
Chapter 6
Multimodal Fusion

Abstract Multimedia data instances consist of metadata from multiple sources.
Given a set of features extracted from these sources (e.g., features extracted from
the visual, audio, and caption track of videos), how do we determine the best modal-
ities? Once a set of modalities has been identified, how do we best fuse them to
map to semantics? This chapter† presents a two-step approach. The first step finds
statistically independent modalities from raw features. In the second step, we use
super-kernel fusion to determine the optimal combination of individual modalities.
We carefully analyze the tradeoffs between three design factors that affect fusion per-
formance: modality independence, curse of dimensionality, and fusion-model com-
plexity. Through analytical and empirical studies, we demonstrate that the two-step
approach, which achieves a careful balance of the three design factors, can improve
class-prediction accuracy over traditional techniques.

Keywords Feature combination · Multimodal fusion · PCA · ICA · Super kernel

6.1 Introduction

Multimedia data such as images and videos are represented by features from mul-
tiple media sources. Traditionally, images are represented by keywords and per-
ceptual features such as color, texture, and shape [2, 3]. Videos are represented by
features embedded in the tracks of visual, audio, caption text, etc. [4]. Besides, con-
textual information associated with a data instance, such as camera parameters, user
profile, social interactions, and search logs, can also be considered for analyzing
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multimedia data. These features are extracted and then fused in a complementary
way for understanding the semantics of multimedia data.

Traditional work on multimodal integration has largely been heuristic-based. It
lacks theories to answer two fundamental questions: (1) what are the best modalities?
and (2) how can we optimally fuse information from multiple modalities? Suppose
we extract l, m, n features from the visual, audio, and caption tracks of videos. At
one extreme, we could treat all these features as one modality and form a feature
vector of l + m + n dimensions. At the other extreme, we could treat each of the
l + m + n features as one modality. We could also regard the extracted features
from each media-source as one modality, formulating a visual, audio, and caption
modality with l, m, and n features, respectively. Almost all prior multimodal-fusion
work in the multimedia community employs one of these three approaches [5, 6].
But, can any of these feature compositions yield the optimal result?

Statistical methods such as principle component analysis (PCA) and independent
component analysis (ICA) have been shown to be useful for feature transformation
and selection. PCA is useful for denoising data, and ICA aims to transform data to
a space of independent axises (components). Despite their best attempt under some
error-minimization criteria, PCA and ICA do not guarantee to produce independent
components. In addition, the created feature space may be of very high dimensions
and thus be susceptible to the curse of dimensionality.1 In the first part of this chapter,
we present an independent modality analysis scheme, which identifies independent
modalities, and at the same time, avoids the curse-of-dimensionality challenge.

Once a good set of modalities has been identified, the second research chal-
lenge is to fuse these modalities in an optimal way to perform data analysis (e.g.,
classification). Suppose we can yield truly independent modalities, and each modal-
ity can derive accurate posterior probability for class prediction. We can simply
use the product-combination rule to multiply the probabilities for predicting class
membership. Unfortunately, the above two conditions do not hold in general for
a multimedia data-analysis task (see Sect. 6.2 for detailed discussion). Using the
product-combination rule to fuse information is thus inappropriate. Another popular
fusion method is the weighted-sum rule, which performs a linear combination on the
modalities. The weighted-sum rule enjoys the advantage of simplicity, but its linear
constraint forbids high model complexity; hence it cannot adequately explore the
inter-dependencies left unresolved by PCA and ICA. In this chapter, we present a
discriminative approach (whereas in Chap. 8 we present a generative approach) to
address multimodal fusion. Our discriminative approach employs the super-kernel
fusion scheme to fuse individual modalities in a non-linear way (linear fusion is a spe-
cial case of our method). The super-kernel fusion scheme finds the best combination
of modalities through supervised training.

1 The work of [7] shows that, when data dimension is high, the distances between pairs of objects in
the space become increasingly similar to each other due to the central limit theory. This phenomenon
is called the dimensionality curse [8], because it can severely hamper the effectiveness of data
analysis.

http://dx.doi.org/10.1007/978-3-642-20429-6_8
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Fig. 6.1 Feature correlation matrix. a Before PCA/ICA, b after PCA/ICA

Let us use a simple example to explain the shortcomings of some traditional mul-
timodal integration schemes that invite further research. Figure 6.1 shows the exis-
tence of feature dependencies in a real image dataset, before and after performing
PCA/ICA. This figure plots the normalized correlation matrix in absolute value
derived from a 2K-image dataset of 14 classes. (Detailed description for this image
dataset is given in Sect. 6.5.) A total of 144 features are considered: the first 108 are
color features; the other 36 are texture features. Correlation between features within
the same media source and across different media sources is measured by computing
the covariance matrix:

C = 1

N

∑

xi ∈X

(xi − x̄)(xi − x̄)T with x̄ = 1

N

∑

xi ∈X

xi , (6.1)

where N is the total number of sample data, xi is a feature vector to represent the
ith sample, and X is the set of feature vectors for N samples. Normalized correlation
between features i and j is defined by

Ĉ(i, j) = C(i, j)√
C(i, i) × C( j, j)

. (6.2)

In the figure, both the x- and y-axis depict the 144 features. The light-colored areas
in the figure indicate high correlation between features, and the dark-colored areas
indicate low correlation. If any feature correlates only with itself, only the diagonal
elements will be light-colored. The off-diagonal light-colored areas in Fig. 6.1a indi-
cate that this image dataset exhibits not only a high correlation of features within the
same media source, but also between certain features from different media sources
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Table 6.1 Related work summarization

No. of modality Fusion methods Evaluation

1 No No need to do fusion; curse of dimensionality
m Any Loss of inter-dependency relationship between features
k Any High model complexity; no perfect independent components

Product Very sensitive to the accuracy of individual classifiers
D Linear Not suitable for independent feature spaces

Super-kernel Suitable

m no. of media sources, k no. of independent components, D no. of independent modalities

(e.g., color and texture). Color and texture are traditionally treated as orthogonal
modalities, but this example shows otherwise. These correlated and even noisy “raw”
features may affect the learning algorithm by obscuring the distributions of truly
relevant and representative features. (The weighted-sum fusion rule cannot deal with
these inter-dependencies.)

Figure 6.1b presents the feature correlation matrix after we applied both PCA and
ICA to the data. The process yields 58 “improved” components. Although the com-
ponents exhibit better independence, inter-dependencies between components still
exist. This chapter first deals with grouping components like these 58 into a smaller
number of independent modalities to avoid the dimensionality curse. We then explore
non-linear combinations of the modalities to improve the effective multimodal fusion.

As the main contribution of this work, we propose a discriminative fusion scheme
for multimedia data analysis. Given a list of features extracted from multiple media-
sources, we tackle two core issues:

• Formulating independent feature modalities (Sect. 6.3).
• Fusing multiple modalities optimally (Sect. 6.4).

We carefully analyze the tradeoffs between three design factors that affect fusion
performance: modality independence, curse of dimensionality, and fusion-model
complexity. Through analytical and empirical studies on an image dataset and TREC-
Video 2003 benchmarks, we show that a careful balance of the three design factors
consistently leads to superior performance for multimodal fusion.

6.2 Related Reading

We discuss related work in modality identification and modality fusion (Table 6.1).

6.2.1 Modality Identification

Let D denote the number of modalities. Given d1, d2, . . . , dm features extracted from
m media sources, respectively, prior modality identification work can be divided into
two representative categories.
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1. D = 1, or treating all features as one modality. This approach does not require
the fusion step. Goh et al. [9] used the raw color and texture features to form a
high-dimensional feature vector for each image. Recently, statistical methods such
as PCA and ICA have been widely used in the Computer Vision, Machine Learn-
ing, Signal Processing communities to denoise data and to identify independent
information sources (e.g., [10–13]). In the multimedia community, the work of
[14, 15] observed that audio and visual data of a video stream exhibit some statisti-
cal regularity, and that regularity can be explored for joint processing. Smaragdis
et al. [16] proposed to operate on a fused set of audio/visual features and to
look for combined subspace components amenable to interpretation. Vinokourov
et al. [17] found a common latent/semantic space from multi-language documents
using independent component analysis for cross-language document retrieval. The
major shortcoming of these works is that the curse of dimensionality arises, caus-
ing ineffective feature-to-semantics mapping and inefficient indexing [2]. (Please
refer to [7, 18, 19] for the discussion of dimensionality-curse and why dimen-
sion reduction can greatly enhance the effectiveness of statistical analysis and the
efficiency of query processing.)

2. D = m, or treating each source as one modality. This approach treats the features
as m modalities, with di features in the ith modality (i = 1, 2, . . . , m). Most work
in image and video retrieval analysis (e.g., [4, 20–23]) employs this approach.
For example, the QBIC system [20] supported image queries based on combining
distances from the color and texture modalities. Velivelli et al. [23] separated video
features into audio and visual modalities. Adams et al. [4] also regarded each
media track (visual, audio, textual, etc.) as one modality. For each modality, these
works trained a separate classification model, and then used the weighted-sum
rule to fuse a class-prediction decision. This modality-decomposition method can
alleviate the “curse of dimensionality.” However, since media sources are treated
separately, the inter-dependencies between sources are left unexplored.

Our method is to apply independent component analysis on the raw feature sets to
identify k “independent” components. Thereafter, we group these components into
D modalities to (1) minimize the dependencies between modalities, and (2) mitigate
the dimensionality-curse problem.

6.2.2 Modality Fusion

Given that we have obtained D modalities, we need to fuse D classifiers, one for each
modality, for interpreting data.

PCA and ICA cannot perfectly identify independent components for at least two
reasons. First, like the way that the k-mean algorithm works, all well-known ICA
algorithms (fixed-point algorithm [24], Infomax [25, 26], kernel canonical analy-
sis [17], and kernel independent analysis [27]) need a good estimate of the number
of independent components k to find them effectively. Second, as we discussed in
Sect. 6.1, ICA only performs the best attempt under some error-minimization cri-
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teria to find k independent components. But the resulting components, as shown in
Fig. 6.1b, may still exhibit inter-dependencies.

Now, given D modalities, not entirely independent of each other, we need an effec-
tive fusion strategy. Various fusion strategies for multimodal information have been
presented and were discussed in [28], including product combination, weighted-sum,
voting, and min–max aggregation. Among them, product combination and weighted-
sum are by far the most popular fusion methods.

1. Product combination. Supposing that D modalities are independent of each
other, and we can estimate posterior probability for each modality accurately, the
product-combination rule is the optimal fusion model from the Bayesian perspec-
tive. However, in addition to the fact that we will not have D truly independent
modalities, we generally cannot estimate posterior probability with high accu-
racy. The work of [29] concluded that the product-combination rule works well
only when the posterior probability of individual classifiers can be accurately
estimated. In a multimedia data-understanding task, we often assert similarity
between data based on our beliefs. (E.g., one can “believe” two videos to be 87%
similar or 90% similar. This estimate does not come from classical probability
experiments, so the sum of beliefs may not be equal to one.) Because of this
subjective process, and because the product-combination rule is highly sensitive
to noise, this strategy is not appropriate.

2. Weighted-sum. The weighted-sum strategy is more tolerant to noise because sum
does not magnify noise as severely as product. Weighted-sum (e.g., [30]) is a
linear model, not equipped to explore the inter-dependencies between modal-
ities. Recently, Yan and Hauptmann [31] presented a theoretical framework for
bounding the average precision of a linear combination function in video retrieval.
Concluding that the linear combination functions have limitations, they suggested
that non-linearity and cross-media relationships should be introduced to achieve
better performance.

In this chapter, we depict a super-kernel scheme, which can fuse multimodal
information non-linearly to explore the cross-modality relationship. Chapters 7
and 8 present two generative schemes. Both discriminative and generative models
enjoy their pros and cons, which we will discuss throughout these three chapters.

6.3 Independent Modality Analysis

In this section, we present our approach to transform m raw features to D modalities.
Given input in the form of an m × n matrix X (n denotes the number of training
instances), our independent modality analysis procedure produces M1, M2, . . . , MD

modalities. The procedure consists of the following three steps:

http://dx.doi.org/10.1007/978-3-642-20429-6_7
http://dx.doi.org/10.1007/978-3-642-20429-6_8
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1. Run principal component analysis (PCA) on X to remove noise and reduce the
feature dimensionality. Let U denote the matrix containing the first k eigenvectors.
The PCA representation of zero-mean feature vectors X is defined as U T X.

2. Run independent component analysis (ICA) on the PCA output U T X to obtain
estimates of independent feature components S and an estimate of a mixing matrix
W. We can recover the independent components by computing S = WUT X.

3. Run independent modality grouping (IMG) on S to form independent modalities
M1, M2, . . . , MD.

6.3.1 PCA

PCA has been frequently used as a technique for removing noises and redundancies
between feature dimensions [32]. PCA projects the original data to a lower dimen-
sionality space such that the variance of the data is best maintained. Let’s assume
that we have n samples, {x1, x2, . . . , xn}, and each xi is an m-dimensional vector.
We can represent the n samples as a matrix Xm×n . It is known in linear algebra that
any such matrix can be decomposed in the following form (known as singular value
decomposition or SVD):

X = UDV T ,

where matrices Um×p and Vn×p represent orthonormal basis vectors matrices (eigen-
vectors of the symmetric matrix X X T and X T X ), with p as the number of largest
principal components. The Dp×p matrix is a diagonal matrix, and the diagonal ele-
ments of D are the eigenvalues of X X T and X T X. Consider the projection onto the
subspace spanned by the p largest principal components (PC’s), i.e., U T X.

6.3.2 ICA

Compared to PCA, the spirit of ICA is to find statistically independent hidden sources
from a given set of mixture signals. Both ICA and PCA project data matrices into
components in different spaces. However, the goals of the two methods are differ-
ent. PCA finds the uncorrelated components of maximum variance. It is ideal for
compressing data into a lower-dimensional space by removing the least significant
components. ICA finds the statistically independent components. ICA is the ideal
choice for separating mixed signals and finding the most representative components.

To formalize an ICA problem, we assume that there are k unknown independent
components S = {s1, s2, . . . , sk}. What we observe is a set of m-dimensional samples
{x1, x2, . . . , xn}, which are mixture signals coming from k independent components,
k ≤ m. We can represent all the observation data as a matrix Xm×n . A linear mixture
model can be formulated as:

X = AS,
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Fig. 6.2 Scatter plots of the 2K image dataset. a PCA, b ICA

where Am×k is a mixing matrix. Our goal is to find W = A−1; therefore, given
training set X, we can recover the independent components (IC’s) through the trans-
formation of S = WX.

ICA establishes a common latent space for the media, which can be viewed as
a method for learning the inter-relations between the involved media [16, 33]. For
multimedia data, observation data xi usually contains features coming from more
than one medium. The different independent components {s1, s2, . . . , sk} provide a
meaningful segmentation of the feature space. The kth column of W −1 constitutes
the original multiple features associated with the kth independent component. These
independent components can provide a better interpretation for multimedia data.
Figure 6.2a, b show the scatter plots of the 2K image dataset, projected to a two-
dimensional subspace identified by the first two principal components and the first
two independent components. Dark points correspond to the class of tools (one of the
14 classes), and green (light) points correspond to the other 13 classes. Compared
with PC’s in Fig. 6.2a, IC’s found from ICA in Fig. 6.2b can better separate data
from different semantic classes. Figure 6.2b strongly suggests an ICA interpretation
to differentiate semantics. The main attraction of ICA is that it provides unsupervised
groupings of data that have been shown to be well aligned with manual grouping in
different media [11]. The representative and non-redundant feature representations
form a solid base for later processing.

Lacking any prior information about the number of independent components,
ICA algorithms usually assume that the number of independent components is the
same as the dimension of observed mixtures, that is, k = m. PCA technique can be
used as preprocessing to ICA to reduce noise in the data and control the number of
independent components [34]. Then ICA is performed on the main eigenvectors of
PCA representations (k = p, where p is the number of PC’s) to determine which
PC’s actually are independent and which should be grouped together as parts of a
multidimensional component. Finally, the independent components are recovered by
computing S = WUT X.
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6.3.3 IMG

As discussed in Sect. 6.1, though ICA makes a best attempt to find independent
components, the resulting k components might not be independent, and the number
of components can be too large to face the challenge of “dimensionality curse” during
the statistical-analysis and query-processing phrases. IMG aims to remedy these two
problems by grouping k components into D modalities.

We divide k components into D groups to satisfy two requirements: (1) the cor-
relation between modalities is minimized, and (2) the number of features in each
modality is not too large. The first requirement maximizes modality independence.
The second requirement avoids the problem of curse-of-dimensionality. To decide
on D, we place a soft constraint on the number of components that a modality can
have. We set the soft constraint as 30 because several prior works [7, 18, 19] indicate
that when the number of dimensions exceeds 20–30, the curse starts to kick in. Since
only the data can tell us exactly at what dimension the curse starts to take effect, the
selection of D must go through a cross-validation process: we pick a small number
of candidate D values and rely on experiments to select the best D.

For a given D, we employ a clustering approach to divide k into D groups. Ding et
al. [35] provided theoretical analysis to show that minimizing inter-subgraph similar-
ities and maximizing intra-subgraph similarities always lead to more balanced graph
partitions. Thus, we apply minimizing inter-group feature correlation and maximizing
intra-group feature correlation as our feature-grouping criteria to determine indepen-
dent modalities. Suppose we have D modalities M1, M2, . . . , MD, each containing
a number of feature components. The inter-group feature correlation between two
modalities Mi and M j is defined as

C(Mi , M j ) =
∑

∀ Si ∈Mi , ∀ S j ∈M j

C(Si , S j ), (6.3)

where Si and S j are features belonging to modalities Mi and M j respectively, and
C(Si , S j ) is the normalized feature correlation between Si and S j . C(Si , S j ) can be
calculated using (6.1) and (6.2). The intra-group feature correlation within modality
Mi is defined as

C(Mi ) = C(Mi , Mi ). (6.4)

To minimize inter-group feature correlation while maximizing intra-group feature
correlation at the same time, we can formulate the following objective function for
grouping all the features into D modalities,

min
D∑

i=1
j>i

[
C(Mi , M j )

C(Mi )
+ C(Mi , M j )

C(M j )

]
. (6.5)

Solving this objective function yields D modalities, with minimal inter-modality
correlation and balanced features in each modality.
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Fig. 6.3 Fusion architecture

6.4 Super-Kernel Fusion

Once D modalities have been identified by our independent modality analysis, we
need to fuse multimodal information optimally. Suppose we train for the dth modality
classifier fd . We need to combine these D classifiers to perform class prediction for
query instance xq . The fusion architecture is depicted in Fig. 6.3.

After fd , d = 1, . . . , D have been trained, the information can be fused in several
ways. Let f denote the fused classification function. The product-combination rule
can be formulated as

f =
D∏

d=1

fd .

And the most widely used weighted-sum rule can be depicted as

f =
D∑

d=1

μd fd ,

where μd is the weight for individual classifier fd . As we have discussed in Sect. 6.2,
both these popular models suffer from several shortcomings, including being sen-
sitive to prediction error and being limited by the linear-model complexity. (Please
consult Sect. 6.2 for detailed discussion.) To overcome these shortcomings, we pro-
pose using super-kernel fusion to aggregate fd ’s.

The algorithm of super-kernel fusion is summarized in Fig. 6.4, which consists
of the following three steps:
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Fig. 6.4 Super-kernel fusion
algorithm

1. Train individual classifiers { fd} . The inputs to the algorithm are the n train-
ing instances {x1, x2, . . . , xn} and their corresponding labels {y1, y2, . . . , yn}.
After the independent modality analysis (IMA), the m-dimensional features
are divided into D modalities. Each training instance xi is represented by
{x1

i , x2
i , . . . , xD

i }, where xd
i is the feature representation for xi in the dth modal-

ity. All the training instances are divided into D matrices {M1, M2, . . . , MD},
where each Md is an n × |Md | matrix, and |Md | is the number of features in the
dth modality (d = 1, 2, . . . , D). To train classifier fd , we use Md and the label
information. Though many learning algorithms can be employed to train fd , we
employ an SVM as our base-classifier because of its effectiveness. For training
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each fd , the kernel function and kernel parameters are carefully chosen via cross
validation (steps 1–3 in Fig. 6.4).

2. Estimate posterior probability. Once we have trained D classifiers for the D modal-
ities, we create a super-kernel matrix K for modality fusion. This matrix is cre-
ated by passing each training instance to each of the D classifiers to estimate its
posterior probability. We use Platt’s formula [36] to convert an SVM score to
probability. As a result of this step, we obtain an n × D matrix consisting of n
entries of D class-prediction probability (steps 4–6 in Fig. 6.4).

3. Fuse the classifiers. The super-kernel algorithm treats K a matrix of n training
instances, each with a vector of D elements. Next, we again employ SVMs to train
the super-classifier. The inputs to SVMs include K, training labels, a selected
kernel function, and kernel parameters. At the end of the training process, we
yield function f to perform class prediction. The complexity of the fusion model
depends on the kernel chosen. For instance, we can select a polynomial, RBF or
Laplacian function (steps 7–8 in Fig. 6.4).

Remark 6.1 A context-based query can be represented by a discriminative function
f derived from the above supervised-learning process. Given a candidate data x, the
output of f (x) indicates the degree of relevance that x has to the query. We apply f
to the dataset and return top-k most relevant data as the query result.

At first it might seem that non-linear transformations would suffer from high
model and computational complexity. But our proposed super-kernel fusion suc-
cessfully avoids these problems by employing the kernel trick. (The kernel trick has
been applied to several algorithms in statistics, including Support Vector Machines
and kernel PCA.) The kernel trick let us generalize data similarity measurement
to operate in a projected space, usually nonlinearly related to the input space. The
input space (denoted as I ) is the original space in which data are located, and
the projected space (denoted as P) is that space to which the data are projected,
linearly or non-linearly. The advantage of using the kernel trick is that, instead of
explicitly determining the coordinates of the data in the projected space, the distance
computation in P can be efficiently performed in I through a kernel function.2

Specifically, given two vectors xi and x j , kernel function K (xi , x j ) is defined as
the inner product of �(xi ) and �(x j ), where � is a basis function that maps the
vectors xi and x j from I to P. The inner product between two vectors can be
thought of as a measure of their similarity. Therefore, K (xi , x j ) returns the simi-
larity of xi and x j in P. Since a kernel function can be either linear or nonlinear
our super-kernel fusion scheme can model non-linear combinations of individual
kernels.

One can employ any supervised learning algorithm is the function Train in the
algorithm (line 2 in the figure). Algorithms that work well with kernel methods are
Support Vector Machines [37] and Kernel Discriminative Analysis [38].

2 Given a kernel function K , we can construct a corresponding kernel matrix K, where K(i, j) =
K (xi , x j ).
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Proposition 6.1 Fused kernel matrix K is a mathematically valid kernel, which is
symmetric and positive semi-definite.

Proof From Fig. 6.4, obviously, vectors {x1, x2, . . . , xn} have the same dimensions
of D. Therefore, we can use traditional kernel functions such as Gaussian radial
basis kernel function, Laplacian kernel function, and Polynomial kernel function
to calculate the similarity between these vectors and to build the kernel matrix K.

Those kernel functions have already been proven to be a mathematically valid kernel
satisfying symmetric and positive semi-definite conditions [37]. The resulting kernel
matrix K is valid too. ��

Finally, once the class-prediction function f has been trained, we can use the
function to predict the class membership of a query point xq . Assume xq is
an m-dimensional feature vector in original feature space, we can convert it to
an ICA feature representation WUT xq , where W and U are transformation
matrices obtained from PCA and ICA process, respectively (Sect. 6.3). Then, WUT xq

is further divided into D modalities (information obtained from the IMG process),
named as {x1

q , x2
q , . . . , xD

q }. The class-prediction function for query point xq can be
written as

ŷq = f ( f1(x1
q), f2(x2

q), . . . , fd(xD
q )).

6.5 Experiments

Our experiments were designed to evaluate the effectiveness of using independent
modality analysis and multimodal kernel fusion to determine the optimal multimodal
information fusion for multimedia data retrieval. Specifically, we wanted to answer
the following questions:

1. Can independent modality analysis improve the effectiveness of multimedia data
analysis?

2. Can super-kernel fusion improve fusion performance?

We conducted our experiments on two real-world datasets: one is a 2K image
dataset, and the other is TREC-2003 video track benchmark. We randomly selected
a percentage of data from the dataset to be used as training examples. The remaining
data were used for testing. For each dataset, the training/testing ratio was empirically
chosen via cross-validation so that the sampling ratio worked best in our experiments.
To perform independent modality analysis, we applied traditional PCA and ICA
algorithms3 onto the given features (including all the training and testing data) to get
the independent components following the steps described in Sect. 6.3. To perform
class prediction, we employed the one-per-class (OPC) ensemble [39], which trains

3 InfoMax was chosen as our ICA algorithm because of its robustness, though other ICA algorithms
could also be applied.
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all the classifiers, each of which predicts the class membership for one class. The
class prediction on a testing instance is decided by voting among all the classifiers.
The results presented here were the average of 10 runs.

• Dataset #1: 2K image dataset. The image dataset was collected from the Corel
Image CDs. Corel images have been widely used by the computer vision, image
processing, and multimedia research communities for conducting various
experiments. This set contains 2K representative images from fourteen categories:
architecture, bears, clouds, elephants, fabrics, fireworks, flowers, food, landscape,
people, textures, tigers, tools, and waves. We tried different kernel functions, kernel
parameters and training/testing ratios. Laplacian kernel with γ = 0.001 and 80%
of the dataset as training data gave us the best results on the experiments of using
raw features. We used the Laplacian kernel with γ = 0.001 for all subsequent
experiments on this 2K image dataset. We randomly picked 80% of images for
training and the remaining 20% were used for testing data. For each image, we
extracted 144 features (documented in [40]) including color and texture features.
This small dataset is used to provide insights into understanding the effectiveness
of our methods, and the tradeoffs between design factors.

• Dataset #2: TREC-2003 Video Track. TREC-2003 video track used 133 h digital
video (MPEG-1) from ABC and CNN news. The task is to detect the presence
of the specified concept in video shots. The ground-truth of the presence of each
concept was assumed to be binary (either present or absent in the data). Sixteen
concepts are defined in the benchmark, including airplane, animal, building, female
speech, madeleine albright, nature vegetation, news subject face, news subject
monologue, NIST non-studio setting, outdoors, people, physical violence, road,
sport event, vehicle, and weather news. The video concept detection benchmark
is summarized as follows: 60% of the video shots were randomly chosen from the
corpus to be used solely for the development of classifiers. The remaining 40%
were used for concept validation.4 RBF kernels with γ = 0.0001 gave us the best
results on the experiments, so we used the same parameter settings in all subsequent
experiments on this video dataset. For each video shot, we extracted a number of
features [4]: color histogram, edge orientation histogram, wavelet texture, color
correlogram, co-occurrence texture, motion vector histogram, visual perception
texture, Mel-frequency Cepstral coefficients, speech, and closed caption.

6.5.1 Evaluation of Modality Analysis

The first set of experiments examined the effectiveness of independent modality
analysis on the 2K image dataset. Table 6.2 compares five methods based on the
classification accuracy results of 14 concepts: original 144 dimensional features

4 IBM research center won most of the best concept models in the final TREC-2003 video concept
competition. For the purpose of comparison, we employed the same training and testing data used
by IBM.
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Table 6.2 Classification
accuracy (%) of image dataset

Category Method 1 Method 2 Method 3 Method 4 Method 5

Architecture 88.00 89.95 90.77 95.38 96.92
Bears 74.70 76.72 75.00 75.00 81.56
Clouds 84.60 87.61 87.27 90.91 92.32
Elephants 83.90 84.67 84.83 87.21 89.91
Fabrics 85.10 85.90 87.22 87.82 87.93
Fireworks 93.50 95.69 94.91 96.46 99.50
Flowers 91.30 95.53 92.21 93.49 95.23
Food 92.20 95.58 93.36 95.76 97.48
Landscape 78.80 72.79 79.48 79.63 81.82
People 82.30 85.50 87.45 86.27 89.36
Textures 96.50 91.62 91.22 95.00 96.30
Tigers 91.50 92.34 91.13 92.64 94.80
Tools 99.50 98.15 96.74 100.00 99.20
Waves 86.10 89.49 84.71 87.27 91.42
Average 87.71 88.82 88.66 90.20 92.70

before any analysis (Method 1), super-kernel fusion using 108 dimensional color
features and 36 dimensional texture features as 2 modalities (Method 2), 58 dimen-
sional features after PCA (Method 3), 58 dimensional features after ICA (Method 4)
and super-kernel fusion after IMG (Method 5).

As shown in the table, treating color and texture as two modalities improved the
accuracy by around 1.0% compared to using raw feature representation. However,
the accuracy was 4.0% lower than super-kernel fusion after IMG. This observa-
tion indicates that improvement can be made by using super-kernel fusion to cover
the inter-dependency relationship between features. Moreover, after analyzing the
statistical relationships between feature dimensions and getting rid of noise, super-
kernel fusion can improve the performance much more. PCA improved accuracy by
around 1.0% compared to the original feature format by reducing noise from fea-
tures. ICA worked better than PCA, improving accuracy by 2.5% compared to the
original feature format. However, the improvement is not significant, compared to the
performance of super-kernel fusion after IMG. Independent modality analysis plus
super-kernel fusion improved classification accuracy around 5.0% compared to the
original feature representation. The result shows that the feature sets from indepen-
dent modality analysis can better interpret the concepts, and super-kernel fusion can
further incorporate information from multiple modalities. Next, we evaluated how
to select optimal D and compared super-kernel fusion with other fusion methods.

6.5.2 Evaluation of Multimodal Kernel Fusion

The second set of experiments evaluated kernel fusion methods of combining mul-
tiple modalities. We grouped the “independent” components after PCA/ICA into
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Table 6.3 Classification
accuracy (%) of image dataset

Category D PC LC SKF

Architecture 2 96.40 96.53 96.92
Bears 2 76.10 75.35 81.56
Clouds 3 82.71 89.77 92.32
Elephants 2 86.11 80.91 89.91
Fabrics 2 85.11 87.46 87.93
Fireworks 2 97.63 99.13 99.50
Flowers 3 82.29 86.14 95.23
Food 2 93.45 89.53 97.48
Landscape 2 77.55 74.24 81.82
People 2 90.71 89.57 89.36
Textures 2 74.51 94.27 96.30
Tigers 3 87.31 95.00 94.80
Tools 2 91.48 94.20 99.20
Waves 2 86.92 82.13 91.42
Average 2.3 86.31 88.16 92.70

independent modalities and trained individual classifiers for each modality. We eval-
uated the effectiveness of multimodal kernel fusion on the 2k-image dataset and
TREC-2003 video benchmark.

The optimal number of independent modalities D was decided by considering
the tradeoff between dimensionality-curse and feature inter-dependency. Once D
had been determined, feature components were grouped using the IMG algorithm
in Sect. 6.3.3. When D = 1, all the feature components were treated as one vector
representation, suffering from the curse of dimensionality. When D became larger,
the curse of dimensionality was alleviated, but inter-modality correlation increased.5

From our 58-dimensional feature data, the optimal modality D is 2 or 3, which enjoys
the highest class-prediction accuracy. Table 6.3 shows the optimal D for different
concepts (the second column).

Next, we compared different fusion models. Table 6.3 compares the
class-prediction accuracy of product combination (PC), linear combination (LC),
and super-kernel fusion (SKF). D indicates the number of independent modalities
that the 58 independent components have been divided into. We found that super-
kernel fusion performed on average 6.5% better than product-combination models
and 4.5% better than linear-combination models. Note that the worst results were
achieved when using the product rule, 2.0% worse than linear-combination models
and 6.5% worse than those of super-kernel fusion. The reason is that if any of the
classifiers reports the correct class a posterior probability as zero, the output will be
zero, and the correct class cannot be identified. Therefore, the final result reported
by the combiner in such cases is either a wrong class (worst case) or a reject (when
all of the classes are assigned zero a posterior probability).

5 The inter-modality correlation for all the D modalities is the summation of inter-modality corre-
lations between every pair of modalities, which is

∑D
i=1 j>i C(Mi , M j ).
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Table 6.4 AP (%) of video
concept detection

Concept IBM PC LC SKF

Airplane 24.93 10.60 23.52 24.31
Animal 6.09 6.75 8.59 8.2
Building 8.02 7.92 4.68 8.42
Female Speech 67.23 49.10 67.23 67.33
Madeleine Albright 47.41 16.54 33.93 43.27
Nature Vegetation 37.84 31.02 33.65 39.39
News Subject Face 8.12 1.37 7.89 7.05
News Subject Mono. 20.41 3.1 8.87 13.48
NIST Non-Studio 69.1 69.65 66.38 69.88
Outdoors 65.16 69.81 53.87 66.16
People 11.82 12.95 16.41 18.91
Physical Violence 3.04 1.06 1.42 1.8
Road 10 7.72 12.42 8.38
Sport Event 48.45 24.20 40.49 52.8
Vehicle 20.81 14.05 15.63 16.54
Weather News 53.64 29.73 53.64 86.7
Average 31.38 22.28 28.04 33.29

Finally, we conducted fusion experiments on the video dataset. For this TREC
video dataset, we got only probability outputs from single-modality classifiers
through IBM. Therefore, we evaluated only fusion schemas on this video dataset.
Table 6.4 compares the best results from IBM (IBM), product combination (PC),
linear combination (LC), and super-kernel fusion (SKF) based on Average Precision
of video concept detection. The numbers of modalities for sixteen concepts ranged
from 2 to 6. Here we chose the NIST Average Precision (the sum of the precision at
each relevant hit in the hitlist divided by the total number of relevant documents in
the collection) as the evaluation criteria. Average Precision (AP) was used by NIST
to evaluate retrieval systems in TREC-2003 video track competition. For TREC-
2003 video track, a maximum of 1,000 entries This number was chosen in the IBM’s
work [4] for evaluation. were returned and ranked according to the highest proba-
bility of detecting the presence of the concept. The ground-truth of the presence of
each concept was assumed to be binary (either present or absent in the data). For
the 16 concepts in TREC-2003 video benchmark, super-kernel fusion performed
around 5.2% better than the linear-combination models on average, 11.3% better
than product-combination models. Super-kernel fusion also performed around 2.0%
better than the best results provided by IBM.

6.5.3 Observations

After our extensive empirical studies on the two datasets, we can answer the questions
proposed at the beginning of this section.
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1. To deal with high-dimensional features from multiple media sources, it is nec-
essary to do statistical analysis to reduce noise and find the most representative
feature-components. Independent modality analysis can improve the effective-
ness of multimedia data analysis by achieving a tradeoff between dimensionality
curse and modality independency.

2. Super-kernel fusion is superior in its performance because its high model com-
plexity can explore inter-dependencies between modalities.

6.6 Concluding Remarks

In this chapter, we have presented a framework of optimal multimodal information
fusion for multimedia data analysis. First, we constructed statistically independent
modalities from the given feature set from multiple media sources. Next, we proposed
super-kernel fusion to learn the optimal combination of multimodal information.
We carefully analyzed the tradeoffs between three design factors that affect fusion
performance: modality independence, curse of dimensionality, and fusion-model
complexity. Empirical studies show that our methods achieved markedly improved
performance on a 2K image dataset and TREC-Video 2003 benchmarks.

This chapter shows a discriminative approach for fusing metadata of multiple
modalities. In Chap. 8, we present a generative approach for conducting multimodal
fusion. A discriminative approach tends to work more effectively, but it is difficult
to interpret its results. On the contrary, a generative approach [41, 42] may have to
rely on an assumed statistical model, but one can explain the yielded relationship
between features and semantics.
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