger notion
of security in which the KDM function class contains all functions (or equiv-
alently all functions computable by circuits of arbitrary polynomial size). It is
somewhat likely that any length-dependent secure scheme actually achieves full-
KDM security (see the discussion in [10]). Still, one may want to construct such
a scheme in a provably secure way. As a basic feasibility result, it was shown
in [10] that any fully homomorphic encryption scheme [20] which allows to en-
crypt the secret-key (i.e., “cyclic-secure”) is also full-KDM secure. In light of the
small number of FHE candidates [20,17], and our little understanding of this
notion, one may ask whether it is possible to relax this requirement and achieve
full-KDM security under weaker assumptions.

We make two simple observations regarding this question. First, we consider
the case of simulatable KDM security [10], in which it should be possible to
simulate an encryption of f(sk) given only the corresponding public-key in a
way that remains indistinguishable even to someone who knows the secret-key.

2 Most of the statements in [10] refer to the slightly weaker notion of Bounded KDM
security in which the circuit size grows only as a function of the input via a fixed
polynomial rate. However, as observed in [10, Sec. 6] their construction actually
satisfies the stronger definition of length-dependent KDM security.

Key-Dependent Message Security: Generic Amplification and Completeness 531

We show that in this setting the two notions: circular-secure FHE and full-KDM
are equivalent. Hence, achieving full-KDM security under a relaxed assumption
requires to use non-simulatable constructions.

Our second observation asserts that the bootstrapping technique of Gen-
try [20] can be used in the KDM setting as well (even for the case of non-
simulatable constructions). That is, if one can construct an encryption scheme
which guarantees KDM security with respect to circuits whose depth is only
slightly larger than the depth of the decryption algorithm, then this scheme is ac-
tually fully KDM secure. Unfortunately, all known amplification techniques [10,14]
including the ones in this paper, amplify KDM security at the cost of making the
decryption algorithm “deeper”. Still, we view this observation as an interesting
direction for future research.

1.2 Our Techniques

To formalize the question of KDM amplification, we define the notion of reduction
between KDM function families G ≤KDM F which means that any scheme that
provides KDM security with respect to F can be transformed (via a fully black-
box reduction) to a new scheme that satisfies KDM security with respect to G.
We describe a novel way to derive such KDM reductions based on the machinery
of randomized encoding of functions [29,7]. Before we explain this notion, let us
start with the simpler case of deterministic encoding.

Say that a function f deterministically encodes a function g if for every x the
output of f(x) “encodes” the output of g(x) in the sense that g(x) can be effi-
ciently computed based on f(x) and vice versa. That is, there are two efficiently
computable mappings S and R such that S(g(x)) = f(x), and R(f(x)) = g(x).
Suppose that we are given a scheme which provides KDM security with respect
to the encoding f , and we would like to immunize it against the function g. This
can be easily achieved by modifying the encryption scheme as follows: to encrypt
a message M we first translate it into the f -encoding by computing S(M), and
then encrypt the result under the original encryption scheme. Decryption is
done by applying the original decryption algorithm, and then applying the re-
covery algorithm R to translate the result back to its original form. Observe
that an encryption of g(sk) in the new scheme is the same as an encryption of
S(g(sk)) = f(sk) under the original scheme. Hence, the KDM security of the new
scheme with respect to g reduces to the KDM security of the original scheme
with respect to f .

This simple idea provides a direct reduction with very nice structure: any KDM
query for the new scheme is translated into a single KDM query for the original
scheme. This simple single-query-to-single-query translation leads to high level of
generality: the transformation is insensitive to the exactKDM setting (symmetric-
key/public-key and CPA/CCA), to the number of keys, and it can be used with
respect to large function families G andF as long as every function in G is encoded
by some function inF via a pair of universal mappings S and R. On the down side,
one may complain that security was not really amplified, as the function g and its
encoding f are essentially equivalent. It turns out that this drawback can be easily
fixed by letting f be a randomized encoding of g.

532 B. Applebaum

In the case of randomized encoding (RE), the function f(x; r) depends not
only on x but also on an additional random input r. For every fixed x, the
output of f(x; r) is now viewed as a distribution (induced by a random choice
of r) which should encode the value of g(x). Namely, there are two efficiently
computable randomized mappings S and R such that for every x: (1) the distri-
bution S(g(x)) is indistinguishable from f(x; r), and (2) with high probability
over the choice of r (or even with probability one) R(f(x; r)) = g(x). One can
view these conditions as saying that g(x) is encoded by a collection of functions
{fr(x)}r, where fr(x) = f(x; r).

Now suppose that our scheme is KDM secure with respect to the family
{fr(x)}r, then we can apply the above approach and get a scheme which satisfies
KDM security with respect to g. The only difference is that now the message
preprocessing step is randomized: To encrypt a message M first encode it by the
randomized mapping S(M), and then use the original encryption function. The
security reduction is essentially the same except that a KDM query for g in the
new scheme is emulated by an old KDM query for a randomly chosen function
fr. This idea can be easily extended to the case where all functions in G are
encoded by functions in F :

Theorem 2 (Informal). If F is an RE of G, then G ≤KDM F .

The crux of this theorem, is that, unlike deterministic encoding, randomized
encoding can represent complicated functions by collections of very simple func-
tions [29,30,7,6]. Specifically, by combining the above theorem with the REs
of [6], which, in turn, are based on Yao’s garbled circuit [34], we obtain our main
results (Thm. 1).

1.3 Comparison with BGK and BHHI

Our techniques are inspired by both [14] (BGK) and [10] (BHHI). We believe
that our approach inherits the positive features of each of these works, and sheds
new light on the way they relate to each other. Let us review the main ideas
behind these constructions and explain how they compare to our solution.

The BGK reduction. The starting point in [14] is an encryption scheme which
satisfies entropic KDM security with respect to F . Roughly speaking, this means
that KDM security should hold not only when sk is chosen uniformly from the
key space K = {0, 1}k but also when it is chosen uniformly from a smaller
domain K′, e.g., K′ = {0, 1}kε

. By relying on this notion, BGK shows that for
every efficiently computable injective mapping α : K′ → K, one can amplify
security from F to the class F ◦ α, i.e., with respect to functions f(α(sk)) for
every f ∈ F . The idea is to choose the key sk′ from K′ and employ the original
scheme with the key sk = α(sk′). This allows to translate a KDM query f(α(sk′))
for the new scheme into an entropic-KDM query f(sk) for the old scheme.

The deterministic encoding (DE) approach is inspired by the BGK approach,
and can be seen as a complementary solution. BGK extends a function f : K →
M to f ◦α : K′ →M by shrinking the key space (from K to K′), whereas in the

Key-Dependent Message Security: Generic Amplification and Completeness 533

DE approach f : K → M is extended to R ◦ f : K → M′ by padding messages
which effectively shrinks the message space (from M to M′ = R(M)).

As a result BGK enjoys a similar attractive security reduction with single-
query-to-single-query translation. This leads to flexibility with respect to the
KDM setting. Indeed, although the BGK approach is not fully general due to
its use of entropic-KDM security (a notion which seems stronger than standard
KDM security), it immediately generalizes to the CCA and the symmetric-key
settings, as long as the underlying scheme provides entropic-KDM security.

It should be mentioned that in our approach the amplification is achieved by
modifying the encryption algorithm, rather than the key-generation algorithm
as in BGK. This minor difference turns to have a considerable effect on the
amplification-gap. First, it allows to use fresh randomness in every application of
the encryption algorithm, and so the linkage between functions in G to functions
in F can be randomized. Indeed, this is exactly what allows us to exploit the
power of randomized encoding. In contrast, the BGK approach tweaks the key-
generation algorithm and so the relation between G to F is bounded to be
deterministic. In addition, since our modification happens in the encryption (and
decryption) phases, we can let the function class G grow not only with the
security parameter but also with the size of the messages. This leads to the
strong notion of length-dependent security, and in addition allows to achieve
KDM(t) where the number of keys t grows both with the message length and the
security parameter.

In contrast, the family G of BGK cannot grow with the message length, and
it can only contain a polynomial number of functions. This limitation prevents
it from being used in applications which require KDM security wrt larger func-
tions classes (e.g., secure realization of symbolic protocols with axiomatic proofs
of security). Furthermore, amplification for large number of keys can be achieved
only at the expense of putting more restrictions on the underlying scheme (i.e.,
simulatable KDM security). On the other hand, assuming these additional prop-
erties, the BGK approach can get KDM(t) for arbitrary unbounded t with respect
to some concrete function families (e.g., constant degree polynomials), whereas
in our approach t is always bounded by some fixed polynomial (in the security
parameter and message length)3. Finally, it is important to mention that the
BGK reduction treats G in a black-box way, while the randomized encoding
approach treats this class in a non-black-box way.

The BHHI reduction. The BHHI approach relies on a novel connection be-
tween homomorphic encryptions and KDM security. First, it is observed that in
order to obtain KDM security with respect to G it suffices to construct a scheme

3 In fact, we can achieve a slightly stronger notion. Assuming that the underlying
scheme satisfies KDM(t) security for arbitrary t’s (as in [12,5]), we get a KDM(t)

secure scheme where there exists an unbounded number of keys in the system, but
the arity of the KDM functions available to the adversary is polynomially bounded
(in the security parameter and message length). Still, these functions can be applied
to arbitrary subsets of the keys.

534 B. Applebaum

which provides both cyclic-security (i.e., KDM security with respect to the iden-
tity function) and homomorphism with respect to a function family G, i.e., it
should be possible to convert a ciphertext C = Epk(M) into C′ = Epk(g(M)) for
every g ∈ G. Indeed, the homomorphism property can be used to convert a ci-
phertext Epk(sk) into the ciphertext Epk(g(sk)), and so cyclic-security is amplified
to G-KDM security.

BHHI construct such an encryption scheme by combining a two-party secure
computation protocol with two messages (i.e., based on Yao’s garbled circuit [34])
with a strong version of oblivious transfer which satisfies an additional cyclic-
security property. The latter primitive is referred to as targeted encryption (TE).
The basic idea is to view the homomorphic property as a secure-computation
task in which the first party holds the message M and the second party holds
the function g. The cyclic nature of the TE primitive allows to implement this
homomorphism even when the input M is the secret-key. Finally, BHHI show
that TE can be constructed based on affine-KDM secure encryption scheme
which satisfies a strong notion of simulation: There exists a simulator which
given the public-key pk can simulate a ciphertext Epk(g(sk)) in a way which is
indistinguishable even for someone who holds the secret-key.

The BHHI construction seems conceptually different from our RE approach
(i.e., homomorphism vs. encoding). Moreover, the construction itself is not only
syntactically different, but also relies on different building blocks (e.g., TE). Still,
the RE construction shares an important idea with BHHI: The use of secure-
computation techniques. It is well known that REs are closely related to secure
multiparty-computation (MPC) protocols, and, indeed, the role of REs in our re-
duction resembles the role of MPC in BHHI. In both solutions at some point the
security reduction applies the RE/MPC to the function g in G. Furthermore,
both works achieve strong KDM security by instantiating the RE/MPC with
Yao’s garbled circuit (GC) — a tool which leads to both stand-alone RE con-
struction [6] and, when equipped with an OT, to a two-party secure-computation
protocol.

It should be emphasized, however, that the actual constructions differ in some
important aspects. While we essentially encrypt the whole GC-based encod-
ing under the underlying KDM encryption scheme, BHHI tweak the GC proto-
col with a cyclic-secure OT (i.e., TE). Pictorially, our underlying KDM-secure
scheme “wraps” the GC encoding, whereas in BHHI the KDM-secure primitive
is “planted inside” the GC protocol. This difference affects both generality and
simplicity as follows.

First, BHHI are forced to implement a KDM-secure OT, a primitive which
seems much stronger than standard KDM secure encryption schemes. For exam-
ple, KDM-secure symmetric-key encryption schemes can be constructed at the
presence of a random oracle [11] while OT protocols cannot [28]4. Moreover, as
we already mentioned, although TE can be based on several known affine-secure
KDM schemes (i.e., ones which enable strong simulation), the LPN assumption

4 It seems that a similar statement holds even for public-key KDM-secure schemes.
See [11,21].

Key-Dependent Message Security: Generic Amplification and Completeness 535

(with constant error-rate) is a concrete example under which symmetric-key en-
cryption scheme with KDM-security wrt affine functions exist, yet OT is not
known to exist. Furthermore, since BHHI send the garbled circuit in the clear,
it is not hard to show that the resulting scheme is not CCA-secure even if the
TE provides CCA security. Finally, the modification of the GC protocol leads to
a relatively complicated security proof.

2 Preliminaries

For a positive integer n ∈ N, let [n] denote the set {1, . . . , n}, and Un denote
the uniform distribution over {0, 1}n. A function ε(n) is negligible if it tends
to zero faster than 1/nc for every constant c > 0. The term efficient refers to
probabilistic machines that run in polynomial time in the security parameter.

Efficient functions and randomized functions. A randomized function f : {0, 1}∗×
{0, 1}∗ → {0, 1}∗ is a function whose second input is treated as a random input.
We write f(x; r) to denote the evaluation of f on deterministic input x and ran-
dom input r, and typically assume length regularity and efficient evaluation as
follows: there are efficiently computable polynomials m(n) and �(n) and an effi-
ciently computable circuit family

{
fn : {0, 1}n × {0, 1}m(n) → {0, 1}�(n)

}
which

computes the restriction of f to n-bit deterministic inputs. If the function is not
length regular, we assume that the circuit family is indexed by a pair of input
and output parameters (n, �), and require evaluation in time poly(n, �). Finally,
a deterministic function corresponds to the special case where m(n) = 0.

Function ensembles. A function ensemble is a collection of functions {fz}z∈Z
indexed by an index set Z ⊆ {0, 1}∗, where for each z the function fz has a
finite domain {0, 1}n(z) and a finite range {0, 1}�(z), where n, � : {0, 1}∗ → N.
By default, we assume that ensembles are efficiently computable, that is, the
functions n(z), �(z), as well as the function F (z, x) = fz(x) are computable
in time poly(|z|). Hence n(z), �(z) < poly(|z|). We also assume that |z| <
poly(n(z), �(z)).

Randomized encoding of functions. Intuitively, a randomized encoding of a func-
tion g(x) is a randomized mapping f(x; r) whose output distribution depends
only on the output of g. We formalize this intuition via the notion of
computationally private randomized encoding of [6], while adopting the orig-
inal definition from a non-uniform adversarial setting to the uniform setting
(i.e., adversaries are modeled by probabilistic polynomial-time Turing machines).
Consider a function g =

{
gn : {0, 1}n → {0, 1}�(n)

}
and a randomized function

f =
{
fn : {0, 1}n × {0, 1}m(n) → {0, 1}s(n)

}
, which are both efficiently com-

putable. We say that f encodes g, if there exist an efficient recovery algorithms
Rec and an efficient simulator Sim that satisfy the following:

536 B. Applebaum

– perfect correctness. For every x ∈ {0, 1}n, the error probabilities
Pr[Rec(1n, f(x, Um(n))) �= g(x)] and Pr[Rec(1n, Sim(1n, g(x))) �= g(x)] are
both zero5.

– computational privacy. For every efficient adversary A we have that

Pr[Af(·;U)(1n) = 1]− Pr[ASim(g(·))(1n) = 1] < neg(n),

where the oracles are defined as follows: Given x the first oracle returns
a sample from f(x; Um(|x|)) and the second oracle returns a sample from
Sim(1|x|, g(x)).

This notion is naturally extended to functions gn,� which are not length-regular
and are indexed by both input and output lengths. However, we always assume
that privacy is parameterized only with the input length (i.e., the adversary’s
running-time/distinguishing-probability should be polynomial/negligible in the
input length.) Note that, without loss of generality, we can assume that the
relevant output length � is always known to the decoder and simulator (i.e., it
can be always encoded as part of the output of fn,�).
Encryption schemes (syntax). An encryption scheme consists of three efficient
algorithms (KG, E, D), where KG is a key generation algorithm which given a
security parameter 1k outputs a pair (sk, pk) of decryption and encryption keys;
E is an encryption algorithm that takes a message M ∈ {0, 1}∗ and an encryption
key pk and outputs a ciphertext C; and D is a decryption algorithm that takes
a ciphertext C and a decryption key sk and outputs a plaintext M ′. We also
assume that both algorithms take the security parameter 1k as an additional
input, but typically omit this dependency for simplicity. Correctness requires
that the decryption error

max
M∈{0,1}∗

Pr
(sk,pk) R←KG(1k)

[Dsk(Epk(M)) �= M],

should be negligible in k, where the probability is taken over the randomness
of KG, E and D. For security parameter k, let Kk denote the space from which
decryption keys are chosen. Without loss of generality, we always assume that
Kk = {0, 1}k.

Following Goldreich [23], we note that the above definition corresponds to both
public-key and symmetric-key encryption schemes where the latter correspond
to the special case in which the decryption key sk and encryption key pk are
equal. As we will see, the difference between the two settings will be part of the
security definitions.

3 KDM-Security

Let E = (KG, E, D) be an encryption scheme with key space K = {Kk}.
Let t : N → N be a function. A t-ary KDM function ensemble is an efficient
5 Previous definitions require only that the first quantity is zero, however, all

known constructions (of perfectly-correct randomized encoding) satisfy the current
(stronger) definition.

Key-Dependent Message Security: Generic Amplification and Completeness 537

ensemble of functions F =
{
fk,z : Kt(k)k → {0, 1}∗

}
(k,z)

. We let Fk denote the

set
{
fk,z : Kt(k)k → {0, 1}∗

}
z
. An F -KDM Chosen-Ciphertext Attack (CCA) in

the public-key setting is defined in Fig. 1 as a game that takes place between a
challenger and an adversary A. The advantage of A when attacking a scheme E
is α(k) = Pr[A wins the KDM game]− 1

2 .

– Initialization. The challenger randomly chooses a bit b
R← {0, 1} and t =

t(k) key-pairs (sk1, pk1) . . . , (skt, pkt) by invoking KG(1k) for t times. The
adversary A can send a “public-key” query and get to see all the encryption
keys (pk1, . . . , pkt).

– Queries. The adversary A may adaptively make polynomially-many queries
of the following types:
• Encryption queries of the form (i, M) where i ∈ [t] and M ∈ {0, 1}∗.

The challenger responds with C
R← E(pki, M) if b = 1, and C

R←
E(pki, 0

|M|) if b = 0.
• KDM queries of the form (i, f) where i ∈ [t] and f ∈ Fk. The challenger

computes M = f(sk1, . . . , skt) and responds with C
R← E(pki, M) if b = 1,

and C
R← E(pki, 0

|M|) if b = 0.
• Decryption queries of the form (i, C) where i ∈ [t] and the string C

was not given as an answer of a previous encryption/KDM query. The
challenger responds with M = Dski(C) regardless of the value of b.

– Final phase. The adversary outputs a bit b′ ∈ {0, 1} and wins if b = b′.

Fig. 1. The F-KDM game is defined with respect to the function ensemble F = {Fk}
and is indexed by the security parameter k. The presence (resp., absence) of public-key
query captures the public-key (resp., symmetric-key) setting.

By restricting the power of the adversary in the KDM game (Fig. 1) we
get other KDM settings. Specifically, the symmetric-key setting corresponds to
adversaries of type sym who do not ask public-key queries, and the CPA setting
corresponds to adversaries of type CPA who do not make decryption queries.
Hence, we can classify KDM adversaries into one of the following four types :
(pub, CCA), (pub, CPA), (sym, CCA), and (sym, CPA). An adversary of type T that
conducts an F -KDM attack is denoted as (T,F)-adversary.

Definition 1. (KDM-secure encryption) Let T be a type, and F be a func-
tion ensemble. An encryption scheme is (T,F)-KDM secure if every efficient
(T,F) adversary has at most negligible advantage when attacking the scheme.

Interesting KDM functions ensembles. For every t = t(k) and for every
type T we consider the following ensembles:

– Selectors and projections. If the ensemble Fk contains all selector func-
tions {fj : (sk1, . . . , skt) �→ skj}j∈[t], we get the notion of clique security [12]

538 B. Applebaum

(which is stronger than circular security [16]), that is, the scheme is secure
even if the adversary sees encryptions of the form Epki

(skj) for every i, j ∈ [t].
Another elementary class that slightly generalizes the previous ones is the
class of all functions f : (sk) �→ v in which each output bit depends on (at
most) a single bit of the input sk = (sk1, . . . , skt). Namely, the j-th output
bit vj is either fixed to a constant or copies/flips an original bit of one of
the keys, i.e., vj ∈ {0, 1, ski,q, 1− ski,q}, where ski,q is the q-th bit of the
i-th secret key. We refer to this class as the class of projections and let Πt

k,�

denote the restriction of this class to functions of input length kt and output
length �(k). Projections is a proper subclass of the class of affine functions
L : Fkt2 → F

�(k)
2 .

– Polynomial-size circuits [10]. For polynomials p(·) and �(·), let Ctk,�,p
denote the class of all circuits C : {0, 1}kt → {0, 1}�(k) of size at most
p(k) + p(�). Security with respect to this class is denoted by (p, �)-bounded
circuit-size KDM security. A slightly stronger notion of security is p-length-
dependent KDM security which means that the scheme is KDM secure with
respect to Ctk,�,p for every polynomial �. While, ultimately one would like to
have KDM security with respect to all polynomial-size circuits (for arbitrary
polynomial), it seems that p-length-dependent security, say for quadratic p,
may be considered to be almost as powerful since it allows the adversary
to use larger circuits by encrypting longer messages. In particular, one can
represent essentially any polynomial-time computable function via padding.
That is, if a function f is not in the class since its circuit is too large, then a
“padded” version f ′ of f in which the output is padded with zeroes does fall
into the ensemble. Furthermore, in [10] it was shown that if p is sufficiently
large (e.g., the quadratic polynomial) then length-dependent security is suf-
ficient for axiomatic-security applications (i.e., it gives the ability to securely
instantiate symbolic protocols with axiomatic proofs of security).

The above definitions become stronger when the arity t grows. At one extreme,
one may consider a single scheme which satisfies any of the above definitions for
an arbitrary polynomial t(k), and at the other extreme one may consider the
case of t = 1, which is still non-trivial even for projection functions.
Reductions among KDM-ensembles. We say that a KDM function ensemble G
KDM-reduces to another KDM function ensemble F (in symbols G ≤KDM F) if
there exists a transformation which converts an encryption scheme E that is F -
KDM secure to an encryption scheme Ê which is G-KDM secure. Formally, such
a (black-box) reduction is composed of (1) (construction) an encryption scheme
Ê which is given an oracle access to the scheme E ; and (2) (security reduction)
an efficient algorithm B such that for any F -adversary A which attacks E with
advantage α, the G-adversaryBA,E attacks the scheme Ê with a similar advantage
(up to a negligible loss). This definition can be instantiated with respect to all
four different types. We say that the reduction is type-preserving if BA,E is always
of the same type as A (i.e., B always ask the same type of queries that A asks in
the KDM game.) Type preserving reduction extends KDM-security while being
insensitive to the concrete setting which is being used. Formally,

Key-Dependent Message Security: Generic Amplification and Completeness 539

Lemma 1 (KDM-reductions). Suppose that the KDM function ensemble G
KDM-reduces to the ensemble F via a type-preserving reduction (Ê ,B). For every
T ∈ {pub, sym}×{CCA, CPA}, if the encryption scheme E is (T,F)-KDM secure
then the scheme ÊE is (T,G)-KDM secure.

4 Reductions and Completeness Results

4.1 KDM Reductions via Randomized Encoding

Let F = {fk,z} and G = {gk,w} be a pair of KDM function ensembles with the
same arity t = t(k). We say that F encodes G if every function g(x) in G has a
randomized encoding f(x; r) such that for every fixing of the random string r, the
resulting function fr(x) is in F . More formally, the evaluation function Gk(z, x)
of G should have a randomized encoding Fk((z, x); r) such that for every fixing
of r and index z, the function Fk,z,r(x) = F (k, z, x; r) corresponds to a function
fk,w in F , where the mapping from (z, r) to w should be efficiently computable in
poly(k) time. Note that this means that the simulator and decoder are universal
for all indices z, and depend only on the value of k.

Theorem 3 (main theorem). Suppose that the KDM function ensemble F
encodes the KDM function ensemble G. Then, G KDM-reduces to F via a type-
preserving reduction.

To prove the theorem we need to describe a construction and a security reduction.
From now on, let Sim and Rec be the universal simulator and recovery algorithm
which establish the encoding of G by F .

Construction 4. Given oracle access to the encryption scheme E = (KG, E, D),
we define the scheme Ê as follows

K̂G(1k) = KG(1k) Êpk(M) = Epk(Sim(M)) D̂sk(C) = Rec(Dsk(C)),

where all algorithms (i.e., encryption, decryption, simulator and recovery) get
the security parameter 1k as an additional input.

It is not hard to see that the decryption error of the scheme Ê is the same as
the decryption error of E , as an improper decryption of Êpk(M) happens only if

Epk(M ′) is improperly decrypted where M ′ R← Sim(M).
We show that the security of Ê can be based on that of E . Given an oracle

access to a (T,G) adversary A that attacks Ê , we define a (T,F) adversary B
that attacks E by randomly choosing one of two strategies B0 and B1.

Reduction 5 (The adversary BA,E). Toss a coin σ
R← {0, 1}. If σ = 1 invoke

the following adversary B1:

– Initialization: B invokes A. If A asks for the encryption keys then B makes
a similar query and passes the answer to A.

540 B. Applebaum

– Encryption query: If A makes an encryption query (i, M), for i ∈ [t] and
M ∈ {0, 1}∗, then B samples M ′ = Sim(M), sends (i, M ′) as an encryption
query (wrt to E) and passes the answer of the challenger to A.

– KDM query: If A makes a KDM query (i, g), for i ∈ [t] and g ∈ G, then
the adversary B does the following: She uniformly chooses randomness r
for the randomized encoding f(·; r) of g(·), and asks the KDM query (i, fr)
where fr(·) = f(·; r) which, by our assumption, is in F . The answer of the
challenger is being sent to A.

– Decryption query: If A makes a decryption query (i, C), then B checks
that it is legal (by inspecting all previous encryption/KDM queries), and if
so, (1) passes the same decryption query to the challenger, (2) applies the
recovery algorithm Rec to the result, and (3) sends it back to A.

– Termination: B terminates with the same output of A.

If σ = 0 then invoke the adversary B0. This adversary is similar to B1 except that
encryption and KDM queries of A are both translated into encryption queries as
follows: given an encryption query of A of the form (i, M) (resp., KDM query
of the form (i, g)), the adversary B0 samples M ′ = Sim(0�) and asks for the
ciphertext Epki

(M ′), where � is the length of M (resp., output length of g)6. At
the end, B0 flips the output of A and terminates.

Note that the above reduction is indeed type-preserving. Let us first focus on the
adversary B1. If the challenge bit b is 1 (i.e., when the challenger is in the “real-
mode”), then the difference between the emulated view of A and the view of A in
the actual KDM game, is only due to the difference in the way KDM queries are
answered. In the real game answers to KDM queries are computed properly as
Êpki

(g(sk)) = Epki
(Sim(g(sk))), whereas in the emulated game they are computed

by Epki
(f(sk; U)). However, this difference should not be noticeable due to the

privacy of the randomized encoding. Formally, let αb(k) (resp., βσ,b(k)) denote
the probability that A (resp., Bσ) guesses the challenge bit when it takes the
value b. Then,

Lemma 2. |β1,1(k)− α1(k)| ≤ neg(k).

Proof. We define the following distinguisher D which, given an oracle access to
either F (·; U) or to Sim(G(·)), attempts to distinguish between the two. The
adversary D emulates the challenger with challenge bit b = 1. It generates a
key vector (ski, pki)i∈[t] by executing the key-generation algorithm KG(1k) for t
times. Then D invokes A. If A asks a KDM query (i, gz) then D calls its oracle
with the value G(z, sk1, . . . , skt). Let M denote the answer of the oracle. The dis-
tinguisher computes the ciphertext C = Epki

(M) and sends the ciphertext C to
A. If A asks other types of queries such as public-key queries, encryption queries,
and decryption queries, the distinguisher D answers them properly exactly as
the real challenger does when it’s in the real mode b = 1. (For the case of a
decryption query (i, C), the distinguisher checks that it is legal by inspecting all

6 Recall that the output length of g ∈ G is given as part of its description.

Key-Dependent Message Security: Generic Amplification and Completeness 541

previous KDM/encryption queries, and if so, sends Dski
(C).) The distinguisher

halts with output 1 if and only if A outputs 1.
Note that: (1) If D gets an oracle access to Sim(G(·)) then the view of A is

distributed exactly as in the real game and so in this case D outputs 1 with
probability α1(k); (2) If D gets an oracle access to F (·; U) then the view of A is
distributed exactly as in the above reduction when B1 emulates the game with
b = 1, and so in this case D outputs 1 with probability β1,1(k). Hence, by the
privacy of the encoding, it follows that |β1,1(k)− α1(k)| ≤ neg(k). !

We would like to argue now that a similar thing happens in the “fake” mode
when b = 0; namely, that β1,0 is close to α0. However, in this case real-game
KDM queries are answered with Êpki

(0�) = Epki
(Sim(0�)), whereas in the game

emulated by B1 these queries are answered by Epki
(0s), where � = |g(sk1, . . . , skt)|

and s = |f(sk1, . . . , skt; U)|. Although the privacy of the encoding ensures that
the plaintexts are of the same length, i.e., s = |Sim(0�)|, the actual distributions
of the plaintexts may differ, and so it may be the case that the two views are
distinguishable. For this reason we need the adversary B0 which breaks the
standard (non-KDM) security of E whenever such a gap exists. Formally, we
will show that the average success probability of B1 and B0 is roughly half the
success probability of A. To this aim we prove the following

Lemma 3. β0,1(k) = α0(k) and β0,0(k) + β1,0(k) = 1.

Proof. First, we note that when the challenge bit b = 1, the view of A as em-
ulated by B0 is identical to the view of A in the fake mode of the real game
(b = 0). Indeed, in both cases a KDM query (i, g) (resp., an encryption query
(i, M)) is answered with Êpki

(0|�|) = Epki
(Sim(0�)) where � is the output length

of g (resp., � = |M |). Hence, β0,1, the probability that B0 outputs 1 when the
challenger is in the real mode, is exactly the probability that A outputs 0 in
the real game when the challenger is in the fake mode. (Recall that B flips the
output of A). The first equation follows.

To prove the second equality we first claim that when the challenge bit b is
0, the view of A when emulated by B0 is identical to the view of A as emulated
by B1. Indeed, the only difference is that in the first case KDM queries (i, g) are
answered by E(0|Sim(g(sk))|), while in the second case the answer is E(0|f(sk;r)|).
The output lengths of f and Sim(g(·)) are fixed (for any g ∈ G) and therefore
should be equal (otherwise the privacy of the encoding is violated), and so the
claim follows. The claim implies that β0,0(k) + β1,0(k) = 1, as B1 outputs the
outcome of A, and B0 flips it. !

By combining the two lemmas (2 and 3), it follows that the advantage β =
(β1,1+β1,0+β0,0+β0,1)/4− 1

2 of B is at least 1
2α−neg(k) where α = 1

2 (α1+α0)− 1
2

is the advantage of A. Hence, we established the correctness of the reduction.

Remark 1. Thm. 3 holds even if the encoding itself makes use of the underlying
encryption scheme E as long as this usage is done in a fully black-box way
(the same holds for any cryptographic primitive which can be based on E via a

542 B. Applebaum

black-box reduction e.g., one-way function). More precisely, our results hold (i.e.,
lead to black-box KDM reduction/construction) as long as the security of the
encoding reduces to the security of the underlying primitive (i.e., E) via a black-
box reduction, and as long as the simulator and decoder can be implemented
given a black-box access to the underlying primitive. Similarly, such a black box
access can be given to the algorithm which maps fixed index/randomness pairs
(z, r) to the index w of the function gk,w = Gk,z,r(x).

4.2 Completeness of Projections

In [6] it is shown that Yao’s garbled circuit technique allows to encode any
efficiently computable function by a decomposable encoding in which every bit
depends on at most a single bit of the deterministic input. By combining this
fact with Thm. 3 we get the following:

Proposition 1 (Completeness of projections). For every polynomials p(·),
t(·) and �(·), there exists a polynomial q(·) for which

Ctk,�,p ≤KDM Πt
k,q, Ctk,p ≤KDM Πt

k, (1)

where Ctk,�,p is the t-ary ensemble of p-bounded circuits of output length �, Πt
k,q

is the t-ary ensemble of projections of output length q, Ctk,p =
⋃
a∈N

Ctk,ka,p, and
Πt
k =

⋃
a∈N

Πt
k,ka . Moreover, the reductions are type preserving.

Hence, one can upgrade KDM security from (almost) the weakest KDM function
ensemble to the very powerful notion of p-length-dependent KDM security.

Proof. By [6] any efficiently computable circuit family {gk(x)} of circuit com-
plexity a(k) can be encoded by a uniform computationally-private perfectly-
correct encoding {ĝk(x; r)} with the following properties: (1) The simulator
and decoder use a black-box access to a symmetric encryption (equivalently,
to a one-way function); (2) For every fixed randomness r, the resulting function
ĝk,r(x) = ĝk(x; r) is a projection function of output length a(k)1+ε, where ε > 0
is an arbitrary small constant. (3) The mapping from the circuit of gk to the
circuit of ĝk,r is efficiently computable given a black-box access to the symmetric
encryption scheme.

Let {Fk} be the universal (and uniform) circuit family for the mapping (x, z) �→
y where x ∈ ({0, 1}k)t, the string z is a description of a circuit Cz : ({0, 1}k)t →
{0, 1}�(k) of size p(k)+p(�(k)), and the string y ∈ {0, 1}�(k) is Cz(x). By applying
the encoding from [6] to {Fk} it follows that Ctk,�,p is encoded by Πt

k,q where q is
polynomial in the circuit size of Fk. The first part of the proposition now follows
from Thm. 3.

The second part follows similarly, except that now we consider the (non-
regular) function {Gk,�} which computes the same mapping of Fk but for circuits
Cz whose output length � is given as an additional index, and not as a fixed
polynomial in k. Again, by applying the encoding from [6] to {Gk} it follows
that Ctk,p is encoded by Πt

k, and the claim follows from Thm. 3. !

Key-Dependent Message Security: Generic Amplification and Completeness 543

In the case of CPA KDM security, one can actually derive KDM-security with
respect to projections of arbitrary output length (i.e., Πt

k) from single-output
projections Πt

k,1.

Lemma 4 (Completeness of single-output projections for CPA-KDM).
For every polynomial t(·), we have Πt

k ≤KDM Πt
k,1, where the reduction holds for

both (sym, CPA) and (pub, CPA) types.

Proof. The proof follows by simple concatenation: the new encryption/decryption
algorithms encrypts/decrypts the message/ciphertext by applying the original
encryption/decryption algorithm in a bit by bit manner. Hence, a KDM query
in Πt

k,ka for the new scheme can be emulated by ka KDM queries in Πt
k,1 for

the original scheme. !

As shown in [9], we can use the standard encrypt-then-MAC transformation to
upgrade the security of a scheme that satisfies (sym, CPA)-KDM security into a
scheme that satisfies (sym, CCA)-security with respect to the same KDM class.
A similar result was proven for the public-key setting by [15] via the Naor-Yung
double-encryption paradigm (which relies on the existence of NIZK). Hence, by
Proposition 1 and Lemma 4, we have:

Corollary 1 (KDM Collapse). For every polynomials t and p, there exists a
Πt
k,1-KDM secure scheme if and only if there exists a t-ary p-length-dependent

KDM secure encryption scheme. This holds unconditionally for the KDM types
(sym, CPA), (sym, CCA), and (pub, CPA)}, and it holds for (pub, CCA) assuming
the existence of non-interactive zero-knowledge proof system for NP.

We remark that all the known constructions of affine-KDM secure encryption
schemes [12,5,13] can be adapted to yield KDM security with respect to single-
output projections (see the Appendix of the full version of this paper [4]). Hence,
we get p-length-dependent (pub, CPA)-KDM (resp., (sym, CCA)) based on the
DDH, LWE, or QR assumptions (resp., LPN assumption), which can be boosted
into (pub, CCA)}-KDM assuming the existence of NIZK for NP.

5 On Full KDM Security

In this section, we study the possibility of constructing a scheme which satisfies
KDM security for the class of all functions. In [10] it was shown that such a
scheme can be constructed based on the existence of cyclic-secure fully homo-
morphic encryption (FHE) [20]. We show that a similar assumption is inherently
required for full KDM security which is also simulatable. For simplicity, we focus
on the case of arity t = 1 and single-query adversaries.

A public-key encryption scheme E = (KG, E, D) is simulatable F -KDM se-
cure if there exists a polynomial-time simulator S such that for every (sk, pk) ∈
KG(1k), and every circuit family fk ∈ Fk of size poly(k), the ensemble S(pk, fk)
is indistinguishable from Epk(fk(sk)). (Note that this means that the distin-
guisher holds the secret-key sk.) The notions of simulatable circular-security and

544 B. Applebaum

simulatable full-KDM security correspond to the two extreme cases where F con-
tains only the identity function, and F contains all functions.

An FHE allows to translate encryptions of a message M into an encryption of
a related message h(M) for any polynomial-size circuit h. More formally, we say
that E is fully homomorphic if there exists an efficient algorithm Eval such that
for every (sk, pk) ∈ KG(1k), every circuit family {hk} of size poly(k), and every
sequence of messages Mk ∈ {0, 1}poly(k), the ensemble Eval(pk, hk, Epk(Mk)) is
computationally indistinguishable from the ensemble Epk(hk(Mk)).

In [10], it was shown that if an encryption scheme is both simulatable circular-
secure and fully-homomorphic then it is also simulatable fully-KDM secure. We
show that the other direction holds as well, and so the two notions are equivalent.

Proposition 2. Any simulatable fully-KDM secure encryption scheme is also
fully-homomorphic circular-secure.

Proof. Given a simulatable fully-KDM secure encryption scheme (KG, E, D) with
simulator S, we define Eval(pk, h, C) by invoking S on the pair (pk, fh,C) where
fh,C is the mapping sk �→ h(Dsk(C)). Note that the circuit size of fh,C is poly-
nomial in the circuit size of h (since D is efficient). Also, by definition, we have
for every (sk, pk) ∈ KG(1k), sequence {Mk} and sequence {hk},

Eval(pk, hk, Epk(Mk)) ≡ S(pk, fhk,Epk(Mk))
c≡ Epk(hk(Dsk(Epk(Mk))))
≡ Epk(hk(Mk)),

where ≡ (
c≡) denotes statistical (computational) indistinguishability. !

Next, we show that if one removes the simultability requirement then any encryp-
tion scheme (KG, E, D) which provides KDM security with respect to a function
which is slightly stronger than its decryption algorithm D, is actually fully-KDM
secure. This is done by observing that Gentry’s “bootstrapping technique” can
be adapted to the KDM setting.

Proposition 3. Let T ∈ {(pub, CPA), (sym, CPA)}, and let E = (KG, E, D) be T -
KDM secure encryption with respect to single-output projections and with respect
to the function family Fk = {fC1,C2 : sk �→ NAND(Dsk(C1), Dsk(C2))}, where
C1, C2 ranges over {0, 1}p(k) and p(k) is the length of an encryption of one-bit
message under secret-key of length k. Then, E is fully KDM secure of type T .

Proof (Sketch). In the CPA setting it suffices to prove full KDM security with
respect to all circuits of single output. We show how to convert an attacker which
sends arbitrary KDM queries into one which uses only queries from Fk. Let h be
a circuit of size t, which is wlog composed of NAND gates, and let hi denote the
function computed by the i-th gate of h, where gates are ordered under some
topological ordering. We translate a KDM query for h into t KDM calls to Fk by
traversing the circuit from bottom to top in a gate by gate manner preserving
the following invariant: The i-th query will be answered by a ciphertext Ci such

Key-Dependent Message Security: Generic Amplification and Completeness 545

that, if the oracle is in the real mode Ci = Epk(hi(sk)) and if it is in the fake
mode Ci = Epk(0). For an input gate, this can be achieved directly by making
a single KDM query with a single-output projection. To do this for an internal
gate h� whose input wires are connected to hi and hj for some i, j < �, we use
a KDM query to fCi,Cj . !

Acknowledgement. We thank Iftach Haitner, Yuval Ishai, and the anonymous
referees for their helpful comments.

References

1. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 20(3), 395 (2007)

2. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation
to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 403–422. Springer, Heidelberg (2010)

3. Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness and completeness of formal
encryption: The cases of key cycles and partial information leakage. Journal of
Computer Security 17(5), 737–797 (2009)

4. Applebaum, B.: Key-dependent message security: Generic amplification and com-
pleteness theorems. Cryptology ePrint Archive, Report 2010/513 (2010)

5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Journal of Computional Complexity 15(2),
115–162 (2006)

7. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM Journal
on Computing 36(4), 845–888 (2006)

8. Backes, M., Dürmuth, M., Unruh, D.: OAEP is secure under key-dependent mes-
sages. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 506–523.
Springer, Heidelberg (2008)

9. Backes, M., Pfitzmann, B., Scedrov, A.: Key-dependent message security under
active attacks - BRSIM/UC-soundness of symbolic encryption with key cycles. In:
CSF 2007 (2007)

10. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010)

11. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003)

12. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

13. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010)

14. Brakerski, Z., Goldwasser, S., Kalai, Y.: Circular-secure encryption beyond affine
functions. In: TCC 2011 (2011)

546 B. Applebaum

15. Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure
against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer,
Heidelberg (2009)

16. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

17. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

18. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: Proc. of STOC, pp. 542–552 (1991)

19. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the Association for Computing Machinery 28 (1985)

20. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of STOC,
pp. 169–178 (2009)

21. Gertner,Y.,Kannan,S.,Malkin,T.,Reingold,O.,Viswanathan,M.:The relationship
between public key encryption and oblivious transfer. In: Proc. of FOCS (2000)

22. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge (2001)

23. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, Cambridge (2004)

24. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

25. Haitner, I., Holenstein, T.: On the (Im)Possibility of key dependent encryption. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 202–219. Springer, Heidelberg
(2009)

26. Halevi, S., Krawczyk, H.: Security under key-dependent inputs. In: ACM
CCS 2007, pp. 466–475 (2007)

27. Hofheinz, D., Unruh, D.: Towards key-dependent message security in the stan-
dard model. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 108–
126. Springer, Heidelberg (2008)

28. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, Heidelberg (1990)

29. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In: Proc. of FOCS, pp. 294–
304 (2000)

30. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect
randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256.
Springer, Heidelberg (2002)

31. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: Proc. of STOC, pp. 427–437 (1990)

32. Rabin, M.: Digitalized signatures and public key functions as intractable as factor-
ing. Tech. Rep. 212, LCS, MIT (1979)

33. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

34. Yao, A.C.: How to generate and exchange secrets. In: Proc. of FOCS, pp. 162–167
(1986)

Unbounded HIBE and Attribute-Based
Encryption

Allison Lewko� and Brent Waters��

University of Texas Austin
{alewko,bwaters}@cs.utexas.edu

Abstract. In this work, we present HIBE and ABE schemes which are
“unbounded” in the sense that the public parameters do not impose
additional limitations on the functionality of the systems. In all previous
constructions of HIBE in the standard model, a maximum hierarchy
depth had to be fixed at setup. In all previous constructions of ABE in
the standard model, either a small universe size or a bound on the size
of attribute sets had to be fixed at setup. Our constructions avoid these
limitations. We use a nested dual system encryption argument to prove
full security for our HIBE scheme and selective security for our ABE
scheme, both in the standard model and relying on static assumptions.
Our ABE scheme supports LSSS matrices as access structures and also
provides delegation capabilities to users.

1 Introduction

Hierarchical Identity-Based Encryption (HIBE) systems [29,26] and Attribute-
Based Encryption (ABE) systems [40] offer users more levels of flexibility in
sharing and managing sensitive data than are provided by Identity-Based and
Public Key Encryption systems. In a hierarchical identity-based encryption
scheme, user identities are arranged in an organizational hierarchy. Anyone can
encrypt a message to any identity in the system using the public parameters. An
identity at level k in the hierarchy can use its secret key to delegate secret keys
to its subordinates, but cannot decrypt any messages which are intended for re-
cipients other than itself and its subordinates. In a Key-Policy Attribute-Based
Encryption (KP-ABE) system [28], users have secret keys which are associated
with access policies over a universe of attributes and ciphertexts are associated
with sets of attributes. A user can decrypt a message encrypted to a set of
attributes S only if S satisfies the access policy of the user’s key.

Both HIBE and ABE systems are designed to accommodate certain changes
in the needs of users over time, but current constructions have some inher-
ent limitations. For instance, new users can enter an HIBE system and collect
� Supported by National Defense Science and Engineering Graduate Fellowship.

�� Supported by NSF CNS-0915361, and CNS-0952692, the MURI program under
AFOSR Grant No: FA9550-08-1-0352. Department of Homeland Security Grant
2006-CS-001-000001-02 (subaward 641), a Google Faculty Research award, and the
Alfred P. Sloan Foundation.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 547–567, 2011.
c© International Association for Cryptologic Research 2011

548 A. Lewko and B. Waters

secret keys without requiring any change to the public parameters or the keys
of users already present. However, for all previous constructions in the standard
model, the identities of new users must fit within the hierarchy depth speci-
fied by the public parameters. More precisely, the size of the public parameters
grows linearly with the maximum depth of the hierarchy, and it is impossible
to add new levels to the hierarchy once the public parameters are fixed. In the
ABE setting, the particular access policies and attribute sets employed by users
may change over time, but current constructions in the standard model do not
allow complete versatility in the choice of attributes and policies once the pub-
lic parameters have been set. In “small universe” constructions (e.g. [28,31]), a
polynomially sized universe of attributes must be fixed at setup, and the size
of the public parameters grows linearly with the size of the chosen attribute
universe. In “large universe” constructions (e.g. [28]), the attribute universe is
exponentially large, but the size of a set S used for encryption is bounded by
a parameter n which is fixed at setup. The size of the public parameters grows
linearly with n.

This places an undesirable burden on someone wishing to deploy an HIBE or
ABE system to be used in practice. If the setup parameters are chosen to be
too small, the system will not achieve the desired longevity and will need to be
completely re-initialized when users exhaust its overly restrictive structure. If
the setup parameters are chosen to be too large, then the public parameters of
the system will be needlessly large and this will cause unnecessary inefficiency.

Removing these restrictions from previous approaches appears to be quite
challenging. For example, many standard model HIBE constructions employ
structures similar to the Boneh-Boyen HIBE in [9] (e.g. [11,10,45,34] fall roughly
into this framework). At a high level, these systems all rely on hash functions
H which map identity vectors to group elements in a particular way. More
specifically, we suppose that a user at level j in the hierarchy is associated
with an identity vector (I1, . . . , Ij). The hash function H uses d fixed group
elements u1, . . . , ud in a bilinear group G of order p (for example). Upon re-
ceiving an identity vector (I1, . . . , Ij) as input, H somehow chooses k vectors
v1 = (v1

1 , . . . , v1
d), . . . , v

k = (vk1 , . . . , vkd) ∈ Zdp, where k is a function of j and the
maximum depth of the hierarchy. In particular, k will be strictly less than d. It
then outputs group elements of the form(

u
v1
1

1 · uv
1
2

2 · · ·uv
1
d

d

)
, . . . ,

(
u
vk
1

1 · uv
k
2

2 · · ·uv
k
d

d

)
.

In forming the secret keys or ciphertexts, these group elements are typically each
raised to the same random exponent in Zp.

If we try to apply this approach without bounding the maximum depth of the
hierarchy, then for some identity vectors, we will need to produce ≥ d samples
of the form above, and each will be raised to the same exponent s ∈ Zp. This
causes insecurity - since our vectors v1, . . . , vk reside in a d-dimensional space,
most collections of d of them will be linearly independent, and will span Zdp. This
will allow an attacker to create a new sample

Unbounded HIBE and Attribute-Based Encryption 549

(
u
v∗1
1 · uv

∗
2

2 · · ·uv
∗
d

d

)s
for any vector (v∗1 , . . . , v∗d) that it wants, by taking its received samples, raising
them to appropriate powers, and multiplying the results. For this reason, achiev-
ing unbounded HIBE systems by relying on these sorts of hash functions seems
unlikely.

Our Contribution. Using new techniques, we obtain “unbounded” HIBE and
ABE schemes. Our HIBE scheme can accommodate arbitrary hierarchy depths
from public parameters which consist of only a constant number of group ele-
ments. This eliminates the need to decide maximum hierarchy depth at setup
and reduces the size of the public parameters. We prove our scheme fully secure
in the standard model, relying on static, generically secure assumptions in com-
posite order bilinear groups. Our ABE scheme has a large attribute universe and
imposes no bound on the size of attribute sets used for encryption. It also has
public parameters which are a constant number of group elements. It supports
LSSS matrices as access structures, and additionally provides delegation capa-
bilities to users. Our ABE scheme is proven selectively secure1 from the same
static, generically secure assumptions in composite order bilinear groups.

Our Techniques. We overcome the limitations of previous constructions by em-
ploying a secret-sharing technique and introducing fresh “local” randomness at
each level of the keys and ciphertexts. Thus, instead of needing to create too
many samples from a bounded dimensional vector space with the same random-
ness, we will be creating many samples which each have new randomness. This
avoids the insecurity of the previous approach described above.

To create a secret key for a user in our HIBE and ABE systems, we first split
the master secret into shares that will be associated with the components of the
user’s identity vector or the rows of its access matrix. Each share is then blinded
by randomness which is freshly chosen for each share and links the share to its
corresponding identity or attribute.

The main obstacle to proving the security of our schemes is the low amount of
entropy provided by the short public parameters. This poses a challenge for both
partitioning proof techniques and the more recently introduced technique of dual
system encryption [45]. To successfully execute a partitioning proof, we would
need to program the public parameters to allow cancelations when the simulator
attempts to make a certain key or keys. However, the small number of degrees of
freedom available in the public parameters make it difficult to program in keys
of arbitrary depth. To use a dual system encryption proof, we must execute an
information-theoretic argument in a low entropy context - this is a challenge, but
a surmountable one. We ultimately accomplish this by introducing a nested dual
system encryption approach which allows us to make our information-theoretic

1 This is a weaker model of security where the attacker must specify what it will be
challenged on before seeing the public parameters.

550 A. Lewko and B. Waters

argument in a very localized context, where the limited entropy of the public
parameters is sufficient.

In a dual system encryption scheme, ciphertexts and keys can take two forms:
normal and semi-functional. Normal keys can decrypt both normal and semi-
functional ciphertexts, while semi-functional keys can only decrypt normal ci-
phertexts. Security is proven through a hybrid argument over a sequence of
games, where first the challenge ciphertext is changed to semi-functional, and
then the keys are changed to semi-functional one by one. At the end of this
process, the simulator does not need to produce keys and ciphertexts which
decrypt properly, and now security can be proven directly. However, we must
avoid a potential paradox: at the point in the game sequence where a key is
being changed to semi-functional, the simulator should not be able to test the
nature of the key for itself by testing decryption on a semi-functional ciphertext.
This can be enforced with nominal semi-functionality, meaning that if the sim-
ulator tries to make a semi-functional ciphertext which can be decrypted by the
key of unknown type, then the key, ciphertext pair will actually be correlated
so that decryption will succeed regardless of semi-functionality. In other words,
even if semi-functional terms are present, they will cancel out upon decryption
with the semi-functional ciphertext and hence be undetectable to the simulator.
This nominal semi-functionality should be hidden from an attacker who cannot
request keys capable of decrypting the ciphertext it receives.

The limited entropy of the public parameters in our systems does not enable
us to hide nominal semi-functionality from the attacker if we try to change
a key from normal to semi-functional in a single step. To overcome this, we
introduce the concept of ephemeral semi-functionality for keys and ciphertexts.
Ephemeral semi-functionality for keys is a temporary state which serves as an
intermediate step between normalcy and semi-functionality. Ephemeral semi-
functionality for ciphertexts is a temporary state of enhanced semi-functionality
- ephemeral semi-functional keys can still decrypt semi-functional ciphertexts,
but ephemeral semi-functional ciphertexts can only be decrypted by normal
keys. Our proof employs a nested hybrid structure, where first the ciphertext is
changed to semi-functional, then one key at a time is first changed to ephemeral
semi-functional, then the ciphertext is changed to ephemeral semi-functional,
and then the single key and ciphertext are both changed to semi-functional.

We note that a key first becomes incapable of decrypting ciphertexts when
both are ephemeral semi-functional, and there is only one ephemeral semi-
functional key at a time. This allows us to employ a information-theoretic argu-
ment to hide nominality in a more local context, where we need only be concerned
with a single key. Even with this nested approach, accomplishing the game tran-
sitions with low entropy is still an intricate process - we employ additional inner
hybrid steps to gradually change the distributions of keys and ciphertexts. In
the KP-ABE setting, we also change to the selective security model.

Related Work. Identity-Based Encryption was conceived by Shamir in [41] and
first constructed by Boneh and Franklin [12] and Cocks [23]. These were proven
secure in the random oracle model. Canetti, Halevi, and Katz [16] and Boneh

Unbounded HIBE and Attribute-Based Encryption 551

and Boyen [9] then provided systems which were proven selectively secure in the
standard model. Fully secure solutions in the standard model were later provided
by Boneh and Boyen [10] and Waters [44]. The Waters system was efficient and
proven from the well-established decisional Bilinear Diffie-Hellman assumption,
but had public parameters consisting of O(λ) group elements, where λ is the
security parameter. The system provided by Gentry [24] had short public pa-
rameters and was proven secure in the standard model, but relied on a “q-type”
assumption (meaning that the number of terms in the assumption depends on the
number of queries q made by an attacker). Using dual system encryption, Waters
[45] provided an efficient IBE system with short public parameters proven fully
secure under the decisional linear and decisional bilinear Diffie-Hellman assump-
tions. In the random oracle model, additional schemes were provided by Boneh,
Gentry, and Hamburg [13] under the quadratic residuosity assumption and by
Gentry, Peikert, and Vaikuntanathan [25] under lattice-based assumptions.

Hierarchical Identity-Based Encryption was first introduced by Horwitz and
Lynn [29] and constructed by Gentry and Silverberg [26] in the random oracle
model. Selectively-secure constructions in the standard model were then pro-
vided by Boneh and Boyen [9] and Boneh, Boyen, and Goh [11]. The scheme of
Boneh, Boyen, and Goh achieved short ciphertexts (ciphertext size independent
of the hierarchy depth). Gentry and Halevi gave a fully secure construction for
polynomial depth, relying on a complex assumption. Waters [45] provided a fully
secure scheme from the decisional linear and decisional bilinear Diffie-Hellman
assumptions. Lewko and Waters [34] provided a construction with short cipher-
text, also achieving full security from static assumptions. Lattice-based HIBE
systems were constructed by Cash, Hofheinz, Kiltz, and Peikert [17] and Agrawal,
Boneh, and Boyen [1]. Agrawal, Boneh, and Boyen [2] constructed a lattice HIBE
scheme where the dimension of the delegated lattices does not grow with the lev-
els of the hierarchy. The lattice systems are proven either secure in the random
oracle model or selectively secure in the standard model. Chatterjee and Sarkar
[20] defined a couple of new security models for HIBE, and also suggested an
HIBE system in a new, much weaker security model which can support arbitrary
depths (i.e. a maximum depth is not fixed at setup). However, this system does
not achieve even selective security - the authors point out that there is a simple
attack against it in the standard selective security model.

Attribute-Based Encryption was introduced by Sahai and Waters [40]. Sub-
sequently, Goyal, Pandey, Sahai, and Waters [28] defined two forms of ABE:
Key-Policy ABE (where keys are associated with access policies and ciphertexts
are associated with sets of attributes) and Ciphertext-Policy ABE (where ci-
phertexts are associated with access policies and keys are associated with sets
of attributes). Several constructions of selectively secure KP-ABE and CP-ABE
systems followed (e.g. [8,21,27,28,38,39,46]). Fully secure constructions were re-
cently provided by Lewko, Okamoto, Sahai, Takashima, and Waters [31] and
Okamoto and Takashima [37]. The works of Chase [18] and Chase and Chow
[19] considered the problem of ABE in a setting with multiple authorities. The
related concept of Predicate Encryption was introduced by Katz, Sahai and

552 A. Lewko and B. Waters

Waters [30] and further studied in [31,36,37,42]. Other works have considered
related problems without addressing collusion resistance [3,4,5,15,35,43].

The methodology of dual system encryption was introduced by Waters [45]
and later used in [34,31,37,22,32] to obtain adaptive security (and also leakage
resilience in [22,32]) for IBE, HIBE, and ABE systems. The abstractions we
provide for dual system encryption in the HIBE and ABE settings are similar
to the abstractions provided in [32], except that we do not consider leakage
resilience and also provide only selective security in the ABE case.

2 Dual System Encryption HIBE

We now define a Dual System Encryption HIBE scheme. (This is similar to the
abstraction given in [32], but things are simpler in our case because we do not
consider leakage resilience.) In addition to the five algorithms of a regular HIBE
scheme (Setup, Encrypt, KeyGen, Decrypt, and Delegate), a Dual System En-
cryption HIBE scheme also has algorithms KeyGenSF and EncryptSF, which
produce semi-functional keys and ciphertexts, respectively. Unlike the Setup,
Encrypt, KeyGen, Decrypt, and Delegate algorithms, the KeyGenSF and En-
cryptSF algorithms need not run in polynomial time (given only their input
parameters), since they are used only for the proof of security and are not used
in the normal operation of the system. Notice that decryption will work as be-
fore unless both the secret key and ciphertext are semi-functional, in which case
decryption will always fail.

Setup(λ) → PP, MSK. The setup algorithm takes the security parameter λ as
input and outputs the public parameters PP and the master secret key MSK.

Encrypt(M, I , PP) → CT. The encryption algorithm takes a message M , an
identity vector I, and the public parameters PP as input and outputs the ci-
phertext CT.

EncryptSF(M, I, PP) → C̃T. The semi-functional encryption algorithm takes
a message M , an identity vector I, and the public parameters PP as input. It
produces a semi-functional ciphertext C̃T.

KeyGen(MSK, I, PP) → SKI . The key generation algorithm takes the master
secret key MSK, an identity vector I, and the public parameters as input and
outputs a secret key SKI for that identity vector.

KeyGenSF(MSK, I, PP) → S̃KI . The semi-functional key generation algorithm
takes the master secret key MSK, an identity vector I, and the public parameters
as input. It produces a semi-functional secret key S̃KI for I.

Decrypt(CT, PP, SKI) → M . The decryption algorithm takes a ciphertext CT,
the public parameters PP, and a secret key SKI as input. If the identity vector
of the secret key I is a prefix of the identity vector used to encrypt the cipher-
text and the key and ciphertext are not both semi-functional, the decryption
algorithm outputs the message M .

Unbounded HIBE and Attribute-Based Encryption 553

Delegate(SKI , I ′, PP) → SKI:I′ . The delegation algorithm takes a secret key
SKI for identity vector I, an identity I ′, and the public parameters PP as input.
It outputs a secret key SKI:I′ for the identity vector I : I ′, which denotes the
concatenation of I and I′.

2.1 Security Properties for Dual System Encryption HIBE

We define four security properties for a dual system encryption HIBE. We will
show that a system which has these four properties is a secure HIBE. To de-
fine these properties, we define the following variations of the security game for
HIBE, which we call Game HIBE. In this game, the attacker may make Cre-
ate, Delegate, and Reveal queries. In response to Create queries, the challenger
creates the specified key. In response to Delegate queries, the challenger applies
the delegation algorithm to produce the requested key from a specified superior
key. In response to Reveal queries, the challenger gives the requested key to the
attacker. For background on HIBE and its security definition and proofs of the
theorems in this section, see the full version of this paper [33].

We first define Game HIBEWD to be the same as Game HIBE, except with-
out delegation. More precisely, instead of making Create, Delegate, and Reveal
queries, the attacker simply makes KeyGen queries - i.e. it provides the challenger
with an identity vector, the challenger creates a secret key for this identity vec-
tor by calling KeyGen, and then gives the secret key to the attacker. The only
restriction is that no queried identity vectors can be prefixes of the challenge
identity vector provided for the challenge ciphertext.

We next define Game HIBEC to be the same as Game HIBEWD, except that
the challenge ciphertext is generated by a call to EncryptSF instead of Encrypt
(i.e. a semi-functional ciphertext is given to the attacker). We also define Game
HIBESF to be the same as Game HIBEC , except that the challenger replaces all
KeyGen calls with calls to KeyGenSF. In other words, the challenge ciphertext
and all the secret keys given to the attacker will be semi-functional.

Delegation Invariance. We say a dual system encryption HIBE scheme ΠD =
(Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has del-
egation invariance if for any PPT algorithm A, there exists another PPT al-
gorithm A′ such that the advantage of A in Game HIBE is negligibly close to
the advantage of A′ in Game HIBEWD. (Here, A makes Create, Delegate, and
Reveal queries, while A′ makes KeyGen queries.) We denote this by:∣∣∣AdvHIBEA (λ)−AdvHIBEW D

A′ (λ)
∣∣∣ = negl(λ).

Semi-functional Ciphertext Invariance. We say a dual system encryption HIBE
scheme ΠD = (Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Del-
egate) has semi-functional ciphertext invariance if for any PPT algorithmA, the
advantage of A in Game HIBEWD is negligibly close to its advantage in Game
HIBEC . We denote this by:∣∣∣AdvHIBEW D

A (λ)−AdvHIBEC

A (λ)
∣∣∣ = negl(λ).

554 A. Lewko and B. Waters

Semi-functional Key Invariance. We say a dual system encryption HIBE scheme
ΠD = (Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has
semi-functional key invariance if for any PPT algorithm A, the advantage of A
in Game HIBEC is negligibly close to its advantage in Game HIBESF . We denote
this by: ∣∣∣AdvHIBEC

A (λ)−AdvHIBESF

A (λ)
∣∣∣ = negl(λ).

Semi-functional Security. We say a dual system encryption HIBE scheme ΠD =
(Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has semi-
functional security if for any PPT algorithm A, the advantage of A in Game
HIBESF is negligible. We denote this by:

AdvHIBESF

A (λ) = negl(λ).

Theorem 1. If a dual system encryption HIBE scheme ΠD = (Setup, Encrypt,
EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has delegation invariance,
semi-functional ciphertext invariance, semi-functional key invariance, and semi-
functional security, then Π = (Setup, Encrypt, KeyGen, Decrypt, Delegate) is
a secure HIBE scheme.

2.2 An Alternative Security Property

The semi-functional key invariance property can be difficult to prove directly. For
this reason, we define an alternative property, one semi-functional key invari-
ance, which is more convenient to work with and which implies semi-functional
key invariance through a hybrid argument.

To define one semi-functional key invariance, we must define an additional
game, Game HIBEb (where b represents a bit that can take value 0 or 1). In this
game, when the attacker requests a key, it specifies whether it wants a normal
or semi-functional key. If the attacker requests a normal key, the challenger
makes a call to KeyGen to generate the key and returns it to the attacker.
If the attacker requests a semi-functional key, the challenger makes a call to
KeyGenSF to generate the key and returns it to the attacker. At some point,
the attacker specifies a challenge key. In response, the challenger provides a
normal key if b = 0 and a semi-functional key if b = 1. When the attacker
requests the challenge ciphertext, it is given a semi-functional ciphertext (under
the usual restriction that no key given to the attacker can be for an identity
vector which is a prefix of the identity vector of the ciphertext). Note that the
only difference between Game HIBE0 and Game HIBE1 is the nature of a single
key specified by the attacker.

One Semi-functional Key Invariance We say a dual system encryption HIBE
scheme ΠD = (Setup, Encrypt, EncryptSF, KeyGen, KeyGenSF, Decrypt, Del-
egate) has one semi-functional key invariance if for any PPT algorithm A, the
advantage of A in Game HIBE0 is negligibly close to its advantage in Game
HIBE1. We denote this by:

Unbounded HIBE and Attribute-Based Encryption 555

∣∣∣AdvHIBE0
A (λ)−AdvHIBE1

A (λ)
∣∣∣ = negl(λ).

Theorem 2. If a dual system encryption HIBE scheme ΠD = (Setup, Encrypt,
EncryptSF, KeyGen, KeyGenSF, Decrypt, Delegate) has one semi-functional
key invariance, then it has semi-functional key invariance.

3 Complexity Assumptions

Our construction will use composite order bilinear groups, first introduced in
[14]. Additional background about these groups can be found in the full version.
We let G denote a bilinear group order N = p1p2p3, which is a product of three
distinct primes, and we let e : G×G → GT denote the bilinear map.

In the assumptions below, we let Gp1 denote the subgroup of order p1 in G,
for example. We note that if gi ∈ Gpi and gj ∈ Gpj for i �= j, then e(gi, gj) = 1.

We use the notation X
R←− S to express that X is chosen uniformly randomly

from the finite set S. We note that except for Assumption 2, all of these assump-
tions are special cases of the General Subgroup Decision Assumption defined in
[7]. Informally, the General Subgroup Decision Assumption can be described as
follows: in a bilinear group of order N = p1p2 . . . pn, there is a subgroup of order∏
i∈S pi for each subset S ⊆ {1, . . . , n}. We let S0, S1 denote two such subsets. It

should be hard to distinguish a random element from the subgroup correspond-
ing to S0 from a random element of the subgroup corresponding to S1, even
if one is given random elements from subgroups corresponding to other sets Si
which satisfy either that S0 ∩ Si = ∅ = S1 ∩ Si or S0 ∩ Si �= ∅ �= S1 ∩ Si. The
formal statements of our precise assumptions are below. Assumption 1 here is
a slightly weaker form of Assumption 1 in [34], and Assumptions 2 and 4 here
also appeared in [34]. In our proofs, we will also invoke Assumption 4 with the
roles of p2 and p3 reversed.

Assumption 1. Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G, GT , e) R←− G,

g
R←− Gp1 ,

D = (G, g),

T1
R←− Gp1p2 , T2

R←− Gp1 .

We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) :=
∣∣Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]

∣∣.
We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function of λ
for any PPT algorithm A.

556 A. Lewko and B. Waters

Assumption 2. Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G, GT , e) R←− G,

g
R←− Gp1 , g2, X2, Y2

R←− Gp2 , g3
R←− Gp3 , α, s

R←− ZN

D = (G, g, g2, g3, g
αX2, g

sY2),

T1 = e(g, g)αs, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) :=
∣∣Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]

∣∣.
We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible function of λ
for any PPT algorithm A.

Assumption 3. Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G, GT , e) R←− G,

g, X1
R←− Gp1 , g2

R←− Gp2 , X3
R←− Gp3

D = (G, g, g2, X1X3),

T1
R←− Gp1 , T2

R←− Gp1p3 .

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) :=
∣∣Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]

∣∣.
We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible function of λ
for any PPT algorithm A.

Assumption 4. Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G, GT , e) R←− G,

g, X1
R←− Gp1 , X2, Y2

R←− Gp2 , g3, Y3
R←− Gp3

D = (G, g, g3, X1X2, Y2Y3),

T1
R←− Gp1p3 , T2

R←− G.

We define the advantage of an algorithm A in breaking Assumption 4 to be:

Adv4G,A(λ) :=
∣∣Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]

∣∣.
We say that G satisfies Assumption 4 if Adv4G,A(λ) is a negligible function of λ
for any PPT algorithm A.

Unbounded HIBE and Attribute-Based Encryption 557

4 Our HIBE Construction

We now present our dual system encryption HIBE scheme. Our system is con-
structed in a composite order bilinear group whose order N is the product of
three distinct primes. We assume that our identity vectors have components
which are elements of ZN . In the semi-functional algorithms below, we let g2
denote a generator of Gp2 and g3 denote a generator of Gp3 .

We will assume that identity vectors are encoded such that if identity vector
I is not a prefix of identity vector I∗, then the last component of I is not
equal to any component of I∗. In other words, when I = (I1, . . . , Ij) is not
a prefix of I∗ = (I∗

1 , . . . , I∗
�), we assume that Ij �= I∗

k for all k ∈ {1, . . . , �}.
A simple scheme to achieve this encoding is to replace an arbitrary vector of
component identities, (I1, . . . , Ij) by concatenating in each entry with all the
previous entries: (I1, I1||I2, . . . , I1||I2|| · · · ||Ij). This creates entries which grow
in length, but we can avoid this by applying a collision-resistant hash function
to each of them.

The main idea of our construction is to employ a secret-sharing approach
across the levels of our secret keys. A user’s secret key involves a sharing of
the master secret key α as a sum of exponents, where each piece of the sum is
additionally blinded by a random term which is unique to that piece. In other
words, each share of α is blinded by randomness which is “local” to that share.
To successfully decrypt, a user must effectively unblind each share, which can
only be accomplished by a user with a jth level identity vector which matches
the ciphertext identity vector in all of the components one through j. If a user’s
identity vector fails to match in component k ≤ j, then the user will fail to
recover the kth share needed, thus preventing successful decryption. In essence,
each level of the key and ciphertext closely resembles an instance of the Boneh-
Boyen IBE scheme [9] with an added layer of local randomness between the
shares of the master secret key and the terms involving the identities. These
instances share the same public parameters, which we are able to accommodate
by using fresh local randomness in the levels of the key and ciphertext.

4.1 Construction

Setup(λ) → PP, MSK The setup algorithm takes in the security parameter λ
and chooses a bilinear group G of order N = p1p2p3, where p1, p2, p3 are distinct
primes. We let Gpi denote the subgroup of order pi in G. The algorithm then
chooses g, u, h, v, w uniformly randomly from Gp1 , and α uniformly randomly
from ZN . It sets the public parameters as:

PP := {N, G, g, u, h, v, w, e(g, g)α}.
The master secret key is α.

Encrypt(M, (I1, . . . , Ij), PP),→ CT The encryption algorithm chooses s,
t1, . . . , tj uniformly randomly from ZN . It creates the ciphertext as:

C := Me(g, g)αs, C0 := gs,

558 A. Lewko and B. Waters

Ci,1 := wsvti , Ci,2 := gti , Ci,3 := (uIih)ti ∀i ∈ {1, . . . , j}.

EncryptSF(M, (I1, . . . , Ij), PP) → C̃T. The semi-functional encryption algo-
rithm first calls the Encrypt algorithm to obtain a normal ciphertext, CT =
{C′, C′

0, C
′
i,1, C

′
i,2, C

′
i,3 ∀i}. It then chooses random values γ, δ ∈ ZN . It forms

the semi-functional ciphertext C̃T as:

C := C′, C0 := C′
0 · g

γ
2 ,

Ci,1 := C′
i,1 · gδ2, Ci,2 := C′

i,2, Ci,3 := C′
i,3 ∀i ∈ {1, . . . , j}.

Notice that the additional term gδ2 on Ci,1 is the same for each value of i.

KeyGen((I1, . . . , Ij), MSK, PP) → SKI . The key generation algorithm chooses
uniformly random values r1, . . . , rj , y1, . . . , yj from ZN . It also chooses random
values λ1, . . . , λj ∈ ZN subject to the constraint that α = λ1 + λ2 + · · · + λj .
The secret key is created as:

Ki,0 := gλiwyi , Ki,1 := gyi , Ki,2 := vyi(uIih)ri , Ki,3 := gri ∀i ∈ {1, . . . , j}.

KeyGenSF((I1, . . . , Ij), MSK, PP) → S̃KI . The first time this algorithm is
called, it chooses random values σ, ψ ∈ ZN . These values will be stored and
used on each invocation of the algorithm.

To create a semi-functional key, the semi-functional key generation algorithm
first calls the KeyGen algorithm to obtain a normal key,
SKI = {K ′

i,0, K
′
i,1, K

′
i,2, K

′
i,3 ∀i}. It then chooses a random value ỹj ∈ ZN and

creates the semi-functional key as:

Ki,0 := K ′
i,0, Ki,1 := K ′

i,1, Ki,2 := K ′
i,2, Ki,3 := K ′

i,3 ∀i ∈ {1, . . . , j − 1},

Kj,0 := K ′
j,0 · (g2g3)ψỹj , Kj,1 := K ′

j,1 · (g2g3)ỹj ,

Kj,2 := K ′
j,2 · (g2g3)σỹj , Kj,3 := K ′

j,3.

We note that the ỹj terms are chosen to be freshly random for each key, while
the values σ, ψ are shared by all semi-functional keys. We also note that the
exponents modulo p3 here are uncorrelated from the exponents modulo p2 by
the Chinese Remainder Theorem. It is also important to observe that the semi-
functional components (the added terms in Gp2 and Gp3) only appear in the last
level of the key.

Delegate(PP, SK, Ij+1) → SK′. The delegation algorithm takes in a secret key
SK = {Ki,0, Ki,1, Ki,2, Ki,3 ∀i ∈ {1, . . . , j}} for (I1, I2, . . . , Ij) and a level j + 1
identity Ij+1. It produces a secret key SK′ for (I1, . . . , Ij+1) as follows. It chooses
y′
1, . . . , y

′
j+1 and r′1, . . . , r

′
j+1 ∈ ZN uniformly at random, λ′

1, . . . , λ
′
j+1 ∈ ZN

randomly up to the constraint that λ′
1 + · · ·+ λ′

j+1 = 0 and computes:

K ′
i,0 := Ki,0 · gλ

′
i · wy′i , K ′

i,1 := Ki,1 · gy
′
i, K ′

i,2 := Ki,2 · vy
′
i(uIih)r

′
i ,

Unbounded HIBE and Attribute-Based Encryption 559

K ′
i,3 := Ki,3 · gr

′
i ∀i ∈ {1, . . . , j + 1},

where Kj+1,1, Kj+1,2, Kj+1,3 are defined to be the identity element in G.

Decryption(CT, SK) → M . The decryption algorithm takes in a secret key SK =
{Ki,0, Ki,1, Ki,2, Ki,3 ∀i ∈ {1, . . . , j}} for (I1, I2, . . . , Ij) and a ciphertext CT
encrypted to (I1, . . . , I�). Assuming (I1, . . . , Ij) is a prefix of (I1, . . . , I�), the
message is decrypted as follows. The decryption algorithm computes:

B :=
j∏
i=1

e(C0, Ki,0)e(Ci,2, Ki,2)
e(Ci,1, Ki,1)e(Ci,3, Ki,3)

.

The message is then computed as M = C/B.

Correctness We observe that:

B =
j∏
i=1

e(g, g)sλie(g, w)syie(g, v)tiyie(g, uIih)tiri

e(w, g)syie(v, g)tiyie(uIih, g)tiri
,

which is equal to:

=
j∏
i=1

e(g, g)sλi = e(g, g)sα,

since
∑j

i=1 λi = α. Thus, M = C/B.

5 Security

We prove that our dual system encryption HIBE scheme has delegation invari-
ance, semi-functional ciphertext invariance, one semi-functional key invariance,
and semi-functional security. By theorems 1 and 2, this implies that our HIBE
system is secure. More formally, we prove the following theorem:

Theorem 3. Under Assumptions 1-4, our HIBE system is fully secure.

Proving delegation invariance, semi-functional ciphertext invariance, and
semi-functional security is relatively straightforward, and these proofs can be
found in the full version. The truly challenging part of the proof will be prov-
ing one semi-functional key invariance, and this is where we introduce our key
technical innovations.

5.1 One Semi-functional Key Invariance

The primary challenge in proving one semi-functional key invariance for our
system is that the repetition of the same public parameters for each level of the
keys and ciphertexts severely limits our ability to simulate properly distributed
semi-functional keys and ciphertexts as we are changing the form of the challenge

560 A. Lewko and B. Waters

key. In a typical dual system encryption argument, we must ensure as we are
changing the form of one key that the simulator cannot determine the nature of
the key for itself. Since the simulator must be prepared to make a semi-functional
ciphertext for any identity vector and also must be prepared to use any identity
vector for the challenge key, it seems that a simulator could learn for itself
whether or not the challenge key is semi-functional by trying to decrypt a semi-
functional ciphertext. This potential paradox can be avoided by ensuring that a
simulator can only make a nominally semi-functional key, meaning that even if
semi-functional terms are present on the challenge key, they will be correlated
with the semi-functional ciphertext and cancel out upon decryption. We would
then argue that nominality is hidden from an attacker who cannot request keys
capable of decrypting.

If we attempt to change the challenge key in our system from normal to
semi-functional in a single or very small number of steps using generalized
subgroup decision assumptions, then the very limited entropy available in the
public parameters seems to prevent us from maintaining the proper distribu-
tions of the semi-functional keys and semi-functional ciphertext without reveal-
ing nominality. In other words, it appears to be difficult for the simulator to
prevent information-theoretic exposure of unwanted correlations between the
semi-functional components of the keys and ciphertext it creates.

To overcome this difficulty, we employ a nested dual system encryption ap-
proach and introduce the concept of ephemeral semi-functionality2. Instead of
trying to directly change the challenge key from normal to semi-functional, we
will first change it from normal to ephemeral semi-functional. An ephemeral
semi-functional key will come from a new distribution which serves as an inter-
mediary stage between the normal and semi-functional distributions. We note
that an ephemeral semi-functional key can still correctly decrypt semi-functional
ciphertexts, and that its form only differs from a normal key on its last level.

After changing the challenge key from normal to ephemeral semi-functional,
we will then change the ciphertext to also be ephemeral semi-functional.
Ephemeral semi-functional ciphertexts will come from a new distribution of ci-
phertexts, and will not be decryptable by ephemeral semi-functional keys. This is
where we confront the potential paradox of dual system encryption: we will make
sure that the simulator can only make challenge key and ciphertext pairs which
are nominally ephemeral semi-functional, meaning that the distributions of the
challenge key and ciphertext will be correlated so that even if the ephemeral
semi-functional terms are present in both the key and ciphertext, they will can-
cel out upon decryption. This correlation will be hidden from an attacker who
cannot request a key capable of decrypting the ciphertext.

To accomplish this information-theoretic hiding with such low entropy in our
public parameters, we will make a hybrid argument in which we change the ci-
phertext form one level at a time. Since there are only ephemeral semi-functional

2 We choose not to include this concept in our abstraction for dual system encryption
HIBE, because its use here is motivated by the particular challenge of short public
parameters and we imagine dual system encryption HIBE as a broader framework.

Unbounded HIBE and Attribute-Based Encryption 561

terms on one level of one key, it is now sufficient to hide a correlation between
one level of the ciphertext and one level of one key: this can be accomplished with
the use of a pairwise independent function. Once we have obtained an ephemeral
semi-functional challenge key and an ephemeral semi-functional ciphertext, we
are able to change the challenge key to be semi-functional in the usual sense and
also return the ciphertext to its usual semi-functional state.

Essentially, using ephemeral semi-functionality helps us overcome the chal-
lenge presented by low entropy in the public parameters because it allows us
to move the information-theoretic argument that nominality is hidden from the
attacker to a setting where we are really only concerned with one key. Since the
other semi-functional keys come from a different distribution, we can prevent
them from leaking information about the simulated ephemeral distribution that
would break the information-theoretic argument.

We now define the distributions of ephemeral semi-functional keys and ci-
phertexts. We do this by defining two new algorithms, EncryptESF and Key-
GenESF. Like the algorithms EncryptSF and KeyGenSF, these do not need
to run in polynomial time (given only their input parameters). We note that
the EncryptESF algorithm takes in an additional parameter σ: this is because
the ciphertexts it produces will share the value σ with the semi-functional keys
created by KeyGenSF. As in the original semi-functional algorithms, we let g2
denote a generator of Gp2 and g3 denote a generator of Gp3 .

EncryptESF(M, (I1, . . . , Ij), PP, σ) → C̃TE. The ephemeral semi-functional en-
cryption algorithm first calls the Encrypt algorithm to obtain a normal
ciphertext CT = {C′, C′

0, C
′
i,1, C

′
i,2, C

′
i,3 ∀i ∈ {1, . . . , j}}. It then chooses ran-

dom values γ, δ, a′, b′, t1, . . . , tj ∈ ZN and forms the ephemeral semi-functional
ciphertext C̃TE as:

C := C′, C0 := C′
0 · g

γ
2 ,

Ci,1 := C′
i,1 · gδ2 · gσti2 , Ci,2 := C′

i,2 · gti2 , Ci,3 := C′
i,3 · g

(a′Ii+b′)ti
2 ∀i ∈ {1, . . . , j}.

KeyGenESF((I1, . . . , Ij), MSK, PP, σ) → S̃KE. The ephemeral semi-functional
key generation algorithm first calls the KeyGen algorithm to obtain a normal key
SK = {K ′

i,0, K
′
i,1, K

′
i,2, K

′
i,3 ∀i ∈ {1, . . . , j}}. It chooses random values r̃1, r̃2 ∈

ZN and forms the ephemeral semi-functional key S̃KE as:

Ki,0 := K ′
i,0, Ki,1 := K ′

i,1, Ki,2 := K ′
i,2, Ki,3 := K ′

i,3 ∀i ∈ {1, . . . , j − 1},

Kj,0 := K ′
j,0, Kj,1 = K ′

j,1, Kj,2 := K ′
j,2 · (g2g3)r̃1 , Kj,3 := K ′

j,3 · (g2g3)r̃2 .

We note that an ephemeral semi-functional key can decrypt a semi-functional
ciphertext, but cannot decrypt an ephemeral semi-functional ciphertext, while
an ephemeral semi-functional ciphertext can only be decrypted by normal keys.

562 A. Lewko and B. Waters

Sequence of Games. We prove one semi-functional key invariance of our dual
system encryption HIBE scheme via a hybrid argument over the following se-
quence of games. We begin with Game HIBE0, where the ciphertext is semi-
functional and the challenge key is normal. We will end with Game HIBE1,
where the ciphertext is semi-functional and the challenge key is semi-functional.
We define the following intermediary games. In these games, the distributions
of the challenge key and ciphertext vary, while the distribution of the requested
normal and semi-functional keys are the same as in Games HIBE0 and HIBE1.

Game HIBE′
0. This game is exactly like Game HIBE0, except for the added re-

striction that the last component of the challenge key identity vector cannot be
equal to any of the components of the challenge ciphertext identity vector mod-
ulo p3 (note that we were already requiring this modulo N - now we make the
stronger requirement that the identities must remain unequal when we reduce
modulo p3). (This added restriction will be needed to apply pairwise indepen-
dence arguments in Zp3 .)

Game EK. In Game EK, the ciphertext is still semi-functional, and the challenge
key is now ephemeral semi-functional. We retain the added restriction on the
identities modulo p3.

Game EC. In Game EC, both the ciphertext and challenge are ephemeral semi-
functional. We retain the added restriction on the identities modulo p3.

Game HIBE′
1. This game is exactly like the Game HIBE1, but with the added

restriction on the identities modulo p3.

In the full version, we prove that we can transition from Game HIBE0 to Game
HIBE′

0, to Game EK, to Game EC, to Game HIBE′
1, and finally to Game HIBE1

without the attacker’s advantage changing by a non-negligible amount.

6 Key-Policy Attribute-Based Encryption

We now present our construction for KP-ABE. Our public parameters consist
of a constant number of elements from a bilinear group of composite order N ,
while our attribute universe is ZN . Ciphertexts in our system are associated with
sets of attributes, while secret keys are associated with LSSS access matrices.
Our construction is closely related to our HIBE construction. The main changes
are that attributes have now replaced identities, and the master secret key α is
now shared according to the LSSS matrix, instead of as a sum. We follow the
convention that to share a value α, one employs a vector α with first coordinate
equal to α, and the shares are obtained by multiplying the rows of the LSSS
matrix by the sharing vector α. A subset of rows is capable of reconstructing
the shared secret if and only if their span includes the vector (1, 0, . . . , 0).

Unbounded HIBE and Attribute-Based Encryption 563

6.1 Construction

Setup(λ) → PP, MSK. The setup algorithm takes in the security parameter
λ and chooses a suitable bilinear group G of order N = p1p2p3, a product of
three distinct primes. It chooses α ∈ ZN uniformly randomly, and also chooses
uniformly random elements g, u, h, v, w from the subgroup Gp1 . It sets the public
parameters as:

PP := {N, G, g, u, h, v, w, e(g, g)α}.

The MSK is α, and the universe U of attributes is ZN .

Encrypt(M, S ⊆ U, PP) → CT. The encryption algorithm takes in a message
M , a set of attributes S, and the public parameters. We let � denote the size of
the set S, and we let s1, . . . , s� ∈ ZN denote the elements of S. The encryption
algorithm chooses uniformly random values s, t1, . . . , t� ∈ ZN and computes the
ciphertext as:

C := Me(g, g)αs, C0 := gs,

Csi,1 := wsvti , Csi,2 := gti , Csi,3 := (usih)ti ∀i ∈ {1, . . . , �}.

(We also assume the set of S is given as part of the ciphertext.)

KeyGen(MSK, PP, (A, ρ)) → SK. The key generation algorithm takes in the
master secret key α, the public parameters, and a LSSS matrix (A, ρ), where
A is an n × m matrix over ZN , and ρ maps each row of A to an attribute in
ZN . The key generation algorithm chooses a random vector α ∈ ZmN with first
coordinate equal to α and random values r1, . . . , rn, y1, . . . , yn ∈ ZN . For each
x ∈ {1, . . . , n}, we let Ax denote the xth row of A, and we let ρ(x) denote that
attribute associated with this row by the mapping ρ. We let λx := Ax ·α denote
the share associated with the row Ax of A. The secret key is formed as3:

Kx,0 := gλxwyx , Kx,1 := gyx , Kx,2 := vyx(uρ(x)h)rx , Kx,3 := grx ∀x ∈ {1, . . . , n}.

Decrypt(SK, CT) → M . The decryption algorithm takes in a ciphertext CT for
attribute set S and a secret key SK for access matrix (A, ρ). If the attributes
of the ciphertext satisfy the policy of the secret key, then it will compute the
message M as follows. First, it computes constants ωx such that

∑
ρ(x)∈S ωxAx =

(1, 0, . . . , 0). It then computes:

B =
∏

ρ(x)∈S

(
e(C0, Kx,0)e(Cρ(x),2, Kx,2)

e(Cρ(x),1, Kx,1)e(Cρ(x),3, Kx,3)

)ωx

, M = C/B.

3 We also assume the access matrix (A,ρ) is given as part of the key.

564 A. Lewko and B. Waters

Correctness. We observe that:

B =
∏

ρ(x)∈S

(
e(g, g)sλxe(g, w)syxe(g, v)tρ(x)yxe(g, uρ(x)h)tρ(x)rx

e(w, g)syxe(v, g)tρ(x)yxe(uρ(x)h, g)tρ(x)rx

)ωx

,

=
∏

ρ(x)∈S

(
e(g, g)sλx

)ωx = e(g, g)sα.

This shows that M = C/B.

6.2 Security

We prove that our system is selectively secure using a similar strategy to our
proof of adaptive security for our HIBE system (the formal definition for se-
lective security in the KP-ABE setting can be found in the full version). We
were able to achieve adaptive security in the HIBE setting because we could
assume that, regardless of what identity vector was chosen for the challenge ci-
phertext, each requested key would have a final identity component which would
not match any components of the challenge ciphertext. This allowed us to put
our semi-functional components only on the last level of the key, which was cru-
cial to preserving the appearance of randomness via our pairwise independence
argument in the middle stages of the proof. In the adaptive KP-ABE setting,
we only know that the policy of a requested key will fail to be satisfied by the
attribute set of the ciphertext, but we do not know how it will fail to be satisfied.
In other words, for keys which are requested by the attacker before the challenge
ciphertext, we do not know which rows of the keys will correspond to attributes
which are not in the challenge ciphertext. This leaves us in a bind - we do not
know where to put the semi-functional terms. If we try to put semi-functional
terms on each row, we will not be able to make the semi-functional terms appear
suitably random in the attacker’s view. If we put the semi-functional terms on
too few rows, we will not achieve a meaningful kind of semi-functionality.

This problem is solved by moving to the selective security model, which forces
the attacker to reveal the attribute set of the challenge ciphertext at the very
start of the game. This means that when the simulator is faced with a key request,
it already knows which rows of the key correspond to attributes which are absent
from the ciphertext, and it can place the semi-functional terms exactly on these
rows. We must add an additional hybrid to our proof strategy here so that we
can change the rows of a key from normal to semi-functional one at a time. The
proof of the following theorem, as well as discussion of delegation capabilities
for our ABE scheme, can be found in the full version.

Theorem 4. Under Assumptions 1-4, our KP-ABE system is selectively secure.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

Unbounded HIBE and Attribute-Based Encryption 565

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 98–115. Springer, Heidelberg (2010)

3. Al-Riyami, S., Malone-Lee, J., Smart, N.: Escrow-free encryption supporting cryp-
tographic workflow. Int. J. Inf. Sec. 5, 217–229 (2006)

4. Bagga, W., Molva, R., Crosta, S.: Policy-based encryption schemes from bilinear
pairings. In: ASIACCS, p. 368 (2006)

5. Barbosa, M., Farshim, P.: Secure cryptographic workflow in the standard model.
In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 379–393.
Springer, Heidelberg (2006)

6. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD thesis,
Israel Institute of Technology, Technion, Haifa, Israel (1996)

7. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selective
opening attack. In: TCC 2011 (2011)

8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 321–334

9. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

10. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

11. Boneh, D., Boyen, X., Goh, E.: Hierarchical identity based encryption with constant
size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
440–456. Springer, Heidelberg (2005)

12. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

13. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: FOCS, pp. 647–657 (2007)

14. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

15. Bradshaw, R., Holt, J., Seamons, K.: Concealing complex policies with hidden
credentials. In: ACM Conference on Computer and Communications Security, pp.
146–157 (2004)

16. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

17. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

18. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

19. Chase, M., Chow, S.: Improving privacy and security in multi-authority attribute-
based encryption. In: ACM Conference on Computer and Communications Secu-
rity, pp. 121–130 (2009)

20. Chatterjee, S., Sarkar, P.: Generalization of the selective-ID security model for
HIBE protocols. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 241–256. Springer, Heidelberg (2006)

21. Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: ACM Confer-
ence on Computer and Communications Security, pp. 456–465 (2007)

566 A. Lewko and B. Waters

22. Chow, S., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-
based encryption from simple assumptions

23. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 26–28.
Springer, Heidelberg (2001)

24. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

25. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pp. 197–206 (2008)

26. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

27. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

28. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

29. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

30. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

31. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (Hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

32. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual
system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011)

33. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. Cryp-
tology ePrint Archive, Report 2011/049 (2011), http://eprint.iacr.org/

34. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

35. Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In:
VLDB, pp. 898–909 (2003)

36. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009)

37. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)

38. Ostrovksy, R., Sahai, A., Waters, B.: Attribute based encryption with non-
monotonic access structures. In: ACM Conference on Computer and Communi-
cations Security, pp. 195–203 (2007)

http://eprint.iacr.org/

Unbounded HIBE and Attribute-Based Encryption 567

39. Pirretti, M., Traynor, P., McDaniel, P., Waters, B.: Secure attribute-based sys-
tems. In: ACM Conference on Computer and Communications Security, pp. 99–112
(2006)

40. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

41. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

42. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008)

43. Smart, N.: Access control using pairing based cryptography. In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 111–121. Springer, Heidelberg (2003)

44. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

45. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009)

46. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

Decentralizing Attribute-Based Encryption

Allison Lewko� and Brent Waters��

University of Texas Austin
{alewko,bwaters}@cs.utexas.edu

Abstract. We propose a Multi-Authority Attribute-Based Encryption
(ABE) system. In our system, any party can become an authority and
there is no requirement for any global coordination other than the cre-
ation of an initial set of common reference parameters. A party can sim-
ply act as an ABE authority by creating a public key and issuing private
keys to different users that reflect their attributes. A user can encrypt
data in terms of any boolean formula over attributes issued from any cho-
sen set of authorities. Finally, our system does not require any central
authority.

In constructing our system, our largest technical hurdle is to make it
collusion resistant. Prior Attribute-Based Encryption systems achieved
collusion resistance when the ABE system authority “tied” together dif-
ferent components (representing different attributes) of a user’s private
key by randomizing the key. However, in our system each component will
come from a potentially different authority, where we assume no coor-
dination between such authorities. We create new techniques to tie key
components together and prevent collusion attacks between users with
different global identifiers.

We prove our system secure using the recent dual system encryption
methodology where the security proof works by first converting the chal-
lenge ciphertext and private keys to a semi-functional form and then
arguing security. We follow a recent variant of the dual system proof
technique due to Lewko and Waters and build our system using bilin-
ear groups of composite order. We prove security under similar static
assumptions to the LW paper in the random oracle model.

1 Introduction

Traditionally, we view encryption as a mechanism for a user, Alice, to confiden-
tially encode data to a target recipient, Bob. Alice encrypts the data under the
recipient’s public key such that only Bob, with knowledge of his private key, can
decrypt it.

� Supported by National Defense Science and Engineering Graduate Fellowship.
�� Supported by NSF CNS-0915361, and CNS-0952692, the MURI program under

AFOSR Grant No: FA9550-08-1-0352. Department of Homeland Security Grant
2006-CS-001-000001-02 (subaward 641), a Google Faculty Research award, and the
Alfred P. Sloan Foundation.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 568–588, 2011.
c© International Association for Cryptologic Research 2011

Decentralizing Attribute-Based Encryption 569

However, in many applications, we find we need to share data according to an
encryption policy without prior knowledge of who will be receiving the data. Sup-
pose an administrator needs to encrypt a junior faculty member’s performance
review for all senior members of the computer science department or anyone in
the dean’s office. The administrator will want to encrypt the review with the
access policy (“Computer Science” AND “Tenured”) OR “Dean’s Of-

fice”. In this system, only users with attributes (credentials) that match this
policy should be able to decrypt the document. The key challenge in building
such systems is to realize security against colluding users. For instance, the en-
crypted records should not be accessible to a pair of unauthorized users, where
one has the two credentials of “Tenured” and “Chemistry” and the other one
has the credential of “Computer Science”. Neither user is actually a tenured
faculty member of the Computer Science Department.

Sahai and Waters [45] proposed a solution to the above problem that they
called Attribute-Based Encryption (ABE). In an ABE system, a party encrypt-
ing data can specify access to the data as a boolean formula over a set of at-
tributes. Each user in the system will be issued a private key from an authority
that reflects their attributes (or credentials). A user will be able to decrypt a
ciphertext if the attributes associated with their private key satisfy the boolean
formula ascribed to the ciphertext. A crucial property of ABE systems is that
they resist collusion attacks as described above.

Since the introduction of Attribute-Based Encryption, several works
[8,30,44,29,23,54,21,22,37] have proposed different ABE systems and applica-
tions. In almost all ABE proposals, private keys were issued by one central
authority that would need to be in a position to verify all the attributes or
credentials it issued for each user in the system. These systems can be utilized
to share information according a policy over attributes issued within a domain
or organization, however, in many applications a party will want to share data
according to a policy written over attributes or credentials issued across dif-
ferent trust domains and organizations. For instance, a party might want to
share medical data only with a user who has the attribute of “Doctor” issued
by a medical organization and the attribute “Researcher” issued by the admin-
istrators of a clinical trial. On a commercial application, two corporations such
as Boeing and General Electric might both issue attributes as part of a joint
project. Using current ABE systems for these applications can be problematic
since one needs a single authority that is both able to verify attributes across
different organizations and issue private keys to every user in the system.

A Simple Approach and Its Limitations. We would like to realize an encryption
system where a party can encrypt data for a policy written over attributes issued
by different authorities. A user in the system should be able to decrypt if their
attributes (possibly issued by multiple authorities) satisfy the policy specified
by the ciphertext. In addition, the system should be able to express complex
policies and not require coordination amongst the authorities.

570 A. Lewko and B. Waters

An initial step towards this goal is to simply “engineer” a system by utiliz-
ing existing (Ciphertext-Policy) Attribute-Based Encryption schemes along with
standard signature schemes. In this proposal, a designated “central authority”
will first create a set of public parameters. Then any party wishing to become an
“authority” will create a signature verification key VK that will be associated
with them. A user in the system with a globally verifiable identifier GID will
collect private keys for attributes that it has from different authorities.

Suppose that a user GID can demonstrate attributes X1, X2 to the authority
with verification key VK and attribute Y to the authority with verification key
VK′. The user will obtain his secret key as follows. First, he will obtain a signa-
ture of GID, (X1, X2) that verifies under VK and a signature of GID, Y under
VK′ from the two respective authorities (and any other authorities). Next, the
user will present these signature and verification key pairs to the central author-
ity. The central authority will first check that each signature verifies under the
claimed verification key and that each signature is on the same global identifier.
Using an existing ABE algorithm, it will then issue an attribute for each verifi-
cation key and attribute pair. In the above example, the user will get a key with
attributes “VK, X1”, “VK, X2”, and “VK′, Y ”. We note that the operation of
the central authority is agnostic to the meaning of these verification keys and
attributes; indeed, it will not need to have any a priori relationship with any of
the authorities.

This simple system enjoys multiple benefits. Since encryption simply uses a
prior ABE system, we can achieve the same level of expressiveness and write a
policy in terms of any boolean formula. The system also requires minimum coor-
dination between separate authorities. Any party can choose to be an authority
by creating and publishing a verification key coupled with a list of attributes it
will manage. Different authorities will not need to coordinate or even be aware
of each other. There are several issues that will need to be dealt with in any
larger system, such as the choice of an appropriate global identifier1 or a party’s
decision as to which authority it trusts to issue private keys related to certain
attributes. For instance, one might encrypt a policy using Experian’s verification
key to attest for the attribute of a good FICO (credit) score.

The major drawback of this simple engineered approach is that it requires a
designated central authority. This authority must be globally trustworthy, since
its failure will compromise the entire system. If we aim to build a large or even
global scale system, this authority will become a common bottleneck. Spreading a
central authority’s keys over several machines to alleviate performance pressures
might simultaneously increase the risk of key exposure.

A few works have attempted to create new cryptographic solutions to the
multi-authority ABE problem. Chase [21] proposed an interesting solution that
introduced the concept of using a global identifier as a “linchpin” for tying

1 The idea of applying a global identifier in the context of multi-authority ABE was
first proposed by Chase [21]. Chase adapted the concept from its use in anonymous
credential systems [19]. One previously suggested candidate for a global identifier is
a user’s social security number.

Decentralizing Attribute-Based Encryption 571

users’ keys together. Her system relied on a central authority and was limited to
expressing a strict “AND” policy over a pre-determined set of authorities. There-
fore a party encrypting would be much more limited than in the simple engineer-
ing approach outlined above. Müller, Katzenbeisser, and Eckert [42,43] give a
different system with a centralized authority that realizes any LSSS access struc-
ture. Their construction builds on the Waters system [54]; their proof is limited
to non-adaptive queries. The system achieves roughly the same functionality as
the engineering approach above, except one can still acquire attributes from ad-
ditional authorities without revisiting the central authority. Chase and Chow [22]
showed how to remove the central authority using a distributed PRF; however,
the same limitations of an AND policy of a determined set of authorities re-
mained. Lin et. al. [40] give a threshold based scheme that is also somewhat
decentralized. The set of authorities is fixed ahead of time, and they must in-
teract during the system setup. The system is only secure up to collusions of
m users, where m is a system parameter chosen at setup such that the cost of
operations and key storage scales with m.

Our Contribution. We propose a new multi-authority Attribute-Based Encryp-
tion system. In our system, any party can become an authority and there is no
requirement for any global coordination other than the creation of an initial set
of common reference parameters. (These will be created during a trusted setup.)
A party can simply act as an authority by creating a public key and issuing
private keys to different users that reflect their attributes. Different authorities
need not even be aware of each other. We use the Chase [21] concept of global
identifiers to “link” private keys together that were issued to the same user by
different authorities. A user can encrypt data in terms of any boolean formula2

over attributes issued from any chosen set of authorities.
Finally, our system does not require any central authority. We thus avoid the

performance bottleneck incurred by relying on a central authority, which makes
our system more scalable. We also avoid placing absolute trust in a single desig-
nated entity which must remain active and uncorrupted throughout the lifetime
of the system. This is a crucial improvement for efficiency as well as security,
since even a central authority that remains uncorrupted may occasionally fail for
benign reasons, and a system that constantly relies on its participation will be
forced to remain stagnant until it can be restored. In our system, authorities can
function entirely independently, and the failure or corruption of some authorities
will not affect the operation of functioning, uncorrupted authorities. This makes
our system more robust then the other approaches outlined above.

Challenges and Our Techniques. In constructing our system, our central tech-
nical hurdle is to make it collusion resistant. Prior Attribute-Based Encryption
systems achieved collusion resistance when the ABE system authority “tied” to-
gether different components (representing different attributes) of a user’s private
key by randomizing the key. Such randomization would make the different key

2 Our system actually generalizes to handle any policy that can be expressed as a
Linear Secret Sharing Scheme (LSSS) or equivalently a monotone span program.

572 A. Lewko and B. Waters

components compatible with each other, but not with the parts of a key issued
to another user.

In our setting, we want to satisfy the simultaneous goals of autonomous key
generation and collusion resistance. The requirement of autonomous key genera-
tion means that established techniques for key randomization cannot be applied
since there is no one party to compile all the pieces together. Furthermore, in
our system each component may come from a different authority, where such
authorities have no coordination and are possibly not even aware of each other
and there is no preset access structure3.

To overcome this, we develop a novel technique for tying a user’s key com-
ponents together and preventing collusion attacks between users with different
global identifiers. At a high level, instead of relying on one key generation call to
tie all key components together, we will use a hash function on the user’s global
identity, GID to manage collusion resistance across multiple key generations
issued by different authorities.

In our system, we define a hash function H (modeled as a random oracle) that
hashes each identity to a (bilinear) group element. We will use the group element
output from the hash function H(GID) as the linchpin to tie keys together. Tying
keys together in this manner is more challenging than in the single authority case.
Our main idea is to structure the decryption mechanism at each satisfied node
‘x’ in the access tree such that a user will recover a target group element of the
form e(g, g)λx · e(g, H(GID))wx . This group element first contains a secret share
λx of a secret s in the exponent, and these shares can be combined to recover
the message. However, these will each be “blinded” by a share wx which is a
share of 0 in the exponent with base e(g, H(GID)). This structure allows for the
decryption algorithm to both reconstruct the main secret and to unblind it in
parallel. If a user with a particular identifier GID satisfies the access tree, he
can reconstruct s in the exponent by raising the group elements to the proper
exponents. However, this operation will simultaneously reconstruct the share of
0 and thus the e(g, H(GID)) terms will cancel out. Intuitively, if two users with
different global identifiers GID, GID′ attempt to collude, the cancelation will not
work since the wx shares will have different bases.

We prove our system secure using the recent dual system encryption method-
ology [53], where the security proof works by first converting the challenge ci-
phertexts and private keys to a semi-functional form and then arguing security.
We follow a recent variant of the dual system proof technique due to Lewko and
Waters [39] and build our system using bilinear groups of composite order. The
absence of coordination between the authorities also introduces a new technical
challenge in applying the dual system encryption methodology. Due to the de-
centralized nature of user’s keys, the techniques employed in [37] to achieve full
security for single authority ABE using dual system encryption are insufficient.
We overcome this by using two semi-functional subgroups instead of one, and
switching between these allows us to defeat the information-theoretic problem

3 Prior works [21,22] assumed coordination ahead of time between different authorities
and required a limited access structure.

Decentralizing Attribute-Based Encryption 573

which is naturally encountered if one simply tries to apply the previous tech-
niques. We prove security under similar assumptions to the LW paper in the
random oracle model.

Related Work. Several of the roots of Attribute-Based Encryption can be traced
back to Identity Based Encryption (IBE), proposed by Shamir [46]. The first
IBE schemes were constructed by Boneh and Franklin [13] and Cocks [24].
These initial systems were proven secure in the random oracle model. Other
standard model solutions followed [20,9,10,52,27], along with extensions to the
hierarchical IBE setting [34,28,11].

Attribute-based encryption was introduced by Sahai and Waters [45]. Subse-
quently, Goyal, Pandey, Sahai, and Waters [30] formulated two complimentary
forms of ABE: Ciphertext-Policy Attribute-Based Encryption (CP-ABE) and
Key-Policy Attribute-Based Encryption (KP-ABE). In a CP-ABE system, keys
are associated with sets of attributes and ciphertexts are associated with access
policies. In a KP-ABE system, the situation is reversed: keys are associated with
access policies and ciphertexts are associated with sets of attributes. Since then,
several different ABE systems have been proposed [8,21,23,29,44,54,22], as well
as related systems [14,2]. The problem of building ABE systems with multiple
authorities was proposed by Sahai and Waters and first considered by Chase [21]
and Chase and Chow [22]. Another interesting direction is the construction of
“anonymous” or predicate encryption systems [36,49,17,12,1,47,37] where in ad-
dition to the data the encryption policy or other properties are hidden. Other
works have discussed similar problems without addressing collusion resistance
[3,4,5,18,41,51]. In these systems, the data encryptor specifies an access policy
such that a set of users can decrypt the data only if the union of their credentials
satisfies the access policy.

Until recently, all ABE systems were proven secure in the selective model
where an attacker needed to declare the structure of the challenge ciphertext be-
fore seeing the public parameters. Recently, Lewko, Okamoto, Sahai, Takashima
and Waters [37] solved the open problem by giving the first fully secure Attribute-
Based Encryption systems. Their system applied the dual system encryption
methodology introduced by Waters [53] and techniques used by Lewko and Wa-
ters [39]. Our proof uses some techniques from Lewko et. al. [37], but faces new
challenges from the multi-authority setting.

Organization. In Section 2, we formally define multi-authority CP-ABE systems
and their security. In Section 3, we give our complexity assumptions. In Section 4,
we present our multi-authority CP-ABE system and outline the proof of its
security. In Section 5, we discuss possible extensions of our results.

2 Multi-authority CP-ABE

Here we give the necessary background on multi-authority CP-ABE schemes and
their security definition. For backgroundonaccess structures, linear secret-sharing
schemes, and composite order bilinear groups, see the full versionof this paper [38].

574 A. Lewko and B. Waters

A multi-authority Ciphertext-Policy Attribute-Based Encryption system is
comprised of the following five algorithms:

Global Setup(λ) → GP. The global setup algorithm takes in the security param-
eter λ and outputs global parameters GP for the system.

Authority Setup(GP) → SK, PK. Each authority runs the authority setup al-
gorithm with GP as input to produce its own secret key and public key pair,
SK, PK.

Encrypt(M, (A, ρ), GP, {PK}) → CT. The encryption algorithm takes in a mes-
sage M , an access matrix (A, ρ), the set of public keys for relevant authorities,
and the global parameters. It outputs a ciphertext CT.

KeyGen(GID, GP, i, SK) → Ki,GID. The key generation algorithm takes in an
identity GID, the global parameters, an attribute i belonging to some author-
ity, and the secret key SK for this authority. It produces a key Ki,GID for this
attribute, identity pair.

Decrypt(CT, GP, {Ki,GID}) → M . The decryption algorithm takes in the global
parameters, the ciphertext, and a collection of keys corresponding to attribute,
identity pairs all with the same fixed identity GID. It outputs either the message
M when the collection of attributes i satisfies the access matrix corresponding
to the ciphertext. Otherwise, decryption fails.

Definition 1. A multi-authority CP-ABE system is said to be correct if whenever
GP is obtained from the global setup algorithm, CT is obtained from the encryption
algorithm on the message M , and {Ki,GID} is a set of keys obtained from the key
generation algorithm for the same identity GID and for a set of attributes satisfying
the access structure of the ciphertext, Decrypt(CT, GP, {Ki,GID}) = M .

2.1 Security Definition

We define security for multi-authority Ciphertext-Policy Attribute-Based En-
cryption systems by the following game between a challenger and an attacker. We
assume that adversaries can corrupt authorities only statically, but key queries
are made adaptively. A static corruption model is also used by Chase [21] and
Chase and Chow [22], but we note that our model additionally allows the ad-
versary to choose the public keys of the corrupted authorities for itself, instead
of having these initially generated by the challenger.

We let S denote the set of authorities and U denote the universe of attributes.
We assume each attribute is assigned to one authority (though each authority
may control multiple attributes). In practice, we can think of an attribute as
being the concatenation of an authority’s public key and a string attribute. This
will ensure that if multiple authorities choose the same string attribute, these
will still correspond to distinct attributes in the system.

Decentralizing Attribute-Based Encryption 575

Setup. The global setup algorithm is run. The attacker specifies a set S′ ⊆ S of
corrupt authorities. For good (non-corrupt) authorities in S−S′, the challenger
obtains public key, private key pairs by running the authority setup algorithm,
and gives the public keys to the attacker.

Key Query Phase 1. The attacker makes key queries by submitting pairs (i, GID)
to the challenger, where i is an attribute belonging to a good authority and GID
is an identity. The challenger responds by giving the attacker the corresponding
key, Ki,GID.

Challenge Phase. The attacker must specify two messages, M0, M1, and an ac-
cess matrix (A, ρ). The access matrix must satisfy the following constraint. We
let V denote the subset of rows of A labeled by attributes controlled by corrupt
authorities. For each identity GID, we let VGID denote the subset of rows of A
labeled by attributes i for which the attacker has queried (i, GID). For each GID,
we require that the subspace spanned by V ∪VGID must not include (1, 0, . . . , 0).
(In other words, the attacker cannot ask for a set of keys that allow decryption,
in combination with any keys that can obtained from corrupt authorities.) The
attacker must also give the challenger the public keys for any corrupt author-
ities whose attributes appear in the labeling ρ. The challenger flips a random
coin β ∈ {0, 1} and sends the attacker an encryption of Mβ under access matrix
(A, ρ).

Key Query Phase 2. The attacker may submit additional key queries (i, GID),
as long as they do not violate the constraint on the challenge matrix (A, ρ).

Guess. The attacker must submit a guess β′ for β. The attacker wins if β = β′.
The attacker’s advantage in this game is defined to be Pr[β = β′]− 1

2 .

Definition 2. A multi-authority Ciphertext-Policy Attribute-Based Encryption
system is secure (against static corruption of authorities) if all polynomial time
attackers have at most a negligible advantage in this security game.

2.2 Transformation from One-Use Multi-authority CP-ABE

In the full version of this paper, we show how to construct a fully secure multi-
authority CP-ABE system where attributes are used multiple times in an access
matrix from a fully secure multi-authority CP-ABE system where attributes
are used only once. We do this with a simple encoding technique. This same
transformation was employed by [37] for (single authority) CP-ABE.

3 Our Assumptions

We now state the complexity assumptions that we will rely on to prove security
for our system. These assumptions are formulated for a bilinear group G of order
N = p1p2p3, a product of 3 primes. We let e : G×G → GT denote the bilinear

576 A. Lewko and B. Waters

map. For background on these groups, see the full version. We note that these
are similar to the assumptions used in [39,37]. While the fourth assumption
is new, the first three are instances of the class of General Subgroup Decision
Assumptions described in [7]. This class is defined as follows: in a bilinear group
of order N = p1p2 . . . pn, there is a subgroup of order

∏
i∈S pi for each subset

S ⊆ {1, . . . , n}. We let S0, S1 denote two distinct subsets. We then assume it
is hard to distinguish a random element from the subgroup associated with S0
from a random element of the subgroup associated with S1, even if one is given
random elements from subgroups associated with several subsets Zi which each
satisfy either that S0 ∩ Zi = ∅ = S1 ∩ Zi or S0 ∩ Zi �= ∅ �= S1 ∩ Zi. We prove
our four specific assumptions are generically secure in the full version, under the
assumption that it is hard to find a nontrivial factor of the group order N .

In the assumptions below, we let Gp1 , e.g., denote the subgroup of order p1 in
G. We note that if gi ∈ Gpi and gj ∈ Gpj for i �= j, then e(gi, gj) = 1. When we

write g1
R←− Gp1 , we mean that g1 is chosen to be a random generator of Gp1

(so it is not the identity element). Similarly, when we write T1
R←− G, we mean

that T1 is chosen to be a random generator of G (this is not quite the same as
a uniformly random element, but the distributions are negligibly close).

Assumption 1 (Subgroup decision problem for 3 primes). Given a group gener-
ator G, we define the following distribution:

G = (N = p1p2p3, G, GT , e) R←− G,

g1
R←− Gp1 ,

D = (G, g1),

T1
R←− G, T2

R←− Gp1 .

We define the advantage of an algorithm A in breaking Assumption 1 to be:

Adv1G,A(λ) :=
∣∣Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]

∣∣.
We note that T1 can be written (uniquely) as the product of an element of Gp1 ,
an element of Gp2 , and an element of Gp3 . We refer to these elements as the
“Gp1 part of T1”, the “Gp2 part of T1”, and the “Gp3 part of T1” respectively.
We will use this terminology in our proofs.

Definition 3. We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Assumption 2. Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G, GT , e) R←− G,

g1, X1
R←− Gp1 , X2

R←− Gp2 , g3
R←− Gp3 ,

Decentralizing Attribute-Based Encryption 577

D = (G, g1, g3, X1X2),

T1
R←− Gp1 , T2

R←− Gp1p2 .

We define the advantage of an algorithm A in breaking Assumption 2 to be:

Adv2G,A(λ) :=
∣∣Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]

∣∣.
Definition 4. We say that G satisfies Assumption 2 if Adv2G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Assumption 3. Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G, GT , e), R←− G,

g1, X1
R←− Gp1 , Y2

R←− Gp2 , X3, Y3
R←− Gp3 ,

D = (G, g1, X1X3, Y2Y3),

T1
R←− Gp1p2 , T2

R←− Gp1p3 .

We define the advantage of an algorithm A in breaking Assumption 3 to be:

Adv3G,A(λ) :=
∣∣Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]

∣∣.
Definition 5. We say that G satisfies Assumption 3 if Adv3G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

Assumption 4. Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G, GT , e), R←− G,

g1
R←− Gp1 , g2

R←− Gp2 , g3
R←− Gp3 , a, b, c, d

R←− ZN ,

D = (G, g1, g2, g3, g
a
1 , gb1g

b
3, g

c
1, g

ac
1 gd3),

T1 = e(g1, g1)abc, T2
R←− GT .

We define the advantage of an algorithm A in breaking Assumption 4 to be:

Adv4G,A(λ) :=
∣∣Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]

∣∣.
Definition 6. We say that G satisfies Assumption 4 if Adv4G,A(λ) is a negligible
function of λ for any polynomial time algorithm A.

578 A. Lewko and B. Waters

4 Our Multi-authority CP-ABE System

We now present our one-use multi-authority ciphertext-policy attribute based
encryption system. We use a composite order bilinear group G, where the group
order is a product of three primes: N = p1p2p3. Except for the random oracle H
which maps identities to random group elements, the entire system is confined
to the subgroup Gp1 in G. The subgroups Gp2 and Gp3 are used in our security
proof, which employs the dual system encryption technique. In a dual system,
keys and ciphertexts can be either normal or semi-functional. Normal keys and
ciphertexts in our system will be contained in the subgroup Gp1 , while semi-
functional keys and ciphertexts will involve elements of the subgroups Gp2 and
Gp3 . In other words, the subgroups Gp2 and Gp3 form the semi-functional space,
which is orthogonal to the subgroup Gp1 where the normal keys and ciphertexts
reside.

To prevent collusion attacks, our system uses the global identity to “tie” to-
gether the various attributes belonging to a specific user so that they cannot be
successfully combined with another’s user’s attributes in decryption. More specif-
ically, the encryption algorithm blinds the message M with e(g1, g1)s, where g1
is a generator of the subgroup Gp1 , and s is a randomly chosen value in ZN . The
value s is then split into shares λx according to the LSSS matrix, and the value 0
is split into shares ωx. The decryptor must recover the blinding factor e(g1, g1)s

by pairing their keys for attribute, identity pairs (i, GID) with the ciphertext el-
ements to obtain the shares of s. In doing so, the decryptor will introduce terms
of the form e(g1, H(GID))ωx . If the decryptor has a satisfying set of keys with
the same identity GID, these additional terms will cancel from the final result,
since the ωx’s are shares of 0. If two users with different identities GID and GID′

attempt to collude and combine their keys, then there will be some terms of the
form e(g1, H(GID))ωx and some terms of the form e(g1, H(GID′))ωx′ , and these
will not cancel with each other, thereby preventing the recovery of e(g1, g1)s.

4.1 Construction

Global Setup(λ) → GP. In the global setup, a bilinear group G of order N =
p1p2p3 is chosen. The global public parameters, GP, are N and a generator g1
of Gp1 . In addition, the description of a hash function H : {0, 1}∗ → G that
maps global identities GID to elements of G is published. We will model H as a
random oracle.

Authority Setup(GP) → PK, SK. For each attribute i belonging to the authority,
the authority chooses two random exponents αi, yi ∈ ZN and publishes PKj =
{e(g1, g1)αi , gyi

1 ∀i} as its public key. It keeps SK = {αi, yi∀i} as its secret key.

Encrypt(M, (A, ρ), GP, {PK}) → CT. The encryption algorithm takes in a mes-
sage M , an n × � access matrix A with ρ mapping its rows to attributes, the
global parameters, and the public keys of the relevant authorities. It chooses a
random s ∈ ZN and a random vector v ∈ Z�N with s as its first entry. We let λx

Decentralizing Attribute-Based Encryption 579

denote Ax · v, where Ax is row x of A. It also chooses a random vector w ∈ Z�N
with 0 as its first entry. We let ωx denote Ax ·w. For each row Ax of A, it chooses
a random rx ∈ ZN . The ciphertext is computed as:

C0 = Me(g1, g1)s, C1,x = e(g1, g1)λxe(g1, g1)αρ(x)rx ,

C2,x = grx
1 , C3,x = g

yρ(x)rx

1 gωx
1 ∀x.

KeyGen(GID, i, SK, GP) → Ki,GID. To create a key for GID for attribute i
belonging to an authority, the authority computes:

Ki,GID = gαi
1 H(GID)yi .

Decrypt(CT, {Ki,GID}, GP) → M . We assume the ciphertext is encrypted under
an access matrix (A, ρ). To decrypt, the decryptor first obtains H(GID) from
the random oracle. If the decryptor has the secret keys {Kρ(x),GID} for a subset
of rows Ax of A such that (1, 0, . . . , 0) is in the span of these rows, then the
decryptor proceeds as follows. For each such x, the decryptor computes:

C1,x · e(H(GID), C3,x)/e(Kρ(x),GID, C2,x) = e(g1, g1)λxe(H(GID), g1)ωx .

The decryptor then chooses constants cx ∈ ZN such that∑
x cxAx = (1, 0, . . . , 0) and computes:∏

x

(
e(g1, g1)λxe(H(GID), g1)ωx

)cx = e(g1, g1)s.

(We recall that λx = Ax · v and ωx = Ax · w, where v · (1, 0, . . . , 0) = s and
w · (1, 0, . . . , 0) = 0.) The message can then be obtained as:

M = C0/e(g1, g1)s.

4.2 Security

We apply a form of the dual system encryption technique to prove security; over-
coming the new challenges that arise in the multi-authority setting. In a dual
system, keys and ciphertexts can either be normal or semi-functional: normal
keys can decrypt semi-functional ciphertexts, semi-functional keys can decrypt
normal ciphertexts, but semi-functional keys cannot decrypt semi-functional ci-
phertexts. The proof proceeds by a hybrid argument over a sequence of games,
where we first change the challenge ciphertext to be semi-functional, and then
change the keys to be semi-functional one by one. To prove that these games
are indistinguishable, we must ensure that the simulator cannot test the form of
the key being turned from normal to semi-functional for itself by test decrypt-
ing a semi-functional ciphertext. We avoid this problem employing the approach
of [39,37], where the simulator can only make a challenge ciphertext and key pair
which is nominally semi-functional, meaning that both the key and ciphertext
have semi-functional components, but these cancel out upon decryption. Thus,
if the simulator attempts to test the form of the key for itself, decryption will
succeed unconditionally.

580 A. Lewko and B. Waters

New Challenges. The existence of multiple authorities who do not coordinate
with each other introduces additional technical challenges in our case. Nominal
semi-functionality must be hidden from the attacker’s view, which is accom-
plished in [37] by using temporary “blinding factors” in the semi-functional
space that are active for one key at a time. Leaving these blinding factors
off for the other keys prevents leakage of information that would information-
theoretically reveal nominal semi-functionality in the attacker’s view. However,
what allows these blinding factors to be turned on and off is the stable pres-
ence of a semi-functional term attached to a single element in each key derived
from the master secret key. In the multi-authority case, we do not have this
sort of structural linchpin to rely on. We still need the blinding factors to hide
nominal semi-functionality, but we cannot simply excise them from the other
semi-functional keys to prevent their leakage. To overcome this, we use two sub-
groups for the semi-functional space, and instead of removing the blinding factors
from the other keys, we “switch” them from one semi-functional subgroup to the
other. This switch preserves semi-functionality of the keys while avoiding leakage
of information about the subgroup the semi-functional components have been
switched out of.

Hybrid Organization. We now formally define our sequence of games. We will
assume a one-use restriction on attributes throughout the proof: this means
that the row labeling ρ of the challenge ciphertext access matrix (A, ρ) must be
injective.

The first game, GameReal, is the real security game. We next define GameReal′ ,
which is like the real security game, except that the random oracle maps identi-
ties GID to random elements of Gp1 instead of G. We now define semi-functional
ciphertexts and keys, which are used only in the proof - not in the real system.

Semi-functional ciphertexts will contain terms from subgroups Gp2 and Gp3 .
Semi-functional keys will be of two types: semi-functional keys of Type 1 will have
terms in Gp2 , while semi-functional keys of Type 2 will have terms in Gp3 . When
a semi-functional key of Type 1 is used to decrypt a semi-functional ciphertext,
the extra terms from Gp2 in the key will be paired with the extra Gp2 terms in
the ciphertext, which will cause decryption to fail. When a semi-functional key
of Type 2 is used to decrypt a semi-functional ciphertext, the extra terms from
Gp3 in the key will be paired with the extra Gp3 terms in the ciphertext, which
will cause decryption to fail.

To more precisely describe semi-functional ciphertexts and keys, we first fix
random values zi, ti ∈ ZN for each attribute i which will be common to semi-
functional ciphertexts and keys. These values are fixed per attribute, and do not
vary for different users.

Semi-functional Ciphertexts. To create a semi-functional ciphertext, we first run
the encryption algorithm to obtain a normal ciphertext,

C′
0, C′

1,x, C′
2,x, C′

3,x ∀x.

Decentralizing Attribute-Based Encryption 581

We let g2, g3 denote generators of Gp2 and Gp3 respectively. We choose two
random vectors u2, u3 ∈ Z�N and set δx = Ax ·u2, σx = Ax ·u3 for each row Ax of
the access matrix A. We let B denote the subset of rows of A whose corresponding
attributes belong to corrupted authorities. We let B be the subset of rows of A
whose corresponding attributes belong to good authorities. For each row Ax ∈ B,
we also choose random exponents γx, ψx ∈ ZN . The semi-functional ciphertext
is formed as:

C0 = C′
0, C1,x = C′

1,x, C2,x = C′
2,xg

γx

2 gψx

3 ,

C3,x = C′
3,xg

δx+γxzρ(x)
2 g

σx+ψxtρ(x)
3 ∀x s.t. Ax ∈ B,

C1,x = C′
1,x, C2,x = C′

2,x, C3,x = C′
3,xg

δx
2 gσx

3 ∀x s.t. Ax ∈ B.

We say a ciphertext is nominally semi-functional when the values δx are shares
of 0.

Semi-functional Keys. We define the key for identity GID to be the collection
of H(GID) and all keys Ki,GID for attributes i belonging to good authorities
requested by the attacker throughout the game. (These queries may occur at
different times.) Semi-functional keys for an identity GID will be of two types:
Type 1 or Type 2. To create a semi-functional key for identity GID, we let
H ′(GID) be a random element of Gp1 , and we choose a random exponent c ∈ ZN .

To create a semi-functional key of Type 1, we define the random oracle’s
output on GID to be:

H(GID) = H ′(GID)gc2.

We create Ki,GID (for an attribute i controlled by a good authority) by first
creating a normal key K′

i,GID and setting:

Ki,GID = K′
i,GIDgczi

2 .

To create a semi-functional key of Type 2, we define the random oracle’s output
on GID to be:

H(GID) = H ′(GID)gc3.

We create Ki,GID (for an attribute i controlled by a good authority) by first
creating a normal key K′

i,GID and setting:

Ki,GID = K′
i,GIDgcti3 .

We note that when a semi-functional key of Type 1 is used to decrypt a semi-
functional ciphertext, the additional terms e(g2, g2)cδx prevent decryption from
succeeding, except when the values δx are shares of 0 (i.e. when we have a
nominally semi-functional ciphertext). When a semi-functional key of Type 2 is
used to decrypt a semi-functional ciphertext, the additional terms e(g3, g3)cσx

prevent successful decryption.
We now define Game0, which is like GameReal′ , except that the ciphertext

given to the attacker is semi-functional. We let q be the number of identities
GID for which the attacker makes key queries Ki,GID. We define Gamej,1 and
Gamej,2 for each j from 1 to q as follows:

582 A. Lewko and B. Waters

Gamej,1. This is like Game0, except that for the first j − 1 queried identities,
the received keys are semi-functional of Type 2, and the received key for the jth

queried identity is semi-functional of Type 1. The remaining keys are normal.

Gamej,2. This is like Game0, except that for the first j queried identities, the
received keys are semi-functional of Type 2. The remaining keys are normal. We
note that in Gameq,2, all keys are semi-functional of Type 2.

GameFinal. In this game, all keys are semi-functional of Type 2, and the ci-
phertext is a semi-functional encryption of a random message. We note that the
attacker has advantage 0 in this game.

We show these games are indistinguishable in the following lemmas. We give
the most interesting proof below, and the remaining proofs can be found in the
full version of this paper.

Lemma 1. Suppose there exists a polynomial time algorithm A such that
GameRealAdvA−GameReal′AdvA = ε. Then we can construct a polynomial time
algorithm B with advantage ε in breaking Assumption 1.

Lemma 2. Suppose there exists a polynomial time algorithm A such that
GameReal′AdvA − Game0AdvA = ε. Then we can construct a polynomial time
algorithm B with advantage negligibly close to ε in breaking Assumption 1.

Lemma 3. Suppose there exists a polynomial time algorithm A such that
Gamej−1,2AdvA −Gamej,1AdvA = ε. Then we can construct a polynomial time
algorithm B with advantage negligibly close to ε in breaking Assumption 2.

Proof. B receives g1, g3, X1X2, T . B will simulate either Gamej−1,2 or Gamej,1
with A, depending on the value of T . B outputs g1 as the public generator of Gp1

and N as the group order. A specifies a set S′ ⊆ S of corrupt authorities, where
S is the the set of all authorities in the system. For each attribute i belonging
to a good authority, B chooses random exponents αi, yi ∈ ZN and gives A the
public parameters e(g1, g1)αi , gyi

1 .
We let GIDk denote the kth identity queried by A. When A first queries

the random oracle for H(GIDk), if k > j, then B chooses a random exponent
hGIDk

∈ ZN and sets H(GIDk) = g
hGIDk
1 . If k < j, then B chooses a random

exponent hGIDk
∈ ZN and sets H(GIDk) = (g1g3)hGIDk (we note that this is a

random element of Gp1p3 since the values of hGIDk
modulo p1 and modulo p3

are uncorrelated). When k = j, B chooses a random exponent hGIDj ∈ ZN and
sets H(GIDj) = T hGIDj . In all cases, it stores this value so that it can respond
consistently if H(GIDk) is queried again.

When A makes a key query (i, GIDk), B responds as follows. If H(GIDk)
has already been fixed, then B retrieves the stored value. Otherwise, B creates
H(GIDk) according to k as above. B forms the key as:

Ki,GIDk
= gαi

1 H(GIDk)yi .

Decentralizing Attribute-Based Encryption 583

Notice that for k < j, B forms properly distributed semi-functional keys of
Type 2, where ti is congruent to yi modulo p3 (these are uncorrelated from the
values of yi modulo p1 which appear in the public parameters). Also recall that
the values ti are fixed per attribute, and do not vary across different keys. For
k > j, B forms properly distributed normal keys. For k = j, B forms a normal
key if T ∈ Gp1 and a semi-functional key of Type 1 if T ∈ Gp1p2 .

At some point, A gives B two messages, M0, M1, and an access matrix (A, ρ).
B flips a random coin β ∈ {0, 1}, and encrypts Mβ as follows. (We note that B
will produce a nominally semi-functional ciphertext, but this will be hidden from
A’s view.) First, B chooses a random s ∈ ZN and sets C0 = Me(g1, g1)s. B also
chooses three vectors, v = (s, v2, . . . , v�), w = (0, w2, . . . , w�), u = (u1, . . . , u�),
where v2, . . . , v�, w2, . . . , w�, u1, . . . , u� are chosen randomly from ZN . We let
λx = Ax · v, ωx = Ax · w, and σx = Ax · u.
A additionally supplies B with public parameters gyi , e(g1, g1)αi for attributes

i belonging to corrupt authorities which are included in the access matrix (A, ρ).
We let B denote the subset of rows of A whose corresponding attributes belong to
corrupted authorities. We let B be the subset of rows of A whose corresponding
attributes belong to good authorities. For each row Ax in B, B chooses a random
value rx ∈ ZN . For each row Ax ∈ B, B chooses random values ψx, r

′
x ∈ ZN ,

and will implicitly set rx = rr′x, where gr1 is X1.
For each row Ax ∈ B, the ciphertext is formed as:

C1,x = e(g1, g1)λx (e(g1, g1)αρ(x))rx ,

C2,x = grx
1 , C3,x =

(
g
yρ(x)
1

)rx (X1X2)ωxgσx
3 .

For each row Ax ∈ B, the ciphertext is formed as:

C1,x = e(g1, g1)λxe(g1, X1X2)αρ(x)r
′
x ,

C2,x = (X1X2)r
′
xgψx

3 , C3,x = (X1X2)yρ(x)r
′
xg

yρ(x)ψx

3 (X1X2)ωxgσx
3 .

We note that the Xωx
1 is gAx·rw

1 , and rw is a random vector with first coordinate
equal to 0. This is a semi-functional ciphertext with parameters δx = Ax · cw
modulo p2 where gc2 is X2, gγx

2 equals X
r′x
2 , zρ(x) = yρ(x) modulo p2, and tρ(x) =

yρ(x) modulo p3.
To see that this is properly distributed, we note that since r′x, yρ(x) are chosen

randomly in ZN , their values modulo p1 and modulo p2 are uncorrelated. This
means that our γx, ψx, zρ(x), tρ(x) parameters are randomly distributed. It is clear
that σx is properly distributed, since it is a share of a random vector. The entries
w2, . . . , w� of w are also randomly distributed modulo p2, however the δx’s are
shares of 0 from the simulator’s perspective. We must argue that these appear
to be shares of a random exponent in A’s view.

We let the space R denote the span of the rows of A whose attributes are in
B and the rows whose attributes ρ(x) are queried by the attacker with identity
GIDj . This space cannot include the vector (1, 0, . . . , 0), so there is some vector
u′ which is orthogonal to R modulo p2 and not orthogonal to (1, 0, . . . , 0). We

584 A. Lewko and B. Waters

can then write cw = w′ + au′ for some a modulo p2 and w′ in the span of
the other basis vectors. We note that w′ is uniformly distributed in this space,
and reveals no information about a. The value of the first coordinate of cw
modulo p2 depends on the value of a, but the shares δx for Ax ∈ B contain
no information about a. The only information A receives about the value of a
appears in exponents of the form δx + γxzρ(x), where the zρ(x) is a new random
value each time that appears nowhere else (recall that ρ is constrained to be
injective). (We note that these zρ(x) values modulo p2 do not occur in any keys
for identities not equal to GIDj , since these keys are either normal or semi-
functional of type 2, and hence do not have components in Gp2 .) As long as γx
does not equal 0 (γx = 0 with only negligible probability), this means that any
value of δx can be explained by zρ(x) taking on a particular value. Since zρ(x) is
uniformly random, this means that no information about the value of a modulo
p2 is revealed. Hence, the value being shared is information-theoretically hidden,
and the δx’s are properly distributed in the adversary’s view.

Though it is hidden from A, the fact that we can only make δx shares of
0 is crucial here (i.e. the simulator can only make a nominally semi-functional
ciphertext). If B tried to test the semi-functionality of the jth key for itself by
making a challenge ciphertext the key could decrypt, decryption would succeed
regardless of the presence of Gp2 components, since the δx’s are shares of 0. Hence
the simulator would not be able to tell whether the jth key was semi-functional
of Type 1 or normal.

In summary, when T ∈ Gp1 , B properly simulates Gamej−1,2. When T ∈
Gp1p2 , B properly simulates Gamej,1 with probability negligibly close to 1. Hence,
B can use A to obtain advantage negligibly close to ε in breaking Assumption 2.

Lemma 4. Suppose there exists a polynomial time algorithm A such that
Gamej,1AdvA − Gamej,2AdvA = ε. Then we can construct a polynomial time
algorithm B with advantage ε in breaking Assumption 3.

Lemma 5. Suppose there exists a polynomial time algorithm A such that
Gameq,2AdvA−GameFinalAdvA = ε. Then we can construct a polynomial time
algorithm B with advantage ε in breaking Assumption 4.

5 Discussion

There are multiple ways in which one might extend our work.

Removing the Random Oracle. It would be desirable to remove the need for a
random oracle and replace it with a concrete function H mapping identities to
group elements. One approach would be to fix a degree d polynomial, P (x), and
map identities in ZN to elements of G by setting H(GID) := gP (GID), where g
denotes a generator of the group G. This approach has previously been employed
to obtain large universe constructions for Attributed-Based encryption [30]. The
public parameters would then include {gP (xi)} for d+1 points xi so that H(GID)
could be computed for any GID by polynomial interpolation. We note that P (x)

Decentralizing Attribute-Based Encryption 585

is a (d + 1)-wise independent function modulo primes, but this will leave the
system vulnerable to collusion attacks when ≥ d + 1 users collude. Clearly, this
is far from ideal, and we would prefer a better method with stronger security
guarantees.

Prime order groups. An interesting direction is create a prime order group vari-
ant of our system. Using groups of prime order can potentially lead to more
efficient systems (via faster group operations) and security under different as-
sumptions. One approach is to simply use our exact construction except use a
group order of one prime (instead of a product of three primes). Applying this
setting results in an efficient system that we show to be generically secure in the
full version of this paper. However, this construction does not lend itself (to the
best of our knowledge) to a proof under a non-interactive assumption.

Another possible approach is to realize the subspaces needed for dual sys-
tem encryption proofs using vector spaces over prime order groups instead of
subgroups. We note that several systems such as BGN encryption [15], Groth-
Ostrovsky-Sahai NIZK proofs [32], traitor tracing [16] , and predicate encryp-
tion [17,36] were originally developed in the composite order setting, but later
variants were developed in prime order groups [31,48,33,35,25,26,37]4. Ideally, a
variant would result in security under a simple assumption such as the decision
linear assumption.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency
properties, relation to anonymous ibe, and extensions. Journal of Cryptology 21,
350–391 (2008)

2. Abdalla, M., Kiltz, E., Neven, G.: Generalized key delegation for hierarchical
identity-based encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 139–154. Springer, Heidelberg (2007)

3. Al-Riyami, S., Malone-Lee, J., Smart, N.: Escrow-free encryption supporting cryp-
tographic workflow. Int. J. Inf. Sec. 5, 217–229 (2006)

4. Bagga, W., Molva, R., Crosta, S.: Policy-based encryption schemes from bilinear
pairings. In: ASIACCS, pp. 368 (2006)

5. Barbosa, M., Farshim, P.: Secure cryptographic workflow in the standard model.
In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 379–393.
Springer, Heidelberg (2006)

6. Beimel, A.: PhD thesis, Israel Institute of Technology, Technion, Haifa, Israel
(1996)

7. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selec-
tive opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252.
Springer, Heidelberg (2011)

8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

4 Freeman [25] discusses a class of general transformations, although it does not en-
compass our construction.

586 A. Lewko and B. Waters

9. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

10. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004)

11. Boneh, D., Boyen, X., Goh, E.: Hierarchical identity based encryption with constant
size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
440–456. Springer, Heidelberg (2005)

12. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

13. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

14. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: Proceedings of FOCS, pp. 647–657 (2007)

15. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

16. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

17. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

18. Bradshaw, R., Holt, J., Seamons, K.: Concealing complex policies with hidden
credentials. In: ACM Conference on Computer and Communications Security, pp.
146–157 (2004)

19. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, p. 93. Springer, Heidelberg (2001)

20. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003)

21. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

22. Chase, M., Chow, S.: Improving privacy and security in multi-authority attribute-
based encryption. In: ACM Conference on Computer and Communications Secu-
rity, pp. 121–130 (2009)

23. Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: ACM Confer-
ence on Computer and Communications Security, pp. 456–465 (2007)

24. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 26–28.
Springer, Heidelberg (2001)

25. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

26. Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building efficient fully
collusion-resilient traitor tracing and revocation schemes. In: ACM Conference on
Computer and Communications Security, pp. 121–130 (2010)

Decentralizing Attribute-Based Encryption 587

27. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

28. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

29. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
579–591. Springer, Heidelberg (2008)

30. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute Based Encryption for Fine-
Grained Access Conrol of Encrypted Data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

31. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
nizk. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer,
Heidelberg (2006)

32. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for np.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

33. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008)

34. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

35. Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime order. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 75–88.
Springer, Heidelberg (2008)

36. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

37. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure func-
tional encryption: Attribute-based encryption and (hierarchical) inner product en-
cryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

38. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. Cryptology
ePrint Archive, Report 2010/351 (2010), http://eprint.iacr.org/

39. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure
HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978,
pp. 455–479. Springer, Heidelberg (2010)

40. Lin, H., Cao, Z., Liang, X., Shao, J.: Secure threshold multi authority attribute
based encryption without a central authority. In: Chowdhury, D.R., Rijmen, V.,
Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 426–436. Springer, Hei-
delberg (2008)

41. Miklau, G., Suciu, D.: Controlling access to published data using cryptography. In:
VLDB 2003, pp. 898–909 (2003)

42. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption.
In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer,
Heidelberg (2009)

43. Müller, S., Katzenbeisser, S., Eckert, C.: On multi-authority ciphertext-policy
attribute-based encryption. Bulletin of the Korean Mathematical Society 46(4),
803–819 (2009)

http://eprint.iacr.org/

588 A. Lewko and B. Waters

44. Ostrovksy, R., Sahai, A., Waters, B.: Attribute Based Encryption with Non-
Monotonic Access Structures. In: ACM Conference on Computer and Commu-
nications Security, pp. 195–203 (2007)

45. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

46. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

47. Shi, E., Bethencourt, J., Chan, H., Song, D., Perrig, A.: Multi-dimensional range
query over encrypted data. In: IEEE Symposium on Security and Privacy (2007)

48. Shi, E., Bethencourt, J., Chan, H.T.-H., Xiaodong Song, D., Perrig, A.: Multi-
dimensional range query over encrypted data. In: IEEE Symposium on Security
and Privacy, pp. 350–364 (2007)

49. Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In:
Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008)

50. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

51. Smart, N.: Access control using pairing based cryptography. In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 111–121. Springer, Heidelberg (2003)

52. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

53. Waters, B.: Dual system encryption: realizing fully secure ibe and hibe under simple
assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636.
Springer, Heidelberg (2009)

54. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

Threshold and Revocation Cryptosystems
via Extractable Hash Proofs

Hoeteck Wee�

Queens College, CUNY
hoeteck@cs.qc.cuny.edu

Abstract. We present a new unifying framework for constructing non-interactive
threshold encryption and signature schemes, as well as broadcast encryption
schemes, and in particular, derive several new cryptosystems based on hardness
of factoring, including:

– a threshold signature scheme (in the random oracle model) that supports
ad-hoc groups (i.e., exponential number of identities and the set-up is
independent of the total number of parties) and implements the standard
Rabin signature;

– a threshold encryption scheme that supports ad-hoc groups, where encryp-
tion is the same as that in the Blum-Goldwasser cryptosystem and therefore
more efficient than RSA-based implementations;

– a CCA-secure threshold encryption scheme in the random oracle model;

– a broadcast encryption scheme (more precisely, a revocation cryptosystem)
that supports ad-hoc groups, whose complexity is comparable to that of the
Naor-Pinkas scheme; moreover, we provide a variant of the construction that
is CCA-secure in the random oracle model.

Our framework rests on a new notion of threshold extractable hash proofs. The
latter can be viewed as a generalization of the extractable hash proofs, which are
a special kind of non-interactive zero-knowledge proof of knowledge.

1 Introduction

As the old saying goes, “Do not put all your eggs in one basket”. Indeed, this
is the basic principle underlying threshold cryptography, which distributes some
cryptographic functionality amongst many users in such a way that: (1) any t + 1
parties can collectively compute the functionality; and (2) no colluding subset of t
parties can compromise the security of the functionality. The two canonical applications
of threshold cryptography are in public-key encryption and signature schemes, where
the functionalities in consideration correspond to decryption and signing respectively.
The approach was initiated in [19, 20, 21], and there is now a large body of work on
threshold signature schemes [18, 27, 40, 26, 28, 29, 8, 34, 30] and threshold encryption
schemes [41, 11, 24, 34, 9, 10].

� Supported by NSF CAREER Award CNS-0953626, and the US Army Research laboratory
and the UK Ministry of Defence under agreement number W911NF-06-3-0001.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 589–609, 2011.
c© International Association for Cryptologic Research 2011

590 H. Wee

If we are willing to settle solely for pairings-based schemes, then the main questions
of practical threshold encryption and signature schemes are essentially solved. The
threshold signature schemes of Boneh, Lynn, Shacham [8] and threshold encryption
schemes of Boyen, Mei and Waters [10, 9] are non-interactive (each party locally
computes a signature/decryption share without any interaction with the other parties),
guarantees robustness against corrupted parties (given a verification key, each party can
check that the signature/decryption shares are well-formed) and are well-suited for use
in ad-hoc groups such as MANETs (“mobile ad-hoc networks”, which arise in many
wireless and military settings). The latter requirement, articulated in the recent work of
Gennaro et al. [30], means that the cryptographic protocol supports an identity space of
exponential size and does not have any dependency on the total number of parties.

Given that the underlying principle of threshold cryptography is to avoid any single
point of failure, it would be quite ironic of course to base all of threshold cryptography
on pairings and discrete-log assumptions. A natural class of alternative assumptions
would be that related to factoring, where many problems remain open. Here, virtually
all threshold signature schemes are based on the RSA assumption; the only exception
is the factoring-based scheme of Katz and Yung [34], which does not support ad-hoc
groups. We also do not know of any threshold encryption schemes based on hardness of
factoring which supports ad-hoc groups. More notably, we do not know of any practical
CCA-secure threshold encryption scheme based on hardness of factoring, even in the
random oracle model; this was posed as an open problem in [41]. Similarly, very little is
known about factoring-based revocation cryptosystems, a primitive seemingly unrelated
to threshold cryptosystems. These are a special kind of broadcast encryption schemes
[23] where a sender broadcasts encrypted messages created in such a way that all but a
small subset of recipients (the “revoked” users) can decrypt the message.

This Work. We present a new unifying framework for constructing non-interactive
threshold encryption and signature schemes, as well as revocation schemes, and in
particular, derive several new cryptosystems based on hardness of factoring, including:

– a threshold signature scheme (in the random oracle model) that supports ad-hoc
groups and implements the standard Rabin signature (namely, the end-result of
running the protocol is a Rabin signature and anyone can verify that signature as if
it were generated by a standard centralized signer);

– a threshold encryption scheme (in the standard model) that supports ad-hoc groups,
where encryption is the same as that in the Blum-Goldwasser cryptosystem [5] and
therefore more efficient than RSA-based implementations;

– a CCA-secure threshold encryption scheme (in the random oracle model), whose
computation and communication complexity is roughly that of Shoup’s threshold
signature scheme [40] plus that of the Hofheinz-Kiltz CCA-secure encryption
scheme [32].

– a revocation cryptosystem (in the standard model) that also supports ad-hoc groups,
whose complexity is comparable to that of the Naor-Pinkas scheme [36]; moreover,
we provide a variant of the construction that is CCA-secure in the random oracle
model.

Threshold and Revocation Cryptosystems via Extractable Hash Proofs 591

reference assumption security ad-hoc

[18, 28] RSA CPA ×
[25, 24] DCR CPA, CCA (RO) ×
[34, 24] QR CPA, CCA (RO) ×
[34] factoring CPA ×
this work factoring CPA �
this work factoring CCA (RO) ×

Fig. 1. Summary of threshold PKEs from assumptions related to factoring

We refer to Figure 1 for a comparison with previous factoring-based threshold
cryptosystems. We also note here that our framework also captures many of the afore-
mentioned threshold and revocation cryptosystems based on pairings and discrete-log
assumptions [8, 10, 36] (see Figure 2).

2 Overview of Our Constructions

We proceed to provide an overview of our framework and the constructions.

Threshold Extractable Hash Proofs. We introduce the notion of a threshold ex-
tractable hash proof system, which generalizes our recent work [42]. Informally, these
hash proof systems are like the Cramer-Shoup universal hash proofs [15] in that they
are a special kind of non-interactive zero-knowledge proofs [6], except we replace the
soundness requirement (corresponding to smoothness) with a “proof of knowledge
property” [38, 17]. Specifically, the proofs are specified by a family of functions
HHK(·, ·) indexed by a public key HK and takes two inputs, a tag and an instance u.
We will require that HHK(·, ·) be efficiently computable either given the coin tosses
used to sample the instance u, or a secret key for the corresponding tag. In addition, the
family of functions is parametrized by a “threshold” value 1t which plays the following
role:

– (t + 1)-EXTRACTABILITY: given any t + 1 proofs for the same instance u on t + 1
different tags, we may efficiently “extract” a witness s for the instance (this is
mostly meaningful when computing the witness given only u is hard-on-average);

– t-SIMULATABILITY: on the other hand, any t proofs reveal no “useful” information
about the witness, that is, there exists a simulator that can efficiently generate proofs
for t different tags for an instance u without knowing the witness. The formal
requirement is stronger, namely that the simulator can generate a random HK along
with the secret keys for any t different tags.

We point out here that the case t = 1 corresponds to the “all-but-one” extractable hash
proofs in [42]; that is, threshold extractable hash proofs may be regarded as a “all-but-t”
analogue of extractable hash proofs.

592 H. Wee

From Hash Proofs to Cryptosystems. With this informal overview of threshold
extractable hash proofs, we can now outline how we derive threshold and revocation
cryptosystems (see Figure 3 for the parameters). We note here that we are working in
the model with a trusted dealer that generates HK and issues each party with identity ID

with the secret key corresponding to the tag ID. This is well-suited for dynamic ad-hoc
networks where any user can join the network at any time and register with the trusted
dealer to obtain a secret key; however, in this work, we only address the setting where
the threshold t is fixed once and for all.

– THRESHOLD ENCRYPTION: To encrypt a bit, we generate a random instance-
witness pair (u, s), mask the bit using the hard-core bit of s, and publish u along
with the masked bit. The decryption share from a party ID is simply a proof
HHK(ID, u). The functionality requirement follows from (t + 1)-extractability –
anyone can decrypt upon receiving the shares from any t + 1 parties; moreover,
t-simulatability prevents any t colluding parties from decrypting the message.

– THRESHOLD SIGNATURES: The signature for a message M is a witness s for the
instance H(M) where H(·) is a hash function modeled as a random oracle (a “full
domain hash”). The signature share from a user ID is again a proofHHK(ID, H(M));
functionality and security is exactly analogous to that for threshold encryption.

– REVOCATION CRYPTOSYSTEM: Here, we want to encrypt messages in such a
way that any party outside a revoked set of t users ID1, . . . , IDt can decrypt. (To
revoke fewer than t users, we may simply add “dummy” identities.) Again, to
encrypt a bit, we generate a random instance-witness pair (u, s), mask the bit
using the hard-core bit of s, and publish u along with the masked bit and t proofs
HHK(ID1, u), . . . ,HHK(IDt, u). Any party ID outside the revoked set can compute a
t + 1’th proof using the secret key for the tag ID and then derive s to decrypt.

We also show how to realize robustness for signatures following [28], and CCA
security for threshold encryption and revocation schemes (with instantiations in the
random oracle model). Our techniques for achieving CCA security follow the “all-but-
one extractable hash proof” paradigm in [42, 12, 32], whereas most of the previous
constructions [11, 22, 24] rely on the Cramer-Shoup [14, 15] or the Naor-Yung
paradigm [37] which seem to be inherently limited to decisional assumptions.

Realizing Threshold Extractable Hash Proofs. We begin with an informal descrip-
tion of our approach for constructing threshold extractable hash proofs. The approach
generalizes the direct constructions of all-but-one extractable hash proofs in [42] and
provide a different perspective into those constructions. The basic idea is to exploit
Shamir secret sharing in the exponent. More precisely, we sample a random degree t
polynomial f subject to the constraint f(0) is a special trapdoor such that s = uf(0).
The master secret key is given by f and the public key HK is some “commitment”
to the coefficients of f . The secret key corresponding to TAG is given by f(TAG)
and HHK(TAG, u) := uf(TAG). Computing HHK(TAG, u) given the coin tosses for
generating u corresponds to evaluating f in the exponent. Given the hash proofs for u
corresponding to t + 1 distinct tags, we may recover uf(0) via Lagrangian interpolation

Threshold and Revocation Cryptosystems via Extractable Hash Proofs 593

primitive CDH/DDH BDDH factoring

threshold PKE folklore folkore new

threshold signatures [27] (RO) [8] new (RO)

broadcast PKE [36] [36] new

CCA threshold PKE [41, 24] (RO) [10, 9] new (RO)

CCA broadcast PKE [22] new new (RO)

Fig. 2. Summary of previous and present constructions from CDH/DDH, BDDH and hardness
of factoring. For most primitives and assumptions, our constructions match and improve upon
existing constructions. We underline the references for the two settings where existing work
achieve better parameters than our work. We note that the [22] scheme only achieves a relaxed
notion of CCA security.

primitive public key secret key ciphertext/signaturedecryption/signing share

threshold PKE O(1) O(1) O(1) O(1)
threshold signatures O(1) O(1) O(1) O(1)
broadcast PKE O(t) O(1) O(t) O(1)
CCA threshold PKE O(1) O(1) O(1) O(1)
CCA broadcast PKE O(t) O(1) O(t) O(1)

Fig. 3. Complexity of our BDDH and factoring-based schemes, as measured by number of group
elements. For broadcast PKE, t denotes the revocation threshold. Here, secret key refers to the
user/server’s secret key; the dealer’s secret key has size O(t).

in the exponent. This is easy for discrete-log type settings since we know the order of the
group. Generating simulated proofs or secret keys for any t distinct tags is easy since
the evaluation of f at any t locations look random; the main technical complication
comes in having to simulate a consistent HK (though that is again easy for discrete-log
type settings).

The factoring-based construction is based on Rabin’s trapdoor permutation. We
begin with the simple observation that we may compute a square root of u by
exponentiation to the secret value (φ(N) + 1)/2 = 2−1 (mod φ(N)). Here, we use
secret sharing over the ring Zφ(N), whereas the previous factoring-based scheme in
[34] applies secret sharing to the factorization of the modulus N . In order to perform
Lagrangian interpolation over the ring Zφ(N) of unknown order, we build on ideas
developed in the context of RSA-based schemes [40, 30] and the factoring-based
cryptosystem in [32]. Informally, we set f(0) to be 2−(t+1)�logN� (mod φ(N)). Given
the hash proofs uf(TAG) corresponding to t + 1 distinct tags, we may recover uDf(0),
where D denotes an integer used to “clear the denominator” in the fractional Lagrangian
coefficients and it depends on the tags used in the t + 1 proofs. In order to support an
identity space of exponential size, we bound the highest power of 2 that divides D by
2−t�logN�, following [30]. Given both u and uDf(0), we may then recover s = u1/2

using Shamir’s algorithm for “GCD in the exponent” [39].

594 H. Wee

In our constructions, we “commit” to the coefficients of f instead of the evaluations
of f in HK, evaluating uf(TAG) given the coin tosses used to sample u does not
require interpolation; this appears to be the first time this property is exploited for
RSA/factoring-based schemes and is important for handling ad-hoc networks in our
revocation scheme.

Towards Lattice-Based Instantiations. Looking forward, we plan to look into lattice-
based instantiations of threshold extractable hash proofs, extending the ideas and
results in [2, 3]. One possible starting point is the following construction: HK :=
(A0, . . . ,At) ←R Zm×n

q where m = poly(n) and f(TAG) := A0 + A1TAG + · · · +
AtTAGt for TAG ∈ Zn ⊂ Zq . The instance u is a perturbed lattice point A ·s+η where
s ∈ Znq andHHK(TAG, u) is of the form f(TAG)s+η. Due to the interaction between the
Lagrangian coefficients and the noise vectors, we will need to work with field sizes and
approximation factors much larger than nt (c.f. [3]). However, under sub-exponential
hardness assumptions for lattice problems, we could still potentially get meaningful
results for parameters such as t =

√
n, say.

3 Preliminaries and Definitions

A key encapsulation mechanism (KEM) (Gen, Enc, Dec) with key-space {0, 1}k
consists three polynomial-time algorithms.Via (PK, SK) ← Gen(1k) the randomized
key-generation algorithm produces public/secret keys for security parameter 1k; via
(C, K) ← Enc(PK), the randomized encapsulation algorithm creates a uniformly
distributed symmetric key K ∈ {0, 1}k, together with a ciphertext C; via K ←
Dec(SK, C), the possessor of secret key SK decrypts ciphertext C to get back a key
K which is an element in {0, 1}k or a special reject symbol ⊥. For consistency, we
require that for all k and all (C, K) ← Enc(PK), we have Pr[Dec(SK, C) = K] = 1.

3.1 Binary Relations for Search Problems

Fix a family of (binary) relations RPP indexed by a public parameter PP. We require that
PP be efficiently samplable given a security parameter 1k, and assume that all algorithms
are given PP as part of its input. We omit PP henceforth whenever the context is clear.
We will also require that RPP be efficiently samplable, where the sampling algorithm is
denoted by SampR. Intuitively, the relation RPP corresponds to a hard search problem,
that is, given a random u, it is hard to find s such (u, s) ∈ RPP . More formally, we say
that a binary relation RPP is one-way if:

– with overwhelming probability over PP, for all u, there exists at most one s such
that (u, s) ∈ RPP; and

– there is an efficiently computable generator G such that GPP(s) is pseudorandom
even against an adversary that gets PP, u, where (u, s) ←R SampR(PP). (We will
also refer to G as extracting hard-core bits from s.) That is, the following quantity
is negligible for all PPT A:

Threshold and Revocation Cryptosystems via Extractable Hash Proofs 595

AdvPRGA(k) := Pr

⎡⎢⎣b = b′ :
(u, s) ← SampR(PP);
K0 ← G(s); K1 ←R {0, 1}k; b ←R {0, 1};
b′ ← A(PP, u, Kb)

⎤⎥⎦
For relations where computing s given u is hard on average, we may derive a generator
GPP with a one-bit output via the Goldreich-Levin hard-core bit GL(·) [31] (with the
randomness in PP). In many cases as we shall see shortly, we may derive a linear number
of hard-core bits by either iterating a one-way permutation or relying on decisional
assumptions.

3.2 Threshold Extractable Hash Proofs

We consider a family of hash functions HHK(·, ·) indexed by a public key HK, that
takes as input a tag and an instance. More formally, an threshold extractable hash
proof system is a tuple of algorithms (Setup, Pub, Ext, Priv) satisfying the following
properties with overwhelming probability over (PP, SP):

(KEY GENERATION.) The set-up algorithm Setup(PP, SP, 1t) generates public keys HK

and a master secret key MSK. Given a tag TAG, the share generation algorithm
computes an associated key ShareGen(MSK, TAG) = SKTAG.

(PUBLIC EVALUATION.) For all HK, TAG and (u, s) = SampR(r): Pub(HK, TAG, r) =
HHK(TAG, u).

(PRIVATE EVALUATION.) For all HK, TAG and u: Priv(SKTAG , u) = HHK(TAG, u)

((t + 1)-EXTRACTION.) For all HK, u and all t + 1 distinct tags TAG1, . . . , TAGt+1:

(u, Ext(u,HHK(TAG1, u), . . . ,HHK(TAGt+1, u))) ∈ RPP

We note here that Ext also receives as input the tags TAG1, . . . , TAGt+1 (omitted for
notational simplicity) but does not require as input HK.

(t-SIMULATION.) For all (PP, SP), 1t and all TAG1, . . . , TAGt, the distribution of
(HK, SKTAG1 , . . . , SKTAGt) in the following experiments are statistically indistin-
guishable:

– the first is that obtained via key generation: (HK, MSK) ←R Setup(PP, SP, 1t)
and SKTAGi

:= ShareGen(MSK, TAGi) for i = 1, . . . , t;

– the second is that given by SetupSim(PP, TAG1, . . . , TAGt)

Finally, we say that a threshold extractable hash proof system is publicly verifiable
if there is an efficient algorithm Ver that on input (HK, TAG, u, τ) outputs true iff
τ = HHK(TAG, u).

596 H. Wee

4 Threshold Encryption Schemes

We define a threshold KEM (from which we can readily build a threshold encryption
scheme):

(SHARING PHASE.) The set-up algorithm Setup(PP, SP, 1t) generates a public key PK

and a master secret key MSK. Given an identity ID, the share generation algorithm
computes an associated key ShareGen(MSK, ID) = SKID.

(ENCRYPTION.) The encapsulation algorithm Enc(PK) generates (C, K), namely a
random key K along with a ciphertext C.

(DECRYPTION.) The share decryption algorithm ShareDec(ID, C) takes an identity
ID and computes the decryption share for that identity using its secret key SKID.
Moreover, there’s a combining algorithm that takes any t+1 decryption shares and
outputs K .

Semantic Security. We define the advantage AdvThEncA(k) to be:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣b = b′ :

(ID∗
1, . . . , ID∗

t) ← A1(1k);
(PK, MSK) ← Gen(1k, 1t);
SKID∗

i
← ShareGen(MSK, ID∗

i), i = 1, . . . , t;
(C, K0) ← Enc(PK); K1 ←R {0, 1}k; b ←R {0, 1};
b′ ← AShareDec(·,Enc(PK))

2 (PK, SKID∗
1
, . . . , SKID∗

t
, Kb, C)

⎤⎥⎥⎥⎥⎥⎥⎦
Here, ShareDec(·, Enc(PK)) denotes an oracle that given an input ID, computes a
fresh ciphertext C using Enc(PK) and returns ShareDec(ID, C) along with C. This
captures the fact that the adversary may obtain decryption shares of fresh encryptions
of known messages, and captures the security notion used in [16] with applications to
secure voting. In the CCA setting, we provide A2 with oracle access to ShareDec(·, ·),
with the restriction that A2 is only allowed to query ShareDec(·, ·) on ciphertexts
different from the challenge ciphertext C. A threshold encryption scheme is said to be
indistinguishable against chosen plaintext attacks (IND-CPA) if for all PPT adversaries
A, the advantage AdvThEncA(k) is a negligible function in k.

Decryption Consistency. We consider a notion of decryption consistency that for all
ciphertexts C, there exists a unique value K such that for all (possibly malformed)
t + 1 decryption shares, the combining algorithm returns a value in {K,⊥}.

Theorem 1. If RPP is a one-way relation admitting a threshold extractable hash proof,
then the threshold KEM shown in Figure 4 is IND-CPA secure.

Proof. Given a PPT A = (A1,A2) that breaks the threshold encryption scheme, we
construct a B that breaks the pseudorandomness of G as follows: on input (PP, u, K):

Threshold and Revocation Cryptosystems via Extractable Hash Proofs 597

Threshold PKE

(SHARING PHASE.) On input the security parameter 1k and a threshold t,
the dealer generates (PP, SP), runs Setup(PP, SP, 1t) → (HK, MSK) and
sets PK to be PP. A user with identity ID is given the share SKID :=
ShareGen(MSK, ID).

(ENCRYPTION.) Enc(PK): sample (u, s) := SampR(r), and return (C, K) :=
(u, G(s)).

(DECRYPTION.) On input a ciphertext u, a user ID computes the decryption
share σID := Priv(SKID , u). Given t + 1 decryption shares σID1 , . . . , σIDt+1 ,
the combining algorithm computes s := Ext(u, σID1 , . . . , σIDt+1) and
returns G(s).

Fig. 4. Threshold encryption scheme from threshold hash proofs

– Run (ID∗
1, . . . , ID∗

t) ← A1(1k)
– Run SetupSim(PP, ID∗

1, . . . , ID∗
t) to get (HK, SKID∗

1
, . . . , SKID∗

t
)

– Output A2((PP, PK), SKID∗
1
, . . . , SKID∗

t
, K, u), simulating ShareDec(·, Enc(PK))

using Pub.

It is easy to see that AdvPRGB(k) ≈ AdvThEncA(k). !

5 Threshold Signature Schemes

A threshold signature scheme proceeds in two phases:

(SHARING PHASE.) The set-up algorithm Setup(PP, SP, 1t) generates a verification VK

and a master secret key MSK. Given an identity ID, the share generation algorithm
computes an associated key SKID.

(SIGNATURE COMPUTATION PHASE.) The signature computation ShareSign(·, ·) al-
gorithm takes an identity ID and a message and computes the signature share for
that identity using its secret key SKID. Moreover, there’s a combining algorithm that
takes any t + 1 signature shares and outputs the actual signature σ.

Unforgeability. We define the advantage AdvThSignA(k) to be:

Pr

⎡⎢⎢⎢⎣Ver(PK, VK, M∗, σ∗) = 1 :

(ID∗
1, . . . , ID∗

t) ← A1(1k);
(VK, MSK) ← Gen(1k, 1t);
SKID∗

i
← ShareGen(MSK, ID∗

i), i = 1, . . . , t;
(M∗, σ∗) ← AShareSign(·,·)

2 (VK, SKID∗
1
, . . . , SKID∗

t
)

⎤⎥⎥⎥⎦
with the restriction that A2 never made a query to ShareSign(·, ·) on the message M∗.
A threshold signature scheme is said to be existentially unforgeable if for all PPT
adversariesA, the advantage AdvThSignA(k) is a negligible function in k.

598 H. Wee

Construction. We assume that RPP is efficiently verifiable and that there is a hash
function H that maps the message space into instances of RPP. The signature on a
message M is a witness s such that (H(M), s) ∈ RPP.

Threshold Signature Scheme

(SHARING PHASE.) On input the security parameter 1k and a threshold t,
the dealer generates (PP, SP), runs Setup(PP, SP, 1t) → (HK, MSK) and
sets VK to be PP. A user with identity ID is given the share SKID :=
ShareGen(MSK, ID).

(SHARING PHASE.) On input the security parameter 1k and a threshold t,
the dealer generates (PP, SP), runs Setup(PP, SP, 1t) → (HK, MSK) and
sets VK to be PP. A user with identity ID is given the share SKID :=
ShareGen(MSK, ID).

(SIGNATURE COMPUTATION PHASE.) On input a message M , the user ID

computes u := H(M) and publishes the signature fragment σID :=
Priv(SKID , u). Given t + 1 signatures fragments σID1 , . . . , σIDt+1 , the
signature is given by Ext(u, σID1 , . . . , σIDt+1).

(SIGNATURE VERIFICATION.) On input a key VK, a message M and a signature
σ, the verification accepts iff (H(M), σ) ∈ RVK.

Fig. 5. Threshold signatures from threshold hash proofs

Theorem 2. If RPP is a one-way relation admitting a threshold extractable hash proof,
then the threshold signature shown in Figure 5 is existentially unforgeable in the
random oracle model. Moreover, if the hash proof is publicly verifiable, then the
signature scheme is robust.

Proof. Given a PPT A = (A1,A2) that breaks the threshold signature scheme, we
construct a B that breaks the one-wayness of R as follows: on input (PP, u):

– Run (ID∗
1, . . . , ID∗

t) ← A1(1k)
– Run SetupSim(PP, ID∗

1, . . . , ID∗
t) to get (HK, SKID∗

1
, . . . , SKID∗

t
)

– OutputA2(VK, SKID∗
1
, . . . , SKID∗

t
)

Suppose A2 requests for signatures on M1, . . . , Mq and outputs a forgery on M∗. For
each i, we sample SampR(ri) := (ui, si) and map H(Mi) to ui for which we can
compute any signature fragment using Pub. Finally, we map H(M∗) to u and thus a
valid signature on M∗ is a valid witness for u. It is easy to see that AdvPRGB(k) ≈
AdvThSigA(k) − q2/2k (where q2/2k is an upper bound on the probability of a
collision in the output of the random oracle). !

Threshold and Revocation Cryptosystems via Extractable Hash Proofs 599

6 Revocation Schemes

We define a revocation KEM:

(SHARING PHASE.) The set-up algorithm Setup(PP, SP, 1t) generates public keys HK

and a master secret key MSK. Given an identity ID, the share generation algorithm
computes an associated key ShareGen(MSK, ID) = SKID.

(ENCRYPTION.) The encapsulation algorithm Enc takes PK and a set of t revoked users
ID1, . . . , IDt generates (C, K), namely a random key K along with a ciphertext C.

(DECRYPTION.) The decapsulation algorithm Dec takes SKID for any ID �= ID1, . . . , IDt
and outputs K .

Semantic Security. We define the advantage AdvBrEncA(k) to be:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣b = b′ :

S = (ID∗
1, . . . , ID∗

t) ← A1(1k);
(PK, MSK) ← Gen(1k, 1t);
SKID∗

i
← ShareGen(MSK, ID∗

i), i = 1, . . . , t;
(C, K0) ← Enc(PK, S); K1 ←R {0, 1}k; b ←R {0, 1};
b′ ← A2(PK, SKID∗

1
, . . . , SKID∗

t
, Kb, C)

⎤⎥⎥⎥⎥⎥⎥⎦
In the CCA setting, we provide A2 with oracle access to Dec(·, ·), with the restriction
that A2 is only allowed to query Dec(·, ·) on ciphertexts different from the challenge
ciphertext. A revocation scheme is said to be indistinguishable against chosen plaintext
attacks (IND-CPA) if for all PPT adversaries A, the advantage AdvBrEncA(k) is a
negligible function in k.

Theorem 3. If RPP is a one-way relation admitting a threshold extractable hash proof,
then the broadcast KEM shown in Figure 6 is IND-CPA secure.

Proof. Given a PPT A = (A1,A2) that breaks the broadcast KEM, we construct a B
that breaks the pseudorandomness of G as follows: on input (PP, u, K):

– Run (ID∗
1, . . . , ID∗

t) ← A1(1k)
– Run SetupSim(PP, ID∗

1, . . . , ID∗
t) to get (HK, SKID∗

1
, . . . , SKID∗

t
)

– Set C := (u, Priv(SKID∗
1
, u), . . . , Priv(SKID∗

t
, u)).

– OutputA2((PP, PK), SKID∗
1
, . . . , SKID∗

t
, K, C).

It is easy to see that AdvPRGB(k) ≈ AdvBrEncA(k). !

7 Instantiations for the Diffie-Hellman Relation

We consider a family of groups G of prime order q that admits a bilinear map. The
secret parameter is a random α ←R Zq and the public parameter PP is given by (g, gα)
for a random g ←R G and a random α ←R Zq . We consider the Diffie-Hellman relation

Rdh
PP =

{
(u, s) ∈ G×G : s = uα

}

600 H. Wee

Note that Rdh
PP is efficiently verifiable by computing a pairing. The associated sampling

algorithm SampR picks a r ←R Zq and outputs (gr, gαr).

Revocation PKE

(SHARING PHASE.) On input the security parameter 1k and a revocation
threshold t, the dealer generates (PP, SP), runs Setup(PP, SP, 1t) →
(HK, MSK) and sets the public key PK to be (PP, HK). A user with identity
ID is given the key SKID := ShareGen(MSK, ID).

(ENCRYPTION.) In order to revoke users ID1, . . . , IDt, Enc(PK): sample
(u, s) := SampR(r), compute τi := Pub(HK, IDi, u, r) for i = 1, . . . , t
and return (C, K) := ((u, τ1, . . . , τt), G(s)).

(DECRYPTION.) Any user ID not in the revoked set {ID1, . . . , IDt} may
decrypt a ciphertext C := (u, τ1, . . . , τt) as follows: compute s :=
Ext(u, τ1, . . . , τt, Priv(SKID , u)) and output G(s).

Fig. 6. Revocation scheme from threshold hash proofs

Hard-core Bits. Next, we explain how to obtain hard-core bits for Rdh
PP under various

assumptions.

– The CDH assumption [1] asserts that computing gab given (g, ga, gb) is hard on
average; here, we may extract a single hard-core bit from s using GL(s).

– The Bilinear DDH (BDDH) assumption [7] asserts that e(g, g)abc is pseudorandom
given g, ga, gb, gc where g, ga, gb, gc are random elements of a bilinear group.
Under BDDH, we may extract a linear number of hard-core bits from s using:

Gbddh
PP (s) := e(s, gγ)

(
⇒ Gbddh

PP (gαr) = e(g, g)αγr
)

where PP is now given by (g, gα, gγ). In addition, we may improve efficiency by
pre-computing the pairing and setting PP to be (g, gα, e(g, gγ)) and computing
Gbddh

PP (gr) := e(g, gγ)r. This construction extends naturally to the Gap Hashed
DH assumption [35].

Threshold Hash Proof System. Fix the parameters (PP, SP) = ((g, gα), α); this also
fixes a group G of prime order q. The tag space is given by Fq \ {0}.

(KEY GENERATION.) Pick a1, . . . , at ←R Zq and set f(x) := α + a1x + · · ·at.
– Setup(PP, SP, 1t) returns HK := (ga1 , . . . , gat) and MSK := f(x)
– ShareGen(MSK, TAG) returns SKTAG := f(TAG) ∈ Zq .

(PUBLIC/PRIVATE EVALUATION.) HHK(TAG, u) is given by uf(TAG) = (gf(TAG))r

where u := gr

Threshold and Revocation Cryptosystems via Extractable Hash Proofs 601

– Pub(HK, u, r) returns
(
gα ·

∏t
i=1(g

ai)TAGi)r
.

– Priv(SKTAG , u) returns uSKTAG .

((t + 1)-EXTRACTION.) Given u, TAG1, . . . , TAGt+1, we have (u, uf(0)) ∈ RPP. In
addition, we may write f(0) =

∑t+1
i=1 Li · f(TAGi) where Li ∈ Fq are the La-

grangian coefficients which may be efficiently computed given TAG1, . . . , TAGt+1.
This means uf(0) =

∏t+1
i=1 uLi·f(TAGi).

– Ext(u, τ1, . . . , τt+1) returns
∏t+1
i=1 τLi

i .

(t-SIMULATION.) Pick γ1, . . . , γt ←R Zq . This uniquely determines a degree t
polynomial f(x) = α + a1x + · · ·+ atx

t such that f(TAGi) = γi for i = 1, . . . , t.
Moreover, a1, . . . , at are given by the solution to the following linear system:⎡⎢⎢⎢⎢⎣

1 0 · · · 0
1 TAG1 · · · TAGt1
...

...
...

1 TAGt · · · TAGtt

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

α

a1
...

at

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
α

γ1
...

γt

⎤⎥⎥⎥⎥⎦
In particular, each of a1, . . . , at may be written as a linear combination of α, γ1, . . . , γt

(where the coefficients are efficiently computable given TAG1, . . . , TAGt) and
therefore each of ga1 , . . . , gat may be written as a product of gα, gγ1 , . . . , gγt raised
to the appropriate powers.

– SetupSim(PP, 1t) returns HK := (ga1 , . . . , gat) as computed above and
(SKTAG1 , . . . , SKTAGt

) := (γ1, . . . , γt)

Remark 1. Instead of setting HK := (ga1 , . . . , gat), we may also set HK :=
(gf(1), . . . , gf(t)). Public evaluation and t-simulation then proceed via Lagrange
interpolation in the exponent.

Public Verifiability. Given (HK, u, TAG, τ), checking that τ = HHK(TAG, u) cor-
responds exactly to verifying that (g, gf(TAG), u, τ) is a valid DDH tuple. Given HK

and TAG, we may compute gf(TAG) using
(
gα ·

∏t
i=1(g

ai)TAGi)
. This implies public

verifiability in bilinear groups.
For general groups that do not admit a bilinear pairing, we may realize public verifia-

bility in the random oracle model following [41, Section 4.3] (also [28]). That is, we ap-
pend to HHK(TAG, u) non-interactive zero-knowledge proof that (g, gf(TAG), u, uf(TAG))
is a valid DDH tuple. Such a proof is derived by applying the Fiat-Shamir heuristic
to Chaum-Pedersen Σ-protocol for the langugage comprising valid DDH tuples [13];
soundness of the verification algorithm follows immediately from soundness of the Σ-
protocol. Handling public and private evaluation requires more care, and we proceed
differently depending on the application:

– In the application to threshold cryptosystems, we instantiate the Chaum-Pedersen
protocol so that there is an efficient prover given f(TAG) as a witness. This

602 H. Wee

guarantees efficient private evaluation. For public evaluation, we rely on the zero-
knowledge simulator, which in turn requires programming the random oracle. This
is not an issue since we only rely on public evaluation in the proof of security.

– In the application to revocation cryptosystems, we instantiate the Chaum-Pedersen
protocol so that there is an efficient prover given r such that u = gr as a witness.
This guarantees efficient public evaluation. For private evaluation, we rely on the
zero-knowledge simulator, which again requires programming the random oracle.
This is not an issue since in the decryption algorithm, Ext ignores non-interactive
zero-knowledge proof.

8 Instantiations from Hardness of Factoring

Fix a Blum integer N = PQ for safe primes P, Q ≡ 3 (mod 4) (such that P = 2p+1
and Q = 2q + 1 for primes p, q). Following [33], we work over the cyclic group of
signed quadratic residues, given by the quotient group QR+

N := QRN/ ± 1. QR+
N is

a cyclic group of order pq and is efficiently recognizable (by verifying that the Jacobi
symbol is +1). In addition, the map x �→ x2 is a permutation over QR+

N . Furthermore,
assuming that factoring is hard on average and that safe primes are dense, the family of
permutations x �→ x2 (indexed by N) acting on the groups QR+

N is one-way.
In our constructions, the public parameter PP comprises (N, g), where N is a random

2k-bit Blum integer and g is chosen uniformly from QR+
N . We will henceforth assume

that g is a generator for QR+
N , which happens with probability 1 − O(1/

√
N). For

signatures, we consider the relation

Rsqr
PP =

{
(u, s) ∈ QR+

N ×QR+
N : u = s2

}
For encryption, we consider the relation:

Risqr
PP =

{
(u, s) ∈ QR+

N ×QR+
N : u = s2k

}
Here, we focus on the latter relation. The associated sampling algorithm SampR picks
a random r ∈ [(N − 1)/4] and outputs (g2kr, gr). Note that the output distribution
is statistically close to the uniform distribution over QR+

N whenever g is a generator.
Using the Blum-Blum-Shub (BBS) pseudorandom generator [4], we may extract k
hard-core bits from s that are pseudorandom even given u, that is:

Gbbs
PP (s) := (lsbN (s), lsbN (s2), . . . , lsbN (s2k−1

))

Basic Idea. The next claim shows that we can do Shamir secret sharing over a
composite modulus:

Claim (implicit in [40]). Fix two primes p < q. For any t < p and any t +
1 distinct values v1, . . . , vt+1 in {1, 2, . . . , p}, the map ψ : (a0, a1, . . . , at) �→
(f(v1), f(v2), . . . , f(vt+1)) where f(x) := a0 + a1x + · · ·+ atx

t defines a bijection
from Zt+1

pq to Zt+1
pq .

Threshold and Revocation Cryptosystems via Extractable Hash Proofs 603

proof (sketch). That ψ is injective follows from the fact that any polynomial of
degree t over Zpq that vanishes at the t + 1 distinct values v1, . . . , vt+1 must be
identically 0 modulo p and modulo q and thus identically 0 modulo pq (by the Chinese
remainder theorem). That ψ is surjective follows via Lagrange polynomial interpolation
(since the pairwise differences vi − vj are all coprime with pq). !

Threshold Hash Proof System. Fix the parameters (PP, SP) = (N, φ(N)). The tag
space is given by Z√

N/4. Note that
√

N/4 ≤ min{p, q} so every valid tag is coprime

with φ(N)/4. SampR takes an additional g ∈ QR+
N which is provided as part of HK,

and SampR(r) := (u, s) where s = g2tkr, u = s2k

= g2(t+1)kr.

(KEY GENERATION.) Pick a1, . . . , at ←R Zφ(N)/4 and set f(x) := 2−(t+1)k + a1x +
· · · atxt. In addition, pick g ←R QR+

N .

– Setup(PP, SP, 1t) returns HK := (g, g2(t+1)ka1 , . . . , g2(t+1)kat) and MSK :=
(f(x), φ(N)).

– ShareGen(MSK, TAG) returns SKTAG := f(TAG) (mod φ(N)/4).

(PUBLIC/PRIVATE EVALUATION.) HHK(TAG, u) is given by uf(TAG) = (g2(t+1)kf(TAG))r

where u := g2(t+1)kr

– Pub(HK, u, r) returns
(
g ·
∏t
i=1(g

2(t+1)kai)TAGi)r
.

– Priv(SKTAG , u) returns uSKTAG .

((t + 1)-EXTRACTION.) Given TAG1, . . . , TAGt+1, we may efficiently compute the
fractional Lagrangian coefficients L1, . . . , Lt+1 such that f(0) =

∑t+1
i=1 Li ·

f(TAGi) (mod φ(N)/4). In addition, we may compute

D := lcm
{∏

j �=i(TAGi − TAGj) : i ∈ [t + 1]
}
.

We make the following observations: (1) DL1, . . . , DLt+1 are all integers, so we
may compute uD·f(0) =

∏t+1
i=1 τDLi

i ; (2) let 2c be the highest power of 2 that

divides D, and we have c ≤ kt (since |TAGi − TAGj | ≤ 2k); and (3) given u = s2k

and u2kt−cD·f(0) = s2−cD, we may efficiently recover s using Shamir’s “GCD in
the exponent” algorithm [39], since gcd(2k, 2−cD) = 1.

– Ext(u, τ1, . . . , τt+1) returns s as computed above.

(t-SIMULATION.) Pick γ1, . . . , γt ←R ZN/4
1. This uniquely determines a degree t

polynomial f(x) = 2−(t+1)k + a1x + · · · + atx
t such that f(TAGi) = γi

1 This yields a distribution that is statistically close to picking γ1, . . . , γt ←R Zφ(N)/4.

604 H. Wee

(mod φ(N)/4) for i = 1, . . . , t. Moreover, we a1, . . . , at are given by the solution
to the following linear system:⎡⎢⎢⎢⎢⎣

1 0 · · · 0
1 TAG1 · · · TAGt1
...

...
...

1 TAGt · · · TAGtt

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1
2(t+1)ka1

...

2(t+1)kat

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1

2(t+1)kγ1
...

2(t+1)kγt

⎤⎥⎥⎥⎥⎦
Let D :=

∏
1≤i<j≤t(TAGi−TAGj) (the determinant of the Vandermonde matrix on

the left). Then, we may efficiently compute the integer values D ·2(t+1)ka1, . . . , D ·
2(t+1)kat (given γ1, . . . , γt and TAG1, . . . , TAGt) without computing any modular
inverse.

– SetupSim(PP, 1t) picks g̃ ←R QR+
N and returns (SKTAG1 , . . . , SKTAGt) :=

(γ1, . . . , γt) and HK := (g̃D, g̃D·2(t+1)ka1 , . . . , g̃D·2(t+1)kat).

Public Verifiability. Following [28, Section 4], it suffices to construct a Σ-protocol for
DDH-tuples over QR+

N , that is, (g, gB, u, uB). The honest sender is given the witness
r such that u = gr, picks s ∈ [N3] and sends (g0, g1) := (gs, gBs). Upon receiving a
challenge e ∈ [N/4], it responds with z := s + re. The analysis is entirely analogous
to that in [28].

9 Chosen-Ciphertext Security

9.1 Broadcast CCA

In this section, we construct revocation schemes secure against CCA attacks.

Public Verifiability, Signatures and Random Oracles. As stated, the construction
also requires public verifiability and a one-time signature scheme. For factoring-based
instantiations and Diffie-Hellman in general groups, we already rely on a random oracle
to implement public verifiability, so we may as well also rely on the random oracle to
instantiate an efficient signature scheme2. For Diffie-Hellman in bilinear groups (which
satisfy public verifiability without random oracles), we can avoid the use of signatures
and instead use a TCR – the ciphertext is given by (u, τ) where τ := Pub(PK, TAG, u, r)
and TAG := TCR(u), and as such, we obtain efficient constructions without random
oracles.

Theorem 4. If RPP is a one-way relation admitting a threshold extractable hash proof
with public verifiability, then the above revocation scheme is IND-CCA secure.

2 The reason we need a signature scheme is that the addition of the non-interactive proof of
membership in the random oracle to provide public verifiability means that (TAG, u) no longer
uniquely determines an accepting proof.

Threshold and Revocation Cryptosystems via Extractable Hash Proofs 605

Revocation PKE

(SHARING PHASE.) On input the security parameter 1k and a revocation
threshold t, the dealer generates (PP, SP), runs Setup(PP, SP, 1t+1) →
(HK, MSK) and sets the public key PK to be (PP, HK). A user with identity
ID is given the key SKID := ShareGen(MSK, ID).

(ENCRYPTION.) In order to revoke users ID1, . . . , IDt, Enc(PK):
1. generate a verification VKSIG for a one-time signature scheme;

2. sample (u, s) := SampR(r);
3. compute τ := Pub(PK, VKSIG, u, r) and τi := Pub(HK, IDi, u, r) for

i = 1, . . . , t;

4. compute the signature σ on (u, τ, τ1, . . . , τt);
5. return (C, K) := ((VKSIG, u, τ, τ1, . . . , τt, σ), G(s)).

(DECRYPTION.) Any user ID not in the revoked set {ID1, . . . , IDt} may decrypt
a ciphertext C := (VKSIG, u, τ, τ1, . . . , τt, σ) as follows:

1. verify proofs τ, τ1, . . . , τt and signature σ; output⊥ if any of these tests
fails;

2. compute s := Ext(u, τ, τ1, . . . , τt, Priv(SKID, u)) and output G(s).

Fig. 7. CCA-secure revocation scheme from threshold hash proofs

proof (sketch). In the following, we write (u∗, s∗) = SampR(r), C∗ = (u∗, τ∗),
K∗

0 , K∗
1 to denote the challenge ciphertext and keys chosen by the IND-CCA exper-

iment, and we set VKSIG∗ to denote the verification key used in computing C∗. We
proceed via a sequence of games. We start with Game 0, where the challenger proceeds
like in the standard IND-CCA game (i.e, K∗

0 is a real key and K∗
1 is a random key)

and end up with a game where both K∗
0 and K∗

1 are chosen uniformly at random.
Then, we show that all games are indistinguishable under the assumption that G(s) is
pseudorandom even given u.

GAME 1: ELIMINATING COLLISIONS. We replace the decapsulation mechanism Dec
with Dec′ that outputs ⊥ on inputs (VKSIG, u, τ, σ) such that VKSIG = VKSIG∗

but otherwise proceeds like Dec. We show that Games 0 and 1 are computationally
indistinguishable, by arguing that Dec and Dec′ essentially agree on all inputs. This
follows readily from the security of the one-time signature.

GAME 2: DECAPSULATION WITH SetupSim. We modify the IND-CCA experiment
from Game 1, we generate the keys using SetupSim(PP, ID∗

1, . . . , ID∗
t , VKSIG∗),

and we replace Dec′(ID, ·) with Dec∗(ID, ·):
On input (VKSIG, u, τ, τ1, . . . , τt, σ):

– if VKSIG = VKSIG∗, return ⊥.
– if σ or any of τ, τ1, . . . , τt fails to verify, return ⊥.
– compute s := Ext(u, τ, τ1, . . . , τt, Priv(SKVK∗ , u)) and output G(s).

606 H. Wee

Here, we use the fact that in both Dec′ and Dec∗, we run Ext with t + 2 valid proofs
and therefore it outputs the correct witness s.

GAME 3: ENCAPSULATION WITH Priv. We compute all t + 1 proofs τ, τ1, . . . , τt in
C∗ using Priv instead of Pub and sign using the secret key corresponding to VK∗.

GAME 4: REPLACING G(s∗) WITH RANDOM. We generate K∗
0 at random from

{0, 1}k instead of using G(s∗) (recall here that (u∗, s∗) = SampR(r)). Observe
that in Game 3, we never use knowledge of the witness s∗ or randomness r
associated with u∗. It follows from the pseudorandomness of G that Games 3
and 4 are computationally indistinguishable. Specifically, we may transform any
distinguisher for Games 3 and 4 into a distinguisher K∗

0 and G(s∗).

We conclude by observing that in Game 4, both K∗
0 and K∗

1 are identically distributed,
so the probability that b′ = b is exactly 1/2. !

9.2 Threshold CCA

In this section, we construct threshold encryption schemes secure against CCA attacks.
The main technical difficulty is as follows: the simulator knows f(TAG∗

1), . . . , f(TAG∗
t),

and needs to be able to compute HHK(TAG, u) = uf(TAG) given any TAG, u. This is in
order to simulate the ShareDec(TAG, ·), the decryption share for some user TAG. To
handle this, we modify our basic threshold encryption scheme in three ways:

– The first modification is to add to the ciphertext which contains the instance u,
a publicly-verifiable 1-threshold extractable hash proof —or, an all-but-one ex-
tractable hash proof following the terminology in [42]— for the relation (u, uf(0)).
For this, we need to turn to either pairings or the random oracle model. (Similar is-
sues arise even in previous discrete-log based schemes not based on pairings.) This
way, simulator will be able to recover the t + 1 values uf(0), uf(TAG

∗
1), . . . , uf(TAG

∗
t)

for any well-formed ciphertext.

– Next, using interpolation, we can recover uDf(TAG), where D is some factor we
use to clear out the fractional Lagrangian coefficients. In the discrete-log based
instantiations, we may compute D−1 and thus recover uf(TAG). In the factoring-
based instantation, we will modify the hash function HHK(TAG, u) to be uDf(TAG);
as such, we can only support a fixed identity space of polynomial size, since we
need to compute D in advance. Similarly, we will need to modify Ext so that it
computes uD

2f(0) via Lagrange interpolation and s from both uD
2f(0) and u via

Shamir’s “GCD in the exponent” algorithm.

– Finally, we modify ShareDec(·) so that it will only output the decryption share if
the 1-threshold extractable hash proof verifies properly.

The details are deferred to the full version of this paper.

Acknowledgments

I would like to thank Dan Boneh, Mario Szegedy and Moti Yung for insightful
discussions. I am also very grateful to the anonymous referees for detailed and

Threshold and Revocation Cryptosystems via Extractable Hash Proofs 607

constructive feedback. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either
expressed or implied, of the US Army Research Laboratory, the US Government, the
UK Ministry of Defense, or the UK Government.

References

[1] Abdalla, M., Bellare, M., Rogaway, P.: The oracle diffie-hellman assumptions and an
analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158.
Springer, Heidelberg (2001)

[2] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg
(2010)

[3] Bendlin, R., Damgård, I.: Threshold decryption and zero-knowledge proofs for lattice-
based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 201–218.
Springer, Heidelberg (2010)

[4] Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number generators. In:
CRYPTO 1982, pp. 61–78 (1982)

[5] Blum, M., Goldwasser, S.: An efficient probabilistic public-key encryption scheme which
hides all partial information. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS,
vol. 196, pp. 289–299. Springer, Heidelberg (1985)

[6] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In:
STOC, pp. 103–112 (1988)

[7] Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J.
Comput. 32(3), 586–615 (2003)

[8] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J.
Cryptology 17(4), 297–319 (2004)

[9] Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold encryption
without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 226–
243. Springer, Heidelberg (2006)

[10] Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based
techniques. In: ACM CCS, pp. 320–329 (2005)

[11] Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure against
adaptive chosen ciphertext attack. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 90–106. Springer, Heidelberg (1999)

[12] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption.
In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222.
Springer, Heidelberg (2004)

[13] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

[14] Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–
25. Springer, Heidelberg (1998)

[15] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

[16] Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–
136. Springer, Heidelberg (2001)

608 H. Wee

[17] De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interaction. In:
FOCS, pp. 427–436 (1992)

[18] De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely. In:
STOC, pp. 522–533 (1994)

[19] Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Pomerance, C.
(ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg (1988)

[20] Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

[21] Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures (extended
abstract). In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer,
Heidelberg (1992)

[22] Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive chosen
ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 100–115.
Springer, Heidelberg (2002)

[23] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS,
vol. 773, pp. 480–491. Springer, Heidelberg (1994)

[24] Fouque, P.-A., Pointcheval, D.: Threshold cryptosystems secure against chosen-ciphertext
attacks. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 351–368. Springer,
Heidelberg (2001)

[25] Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries.
In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001)

[26] Frankel, Y., Gemmell, P., Yung, M.: Witness-based cryptographic program checking and
robust function sharing. In: STOC, pp. 499–508 (1996)

[27] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signatures.
In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371. Springer,
Heidelberg (1996)

[28] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of RSA
functions. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 157–172. Springer,
Heidelberg (1996)

[29] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for
discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 295–310. Springer, Heidelberg (1999)

[30] Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T.: Threshold RSA for dynamic and ad-hoc
groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 88–107. Springer,
Heidelberg (2008)

[31] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: STOC, pp.
25–32 (1989)

[32] Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factoring. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer, Heidelberg
(2009)

[33] Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009)

[34] Katz, J., Yung, M.: Threshold cryptosystems based on factoring. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 192–205. Springer, Heidelberg (2002)

[35] Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed diffie-hellman.
In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297. Springer,
Heidelberg (2007)

[36] Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC 2000.
LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

Threshold and Revocation Cryptosystems via Extractable Hash Proofs 609

[37] Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext
attacks. In: STOC, pp. 427–437 (1990)

[38] Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444.
Springer, Heidelberg (1992)

[39] Shamir, A.: On the generation of cryptographically strong pseudorandom sequences. ACM
Trans. Comput. Syst. 1(1), 38–44 (1983)

[40] Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

[41] Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack.
J. Cryptology 15(2), 75–96 (2002)

[42] Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)

Deniable Encryption with Negligible Detection
Probability: An Interactive Construction

Markus Dürmuth1,� and David Mandell Freeman2,��

1 Ruhr-University Bochum, Germany
markus.duermuth@rub.de

2 Stanford University, USA
dfreeman@cs.stanford.edu

Abstract. Deniable encryption, introduced in 1997 by Canetti, Dwork, Naor,
and Ostrovsky, guarantees that the sender or the receiver of a secret message is
able to “fake” the message encrypted in a specific ciphertext in the presence of a
coercing adversary, without the adversary detecting that he was not given the real
message. To date, constructions are only known either for weakened variants with
separate “honest” and “dishonest” encryption algorithms, or for single-algorithm
schemes with non-negligible detection probability.

We propose the first sender-deniable public key encryption system with a
single encryption algorithm and negligible detection probability. We describe a
generic interactive construction based on a public key bit encryption scheme that
has certain properties, and we give two examples of encryption schemes with
these properties, one based on the quadratic residuosity assumption and the other
on trapdoor permutations.

Keywords: Deniable encryption, electronic voting, multi-party computation.

1 Introduction

One of the central goals of cryptography is protecting the secrecy of a transmitted mes-
sage. The secrecy property of an encryption scheme is usually formalized as semantic
security [10], which guarantees that an adversary cannot gain even partial information
about an encrypted message.

The notion of semantic security has proven to be very useful in a large number of
applications. However, there are some scenarios where semantic security is not suffi-
cient. For example, semantic security does not ensure message secrecy if the adversary
can coerce the sender or the receiver of a message to reveal the secret keys and/or the
randomness that was used to form an encryption. Specifically, semantic security does
not prevent an encryption scheme from being committing, in the sense that if an ad-
versary sees a ciphertext and then tries to coerce the sender to reveal all of the input
to the encryption (message and randomness), any inputs that the sender can reveal that
are consistent with the ciphertext must reveal the true message encrypted. In fact, many
encryption schemes have only one set of possible inputs per ciphertext.

� Research conducted at Stanford University.
�� Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 610–626, 2011.
c© International Association for Cryptologic Research 2011

Deniable Encryption with Negligible Detection Probability 611

This committing property of encryption can be problematic in applications such as
electronic voting [15] or keeping information secret when facing a coercer using physi-
cal force, or in the case of secure multi-party computation in the presence of an adaptive
adversary [4].

Deniable encryption, introduced by Canetti, Dwork, Naor, and Ostrovsky in 1997
[3], possesses a stronger security property than semantic security that avoids these
shortcomings. Informally, a (possibly interactive) public key encryption scheme is
sender-deniable if, given an encryption c = Encpk(m1; r1) of a message m1 with ran-
domness r1, for every message m2 the sender can compute alternative randomness
r2 such that (Encpk(m1; r1), r1) and (Encpk(m2; r2), r2) are computationally indistin-
guishable. Thus when coerced, the sender can reveal either the “real” randomness r1
or the “fake” randomness r2, and the adversary cannot tell whether m1 or m2 was re-
ally encrypted in the ciphertext c. A similar property defines receiver-deniability, and a
system with both properties is sender-and-receiver-deniable or bi-deniable.

Canetti et al. also considered a weaker form of deniability, called flexible deniability.
In a flexibly deniable system, the sender has two different encryption algorithms, honest
and dishonest encryption. At the time of encryption the sender chooses either honest or
dishonest encryption. When choosing honest encryption he is unable to fake later when
coerced, but when choosing dishonest encryption he can create randomness such that
the distribution matches randomness for honest encryption. What makes this notion
weak for practical purposes is that if the adversary believes that the sender used the
dishonest encryption, then the adversary can coerce the sender to reveal randomness
for the dishonest encryption, and the sender looses his ability to fake. The system’s
security relies on the fact that the adversary really believes that the sender used the
honest encryption.

Canetti et al. constructed a non-interactive sender-deniable encryption scheme that
transmits bits, based on a primitive called translucent sets that can be realized under
trapdoor permutations and other standard assumptions. The system is semantically se-
cure, but it has only 1/O(n)-deniability. That is, an adversary can detect whether the
user is “faking” messages and randomness with probability 1/O(n), where n is the
system’s security parameter. Canetti et al. left open the problem of constructing an en-
cryption scheme with negligible deniability. This problem has remained open for more
than 13 years.

Our Contribution. We give the first public key encryption scheme that satisfies the
definition of sender-deniability in [3] with a single encryption algorithm and negligi-
ble probability of detection. We describe a generic interactive construction based on a
public key bit encryption scheme that has certain properties, and we give two examples
of encryption schemes with these properties, one based on the quadratic residuosity
assumption and the other on trapdoor permutations.

1.1 Overview of Our Construction

The basic idea of our construction is the following. We take a public key bit encryption
scheme with dense ciphertexts, in which a uniformly random ciphertext decrypts to a
uniformly random message. To encrypt a bit b ∈ {0, 1}, we first obtain 4n + 1 public

612 M. Dürmuth and D.M. Freeman

keys for the underlying encryption scheme. We construct n + 1 encryptions of b, con-
struct n encryptions of 1− b, and sample 2n random ciphertexts, each under a different
public key, and then permute the output randomly. Decrypting all ciphertexts individu-
ally and taking the majority recovers the original message with noticeable probability.
Repeating the protocol multiple times in parallel reduces the decryption error.

To fake the sender’s input, we claim that a constructed ciphertext encrypting b was
sampled randomly. This trick has been used before, but it usually gives an adversary a
non-negligible probability of detecting the faking (e.g., inverse linear in the ciphertext
length as in [3]). What is unique in our construction is that we additionally construct
“real-looking” randomness for a sampled ciphertext encrypting 1 − b, so we obtain a
distribution which is computationally indistinguishable with negligible advantage for
any efficient adversary.

In order to compute fake randomness for a sampled ciphertext, we need two ingre-
dients. First, the encryption scheme needs to have the property that given a ciphertext,
the secret key holder can compute randomness that is indistinguishable from the ran-
domness used to compute the ciphertext. Second, the sender must know which sampled
ciphertext she should use in her faking and she must obtain a secret key for that ci-
phertext. (After all, she doesn’t know which sampled ciphertexts encrypt b and which
encrypt 1 − b.) On the other hand, the receiver doesn’t know which ciphertexts were
sampled and which were constructed. Our basic idea for giving the sender the neces-
sary information is to have the receiver send back pairs of indices for ciphertexts that
decrypt to opposite plaintexts, so that with high probability one of the pairs corresponds
to a constructed encryption of b and a sampled encryption of 1− b. The sender then in-
dicates one such pair and obtains from the receiver the secret keys for both elements of
that pair. Since the two ciphertexts encrypt opposite messages, these revealed values do
not compromise the secrecy of the system.

Once in possession of the correct secret key, the sender can fake randomness. Deni-
ability ultimately rests on the semantic security of the underlying encryption scheme,
as our manipulation changes the distribution on the set of sampled ciphertexts whose
indices were not sent back to the sender in the above process.

To instantiate our system, we observe that two well known encryption schemes have
the properties necessary for our construction: the Goldwasser-Micali bit encryption
scheme based on the quadratic residuosity assumption [10], and a simple bit encryp-
tion scheme constructed from a trapdoor permutation using a hard-core predicate.

1.2 Related Work

In addition to their sender-deniable scheme with 1/O(n)-deniability, Canetti et al. [3]
also constructed a flexible (i.e., two-algorithm) sender-deniable encryption scheme with
negligible deniability. More recently, O’Neill, Peikert, and Waters [12] announced a
flexible bi-deniable encryption scheme with negligible deniability based on lattice as-
sumptions. We view this latter work as orthogonal to our own: it is non-interactive and
achieves deniability for both sender and receiver simultaneously, but the construction
uses in an essential way the fact that there are different honest and dishonest encryption
algorithms.

Deniable Encryption with Negligible Detection Probability 613

A related concept originating from adaptive security of multi-party computation is
non-committing encryption [4,6,8,2]. Informally, a public key bit encryption scheme
is non-committing if a simulator can efficiently sample a distribution of ciphertexts c
and two sets of randomness r0, r1 such that the ciphertext c along with rb is indistin-
guishable from a legitimate encryption of b along with the true randomness. The main
difference between non-committing encryption and deniable encryption is while the
simulator can generate ciphertexts and randomness corresponding to either message, a
user cannot, in general, compute randomness that reveals a different message than was
actually encrypted. While deniable encryption implies non-committing encryption, the
converse does not hold; in particular, the non-committing encryption scheme in [4] is
not deniable.

A different concept is plausible deniability. This term usually describes engineering
techniques that allow one to deny the existence of encrypted data or knowledge of the
secret key. A well known example is the TrueCrypt file system encryption [17], where
one can add secret containers inside an encrypted volume such that one can deny their
existence. Another example [5] uses steganographic measures to hide encrypted data in
cover text. These techniques come without formal proof or even definition, and attacks
exist that can reveal the presence and content of encrypted data [7]. In addition, this
form of deniability usually is not suitable for online applications such as electronic
voting.

1.3 Outline

In Section 2 we give the formal definition of a deniable encryption scheme. In Section 3
we describe the building block for our deniable protocol, which we call a samplable
public key bit encryption scheme. In Section 4 we construct an interactive encryption
scheme from a samplable public key bit encryption scheme. We prove our scheme is
secure and deniable under the assumption that the underlying scheme is samplable and
semantically secure. In Section 5 we describe two samplable public key bit encryption
schemes, one based on the quadratic residuosity assumption and one based on trapdoor
permutations. Finally, in Section 6 we discuss some open questions related to our work.

2 Deniable Encryption

We begin by fixing some notation. If X is a set and Δ is a distribution on X , we use
x ← Δ to denote an element of X sampled according to the distribution Δ, and we use

x ← y to denote assignment of the value y to x. If X is finite we use x
R← X to denote

an element sampled uniformly at random from X . For a two-party protocol π between
S and R we write

(oS , oR, tr) ← π((iS ; rS), (iR; rR))

for the execution of π with input iS , iR and randomness rS , rR from S and R, respec-
tively, producing output oS , oR for the respective parties, and a public transcript tr.

A function μ : N → R is said to be negligible iff for all c ∈ N we have that |μ(n)| ≤
1
nc for sufficiently large n. If this is the case, we write μ(n) = negl(n). A probability p
is said to be overwhelming if p = 1− negl(n).

614 M. Dürmuth and D.M. Freeman

Two sequences of random variables (Xn)n∈N, (Yn)n∈N are μ(n)-computationally
indistinguishable, and denoted by (Xn) ≈μ(n) (Yn), if for all polynomial-time adver-
saries A we have |Pr[A(x) = 1; x ← Xn] − Pr[A(x) = 1; x ← Yn]| ≤ μ(n) for
sufficiently large n. We say (Xn) and (Yn) are statistically indistinguishable, denoted
(Xn) ≈ (Yn), if the same holds for all adversariesA, regardless of running time.

Our definition of deniable encryption is a slight rephrasing of the definition of Canetti
et al. [3].

Definition 2.1. Let n ∈ N be a security parameter. An efficiently computable protocol1

π between two parties S and R (sender and receiver, respectively) is called a μ(n)-
sender-deniable public key bit encryption scheme if the following three conditions are
satisfied:

Correctness: We say π is correct if for all messages b ∈ {0, 1} we have

Pr
[
b′ �= b; rS , rR

R← {0, 1}∗, (·, b′, ·) ← π((b; rS), (n; rR))
]
≤ ν(n)

for some negligible function ν : N → R.
Passive secrecy: The two random variables tr0, tr1 defined by

rS , rR
R← {0, 1}∗, (·, ·, tr0) ← π((0; rS), (n; rR)), (2.1)

(·, ·, tr1) ← π((1; rS), (n; rR)),

are ν(n)-computationally indistinguishable for some negligible ν(n).
Deniability: There is an efficient faking algorithm Fake that takes input a message

b ∈ {0, 1}, sender randomness rS ∈ {0, 1}∗, and a transcript of the protocol π,
such that for any b ∈ {0, 1} and

rS , rR
R← {0, 1}∗, (·, ·, t̃r) ← π((1 − b; rS), (n; rR)), (2.2)

r̃S ← Fake(b, rS , t̃r), (·, ·, tr) ← π((b; rS), (n; rR)),

the following two distributions are μ(n)-computationally indistinguishable:

(b, rS , tr) ≈μ(n) (b, r̃S , t̃r). (2.3)

The distribution on the left is produced by a real encryption of b with randomness
rS . The distribution on the right is produced when we actually encrypt 1 − b with
randomness rS , but tell the adversary that we encrypted b with randomness r̃S .

We call π a sender-deniable public key bit-encryption scheme if it is
μ(n)-sender-deniable for a negligible μ(n). We can define a receiver-deniable encryp-
tion scheme analogously by having Fake produce fake receiver randomness r̃R. A
sender-and-receiver-deniable or bi-deniable scheme has both properties, with a faking
algorithm for each party.

A straightforward reduction shows that deniability (with negligible μ(n)) implies
passive secrecy.

1 I.e., all computations run in (expected) time polynomial in n and the number of rounds is
polynomial in n.

Deniable Encryption with Negligible Detection Probability 615

Lemma 2.2. A two-party protocol π that has the deniability property of Definition 2.1
for a negligible μ(n) also has the passive secrecy property.

Proof. Assume there exists an efficient adversaryA that can distinguish transcripts of π
corresponding to messages 0 and 1 with non-negligible probability. Now if we are given
a challenge (m, rS , tr) for deniability, we can use A to decide if tr is an encryption of
b or 1 − b, and thus can win the deniability game with the same probability and the
same running time. This contradicts the hypothesis that π has the deniability property
for negligible μ(n). !

3 Samplable Public Key Encryption

As a building block for our deniable encryption scheme, we use a public key bit en-
cryption scheme for which a secret key holder can recover randomness used in the
encryption. We do not require the recovered randomness to be exactly that used to en-
crypt, as this may be impossible to compute, but rather that it be indistinguishable from
the real randomness. In this section we formalize this idea.

Let E = (KeyGen, Enc, Dec) be a public key encryption system encrypting messages
in {0, 1}. We write the encryption algorithm as

Enc : PK× {0, 1} ×R → C

and the decryption algorithm as

Dec : SK × C → {0, 1},

wherePK, SK,R, and C are the spaces of public keys, secret keys, sender randomness,
and ciphertexts, respectively. The key spacesPK and SK depend on the security param-
eter n, and the spacesR and C also depend on the public key pk used in the encryption;
for the sake of readability we omit these dependencies from the notation.

We denote the encryption of a bit b under public key pk with randomness r by
Encpk(b; r), and the system’s security parameter (input to KeyGen) by n. We let ΔR
denote the distribution on R that the encryption algorithm samples. We require the
usual correctness condition: for all pk ∈ PK, all sk ∈ SK, and b ∈ {0, 1}, we have
Decsk(Encpk(b; r)) = b with overwhelming probability over r ← ΔR.

Definition 3.1. We say that E is samplable if the following conditions hold:

1. The set C is finite, and the distribution on C given by

(Encpk(b; r) : b
R← {0, 1}, r ← ΔR) (3.1)

is statistically indistinguishable from the uniform distribution on C.
2. There is an efficient algorithm SampleRand that takes as input a secret key and a

ciphertext and outputs a value in R, such that if we choose

b
R← {0, 1}, r ← ΔR,

c ← Encpk(b; r), r̃ ← SampleRand(sk, c),

616 M. Dürmuth and D.M. Freeman

then the following two distributions are statistically indistinguishable:

(sk, c, r) ≈ (sk, c, r̃). (3.2)

Note that the second condition implies that for all but a negligible fraction of c ∈ C, we
have

Encpk(Decsk(c); SampleRandsk(c)) = c.

We present two examples of samplable encryption schemes in Section 5.

4 A Deniable Encryption Protocol

We are now ready to construct a sender-deniable encryption scheme from any samplable
public key bit-encryption scheme. Let n ∈ N be a security parameter. At a high level,
our protocol consists of the following exchange, iterated n times to ensure correctness
of decryption. Since the “sender” and “receiver” are both sending and receiving mes-
sages, for clarity we describe our protocol in terms of two players Sarah and Ronald.
Sarah has a bit b that she wishes to transmit to Ronald in a deniable manner.

To encrypt the bit b, first Ronald sends 4n + 1 freshly generated public keys pki to
Sarah. Sarah partitions the indices {0, . . . , 4n} into three random disjoint subsets and
computes 4n + 1 ciphertexts as follows:

– Choose a set A containing n + 1 indices and encrypt b under the key pki for i ∈ A.
– Choose a set B disjoint from A containing n indices and encrypt 1 − b under the

key pki for i ∈ B.
– Let C denote the remaining 2n indices, and sample a uniformly random cipher-

text ci from C for i ∈ C. Definition 3.1 guarantees that approximately half of these
ciphertexts decrypt to b.

Ronald computes a bit b′ by decrypting all of the received ciphertexts and taking the
majority of the plaintexts. We will show that the probability that b′ = b is at least
1/2 + 1/5

√
n; thus repeating the protocol independently n times ensures that Ronald

can compute b correctly with overwhelming probability2.
When coerced to reveal her randomness, Sarah will reveal sets Ã, B̃, C̃ in which a

real encryption of b from the set A is exchanged with a sampled encryption of 1−b from
the set C. She must also reveal appropriately distributed randomness for the sampled
encryption. However, to do this she needs Ronald’s help; in particular, she needs a
secret key for an index i ∈ C such that ci encrypts 1 − b. Since Ronald cannot tell
which encryptions were sampled randomly, he sends back n/2 random pairs of indices
(ui, vi) such that cui and cvi decrypt to different messages. Almost certainly, he will
choose at least one pair (uj , vj) such that uj ∈ A corresponds to an encryption of
b and vj ∈ C corresponds to an encryption of 1 − b, or vice versa. Sarah indicates
such a pair, and Ronald sends the corresponding secret keys skuj , skvj . Knowing the
secret key for a randomly generated ciphertext enables Sarah to use the SampleRand
algorithm to produce randomness which is indistinguishable from “real” randomness
that would produce the given ciphertext.

We now formally describe our scheme.
2 More precisely, we can obtain correctness with overwhelming probability by repeating the

protocol f(n) times for any ω(
√

n log n) function f ; we use f(n) = n for simplicity.

Deniable Encryption with Negligible Detection Probability 617

4.1 The Protocol

Let E = (KeyGen, Enc, Dec, SampleRand) be a samplable public key bit encryption
scheme. Define a protocol πE between a sender Sarah and a receiver Ronald as follows:

1. Ronald’s input is a security parameter n ∈ N; we assume for simplicity that n is
even.
(a) Choose key pairs (pki, ski) ← KeyGen(1n) for i = 0, . . . , 4n.
(b) Send (pk0, . . . , pk4n) to Sarah.

2. Sarah’s input is a bit b ∈ {0, 1}. Sarah computes n + 1 encryptions of b and n
encryptions of 1−b under different keys, and chooses 2n additional random cipher-
texts:
(a) Choose a random partition of {0, . . . , 4n} into disjoint subsets A, B, C of car-

dinality n + 1, n, and 2n, respectively.
(b) For i ∈ A, choose encryption randomness αi ← ΔR, set βi = b, and compute

ci ← Encpki
(βi; αi).

(c) For i ∈ B, choose encryption randomness αi ← ΔR, set βi = 1 − b, and
compute ci ← Encpki

(βi; αi).

(d) For i ∈ C, choose random ciphertexts ci
R← C.

(e) Send (c0, . . . , c4n) to Ronald.

3. Ronald decrypts all ciphertexts: he sets β′
i ← Decski(ci) for i = 0, . . . , 4n, and

outputs the majority b′.

4. Ronald sends pairs of indices corresponding to ciphertexts with opposite messages
back to Sarah.
(a) Set I = ∅. Do the following for i = 1, . . . , n/2.

i. Choose a random pair of indices (ui, vi) ∈ {0, . . . , 4n} such that ui, vi �∈
I and β′

ui
�= β′

vi
.

ii. Set I ← I ∪ {ui, vi}.
(b) Ronald sends (u1, v1), . . . , (un/2, vn/2) to Sarah.

5. Sarah chooses a pair of indices such that one index is in the set A and one is in the
set C:
(a) Choose a random j ∈ {1, . . . , n/2} such that either uj ∈ A and vj ∈ C or

uj ∈ C and vj ∈ A. If no such index exists, then abort the protocol.
(b) Send j to Ronald.

6. Ronald sends the secret keys skuj , skvj to Sarah.

This completes the description of the protocol.

The Transcript. The protocol’s transcript consists of:
1. The public keys (pk0, . . . , pk4n) sent by Ronald in Step 1,
2. The ciphertexts (c0, . . . , c4n) sent by Sarah in Step 2e,
3. The tuples (ui, vi) sent by Ronald in Step 4,
4. The index j Sarah has chosen in Step 5 (or the decision to abort), and
5. The secret keys skuj , skvj sent by Ronald in step 6.

618 M. Dürmuth and D.M. Freeman

The Faking Algorithm. The algorithm Fake is defined as follows: suppose we are
given a message b, randomness

rS =
(
A, B, C, (αi)i∈A∪B , (ci)i∈C

)
(4.1)

and a transcript tr. If tr indicates that the protocol has aborted in Step 5a, then Fake
outputs r̃S = ⊥. Otherwise, do the following:

1. Let y = {uj, vj} ∩A and z = {uj, vj} ∩ C.
(In particular, we have β′

y = b and β′
z = 1− b.)

2. Compute
– Ã ← B ∪ {z}, B̃ ← A \ {y}, C̃ ← (C \ {z}) ∪ {y}.
– α̃i ← αi for i ∈ (A \ {y}) ∪B.
– α̃z ← SampleRandskz

(cz).
– c̃i ← ci for i ∈ C̃.

3. Output

r̃S =
(
Ã, B̃, C̃, (α̃i)i∈Ã∪B̃, (c̃i)i∈C̃

)
. (4.2)

We denote the n-fold independent execution of the encryption protocol by πnE , where the
final output is determined as the majority of the output bits of the individual instances.

It is clear that the protocol runs in time polynomial in n. We now show that the
protocol almost never aborts in Step 5a.

Proposition 4.1. The probability that Sarah aborts the protocol πE in Step 5a is negli-
gible in n.

Proof. For β ∈ {0, 1}, let Cβ := C ∩ {i : Decski
(ci) = β}. By Property 1 of Def-

inition 3.1 and Chernoff bounds [14, Ch. 8, Prop. 5.3] we have, with overwhelming
probability, 7n

8 ≤ |Cβ | ≤ 9n
8 for β ∈ {0, 1}. Now in each iteration of Step 4(a)i, the

probability of choosing a pair (ui, vi) with either ui ∈ A and vi ∈ C or vi ∈ A and
ui ∈ C is at least

|A| − n/2
|A|+ |Cb|

· |C1−b| − n/2
|C1−b|+ |B| ≥

n/2
18n/8

· 3n/8
17n/8

=
2
51

whenever n ≥ 8. Since n/2 pairs are chosen in total, by another application of Chernoff
bounds we obtain that the probability that no suitable pair is chosen is negligible in n.

 !

4.2 Correctness

Lemma 4.2. Let E be a samplable public key bit encryption scheme, and let b′ be
Ronald’s output computed by πE((b, rS), (n, rR)). Then the probability (over rS and
rR) that b′ = b is at least 1/2 + 1/(5

√
n).

Proof. A single instance of πE outputs the majority of messages obtained from decrypt-
ing all 4n + 1 ciphertexts ci. Out of these, ci encrypts b for i ∈ A and ci encrypts 1− b
for i ∈ B. This means that b′ = b if and only if least half of the remaining 2n ciphertexts
{ci : i ∈ C} decrypt to b.

Deniable Encryption with Negligible Detection Probability 619

Property 1 of Definition 3.1 implies that a single ci decrypts to b with probability
p(n) satisfying |1/2− p(n)| = ν(n) for some negligible ν(n). The probability that at
least half of the ciphertexts {ci : i ∈ C} decrypt to b is thus

2n∑
i=n

(
2n

i

)
p(n)i · (1− p(n))2n−i ≥

2n∑
i=n

(
2n

i

)(
1
2
− ν(n)

)2n

=
(

1
2
− ν(n)

)2n

· 1
2

((
2n

n

)
+

2n∑
i=0

(
2n

i

))
(∗)
≥ (1− 2ν(n))2n ·

(
1

4
√

n
+

1
2

)
≥ 1/2 +

1
5
√

n
,

where (∗) follows from the inequality
(2n
n

)
≥ 22n−1/

√
n, which in turn follows from

Stirling’s approximation n! ∼
√

2πn · e−n · nn [16, p. 13]. !

4.3 Deniability

Our main result is the following:

Theorem 4.3. Let E = (KeyGen, Enc, Dec) be a public key encryption scheme. If E is
semantically secure and samplable, then πnE is a sender-deniable encryption scheme.

Proof. We must show that the n-fold repetition of πE satisfies the three conditions of
Definition 2.1 for negligible μ(n). Lemma 4.2 shows that the probability that Ronald’s
message b′ is equal to Sarah’s message b is at least 1/2 + 1/(5

√
n). Thus repeating

the protocol n times and taking the majority of the b′ gives the correct answer b with
overwhelming probability by using Chernoff bounds [14, Ch. 8, Prop. 5.3].

Next, Lemma 2.2 shows that passive secrecy follows from deniability. It thus only
remains to prove deniability. We show that if E is semantically secure and samplable,
then for a single execution of πE , the two distributions of (2.3) are μ(n)-computationally
indistinguishable for some negligible μ(n). Assuming this is the case, a standard hybrid
argument shows that the corresponding distributions for the n-fold parallel repetition
of πE are μ′(n)-computationally indistinguishable for some negligible μ′(n).

We now consider a single execution of πE and define a series of games. Game0 will
output the distribution of the left hand side of (2.3), while Game8 will output the dis-
tribution of the right hand side of (2.3). We will then show that for all i, the outputs
of Gamei and Gamei+1 are μi(n)-computationally indistinguishable for some negligi-
ble μi(n). By the triangle inequality, this implies that the two distributions in (2.3) are
μ(n)-computationally indistinguishable for some negligible μ(n).

We now define our series of games. In each game Ronald’s randomness rR and the
security parameter n are taken to be the same. Unless otherwise stated, the output of
Gamei is the same as that of Gamei−1.

620 M. Dürmuth and D.M. Freeman

Game0: The two parties run the protocol πE as defined in Section 4.1, with Sarah’s
input message b and randomness rS given by (4.1). The game outputs the message b,
the randomness rS , and the transcript tr.

Game1: The two parties run the protocol as in Game0, but change Step 2d as follows:

(2d)’ For i ∈ C, choose random βi
R← {0, 1} and αi ← ΔR and compute ci ←

Encpki
(βi; αi).

The ciphertexts in tr are still the ciphertexts c0, . . . , c4n.

Game2: The two parties run the protocol as in Game1, but change Steps 2e and 3 as
follows:
(2e)’ Send (β0, . . . , β4n) to Ronald.
(3)’ Ronald sets β′

i ← βi for all i and outputs the majority b′ of the β′
i.

The ciphertexts ci ← Encpk(βi; αi) are now computed at the time the transcript is
output. The output is the same as in Game1.

Game3: The two parties run the protocol as in Game2, with an additional step that flips
the bit of one ciphertext:
7. (a) Choose a random x ∈ C, not equal to any of the indices sent in Step 4,

with βx = b.
(b) Compute c̃x ← Encpkx

(1− βx; αx).
The output is the same as in Game2, except the ciphertext c̃x is output instead of cx.

Game4: The two parties run the protocol as in Game3, but now Sarah flips all of the bits
that she sends to Ronald (including the bit in ciphertext cx), while still computing
the ciphertexts in the transcript from the original bits (with only βx flipped). For
easier readability we restate most of the protocol.
1. Ronald sends 4n + 1 key pairs (pki, ski) to Sarah.
2. Sarah does the following:

(a) Choose a random partition of {0, . . . , 4n} into disjoint subsets A, B, C of
cardinality n + 1, n, and 2n, respectively.

(2b)’ For i ∈ A, choose encryption randomness αi ← ΔR, set βi ← b and
β̃i ← 1− b.

(2c)’ For i ∈ B, choose encryption randomness αi ← ΔR, set βi ← 1 − b
and β̃i = b.

(2d)” For i ∈ C choose random βi
R← {0, 1} and αi ← ΔR, set β̃i ← 1− βi.

(2e)” Send (β̃0, . . . , β̃4n) to Ronald.
3.” Ronald sets β′

i = β̃i and outputs the majority b′.
4. Ronald sends pairs of indices corresponding to ciphertexts with opposite mes-

sages back to Sarah. (This step is identical to the corresponding step in the real
protocol.)

5. Sarah chooses a pair of indices such that one index is in the set A and one is in
the set C. (This step is identical to the corresponding step in the real protocol.)

6. Ronald sends the secret keys skuj , skvj to Sarah.
7. (a) Choose a random x ∈ C, not equal to any of the indices sent in Step 4,

with βx = b.
(b) Let ci ← Encpki

(βi; αi) for all i �= x, and let c̃x ← Encpkx
(1 − βx; αx).

Deniable Encryption with Negligible Detection Probability 621

The output is the same as in Game3.

Game5: The two parties run the protocol as in Game4, but now Sarah uses the flipped
bits β̃i to compute all ciphertexts (including the ciphertext cx).
7. Set ci ← Encpki

(β̃i; αi) for all i.
8. The game outputs the protocol’s transcript and computes fake randomness:

• Ã ← B ∪ {z}, B̃ ← A \ {y}, C̃ ← (C \ {z}) ∪ {y}.
• α̃i ← αi for i ∈ Ã ∪ B̃.
• c̃i = ci for i ∈ C̃ .

We define r̃S as in (4.2), and the game outputs r̃S instead of rS .

Game6: The two parties run the protocol as in Game5, but Sarah fakes the randomness
for the ciphertext with index z by choosing α̃z ← SampleRandskz

(cz). (Recall
z = {uj, vj} ∩ C.) This α̃z is output in the appropriate position of r̃S . Other than
this change, the output is the same as in Game5.

Game7: We reverse the change made between Game1 and Game2, by setting
(2b–2d) Set ci ← Encpk(β̃i; αi) for all i.
(2e) Send (c0, . . . , c4n) to Ronald.
(3) Set β′

i ← Decski
(ci) for i = 0, . . . , 4n, and output the majority b′.

Game8: We reverse the change made between Game0 and Game1, by setting

(2d) For i ∈ C, choose random ciphertexts ci
R← C.

Therefore the output of Game8 is the message b, the transcript t̃r of a real en-
cryption of 1 − b using Sarah’s randomness rS , and the fake randomness r̃S =
Fake(b, rS , t̃r).

Since the output of Game0 is distributed as the left hand side of (2.3) and the output of
Game8 is distributed as the right hand side of (2.3), it suffices to show that for each i in
1, . . . , 8, if there is an efficient adversary that can distinguish the output of Gamei from
that of Gamei−1, then this adversary can be used to solve some problem that we have
assumed to be (computationally or statistically) infeasible. We now consider each pair
of games in turn.

Game0 → Game1: The fact that E is samplable implies that the outputs of these two
games are statistically indistinguishable. To show this, we put an ordering on C and
define hybrid games for j = 0, . . . , 2n in which the first j ciphertexts ci for i ∈ C are
chosen at random from C, and the last 2n− j are chosen as real encryptions of random
bits. The 0th hybrid is Game0 and the 2nth hybrid is Game1.

Suppose we are given a ciphertext X chosen as either a real encryption of a random
bit or as a uniformly random ciphertext. Let x be the index of the ciphertext that changes
between the jth and (j + 1)th hybrid. We can simulate the protocol by choosing secret
keys ski for all i �= x and using X as cx. When X is a random ciphertext for pkx
we are in the jth hybrid, and when X is a real encryption of a random bit under pkx
we are in the (j + 1)th. Thus any adversary that can distinguish these two hybrids
can distinguish a random ciphertext from a real encryption of a random bit, which
contradicts the assumption that E is samplable.

622 M. Dürmuth and D.M. Freeman

Game1 → Game2: Note that the output of Ronald in Step 4, as well as the remainder
of the protocol, depends only on the plaintexts of the messages he receives in Step 2e.
Since Sarah now knows all of the plaintexts, she can send these plaintexts instead in
Step 2e and compute the ci for the transcript later. Thus the output distributions of
Game1 and Game2 are identical.

Game2 → Game3: The fact that E is semantically secure implies that the outputs of
these two games are ν(n)-computationally indistinguishable for some negligible ν(n).
To show this, first note that the indices Ronald sends in Step 4 are now all determined
before Sarah computes any ciphertexts. Thus we can choose a random x ∈ C not equal
to any of these indices (assuming such an x exists) without using any public or secret
keys.

Now let X be a semantic security challenge for pkx. We can simulate the protocol
by choosing secret keys ski for all i �= x and setting cx = X . When X is an encryption
of b we are in Game2, and when X is an encryption of 1− b we are in Game3. Thus any
adversary that can distinguish the outputs of Game2 and Game3 can be used to break
the semantic security of E .

Finally, we show that an index x as above exists with overwhelming probability. Let
Cβ be defined as in the proof of Proposition 4.1, and recall that, with overwhelming
probability, we have 7n

8 ≤ |Cβ | ≤ 9n
8 . Since Ronald chooses n/2 indices in Step 4 that

correspond to encryptions of b, with overwhelming probability there remain at least
3n/8 indices in Cb from which to choose x.

Game3 → Game4: First, the distribution of the βi’s does not change, and consequently
the distribution of the ci’s does not change. Second, note that choosing the process of
choosing the pairs (ui, vi) in Step 4 is identical in Game3 and Game4: since Ronald
chooses pairs of indices with opposite plaintexts, flipping all of Ronald’s bits does not
affect these choices. Furthermore, since Sarah’s computation of j in Step 5 depends
only on the location of the indices ui, vi in the sets A, B, C, Sarah’s computation of j
using flipped bits is exactly the same as her computation of j in Game3. Thus the output
distributions of Game3 and Game4 are identical.

Game4 → Game5: Let σ be a permutation of order 2 acting on the set {0, . . . , 4n},
such that

σ(y) = z, σ(x) = x, σ(A \ {y}) = B.

Note that in particular, this means σ(A) = Ã, σ(B) = B̃, and σ(C) = C̃ .
For all i ∈ A, we have βi = b and βσ(i) = 1 − b, and for all i ∈ B ∪ {z} we have

βi = 1 − b and βσ(i) = b. The index x only appears in the output as the ciphertext c̃x,
so the output of Game4 is distributed as if βx = 1− b; furthermore, we have β̃x = 1− b
in Game5.

Next, observe that the random bits βi for i ∈ C are distributed such that inverting all
of them does not change their distribution. Because βx = b and βz = 1 − b, the distri-
bution on the βi for i ∈ C \ {x, z} is also symmetric, so permuting just these indices
does not change the distribution of the corresponding βi; the same is true for flipping
just these bits. We thus conclude that the following two distributions are identical:

Deniable Encryption with Negligible Detection Probability 623

– Run Game4 to encrypt bit b with randomness rS , producing transcript tr, and output
σ(tr) and σ(rs). (That is, we apply the permutation σ to all of the indices of the
computed elements.)

– Run Game5 to encrypt bit 1 − b with randomness rS , producing transcript t̃r, and
output t̃r and r̃S .

Since the sets A, B, C are uniformly random disjoint subsets of {0, . . . , 4n} of cardinal-
ity n + 1, n, and 2n, respectively, applying a permutation to the indices cannot change
the output distribution of Game4. It follows that the output distributions of Game4 and
Game5 are identical.

Game5 → Game6: The fact that E is samplable implies that these two distributions are
statistically indistinguishable.

Suppose we are given a secret key sk∗, a ciphertext X , and randomness R from one
of the two distributions of (3.2). We can simulate the protocol by using sk∗ as skz , X as
cz , and R as α̃z . When R is chosen from ΔR we are in Game5, and when R is computed
using SampleRand we are in Game6. Thus any adversary that can distinguish these two
games can distinguish the two distributions of (3.2), which contradicts the assumption
that E is samplable.

Game6 → Game7: By the same argument as above for Game1 → Game2, the outputs
of these two games are identical.

Game7 → Game8: By the same argument as above for Game0 → Game1, the fact
that E is samplable implies that the outputs of these two games are statistically indistin-
guishable. !

5 Instantiations

5.1 Quadratic Residuosity

Our first example of a samplable encryption system is the Goldwasser-Micali bit en-
cryption system [10], which is secure under the quadratic residuosity assumption.

For a positive integer N that is a product of two distinct odd primes, we define the
set J (N) = {x ∈ Z∗

N :
(
x
N

)
= 1} and let Q(N) be the subgroup of squares in Z∗

N ,
which has index 2. The quadratic residuosity assumption states that when N is the prod-
uct of two randomly chosen n-bit primes, the two distributions obtained by sampling
uniformly at random from Q(N) and from J (N) \ Q(N) are μ(n)-computationally
indistinguishable for negligible μ(n).

Construction 5.1.

– KeyGen(n): Compute N = pq, where p, q are n-bit primes. Choose a quadratic
non-residue g ∈ J (N) \ Q(N). The public key is pk = (N, g) and the secret key
is sk = p.

– Encpk(b; r): Choose r
R← Z∗

N and output c = gbr2 (mod N).
– Decsk(c): Let sk = p. If

(
c
p

)
= 1, output 0; otherwise output 1.

– SampleRandsk(c): If Decsk(c) = 0, output a random solution to X2 = c (mod N);
otherwise output a random solution to X2 = c/g (mod N).

624 M. Dürmuth and D.M. Freeman

It is a standard result [10] that the encryption scheme is semantically secure under the
quadratic residuosity assumption. We now show the samplable properties.

Proposition 5.2. The public key encryption scheme of Construction 5.1 is samplable.

Proof. In the notation of Definition 3.1, the set R is Z∗
N , and the set C is J (N). The

distribution ΔR is the uniform distribution on Z∗
N . Since J (N) = (Z∗

N)2 ∪ g · (Z∗
N)2,

it follows that the distribution (3.1) is the uniform distribution on J (N).
For the second condition, we observe that for a given c ∈ J (N) the value x =

SampleRandsk(c) is distributed uniformly amongst the four possible values of r such
that c = Encpk(Decsk(c), r). Since real randomness comes from the uniform distribu-
tion on Z∗

N , it follows that the two distributions (3.2) are identical. !

5.2 Trapdoor Permutations

Our second samplable encryption system is the bit encryption scheme built from a
generic trapdoor permutation (cf. [11, Construction 10.27]):

Construction 5.3.

– KeyGen(n): Let f : R→ R be sampled from a family F of trapdoor permutations
(using n as the security parameter) and let g = f−1. Let H : R → {0, 1} be
a hard-core predicate for f . The public key is pk = (f, H) and the secret key is
sk = g.

– Encpk(b; r): Choose r
R←R and output c = (f(r), H(r) ⊕ b) ∈ R× {0, 1}.

– Decsk(c): Write c = (y, z) ∈ R× {0, 1}. Output H(g(y))⊕ z.
– SampleRandsk(c): Write c = (y, z) and output g(y).

It is a standard result (see e.g. [11, Theorem 10.28]) that if F is a family of trapdoor
permutations, then the encryption scheme is semantically secure. In particular, under
the RSA assumption we can let f be the function x �→ xe (mod N) with the hard-core
predicate H(x) = lsb(x) [1].

Proposition 5.4. The public key encryption scheme of Construction 5.3 is samplable.

Proof. Since r is sampled uniformly from R and f is a permutation, the first compo-
nent of the ciphertext is uniformly distributed in R. Furthermore, if b is a uniformly
random bit, the second component of the ciphertext is random and independent of the
first component. Thus the distribution (3.1) is the uniform distribution on R× {0, 1}.

For the second condition, since f is a permutation the map from R × {0, 1} to
itself given by (r, b) �→ Encpk(b; r) is a bijection. Thus there is a unique value of the
randomness r for any ciphertext (which is exactly what is recovered by SampleRand),
and the two distributions (3.2) are identical. !

6 Conclusion and Open Problems

We have presented a sender-deniable public key encryption scheme that has a single
(interactive) protocol for encryption and has negligible detection probability. It is the

Deniable Encryption with Negligible Detection Probability 625

first construction that satisfies these strict requirements. The security of our construc-
tion is based on well established assumptions; we give one construction based on the
hardness of deciding quadratic residuosity and one based on the existence of trapdoor
permutations.

Receiver-deniable encryption can be obtained from sender-deniable encryption by a
straightforward construction [3]; basically, the roles of sender and receiver are reversed,
and the receiver encrypts a bit that is used by the sender as a one-time pad. It is an open
problem to construct a bi-deniable encryption scheme with a single encryption algo-
rithm and no trusted third party. (The recent work of O’Neill, Peikert, and Waters [12]
achieves this goal for a weaker notion of deniability that allows two encryption algo-
rithms.) Another open problem arising from our work is to remove the interaction from
our encryption protocol.

Both instantiations of our scheme rely on the hardness of factoring. It is an open
problem to construct deniable encryption schemes from other assumptions. A promis-
ing direction for this problem is cryptosystems based on the hardness of Learning With
Errors (LWE), a lattice-related problem. In particular, the variant of Regev’s LWE cryp-
tosystem [13] presented by Gentry, Peikert, and Vaikuntanathan [9, §8] has the property
that a trapdoor can be embedded in the secret key that allows the key holder to effi-
ciently sample from the distribution of randomness used in the encryption. However,
the scheme does not have a dense ciphertext space, so the scheme is not samplable
according to our definition. So far, all methods we have looked at to modify the cryp-
tosystem to overcome this difficulty either induce a non-uniform distribution on real
ciphertexts, introduce non-negligible decryption error, or destroy the system’s security.

Finally, the overhead of our construction is significant: for a security parameter n,
one execution of our protocol requires transmission of O(n) secret keys and ciphertexts,
each of length n (not to mention the computational cost of generating O(n) keys and
ciphertexts); furthermore, to ensure correctness we must repeat the protocol n times.
Several straightforward improvements are possible, since we optimized our presentation
for clarity rather than efficiency. However, a significantly more efficient construction
seems to require substantial new ideas.

Acknowledgments

The authors thank Dan Boneh, Chris Peikert, Brent Waters, and the anonymous referees
for helpful discussions and/or feedback on earlier versions of this work.

References

1. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P.: RSA and Rabin functions: Certain parts
are as hard as the whole. SIAM J. Comput. 17(2), 194–209 (1988)

2. Beaver, D.: Plug and play encryption. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 75–89. Springer, Heidelberg (1997)

3. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski Jr., B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997)

4. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation.
In: STOC. pp. 639–648 (1996)

626 M. Dürmuth and D.M. Freeman

5. Chapman, M., Davida, G.: Plausible deniability using automated linguistic stegonagraphy.
In: Davida, G.I., Frankel, Y., Rees, O. (eds.) InfraSec 2002. LNCS, vol. 2437, pp. 276–287.
Springer, Heidelberg (2002)

6. Choi, S., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing encryption
with applications to adaptively secure protocols. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009)

7. Czeskis, A., Hilaire, D.J.S., Koscher, K., Gribble, S.D., Kohno, T., Schneier, B.: Defeating
encrypted and deniable file systems: TrueCrypt v5.1a and the case of the tattling OS and
applications. In: 3rd Usenix Workshop on Hot Topics in Security (2008)

8. Damgård, I., Nielsen, J.: Improved non-committing encryption schemes based on a general
complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450.
Springer, Heidelberg (2000)

9. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic
constructions. In: Ladner, R.E., Dwork, C. (eds.) STOC, pp. 197–206. ACM, New York
(2008)

10. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sci-
ences 28(2), 270–299 (1984); preliminary version in 14th Annual ACM Symposium on The-
ory of Computing (STOC)

11. Katz, J., Lindell, Y.: Introduction to modern cryptography. Chapman & Hall/CRC, Boca
Raton (2008)

12. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption (2010) (manuscript)
13. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In:

STOC 2005: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of
Computing, pp. 84–93. ACM, New York (2005)

14. Ross, S.: A First Course in Probability, 5th edn. Prentice-Hall, Englewood Cliffs (1998)
15. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme: A practical solution to the imple-

mentation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995.
LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995)

16. Spitzer, F.: Principles of Random Walks, 2nd edn. Graduate Texts in Mathematics, vol. 34.
Springer, Heidelberg (1976)

17. TrueCrypt: Free open-source disk encryption software,
http://www.truecrypt.org/

http://www.truecrypt.org/

Author Index

Ahmadi, Hadi 266
Applebaum, Benny 527
Aranha, Diego F. 48
Asharov, Gilad 426

Becker, Anja 364
Bendlin, Rikke 169
Boneh, Dan 149
Bouman, Niek J. 246
Boyle, Elette 89

Canetti, Ran 426
Cash, David 7
Catalano, Dario 207
Coron, Jean-Sébastien 364
Cramer, Ronald 1

Damg̊ard, Ivan 169
Dodis, Yevgeniy 323
Dürmuth, Markus 610

Fehr, Serge 246
Fiore, Dario 207
Flandre, Denis 109
Freeman, David Mandell 149, 610
Fuchsbauer, Georg 224

Gebotys, Catherine H. 48
Gentry, Craig 129

Halevi, Shai 129
Hazay, Carmit 426

Ishai, Yuval 406

Jain, Abhishek 7
Joux, Antoine 364

Kamel, Dina 109
Karabina, Koray 48
Kiltz, Eike 7
Kushilevitz, Eyal 406

Leander, Gregor 303
Lewko, Allison 547, 568
Lindell, Yehuda 446
Ling, San 69
Longa, Patrick 48
López, Julio 48

Malkin, Tal 507
Moradi, Amir 69

Nguyen, Phong Q. 2

Obana, Satoshi 284
Orlandi, Claudio 169
Ostrovsky, Rafail 406

Paar, Christof 69
Pietrzak, Krzysztof 7
Poschmann, Axel 69
Prabhakaran, Manoj 406

Renauld, Mathieu 109
Ristenpart, Thomas 487

Safavi-Naini, Reihaneh 266
Sahai, Amit 406
Schäge, Sven 189
Segev, Gil 89
Sepehrdad, Pouyan 343
Shacham, Hovav 487
Shelat, Abhi 386
Shen, Chih-Hao 386
Shrimpton, Thomas 487
Standaert, François-Xavier 109
Stehlé, Damien 27
Steinberger, John 323
Steinfeld, Ron 27

Teranishi, Isamu 507

Unruh, Dominique 467

Vaudenay, Serge 343
Venturi, Daniele 7

628 Author Index

Veyrat-Charvillon, Nicolas 109
Vuagnoux, Martin 343

Wang, Huaxiong 69
Warinschi, Bogdan 207
Waters, Brent 547, 568

Wee, Hoeteck 589
Wichs, Daniel 89

Yung, Moti 507

Zakarias, Sarah 169

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	The Arithmetic Codex: Theory and Applications
	Lattice Reduction Algorithms: Theory and Practice
	References

	Lattice-Based Cryptography
	Efficient Authentication from Hard Learning Problems
	Introduction
	Our Contribution
	Efficiency

	Definitions
	Notation
	Authentication Protocols
	Message Authentication Codes
	Hard Learning Problems

	Two-Round Authentication with Active Security
	Proof of Completeness
	Proof of Security
	Avoid Checking

	Message Authentication Codes
	First Construction
	Second Construction

	References

	Making NTRU as Secure as Worst-Case Problems over Ideal Lattices
	Introduction
	A Few Background Results
	New Results on Module q-Ary Lattices
	Duality Results for Some Module Lattices
	On the Absence of Unusually Short Vectors in $L (a , IS)$
	Improved Regularity Bounds

	A Revised Key Generation Algorithm
	NTRUEncrypt's Key Generation Algorithm
	Public Key Uniformity

	NTRUEncrypt Revisited
	References

	Implementation and Side Channels
	Faster Explicit Formulas for Computing Pairings over Ordinary Curves
	Introduction
	Preliminaries
	Tower Extension Field Arithmetic
	Lazy Reduction for Tower Fields
	Selecting a Field Size Smaller Than the Word-Size Boundary
	Analysis for Selected Parameters

	Miller Loop
	Final Exponentiation
	Removing the Inversion Penalty
	Computing u-th Powers in Gφ6(Fp2)

	Computational Cost
	Implementation Results
	Conclusion
	References

	Pushing the Limits: A Very Compact and a Threshold Implementation of AES
	Introduction
	Related Work
	Our Work
	Outline

	Introduction to DPA
	Countermeasures

	Shared Computation of the AES S-Box Using Composite Fields
	Algorithmic Description of AES
	Canright’s Representation of the AES S-Box
	A Shared AES S-Box

	Hardware Architectures
	Design Flow
	A Very Compact Implementation of AES
	A Threshold Implementation of AES
	Performance Figures

	Experimental Results
	Measurement Setup
	Side-Channel Resistance

	Conclusions
	References

	Fully Leakage-Resilient Signatures
	Introduction
	Our Contributions
	Overview of Our Approach
	Paper Organization

	Preliminaries
	Second-Preimage Resistance
	Statistical Non-interactive Witness-Indistinguishable Argument Systems
	Admissible Hash Functions

	Modeling Leakage-Resilient Signature Schemes
	R-Lossy Public-Key Encryption
	A Signature Scheme in the Bounded-Leakage Model
	Concluding Remarks and Open Problems
	References

	A Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale Devices
	Preliminaries
	Target Implementation
	Notations
	Noise Distribution
	Physical Variability
	Dimensionality Reduction

	Information Theoretic Analysis
	Worst Case Scenario: Profiling and Attacking the Same Chip
	A Note about the ``Independent Leakage" Assumption
	Realistic Scenario: Profiling and Attacking Different Chips
	Model Soundness versus DPA Soundness

	Security Analysis
	Conclusions and Open Problems
	References

	Homomorphic Cryptography
	Implementing Gentry’s Fully-Homomorphic Encryption Scheme
	Introduction
	The Smart-Vercauteren Implementation
	Our Implementation
	Organization

	Background
	Lattices
	Ideal Lattices
	GGH-Type Cryptosystems
	Gentry's Somewhat-Homomorphic Cryptosystem

	Key Generation
	The Public and Secret Keys

	Inverting the Polynomial $v(x)$
	The Gory Details of Step One

	Encryption
	An Efficient Encryption Procedure
	The Euclidean Norm of Fresh Ciphertexts

	Decryption
	An Optimized Decryption Procedure

	How Homomorphic Is This Scheme?
	References

	Homomorphic Signatures for Polynomial Functions
	Introduction
	Overview of Our Techniques

	Homomorphic Signatures: Definitions and Applications
	Unforgeability
	Privacy
	Length Efficiency
	Applications

	Preliminaries
	Homomorphic Signatures for Linear Functions over Small Fields
	Background on Ideal Lattices
	Homomorphic Signatures for Polynomial Functions
	Conclusions and Open Problems
	References

	Semi-homomorphic Encryption and Multiparty Computation
	Introduction
	The Framework for Semi-homomorphic Encryption
	Examples of Semi-homomorphic Encryption
	Zero-Knowledge Proofs

	The Online Phase
	The MACs
	The Representation and Linear Computation
	Triples and Multiplication

	The Offline Phase
	<.>-Representation
	<.>-Multiplication
	From <.>-Triples to []-Triples

	References

	Signature Schemes
	Tight Proofs for Signature Schemes without Random Oracles
	Introduction
	Preliminaries
	Notation
	Signature Scheme
	Strong Existential Unforgeability
	Collision-Resistant Hashing
	Chameleon Hash Function
	Combining Function
	The Strong RSA Setting
	The Strong Diffie-Hellman Setting

	Signature Classes
	SRSA-Based Combining Signature Scheme SCMB,SRSA
	SDH-Based Combining Signature Scheme SCMB,SDH
	SRSA-Based Chameleon Hash Signature Scheme SCH,SRSA
	SDH-Based Chameleon Hash Signature Scheme SCH,SDH
	The Cramer-Shoup Signature Scheme SCS,SRSA

	Security
	The SRSA-Based Schemes
	The SDH-Based Schemes
	Security of the Chameleon Hash Signature Class
	Security Analysis of SCMB,SRSA

	References

	Adaptive Pseudo-free Groups and Applications
	Introduction
	Preliminaries and Notation

	Static Pseudo-free Groups
	Adaptive Pseudo-free Groups
	A Spectrum of Adaptive Adversaries
	Non-trivial Equation w.r.t. Other Equations
	A Definition of Adaptive Pseudo-free Groups

	Applications of Adaptive Pseudo-free Groups
	Signatures from Adaptive Pseudo-free Groups
	Network Coding Signatures from Adaptive Pseudo-free Groups

	The RSA Group Is Adaptive Pseudo-free
	A Framework for Strong RSA-Based Signatures
	Conclusion
	References

	Commuting Signatures and Verifiable Encryption
	Introduction
	Preliminaries
	Commuting Signatures and Verifiable Encryption
	Instantiation of the Building Blocks
	Bilinear Groups and Assumptions
	Groth-Sahai Proofs and Automorphic Signatures

	Additional Properties of Groth-Sahai Proofs
	Instantiation of Commuting Signatures
	Non-interactively Delegatable Anonymous Credentials
	The BCCKLS Model
	Our Instantiation

	Conclusion
	References

	Information-Theoretic Cryptography
	Secure Authentication from a Weak Key, without Leaking Information
	Introduction
	The Problem
	Related Work
	Our Contributions
	Application
	Organization of the Paper

	Notation and Preliminaries
	Security Definition

	The Dodis-Wichs Authentication Scheme
	Towards Achieving Key-Privacy

	Main Construction
	Proofs of Security and Privacy
	The Fuzzy Case
	Application: Password-Based Identification in the Bounded Quantum Storage Model
	Our Approach

	References

	Secret Keys from Channel Noise
	Introduction
	Our Work
	Related Work
	Notation
	Paper Organization

	Problem Statement
	SKE in Special Cases of 2DMBC
	Impossibility Results for Special Cases
	An SKE Protocol for Binary Symmetric Channels

	Results on the SK Capacity
	The Main SKE Protocol: Achieving the Lower Bound
	Preliminaries
	Description of the Main Protocol

	The SK Capacity for Binary Symmetric Channels
	Conclusion
	References

	Almost Optimum t-Cheater Identifiable Secret Sharing Schemes
	Introduction
	Preliminaries
	Secret Sharing Schemes
	t-Cheater Identifiable Secret Sharing Schemes
	Related Work

	Publicly Cheater Identifiable Schemes for t ≤ �k−1
	An Almost Optimum Scheme
	A Scheme with Flexible Parameter Choice

	A Publicly Cheater Identifiable Scheme for t ≤ �k−2
	A Publicly Cheater Identifiable Scheme for t ≤ �k−1
	Conclusion
	References

	Symmetric Key Cryptography
	On Linear Hulls, Statistical Saturation Attacks, PRESENT and a Cryptanalysis of PUFFIN
	Introduction
	Our Contributions

	Preliminaries
	Bias, Correlation and Fourier Transformation
	Linear Trails, Correlations and Linear Hull
	Statistical Saturation Attacks

	On the Linear Hull Effect
	Many Trails with the Same Absolute Value

	Linear Hulls and PUFFIN
	Linear Trails in PUFFIN
	Approximation of the Bias Distribution

	Linear Hulls and PRESENT
	Linear Attacks on PRESENT
	On the Choice of Sbox and Permutation in PRESENT

	Understanding Statistical Saturation Attacks
	Statistical Saturation Attacks on PRESENT

	Conclusion and Further Work
	References

	Domain Extension for MACs Beyond the Birthday Barrier
	Introduction
	Outline of Our Construction

	Preliminaries
	Building Cover-Free Function Families from MACs
	Implications
	References

	Attacks and Algorithms
	Statistical Attack on RC4 Distinguishing WPA
	Introduction
	Preliminaries
	Description of RC4 and Notations
	Description of WEP
	Description of WPA
	Biases in RC4
	Conditional Biases in RC4
	More Definitions

	Attacking Weak Bits Based on Biases
	First Attack: Recovering some Weak Bits of TK
	Second Attack
	Merging Attacks

	Attack on WEP
	Attack on WPA
	Distinguishing WPA
	Temporary Key Recovery

	Conclusion
	References

	Improved Generic Algorithms for Hard Knapsacks
	Introduction
	Existing Algorithms
	The Schroeppel-Shamir Algorithm
	The Howgrave-Graham–Joux Algorithm

	New Algorithm with Better Time Complexity
	Theoretical Improvement
	The Basic Building Block
	Devising a Concrete Algorithm
	Analysis of the Probability of Success
	Analysis of the Size of the Lists
	Provable Variant of the Concrete Algorithm

	Memory Complexity Improvement
	An Algorithm with Running Time ˜O (23n/4) and Memory ˜O(1)
	An Algorithm with Running Time ˜O (20.72n) and Memory ˜O(1)
	A Time-Memory Tradeoff on Schroeppel-Shamir Down to 2n/16 Memory

	Implementation and Experimental Evidence
	References

	Secure Computation
	Two-Output Secure Computation with Malicious Adversaries
	Introduction
	Generator's Input Consistency
	Two-Output Functions
	The Problem of Selective Failure
	Optimal Cut-and-Choose Strategy
	Comparison of Communication Complexity

	Building Blocks
	Consistency Check for the Generator's Input
	Two-Output Functions
	Committing Oblivious Transfer

	Main Protocol
	Experimental Results
	References

	Efficient Non-interactive Secure Computation
	Introduction
	Our Results
	Overview of Techniques

	Preliminaries
	A Statistical NISC/OT Protocol for NC0
	Overview of New Protocol
	Relaxing Security
	Realizing COT via Robust MPC

	A Direct Protocol for NISC/NC0
	A Lean NISC/NC0 Protocol with Input-Dependent Abort
	NISC/NC0 with Wire-Disjunction Triggered Abort
	From Security with WDT-Abort to Full Security
	Public-Code NISC
	References

	Towards a Game Theoretic View of Secure Computation
	Introduction
	The Model and Solution Concepts
	Cryptographic Definitions
	Game Theoretic Definitions

	Privacy and Correctness in Game Theoretic View
	Exploring Fairness in the Two-Party Setting
	Fairness in Game Theoretic View
	A New Indistinguishability-Based Definition of Fairness
	A New Notion of Simulation Based Fairness
	The Feasibility of Our Definition

	References

	Highly-Efficient Universally-Composable Commitments Based on the DDH Assumption
	Introduction
	Preliminaries and Definitions
	Efficient UC Commitments
	Protocol Idea and Overview
	The Actual Protocol
	Proof of Security

	Adaptive Adversaries with Erasures
	Background and Outline of Solution
	The Adaptive Protocol
	Proof of Security

	References

	Composability
	Concurrent Composition in the Bounded Quantum Storage Model
	Introduction
	Our Contribution

	Bounded Quantum Storage UC
	The BQS-UC Model
	Composition

	Commitments
	Extractable Commitments
	BQS-UC Commitments

	References

	Careful with Composition: Limitations of the Indifferentiability Framework
	Introduction
	Preliminaries
	Indifferentiability Framework for Single-Stage Games
	A Practically Motivated Counterexample
	Indifferentiability Fails for Multi-stage Games
	Indifferentiability with Simulator Resets
	Deterministic, Hedged, and Efficiently-Searchable Encryption
	References

	Key Dependent Message Security
	Efficient Circuit-Size Independent Public Key Encryption with KDM Security
	Introduction
	Our Goals
	Our Results
	Function Classes
	Properties of Proposed Schemes
	Triple Mode Proof Framework
	Techniques
	Related Work and Comparison to Our Schemes

	Preliminaries
	KDM Security
	Modular Arithmetic Circuit

	KDM Secure Scheme w.r.t Bounded Degree MAC
	KDM Secure Scheme w.r.t. Fraction of Bounded Degree MACs
	Triple Mode Proof Framework
	Overview
	Formal Description

	Security Proof of the First Scheme
	Interactive Vector Lemma [BG10]
	The Proof When the Number n of Keys Is 1
	The Idea Behind the Proof of the General Case

	References

	Key-Dependent Message Security: Generic Amplification and Completeness
	Introduction
	Our Results
	Our Techniques
	Comparison with BGK and BHHI

	Preliminaries
	KDM-Security
	Reductions and Completeness Results
	KDM Reductions via Randomized Encoding
	Completeness of Projections

	On Full KDM Security
	References

	Public Key Encryption
	Unbounded HIBE and Attribute-Based Encryption
	Introduction
	Dual System Encryption HIBE
	Security Properties for Dual System Encryption HIBE
	An Alternative Security Property

	Complexity Assumptions
	Our HIBE Construction
	Construction

	Security
	One Semi-functional Key Invariance

	Key-Policy Attribute-Based Encryption
	Construction
	Security

	References

	Decentralizing Attribute-Based Encryption
	Introduction
	Multi-authority CP-ABE
	Security Definition
	Transformation from One-Use Multi-authority CP-ABE

	Our Assumptions
	Our Multi-authority CP-ABE System
	Construction
	Security

	Discussion
	References

	Threshold and Revocation Cryptosystems via Extractable Hash Proofs
	Introduction
	Overview of Our Constructions
	Preliminaries and Definitions
	Binary Relations for Search Problems
	Threshold Extractable Hash Proofs

	Threshold Encryption Schemes
	Threshold Signature Schemes
	Revocation Schemes
	Instantiations for the Diffie-Hellman Relation
	Instantiations from Hardness of Factoring
	Chosen-Ciphertext Security
	Broadcast CCA
	Threshold CCA

	References

	Deniable Encryption with Negligible Detection Probability: An Interactive Construction
	Introduction
	Overview of Our Construction
	Related Work
	Outline

	Deniable Encryption
	Samplable Public Key Encryption
	A Deniable Encryption Protocol
	The Protocol
	Correctness
	Deniability

	Instantiations
	Quadratic Residuosity
	Trapdoor Permutations

	Conclusion and Open Problems
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

