
Chapter 12
Speeding Up Latent Dirichlet Allocation with
Parallelization and Pipeline Strategies

Abstract Previous methods of distributed Gibbs sampling for latent Dirichlet allo-
cation (LDA) run into either memory or communication bottleneck. To improve scal-
ability, this chapter† presents two strategies: (1) parallelization—carefully assigning
documents among processors based on word locality, and (2) pipelining—masking
communication behind computation through a pipeline scheme. In addition, we
employ a scheduling algorithm to ensure load balancing both spatially (among
machines) and temporally. Experiments show that our strategies can significantly
reduce the unparallelizable communication bottleneck and achieve good load bal-
ancing, and hence improve LDA’s scalability.

Keywords Latent Dirichlet allocation · Pipeline processing · Data placement ·
Distributed systems

12.1 Introduction

Latent Dirichlet allocation (LDA) was first proposed by Blei et al. to model docu-
ments [2]. Each document is modeled as a mixture of K latent topics, where each
topic, k, is a multinomial distribution Vφk over a W-word vocabulary. For any doc-
ument d j , its topic mixture Vθ j is a probability distribution drawn from a Dirichlet
prior with parameter α. For each i th word xi j in d j , a topic zi j = k is drawn from
Vθ j , and xi j is drawn from Vφk . The generative process for LDA is thus given by

θ j ∼ Dir(α), φk ∼ Dir(β), zi j = k ∼ θ j , xi j ∼ φk, (12.1)
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Fig. 12.1 The graphical
model for LDA

where Dir(∗) denotes Dirichlet distribution. The graphical model for LDA is illus-
trated in Fig. 12.1, where the observed variables, i.e., words xi j and hyper parameters
α and β, are shaded.

The computation complexity of Gibbs sampling is K multiplied by the total
number of word occurrences in the training corpus. Prior work has explored multiple
alternatives for speeding up LDA, including both parallelizing LDA across multiple
machines and reducing the total amount of work required to build an LDA model.
Three representative distributed LDA algorithms are Dirichlet compound multino-
mial LDA (DCM-LDA) [3], approximate distributed LDA (AD-LDA) [4], and asyn-
chronous distributed LDA (AS-LDA) [5], which all parallelize Gibbs sampling on
distributed machines. These algorithms suffer from either high communication cost
or long convergence time (an approximate method reduces communication time but
increases number of Gibbs sampling iterations). In this chapter, we present PLDA+
[1], which uses distributed data-placement and pipeline strategies to reduce the com-
munication bottleneck. The distributed data placement strategy aims to first separate
CPU-bound tasks and communication-bound tasks onto two sets of machines. It then
ensures that both computation and communication loads can be balanced among par-
allel machines. The pipeline strategy aims to mask communication time by compu-
tation time; and hence the communication bottleneck can be reduced. Experiments
show that the strategies of PLDA+ can significantly improve scalability of LDA over
our initial attempt at Google [6].

The rest of the chapter is organized as follows: we first present LDA and related
distributed algorithms in Sect. 12.2. In Sect. 12.3 we present AD-LDA and explain
how it works via a simple example. In Sect. 12.4 we analyze the bottleneck of
AD-LDA. Sections 12.4.3 and 12.4.4 depict PLDA+ in details. Section 12.5 demon-
strates that the speedup of PLDA+ on large-scale document collections significantly
outperforms AD-LDA. In Sect. 12.6 we introduce two large-scale applications of
distributed LDA. Finally, we discuss future research plans in Sect. 12.7. For the con-
venience of readers, we summarize the notation used in this chapter in Table 12.1.



12.2 Related Reading 261

Table 12.1 Symbols
associated with LDA used in
this chapter

D Number of documents
T Number of topics
W Vocabulary size
N Number of words in the corpus
xi j The i th word in d j document
zi j Topic assignment for word xi j

Ck j Number of topic k assigned to d j document
Cwk Number of word w assigned to topic k
Ck Number of topic k in corpus
Cdoc Document-topic count matrix
Cword Word-topic count matrix
C topic Topic count matrix
Vθ j Probability of topics given document d j

Vφk Probability of words given topic k
α Dirichlet prior
β Dirichlet prior
P Number of processors
Pw Number of Pw processors
Pd Number of Pd processors

pi The i th processor

12.2 Related Reading

According to the generative process of LDA shown in (12.1), the full joint distribution
over all parameters and variables is

p(Vx, Vz, Vθ, Vφ|α, β) = p(Vφ|β)

D∏

j=1

p(Vθ j |α)

N j∏

i=1

p(xi j |Vφ, zi j )p(zi j |Vθ j ), (12.2)

where Vx = {xi j } is the observed word occurrences in D documents, Vz = {zi j } is
the assigned latent topics to words Vx and N j the number of word occurrences in
document d j . Similar to most previous work, we use symmetric Dirichlet priors in
LDA for simplicity. Given the observed words Vx, the task of inference for LDA
is to compute the posterior distribution of the latent topic assignments Vz, the topic
mixtures of documents Vθ, and the topics Vφ.

Blei et al. [2] proposed using a variational expectation maximization (VEM)
algorithm for obtaining maximum-likelihood estimate of � from V. This algorithm
iteratively executes an E-step and an M-step, where the E-step infers the topic distrib-
ution of each training document, and the M-step updates model parameters using the
inference result. Unfortunately, this inference is intractable, so variational Bayes is
used in the E-step for approximate inference. Minka and Lafferty proposed a compa-
rable algorithm [7], which uses another approximate inference method, expectation
propagation (EP), in the E-step.

Griffiths and Steyvers [8] proposed using Gibbs sampling, a Markov-chain Monte
Carlo method, to perform inference for LDA. By assuming a Dirichlet prior, β, Vφ
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can be integrated (hence removed from the equation) using the Dirichlet-multinomial
conjugacy. MCMC is widely used as an inference method for latent topic models,
e.g., Author-topic model [9], Pachinko allocation [10], and special words with back-
ground model [11]. Moreover, since the memory requirement of VEM is not nearly
as scalable as that of MCMC [12], most existing distributed methods for LDA use
Gibbs sampling for inference, e.g., DCM-LDA [3], AD-LDA [4], and AS-LDA [5].
In this chapter, we thus focus on Gibbs sampling for approximate inference. In Gibbs
sampling, it is usual to integrate out the mixtures θ and topics φ and just sample the
latent variables z. The process is called collapsing. When performing Gibbs sam-
pling for LDA, we maintain two matrices: word-topic count matrix Cword in which
each element Cwk is the number of word w assigned to topic k, and document-topic
count matrix Cdoc in which each element Ckj is the number of topic k assigned to d j

document. Moreover, we maintain a topic count vector C topic in which each element
Ck is the number of topic k assignments in document collection. Given the current
state of all but one variable zi j , the conditional probability of zi j is

p(zi j = k|z¬i j , x¬i j , xi j = w, α, β) ∝ C¬i j
wk + β

C¬i j
k +Wβ

(
C¬i j

k j + α
)

, (12.3)

where ¬i j means that the corresponding word is excluded in the counts. Whenever
zi j is assigned to a new topic drawn from (12.3), Cword, Cdoc and C topic are updated.
After enough sampling iterations to burn in the Markov chain, Vθ and Vφ can be
estimated by

θk j = Ckj + α
∑T

k=1 Ckj + T α
, and (12.4)

φwk = Cwk + β
∑W

w=1 Cwk +Wβ
, (12.5)

where θk j indicates the probability of topic k given document j, and φwk indicates
the probability of word w given topic k. Griffiths and Steyvers conducted an empir-
ical study of VEM, EP and Gibbs sampling and the comparison shows that Gibbs
sampling converges to a known ground-truth model more rapidly than either VEM
or EP [8].

12.2.1 LDA Performance Enhancement

The computation complexity of Gibbs sampling is K multiplied by the total number
of word occurrences in the document collection. Prior work has explored multiple
alternatives for speeding up LDA, including both parallelizing LDA across multiple
processors and reducing the total amount of work required to build an LDA model.
Relevant distributed methods for LDA include:
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• Nallapati et al. [13] and Wolfe et al. [14] both reported distributed computing of
the VEM algorithm for LDA [2].

• Mimno and McCallum proposed DCM-LDA [3], where the data sets are distrib-
uted to processors, Gibbs sampling is performed in each processor independently
without any communication between processors, and finally a global clustering of
the topics is performed.

• Newman et al. [4] proposed AD-LDA, where each processor performs a local Gibbs
sampling iteration followed by a global update using a reduce-scatter operation.
Since the Gibbs sampling in each processor is performed with the local word-
topic matrix, which is only updated at the end of each iteration, it is named with
approximate distributed LDA.

• An asynchronous distributed learning algorithm of LDA was proposed in [5],
where no global synchronization step like that in [4] is required. Each processor
performs a local Gibbs sampling step followed by a step of communicating with
other random processors. We name this method as AS-LDA.

In addition to these parallelization techniques, the following optimizations can
reduce LDA model learning times by reducing the total computational cost:

• Gomes et al. [15] presented an enhancement of the VEM algorithm using a bounded
amount of memory.

• Porteous et al. [16] proposed a method to accelerate the computation of (12.3).
The acceleration is achieved by no approximations but using the property that the
topic probability vectors for document d j , Vθ j , are sparse in most cases.

12.3 Approximate Distributed LDA

Before introducing PLDA+, let us review our prior implementation [6] of the
AD-LDA algorithm [4]. We present the algorithm’s dependency on the collective
communication operation, AllReduce, and how to express the AD-LDA algorithm in
the model of MPI. AD-LDA serves as the performance yardstick of PLDA+.

12.3.1 Parallel Gibbs Sampling and AllReduce

AD-LDA distributes D training documents over P processors, with Dp = D/P docu-
ments on each processor. AD-LDA partitions document content Vx = {Vxd}Dd=1 into
{Vx|1, . . . , Vx|P } and the corresponding topic assignments Vz = {Vzd}Dd=1 into
{Vz|1, . . . , Vz|P }, where Vx|p and Vz|p exist only on processor p. Document-topic
count matrix, Cdoc, are likewise distributed. We denote the document-topic count
matrix on processor p as Cdoc|p . Each processor maintains its own copy of word-topic

count matrix, Cword. Moreover, AD-LDA uses Cword|p to temporarily store word-topic
counts accumulated from local documents’ topic assignments on each processor.
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In each Gibbs sampling iteration, each processor p updates Vz|p by sampling
every zi j |p ∈ Vz|p from the approximate posterior distribution:

p(zi j |p = k | Vz¬i j , Vx¬i j , xi j |p = w) ∝ C¬i j
wk + β

C¬i j
k +Wβ

(
C¬i j

jk|p + α
)

, (12.6)

and updates Cdoc|p and Cword|p according to the new topic assignments. After each

iteration, each processor recomputes word-topic counts of its local documents Cword|p
and uses the AllReduce operation to reduce and broadcast the new Cword to all
processors.

12.3.2 MPI Implementation of AD-LDA

Our AD-LDA implementation [6] uses MPI [17] to parallelize LDA learning. The
MPI model supports AllReduce via an API function:

int MPI_Allreduce (void ∗sendbuf, void ∗recvbuf, int

count, MPI_Datatype datatype, MPI_Op op);
When a worker, meaning a thread or a process that executes part of the parallel

computing job, finishes sampling, it shares topic assignments and waits for AllReduce
by invoking MPI_Allreduce, where sendbuf points to word-topic counts of its local
documents: a vector of count elements with type datatype. The worker sleeps until
the MPI implementation finishes AllReduce and the results are in each worker’s buffer
recvbuf. During the reduction process, word-topic counts vectors are aggregated
element-wise by the addition operation op explained in Sect. 12.3.1.

Figure 12.2 presents the detail of MPI implementation for AD-LDA. The algo-
rithm first attempts to load checkpoints Vz|p if a machine failure took place and
the computation is in the recovery mode. The procedure then performs initialization
(lines 5–9), where for each word, its topic is sampled from a uniform distribution.
Next, Cdoc|p and Cword|p can be computed from the histogram of Vz|p (line 11). To

obtain Cword, the algorithm invokes MPI_Allreduce (line 12). In the Gibbs sampling
iterations, each word’s topic is sampled from the approximate posterior distribution
(12.6) and Cword|p and Cdoc|p is updated accordingly (lines 14 to 18). At the end of

each iteration, the algorithm checkpoints Vz|p (line 20) and recomputes Cword|p (line

21). Using Cword|p , the algorithm perform global MPI_AllReduce to obtain up-to-

date Cword for the next iteration (line 22). After a sufficient number of iterations, the
“converged” LDA model is outputted by the master (line 24).

Different MPI implementations may use different AllReduce algorithms. The
state-of-the-art is the recursive doubling and halving (RDH) algorithm presented
in [17], which was used by many MPI implementations including the well known
MPICH2. RDH includes two phases: Reduce-scatter and All-gather. Each phase runs
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Fig. 12.2 The MPI implementation of AD-LDA

a recursive algorithm, and in each recursion level, workers are grouped into pairs
and exchange data in both directions. This algorithm is particularly efficient when
the number of workers is a power of two, because no worker would be idle during
communication.

RDH provides no facilities for fault recovery. In order to provide fault-recovery
capability in AD-LDA, the worker state can be check-pointed before AllReduce.
This ensures that when one or more processors fail in an iteration, the algorithm
can roll back all workers to the end of the most recent succeeded iteration, and
restart the failed iteration. The checkpointing code is executed immediately before
the invocation of MPI_Allreduce in AD-LDA. In practice, only Vz|p is flushed onto
the disk, because Vx|p can be reloaded from data set, Cdoc|p and Cword can also be
recovered from the histogram of Vz|p. The recovery code is at the beginning of
AD-LDA: if there is a checkpoint on the disk, load it; otherwise perform random
initialization.
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Fig. 12.3 The assignments
of documents and word-topic
count matrix for AD-LDA
and PLDA+

12.4 PLDA+

To further speed up AD-LDA [4], PLDA+ algorithm employs distributed data place-
ment and pipeline processing strategies.

12.4.1 Reduce Bottleneck of AD-LDA

As presented in the previous section, in our AD-LDA implementation [6], D docu-
ments are distributed over P processors with approximately D/P documents on each
processor. This is shown with a D/P-W matrix in Fig. 12.3a, where W indicates the
vocabulary of the collection of documents. The word-topic count matrix is also dis-
tributed, with each processor keeping a local copy, which is the W-K matrix in the
figure.

In AD-LDA, after each iteration of Gibbs sampling, local word-topic counts on
each machine are globally synchronized. This synchronization process is expensive
partly because a large amount of data is sent and partly because the synchronization
starts only when the slowest machine has completed its work. To avoid unnecessary
wait, AS-LDA does not perform global synchronization like AD-LDA. AS-LDA
only synchronizes word-topic counts with its neighbors. However, since word-topic
counts can be outdated, the sampling process may take a larger number of iterations
than that AD-LDA takes to converge. Figure 12.4 illustrates the spread patterns of
the updated topic distribution of a word from one processor to the others. AD-LDA
has to synchronize all word updates after one full Gibbs sampling iteration, whereas
AS-LDA performs updates only with a small subset of processors. The memory
requirement of both AD-LDA and AS-LDA is O(KW), since the whole word-topic
matrix is maintained on all machines.

Although having different strategies for model combination, existing distributed
methods share two characteristics:

• These methods have to maintain all word-topic counts in memory of each
processor; and

• These methods have to send and receive the entire word-topic matrix between
processors for updates.



12.4 PLDA+ 267

Fig. 12.4 The spread
patterns of the updated topic
distribution of a word from
one processor for AD-LDA,
AS-LDA and PLDA+

For the former characteristic, suppose we want to estimate a Vφ with W words
and K topics from a large-scale data set. When either W or K is large to a certain
extent, the memory requirement will exceed that available on a typical processor.
Due to the bottleneck of latency and transfer-rate of hard disks, it is not practical to
maintain the word-topic counts on hard disks. This characteristic makes the existing
distributed methods face a significant challenge in terms of memory scalability. For
the latter characteristic, the communication bottleneck caps the room for speeding
up the algorithm. This communication bottleneck will only acerbate over years as
a study of high performance computing [18] shows that floating-point instructions
improve speed historically at 59% a year, but inter-processor bandwidth improves
26% a year, and inter-processor latency improves only 15% a year.

12.4.2 Framework of PLDA+

To address the increasing communication bottleneck, PLDA+ uses an enhanced dis-
tributed method for LDA. In addition to partitioning documents, PLDA+ also parti-
tions the word-topic count matrix and distributes them to several processors. Thus,
processors are divided into two types: one maintains documents and document-topic
matrix to perform Gibbs sampling (Pd processors, and the other stores and maintains
word-topic count matrix (Pw processors). During each iteration of Gibbs sampling,
a Pd processor assigns a new topic to a word in a document in three steps:

1. Fetching the word’s topic distribution from a Pw processor,
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Fig. 12.5 Pipeline-based Gibbs sampling in PLDA+ (Top: ts > t f + tu . Bottom: ts < t f + tu)

2. Performing Gibbs sampling at the Pd processor and assigning a new topic to the
word, and

3. Updating all Pw processors maintaining that word.

There are two reasons to divide processors into two groups. First, the communi-
cation bottleneck can be halved on the CPU-bound processors. This way, not only
the communication time on Pw processors is cut into about one half, the reduced IO
time can also be masked by the computation time much easily. Second, by separating
two tasks onto two sets of machines, load balancing can be more flexibly performed.

Besides improving parallelization, PLDA+ employs pipeline processing. The
pipeline technique has been used in many applications to increase throughput, such
as the instruction pipeline in modern CPUs [19] and in graphics processors [20].
Although pipeline does not decrease the time for a job to be processed, it can
efficiently improve throughput by overlapping IOs with computation. Figure 12.5
illustrates the Pipeline-based Gibbs Sampling for four words, i.e.,w1, w2, w3 and w4,

where F indicates the fetching operation, U indicates the updating operation, and S
the Gibbs sampling operation. In this figure, the top chart demonstrates the case when
ts > t f + tu, and the bottom chart the case when ts < t f + tu, where ts, t f and tu
denote the time of Gibbs sampling, fetching topic distribution, and updating topic
distribution, respectively.

On the top chart of Fig. 12.5, PLDA+ begins by fetching the topic distribution of
w1. Then it begins Gibbs sampling on w1, and at the same time, it fetches the topic
distribution of w2. After it has finished Gibbs sampling for w1, it updates the topic
distribution of w1 on Pw processors. When ts > t f + tu, PLDA+ can begin Gibbs
sampling on w2 immediately after it has completed that for w1. Total ideal time for
PLDA+ to process W words is W ts + t f + tu .

The bottom chart of Fig. 12.5 shows a suboptimal scenario where the IO time
cannot be entirely masked. PLDA+ is not able to begin Gibbs Sampling for w3
until after some communication delay. The example shows that in order to mask
communication, the tasks must be scheduled to ensure as much as possible that
ts > t f + tu . There are two important scheduling considerations:
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1. Word bundling. To ensure ts to be sufficiently long to mask IOs, Gibbs sampling
can be performed on a group of words.

2. Low latency IO scheduling. IOs must be scheduled in such a way that a CPU-
bound task is minimally delayed by a fetch operation.

Since each round of Gibbs sampling can be performed in any word order, it makes
word bundling flexible. First, rather than processing one document after another,
PLDA+ performs Gibbs sampling according to a word order. A word that occurs
several times on the documents at a node can be process in a loop. Moreover, for
words that do not occur frequently, they can be bundled with frequently-occurred
words to ensure that ts is sufficiently long. In fact, if one can estimate t f + tu, one
can decide how many word-occurrences to process in each Gibb Sampling batch.
The remaining challenge is that one ought to ensure that t f + tu can indeed be shorter
than ts . If a fetch cannot be completed by the time when the last Gibbs sampling task
has completed, the wait time adds to the bottleneck, and hence hampers speedup.

To perform Gibbs sampling word by word, PLDA+ builds word indexes to docu-
ments on each Pd processor. Words are organized in a circular queue as shown on the
top of Fig. 12.6. Gibbs sampling is performed by going around the circular queue.
To avoid concurrent access to the same words, different processes are scheduled to
begin at a different position of the queue. For example, Fig. 12.6 shows four Pd

processors, Pd1, Pd2, Pd3 and Pd4 start their first word from w1, w3, w5 and w7,

respectively. To ensure that this scheduling algorithm works, PLDA+ must distribute
the word-topic matrix also in a circular fashion on Pw machines. This static allo-
cation scheme enjoys two benefits. First, the workload among Pw processors can
be relatively balanced. Second, avoiding two Pd nodes from concurrently updating
the same word can roughly maintain serializability of the word-topic matrix on Pw

nodes. This makes PLDA+ more advantageous over an asynchronous scheme such as
AS-LDA [5], which may miss updates. The detailed description of word placement
is presented in Sect. 12.4.3.1.

12.4.3 Algorithm for Pw Processors

The task of the Pw processors is to process fetch and update queries from Pd proces-
sors. PLDA+ distributes the word-topic matrix to Pw machines according to words.
After allocation, each Pw processor keeps approximately W/Pw words with their
topic distributions. Figure 12.7 depicts the word-topic matrix distribution process to
Pw machines.
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Fig. 12.6 Vocabulary
circular queue in PLDA+

Fig. 12.7 The construction
of word-topic matrix in Pw

processors

12.4.3.1 Word Placement Over Pw Processors

The goal of word allocation is to ensure spatial load balancing. To balance load,
one would like to make sure that all nodes receive about the same number of work
requests in a round of Gibbs sampling.

For bookkeeping, PLDA+ maintains two data structures. First, for each word,
it records how many Pd processors on which that word resides. Form W words,
PLDA+ maintains a Pd vector m = (m1, m2, . . . , mW ). The second data structure
keeps track of each Pw processor’s workload, or the number of word occurrences on
that processor. The workload vector is denoted as l = (l1, l2, . . . , lPw).

A simple placement method is to place words independently and uniformly at
random onto Pw processors. This method is referred to as random word allocation.
Unfortunately, this random placement method may cause load imbalance among
Pw processors in high probability. To balance workload, PLDA+ uses the weighted
round-robin method for word placement. It first sorts words in decreasing order by
their weights, and then picks the word with the largest weight from the vocabulary and
assigns to a processor in a round-robin fashion. This placement process is repeated
until all words have been placed. Weighted round-robin has been empirically shown
to achieve balanced load with high probability [21].
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12.4.3.2 Processing Requests from Pd Processors

Each Pw processor handles all requests related to the words it is responsible for
maintaining. After allocating words with their topic distributions over Pw processors,
Pw processors begin to receive and respond the requests from Pd processors. A Pw

processor pw first builds its responsible word-topic count matrix Cword|pw by receiving
initial word-topic counts from all Pd processors. Then, that Pw processor pw begins
to process requests from Pd processors. PLDA+ defines three types of requests
(communications):

• fetch(w, pw, pd). Node pw requests for fetching topic distribution of word w from
a Pd processor pd. For the request, the Pw processor pw retrieves the topic distri-
bution φ

(pw)
w , which will be used by the pd node as n¬i j

wk in (12.3) for performing
Gibbs sampling.

• update(w, u, pw, pd). Node pw updates topic distribution for word w using u after
receiving the information from node pd.

• fetch(pw, pd). Node pw requests for all topic counts from node pd. The Pw

Processor pw requires the data from pd to sum up the topic distributions of all
words on pw in vector n(pw) = (n(pw)

k , k = 1, . . . , T ), which will be used as n¬i j
k

in (12.3) for performing Gibbs Sampling.

12.4.4 Algorithm for Pd Processors

The algorithm for Pd processors executes according to the following steps:

1. At the beginning, it allocates documents over Pd processors and then builds
inverted index for documents on each Pd processor.

2. It groups the words in vocabulary into bundles for Gibbs Sampling and IO
requests.

3. It schedules word bundles to minimize communication bottleneck.
4. Finally, it performs pipelined Gibbs sampling iteratively until the terminate con-

dition is met.

In the following, we present these four steps in details.

12.4.4.1 Document Allocation and Building Inverted Index

Before performing Gibbs sampling, D documents must be distributed onto Pd

processors. The goal of document allocation is to achieve good CPU load balance
among Pd processors. AD-LDA may suffer from imbalanced load problem since
it has a global synchronization phase at the end of each Gibbs sampling iteration,
which may force fast processors to wait for the slowest processor. In contrast, Gibbs
sampling in PLDA+ is performed without the synchronization requirement. In other
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Fig. 12.8 The construction
of data structure in Pd
processors

words, a processor that completes its work early can start its next round of sampling
without having to wait for stragglers. Dealing with stragglers is a critical issue in
distributed computing. PLDA+ tackles this problem through both static allocation
and dynamic migration. PLDA+ first allocates words to nodes in a balanced fashion.
Each Pd processor hosts approximate D/Pd documents. The time complexity of this
allocation step is O(D). After documents have been distributed, we build inverted
index for documents on each Pd processor. The construction process is demonstrated
in Fig. 12.8. If a node is always a straggler due to run-time load imbalance or hard-
ware configuration, the data on that node can be split and migrated onto additional
nodes to eliminate stragglers.

Using inverted index, each time after a Pd processor has fetched the topic distrib-
ution of a word w, that processor performs Gibbs sampling for all instances of w on
that node. After that, the processor (or node) sends back the updated information to
the corresponding Pw processor. The clear benefit is that for multiple occurrences of
a word on a node, PLDA+ requires to perform only two communications: one fetch
and one update, and substantially reducing communication cost. The index structure
for each word w is:

w→ {(d1, z1), (d1, z2), (d2, z1), . . .}, (12.7)

in which, w occurs in document d1 twice and there are two entries. In implementation,
to save memory, all occurrences of w in d1 can be recorded in one entry, (d1, {z1, z2}) .

12.4.4.2 Word Bundle

Bundling words is to prevent the situation that too short the duration of Gibbs
samplings cannot mask a communication IO. Use an extreme example: a word
appears only once in one document on a node. Performing Gibbs sampling on that
word takes a much shorter time than the time required to fetch and update the word-
topic matrix. The remedy is intuitive: combining a few words into a bundle so that
the IO time can be masked by the longer duration of Gibbs sampling time.

To bundle words, each Pd processor groups words in sets, each matches words
on a Pw processor. For each word set, words are sorted into a list according to their
occurrence times in descending order. Then, words are picked from both ends of the
list to form bundles. Each time a Pd node sends a request to a Pw node to fetch topic
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distributions for words in a bundle. The size of a bundle should be large enough so
that the time to perform Gibbs sampling on a bundle is longer than the time to fetch
the bundle from a Pw node.

12.4.4.3 Pipelined Gibbs Sampling

The core step of PLDA+ is the pipelined Gibbs sampling. As shown in (12.3), to
compute and assign a new topic for a given word xi j = w in a document d j , we have
to obtain Cword

w , C topic and Cdoc
j . The topic distribution of document j is maintained

by Pd processors. While the up-to-date topic distribution Cword
w is maintained by a

Pw processor, global topic count C topic should be collected over all Pw processors.
Therefore, before assigning a new topic for w in a document, a Pd processor has
to request Cword

w and C topic from Pw processors. After fetching Cword
w and C topic,

the Pd processor computes and assigns new topics for occurrences of w. Then the
Pd processor returns the updated topic distribution of word w to the responsible Pw

processor.
For a Pd processor pd, pipeline processing is performed according to the following

steps:

1. Fetch overall topic counts for Gibbs sampling.
2. Select F word bundles and put them in thread pool tp to fetch words’ topic dis-

tributions. Once a request is responded from Pw processors, the returned topic
distributions are put in a wait queue Q pd .

3. Pick words’ topic distributions from Q pd to perform Gibbs Sampling.
4. After Gibbs sampling, put the updated topic distributions in thread pool tp to send

update requests to Pw processors.
5. Select a new word bundle and put it in tp.
6. If the update condition is met, fetch new overall topic counts.
7. If the termination condition has not met, go to Step 3 to start Gibbs sampling for

other words.

In Step 1, processor pd fetches overall topic distributions C topic. In this step, pd
sends requests fetch(pw, pd) to each Pw processor pw = 1, 2, . . . , Pw. The requests
are returned with (C topic

|pw , pw = 1, 2, . . . , Pw), and pd thus gets C topic by sum
overall topic counts from each Pw processors:

C topic ←
∑

pw

C topic
|pw . (12.8)

Since thread pool tp can send requests and process the returned results in parallel,
in Step 2 it puts a number of requests to fetch topic distributions simultaneously in
case some requests are responded with latency. Thus, once a response is returned,
it can start Gibbs sampling immediately. Here, we mention the pre-fetch number of
requests as F. In PLDA+, F should be properly set to make sure that the wait queue
Q pd always has returned topic distributions of words waiting for Gibbs Sampling.
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Fig. 12.9 PLDA+ Gibbs sampling

If not, Gibbs sampling is stalled by communication, which is considered a part of
communication time of PLDA+. To make best use of threads in the thread pool, F
should be larger than the number of threads in the pool.

It is expensive for Pw processors to process the request for overall topic counts
because the operation has to access topic distributions of each word on each Pw

processor. Fortunately, as indicated by the results of AD-LDA, topic assignments in
Gibbs Sampling is not sensitive to the values of overall topic counts. Thus PLDA+
reduces the frequency of fetching overall topic counts to improve the efficiency of
Pw processors. Therefore, in Step 6, PLDA+ does not fetch overall topic counts
frequently. Experimental results show that fetching new overall topic counts only
after performing one pass of Gibbs sampling can obtain the same learning quality
compared to LDA and AD-LDA.

Figure 12.9 summarizes a Pd node’s interprocess communication with multiple
Pw nodes. The figure shows a key reason for PLDA+ to reduce communication
bottleneck: that a Pd node of PLDA+ commuicates with multiple Pw nodes, rather
than that multiple Pd nodes of AD-LDA communicate with one master Pw node.
Furthermore, the thread pool on Pd nodes enables pre-fetching, and thereby allows
communication to be masked by computation working on completed requests.

12.4.5 Straggler Handling

So far, both presented data placement and scheduling schemes of PLDA+ are static.
Static placement and scheduling cannot guarantee run-time load balancing. Run-time
imbalanced workload can be caused by at least three reasons:

1. Uneven hardware configuration. Not all nodes are equally configured. In a realistic
distributed environment, not all computer nodes are equipped with exactly the
same class of processors, memory, and disks. Also, not all nodes are equally
distanced. Computation on and communication with different nodes can thus
take different amount of time to complete.
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2. Resource contention. Distributed data centers must deal with a large number of
simultaneous computation tasks. It is impossible to ask all nodes to be in a quiesce
mode when PLDA+ is being executed. Therefore, PLDA+ can be slowed down
by tass competing for resources.

3. Failures. When a large number of nodes are involved, the probability of failure
becomes non-negligible. When a processor or a router fails, no static scheme can
continue ensuring balanced workload among all nodes.

PLDA+ deals with run-time dynamics by employing two simple approaches. First,
PLDA+ uses a reset and timeout scheme. When a Pw node notices that the number
of requests in its work queue has reached a threshold, it informs all Pd nodes to reset
their pointers into the circular queue depicted in Fig. 12.6. In each request, the Pd

node also registers a deadline. When the deadline has expired, the Pw node discards
that request and proceeds to processing the next request. Occasionally missing a
round of Gibbs Sampling does not affect overall performance due to the stochastic
nature of Gibbs sampling.

If a Pw node has missed too many request deadlines, then PLDA+ replicates
that node to balance workload. For the details of a data replication scheme that can
guarantee balanced workload in probability, please consult our previous work in [22].

12.4.6 Parameters and Complexity

In this section, we discuss the parameters that may influence the performance of
PLDA+. We also analyze the complexity of PLDA+ compared to other distributed
methods represented by AD-LDA.

12.4.6.1 Parameters

Given the total number of processors P, the first parameter is the proportion of the
number of Pw processors to Pd processors, γ = Pw

Pd
. The larger the value of γ, the

more processors serve as Pw, and hence the average time of communication at Pd

processors decreases. At the same time, the average time of Gibbs sampling will
increase due to less processors are used to perform that CPU-bound task. A good
system design must balance the number of Pw and Pd processors to (1) make both
computation and communication time low, and (2) ensure that communication is
short enough to be masked by computation. This parameter can be derived once the
average time for Gibbs sampling and communication of the word-topic matrix is
known. Suppose the total time of Gibbs sampling for the whole data set is Ts, the
communication time of transferring the topic distributions of all words from one
processor to another processor is Tt . For Pd processors, the sampling time will be
Ts/Pd . Suppose topic distributions of words can be simultaneously transferred to Pw

processors, and thus transfer time will be Tt/Pw. To make sure the sampling time
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can overlap the fetching and updating process, PLDA+ thus must make sure that

Ts

Pd
>

2Tt

Pw

. (12.9)

Suppose Ts = W t̄s where t̄s is the average sampling time for all instances of a word,
and Tt = W t̄ f = W t̄u, where t̄ f and t̄u are the average fetching and update time
for a word, we can get

γ = Pw

Pd
>

t̄ f + t̄u
t̄s

, (12.10)

where t̄ f , t̄u and t̄s can be obtained by performing PLDA+ on a small data set and
then empirically set a appropriate γ value. Under the computing environment of our
experiments, we empirically set γ = 3/5.

The second parameter is the number of threads in thread pool R, which caps the
number of parallel IO requests. Since thread pool is used to prevent from being
blocked by some busy Pw processors and thus R is determined by the network
environment. The setting of R can be empirically tuned during Gibbs sampling. That
is, when the waiting time during the previous iteration is large, the thread pool size
is increased.

The third parameter is the number of requests F for pre-fetching topic distributions
before performing Gibbs sampling on Pd processors. This parameter is dependent
on R.

The last parameter is the maximum interval intermax for fetching overall topic
counts from all Pw processors during Gibbs Sampling of Pd processors. This para-
meter influences the quality of PLDA+. Experiments show that in order to learn LDA
models with similar quality to AD-LDA and LDA, intermax should be set to W.

It should be noted that the optimal values of the parameters of PLDA+ are highly
related to the distributed environment including network bandwidth and processor
speed.

12.4.6.2 Complexity

Table 12.2 summarizes the complexity of Pd processors and Pw processors in both
time and space. For comparison, the table also lists the complexity of LDA and
AD-LDA. We assume P = Pw + Pd when comparing PLDA+ with AD-LDA.

Finally, let us analyze the speedup efficiency of PLDA+. Suppose δ→ 0 and γ =
Pw

Pd
for PLDA+, the ideal parallel efficiency will be always:

speedup efficiency = S/P

S/Pd
= Pd

P
= 1

1+ γ
, (12.11)

where S denotes the running time of LDA on a single machine, S/P is the ideal
time cost using P processors, and S/Pd is the ideal time achieved by PLDA+ with
communication completely masked by Gibbs sampling.
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Table 12.2 Algorithm
complexity

Method Time complexity Space complexity

LDA NT T(D + W) + N
AD-LDA N T

P + T W log P (N+T D)
P + T W

PLDA+ −Pd
N T
Pd
+ δ

(N+T D)
Pd

PLDA+ −Pw – T W
Pw

Table 12.3 Detailed
information of data sets

NIPS Dianping Wiki-20T Wiki-200T

Dtrain 1,540 113,754 2,122,618 2,122,618
W 11,909 27,752 20,000 200,000
N 1,260,732 3,625,275 447,004,756 486,904,674
Dtest 200 1,000 – –

12.5 Experimental Results

This section compares the performance of PLDA+ and AD-LDA. The comparisons
help understand benefits of data placement and pipeline processing strategies.

12.5.1 Datasets and Experiment Environment

We used four datasets shown in Table 12.3 to conduct experiments. The NIPS dataset
consists of scientific articles appeared at NIPS conferences. Dianping dataset consists
of restaurant reviews from dianping.com. NIPS and Dianping datasets are both
relatively small, and we used them to carry out training-quality assessment. Two
Wikipedia datasets were collected from English Wikipedia articles of the March 2008
snapshot from en.wikipedia.org. By setting the size of vocabulary to 20,000 and
200,000, respectively, the two Wikipedia datasets are named Wiki-20T and Wiki-
200T. These two large datasets were used for testing scalability of PLDA+. The
experiment environment was run on distributed machines with 2,048 processors,
each with a 2 HZ CPU, 3 GB memory, and disk allocation of 100 GB.

12.5.2 Perplexity

We used test set perplexity to measure the quality of LDA models learned by various
distributed methods for LDA. Perplexity is a common way of evaluating language
models in natural language processing, computed as:

Perp(xtest) = exp

(
− 1

N test log p(xtest)

)
, (12.12)
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Fig. 12.10 Test perplexity
on NIPS versus # topics T
when the number of
iterations is 400 (See color
insert)

where xtest denotes test set. A lower test perplexity value indicates a better quality.
For every test document in the test set, we randomly designated half the words for
fold-in, and the remaining words were used for testing. The document mixture θ j

was learned using the fold-in part, and the log probability of the test words was
computed using this mixture. This ensures the test words were not used in estimating
model parameters. The perplexity computation follows the standard way of averaging
over multiple chains when making predictions with LDA models trained via Gibbs
sampling as shown in [8]. For PLDA+ and LDA, the test perplexity was computed
using S = 40 samples from the posteriors of 40 independent chains using:

log p(xtest) =
∑

j,w

ntest
jw log

1

S

∑

k

θ S
k jφ

S
wk, (12.13)

where

θk j =
C S

kj + α
∑T

k=1 C S
kj + T α

, φwk = C S
wk + β

∑W
w=1 C S

wk +Wβ
. (12.14)

To compare the quality of PLDA+ to single-machine LDA and distributed AD-
LDA, we computed the test perplexity for all methods after each iteration of Gibbs
sampling going through a round of whole vocabulary. The test perplexities on NIPS
with the number of topics K = 10, 20, 40, 80, and Dianping with K = 8, 16, 32, 64
are shown in Figs. 12.10 and 12.11, respectively. (Since we concerned only about
training quality, the number of machines used in this experiment may not be relevant.)

From both figures we can see that the quality of PLDA+ is similar to single-
machine LDA and distributed AD-LDA. Thus, we can conclude that PLDA+ can
train as good a model as traditional LDA methods.

Figures 12.12 and 12.13 show the convergence of test perplexity versus # of itera-
tion for LDA, AD-LDA and PLDA+ on NIPS and Dianping with different number of
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Fig. 12.11 Test perplexity
on Dianping versus # topics
T when the number of
iterations is 400 (See color
insert)

Fig. 12.12 Convergence of
test perplexity versus
iteration on NIPS with T = 80
(See color insert)

Fig. 12.13 Convergence of
test perplexity versus
iteration on Dianping with
T = 64 (See color insert)

processors. (The parameters were set as depicted in Sect. 12.5.2.) The figures show
the convergence rate of PLDA+ is virtually identical to LDA and AD-LDA.
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Fig. 12.14 Parallel speedup
results for 64 to 1,024
processors on Wiki-20T (see
color insert)

12.5.3 Speedups and Scalability

The primary motivation for developing distributed algorithms for LDA is to achieve
a good speedup. In this section, we report the speedup of PLDA+ comparing to AD-
LDA. We used Wiki-20T and Wiki-200T for speedup experiments. By setting the
number of topics T = 1,000, we ran PLDA+ and AD-LDA on Wiki-20T using P = 64,
128, 256, 512 and 1,024 processors, and on Wiki-200T using P = 64, 128, 256, 512,
1,024 and 2,048 processors. For PLDA+, the ratio of Pw Pd was empirically set to
γ = 0.6 according to the unit sampling time and transferring time. The number of
threads in a thread pool is 50, which is sufficient to handle the peak load. As analyzed
in Sect. 12.4.6.2, the ideal speedup efficiency of PLDA+ is 1

1+γ
= 0.625.

Figure 12.14 compares speedup performance. The speedup was computed relative
to the time per iteration when using P = 64 processors, because it was not possible
to run the algorithms on a smaller number of processors due to memory limitations.
We assumed that the speedup on P = 64 to be 64, and then extrapolated on that basis.
From the figure, we can observe that when P increases, PLDA+ simply achieves
much better speedup than AD-LDA, thanks to the much reduced communication
bottleneck of PLDA+.

Figure 12.15 compares the ratio of communication time over computation time
when P = 1,024. The communication time of AD-LDA is 13.38 s, much longer than
that of PLDA+’s 3.68 s. The communication time of AD-LDA is about the same as
its computation time at P = 512.

From the results, we can conclude that: (1) when word-topic matrix is not large,
PLDA+ performs similarly to AD-LDA, and when the number of processors increases
to large enough (e.g., P = 512), PLDA+ begins to achieve better speedup than AD-
LDA; (2) In fact, if we take the waiting time for synchronization in AD-LDA into
consideration, the speedup of AD-LDA could have been even worse. For example, in
a busy distributed computing environment, when P = 128, AD-LDA may take about
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Fig. 12.15 Communication
and sampling time 64 to
1,024 processors on
Wiki-20T (see color insert)

Fig. 12.16 Parallel speedup
results for 64 to 2,048
processors on Wiki-200T
(see color insert)

70 s for communication in which only about 10 s are used for transmitting word-topic
matrix and most of time is used to wait for each other (Fig. 12.16).

On the larger Wiki-200T dataset, the speedup of AD-LDA starts to flat out at
P = 512, whereas PLDA continues to gain in speed.1 For this dataset, we also list the
sampling and communication time ratio of AD-LDA and PLDA+ in Fig. 12.17. As
shown in this figure, PLDA+ keeps communication time to quite low values from
P = 64 to P = 2,048. While for AD-LDA, the communication time finally became a
bottleneck to prevent it from speedup as the number of processors grows. Though
eventually the Amdahl’s law would kick in to cap speedup, it is evident that the
reduced overhead of PLDA+ permits it to achieve much better speedup for training
on larger datasets.

1 For PLDA+, the parameter of pre-fetch number and thread pool size was set to F = 100 and
R = 50. With W = 200,000 and W = 1,000, the matrix is 1.6 GB, which is large for communication.
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Fig. 12.17 Communication
and sampling time 64 to
2,048 processors on
Wiki-200T (see color insert)

12.6 Large-Scale Applications

LDA has been shown effective in many tasks (e.g., [23–25]). In this section, we use
two large-scale applications, community recommendation of Google Orkut and label
suggestion of Google Confucius [26], to demonstrate the usefulness of PLDA+.

12.6.1 Mining Social-Network User Latent Behavior

Users of social networking services (e.g., Orkut, Facebook, and MySpace) can con-
nect to each other explicitly by adding friends, or implicitly by joining communities.
When the number of communities grows over time, finding an interesting community
to join can be time consuming. We use LDA to model users’ community membership
[27]. On a matrix formed by users as rows and communities as columns, all values
in user-community cells are initially unknown. When a user joins a community, the
corresponding user-community cell is set to one. We apply LDA on the matrix to
assign a probability value between zero and one to the unknown cells. When LDA
assigns a high probability to a cell, this can be interpreted as a prediction that that
cell’s user would be very interested in joining that cell’s community.

The work of [27] conducted experiments on a large community data set of 492,104
users and 118,002 communities in a privacy-preserved way. The experimental results
show that PLDA V1.0 (AD-LDA based implementation) achieves effective perfor-
mance for personalized community recommendation.
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12.6.2 Question Labeling

Confucius is a Q&A system developed by my team at Google Beijing, and has
been launched in more than 60 countries [26]. The goal of Question Labeling is
to help organize and route questions with automatically recommended labels. The
Question Labeling subroutine takes a question as the input and outputs an ordered
list of labels that best describe the question. Labels consist of a set of words or
phrases that best describe the topic or type of the question. Confucius allows at most
five labels per question, but puts no limit on the size of the global label vocabulary.
Confucius organizes the most important category labels into a two-layer hierarchy,
in order to provide a better browsing experience. Question Labeling is used by two
other subroutines: User Rank and Question Labeling . When ranking users, User
Rank uses popular labels to compute the topic-dependent rank scores. Question
Routing assigns questions to users via either subscription or expert identification,
during which labels generated byQuestion Labeling are used for matching. The
precision and recall of suggested labels are two important metrics for measuring
Question Labeling performance. Precision measures the correctness of suggested
labels, while recall measures the completeness.

Figure 12.18 shows the two parts of Question Labeling offline training and online
suggestion. In the offline training part, we employ LDA to model the relationship
between words and topic labels. The training data is the existing set of questions
with user-submitted labels. First, we merge all questions with the same label l into
a meta-document dl , and form a set of meta-documents {dl} (Fig. 12.18, Steps 1
and 2). Second, we remove all stop words and rare words to reduce the size of
each meta-document (Step 3). Third, we use {dl} as the corpus to train LDA models
(Steps 5–6). The label corresponds to the document in LDA definition, while the
words in the meta-documents correspond to the words. The resulted LDA model
decomposes the probability Question Labeling—this is similar to the factor model
in recommendation algorithms, expressed in terms of probabilities. Instead of a
single model, Question Labeling trains several LDA models with different number
of latent topics. Using multiple LDA models with different k-s is known as bagging,
which typically outperforms a single model and avoids the difficult task of setting
an optimal k, as discussed by Hofmann [28]. In the current Question Labeling
Question Labeling system, the following numbers of topics are used: k = 32, 64,
128 and 256. We collect all LDA models into a set M (Step 7) and save it to disk.
The training part works offline. To handle large training data, we use PLDA+ on
thousands of machines in order to maintain training time within the range of a few
hours.

The online suggestion part assigns labels to a question as the user types it. The
bottom half of Fig. 12.18 depicts the suggestion algorithm. First, we use each LDA
model in M to infer the topic distributions {θq,k} of the question q (Step 1). Then,
we compute the cosine similarity CosSim(θq,k, θdl ,k) between θq,k and θdl ,k

(Step 2). Third, we use the mean similarity over different values of k as the final
similarity S(q,l) between a question and a label (Step 3). Finally, we sort all l ∈
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Fig. 12.18 Question Labeling subroutine

L by S(q, l) in descending order, and take the first N (say ten) labels as recommended
ones
(Step 4).

Using PLDA+ for Question Labeling has two benefits: semantic matching and
scalability. PLDA+ decomposes each question and answer into a distribution over
a set of latent topics. When encountering ambiguous words, PLDA+ can use the
context to decide the correct semantics. For example, Question Labeling suggests
only labels such as ‘mobile’ and ‘iPhone’ to the question How to crack an apple?,
although the word apple also means the fruit “apple.” In addition, PLDA+ is designed
to scale gracefully to more input data by employing more machines.

12.7 Concluding Remarks

In this chapter, we first presented the implementation of AD-LDA based on MPI.
We then analyzed the communication bottleneck of AD-LDA. In order to reduce
this communication bottleneck, PLDA+ divides processors into two types, namely
Pd processors and Pw processors, and also employs pipeline-based Gibbs sam-
pling (PGS). Though any distributed scheme may subject to pathological workload,
PLDA+ appears to be resilient to substantial deadline misses caused by imbalanced
workload. Extensive experiments on large-scale document collections demonstrated
that PLDA+ can achieve much higher speedup than AD-LDA, thanks to both its
improved load balancing and reduced communication overhead. From the experience
with implementing PLDA+ we learned that on top of MapReduce or MPI, advanced
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strategies such as data placement and pipeline processing should be considered to
further smooth out bottlenecks.
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