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Preface

These are the proceedings of Eurocrypt 2011, the 30th in the series of European
Conferences on the Theory and Applications of Cryptographic Techniques. The
conference was organized under the auspices of the International Association for
Cryptologic Research and was held in Tallinn, Estonia, during May 15-19, 2011.

The aim of this series of conferences is to bring together leading researchers
and practitioners from academia and industry in the field of cryptography. The
conference program is intended to reflect the best of cryptographic research, in its
widest sense. This year, a deliberate attempt was made to broaden the technical
scope of the conference without making any compromise to its quality. The main
mechanism for achieving this was to select Program Committee members from as
broad a range of sub-areas of the field as possible, with the intention of sending
a clear signal to potential authors from the field as a whole. I trust that readers
of this volume find plenty to interest them here, and agree that the quality of
the papers is as high as ever.

The program consisted of 2 invited talks and 31 contributed papers. The
invited speakers were Ronald Cramer (CWI, Amsterdam and Mathematical In-
stitute, Leiden) and Phong Nguyen (INRIA and ENS). I would like to thank
them for accepting my invitation, for supplying informative abstracts for these
proceedings, and for delivering excellent talks. It was a privilege to have such
luminaries of our field as invited speakers.

The contributed papers were selected from 167 submissions. Each paper was
reviewed by at least three people, with the submissions involving Program Com-
mittee members being subjected to at least five reviews each. There was sig-
nificant online discussion about many of the papers, and a full-day Program
Committee meeting was held at Royal Holloway on January 12, 2011 to finalize
the program. The Program Committee decided to make a best paper award this
year, and the award went to Eike Kiltz, Krzysztof Pietrzak, David Cash, Ab-
hishek Jain and Daniele Venturi for their paper “Efficient Authentication from
Hard Learning Problems”.

I would like to thank all the people who helped with the conference program
and organization, particularly the General Chair, Helger Lipmaa. My heartfelt
thanks go to the Program Committee and their sub-reviewers, as listed on the
following pages, for their thoroughness during the review process. We had a
tough assignment with many submissions and tight deadlines, and the committee
members acted with utmost professionalism and attention to detail throughout.
My particular thanks are due to Henri Gilbert, the previous Program Chair,
who shared many insights with me, and to David Pointcheval, the next Program
Chair, who kindly agreed to join the committee at short notice and who acted
as a very effective “sweeper.”



VI Preface

The submission and review process was greatly simplified by the ichair soft-
ware developed by Thomas Baigneres and Matthieu Finiasz. My thanks to them
for producing this software and helping me with some technical queries during
the review process. I will be sending them some Estonian delicacies by way of
thanks; I highly recommend their software to all future Program Chairs. Thanks
are also due to Tristan Findley and Jon Hart at Royal Holloway for maintaining
the submission server and for their I'T support during the Program Committee
meeting.

I am grateful to the authors of all submitted papers for supporting the confer-
ence. The authors of accepted papers are thanked again for revising their papers
according to the suggestions of the reviewers and for returning latex source files
in good time. The revised versions were not checked by the Program Committee
so authors bear full responsibility for their contents. I thank the staff at Springer
for their help with producing the proceedings.

EuroCrypt 2011 was supported by the European Regional Development Fund
(ERDF) through the Estonian Centre of Excellence in Computer Science, EXCS.
I would also like to thank Guardtime, Qualcomm and Swedbank, the other
sponsors of EuroCrypt 2011, for their generous support.

Finally, I would like to thank my partner Liz and my daughter Cara for their
forbearance during a particularly hectic period.

February 2011 Kenny Paterson
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The Arithmetic Codex: Theory and Applications

Ronald Cramer

CWI, Amsterdam & Mathematical Institute, Leiden University, The Netherlands
http://www.cwi.nl/~cramer

Abstract. We define the notion of an arithmetic codex (or codex, for
short), and as a special case, arithmetic secret sharing. This notion en-
compasses as well as generalizes, in a single mathematical framework, all
known types of specialized secret sharing schemes from the area of se-
cure multi-party computation, i.e., the so-called (strongly) multiplicative
linear secret sharing schemes.

These schemes were first studied as an abstract primitive by Cramer,
Damgard, and Maurer in the late 1990s. They showed that the “Funda-
mental Theorem of Information-Theoretically Secure Multi-Party
Computation,” the landmark 1988 result by Ben-Or, Goldwasser, and
Wigderson and, independently at the same time by Chaum, Crépeau,
Damgard, admits a proof that uses this primitive as a blackbox: it is
possible to bootstrap, in a blackbox fashion, from this primitive a set
of atomic sub-protocols upon which general secure computation can be
based. They also showed when and how multiplicative schemes (but not
strongly multiplicative ones) reduce to ordinary ones and gave applica-
tions to security against non-threshold adversaries.

In 2006, Chen and Cramer showed an “asymptotically good” version
of the Fundamental Theorem, where the size of the network is unbounded
and where an adversary corrupts a constant fraction of the network, yet
the information rate of the secret sharing primitive is constant. Their re-
sult relies on a careful choice of algebraic geometric codes, in combination
with the earlier work of Cramer, Damgard, and Maurer.

In 2007 this asymptotic result turned out to have a surprising appli-
cation in two-party cryptography, through the work of Ishai, Kushilevitz,
Ostrovsky and Sahai (“Multi-Party Computation in the Head’). This
first application was to zero knowledge for circuit satisfiability, but soon
after other applications to secure two-party computation and information
theory (correlation extractors) followed.

Our notion of arithmetic secret sharing is not merely a unification for
its own sake. First, it casts these schemes in terms of a dedicated “rep-
resentation” of K-algebras, thereby bringing the relevant mathematical
structure to the surface. Second, it identifies novel types of special secret
sharing schemes. And, third, there are novel cryptographic applications.

Besides presenting some elementary examples and giving an overview
of the basic theory and the main applications, we discuss a construction
of arithmetic secret sharing schemes based on a novel algebraic-geometric
paradigm that we also introduce. This talk is mainly based on several re-
cent joint works with Nacho Cascudo (CWI) and Chaoping Xing (NTU).
But in part it is also based on recent joint work with Ivan Damgard
(Aarhus University) and Valerio Pastro (Aarhus University).

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, p. 1, 2011.
© International Association for Cryptologic Research 2011
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Lattice Reduction Algorithms:
Theory and Practice

Phong Q. Nguyen

INRIA and ENS, Département d’informatique, 45 rue d’Ulm, 75005 Paris, France
http://www.di.ens.fr/ pnguyen/

Abstract. Lattice reduction algorithms have surprisingly many appli-
cations in mathematics and computer science, notably in cryptology. On
the one hand, lattice reduction algorithms are widely used in public-
key cryptanalysis, for instance to attack special settings of RSA and
DSA/ECDSA. On the other hand, there are more and more crypto-
graphic schemes whose security require that certain lattice problems are
hard. In this talk, we survey lattice reduction algorithms, present their
performances, and discuss the differences between theory and practice.

Intuitively, a lattice is an infinite arrangement of points in R™ spaced with
sufficient regularity that one can shift any point onto any other point by some
symmetry of the arrangement. The simplest non-trivial lattice is the hypercubic
lattice Z™ formed by all points with integral coordinates. The branch of number
theory dealing with lattices (and especially their connection with convex sets)
is known as geometry of numbers [2UATIT2H], and its origins go back to two
historical problems: higher-dimensional generalizations of Euclid’s ged algorithm
and sphere packings.

More formally, a lattice L is a discrete subgroup of R™, or equivalently, the
set of all integer combinations of n linearly independent vectors bq,...,b, in
R™:

L= {a1b1 + - 4+ a,b,,a; € Z}

Such a set (by,...,by,) is called a basis of the lattice. The goal of lattice reduc-
tion is to find reduced bases, that is bases consisting of reasonably short and
nearly orthogonal vectors. This is related to the reduction theory of quadratic
forms developed by Lagrange [19], Gauss [11] and Hermite [14]. Lattice reduc-
tion algorithms have proved invaluable in many fields of computer science and
mathematics (see the book [30]), notably public-key cryptanalysis where they
have been used to break knapsack cryptosystems [32] and special cases of RSA
and DSA, among others (see [20021] and references therein).

Reduced bases allow to solve the following important lattice problems, either
exactly or approximately:

— The most basic computational problem involving lattices is the shortest vec-
tor problem (SVP), which asks to find a nonzero lattice vector of smallest
norm, given a lattice basis as input. SVP can be viewed as a geometric gen-
eralization of ged computations: Euclid’s algorithm actually computes the

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 2@ 2011.
© International Association for Cryptologic Research 20
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smallest (in absolute value) non-zero linear combination of two integers, since
ged(a, b)Z = aZ+bZ, which means that we are replacing the integers a and b
by an arbitrary number of vectors by, ..., b, with integer coordinates. Since
SVP is NP-hard under randomized reductions [3] (see [I7I34] for surveys on
the hardness of lattice problems), one is also interested in approximating
SVP, i.e. to output a nonzero lattice vector of norm not much larger than
the smallest norm.

— The inhomogeneous version of SVP is called the closest vector problem
(CVP); here we are given an arbitrary target vector in addition to the lattice
basis and asked to find the lattice point closest to that vector. A popular
particular case of CVP is Bounded Distance Decoding (BDD), where the
target vector is known to be somewhat close to the lattice.

The first SVP algorithm was Lagrange’s reduction algorithm [19], which solves
SVP exactly in dimension two, in quadratic time. In arbitrary dimension, there
are two types of SVP algorithms:

1. Exact algorithms. These algorithms provably find a shortest vector, but
they are expensive, with a running time at least exponential in the dimension.
Intuitively, these algorithms perform an exhaustive search of all extremely
short lattice vectors, whose number is exponential in the dimension (in the
worst case): in fact, there are lattices for which the number of shortest lat-
tice vectors is already exponential. Exact algorithms can be split in two
categories:

(a) Polynomial-space exact algorithms.They are based on enumeration
which dates back to the early 1980s with work by Pohst [33], Kannan [16],
and Fincke-Pohst [6]. In its simplest form, enumeration is simply an ex-
haustive search for the best integer combination of the basis vectors. The
best deterministic enumeration algorithm is Kannan’s algorithm [16], with
super-exponential worst-case complexity, namely n™/ (2€)+(") polynomial-
time operations (see [13]), where n denotes the lattice dimension. The enu-
meration algorithms used in practice (such as that of Schnorr-Euchner [37])
have a weaker preprocessing than Kannan’s algorithm [I6], and their worst-
case complexity is 20(n?) polynomial-time operations. But it is possible to
obtain substantial speedups using pruning techniques: pruning was intro-
duced by Schnorr-Euchner [37] and Schnorr-Hérner [38] in the 90s, and re-
cently revisited by Gama, Nguyen and Regev [10], where it was shown that
one can reach a 2/2 heuristic speedup over basic enumeration.

(b) Exponential-space exact algorithms. These algorithms have a bet-
ter asymptotic running time, but they all require exponential space 2€ ().
The first algorithm of this kind is the randomized sieve algorithm of Ajtai,
Kumar and Sivakumar (AKS) [], with exponential worst-case complex-
ity of 20(") polynomial-time operations. Micciancio and Voulgaris [22] re-
cently presented an alternative deterministic algorithm, which solves both
CVP and SVP within 22"+°(") polynomial-time operations. Interestingly,
there are several heuristic variants [3123]43] of AKS with running time
20 where the O() constant is much less than that of the best provable
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algorithms known. For instance, the recent algorithm of Wang et al. [43]
has time complexity 20-3836" polynomial-time operations.

2. Approximation algorithms. These algorithms are much faster than exact
algorithms, but they only output short lattice vectors, not necessarily the
shortest one: they typically output a whole reduced basis, and are therefore
lattice reduction algorithms. The first algorithm of this kind is the celebrated
algorithm of Lenstra, Lenstra and Lovdsz (LLL) [20/30], which can approx-
imate SVP to within a factor O((2/4/3)") in polynomial time: it can be
viewed as an algorithmic version of Hermite’s inequality. Since the appear-
ance of LLL, research in this area has focused on two topics:

(a) Faster LLL. Here, one is interested in obtaining reduced bases of sim-
ilar quality than LLL, possibly slightly worse, but with a smaller run-
ning time. This is achieved by a divide-and-conquer strategy (such as
in [39J18]) or by using floating-point arithmetic (such as in [362925]).
The most popular implementations of LLL are typically heuristic floating-
point variants, such as that of Schnorr-Euchner [37]: see the survey [42]
on floating-point LLL.

(b) Stronger LLL. Here, one is interested in obtaining better approxima-
tion factors than LLL, at the expense of the running time. Intuitively,
LLL repeatedly uses two-dimensional reduction to find short lattice vec-
tors in dimension n. Blockwise reduction algorithms [35l/7)8] obtain bet-
ter approximation factors by replacing this two-dimensional reduction
subroutine by a higher-dimensional one, using exact SVP algorithms in
low dimension. The best polynomial-time blockwise algorithm known [g]
achieves a subexponential approximation factor 20((nloglogn)/logn). j¢
is an algorithmic version of Mordell’s inequality. In practice, a popular
choice is the BKZ algorithm of Schnorr-Euchner [37] implemented in
the NTL library [40], which is a heuristic variant of Schnorr’s blockwise
algorithm [35]. The article [J] provides an experimental assessment of
BKZ.

Both categories are in fact complementary: all exact algorithms known first apply
an approximation algorithm (typically at least LLL) as a preprocessing, while all
blockwise algorithms call many times an exact algorithm in low dimension as a
subroutine. Most of the SVP algorithms we mentioned can be adapted to CVP
(see for instance [I]). The provable SVP algorithms are surveyed in [27]. The
heuristic algorithms which we mentioned are such that their running time may no
longer be proved, and/or there may not be any guarantee on the output (should
the algorithm ever terminate). Heuristic algorithms can typically outperform
provable algorithms in practice, for reasons still not well understood.

Finally, it is folklore that lattice reduction algorithms behave better than their
proved worst-case theoretical bounds. In the 80s, the early success of lattice re-
duction algorithms in cryptanalysis led to the belief that the strongest lattice
reduction algorithms behaved as perfect oracles, at least in small dimension. But
this belief showed its limits in the 90s with NP-hardness results and the devel-
opment of lattice-based cryptography, following Ajtai’s worst-case/average-case
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reduction [2] and the NTRU cryptosystem [15]. The articles [28/9] clarify what
can be expected in practice, based on experimental results. Such assessments are
important to better understand the gap between theory and practice, but also
to evaluate the concrete security of lattice-based cryptography.
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Abstract. We construct efficient authentication protocols and message-
authentication codes (MACs) whose security can be reduced to the
learning parity with noise (LPN) problem.

Despite a large body of work — starting with the HB protocol of Hopper
and Blum in 2001 — until now it was not even known how to construct
an efficient authentication protocol from LPN which is secure against
man-in-the-middle (MIM) attacks. A MAC implies such a (two-round)
protocol.

1 Introduction

Authentication is among the most basic and important cryptographic tasks. In
the present paper we construct efficient (secret-key) authentication schemes from
the learning parity with noise (LPN) problem. We construct the first efficient
message authentication codes (MACs) from LPN, but also simpler and more
efficient two-round authentication protocols that achieve a notion called active
security. Prior to our work, the only known way to construct an LPN-based MAC
was via a relatively inefficient generic transformation [I7] (that works with any
pseudorandom generator), and all interactive LPN-based protocols with security
properties similar to our new protocol required at least three rounds and had a
loose security reduction. Our constructions and techniques diverge significantly
from prior work in the area and will hopefully be of independent interest.

The pursuit of LPN-based authentication is motivated by two disjoint con-
cerns, one theoretical and one practical. On the theoretical side, the LPN prob-
lem provides an attractive basis for provable security [3| [4, [6] 22, 18, 27]. It is
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closely related to the well-studied problem of decoding random linear codes, and
unlike most number-theoretic problems used in cryptography, the LPN problem
does not succumb to known quantum algorithms. On the practical side, LPN-
based authentication schemes are strikingly efficient, requiring relatively few
bit-level operations. Indeed, in their original proposal, Hopper and Blum [I§]
suggested that humans could perform the computation in their provably-secure
scheme, even with realistic parameters. The efficiency of LPN-based schemes also
makes them suitable for weak devices like RFID tags, where even evaluating a
blockcipher may be prohibitive.

Each of our theoretical and practical motivations, on its own, would be suffi-
ciently interesting for investigation, but together the combination is particularly
compelling. LPN-based authentication is able to provide a theoretical improve-
ment in terms of provable security in addition to providing better efficiency than
approaches based on more classical symmetric techniques that are not related
to hard problems. Usually we trade one benefit for the other, but here we hope
to get the best of both worlds.

Before describing our contributions in more detail, we start by recalling au-
thentication protocols, the LPN problem, and some of the prior work on which
we build.

AUTHENTICATION PROTOCOLS. An authentication protocol is a (shared-key)
protocol where a prover P authenticates itself to a verifier V (in the context of
RFID implementations, we think of P as the “tag” and V as the “reader”). We
recall some of the common definitions for security against impersonation attacks.
A passive attack proceeds in two phases, where in the first phase the adversary
eavesdrops on several interactions between P and V), and then attempts to cause
V to accept in the second phase (where P is no longer available). In an ac-
tive attack, the adversary is additionally allowed to interact with P in the first
phase. The strongest and most realistic attack model is a man-in-the-middle at-
tack (MIM), where the adversary can arbitrarily interact with P and V (with
polynomially many concurrent executions allowed) in the first phase.

THE LPN PROBLEM. Briefly stated, the LPN problem is to distinguish from
random several “noisy inner products” of random binary vectors with a random
secret vector.

More formally, for 7 < 1/2 and a vector x € Z4, define the distribution
A ¢(x) on Z& x Zy by (r,r"x @ e), where r € Z§ is uniformly random and
e € Zs is selected according to Ber,, the Bernoulli distribution over Zs with
parameter 7 (i.e. Prfe = 1] = 7). The LPN, ; problem is to distinguish an oracle
returning samples from A, ,(x), where x € Z§ is random and fixed, from an
oracle returning uniform samples. It was shown by Blum et al. [4] that this is
equivalent to the search version of LPN, where one needs to compute x given
oracle access to Ar¢(x) (cf. [2I, Thm.2] for precise bounds). We note that the
search and decision variants are solvable with a linear in ¢ number of samples
when there is no noise, i.e. when 7 = 0, and the best algorithms take time 2¢/108¢
when 7 > 0 is treated as a constant [0} [0, [23].
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AUTHENTICATION PROTOCOLS FROM LPN. Starting with the work of Hopper
and Blum [I8§], several authentication protocols based on the LPN problem have
been proposed. Their original elegant protocol is simple enough for us to recall
right away. The shared secret key is a binary vector s € Z§. The interaction
consists of two messages. First V' sends a random challenge r € Z5, and then P
answers with the bit z = r's @ e, where e € Z is sampled according to Ber.
Finally, the verifier accepts if z = r's.

This basic protocol has a large completeness error 7 (as V will reject if e = 1)
and soundness error 1/2 (as a random r, z satisfies r ' -s = z with probability 1/2).
This can be reduced via sequential or parallel composition. The parallel variant,
denoted HB, is illustrated in Figure [[] (we represent several r with a matrix R
and the noise bits are now arranged in a vector e). The verifier accepts if at
least a 7/ fraction (where 7 < 7/ < 1/2) of the n basic authentication steps are
correct.

The 2-round HB protocol is provably secure against passive attacks, but ef-
ficient active attacks are known against it. This is unsatisfying because in sev-
eral scenarios, and especially in RFID applications, an adversary will be able
to mount an active attack. Subsequently, Juels and Weis [I9] proposed an ef-
ficient 3 round variant of HB, called HB™, and proved it secure against active
attacks. Again the error can be reduced by sequential repetition, and as shown
by Katz, Shin and Smith via a non-trivial analysis, parallel repetition works as
well [20, 21]. The protocol (in its parallel repetition variant) is illustrated in
Figure 2

Despite a large body of subsequent work] no improvements in terms of round
complexity, security or tightness of the reduction over HBT were achieved: 3
round protocols achieving active security /¢ (assuming LPN is e-hard) are the
state of the art. In particular, Gilbert et al. [I4] showed that HB* can be broken
by a MIM attack. Several variants HB™™ [9], HB* [11], HB-MP [24] were proposed
to prevent the particular attack from [I4], but all of them were later shown to
be insecure [15]. In [16], a variant HB# was presented which provably resists the
particular attack from [I4], but was shown susceptible to a more general MIM
attack [25].

PT,H(S € Zg) VT’,n(s € Zg)
R
S RSz
e Ber?

z:=R" -s®e —7 verify: wt(z®R" -s) <7’ -n

Fig. 1. The HB protocol, secure against passive attacks

L ¢f. http://www.ecrypt.eu.org/lightweight/index.php/HB| for an incomplete list
of relevant papers.
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7)7',77,(51752) VT’,n(SlasQ)
R
R, &z —
Ro s
2 R, & gten
$
e «— Ber?}

Z = RI-sl@R;m De > verify:
wt(zOR] -s1 ORJ -s2) <7’ -n

Fig. 2. The HB™ protocol, secure against active attacks

1.1 Owur Contribution

We provide new constructions of authentication protocols and even MACs from
LPN. Our first contribution is a two-round authentication protocol secure against
active adversaries (this is mentioned as an open problem in [I9]) which more-
over has a tight security reduction (an open problem mentioned in [21]). As a
second contribution, we build two efficient MACs, and thus also get two-round
authentication protocols secure against MIM attacks, from the LPN assumption.
Unlike previous proposals, our constructions are not ad-hoc, and we give a re-
duction to the LPN problem. Our authentication protocol is roughly as efficient
as the HB™ protocol but has twice the key length. Our MACs perform roughly
the same computation as the authentication protocol plus one evaluation of a
pairwise independent permutation of an ~ 2¢ bit domain, where ¢ is the length
of an LPN secret.

2-ROUND AUTHENTICATION WITH ACTIVE SECURITY. Our first contribution is
a two-round authentication protocol which we prove secure against active attacks
assuming the hardness of the LPN problem. Our protocol diverges considerably
from all previous HB-type protocols [I8, 19 21| [I6], and runs counter to the
intuition that the only way to efficiently embed the LPN problem into a two-
round protocol is via an HB-type construction.

We now sketch our protocol. In HB and its two-round variants, the prover
must compute LPN samples of the form RT - s @ e, where R is the challenge
chosen by the verifier in the first message. We take a different approach. Instead
of sending R, we now let the verifier choose a random subset of the bits of s to
act as the “session-key” for this interaction. It represents this subset by sending
a binary vector v € Z§ that acts as a “bit selector” of the secret s, and we
write s, for the sub-vector of s which is obtained by deleting all bits from s
where v is 0. (E.g. if s = 111000, v = 011100 then s|, = 110). The prover then
picks R by itself and computes noisy inner products of the form RT -s|y @ e.
Curiously, allowing the verifier to choose which bits of s to use in each session
is sufficient to prevent active attacks. We only need to add a few sanity-checks
that no pathological v or R were sent by an active adversary.

Our proof relies on the recently introduced subspace LPN problem [26]. In
contrast to the active-attack security proof of HB* [21], our proof does not use
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any rewinding techniques. Avoiding rewinding has at least two advantages. First,
the security reduction becomes tight. Second, the proofs also works in a quantum
setting: our protocol is secure against quantum adversaries assuming LPN is
secure against such adversaries. As first observed by van de Graaf [29], classical
proofs using rewinding in general do not translate to the quantum setting (cf.
[31] for a more recent discussion). Let us emphasise that this only means that
there is no security proof for HB™ in the quantum setting, but we do not know
if a quantum attack actually exists.

MAC & MAN-IN-THE-MIDDLE SECURITY. In Section [ we give two construc-
tions of message authentication codes (MACs) that are secure (formally, un-
forgeable under chosen message attacks) assuming that the LPN problem is
hard. Note that a MAC implies a two-round MIM-secure authentication proto-
col: the verifier chooses a random message as challenge, and the prover returns
the MAC on the message.

As a first attempt, let us try to view our authentication protocol as a MAC.
That is, a MAC tag is of the form ¢ = (R,z = RT - fs(m) @ e), where the
secret key derivation function fs(m) € Z§ first uniquely encodes the message m
into v € Z3* of weight £ and then returns s|y by selecting ¢ bits from secret s,
according to v. However, this MAC is not secure: given a MAC tag ¢ = (R, 2z)
an adversary can ask verification queries where it sets individual rows of R to
zero until verification fails: if the last row set to zero was the ith, then the ith
bit of fs(m) must be 1. (In fact, the main technical difficulty to build a secure
MAC from LPN is to make sure the secret s does not leak from verification
queries). Our solution is to randomize the mapping f, i.e. use fs(m,b) for some
randomness b and compute the tag as ¢ = 7(R,R" - fs(m,b) @ e, b), where
7 is a pairwise independent permutation (contained in the secret key). We can
prove that if LPN is hard then this construction yields a secure MAC. (The
key argument is that, with high probability, all non-trivial verification queries
are inconsistent and hence lead to reject). However, the security reduction to the
LPN problem is quite loose since it has to guess the value v from the adversary’s
forgery. (In the context of identity-based encryption (IBE) a similar idea has been
used to go from selective-ID to full security using “complexity leveraging” [7]).
In our case, however, this still leads to a polynomial security reduction when one
commits to the hardness of the LPN problem at the time of the construction.
(See the first paragraph of §l for a discussion).

To get a strictly polynomial security reduction (without having to commit to
the hardness of the LPN problem), in our second construction we adapt a tech-
nique originally used by Waters [30] in the context of IBE schemes that has been
applied to lattice based signature [§] and encryption schemes [2]. Concretely, we
instantiate the above MAC construction with a different secret key derivation
function fs(m,b) = so & P,.y(;=1 S (Where v = h(m,b) and h(-) is a pairwise
independent hash). The drawback of our second construction is the larger key-
size. Our security reduction uses a technique from [8] 2] based on encodings with
full-rank differences (FRD) by Cramer and Damgard [10].
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1.2 Efficiency

Figure [ gives a rough comparison of our new protocol and MACs with the
HB,HB™ protocols and, as a reference, also the classical tree-based GGM con-
struction [I7]. The second row in the table specifies the security notion that
is (provably) achieved under the LPN,, assumption. X is a security param-
eter and n denotes the number of “repetitions”. Typical parameters can be
¢ = 500, A = 80,n = 250. Computation complexity counts the number of bi-
nary operations over Fy. Communication complexity counts the total length of
all exchanged messages@. The last row in the table states the tightness of the
security reduction, i.e. what exact security is achieved (ignoring constants and
higher order terms) assuming the LPN, ; problem is e-hard.

The prover and verifier in the HB, HB* and our new protocols have to perform
O(f - n) basic binary operations, assuming the LPN; ; problem (i.e., LPN with
secrets of length ¢) is hard. This seems optimal, as ©(¢) operations are necessary
to compute the inner product which generates a single pseudorandom bit. We
will thus consider an authentication protocol or MAC efficient, if it requires
O(¢ - n) binary operations. Let us mention that one gets a length-doubling PRG
under the LPN, , assumption with ©(¢2) binary operations [12]. Via the classical
GGM construction [17], we obtain a PRF and hence a MAC. This PRF, however,
requires ©(¢% - \) operations per invocation (where \ is the size of the domain
of the PRF) which is not very practical. (Recall that ¢ ~ 500).

COMMUNICATION VS. KEY-SI1ZE. For all constructions except GGM, there is a
natural trade-off between communication and key-size, where for any constant
¢ (1 < ¢ < n), we can decrease communication by a factor of ¢ and increase
key-size by the factor ¢ (cf. the full version [I] for how exactly this can be done).
For the first three protocols in the table, the choice of ¢ does not affect the
computational efficiency, but it does so for our MACs: to compute or verify a

Construction Security Complexity Key-size Reduction
Communication Computation

HB [I8] passive (2 rnd) {-n/c O -n) l-c € (tight)

HB™ [19] active (3 rnd) l-n-2/c O -n) 0-2-¢c e

(
AUTH §B  active (2 rnd) £-n-21/c O -n) £-4.2-c¢ € (tight)
MAC; §I] MAC — MIM (2rtnd) £-n-2.1/c O -n)+PIPL-12.6 -c+c-Q (%)
MAC,; §E2] MAC — MIM (2rnd) £-n-1.1/c OU-n)+PIPL-X-c €-Q
GGM [I7] PRF — MIM (2 rnd) A o2 -\ o) EED)

Fig. 3. A comparison of our new authentication protocol and MACs with the HB, HB™
protocols and the classical GGM construction. The trade-off parameter ¢,1 < ¢ < n
and the term PIP will be explained in the “Communication vs. Key-Size” paragraph
below. (%) See discussion in

2 For MACs, we consider the communication one incurs by constructing a MIM secure
2-round protocol from the MAC by having the prover compute the tag on a random
challenge message.
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tag one has to evaluate a pairwise independent permutation (PIP) on the entire
tag of length m := O(¢ - n/c).

The standard way to construct a PIP 7 over Zgm is to define m(x) := a -
z + b € Fam for random a,b € Fom. Thus the computational cost of evaluating
the PIP is one multiplication of two m bits values: the PIP term in the table
accounts for this complexity. Asymptotically, such a multiplication takes only
O(mlogmloglogm) time [28, [13], but for small m (like in our scheme) this will
not be faster than using schoolbook multiplication, which takes ©(m?) time. For
parameters £ = 500, n = 250 and trade-off ¢ = n (which minimizes the tag-length
m) we get m ~ 1200 for MAC; (i.e., 1200 = 2¢ plus some statistical security
parameters) and m =~ 600 for MAC,. Hence, depending on the parameters, the
evaluation of the PIP may be the computational bottleneck of our MACs.

2 Definitions
2.1 Notation

We denote the set of integers modulo an integer ¢ > 1 by Z,. We will use normal,
bold and capital bold letters like x, x, X to denote single elements, vectors
and matrices over Zg, respectively. For a positive integer k, [k] denotes the set
{1,...,k}; [0] is the empty set. For a,b € R, Ja,b[={z € R; a <z < b}. For a
vector x € Zy', |x| = m denotes the length of x; wt(x) denotes the Hamming
weight of the vector x, i.e. the number of indices i € {1,..., |x|} where x[i] # 0.
The bit-wise XOR of two binary vectors x and y is represented as z = x @ y,
where z[i] = x[i]®y][i]. For v € ZJ* we denote by v its inverse, i.e. v[i] = 1 — v[i]
for all 4. For two vectors v € Z4 and x € Zf;, we denote by x|y the vector (of
length wt(v)) which is derived from x by deleting all the bits x[i] where v[i] = 0.
IfX e ngm is a matrix, then X, denotes the submatrix we get by deleting the
ith row if v[i] = 0. A function in X is negligible, written negl(\), if it vanishes
faster than the inverse of any polynomial in A. An algorithm A is probabilistic
polynomial time (PPT) if A uses some randomness as part of its logic (i.e. A is
probabilistic) and for any input x € {0,1}* the computation of A(x) terminates
in at most poly(|x|) steps.

2.2 Authentication Protocols

An authentication protocol is an interactive protocol executed between a prover
P and a verifier V, both PPT algorithms. Both hold a secret x (generated using
a key-generation algorithm KG executed on the security parameter X in unary)
that has been shared in an initial phase. After the execution of the authentica-
tion protocol, V outputs either accept or reject. We say that the protocol has
completeness error « if for all secret keys x generated by KG(1%), the honestly
executed protocol returns reject with probability at most «.

PASSIVE ATTACKS. An authentication protocol is secure against passive attacks,
if there exists no PPT adversary A that can make the verifier return accept with
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non-negligible probability after (passively) observing any number of interactions
between the verifier and prover.

ACTIVE ATTACKS. A stronger notion for authentication protocols is security
against active attacks. Here the adversary A runs in two stages. First, she can
interact with the honest prover a polynomial number of times (with concurrent
executions allowed). In the second phase A interacts with the verifier only, and
wins if the verifier returns accept. Here we only give the adversary one shot
to convince the verifieffl. An authentication protocol is (¢, Q, €)-secure against
active adversaries if every PPT A, running in time at most ¢ and making @
queries to the honest prover, has probability at most € to win the above game.

MAN-IN-THE-MIDDLE ATTACKS. The strongest standard security notion for au-
thentication protocols is security against man-in-the-middle (MIM) attacks. Here
the adversary can initially interact (concurrently) with any number of provers
and — unlike in an active attacks — also verifiers. The adversary gets to learn
the verifiers accept/reject decisions. One can construct two-round authentica-
tion schemes which are secure against MIM attacks from basic cryptographic
primitives like MACs, which we define next.

2.3 Message Authentication Codes

A message authentication code MAC = {KG, TAG, VRFY} is a triple of algorithms
with associated key space IC, message space M, and tag space 7.

— Key Generation. The probabilistic key-generation algorithm KG takes as input
a security parameter A € N (in unary) and outputs a secret key K € K.

— Tagging. The probabilistic authentication algorithm TAG takes as input a
secret key K € K and a message m € M and outputs an authentication tag
peT.

— Verification. The deterministic verification algorithm VRFY takes as input
a secret key K € K, a message m € M and a tag ¢ € 7 and outputs
{accept, reject}.

If the TAG algorithm is deterministic one does not have to explicitly define VRFY,
since it is already defined by the TAG algorithm as VRFY (K, m, ¢) = accept iff
TAG(K,m) = ¢.

COMPLETENESS. We say that MAC has completeness error « if for all m € M
and A e N

Pr[VRFY (K, m, ¢) = reject ; K «— KG(1*) , ¢ «— TAG(K,m)] < .

SECURITY. The standard security notion for a MAC is unforgeability under a
chosen message attack (uf-cma). We denote by Adv&fggma(A, A, Q), the advan-
tage of the adversary A in forging a message under a chosen message attack for

3 By using a hybrid argument one can show that this implies security even if the
adversary can interact in & > 1 independent instances concurrently (and wins if the
verifier accepts in at least one instance). The use of the hybrid argument looses a
factor of k in the security reduction.
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MAC when used with security parameter A. Formally this is the probability that
the following experiment outputs 1.

Experiment Exp',f,,f,zccma(.A, A Q)
K «— KG(1*")
Invoke ATAGUE ), VRFY(K.) who can make up to Q queries to TAG(K, -) and
VRFY(K,-,-).
Output 1 if A made a query (m, ¢) to VRFY (K, -, ) where
1. VRFY (K, m, ¢) = accept
2. A did not already make the query m to TAG(K, -)
Output 0 otherwise.

We say that MAC is (¢, Q,¢)-secure against uf-cma adversaries if for any A

running in time ¢ in the experiment above, we have Advjir ™ (A, \, Q) < e.

2.4 Hard Learning Problems

Let Ber, be the Bernoulli distribution over Zy with parameter (bias) 7 € ]0,1/2|
(i.e., Prlz = 1] = 7 if © « Ber,). For £ > 1, Ber’ denotes the distribution
over 7% where each vector consists of £ independent samples drawn from Ber..
Given a secret x € Zg and 7 €]0, é[ , we write A ¢(x) for the distribution over
75 x Zy whose samples are obtained by choosing a vector r & 75 and outputting
(r,r7 - x @ e) with e & Ber;.

The LPN assumption, formally defined below, states that it is hard to dis-
tinguish A, (x) (with a random secret x € Z5) from the uniform distribution.

Definition 1 (Learning Parity with Noise). The (decisional) LPN; , prob-
lem is (t,Q,e)-hard if for every distinguisher D running in time t and making
Q@ queries,

[Pr[x & zg o DAt —1] —pr[ DV —1]| <.

Below we define the (seemingly) stronger subspace LPN assumption (SLPN for
short) recently introduced in [26]. Here the adversary can ask for inner products
not only with the secret x, but even with A -x@® b where A and b can be adap-
tively chosen, but A must have sufficiently large rank. For minimal dimension
d <, asecret x € Z4 and A € Z5¢, b € Z&, we define the distribution

1 if rank(A) < d

FT,K,d(Xa A, b) = {AT7€(A‘ X P b) otherwise

and let I; ¢ 4(%,-,-) denote the oracle which on input A,b outputs a sample
from I’y ¢.a(x, A, b).

Definition 2 (Subspace LPN). Let ¢,d € Z where d < {. The (decisional)
SLPN; ¢.q problem is (t,Q,¢e)-hard if for every distinguisher D running in time
t and making Q queries,

Pr [x Szt . Dlreate) - 1] —Pr [ DUr+1() = 1” <e,
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where Upy1(+,-) on input (A, b) outputs a sample of Upyq if rank(A) > d and L
otherwise.

The following proposition states that the subspace LPN problem mapping to
dimension d + ¢ is almost as hard as the standard LPN problem with secrets of
length d. The hardness gap is exponentially small in g.

Proposition 1 (From [26]). For any ¢,d,g € Z (where £ > d + g), if the
LPN; 4 problem is (t,Q,¢e)-hard then the SLPN; ¢ 414 problem is (t',Q,e’)-hard
where

t' =t —poly(¢,Q) e =e+2Q/29".

For some of our constructions, we will only need a weaker version of the SLPN ;4
problem that we call subset LPN. As the name suggests, here the adversary does
not ask for inner products with A -x@® b for any A (of rank > d), but only with
subsets of x (of size > d). It will be convenient to explicitly define this special
case. For x,v € Z§, let diag(v) € Zéx£ denote the zero matrix with v in the
diagonal, and let

1 if wt(v) <d

I palx,v) = re.d(x, diag(v),0°) = {A,,_g(x A V) otherwise.

Definition 3 (Subset LPN). Let £,d € Z where d < (. The SLPN , ; problem
is (t,Q,¢e)-hard if for every distinguisher D running in time t and making Q

queries,
‘Pr [x S 7L . DFrea) = 1] ~Pr [ DU+l = 1” <e,

where Upy1(+) on input v (where wt(v) > d) outputs a sample of Upy1 and L
otherwise.

Remark 1. I’} , 4(x,v) samples are of the form (r, rIv Xy @e) € Z5 where

e & Ber;. To compute the inner product only r|, € Z;’t(v) is needed, the
remaining bits r|y € Zg_Wt(v) are irrelevant. We use this observation to improve
the communication complexity (for protocols) or tag length (for MACs), by using

“compressed” samples of the form (ry, rIV "Xy De) e Z;Vt(v)ﬂ.

3 Two-Round Authentication with Active Security

In this section we describe our new 2-round authentication protocol and prove
its active security under the hardness of the SLPN7 ,, ; problem, where d =
£/(2+7) for some constant v > 0. (Concretely, v = 0.1 should do for all practical
purposes).
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— Public parameters. The authentication protocol has the following public pa-

rameters, where 7, 7/ are constants and ¢, n depend on the security parameter
A

¢ eN length of the secret key s € Z3¢

T €]0,1/2] parameter of the Bernoulli error distribution Ber.,
7/ =1/4+ 7/2 acceptance threshold

n €N number of parallel repetitions (we require n < ¢/2)

— Key Generation. Algorithm KG(1*) samples s & 73* and returns s as the
secret key.

— Authentication Protocol. The 2-round authentication protocol with prover
Prn and verifier V; , is given in Figure @

Prover P, (s € Z3") Verifier V1, (s € Z3")
S vEaxezd wtx) =10}
if wt(v) # £ abort
R & 794" e & Ber?
(R,z)
z:=R' s, BecZy —if rank(R) # n reject
if wt(z @ R" -s;,) > n- 7' reject, else accept

Fig. 4. Two-round authentication protocol AUTH with active security from the LPN
assumption

Theorem 1. For any constant~y > 0, letd = £/(2+). If the SLPN; 5, ; problem
is (t,nQ,e)-hard then the authentication protocol from Figure [J] is (t',Q,&’)-
secure against active adversaries, where for constants c,,c; > 0 that depend
only on v and T respectively,

t' =t —poly(Q,¥) =4 Q -2l =g 42700

The protocol has completeness error 27 where ¢, >0 depends only on .

3.1 Proof of Completeness
For any n € N, 7 €]0,1/2[, let

Qrp = Priwt(e) >n-7': e & Ber”] = 9=cr (3.1)

denote the probability that n independent Bernoulli samples with bias 7 contain
more than a 7" := 1/4 4+ 7/2 fraction of 1’s. The last equality in eq.(31]) follows
from the Hoeffding bound, where the constant ¢!/ > 0 depends only on 7.

We now prove that the authentication protocol has completeness error a <
g—tt+n + ar . The verifier performs the following two checks. In the first verifica-
tion step, the verifier rejects if the random matrix R does not have full rank. In
the full version [I] we prove that the probability of this event is < 27". Now, let
e:=z®RT s v denote the noise added by Pr ,,. Then, in the second verification
step, the verifier rejects if wt(e) > n - 7/. From equation B we have that this
happens with probability o ,. This completes the proof of completeness.
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3.2 Proof of Security

We first define some terms that will be used later in the security proof. For
a constant v > 0, let d = ¢/(2 + ) (as in Theorem [I]). Let o} ; denote the
probability that a random substring of length ¢ chosen from a string of length
2¢ with Hamming weight ¢, has a Hamming weight less than d. Using the fact
that the expected Hamming weight is £/2 = d(1 + v/2) = d(1 + ©(1)), one can
show that there exists a constant ¢y > 0 (only depending on ), such that

d—1 16\ €
= 0 W) oot (3:2)
(%)
For 7/ = 1/4 + 7/2, let o, , denote the probability that a random bitstring
y € Z% has Hamming weight wt(y) < n - 7'. From the Hoeffding bound, it
follows that there exists a constant ¢, > 0 (only depending on 7), such that

7]

n
=27 <276, 3.3
o > (7)< (33

i=0
We now prove security of the authentication protocol. Consider an oracle O
which is either the subset LPN oracle I7',, ;(x,-) or Usz;t1(), as defined in

Definition Bl We will construct an adversary B that uses A (who breaks the
active security of AUTH with advantage ¢’) in a black-box way such that:

Pr[Blr2ea®) 1] > —Q-ap,  and Pr[BYx () 1] <o, .

Thus B® can distinguish between the two oracles with advantage ¢ :== ¢’ — Q -
042’ q— O/T’,,n as claimed in the statement of the Theorem. Below we define BC.

Setup. Initially, B® samples
x* & 72 v & {y e z2 wt(y) =1}

The intuition of our simulation below is as follows. Let us first assume O is
a subset LPN oracle Iﬂ;k’%,d(x7 -) with secret x. In the first phase we have to
produce answers (R,z) to a query v € {y € Z3‘ : wt(y) = ¢} by A. The
simulated answers have exactly the same distribution as the answers of an
honest prover Py, (s € Z3") where

s=xX"AV)PB(xAVY) (3.4)

Thus one part of s’s bits come from x*, and the other part is from the
unknown secret x (for which we use the oracle O). In the second phase we
give A the challenge v*. As s|y+ = (x* A v*) |y~ is known, we will be able to
verify if A outputs a valid forgery.

If O is the random oracle Use11(-), then after the first phase sjy» = (x* A
v*) v~ is information theoretically hidden, and thus A cannot come up with
a valid forgery but with exponentially small probability.
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First phase. In the first phase BY invokes A who expects access to Pra(s €
73%) . We now specify how B® samples the answer (R,z) to a query v €
{y € 73" : wt(y) = ¢} made by A. Let

u i=vAV u:=vAv"
1. B9 queries its oracle n times on the input u. If the oracle’s output is L
(which happens iff wt(u) < d), B® outputs 0 and stops. Otherwise let

R, € Z%ZX”7 z1 € Zy denote the n outputs of the oracle.
2. Sample Ry <~ Z2*™ and set zo = RJ - (x* A u*).
3. Return (R = Rjy € ZY" 2z = 2o ® z; € Z%), where R is uniquely
determined by requiring Rlv* = Ro and Rlv* =R,.
Second phase. Eventually, A enters the second phase of the active attack,
expecting a challenge from V. ,,(s € Z%é).
1. B forwards v* as the challenge to A.

2. A answers with some (R*,z*).
3. BO checks if

rank(R*) =n and wt(z* & R*" - X|y-) <n-7 (3.5)
The output is 1 if both checks succeed and 0 otherwise.
Claim 2. Pr[BV2+:() - 1] < o, .

Proof (of Claim). If R* does not have full rank then B outputs 0 by definition.
Therefore, we now consider the case where rank(R*) = n.

The answers (R, z) that the adversary A obtains from BY2¢+1() are indepen-
dent of x* (i.e., z = z¢ ® 2z; is uniform as z; is uniform). Since xjv* is uniformly
random and R* has full rank, the vector

y=R"". X[y ©2z"

is uniformly random over Z3. Thus the probability that the second verification
in eq. B.3) does not fail is Priwt(y) <n-7'] =a7, .
Claim 3. Pr[Br2ca®) 1] > & —Q-a),.

Proof (of Claim). We split the proof in two parts. First we show that B outputs
1 with probability > &’ if the subset LPN oracle accepts subsets of arbitrary
small size (and does not simply output L on inputs v where wt(v) < d), i.e.,

Pr[Blr2e0) 1] > ¢/, (3.6)

Then we’ll upper bound the gap between the probability that B outputs 1 in the
above case and the probability that B outputs 1 when given access to the oracle
that we are interested in as:

PI[BF:,ze,d(xv') N 1] _ PI[BF:,QE,O(xv') — 1] <Q- a%,d' (3.7)

The claim then follows by the triangle inequality from the two equations above.
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Eq. (38 holds as:

— The answers (R, z) that Blr2e00) gives to A’s queries in the first phase

of the attack have ezxactly the same distribution as what A would get when
interacting with an honest prover Pr (s € Z3") where the “simulated” secret
s is defined in eq.(34).

To see this, recall that on a query v from A, B7200057) st compute n
SLPN samples (R,z = RT - (s A v) @ e) and then forward the compressed
version of this samples to A (that is, (R,z =R -s|y @ e) where R = Rlv,
cf. Remark [I). We next show that the z computed by B indeed have exactly
this distribution. In the first step, B queries its oracle with u = v A v* and
obtains noisy inner products (f{l, z1) with the part of s| that contains only
bits from x, i.e.,

z1=R] - (xAu)@e=R] - (sAu)de.

In the second step, B samples n inner products (RO, Zg) (with no noise) with
the part of s}, that contains only bits from the known x*, i.e.,

zo = RJ - (x* Au*) =R/ - (s Au*).

In the third step, B then generates (R, RT. (s Av) @ e) from the previous
values where R is defined by R |y~ = Rg and R+ = R. Using v = u®u*,
we get

Z =120 D2z
=R} (sAu)@OR]-(sAu)de
=R - (sAv)@e

— The challenge v* sent to A in the second phase of the active attack is uni-

formly random (even given the entire view so far), and therefore has the
same distribution as a challenge in an active attack.

— BTr2005) gutputs 1 if eq.(33) holds, which is exactly the case when A’s

response to the challenge was valid. By assumption this probability is at
least ¢’

This concludes the proof of Eq. (88). It remains to prove eq.([31). Note that
I’ 9 0(x, ) behaves exactly like 175, (X, ) as long as one never makes a query
v where wt(v A v*) < d.

V*

Since v* & {y € Z2¢ : wt(y) = ¢}, for any v, the probability that wt(v A
) < dis (by definition) «; ; as defined in eq.(32)). Using the union bound, we

can upper bound the probaBility that wt(v Av*) < d for any of the @ different
v’s chosen by the adversary as @ - a})d.

3.3 Avoid Checking

One disadvantage of the protocol in Figure F, compared to HB style protocols,
is the necessity to check whether the messages exchanged have the right from:
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Prn(s € Z3,bY € 23, b% € ) Vi n(s, bY, b%)
— Vi
R & 7207 ¢ & Ber?

z,R
z:=RT-(sA(veb')@b*@®e — 7 ifwt(RT-(sA (V& DY) &b%) >n-7'
reject otherwise accept

Fig. 5. By blinding the values v,z with secret random vectors bY, b* we can avoid
checking whether wt(v) = £ and rank(R) = n as in the protocol from Figure [

the prover checks if v has weight ¢, while the verifier must make the even more
expensive check whether R has full rank. Eliminating such verification proce-
dures can be particularly useful if for example the prover is an RFID chip where
even the simple verification that a vector has large weight is expensive. We note
that it is possible to eliminate these checks by blinding the exchanged messages
v and z using random vectors b¥ € Z2¢ and b? € Z} respectively, as shown in
Figure Bl The security and completeness of this protocol is basically the same
as for the protocol in Figure Bl The security proof is also very similar and is
therefore omitted.

4 Message Authentication Codes

In this section, we construct two message authentication codes whose security
can be reduced to the LPN assumption. Our first construction is based on the 2-
round authentication protocol from SectionBl We prove that if the LPN problem
is e-hard, then no adversary making @ queries can forge a MAC with probability
more than ©(y/c - Q). However, the construction has the disadvantage that one
needs to fix the hardness of the LPN problem at the time of the construction,
c.f. Remark 2l Our second construction has no such issues and achieves better
security O(e- Q). The efficiency of this construction is similar to that of the first
construction, but a larger key is required.

4.1 First Construction

Recall the 2-round authentication protocol from Section Bl In the protocol the
verifier chooses a random challenge subset v. To turn this interactive protocol
into a MAC, we will compute this v from the message m to be authenticated
as v = C(h(m, b)), where h is a pairwise independent hash function, b € Z§ is
some fresh randomness and C is some encoding scheme. The code C is fixed and
public, while the function h is part of the secret key. The authentication tag ¢
is computed in the same manner as the prover’s answer in the authentication
protocol. That is, we sample a random matrix R € ngn and compute a noisy
inner product z := R - s, @ e, where e & Ber”. We note that using (R, z) as
an authentication tag would not be secure, and we need to blind these values.
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This is done by applying an (almost) pairwise independent permutation (PIP)
7 — which is part of the secret key — to (R, z,b) € Z&*" T+,

CONSTRUCTION. The message authentication code MAC; = {KG, TAG, VRFY}
with associated message space M is defined as follows.
— Public parameters. MAC; has the following public parameters.

L, 7 n as in the authentication protocol from Section [3]
peN output length of the hash function
veN length of the randomness

C: Z5 — 7% encoding, where V x # x’ € Z5 we have wt(C(x)) = ¢
and wt(C(x) @ C(x')) > 0.9¢.

— Key generation. Algorithm KG(1*) samples s & 73, an (almost) pairwise
independent hash function h : M x Z4 — Z4 and a pairwise independent
permutation m over ZéX”Jr"J”’. It returns K = (s, h, ) as the secret key.

— Tagging. Given secret key K = (s, h, 7) and message m € M, algorithm TAG
proceeds as follows.

L. REZY" bl 7y, e & Ber
2. v:= C(h(m,b)) € Z3*
3. Return ¢ := n(R,RT -s|y ® e,b)

— Verification. On input a secret-key K = (s, h, 7), message m € M and tag
¢, algorithm VRFY proceeds as follows.

1. Parse 7 '(¢) as (R € Z5*™, z € Z%, b € Z5). If rank(R) # n, then return
reject

2. v := C(h(m, b))

3. fwt(z@® R -s)y) > n- 7' return reject, otherwise return accept

Theorem 4. For p = v € N, a constant v > 0 and d := £/(2 + ), if the
SLPN 5 4 problem is (t,nQ,e)-hard then MAC, is (t',Q,€')-secure against uf-
cma adversaries, where

. Q? g _o
/e o /
t' ~t, 5m1n{5/22u_2, 2u+172 COR

‘N

MAC; has completeness error 2~¢=™ where c¢; > 0 depends only on 7.

Corollary 1. Choosing i s.t. 2" = Q?T‘ in the above theorem, we get € =

min{e’ /4, (¢')°/(2°Q?) —2=9(™}. The 2nd term is the minimum here, and solv-
ing for € gives
e =32-Q- Ve +2-6(m). (4.1)

Remark 2 (about ). Note that to get security as claimed in the above corollary,
we need to choose i as a function of @ and e such that 2# ~ Q2 - 2%/¢’ for &’
as in eq.(@I]). Of course we can just fix @ (as an upper bound to the number
of queries made by the adversary) and ¢ (as our guess on the actual hardness
of SLPN7 5, ;). But a too conservative guess on p (i.e. choosing p too small)
will result in a construction whose security is worse than what is claimed in the
above corollary. A too generous guess on the other hand will make the security
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reduction meaningless (we don’t have any actual attacks on the MAC for large
p though).

We now give an intuition for the proof of Theorem [l For space reasons, a full
proof will only be given in the full version of this paper [I]. Every query (m, ¢)
to VRFY and query m to TAG defines a subset v (as computed in the second
step in the definitions of both VRFY and TAG). We say that a forgery (m, ¢) is
“fresh” if the v contained in (m, ¢) is different from all v’s contained in all the
previous VRFY and TAG queries. The proof makes a case distinction and uses a
different reduction for the two cases where the forgery found by the adversary is
more likely to be fresh, or more likely to be non-fresh. In both cases we consider
a reduction B® which has access to either a uniform oracle © = U or a subset
LPN oracle O = I'*. B9 uses an adversary A who can find forgeries for the
MAC to distinguish those cases and thus break the subset LPN assumption. In
the first case, where the first forgery is likely to be non-fresh, we can show
(using the fact that a pairwise independent permutation is used to blind the
tag) that if B9’s oracle is O = U, even a computationally unbounded .4 cannot
come up with a message/tag pair (m, ¢) that contains a non-fresh v. Thus we
can distinguish the cases O = U and O = I'* by just observing if A ever makes
a VRFY query (m, ¢) that contains a non-fresh v (even without being able to
tell if (m, ¢) is valid or not).

If the forgery found by A is more likely to be fresh, we can use a similar
argument as in the proof of our authentication protocol in the last section. An
additional difficulty here is that the reduction has to guess the fresh v € Z§
contained in the first forgery and cannot choose it as in the protocol. This is the
reason why the reduction looses a factor 2%.

4.2 Second Construction

We now give the construction of another MAC based on the hardness of the
LPN problem. The main difference to MAC; from the last subsection is the
way we generate the values s(v). In the new construction, we define s(v) :=
sp @ ®i:v[i]:1 s;, where each s; is a part of the secret key. The construction
uses ideas from Waters’ IBE scheme [30], and parts of the security reduction use
simulation tricks from [, 2] that we need to adapt to the binary case.

CONSTRUCTION. The message authentication code MACy, = {KG, TAG, VRFY}
with associated message space M is defined as follows.
— Public parameters. MAC; has the following public parameters.
£,7,7",n as in the authentication protocol from Section 3]
u € N output length of the hash function
v € N length of the randomness

— Key generation. Algorithm KG(1*) samples s; < Z5 (for 0 < i < ) and
chooses a pairwise independent hash function h : M x Z§ — Z4, as well
as a pairwise independent permutation 7 over Zg”””*”. It returns K =
(S0, .. ,8u, h, ) as the secret key.
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— Tagging. Given secret key K = (so,...,S,,h,7) and message m € M, algo-
rithm TAG proceeds as follows.
1. REZY" b& 7y, e & Ber”
2. v := h(m,b)
3. 8(v) =50 & Biyp=1 Si
4. Return ¢ := 7(R,RT -s(v) @ e, b)
— Verification. On input a secret-key K = (sq,...,sy, h, ), message m € M
and tag ¢, algorithm VRFY proceeds as follows.
1. Parse 7 1(¢) as (R € ZY*™, z € Z3,b € Z%). If rank(R) # n, then return
reject
2. v := h(m,b)
S(v) 1= 50 & Dy [ij=1 Si
. Ifwt(z@ RT -s(v)) > n -7’ return reject, otherwise return accept

= e

Theorem 5. If the SLPN ;o problem is (t,nQ, )-hard, then MACy is (', Q,€’)-
secure against uf-cma adversaries, where

. Q* ¢ —O(n)
!~ _ / n
t'~t smm{s/22u_2,4 -2 .

n

MAC; has completeness error 27 where ¢, only depends on T.

We now give an intuition for the proof of Theorem [l For space reasons, a full
proof will only be given in the full version of this paper [I]. Similar to the proof
of Theorem @ we distinguish fresh and non-fresh forgeries. Here the new and
interesting case is the fresh forgery. The idea is that in the reduction to the
SLPN problem we define the function s(v) = A(v) -s @ b(v) (where s is the
LPN secret) such that the following holds with non-negligible probability: (i) for
each v; from the TAG queries, A(v;) has full rank ¢ and hence the tags can be
simulated using the provided I’y ¢ ¢(s,-,-) oracle; (ii) for the first fresh forgery
we have A(v) = 0 such that s(v) is independent of s and the reduction can
check the forgery’s correctness. The above two properties allow to maintain the
simulation. The setup of the function s(-) is the crucial step and here we adapt
a technique recently introduced by Boyen [§] based on homomorphic encodings
with full-rank differences that allows us to arbitrarily control the probability
that the above simulation works.
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Abstract. NTRUEncrypt, proposed in 1996 by Hoffstein, Pipher and
Silverman, is the fastest known lattice-based encryption scheme. Its
moderate key-sizes, excellent asymptotic performance and conjectured
resistance to quantum computers could make it a desirable alternative
to factorisation and discrete-log based encryption schemes. However,
since its introduction, doubts have regularly arisen on its security. In
the present work, we show how to modify NTRUEncrypt to make it prov-
ably secure in the standard model, under the assumed quantum hard-
ness of standard worst-case lattice problems, restricted to a family of
lattices related to some cyclotomic fields. Our main contribution is to
show that if the secret key polynomials are selected by rejection from
discrete Gaussians, then the public key, which is their ratio, is statisti-
cally indistinguishable from uniform over its domain. The security then
follows from the already proven hardness of the R-LWE problem.

Keywords: Lattice-based cryptography, NTRU, provable security.

1 Introduction

NTRUEncrypt, devised by Hoffstein, Pipher and Silverman, was first presented at
the Crypto’96 rump session [I4]. Although its description relies on arithmetic over
the polynomial ring Z,[z]/(z™ —1) for n prime and ¢ a small integer, it was quickly
observed that breaking it could be expressed as a problem over Euclidean lat-
tices [6]. At the ANTS’98 conference, the NTRU authors gave an improved pre-
sentation including a thorough assessment of its practical security against lattice
attacks [I5]. We refer to [I3] for an up-to-date account on the past 15 years of se-
curity and performance analyses. Nowadays, NTRUEncrypt is generally considered
as a reasonable alternative to the encryption schemes based on integer factorisa-
tion and discrete logarithm over finite fields and elliptic curves, as testified by its
inclusion in the IEEE P1363 standard [I7]. It is also often considered as the most
viable post-quantum public-key encryption (see, e.g., [30]).

K.G. Paterson (Ed.): Eurocrypt 2011, LNCS 6632, pp. 27 2011.
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In parallel to a rising number of attacks and practical improvements on
NTRUEncrypt the (mainly) theoretical field of provably secure lattice-based cryp-
tography has steadily been developed. It originated in 1996 with Ajtai’s ac-
claimed worst-case to average-case reduction [2], leading to a collision-resistant
hash function that is as hard to break as solving several worst-case problems de-
fined over lattices. Ajtai’s average-case problem is now referred to as the Small
Integer Solution problem (SIS). Another major breakthrough in this field was the
introduction in 2005 of the Learning with Errors problem (LWE) by Regev [31]:
LWE is both hard on the average (worst-case lattice problems quantumly reduce
to it), and sufficiently flexible to allow for the design of cryptographic functions.
In the last few years, many cryptographic schemes have been introduced that are
provably as secure as LWE and SIS are hard (and thus provably secure, assuming
the worst-case hardness of lattice problems). These include CPA and CCA se-
cure encryption schemes, identity-based encryption schemes, digital signatures,
ete (see [BT28ITTI5IT] among others, and the surveys [24132]).

The main drawback of cryptography based on LWE and SIS is its limited ef-
ficiency. A key typically contains a random matrix defined over Z, for a small g,
whose dimension is linear in the security parameter; consequently, the space and
time requirements seem bound to be at least quadratic with respect to the secu-
rity parameter. In 2002, Micciancio [22] succeeded in restricting SIS to structured
matrices while preserving a worst-case to average-case reduction. The worst-case
problem is a restriction of a standard lattice problem to the specific family of
cyclic lattices. The structure of Micciancio’s matrices allows for an interpretation
in terms of arithmetic in the ring Z,[z]/(x™ — 1), where n is the dimension of the
worst-case lattices and ¢ is a small prime. Micciancio’s construction leads to a
family of pre-image resistant hash functions, with complexity quasi-linear in n.
Peikert, Rosen, Lyubashevsky and Micciancio [?/I8] later suggested to change
the ring to Z,[z]/® with a & that is irreducible over the rationals, sparse, and
with small coefficients (e.g., ® = 2™ + 1 for n a power of 2). The resulting hash
function was proven collision-resistant under the assumed hardness of the modi-
fied average-case problem, called Ideal-SIS. The latter was itself proven at least as
hard as the restrictions of standard worst-case lattice problems to a specific class
of lattices (called ideal lattices). In 2009, Stehlé et al. [34] introduced a struc-
tured variant of LWE, which they proved as hard as Ideal-SIS (under a quantum
reduction), and allowed for the design of an asymptotically efficient CPA-secure
encryption scheme. In an independent concurrent work, Lyubashevsky et al. [20]
proposed a ring variant of LWE, called R-LWE, whose great flexibility allows for
more natural (and efficient) cryptographic constructions.

OUR REsULTS. The high efficiency and industrial standardization of NTRUEncrypt
strongly motivate a theoretically founded study of its security. Indeed, in the ab-
sence of such a study so far, its security has remained in doubt over the last 15
years since its publication. In this paper, we address this problem. We prove that
a mild modification of NTRUEncrypt is CPA-secure, assuming the quantum hard-
ness of standard worst-case problems over ideal lattices (for & = 2™+ 1 with n a
power of 2). The NTRUEncrypt modifications are summarized below. We stress
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that our main goal in this paper is to provide a firm theoretical grounding for
the security of NTRUEncrypt in the asymptotic sense. We leave to future work
the consideration of practical issues, in particular the selection of concrete pa-
rameters for given security levels. As for other lattice-based schemes, the latter
requires evaluation of security against practical lattice reduction attacks, which
is out of the scope of the current work.

Our main contribution is the modification and analysis of the key generation
algorithm. The secret key consists of two sparse polynomials of degrees < n
and coefficients in {—1,0,1}. The public key is their quotient in Z,[z]/(z™ — 1)
(the denominator is resampled if it is not invertible). A simple information-
theoretic argument shows that the public key cannot be uniformly distributed
in the whole ring. It may be possible to extend the results of [4] to show that it
is “well-spread” in the ring, but it still would not suffice for showing its crypto-
graphic pseudorandomness, which seems necessary for exploiting the established
hardness of R-LWE. To achieve a public key distribution statistically close to
uniform, we sample the secret key polynomials according to a discrete Gaussian
with standard deviation ~ ¢'/2. An essential ingredient, which could be of in-
dependent interest, is a new regularity result for the ring R, := Zg[z]/(z" + 1)
when the polynomial 2™ + 1 (with n a power of 2) has n factors modulo prime g:
given ay,...,a, uniform in Ry, we would like ), s;a; to be within expo-
nentially small statistical distance to uniformity, with small random s;’s and
small m. Note that a similar regularity bound can be obtained with an FFT-
based technique recently developed by Lyubashevsky, Peikert and Regev [21]. An
additional difficulty in the public-key ‘uniformity’ proof, which we handle via an
inclusion-exclusion argument, is that we need the s;’s to be invertible in R, (the
denominator of the public key is one such s;): we thus sample according to a
discrete Gaussian, and reject the sample if it is not invertible.

Brief Comparison of NTRUEncrypt and Its Provably Secure Variant

Let Ryrry be the ring Z[z]/(2™ — 1) with n prime. Let ¢ be a medium-size
integer, typically a power of 2 of the same order of magnitude as n. Finally,
let p € Ryrru with small coefficients, co-prime with ¢ and such that the plaintext
space Ryrru/p is large. Typically, one may take p =3 or p = z + 2.

The NTRUEncrypt secret key is a pair of polynomials (f,g) € R2 ., that are
sampled randomly with large prescribed proportions of zeros, and with their
other coefficients belonging to {—1,1}. For improved decryption efficiency, one
may choose f such that f = 1 mod p. With high probability, the polynomial f is
invertible modulo ¢ and modulo p, and if that is the case, the public-key is h =
pg/f mod ¢ (otherwise, the key generation process is restarted). To encrypt a
message M € Ryrru/p, one samples a random element s € Ryrpy of small
Euclidean norm and computes the ciphertext C = hs+ M mod ¢. The following
procedure allows the owner of the secret key to decrypt:

e Compute fC mod ¢. If C was properly generated, this gives pgs + fM mod
q. Since p, g, s, f, M have small coefficients, it can be expected that after
reduction modulo ¢ the obtained representative is pgs + fM (in Ryrry)-
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e Reduce the latter modulo p. This should provide fM mod p.
e Multiply the result of the previous step by the inverse of f modulo p (this
step becomes vacuous if f = 1 mod p).

Note that the encryption process is probabilistic, and that decryption errors can
occur for some sets of parameters. However, it is possible to arbitrarily decrease
the decryption error probability, and even to eliminate it completely.

In order to achieve CPA-security we make a few modifications to the original
NTRUEncrypt (which preserve its quasi-linear time and space complexity):

1. We replace Ryrry by R = Z[x]/(x™ + 1) with n a power of 2. We will exploit
the irreducibility of 2" + 1 and the fact that R is the ring of integers of a
cyclotomic number field.

2. We choose a prime ¢ < Poly(n) such that f = 2™ + 1 mod ¢ has n distinct
linear factors (i.e., ¢ = 1 mod 2n). This allows us to use the search to decision
reduction for R-LWE with ring R, := R/q (see [20]), and also to take p = 2.

3. We sample f and g from discrete Gaussians over R, rejecting the samples
that are not invertible in R,. We show that f/g mod g is essentially uniformly
distributed over the set of invertible elements of R,. We may also choose f =
pf’ + 1 with f’ sampled from a discrete Gaussian, to simplify decryption.

4. We add a small error term e in the encryption: C = hs + pe + M mod gq,
with s and e sampled from the R-LWE error distribution. This allows us
to derive CPA security from the hardness of a variant of R-LWE (which is
similar to the variant of LWE from [3, Se. 3.1]).

Work in Progress and Open Problems

Our study is restricted to the sequence of rings Z[z]/®,, with &,, = 2™ +1 with n
a power of 2. An obvious drawback is that this does not allow for much flexibility
on the choice of n (in the case of NTRU, the degree was assumed prime, which
provides more freedom). The R-LWE problem is known to be hard when &, is
cyclotomic [20]. We chose to restrict ourselves to cyclotomic polynomials of order
a power of 2 because it makes the error generation of R-LWE more efficient, and
the description of the schemes simpler to follow. Our results are likely to hold
for more general rings than those we considered. An interesting choice could be
the cyclotomic rings of prime order (i.e., &, = (2" — 1)/(z — 1) with n prime)
as these are large subrings of the NTRU rings (and one might then be able to
show that the hardness carries over to the NTRU rings).

An interesting open problem is to obtain a CCA secure variant of our scheme
in the standard model, while maintaining its efficiency (within constant factors).
The selection of concrete parameters based on practical security estimates for the
worst-case SVP in ideal lattices or the average-case hardness of R-LWE /Ideal-SIS
is also left as a future work.

The authors of NTRUEncrypt also proposed a signature scheme based on a
similar design. The history of NTRUSign started with NSS in 2001 [I6]. Its de-
velopment has been significantly more hectic and controversial, with a series



Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 31

of cryptanalyses and repairs (see the survey [13]). In a work in progress, we
construct a variant of NTRUSign with unforgeability related to the worst-case
hardness of standard problems over ideal lattices, in the random oracle model.
Our construction modifies the NTRUSign key generation and adapts the GPV
signature scheme [I1] to this setting.

Like NTRUEncrypt, Gentry’s somewhat homomorphic scheme [9] also has ci-
phertexts consisting of a single ring element. It also admits a security proof under
the assumed quantum hardness of standard worst-case problems over ideal lat-
tices [I0]. Our security analysis for the modified NTRUEncrypt scheme allows
encrypting and decrypting 2(n) plaintext bits for 6(11) bit operations, while
achieving security against 29(")-time attacks, for any g(n) that is £2(logn) and
o(n), assuming the worst-case hardness of Poly(n)-Ideal-SVP against 20(9(m)-
time quantum algorithms. The latter assumption is believed to be valid for any
g(n) = o(n). Gentry’s analysis from [T0/8] can be generalized to handle 29(")-
time attacks while encrypting and decrypting O(g(n)) plaintext bits for O(n) bit
operations, under the assumed hardness of 22(9(")_[deal-SVP against 2°(9(m).
time quantum algorithms. The latter assumption is known to be invalid when
g(n) = 2(y/n) (using [33]), thus limiting the attacker’s strength the analysis
can handle. On the other hand, Gentry’s scheme allows homomorphic additions
and multiplications, whereas ours seems restricted to additions. Our scheme and
Gentry’s seem to be closely related, and we leave to future work the further
investigation of this relation.

NOTATION. We denote by ps(x) (resp. v,) the standard n-dimensional Gaus-
sian function (resp. distribution) with center 0 and variance o, i.e., p,(x) =
exp(—||z|?/0?) (vesp. vy () = po(x)/0™). We denote by Exp(u) the exponen-
tial distribution on R with mean p and by U(E) the uniform distribution over
a finite set £ . If Dy and Dy are two distributions on discrete domain E, their
statistical distance is A(D1; D) = 3 > o |D1(x) — Da(x)|. We write z < D
when the random variable z is sampled from the distribution D.

REMARK. Due to space limitations, some proofs have been omitted; they may
be found in the full version of this paper, available on the authors’ web pages.

2 A Few Background Results

A (full-rank) lattice is a set of the form L = ).  7Zb;, where the b;’s are
linearly independent vectors in R™. The integer n is called the lattice dimension,
and the b;’s are called a basis of L. The minimum A\ (L) (resp. A°(L)) is the
Euclidean (resp. infinity) norm of any shortest vector of L\ 0. If B = (b;);
is a basis matrix of L, the fundamental parallelepiped of B is the set P(B) =
{3 icncibi : ¢i € [0,1)}. The volume |det B| of P(B) is an invariant of the
lattice L which we denote by det L. Minkowski’s theorem states that A\ (L) <
/n(det L)Y/, More generally, the k-th minimum A\ (L) for k < n is defined as
the smallest 7 such that L contains > k linearly independent vectors of norm < r.
The dual of L is the lattice L = {c € R™ : Vi, (¢, b;) € Z}.
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For a lattice L C R™, ¢ > 0 and ¢ € R", we define the lattice Gaussian
distribution of support L, deviation o and center ¢ by Dy (b)) = ZG’Z((Z))’ for
any b € L. We will omit the subscript ¢ when it is 0. We extend the definition
of Dr, s to any M C L (not necessarily a sublattice), by setting Dz s,c(b) =
PG,C(b)
po,e(M)*

such that pl/o(f \ 0) < 4. It quantifies how large o needs to be for Dr ;¢ to
behave like a continuous Gaussian. We will typically consider § = 27",

For ¢ > 0, we define the smoothing parameter ns(L) as the smallest o > 0

Lemma 1 (J23], Le. 3.3]). For any full-rank lattice L CR™ and § € (0,1), we
have ns(L) < /In(2n(1 +1/8))/7 - A\u(L).

Lemma 2 (|27, Le. 3.5]). For any full-rank lattice L CR™ and § € (0,1), we
have ns(L) < /In(2n(1 +1/8))/7/X°(L).

Lemma 3 (|23, Le. 4.4]). For any full-rank lattice L CR™, ¢ € R", § € (0,1)
and o > ns(L), we have Pro—p, , [||b]] > oy/n] < 1T5277.

Lemma 4 (11, Cor. 2.8]). Let L’ C L C R™ be full-rank lattices. For any ¢ €
R™, 6 € (0,1/2) and o > ns(L'), we have A(Dp s mod L';U(L/L")) < 26.

Lemma 5 (11, Th. 4.1]). There exists a polynomial-time algorithm that takes
as input any basis (b;); of any lattice L C Z" and o = w(y/logn) max ||b;|| (resp.
o = 2(y/n) max ||b;|| ), and returns samples from a distribution whose statistical
distance to Dy, » is negligible (resp. exponentially small) with respect to n.

The most famous lattice problem is SVP. Given a basis of a lattice L, it aims at
finding a shortest vector in L\ 0. It can be relaxed to v-SVP by asking for a non-
zero vector that is no longer than (n) times a solution to SVP, for a prescribed
function ~y(+). It is believed that no subexponential quantum algorithm solves the
computational variants of 4v-SVP in the worst case, for any v < Poly(n). The
smallest v which is known to be achievable in polynomial time is exponential,
up to poly-logarithmic factors in the exponent ([33I25]).

Ideal Lattices and Algebraic Number Theory

IDEAL LATTICES. Let n a power of 2 and ¢ = z" + 1 (which is irreducible
over Q). Let R be the ring Z[z]/®. An (integral) ideal I of R is a subset of R
closed under addition and multiplication by arbitrary elements of R. By mapping
polynomials to the vectors of their coefficients, we see that an ideal I # 0
corresponds to a full-rank sublattice of Z™: we can thus view I as both a lattice
and an ideal. An ideal lattice for @ is a sublattice of Z™ that corresponds to
a non-zero ideal I C R. The algebraic norm N(I) is the cardinality of the
additive group R/I. It is equal to det I, where I is regarded as a lattice. Any
non-zero ideal I of R satisfies A\, (I) = A1(I). In the following, an ideal lattice
will implicitly refer to a @-ideal lattice.

By restricting SVP (resp. v-SVP) to instances that are ideal lattices, we obtain
Ideal-SVP (resp. ~-Ideal-SVP). The latter is implicitly parameterized by the
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sequence of polynomials &, = z" 4+ 1, where n is restricted to powers of 2.
No algorithm is known to perform non-negligibly better for (v-)Ideal-SVP than
for (-)SVP.
PROPERTIES OF THE RING R. For v € R we denote by |v|| its Euclidean norm
(as a vector). We define the multiplicative expansion factor v« (R) by vx(R) =
Maxy veR \I‘!:H%ITUH\I' For our choice of @, we have v« (R) = y/n (see [9, p. 174]).
Since @ is the 2n-th cyclotomic polynomial, the ring R is exactly the maximal
order (i.e., the ring of integers) of the cyclotomic field Q[¢] & Q[z]/® =: K,
where ¢ € C is a primitive 2n-th root of unity. We denote by (0;)i<, the
canonical complex embeddings: We can choose o; : P+ P((**1) for i < n.
For any « in Q[(], we define its Tb-norm by Th(a)? = >, |o;(a)|* and its
algebraic norm by N(a) = [[.., |oi(a)]. The arithmetic-geometric inequality
gives NV'(a)?™ < ! Ty(a)?. Also, for the particular cyclotomic fields we are con-
sidering, the polynomial norm (the norm of the coefficient vector of a when
expressed as an element of K) satisfies ||« = \}nTg(a). We also use the fact

that for any @ € R, we have |[N(a)| = det{(«), where (a) is the ideal of R
generated by «. For simplicity, we will try to use the polynomial terminology
wherever possible.

Let ¢ be a prime number such that & has n distinct linear factors modulo ¢
(e, ¢ = 1mod2n): & = [[,., ¥ = [[;c,,(x — #;) mod q. Let Ry = R/qR =
Zg[z]/P. Dirichlet’s theorem on arithmetic progressions implies that infinitely
such primes exist. Furthermore, Linnik’s theorem asserts that the smallest such ¢
is Poly(n), and much effort has been spent to decrease this bound (the current
record seems to be O(n°2), see [35]). Furthermore, we can write ¢; as r*, where 7
is a primitive (2n)-th root of unity modulo ¢. This implies that the Chinese
Remainder Theorem in R, provides a natural fast Discrete Fourier Transform,
and thus multiplication of elements of R, can be performed within O(nlogn)
additions and multiplications modulo ¢ (see [7, Ch. 8], [I9} Se. 2.1]).

The R-LWE Problem

For s € R, and v a distribution in R,, we define A, , as the distribution obtained
by sampling the pair (a, as+e) with (a, e) <= U(Ry) xt. The Ring Learning With
Errors problem (R-LWE) was introduced by Lyubashevsky et al. [20] and shown
hard for specific error distributions . These are slightly technical to define (see
below), but for the present work, the important facts to be remembered are that
the samples are small (see Lemma[f]), and can be obtained in quasi-linear time.

The error distributions 1 that we use are an adaptation of those introduced
in [20]. They are sampled from a family of distributions 7, that we now define.
For o € R™ with positive coordinates, we define the ellipsoidal Gaussian ps
as the row vector of independent Gaussians (pg,, ..., ps, ), Where o; = 04, /2
for 1 < i < n/2. As we want to define R-LWE in the polynomial expression
of R rather than with the so-called “space H” of [20], we apply a matrix trans-
formation to the latter Gaussians. We define a sample from pl. as a sample

from po, multiplied first (from the right) by \}2 (1 _12) ®Id,/, € C*™", and
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second by V = 71L (C_(2j+1)k)0<j w<n- Note that vector multiplication by
matrix V corresponds to a comﬁléx discrete Fourier transform, and can be
performed in O(nlogn) complex-valued arithmetic operations with the Cooley-
Tukey FFT. Moreover, it is numerically extremely stable: if all operations are
performed with a precision of p = 2(logn) bits, then the computed output vec-
tor fl(y) satisfies || fl(y) —y|| < C-(logn)-277-|y|, where C is some absolute
constant and vy is the vector that would be obtained with exact computations.
We refer to [12, Se. 24.1] for details. We now define a sample from p/_ as fol-
lows: compute a sample from p/ with absolute error < 1/n?; if it is within
distance 1/n? of the middle of two consecutive integers, then restart; otherwise,
round it to a closest integer and then reduce it modulo ¢. Finally, a distribution
sampled from 7', for a > 0 is defined as p/,, where o; = \/a2q2 + x; with
the x;’s sampled independently from the distribution Exp(na?¢?).

Sampling from p/ can be performed in time 5(n) Sampling from 7', can
also be performed in expected time 6(71), and the running-time is bounded by a
quantity that follows a geometric law of parameter < 1. Furthermore, in all our
cryptographic applications, one could pre-compute such samples off-line (i.e.,
before the message M to be processed is known).

Lemma 6. Assume that aq > \/n. For any r € R, we have Pr, .y [[lyr[lec >
agqw(logn) - ||r[l] < n=M).

We now define our adaptation of R-LWE.

Definition 1. The Ring Learning With Errors Problem with parameters q,
and ¢ (R—LWE?Q) is as follows. Let ¢ «— Yo and s — U(R,). Given access to
an oracle O that produces samples in Rq x Ry, distinguish whether O outputs
samples from Ag g or from U(Ry x Ry). The distinguishing advantage should be
1/Poly(n) (resp. 27°) ) over the randomness of the input, the randomness of
the samples and the internal randomness of the algorithm.

The following theorem indicates that R-LWE is hard, assuming that the worst-
case 7y-Ideal-SVP cannot be efficiently solved using quantum computers, for
small 4. It was recently improved by Lyubashevsky et al. [2I]: if the number
of samples that can be asked to the oracle O is bounded by a constant (which is
the case in our application), then the result also holds with simpler errors than
e « 1 «— T, and with an even smaller Ideal-SVP approximation factor ~. This
should allow to both simplify the modified NTRUEncrypt and to strengthen its
security guarantee.

Theorem 1 (Adapted from [20]). Assume that ag = w(nv/logn) (resp.
2(n'%)) with a € (0,1) and g = Poly(n). There exists a randomized polynomial-
time (resp. subexponential) quantum reduction from y-Ideal-SVP to R-LWE, ,,
with v = w(n'®logn)/a (resp. 2(n%°)/a).

The differences with [20] in the above formulation are the use of the polynomial
representation (handled by applying the complex FFT to the error term), the use



Making NTRU as Secure as Worst-Case Problems over Ideal Lattices 35

of R, rather than R, := RY/q where R is the codifferent (here we have R, =
qu), and the truncation of the error to closest integer if it is far from the middle
of two consecutive integers. The new variant remains hard because a sample
passes the rejection step with non-negligible probability, and the rounding can
be performed on the oracle samples obliviously to the actual error.

VARIANTS OF R-LWE. For s € R, and 1 a distribution in Ry, we define A;w
as the distribution obtained by sampling the pair (a,as + e) with (a,e) <
U(R;) x ¢, where R is the set of invertible elements of R,. When ¢ = (n),
the probability for a uniform element of R, of being invertible is non-negligible,
and thus R-LWE remains hard even when A, ,, and U(R, X R,) are respectively
replaced by A7, and U(R; x R,). We call R- LWE”* the latter variant.
Furthermore similarly to [3| Le. 2] and as explained in [2I], the nonce s
can also be chosen from the error distribution without incurring any security
loss. We call R-LWEj\ the corresponding modification of R-LWE. We recall
the argument, for completeness. Assume an algorithm A can solve R-LWEj\p.
We use A to solve R-LWE*. The principle is to transform samples ((a;, b;));
into samples ((a; 'a;,b; — aj *b,a;))i, where inversion is performed in Ry . This

transformation maps A7, to A*_ . and U(R; x Ry) to itself.

3 New Results on Module g-Ary Lattices

In this section, we present strong regularity bounds for the ring R,. For this
purpose, we first study two families of R-modules.

3.1 Duality Results for Some Module Lattices

Let a € R;". We define the following families of R-modules, for I an arbitrary
ideal of Ry:

at(I):={(t1,...,tm) € R™: Vi, (t; mod q) € I and Ztiai = 0 mod g},
L(a,I):={(t1,...,tm) € R™ : 3s € Ry, Vi, (t; mod ¢) = a; - s mod I}.

We also define a* and L(a) as a'(R,) and L(a, (0)) respectively. The ideals
of Ry are of the form Is := [[,cg(x — ¢i) - Ry = {a € Ry : Vi € S,a(¢;) = 0},
where S is any subset of {1,...,n} (the ¢;’s are the roots of ¢ modulo q). We
define I§ = [[;cq(z — ¢ ") - Ry.

Lemma 7. Let S C {1,...,n} and a € RJ". Let S = {1,...,n} \ S and a™ €
Ry be defined by a;° = a;(z71). Then (considering both sets as mn-dimensional
lattices by identifying R and Z™):

o —

al(ls) = ;L(ax,fg).
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Proof. We first prove that ;L(a*,lg) - aT(I\S). Let (t1,...,tm) € l(IS)
and (t,...,t,) € L(a* Ig). Write t; = >, t; ;27 and ] = 3. t:]x for
any ¢ < m. Our goal is to show that ZKm j<nti Jt; ; = 0mod ¢. This is equiva-
lent to showing that the constant coefficient of the polynomial 3, ¢,(x)t;(z ™)
is 0 modulo ¢. It thus suffices to show that Y, t;(z)t;(z~") mod g = 0 (in R,).
By definition of the ¢}’s, there exists s € Ry such that (¢; mod q) = a - s + b}

for some b} € Ig. We have the following, modulo q:

Yo ti@ta) =s@) - Y ti@ai(e) + )ty

i<m i<m i<m

Both sums in the right hand side evaluate to 0 in R4, which provides the desired
inclusion.

To complete the proof, it suffices to show that L(aX,I;) - ;aL(IS). It can
be seen by considering the elements of L(a*,Ig) corresponding to s = 1. a

3.2 On the Absence of Unusually Short Vectors in L(a, Is)

We show that for a < U((R;)™), the lattice L(a,Is) is extremely unlikely
to contain unusually short vectors for the infinity norm, i.e., much shorter

than guaranteed by the Minkowski upper bound det(L(a, IS)) = ql=m)"s >
(we have det(L(a, Is)) = ¢~ VI3l because there are ¢"*+(m=D"=IS) points of
L(a, Is) in the cube [0,q — 1]™™). Note that our lower bound approaches the
Minkowski bound as |i| approaches 1, but becomes progressively looser as |i|
drops towards ~ 1 — T}L. Fortunately, for our applications, we will be using this

ISl _ ¢

bound with " — ¢ for some small £, where the bound is close to being tight.

Lemma 8. Let n > 8 be a power of 2 such that ® = z™ + 1 splits into n linear
factors modulo prime q > 5 Then, for any S C {1,...,n}, m > 2 and & > 0,
we have A3°(L(a, Ig)) > Jn L P, with:

1—\/1—1—4m(m—1) (1="11) + 4me

1
=1
s m+ 2m
> —5—(m—1)<1—|5>,
m n

En

except with probability < 2™(q — 1)~
n (RS)™

over the uniformly random choice of a

Proof. Recall that & = [],_, @; for distinct linear factors ®;. By the Chinese
Remainder Theorem, we know that R, (resp. RY) is isomomorphic to (Z,)"
(resp. (Z;)") via the isomorphism ¢ +— (t mod @;);<m. Let grg = [[;c5 @it it is
a degree |S| generator of Ig.

€S
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Let p denote the probability (over the randomness of a) that L(a, I's) contains
a non-zero vector t of infinity norm < B, where B = \/1n ¢®. We upper bound p
by the union bound, summing the probabilities p(t, s) = Pro[Vi, t; = a;s mod Ig]
over all possible values for ¢ of infinity norm < B and s € Ry/Is. Since the a;’s
are independent, we have p(t,s) = [[,,, pi(ti,s), where p;(t;,s) = Pry,[ti =
a;s mod Ig].

Wlog we can assume that ged(s, gr4) = ged(t;, g15) (up to multiplication by
an element of Z;): If this is not the case, there exists j < n such that either
t; mod @; = 0 and s mod @; # 0, or t; mod ¢; # 0 and s mod ®; = 0; In both
cases, we have p;(t;, s) = 0 because a; € R,\. We now assume that ged(s, gr5) =
ged(ti, g1s) = [lieg @i for some S” C S of size 0 < d < [S]. For any j € 5,
we have t; = a;5 = 0 mod @; regardless of the value of a; mod @;, while for
j €S\, wehave s # 0 mod &, and there exists a unique value of a; mod @,
such that ¢; = a;s mod @;. Moreover for any j ¢ S, the value of a; mod &; can
be arbitrary in Z; . So, overall, there are (¢ — 1)4+n=I181 differents a;’s in Ry such
that ¢; = a;s mod Ig. This leads to p;(t;,s) = (¢ — 1)d*|s|.

So far, we have showed that the probability p can be upper bounded by:

P > XX > I @-vl

0<d<|S| h=[l;cq ®s s € Rg/Is  te€(Ry)™  i<m
S'CS hls  Vi,0< |ltillec < B
1S =d Vi, hlt;
For h = [],cq @i of degree d, let N(B,d) denote the number of ¢t € R, such

that ||t]|ec < B and t = ht' for some t' € R, of degree < n — d. We consider two
bounds for N(B,d) depending on d.

Suppose that d > - n. Then we claim that N(B,d) = 0. Indeed, any ¢t = ht’
for some t' € R, belongs to the ideal (h,q) of R generated by h and ¢. For
any non-zero t € (h,q), we have N'(t) = N({t)) > N((h,q)) = ¢?, where the
inequality is because the ideal (¢) is a full-rank sub-ideal of (h,q), and the last
equality is because deg h = d. It follows from the arithmetic-geometric inequality
that ||t]| = 1nT2(t) > N(t)Y/™ > ¢%/™. By equivalence of norms, we conclude
that [|t||cc = A ((h, q)) > \}nqd/”. We see that d/n > (§ implies that ||t|l. > B,
so that N(B,d) = 0.

Suppose now that d < 3-n. Then we claim that N(B,d) < (2B)"~%. Indeed,
since the degree of h is d, the vector t formed by the n — d low-order coefficients
of t is related to the vector ¢ formed by the n — d low-order coefficients of ¢ by
a lower triangular (n —d) x (n — d) matrix whose diagonal coefficients are equal
to 1. Hence this matrix is non-singular modulo ¢ so the mapping from t’ to ¢ is
one-to-one. This provides the claim.

Using the above bounds on N (B, d), the fact that the number of subsets of S
of cardinality d is < 2¢, and the fact that the number of s € R,/Ig divisible
by h=]],cq i is ¢®1=?, the above bound on p implies

(2B)m(n7d)

PS 2T a yme1(S-a)
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With our choice of B, we have 2B < (¢ — 1)” (this is implied by n > 8,4 > 5
and § < 1). A straightforward computation then leads to the claimed upper
bound on p. O

3.3 Improved Regularity Bounds

We now study the uniformity of distribution of (m+1)-tuples from (R )™ x R, of
the form (a1, ...,am, >, tiai), where the a;’s are independent and uniformly
random in R, and the ¢;’s are chosen from some distribution on R, concentrated
on elements with small coefficients. Similarly to [22], we call the distance of the
latter distribution to the uniform distribution on (R;)™ x R, the regularity of the
generalized knapsack function (t;)i<m +— >_,,, tiai. For our NTRU application
we are particularly interested in the case where m = 2.

The regularity result in [22] Se. 4.1] applies when the a;’s are uniformly ran-
dom in the whole ring R4, and the ¢;’s are uniformly random on the subset
of elements of R, with coefficients of magnitude < d for some d < g. In this
case, the regularity bound from [22] is Q(\/ ng/d™). Unfortunately, this bound
is non-negligible for small m and ¢, e.g., for m = O(1) and ¢ = Poly(n). To
make it exponentially small in n, one needs to set mlogd = 2(n), which in-
evitably leads to inefficient cryptographic functions. When the a;’s are chosen
uniformly from the whole ring R,, the actual regularity is not much better than
this undesirable regularity bound. This is because R, contains n proper ideals
of size ¢"~! = |R,|/q, and the probability ~ n/¢™ that all of the a;’s fall into
one such ideal (which causes > t;a; to also be trapped in the proper ideal) is
non-negligible for small m. To circumvent this problem, we restrict the a;’s to be
uniform in R, and we choose the ¢;’s from a discrete Gaussian distribution. We
show a regularity bound exponentially small in n even for m = O(1), by using
an argument similar to that used in [II], Se. 5.1] for unstructured generalized
knapsacks, based on the smoothing parameter of the underlying lattices. Note
that the new regularity result can be used within the Ideal-SIS trapdoor gener-
ation of [34] Se. 3|, thus extending the latter to a fully splitting ¢. It also shows
that the encryption scheme from [20] can be shown secure against subexponen-
tial (quantum) attackers, assuming the subexponential (quantum) hardness of
standard worst-case problems over ideal lattices.

Theorem 2. Let n > 8 be a power of 2 such that ® = z™ + 1 splits into n linear
factors modulo prime ¢ > 5. Let m > 2, ¢ >0, § € (0,1/2) and t < Dgmn 4,
with o > \/nln(2mn(1 + 1/8))/m-qmTe. Then for all except a fraction < 2"(q—
1)=" of a € (RX)™, we have ns(a*) < V/nn(2mn(1 + 1/6)) /7 qm*e, and the

distance to uniformity of 3., tia; is < 26. As a consequence:

(al, U Z tiai); U((qu)m X Rq)

i<m

A <26+ 27(q— 1)~
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When using this result, one is typically interested in taking a small constant £ >
0, because it allows to lower the standard deviation ¢ and thus the required
amount of randomness. Then a tiny ¢ should be chosen (e.g., § ~ 2™(¢—1)"°"), as
it drastically lowers the statistical distance upper bound, without strengthening
the standard deviation requirement much.

For each a € (R;)™, let D, denote the distribution of >, t;a; where ¢
is sampled from Dzmn . Note that the above statistical distance is exactly

1 > xym Aq, where Ag is the distance to uniformity of D, . To prove the
|Rg | —~a€(Rq)

theorem, it therefore suffices to show a distance bound A, < 2§, for all except
a fraction < 2"(q¢ —1)~*" of @ € (R})™.

Now, the mapping t — ). t;a; induces an isomorphism from the quotient
group Z™"/a™* to its range (note that a’ is the kernel of ¢ — >, ¢;a;). The
latter is R,, thanks to the invertibility of the a;’s. Therefore, the statistical
distance Aq is equal to the distance to uniformity of ¢ mod a'. By Lemma] we
have A, < 20 if o is greater than the smoothing parameter ns(a') of a* C Z™".
To upper bound 7s5(at), we apply Lemma 2 which reduces the task to lower
bounding the minimum of the dual lattice at+ = (11 -L(a*), where a* € (R;)™
is in one-to-one correspondence with a.

The following result is a direct consequence of Lemmata 2] @] [7] and B Theo-
rem 2 follows by taking S = () and ¢ = 0.

Lemma 9. Let n > 8 be a power of 2 such that ® = x™ + 1 splits into n linear
factors modulo prime ¢ > 5. Let S C {1,...,n}, m > 2, ¢ >0, € (0,1/2),
c e R™ and t <= Dzmn 5, with

o > /nin(2mn(l + 1/6))/m - gn om0 e,

Then for all except a fraction < 2"(q —1)7°" of @ € (R)™, we have:

A{t mod at (Is); U(R/al(ls))] < 26.

4 A Revised Key Generation Algorithm

We now use the results of the previous section on modular g-ary lattices to
derive a key generation algorithm for NTRUEncrypt, where the generated public
key follows a distribution for which Ideal-SVP reduces to R-LWE.

4.1 NTRUEncrypt’s Key Generation Algorithm

The new key generation algorithm for NTRUEncrypt is given in Fig.[Il The secret
key polynomials f and g are generated by using the Gentry et al. sampler of dis-
crete Gaussians (see Lemmal), and by rejecting so that the output polynomials
are invertible modulo ¢q. The Gentry et al. sampler may not exactly sample from
discrete Gaussians, but since the statistical distance can be made exponentially
small, the impact on our results is also exponentially small. Furthermore, it can
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be checked that our conditions on standard deviations are much stronger than
the one in Lemma [Bl From now on, we will assume we have a perfect discrete
Gaussian sampler.

By choosing a large enough standard deviation o, we can apply the results
of the previous section and obtain the (quasi-)uniformity of the public key. We
sample f of the form p - f' + 1 so that it has inverse 1 modulo p, making the
decryption process of NTRUEncrypt more efficient (as in the original NTRUEncrypt
scheme). We remark that the rejection condition on f at Step 1 is equivalent to
the condition (f' mod ¢) ¢ Ry —p~', where p~! is the inverse of p in R).

Inputs: n,q€Z,pe R, o0 €R.

Output: A key pair (sk,pk) € R x Ry .

1. Sample [’ from Dzn o5 let f =p- f' +1; if (f mod q) € R, resample.
2. Sample g from Dzn ; if (g mod ¢) & R, resample.

3. Return secret key sk = f and public key pk = h =pg/f € R;.

Fig. 1. Revised Key Generation Algorithm for NTRUEncrypt

The following result ensures that for some appropriate choice of parameters,
the key generation algorithm terminates in expected polynomial time.

Lemma 10. Letn > 8 be a power of 2 such that ® = x™ + 1 splits into n linear
factors modulo prime q > 5. Let o > \/nIn(2n(1+1/68))/7 - ¢*/™, for an arbi-
trary 6 € (0,1/2). Let a € R and p € R. Then Pry.p,, [(p- f'+amod q) &
RX] <n(1/q+ 290).

Proof. We are to bound the probability that p - f* + a belongs to I := {(q,Py)
by 1/q+ 26, for any k < n. The result then follows from the Chinese Remainder
Theorem and the union bound. We have N'(I) = ¢, so that A\;(I) < /ng'/™,
by Minkowski’s theorem. Since I is an ideal of R, we have A\, (I) = A1(I), and
Lemma [I] gives that ¢ > ns(I). Lemma M then shows that f mod I is within
distance < 2§ to uniformity on R/I, so we have p- f' +a = Omod I (or,
equivalently, f/ = —a/p mod I) with probability < 1/q + 24, as required. O

As a consequence of the above bound on the rejection probability, we have the
following result, which ensures that the generated secret key is small.

Lemma 11. Letn > 8 be a power of 2 such that ® = x™ + 1 splits into n linear
factors modulo prime ¢ > 8n. Let o > \/Qn In(6n)/7-q'/™. The secret key polyno-
mials f, g returned by the algorithm of Fig.d satisfy, with probability > 1—27"+3;

£l < 2nllpllo and ||g|| < v/no.
If degp < 1, then ||f|| < 4v/n||p|lo with probability > 1 — 27"+3,

Proof. The probability under scope is lower than the probability of the same
event without rejection, divided by the rejection probability. The result follows
by combining Lemmata [3] and 10 O
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4.2 Public Key Uniformity

In the algorithm of Fig. [[ the polynomials f’ and g are independently sampled
from the discrete Gaussian distribution Dzn , with o > Poly(n) - q'/?*¢ for an
arbitrary € > 0, but restricted (by rejection) to qu —p~ ! and qu, respectively.
We denote by Dy , the discrete Gaussian Dz , restricted to Ry + 2.

Here we apply the result of Section [3lto show that the statistical closeness to
uniformity of a quotient of two distributions (2 +p- Dy ) for z € R, and y =
—2p~! mod ¢. This includes the case of the public key h = pg/f mod q computed
by the algorithm of Fig. [l

Theorem 3. Let n > 8 be a power of 2 such that & = x™ + 1 splits into n linear
factors modulo prime ¢ > 5. Let e > 0 and o > Qn\/ln(an) q212 Letp € Ry,
yi € Ry and z; = —y;p~* mod q for i € {1,2}. Then

X

y1+p- Dy,
Y2 +p . D(;'<722

Proof. Fora € Ry, wedefine Pr, = Pry, 1,[(y1+pf1)/(y2+pf2) = a], where f; <
Dy . forie {1,2}. We are to show that |Pr, — (¢ —1)7"| < 22nt5g=len) (g —
1)7" =: ¢ for all except a fraction < 2°"(q—1)"°" of a € R). This directly gives
the claimed bound. The fraction of a € R such that [Pr, — (¢ —1)7"| < ¢’ is
equal to the fraction of @ = (a1,az) € (R))? such that |Prq — (¢ —1)™"| < &,
where Prq = Pry, f,[a1f1 + aafa = a121 + az22]. This is because a; fi + a2 fz =
a1z1 +agzg is equivalent to (y1 +pfi1)/(y2 +pf2) = —az/a; (in Ry), and —az/a1
is uniformly random in R when a < U((R))?).

We observe that (f1, f2) = (z1,22) =: z satisfies a1 f1 + aafo = a121 + ag22,
and hence the set of solutions (fi, f2) € R to the latter equation is z + at*,
where a'* = a* N (R} + qZ™)?. Therefore:

mod q ; U(qu) < 23nglen,

P Dyzn 5(z + a*X)
Ta = .
* Dgng(z1+ RS+ qZn) - Dgn o (22 + Ry + qZ7)

We now use the fact that for any t € al we have ty = —ty1a1/ag so, since
—ai/as € qu, the ring elements ¢; and ¢ must belong to the same ideal Is of R,
for some S C {1,...,n}. It follows that a** = al\USngn}’S#@ a*(Is). Sim-
ilarly, we have R + qZ" = 7" \ Usg{l,...,n},s;éw (Is 4+ ¢Z™). Using the inclusion-
exclusion principle, we obtain:

Dyzn o(z + alx) = Z (_1)|S| “Dzan (2 + al(IS))v 1)

Vi€ {1,2} :Dzn oz + R +qZ") = Y (=) Dgn o (2 + Is + qZ7).(2)
SC{1,...,n}
In the rest of the proof, we show that, except for a fraction < 22"(q — 1)~="
of a € (R})*

(¢g—1)"

q2n ’

Dyzn o(z +a™) = (14 dp) -
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(@—1)"

n

where |6;] < 2272~ =) for i € {0, 1,2}. The bound on | Pre —(¢—1)~"| follows
by a routine computation.

HANDLING (). We note that, since z € Z2", we have (for any S C {1,...,n}):

po(z + al(IS» _ pU(Z + aL(IS))

Dyon L(Ig)) = -
72n, (Z+a ( S)) Pa(Z2n) pg(z+Z2n)

= l)z;zn’(.;’,z(a,l (Is))
For the terms of () with |S| < en, we apply Lemma [ with m = 2. Since
|S|/n + ¢ < 2¢, the Lemma [ assumption on o holds, with § := ¢~"~len),
We have |[R/a*(Ig)| = det(at(Ig)) = ¢"*I5: Indeed, since a € (R))?, there
are ¢" 151 elements of a'(Is) in [0,¢ — 1]**. We conclude that
|Dg2n o _z(a*(Ig)) — ¢~ 15| < 26, for all except a fraction < 2"(g — 1)~
of a € (RX)? (possibly corresponding to a distinct subset of (R))? for each
possible S).

For a term of () with |S| > en, we choose S’ C S with |S’| = |en]. Then
we have at (Is) C a*(Is ) and hence Dzzn ,_(at(Ig)) < Dzzn 5 .(at(Is)).
By using with S’ the above result for small |S|, we obtain Dzzn , . (at(Is)) <
29 + qfnf [EnJ

Overall, we have, except possibly for a fraction < 22"(¢—1)"" of a € (qu)2:

n n
—n—k n+1 n —n—|en]
Dzzn o(z +a) =Y (-1 (> <ot b (k)q len

k=0 k=[en]
< 2n+1(6+ qfnfLenJ).

We conclude that |dg| < q 1)” 27§ 4 g lend)y < 220§ 4 g Len)) ) as
required.

HANDLING (2]). For the bounds on d; and dz, we use a similar argument. Let ¢ €
{1,2}. The z; term can be handled like like the z term of (). We observe that
for any S C {1,...,n}, we have det(Is + ¢Z") = ¢/°! and hence, by Minkowski’s
theorem, A\ (Is +qZ™) < \/noq|s|/". Moreover, since Ig + gZ" is an ideal lattice,
we have \,(Is + ¢Z") = M (Is + qZ") < /n - ¢!51/". Lemma [ gives that o >
ns(Is 4+ qZ") for any S such that |S| < n/2, with § := ¢~"/2. Therefore, by
Lemma @ for such an S, we have |Dzn 5 ., (Is + qZ") — ¢~ 51| < 24.

For a term of (&) with S| > n/2, we choose S’ C S with |S’'| = n/2. By
using with S’ the above result for small |S|, we obtain Dzn , ., (Is + q¢Z™) <
Dzng, 2 (Is +qZ") < 26 + q_n/2~

Overall, we have:

n

n
Din o(zi+ RY +qZ") =Y (=1)* <k) q "

k=0

§2n+16+2 Z (Z>qn/2

k=n/2

< 2n+1(6+q—n/2)’
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which leads to the desired bound on d; (using £ < 1/2). This completes the proof
of the theorem. O

5 NTRUEncrypt Revisited

Using our new results above, we describe a modification of NTRUEncrypt for
which we can provide a security proof under a worst-case hardness assumption.
We use & = 2™ + 1 with n > 8 a power of 2, R = Z[z]/® and R, = R/qR
with ¢ > 5 prime such that @ = szl d;, in Ry with distinct @ ’s.

We define our modified NTRUEncrypt scheme with parameters n,q,p, a, o as
follows. The parameters n and ¢ define the rings R and R,. The parameter p €
qu defines the plaintext message space as P = R/pR. It must be a polynomial
with ‘small’ coefficients with respect to g, but at the same time we require N (p) =
|P| = 292(n) 5o that many bits can be encoded at once. Typical choices as used
in the original NTRUEncrypt scheme are p = 3 and p = x + 2, but in our case,
since ¢ is prime, we may also choose p = 2. By reducing modulo the pz?’s, we can
write any element of p as > _,_, eix’p, with &; € (—1/2,1/2]. Using the fact
that R = Z[z]/(z™ 4 1), we can thus assume that any element of P is an element
of R with infinity norm < (deg(p)+1)-||p||. The parameter « is the R-LWE noise
distribution parameter. Finally, the parameter o is the standard deviation of the
discrete Gaussian distribution used in the key generation process (see Section ).

e Key generation. Use the algorithm of Fig. [l and return sk = f € R, with
f=1modp, and pk =h =pg/f € R}.

e Encryption. Given message M € P, set s,e <= 7 and return ciphertext C' =
hs +pe+ M € R,.

e Decryption. Given ciphertext C and secret key f, compute C' = f-C € R, and
return C’ mod p.

Fig. 2. The encryption scheme NTRUEncrypt(n, ¢, p, o, )

The correctness conditions for the scheme are summarized below.

Lemma 12. If w(n'®logn)adeg(p)|p||?c < 1 (resp. w(n®5logn)a|lp|?sc < 1
if degp < 1) and aq > n%>, then the decryption algorithm of NTRUEncrypt
recovers M with probability 1 — n=*M) over the choice of s, e, f,g.

Proof. In the decryption algorithm, we have C' = p- (gs+ef)+ fM mod q. Let
C"=p-(gs+ef)+ fM computed in R (not modulo ¢). If |C”||c < ¢/2 then
we have C' = C” in R and hence, since f = 1 mod p, C’ mod p = C” mod p =
M mod p, i.e., the decryption algorithm succeeds. It thus suffices to give an
upper bound on the probability that ||C”||- > ¢/2.

From Lemma, [Tl we know that with probability > 1 — 27"%3 both f and ¢
have Euclidean norms < 2n||pllo (resp. 4y/n||p|lc if degp < 1). This implies
that ||pf|, |Ipgll < 2n'||p||?c (resp. 8v/n||p||*c), with probability > 1 —27"+3,
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From Lemmal6] both pfe and pgs have infinity norms < 2agn!®w(logn) - ||p||?c
(resp. 8agy/nw(logn) - ||p||?c), with probability 1 —n~“(1). Independently:

1FMlloo < IFMI< Vrll FIIIM] < 2 (deg(p) +1) - n*[lp|*o (resp. 8np|*s).

Since g > /n, we conclude that ||C” s < (642 deg(p))-agn'-Sw(logn)-||p||*c
(resp. 24aqn®Sw(logn) - ||p||?c), with probability 1 — n=<1), 0

The security of the scheme follows by an elementary reduction from the deci-
sional R-LWE{{\, exploiting the uniformity of the public key in Ry (Theo-
rem [J), and the invertibility of p in R,,.

Lemma 13. Suppose n is a power of 2 such that ® = ™+ 1 splits into n linear
factors modulo prime q = w(1). Let €,6 > 0, p € Ry and o > 2n\/ln(8nq) .
q2Te. If there exists an IND-CPA attack against NTRUEncrypt that runs in
time T and has success probability 1/24 6, then there exists an algorithm solving
R-LWEj\p with parameters q and « that runs in time T =T + O(n) and has
success probability &' = § — ¢~ (),

Proof. Let A denote the given IND-CPA attack algorithm. We construct an
algorithm B against R-LWE jyp that runs as follows, given oracle O that samples
from either U(R) x R,) or Azw for some previously chosen s < 1 and ¥ <
To. Algorithm B first calls O to get a sample (h',C”) from Ry x R,. Then,
algorithm B runs A with public key h =p-h' € R;. When A outputs challenge
messages My, My € P, algorithm B picks b <= U ({0, 1}), computes the challenge
ciphertext C' = p- C' + M}, € Ry, and returns C to A. Eventually, when A
outputs its guess b’ for b, algorithm B outputs 1 if ¥’ = b and 0 otherwise.

The A’ used by B is uniformly random in R, and therefore so is the public
key h given to A, thanks to the invertibility of p modulo ¢. Thus, by Theorem [3]
the public key given to A is within statistical distance ¢~ of the public key
distribution in the genuine attack. Moreover, since C' = h - s + e with s,e < 1,
the ciphertext C' given to A has the right distribution as in the IND-CPA attack.
Overall, if O outputs samples from A;w, then A succeeds and B returns 1 with
probability > 1/2 46 — ¢~ (™).

Now, if O outputs samples from U(R; x R,), then, since p € R, the value
of p-C”" and hence C, is uniformly random in R, and independent of b. It follows
that B outputs 1 with probability 1/2. The claimed advantage of B follows. O

By combining Lemmata [[2] and [[3] with Theorem [Il we obtain our main result.

Theorem 4. Suppose n is a power of 2 such that ® = x™ +1 splits into n linear
factors modulo prime q = Poly(n) such that q2~= = w(n33log? ndeg(p)|p|?)
(resp. q2 ¢ = w(n*log™® ndeg(p)||p||?)), for arbitrary e € (0,1/2) and p € Ry.
Let o = 2n,/In(8ngq) - g2+ and o' = w(n5logndeg(p)||p||20). If there exists
an IND-CPA attack against NTRUEncrypt(n, ¢, p, o, &) which runs in time T =
Poly(n) and has success probability 1/2 + 1/Poly(n) (resp. time T = 2°") and
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success probability 1/2 4+ 27°0) ) then there exists a Poly(n)-time (resp. 2°(")-
time) quantum algorithm for v-1deal-SVP with v = O(n*log®® n deg(p)||p||q2 )
(resp. v = O(n®log'® ndeg(p)||pl|2q2+<)). Moreover, the decryption algorithm
succeeds with probability 1—n~*M) over the choice of the encryption randomness.

In the case where deg p < 1, the conditions on ¢ for polynomial-time (resp. subex-
< =w(n>*log’n-||p|)
(resp. g2 = w(n3log"®n - ||p||?)) and the resulting Ideal-SVP approximation
factor may be improved to v = O(n3log®® n-||p||2q21¢) (resp. v = O(n*log™® n-
Ip||2g2+<)). Overall, by choosing & = o(1), the smallest ¢ for which the analysis
holds is £2(n®) (resp. 2(n%)), and the smallest  that can be obtained is O(n5-)
(resp. O(n")).

ponential) attacks in Theorem [ may be relaxed to qé -
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Abstract. We describe efficient formulas for computing pairings on or-
dinary elliptic curves over prime fields. First, we generalize lazy reduction
techniques, previously considered only for arithmetic in quadratic exten-
sions, to the whole pairing computation, including towering and curve
arithmetic. Second, we introduce a new compressed squaring formula for
cyclotomic subgroups and a new technique to avoid performing an in-
version in the final exponentiation when the curve is parameterized by a
negative integer. The techniques are illustrated in the context of pairing
computation over Barreto-Naehrig curves, where they have a particu-
larly efficient realization, and are also combined with other important
developments in the recent literature. The resulting formulas reduce the
number of required operations and, consequently, execution time, im-
proving on the state-of-the-art performance of cryptographic pairings by
28%-34% on several popular 64-bit computing platforms. In particular,
our techniques allow to compute a pairing under 2 million cycles for the
first time on such architectures.

Keywords: Efficient software implementation, explicit formulas,
bilinear pairings.

1 Introduction

The performance of pairing computation has received increasing interest in the
research community, mainly because Pairing-Based Cryptography enables ef-
ficient and elegant solutions to several longstanding problems in cryptography
such as Identity-Based Encryption [II2], powerful non-interactive zero-knowledge
proof systems [3] and communication-efficient multi-party key agreements [4].
Recently, dramatic improvements over the figure of 10 million cycles presented
in [5] made possible to compute a pairing at the 128-bit security level in 4.38
million cycles [6] when using high-speed vector floating-point operations, and

* This work was completed while these authors were at the University of Waterloo.
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2.33 million cycles [7] when the fastest integer multiplier available in Intel 64-bit
architectures is employed.

This work revisits the problem of efficiently computing pairings over large-
characteristic fields and improves the state-of-the-art performance of crypto-
graphic pairings by a significant margin. First of all, it builds on the latest
advancements proposed by several authors:

— The Optimal Ate pairing [8] computed entirely on twists [9] with simpli-
fied final line evaluations [6] over a recently-introduced subclass [10] of the
Barreto-Naehrig (BN) family of pairing-friendly elliptic curves [11].

— The implementation techniques described by [7] for accelerating quadratic
extension field arithmetic, showing how to reduce expensive carry handling
and function call overheads.

On the other hand, the following new techniques are introduced:

— The notion of lazy reduction, usually applied for arithmetic in quadratic
extensions in the context of pairings, as discussed in [12], is generalized to
the towering and curve arithmetic performed in the pairing computation.
In a sense, this follows a direction opposite to the one taken by other au-
thors. Instead of trying to encode arithmetic so that modular reductions are
faster [I3U6], we insist on Montgomery reduction and focus our efforts on re-
ducing the need of computing reductions. Moreover, for dealing with costly
higher-precision additions inserted by lazy reduction, we develop a flexible
methodology that keeps intermediate values under Montgomery reduction
boundaries and maximizes the use of operations without carry checks. The
traditional operation count model is also augmented to take into account
modular reductions individually.

— Formulas for point doubling and point addition in Jacobian and homoge-
neous coordinates are carefully optimized by eliminating several commonly
neglected operations that are not inexpensive on modern 64-bit platforms.

— The computation of the final exponentiation is improved with a new set of
formulas for compressed squaring and efficient decompression in cyclotomic
subgroups, and an arithmetic trick to remove a significant penalty incurred
when computing pairings over curves parameterized by negative integers.

The described techniques produce significant savings, allowing our illustrative
software implementation to compute a pairing under 2 million cycles and improve
the state-of-the-art timings by 28%-34% on several different 64-bit computing
platforms. Even though the techniques are applied on pairings over BN curves
at the 128-bit security level, they can be easily extended to other settings using
different curves and higher security levels [14].

This paper is organized as follows. Section [2 gives an overview of Miller’s
Algorithm when employed for computing the Optimal Ate pairing over Barreto-
Naehrig curves. Section Bl presents the generalized lazy reduction technique and
its application to the improvement of towering arithmetic performance. Different
optimizations to curve arithmetic, including the application of lazy reduction,
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are discussed in Section Ml Section [l describes our improvements on the final
exponentiation. Section [6] summarizes operation counts and Section [ describes
our high-speed software implementation and comparison of results with the pre-
viously fastest implementation in the literature. Section [§ concludes the paper.

2 Preliminaries

An admissible bilinear pairing is a non-degenerate efficiently-computable map
e: Gy X Gg — Gp, where G; and G4 are additive groups of points in an elliptic
curve F and Gr is a subgroup of the multiplicative group of a finite field. The
core property of map e is linearity in both arguments, allowing the construction
of novel cryptographic schemes with security relying on the hardness of the
Discrete Logarithm Problem in Gi, Gy and Grp.

Barreto and Naehrig [11] described a parameterized family of elliptic curves
Ep i y?> = 2% 4b,b # 0 over a prime field Fp, p = 36u* +36u>+24u?+6u+1, with
prime order n = 36u* +36u>+ 18u?+6u+ 1, where u € Z is an arbitrary integer.
This family is rather large and easy to generate [I0], providing a multitude
of parameter choices; and, having embedding degree k = 12, is well-suited for
computing asymmetric pairings at the 128-bit security level [12]. It admits several
optimal derivations [8] of different variants of the Ate pairing [15] such as R-
ate [I6], Optimal Ate [8] and x-ate [17].

Let E[n] be the subgroup of n-torsion points of E and E’ : y? = 23 + b/£ be
a sextic twist of I/ with £ not a cube nor a square in 2. For the clear bene-
fit of direct benchmarking, but also pointing that performance among variants
is roughly the same, we restrict the discussion to computing the Optimal Ate
pairing defined as in [0]:

Qopt - GQ X (Gq — GT

p12_1

(@, P) = (fr.@(P) - lp1Q.r,(@) (P) - lpl@+mp(@).—n2 @) (P)) ™

where r = 6u + 2 € Z; the map 7, : £ — E is the Frobenius endomorphism
mp(x,y) = (aP,yP); groups Gi, Gy are determined by the eigenspaces of m, as
G1 = En]NnKer(m, — [1]) = E(F,)[n] and G2 as the preimage E'(F,2)[n] of
E[n] NKer(m, — [p]) € E(Fp2)[n] under the twisting isomorphism ¢ : E — E;
the group Gp is the subgroup of n-th roots of unity u, C ]F;lz; fr.o(P) is
a normalized function with divisor (frq) = r(Q) — ([r]Q) — (r — 1)(O) and
1,0, (P) is the line arising in the addition of @1 and Q2 evaluated at point P.

Miller [I8T9] propo