
Chapter 4
Similarity

Abstract How to account for similarity between two data instances is fundamental
for any data management, retrieval, and analysis tasks. This chapter† shows that
traditional distance functions such as the Minkowski metric and weighted Minkowski
are not effective in accounting similarity. Through mining a large set of visual data,
we discovered a perceptual distance function, which works much more effectively for
finding similar images than the Minkowski family. We call the discovered function
dynamic partial function (DPF). We demonstrate the effectiveness of DPF through
empirical studies and explain why it works better by cognitive theories.

Keywords Cognitive theory · Distance function · DPF · Perceptual similarity

4.1 Introduction

To achieve effective management, retrieval, and analysis, an image/video system
must be able to accurately characterize and quantify perceptual similarity. However,
a fundamental challenge—how to measure perceptual similarity—remains largely
unanswered. Various distance functions, such as the Minkowski metric [2], earth
mover distance [3], histogram Cosine distance [4], and fuzzy logic [5], have been
used to measure similarity between feature vectors representing images (and hence
video frames). Unfortunately, our experiments show that they frequently overlook
obviously similar objects and hence are not adequate for measuring perceptual sim-
ilarity.

† © Springer, 2003. This chapter is a minor revision of the author’s work with Beitao Li and
Yi-Leh Wu [1] published in ACM Multimedia Systems’03. Permission to publish this chapter is
granted under copyright license 2591350681815.
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Quantifying perceptual similarity is a difficult problem. Indeed, we may be
decades away from fully understanding how human perception works (as we have
discussed in Chap. 2). In this chapter, we show how we employed a data-driven
approach to analyze the characteristics of similar data instances, and how that led to
our formulation of a new distance function. Our mining hypothesis is this: suppose
most of the similar data instances can be clustered in a feature space. We can then
claim with high confidence that (1) the feature space can adequately capture the char-
acteristics of those data instances, and (2) the distance function used for clustering
data instances in that feature space can accurately model similarity. Our target task
was to formulate a distance function that can keep similar data instances in the same
cluster, while keeping dissimilar ones away.

We performed our discovery through mining operation in two stages. In the first
stage, we isolate the distance function factor (we used the Euclidean distance) to
find a reasonable feature set. In the second stage, we froze the features to discover
a perceptual distance function that could better cluster similar data instances in the
feature space. We call the discovered function dynamic partial distance function
(DPF). When we empirically compare DPF to Minkowski-type distance functions
in image retrieval, video shot-transition detection, and new-article near-duplicate
detection, DPF performs significantly better.

Similarity is one of the central theoretical constructs in psychology [6, 7], probably
related to human survival instincts. We believe that being able to quantify similarity
accurately must also hold a central place in theories of information management
and retrieval. Our excitement in discovering DPF does not arise merely from the
practical effectiveness we found in three applications. More importantly, we find
that DPF has roots in cognitive psychology. While we will discuss the links between
DPF and some similarity theories in cognitive psychology in Sect. 4.5, let us use an
example to explain both the dynamic and partial aspects. Suppose we are asked to
name two places that are similar to England. Among several possibilities, Scotland
and New England could be two reasonable answers. However, the respects England
is similar to Scotland differ from those in which England is similar to New England.
If we use the shared attributes of England and Scotland to compare England and
New England, the latter pair might not be similar, and vice versa. Objects can be
similar to the query object in different respects. A distance function using a fixed
set of respects cannot capture objects that are similar in different sets of respects.
A distance function for measuring a pair of objects is formulated only after the objects
are compared, not before the comparison is made. The respects for the comparison
are activated in this formulation process. The activated respects are more likely to
be those that can support coherence between the compared objects.

The rest of his chapter is organized as follows:

1. We first show our data mining process to determine a reasonable feature space.
In that feature space, we find distinct patterns of similar and dissimilar images,
which lead to the discovery of DPF.

2. We derive DPF based on the observed patterns, and we provide methods for
finding the optimal settings for the function’s parameters.

http://dx.doi.org/10.1007/978-3-642-20429-6_2
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3. Through case studies, we demonstrate that DPF is very effective in finding images
that have been transformed by rotation, scaling, downsampling, and cropping, as
well as images that are perceptually similar to the query image. Applying DPF to
video shot-transition detection and new-article near-duplicate detection, we show
that DPF is also more effective than the Minkowski metric.

4.2 Mining Image Feature Set

This section depicts how the mining dataset was constructed in three steps: testbed
setup (Sect. 4.2.1), feature extraction (Sect. 4.2.2), and feature selection (Sect. 4.2.3).

4.2.1 Image Testbed Setup

To ensure that sound inferences can be drawn from our mining results, we carefully
construct the dataset. First, we prepare for a dataset that is comprehensive enough
to cover a diversified set of images. To achieve this goal, we collect 60,000 JPEG
images from Corel CDs and from the Internet. Second, we define “similarity” in a
slightly restrictive way so that individuals’ subjectivity can be excluded.1 For each
image in the 60,000-image set, we perform 24 transformations (described shortly),
and hence form 60,000 similar-image sets. The total number of images in the testbed
is 1.5 million.

The 24 image transformations we perform include the following:

1. Scaling.

• Scale up then down. We scale each image up by 4 and 16 times, respectively,
and then scale it back to the original size.

• Scale down then up. We scale each image down by factors of 2, 4, and 8,
respectively, then scale it back to the original size.

2. Downsampling. We downsample each image by seven different percentages:
10–50, 70, and 90%.

3. Cropping. We evenly remove the outer borders to reduce each image by 5%,
10–70%, respectively, and then scale it back up to the original size.

4. Rotation. We rotate each image by 90, 180, and 270◦.

1 We have considered adding images taken under different lighting conditions or with different
camera parameters. We decided not to include them because they cannot be automatically gener-
ated from an image. Nevertheless, our experimental results (see Sect. 4.4) show that the perceptual
distance function discovered during the mining process can be used effectively to find other per-
ceptually similar images. In other words, our testbed consists of a good representation of similar
images, and the mining results (i.e., training results) can be generalized to testing data consisting
of perceptually similar images produced by other methods.
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Table 4.1 Multi-resolution
color feature

Filter name Resolution Representation

Masks Coarse Appearance of culture colors
Spread Coarse Spatial concentration of a color
Elongation Coarse Shape of a color
Histograms Medium Distribution of colors
Average Medium Similarity comparison within

the same culture color
Variance Fine Similarity comparison within

the same culture color

5. Format transformation. We obtain the GIF version of each JPEG image.

4.2.2 Feature Extraction

To describe images, we must find a set of features that can represent those images
adequately. Finding a universal representative feature set can be very challenging,
since different imaging applications may require different feature sets. For instance,
the feature set that is suitable for finding tumors may not be effective for finding
landscape images, and vice versa. However, we believe that by carefully separating
perception from intelligence (i.e., domain knowledge), we can identify meaningful
perceptual features. Chapter 2 shows both model-based and data-driven approaches
for extracting features. We used a data-driven approach in this study to find useful
features from a large set of feature candidates.

Psychologists and physiologists divide the human visual system into two parts:
the perceiving part, and the inference part [8]. The perceiving part receives photons,
converts electrical signals into neuro-chemical signals, and delivers the signals to our
brains. The inference part then analyzes the perceived data based on our knowledge
and experience. A baby and an adult have equal capability for perceiving, but differing
capability for understanding what is perceived. Among adults, specially trained ones
can interpret an X-ray film, but the untrained cannot. In short, the perceiving part
of our visual system is task-independent, so it can be characterized in a domain-
independent manner.

We extract features such as color, shape, and texture from images. In the color
channel, we characterize color in multiple resolutions. We first divide color into
12 color bins including 11 bins for culture colors and one bin for outliers [9]. At
the coarsest resolution, we characterize color using a color mask of 12 bits. To
record color information at finer resolutions, we record nine additional features for
each color. These nine features are color histograms, color means (in H, S and V
channels), color variances (in H, S and V channels), and two shape characteristics:
elongation and spreadness. Color elongation characterizes the shape of a color, and
spreadness characterizes how that color scatters within the image [10]. Table 4.1
summarizes color features in coarse, medium and fine resolutions.

http://dx.doi.org/10.1007/978-3-642-20429-6_2
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Fig. 4.1 Multi-resolution
texture features
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Texture is an important characteristic for image analysis. Studies [11–14] have
shown that characterizing texture features in terms of structuredness, orientation, and
scale (coarseness) fits well with models of human perception. From the wide variety
of texture analysis methods proposed in the past, we choose a discrete wavelet trans-
formation (DWT) using quadrature mirror filters [13] because of its computational
efficiency.

Each wavelet decomposition on a 2D image yields four subimages: a 1
2 × 1

2
scaled-down image of the input image and its wavelets in three orientations:
horizontal, vertical and diagonal. Decomposing the scaled-down image further,
we obtain the tree-structured or wavelet packet decomposition. The wavelet image
decomposition provides a representation that is easy to interpret. Every subimage
contains information of a specific scale and orientation and also retains spatial infor-
mation. We obtain nine texture combinations from subimages of three scales and
three orientations. Since each subimage retains the spatial information of texture,
we also compute elongation and spreadness for each texture channel. Figure 4.1
summarizes texture features.

4.2.3 Feature Selection

Once the testbed is set up and relevant features extracted, we fix the distance function
to examine various feature combinations. For the time being, we employ the Euclid-
ean distance function to quantify the similarity between two feature vectors. We
use the Euclidean function because it is commonly used, and it achieves acceptable
results. (However, we will offer a replacement distance function for the Euclidean
distance in Sect. 4.3.)
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Using different feature combinations, we employ the Euclidean function to find
the distance rankings of the 24 images that are similar to the original image (i.e., the
query image). If a feature set can adequately capture the characteristics of images,
the 24 similar images should be among those closest to the query image. (In an ideal
case, the 24 similar images should be the 24 images closest to the query image.)

Our experiments reveal that when only individual features (e.g., color histograms,
color elongation, and color spreadness) are employed, the distance function cannot
easily capture the similar images even among the top-100 nearest neighbors. For a
top-100 query, all individual features suffer from a dismal recall lower than 30%.
When we combine all color features, the top-100 recall improves slightly, to 45%.
When both color and texture features are used, the recall improves to 60%.

At this stage, we can go in either of two directions to improve recall. One, we can
add more features, and two, we can replace the Euclidean distance function. We will
consider adding additional features in our future work. In this chapter, we focus on
finding a perceptual distance function that improves upon the Euclidean Function.

4.3 Discovering the Dynamic Partial Distance Function

We first examine two most popular distance functions used for measuring image
similarity: Minkowski function and weighted Minkowski function. Building upon
those foundations, we explain the heuristics behind our new distance function—
Dynamic Partial Function (DPF).

4.3.1 Minkowski Metric and its Limitations

The Minkowski metric is widely used for measuring similarity between objects (e.g.,
images). Suppose two objects X and Y are represented by two p dimensional vectors
(x1, x2, . . . , x p) and (y1, y2, . . . , yp), respectively. The Minkowski metric d(X, Y )

is defined as

d(X, Y ) =
( p∑

i=1

|xi − yi |r
) 1

r

, (4.1)

where r is the Minkowski factor for the norm. Particularly, when r is set as 2, it
is the well-known Euclidean distance; when r is 1, it is the Manhattan distance (or
L1 distance). An object located a smaller distance from a query object is deemed
more similar to the query object. Measuring similarity by the Minkowski metric
is based on one assumption: that similar objects should be similar to the query
object in all dimensions. This assumption is true for abstract points in mathematical
space. However, for multimedia objects (e.g., images), this assumption may not hold.
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Human perception of similarity may not strictly follow the rules of mathematical
space [7].

A variant of the Minkowski function, the weighted Minkowski distance func-
tion, has also been applied to measure image similarity. The basic idea is to
introduce weighting to identify important features. Assigning each feature a weight-
ing coefficient wi (i = 1, 2, . . . , p), the weighted Minkowski distance function is
defined as:

dw(X, Y ) =
( p∑

i=1

wi |xi − yi |r
) 1

r

. (4.2)

By applying a static weighting vector for measuring similarity, the weighted
Minkowski distance function assumes that similar images resemble the query images
in the same features. For example, when the function weights color features high and
ignores texture features, this same weighting is applied to all pair-wise distance com-
putation with the query image. We will show shortly that this fixed weighting method
is restrictive in finding similar objects of different kinds.

We can summarize the assumptions of the traditional distance functions as follows:

• Minkowski function. All similar images must be similar in all features.
• Weighted Minkowski function. All similar images are similar in the same way (e.g.,

in the same set of features).

We questioned the above assumptions upon observing how similar objects are
located in the feature space. For this purpose, we carried out extensive data mining
work on a 1.5 M-image dataset introduced in Sect. 4.2. To better discuss our findings,
we introduce a term we have found useful in our data mining work. We define the
feature distance on the i th feature as

δi = |xi − yi |. (i = 1, 2, . . . , p)

The expressions of (4.1) and (4.2) can be simplified into

d(X, Y ) =
( p∑

i=1

δi
r

) 1
r

and dw(X, Y ) =
( p∑

i=1

wiδi
r

) 1
r

.

In our mining work, we first tallied the feature distances between similar images
(denoted as δ+), and also those between dissimilar images (denoted as δ−). Since we
normalized feature values to be between zero and one, the ranges of both δ+ and δ−
are between zero and one. Figure 4.2 presents the distributions of δ+ and δ−. The
x-axis shows the possible value of δ, from zero to one. The y-axis (in logarithmic
scale) shows the percentage of the features at different δ values.

The figure shows that δ+ and δ− have different distribution patterns. The distrib-
ution of δ+ is much skewed toward small values (Fig. 4.2a), whereas the distribution
of δ− is more evenly distributed (Fig. 4.2b). We can also see from Fig. 4.2a that a
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Fig. 4.2 The distributions of feature distances. a similar images, b Dissimilar images

moderate portion of δ+ is in the high value range (≥0.5), which indicates that simi-
lar images may be quite dissimilar in some features. From this observation, we infer
that the assumption of the Minkowski metric is inaccurate. Similar images are not
necessarily similar in all features.

Furthermore, we examined whether similar images resemble the query images in
the same way. We tallied the distance (δ+) of the 144 features for different kinds of
image transformations. Figure 4.3 presents four representative transformations: GIF,
cropped, rotated, and scaled. The x-axis of the figure depicts the feature numbers,
from 1 to 144. The first 108 features are various color features, and the last 36
are texture features. The figure shows that various similar images can resemble the
query images in very different ways. GIF images have larger δ+ in color features (the
first 108 features) than in texture features (the last 36 features). In contrast, cropped
images have larger δ+ in texture features than in color features. For rotated images,
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Fig. 4.3 The average feature distances. a Gif images b Cropped images c Rotational images
d Scaled images

the δ+ in colors comes close to zero, although its texture feature distance is much
greater. A similar pattern appears in the scaled and the rotated images. However, the
magnitude of the δ+ of scaled images is very different from that of rotated images.
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Our observations show that the assumptions made by the Minkowski and weighted
Minkowski function are questionable.

1. Similar images do not resemble the query images in all features. Figure 4.2 shows
that similar images different from a query image in many respects.

2. Images similar to the query images can be similar in differing features. Figure 4.3
shows that some images resemble the query image in texture, others in color.

The above observations not only refute the assumptions of Minkowski-type dis-
tance functions, but also provide hints as to how a good distance function would
work. The first point is that a distance function does not need to consider all features
equally, since similar images may match only some features of the query images.
The second point is that a distance function should weight features dynamically,
since various similar images may resemble the query image in differing ways. These
points lead to the design of the dynamic partial distance function.

4.3.2 Dynamic Partial Distance Function

Based on the observations explained above, we designed a distance function to better
represent the perceptual similarity. Let δi = |xi − yi |, for i = 1, 2, . . . , p. We first
define sets �m as

�m = {The smallest m δ′s of (δ1, . . . , δp)}.
Then we define the DPF as

d(m, r) =
⎛
⎝ ∑

δi ∈�m

δi
r

⎞
⎠

1
r

. (4.3)

DPF has two adjustable parameters: m and r . Parameter m can range from 1 to p.
When m = p, it degenerates to the Minkowski metric. When m < p, it counts only
the smallest m feature distances between two objects, and the influence of the (p−m)

largest feature distances is eliminated. Note that DPF dynamically selects features
to be considered for different pairs of objects. This is achieved by the introduction
of �m , which changes dynamically for different pairs of objects. In Sect. 4.4, we
will show that if a proper value of m is chosen, it is possible to make similar images
aggregate more compactly and locate closer to the query images, simultaneously
keeping the dissimilar images away from the query images. In other words, similar
and dissimilar images are better separated by DPF than by earlier methods.

The idea employed by DPF can also be generalized to improve the weighted
Minkowski distance function. We modify the weighted Minkowski distance by defin-
ing the weighted DPF as

dw(m, r) =
⎛
⎝ ∑

δi ∈�m

wiδi
r

⎞
⎠

1
r

. (4.4)
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In Sect. 4.4, we will show that DPF can also improve the retrieval performance of
the weighted Minkowski distance function.

4.3.3 Psychological Interpretation of Dynamic Partial
Distance Function

The Just Noticeable Difference (JND) is the smallest difference between two stimuli
that a person can detect. B. Goldstein [15] uses the following example to illustrate
the JND: A person can detect the difference between a 100 g weight and a 105 g
weight but cannot detect a smaller difference, so the JND for this person is 5 g. For
our purpose, we introduce a new term. The term is just not the same (JNS). Using
the same weight example, we may say that a 100 g weight is just not the same as a
weight that is more than 120 g. So the JNS is 20 g. When the weight is between 105
and 120 g, we say that the weight is similar to a 100 g weight (to a degree).

Now, let us apply JND and JNS to our color perception. We can hardly tell the
difference between deep sky blue (whose RGB is 0,191,255) and dodger blue (whose
RGB is 30,144,255). The perceptual difference between these two colors is below
JND. On the other hand, we can tell that blue is different from green, and yellow is
different from red. In both cases, the colors are perceived as JNS.

For an image search engine, JND and JNS indicate that using Euclidean distance
for measuring color difference may not be appropriate. First, JND reveals that when
the difference between two colors is insignificant, the two colors are perceived as
the same. Second, JNS reveals that when the difference is significant, we say two
colors are not the same, and it may not be meaningful to account the full magnitude
of difference. (E.g., saying that blue is more different from red than from green is
meaningless for our purpose.)

The JND and JNS values for each feature can be obtained only through extensive
psychological experiments. Moreover, different people may have different subjective
values of JND and JNS. Being aware of the practical difficulty of obtaining exact
values of JND and JNS for each feature, DPF addresses this issue reasoning as
follows:

• JND is not vital for designing a perceptual distance function, since a feature dis-
tance below JND usually is very small and has little effect on the aggregated
distance. It does not make much difference to consider it as zero or as a small
value.

• JNS is vital for designing a perceptual distance function. A feature distance greater
than JNS can introduce significant noise on the aggregated distance.

Though it is difficult to obtain the exact value of JNS for each feature, DPF
circumvents this difficulty by taking a probabilistic view: the largest (p −m) feature
distances are likely to exceed their JNS values. Removing the (p−m) largest feature
distances from the final aggregated distance between objects can reduce the noise
above JNS. First, the distances of the (p − m) features are all scaled back to their
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respective JNS. Second, removing these JNS from the aggregated distance does not
affect the relative distance between objects.

In short, DPF considers only the m smallest feature distances and does not count
the (p − m) largest feature distances. In this sense, DPF provides a good approxi-
mation to consider JND and JNS.

4.4 Empirical Study

We conducted an empirical study to examine the effectiveness of DPF. Our experi-
ments consisted of three parts.

1. We compared DPF with the Euclidean distance function and L1 distance function,
the most widely used similarity functions in image retrieval. We also compared
DPF with the histogram Cosine2 distance function, which is also commonly used
in information retrieval [4, 16] (Sect. 4.4.1).

2. We tested whether DPF can be generalized to video shot-transition detection, the
foundation of video analysis and retrieval applications (Sect. 4.2.2).

3. We experimented DPF with a set of news articles to identify near-duplicates.
4. In addition to the unweighted versions, we also examined whether the weighted

DPF is effective for enhancing the performance of the weighted Minkowski dis-
tance function (Sect. 4.4.4).

4.4.1 Image Retrieval

Our empirical study of image retrieval consisted of two parts: training and testing.
In the training part, we used the 1.5M-image dataset to predict the optimal m value
for DPF. In the testing part, we set DPF with the optimal m value, and tested it on
an independently constructed 50K-image dataset to examine its effectiveness.

4.4.1.1 Predicting m Through Training

The design goal of DPF is to better separate similar images from dissimilar ones. To
meet this design goal, we must judiciously select parameter m. (We take the Euclidean
distance function as the baseline, thus we set r = 2 for both DPF and the Minkowski
distance function.) Alternatively, we can set a JND threshold for selecting features

2 The Cosine metric computes the direction difference between two feature vectors. Specifically,
given two feature vectors x and y, the Cosine metric is given as

D = 1 − xT y
|x||y| .
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Fig. 4.4 Training for the
optimal m value
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to be considered by DPF. If we find enough number of features between two images
having a difference below JND, we can say the pair to be similar. One advantage of
the threshold method is that the value of m is also pairwise dependent. Please see
[17] for this threshold method.

To find the optimal m value, we used the 60,000 original images to perform queries.
we applied DPF of different m values to the 1.5 M-image dataset. The 24 images
with the shortest distance from each query image were retrieved. For each of the
five similar-image categories (i.e., GIF, cropped, downsampled, rotated, or scaled),
we observed how many of them failed to appear in the top-24 results. Figure 4.4
presents the average rate of missed images for each similar-image category. The
figure shows that when m is reduced from 144 to between 110 and 118, the rates
of missing are near their minimum for all five similar-image categories. (Note that
when m = 144, DPF degenerates into the Euclidean function.) DPF outperforms the
Euclidean distance function by significant margins for all similar-image categories.

To investigate why DPF works effectively when m is reduced, we tallied the dis-
tances from these 60,000 queries to their similar images and their dissimilar images,
respectively. We then computed the average and the standard deviation of these dis-
tances. We denote the average distance of the similar images to their queries as μ+

d , of
the dissimilar images as μ−

d . We denote the standard deviation of the similar images’
distances as σ+

d , of the dissimilar images as σ−
d .

Figure 4.5 depicts the effect of m (in the x-axis) on μ+
d , μ−

d , σ+
d , and σ−

d .

Figure 4.5a shows that as m becomes smaller, both μ+
d and μ−

d decrease. The
average distance of similar images (μ+

d ), however, decreases at a faster pace than
that of dissimilar images (μ−

d ). For instance, when we decrease m from 144 to 130,
μ+

d decreases from 1.0 to about 0.3, a 70% decrease, whereas μ−
d decreases from 3.2

to about 2.0, a 38% decrease. This gap indicates μ+
d is more sensitive to the m value

than μ−
d . Figure 4.5b shows that the standard deviations σ+

d and σ−
d observe the

same trend as the average distances do. When m decreases, similar images become
more compact in the feature space at a faster pace than dissimilar images do.

To provide more detailed information, Fig. 4.6 depicts the distance distributions
at four different m values. Figure 4.6a shows that when m = 144, a significant
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Fig. 4.5 The effect of DPF.
a Average of distances,
b Standard deviation of
distances
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overlap occurs between the distance distributions of similar and dissimilar images
to the query images. (When m = 144, DPF degenerates to the Euclidean function.)
In other words, many similar images and dissimilar images may reside about the
same distance from their query image, which causes degraded search performance.
When we decrease m to 124, Fig. 4.6b shows that both distributions shift toward
the left. The distribution of similar images becomes more compact, and this leads
to a better separation from dissimilar images. Further decreasing the m value moves
both distributions leftward (as shown in Figs. 4.6c, d). When little room is left for the
distance distribution of similar images to move leftward, the overlap can eventually
increase. Our observations from these figures confirm that we need to find the optimal
m value to achieve best separation for similar and dissimilar images.

4.4.1.2 Testing DPF

We tested our distance functions on a dataset that was independently constructed
from the 1.5M-image dataset used for conducting mining and parameter training.
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Fig. 4.6 Distance distributions versus m. a m = 144, b m = 124, c m = 104, d m = 84

The test dataset consisted of 50K randomly collected World Wide Web images.
Among these images we identified 100 images as query images. For each query
image, we generated 24 similar images using the transformation methods described
in Sect. 4.2. We also visually identified three perceptually similar images for each
query image. (See Fig. 4.7. for examples of visually-identified similar images).

We conducted 100 queries using the 100 query images. For each query, we
recorded the distance ranks of its similar images. For DPF, we fixed m value as
114 based on the training results in Sect. 4.4.1.1. Figure 4.8 depicts the experimental
results. The precision-recall curves in the figure show that the search performance of
DPF is significantly better than the other traditional distance functions. For instance,
to achieve a recall of 80%, the retrieval precision of DPF is 84%, whereas the preci-
sion of the L1 distance, the Euclidean distance, and the histogram Cosine distance
is 70, 50, and 25%, respectively.

We were particularly interested in the retrieval performance of the visually iden-
tified similar images, which were not included into the training-image dataset.
Figure 4.9. compares the retrieval performance of DPF and traditional distances for
the visually identified similar images. The precision-recall curves indicate that, even
though the visually identified similar images were not included in the training-image
dataset, DPF could still find them effectively in the testing phase. This indicates that
the trained DPF parameters can be generalized to find similar images produced by
methods other than those for producing the training dataset.
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Fig. 4.7 Three perceptually similar images

Fig. 4.8 Precision/recall for
similar images
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4.4.2 Video Shot-Transition Detection

To further examine the generality of the DPF, we experimented DPF in another
application—video shot-transition detection. Our video dataset consisted of 150
video clips which contained thousands of shots. The videos covered the following
subjects:

• Cartoon: 30 clips, each clip lasting for 50 s (from commercial CDs).
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Fig. 4.9 Precision/recall for
visually identified similar
images
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• Comedy: 50 clips, each lasting for up to 30 s.
• Documentary: 70 clips, each lasting for 2–5 min [18].

For characterizing a frame, we extracted the same set of 144 features for
each frame, since these features can represent images to a reasonable extent. Our
experiments had two goals. The first was to find the optimal parameter m settings
for DPF (Sect. 4.4.2.1). The second was to compare the shot detection accuracy
between employing DPF and employing the Minkowski metric as the inter-frame
distance function (Sect. 4.4.2.2).

4.4.2.1 Parameter m

We fixed r = 2 in our empirical study. Then we took a machine learning approach
to train the value of m. We sampled 40% of the video clips as the training data to
discover a good m. We then used the remaining 60% of video clips as testing data to
examine the effectiveness of the learned m.

In the training phase, we labeled the accurate positions of shot boundaries. We then
experimented with different values of m on three video datasets (cartoon, comedy, and
documentary). Figure 4.10. shows that for all three video types, the false detection
rates are reduced to a minimum as m is reduced from 144 to between 115 and
120. (Recall that when m = 144, DPF degenerates into the Minkowski distance
function.) It is evident that the Minkowski distance function is not the best choice
for our purpose.

4.4.2.2 DPF Versus Minkowski

We next compared two inter-frame distance functions, DPF and Euclidean, on the
testing data. For DPF, we set m = 117 based on the training results in Sect. 4.4.2.1.
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Fig. 4.10 Optimal m
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Table 4.2 Precision and recall

Distance functions Video type Comedy Cartoon Documentary
# of Shot Boundaries 425 167 793

Euclidean # of false 93 39 192
# of miss 97 37 183
Precision (%) 78.1% 76.6% 75.8%
Recall (%) 77.2% 77.8% 76.9%

DPF # of false 61 26 140
# of miss 67 25 129
Precision (%) 85.6% 84.4% 82.3%
Recall (%) 84.2% 85.0% 83.7%

Fig. 4.11 Overall precision
and recall comparison

Table 4.2 shows that DPF improves the detection accuracy over the Euclidean dis-
tance function on both precision and recall for all video categories. The average
improvement as shown in Fig. 4.11 is about 7% in both recall and precision. In other
words, for every 100 shot transitions to be detected, DPF makes seven fewer detection
errors, a marked improvement.

Figure 4.12 illustrates why DPF can better detect shot boundaries than Euclidean
distance, from the signal/noise ratio perspective. The x-axis of the figure depicts the
frame number; the y-axis depicts the inter-frame distance between the ith and the
(i + 1)th frames. We mark each real shot boundary with a circle and a false detection
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Fig. 4.12 Euclidean versus DPF. a Euclidean, b DPF

with a cross. Figure 4.12a shows that the Euclidean distance function identified four
shot boundaries, in which the left-most one was a false positive. Figure 4.12b shows
that DPF separates the distances between shot boundaries and non-boundaries better,
and hence eliminates the one mis-detection. DPF improves the signal/noise ratio, and
therefore, it is more effective in detecting shot transitions.

4.4.3 Near Duplicated Articles

A piece of news is often quoted or even included by several articles. For instance,
a piece of new released by the Reuters may be included in some Blogger posts.
A search engine would like to cluster all near-duplicated articles and present them
together to avoid information redundancy.

We compared two distance functions on Google News in 2006. Between DPF and
a hashing algorithm very similar to LSH, DPF outperforms the hash algorithm by
about 10% in both precision and recall. However, since the computation complexity
of hashing is linear but DPF quadratic. When the number of candidate articles is very
large, DPF encounters scalability problem. To deal with this practical deployment
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Fig. 4.13 Comparison of
weighted functions
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challenge, the work of Dyndex [19] proposes an approximate indexing method to
speed up similar-instance lookup. The basic idea is to ignore the non-metric nature of
DPF, or using the full Euclidean space to perform indexing. A lookup is performed in
the Euclidean space. Though precision/recall may be degraded, this approximation
compromises slightly degraded accuracy for speedup. For details, please consult
reference GohLC02.

4.4.4 Weighted DPF Versus Weighted Euclidean

We were also interested in applying weighted DPF to improve the weighted
Minkowski distance function, which has been used extensively to personalize simi-
larity measures. For weighted Minkowski distance, a weighting vector is learned for
each query. Usually, the weight of a feature is set as the inverse of the variance of
its values among similar images. Here, we allowed the weighted Euclidean distance
function to work under the ideal condition—that is, it knows all similar images a
priori and can compute the ideal weighting vector for each query. Figure 4.13 shows
that the weighted Euclidean function outperforms its unweighted counterpart. This
result confirms that the weighted version [20, 21] is indeed a better choice than the
unweighted version (provided that the appropriate weighting can be learned). How-
ever, there is still much room for improvement. When we applied weighted DPF
using the same weighting vector, its retrieval performance was better than that of the
weighted Euclidean distance function. For instance, at 80% recall rate, the retrieval
precision of the weighted Euclidean distance is about 68%, whereas the weighted
DPF could achieve a precision of above 85%. Again, our empirical study shows that
the generalized form of DPF, weighted DPF, can be used to markedly enhance the
weighted Minkowski distance for measuring image similarity.
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4.4.5 Observations

We summarize the results of our experiments as follows:

1. DPF is more effective than some most representative distance functions used
in the CBIR community (e.g., Minkowski-like and histogram Cosine distance
functions) for measuring image similarity and for detecting shot transitions.

2. The weighted version of DPF outperforms the weighted version of the Euclidean
distance function.

3. We believe that DPF can be generalized to find similar images of some other
ways, and that DPF can be effective when a different set of low-level features are
employed. Our belief is partially supported by our empirical results, and partially
justified by similar theories in cognitive science, which we discuss next.

4.5 Related Reading

Similarity is one of the most central theoretical constructs in psychology [6, 7].
Its also plays a central role in information categorization and retrieval. Here we
summarize related work in similarity distance functions. Using our experimental
results, together with theories and examples in cognitive psychology, we explain why
DPF works effectively as we discuss the progress of the following three similarity
paradigms in cognitive psychology.

1. Similarity is a measure of all respects. As we discussed in Sect. 4.3, a Minkowski-
like metric accounts for all respects (i.e., all features) when it is employed to
measure similarity between two objects. Our mining result shown in Fig. 4.2. is
just one of a large number of counter-examples demonstrating that the assumption
of the Minkowski-like metric is questionable. The psychology studies of [6, 7]
present examples showing that the Minkowski model appears to violate human
similarity judgements.

2. Similarity is a measure of a fixed set of respects. Substantial work on similarity
has been carried out by cognitive psychologists. The most influential work is per-
haps that of Tversky [7], who suggests that similarity is determined by matching
features of compared objects, and integrating these features by the formula

S(A, B) = θ f (A ∩ B) − α f (A − B) − β f (B − A). (4.5)

The similarity of A to B, S(A, B), is expressed as a linear combination of the
common and distinct features. The term (A ∩ B) represents the common features
of A and B. (A − B) represents the features that A has but B does not; (B − A)

represents the features that B has but A does not. The terms θ, α, and β reflect
the weights given to the common and distinctive components, and function f is
often assumed to be additive [6] The weighted Minkowski function [22] and the
quadratic-form distances [23, 24] are the two representative distance functions
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that match the spirit of (4.5). The weights of the distance functions can be learned
via techniques such as relevance feedback [20, 22], principal component analysis,
and discriminative analysis [25]. Given some similar and some dissimilar objects,
the weights can be adjusted so that similar objects can be better distinguished from
other objects.

3. Similarity is a process that provides respects for measuring similarity Murphy
and Medin [26] provide early insights into how similarity works in human per-
ception: "The explanatory work is on the level of determining which attributes
will be selected, with similarity being at least as much a consequence as a cause
of a concept coherence.” Goldstone [27] explains that similarity is the process
that determines the respects for measuring similarity. In other words, a distance
function for measuring a pair of objects is formulated only after the objects are
compared, not before the comparison is made. The respects for the comparison
are activated in this formulation process. The activated respects are more likely
to be those that can support coherence between the compared objects.

With those paradigms in mind, let us re-examine how DPF works. DPF acti-
vates different features for different object pairs. The activated features are those
with minimum differences—those which provide coherence between the objects. If
coherence can be maintained (because sufficient a number of features are similar),
then the objects paired are perceived as similar. Cognitive psychology seems able to
explain much of the effectiveness of DPF.

4.6 Concluding Remarks

We have presented DPF, its formulation via data mining and its explanation in cog-
nitive theories. There are several avenues to improve DPF. First, the activation of
respects is believed to be context-sensitive [28–30]. Also, certain respects may be
more salient than others, and hence additional weighting factors should be consid-
ered. In Chap. 5 we discuss how weights can be learned from user feedback via some
supervised approach. As we discussed in the chapter, the parameters of DPF can be
learned using a threshold method, and the quadratic nature of DPF can be alleviated
through an approximate indexing scheme. For details, please consult [17, 19].
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