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Foreword

The last few years have been transformative time in information and commu-
nication technology. Possibly this is one of the most exciting period after
Gutenberg’s moveable print revolutionized how people create, store, and share
information. As is well known, Gutenberg’s invention had tremendous impact on
human societal development. We are again going through a similar transformation
in how we create, store, and share information. I believe that we are witnessing a
transformation that allows us to share our experiences in more natural and com-
pelling form using audio-visual media rather than its subjective abstraction in the
form of text. And this is huge.

It is nice to see a book on a very important aspect of organizing visual
information by a researcher who has unique background in being a sound
academic researcher as well as a contributor to the state of art practical systems
being used by lots of people. Edward Chang has been a research leader while he
was in academia, at University of California, Santa Barbara, and continues to
apply his enormous energy and in depth knowledge now to practical problems in
the largest information search company of our time. He is a person with a good
perspective of the emerging field of multimedia information management and
retrieval.

A good book describing current state of art and outlining important challenges
has enormous impact on the field. Particularly, in a field like multimedia infor-
mation management the problems for researchers and practitioners are really
complex due to their multidisciplinary nature. Researchers in computer vision and
image processing, databases, information retrieval, and multimedia have approa-
ched this problem from their own disciplinary perspective. The perspective based
on just one discipline results in approaches that are narrow and do not really solve
the problem that requires true multidisciplinary perspective. Considering the
explosion in the volume of visual data in the last two decades, it is now essential
that we solve the urgent problem of managing this volume effectively for easy
access and utilization. By looking at the problem in multimedia information
as a problem of managing information about the real world that is captured
using different correlated media, it is possible to make significant progress.
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Unfortunately, most researchers do not have time and interest to look beyond their
disciplinary boundaries to understand the real problem and address it. This has
been a serious hurdle in the progress in multimedia information management. I am
delighted to see and present this book on a very important and timely topic by an
eminent researcher who has not only expertise and experience, but also energy and
interest to put together an in depth treatment of this interdisciplinary topic. I am
not aware of any other book that brings together concepts and techniques in this
emerging field in a concise book. Moreover, Prof. Chang has shown his talent in
pedagogy by organizing the book to consider needs of undergraduate students as
well as graduate students and researchers. This is a book that will be equally useful
for people interested in learning about the state of the art in multimedia infor-
mation management and for people who want to address challenges in this
transformative field.

Irvine, February 2011 Ramesh Jain
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Preface

The volume and accessibility of images and videos is increasing exponentially,
thanks to the sea-change of imagery captured from film to digital form, to the
availability of electronic networking, and to the ubiquity of high-speed network
access. The tools for organizing and retrieving these multimedia data, however, are
still quite primitive. One such evidence is the lack of effective tools to-date for
organizing personal images or videos. Another clue is that all Internet search
engines today still rely on the keyword search paradigm, which knowingly suffers
from the semantic aliasing problem. Existing organization and retrieval tools are
ineffective partly because they fail to properly model and combine ‘‘content’’ and
‘‘context’’ of multimedia data, and partly because they fail to effectively address
the scalability issues. For instance, today, a typical content-based retrieval pro-
totype extracts some signals from multimedia data instances to represent them,
employs a poorly justified distance function to measure similarity between data
instances, and relies on a costly sequential scan to find data instances similar to a
query instance. From feature extraction, data representation, multimodal fusion,
similarity measurement, feature-to-semantic mapping, to indexing, the design of
each component has mostly not been built on solid scientific foundations. Fur-
thermore, most prior art focuses on improving one single component, and dem-
onstrates its effectiveness on small datasets. However, the problem of multimedia
information management and retrieval is inherently an interdisciplinary one, and
tackling the problem must involve synergistic collaboration between fields of
machine learning, multimedia computing, cognitive science, and large-scale
computing, in addition to signal processing, computer vision, and databases.

This book presents an interdisciplinary approach to first establish scientific
foundations for each component, and then address interactions between components
in a scalable manner in terms of both data dimensionality and volume. This book is
organized into 12 chapters of two parts. The first part of the book depicts a multi-
media system’s key components, which together aims to comprehend semantics of
multimedia data instances. The second part presents methods for scaling up these
components for high-dimensional data and very large datasets. In part one we start
with providing an overview of the research and engineering challenges in Chap. 1.
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Chap. 2 presents feature extraction, which obtains useful signals from multimedia
data instances. We discuss both model-based and data-driven, and then a hybrid
approach. In Chap. 3, we deal with the problem offormulating users’ query concepts,
which can be complex and subjective. We show how active learning and kernel
methods can be used to work effectively with both keywords and perceptual features
to understand a user’s query concept with minimal user feedback. We argue that only
after a user’s query concept can be thoroughly comprehended, it is then possible to
retrieve matching objects. Chaps. 4 and 5 address the problem of distance-function
formulation, a core subroutine of information retrieval for measuring similarity
between data instances. Chap. 4 presents Dynamic Partial function and its founda-
tion in cognitive psychology. Chap. 5 shows how an effective function can also be
learned from examples in a data-driven way. Chaps. 6–8 describe methods that fuse
metadata of multiple modalities. Multimodal fusion is important to properly inte-
grate perceptual features of various kinds (e.g., color, texture, shape; global, local;
time-invariant, time-variant), and to properly combine metadata from multiple
sources (e.g., from both content and context). We present three techniques: super-
kernel fusion in Chap. 6, fusion with causal strengths in Chap. 7, and combinational
collaborative filtering in Chap. 8.

Part two of the book tackles various scalability issues. Chap. 9 presents the
problem of imbalanced data learning where the number of data instances in the target
class is significantly out-numbered by the other classes. This challenge is typical in
information retrieval, since the information relevant to our queries is always the
minority in the dataset. The chapter describes algorithms to deal with the problem in
vector and non-vector spaces, respectively. Chaps. 10 and 11 address the scalability
issues of kernel methods. Kernel methods are a core machine learning technique
with strong theoretical foundations and excellent empirical successes. One major
shortcoming of kernel methods is its cubic computation time required for training
and linear for classification. We present parallel algorithms to speed up the training
time, and fast indexing structures to speed up the classification time. Finally, in
Chap. 12, we present our effort in speeding up Latent Dirichlet Allocation (LDA), a
robust method for modeling texts and images. Using distributed computing primi-
tives, together with data placement and pipeline techniques, we were able to speed
up LDA 1,500 times when using 2,000 machines.

Although the target application of this book is multimedia information retrieval,
the developed theories and algorithms are applicable to analyze data of other
domains, such as text documents, biological data and motion patterns.

This book is designed for researchers and practitioners in the fields of multi-
media, computer vision, machine learning, and large-scale data mining. We expect
the reader to have some basic knowledge in Statistics and Algorithms. We rec-
ommend that the first part (Chaps. 1–8) to be used in an upper-division under-
graduate course, and the second part (Chaps. 9–12) in a graduate-level course.
Chaps. 1–6 should be read sequentially. The reader can read Chaps. 7–12 in
selected order. Appendix lists our open source sites.

Palo Alto, February 2011 Edward Y. Chang
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Chapter 1
Introduction: Key Subroutines
of Multimedia Data Management

Abstract This chapter presents technical challenges that multimedia information
management faces. We enumerate five key subroutines required to work together
effectively so as to enable robust and scalable solutions. We provide pointers to the
rest of the book, where in-depth treatments are presented.

Keywords Mathematics of perception ·Multimedia data management ·Multimedia
information retrieval

1.1 Overview

The tasks of multimedia information management such as clustering, indexing, and
retrieval, come up against technical challenges in at least three areas: data representa-
tion, similarity measurement, and scalability. First, data representation builds layers
of abstraction upon raw multimedia data. Next, a distance function must be chosen
to properly account for similarity between any pair of multimedia instances. Finally,
from extracting features, measuring similarity, to organizing and retrieving data, all
computation tasks must be performed in a scalable fashion with respect to both data
dimensionality and data volume. This chapter outlines design issues of five essential
subroutines, and they are:

1. Feature extraction,
2. Similarity (distance function formulation),
3. Learning (supervised and unsupervised),
4. Multimodal fusion, and
5. Indexing.

E. Y. Chang, Foundations of Large-Scale Multimedia Information 1
Management and Retrieval, DOI: 10.1007/978-3-642-20429-6_1,
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2 1 Introduction: Key Subroutines of Multimedia Data Management

1.2 Feature Extraction

Feature extraction is fundamental to all multimedia computing tasks. Features can
be classified into two categories, content and context. Content refers directly to raw
imagery, video, and mucic data such as pixels, motions, and tones, respectively,
and their representations. Context refers to metadata collected or associated with
content when a piece of data is acquired or published. For instance, EXIF camera
parameters and GPS location are contextual information that some digital cameras
can collect. Other widely used contextual information includes surrounding texts of
an image/photo on a Web page, and social interactions on a piece of multimedia
data instance. Context and content ought to be fused synergistically when analyzing
multimedia data [1].

Content analysis is a subject studied for more than a couple of decades by
researchers in disciplines of computer vision, signal processing, machine learning,
databases, psychology, cognitive science, and neural science. Limited progress has
been made in each of these disciplines. Many researchers now are convinced that
interdisciplinary research is essential to make ground breaking advancements. In
Chap. 2 of this book, we introduce a model-based and data-driven hybrid approach
for extracting features. A promising model-based approach was pioneered by neural
scientist Hubel [2], who proposed a feature learning pipeline based on human visual
system. The principal reason behind this approach is that human visual system can
function so well in some challenging conditions where computer vision solutions
fail miserably. Recent neural-based models proposed by Lee [3] and Serre [4] show
that such model can effectively deal with viewing of different positions, scales,
and resolutions. Our empirical study confirmed that such model-based approach
can recognize objects of rigid shapes, such as watches and cars. However, for
objects that do not have invariant features such as pizzas of different toppings, and
cups of different colors and shapes, the model-based approach loses its advantages.
For recognizing these objects, the data-driven approach can depict an object by
collecting a representative pool of training instances. When combining model-based
and data-driven, the hybrid approach enjoys at least three advantages:

1. Balancing feature invariance and selectivity. To achieve feature selectivity, the
hybrid approach conducts multi-band, multi-scale, and multi-orientation convo-
lutions. To achieve invariance, it keeps signals of sufficient strengths via pooling
operations.

2. Properly using unsupervised learning to regularize supervised learning. The
hybrid approach introduces unsupervised learning to reduce features so as to
prevent the subsequent supervised layer from learning trivial solutions.

3. Augmenting feature specificity with diversity. A model-based only approach can-
not effectively recognize irregular objects or objects with diversified patterns; and
therefore, we must combine such with a data-driven pipeline.

Chapter 2 presents the detailed design of such a hybrid model involving
disciplines of neural science, machine learning, and computer vision.

http://dx.doi.org/10.1007/978-3-642-20429-6_2
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1.3 Similarity

At the heart of data management tasks is a distance function that measures similarity
between data instances. To date, most applications employ a variant of the Euclidean
distance for measuring similarity. However, to measure similarity meaningfully, an
effective distance function ought to consider the idiosyncrasies of the application,
data, and user (hereafter we refer to these factors as contextual information). The
quality of the distance function significantly affects the success in organizing data
or finding relevant results.

In Chaps. 4 and 5, we present two methods, first an unsupervised in Chap. 4 and
then a supervised in Chap. 5, to quantify similarity. Chapter 4 presents dynamic
partial function (DPF), which we formulated based on what we learned from some
intensive data mining on large image datasets. Traditionally, similarity is a measure
of all respects. For instance, the Euclidean function considers all features in equal
importance. One step forward was to give different features different weights. The
most influential work is perhaps that of Tversky [5], who suggests that similarity
is determined by matching features of compared objects. The weighted Minkowski
function and the quadratic-form distances are the two representative distance func-
tions that match the spirit. The weights of the distance functions can be learned via
techniques such as relevance feedback, principal component analysis, and discrimi-
native analysis. Given some similar and some dissimilar objects, the weights can be
adjusted so that similar objects can be better distinguished from the other objects.

However, the assumption made by these distance functions, that all similar objects
are similar in the same respects [6], is questionable. We propose that similarity is
a process that provides respects for measuring similarity. Suppose we are asked to
name two places that are similar to England. Among several possibilities, Scotland
and New England could be two reasonable answers. However, the respects England
is similar to Scotland differ from those in which England is similar to New England.
If we use the shared attributes of England and Scotland to compare England and New
England, the latter pair might not be similar, and vice versa. This example depicts that
objects can be similar to the query object in different respects. A distance function
using a fixed set of respects cannot capture objects that are similar in different sets
of respects. Murphy and Medin [7] provide early insights into how similarity works
in human perception: “The explanatory work is on the level of determining which
attributes will be selected, with similarity being at least as much a consequence as a
cause of a concept coherence.” Goldstone [8] explains that similarity is the process
that determines the respects for measuring similarity. In other words, a distance
function for measuring a pair of objects is formulated only after the objects are
compared, not before the comparison is made. The respects for the comparison are
activated in this formulation process. The activated respects are more likely to be those
that can support coherence between the compared objects. DPF activates different
features for different object pairs. The activated features are those with minimum
differences — those which provide coherence between the objects. If coherence can
be maintained (because sufficient a number of features are similar), then the objects

http://dx.doi.org/10.1007/978-3-642-20429-6_4
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http://dx.doi.org/10.1007/978-3-642-20429-6_4
http://dx.doi.org/10.1007/978-3-642-20429-6_5
http://dx.doi.org/10.1007/978-3-642-20429-6_4


4 1 Introduction: Key Subroutines of Multimedia Data Management

paired are perceived as similar. Cognitive psychology seems able to explain much
of the effectiveness of DPF.

Whereas DPF learns similar features in an unsupervised way, Chap. 5 presents a
supervised method to learn a distance function from contextual information or user
feedback. One popular method is to weight the features of the Euclidean distance
(or more generally, the L p-norm) based on their importance for a target task [9–11].
For example, for answering a sunset image-query, color features should be weighted
higher. For answering an architecture image-query, shape and texture features may
be more important. Weighting these features is equivalent to performing a linear
transformation in the space formed by the features. Although linear models enjoy
the twin advantages of simplicity of description and efficiency of computation, this
same simplicity is insufficient to model similarity for many real-world data instances.
For example, it has been widely acknowledged in the image/video retrieval domain
that a query concept is typically a nonlinear combination of perceptual features (color,
texture, and shape) [12, 13]. Chapter 5 presents a nonlinear transformation on the
feature space to gain greater flexibility for mapping features to semantics.

At first it might seem that capturing nonlinear relationships among contextual
information can suffer from high computational complexity. We avoid this concern by
employing the kernel trick, which has been applied to several algorithms in statistics,
including support vector machines(SVM) and kernel PCA. The kernel trick lets
us generalize distance-based algorithms to operate in the projected space, usually
nonlinearly related to the input space. The input space (denoted as I) is the original
space in which data vectors are located, and the projected space (denoted as P) is that
space to which the data vectors are projected, linearly or nonlinearly. The advantage
of using the kernel trick is that, instead of explicitly determining the coordinates
of the data vectors in the projected space, the distance computation in P can be
efficiently performed in I through a kernel function.

Through theoretical discussion and empirical studies, Chaps. 4 and 5 show that
when similarity measures have been improved, data management tasks such as clus-
tering, learning, and indexing can perform with marked improvements.

1.4 Learning

The principal design goal of a multimedia information retrieval system is to return
data (images or video clips) that accurately match users’ queries (for example, a
search for pictures of a deer). To achieve this design goal, the system must first
comprehend a user’s query concept (i.e., a user’s perception) thoroughly, and then find
data in the low-level input space (formed by a set of perceptual features) that match the
concept accurately. Statistical learning techniques can assist achieving the design goal
via two complementary avenues: semantic annotation and query-concept learning.

Both semantic annotation and query-concept learning can be cast into the form
of a supervised learning problem, which consists of three steps. First, a rep-
resentative set of perceptual features is extracted from each training instance.

http://dx.doi.org/10.1007/978-3-642-20429-6_5
http://dx.doi.org/10.1007/978-3-642-20429-6_5
http://dx.doi.org/10.1007/978-3-642-20429-6_4
http://dx.doi.org/10.1007/978-3-642-20429-6_5
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Second, each training feature–vector (other representations are possible) is assigned
semantic labels. Third, a classifier is trained by a supervised learning algorithm,
based on the labeled instances, to predict the class labels of a query instance. Given
a query instance represented by its features, the semantic labels can be predicted. In
essence, these steps learn a mapping between the perceptual features and a human
perceived concept or concepts.

Chapter 3 presents the challenges of semantic annotation and query-concept
learning. To illustrate, let D denote the number of low-level features (extracted by
methods presented in Chap. 2), N the number of training instances, N+ the num-
ber of positive training instances, and N− the number of negative training instances
(N = N+ + N−). Two major technical challenges arise:

1. Scarcity of training data. The features-to-semantics mapping problem often
comes up against the D > N challenge. For instance, in the query-concept learn-
ing scenario, the number of low-level features that characterize an image (D) is
greater than the number of images a user would be willing to label (N ) during a
relevance feedback session. As pointed out by David Donoho, the theories under-
lying “classical” data analysis are based on the assumptions that D < N , and N
approaches infinity. But when D > N , the basic methodology which was used in
the classical situation is not similarly applicable.

2. Imbalance of training classes. The target class in the training pool is typically
outnumbered by the non-target classes (N− � N+). For instance, in a k-class
classification problem where each class has about the same number of training
instances, the target class is outnumbered by the non-target classes by a ratio of
k:1. The class boundary of imbalanced training classes tends to skew toward the
target class when k is large. This skew makes class prediction less reliable.

To address these challenges, Chap. 3 presents a small sample, active learning
algorithm, which also adjusts its sampling strategy in a concept-dependent way.
Chapter 9 presents a couple of approaches to deal with imbalanced training classes.
When conducting annotation, the computation task faces the challenge of dealing
with a substantially large N . From Chap. 10–12, we discuss parallel algorithms,
which can employ thousands of CPUs to achieve near-linear speedup, and indexing
methods, which can substantially reduce retrieval time.

1.5 Multimodal Fusion

Multimedia metadata can be collected from multiple channels or sources. For
instance, a video clip consists of visual, audio, and caption signals. Besides, a Web
page where the video clip is embedded, and the users who have viewed the video can
provide contextual signals for analyzing that clip. When mapping features extracted
from multiple sources to semantics, a fusion algorithm must incorporate useful infor-
mation while removing noise. Chapters 6, 7 and 8 are devoted to address multimodal
fusion.

http://dx.doi.org/10.1007/978-3-642-20429-6_3
http://dx.doi.org/10.1007/978-3-642-20429-6_2
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http://dx.doi.org/10.1007/978-3-642-20429-6_9
http://dx.doi.org/10.1007/978-3-642-20429-6_10
http://dx.doi.org/10.1007/978-3-642-20429-6_12
http://dx.doi.org/10.1007/978-3-642-20429-6_6
http://dx.doi.org/10.1007/978-3-642-20429-6_7
http://dx.doi.org/10.1007/978-3-642-20429-6_8


6 1 Introduction: Key Subroutines of Multimedia Data Management

Chapter 6 focuses on addressing two questions: (1) what are the best modalities?
and (2) how can we optimally fuse information from multiple modalities? Suppose
we extract l, m, n features from the visual, audio, and caption tracks of videos. At
one extreme, we could treat all these features as one modality and form a feature
vector of l + m + n dimensions. At the other extreme, we could treat each of the
l + m + n features as one modality. We could also regard the extracted features
from each media-source as one modality, formulating a visual, audio, and caption
modality with l, m, and n features, respectively. Almost all prior multimodal-fusion
work in the multimedia community employs one of these three approaches. But, can
any of these feature compositions yield the optimal result?

Statistical methods such as principle component analysis (PCA) and independent
component analysis (ICA) have been shown to be useful for feature transforma-
tion and selection. PCA is useful for denoising data, and ICA aims to transform
data to a space of independent axes (components). Despite their best attempt under
some error-minimization criteria, PCA and ICA do not guarantee to produce inde-
pendent components. In addition, the created feature space may be of very high
dimensions and thus be susceptible to the curse of dimensionality. Chapter 6 first
presents an independent modality analysis scheme, which identifies independent
modalities, and at the same time, avoids the curse-of-dimensionality challenge. Once
a good set of modalities has been identified, the second research challenge is to fuse
these modalities in an optimal way to perform data analysis (e.g., classification).
Chapter 6 presents the super-kernel fusion scheme to fuse individual modalities in
a non-linear way. The super-kernel fusion scheme finds the best combination of
modalities through supervised training.

Chapter 6 addresses the problem of fusing multiple modality of multimedia data
content. Chapter 7 addresses the problem of fusing context with content. Semantic
labels can be roughly divided into two categories: wh labels and non-wh labels.
Wh-semantics include time (when), people (who), location (where), landmarks
(what), and event (inferred from when, who, where, and what). Providing the when
and where information is trivial. Already cameras can provide time, and we can
easily infer an approximate location from GPS or CellID. However, determining
the what and who requires contextual information in addition to time, location, and
photo content. More precisely, contextual information can include time, location,
camera parameters, user profile, and even social graphs. Content of images consists
of perceptual features, which can be divided into holistic features (e.g., color, shape
and texture characteristics of an image), and local features (edges and salient points
of regions or objects in an image). Besides context and content, another important
source of information (which has been largely ignored) is the relationships between
semantic labels (which we refer to as semantic ontology). To explain the impor-
tance of having a semantic ontology, let us consider an example with two semantic
labels: outdoor and sunset. When considering contextual information alone, we may
be able to infer the outdoor label from camera parameters: focal length and lighting
condition.

We can infer sunset from time and location. Notice that inferring outdoor and
sunset do not rely on any common contextual modality. However, we can say that

http://dx.doi.org/10.1007/978-3-642-20429-6_6
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http://dx.doi.org/10.1007/978-3-642-20429-6_7
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a sunset photo is outdoor with certainty (but not the other way). By considering
semantic relationships between labels, photo annotation can take advantage of con-
textual information in a “transitive” way.

To fuse context, content, and semantic ontology in a synergistic way, Chap. 7
presents EXTENT, an inferencing framework to generate semantic labels for photos.
EXTENT uses an influence diagram to conduct semantic inferencing. The variables
on the diagram can either be decision variables (i.e., causes) or chance variables
(i.e., effects). For image annotation, decision variables include time, location, user
profile, and camera parameters. Chance variables are semantic labels. However, some
variables may play both roles. For instance, time can affect some camera parameters
(such as exposure time and flash on/off), and hence these camera parameters are
both decision and chance variables. Finally, the influence diagram connects decision
variables to chance variables with arcs weighted by causal strength.

To construct an influence diagram, we rely on both domain knowledge and data.
In general, learning such a probabilistic graphical model from data is an NP hard
problem. Fortunately, for image annotation, we have abundant prior knowledge about
the relationships between context, content, and semantic labels, and we can use
them to substantially reduce the hypothesis space to search for the right model.
For instance, time, location, and user profile, are independent of each other. Camera
parameters such as exposure time and flash on/off depend on time, but are independent
of other modalities. The semantic ontology provides us the relationships between
words. The only causal relationships that we must learn from data are those between
context/content and semantic labels (and their causal strengths).

Once causal relationships have been learned, causal strengths must be accurately
accounted for. Traditional probabilistic graphical models such as Bayesian networks
use conditional probability to quantify the correlation between two variables. Unfor-
tunately, conditional probability characterizes covariation, not causation [14–16].
A basic tenet of classical statistics is that correlation does not imply causation.
Instead, we use recently developed causal-power theory [17] to account for cau-
sation. We show that fusing context and content using causation achieves superior
results over using correlation.

Finally, Chap. 8 presents a fusion model called combinational collaborative filter-
ing (CCF) using a latent layer. CCF views a community of common interests from
two simultaneous perspectives: a bag of users and a bag of multimodal features.
A community is viewed as a bag of participating users; and at the same time, it is
viewed as a bag of multimodal features describing that community. Traditionally,
these two views are independently processed. Fusing these two views provides two
benefits. First, by combining bags of features with bags of users, CCF can perform
personalized community recommendations, which the bags of features alone model
cannot. Second, augmenting bags of users with bags of features, CCF improves
information density to perform more effective recommendations. Though the chapter
uses community recommendation as an application, one can use the CCF scheme for
recommending any objects, e.g., images, videos, and songs.

http://dx.doi.org/10.1007/978-3-642-20429-6_7
http://dx.doi.org/10.1007/978-3-642-20429-6_8
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1.6 Indexing

With the vast volume of data available for search, indexing is essential to provide
scalable search performance. However, when data dimension is high (higher than
20 or so), no nearest-neighbor algorithm can be significantly faster than a linear
scan of the entire dataset. Let n denote the size of a dataset and d the dimension of
data, the theoretical studies of [18–21] show that when d � log n, a linear search
will outperform classic search structures such as k-d-trees [22], SR-trees [23], and
SS-trees [24]. Several recent studies (e.g., [19, 20, 25]) provide empirical evidence,
all confirming this phenomenon of dimensionality curse.

Nearest neighbor search is inherently expensive, especially when there are a large
number of dimensions. First, the search space can grow exponentially with the num-
ber of dimensions. Second, there is simply no way to build an index on disk such
that all nearest neighbors to any query point are physically adjacent on disk. The
prohibitive nature of exact nearest-neighbor search has led to the development of
approximate nearest-neighbor search that returns instances approximately similar to
the query instance [18, 26]. The first justification behind approximate search is that a
feature vector is often an approximate characterization of an object, so we are already
dealing with approximations [27]. Second, an approximate set of answers suffices
if the answers are relatively close to the query concept. Of late, three approximate
indexing schemes, locality sensitive hashing (LSH) [28], M-trees [29], and cluster-
ing [27] have been employed in applications such as image-copy detection [30] and
bio-sequence-data matching [31]. These approximate indexing schemes speed up
similarity search significantly (over a sequential scan) by slightly lowering the bar
for accuracy.

In Chap. 11, we present our hypersphere indexer, named SphereDex , to per-
form approximate nearest-neighbor searches. First, the indexer finds a roughly central
instance among a given set of instances. Next, the instances are partitioned based on
their distances from the central instance. SphereDex builds an intra-partition (or
local) index within each partition to efficiently prune out irrelevant instances. It also
builds an inter-partition index to help a query to identify a good starting location in a
neighboring partition to search for nearest neighbors. A search is conducted by first
finding the partition to which the query instance belongs. (The query instance does not
need to be an existing instance in the database.) SphereDex then searches in this and
the neighboring partitions to locate nearest neighbors of the query. Notice that since
each partition has just two neighboring partitions, and neighboring partitions can
largely be sequentially laid out on disks, SphereDex can enjoy sequential IO perfor-
mance (with a tradeoff of transferring more data) to retrieve candidate partitions into
memory. Even in situations (e.g., after a large batch of insertions) when one sequen-
tial access might not be feasible for retrieving all candidate partitions, SphereDex
can keep the number of non-sequential disk accesses low. Once a partition has been
retrieved from the disk, SphereDex exploits geometric properties to perform intel-
ligent intra-partition pruning so as to minimize the computational cost for finding the
top-k approximate nearest neighbors. Through empirical studies on two very large,

http://dx.doi.org/10.1007/978-3-642-20429-6_11
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high-dimensional datasets, we show that SphereDex significantly outperforms both
LSH and M-trees in both IO and CPU time. Though we mostly present our techniques
for approximate nearest-neighbor queries, Chap. 11 also briefly describes the exten-
sibility of SphereDex to support farthest-instance queries, especially hyperplane
queries to support key data-mining algorithms like SVMs.

1.7 Scalability

Indexing deals with retrieval scalability. We must also address scalability of learning,
both supervised and unsupervised. Since 2007, we have parallelized five mission-
critical algorithms including SVMs [32], frequent itemset mining [33], spectral clus-
tering [34], probabilistic latent semantic analysis (PLSA) [35], and latent dirichlet
allocation (LDA) [36]. In this book, we present parallel support vector machines
(PSVM) in Chap.10 and an enhanced PLDA+ in Chap.12.

Parallel computing has been an active subject in the distributed computing com-
munity over several decades. In PSVM, we use Incomplete Cholesky Factorization
to approximate a large matrix so as to reducing the memory use substantially. For
speeding up LDA, we employ data placement and pipeline processing techniques
to substantially reduce the communication bottleneck. We are able to achieve 1,500
speedup when 2,000 machines are simultaneously used: i.e., a two-month compu-
tation task on a single machine can now be completed in an hour. These parallel
algorithms have been released to the public via Apache open source (please check
out the Appendix).

1.8 Concluding Remarks

As we stated in the beginning of this chapter, multimedia information management
research is multidisciplinary. In feature extraction and distance function formulation,
the disciplines of computer vision, psychology, cognitive science, neural science, and
database have been involved. In indexing and scalability, distributed computing and
database communities have contributed a great deal. In devising learning algorithms
to bridge the semantic gap, machine learning and neural science are the primary
forces behind recent advancements. Together, all these communities are increasingly
working together to develop robust and scalable algorithms. In the remainder of this
book, we detail the design and implementation of these key subroutines of multimedia
data management.

http://dx.doi.org/10.1007/978-3-642-20429-6_11
http://dx.doi.org/10.1007/978-3-642-20429-6_10
http://dx.doi.org/10.1007/978-3-642-20429-6_12
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Chapter 2
Perceptual Feature Extraction

Abstract In this chapter,† we present a deep model-based and data-driven hybrid
architecture (DMD) for feature extraction. First, we construct a deep learning pipeline
for progressively learning image features from simple to complex. We mix this deep
model-based pipeline with a data-driven pipeline, which extracts features from a
large collection of unlabeled images. Sparse regularization is then performed on fea-
tures extracted from both pipelines in an unsupervised way to obtain representative
patches. Upon obtaining these patches, a supervised learning algorithm is employed
to conduct object prediction. We present how DMD works and explain why it works
more effectively than traditional models from both aspects of neuroscience and com-
putational learning theory.

Keywords Data driven · Deep learning · DMD · Feature extraction ·Model-based

2.1 Introduction

Extracting useful features from a scene is an essential step of any computer vision
and multimedia analysis tasks. Though progress has been made in past decades, it
is still quite difficult for computers to accurately recognize an object or analyze the
semantics of an image. In this chapter, we study two extreme approaches of feature
extraction, model-based and data-driven, and then evaluate a hybrid scheme.

One may consider model-based and data-driven to be two mutually exclusive
approaches. In practice; however, they are not. Virtually all model construction relies
on some information from data; all data-driven schemes are built upon some models,

† © ACM, 2010. This chapter is a minor revision of the author’s work with Zhiyu Wang and
Dingyin Xia [1] published in VLS-MCMR’10. Permission to publish this chapter is granted under
copyright license #2587600190581.
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simple or complex. The key research questions for the feature-extraction task of an
object recognition or image annotation application are:

1. Can more data help a model? Given a model, can the availability of more training
data improve feature quality, and hence improve annotation accuracy?

2. Can an improve model help data-driven? Give some fixed amount of data, can
a model be enhanced to improve feature quality, and hence improve annotation
accuracy?

We first closely examine a model-based deep-learning scheme, which is neuro-
science-motivated. Strongly motivated by the fact that the human visual system can
effortlessly conduct these tasks, neuroscientists have been developing vision models
based on physiological evidences. Though such research may still be in its infancy
and several hypotheses remain to be validated, some widely accepted theories have
been established. This chapter first presents such a model-based approach. Built upon
the pioneer neuroscience work of Hubel [2], all recent models are founded on the
theory that visual information is transmitted from the primary visual cortex (V1)
over extrastriate visual areas (V2 and V4) to the inferotemporal cortex (IT). IT in
turn is a major source of input to the prefrontal cortex (PFC), which involves in
linking perception to memory and action [3]. The pathway from V1 to IT, which is
called the visual frontend [4], consists of a number of simple and complex layers. The
lower layers attain simple features that are invariant to scale, position and orientation
at the pixel level. Higher layers detect complex features at the object-part level.
Pattern reading at the lower layers are unsupervised; whereas recognition at the
higher layers involves supervised learning. Computational models proposed by Lee
[5] and Serre [6] show such a multi-layer generative approach to be effective in object
recognition.

Our empirical study compared features extracted by a neuro-science-motivated
deep-learning model and those extracted by a data-driven scheme through an appli-
cation of image annotation. For the data-driven scheme, we employed features of
some widely used pixel aggregates such as shapes and color/texture patches. These
features construct a feature space. Given a previously unseen data instance, its anno-
tation is determined through some nearest-neighbor scheme such as k-NN or kernel
methods. The assumption of the data-driven approach is that if the features of two
data instances are close (similar) in the feature space, then their target semantics
would be same. For a data-driven scheme to work well, its feature space must be
densely populated with training instances so that unseen instances can find sufficient
number of nearest neighbors as their references.

We made two observations from the results of our experimental study. First, when
the number of training instances is small, the model-based deep-learning scheme out-
performs the data-driven. Second, while both feature sets commit prediction errors,
each does better on certain objects. Model-based tends to do well on objects of a
regular, rigid shape with similar interior patterns; whereas the data-driven model
performs better in recognizing objects of variant perceptual characteristics. These
observations establish three guidelines for feature design.
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1. Recognizing objects with similar details. For objects that have regular features,
invariance should be the top priority of feature extraction. A feature-extraction
pipeline that can be invariant to scale, position and orientation requires only a
handful of training instances to obtain a good set of features for recognizing this
class of objects. For this class of objects, model-based works very well.

2. Recognizing objects with different details. Objects with variant features, such as
strawberries in different orientations and environmental settings, or dalmatians
with their varying patterns, do not have invariant features to extract. For recog-
nizing such an object class, diversity is the design priority of feature extraction.
To achieve diversity, a learning algorithm requires a large number of training
instances to collect abundant samples. Therefore, data-driven works better for
this class of objects.

3. Recognizing objects within abstracts. Classifying objects of different semantics
such as whales and lions being mammals, or tea cups and beer mugs being cups,
is remote to percepts. Abstract concept classification requires a WordNet-like
semantic model.

The first two design principles confirm that feature extraction must consider both
feature invariance and feature diversity; but how? A feedforward pathway model
designed by Poggio’s group [7] holds promises in obtaining invariant features. How-
ever, additional signals must be collected to enhance the diversity aspect. As Serre [5]
indicates, feedback signals are transmitted back to V1 to pay attention to details. Bio-
logical evidences suggest that a feedback loop in visual system instructs cells to “see”
local details such as color-based shapes and shape-based textures. These insights lead
to the design of our hybrid model data-driven hybrid architecture (DMD) , which
combines a deep model-based pipeline with a data-driven pipeline to form a six-
layer hierarchy. While the model-based pipeline faithfully models a deep learning
architecture based on visual cortex’s feedforward path [8], the data-driven pipeline
extracts augmented features in a heuristic-based fashion. The two pipelines join at
an unsupervised middle layer, which clusters low-level features into feature patches.
This unsupervised layer is a critical step to effectively regularize the feature space
[9, 10] for improving subsequent supervised learning, making object prediction both
effective and scalable. Finally, at the supervised layer, DMD employs a traditional
learning algorithm to map patches to semantics. Empirical studies show that DMD
works markedly better than traditional models in image annotation. DMD’s success
is due to (1) its simple to complex deep pipeline for balancing invariance and selec-
tivity, and (2) its model-based and data-driven hybrid approach for fusing feature
specificity and diversity.

In this chapter, we show that a model-based pipeline encounters limitations. As
we have explained, a data-driven pipeline is necessary for recognizing objects of
different shapes and details. DMD employs both approaches of deep and hybrid to
achieve improved performance for the following reasons:

1. Balancing feature invariance and selectivity. DMD implements Serre’s method
[8] to achieve a good balance between feature invariance and selectivity. To
achieve feature selectivity, DMD conducts multi-band, multi-scale, and
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multi-orientation convolutions. To achieve invariance, DMD only keeps signals
of sufficient strengths via pooling operations.

2. Properly using unsupervised learning to regularize supervised learning. At the
second, the third, and the fifth layers, DMD introduces unsupervised learning to
reduce features so as to prevent the subsequent supervised layer from learning
trivial solutions.

3. Augmenting feature specificity with diversity. Through empirical study, we
identified that a model-based only approach cannot effectively recognize irreg-
ular objects or objects with diversified patterns; and therefore, fuse into DMD a
data-driven pipeline. We point out subtle pitfalls in combining model-based and
data-driven and propose a remedy for noise reduction.

2.2 DMD Algorithm

DMD consists two pipelines of six steps. Given a set of training images, the model-
based pipeline feeds training images to the edge detection step. At the same time,
the data-driven pipeline feeds training images directly to the step of sparsity regu-
larization. We first discuss the model-based pipeline of DMD in Sect. 2.2.1, and then
its data-driven pipeline in Sect. 2.2.2.

2.2.1 Model-Based Pipeline

Figure 2.1 depicts that visual information is transmitted from the primary visual cor-
tex (V1) over extrastriate visual areas (V2 and V4) to the IT. Physiological evidences
indicate that the cells in V1 largely conduct selection operations, and cells in V2 and
V4 pooling operations. Based on such, M. Riesenhuber and T. Poggio’s theory of
feedforward path of object recognition in the cortex [7] establishes a qualitative way
to model the ventral stream in the visual cortex. Their model suggests that the visual
system consists of multiple layers of computational units where simple S units alter-
nate with complex C units. The S units deal with signal selectivity, whereas the C units
deal with invariance. Lower layers attain features that are invariant to scale, position,
and orientation at the pixel level. Higher layers detect features at the object-part level.
Pattern reading at the lower layers are largely unsupervised, whereas recognition at
the higher layers involves supervised models. Recent advancements in deep learning
[10] have led to mutual justifications that a model-based, hierarchical model enjoys
these computational advantages:

• Deep architectures enjoy advantages over shallow architectures (please consult
[11] for details), and

• Unsupervised initiated deep architectures can enjoy better generalization
performance [12].
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Fig. 2.1 Information flow in the visual cortex. (See the brain structure in [13])

Motivated by both physiological evidences [8, 14] and computational learning
theories [5], we designed DMD’s model-based pipeline with six steps:

1. Edge selection (Sect. 2.2.1.1). This step corresponds to the operation conducted
by cells in V1 and V2 [15], which detect edge signals at the pixel level.

2. Edge pooling (Sect. 2.2.1.2). This step also corresponds to cells in V1 and V2.
The primary operation is to pool strong, representative edge signals.

3. Sparsity regularization (Sect. 2.2.1.3). To prevent too large a number of features,
which can lead to dimensionality curse, or too low a level, which may lead to
trivial solutions, DMD uses this unsupervised step to group edges into patches.

4. Part selection (Sect. 2.2.1.4). There is not yet strong physiological evidence, but it
is widely believed that V2 performs part selection and then feeds signals directly
to V4. DMD models this step to look for image patches matching those prototypes
(patches) produced in the previous step.

5. Part pooling (Sect. 2.2.1.5). Cells in V4 [16], which have larger receptive fields
than V1, deal with parts. Because of their larger receptive fields, V4’s selectivity
is preserved over translation.

6. Supervised learning (Sect. 2.2.1.6). Learning occurs at all steps and certainly at
the level of IT cortex and PFC. This top-most layer employs a supervised learning
algorithm to map a patch-activation vector to some objects.

2.2.1.1 Edge Selection

In this step, computational units model the classical simple cells described by Hubel
and Wiesel in the primary visual cortex (V1) [17]. A simple selective operation
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is performed by V1 cells. To model this operation, Serre [8] uses Gabor filters
to perform a 2D convolution, Lee [5] suggests using a convolutional restricted
Boltzmann machine (RBM), and Ranzato [18] constructs an encoder convolution.
We initially employed T. Serre’s strategy since T. Serre [6, 8] justifies model selection
and parameter tuning based on strong physiological evidences, whereas computer
scientists often justify their models through contrived experiments on a small set
of samples. The input image is transmitted into a gray-value image, where only the
edge information is of interest. The 2D convolution is a summation-like operation,
whose convolution kernel is to model the receptive fields of cortical simple cells [19].
Different sizes of Gabor filters are applied as the convolution kernel to process the
gray-value image I, using this format:

Fs(x, y) = exp

(
− x2

0 + γ 2 y2
0

2σ 2

)
× cos

(
2π

λ
x0

)
, (2.1)

where

x0 = x cos θ + y sin θ and y0 = −x sin θ + y cos θ.

In (2.1), γ is the aspect ratio and θ is the orientation, which takes values 0◦, 45◦, 90◦,
and 135◦. Parameters σ and λ are the effective width and wave length, respectively.
The Gabor filter forms a 2D matrix with the value at position (x, y) to be Fs(x, y.)

The matrix size (s × s) or the Gabor filter size ranges from 7 × 7 to 37 × 37
pixels in intervals of two pixels. Thus there are 64 (16 scales × 4 orientations)
different receptive field types in total. With different parameters, Gabor filters can
cover different orientations and scales and hence increase selectivity. The output of
the edge-selection step is produced by 2D convolutions (conv2) of the input image
and nb × ns × n f = 64 Gabor filters of

IS_edge(ib,is ,i f ) = conv2(I, FiF ), (2.2)

where

iF = (ib × ns + is)× n f + i f .

2.2.1.2 Edge Pooling

In the previous step, several edge-detection output matrices are produced, which
sufficiently support selectivity. At the same time, there is clearly some redundant
or noisy information produced from these matrices. Physiological evidences on cats
show that a MAX-like operation is taken in complex cells [15] to deal with redun-
dancy and noise. To model this MAX-like operation, Serre’s, Lee’s, and Ranzato’s
work all agree on applying a MAX operation on outputs from the simple cells. The
response Iedge(ib,i f ) of a complex unit corresponds to the response of the strongest
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Fig. 2.2 DMD Model-based
pipeline, steps 1 and 2

of all the neighboring units from the previous edge-selection layer. The output of
this edge-pooling layer is as follows:

Iedge(ib,i f )(x, y) = max
is∈vs ,m∈N (x,y)

IS_edge(ib,is ,i f )(xm, ym),

where (xm, ym) stands for edge-selection results at position (x, y). The max is taken
over the two scales within the same spatial neighborhood of the same orientation,
justified by the experiments conducted by the work of Serre [20].

2.2.1.3 Sparsity Regularization

A subtle and important step of a deep architecture is to perform proper initialization
between layers. The edge-pooling step may produce a huge number of edges. With
such a large-sized output, the next layer may risk learning trivial solutions at the
pixel level. Both Serre [8] and Ekanadham [21] suggest to sparsify the output of V2
(or input to V4).

To perform the sparsification, we form pixel patches via sampling. In this way,
not only the size of the input to the part-selection step is reduced, but patches larger
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than pixels can regularize the learning at the upper layers. The regularization effect
is achieved by the fact that parts are formed by neighboring edges, not edges at
random positions. Thus, there is no reason to conduct learning directly on the edges.
A patch is a region of pixels sampled at a random position of a training image at
four orientations. An object can be fully expressed if enough representative patches
have been sampled. It is important to note that this sampling step can be performed
incrementally when new training images are available. The result of this unsupervised
learning step is n p prototype patches, where n p can be set initially to be a large value,
and then trimmed back by the part-selection step.

In Sect. 2.2.2 we show that the data-driven pipeline also produces patches by
sampling a large number of training instances. Two pipelines join at this unsupervised
regularization step.

2.2.1.4 Part Selection

So far, DMD has generated patches via clustering and sampling. This part-selection
step finds out which patches may be useful and of what patches an object part is
composed. Part selection units describe a larger region of objects than the edge
detection, by focusing on parts of the objects. Similar to our approach, Serre’s
S2 units behave as radial basis function (RBF) units, Lee uses a convolutional deep
belief network (CDBN), and Ranzato’s algorithm implements a convolutional oper-
ation for the decoder. All are consistent with well-known response properties of
neurons in the primate inferotemporal cortex (IT).

Serre proposes using Gaussian-like Euclidean distance to measure similarity
between an image and the pre-calculated prototypes (patches). Basically, we would
like to find out what patches an object consists of. Analogically, we are constructing
a map from object-parts to an object using the training images. Once the mapping
has been learned, we can then classify an unseen image.

To perform part selection, we have to examine if patches obtained in the regu-
larization step appear frequently enough in the training images. If a patch appears
frequently, that patch can be selected as a part; otherwise, that patch is discarded for
efficiency. For each training image, we match its edge patches with the n p prototyped
patches generated in the previous step. For the i th

b band of an image’s edge detection
output, we obtain for the i th

p patch a measure as follows:

IS_part(ib,i p) = exp(−β||Xib − Pi p ||2), (2.3)

where β is the sharpness of the tuning and Pi p is one of the n p patches learned
during sparsity regularization. Xib is a transformation of the Iedge(ib,i f ) with all n f

orientations merged to fit the size of PiP . We obtain nb measurements of the image
for each prototype patch. Hence the total number of measurements that this part-
selection step makes is the number of patches times the number of bands, or n p×nb.
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Fig. 2.3 DMD steps 4 and 5

2.2.1.5 Part Pooling

Each image is measured against n p patches, and for each patch, nb measurements
are performed. To aggregate nb measurements into one, we resort to the part-pooling
units. The part-pooling units 1 correspond to visual cortical V4 neurons. It has been
discovered that a substantial fraction of the neurons takes the maximum input as
output in visual cortical V4 neurons of rhesus monkeys (macaca mulatta) [16], or

vpart(iP ) = min
ib

IS_part(ib,iP ). (2.4)

The MAX operation (maximizing similarity is equivalent to minimizing distance)
can not only maintain feature invariance, but also scale down feature-vector size.
The output of this stage for each training image is a vector of n p values as depicted
by the pseudo code in Fig. 2.3.

2.2.1.6 Supervised Learning

At the top layer, DMD performs part-to-object mapping. At this layer, any traditional
shallow learning algorithm can work reasonably well. We employ SVMs to perform
the task. The input to SVMs is a set of vector representations of image patches
produced by this model-based pipeline and by the data-driven pipeline, which we
present next. Each image is represented by a vector of real values each depicting the
image’s perceptual strength matched by a prototype patch.
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2.2.2 Data-Driven Pipeline

The key advantage of the model-based pipeline is feature invariance. For objects
that have a rigid body of predictable patterns, such as a watch or a phone, the
model-based pipeline can obtain invariant features from a small number of train-
ing instances. Indeed, our experimental results presented in Sect. 2.3 show that it
takes just five training images to effectively learn the features of a watch and to
recognize it. Unfortunately, for objects that can have various appearances such as
pizzas with different toppings, the model-based pipeline runs into limitations. The
features it learned from the toppings of one pizza cannot help recognize a pizza with
different toppings. The key reason for this is that invariance may cause overfitting,
and that hurts selectivity.

To remedy the problem, DMD adds a data-driven pipeline. The principal idea is
to collect enough examples of an object so that feature selectivity can be improved.
By collecting signals from a large number of training data, it is also likely to col-
lect signals of different scales and orientations. In other words, instead of relying
solely on a model-based pipeline to deal with invariance, we can collect enough
examples to ensure with high probability that the collected examples can cover most
transformations of features.

Another duty that the data-driven pipeline can fulfill is to augment a key short-
coming of the model-based pipeline, i.e., it considers only the feedforward pathway
of the visual system. It is well understood that some complex recognition tasks may
require recursive predictions and verifications. Backprojection models [22, 23] and
attention models [24] are still in early stage of development, and hence there is no
solid basis of incorporating feedback. DMD uses heuristic-based signal processing
subroutines to extract patches for the data-driven pipeline. The extracted patches
are merged with those learned in the sparse-regularization step of the model-based
pipeline.

We extracted patches in multiple resolutions to improve invariance [25, 26]. We
characterized images by two main features: color and texture. We consider shapes
as attributes of these main features.1

2.2.2.1 Color Patches

Although the wavelength of visible light ranges from 400 to 700 nm, research effort
[28] shows that the colors that can be named by all cultures are generally limited to
eleven. In addition to black and white, the discernible colors are red, yellow, green,
blue, brown, purple, pink, orange and gray.

1 Disclaimer: We do not claim these heuristic-based features to be novel. Other heuristic-based
features [27] may also be useful. What we consider to be important is that these features can
augment model-based features to improve diversity before a principled theory can be formulated
by neuroscientists to model cortex feedback/feedforward recursive signals.
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We first divided color into 12 color bins including 11 bins for culture colors and
one bin for outliers [26]. At the coarsest resolution, we characterized color using a
color mask of 12 bits. To recorded color information at finer resolutions, we record
eight additional features for each color. These eight features are color histograms,
color means (in H, S and V channels), color variances (in H, S and V channel), and
two shape characteristics: elongation and spread. Color elongation characterizes the
shape of a color and spreadness characterizes how that color scatters within the image
[29]. We categorize color features by coarse, medium and fine resolutions.

2.2.2.2 Texture Patches

Texture is an important cue for image analysis. Studies [30–33] have shown that char-
acterizing texture features in terms of structuredness, orientation, and scale (coarse-
ness) fits well with models of human perception. A wide variety of texture analysis
methods have been proposed in the past. We chose a discrete wavelet transformation
(DWT) using quadrature mirror filters [31] because of its computational efficiency.

Each wavelet decomposition on a 2D image yields four subimages: a 1
2 × 1

2 scaled-
down image of the input image and its wavelets in three orientations: horizontal,
vertical and diagonal. Decomposing the scaled-down image further, we obtain a
tree-structured or wavelet packet decomposition. The wavelet image decomposition
provides a representation that is easy to interpret. Every subimage contains in for-
mation of a specific scale and orientation and also retains spatial information. We
obtain nine texture combinations from subimages of three scales and three orienta-
tions. Since each subimage retains the spatial information of texture, we also compute
elongation and spreadness for each texture channel.

2.2.2.3 Feature Fusion

Now, given an image, we can extract the above color and texture information to pro-
duce some clusters of features. These clusters are similar to those patches generated
by the model-based pipeline. All features, generated by the model-based or data-
driven pipeline are inputs to the sparsity regularization step, depicted in Sect. 2.2.1.3,
to conduct subsequent processing. In Sect. 2.3.3 we discuss where fusion can be
counter-productive and propose a remedy to reduce noise.

2.3 Experiments

Our experiments were designed to answer three questions:

1. How does a model-based approach compare to a data-driven approach? Which
model performs better? Where and why?
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Table 2.1 Model-based
versus data-driven

Training Size Model-based (%) Data-driven (%)

15 22.53 16.32
30 28.06 20.61

2. How does DMD perform compared to an individual approach, model-based or
data-driven?

3. How much does the unsupervised regularization step help?

To answer these questions we conducted three experiments:

1. Model-based versus data-driven model.
2. DMD versus individual approaches.
3. Parameter tuning at the regularization step.

2.3.1 Dataset and Setup

To ensure that our experiments can cover object appearances of different character-
istics (objects of similar details, different details, and within abstracts, as depicted in
Sect. 2.1), we collected training and testing data from ImageNet [34]. We selected
10,885 images of 100 categories to cover the above characteristics. We followed
the two pipelines of DMD to extract model-based features and data-driven features.
For each image category, we cross-validated by using 15 or 30 images for training,
and the remainder for testing to compute annotation accuracy. Because of the small
training-data size, using linear SVMs turned out to be competitive to using advanced
kernels. We thus employed linear SVMs to conduct all experiments.

2.3.2 Model-Based versus Data-Driven

This experiment was designed to evaluate individual models and explain where and
why model-based or data-driven is more effective.

2.3.2.1 Overall Accuracy

Table 2.1 summarizes the average annotation accuracy of the model-based-only ver-
sus data-driven-only method with 15 and 30 training images, respectively. The table
shows that the model-based method to be more effective. (We will shortly explain
this result to be not-so-meaningful.) We next looked into individual categories to
examine the reasons why.
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Fig. 2.4 Model-based
outperforms data-driven (see
color insert)

Table 2.2 Images with a rigid body (see color insert)

2.3.2.2 Where Model-Based Works Better

Figure 2.4 shows a set of six categories (example images shown in Table 2.2)
where the model-based method performs much better than the data-driven in class-
prediction accuracy (on the y-axis).
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Fig. 2.5 Data-driven
outperforms model-based
(see color insert)

First, on some categories such as ‘dollar bills’, ‘Windsor-chair’ and ‘yin-yang’,
increasing training data from 15 to 30 does not improve annotation accuracy. This is
because these objects exhibit precise features (e.g., all dollar bills are the same), and as
long as a model-based pipeline can deal with scale/position/orientation invariance,
the feature-learning process requires only a small number of examples to capture
their idiosyncrasies. The data-driven approach on these six categories performs quite
poorly because its lacking the ability to deal with feature invariance. For instance,
the data-driven pipeline cannot recognize watches of different sizes and colors, or
Windsor-chairs of different orientations.

2.3.2.3 Where Data-Driven Works Better

Data-driven works better than model-based when objects exhibit patterns that are
similar but not necessarily identical nor scale/position/orientation invariant. Data-
driven can work effectively when an object exhibit some consistent characteristics
such as apples are red or green, and dalmatians have black patches of irregular shapes.

Figure 2.5 shows a set of six categories where data-driven works substantially
better than model-based in class-prediction accuracy.

Table 2.3 display example images from four categories, ‘strawberry’, ‘sunflower’,
‘dalmatian’, and ‘pizza’. Both ‘strawberry’ and ‘sunflower’ exhibit strong color char-
acteristics, whereas ‘dalmatian’ and ‘pizza’ exhibit predictable texture features. For
these categories, once after sufficient amount of samples can be collected, semantic-
prediction can be performed with good accuracy. The model-based pipeline performs
poorly in this case because it does not consider color nor can it find invariant patterns
(e.g., pizzas have different shapes and toppings).

2.3.2.4 Accuracy versus Training Size

We varied the number of training instances for each category from one to ten to
further investigate the strengths of model-based and data-driven. The x-axis of
Fig. 2.6 indicates the number of training instances, and the y-axis the accuracy
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Table 2.3 Images with a rigid body (see color insert)

Fig. 2.6 Accuracy
comparison (x-axis for the
training numbers and y-axis
for the accuracy model-based
minus data-driven)

of model-base subtracted by the accuracy of data-driven. A positive margin means
that the model-based outperforms the data-driven in class prediction, whereas a neg-
ative means that the data-driven outperforms. When the size of training data is below
five, the model-based outperforms data-driven. As we have observed from the pre-
vious results, model-based can do well with a small number of training instances on
objects of invariant features. On the contrary, a data-driven approach cannot be pro-
ductive when the number of training instances is scarce, as its name suggests. Also as
we have explained, even the features of an object class can be quite predictable, vary-
ing camera and environmental parameters can produce images of different scales,
orientations, and colors. A data-driven pipeline is not expected to do well unless it
can get ample samples for capturing these variations.
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Table 2.4 Images with a rigid body (see color insert)

2.3.2.5 Discussion

Table 2.4 displays patches of selected categories to illustrate the strengths of
the model-based and data-driven, respectively. The patches of ‘watch’ and
‘Windsor-chair’ show patterns of almost identical edges. Model-based thus works
well with these objects.

The ‘dalmatian’ and ‘pizza’ images tell a different story. The patches of these
objects are similar but not identical. Besides, these patterns do not have strong edges.
The color and texture patterns extracted by the data-driven pipeline can be more
productive for recognizing these objects when sufficient samples are available.

Note Let us revisit the result presented in Table 2.1. It is easy to make the data-driven
look better by adding more image categories favoring data-driven to the testbed. Or
the bias of a dataset can favor one approach over the other. Thus, evaluating which
model works better cannot be done by looking only at the average accuracy. On a
dataset of a few hundred or thousand categories, evaluation should be performed on
individual categories.
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Fig. 2.7 DMD versus
individual models

Table 2.5 Fusion accuracy
with large training pool

Category Model-based (%) Data-driven (%) DMD (%)

30 Large2 30 Large2 30 Large2

Plane 36.60 97.17 30.41 90.57 29.51 96.23
Watch 33.97 60.87 8.61 43.48 24.40 55.07
Skirts 19.82 53.66 35.14 58.54 29.73 65.85
Sunflower 18.18 25.00 60.00 65.00 63.64 70.00

2.3.3 DMD versus Individual Models

Fusing model-based and data-driven seems like a logical approach. Figure 2.7 shows
that DMD outperforms individual models in classification accuracy on training sizes
of both 15 and 30. Table 2.5 reports four selected categories on which we also per-
formed training on up to 700 training instances.

2.3.3.1 Where Fusion Helps

For objects that the data-driven model works better, adding more features from the
model-based pipeline can be helpful. The data-driven model needs a large number
of examples to characterize an object (typically deformable as we have discussed),
and those features produced by the model-based pipeline can help. On ‘skirts’ and
‘sunflower’, DMD outperforms data-driven when 100 images were used for training
‘skirts’, and 65 for ‘sunflower’. (These are the maximum amount of training data that
can be obtained from ImageNet for these categories.) On these deformable objects,
we have explained why the data-driven approach is more productive. Table 2.5 shows
that the model-based features employed by DMD can help further improve class-
prediction accuracy.
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2.3.3.2 Where Fusion May Hurt

For objects that the model-based can achieve better prediction accuracy, adding
more features form the data-driven pipeline can be counter-productive. For all object
categories in Fig. 2.4 with 30 training instances, adding data-driven features reduces
classification accuracy. This is because for those objects where the model-based
performs well, additional features may contribute noise. For instance, the different
colors of watches can make watch recognition harder when color is considered as a
feature. Table 2.5 shows that when 30 training instances were used, DMD’s accuracy
on ‘watch’ was degraded by 25 percentile. However, the good news is that when
ample samples were provided to capture almost all possible colors of watches, the
prediction accuracy improved. When we used 170 watch images to train the ‘watch’
predictor, the accuracy of DMD trails data-driven by just 5category where we were
able to get a hold of 700 training instances, both DMD and model-base enjoy the
same degree of accuracy.

2.3.3.3 Strength-Dominant Fusion

One key lesson learned from this experiment is that the MAX operator in the pooling
steps of DMD is indeed effective in telling features from noise. Therefore, DMD can
consider amplifying the stronger signals from either the model-based or the data-
driven pipeline. When the signals extracted from an image well match some patches
generated by the model-based pipeline, the model-based classifier should dominate
the final class-prediction decision. This simple adjustment to DMD can improve
its prediction accuracy on objects of rigid bodies, and hence the average prediction
accuracy. Another key lesson learned (though obvious) is that the amount of training
instances must be large to make the data-driven pipeline effective. When the training
size is small and model-based can be effective, the data-driven pipeline should be
turned off.

2.3.4 Regularization Tuning

This experiment examined the effect of the realization step. Recall that regularization
employs unsupervised schemes to achieve both feature selection and feature reduc-
tion. Table 2.6 shows the effect of the number of prototype patches n p on the final
prediction accuracy of DMD. When n p is set between 2,000 × 4 and 2,500 × 4,

the prediction accuracy is the best. A small n p may cause underfitting and too large
an n p may cause overfitting. Parameter n p decides selectivity, and its best setting
must be tuned through an empirical process like this.
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Table 2.6 Accuracy of
different number of patches

n p/4 Training size (%) n p/4 Training size (%)
15 30 15 30

200 21.01 26.09 1500 23.62 29.04
300 22.08 27.82 2000 23.75 29.21
500 22.53 28.54 2500 23.30 29.61
1000 23.00 28.82 3000 23.27 29.42

2.3.5 Tough Categories

Table 2.7 presents six categories where DMD cannot perform effectively with a small
amount of training data. For instance, the best prediction accuracy with 30 training
images on ‘barrel’ and ‘cup’ is 12 and 17%, respectively. These objects exhibit
such diversified perceptual features, and neither model-based nor data-driven with
a small set of training data can capture their characteristics. Furthermore, the ‘cup’
category is more than percepts, as liquid containers of different shapes and colors
can be classified as a cup. To improve class-prediction accuracy on these challenging
categories, more training data ought to be collected to make DMD effective.

2.4 Related Reading

The CBIR community has been striving to bridge the semantic gap [35] between
low-level features and high-level semantics for over a decade. (For a comprehensive
survey, please consult [27].) Despite the progress has been made on both feature
extraction and computational learning, these algorithms are far from being com-
pletely successful. On feature extraction, scale-invariant feature transform (SIFT)
was considered a big step forward in the last decade for extracting scale-invariant
features. SIFT may have improved feature invariance, but it does not effectively deal
with feature selectivity. Indeed, SIFT has shown to be effective in detecting near-
replicas of images [36], but it alone has not been widely successful in more general
recognition tasks. As for computational learning, discriminative models such as lin-
ear SVMs [37] and generative models such as latent dirichlet allocation (LDA) [38]
have been employed to map features to semantics. However, applying these and
similar models directly to low-level features are considered to be shallow learning,
which may be too limited for modeling complex vision problems. Yoshua Bengio [9]
argues in theory that some functions simply cannot be represented by architectures
that are too shallow.

If shallow learning suffers from limitations, then why have’t deep learning been
widely adopted? Indeed, neuroscientists have studied how the human vision sys-
tem works for over 40 years [2]. Ample evidences [39–41] indicate that the human
visual system is a pipeline of multiple layers: from sensing pixels and detecting
edges to forming patches, recognizing parts, and then composing parts into objects.
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Table 2.7 Images with a rigid body (see color insert)

Physiological evidences strongly suggest that deep learning, rather than shallow, is
appropriate. Unfortunately, before the work of Hinton in 2006 [10] deep models
were not fully embraced partly because of their high intensity of computation and
partly because of the well known problem of local optima. Recent advancements
in neuroscience [3] motivated computer scientists to revisit deep learning in two
respects:

1. Unsupervised learning in lower layers. The first couple of layers of the visual
system are unsupervised, whereas supervised learning is conducted at the latter
layers.

2. Invariance and selectivity tradeoff. Layers in the visual system deal with invari-
ance and selectivity alternately.

These insights have led to recent progress in deep learning. First, Salakhutdinow
et al. [42] show that using an unsupervised learning algorithm to conduct pre-training
at each layer, a deep architecture can achieve much better results. Second, Serre [8]
shows that by alternating pooling and sampling operations between layers, a balance
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between feature invariance and selectivity can be achieved. The subsequent work of
Lee [5] confirms these insights.

2.5 Concluding Remarks

In this chapter, we first conducted empirical study to compare the model-based and
the data-driven approach to image annotation. From our experimental results, we
learned insights to design DMD, a hybrid architecture of deep model-based and
data-drive learning. We showed the usefulness of unsupervised learning at three
steps: edge-pooling, sparse regularization, and part-pooling. Unsupervised learning
plays a pivotal role in making good tradeoffs between invariance and selectivity,
and between specificity and diversity. We also showed that the data-driven pipeline
can always be helped by the model-based. However, the other way may introduce
noise when the amount of training data is scarce. DMD makes proper adjustments
in making model-based and data-driven complement each other to achieve good
performance.

Besides perceptual features that can be directly extracted from images, researchers
have also considered camera parameters, textual information surrounding images,
and social metadata, which can be characterized as contextual features. Nevertheless,
perceptual feature extraction remains to be a core research topic of computer vision
and image processing. Contextual features can complement image content but cannot
substitute perceptual features. How to combine context and content belongs to the
topic of multimodal fusion, which we address in Chaps. 7, 8 and 9.
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Chapter 3
Query Concept Learning

Abstract With multimedia databases it is difficult to specify queries directly
and explicitly. Relevance feedback interactively learns a user’s desired output or
query concept by asking the user whether certain proposed multimedia objects
(e.g., images, videos, and songs) are relevant or not. For a learning algorithm to
be effective, it must learn a user’s query concept accurately and quickly, while also
asking the user to label only a small number of data instances. In addition, the concept-
learning algorithm should consider the complexity of a concept in determining its
learning strategies. This chapter† presents the use of support vector machines active
learning in a concept-dependent way (SVMCD

Active for conducting relevance feedback.
A concept’s complexity is characterized using three measures: hit-rate, isolation and
diversity. To reduce concept complexity so as to improve concept learnability, a mul-
timodal learning approach is designed to use the semantic labels of data instances
to intelligently adjust the sampling strategy and the sampling pool of SVMCD

Active.

Empirical study on several datasets shows that active learning outperforms traditional
passive learning, and concept-dependent learning is superior to concept-independent
relevance-feedback schemes.

Keywords Relevance feedback ·Active learning ·Kernel methods ·Query concept
learning

3.1 Introduction

One key design task, when constructing multimedia databases, is the creation of an
effective relevance feedback component. While it is sometimes possible to arrange
multimedia data instances (e.g., images) by creating a hierarchy, or by hand-labeling

† © ACM, 2004. This chapter is written based on the author’s work with Simon Tong [1], Kingshy
Goh, and Wei-Cheng Lai [2]. Permission to publish this chapter is granted under copyright
licenses #2587600971756 and #2587601214143.

E. Y. Chang, Foundations of Large-Scale Multimedia Information 37
Management and Retrieval, DOI: 10.1007/978-3-642-20429-6_3,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011
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each data instance with descriptive words, these methods are time-consuming, costly,
and subjective. Alternatively, requiring an end-user to specify a multimedia query
in terms of low-level features (such as color and spatial relationships for images) is
challenging to the end-user, because a query for images, videos, or music is hard to
articulate, and articulation can vary from one user to another.

Thus, we need a way for a user to implicitly inform a database of his or her desired
output or query concept. To address this requirement, relevance feedback can be used
as a query refinement scheme to derive or learn a user’s query concept. To solicit
feedback, the refinement scheme displays a few media-data instances and the user
labels each instance as “relevant” or “not relevant.” Based on the responses, another
set of data instances from the database is presented to the user for labeling. After
a few such querying rounds, the refinement scheme returns a number of instances
from the database that seem to fit the needs of the user.

The construction of such a query refinement scheme (hereafter called a query-
concept learner or learner) can be regarded as a machine learning task. In particular,
it can be seen as a case of pool-based active learning [3, 4]. In pool-based active
learning the learner can access to a pool of unlabeled data and can request the user’s
label for a certain number of instances in the pool. In the image, video, or music
retrieval domain, the unlabeled pool would be the entire database. An instance would
be an image, a video clip, or a piece of music segment, and the two possible labelings
for each media-data instance would be “relevant” or “not relevant.” The goal for the
learner is to learn the user’s query concept—in other words, to label each data instance
within the database in such a manner that the learner’s labeling and the user’s labeling
will agree.

The main issue with active learning is finding a method for choosing informative
data instances within the pool to ask the user to label. We call such a request for the
label of a data instance a pool-query. Most machine learning algorithms are passive
in the sense that they are generally applied using a randomly selected training set.
The key idea with active learning is that it should choose its next pool-query based
upon the past answers to previous pool-queries.

In general, such a learner must meet two critical design goals. First, the learner
must learn target concepts accurately. Second, the learner must grasp a concept
quickly, with only a small number of labeled instances, since most users do not
wait around to provide a great deal of feedback. Support vector machine active
learner (SVMCD

Active) is effective to achieve these goals. SVMCD
Active combines active

learning with support vector machines (SVMs). SVMs [5, 6] have met with significant
success in numerous real-world learning tasks. However, like most machine learning
algorithms, SVMs use a randomly selected training set, which is not very useful in
the relevance feedback setting. Recently, general purpose methods for active learning
with SVMs have been independently developed by a number of researchers [7–9].
In the first part of this chapter, we use the theoretical motivation of [9] on active
learning with SVMs to extend the use of support vector machines to the task of
relevance feedback for image databases. (Readers can also consult [10] for the use
of SVM active learning on music retrieval.)
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When conducting a pool-query, SVMCD
Active should consider the complexity of

the target concept to adjust its sampling strategies for choosing informative data
instances within the pool to ask user to label. In the second part of this chapter,
we characterize concept complexity using three parameters: scarcity, isolation and
diversity. Each of these parameters affects the learnability of a concept in a different
way. The hit-rate (scarcity) is the percentage of instances matching the target concept
in a database. When the hit-rate is low, it is difficult for active learning to find enough
relevant instances to match the query. When isolation of a concept is poor, or several
concepts are not well isolated from one another in the input space,1 the learner
might confuse the target concept with its neighboring concepts. Finally, when a
concept’s diversity is high, the algorithm needs to be more explorative in the input
space, rather than narrowly focused, so as to find the relevant instances that are
scattered in the input space. We investigate how these complexity factors affect
concept learnability, and then present a multimodal learning approach that uses the
semantic labels (keywords) of media-data instances to guide our concept-dependent
active-learning process. SVMCD

Active adjusts the sample pool and sampling strategy
according to concept complexity: it carefully selects the sample pool to improve
hit-rate and isolation of the query concept, and it enhances the concept’s learnability
by adapting its sampling strategy to the concept’s diversity.

Intuitively, SVMCD
Active works by combining the following four ideas:

1. SVMCD
Active regards the task of learning a target concept as one of learning an SVM

binary classifier. An SVM captures the query concept by separating the relevant
data instances from irrelevant ones with a hyperplane in a projected space, usually
a very high-dimensional one. The projected points on one side of the hyperplane
are considered relevant to the query concept and the rest irrelevant.

2. SVMCD
Active learns the classifier quickly via active learning. The active part of

SVMCD
Active selects the most informative instances with which to train the SVM

classifier. This step ensures fast convergence to the query concept in a small
number of feedback rounds.

3. SVMCD
Active learns the classifier in a concept-dependent way. With multimodal

information from keywords and media-data features, SVMCD
Active improves concept

learnability for effectively capturing the target concept.
4. Once the classifier is trained, SVMCD

Active returns the top-k most relevant data
instances. These are the k data instances farthest from the hyperplane on the
query concept side.

3.2 Support Vector Machines and Version Space

We shall consider SVMs in the binary classification setting. We are given training data
{x1, . . . , xn} that are vectors in some space X ⊆ R

d . We are also given their labels

1 The input space (denoted as X in machine learning and statistics literature) is defined as the
original space in which the data vectors are located, and the feature space (denoted as F) is the
space into which the data are projected, either linearly or non-linearly.
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Fig. 3.1 A simple linear
SVM

{y1, . . . , yn} where yi ∈ {−1, 1}. In their simplest form, SVMs are hyperplanes that
separate the training data by a maximal margin (see Fig. 3.1). All vectors lying on
one side of the hyperplane are labeled as −1, and all vectors lying on the other side
are labeled as 1. The training instances that lie closest to the hyperplane are called
support vectors. More generally, SVMs allow us to project the original training data
in space X to a higher dimensional feature space F via a Mercer kernel operator K. In
other words, we consider the set of classifiers of the form: f (x) =∑n

i=1 αi K (xi , x).

When f (x) ≥ 0 we classify x as +1, otherwise we classify x as -1.

When K satisfies Mercer’s condition [5] we can write: K (u, v) = �(u) · �(v)

where � : X→ F and “ · ” denotes an inner product. We can then rewrite f as:

f (x) = w ·�(x), where w =
n∑

i=1

αi�(xi ). (3.1)

Thus, by using K we are implicitly projecting the training data into a differ-
ent (often higher dimensional) feature space F. The SVM then computes the αi s
that correspond to the maximal margin hyperplane in F. By choosing different
kernel functions we can implicitly project the training data from X into space F.
(Hyperplanes in F correspond to more complex decision boundaries in the original
space X.)

Two commonly used kernels are the polynomial kernel K (u, v) = (u · v + 1)p,

which induces polynomial boundaries of degree p in the original space X, and the
radial basis function kernel K (u, v) = (e−γ (u−v)·(u−v)), which induces boundaries
by placing weighted Gaussians upon key training instances. In the remainder of this
section we will assume that the modulus of the training data feature vectors are con-
stant, i.e., for all training instances xi , ‖�(xi )‖ = ϕ for some fixed ϕ. The quantity
‖�(xi )‖ is always constant for radial basis function kernels, and so the assumption
has no effect for this kernel. For ‖�(xi )‖ to be constant with the polynomial kernels
we require that ‖xi‖ be constant. It is possible to relax this constraint on �(xi ). We
shall discuss this option at the end of Sect. 3.3.
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Given a set of labeled training data and a Mercer kernel K, there is a set of
hyperplanes that separate the data in the induced feature space F. We call this set
of consistent hyperplanes or hypotheses the version space [11]. In other words,
hypothesis f is in version space if for every training instance xi with label yi we have
that f (xi ) > 0 if yi = 1 and f (xi ) < 0 if yi = −1. More formally:

Definition 3.1 Our set of possible hypotheses is given as:

H =
{

f · f (x) = w ·�(x)

‖w‖ , where w ∈W
}

,

where our parameter space W is simply equal to F. The Version space, V is then
defined as:

V = { f ∈ H · ∀i ∈ {1, 2, . . . , n}, yi f (xi ) > 0}.

Notice that since H is a set of hyperplanes, there is a bijection (an exact correspon-
dence) between unit vectors w and hypotheses f in H. Thus we will redefine V as:

V = {w ∈W | ‖w‖ = 1, yi (w ·�(xi )) > 0, i = 1, 2, . . . , n}.

Note that a version space exists only if the training data are linearly separable
in the feature space. Thus, we require linear separability of the training data in the
feature space. This restriction is much less harsh than it might at first seem. First,
the feature space often has a very high dimension and so in many cases it results in
the data set being linearly separable. Second, as noted by [12], it is possible to
modify any kernel so that the data in the newly induced feature space is lin-
early separable. This is done by redefining all training instances xi :K (xi , xi ) ←
K (xi , xi )+ ν where ν is a positive regularization constant. The effect of this modi-
fication is to permit linear non-separability of the training data in the original feature
space.

There exists a duality between the feature space F and the parameter space W
[13, 14] which we shall take advantage of in the next section: points in F correspond
to hyperplanes in W and vice versa.

Clearly, by definition, points in W correspond to hyperplanes in F. The intuition
behind the converse is that observing a training instance xi in feature space restricts
the set of separating hyperplanes to ones that classify xi correctly. In fact, we can
show that the set of allowable points w in W is restricted to lie on one side of a
hyperplane in W. More formally, to show that points in F correspond to hyperplanes
in W, suppose we are given a new training instance xi with label yi . Then any
separating hyperplane must satisfy yi (w ·�(xi )) > 0. Now, instead of viewing w as
the normal vector of a hyperplane in F, think of yi�(xi ) as being the normal vector
of a hyperplane in W. Thus yi (w · �(xi )) = w · yi�(xi ) > 0 defines a half-space
in W. Furthermore w · yi�(xi ) = 0 defines a hyperplane in W that acts as one of the
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Fig. 3.2 a Version space duality: The surface of the hypersphere represents unit weight vectors.
Each of the two hyperplanes corresponds to a labeled training instance. Each hyperplane restricts
the area on the hypersphere in which consistent hypotheses can lie. Here version space is the surface
segment of the hypersphere closest to the camera. b An SVM classifier in version space: The dark
embedded sphere is the largest radius sphere whose center lies in version space and whose surface
does not intersect with the hyperplanes. The center of the embedded sphere corresponds to the SVM,
its radius is the margin of the SVM in F and the training points corresponding to the hyperplanes
that it touches are the support vectors. c Simple margin method [9]

boundaries to version space V. Notice that version space is a connected region on
the surface of a hypersphere in parameter space. See Fig. 3.2(a) for an example.

SVMs find the hyperplane that maximizes the margin in feature space F. One way
to pose this is as follows:

maximizew∈F mini {yi (w ·�(xi ))}
subject to: ‖w‖ = 1

yi (w ·�(xi )) > 0 i = 1, . . . , n.

By having the conditions ‖w‖ = 1 and yi (w ·�(xi )) > 0 we cause the solution
to lie in version space. Now, we can view the above problem as finding the point w
in version space that maximizes the distance mini {w · yi�(xi )}. From the duality
between feature and parameter space, and since ‖�(xi )‖ = 1, then each yi�(xi ) is a
unit normal vector of a hyperplane in parameter space and each of these hyperplanes
delimits the version space. Thus we want to find the point in version space that max-
imizes the minimum distance to any of the delineating hyperplanes. That is, SVMs
find the center of the largest radius hypersphere whose center can be placed in version
space and whose surface does not intersect with the hyperplanes corresponding to
the labeled instances, as in Fig. 3.2(b). It can be easily shown that the hyperplanes
touched by the maximal radius hypersphere correspond to the support vectors and
that the radius of the hypersphere is the margin of the SVM.

3.3 Active Learning and Batch Sampling Strategies

SVMCD
Active performs the following two steps for each round of relevance feedback

until the process is terminated by the user.
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• Sampling: Select a batch of data instances and ask the user to label them as either
“relevant” or “irrelevant” to the query concept, and

• Learning: Learn an SVM on data labeled thus far.

After the relevance feedback rounds have been performed, SVMCD
Active retrieves

the top-k most relevant data instances. The final SVM boundary separates “relevant”
data instances from irrelevant ones. The top-k most “relevant” data instances are the
k data instances farthest from the SVM boundary on the relevant side. The key step of
SVMCD

Active is its sampling step in which it selects most useful data instances to solicit
user feedback. In the remainder of this section, we present the theoretical foundation
of SVMCD

Active (Sect. 3.3.1), and then four sampling strategies (Sect. 3.3.2).

3.3.1 Theoretical Foundation

In pool-based active learning we have a pool of unlabeled instances. It is assumed
that the instances x are independently and identically distributed according to some
underlying distribution F(x), and the labels are distributed according to some condi-
tional distribution P(y | x).

Given an unlabeled pool U, an active learner � has three components: ( f, q, L).

The first component is a classifier, f : L → {−1, 1}, trained on the current set of
labeled data L (and possibly unlabeled instances in U too). The second component q
(L) is the querying function that, given a current labeled set L, decides which instance
in U to query next. The active learner can return a classifier f after each pool-query
(online learning) or after some fixed number of pool-queries.

The main difference between an active learner and a regular passive learner is the
querying component q. This brings us to the issue of how to choose the next unlabeled
instance in the pool to query. We use an approach that queries such instances in order
to reduce the size of the version space as much as possible. We need one more
definition before we can proceed:

Definition 3.2 Area(V) is the surface area that the version space V occupies on the
hypersphere ‖w‖ = 1.

We wish to reduce the version space as fast as possible. Intuitively, one good way
of doing this is to choose a pool-query that halves the version space. More formally,
we can use the following lemma to motivate which instances to use as our pool-query:

Lemma 3.1 Suppose we have an input space X, finite dimensional feature space
F (induced via a kernel K), and parameter space W [9]. Suppose active learner �∗
always queries instances whose corresponding hyperplanes in parameter space W
halves the area of the current version space. Let � be any other active learner. Denote
the version spaces of �∗ and � after i pool-queries as V∗i and Vi , respectively. Let
P denote the set of all conditional distributions of y given x. Then,

∀i ∈ N
+ sup

P∈P
EP

[
Area(Vi

∗)
] ≤ sup

P∈P
EP

[
Area(Vi )

]
,
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with strict inequality whenever there exists a pool-query j ∈ {1, . . . , i} by � that
does not halve version space Vj−1.

This lemma says that, for any given number of pool-queries, �∗ minimizes the
maximum expected size of the version space, where the maximum is taken over all
conditional distributions of y given x.

Now, suppose w∗ ∈W is the unit parameter vector corresponding to the SVM that
we would have obtained had we known the actual labels of all of the data in the pool.
We know that w∗must lie in each of the version spaces V1 ⊃ V2 ⊃ V3 . . . , where Vi

denotes the version space after i pool-queries. Thus, by shrinking the size of the
version space as much as possible with each pool-query we are reducing as fast as
possible the space in which w∗ can lie. Hence, the SVM that we learn from our
limited number of pool-queries will lie close to w∗.

This discussion provides motivation for an approach in which we query instances
that split the current version space into two equal parts insofar as possible. Given
an unlabeled instance x from the pool, it is not practical to explicitly compute the
sizes of the new version spaces V− and V+ (i.e., the version spaces obtained when
x is labeled as −1 and + 1, respectively). There is a way of approximating this
procedure as noted by Tong and Koller [9]:

Simple Method: Recall from Sect. 3.2 that, given data {x1, x2, . . . , xi } and labels
{y1, y2, . . . , yi }, the SVM unit vector wi obtained from this data is the center of the
largest hypersphere that can fit inside the current version space Vi . The position of
wi in the version space Vi clearly depends on the shape of the region Vi ; however, it
is often approximately in the center of the version space. Now, we can test each of the
unlabeled instances x in the pool to see how close their corresponding hyperplanes in
W come to the centrally placed wi . The closer a hyperplane in W is to the point wi ,

the more centrally it is placed in version space, and the more it bisects version space.
Thus we can pick the unlabeled instance in the pool whose hyperplane in W comes
closest to the vector wi . For each unlabeled instance x, the shortest distance between
its hyperplane in W and the vector wi is simply the distance between the feature
vector �(x) and the hyperplane wi in F—which is easily computed by |wi ·�(x)|.
This results in the natural Simple rule:

• Learn an SVM on the existing labeled data and choose as the next instance to query
the pool instance that comes closest to the hyperplane in F.

Figure 3.2(c) presents an illustration. In the stylized picture we have flattened out
the surface of the unit weight vector hypersphere that appears in Fig. 3.2(a). The
white area is version space Vi which is bounded by solid lines corresponding to
labeled instances. The five dotted lines represent unlabeled instances in the pool.
The circle represents the largest radius hypersphere that can fit in the version space.
Note that the edges of the circle do not touch the solid lines—just as the dark sphere
in Fig. 3.2(b) does not meet the hyperplanes on the surface of the larger hypersphere
(they meet somewhere under the surface). The instance b is closest to the SVM wi

and so we will choose to query b.
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Radial basis function kernels are good kernel choices. As noted in Sect. 3.2, radial
basis function kernels have the property that ‖�(xi )‖ = λ. The Simple querying
method can still be used with other kernels when the training data feature vectors do
not have a constant modulus, but the motivating explanation no longer holds since the
SVM can no longer be viewed as the center of the largest allowable sphere. However,
alternative motivations have recently been proposed by Campbell, Cristianini and
Smola [7] that do not require a constraint on the modulus.

3.3.2 Sampling Strategies

For the information retrieval, we have a need for performing multiple pool-queries
at the same time. It is not practical to present one data instance at a time for the user
to label, because he or she is likely to lose patience after a few rounds. To prevent
this from happening, we present the user with multiple data instances (say, h) at
each round of pool-querying. Thus, for each round, the active learner has to choose
not just one data instance to be labeled but h. Theoretically it would be possible to
consider the size of the resulting version spaces for each possible labeling of each
possible set of h pool-queries, but clearly this would be impractical. Thus instead,
for matters of computational efficiency, SVMCD

Active employs heuristic methods for
choosing unlabeled instances. We present and examine the following four sampling
strategies: batch-simple, speculative, angle-diversity, and error-reduction.

3.3.2.1 Batch-Simple Sampling

The batch-simple strategy chooses h unlabeled instances closest to the separating
hyperplane (between the relevant and the irrelevant instances in the feature space) to
solicit user feedback. Figure 3.3 summarizes the algorithm. Based on the labeled pool
L, the algorithm first trains a binary classifier f (step 1). The binary classifier f is then
applied to the unlabeled pool U to compute each unlabeled instance’s distance to the
separating hyperplane (step 2). The h unlabeled instances closest to the hyperplane
and relatively apart from each other are chosen as the next batch of samples for
conducting pool-queries.

3.3.2.2 Speculative Sampling

One can consider a speculative procedure, which recursively generates samples by
speculating user feedback. The speculative procedure is computationally intensive.
It can be used as a yardstick to measure how well the other active-learning strategies
perform. The algorithm starts by finding one most informative sample (the clos-
est unlabeled instance to the hyperplane). It then speculates upon the two possible
labels of the sample, and generates two more samples, one based on the positive
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Fig. 3.3 Batch-simple
sampling algorithm

speculation and one based on negative speculation. The algorithm speculates recur-
sively, generating a binary tree of samples. Figure 3.4 presents the speculative algo-
rithm. Steps 6 and 8 of the algorithm speculate the pool-query to be positive and
negative, respectively, and recursively call the speculative procedure to select the
next samples. The speculative procedure terminates after at least h samples have
been generated.

3.3.2.3 Angle-Diversity Sampling

The main idea (described in Step 2 of Fig. 3.5) of angle-diversity [15] is to select
a collection of samples close to the classification hyperplane, and at the same time,
maintain their diversity. The diversity of samples is measured by the angles between
the samples. Given an example xi , its normal vector is equal to �(xi ). The angle
between two hyperplanes hi and h j , corresponding to instances xi and x j , can be
written in terms of the kernel operator K:

| cos
(
∠(hi , h j )

) | = |�(xi ) ·�(x j )|
‖�(xi )‖‖�(x j )‖ =

|K (xi , x j )|√
K (xi , xi )K (x j , x j )

.

The angle-diversity algorithm starts with an initial hyperplane hi trained by the
given labeled set L. Then, for each unlabeled instance x j , it computes its distance to
the classification hyperplane hi . The angle between the unlabeled instance x j and the
current sample set S is defined as the maximal angle from instance x j to any instance
xs in set S. This angle measures how diverse the resulting sample set S would be, if
instance x j were to be chosen as a sample.
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Fig. 3.4 Speculative
sampling

Fig. 3.5 Angle-diversity sampling

Algorithm angle-diversity introduces parameter λ to balance two components: the
distance to the classification hyperplane and the diversity of angles among samples.
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Incorporating the trade-off factor, the final score for the unlabeled instance xi can be
written as

λ ∗ | f (xi )| + (1− λ) ∗
(

max
x j∈S

|k(xi , x j )|√
K (xi , xi )K (x j , x j )

)
, (3.2)

where function f computes the distance to the hyperplane, function K is the kernel
operator, and S the training set. After that, the algorithm selects the unlabeled instance
that enjoys the smallest score in U as the sample. The algorithm repeats the above
steps h times to select h samples. In practice, with trade-off parameter λ set at 0.5, [15]
shows that the algorithm achieves good performance “on the average.” An example
in Sect. 3.4.3.4 shows that λ can be adjusted in a concept-dependent way according
to the diversity of the target concept.

3.3.2.4 Error-Reduction Sampling

Arriving from another perspective, Roy and McCallum [16] proposed an active learn-
ing algorithm that attempts to reduce the expected error on future test examples. In
other words, their approach aims to reduce future generalization error. Since the true
error on future examples cannot be known in advance, Roy and McCallum proposed
a method estimating future error. Suppose we are given a labeled set L and an unla-
beled set U = {x1, x2, . . . , xn}where each xi is a vector. The distribution P(x) of the
vectors is assumed to be i.i.d. In addition, each data instance xi is associated with a
label yi ∈ {−1, 1} according to some unknown conditional distribution P(y|x). The
classifier trained by the labeled set L can estimate an output distribution P̂L(y|x) for
a given input x. Then the expected error of the classifier can be written as

E
[
Error P̂L

]
=

∫
x

Loss
(

P(y|x), P̂L(y|x)
)

P(x)dx.

The function Loss is some loss function employed to measure the difference
between the true distribution, P(y|x), and its estimation, P̂L(y|x). One popular loss
function is the log loss function which is defined as follows:

Loss
(

P(y|x), P̂L(y|x)
)
=

∑
y∈{−1,1}

P(y|x) log
(

P̂L(y|x)
)

.

The algorithm proposed by Roy and McCallum selects a query, x∗, that causes

minimal error. The algorithm includes x∗ in its sample set if E
[
Error P̂L∪{x∗}

]
is

smaller than E
[
Error P̂L∪{x}

]
for any other instance x. Figure 3.6 summarizes the

algorithm. Given the training pool L, the algorithm first computes the current clas-
sifier’s posterior P̂L(y|x) in step 3. For each unlabeled data instance x with each
possible label y, the algorithm then adds the pair (x, y) to the training set, re-trains
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Fig. 3.6 Error reduction sampling

the classifier with the enlarged training set, and computes the expected log loss. Steps
4 and 5 of the algorithm compute the expected log loss by adding (x, y) to the training
data.

3.4 Concept-Dependent Learning

Ideally, concept learning should be done in a concept-dependent manner. For a simple
concept, we can employ, e.g., algorithm angle-diversity or batch-simple to learn the
concept. For a complex concept, we must make proper adjustments in the learning
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algorithm. We define concept complexity as the level of difficulty in learning a target
concept. To model concept complexity, we can use three quantitative measures [17]:
scarcity, isolation, and diversity.

The remainder of this section will first define some measures for quantifying
query complexity, and then discuss major limitations of current active learning algo-
rithms. We then outline detailed algorithms of the concept-dependent component of
SVMCD

Active, which uses keywords to guide learning in the feature space, to alleviate
the limitations. To illustrate how SVMCD

Active works in this section, we use image
retrieval as the example application.

3.4.1 Concept Complexity

Before we can compute the concept complexity, we need to know the user’s target
concept, which is unavailable beforehand. Fortunately, we often have a rough descrip-
tion of a data instance’s semantic content from its keyword-annotation (even though
the annotation quality might not be perfect). For instance, most image search engines
(e.g., Google) use surrounding texts of an image to provide it some initial (noisy)
labels. Query logs can then be used to refine these labels. If an image was clicked
often when query “lion” was issued, then that image may contain lion-related seman-
tics in high probability. We treat each label as a concept, and pre-compute scarcity,
isolation, and diversity to characterize concept complexity in advance. Similarly,
concept complexity of texts, video clips, and music can be obtained in the same
fashion.

3.4.1.1 Scarcity

Scarcity measures how well-represented a concept is in the retrieval system. We
use hit-rate, defined as the percentage of data matching the concept, to indicate
scarcity. As we assume that each keyword is equivalent to a concept, the hit-rate of a
keyword is the number of images being annotated with that keyword. This parameter
is dataset-dependent; while a concept such as photography is very general and may
produce a high hit-rate, other general concepts such as raptors may be scarce simply
because the system does not contain many matching images. Similarly, a very specific
concept such as laboratory coat could have a high hit-rate solely because the system
has many such images.

3.4.1.2 Isolation

Isolation characterizes a concept’s degree of separation from the other concepts. We
measure two types of isolation: input space isolation and keyword isolation. The input
space isolation is considered low (or poor) when the concept is commingled with
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others in the space formed by extracted features (e.g., colors, shape, and textures
of images). When the keywords used to describe a concept has several meanings
or senses, the keyword isolation is considered poor; very precise keywords provide
good isolation. An example of a poorly-isolated keyword is “feline,” which is often
used to annotate images of tigers, lions and domestic cats. If the user seed a query
with “feline,” it is difficult to tell which sense of the word the user has in mind.
A well-isolated seed keyword like “Eiffel Tower” has less ambiguity; we can be
quite sure that the user is thinking about the famous Parisian landmark. We estimate
isolation as follows:

1. Input Space Isolation: We characterize the isolation of a concept in the perceptual
input space with:

Is(T, σ ) = 1

NT

∑
xi∈T

N (T )

N (σ )
. (3.3)

For each instance xi that belongs to the target concept T, N (σ ) is the number of
instances that are within an L1 distance of σ from xi , and N (T ) is the number
such instances that are from T. NT is the total number of instances from T in
the entire dataset. In essence, Is(T, σ ) gives the percentage of nearest neighbors
(NNs) within a distance of σ that are from the target concept. The higher the
value of Is, the more isolated is the target concept. A low value indicates that the
target concept is commingled with others in the input space. Since Is is only an
estimation, we use σ values ranging from 1 to 9 in increments of one.

2. Mining Keyword Associations for Keyword Isolation: To measure keyword iso-
lation, we employ association-rules mining [18] to model the co-occurrences of
keywords. Given a query keyword wq , we find the set of images I that are anno-
tated with wq . Let W be the set of keywords, besides wq , that are used to annotate
the images in I. For each 2-itemset {wq , wi }, where wi ∈ W, we compute the
confidence (Cqi ) of the rule wq ⇒ wi . We define isolation of wq with respect to
wi as

Ik
(
wq , wi

) = Cqi ×
(
1− Cqi

)
. (3.4)

When Cqi is close to 0.5, Ik is at its maximum, which implies that the rule
is highly ambiguous, and that wq is poorly isolated from wi . Let us consider
two query keywords “fruit” and “apple.” Suppose the confidence value for the
rule f rui t ⇒ apple is 0.5, and for apple ⇒ f rui t it is 0.7. Using Eq. 3.4,
we get Ik = 0.25 for the first rule, and Ik = 0.21 for the second rule. We
say that the keyword “fruit” is poorly isolated from “apple”, whereas “apple” is
well isolated from “fruit.” Although “fruit” is a more general word than “apple”
according to rules of linguistics, this is not necessarily true in the annotations of
the image-set. Therefore, employing a general thesaurus such as Wordnet may be
counter-productive for determining keyword isolation. The isolation value must
be computed in a dataset-dependent fashion.The causes of poor keyword isolation
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Fig. 3.7 Average isolation
values
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could be due that the words are synonyms, or that some images contain semantics
or objects described by the words. To quantify isolation, we need not discern the
reason of co-occurrences. When some words often appear together with the query
keyword in I, it indicates that the query keyword is ambiguous. For instance, the
word “apple” in our dataset is often associated with either “computer” or “fruit.”
Therefore, SVMCD

Active needs to determine whether it is “computer” or “fruit” that
is more relevant to an “apple” query. With association-rules mining, the derived
keyword isolation is dateset-dependent. If our dataset only contains images of
“fruit apple”, the concept “apple” will have good semantic isolation. Thus, we
only need to determine the semantic of the word when it appears in more than
one 2-itemsets.

Some results of empirical studies are presented here to show that concept iso-
lation can affect retrieval accuracy. The dataset consists of 300 K images that are
annotated with up to 40 K annotation keywords altogether. We chose 6 K repre-
sentative keywords—words that are not too common or too rare—to represent the
semantic classes present in this dataset. Figure 3.7 plots the average isolation value
(Is in Eq. 3.3 ) at σ = 1, . . . , 9 for the 6 K concepts. Based on the Is values,
we divide the concepts into three categories of isolation: well-, moderately- and
poorly-isolated. We notice that well-isolated concepts generally have higher Is val-
ues at smaller σ, implying that similar NNs are nearby; poorly-isolated concepts
generally have very low Is values.

Next, we use the angle-diversity algorithm with λ = 0.5 to study the effect of
isolation on retrieval accuracy. To circumvent the scarcity problem, we use the key-
words to seed each query with a positive and negative example. Relevance feedback
is then conducted purely on perceptual feature. We are not able to use keywords
to bound the search as we are using keywords to indicate the query concept. This
experimental setup is different from that in Sect. 3.5 where real users interact with
the retrieval system to conduct relevance feedback. In Fig. 3.8, we plot the average
top-20 precision rates using five iterations of relevance feedback for the three types
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Fig. 3.8 Precision for
various input-space isolation
types
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of isolation. As expected, the plot shows that concepts with good isolation achieve
higher precision rates.

3.4.1.3 Diversity

The diversity of a concept is characterized by the way relevant images are distributed
in the input space; it is an indication on how learnable a concept is. A diverse concept
has relevant images scattered all over the input space. For example, the flowers
concept, which encompasses flowers of different colors and types, is more diverse
than the red roses concept. Instead of concentrating the sampling effort on a few
small subspaces, we want to explore more subregions of the input space and select
diverse samples to present to the user. As diversity is related to the spread of the
relevant images in the input space, we can characterize concept diversity using the
spatial variance of images belonging to a concept in the perceptual input space [19].
Alternatively, we can make use of the TSVQ clusters from the indexer of our dataset
[20]. Since clustering will group instances based on how they are scattered in the
input space, we characterize diversity using the distance between centroids of the
clusters that contain instances from the target concept.

3.4.2 Limitations of Active Learning

When the target concept instances are scarce and not well isolated, active learning
can be ineffective for locating relevant images.

The first limitation is related to scarcity—the availability of images relevant to
the concept to be learned. Most active learning algorithms require at least one pos-
itive (relevant) and one negative (irrelevant) instance to begin the learning process.
A common approach is to randomly sample images from the input space. If none of
the samples are labeled as positive, they are all treated as negatives, which will be
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used to prune the sample space by applying an algorithm like [21]. The seed-image
sampling continues until we obtain a positive image. While this process is viable,
it may not be effective if the matching images are scarce. When the percentage of
matching images is low, even if we can winnow irrelevant images from the unlabeled
pool, the probability of finding a positive image can still be quite low. For instance,
if a concept has 5% matching images, the probability is about 66% that at least one
of the 20 randomly selected images is positive. But when the concept is as scarce as
1%, the probability declines to 20%. One can easily find scenarios where the number
of concept-matching images is much lower than 1%. Under such conditions, active
learning can take many iterations just to find one relevant image.

The second limitation—concept isolation—further complicates the problem.
When visually-similar concepts overlap substantially in the input space, the learner
might confuse the target concept with an irrelevant one. Figure 3.9 illustrates this
problem. The squares and circles represent images from two different concepts,
which overlap each other in the input space (Fig. 3.9(a)). Suppose three images pre-
sented to the user have been labeled as follows: two squares are labeled as “irrelevant”
(filled squares), and one circle is labeled “relevant” (filled circle in Fig. 3.9(b)). The
circles around the filled squared can easily be mistakenly inferred as squares, and
the squares around the filled circles as circles. Figure 3.9(c) shows that after using
the kernel trick to project the instances into the feature space, several instances lie
on the wrong side of the separating hyperplane. This is because the labeled images
influence their neighboring images in the input space to be classified into the same
category and we have two classes mix together. As a result, it is difficult to separate
these two classes apart through any learning algorithm (unless we have substantially
larger amount of labeled instances, which defeats the purpose of active learning).

3.4.3 Concept-Dependent Active Learning Algorithms

SVMCD
Active consists of a state-transition table and three algorithms, disambiguate

keywords (Fig. 3.11), disambiguate input-space (Fig. 3.12), and angle diversity
(Fig. 3.5). First, SVMCD

Active addresses the scarcity problem by using keywords to
seed a query. Thus, we eliminate the need to search the entire dataset for a positive
image. The user can type in a keyword (or keywords) to describe the target concept.
Images that are annotated with that keyword are added to the initial unlabeled pool
U. If the number of images with matching keywords is small, we can perform query
expansion 2 using a thesaurus to obtain related words (synonyms) that have matching
images in our dataset. For each related semantic, we select matching images and add
them to U.

Using U to conduct learning, the hit-rate is much improved compared to using the
entire dataset. At this juncture, the state of learnability can be in one of the four states

2 Query expansion is a vital component of any retrieval systems and it remains a challenging research
area. This component is not deployed in our system yet and is part of our ongoing research.
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Fig. 3.9 Example illustrating how poor concept isolation can hurt target concept learning

depicted in (Fig. 3.10). The rows show that the specified keyword(s) may enjoy good
or suffer from poor isolation. The columns show that the query concept may be well
or poorly isolated in the input space formed by the perceptual features. The goal of
SVMCD

Active is to move the learnability state of the target concept to the ideal state A,
where both keywords and perceptual features enjoy good isolation.

3.4.3.1 State C: Keyword Disambiguation

In state C, the keyword isolation is poor (due to aliasing). Thus, we first need to
disambiguate the keywords by presenting images of different semantics to the user.
Once the semantic is understood, the learnability makes a transition to state A.

Algorithm disambiguate keywords (DK) depicted in Fig. 3.11 helps state C to
arrive at A. The algorithm first performs a lookup in the association table H for the
query keyword w. If 2-itemsets are found, the algorithm randomly selects in U images
that are annotated by the co-occurred word set A. The resulting sample set S is pre-
sented to the user to solicit feedback. Once feedback has been received, SVMCD

Active
removes images labeled with the words associated with the irrelevant images
from U.
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Fig. 3.10 Four learnability
states

Fig. 3.11 Disambiguate
keywords algorithm

3.4.3.2 State B: Input-Space Disambiguation

State B has poor perceptual isolation but good keyword isolation. If the number
of matching images yielded by the good keyword is small, we can perform query
expansion to enlarge the unlabeled sample pool. For these poorly-isolated concepts,
we attempt to improve the perceptual isolation of the sample pool through input-space
disambiguation. SVMCD

Active employs disambiguate input-space (DS) in Fig. 3.12 to
achieve this improvement. The algorithm removes from U the instances that can
interfere with the learnability of the target concept. Let us revisit Fig. 3.9. Rather than
learning the labels of both the square and circle classes, DS removes the instances
of the non-target class from the sample pool.
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Fig. 3.12 Disambiguate
input-space algorithm

Given the current labeled pool of images, DS first generates two word lists: P from
positive-labeled images and N from negative-labeled images. In the fourth step, DS
checks the annotation of each image in the unlabeled pool for matches to words in P
and N. If there are more negative keyword matches, SVMCD

Active removes that image
from U. Once perceptual isolation is enhanced, state B makes the transition to A.

3.4.3.3 State D: Keyword and Space Disambiguation

State D suffers from both poor semantic and input-space isolation. To remedy the
problem, SVMCD

Active first improves the keyword isolation using the same DK strategy
as state C. Thereafter, the state is moved to state B, and the perceptual isolation
is improved by applying state B’s method for disambiguation in the input space.
Figure 3.10 shows the path that D takes to reach the ideal state A.

3.4.3.4 State A: Adapt to Diversity

Knowledge of the concept diversity can guide the learner during its exploration of the
input space for potential positive samples. For example, if a concept is very diverse,
like flowers, the learner may need to be more explorative and search for flowers
of all colors. For such concepts, we make our learner more explorative by chang-
ing the parameter λ used in our classification score function in the angle diversity
algorithm:

λ ∗ | f (xi )| + (1− λ) ∗
(

max
x j∈S

|k(xi , x j )|√
K (xi , xi )K (x j , x j )

)
.
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If the concept diversity is low, we keep λ at its original value of 0.5. For diverse
concepts, we reduce λ, resulting in more weight being assigned to the angle diversity
during sample selections.

3.5 Experiments and Discussion

Experiments were conducted to answer five questions:

1. How does active learning perform, compared to passive learning in terms of
retrieval accuracy? (Sect. 3.5.2)

2. Can active learning outperform traditional relevance feedback schemes?
(Sect. 3.5.3)

3. Which sampling strategies, random, simple, speculative, angle diversity, or error
reduction, perform the best for SVMCD

Active, and why? (Sect. 3.5.4)
4. For concepts with differing degrees of isolation, can the multimodal approach of

SVMCD
Active improve the retrieval accuracy? (Sect. 3.5.5)

5. Can the angle diversity algorithm be tuned to accommodate highly diverse
concepts? (Sect. 3.5.6)

3.5.1 Testbed and Setup

Five datasets were used for empirical evaluation of SVMCD
Active: a four-category, a

ten-category, a 15-category, a 107-category, and a 300 K real-world image dataset.

• Four-category set: The 602 Corel-CD images in this dataset belong to four
categories—architecture, flowers, landscape, and people. Each category consists
of 100 to 150 images.

• Ten-category set: The 1,277 images in this dataset belong to ten categories—
architecture, bears, clouds, flowers, landscape, people, objectionable images,
tigers, tools, and waves. In this set, a few categories were added to increase learning
difficulty (i.e., to reduce hit rate and decrease isolation). The tiger category contains
images of tigers with landscape and water backgrounds to complicate landscape
category. The objectionable (pronographic) images can be confused with people
wearing little clothing (beach wear). Clouds and waves have substantial color sim-
ilarity.

• 15-category set: In addition to the ten categories in the above dataset, the total of
1,920 images in this dataset includes elephants, fabrics, fireworks, food, and texture.
We added elephants with landscape and water backgrounds to increase learning
difficulty in distinguishing landscape, tigers and elephants. We added colorful
fabrics and food to interfere with flowers. Various texture images (e.g., skin, brick,
grass, water, etc.) were added to raise learning difficulty for all categories.
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• 107-category set: This set consists of nearly 50,000 images that we collected from
Corel Image CDs. The categories are documented in [22].

• Large set: A 300 K-image dataset with images from a stock-photo company.

Each image is described by 144 perceptual features (108 from color and 36 from
texture). (These features have been thoroughly tested and verified to be quite effective.
Since the focus of this chapter is not on feature extraction, please consult [1] for
details.) In the large image dataset, each image is annotated with up to 50 keywords;
40,000 keywords are used in the entire dataset. For SVMCD

Active, we used a Laplacian

RBF kernel K (u, v) =
(

e−γ
∑

i |ui−vi |
)

, with the γ set at 0.001. For the parameter

λ used in the angle diversity algorithm, we set its default value at 0.5.
To obtain an objective measure of performance, we assumed that a query concept

was an image category. The SVMCD
Active learner has no prior knowledge about image

categories.3 The goal of SVMCD
Active is to learn a given concept through a relevance

feedback process. In this process, at each feedback round SVMCD
Active selects sixteen

or twenty images to ask the user to label as “relevant” or “not relevant” with respect to
the query concept. It then uses the labeled instances to successively refine the concept
boundary. After finishing the relevance feedback rounds, SVMCD

Active then retrieves
the top-k most relevant images from the dataset, based on the final concept it has
learned. Accuracy is then computed by looking at the fraction of the k returned result
that belongs to the target image category. We note that this computation is equivalent
to computing the precision on the top-k images. This measure of performance appears
to be the most appropriate for the image retrieval task—particularly since, in most
cases, not all of the relevant images can be displayed to the user on one screen. As in
the case of web searching, we typically wish the first few screens of returned images
to contain a high proportion of relevant images. We are less concerned that not every
single instance that satisfies the query concept is displayed.

3.5.2 Active Versus Passive Learning

In this first experiment, we examined the gain of active learning over passive learning,
and did not activate the concept-dependent component of SVMCD

Active. Figure 3.13a, b
show the average top-k accuracy for the ten-category and 15-category datasets. We
considered the performance of SVMCD

Active after each round of relevance feedback.
The graphs indicate that performance clearly increases after each round. Also, the
SVMCD

Active algorithm’s performance degrades gracefully when the concept complex-
ity is increased—for example, after four rounds of relevance feedback, it achieves
an average of 95% and 88% accuracy on the top-20 results for the two different sizes

3 Unlike some recently developed systems [23] that contain a semantic layer between image features
and queries to assist query refinement, our system does not have an explicit semantic layer. We argue
that having a hard-coded semantic layer can make a retrieval system restrictive. Rather, dynamically
learning the semantics of a query concept is more flexible and hence makes the system more useful.
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Fig. 3.13 a Average top-k accuracy over the ten-category dataset. b Average top-k accuracy over
the 15-category dataset. Standard error bars are smaller than the curves’ symbol size. Legend order
reflects order of curves

of data sets, respectively. It is also interesting to note that SVMCD
Active is not only

good at retrieving just the top few images with high precision, but it also manages
to sustain fairly high accuracy even when asked to return larger numbers of images.
For example, after five rounds of querying it attains 84% and 76% accuracy on the
top-70 results for the two different sizes of data sets respectively. (For these two
datasets, all sampling strategies work equally well. When the concept complexity
further increases, we will see shortly in Sect. 3.5.4 that the angle-diversity method
outperforms the other.)

We examined the effect that the active querying method had on performance.
Figure 3.14a, b compares the active querying method with the regular passive method
of sampling. The passive method chooses images randomly from the pool to be
labeled. This method is typically used with SVMs since it creates a randomly selected
dataset. It is clear that the use of active learning is beneficial in the image retrieval
domain. We gain a significant increase in performance (a 5% to 10% gain after five
iterations) by using the active method.

3.5.3 Against Traditional Relevance Feedback Schemes

We compared SVMCD
Active with two traditional query refinement methods: query point

movement (QPM) and query expansion (QEX). In this experiment, each scheme
returned the 20 most relevant images after up to five rounds of relevance feedback.
To ensure that the comparison to SVMCD

Active was fair, we seeded both schemes with
one randomly selected relevant image to generate the first round of images. On the
ten-category image dataset, Fig. 3.15(a) shows that SVMCD

Active achieves nearly 90%
accuracy on the top-20 results after three rounds of relevance feedback, whereas the
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Fig. 3.14 a Active and regular passive learning on the 15-category dataset after three rounds of
querying. b Active and regular passive learning on the 15-category dataset after five rounds of
querying

Fig. 3.15 a Average top-k accuracy over the ten-category dataset. b Average top-k accuracy over
the 15-category dataset

accuracies of both QPM and QEX never reach 80%. On the fifteen-image category
dataset, Fig. 3.15(b) shows that SVMCD

Active outperforms the others by even wider
margins. SVMCD

Active reaches 80% top-20 accuracy after three rounds and 94% after
five rounds, whereas QPM and QEX cannot achieve 65% accuracy.

These results hardly surprise us. Traditional information retrieval schemes require
a large number of image instances to achieve any substantial refinement. By just
refining around current relevant instances, both QPM and QEX tend to be fairly
localized in their exploration of the image space and hence rather slow in exploring
the entire space. In contrast, during the relevance feedback phase SVMCD

Active takes
both the relevant and irrelevant images into account when choosing the next pool-
queries. Furthermore, it chooses to ask the user to label images that it regards as
most informative for learning the query concept, rather than those that have the
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Fig. 3.16 Comparison of sampling strategies. a Top-20 accuracy, b Top-50 accuracy

most likelihood of being relevant. Thus it tends to explore the feature space more
aggressively.

3.5.4 Sampling Method Evaluation

This experiment was conducted to examine the performance of five sampling algo-
rithms: random, simple active, speculative, angle diversity, and error reduction. As
we mentioned in Sect. 3.5.2, when the concept complexity is low, all sampling meth-
ods perform about the same. To conduct this experiment, we used the 107-category
dataset.

The first strategy selects random images from the dataset as samples for user
feedback. The rest of the sample algorithms have been described in Sect. 3.3.2. We
conducted experiments to compare these five sampling strategies in terms of three
factors: (1) the top-k retrieval accuracy, (2) execution times, and (3) database size. In
the experiments, we tested the sampling algorithms by fixing the number of sample
images per-round at sixteen.

Figure 3.16(a, b) reports the results for the 107-category dataset. For this dataset,
it is too expensive to scan the entire dataset to perform sample selection and retrieval.
Therefore, we conducted sampling and retrieval approximately through an indexing
structure [20]. The figures show that the angle diversity algorithm performs the best
among all active-learning algorithms. The angle diversity algorithm performs as well,
and even better in some interactions, as the speculative algorithm, which is supposed
to achieve nearly optimal performance. This result confirms that the samples should
be diverse, as well as semantically uncertain (near the hyperplane).

Next, Fig. 3.17 evaluates the execution time (in milliseconds) taken by the
five algorithms. The figure shows that the fastest sampling algorithm is the ran-
dom method, followed by angle diversity, simple active, speculative, and then
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Fig. 3.17 Execution time on
large dataset

Table 3.1 Queries for
various states of learnability

State A State B State C State D

Castle Frog Apple Bug
Crabs Lion Bird City
Crayfish Paris Cat Dessert
Fireworks River China Fruit
Outer space Tiger Fish Mountain

error-reduction. Thus, angle diversity algorithm is the ideal choice in terms of both
effectiveness and efficiency.

3.5.5 Concept-Dependent Learning

This experiment were designed to assess the effectiveness of the concept-dependent
approach to image retrieval. The experiments were conducted on a dataset comprising
300 K Corbis images.

We evaluated retrieval accuracy (in terms of precision) for concepts belonging
to one of the four possible learnability states depicted in Fig. 3.10. The representa-
tive concepts we queried, based on their learnability states, are shown in Table 3.1.
The angle diversity (AD) sampling strategy is used as the baseline for comparing
the performance of the other algorithms used to modify the sample pool, namely
disambiguate input-space (DS) and disambiguate keywords (DK ).

3.5.5.1 State B

The concepts belonging to state B have good keyword isolation but poor perceptual
isolation (Fig. 3.18b). We used the DS algorithm to weed the sample pool of images
annotated by negative keywords. The figure shows the retrieval performance of the
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Fig. 3.18 Results for the four states of keyword and perceptual isolation. a Good keyword and
perceptual, b Good keyword, poor perceptual, c Poor keyword, good perceptual, d Poor keyword
and perceptual

DS algorithm and the baseline’s. In the fifth iteration, DS gives a 99% precision rate
compared to 90% for the baseline. On average, we can improve the precision rate by
10%. The results show that DS is effective for increasing the concept’s perceptual
isolation.

3.5.5.2 State C

In order to resolve the aliasing problem for concepts with poor keyword isolation, we
applied the DK algorithm and compared its retrieval performance with the baseline
AD’s (Fig. 3.18c). We notice that the difference in precision rate after the first round
of relevance feedback is 30% for AD and 40% for DK. The higher precision rate for
DK persists through subsequent iterations as well. By disambiguating keywords in
the initial sample pool, DK is able to provide better retrieval results.

3.5.5.3 State D

Concepts falling into this state are the most problematic (Fig. 3.18d). They suffer
from both poor keyword and poor perceptual isolation. The figure plots the retrieval
results for four algorithms: the baseline, DS, DK, and DK + DS. Using only DS to
improve perceptual isolation, the precision rate is on average 10% higher than the
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Fig. 3.19 Concept diversity. a Adaptive Lambad, b Results for diverse concepts

baseline. Using only DK to improve the keyword isolation, the average precision
increase is 27%. When both DS and DK are used, the precision rate improves a
couple of more percentage points over the case when only DK is used. These results
suggest that DK not only helps to disambiguate keywords, but improves the perceptual
isolation as well. This is not surprising, because the high-frequency keywords that
cause the aliasing problem often also describe concepts visually similar to the target
concept. Hence by labeling images from those other concepts as “negative”, the user
can simultaneously perform disambiguation in the perceptual space.

3.5.5.4 State A

Since the keyword isolation is good in this state, we evaluated the effectiveness of
DS for further improving the already-good perceptual isolation (Fig. 3.18a). The plot
shows the top-20 precision rate for up to seven iterations of relevance feedback. We
can observe that using negative keywords to remove samples makes little difference
to the retrieval results. We conclude that such concepts are ideal for active learning
and hence require no further assistance from keywords besides seeding the query.

3.5.6 Concept Diversity Evaluation

For highly-diverse concepts, we reduced the value of λ in Eq. 3.2 so more weight
is given to the angle diversity during sample selections. Figure 3.19a shows how we
adapt λ to the concept diversity. For concepts with low diversity values (≤ 1), we set
λ = 0.5. For more diverse concepts, we reduce λ as diversity increases. However, we
cannot reduce λ indefinitely, and ignore usefulness of samples near the hyperplane.
Therefore, when the diversity value is greater than 3.5, we set λ = 0.2. We plotted the
precision results for queries with diverse concepts in Fig. 3.19b. The dashed curve
plots the precision results using λ fixed at 0.5. The solid curve is for the case where
λ adapts to the diversity.
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At higher iterations, using an adaptive λ improves the precision rate by about 10%.
The improvement is not significant for the second iteration since the learner still has
insufficient labeled images to construct a good classifier. A qualitative observation
reported by users is that when λ is adaptive, the variety of images is significantly
better, in both the sample pool and the results set. Thus, our approach of adjusting λ

according to the concept’s diversity proves to be both simple and effective.

3.5.7 Evaluation Summary

Our experiments have provided us information to answer the five questions posed in
the beginning of the section.

1. Active learning outperforms passive learning methods. The gain of active learning
becomes more significant when complexity increases.

2. Active learning outperforms traditional relevance feedback schemes by significant
margins. This is hardly a surprise, since active learning maximizes information
gain when it selects a sample to perform pool-query.

3. The angle-diversity sampling method, which strikes a good balance between
uncertainty and diversity, works most effectively and efficiently among the sam-
pling methods.

4. When concept complexity increases beyond certain level (e.g., when a tar-
get concept is scarce or poorly isolated), the effectiveness of active learning
can suffer from severe degradation. We have shown that by taking advantage
of keyword profiling (similar to the way that all relational databases perform
query optimization based on some profiling techniques), SVMCD

Active can perform
concept-dependent active learning by disambiguating either keyword semantics
or perceptual features. Improving concept learnability assures the algorithm’s
scalability with respect to concept complexity.

5. Concept-dependent active learning can also adapt its diversity parameter to behave
exploratively when the target concept is scattered in the feature space.

3.6 Related Readings

Machine learning and relevance feedback techniques have been proposed to learn
and to refine query concepts. The problem is that most traditional techniques require
a large number of training instances [24–28], and they require seeding a query with
“good” examples [29–32]. Unfortunately, in many practical scenarios, a learning
algorithm must work with a scarcity of training data and a limited amount of training
time.



3.6 Related Readings 67

3.6.1 Machine Learning

Ensemble techniques such as bagging [33], arcing [34], and boosting [35–37] have
been proposed to improve classification accuracy for decision trees and neural net-
works. These ensemble schemes enjoy success in improving classification accuracy
through bias or variance reduction, but they do not help reduce the number of sam-
ples and time required to learn a query concept. In fact, most ensemble schemes
actually increase learning time because they introduce learning redundancy in order
to improve prediction accuracy [35, 38–40].

To reduce the number of required samples, researchers have conducted several
studies of active learning [41–44] for classification. Active learning can be modeled
formally as follows: Given a dataset S consisting of an unlabeled subset U and a
labeled subset L, an active learner has two components: f and q. The f component is
a classifier that is trained on the current set of labeled data L. The second component
q is the sampling function that, given a current labeled set L, decides which subset
u in U to select to query the user. The active learner returns a new f after each round
of relevance feedback. The sampling techniques employed by the active learner
determine the selection of the next batch of unlabeled instances to be labeled by the
user.

The query by committee (QBC) algorithm [45, 46] is a representative active learn-
ing scheme. QBC uses a distribution over all possible classifiers and attempts greedily
to reduce the entropy of this distribution. This general purpose algorithm has been
applied in a number of domains using classifiers (such as Naive Bayes classifiers
[4, 47]) for which specifying and sampling classifiers from a distribution is natural.
Probabilistic models such as the Naive Bayes classifier provide interpretable results
and principled ways to incorporate prior knowledge. However, they typically do not
perform as well as discriminative methods such as SVMs [48, 49], especially when
the amount of training data is scarce. For media-data retrieval where a query concept
is typical non-linear, 4 SVMCD

Active with kernel mapping provide more flexible and
accurate concept modeling.

Specifically for image retrieval, the PicHunter system [50, 51] uses Bayesian
prediction to infer the goal image, based upon users’ input. Mathematically, the goal
of PicHunter is to find a single goal point in the feature space (e.g., a particular flower
image), whereas our goal is to hunt down all points that match a query concept (e.g.,
the entire flower category, which consists of flowers of different colors, shapes, and
textures, and against different backgrounds). Note that the points matching a target
concept can be scattered all over the feature space. To find these points quickly with
few hints, our learning algorithms must deal with many daunting challenges [52].

4 A query such as “animals”, “women”, and “European architecture” does not reside contiguously
in the space formed by the image features.
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3.6.2 Relevance Feedback

Relevance feedback was first proposed by Rocchio in 1971 [53]: The study of
[32] puts subsequent relevance feedback techniques proposed by the Information
Retrieval (IR) into three categories: query reweighting, query point movement and
query expansion.

• Query reweighting and query point movement [30, 54–57]. Both query reweighing
and query point movement use nearest-neighbor sampling: They return top ranked
objects to be examined by the user and then refine the query based on the user’s
feedback. If the initial query example is good and the query concept is convex in
the feature space [31, 54], this nearest-neighbor sampling approach works fine.
Unfortunately, most users do not have a good example to start a query, and most
image-query concepts are non-convex. Refining a search around bad examples is
analogous to trying to find oranges in the middle of an apple orchard by refining
one’s search to a few rows of apple trees at a time. It will take a long time to find
oranges (the desired result).

• Query expansion [31, 58]: The query expansion approach can be regarded as a
multiple-instances sampling approach. The samples of a subsequent round are
selected from the neighborhood (not necessarily the nearest ones) of the positive-
labeled instances of the previous round. The study of [58] shows that query expan-
sion achieves only a slim margin of improvement (about 10% in precision/recall)
over query point movement.

Almost all traditional relevance feedback methods require seeding the methods
with “good” positive examples [59–64], and most methods do not use negative-
labeled instances effectively. For instance, sunset images must be supplied as exam-
ples in order to search for sunset pictures. However, finding good examples should
be the job of a search engine itself. SVMCD

Active effectively uses negative-labeled
instances to induce more negative instances, and thereby improves the probability of
finding positive instances. At the same time, the active-learning approach selects the
most informative unlabeled instances to query the user to gather maximum amount
of information to disambiguate the user’s query concept. Because of the effective
use of negative and unlabeled instances, active learning can learn a query concept
much faster and more accurately than the traditional relevance-feedback methods.

3.7 Relation to Other Chapters

Chapters 10 and 11 address the scalability issues of SVMs. In addition to learning
a hyperplane, the query refinement problem can also consider refining the distance
function, which is discussed in Chap 5. Feature extraction and fusion discussed in
Chaps 2 and 6 forms the input space for conduction quer-concept learning.

http://dx.doi.org/10.1007/978-3-642-20429-6_10
http://dx.doi.org/10.1007/978-3-642-20429-6_11
http://dx.doi.org/10.1007/978-3-642-20429-6_5
http://dx.doi.org/10.1007/978-3-642-20429-6_2
http://dx.doi.org/10.1007/978-3-642-20429-6_6
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3.8 Concluding Remarks

We have demonstrated that active learning with support vector machines can pro-
vide a powerful tool for searching image databases, outperforming key traditional
query refinement schemes. SVMCD

Active not only achieves consistently high accuracy
on a wide variety of desired returned results, but also does it quickly and maintains
high precision when asked to deliver large quantities of images. Also, unlike recent
systems such as SIMPLIcity [23], it does not require an explicit semantic layer to
perform well. Our system takes advantage of the intuition that there can be consider-
able differences between the set of images that we are already confident a user wishes
to see, and the set of images that would most informative for the user to label. By
decoupling the notions of feedback and retrieval, and by using a powerful classifier
with active learning, we have demonstrated that SVMCD

Active can provide considerable
gains over other systems.

We have also proposed a multimodal, concept-dependent active learning scheme,
which combines keywords with images’ perceptual features in a synergistic way to
perform image retrieval. In contrast to traditional active learning methods, SVMCD

Active
adjusts its learning process based on concept complexity: it meticulously constructs
the sample pool in order to ameliorate the query concept’s hit-rate and isolation, and
enhances the learnability of the query concept by adapting the sampling strategy to
the concept’s diversity.
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Chapter 4
Similarity

Abstract How to account for similarity between two data instances is fundamental
for any data management, retrieval, and analysis tasks. This chapter† shows that
traditional distance functions such as the Minkowski metric and weighted Minkowski
are not effective in accounting similarity. Through mining a large set of visual data,
we discovered a perceptual distance function, which works much more effectively for
finding similar images than the Minkowski family. We call the discovered function
dynamic partial function (DPF). We demonstrate the effectiveness of DPF through
empirical studies and explain why it works better by cognitive theories.

Keywords Cognitive theory · Distance function · DPF · Perceptual similarity

4.1 Introduction

To achieve effective management, retrieval, and analysis, an image/video system
must be able to accurately characterize and quantify perceptual similarity. However,
a fundamental challenge—how to measure perceptual similarity—remains largely
unanswered. Various distance functions, such as the Minkowski metric [2], earth
mover distance [3], histogram Cosine distance [4], and fuzzy logic [5], have been
used to measure similarity between feature vectors representing images (and hence
video frames). Unfortunately, our experiments show that they frequently overlook
obviously similar objects and hence are not adequate for measuring perceptual sim-
ilarity.

† © Springer, 2003. This chapter is a minor revision of the author’s work with Beitao Li and
Yi-Leh Wu [1] published in ACM Multimedia Systems’03. Permission to publish this chapter is
granted under copyright license 2591350681815.
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Quantifying perceptual similarity is a difficult problem. Indeed, we may be
decades away from fully understanding how human perception works (as we have
discussed in Chap. 2). In this chapter, we show how we employed a data-driven
approach to analyze the characteristics of similar data instances, and how that led to
our formulation of a new distance function. Our mining hypothesis is this: suppose
most of the similar data instances can be clustered in a feature space. We can then
claim with high confidence that (1) the feature space can adequately capture the char-
acteristics of those data instances, and (2) the distance function used for clustering
data instances in that feature space can accurately model similarity. Our target task
was to formulate a distance function that can keep similar data instances in the same
cluster, while keeping dissimilar ones away.

We performed our discovery through mining operation in two stages. In the first
stage, we isolate the distance function factor (we used the Euclidean distance) to
find a reasonable feature set. In the second stage, we froze the features to discover
a perceptual distance function that could better cluster similar data instances in the
feature space. We call the discovered function dynamic partial distance function
(DPF). When we empirically compare DPF to Minkowski-type distance functions
in image retrieval, video shot-transition detection, and new-article near-duplicate
detection, DPF performs significantly better.

Similarity is one of the central theoretical constructs in psychology [6, 7], probably
related to human survival instincts. We believe that being able to quantify similarity
accurately must also hold a central place in theories of information management
and retrieval. Our excitement in discovering DPF does not arise merely from the
practical effectiveness we found in three applications. More importantly, we find
that DPF has roots in cognitive psychology. While we will discuss the links between
DPF and some similarity theories in cognitive psychology in Sect. 4.5, let us use an
example to explain both the dynamic and partial aspects. Suppose we are asked to
name two places that are similar to England. Among several possibilities, Scotland
and New England could be two reasonable answers. However, the respects England
is similar to Scotland differ from those in which England is similar to New England.
If we use the shared attributes of England and Scotland to compare England and
New England, the latter pair might not be similar, and vice versa. Objects can be
similar to the query object in different respects. A distance function using a fixed
set of respects cannot capture objects that are similar in different sets of respects.
A distance function for measuring a pair of objects is formulated only after the objects
are compared, not before the comparison is made. The respects for the comparison
are activated in this formulation process. The activated respects are more likely to
be those that can support coherence between the compared objects.

The rest of his chapter is organized as follows:

1. We first show our data mining process to determine a reasonable feature space.
In that feature space, we find distinct patterns of similar and dissimilar images,
which lead to the discovery of DPF.

2. We derive DPF based on the observed patterns, and we provide methods for
finding the optimal settings for the function’s parameters.

http://dx.doi.org/10.1007/978-3-642-20429-6_2
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3. Through case studies, we demonstrate that DPF is very effective in finding images
that have been transformed by rotation, scaling, downsampling, and cropping, as
well as images that are perceptually similar to the query image. Applying DPF to
video shot-transition detection and new-article near-duplicate detection, we show
that DPF is also more effective than the Minkowski metric.

4.2 Mining Image Feature Set

This section depicts how the mining dataset was constructed in three steps: testbed
setup (Sect. 4.2.1), feature extraction (Sect. 4.2.2), and feature selection (Sect. 4.2.3).

4.2.1 Image Testbed Setup

To ensure that sound inferences can be drawn from our mining results, we carefully
construct the dataset. First, we prepare for a dataset that is comprehensive enough
to cover a diversified set of images. To achieve this goal, we collect 60,000 JPEG
images from Corel CDs and from the Internet. Second, we define “similarity” in a
slightly restrictive way so that individuals’ subjectivity can be excluded.1 For each
image in the 60,000-image set, we perform 24 transformations (described shortly),
and hence form 60,000 similar-image sets. The total number of images in the testbed
is 1.5 million.

The 24 image transformations we perform include the following:

1. Scaling.

• Scale up then down. We scale each image up by 4 and 16 times, respectively,
and then scale it back to the original size.

• Scale down then up. We scale each image down by factors of 2, 4, and 8,
respectively, then scale it back to the original size.

2. Downsampling. We downsample each image by seven different percentages:
10–50, 70, and 90%.

3. Cropping. We evenly remove the outer borders to reduce each image by 5%,
10–70%, respectively, and then scale it back up to the original size.

4. Rotation. We rotate each image by 90, 180, and 270◦.

1 We have considered adding images taken under different lighting conditions or with different
camera parameters. We decided not to include them because they cannot be automatically gener-
ated from an image. Nevertheless, our experimental results (see Sect. 4.4) show that the perceptual
distance function discovered during the mining process can be used effectively to find other per-
ceptually similar images. In other words, our testbed consists of a good representation of similar
images, and the mining results (i.e., training results) can be generalized to testing data consisting
of perceptually similar images produced by other methods.
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Table 4.1 Multi-resolution
color feature

Filter name Resolution Representation

Masks Coarse Appearance of culture colors
Spread Coarse Spatial concentration of a color
Elongation Coarse Shape of a color
Histograms Medium Distribution of colors
Average Medium Similarity comparison within

the same culture color
Variance Fine Similarity comparison within

the same culture color

5. Format transformation. We obtain the GIF version of each JPEG image.

4.2.2 Feature Extraction

To describe images, we must find a set of features that can represent those images
adequately. Finding a universal representative feature set can be very challenging,
since different imaging applications may require different feature sets. For instance,
the feature set that is suitable for finding tumors may not be effective for finding
landscape images, and vice versa. However, we believe that by carefully separating
perception from intelligence (i.e., domain knowledge), we can identify meaningful
perceptual features. Chapter 2 shows both model-based and data-driven approaches
for extracting features. We used a data-driven approach in this study to find useful
features from a large set of feature candidates.

Psychologists and physiologists divide the human visual system into two parts:
the perceiving part, and the inference part [8]. The perceiving part receives photons,
converts electrical signals into neuro-chemical signals, and delivers the signals to our
brains. The inference part then analyzes the perceived data based on our knowledge
and experience. A baby and an adult have equal capability for perceiving, but differing
capability for understanding what is perceived. Among adults, specially trained ones
can interpret an X-ray film, but the untrained cannot. In short, the perceiving part
of our visual system is task-independent, so it can be characterized in a domain-
independent manner.

We extract features such as color, shape, and texture from images. In the color
channel, we characterize color in multiple resolutions. We first divide color into
12 color bins including 11 bins for culture colors and one bin for outliers [9]. At
the coarsest resolution, we characterize color using a color mask of 12 bits. To
record color information at finer resolutions, we record nine additional features for
each color. These nine features are color histograms, color means (in H, S and V
channels), color variances (in H, S and V channels), and two shape characteristics:
elongation and spreadness. Color elongation characterizes the shape of a color, and
spreadness characterizes how that color scatters within the image [10]. Table 4.1
summarizes color features in coarse, medium and fine resolutions.

http://dx.doi.org/10.1007/978-3-642-20429-6_2
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Fig. 4.1 Multi-resolution
texture features
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Texture is an important characteristic for image analysis. Studies [11–14] have
shown that characterizing texture features in terms of structuredness, orientation, and
scale (coarseness) fits well with models of human perception. From the wide variety
of texture analysis methods proposed in the past, we choose a discrete wavelet trans-
formation (DWT) using quadrature mirror filters [13] because of its computational
efficiency.

Each wavelet decomposition on a 2D image yields four subimages: a 1
2 × 1

2
scaled-down image of the input image and its wavelets in three orientations:
horizontal, vertical and diagonal. Decomposing the scaled-down image further,
we obtain the tree-structured or wavelet packet decomposition. The wavelet image
decomposition provides a representation that is easy to interpret. Every subimage
contains information of a specific scale and orientation and also retains spatial infor-
mation. We obtain nine texture combinations from subimages of three scales and
three orientations. Since each subimage retains the spatial information of texture,
we also compute elongation and spreadness for each texture channel. Figure 4.1
summarizes texture features.

4.2.3 Feature Selection

Once the testbed is set up and relevant features extracted, we fix the distance function
to examine various feature combinations. For the time being, we employ the Euclid-
ean distance function to quantify the similarity between two feature vectors. We
use the Euclidean function because it is commonly used, and it achieves acceptable
results. (However, we will offer a replacement distance function for the Euclidean
distance in Sect. 4.3.)
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Using different feature combinations, we employ the Euclidean function to find
the distance rankings of the 24 images that are similar to the original image (i.e., the
query image). If a feature set can adequately capture the characteristics of images,
the 24 similar images should be among those closest to the query image. (In an ideal
case, the 24 similar images should be the 24 images closest to the query image.)

Our experiments reveal that when only individual features (e.g., color histograms,
color elongation, and color spreadness) are employed, the distance function cannot
easily capture the similar images even among the top-100 nearest neighbors. For a
top-100 query, all individual features suffer from a dismal recall lower than 30%.
When we combine all color features, the top-100 recall improves slightly, to 45%.
When both color and texture features are used, the recall improves to 60%.

At this stage, we can go in either of two directions to improve recall. One, we can
add more features, and two, we can replace the Euclidean distance function. We will
consider adding additional features in our future work. In this chapter, we focus on
finding a perceptual distance function that improves upon the Euclidean Function.

4.3 Discovering the Dynamic Partial Distance Function

We first examine two most popular distance functions used for measuring image
similarity: Minkowski function and weighted Minkowski function. Building upon
those foundations, we explain the heuristics behind our new distance function—
Dynamic Partial Function (DPF).

4.3.1 Minkowski Metric and its Limitations

The Minkowski metric is widely used for measuring similarity between objects (e.g.,
images). Suppose two objects X and Y are represented by two p dimensional vectors
(x1, x2, . . . , x p) and (y1, y2, . . . , yp), respectively. The Minkowski metric d(X, Y )

is defined as

d(X, Y ) =
( p∑

i=1

|xi − yi |r
) 1

r

, (4.1)

where r is the Minkowski factor for the norm. Particularly, when r is set as 2, it
is the well-known Euclidean distance; when r is 1, it is the Manhattan distance (or
L1 distance). An object located a smaller distance from a query object is deemed
more similar to the query object. Measuring similarity by the Minkowski metric
is based on one assumption: that similar objects should be similar to the query
object in all dimensions. This assumption is true for abstract points in mathematical
space. However, for multimedia objects (e.g., images), this assumption may not hold.
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Human perception of similarity may not strictly follow the rules of mathematical
space [7].

A variant of the Minkowski function, the weighted Minkowski distance func-
tion, has also been applied to measure image similarity. The basic idea is to
introduce weighting to identify important features. Assigning each feature a weight-
ing coefficient wi (i = 1, 2, . . . , p), the weighted Minkowski distance function is
defined as:

dw(X, Y ) =
( p∑

i=1

wi |xi − yi |r
) 1

r

. (4.2)

By applying a static weighting vector for measuring similarity, the weighted
Minkowski distance function assumes that similar images resemble the query images
in the same features. For example, when the function weights color features high and
ignores texture features, this same weighting is applied to all pair-wise distance com-
putation with the query image. We will show shortly that this fixed weighting method
is restrictive in finding similar objects of different kinds.

We can summarize the assumptions of the traditional distance functions as follows:

• Minkowski function. All similar images must be similar in all features.
• Weighted Minkowski function. All similar images are similar in the same way (e.g.,

in the same set of features).

We questioned the above assumptions upon observing how similar objects are
located in the feature space. For this purpose, we carried out extensive data mining
work on a 1.5 M-image dataset introduced in Sect. 4.2. To better discuss our findings,
we introduce a term we have found useful in our data mining work. We define the
feature distance on the i th feature as

δi = |xi − yi |. (i = 1, 2, . . . , p)

The expressions of (4.1) and (4.2) can be simplified into

d(X, Y ) =
( p∑

i=1

δi
r

) 1
r

and dw(X, Y ) =
( p∑

i=1

wiδi
r

) 1
r

.

In our mining work, we first tallied the feature distances between similar images
(denoted as δ+), and also those between dissimilar images (denoted as δ−). Since we
normalized feature values to be between zero and one, the ranges of both δ+ and δ−
are between zero and one. Figure 4.2 presents the distributions of δ+ and δ−. The
x-axis shows the possible value of δ, from zero to one. The y-axis (in logarithmic
scale) shows the percentage of the features at different δ values.

The figure shows that δ+ and δ− have different distribution patterns. The distrib-
ution of δ+ is much skewed toward small values (Fig. 4.2a), whereas the distribution
of δ− is more evenly distributed (Fig. 4.2b). We can also see from Fig. 4.2a that a
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Fig. 4.2 The distributions of feature distances. a similar images, b Dissimilar images

moderate portion of δ+ is in the high value range (≥0.5), which indicates that simi-
lar images may be quite dissimilar in some features. From this observation, we infer
that the assumption of the Minkowski metric is inaccurate. Similar images are not
necessarily similar in all features.

Furthermore, we examined whether similar images resemble the query images in
the same way. We tallied the distance (δ+) of the 144 features for different kinds of
image transformations. Figure 4.3 presents four representative transformations: GIF,
cropped, rotated, and scaled. The x-axis of the figure depicts the feature numbers,
from 1 to 144. The first 108 features are various color features, and the last 36
are texture features. The figure shows that various similar images can resemble the
query images in very different ways. GIF images have larger δ+ in color features (the
first 108 features) than in texture features (the last 36 features). In contrast, cropped
images have larger δ+ in texture features than in color features. For rotated images,
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Fig. 4.3 The average feature distances. a Gif images b Cropped images c Rotational images
d Scaled images

the δ+ in colors comes close to zero, although its texture feature distance is much
greater. A similar pattern appears in the scaled and the rotated images. However, the
magnitude of the δ+ of scaled images is very different from that of rotated images.



82 4 Similarity

Our observations show that the assumptions made by the Minkowski and weighted
Minkowski function are questionable.

1. Similar images do not resemble the query images in all features. Figure 4.2 shows
that similar images different from a query image in many respects.

2. Images similar to the query images can be similar in differing features. Figure 4.3
shows that some images resemble the query image in texture, others in color.

The above observations not only refute the assumptions of Minkowski-type dis-
tance functions, but also provide hints as to how a good distance function would
work. The first point is that a distance function does not need to consider all features
equally, since similar images may match only some features of the query images.
The second point is that a distance function should weight features dynamically,
since various similar images may resemble the query image in differing ways. These
points lead to the design of the dynamic partial distance function.

4.3.2 Dynamic Partial Distance Function

Based on the observations explained above, we designed a distance function to better
represent the perceptual similarity. Let δi = |xi − yi |, for i = 1, 2, . . . , p. We first
define sets �m as

�m = {The smallest m δ′s of (δ1, . . . , δp)}.
Then we define the DPF as

d(m, r) =
⎛
⎝ ∑

δi∈�m

δi
r

⎞
⎠

1
r

. (4.3)

DPF has two adjustable parameters: m and r . Parameter m can range from 1 to p.
When m = p, it degenerates to the Minkowski metric. When m < p, it counts only
the smallest m feature distances between two objects, and the influence of the (p−m)

largest feature distances is eliminated. Note that DPF dynamically selects features
to be considered for different pairs of objects. This is achieved by the introduction
of �m , which changes dynamically for different pairs of objects. In Sect. 4.4, we
will show that if a proper value of m is chosen, it is possible to make similar images
aggregate more compactly and locate closer to the query images, simultaneously
keeping the dissimilar images away from the query images. In other words, similar
and dissimilar images are better separated by DPF than by earlier methods.

The idea employed by DPF can also be generalized to improve the weighted
Minkowski distance function. We modify the weighted Minkowski distance by defin-
ing the weighted DPF as

dw(m, r) =
⎛
⎝ ∑

δi∈�m

wiδi
r

⎞
⎠

1
r

. (4.4)
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In Sect. 4.4, we will show that DPF can also improve the retrieval performance of
the weighted Minkowski distance function.

4.3.3 Psychological Interpretation of Dynamic Partial
Distance Function

The Just Noticeable Difference (JND) is the smallest difference between two stimuli
that a person can detect. B. Goldstein [15] uses the following example to illustrate
the JND: A person can detect the difference between a 100 g weight and a 105 g
weight but cannot detect a smaller difference, so the JND for this person is 5 g. For
our purpose, we introduce a new term. The term is just not the same (JNS). Using
the same weight example, we may say that a 100 g weight is just not the same as a
weight that is more than 120 g. So the JNS is 20 g. When the weight is between 105
and 120 g, we say that the weight is similar to a 100 g weight (to a degree).

Now, let us apply JND and JNS to our color perception. We can hardly tell the
difference between deep sky blue (whose RGB is 0,191,255) and dodger blue (whose
RGB is 30,144,255). The perceptual difference between these two colors is below
JND. On the other hand, we can tell that blue is different from green, and yellow is
different from red. In both cases, the colors are perceived as JNS.

For an image search engine, JND and JNS indicate that using Euclidean distance
for measuring color difference may not be appropriate. First, JND reveals that when
the difference between two colors is insignificant, the two colors are perceived as
the same. Second, JNS reveals that when the difference is significant, we say two
colors are not the same, and it may not be meaningful to account the full magnitude
of difference. (E.g., saying that blue is more different from red than from green is
meaningless for our purpose.)

The JND and JNS values for each feature can be obtained only through extensive
psychological experiments. Moreover, different people may have different subjective
values of JND and JNS. Being aware of the practical difficulty of obtaining exact
values of JND and JNS for each feature, DPF addresses this issue reasoning as
follows:

• JND is not vital for designing a perceptual distance function, since a feature dis-
tance below JND usually is very small and has little effect on the aggregated
distance. It does not make much difference to consider it as zero or as a small
value.

• JNS is vital for designing a perceptual distance function. A feature distance greater
than JNS can introduce significant noise on the aggregated distance.

Though it is difficult to obtain the exact value of JNS for each feature, DPF
circumvents this difficulty by taking a probabilistic view: the largest (p−m) feature
distances are likely to exceed their JNS values. Removing the (p−m) largest feature
distances from the final aggregated distance between objects can reduce the noise
above JNS. First, the distances of the (p − m) features are all scaled back to their
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respective JNS. Second, removing these JNS from the aggregated distance does not
affect the relative distance between objects.

In short, DPF considers only the m smallest feature distances and does not count
the (p − m) largest feature distances. In this sense, DPF provides a good approxi-
mation to consider JND and JNS.

4.4 Empirical Study

We conducted an empirical study to examine the effectiveness of DPF. Our experi-
ments consisted of three parts.

1. We compared DPF with the Euclidean distance function and L1 distance function,
the most widely used similarity functions in image retrieval. We also compared
DPF with the histogram Cosine2 distance function, which is also commonly used
in information retrieval [4, 16] (Sect. 4.4.1).

2. We tested whether DPF can be generalized to video shot-transition detection, the
foundation of video analysis and retrieval applications (Sect. 4.2.2).

3. We experimented DPF with a set of news articles to identify near-duplicates.
4. In addition to the unweighted versions, we also examined whether the weighted

DPF is effective for enhancing the performance of the weighted Minkowski dis-
tance function (Sect. 4.4.4).

4.4.1 Image Retrieval

Our empirical study of image retrieval consisted of two parts: training and testing.
In the training part, we used the 1.5M-image dataset to predict the optimal m value
for DPF. In the testing part, we set DPF with the optimal m value, and tested it on
an independently constructed 50K-image dataset to examine its effectiveness.

4.4.1.1 Predicting m Through Training

The design goal of DPF is to better separate similar images from dissimilar ones. To
meet this design goal, we must judiciously select parameter m. (We take the Euclidean
distance function as the baseline, thus we set r = 2 for both DPF and the Minkowski
distance function.) Alternatively, we can set a JND threshold for selecting features

2 The Cosine metric computes the direction difference between two feature vectors. Specifically,
given two feature vectors x and y, the Cosine metric is given as

D = 1− xT y
|x||y| .
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Fig. 4.4 Training for the
optimal m value
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to be considered by DPF. If we find enough number of features between two images
having a difference below JND, we can say the pair to be similar. One advantage of
the threshold method is that the value of m is also pairwise dependent. Please see
[17] for this threshold method.

To find the optimal m value, we used the 60,000 original images to perform queries.
we applied DPF of different m values to the 1.5 M-image dataset. The 24 images
with the shortest distance from each query image were retrieved. For each of the
five similar-image categories (i.e., GIF, cropped, downsampled, rotated, or scaled),
we observed how many of them failed to appear in the top-24 results. Figure 4.4
presents the average rate of missed images for each similar-image category. The
figure shows that when m is reduced from 144 to between 110 and 118, the rates
of missing are near their minimum for all five similar-image categories. (Note that
when m = 144, DPF degenerates into the Euclidean function.) DPF outperforms the
Euclidean distance function by significant margins for all similar-image categories.

To investigate why DPF works effectively when m is reduced, we tallied the dis-
tances from these 60,000 queries to their similar images and their dissimilar images,
respectively. We then computed the average and the standard deviation of these dis-
tances. We denote the average distance of the similar images to their queries as μ+d , of
the dissimilar images as μ−d . We denote the standard deviation of the similar images’
distances as σ+d , of the dissimilar images as σ−d .

Figure 4.5 depicts the effect of m (in the x-axis) on μ+d , μ−d , σ+d , and σ−d .

Figure 4.5a shows that as m becomes smaller, both μ+d and μ−d decrease. The
average distance of similar images (μ+d ), however, decreases at a faster pace than
that of dissimilar images (μ−d ). For instance, when we decrease m from 144 to 130,
μ+d decreases from 1.0 to about 0.3, a 70% decrease, whereas μ−d decreases from 3.2
to about 2.0, a 38% decrease. This gap indicates μ+d is more sensitive to the m value
than μ−d . Figure 4.5b shows that the standard deviations σ+d and σ−d observe the
same trend as the average distances do. When m decreases, similar images become
more compact in the feature space at a faster pace than dissimilar images do.

To provide more detailed information, Fig. 4.6 depicts the distance distributions
at four different m values. Figure 4.6a shows that when m = 144, a significant
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Fig. 4.5 The effect of DPF.
a Average of distances,
b Standard deviation of
distances

0

0.5

1.5

2.5

3.0

2.0

1.0

3.5

14
4

13
4

12
4

11
4

10
4 94 84 74 64 54 44 34 24 14

4

m

D
is

ta
nc

e 
to

 q
ue

ry
s 

Similar Images

Dissimilar Images

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

14
4

13
4

12
4

11
4

10
4 94 84 74 64 54 44 34 24 14

4

m

St
an

da
rd

 d
ev

ia
tio

n

Similar Images

Dissimilar Images

(a)

(b)

overlap occurs between the distance distributions of similar and dissimilar images
to the query images. (When m = 144, DPF degenerates to the Euclidean function.)
In other words, many similar images and dissimilar images may reside about the
same distance from their query image, which causes degraded search performance.
When we decrease m to 124, Fig. 4.6b shows that both distributions shift toward
the left. The distribution of similar images becomes more compact, and this leads
to a better separation from dissimilar images. Further decreasing the m value moves
both distributions leftward (as shown in Figs. 4.6c, d). When little room is left for the
distance distribution of similar images to move leftward, the overlap can eventually
increase. Our observations from these figures confirm that we need to find the optimal
m value to achieve best separation for similar and dissimilar images.

4.4.1.2 Testing DPF

We tested our distance functions on a dataset that was independently constructed
from the 1.5M-image dataset used for conducting mining and parameter training.
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Fig. 4.6 Distance distributions versus m. a m = 144, b m = 124, c m = 104, d m = 84

The test dataset consisted of 50K randomly collected World Wide Web images.
Among these images we identified 100 images as query images. For each query
image, we generated 24 similar images using the transformation methods described
in Sect. 4.2. We also visually identified three perceptually similar images for each
query image. (See Fig. 4.7. for examples of visually-identified similar images).

We conducted 100 queries using the 100 query images. For each query, we
recorded the distance ranks of its similar images. For DPF, we fixed m value as
114 based on the training results in Sect. 4.4.1.1. Figure 4.8 depicts the experimental
results. The precision-recall curves in the figure show that the search performance of
DPF is significantly better than the other traditional distance functions. For instance,
to achieve a recall of 80%, the retrieval precision of DPF is 84%, whereas the preci-
sion of the L1 distance, the Euclidean distance, and the histogram Cosine distance
is 70, 50, and 25%, respectively.

We were particularly interested in the retrieval performance of the visually iden-
tified similar images, which were not included into the training-image dataset.
Figure 4.9. compares the retrieval performance of DPF and traditional distances for
the visually identified similar images. The precision-recall curves indicate that, even
though the visually identified similar images were not included in the training-image
dataset, DPF could still find them effectively in the testing phase. This indicates that
the trained DPF parameters can be generalized to find similar images produced by
methods other than those for producing the training dataset.
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Fig. 4.7 Three perceptually similar images

Fig. 4.8 Precision/recall for
similar images
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4.4.2 Video Shot-Transition Detection

To further examine the generality of the DPF, we experimented DPF in another
application—video shot-transition detection. Our video dataset consisted of 150
video clips which contained thousands of shots. The videos covered the following
subjects:

• Cartoon: 30 clips, each clip lasting for 50 s (from commercial CDs).
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Fig. 4.9 Precision/recall for
visually identified similar
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• Comedy: 50 clips, each lasting for up to 30 s.
• Documentary: 70 clips, each lasting for 2–5 min [18].

For characterizing a frame, we extracted the same set of 144 features for
each frame, since these features can represent images to a reasonable extent. Our
experiments had two goals. The first was to find the optimal parameter m settings
for DPF (Sect. 4.4.2.1). The second was to compare the shot detection accuracy
between employing DPF and employing the Minkowski metric as the inter-frame
distance function (Sect. 4.4.2.2).

4.4.2.1 Parameter m

We fixed r = 2 in our empirical study. Then we took a machine learning approach
to train the value of m. We sampled 40% of the video clips as the training data to
discover a good m. We then used the remaining 60% of video clips as testing data to
examine the effectiveness of the learned m.

In the training phase, we labeled the accurate positions of shot boundaries. We then
experimented with different values of m on three video datasets (cartoon, comedy, and
documentary). Figure 4.10. shows that for all three video types, the false detection
rates are reduced to a minimum as m is reduced from 144 to between 115 and
120. (Recall that when m = 144, DPF degenerates into the Minkowski distance
function.) It is evident that the Minkowski distance function is not the best choice
for our purpose.

4.4.2.2 DPF Versus Minkowski

We next compared two inter-frame distance functions, DPF and Euclidean, on the
testing data. For DPF, we set m = 117 based on the training results in Sect. 4.4.2.1.
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Fig. 4.10 Optimal m
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Table 4.2 Precision and recall

Distance functions Video type Comedy Cartoon Documentary
# of Shot Boundaries 425 167 793

Euclidean # of false 93 39 192
# of miss 97 37 183
Precision (%) 78.1% 76.6% 75.8%
Recall (%) 77.2% 77.8% 76.9%

DPF # of false 61 26 140
# of miss 67 25 129
Precision (%) 85.6% 84.4% 82.3%
Recall (%) 84.2% 85.0% 83.7%

Fig. 4.11 Overall precision
and recall comparison

Table 4.2 shows that DPF improves the detection accuracy over the Euclidean dis-
tance function on both precision and recall for all video categories. The average
improvement as shown in Fig. 4.11 is about 7% in both recall and precision. In other
words, for every 100 shot transitions to be detected, DPF makes seven fewer detection
errors, a marked improvement.

Figure 4.12 illustrates why DPF can better detect shot boundaries than Euclidean
distance, from the signal/noise ratio perspective. The x-axis of the figure depicts the
frame number; the y-axis depicts the inter-frame distance between the ith and the
(i + 1)th frames. We mark each real shot boundary with a circle and a false detection
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Fig. 4.12 Euclidean versus DPF. a Euclidean, b DPF

with a cross. Figure 4.12a shows that the Euclidean distance function identified four
shot boundaries, in which the left-most one was a false positive. Figure 4.12b shows
that DPF separates the distances between shot boundaries and non-boundaries better,
and hence eliminates the one mis-detection. DPF improves the signal/noise ratio, and
therefore, it is more effective in detecting shot transitions.

4.4.3 Near Duplicated Articles

A piece of news is often quoted or even included by several articles. For instance,
a piece of new released by the Reuters may be included in some Blogger posts.
A search engine would like to cluster all near-duplicated articles and present them
together to avoid information redundancy.

We compared two distance functions on Google News in 2006. Between DPF and
a hashing algorithm very similar to LSH, DPF outperforms the hash algorithm by
about 10% in both precision and recall. However, since the computation complexity
of hashing is linear but DPF quadratic. When the number of candidate articles is very
large, DPF encounters scalability problem. To deal with this practical deployment
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Fig. 4.13 Comparison of
weighted functions
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challenge, the work of Dyndex [19] proposes an approximate indexing method to
speed up similar-instance lookup. The basic idea is to ignore the non-metric nature of
DPF, or using the full Euclidean space to perform indexing. A lookup is performed in
the Euclidean space. Though precision/recall may be degraded, this approximation
compromises slightly degraded accuracy for speedup. For details, please consult
reference GohLC02.

4.4.4 Weighted DPF Versus Weighted Euclidean

We were also interested in applying weighted DPF to improve the weighted
Minkowski distance function, which has been used extensively to personalize simi-
larity measures. For weighted Minkowski distance, a weighting vector is learned for
each query. Usually, the weight of a feature is set as the inverse of the variance of
its values among similar images. Here, we allowed the weighted Euclidean distance
function to work under the ideal condition—that is, it knows all similar images a
priori and can compute the ideal weighting vector for each query. Figure 4.13 shows
that the weighted Euclidean function outperforms its unweighted counterpart. This
result confirms that the weighted version [20, 21] is indeed a better choice than the
unweighted version (provided that the appropriate weighting can be learned). How-
ever, there is still much room for improvement. When we applied weighted DPF
using the same weighting vector, its retrieval performance was better than that of the
weighted Euclidean distance function. For instance, at 80% recall rate, the retrieval
precision of the weighted Euclidean distance is about 68%, whereas the weighted
DPF could achieve a precision of above 85%. Again, our empirical study shows that
the generalized form of DPF, weighted DPF, can be used to markedly enhance the
weighted Minkowski distance for measuring image similarity.
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4.4.5 Observations

We summarize the results of our experiments as follows:

1. DPF is more effective than some most representative distance functions used
in the CBIR community (e.g., Minkowski-like and histogram Cosine distance
functions) for measuring image similarity and for detecting shot transitions.

2. The weighted version of DPF outperforms the weighted version of the Euclidean
distance function.

3. We believe that DPF can be generalized to find similar images of some other
ways, and that DPF can be effective when a different set of low-level features are
employed. Our belief is partially supported by our empirical results, and partially
justified by similar theories in cognitive science, which we discuss next.

4.5 Related Reading

Similarity is one of the most central theoretical constructs in psychology [6, 7].
Its also plays a central role in information categorization and retrieval. Here we
summarize related work in similarity distance functions. Using our experimental
results, together with theories and examples in cognitive psychology, we explain why
DPF works effectively as we discuss the progress of the following three similarity
paradigms in cognitive psychology.

1. Similarity is a measure of all respects. As we discussed in Sect. 4.3, a Minkowski-
like metric accounts for all respects (i.e., all features) when it is employed to
measure similarity between two objects. Our mining result shown in Fig. 4.2. is
just one of a large number of counter-examples demonstrating that the assumption
of the Minkowski-like metric is questionable. The psychology studies of [6, 7]
present examples showing that the Minkowski model appears to violate human
similarity judgements.

2. Similarity is a measure of a fixed set of respects. Substantial work on similarity
has been carried out by cognitive psychologists. The most influential work is per-
haps that of Tversky [7], who suggests that similarity is determined by matching
features of compared objects, and integrating these features by the formula

S(A, B) = θ f (A ∩ B)− α f (A − B)− β f (B − A). (4.5)

The similarity of A to B, S(A, B), is expressed as a linear combination of the
common and distinct features. The term (A∩ B) represents the common features
of A and B. (A − B) represents the features that A has but B does not; (B − A)

represents the features that B has but A does not. The terms θ, α, and β reflect
the weights given to the common and distinctive components, and function f is
often assumed to be additive [6] The weighted Minkowski function [22] and the
quadratic-form distances [23, 24] are the two representative distance functions
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that match the spirit of (4.5). The weights of the distance functions can be learned
via techniques such as relevance feedback [20, 22], principal component analysis,
and discriminative analysis [25]. Given some similar and some dissimilar objects,
the weights can be adjusted so that similar objects can be better distinguished from
other objects.

3. Similarity is a process that provides respects for measuring similarity Murphy
and Medin [26] provide early insights into how similarity works in human per-
ception: "The explanatory work is on the level of determining which attributes
will be selected, with similarity being at least as much a consequence as a cause
of a concept coherence.” Goldstone [27] explains that similarity is the process
that determines the respects for measuring similarity. In other words, a distance
function for measuring a pair of objects is formulated only after the objects are
compared, not before the comparison is made. The respects for the comparison
are activated in this formulation process. The activated respects are more likely
to be those that can support coherence between the compared objects.

With those paradigms in mind, let us re-examine how DPF works. DPF acti-
vates different features for different object pairs. The activated features are those
with minimum differences—those which provide coherence between the objects. If
coherence can be maintained (because sufficient a number of features are similar),
then the objects paired are perceived as similar. Cognitive psychology seems able to
explain much of the effectiveness of DPF.

4.6 Concluding Remarks

We have presented DPF, its formulation via data mining and its explanation in cog-
nitive theories. There are several avenues to improve DPF. First, the activation of
respects is believed to be context-sensitive [28–30]. Also, certain respects may be
more salient than others, and hence additional weighting factors should be consid-
ered. In Chap. 5 we discuss how weights can be learned from user feedback via some
supervised approach. As we discussed in the chapter, the parameters of DPF can be
learned using a threshold method, and the quadratic nature of DPF can be alleviated
through an approximate indexing scheme. For details, please consult [17, 19].
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Chapter 5
Formulating Distance Functions

Abstract Tasks of data mining and information retrieval depend on a good distance
function for measuring similarity between data instances. The most effective dis-
tance function must be formulated in a context-dependent (also application-, data-
and user-dependent) way. In this chapter,† we present a method, which learns a
distance function by capturing the nonlinear relationships among contextual infor-
mation provided by the application, data, or user. We show that through a process
called the “kernel trick,” such nonlinear relationships can be learned efficiently in
a projected space. Theoretically, we substantiate that our method is both sound and
optimal. Empirically, using several datasets and applications, we demonstrate that
our method is effective and useful.

Keywords Distance function · Kernel methods · Kernel trick · Similarity

5.1 Introduction

At the heart of data-mining and information-retrieval tasks is a distance function that
measures similarity between data instances. As mentioned in Chap. 4, to date, most
applications employ a variant of the Euclidean distance for measuring similarity. We
show in Chap. 4 that DPF is more effective than the Minkowsky metric to account
for similarity. In this chapter, we discuss how to incorporate the idiosyncrasies of the
application, data, and user (which we refer as contextual information) into distance-
function formulation.

How do we consider contextual information in formulating a good distance func-
tion? One extension of DPF is to weight the data attributes (features) based on their

† © ACM, 2005. This chapter is a minor revision of the author’s work with Gang Wu and Navneet
Panda [1] published in KDD’05. Permission to publish this chapter is granted under copyright
license #2587641486368.

E. Y. Chang, Foundations of Large-Scale Multimedia Information 97
Management and Retrieval, DOI: 10.1007/978-3-642-20429-6_5,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011

http://dx.doi.org/10.1007/978-3-642-20429-6_4
http://dx.doi.org/10.1007/978-3-642-20429-6_4


98 5 Formulating Distance Functions

importance for a target task [2–4]. For example, for answering a sunset image-
query, color features should be weighted higher. For answering an architecture
image-query, shape and texture features may be more important. Weighting these
features is equivalent to performing a linear transformation in the space formed by the
features. Although linear models enjoy the twin advantages of simplicity of descrip-
tion and efficiency of computation, this same simplicity is insufficient to model
similarity for many real-world datasets. For example, it has been widely acknowl-
edged in the image/video retrieval domain that a query concept is typically a nonlinear
combination of perceptual features (color, texture, and shape) [5, 6]. In this chapter
we perform a nonlinear transformation on the feature space to gain greater flexibility
for mapping features to semantics.

We name our method distance-function alignment (DFA for short). The inputs
to DFA are a prior distance function (e.g., a DPF with a learned parameter m),
and contextual information. Contextual information can be conveyed in the form
of training data (discussed in detail in Sect. 5.2). For instance, in the information-
retrieval domain, Web users can convey information via relevance feedback showing
which documents/images are relevant to their queries. In the biomedical domain,
physicians can indicate which pairs of proteins may have similar functions. DFA
transforms the prior function to capture the nonlinear relationships among the con-
textual information. The similarity scores of unseen data-pairs can then be measured
by the transformed function to better reflect the idiosyncrasies of the application,
data, and user.

At first it might seem that capturing nonlinear relationships among contextual
information can suffer from high computational complexity. DFA avoids this concern
by employing the kernel trick.1 The kernel trick lets us generalize distance-based
algorithms to operate in the projected space (defined next), usually nonlinearly related
to the input space. The input space (denoted as I ) is the original space in which
data vectors are located (e.g., in Fig. 5.2a), and the projected space (denoted as P)
is that space to which the data vectors are projected, linearly or nonlinearly, (e.g.,
in Fig. 5.2b). The advantage of using the kernel trick is that, instead of explicitly
determining the coordinates of the data vectors in the projected space, the distance
computation in P can be efficiently performed in I through a kernel function.
Specifically, given two vectors xi and x j , kernel function K (xi , x j ) is defined as the
inner product of φ(xi ) and φ(x j ), where φ is a basis function that maps the vectors
xi and x j from I to P . The inner product between two vectors can be thought of as
a measure of their similarity. Therefore, K (xi , x j ) returns the similarity of xi and x j

in P . The distance between xi and x j in terms of the kernel is defined as

d(xi , x j ) = ‖φ(xi )− φ(x j )‖2 =
√

K (xi , xi )+ K (x j , x j )− 2K (xi , x j ). (5.1)

Since a kernel function can be either linear or nonlinear, the traditional feature-
weighting approach (e.g., [2, 4]) is just a special case of DFA.

1 The kernel trick was first published in 1964 in the paper of Aizerman et al. [7]. The kernel trick
has been applied to several algorithms in statistics, including Support Vector Machines and kernel
PCA.
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How does DFA work? Given a distance function and a dataset, DFA first uses
the prior function to compute pairwise similarity for every data pair. It then selects
a subset of the data to query the user’s subjective similarity scores. (The feedback
provided by the user can be in a qualitative or quantitative form, which we will
discuss in Sect. 5.2.2.) The difference between the similarity scores computed by the
prior function and the scores provided by the user is the gap that DFA aims to bridge.
Our goal is to transform the function in such a way that it can produce similarity
scores in better agreement with the user’s perceptions. More specifically, given a prior
function (for example, a polynomial function or a Gaussian function) that produces
default similarity scores between data items, DFA performs a linear transformation
on the prior function in P, based on the contextual information provided by the user.
Effectively, our DFA procedure ensures that the distances between similar vectors
are decreased, and the distances between dissimilar vectors are increased. Since
performing a linear transformation in P can result in a nonlinear transformation in
I , DFA achieves both model flexibility and computational efficiency. Theoretically,
we prove that DFA achieves optimal alignment to the ideal kernel defined by [8].
Empirically, using several datasets and applications, we show that our experimental
results back up our theoretical analysis.

5.1.1 Illustrative Examples

We use two examples to illustrate the effectiveness of DFA. The first example demon-
strates why contextual information is needed, and the second one demonstrates why
nonlinear transformation is necessary to gain adequate model complexity.

Figure 5.1 presents different groupings of the same raw data. Figure 5.1a depicts
the raw data of different locations, colors, and sizes. Suppose we use the k-means
algorithm to organize the data into two clusters. Without knowing the desired
grouping rule, we do not know which of the rules is the choice of the application or
user: group by proximity, group by color, or group by size. The only way to know
the intent is to query the user for contextual information. The boxes in the figure
depict the similar sets conveyed to DFA through training data. For each grouping
rule, DFA uses the contextual information to formulate the distance function. The
k-means algorithm can then use the function to achieve the desired grouping.

Notice that to achieve group by proximity and group by color in this example,
performing a linear transformation in the feature space will suffice. For proximity
grouping, we can weight the vertical dimension higher than the horizontal dimension;
and for color grouping, we can weight the horizontal dimension higher than the
vertical. This linear transformation can be achieved by the traditional IR methods
(e.g., [2, 4]). For group by size, however, a nonlinear transformation is required, and
this is what DFA can achieve and what the traditional methods cannot.

Figure 5.2 shows how DFA learns a nonlinear distance function using projection.
Figure 5.2a shows two clusters of data, one in circles and the other in crosses. These
two clusters of data obviously are not linearly separable in the two-dimensional input
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Fig. 5.1 Clustering by different functions (see color insert). a Raw data, b By proximity, c By
color, d By size

Fig. 5.2 Clustering via the kernel trick (see color insert). a Input space, b Projected space

space I . After we have used the “kernel trick” to implicitly project the data onto a
three-dimensional projected space P (shown in Fig. 5.2b), the two clusters can be
separated by a linear hyperplane in the projected space. What DFA accomplishes is
to learn the distance function in the projected space based on contextual information.
From the perspective of the input space, I , the learned distance function captures
the nonlinear relationships among the training data.

In summary, we address in this chapter a core problem of data mining and informa-
tion retrieval: formulating a context-based distance function to improve the accuracy
of similarity measurement. In Sect. 5.2, we propose DFA, an efficient method for
adapting a similarity measure to contextual information, and also provide the proof
of optimality of the DFA algorithm. We empirically demonstrate the effectiveness
of DFA on clustering and classification in Sect. 5.3. Finally, we offer our concluding
remarks and suggestions for future work in Sect. 5.5.
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5.2 DFA Algorithm

Given the prior kernel function K and contextual information, DFA transforms K.
Kernel function K (xi , x j ), as discussed in Sect. 5.4.2, can be considered as a simi-
larity measure between instances xi and x j . We assume 0 ≤ K (xi , x j ) ≤ 1. A value
of 1 indicates that the instances are identical while a value of 0 means that they are
completely dissimilar. Commonly used kernels like the Gaussian and the Laplacian
are normalized to produce a similarity measure between 0 and 1. The polynomial
kernel, though not necessarily normalized, can easily be normalized by using

K (xi , x j ) = K (xi , x j )√
K (xi , xi )K (x j , x j )

. (5.2)

The contextual information is represented by sets S and D , where S denotes the
set of similar pairs of instances, and D the set of dissimilar pairs of instances. Sets
S and D can be constructed either directly or indirectly. Directly, users can return
the information about whether two instances xi and x j are similar or dissimilar. In
such cases, the similar set S can be written as {(xi , x j )|xi ∼ x j }, and the dissimilar
set D as {(xi , x j )|xi � x j }. Indirectly, we may know only the class-label of instance
xi as yi . In this case, we can consider xi and x j to be a similar pair if yi = y j , and
a dissimilar pair otherwise.

In the remainder of this section, we first propose a transformation model to
formulate the contextual information in terms of the prior kernel k (Sect. 5.2.1).
Next, we discuss methods to generalize the model to compute the distance between
unseen instances (Sect. 5.2.2).

5.2.1 Transformation Model

The goal of our transformation is to increase the kernel value for the similar pairs, but
decrease the kernel value for the dissimilar pairs. DFA performs transformation in P,

to modify the kernel from K to K̃ . Let β1 and β2 denote the slopes of transformation
curves for dissimilar and similar pairs, respectively. For a given S and D, the kernel
matrix K, corresponding to the kernel K, is then modified as follows

k̃i j =
{

β1ki j , if (xi , x j ) ∈ D,

β2ki j + (1− β2), if (xi , x j ) ∈ S ,
(5.3)

where 0 ≤ β1, β2 ≤ 1 and k̃i j is the i j th component of the new kernel matrix K̃.
In what follows, we prove two important theorems. Theorem 5.1 demonstrates

that under some constraints on β1 and β2, our proposed similarity transformation
model in (5.3) ensures a valid kernel. Theorem 5.2 mathematically demonstrates
that under the constraints from Theorem 5.1, the transformed K̃ in (5.3) guarantees
a better alignment to the ideal K∗ in (5.30) than the K to the K∗.
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Theorem 5.1 Under the assumption that 0 ≤ β1 ≤ β2 ≤ 1, the transformed kernel
K̃ is positive (semi-) definite if the prior kernel K is positive (semi-) definite. (The
assumption β1 ≤ β2 means that we place more emphasis on the decreasing similarity
value (K) for dissimilar instance-pairs.)

Proof The transformed kernel K̃ can be written as follows:

K̃ = β1 K + (β2 − β1)K ⊗ K ∗ + (1− β2)K ∗, (5.4)

which corresponds to the kernel matrix K̃, associated with the training set X , in
(5.3). If the prior K is positive (semi-) definite, using the fact that the ideal kernel K ∗
is positive (semi-) definite [8], we can derive that K̃ in (5.4) is also positive (semi-)
definite if 0 ≤ β1 ≤ β2 ≤ 1. Here, we use the closure properties of kernels, namely
that the product and summation of valid kernels also give a valid kernel [9].

Theorem 5.2 The kernel matrix K̃ of the transformed kernel K̃ obtains a better
alignment than the prior kernel matrix K to the ideal kernel matrix K∗, i f 0 ≤
β1 ≤ β2 ≤ 1. Moreover, a smaller β1 or β2 would induce a higher alignment score.

Proof In [10], it has been proven that a kernel with the following form has a higher
alignment score with the ideal kernel K ∗ than the original kernel K,

K = K + γ K ∗, γ > 0, (5.5)

where we use K to distinguish with our K̃ defined in (5.3). According to the definition
of kernel target alignment [8], we have

[ 〈K, K∗〉√〈K, K〉
]2

<

[ 〈K + γ K∗, K∗〉√〈K + γ K∗, K + γ K∗〉
]2

, (5.6)

where the common item
√〈K∗, K∗〉 is omitted at both sides of inequality, and the

Frobenius norm of two matrices, say M = [mi j ] and N = [ni j ], is defined as
〈M, N〉 =∑i, j mi j ni j .

Cristianini et al. [8] proposed the notion of “ideal kernel” (K ∗). Suppose y(xi ) ∈
{1,−1} is the class label of xi . K ∗ is defined as

K ∗(xi , x j ) =
{

1, if y(xi ) = y(x j ),

0, if y(xi ) �= y(x j ),
(5.7)

which is the target kernel that a given kernel is supposed to align with. Employing
(5.5) and (5.30), we expand (5.6) as follows

(∑
S ki j

)2∑
S k2

i j +
∑

D k2
i j

<

[∑
S (ki j + γ )

]2∑
S (ki j + γ )2 +∑D k2

i j

. (5.8)

Defining γ = 1−β2
β2

> 0, where β2 is the parameter in (5.3), we then rewrite the
right side in (5.8) as follows
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[∑
S

(
ki j + 1−β2

β2

)]2

∑
S

(
ki j + 1−β2

β2

)2 +∑D k2
i j

=
β2

2

[∑
S

(
ki j + 1−β2

β2

)]2

β2
2

∑
S

(
ki j + 1−β2

β2

)2 + β2
2

∑
D k2

i j

=
[∑

S

(
β2ki j + (1− β2)

)]2
∑

S

(
β2ki j + (1− β2)

)2 + β2
2

∑
D k2

i j

(5.9)

≤
[∑

S

(
β2ki j + (1− β2)

)]2
∑

S

(
β2ki j + (1− β2)

)2 + β2
1

∑
D k2

i j

(5.10)

=
⎡
⎣ 〈K̃, K∗〉√
〈K̃, K̃〉

⎤
⎦

2

, (5.11)

where we apply the assumption of β1 ≤ β2 from (5.9) to (5.10), and employ (5.3)
in the last step (5.11). Combining (5.6) and (5.11), we obtain

〈K, K∗〉√〈K, K〉〈K∗, K∗〉 <
〈K̃, K∗〉√

〈K̃, K̃〉〈K∗, K∗〉
.

Therefore, the transformed kernel K̃ in (5.3) can achieve a better alignment than the
original kernel K under the assumption of 0 ≤ β1 ≤ β2 ≤ 1. Moreover, a greater
γ in (5.5) will have a higher alignment score [10]. Recall that β2 = 1

1+γ
. Hence, a

smaller β2 will have a higher alignment. On the other hand, from (5.10) and (5.11),
we can see that the alignment score of K̃ is a decreasing function w.r.t. β1. Therefore,
a smaller β1 or β2 will result in a higher alignment score. �


For a prior kernel K , the inner product of two instances xi and x j is defined as
φ(xi )

T φ(x j ) in P . For simplicity, we denote φ(xi ) as φi . The distance between
xi and x j in P can thus be computed as d2

i j = kii + k j j − 2ki j , where ki j = φT
i φ j .

Therefore, for the transformed kernel K̃ in (5.3), the corresponding distance d̃2
i j =

k̃i i + k̃ j j − 2k̃i j in P can be written in terms of d2
i j as

d̃2
i j =

{
β2d2

i j , if (xi , x j ) ∈ S ,

β1d2
i j + 2(1− β2)+ (β2 − β1)(kii + k j j ), if (xi , x j ) ∈ D .

(5.12)

Since K has been normalized as in (5.2), we have the distance d2
i j = 2−2ki j . Equation

(5.12) can thus be rewritten as
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d̃2
i j =

{
β2d2

i j , if (xi , x j ) ∈ S ,

β1d2
i j + 2(1− β1), if (xi , x j ) ∈ D .

(5.13)

Using the property 0 ≤ di j ≤ 2 and the condition 0 ≤ β1 ≤ β2 ≤ 1, we can see
that d̃2

i j ≤ d2
i j if the two instances are similar, and d̃2

i j ≥ d2
i j if the two instances are

dissimilar. In other words, the transformed distance metric in (5.13) decreases the
intra-class pairwise distance in P, and increases the inter-class pairwise distance in
P . The developed distance metric (5.13) is a valid distance metric (non-negativity,
symmetry, and triangle inequality) since the transformed kernel in (5.3) is a valid
kernel, according to Theorem 5.1.

Sometimes users may not return the class label yi for each instance xi in the
feedback contextual information. Instead, they may only return the information about
whether two instances xi and x j are similar or dissimilar. Denoting the set of pairs
of similar instances in the contextual information X as S = {(xi , x j )|xi ∼ x j },
and the set of pairs of dissimilar instances as D = {(xi , x j )|xi � x j }, we can extend
(5.13) to the case where only S and D information is available for classification or
clustering.

Since the class label information yi in (5.13) can be also considered as a kind of
(dis)similarity information by thinking yi = y j as xi ∼ x j and yi �= y j as xi � x j ,

for both cases, we use the notations S and D in the rest of the paper as the contextual
information from users

d̃2
i j =

{
β2d2

i j , if (xi , x j ) ∈ S ,

β1d2
i j + 2(1− β1), if (xi , x j ) ∈ D .

(5.14)

5.2.2 Distance Metric Learning

In this subsection, we show how to generalize the model in (5.13) to unseen instances
without overfitting the contextual information. We use the feature-weighting method
[11] by modifying the inner product ki j = φT

i φ j in P as φT
i AAT φ j . Here, Am′×m′

is the weighting matrix and m′ is the dimension of P . Based on the idea of feature
reduction [11], we aim to achieve a small rank of A, which means that the dimen-
sionality of feature vector φ is kept small in projected space P . The corresponding
distance function thus becomes

d̃2
i j = (φi − φ j )

T AAT (φi − φ j ). (5.15)

To solve for AAT so that the distance metric in (5.15) equals the distance in
(5.13), we formulate the problem as a convex optimization problem whose objective
function is to minimize the rank of the weighting matrix A. However, it induces an
NP-Hard problem by directly minimizing rank(A), the so-called zero-norm problem
in [12]. Since minimizing the trace of a matrix tends to give a low-rank solution when
the matrix is symmetric [13], in this chapter, we approximate the rank of a matrix
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by its trace. Moreover, since rank(AAT ) = rank(AAT AAT ) ≈ trace(AAT AAT ) =
‖AAT ‖2F, we approximate the problem of minimizing the rank of A by minimizing
its Frobenius norm ‖AAT ‖2F. The corresponding primal problem is formulated as

min
AAT ,β1,β2

1

2
‖AAT ‖2F + CDβ1 + CS β2, (5.16)

s.t. β2d2
i j = d̃2

i j , (xi , x j ) ∈ S

d̃2
i j = β1d2

i j + 2(1− β1), (xi , x j ) ∈ D

β2 ≥ β1,

β1 ≥ 0,

1− β2 ≥ 0,

(5.17)

where CS and CD are two non-negative hyper-parameters. Theorem 5.2 shows that
a large β1 or β2 will induce a lower alignment score. However, on the contrary,
β1 = β2 = 0 would overfit the training dataset. We hence add two penalty terms
CDβ1 and CS β2 to control the alignment degree. This strategy is similar to that
used in Support Vector Machines [14], which limits the length of weight vector ‖w‖2
in projected space P to combat the overfitting problem.

The constrained optimization problem above can be solved by considering the
corresponding Lagrangian formulation

L (AAT , β1, β2, η, μ, γ, π)

= 1

2
‖AAT ‖2F + CDβ1 + CS β2

−
∑

(xi ,x j )∈S
αi j

[
(φi − φ j )

T (β2I− AAT )(φi − φ j )
]

−
∑

(xi ,x j )∈D
αi j

[
(φi − φ j )

T (AAT − β1I)(φi − φ j )− 2(1− β1)
]

− μβ1 − γ (β2 − β1)− π(1− β2), (5.18)

where the Lagrangian multipliers (dual variables) are αi , μ, γ, π ≥ 0. This function
has to be minimized w.r.t. the primal variables AAT , β1, β2, and maximized w.r.t.
the dual variables α, η, μ, γ, π . To eliminate the primal variables, we set the
corresponding partial derivatives to be zero, obtaining the following conditions:

AAT =
∑

(xi ,x j )∈D
αi j (φi − φ j )(φi − φ j )

T

−
∑

(xi ,x j )∈S
αi j (φi − φ j )(φi − φ j )

T ,
(5.19)
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CS + π − γ =
∑

(xi ,x j )∈S
αi j (φi − φ j )

T (φi − φ j ), (5.20)

CD + γ − μ =
∑

(xi ,x j )∈D
αi j

[
2− (φi − φ j )

T (φi − φ j )
]
. (5.21)

Substituting the conditions of (5.20) and (5.21) into (5.18), we obtain the following
dual formulation

W (α, π) = 1

2
‖AAT ‖2F + 2

∑
(xi ,x j )∈D

αi j

−
∑

(xi ,x j )∈D
αi j (φi − φ j )

T AAT (φi − φ j )

+
∑

(xi ,x j )∈S
αi j (φi − φ j )

T AAT (φi − φ j )

− π, (5.22)

which has to be maximized w.r.t. αi j ’s and π ≥ 0. Actually, π can be removed from

the dual function (5.22), since ∂W (α,π)
∂π

= −1 < 0, which means that W (α, π) is a
decreasing function w.r.t π . Hence, W (α, π) is maximal at π = 0.

Now, the dual formulation (5.22) becomes a convex quadratic function w.r.t. only
αi j . Next, we examine the constraints of dual formulation on αi j . According to the
KKT theorem [15], we have the following conditions

αi j

[
β2d2

i j − d̃2
i j

]
= 0, (xi , x j ) ∈ S (5.23)

αi j

[
d̃2

i j − β1d2
i j − 2(1− β1)

]
= 0, (xi , x j ) ∈ D (5.24)

γ (β2 − β1) = 0, (5.25)

μβ1 = 0, (5.26)

π(1− β2) = 0. (5.27)

The constraint (5.17) requires β2 ≥ β1. In the case of β1 = β2 = 0, the training
dataset would be overfitted. In addition, in the case of β1 = β2 = 1, d̃2

i j is exactly

equal to the original distance metric d2
i j but we do not get any improvement. To avoid

these cases, we then change (5.17) to be a strict inequality constraint of β2 > β1.
Therefore, we have γ = 0 from (5.25). Using the properties of γ = 0 and π = 0, we
can then change the dual formulation (5.22) and its constraints of (5.20) and (5.21)
by substituting the expansion form of AAT in (5.19) as follows:
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max
α

W (α)

= 2
∑

(xi ,x j )∈D
αi j

− 1

2

∑
(xi ,x j )∈S

∑
(xk ,xl )∈S

αi jαkl

(
(φi − φ j )

T (φk − φl)
)2

− 1

2

∑
(xi ,x j )∈D

∑
(xk ,xl )∈D

αi jαkl

(
(φi − φ j )

T (φk − φl)
)2

+
∑

(xi ,x j )∈S

∑
(xk ,xl )∈D

αi jαkl

(
(φi − φ j )

T (φk − φl)
)2

,

s.t.

⎧⎪⎨
⎪⎩

CS =
∑

(xi ,x j )∈S αi j (φi − φ j )
T (φi − φ j ),

CD ≥
∑

(xi ,x j )∈D αi j
[
2− (φi − φ j )

T (φi − φ j )
]
,

0 ≤ αi j ,

(5.28)

where φT
i φ j = K (xi , x j ) from the kernel trick. The dual formulation (5.28) is very

similar to that of C-SVMs [14]. It is a standard convex quadratic programming,
which can result in a global optimal solution without any local minima.

After solving the convex quadratic optimization problem in (5.28), we can then
generalize our distance-metric model defined in (5.19) to the unseen test instances.
Suppose x and x′ are two test instances with unknown class labels. Their pairwise
distance d̃2(x, x′) after feature weighting is computed as

d̃2(x, x′) = (φ(x)− φ(x′)
)T AAT (φ(x)− φ(x′)

)
.

Substituting (5.19) into the above equation, we obtain

d̃2(x, x′) = (φ(x)− φ(x′)
)T

⎛
⎝ ∑

(xi ,x j )∈D
αi j (φi − φ j )(φi − φ j )

T

−
∑

(xi ,x j )∈S
αi j (φi − φ j )(φi − φ j )

T

⎞
⎠(φ(x)− φ(x′)

)

=
∑

(xi ,x j )∈D
αi j (Kxxi − Kxx j − Kxi x′ + Kx j x′)

2

−
∑

(xi ,x j )∈S
αi j (Kxxi − Kxx j − Kxi x′ + Kx j x′)

2. (5.29)

Remark 5.1 We note that here our learned distance function d̃2(x, x′) is expressed
in terms of the prior kernel K which has been chosen before we apply the
algorithm. For example, such a prior kernel could be chosen as a Gaussian RBF
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function exp

(
−‖x−x′‖22

2σ 2

)
. Kxxi and Kxx j in (5.29) can thus be computed as

exp

(
−‖x−xi‖22

2σ 2

)
and exp

(
−‖x−x j‖22

2σ 2

)
, and so are Kxi x′ and Kx j x′ . There-

fore, even in the case where both x and x′ are unseen test instances, their pair-
wise distance can still be calculated from (5.29). Moreover, when a linear kernel,
K (xi , x j ) = 〈xi , x j 〉, is employed, the projected space P is exactly equivalent to
the original input space I . DFA then becomes a distance-function-learning in I .
Therefore, DFA is a general algorithm which can learn a distance function in both
P and I . �


5.3 Experimental Evaluation

We conducted an extensive empirical study to examine the effectiveness of our
context-based distance-function learning algorithm in two aspects.

1. Contextual information. We compared the quality of our learned distance function
when given quantitatively and qualitatively different contextual information for
learning.

2. Learning effectiveness. We compared our DFA algorithm with the regular
Euclidean metric, Kwok et al. [10], and Xing et al. [16] on classification and
clustering applications.

To conduct our experiments, we used six datasets: one toy dataset, four UCI
benchmark datasets, and one 2K image dataset, which are described as follows:

One toy dataset. The toy dataset was first introduced in [10]. We used it to compare
the effectiveness of our method to other methods. The toy dataset has two classes and
eleven features. The first feature of the first class was generated by using the Gaussian
distribution N(3,1), and the first feature of the second class by N (−3, 1); the other
ten features were generated by N(0,25). Each feature was generated independently.
The first row of Table 5.1 provides the detailed composition of the toy dataset.
Four UCI benchmark datasets. The four UCI datasets we experimented with are
soybean, wine, glass, and segmentation (abbreviated as seg). The first three UCI
datasets are multi-dimensional. The last dataset, seg, is processed as a binary-class
dataset by choosing its first class as the target class, and all the other classes as
the non-target class. Table 5.1 presents the detailed description of these four UCI
datasets.
2K-image dataset. The image dataset was collected from the Corel Image CDs.
Corel images have been widely used by the computer vision and image-processing
research communities for conducting various experiments. This set contains 2K
representative images from 14 categories: architecture, bears, clouds, elephants,
fabrics, fireworks, flowers, food, landscape, people, textures, tigers, tools, and waves.
Each image is represented by a vector of 144 dimensions including color, texture,
and shape features [6].
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Table 5.1 Datasets
description

Dataset # dim # class # instance

Toy 11 2 100
Soybean 35 4 47
Wine 12 3 178
Glass 10 6 214
Seg 19 2 210
Image 144 14 1,897

The contextual-information sets S (the similar set) and D (the dissimilar set) were
constructed by defining two instances as similar if they had the same class label,2

and dissimilar otherwise. We compared four distance functions in the experiments:
our distance-function-alignment algorithm (DFA), the Euclidean distance function
(Euclidean), the method developed by Kwok et al. [10] (Kwok), and the method
developed by Xing et al. [16]. The latter two methods are presented in Sect. 5.4.
We chose the methods of Kwok et al. and Xing et al. for two reasons. First, both
are based on contextual information to learn a distance function, as is used in DFA.
Second, the method of Xing et al. is a typical distance-function-learning algorithm in
input space I that been seen as a yardstick method for learning distance functions,
as mentioned in Sect. 5.4.1. The method of Kwok et al. is a new distance-function-
learning algorithm in projected space P developed recently [10]. We compared DFA
to both methods to test its effectiveness on learning a distance function.

Our evaluation procedure was as follows: First, we chose a prior kernel and derived
a distance function via the kernel trick. We then ran DFA, Kwok’s, and Xing’s3 algo-
rithms, respectively, to learn a new distance function. Finally, we ran k-NN and
k-means using the prior and the learned distance functions, and compared their
results. Three prior kernels we used in the experiments are linear (xT x′), Gaussian(

exp

(
−‖x−x′‖22

2σ 2

))
, and Laplacian (exp

(−γ ‖x − x′‖1
)
). For each dataset, we care-

fully tuned kernel parameters including σ, γ, CS and CD via cross-validation. All
measurements were averaged over 20 runs.

5.3.1 Evaluation on Contextual Information

We chose two datasets, toy and glass, to examine the performance of our learned
distance function when given a different quality or quantity of contextual information.

2 In this chapter, we only consider the case where S and D are obtained from the class-label
information. How to construct S and D has been explained in the beginning of Sect. 5.2.
3 Xing’s algorithm cannot be run when the dimensionality of I is very high or when nonlinear
kernels, such as Gaussian and Laplacian, are employed. This is because its computational time does
not scale well with the high dimensionality of input space and non-linear kernels [10]. We thus did
not report the corresponding results in these cases.
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Fig. 5.3 Quality of contextual information vs. classification error. a Toy, b Glass

5.3.1.1 Quality of Contextual Information

We examined two different schemes for choosing contextual information for the
k-NN classifier. The first scheme, denoted as random, randomly samples a sub-
set of contextual information from S and D sets. The second scheme chooses
the most uncertain boundary instances as contextual information. Those instances
are the hardest to classify as similar or dissimilar. Without any prior knowledge or
any help provided by the user, we can consider those boundary instances to be the
most informative. One way to achieve such uncertain instances is to run Support
Vector Machines (SVMs) to identify the instances along the class boundary (support
vectors), and samples these boundary instances to construct contextual information.
Some other strategies can also be employed to help select the boundary instances. In
this chapter, we denote such a scheme as SV. We chose SVMs because it is easy to
identify the boundary instances (support vectors).

We tested both contextual information selection schemes using our distance-
learning algorithm on three prior kernels—linear, Gaussian, and Laplacian. For each
scheme, we sampled 5% contextual information from S and D . Figure 5.3a, b
present the classification errors (y-axis) of k-NN using the both schemes (x-axis).
Figure 5.3a shows the result on the toy dataset, and Fig. 5.3b shows on the glass
dataset. We can see that scheme SV yielded lower error rates than scheme random on
both datasets and on all three prior kernels. This shows that choosing the informative
contextual information is very useful for learning a good distance function. In the
remaining experiments, we employed the SV scheme.

5.3.1.2 Quantity of Contextual Information

We tested the performance of our learned distance function using different amounts
of contextual information. Figure 5.4a, b show the classification error rates (y-axis)
with different amounts of contextual information (x-axis) available for learning. We
ran the k-NN algorithm using the distance metric learned from our algorithm based
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Fig. 5.4 Percentage of contextual information vs. classification error. a Toy, b Glass

on different prior kernels. We see that for both toy and glass datasets, more contextual
information is always helpful. However, the improvement on the glass dataset did
level off after more than about 5–10% contextual information was used. Therefore,
in the rest of our experiments, we used 5% contextual information.

5.3.2 Evaluation on Effectiveness

We used the k-means and k-NN algorithms to examine the effectiveness of our
distance-learning algorithm on clustering and classification problems. In the
following, we first report k-means results, then k-NN results.

5.3.2.1 Clustering Results

For clustering experiment, we used the toy dataset and the four UCI datasets. The
size of the contextual information was chosen as roughly 5% of the total number of
all possible pairs. DFA uses the contextual information to modify three prior distance
functions: linear, Gaussian, and Laplacian. The value of k for k-means was set to be
the number of classes for each dataset. To measure the quality of clustering, we used
the clustering error rate defined in [16] as follows:

∑
i> j

1{1{ci = c j } �= 1{ĉi = ĉ j }}
0.5n(n − 1)

,

where {ci }ni=1 denotes the true cluster to which xi belongs, {ĉi }ni=1 denotes the cluster
predicted by a clustering algorithm, n is the number of instances in the dataset, and
1{·} the indicator function (1{true} = 1, and 1{false} = 0).

Table 5.2, we report the k-means clustering results for the five datasets. From
Table 5.2, we can see that DFA achieves the best clustering results in almost all
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Table 5.2 Clustering error rates on non-image datasets

Dataset Kernel Euclidean Learned
DFA Kwok Xing

Linear 50.5 48.2 48.5 48.9
Toy Gaussian 50.5 43.2 47.1 –

Laplacian 48.5 33.5 38.9 –
Linear 33.2 23.0 24.2 25.8

Soybean Gaussian 32.6 27.0 22.4 –
Laplacian 32.1 22.8 34.8 –
Linear 37.1 36.0 35.8 36.3

Wine Gaussian 36.3 35.7 35.9 –
Laplacian 36.3 26.8 32.0 –
Linear 31.5 31.3 37.0 35.5

Glass Gaussian 31.0 33.6 40.8 –
Laplacian 31.5 30.3 33.3 –
Linear 43.3 24.2 25.3 33.0

Seg Gaussian 40.5 19.6 34.4 –
Laplacian 36.2 20.3 14.1 –

No results reported for Xing on Gaussian and Laplacian kernels since this algorithm can only work
in input space I

testing scenarios except for three combinations of the soybean and Gaussian, the
wine and Linear, and the glass and Gaussian. DFA performs better than Xing in all
cases where the linear kernel is used.

5.3.2.2 Classification Results

When performing classification, we randomly extracted a fraction of the data as
training data, and used the remaining data as testing data. For each dataset, the
training/testing ratio was empirically chosen via cross-validation so that the classifier
using the regular Euclidean metric performs best for a fair comparison. The number
of training instances for each dataset is reported in the last column For classification
experiment, we used the toy dataset, the four UCI datasets, and the 2K image dataset.
The size of the contextual information chosen was again about 5% of the total number
of all possible pairs.

When performing classification, we employed different distance functions: linear,
Gaussian, and Laplacian. We compared the performance of using these distance
functions before and after applying DFA, and competing methods. For k-NN, we
randomly extracted 80% of the dataset as training data, and used the remaining data
20% as testing data. (Notice that the 80% training data here is for training k-NN,
not for modifying distance function.) Such a training/testing ratio was empirically
chosen via cross-validation so that the classifier using the regular Euclidean metric
performed best for a fair comparison. We set k in the k-NN algorithm to be 5 for
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Table 5.3 Classification error rates on non-image datasets

Dataset Kernel Euclidean Learned
DFA Kwok Xing

Linear 10.00 4.40 4.80 5.32
Toy Gaussian 10.00 2.22 2.61 –

Laplacian 10.00 0.68 1.10 –
Linear 2.50 0.00 0.12 0.39

Soybean Gaussian 2.50 1.00 1.34 –
Laplacian 2.50 0.30 1.19 –
Linear 5.00 4.86 4.94 4.98

Wine Gaussian 5.00 3.30 3.50 –
Laplacian 6.67 1.65 1.68 –
Linear 40.58 39.67 42.03 40.34

Glass Gaussian 40.58 37.28 47.83 –
Laplacian 37.68 33.10 33.33 –
Linear 2.94 1.47 1.51 1.86

Seg Gaussian 2.94 0.10 0.31 –
Laplacian 0.00 0.00 2.94 –

No results reported for Xing on Gaussian and Laplacian kernels since this algorithm can only work
in input space I

non-image datasets and to be 1 for the 2K-image dataset. Our setting is empirically
validated as the optimal one for the classifier using the regular Euclidean metric.

We first report the k-NN classification results using five non-image datasets—toy,
soybean, wine, glass, and seg. Table 5.3 reports all classification error rates (in per-
centages). We compared our DFA with three other metrics: Euclidean, Kwok, and
Xing. For each dataset, we used three different prior kernels—linear, Gaussian, and
Laplacian—and then experimented with the four metric candidates. In the third col-
umn of the table we report the error rates using the Euclidean distance. The last
three columns report the results of using DFA, Kwok, and Xing, respectively. The
best results achieved are shown in bold. First, compared to Euclidean, DFA per-
forms better on almost all datasets, with only one exception being tying on seg with
Laplacian (both achieved zero classification error rate). Second, DFA outperforms
Kwok on all datasets, improving the classification error rates by an average of 0.40,
0.45, 0.12, 5.38, and 1.06% on the five datasets, respectively. Finally, DFA obtains
better results than Xing’s in all testing scenarios.

Then, we report the prediction error-rates using k-NN on the 2K-image dataset in
Table 5.4. We empirically chose k = 1 and prior kernel as Gaussian. Since Xing’s
algorithm can run only in input space I , not in projected space P, we only compared
our distance metric with Kwok et al.’s and the regular Euclidean metric and in P .
Among fourteen categories, the distance metric learned by DFA beats the Euclidean
in twelve categories and Kwok in eleven. It also improves the total prediction error
rate by 2.7 and 2.5 percentile points, respectively.
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Table 5.4 Image-dataset
prediction error rates

Category Euclidean DFA Kwok

Architecture 29.3 28.0 31.7
Bear 64.0 68.0 63.0
Cloud 38.3 42.1 39.3
Elephant 63.3 43.9 60.2
Fabric 59.0 67.0 61.0
Firework 14.3 13.3 12.2
Flower 45.0 36.0 36.0
Food 32.5 29.4 33.1
Landscape 59.3 59.2 58.7
People 52.5 46.9 47.0
Texture 38.0 35.0 43.0
Tiger 46.7 37.8 52.2
Tool 15.0 12.0 15.0
Wave 44.3 39.6 48.1

Total 41.6 38.9 41.4

5.3.3 Observations

From the experimental results, we make the following observations:

1. Quality of contextual information counts. Choosing contextual information with
good quality can be very useful for learning a good distance metric, as shown
in Fig. 5.3. The best contextual information is that which can provide maximal
information to depict the context. As illustrated in our experiment, the bound-
ary instances tend to be most useful, since when they are disambiguated through
additional contextual information, we can achieve the best context-based align-
ment on the boundary (on the function).

2. Quantity matters little. Choosing more contextual information can be useful for
learning a good distance metric. However, as shown in Fig. 5.4, the cost of
increasing quantity can outweigh the benefit, once the quality of information
starts to deteriorate.

3. DFA helps. DFA improves upon prior functions in almost all of our test scenarios.
Occasionally, DFA performs slightly worse than the prior function. We conjecture
that this may be caused by overfitting in certain circumstances: specifically, when
some chosen prior kernels may not be the best model for the datasets, further
aligning these kernels could be counter-productive. We will further investigate
related issues in our future work.

5.4 Related Reading

Distance-function learning approaches can be divided broadly into metric-learning
and kernel-learning approaches. In the rest of this section we discuss representative
work using these two approaches.



5.4 Related Reading 115

5.4.1 Metric Learning

Metric learning attempts to find the optimal linear transformation for the given set of
data vectors to better characterize the similarity between vectors. The transformation
by itself is linear, but the data vectors may first be explicitly mapped to a new set
of vectors using a nonlinear function φ(x). The transformation of the data vectors
is equivalent to assigning weights to the features of the vectors; therefore, metric
learning is often called feature weighting. The metric learning approach is given a
set of data vectors X = {x}mi=1 in �n and similarity information in the form of
(xi , x j ) ∈ S (a similar set), if xi and x j are similar. Metric learning aims to learn a
distance metric dM(xi , x j ) between data vectors xi and x j that respects the similarity
information. Mathematically the distance metric can be represented as

dM(xi , x j ) =
√(

φ(xi )− φ(x j )
)T M(φ(xi )− φ(x j )),

where M needs to be positive (semi-) definite so as to satisfy metric properties—
non-negativity and triangle inequality. More generally, M parameterizes a family of
Mahalanobis distances over �n . The choice of the basis function φ and the scaling
matrix M will differentiate the various metric learning algorithms.

Wettschereck et al. [17] provide a review of the performance of feature-weighting
algorithms with emphasis on their performance for the k-nearest neighbor classifier.
Here, we discuss only a few representative algorithms. (For the other algorithms,
please refer to [17].) A number of papers address the problem of learning distance
metrics using contextual information4 in the form of groups of similar vectors [16,
18]. Contextual information can be user-provided information on the similarity char-
acteristics of a subset of data. Based on this information, the work of [18] uses
Relevant Component Analysis (RCA) to efficiently learn a full rank Mahalanobis
metric [19]. The authors use equivalence relations for the contextual information.
They compute

Ĉ = 1

p

|G|∑
j=1

|S j |∑
i=1

(x j i − m̂ j )(x j i − m̂ j )
T ,

where m̂ j is the mean of the j th group of vectors and |G| and |S j | denote the
number of groups and the number of samples in the j th group, respectively. The
matrix W = Ĉ−1/2 is used for transformation and the inverse of Ĉ as the Mahalanobis
matrix. Xing et al. [16] treat the same problem as a convex optimization problem,
hence producing local-optima-free algorithms. They present techniques for learning
the weighting matrix both for the diagonal and for the full matrix case. The major
difference between the two approaches is that RCA uses closed-form expressions,
whereas [16] uses iterative methods that can be sensitive to parameter tuning and
that are computationally expensive.

4 Contextual information is also called side information in some papers such as [16, 18].
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Aggarwal [2] discusses a systematic framework for designing distance functions
sensitive to particular characteristics of the data. The models used are the parametric
Minkowski model

D(xi , x j , λ) =
(

m∑
r=1

λr |xir − x jr |p
) 1

p

and the parametric cosine model

cos(xi , x j , λ) =
m∑

r=1

λr .xir .x jr√∑m
r=1 λ2

r x2
ir

∑m
r=1 λ2

r x2
jr

.

Both these models attempt to minimize the error with respect to each λr . The para-
metric Minkowski model can be thought of as feature weighting in the input space
I . Similarly, the parametric cosine model can be thought of as the inner product
in I .

In summary, metric learning aims to learn a good distance function by computing
the optimal feature weighings in I . Clearly, this linear transformation is restrictive
in terms of modeling complex semantics. Although one can perform a non-linear
transformation on the features via a basis function φ in I , such a transforma-
tion is explicit and the resulting computational complexity renders this approach
impractical. The kernel learning approach, which we discuss next, successfully
addresses the concern about computational complexity.

5.4.2 Kernel Learning

Kernel-based methods attempt to implicitly map a set of data vectors
X = {x}mi=1 in I to some other high-dimensional (possibly infinite) projected
space P, using a basis function (usually nonlinear) φ, where the mapped data can
be separated by applying a linear procedure [14]. Kernel function K is defined as an
inner product between two vectors in projected space P, φ(xi ) and φ(x j ), as

K (xi , x j ) = 〈φ(xi ), φ(x j )〉.
Kernel-based methods use these inner products (K ) as a similarity measure.
(Theoretical justifications are presented in [9].) The kernel K provides an elegant
way of dealing with nonlinear algorithms by reducing them to linear ones in P . Any
algorithm that can be expressed in terms of inner products can be made nonlinear
by substituting kernel values for the inner products. A typical example is Support
Vector Machines [14].

The requirement for choosing a valid K is that it should be positive (semi-)
definite and symmetric. Three popular kernels employed are the polynomial kernel
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(〈xi , x j 〉 + 1)p, the Gaussian radial basis function (RBF) kernel exp

(
−‖xi−x j‖22

2σ 2

)
,

and Laplacian RBF kernel exp(−γ ‖ xi − x j ‖1). In P, the distance between
xi and x j can then be computed via the kernel trick

d(xi , x j ) =
√

K (xi , xi )+ K (x j , x j )− 2K (xi , x j ),

where the validity of the kernel K ensures that the resulting distance function
d(xi , x j ) will be a valid metric.

An important advantage of using kernels lies in the ease of computing the inner
product (similarity measure) in P without actually having to know φ. There has been
a lot of work [9, 14, 20] in classification, clustering, and regression methods, using
the kernel K (xi , x j ) for indirect computations of similarity measures (and hence the
distance d(xi , x j )) in P .

Due to the central role of the kernel, a poor kernel function can lead to significantly
poor performance using kernel methods. Instead of choosing a pre-defined kernel for
training, many recent efforts aim to learn a kernel from the training data [8, 10]. All
these papers are based on the notion of kernel alignment proposed by Cristianini et
al. [8] to measure the similarity between two kernel functions. Geometrically, when
given a set of training instances X , the alignment score is defined as the cosine of the
angle between the two kernel matrices,5 after flattening the two matrices into vectors.
They also proposed the notion of “ideal kernel” (K ∗). Suppose y(xi ) ∈ {1,−1} is
the class label of xi . K ∗ is defined as

K ∗(xi , x j ) =
{

1, if y(xi ) = y(x j ),

0, if y(xi ) �= y(x j ),
(5.30)

which is the target kernel that a given kernel is supposed to align with. Kernel-
alignment calculates the alignment score of a given kernel K to the ideal kernel K ∗
to indicate the degree to which the kernel matches the training data. Cristianini et al.
[8] prove the connection between the alignment and the generalization performance
of the resulting classifier. Basically, their work shows that with a high alignment on
the training set, we can expect a good generalization performance of the resulting
distance-based classifier.

Since a kernel K defines a pairwise distance from (5.1), kernel learning has been
recently applied to distance metric learning. Zhang [21] proposed to idealize a given
kernel K using K̃ = K+K ∗, to achieve a good distance metric which is Euclideanly
and Fisherly separable. Then, the achieved distance metric was embedded into a
new Euclidean space via Multi-Dimensional Scaling (MDS) [22]. However, this
iterative embedding procedure is computationally expensive, and its idealization
model might not be optimal. Kwok et al. [10] considered the same problem of metric
learning as a convex optimization problem. The approach works in both the input

5 Given a kernel function K and a set of instances X , the kernel matrix (Gram matrix) is the matrix
of inner-products of all possible pairs from X × X, K = [ki j ], where ki j = K (xi , x j ).
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and the kernel-induced projected spaces. They modify the prior kernel using K̃ =
K + γ

2 K ∗ and derive distance functions using this modified kernel. Since the number
of parameters is related to the number of patterns but not to the dimensionality of the
patterns, the approach allows feature weighting to be done efficiently in the possibly
infinite dimensional projected spaces. However, their learned distance metric cannot
be guaranteed to be positive (semi-) definite. Hence, the induced distance function
might not be a valid one. Moreover, their kernel transformation model, K̃ = K +
γ
2 K ∗, is not an optimal one for kernel idealization because K̃ (xi , x j ) = K (xi , x j )

when two instances xi and x j are similar (K ∗(xi , x j ) = 1), which means the intra-
class similarity scores remain unchanged using this transformation model.

Our DFA algorithm transforms a prior kernel function6 in a projected space P
when given a set of training data. We theoretically prove that our method leads
to a valid distance function. More importantly, we also show that since the opti-
mization is performed in a convex space, the solution obtained is globally optimal.
Consequently, given a prior kernel and contextual information, the alignment needs
to be performed just once. Our empirical results show that our proposed method
outperforms competing methods on a variety of testbeds.

5.5 Concluding Remarks

In this chapter, we have reported our study of an important database issue—
formulating a context-based distance function for measuring similarity. We show that
DFA learns a distance function by considering the nonlinear relationships among the
contextual information, without incurring high computational cost. Theoretically,
we substantiated that our method achieves optimal alignment toward the ideal ker-
nel. Empirically, we demonstrated that DFA improves similarity measures and hence
leads to improved performance in clustering and classification applications.

Considering the contextual information in information retrieval has been
identified as an important research area. Our work provides a mechanism that is
more effective than the traditional ones because it achieves both model flexibility
and computational efficiency. One of our future research tasks is to theoretically
analyze the generalization ability of DFA. Cristianini et al. [8] give a proof on the
connection between the “ideal” kernel and the generalization ability of the classifier.
This might inspire us to formulate a method to analyze DFA. Other future research
projects might be to investigate how one might best model context (for an applica-
tion or for a user), and how one might effectively formulate and gather contextual
information to take advantage of our proposed mechanisms.

6 The kernel trick in (5.1) uniquely links the kernel functions with the distance function. The former
(K ) provides the pairwise-similarity measurement between two instances, whereas the latter (d)

provides the pairwise-dissimilarity measurement between two instances. Therefore, when we say a
transformation on a prior kernel function, it also means a transformation on a prior distance function,
vise versa.
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Chapter 6
Multimodal Fusion

Abstract Multimedia data instances consist of metadata from multiple sources.
Given a set of features extracted from these sources (e.g., features extracted from
the visual, audio, and caption track of videos), how do we determine the best modal-
ities? Once a set of modalities has been identified, how do we best fuse them to
map to semantics? This chapter† presents a two-step approach. The first step finds
statistically independent modalities from raw features. In the second step, we use
super-kernel fusion to determine the optimal combination of individual modalities.
We carefully analyze the tradeoffs between three design factors that affect fusion per-
formance: modality independence, curse of dimensionality, and fusion-model com-
plexity. Through analytical and empirical studies, we demonstrate that the two-step
approach, which achieves a careful balance of the three design factors, can improve
class-prediction accuracy over traditional techniques.

Keywords Feature combination ·Multimodal fusion · PCA · ICA · Super kernel

6.1 Introduction

Multimedia data such as images and videos are represented by features from mul-
tiple media sources. Traditionally, images are represented by keywords and per-
ceptual features such as color, texture, and shape [2, 3]. Videos are represented by
features embedded in the tracks of visual, audio, caption text, etc. [4]. Besides, con-
textual information associated with a data instance, such as camera parameters, user
profile, social interactions, and search logs, can also be considered for analyzing

† © ACM, 2004. This chapter is a minor revision of the author’s work with Yi Wu, Kevin Chang,
and John R. Smith [1] published in MULTIMEDIA’04. Permission to publish this chapter is
granted under copyright license #2587660035739.

E. Y. Chang, Foundations of Large-Scale Multimedia Information 121
Management and Retrieval, DOI: 10.1007/978-3-642-20429-6_6,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011
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multimedia data. These features are extracted and then fused in a complementary
way for understanding the semantics of multimedia data.

Traditional work on multimodal integration has largely been heuristic-based. It
lacks theories to answer two fundamental questions: (1) what are the best modalities?
and (2) how can we optimally fuse information from multiple modalities? Suppose
we extract l, m, n features from the visual, audio, and caption tracks of videos. At
one extreme, we could treat all these features as one modality and form a feature
vector of l + m + n dimensions. At the other extreme, we could treat each of the
l + m + n features as one modality. We could also regard the extracted features
from each media-source as one modality, formulating a visual, audio, and caption
modality with l, m, and n features, respectively. Almost all prior multimodal-fusion
work in the multimedia community employs one of these three approaches [5, 6].
But, can any of these feature compositions yield the optimal result?

Statistical methods such as principle component analysis (PCA) and independent
component analysis (ICA) have been shown to be useful for feature transformation
and selection. PCA is useful for denoising data, and ICA aims to transform data to
a space of independent axises (components). Despite their best attempt under some
error-minimization criteria, PCA and ICA do not guarantee to produce independent
components. In addition, the created feature space may be of very high dimensions
and thus be susceptible to the curse of dimensionality.1 In the first part of this chapter,
we present an independent modality analysis scheme, which identifies independent
modalities, and at the same time, avoids the curse-of-dimensionality challenge.

Once a good set of modalities has been identified, the second research chal-
lenge is to fuse these modalities in an optimal way to perform data analysis (e.g.,
classification). Suppose we can yield truly independent modalities, and each modal-
ity can derive accurate posterior probability for class prediction. We can simply
use the product-combination rule to multiply the probabilities for predicting class
membership. Unfortunately, the above two conditions do not hold in general for
a multimedia data-analysis task (see Sect. 6.2 for detailed discussion). Using the
product-combination rule to fuse information is thus inappropriate. Another popular
fusion method is the weighted-sum rule, which performs a linear combination on the
modalities. The weighted-sum rule enjoys the advantage of simplicity, but its linear
constraint forbids high model complexity; hence it cannot adequately explore the
inter-dependencies left unresolved by PCA and ICA. In this chapter, we present a
discriminative approach (whereas in Chap. 8 we present a generative approach) to
address multimodal fusion. Our discriminative approach employs the super-kernel
fusion scheme to fuse individual modalities in a non-linear way (linear fusion is a spe-
cial case of our method). The super-kernel fusion scheme finds the best combination
of modalities through supervised training.

1 The work of [7] shows that, when data dimension is high, the distances between pairs of objects in
the space become increasingly similar to each other due to the central limit theory. This phenomenon
is called the dimensionality curse [8], because it can severely hamper the effectiveness of data
analysis.

http://dx.doi.org/10.1007/978-3-642-20429-6_8
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Fig. 6.1 Feature correlation matrix. a Before PCA/ICA, b after PCA/ICA

Let us use a simple example to explain the shortcomings of some traditional mul-
timodal integration schemes that invite further research. Figure 6.1 shows the exis-
tence of feature dependencies in a real image dataset, before and after performing
PCA/ICA. This figure plots the normalized correlation matrix in absolute value
derived from a 2K-image dataset of 14 classes. (Detailed description for this image
dataset is given in Sect. 6.5.) A total of 144 features are considered: the first 108 are
color features; the other 36 are texture features. Correlation between features within
the same media source and across different media sources is measured by computing
the covariance matrix:

C = 1

N

∑
xi∈X

(xi − x̄)(xi − x̄)T with x̄ = 1

N

∑
xi∈X

xi , (6.1)

where N is the total number of sample data, xi is a feature vector to represent the
ith sample, and X is the set of feature vectors for N samples. Normalized correlation
between features i and j is defined by

Ĉ(i, j) = C(i, j)√
C(i, i)× C( j, j)

. (6.2)

In the figure, both the x- and y-axis depict the 144 features. The light-colored areas
in the figure indicate high correlation between features, and the dark-colored areas
indicate low correlation. If any feature correlates only with itself, only the diagonal
elements will be light-colored. The off-diagonal light-colored areas in Fig. 6.1a indi-
cate that this image dataset exhibits not only a high correlation of features within the
same media source, but also between certain features from different media sources
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Table 6.1 Related work summarization

No. of modality Fusion methods Evaluation

1 No No need to do fusion; curse of dimensionality
m Any Loss of inter-dependency relationship between features
k Any High model complexity; no perfect independent components

Product Very sensitive to the accuracy of individual classifiers
D Linear Not suitable for independent feature spaces

Super-kernel Suitable

m no. of media sources, k no. of independent components, D no. of independent modalities

(e.g., color and texture). Color and texture are traditionally treated as orthogonal
modalities, but this example shows otherwise. These correlated and even noisy “raw”
features may affect the learning algorithm by obscuring the distributions of truly
relevant and representative features. (The weighted-sum fusion rule cannot deal with
these inter-dependencies.)

Figure 6.1b presents the feature correlation matrix after we applied both PCA and
ICA to the data. The process yields 58 “improved” components. Although the com-
ponents exhibit better independence, inter-dependencies between components still
exist. This chapter first deals with grouping components like these 58 into a smaller
number of independent modalities to avoid the dimensionality curse. We then explore
non-linear combinations of the modalities to improve the effective multimodal fusion.

As the main contribution of this work, we propose a discriminative fusion scheme
for multimedia data analysis. Given a list of features extracted from multiple media-
sources, we tackle two core issues:

• Formulating independent feature modalities (Sect. 6.3).
• Fusing multiple modalities optimally (Sect. 6.4).

We carefully analyze the tradeoffs between three design factors that affect fusion
performance: modality independence, curse of dimensionality, and fusion-model
complexity. Through analytical and empirical studies on an image dataset and TREC-
Video 2003 benchmarks, we show that a careful balance of the three design factors
consistently leads to superior performance for multimodal fusion.

6.2 Related Reading

We discuss related work in modality identification and modality fusion (Table 6.1).

6.2.1 Modality Identification

Let D denote the number of modalities. Given d1, d2, . . . , dm features extracted from
m media sources, respectively, prior modality identification work can be divided into
two representative categories.
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1. D = 1, or treating all features as one modality. This approach does not require
the fusion step. Goh et al. [9] used the raw color and texture features to form a
high-dimensional feature vector for each image. Recently, statistical methods such
as PCA and ICA have been widely used in the Computer Vision, Machine Learn-
ing, Signal Processing communities to denoise data and to identify independent
information sources (e.g., [10–13]). In the multimedia community, the work of
[14, 15] observed that audio and visual data of a video stream exhibit some statisti-
cal regularity, and that regularity can be explored for joint processing. Smaragdis
et al. [16] proposed to operate on a fused set of audio/visual features and to
look for combined subspace components amenable to interpretation. Vinokourov
et al. [17] found a common latent/semantic space from multi-language documents
using independent component analysis for cross-language document retrieval. The
major shortcoming of these works is that the curse of dimensionality arises, caus-
ing ineffective feature-to-semantics mapping and inefficient indexing [2]. (Please
refer to [7, 18, 19] for the discussion of dimensionality-curse and why dimen-
sion reduction can greatly enhance the effectiveness of statistical analysis and the
efficiency of query processing.)

2. D = m, or treating each source as one modality. This approach treats the features
as m modalities, with di features in the ith modality (i = 1, 2, . . . , m). Most work
in image and video retrieval analysis (e.g., [4, 20–23]) employs this approach.
For example, the QBIC system [20] supported image queries based on combining
distances from the color and texture modalities. Velivelli et al. [23] separated video
features into audio and visual modalities. Adams et al. [4] also regarded each
media track (visual, audio, textual, etc.) as one modality. For each modality, these
works trained a separate classification model, and then used the weighted-sum
rule to fuse a class-prediction decision. This modality-decomposition method can
alleviate the “curse of dimensionality.” However, since media sources are treated
separately, the inter-dependencies between sources are left unexplored.

Our method is to apply independent component analysis on the raw feature sets to
identify k “independent” components. Thereafter, we group these components into
D modalities to (1) minimize the dependencies between modalities, and (2) mitigate
the dimensionality-curse problem.

6.2.2 Modality Fusion

Given that we have obtained D modalities, we need to fuse D classifiers, one for each
modality, for interpreting data.

PCA and ICA cannot perfectly identify independent components for at least two
reasons. First, like the way that the k-mean algorithm works, all well-known ICA
algorithms (fixed-point algorithm [24], Infomax [25, 26], kernel canonical analy-
sis [17], and kernel independent analysis [27]) need a good estimate of the number
of independent components k to find them effectively. Second, as we discussed in
Sect. 6.1, ICA only performs the best attempt under some error-minimization cri-
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teria to find k independent components. But the resulting components, as shown in
Fig. 6.1b, may still exhibit inter-dependencies.

Now, given D modalities, not entirely independent of each other, we need an effec-
tive fusion strategy. Various fusion strategies for multimodal information have been
presented and were discussed in [28], including product combination, weighted-sum,
voting, and min–max aggregation. Among them, product combination and weighted-
sum are by far the most popular fusion methods.

1. Product combination. Supposing that D modalities are independent of each
other, and we can estimate posterior probability for each modality accurately, the
product-combination rule is the optimal fusion model from the Bayesian perspec-
tive. However, in addition to the fact that we will not have D truly independent
modalities, we generally cannot estimate posterior probability with high accu-
racy. The work of [29] concluded that the product-combination rule works well
only when the posterior probability of individual classifiers can be accurately
estimated. In a multimedia data-understanding task, we often assert similarity
between data based on our beliefs. (E.g., one can “believe” two videos to be 87%
similar or 90% similar. This estimate does not come from classical probability
experiments, so the sum of beliefs may not be equal to one.) Because of this
subjective process, and because the product-combination rule is highly sensitive
to noise, this strategy is not appropriate.

2. Weighted-sum. The weighted-sum strategy is more tolerant to noise because sum
does not magnify noise as severely as product. Weighted-sum (e.g., [30]) is a
linear model, not equipped to explore the inter-dependencies between modal-
ities. Recently, Yan and Hauptmann [31] presented a theoretical framework for
bounding the average precision of a linear combination function in video retrieval.
Concluding that the linear combination functions have limitations, they suggested
that non-linearity and cross-media relationships should be introduced to achieve
better performance.

In this chapter, we depict a super-kernel scheme, which can fuse multimodal
information non-linearly to explore the cross-modality relationship. Chapters 7
and 8 present two generative schemes. Both discriminative and generative models
enjoy their pros and cons, which we will discuss throughout these three chapters.

6.3 Independent Modality Analysis

In this section, we present our approach to transform m raw features to D modalities.
Given input in the form of an m × n matrix X (n denotes the number of training
instances), our independent modality analysis procedure produces M1, M2, . . . , MD

modalities. The procedure consists of the following three steps:

http://dx.doi.org/10.1007/978-3-642-20429-6_7
http://dx.doi.org/10.1007/978-3-642-20429-6_8
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1. Run principal component analysis (PCA) on X to remove noise and reduce the
feature dimensionality. Let U denote the matrix containing the first k eigenvectors.
The PCA representation of zero-mean feature vectors X is defined as U T X.

2. Run independent component analysis (ICA) on the PCA output U T X to obtain
estimates of independent feature components S and an estimate of a mixing matrix
W. We can recover the independent components by computing S = WUT X.

3. Run independent modality grouping (IMG) on S to form independent modalities
M1, M2, . . . , MD.

6.3.1 PCA

PCA has been frequently used as a technique for removing noises and redundancies
between feature dimensions [32]. PCA projects the original data to a lower dimen-
sionality space such that the variance of the data is best maintained. Let’s assume
that we have n samples, {x1, x2, . . . , xn}, and each xi is an m-dimensional vector.
We can represent the n samples as a matrix Xm×n . It is known in linear algebra that
any such matrix can be decomposed in the following form (known as singular value
decomposition or SVD):

X = UDV T ,

where matrices Um×p and Vn×p represent orthonormal basis vectors matrices (eigen-
vectors of the symmetric matrix X X T and X T X ), with p as the number of largest
principal components. The Dp×p matrix is a diagonal matrix, and the diagonal ele-
ments of D are the eigenvalues of X X T and X T X. Consider the projection onto the
subspace spanned by the p largest principal components (PC’s), i.e., U T X.

6.3.2 ICA

Compared to PCA, the spirit of ICA is to find statistically independent hidden sources
from a given set of mixture signals. Both ICA and PCA project data matrices into
components in different spaces. However, the goals of the two methods are differ-
ent. PCA finds the uncorrelated components of maximum variance. It is ideal for
compressing data into a lower-dimensional space by removing the least significant
components. ICA finds the statistically independent components. ICA is the ideal
choice for separating mixed signals and finding the most representative components.

To formalize an ICA problem, we assume that there are k unknown independent
components S = {s1, s2, . . . , sk}. What we observe is a set of m-dimensional samples
{x1, x2, . . . , xn}, which are mixture signals coming from k independent components,
k ≤ m. We can represent all the observation data as a matrix Xm×n . A linear mixture
model can be formulated as:

X = AS,
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Fig. 6.2 Scatter plots of the 2K image dataset. a PCA, b ICA

where Am×k is a mixing matrix. Our goal is to find W = A−1; therefore, given
training set X, we can recover the independent components (IC’s) through the trans-
formation of S = WX.

ICA establishes a common latent space for the media, which can be viewed as
a method for learning the inter-relations between the involved media [16, 33]. For
multimedia data, observation data xi usually contains features coming from more
than one medium. The different independent components {s1, s2, . . . , sk} provide a
meaningful segmentation of the feature space. The kth column of W−1 constitutes
the original multiple features associated with the kth independent component. These
independent components can provide a better interpretation for multimedia data.
Figure 6.2a, b show the scatter plots of the 2K image dataset, projected to a two-
dimensional subspace identified by the first two principal components and the first
two independent components. Dark points correspond to the class of tools (one of the
14 classes), and green (light) points correspond to the other 13 classes. Compared
with PC’s in Fig. 6.2a, IC’s found from ICA in Fig. 6.2b can better separate data
from different semantic classes. Figure 6.2b strongly suggests an ICA interpretation
to differentiate semantics. The main attraction of ICA is that it provides unsupervised
groupings of data that have been shown to be well aligned with manual grouping in
different media [11]. The representative and non-redundant feature representations
form a solid base for later processing.

Lacking any prior information about the number of independent components,
ICA algorithms usually assume that the number of independent components is the
same as the dimension of observed mixtures, that is, k = m. PCA technique can be
used as preprocessing to ICA to reduce noise in the data and control the number of
independent components [34]. Then ICA is performed on the main eigenvectors of
PCA representations (k = p, where p is the number of PC’s) to determine which
PC’s actually are independent and which should be grouped together as parts of a
multidimensional component. Finally, the independent components are recovered by
computing S = WUT X.
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6.3.3 IMG

As discussed in Sect. 6.1, though ICA makes a best attempt to find independent
components, the resulting k components might not be independent, and the number
of components can be too large to face the challenge of “dimensionality curse” during
the statistical-analysis and query-processing phrases. IMG aims to remedy these two
problems by grouping k components into D modalities.

We divide k components into D groups to satisfy two requirements: (1) the cor-
relation between modalities is minimized, and (2) the number of features in each
modality is not too large. The first requirement maximizes modality independence.
The second requirement avoids the problem of curse-of-dimensionality. To decide
on D, we place a soft constraint on the number of components that a modality can
have. We set the soft constraint as 30 because several prior works [7, 18, 19] indicate
that when the number of dimensions exceeds 20–30, the curse starts to kick in. Since
only the data can tell us exactly at what dimension the curse starts to take effect, the
selection of D must go through a cross-validation process: we pick a small number
of candidate D values and rely on experiments to select the best D.

For a given D, we employ a clustering approach to divide k into D groups. Ding et
al. [35] provided theoretical analysis to show that minimizing inter-subgraph similar-
ities and maximizing intra-subgraph similarities always lead to more balanced graph
partitions. Thus, we apply minimizing inter-group feature correlation and maximizing
intra-group feature correlation as our feature-grouping criteria to determine indepen-
dent modalities. Suppose we have D modalities M1, M2, . . . , MD, each containing
a number of feature components. The inter-group feature correlation between two
modalities Mi and M j is defined as

C(Mi , M j ) =
∑

∀ Si∈Mi , ∀ S j∈M j

C(Si , S j ), (6.3)

where Si and S j are features belonging to modalities Mi and M j respectively, and
C(Si , S j ) is the normalized feature correlation between Si and S j . C(Si , S j ) can be
calculated using (6.1) and (6.2). The intra-group feature correlation within modality
Mi is defined as

C(Mi ) = C(Mi , Mi ). (6.4)

To minimize inter-group feature correlation while maximizing intra-group feature
correlation at the same time, we can formulate the following objective function for
grouping all the features into D modalities,

min
D∑

i=1
j>i

[
C(Mi , M j )

C(Mi )
+ C(Mi , M j )

C(M j )

]
. (6.5)

Solving this objective function yields D modalities, with minimal inter-modality
correlation and balanced features in each modality.
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6.4 Super-Kernel Fusion

Once D modalities have been identified by our independent modality analysis, we
need to fuse multimodal information optimally. Suppose we train for the dth modality
classifier fd . We need to combine these D classifiers to perform class prediction for
query instance xq . The fusion architecture is depicted in Fig. 6.3.

After fd , d = 1, . . . , D have been trained, the information can be fused in several
ways. Let f denote the fused classification function. The product-combination rule
can be formulated as

f =
D∏

d=1

fd .

And the most widely used weighted-sum rule can be depicted as

f =
D∑

d=1

μd fd ,

where μd is the weight for individual classifier fd . As we have discussed in Sect. 6.2,
both these popular models suffer from several shortcomings, including being sen-
sitive to prediction error and being limited by the linear-model complexity. (Please
consult Sect. 6.2 for detailed discussion.) To overcome these shortcomings, we pro-
pose using super-kernel fusion to aggregate fd ’s.

The algorithm of super-kernel fusion is summarized in Fig. 6.4, which consists
of the following three steps:
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Fig. 6.4 Super-kernel fusion
algorithm

1. Train individual classifiers { fd} . The inputs to the algorithm are the n train-
ing instances {x1, x2, . . . , xn} and their corresponding labels {y1, y2, . . . , yn}.
After the independent modality analysis (IMA), the m-dimensional features
are divided into D modalities. Each training instance xi is represented by
{x1

i , x2
i , . . . , xD

i }, where xd
i is the feature representation for xi in the dth modal-

ity. All the training instances are divided into D matrices {M1, M2, . . . , MD},
where each Md is an n × |Md | matrix, and |Md | is the number of features in the
dth modality (d = 1, 2, . . . , D). To train classifier fd , we use Md and the label
information. Though many learning algorithms can be employed to train fd , we
employ an SVM as our base-classifier because of its effectiveness. For training
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each fd , the kernel function and kernel parameters are carefully chosen via cross
validation (steps 1–3 in Fig. 6.4).

2. Estimate posterior probability. Once we have trained D classifiers for the D modal-
ities, we create a super-kernel matrix K for modality fusion. This matrix is cre-
ated by passing each training instance to each of the D classifiers to estimate its
posterior probability. We use Platt’s formula [36] to convert an SVM score to
probability. As a result of this step, we obtain an n × D matrix consisting of n
entries of D class-prediction probability (steps 4–6 in Fig. 6.4).

3. Fuse the classifiers. The super-kernel algorithm treats K a matrix of n training
instances, each with a vector of D elements. Next, we again employ SVMs to train
the super-classifier. The inputs to SVMs include K, training labels, a selected
kernel function, and kernel parameters. At the end of the training process, we
yield function f to perform class prediction. The complexity of the fusion model
depends on the kernel chosen. For instance, we can select a polynomial, RBF or
Laplacian function (steps 7–8 in Fig. 6.4).

Remark 6.1 A context-based query can be represented by a discriminative function
f derived from the above supervised-learning process. Given a candidate data x, the
output of f (x) indicates the degree of relevance that x has to the query. We apply f
to the dataset and return top-k most relevant data as the query result.

At first it might seem that non-linear transformations would suffer from high
model and computational complexity. But our proposed super-kernel fusion suc-
cessfully avoids these problems by employing the kernel trick. (The kernel trick has
been applied to several algorithms in statistics, including Support Vector Machines
and kernel PCA.) The kernel trick let us generalize data similarity measurement
to operate in a projected space, usually nonlinearly related to the input space. The
input space (denoted as I ) is the original space in which data are located, and
the projected space (denoted as P) is that space to which the data are projected,
linearly or non-linearly. The advantage of using the kernel trick is that, instead of
explicitly determining the coordinates of the data in the projected space, the distance
computation in P can be efficiently performed in I through a kernel function.2

Specifically, given two vectors xi and x j , kernel function K (xi , x j ) is defined as
the inner product of �(xi ) and �(x j ), where � is a basis function that maps the
vectors xi and x j from I to P. The inner product between two vectors can be
thought of as a measure of their similarity. Therefore, K (xi , x j ) returns the simi-
larity of xi and x j in P. Since a kernel function can be either linear or nonlinear
our super-kernel fusion scheme can model non-linear combinations of individual
kernels.

One can employ any supervised learning algorithm is the function Train in the
algorithm (line 2 in the figure). Algorithms that work well with kernel methods are
Support Vector Machines [37] and Kernel Discriminative Analysis [38].

2 Given a kernel function K , we can construct a corresponding kernel matrix K, where K(i, j) =
K (xi , x j ).
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Proposition 6.1 Fused kernel matrix K is a mathematically valid kernel, which is
symmetric and positive semi-definite.

Proof From Fig. 6.4, obviously, vectors {x1, x2, . . . , xn} have the same dimensions
of D. Therefore, we can use traditional kernel functions such as Gaussian radial
basis kernel function, Laplacian kernel function, and Polynomial kernel function
to calculate the similarity between these vectors and to build the kernel matrix K.

Those kernel functions have already been proven to be a mathematically valid kernel
satisfying symmetric and positive semi-definite conditions [37]. The resulting kernel
matrix K is valid too. ��

Finally, once the class-prediction function f has been trained, we can use the
function to predict the class membership of a query point xq . Assume xq is
an m-dimensional feature vector in original feature space, we can convert it to
an ICA feature representation WUT xq , where W and U are transformation
matrices obtained from PCA and ICA process, respectively (Sect. 6.3). Then, WUT xq

is further divided into D modalities (information obtained from the IMG process),
named as {x1

q , x2
q , . . . , xD

q }. The class-prediction function for query point xq can be
written as

ŷq = f ( f1(x1
q), f2(x2

q), . . . , fd(xD
q )).

6.5 Experiments

Our experiments were designed to evaluate the effectiveness of using independent
modality analysis and multimodal kernel fusion to determine the optimal multimodal
information fusion for multimedia data retrieval. Specifically, we wanted to answer
the following questions:

1. Can independent modality analysis improve the effectiveness of multimedia data
analysis?

2. Can super-kernel fusion improve fusion performance?

We conducted our experiments on two real-world datasets: one is a 2K image
dataset, and the other is TREC-2003 video track benchmark. We randomly selected
a percentage of data from the dataset to be used as training examples. The remaining
data were used for testing. For each dataset, the training/testing ratio was empirically
chosen via cross-validation so that the sampling ratio worked best in our experiments.
To perform independent modality analysis, we applied traditional PCA and ICA
algorithms3 onto the given features (including all the training and testing data) to get
the independent components following the steps described in Sect. 6.3. To perform
class prediction, we employed the one-per-class (OPC) ensemble [39], which trains

3 InfoMax was chosen as our ICA algorithm because of its robustness, though other ICA algorithms
could also be applied.
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all the classifiers, each of which predicts the class membership for one class. The
class prediction on a testing instance is decided by voting among all the classifiers.
The results presented here were the average of 10 runs.

• Dataset #1: 2K image dataset. The image dataset was collected from the Corel
Image CDs. Corel images have been widely used by the computer vision, image
processing, and multimedia research communities for conducting various
experiments. This set contains 2K representative images from fourteen categories:
architecture, bears, clouds, elephants, fabrics, fireworks, flowers, food, landscape,
people, textures, tigers, tools, and waves. We tried different kernel functions, kernel
parameters and training/testing ratios. Laplacian kernel with γ = 0.001 and 80%
of the dataset as training data gave us the best results on the experiments of using
raw features. We used the Laplacian kernel with γ = 0.001 for all subsequent
experiments on this 2K image dataset. We randomly picked 80% of images for
training and the remaining 20% were used for testing data. For each image, we
extracted 144 features (documented in [40]) including color and texture features.
This small dataset is used to provide insights into understanding the effectiveness
of our methods, and the tradeoffs between design factors.

• Dataset #2:TREC-2003 Video Track. TREC-2003 video track used 133 h digital
video (MPEG-1) from ABC and CNN news. The task is to detect the presence
of the specified concept in video shots. The ground-truth of the presence of each
concept was assumed to be binary (either present or absent in the data). Sixteen
concepts are defined in the benchmark, including airplane, animal, building, female
speech, madeleine albright, nature vegetation, news subject face, news subject
monologue, NIST non-studio setting, outdoors, people, physical violence, road,
sport event, vehicle, and weather news. The video concept detection benchmark
is summarized as follows: 60% of the video shots were randomly chosen from the
corpus to be used solely for the development of classifiers. The remaining 40%
were used for concept validation.4 RBF kernels with γ = 0.0001 gave us the best
results on the experiments, so we used the same parameter settings in all subsequent
experiments on this video dataset. For each video shot, we extracted a number of
features [4]: color histogram, edge orientation histogram, wavelet texture, color
correlogram, co-occurrence texture, motion vector histogram, visual perception
texture, Mel-frequency Cepstral coefficients, speech, and closed caption.

6.5.1 Evaluation of Modality Analysis

The first set of experiments examined the effectiveness of independent modality
analysis on the 2K image dataset. Table 6.2 compares five methods based on the
classification accuracy results of 14 concepts: original 144 dimensional features

4 IBM research center won most of the best concept models in the final TREC-2003 video concept
competition. For the purpose of comparison, we employed the same training and testing data used
by IBM.
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Table 6.2 Classification
accuracy (%) of image dataset

Category Method 1 Method 2 Method 3 Method 4 Method 5

Architecture 88.00 89.95 90.77 95.38 96.92
Bears 74.70 76.72 75.00 75.00 81.56
Clouds 84.60 87.61 87.27 90.91 92.32
Elephants 83.90 84.67 84.83 87.21 89.91
Fabrics 85.10 85.90 87.22 87.82 87.93
Fireworks 93.50 95.69 94.91 96.46 99.50
Flowers 91.30 95.53 92.21 93.49 95.23
Food 92.20 95.58 93.36 95.76 97.48
Landscape 78.80 72.79 79.48 79.63 81.82
People 82.30 85.50 87.45 86.27 89.36
Textures 96.50 91.62 91.22 95.00 96.30
Tigers 91.50 92.34 91.13 92.64 94.80
Tools 99.50 98.15 96.74 100.00 99.20
Waves 86.10 89.49 84.71 87.27 91.42
Average 87.71 88.82 88.66 90.20 92.70

before any analysis (Method 1), super-kernel fusion using 108 dimensional color
features and 36 dimensional texture features as 2 modalities (Method 2), 58 dimen-
sional features after PCA (Method 3), 58 dimensional features after ICA (Method 4)
and super-kernel fusion after IMG (Method 5).

As shown in the table, treating color and texture as two modalities improved the
accuracy by around 1.0% compared to using raw feature representation. However,
the accuracy was 4.0% lower than super-kernel fusion after IMG. This observa-
tion indicates that improvement can be made by using super-kernel fusion to cover
the inter-dependency relationship between features. Moreover, after analyzing the
statistical relationships between feature dimensions and getting rid of noise, super-
kernel fusion can improve the performance much more. PCA improved accuracy by
around 1.0% compared to the original feature format by reducing noise from fea-
tures. ICA worked better than PCA, improving accuracy by 2.5% compared to the
original feature format. However, the improvement is not significant, compared to the
performance of super-kernel fusion after IMG. Independent modality analysis plus
super-kernel fusion improved classification accuracy around 5.0% compared to the
original feature representation. The result shows that the feature sets from indepen-
dent modality analysis can better interpret the concepts, and super-kernel fusion can
further incorporate information from multiple modalities. Next, we evaluated how
to select optimal D and compared super-kernel fusion with other fusion methods.

6.5.2 Evaluation of Multimodal Kernel Fusion

The second set of experiments evaluated kernel fusion methods of combining mul-
tiple modalities. We grouped the “independent” components after PCA/ICA into
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Table 6.3 Classification
accuracy (%) of image dataset

Category D PC LC SKF

Architecture 2 96.40 96.53 96.92
Bears 2 76.10 75.35 81.56
Clouds 3 82.71 89.77 92.32
Elephants 2 86.11 80.91 89.91
Fabrics 2 85.11 87.46 87.93
Fireworks 2 97.63 99.13 99.50
Flowers 3 82.29 86.14 95.23
Food 2 93.45 89.53 97.48
Landscape 2 77.55 74.24 81.82
People 2 90.71 89.57 89.36
Textures 2 74.51 94.27 96.30
Tigers 3 87.31 95.00 94.80
Tools 2 91.48 94.20 99.20
Waves 2 86.92 82.13 91.42
Average 2.3 86.31 88.16 92.70

independent modalities and trained individual classifiers for each modality. We eval-
uated the effectiveness of multimodal kernel fusion on the 2k-image dataset and
TREC-2003 video benchmark.

The optimal number of independent modalities D was decided by considering
the tradeoff between dimensionality-curse and feature inter-dependency. Once D
had been determined, feature components were grouped using the IMG algorithm
in Sect. 6.3.3. When D = 1, all the feature components were treated as one vector
representation, suffering from the curse of dimensionality. When D became larger,
the curse of dimensionality was alleviated, but inter-modality correlation increased.5

From our 58-dimensional feature data, the optimal modality D is 2 or 3, which enjoys
the highest class-prediction accuracy. Table 6.3 shows the optimal D for different
concepts (the second column).

Next, we compared different fusion models. Table 6.3 compares the
class-prediction accuracy of product combination (PC), linear combination (LC),
and super-kernel fusion (SKF). D indicates the number of independent modalities
that the 58 independent components have been divided into. We found that super-
kernel fusion performed on average 6.5% better than product-combination models
and 4.5% better than linear-combination models. Note that the worst results were
achieved when using the product rule, 2.0% worse than linear-combination models
and 6.5% worse than those of super-kernel fusion. The reason is that if any of the
classifiers reports the correct class a posterior probability as zero, the output will be
zero, and the correct class cannot be identified. Therefore, the final result reported
by the combiner in such cases is either a wrong class (worst case) or a reject (when
all of the classes are assigned zero a posterior probability).

5 The inter-modality correlation for all the D modalities is the summation of inter-modality corre-
lations between every pair of modalities, which is

∑D
i=1 j>i C(Mi , M j ).
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Table 6.4 AP (%) of video
concept detection

Concept IBM PC LC SKF

Airplane 24.93 10.60 23.52 24.31
Animal 6.09 6.75 8.59 8.2
Building 8.02 7.92 4.68 8.42
Female Speech 67.23 49.10 67.23 67.33
Madeleine Albright 47.41 16.54 33.93 43.27
Nature Vegetation 37.84 31.02 33.65 39.39
News Subject Face 8.12 1.37 7.89 7.05
News Subject Mono. 20.41 3.1 8.87 13.48
NIST Non-Studio 69.1 69.65 66.38 69.88
Outdoors 65.16 69.81 53.87 66.16
People 11.82 12.95 16.41 18.91
Physical Violence 3.04 1.06 1.42 1.8
Road 10 7.72 12.42 8.38
Sport Event 48.45 24.20 40.49 52.8
Vehicle 20.81 14.05 15.63 16.54
Weather News 53.64 29.73 53.64 86.7
Average 31.38 22.28 28.04 33.29

Finally, we conducted fusion experiments on the video dataset. For this TREC
video dataset, we got only probability outputs from single-modality classifiers
through IBM. Therefore, we evaluated only fusion schemas on this video dataset.
Table 6.4 compares the best results from IBM (IBM), product combination (PC),
linear combination (LC), and super-kernel fusion (SKF) based on Average Precision
of video concept detection. The numbers of modalities for sixteen concepts ranged
from 2 to 6. Here we chose the NIST Average Precision (the sum of the precision at
each relevant hit in the hitlist divided by the total number of relevant documents in
the collection) as the evaluation criteria. Average Precision (AP) was used by NIST
to evaluate retrieval systems in TREC-2003 video track competition. For TREC-
2003 video track, a maximum of 1,000 entries This number was chosen in the IBM’s
work [4] for evaluation. were returned and ranked according to the highest proba-
bility of detecting the presence of the concept. The ground-truth of the presence of
each concept was assumed to be binary (either present or absent in the data). For
the 16 concepts in TREC-2003 video benchmark, super-kernel fusion performed
around 5.2% better than the linear-combination models on average, 11.3% better
than product-combination models. Super-kernel fusion also performed around 2.0%
better than the best results provided by IBM.

6.5.3 Observations

After our extensive empirical studies on the two datasets, we can answer the questions
proposed at the beginning of this section.
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1. To deal with high-dimensional features from multiple media sources, it is nec-
essary to do statistical analysis to reduce noise and find the most representative
feature-components. Independent modality analysis can improve the effective-
ness of multimedia data analysis by achieving a tradeoff between dimensionality
curse and modality independency.

2. Super-kernel fusion is superior in its performance because its high model com-
plexity can explore inter-dependencies between modalities.

6.6 Concluding Remarks

In this chapter, we have presented a framework of optimal multimodal information
fusion for multimedia data analysis. First, we constructed statistically independent
modalities from the given feature set from multiple media sources. Next, we proposed
super-kernel fusion to learn the optimal combination of multimodal information.
We carefully analyzed the tradeoffs between three design factors that affect fusion
performance: modality independence, curse of dimensionality, and fusion-model
complexity. Empirical studies show that our methods achieved markedly improved
performance on a 2K image dataset and TREC-Video 2003 benchmarks.

This chapter shows a discriminative approach for fusing metadata of multiple
modalities. In Chap. 8, we present a generative approach for conducting multimodal
fusion. A discriminative approach tends to work more effectively, but it is difficult
to interpret its results. On the contrary, a generative approach [41, 42] may have to
rely on an assumed statistical model, but one can explain the yielded relationship
between features and semantics.
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Chapter 7
Fusing Content and Context with Causality

Abstract This chapter† presents a generative framework that uses influence dia-
grams to fuse metadata of multiple modalities for photo annotation. We fuse con-
textual information (location, time, and camera parameters), visual content (holistic
and local perceptual features), and semantic ontology in a synergistic way. We use
causal strengths to encode causalities between variables, and between variables and
semantic labels. Through analytical and empirical studies, we demonstrate that our
fusion approach can achieve high-quality photo annotation and good interpretability,
substantially better than traditional methods.

Keywords Causality ·Multimodal fusion · Semantic gap

7.1 Introduction

To help users better organize and search their photos, it would be desirable to pro-
vide each photo with useful semantic labels such as time (when), objects (who),
location (where), and event (what). In this chapter, we present a photo annotation
framework which uses an influence diagram to fuse context, content, and semantics
in a synergistic way, to generate keywords for organizing and searching photos.

Obtaining the “when and where” information is easy. Already cameras can pro-
vide time, and we can easily infer location from GPS or CellID (will be avail-
able with all cameraphones). However, determining the “what and who” requires
contextual information in addition to time, location, and photo content. The con-
textual information of cameras can be categorized into time, location, and camera

† © ACM, 2005. This chapter is a minor revision of the author’s work with Yi Wu and Belle Tseng
[1] published in MULTIMEDIA’05. Permission to publish this chapter is granted under copyright
license #2587660180893.
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parameters. Photo content consists of perceptual features extracted from photos,
which can be categorized into holistic perceptual features (color, shape and texture
characteristics of a photo) [2, 3] and local perceptual features (edges and salient
points of regions or objects in a photo) [4, 5]. Besides context and content, another
important source of information is the relationship between semantic labels (which
we refer to as semantic ontology). For instance, let us consider two semantic labels:
outdoor and sunset. We can infer the outdoor label from contextual information
such as lighting conditions [6], and we can infer sunset from time and location [7].
Notice that inferring outdoor and sunset might not rely on any common contex-
tual modality ({lighting} ∩ {time, location} = ∅). However, we can say with cer-
tainty that a sunset photo is outdoors (but not the reverse). Therefore, by considering
semantic relationships between labels, we can leverage contextual information in a
“transitive” way.

Our fusion framework uses an influence diagram [8, 9] to conduct fusion and
semantic inferencing. The variables on the diagram can be either decision vari-
ables (causes), or chance variables (effects). For image annotation, decision vari-
ables include time, location, camera parameters, and perceptual features. Chance
variables are semantic labels. However, some variables may play both roles. For
instance, the time of day can affect some camera parameters (such as exposure
time and flash on/off), and hence these camera parameters are both decision and
chance variables. Furthermore, different photo concepts might have varied influence
diagram structures. Finally, the influence diagram connects decision variables with
chance variables using arcs weighted by causal strength.

To construct an influence diagram, we rely on both domain knowledge and data.
In general, learning such a probabilistic graphical model from data is an NP hard
problem [10]. For photo annotation, however, we have abundant prior knowledge
about the relationships between context, content, and semantic labels, so we can
use them to substantially reduce the hypothesis space to search for the right model.
For instance: time and location are independent of each other (no arc exists between
them in the diagram). Camera parameters such as exposure time and flash on/off
depend on time (fixed arcs can be determined). The semantic ontology provides us
the relationships between keywords. The only causal relationships that we must learn
from data are those between context/content and semantic labels.

Once causal relationships have been learned, causal strengths must be accurately
accounted for. Traditional probabilistic graphical models such as Bayesian networks
use conditional probability to quantify the correlation between two variables. Unfor-
tunately, conditional probability characterizes covariation, not causation [10–11].
A basic tenet of classical statistics is that correlation does not imply causation.
Instead, we use recently developed causal-power theory [13] to account for cau-
sation. We show that fusing context and content using causation achieves superior
results over using correlation.

Let us preview a model generated by our algorithm to illustrate the advantages
of our fusion model. Figure 7.1 shows the learned diagram for two semantic labels:
outdoor and sunset, which we have just briefly discussed. In addition to the arcs that
show the causal relationships of variable-to-variable and label-to-variable, we see that
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the relationship between outdoor and sunset can also be encoded. The advantages
of our fusion method over traditional fusion methods (presented in Sect. 7.2) are
threefold:

1. Our fusion method provides a general framework to fuse context, content, and
semantics for annotating photos. By considering relationships between semantics,
we can leverage contextual information in a “transitive” way.

2. Our influence diagram employs causal-power theory to encode causalities between
variables, and between variables and semantic labels. The structure-learning algo-
rithm takes advantage of domain knowledge. The causal-strength computation is
based on psychological principles, a novel approach that leads to better results.

3. Our fusion method readily handles missing modalities or noisy data. This feature
is important because not all photos have metadata of all modalities.

The rest of the chapter is organized into five sections. Section 7.2 surveys related
work. Section 7.3 introduces multimodal metadata that we generate for photo anno-
tation. Section 7.4.1 presents an efficient algorithm to learn an influence diagram. In
Sect. 7.4.2 we explain how we accurately quantify causal strengths based on causality
principles. In Sect. 7.4.3, we present a case study for the effectiveness of inferring
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causal strengths in photo annotation. Section 7.4.4 introduces how to deal with miss-
ing attributes. We report our experimental results in Sect. 7.5. Especially we show
the effectiveness of using causal strengths to perform modality fusion in prefer-
ence to conditional probability. We also show that our model can deal with missing
modalities. Finally, we offer our concluding remarks in Sect. 7.6.

7.2 Related Reading

We discuss related work in two aspects: work in annotating photos, and work in
learning a model such as an influence diagram.

7.2.1 Photo Annotation

The prior work in photo annotation can be divided into two main categories: content-
based and context-based. Example works of the content-based approach can be fur-
ther divided into perception-based [14], object-based [15], and region-based [16].
These methods use different perceptual features and employ either a generative or
discriminative model of machine learning to map features to semantics. However,
at least a couple of obstacles make content-based annotation difficult. First, images
are taken under varying environmental conditions (e.g., lighting, movements, etc.)
and with varied resolutions. (Chap. 2 deals with feature-extraction issues.) The same
Eiffel tower pictures taken by two different models of cameras, from two different
angles, and at different times of day can seem different enough to be mislabeled.
Thus, keyword propagation via image content can be unreliable. Second, although
some progress has been made, reliable object segmentation is not attainable in the
foreseeable future [15]. Only when we are able to segment objects with high accuracy,
will it be possible to recognize objects with high reliability.

Some recent works [7, 17–20] annotate digital images using the metadata of spatial
and temporal context. Nevertheless, these methods can be improved in several ways.
In [7, 17], GPS devices are used to infer the location where a photo is taken. However,
the objects in a photo may be far away from the camera, not at the GPS coordinate.
For instance, one can take a picture of the Bay Bridge from many different locations
in the cities of Berkeley, Oakland, or San Francisco. The GPS information of the
camera cannot definitely infer landmarks in a photo. Second, a landmark in a photo
might be occluded and hence not deemed important. For instance, a vehicle might
occlude a bridge; a person might occlude a building, etc. Also, a person can be
inside or outside of a landmark. A robust system must analyze content to identify the
landmarks. The work of [7] uses temporal context to find time-of-day, weather, and
season information. Annotating vast quantities of other semantics requires additional
metadata and effective fusion models.

Neither the content-based nor the context-based photo-annotation approach alone
can be effective [21]. It is clear that a combined approach is the only satisfactory
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remedy. Our novelty lies in the idea of combining not only context and content, but
also semantic ontology (as illustrated in Fig. 7.1).

7.2.2 Probabilistic Graphical Models

It is well known that learning a general graph from data is NP hard. Reducing the
graph to be directional and acyclic (such as Bayesian networks or BNs) does not
reduce its computational complexity. The work of [6] suggests using BNs to combine
content with camera parameters to infer outdoor/indoor. However, the scope of that
work is limited, considering just one kind of contextual information. Furthermore,
the structure in that paper was manually generated, not learned from the data. Our
approach can support the fusion of a large number of variables and states, by carefully
considering prior knowledge.

More importantly, traditional Bayesian networks use conditional probability to
quantify an arc between two nodes in the graph. For inferring semantics, however,
conditional probability can be misleading. In this chapter, we provide indepth treat-
ment on the subject of causality versus correlation, and conduct extensive experi-
ments to show that causality is a much better measure for fusing metadata of multiple
modalities. Notice that the discriminative approach presented in this chapter may be
good to model content. To fuse content and context, which may have features of
discrete values, a generative approach is both natural and interpretable. We discuss
the details in Sect. 7.4.2.

7.3 Multimodal Metadata

The multimodal metadata that our system generates or utilizes include contex-
tual information, perceptual content, and semantic ontology, which are described
as follows.

7.3.1 Contextual Information

The contextual metadata of cameras can be categorized into location, time, and
camera parameters.

Location. The location recorded for each photo is the location of the camera at
the moment of exposure, which can be captured by GPS or CellID (for cell phones),
and translated into a location tuple, e.g., (country, state, county, city). In the photo
annotation scenario, we are more interested in the subjects (landmarks) in the photo,
which may or may not be the location of the camera. However, the location informa-
tion can reduce the number of subjects possibly appearing in the photo. For example,
the Eiffel Tower cannot possibly appear in the city of Palo Alto, CA, USA.
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Time. The data/time stamp is recorded when a photo is taken by the cell phone
or digital camera. Many cell phones have the functionality of updating time when a
person moves to a different time zone. For digital camera, every new camera has its
initial clock setting. In most cases, users set their camera clock just once according
to the time zone of their home. The difficulty appears when the user travels to other
time zones. This problem can be solved given the location information where each
photo was taken, and the original time zone where the clock time was set. The local
time for each photo can then be computed [20]. However, it is also possible the clock
of a camera was never set. To timestamp all the photos taken with the camera, we
can calculate the exact time tc = (tcc− tci )+ ti , where tcc is the current time shown
on the camera, tci is the initial clock on the camera, and ti is the initial real time.

Camera parameters. Digital cameras can record information related to the photo
capture conditions. The Exif standard specifies hundreds of camera parameters [22].
Some useful parameters for photo annotation are presence or absence of flash, subject
distance, exposure time, aperture value, and focal length. Some of these parameters
can help distinguish various scenes. For example, flash tends to be used more fre-
quently with indoor photos than with outdoor photos. Also these parameters are
sometimes mutually related. For example, if flash is turned off for an indoor photo,
the brightness value is low.

7.3.2 Perceptual Content

Photo content consists of perceptual features, which can be categorized into holistic
perceptual features and local perceptual features:

1. Holistic perceptual feature. For each photo, we can extract global features, which
include color, texture, shape, etc. The color feature is one of the most widely
used visual features in image/photo retrieval. It is relatively robust to background
complication and independent of image size and orientation. Commonly used
color feature representations include color histogram [23], color moments [23]
and color sets [23]. Texture contains important information about the visual pat-
terns, structural arrangement of surfaces and their relationship to the surrounding
environment. Shape representations try to capture objects in the image invariant to
translation, rotation, and scaling. Commonly used shape representations include
boundary-based representation using only the outer boundary of the shape, and
region-based representation using the entire shape region [25].

2. Local perceptual features. Scale Invariant Feature Transform (SIFT) has become
a very popular local feature representation in recent years [4, 5]. SIFT extracts
local, distinctive, invariant features. SIFT consists of four major stages: (1) scale-
space extreme detection, (2) keypoint localization, (3) orientation assignment,
and (4) keypoint descriptor. Features generated by SIFT have been shown to be
robust in matching across an affine distortion, change in 3D viewpoint, addition
of noise, and change of illumination. Ke and Sukthankar recently proposed a
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modified version of SIFT, called the PCA-SIFT [26]. PCA-SIFT uses the Principal
Components Analysis (PCA) to normalize the gradient patch based on the output
of SIFT. The result is shown to be robust to image deformations.

7.3.3 Semantic Ontology

Historically, domain-dependant ontologies have been employed to achieve better
performance in the image/photo retrieval system. A semantic ontology defines a set of
representative concepts and the inter-relationships among these concepts. Khan and
McLeod [27] proposed an ontology for sports news. Smith and Chang [28] proposed
an ontology structure for image and video subjects. Naaman et al. [20] conducted a
survey to identify the concepts on what people care about when searching for photos.
Recently, ImageNet is being developed to provide an ontology to relate objects in
and semantics of images [29].

Based on those previously proposed ontology structures and the photo-concept
surveys, Fig. 7.2 illustrates an example of semantic ontology that we are developing
for photo topics. The ontology is described by a directed acyclic graph (DAG). Here,
each node in the DAG represents a concept. An interaction relationship between
concept Ci and C j goes from a more generic concept Ci to a more specific concept
C j , which is represented by a directional arc. For example, “outdoor” is more generic,
covering the concept of “sunset;” and “indoor” is more generic, covering “lecture.”

7.4 Influence Diagrams

We use an influence diagram to model causes and effects. The variables on the
diagram can be divided into two classes: decision variables D and chance variables
U. Each decision variable has a set of choices or states. An act corresponds to a
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choice of a state for each decision variable (e.g., flash light on or off). Each chance
variable can also be in one of a set of states (e.g., outdoor or indoor). In addition, ξ

is the state of the world. A decision problem, according to [9], is described by the
variables U, D, and ξ. Now, for each chance variable Xi in U, we identify a set of
parents Pa(Xi ) ∈ U ∪ D − {Xi } that renders Xi and U ∪ D − {Xi } conditionally
independent. This can be written as

p(Xi |U ∪ D − {Xi }, ξ) = p(Xi |Pa(Xi ), ξ). (7.1)

Using the chain rule of probability, we have

p(U |D, ξ) = p(X1, . . . , Xn|D, ξ) =
n∏

i=1

p(Xi |U ∪ D − {Xi }, ξ). (7.2)

Combining Eqs. (7.1) and (7.2), we obtain

p(U |D, ξ) =
n∏

i=1

p(Xi |Pa(Xi ), ξ). (7.3)

Our system needs to learn a directed, acyclic graph1 where in G={V, E},
V ={Xi }, and E is a subset of edges {(Xi , X j )|0≤ i, j < n, i �= j} from data. We
denote the dataset L as a collection of n-tuples (dk

0 , dk
1 , . . . , dk

n−1), 0 ≤ k < |L|,where
di can take on one of the legal values (or states) for Xi , i.e., xi j , 0 ≤ j < si . The
diagram-learning problem then comprises two stages: (1) structure learning to deter-
mine the subset of edges to be included in the diagram, and (2) content learning to
specify the causal strengths on all the edges, given the inferred diagram. These steps
are described in detail below.

7.4.1 Structure Learning

The semantic ontology provides us the causal structure between different semantic
concepts. The only causal structure that we must learn from data are those between
context/content and semantic labels.

Boutell et al. [6] employed a fixed structure of context and content for various
photo concepts. However, various concepts have different relationships among vari-
ables. For example, the “sunset” concept relies on the contextual feature time, and
this feature influences camera features such as brightness and flash. For the “indoor”
concept, no relationship has been established between time and brightness.

1 We use “network” and “graph” interchangeably to refer to “influence diagram.” The major dif-
ference between a network, a graph, and an influence diagram (which will become evident in
Sect. 7.4.2) lies in how the weights of the edges are measured. Otherwise, an influence diagram or
a probabilistic causal model under the assumption of the causal Markov condition is a Bayesian
network [30].
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We apply the idea of Bayesian Multi-net for structure learning. Bayesian Multi-
nets were first introduced in [31] and then studied in [32] as a type of classifiers.
A Bayesian multi-net is composed of the prior probability distribution of the class
node and a set of local networks, each corresponding to a value that the class node
can take. Bayesian multi-nets allow the relations among the features to be different
for different values the class node takes on. The features can form different local
networks with different structures.

We formulate the diagram-learning problem as follows: The space of all pos-
sible diagram (or graph) structures given n vertices and n(n − 1) directed edges
is represented as a vector of random variables of length n(n − 1), or Y = (Y0,

Y1, . . . , Yn(n−1)−1), where Yk is 1 if the directed edge (Xi , X j ) is selected, and
0 otherwise, where i = k/n, j = k%n, and % is the modulo operator, or
k%n = k − (k/n)× n. To solve the diagram-learning problem, we need to specify
a goodness (or likelihood) measure L(G(Y )|L), and develop a search procedure to
examine the space of Y efficiently to locate a best diagram. The diagram-learning
problem is similar to Bayesian-network learning, except that at the end we will label
edges with causalities rather than conditional probabilities.

Figure 7.3 presents an example of structure learning for the “outdoor” semantic.
For this example and in our experiments, we utilized time and camera parameters as
context information, in which camera parameters include exposure time, aperture,
f-number, shutter speed, flash and focal length. These camera features were shown to
be useful for scene classification in [6]. The first four features reflect the brightness of
a photo. Natural lighting is stronger than artificial lighting. This causes outdoor scenes
to be brighter than indoor scenes, even under overcast skies, and they, therefore,
have a shorter exposure time and a larger brightness value. Because of the lighting
differences described above, (automatic and manual) camera flash is used on a much
higher percentage of images of indoor scenes than that of outdoor scenes. Focal
length is related to subject distance in less direct and intuitive ways through camera
zoom.
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For this example and in our experiments, we utilized holistic perceptual feature
as content information. we extracted holistic perceptual features including color,
texture, and shape from each photo. We first divided color into 12 color bins, of
which eleven were for the eleven culture colors [33] and the remaining bin for
outlier colors. For each culture color, we extracted color features of multiple resolu-
tions, which included color histograms, color means and variances in HSV channels,
color spreadness, and color-blob elongation. For texture extraction, we used discrete
wavelet transformation because of its computational efficiency. Texture descriptors
such as texture elongation, texture spreadness, energy means and energy variances
were calculated in three orientations (vertical, horizontal, and diagonal) and three
resolutions (coarse, medium, and fine).

As presented in the figure, camera metadata and content-based visual features
are complementary for deciding the semantic of “outdoor.” From the figure, we
see that four camera parameters are useful to distinguish “outdoor.” The other two
parameters, aperture and focal length, are not relevant. To validate the accuracy of the
structure learning, Fig. 7.4 shows the distribution of six different camera metadata
for outdoor and indoor scenes. Photos over 1/60 (0.017) second of exposure time
(Fig. 7.4a) and with flash on (Fig. 7.4b) are more likely to be indoor scenes because
of low illumination. Furthermore, most of the indoor photos have 6 s of shutter speed
(Fig. 7.4c) and a low value of f-number (Fig. 7.4d). However, the distribution of
aperture (Fig. 7.4e) for both indoor and outdoor scenes is quite similar; and the same
can be said about the distribution of focal length (Fig. 7.4f). Thus, neither aperture
nor focal length is useful for inferring whether a photo is taken outdoors.

7.4.1.1 Likelihood Measure

Bayesian networks received the name mainly because of the use of the Bayesian
inference scheme. Bayesian inference uses an elegant likelihood definition which
states that a good model is one that is likely and can explain data well. Whether a
model fits data well can usually be validated objectively based on an agreed-upon cost
function. In addition, a simpler model is often a better choice. (Occam’s razor prefers
the simplest explanation that fits the data.) Our likelihood function thus consists of
three components:

1. Goodness of fitting. A good edge, by definition, is one that captures the causal
relationship between a cause (a decision variable) and an effect (a chance variable).
In Information Theory, causality is measured by the reduction in the uncertainty
(entropy) of a random variable given others, and H(Xi |Pa(Xi )) measures the
remaining uncertainty of Xi given its parents. Hence a reasonable definition of a
good fit for a Bayesian network is the total entropy reduction (or the amount of
entropy left) given the set of chosen edges, −∑n−1

i=0 H(Xi |Pa(Xi )).

2. Cost of fitting. Using the principle expressed in Occam’s razor, we would prefer
using a simple network to achieve the same amount of reduction in network
entropy. As the complexity of a network is measured by the number of edges, we
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Fig. 7.4 Camera metadata distribution for outdoor and indoor scenes (see color insert). a Exposure,
b Flash, c Shutter speed, d Funumber, e Aperture, f Focal length

would prefer a network that has fewer connections if at all possible, or the cost
of fitting is inversely proportional to −∑n(n−1)−1

k=0 Yk .

3. Other constraints and prior. We capture all other constraints and prior infor-
mation in this third category. As constraints and prior information can be
expressed in many different ways, there is no unified mechanism to express them
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mathematically. For our purpose, we order all variables on a list with decision
variables in front of chance variables, and some dual-role variables in between.
We allow an arc to point only to a later element on the list, not the other way. This
vertice ordering technique [34] can substantially cut down the search space.

Putting all components together, we arrive at our likelihood function as

L(G(Y )|L) = −
∑n−1

i=0 H(Xi |Pa(Xi ))−∑n(n−1)−1
k=0 Yk∏

C δC (G(Y ))
(7.4)

Note that entropy is measured by the number of bits needed to encode the system
entropy whereas the number of edges in a network is just that, a number. Hence, the
two terms in the numerator of (7.4) have different units. We will show later how to
reconcile these two measurements.

7.4.1.2 Search Procedure

Armed with the likelihood function in (7.4), we are ready to evaluate the space of Y
to look for diagrams that maximize this likelihood measure, given training data. The
number of possible Y’s is 2n(n−1), a very large space to be examined exhaustively.
Furthermore, it is well known that finding general Bayesian network structures is an
NP-hard problem. Hence, we employ some efficient search algorithms to examine
the space of Y (in addition to taking advantage of the domain knowledge to prune
some unlikely edges [35]).

Many sampling techniques exist, and they can roughly be put into two categories:
independent sampling, and dependent (chain) sampling. Independent sampling tech-
niques, such as importance sampling and rejection sampling, generate independent
samples of the search space. However, independent sampling techniques are inade-
quate for high-dimensional search spaces. Chain sampling [such as Metropolis sam-
pling, Metropolis–Hasting sampling, and Gibbs sampling that underlie the Markov
Chain Monte Carlo (MCMC) methods] can generate dependent samples. In order
to use the dependent samples to approximate independent distributions P(Y |L), the
chain sampling has to satisfy a certain Markov invariance property and has to run for
a sufficiently long time. While it is hard to diagnose or detect convergence in chain
sampling techniques, it is possible to speed up convergence using advanced tech-
niques such as Hamiltonian Monte Carlo, over-relaxation, and simulated annealing.

We use Gibbs sampling in our work. This is because in order to explore a
large search space, efficiency in sample generation is of paramount importance,
and Gibbs sampling provides such efficiency. In Gibbs sampling, a new sample is
generated using a sequence of proposal distributions that are defined in terms of con-
ditional distributions of the joint distribution P(Y |L). This is advantageous because
sampling directly P(Y |L) is expensive, yet it costs much less to sample the condi-
tional distributions P({Z}|Y − {Z}).
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More specifically, if independent samples are generated from the space of Y, the
likelihood of each sample (i.e., a new diagram) needs to be evaluated using (7.4).
This will require the evaluation of many H(Xi |Pa(Xi )) terms and the verification
of the new diagram structure against the constraints and prior knowledge. On the
other hand, if new samples are conditionally generated, such as in Gibbs sampling,
only a few edges will differ from one sample to the next. It is comparatively easy to
examine the effect of the insertion (or deletion) of a few edges.

In Gibbs sampling, only one edge, Yk, is different from one sample to the next,
and P(Yk |Y − {Yk}) is a simple Bernoulli distribution. To choose between the two
possibilities (include or not include Yk ), we need only to compare the likelihood of the
two diagrams, which can be efficiently performed as follows: Denote the particular
edge represented by Yk as (Xi , X j ) = (Xk/n, Xk%n). Assume that this edge was not
included in the current Bayesian network G(Y ). Then its inclusion will decrease the
entropy of the whole network by a factor

H(X j |Pa(X j ))− H(X j |Pa(X j ) ∪ {Xi }), (7.5)

while increasing the network complexity by one. So the entropy decrease per edge
is given in (7.5). How good is this measure?

We can compare this entropy decrease to the average decrease that can be expected
by including one more edge for such a network. Theoretically, the maximum entropy
in a network with n vertices is

∑n−1
i=0 H(Xi |L) where no edges (or causality relation-

ships) are exploited. The minimum entropy is where all n(n−1) edges are included,
so the minimum entropy is

∑n−1
i=0 H(Xi |X − {Xi }, L). Because the reduction of

entropy is achieved by including all edges, per-edge drop in network entropy is thus

∑n−1
i=0 [H(Xi |L)− H(Xi |X − {Xi }, L)]

n(n − 1)
. (7.6)

Hence, the merit of including the particular edge (Xi , X j ) (7.5) can be compared to
the expected average expressed in (7.6). If the drop in system entropy is larger than
the average, we accept this addition; otherwise, we do not. A similar case can be
made for the decision that an edge is to be deleted from the network.

The effort in computing Eqs. (7.5) and (7.6) theoretically can be high (though (7.6)
need only be computed once, and that can be done off-line). This is because X−{Xi }
contains s0, . . . , si−1si+1, . . . , sn−1 bins, and that many conditional distributions of
Xi need to be computed and averaged. However, in reality we can simplify the
computation by having the pair-wise conditional entropy, H(X j |Xi ), serve as the
upper bound for how much an attribute Xi can tell us about X j . (Because similar
information about X j might be derived from other attributes, the contribution from
Xi might be less.) Hence, we compute and tabulate all pair-wise conditional entropy
H(X j |Xi ), 0 ≤ i, j < n, i �= j (an O(n2) operation), and eliminate spurious or
weak connections with low mutual information. Say, if we accept only the top 10%
of H(Xi |X j ), then the expected number of parents per vertice drops from n to n/3.

We can further impose a hard threshold on the number of parents that a vertice is
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Table 7.1 Pseudo-code
MCMC structure learning
algorithm

Initiation
Y ← tree structures from an MST algorithm

Loop until maximum iteration count is reached:
for each Yt ∈ Y

Y new
t ← choose Yt using 7.5 and 7.6

Y ← Y − {Yt } ∪ {Y new
t }

#Y → #Y + 1
end for

allowed to have, to guarantee a minimal level of performance for sample generation
even in the worst case.

Finally, we mention in passing that because Gibbs sampling can be viewed as a
special kind of Metropolis method, which satisfies the detailed balance property, the
probability distribution of the sequence of states generated will approach P(Y |L).

To ensure faster convergence, we propose to use initial configurations that are known
to be good. For example, both Prim’a and Kruskal’a minimum-cost spanning tree
(MST) algorithms can be used to generate initial diagram configurations in the form
of trees. Optimal MST algorithms have been developed for which each vertice can
have at most one parent; they run in O(n2 log n) time. The pseudo-code MCMC
algorithm for structure learning is presented in Table 7.1.

7.4.2 Causal Strength

Once the topology of the influence diagram has been determined, we assign causal
strengths to the edges of the diagram. Usually, the edges of the diagram have been
assigned as conditional probabilities. Conditional probability reflects the correlation
between a cause variable and a decision variable, not the causation between them [11].
For instance, statistics collected in several school districts recently indicated a strong
correlation between asian students and good in math. Many parents concluded that
“Asians are good in math.” The study performed by the John Hopkins talent-youth
program concludes differently. The study shows that first-generation immigrants
from both Asia and Europe are both competitive in math. Since recently numerous
immigrants have arrived from Asia, strong correlation exists between Asian and good
in math. However, according to the study, the second generation Asians do not do
as well in math as the first generation. Another example is that eating ice cream and
swimming may exhibit covariation. But until we have also considered temperature
as a cause, the picture of causation will not be complete. (High temperature causes
people to swim and consume more ice cream.) These examples show that correlation
reflects only the covariation between variables in the data collected; they cannot be
soundly interpreted as causation.

To precisely account for causation, researchers must collect data that contain all
identifiable causes, and then compute causal strengths between the causes and the
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effect in an accurate way. However, even with the best effort, one may not have
the knowledge to identify all decision variables completely. In other words, there
might be a confounding variable or some hidden variable that mediates between two
variables. (In the example of eating ice cream and swimming, temperature is a hidden
cause, and some other variables, e.g., humidity, income, etc., could be unknown
confounding causes of swimming or eating ice cream.) Nevertheless, causal analysis
can be conducted effectively as long as the information left over is not significant.
For photo annotation, our domain knowledge suffices to consider most variables to
ensure the process to be effective.

How to we account for causal strength? Essentially, for a decision variable d ∈ D
and a chance variable u ∈ U, the condition probability P(u|d, ξ), where d is inde-
pendent of ξ, can be computed from the data.2 Once we have computed P(u|d, ξ),

the causal strength is defined3 by [13] as

C Su|d = P(u|d, ξ)− P(u|ξ)

1− P(u|ξ)
. (7.7)

The key of causal strength is that it considers not only the generative strength of
d but also the generative strength when d is absent (P(u|ξ)). Intuitively, if both the
presence and the absence of d give u an equal chance to occur, we cannot say that d
causes u. (Factors in ξ other than d have caused u.) In addition, in order to isolate the
effect of d, the causal strength is normalized by 1− P(u|ξ), which is the maximum
amount which d can contribute to cause u.

When P(u|d, ξ)− P(u|ξ)> 0, we can say d causes u with generative strength
of CSu|d . When P(u|d, ξ)− P(u|ξ)< 0, the presence of d actually prevents the
occurrence of u. The preventive strength of d on u is

C Su|d = P(u|ξ)− P(u|d, ξ)

P(u|ξ)
, (7.8)

and CSu|d < 0.

When multiple causes are involved, we assume that they are independent of each
other, and hence we can compute causal strength without considering interactions
between causes.

7.4.3 Case Study

We present a case study on landmark recognition using the influence diagram.
Recognizing objects (landmarks or people) in a photo remains a very challenging
computer-vision research problem. However, with available contextual information,

2 In general, when two variables u and d are dependent, we cannot tell which causes which. For
photo annotation, we can determine the direction of the arcs based on domain knowledge.
3 We changed the term P(u|d, ξ) in [13] to P(u|ξ) in the formula, because d could be interpreted
as the negation (instead of absence) of d.
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such as time, location, and a person’s social network, recognizing objects among an
accordingly limited set of candidates is not such a daunting task. For example, given
the photo-taking location as the Stanford campus, the interesting landmarks in the
photo are limited. With candidate objects being limited, matching becomes easier,
and matching time becomes shorter, so we can afford to employ more expensive
matching techniques for improving accuracy.

For landmark recognition, we use two modalities: location and local features.
Based on the domain knowledge, we can construct an inference diagram with
location and local features as the two causes, and landmarks as the effect. (For
semantics that are more complicated, we must learn their influence diagrams from
data. Section 7.5 presents several influence diagrams learned from training data.)
However, we still need to compute causal strengths between location and landmarks,
and between local features and landmarks based on training data, which we will
discuss shortly.

For local features, we use SIFT presented in Sect. 7.3.2. Our testbed was obtained
from the Internet and a Stanford collection [7]. The dataset was constructed by
collecting photographs taken by visitors to the Stanford Visitor Center. All these
Stanford photos were annotated with GPS information. From this dataset, we used
a subset containing 1,000 images, and added 60 more taken on Stanford campus,
and 13,500 images of landmarks from all over the world, downloaded from the
Internet. All images were rescaled to 320× 240, before SIFT-feature extraction was
performed.

We made three queries on the dataset: “Hoover Tower,” “Memory Church,” and
“Rodin Garden.” Each query used ten images containing the landmark taken at
different times, and from different angles. For each query, we used one of the ten
images as the query, and the remaining nine were mingled in the 14,530-image
dataset. We performed this leave-one-out query for each of the ten images, and for
three landmarks.

When considering just location, the landmark-recognition accuracy is 30%. This
is because the location information in this case can narrow the number of candidate
landmarks to three only. Also, a photo might not contain a landmark or a land-
mark might be occluded by a tree or other objects. Let lmi denote the i th landmark
(i = 1, 2, 3), and α denote location. We obtained P(lmi |α) = 0.3. This low proba-
bility seems to imply that the location information is not very helpful for landmark
recognition. We will show that causal strength is a much better measure for accessing
the contribution of a cause.

Next, let us examine the effectiveness of SIFT features. We processed each image
in the dataset individually, and extracted SIFT features. Given a query image, we
extracted its SIFT features and matched the features with those of images that con-
tained candidate landmarks. We used a distance threshold to separate likely matches
from non-matches. If the distance (computed using the SIFT features) between the
query image and a landmark sample came within the threshold, we considered the
landmark to be a possible match. If no possible match was found (after comparing
with all landmark samples), we concluded that the image contained no landmark.
Otherwise, the best match was used to annotate the image. Let β denote the SIFT
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features. We obtain conditional probability P(lmi |β) = 0.75. In other words, we
can recognize the three query landmarks with 75% accuracy without location.

In the final experiment, when we combined location (α) and SIFT (β) for recog-
nizing landmarks, the accuracy improved to 95%. To account for causal strengths,
we attribute the strength of location as

C S(lmi |α) = P(lmi |α, β)− P(lmi |β)

1− P(lmi |β)
= 80%,

and the strength of SIFT as

C S(lmi |β) = P(lmi |β, α)− P(lmi |α)

1− P(lmi |α)
= 93%.

7.4.3.1 Discussion

Let us compare the effectiveness of using conditional probability and using causal
strength for measuring causality. Using conditional probability, we find that the
number of candidate landmarks (denoted as |lm|) affects P(lmi |α) significantly.
When |lm| = 1, the conditional probability approaches one; when |lm| ≥ 10, the
conditional probability dips below 10%. The conditional probability of P(lmi |α)

is independent of the number of candidate landmarks. The conditional probability
P(lmi |β) = 75% is independent of |lm|. Conditional probability implies that when
|lm| > 10, the location information may not be a reliable indicator for landmark
recognition. It also implies that SIFT always maintains the same predictive power
independent of the number of candidate landmarks. These interpretations based on
conditional probability do not seem reasonable.

When we use causal strength to explain the inference diagram, we get much
better insight as to how location or SIFT affects landmark recognition. Figure 7.5
plots causal strength with respect to |lm| for location and SIFT, respectively. When
|lm| = 3, P(lmi |β, ξ = α) = 95%; when |lm| = 50, P(lmi |β, ξ = α) = 85%.

The causal strength of location decreases from 0.8 to about 0.6 when the num-
ber of landmarks increases from 3 to 25. This result means that even if we just
know the city (instead of a more specific location) where a photo is taken, the loca-
tion information is still very useful. (Most cities do not have more than 25 land-
marks.) Next, we observe that the causal strength of SIFT reduces as |lm| increases.
This is also intuitively understandable, since the larger the number of landmarks,
the more difficult for the SIFT features to tell different landmarks apart. Causal-
ity strength is much more intuitive for explaining the relationships between causes
and effects. As a result, we can accurately quantify the confidence of a landmark
annotation, which leads to more effective fusion and retrieval performance. Our
empirical study in Sect. 7.5 will show more evidence and explanation of improved
results.
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Fig. 7.5 Causal strengths of location and SIFT

7.4.4 Dealing with Missing Attributes

As we have discussed in Sect. 7.1, some metadata might not be available in a photo,
e.g., camera parameters were not collected when a photo was taken. Bayesian network
generates a probability distribution over all possible existent values. The probability
distribution represents the implicit uncertainty in the estimation of missing values.
Either the entire distribution or the most common value that has the highest proba-
bility may then be selected as the replacement for the missing value [36]. Instead of
substituting the missing values, we can estimate the posterior probability of the miss-
ing values by prior probability. Given that fi is unknown, the posterior probability
P(C | fi ) of the data belonging to class C can be replaced with the prior probability
P(C). These methods cannot provide exact prediction for a missing attribute, but they
provide the most accurate guesses statistically, and hence can improve annotation
accuracy.

7.5 Experiments

Our experiments were designed to evaluate the effectiveness of using influence dia-
gram for fusing context, content and semantics in the photo annotation task. Specif-
ically, we wanted to answer the following questions:

1. Can varied influence structures of different semantic concepts be successfully
learned?

2. Can causal strength improve the effectiveness of photo annotation compared with
conditional probability?
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3. Can semantic ontology help improve annotation accuracy through transitive
inference?

4. How well can an inference diagram cope with missing metadata?

We conducted our experiments on two real-world photo datasets: one is a small
dataset with 3k photos and the other is a larger one with 24k photos. Our datasets
were obtained from the Internet and personal collections.

Dataset # 1:3k photo dataset. The first dataset contains 3k photos with completed
content and contextual information, collected from photos taken by friends and fam-
ily. We made seven queries on the dataset: “outdoor”, “indoor”, “beach”, “sunset”,
“ski”, “soccer”, and “lecture.” Figure 7.6 lists the number of photos in each category
in terms of the semantic ontology structure.
Dataset # 2:24k photo dataset. The second dataset contains the 3k photos in the first
dataset and 21k extra photos with content information only. The context information
for these 21k is missing.

In our experiments, we utilized time and camera parameters as contextual infor-
mation, in which camera parameters included exposure time, aperture, f-number,
shutter speed, flash and focal length. These camera features were shown to be useful
for scene classification in [6]. The first four features reflect the brightness of a photo.
Natural lighting is stronger than artificial lighting. This causes outdoor scenes to
be brighter than indoor scenes, even under overcast skies, and they, therefore, have
a shorter exposure time and a larger brightness value. Because of the lighting dif-
ferences described above, (automatic and manual) camera flash is used on a much
higher percentage of indoor scenes than of outdoor scenes. Focal length is related to
subject distance in less direct and intuitive ways through camera zoom.

We utilized holistic perceptual feature as content information. We extracted
holistic perceptual features including color, texture, and shape from each photo.
We first divided color into 12 color bins, of which 11 were for the 11 culture colors
[33] and the remaining bin for outlier colors. For each culture color, we extracted
color features of multiple resolutions, which included color histograms, color
means and variances in HSV channels, color spreadness, and color-blob elongation.
For texture extraction, we used discrete wavelet transformation because of its com-
putational efficiency. Texture descriptors such as texture elongation, texture spread-
ness, energy means and energy variances were calculated in three orientations
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(vertical, horizontal, and diagonal) and three resolutions (coarse, medium, and fine).
The semantic ontology in Fig. 7.2 was employed as the domain knowledge for deriv-
ing the semantic relationships between our seven query categories.

We randomly selected a percentage of data from each dataset to be used as train-
ing examples. The remaining data were used for testing. For each dataset, the train-
ing/testing ratio was empirically chosen via cross-validation so that the sampling
ratio worked best in our experiments. To perform class prediction, we employed the
one-per-class (OPC) ensemble [37], which trains all the classifiers, each of which
predicts the class membership for one class. We employed NIST Average Precision
[38] to evaluate the accuracy of each concept model (classifier). The results presented
here were the average of ten runs.

7.5.1 Experiment on Learning Structure

This set of experiments reported the influence diagrams of different query concepts by
using Bayesian multi-net. Figure 7.7 lists the influence diagrams for seven concepts.4

The input of visual features is pseudo probabilistic by applying a sigmoid function
to the output of a Support Vector Machine [39]. The input of camera parameters is
either binary (e.g., flash on or off) or discrete (e.g., focal length is quantized into

4 To conserve space, we draw the influence diagrams only using context and content features.
Relationships between semantic labels can be found in Fig. 7.2.
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discrete intervals, and time is segmented into morning, noon, afternoon, evening).
Figure 7.7 depicts different semantics in different influence diagram structures. Use
Fig. 7.7a as an example to illustrate. Camera metadata and content-based features
are complementary for deciding the semantic of “outdoor.” Although this resulting
structure did not surprise us, the figure shows that only four camera parameters
are useful to distinguish “outdoor.” This runs counter to the assumption made in
[6] that all camera parameters should be used for annotating photos, independent
of their semantics. Figure 7.7 shows that different semantics are best inferred by
different combinations of camera parameters, together with the perceptual features.
The learning process helps identify the true causes. More importantly, being able
to learn an inference diagram allows us to use causal Markov condition to simplify
causal inference. Let us revisit Fig. 7.7a. We can draw an inference on whether
an image is “outdoor” using nodes camera parameters and visual features on the
diagram. According to causal Markov condition, the parents of these two nodes are
conditionally independent of “outdoor.”

7.5.2 Experiment on Causal Strength Inference

This set of experiments examined the effectiveness of multimodal fusion on the
3k photo dataset by applying causal strength. We randomly picked 60% of images
for training; the remaining 40% were used for testing data. (The 60/40% ratio was
determined through cross validation.) For each concept, we utilized the influence
diagram structure learned in the previous section and fused content information and
contextual information. We compared the fusion results when employing conditional
probability and causal strength respectively. This experiment was used to provide
insights into understanding the effectiveness of causal strength in comparison to
conditional probability.

Table 7.2 lists the average precision in each of seven categories when using mul-
timodal fusion for recognizing photos. For each category, employing causal strength
for fusion (CPFusion) consistently improved the accuracy compared to using condi-
tional probability for fusion (CSFusion). The improvement is 4.7% on average. This
observation again indicates that improvement can be made by using causal strength
to better quantify the confidence of photo annotation.

To further illustrate the effectiveness of causal strength for photo recognition,
Figs. 7.8 and 7.9 present the precision/recall curves for “indoor” and “soccer” photo
recognition, respectively. (Because of space limitations, we presented only two cat-
egories.) In both figures, the precision/recall curves perform better when employing
causal strength compared to those when employing conditional probability.

To provide more detailed information, Fig. 7.10 depicts the confidence distri-
butions for “soccer” photo recognition using CPContext, CSContext, CPContent and
CSContent. CPContext represents employing conditional probability on contextual
information; CPContent represents employing conditional probability on content
information; CSContext represents employing causal strength on contextual



162 7 Fusing Content and Context with Causality

Table 7.2 Average precisions
of photo recognition on 3k
dataset using Bayesian
multimodal fusion

Category CPFusion CSFusion

Outdoor 0.9284 0.9691
Indoor 0.8691 0.9103
Beach 0.8877 0.9118
Sunset 0.7850 0.8791
Ski 0.9823 1.0000
Soccer 0.8968 0.9423
Lecture 0.9241 0.9534
Average 0.8912 0.9380
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Fig. 7.8 Precision/recall curves for recognizing “Indoor” photos when using conditional probabil-
ity and causal strength

information; CSContent represents employing causal strength on content informa-
tion. Figure 7.10a and c show that when using CPContext and CPContent, signifi-
cant overlaps occur between the confidence scores of “soccer” and “non-soccer”.
In other words, many “soccer” photos and “non-soccer” photos may have the
same confidence scores, which could degrade annotation accuracy. When we used
CSContext and CSContent, Fig. 7.10b and d show that the overlapping areas become
smaller, which leads to a better separation of “soccer” and “non-soccer” photos. Our
observations from these figures confirm that causal strength can better quantify the
confidence of photo annotation.
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Fig. 7.9 Precision/recall curves for recognizing “Soccer” photos when using conditional probabil-
ity and causal strength

For photo annotation and image retrieval applications, one critical issue is how
to select a threshold for data labeling. All the photos (images) whose confidence
scores larger than the threshold will be annotated as belonging to a specific con-
cept. Figure 7.11 illustrates the threshold variances (y-axis) for different semantic
concepts. The x-axis in the figure represents four situations: CPContext, CPContent,

CSContext and CSContent. The four points connected by the line in the figure
represent mean thresholds for seven categories under four different situations.
We also plotted the standard deviations of thresholds for seven categories.
We see that the mean threshold attained by using conditional probability is around
0.31 for contextual information and 0.39 for content information, which doesnot
seem reasonable. (Intuitively, we will annotate a photo as belonging to a con-
cept when the confidence score is sufficiently high, say higher than 0.5.) In con-
trast, the mean threshold selected by using causal strength makes more sense,
which is around 0.52 for contextual information and 0.56 for content information.
Furthermore, the standard deviations of thresholds for different concepts when
using conditional probability are very high. This observation indicates the diffi-
culty of selecting a good threshold for photo annotation due to the instability.
By employing causal strength, the thresholds for different concepts are much
more stable, making them more suitable for real applications.
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Fig. 7.10 Distribution of confidence scores for “Soccer.” a Confidence soores, b Confidence soores,
c Confidence soores, d Confidence soores

7.5.3 Experiment on Semantic Fusion

The third set of experiments examined the effectiveness of using semantic ontol-
ogy for photo annotation. Each single concept detector is learned independently by
fusing context and content information as shown in the previous section. Then, the
confidence scores from individual concept detectors will be adjusted by connecting
the influence relations between concepts based on the predefined semantic ontology.
For example, Fig. 7.12a shows a photo being misclassified as “sunset.” The confi-
dence score for this photo from “sunset” photo detector is 0.55 (the threshold is 0.51
for “sunset” photo detector). The confidence score for this photo from “outdoor”
classifier is very low, 0.13. Since a “sunset” photo has to be an “outdoor” photo, if
we take the influence from “outdoor” detector, this photo should not be classified as
a “sunset” photo.

Figure 7.12b shows a photo being misclassified as “lecture.” The confidence score
for this photo from “lecture” photo detector is 0.61 (the threshold is 0.60 for “lecture”
photo detector). The confidence score for this photo from “indoor” classifier is 0.20.
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Fig. 7.11 Means and standard deviations of thresholds for recognizing photos in different categories
when using conditional probability and causal strengths

Fig. 7.12 Misclassified photos. a Misclassified “sunset,” b Misclassified “Lecture”

Since a “lecture” photo has to be an “indoor” photo, if we take the influence from
“indoor” detector, this photo should not be classified as a “lecture” photo.

We employed ontology-based multi-classification learning [40] to estimate the
new confidence score of data s belonging to a concept Ci (P ′(s|Ci )) by a linear
interpolation of all hierarchy nodes from the root to the concept Ci (see 7.9).

P ′(s|Ci ) = P(s|Ci )+
n∑

j=1

λ j P(s|C j ). (7.9)
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Table 7.3 Average precisions
of photo recognition on 3k
dataset using semantic fusion

Category BeforeSF AfterSF

Beach 0.9118 0.9321
Sunset 0.8791 0.8912
Ski 1.0000 1.0000
Soccer 0.9423 0.9590
Lecture 0.9534 0.9625
Average 0.9373 0.9471

P(s|Ci ) is the original confidence score of s belonging to Ci and{C j , j = 1,

2, . . . , n} is a set of concepts that are the ancestors of Ci in the semantic ontol-
ogy. The weighting parameters {λ j , j = 1, 2, . . . , n} are calculated based on the
correlation of confidence scores between Ci and C j . Table 7.3 lists the average pre-
cision in each of five categories (these five categories are located at leaf nodes in the
semantic ontology) after we employed the semantic fusion. The mean average preci-
sion of photo recognition on the five categories was improved by utilizing semantic
fusion.

7.5.4 Experiment on Missing Features

We evaluated the effectiveness of fusion for missing features on the 3k dataset and
the 24k dataset. Section 7.4.4 lists a couple of ways to fill in the missing attributes
in a Bayesian network. In our experiment, we replaced missing values with the most
common values.

For the 3k photo dataset, we used the same training data and testing data as in
Sect. 7.5.2. We randomly deleted contextual information from m% of the testing
data, and formulated new testing data M1. Similarly, we deleted content information
from the randomly selected photos, and formulated testing dataset M2.

Figure 7.13 compares the mean average precision (the mean of average preci-
sions for seven categories) of photo recognition using causal strength for Bayesian
fusion when the contextual information was partially missing (M1) and when the
content information (M2) was partially missing. The values of m varied from 10 to
50. From the figure, we can see that missing content information (M2(CSFusion)) or
missing contextual information (M1(CSFusion)) result in lower performance com-
pared to having all the information present (the third column in Table 7.2). Missing
content information causes worse performance than missing the same percentage of
contextual information. This observation indicates that when the causal strength is
weak for a certain attribute, missing that attribute might not affect accuracy as much
as missing another attribute with a much higher causal strength.

For testing the 24k large photo dataset (which does not have any contextual infor-
mation), we randomly selected 80% from the 3k photos with both contextual and
content information as training data. Table 7.4 lists the average precision in recogniz-
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Fig. 7.13 Mean average precision of photo recognition on 3k dataset with m% missing attributes

Table 7.4 Average precisions
of photo recognition on 24k
dataset with missing attributes

Category CPContent CPFusion CSFusion

Outdoor 0.6615 0.7216 0.7429
Indoor 0.5703 0.6033 0.6387
Beach 0.7509 0.7793 0.8654
Sunset 0.6758 0.7010 0.6943
Ski 0.7016 0.7932 0.8247
Soccer 0.8689 0.8564 0.9030
Lecture 0.8537 0.9043 0.8745
Average 0.7261 0.7656 0.7919

ing different photo categories using multimodal fusion. Compared to using content
only with conditional probability (CPContent), employing conditional probability for
fusion (CPFusion) can improve the accuracy by 4.0% on average. Employing causal
strength for fusion (CSFusion) improves the accuracy by around 6.4% on average.

7.6 Concluding Remarks

We have presented a powerful fusion framework using multimodal information to
annotate photos. We showed how an influence diagram can be learned for each
semantic label, and how causalities can be accurately accounted for. Through our
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empirical study, we demonstrated not only the high annotation accuracy achieved
by our fusion technique, but also its better capability to assess annotation quality.
Our fusion framework can be installed in the cameras, at the cell-phone providers, or
users’ desktops to provide useful metadata for photos, and we believe that this fusion
technique will play a critical role in enabling effective personal photo organization
and search applications.

This work can be extended in several directions. First, more effective visual fea-
tures such as the ones depicted in Chap. 2 can be used to describe photos. Second,
causal models can be extended to account for high-order interactions between causes,
although treating causes conditionally independent of each other seems to suffice for
photo annotation.
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Chapter 8
Combinational Collaborative Filtering,
Considering Personalization

Abstract For the purpose of multimodal fusion, collaborative filtering can be
regarded as a process of finding relevant information or patterns using techniques
involving collaboration among multiple views or data sources. In this chapter,† we
present a collaborative filtering method, combinational collaborative filtering (CCF),
to perform recommendations by considering multiple types of co-occurrences from
different information sources. CCF differs from the approaches presented in Chaps. 6
and 7 by constructing a latent layer in between the recommended objects and mul-
timodal descriptions of these objects. We use community recommendation through-
out this chapter as an example to illustrate critical design points. We first depict a
community by two modalities: a collection of documents and a collection of users,
respectively. CCF fuses these two modalities through a latent layer. We show how the
latent layer is constructed, how multiple modalities are fused, and how the learning
algorithm can be both effective and efficient in handling massive amount of data. CCF
can be used to perform virtually any multimedia-data recommendation tasks such
as recommending labels to images (annotation), recommending images to images
(clustering), and images to users (personalized search).

Keywords Collaborative filtering · Multimodal fusion · Personalization· Recommendation systems · Semantic gap · Social media

8.1 Introduction

Collaborative filtering is a method of filtering for information or patterns using tech-
niques involving collaboration among multiple agents, viewpoints, data sources, etc.

† © ACM, 2008. This chapter is a minor revision of the author’s work with Wen-Yen Chen and
Dong Zhang [1] published in KDD’08. Permission to publish this chapter is granted under
copyright license #2587660697730

E. Y. Chang, Foundations of Large-Scale Multimedia Information 171
Management and Retrieval, DOI: 10.1007/978-3-642-20429-6_8,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011
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(defined in Wikipedia). Collaborative filtering can be regarded as a push model of
search. A search engine provides recommendations to the users proactively based
on information collected from the user and her social networks. In this chapter, we
tackle the problem of community recommendation for social networking sites. (One
can substitute community with any data object such as image, video, or music, and
the techniques remain the same.) What differentiates our work from prior work is that
we propose a fusion method, which combines information from multiple sources.
We name our method CCF for combinational collaborative filtering. CCF views a
community from two simultaneous perspectives: a bag of users and a bag of words.
A community is viewed as a bag of participating users; and at the same time, it
is viewed as a bag of words describing that community. Traditionally, these two
views are independently processed. Fusing these two views provides two benefits.
First, by combining bags of words with bags of users, CCF can perform personal-
ized community recommendations, which the bags of words alone model cannot.
Second, augmenting bags of users with bags of words, CCF improves data density
and hence can achieve better personalized recommendations than the bags of users
alone model.

A practical recommendation system must be able to handle large-scale data sets
and hence demands scalability. We devise two strategies to speed up training of CCF.
First, we employ a hybrid training strategy, which combines Gibbs sampling with the
Expectation–Maximization (EM) algorithm. Our empirical study shows that Gibbs
sampling provides better initialization for EM, and thus can help EM to converge to
a better solution at a faster pace. Our second speedup strategy is to parallelize CCF
to take advantage of the distributed computing infrastructure of modern data centers.

Though in this chapter we use community recommendation as our target appli-
cation, one can simply replace communities with multimedia data e.g., images. An
image can be depicted as a bag of pixels, a bag of contextual information, or a bag of
users who have assessed the image. CCF can then fuse these modalities to perform
recommendation tasks such as recommending labels to images (annotation), recom-
mending images to images (clustering), and images to users (personalized search).
The techniques presented in Chap. 6 are suitable for fusing metadata at the lowest,
syntactic layer such as color, shape, and texture descriptions. Chapter 7 presents a
model to fuse content with context. This chapter considers fusion with semantics,
which is a layer above the syntactic ones.

The remainder of this chapter is organized as follows. In Sect. 8.2, we discuss
the related work on probabilistic latent aspect models. In Sect. 8.3, we present CCF,
including its model structure and semantics, hybrid training strategy, and paralleliza-
tion scheme. In Sect. 8.4, we present our experimental results on both synthetic and
Orkut data sets. We provide concluding remarks and discuss future work in Sect. 8.5.

8.2 Related Reading

Several algorithms have been proposed to deal with either bags of words or bags of
users. Specifically, Probabilistic Latent Semantic Analysis (PLSA) [2] and Latent

http://dx.doi.org/10.1007/978-3-642-20429-6_6
http://dx.doi.org/10.1007/978-3-642-20429-6_7
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Dirichlet Allocation (LDA) [3] model document-word co-occurrence, which is
similar to the bags of words community view. Probabilistic Hypertext Induced Topic
Selection (PHITS) [4], a variant of PLSA, models document-citation co-occurrence,
which is similar to the bags of users community view. However, a system that
considers just bags of users cannot take advantage of content similarity between
communities. A system that considers just bags of words cannot provide person-
alized recommendations: all users who joined the same community would receive
the same set of recommendations. We propose CCF to model multiple types of data
co-occurrence simultaneously. CCF’s main novelty is in fusing information from
multiple sources to alleviate the information sparsity problem of a single source.

Several other algorithms have been proposed to model publication and email data.1

For instance, the author-topic (AT) model [5] employs two factors in characterizing
a document: the document’s authors and topics. Modeling both factors as variables
within a Bayesian network allows the AT model to group the words used in a docu-
ment corpus into semantic topics, and to determine an author’s topic associations. For
emails, the author-recipient-topic (ART) model [6] considers email recipient as an
additional factor. This model can discover relevant topics from the sender–recipient
structure in emails, and enjoys an improved ability to measure role-similarity between
users. Although these models fit publication and email data well, they cannot be used
to formulate personalized community recommendations, whereas CCF can.

8.3 Combinational Collaborative Filtering

We start by introducing the baseline models. We then show how our CCF model
combines baseline models. Suppose we are given a collection of co-occurrence
data consisting of communities C = {c1, c2, . . . , cN }, community descriptions from
vocabulary D = {d1, d2, . . . , dV }, and users U = {u1, u2, . . . , uM }. If community
c is joined by user u, we set n(c, u) = 1; otherwise, n(c, u) = 0. Similarly, we set
n(c, d) = R if community c contains word d for R times; otherwise, n(c, d) = 0.

The following models are latent aspect models, which associate a latent class variable
z ∈ Z = {z1, z2, . . . , zK }.

Before modeling CCF, we first model community–user co-occurrences (C–U),
shown in Fig. 8.1a; and community–description co-occurrences (C–D), shown in
Fig. 8.1b. Our CCF model, shown in Fig. 8.1c, builds on C–U and C–D models. The
shaded and unshaded variables in Fig. 8.1 indicate latent and observed variables,
respectively. An arrow indicates a conditional dependency between variables.

8.3.1 C–U and C–D Baseline Models

The C–U model can be derived from PLSA for community–user co-occurrence analy-
sis. The co-occurrence data consists of a set of community–user pairs (c, u), which

1 We discuss only related model-based work since the model-based approach has been proven to
be superior to the memory-based approach.
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Fig. 8.1 a Graphical representation of the Community–User (C–U) model. b Graphical represen-
tation of the Community–Description (C–D) model. c Graphical representation of Combinational
Collaborative Filtering (CCF) that combines both bag of users and bag of words information

are assumed to be generated independently. The key idea is to introduce a latent
class variable z to every community–user pair, so that community c and user u are
rendered conditionally independent. The resulting model is a mixture model that can
be written as follows:

P(c, u) =
∑

z

P(c, u, z) = P(c)
∑

z

P(u|z)P(z|c), (8.1)

where z represents the topic for a community. For each community, a set of users
is observed. To generate each user, a community c is chosen uniformly from the
community set, then a topic z is selected from a distribution P(z|c) that is specific to
the community, and finally a user u is generated by sampling from a topic-specific
distribution P(u|z).

The second model is for community–description co-occurrence analysis. It has a
similar structure to the C–U model with the joint probability written as:

P(c, d) =
∑

z

P(c, d, z) = P(c)
∑

z

P(d|z)P(z|c), (8.2)

where z represents the topic for a community. Each community’s interests are mod-
eled with a mixture of topics. To generate each description word, a community c is
chosen uniformly from the community set, then a topic z is selected from a distrib-
ution P(z|c) that is specific to the community, and finally a word d is generated by
sampling from a topic-specific distribution P(d|z). (One can model C–U and C–D
using LDA. Please see Chap. 12 for indepth discussion on LDA.)

8.3.2 CCF Model

In the C–U model, we consider only links, i.e., the observed data can be thought
of as a very sparse binary M × N matrix W, where Wi, j = 1 indicates that user

http://dx.doi.org/10.1007/978-3-642-20429-6_12
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i joins (or linked to) community j, and the entry is unknown elsewhere. Thus, the
C–U model captures the linkage information between communities and users, but
not the community content. The C–D model learns the topic distribution for a given
community, as well as topic-specific word distributions. This model can be used to
estimate how similar two communities are in terms of topic distributions. Next, we
introduce our CCF model, which combines both the C–U and C–D.

For the CCF model (Fig. 8.1c), the joint probability distribution over community,
user, and description can be written as:

P(c, u, d) =
∑

z

P(c, u, d, z)

= P(c)
∑

z

P(u|z)P(d|z)P(z|c). (8.3)

The CCF model represents a series of probabilistic generative processes. Each
community has a multinomial distribution over topics, and each topic has a multino-
mial distribution over users and descriptions, respectively.

8.3.3 Gibbs and EM Hybrid Training

Given the model structure, the next step is to learn model parameters. There
are some standard learning algorithms, such as Gibbs sampling [7], Expectation–
Maximization (EM) [8], and Gradient descent. For CCF, we propose a hybrid train-
ing strategy: we first run Gibbs sampling for a few iterations, then switch to EM.
The model trained by Gibbs sampling provides the initialization values for EM. This
hybrid strategy serves two purposes. First, EM suffers from a drawback in that it
is very sensitive to initialization. A better initialization tends to allow EM to find a
“better” optimum. Second, Gibbs sampling is too slow to be effective for large-
scale data sets in high-dimensional problems [9]. A hybrid method can enjoy the
advantages of Gibbs and EM.

8.3.3.1 Gibbs Sampling

Gibbs sampling is a simple and widely applicable Markov chain Monte Carlo algo-
rithm, which provides a simple method for obtaining parameter estimates and allows
for combination of estimates from several local maxima of the posterior distribu-
tion. Instead of estimating the model parameters directly, we evaluate the posterior
distribution on z and then use the results to infer P(u|z), P(d|z) and P(z|c).

For each user–word pair, the topic assignment is sampled from:

P(zi, j = k|ui = m, d j = n, z−i,− j , U−i , D− j )

∝
CU Z

mk + 1∑
m′ C

U Z
m′k + M

C DZ
nk + 1∑

n′ C
DZ
n′k + V

CC Z
ck + 1∑

k′ C
C Z
ck′ + K

, (8.4)
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where zi, j = k represents the assignment of the ith user and jth description word in a
community to topic k. ui = m represents the observation that the ith user is the mth
user in the user corpus, and d j = n represents the observation that the jth word is the
nth word in the word corpus. z−i,− j represents all topic assignments not including
the ith user and the jth word. Furthermore, CU Z

mk is the number of times user m is
assigned to topic k, not including the current instance; C DZ

nk is the number of times
word n is assigned to topic k, not including the current instance; CC Z

ck is the number
of times topic k has occurred in community c, not including the current instance.

We analyze the computational complexity of Gibbs sampling in CCF. In Gibbs
sampling, one needs to compute the posterior probability

P(zi, j = k|ui = m, d j = n, z−i,− j , U−i , D− j )

for user–word pairs (M × L) within N communities, where L is the number of
words in community description (note L ≥ V ). Each P(zi, j = k|ui = m,

d j = n, z−i,− j , U−i , D− j ) consists of K topics, and requires a constant number
of arithmetic operations, resulting in O(K · N · M · L) for a single Gibbs sam-
pling. During parameter estimation, the algorithm needs to keep track of a topic-user
(K × M) count matrix, a topic-word (K × V ) count matrix, and a community-topic
(N × K ) count matrix. From these count matrices, we can estimate the topic-user
distributions P(um |zk), topic-word distributions P(dn|zk) and community-topic dis-
tributions P(zk |cc) by:

P(um |zk) = CU Z
mk + 1∑

m′ C
U Z
m′k + M

,

P(dn|zk) = C DZ
nk + 1∑

n′ C
DZ
n′k + V

,

P(zk |cc) = CC Z
ck + 1∑

k′ C
C Z
ck′ + K

, (8.5)

where P(um |zk) is the probability of containing user m in topic k, P(dn|zk) is the
probability of using word n in topic k, and P(zk |cc) is the probability of topic k
occurring in community c. The estimation of parameters by Gibbs sampling replaces
the random seeding in EM’s initialization step.

8.3.3.2 Expectation–Maximization Algorithm

The CCF model is parameterized by P(z|c), P(u|z), and P(d|z), which are esti-
mated using the EM algorithm to fit the training corpus with community, user, and
description by maximizing the log-likelihood function:

L =
∑
c,u,d

n(c, u, d) log P(c, u, d), (8.6)
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n(c, u, d) = n(c, u)n(c, d) =
⎧⎨
⎩

R if community c has user u
and contains word d for R times;

0 otherwise.
(8.7)

Starting with the initial parameter values from Gibbs sampling, the EM procedure
iterates between Expectation (E) step and Maximization (M) step:

• E-step: where the probability that a community c has user u and contains word d
explained by the latent variable z is estimated as:

P(z|c, u, d) = P(u|z)P(d|z)P(z|c)∑
z′ P(u|z′)P(d|z′)P(z′|c) . (8.8)

• M-step: where the parameters P(u|z), P(d|z), and P(z|c) are re-estimated to
maximize L in (8.6):

P(u|z) =
∑

c,d n(c, u, d)P(z|c, u, d)∑
c,u′,d n(c, u′, d)P(z|c, u′, d)

, (8.9)

P(d|z) =
∑

c,u n(c, u, d)P(z|c, u, d)∑
c,u,d ′ n(c, u, d ′)P(z|c, u, d ′)

, (8.10)

P(z|c) =
∑

u,d n(c, u, d)P(z|c, u, d)∑
u,d,z′ n(c, u, d)P(z′|c, u, d)

. (8.11)

We analyze the computational complexity of the E-step and the M-step. In
the E-step, one needs to compute the posterior probability P(z|c, u, d) for M
users, N communities, and V words. Each P(z|c, u, d) consists of K values, and
requires a constant number of arithmetic operations to be computed, resulting in
O(K · N · M · V ) operations for a single E-step. In the M-step, the posterior proba-
bilities are accumulated to form the new estimates for P(u|z), P(d|z) and P(z|c).
Thus, the M-step also requires O(K · N · M · V ) operations. Typical values
of K in our experiments range from 28 to 256. The community–user (c, u) and
community–description (c, d) co-occurrences are highly sparse, where n(c, u, d) =
n(c, u) × n(c, d) = 0 for a large percentage of the triples (c, u, d). Because the
P(z|c, u, d) term is never separated from the n(c, u, d) term in the M-step, we do not
need to compute P(z|c, u, d) for n(c, u, d) = 0 in the E-step. We compute only
P(z|c, u, d) for n(c, u, d) �= 0. This greatly reduces computational complexity.

8.3.4 Parallelization

The parameter estimation using Gibbs sampling and the EM algorithm described
in the previous sections can be divided into parallel subtasks. We consider Message
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Fig. 8.2 Parallel Gibbs Sampling of CCF

Passing Interface (MPI) for implementation as it is more suitable for parallelizing iter-
ative algorithms than MapReduce. Since standard MPI implementations (MPICH2)
cannot be directly ported to our system, we implemented our own system by modi-
fying MPICH2 [10].

8.3.4.1 Parallel Gibbs Sampling

We distribute the computation among machines based on community IDs. Thus,
each machine i only deals with a specified subset of communities ci , and is aware of
all users u and all descriptions d. We then perform Gibbs sampling simultaneously
on each machine independently and update local counts. Afterward, each machine
reduces the local difference (CU Z

mi k
−CU Z

mk , C DZ
ni k −C DZ

nk ) to a specified root, then the
root broadcasts the global difference (sum of all local differences) to other machines
to update global counts (CU Z

mk and C DZ
nk ) [11]. This is an MPI_AllReduce operation

in MPI. We summarize the process in Fig. 8.2.

8.3.4.2 Parallel EM Algorithm

The parallel EM algorithm can be applied in a similar fashion. We describe the
procedure below and summarize the process in Fig. 8.3.

• E-step: each machine i computes the P(z|ci , u, d) values, the posterior probability
of the latent variables z given communities ci , users u and descriptions d, using the
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current values of the parameters P(z|ci ), P(u|z) and P(d|z). As this posterior
computation can be performed locally, we avoid the need for communications
between machines in the E-step.

• M-step: each machine i computes the local parameters P(z|ci ), P(ui |z) and
P(di |z) using the previously calculated values P(z|ci , u, d). After that, each
machine reduces the local parameters (P(ui |z), P(di |z)) to a specified root, and
the root broadcasts the global parameters to other machines. This is done through
a MPI_AllReduce operation in MPI.

We analyze the computational and communication complexities for both algo-
rithms using distributed machines. Assuming that there are P machines, the com-
putational complexity of each training algorithm reduces to O((K · N · M · L)/P)

(for Gibbs) and O((K · N · M · V )/P) (for EM) since P machines share the com-
putations simultaneously. For communication complexity, two variables are reduced
and broadcasted among P machines for next iteration training: CU Z

mk , C DZ
nk in Gibbs

sampling, and P(u|z), P(d|z) in EM. The communication cost is O(α · log P + β ·
P−1

P K (M + V )+ γ · P−1
P K (M + V )), where α is the startup time of a transfer, β

is the transfer time per byte, and γ is the computation time per byte for performing
the reduction operation locally on any machine.

8.3.5 Inference

Once we have learned the model parameters, we can infer three relationships using
Bayesian rules, namely user–community relationship, community similarity, and
user similarity. We derive these three relationships as follows:

• User–community relationship: communities can be ranked for a given user accord-
ing to P(c j |ui ), i.e. which communities should be recommended for a given user?
Communities with top ranks and communities that the user has not yet joined are
good candidates for recommendations. P(c j |ui ) can be calculated using

P(c j |ui ) =
∑

z P(c j , ui , z)

P(ui )

= P(c j )
∑

z P(ui |z)P(z|c j )

P(ui )

∝
∑

z

P(ui |z)P(z|c j ), (8.12)

where we assume that P(c j ) is a uniform prior for simplicity.
• Community similarity: communities can also be ranked for a given community

according to P(c j |ci ). We calculate P(c j |ci ) using
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P(c j |ci ) =
∑

z P(c j , ci , z)

P(ci )

=
∑

z P(c j |z)P(ci |z)P(z)

P(ci )

= P(c j )
∑

z

P(z|c j )P(z|ci )

P(z)

∝
∑

z

P(z|c j )P(z|ci )

P(z)
, (8.13)

where we assume that P(c j ) is a uniform prior for simplicity.
• User similarity: users can be ranked for a given user according to P(u j |ui ), i.e.

which users should be recommended for a given user? Similarly, we can calculate
P(u j |ui ) using

P(u j |ui ) =
∑

z P(u j , ui , z)

P(ui )

=
∑

z P(u j |z)P(ui |z)P(z)

P(ui )

= P(u j )
∑

z

P(z|u j )P(z|ui )

P(z)

∝
∑

z

P(z|u j )P(z|ui )

P(z)
, (8.14)

where we assume that P(u j ) is a uniform prior for simplicity.

8.4 Experiments

We divided our experiments into two parts. The first part was conducted on a relatively
small synthetic dataset with ground truth to evaluate the Gibbs and EM hybrid training
strategy. The second part was conducted on a large, real-world dataset to test out
CCF’s performance and scalability. Our experiments were run on up to 200 machines
at our distributed data centers. While not all machines are identically configured, each
machine is configured with a CPU faster than 2 GHz and memory larger than 4 GB
(a typical Google configuration in 2007).

8.4.1 Gibbs + EM Versus EM

To precisely account for the benefit of Gibbs and EM over the EM-only training
strategy, we used a synthetic dataset where we know the ground truth. The synthetic
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Fig. 8.3 Parallel EM algorithm of CCF

dataset consists of 5,000 documents with 10 topics, a vocabulary size 10,000, and
a total of 50,000,000 word tokens. The true topic distribution over each document
was pre-defined manually as the ground truth. We conducted the comparisons using
the following two training strategies: (1) EM-only strategy (without Gibbs sampling
as initialization) where the number of EM iterations is 10 through 100 respectively,
(2) Gibbs and EM strategy where the number of Gibbs sampling iterations is 5,
10, 15 and 20, and the number of EM iterations is 10 through 70, respectively. We
used Kullback–Leibler divergence (K–L divergence) to evaluate model performance
since the K–L divergence is a good measure for the difference between the true topic
distribution (P) and the estimated topic distribution (Q) defined as follows:

DKL(P||Q) =
∑

i

P(i) log
P(i)

Q(i)
. (8.15)

The smaller the K–L divergence is, the better the estimated topic distribution
approximates the true topic distribution.

Figure 8.4 compares the average K–L divergences over 10 runs. It shows that
more rounds of Gibbs sampling can help EM reach a solution that enjoys a smaller
K–L divergence. Since each iteration of Gibbs sampling takes longer than EM, we
must also consider time. Figure 8.5 shows the values of K–L divergence as a function
of the training time, where EM-only strategy began with 20 EM iterations. We can
make two observations. First, given a large amount of time, both EM and the hybrid
scheme can reach very low K–L divergence. On this dataset, when the training time
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Fig. 8.4 The Kullback-Leibler divergence as a function of the number of iterations

exceeded 350 s, the value of K–L divergence approached zero for all strategies.
Nevertheless, on a large dataset, we cannot afford a long training time, and the Gibbs
and EM hybrid strategy provides a earlier point to stop training, and hence reduces
the overall training time.

The second observation is on the number of Gibbs iterations. As shown in both
figures, running more iterations of Gibbs before handing over to EM takes longer to
yield a better initial point for EM. In other words, spending more time in the Gibbs
stage can save time in the EM stage. Figure 8.5 shows that the best performance was
produced by 10 iterations of Gibbs sampling before switching to EM. Finding the
“optimal” switching point is virtually impossible in theory. However, the figure shows
that different Gibbs iterations can all outperform the EM-only strategy to obtain a
better solution early, and a reasonable number of Gibbs iterations can be obtained
through an empirical process like our experiment. Moreover, the figure shows that
a range of number of iterations can achieve similar K–L divergence (e.g., at time
250). This indicates that though an empirical process may not be able to pin down
the “optimal” number of iterations (because of e.g., new training data arrival), the
hybrid scheme can work well on a range of Gibbs-sampling iterations.

8.4.2 The Orkut Dataset

Orkut is an extremely active community site with more than two billion page views
a day world-wide. The dataset we used was collected on July 26, 2007, which
contains two types of data for each community: community membership informa-
tion and community description information. We restrict our analysis to English
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Fig. 8.6 a Distribution of the number of users per community, and b distribution of the number of
description words per community (see color insert)

communities only. We collected 312,385 users and 109,987 communities.2 The num-
ber of entries in the community–user matrix, or the number of community–user pairs,
is 35,932,001. As the density is around 0.001045, this matrix is extremely sparse.
Figure 8.6a shows a distribution of the number of users per community. About 52%
of all communities have less than 100 users, whereas 42% of all communities have
more than 100 but less than 1,000 users.

For the community description data, after applying downcasing, stopword filter-
ing, and word stemming, we obtained a vocabulary of 191,034 unique English words.
The distribution of the number of description words per community is displayed in
Fig. 8.6b. On average, there are 27.64 words in each community description after
processing.

2 All user data were anonymized, and user privacy is safeguarded, as performed in [12].
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In order to establish statistical significance of the findings, we repeated all exper-
iments 10 times with different random seeds and parameters, such as the number
of latent aspects (ranging from 28 to 256), the number of Gibbs sampling iterations
(ranging from 10 to 30) and the number of EM iterations (ranging from 100 to 500).
The reported results are the average performance over all runs.

Results

Community recommendation: P(c j |ui ). We use two standard measures from infor-
mation retrieval to measure the recommendation effectiveness: precision and recall,
defined as follows:

Precision =
∣∣{recommendation list}⋂{joined list}∣∣

|{recommendation list}| ,

Recall =
∣∣{recommendation list}⋂{joined list}∣∣

|{joined list}|
(8.16)

Precision takes all recommended communities into account. It can also be eval-
uated at a given cut-off rank, considering only the topmost results recommended
by the system. As it is possible to achieve higher recall by recommending more
communities (note that a recall of 100% is trivially achieved by recommending all
communities, albeit at the expense of having low precision), we limit the size of our
community recommendation list to at most 200.

To evaluate the results, we randomly deleted one joined community for each user in
the community–user matrix from the training data. We evaluated whether the deleted
community could be recommended. This evaluation is similar to leave-one-out.
Figure 8.7 shows the precision and recall as functions of the length
(up to 200) of the recommendation list for both C–U and CCF. We can see that CCF
always outperforms C–U for all lengths. Figure 8.8 presents precision and recall for
the top 20 recommended communities. As both precision and recall of CCF are
nearly twice higher than those of C–U, we can conclude that CCF enjoys better
prediction accuracy than C–U. This is because C–U only considers community–user
co-occurrence, whereas CCF considers users, communities, and descriptions. By
taking other views into consideration, the information is denser for CCF to achieve
higher prediction accuracy.

Figure 8.9 depicts the relationship between the precision of the recommendation
for a user and the number of communities that the user has joined. The more com-
munities a user has joined, the better both C–U and CCF can predict the user’s
preferences. For users who joined around 100 communities, the precision is about
15% for C–U and 27% for CCF. However, for users who joined just 20 communities,
the precision is about 7% for C–U, and 10% for CCF. This is not surprising since
it is very difficult for latent-class statistical models to generalize from sparse data.
For large-scale recommendation systems, we are unlikely to ever have enough direct
data with sufficient coverage to avoid sparsity. However, at the very least, we can
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Fig. 8.7 The precision and recall as functions of the length of the recommendation list (see color
insert)

Fig. 8.8 The precision and recall as functions of the length (up to 20) of the recommendation list
(see color insert)

try to incorporate indirect data to boost our performance, just as CCF does by using
bags of words information to augment bags of users information.

Remark Because of the nature of leave-one-out, our experimental result can only
show whether a joined community could be recovered. The low precision/recall
reflects this necessary, restrictive experimental setting. (This setting is necessary for
objectivity purpose as we cannot obtain ground-truth of all users’ future preferences.)
The key observation from this study is not the absolute precision/recall values, but
is the relative performance between CCF and C–U.
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Fig. 8.9 The precision as a function of the number of communities a user has joined. Here, the
length of the recommendation list is fixed at 20

Community similarity P(c j |ci ). We next report the results of community similarities
calculated by the three models. We used community category (available at Orkut
websites) as the ground-truth for clustering communities. We also assigned each
community an estimated label for the latent aspect with the highest probability value.
We treated communities with the same estimated label as members of the same
community cluster. We then compared the difference between community clusters
and categories using the Normalized Mutual Information (NMI).

NMI between two random variables CAT (category label) and CLS (cluster label)
is defined as NMI(CAT;CLS) = I (CAT ;CLS)√

H(CAT)H(CLS)
, where I (CAT ;CLS) is the mutual

information between CAT and CLS. The entropies H(CAT) and H(CLS) are used for
normalizing the mutual information to be in the range [0, 1]. In practice, we made
use of the following formulation to estimate the NMI score [13]:

NMI =
∑K

s=1
∑K

t=1ns,t log
(

n·ns,t
ns ·nt

)
√(∑

sns log ns
n

) (∑
t nt log nt

n

) , (8.17)

where n is the number of communities, ns and nt denote the numbers of community
in category s and cluster t, ns,t denotes the number of community in category s as
well as in cluster t. The NMI score is 1 if the clustering results perfectly match the
category labels and 0 for a random partition. Thus, the larger this score, the better
the clustering results.

Table 8.1 shows that CCF slightly outperforms both C–U and C–D models, which
indicates the benefit of incorporating two types of information.
User similarity P(u j |ui ). An interesting application is friend suggestion: finding
users similar to a given user. Using 8.14, we can compute user similarity for all pairs
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Table 8.1 The comparison
results of the three models
using Normalized Mutual
Information (NMI)

Model C–U C–D CCF

NMI 0.4508 0.3127 0.4526

Table 8.2 The top recommended users using the C–U and CCF models for the query user 79

Model Rank 1st Rank 2nd Rank 3rd
User ID Communities User ID Communities User ID Communities

C–U 2390 551 (102, 18.5%) 8207 456 (100, 21.9%) 6734 494 (95, 19.2%)
CCF 7931 518 (106, 20.5%) 10968 680 (102, 15.0%) 6776 680 (91, 13.4%)

The number of communities that user 79 joined is 339. (Note that the “Communities” field contains
three numbers: the first number n is the total number of communities a user joined; the second
number k is the number of overlapping communities between the recommended user and the query
user, and the last number is percentage of k

n )

of users. From these values, we derive a ranking of the most similar users for a given
query user. Due to privacy concerns, we were not able to obtain the friend graph
of each user to evaluate accuracy. Table 8.2 shows an example of this ranking for a
given user.

“Similar” users typically share a significant percentage of commonly-joined
communities. For instance, the query user also joined 18.5% of the communities
joined by the top user ranked by C–U, compared to 20.5% for CCF. It is encour-
aging to see that CCF’s top ranked user has more overlap with the query user than
C–U’s top ranked user does. We believe that, again, incorporating the additional word
co-occurrences has improved information density and hence yields higher prediction
accuracy.

8.4.3 Runtime Speedup

In analyzing runtime speedup for parallel training, we trained CCF with 20 latent
aspects, 10 Gibbs sampling, and 20 EM iterations. As the size of a dataset is
large, a single machine cannot store all the data—(P(u|z), P(d|z), P(z|c), and
P(z|c, u, d)—in its local memory, we cannot obtain the running time of CCF on one
machine. Therefore, we use the runtime of 10 machines as the baseline and assume
that 10 machines can achieve 10 times speedup. This assumption is reasonable as
we will see shortly that our parallelization scheme can achieve linear speedup on up
to 100 machines. Table 8.3 and Fig. 8.10 report the runtime speedup of CCF using
up to 200 machines. The Orkut dataset enjoys a linear speedup when the number
of machines is up to 100. After that, adding more machines receives diminishing
returns. This result led to our examination of overheads for CCF, presented next.

No parallel algorithm can infinitely achieve linear speedup because of the
Amdahl’s law. When the number of machines continues to increase, the commu-
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Table 8.3 Runtime
comparisons for different
number of machines

Machines Time (s) Speedup

10 9,233 10
20 4,326 21.3
50 2,280 40.5
100 1,014 91.1
200 796 116

Fig. 8.10 Speedup analysis for different number of machines

nication cost starts to dominate the total running time. The running time consists
of two main parts: computation time (Comp) and communication time (Comm).
Figure 8.11 shows how Comm overhead influences the speedup curves. We draw
on the top the computation only line (Comp), which approaches the linear speedup
line. The speedup deteriorates when communication time is accounted for (Comp +
Comm). Figure 8.12 shows the percentage of Comp and Comm in the total running
time. As the number of machines increases, the communication cost also increases.
When the number of machines exceeds 200, the communication time becomes even
larger than the computation time.

Though the Amdahl’s law eventually kicks in to forbid a parallel algorithm to
achieve infinite speedup, our empirical study draws two positive observations.

1. When the dataset size increases, the “saturation” point of the Amdahl’s law is
deferred, and hence we can add more machines to deal with larger sets of data.

2. The speedup that can be achieved by parallel CCF is very significant to enable
near-real-time recommendations. As shown in the table, the parallel scheme
reduces the training time from one day to less than 14 min. The parallel CCF
can be run every 14 min to produce a new model to adapt to new access patterns
and new users.
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Fig. 8.11 Speedup and overhead analysis

Fig. 8.12 Runtime (computation and communication) composition analysis

8.5 Concluding Remarks

This chapter has presented a generative graphical model, Combinational Collabo-
rative Filtering (CCF), for collaborative filtering based on both bags of words and
bags of users information. CCF uses a hybrid training strategy that combines Gibbs
sampling with the EM algorithm. The model trained by Gibbs sampling provides
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better initialization values for EM than random seeding. We also presented the par-
allel computing required to handle large-scale data sets. Experiments on a large
Orkut data set demonstrate the approaches to successfully produce better quality
recommendations, and accurately cluster relevant communities/users with similar
semantics.

There are several directions for future research. First, one can consider expanding
CCF to incorporate more types of co-occurrence data. More types of co-occurrence
data would help to overcome sparsity problem and make better recommendation.
Second, in our analysis, the community–user pair value equals one, i.e. n(ui , c j ) = 1
(if user ui joins community c j ). An interesting extension would be to give this count
a different value, i.e. n(ui , c j ) = f, where f is the frequency of the user ui visiting
the community c j . Third, as we have mentioned, one can replace PLSA with LDA
(see Chap. 12) or the causality strength model (Chap. 7) to conduct inference. Finally,
CCF, as a general framework of combining multiple types of co-occurrence data, has
many applications in information retrieval, social network mining, and other related
areas.
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Chapter 9
Imbalanced Data Learning

Abstract An imbalanced training dataset can pose serious problems for many real-
world data-mining tasks that conduct supervised learning. In this chapter,† we present
a kernel-boundary-alignment algorithm, which considers training-data imbalance as
prior information to augment SVMs to improve class-prediction accuracy. Using a
simple example, we first show that SVMs can suffer from high incidences of false
negatives when the training instances of the target class are heavily outnumbered by
the training instances of a non-target class. The remedy we propose is to adjust the
class boundary by modifying the kernel matrix, according to the imbalanced data
distribution. Through theoretical analysis backed by empirical study, we show that
the kernel-boundary-alignment algorithm works effectively on several datasets.

Keywords Imbalanced data · Kernel alignment · SVMs

9.1 Introduction

In many data-mining tasks, finding rare objects or events is of primary inter-
est [2]. Some examples include identifying fraudulent credit-card transactions [3],
diagnosing medical diseases, and recognizing suspicious activities in surveillance
videos [4]. The task of finding rare objects or events is usually formulated as a super-
vised learning problem. Training instances are collected for both target and non-
target events, and then a classifier is trained on the collected data to predict future
instances. Researchers in the data-mining community have been using Support Vec-
tor Machines (SVMs) as the learning algorithm, since SVMs have strong theoretical
foundations and excellent empirical successes in many pattern-recognition applica-
tions such as handwriting recognition [5], image retrieval [6], and text classification
[7]. However, for rare-object detection and event mining, when the training instances

† © IEEE, 2005. This chapter is written based on the author’s work with Gang Wu [1] published in
IEEE TKDE 17(6). Permission to publish this chapter is granted under copyright license
#2587680962412.
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Management and Retrieval, DOI: 10.1007/978-3-642-20429-6_9,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011
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Fig. 9.1 Checkerboard
experiment

of the target class are significantly outnumbered by the other training instances, the
class-boundary learned by SVMs can be severely skewed toward the target class.
As a result, the false-negative rate can be excessively high in identifying important
target objects (e.g., a surveillance event or a disease-causing agent), and can result
in catastrophic consequences.

Skewed class boundary is a subtle but serious problem that arises from using
an SVM classifier—in fact from using any classifier—for real-world problems with
imbalanced training data. To understand the nature of the problem, let us consider it
in a binary classification setting (positive vs. negative). We know that the Bayesian
framework estimates the posterior probability using the class conditional and the
prior [8]. When the training data are highly imbalanced, the results naturally tend
to favor the majority class. Hence, when ambiguity arises in classifying a particular
sample because of similar class-conditional densities for the two classes, the Bayesian
framework will rely on the large class prior favoring the majority class to break the
tie. Consequently, the decision boundary will skew toward the minority class.

To illustrate this skew problem graphically, Fig. 9.1 shows a 2D checkerboard
example. The checkerboard divides a 200×200 square into four quadrants. The top-
left and bottom-right quadrants are occupied by negative (majority) instances, but
the top-right and bottom-left quadrants contain only positive (minority) instances.
The lines between the classes represent the “ideal” boundary that separates the two
classes. In the rest of this chapter, we will use positive when referring to minority
instances, and negative when referring to majority instances.

Figure 9.2 exhibits the boundary distortion between the two left quadrants in the
checkerboard under two different negative/positive training-data ratios, where a black
dot with a circle represents a support vector, and its radius represents the weight value
αi of the support vector. The bigger the circle, the larger the αi . Figure 9.2a shows
the SVM class boundary when the ratio of the number of negative instances (in the
quadrant above) to the number of positive instances (in the quadrant below) is 10:1.
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Fig. 9.2 Boundaries of different ratios. We use a Gaussian RBF kernel for training. For better
illustration, we zoom into the area around the ideal boundary (y = 100) between left two quadrants.
Only support vectors are shown in the figures. a 10:1, b 10,000:1

Figure 9.2b shows the boundary when the ratio increases to 10,000:1. The boundary
in Fig. 9.2b is much more skewed towards the positive quadrant than the boundary
in Fig. 9.2a, thus causing a higher incidence of false negatives.

Although in a theoretical sense the Bayesian framework gives the optimal results
(in terms of the smallest average error rate), we must be careful in applying it to
real-world applications. In a real-world application such as security surveillance or
disease diagnosis, the risk (or consequence) of mispredicting a positive event (a false
negative) far outweighs that of mispredicting a negative event (a false positive). It is
well known that in a binary classification problem, Bayesian risks are defined as:

R(αp|x) = λpp P(ωp|x)+ λpn P(ωn|x),

R(αn|x) = λnp P(ωp|x)+ λnn P(ωn|x),

where p refers to the positive events and n to the negative, λnp refers to the risk (or
cost) of a false negative, and λpn the risk of a false positive. The decisions about
which action (αp or αn) to take—or which action has a smaller risk—are affected not
just by the event likelihood (which directly influences the misclassification error),
but also by the risk of mispredictions (λnp and λpn).

How can we factor risk into SVMs to compensate for the effect caused by
P(ωn|x)� P(ωp|x)? Examining the class prediction function of SVMs,

sgn

(
f (x) =

n∑
i=1

yiαi K (x, xi )+ b

)
, (9.1)

we see that three parameters can affect the decision outcome: b, αi , and K. Our
theoretical analysis, backed up by empirical study, will show that the only effective
method for improving SVMs is through adaptively modifying K, based on the training
data distribution. To modify K, we propose in this chapter the kernel-boundary-
alignment (KBA) algorithm, which addresses the imbalanced training-data problem
in three complementary ways:



194 9 Imbalanced Data Learning

1. Improving class separation. KBA increases intra-class similarity and decreases
inter-class similarity through changing the similarity scores in the kernel matrix.
Therefore, instances in the same class are better clustered in the feature space F
away from those in the other classes.

2. Safeguarding overfitting. To avoid overfitting, KBA uses the existing support
vectors to guide its boundary-alignment procedure.

3. Improving imbalanced ratio. By properly adjusting the similarity scores between
majority instances, KBA can reduce the number of support vectors on the majority
side and hence improve the imbalanced support-vector ratio.

Our experimental results on both UCI and real-world image/video datasets show
the kernel-boundary-alignment algorithm to be effective in correcting a skewed
boundary caused by imbalanced training data.

9.2 Related Reading

Approaches for addressing the imbalanced training-data problem can be divided into
two main categories: the data processing approach and the algorithmic approach.
The data processing approach [9] can be further sub-divided into two methods:
under-sample the majority class, or over-sample the minority class. The one-sided
selection proposed by Kubat [10] is a representative under-sampling approach which
removes noisy, borderline, and redundant majority training instances. However, these
steps typically can remove only a small fraction of the majority instances, so they
might not be very helpful in a scenario with a majority-to-minority ratio of more than
100:1 (which is becoming common in many emerging pattern-recognition applica-
tions). Multi-classifier training [11] and Bagging [12] are two other under-sampling
methods. These methods do not deal with noisy and borderline data directly, but use
a large ensemble of sub-classifiers to reduce prediction variance.

Over-sampling [13, 14] is the opposite of the under-sampling approach. It dupli-
cates or interpolates minority instances in the hope of reducing the imbalance. The
over-sampling approach can be considered as a “phantom-transduction” method. It
assumes the neighborhood of a positive instance to be still positive, and the instances
between two positive instances positive. The validity of assumptions like these, how-
ever, can be data-dependent.

The algorithmic approach, which is traditionally1 orthogonal to the data-processing
approach, is the focus of this chapter. Nugroho [15] suggests combining a competitive
learning network and a multilayer perceptron as a solution for the class imbalance
problem. Kubat et al. [10, 16–18] modify the decision-tree generator to improve its
learning performance on imbalanced datasets. For SVMs, few attempts [19–24] have
dealt with the imbalanced training-data problem. Basically, all those work aims to
incorporate into the SVMs the prior knowledge of the risk factors of false negatives

1 Although our algorithmic approach focuses on aligning class boundary, it can effectively remove
redundant majority instances as a by-product.
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and false positives. Karakoulas et al. [21] proposed an approach to modify the bias
(or parameter b) in the class prediction function (9.1). Veropoulos et al. [22, 24,
25] use different pre-defined penalty constants (based on some prior knowledge) for
different classes of data. The effectiveness of this method is limited since the Karush
Kuhn Tucker (KKT) conditions [26] use the penalty constants as the upper bounds,
rather than the lower bounds, of misclassification costs. Moreover, the KKT condi-
tion

∑n
i=1 αi yi = 0 imposes an equal total influence from the positive and negative

support vectors. The increases in some αi ’s at the positive side will inadvertently
increase some αi ’s at the negative side to satisfy the constraint. These constraints can
make the increase of C+ on minority instances ineffective. (Validation is presented
in Sect. 9.4.)

Another algorithmic approach to improve the SVMs for imbalanced training is
to modify the employed kernel function K or kernel matrix2 K. In kernel-based
methods, such as SVMs, the kernel K represents a pairwise similarity measurement
among the data. Because of the central role of the kernel, a poor K will lead to a poor
performance of the employed classifier [27, 28]. Our prior work ACT [29] falls into
this category by modifying the K using (quasi-) conformal transformation so as to
change the spatial resolution around the class boundary. However, ACT works only
when data have a fixed-dimensional vector-space representation, since the algorithm
relies on information in the input space. The kernel-boundary alignment algorithm
(KBA) that we propose in this chapter is a more general approach, which does not
require the data to have a vector-space representation. This relaxation is important
so that we can deal with a large class of sequence data (motion trajectories, DNA
sequences, sensor-network data, etc.), which may have different length. Furthermore,
KBA provides greater flexibility in adjusting the class boundary.

Recently, several kernel alignment algorithms [20, 23, 27, 30] have been proposed
in the Machine Learning community to learn a kernel function or a kernel matrix from
the training data. The motivation behind these methods is that a good kernel should
be data dependent, and a systematic method for learning a good kernel from the data
is useful. All these methods are based on the notion of the kernel target alignment
proposed by Cristianini et al. [27]. The alignment score is used for measuring the
quality of a given kernel matrix. To address the imbalanced training-data problem,
Kandola et al. [30] propose an extension to kernel-target alignment by giving the
alignment targets of 1

n+ to the positive instances and − 1
n− to the negative instances.

(We use n+ and n− to denote the number of minority and majority instances, respec-
tively.) Unfortunately, when n+

n− is small (when n+ does not remain O(n+ + n−)),
the concentration property upon which that kernel-target alignment relies may no
longer hold. In other words, the proposed method can deal only with uneven data
that are not very uneven. Our proposed KBA algorithm is based on maximizing the
separation margin of the SVMs, and is more effective in its solution.

2 Given a kernel function K and a set of instances Xtrain = {xi , yi }ni=1, the kernel matrix (Gram
matrix) is the matrix of all possible inner-products of pairs from X train, K = (ki j ) = K (xi , x j ).
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9.3 Kernel Boundary Alignment

Let us consider a two-class classification problem with training dataset Xtrain =
{xi , yi }ni=1, where xi ∈ �m and y ∈ {−1,+1}. The basic idea of kernel methods
is to map X from its input space I to a feature space F , where the data can be
separated by applying a linear procedure [5]. The attractiveness of kernel methods is
that the mapping from I to F can be performed efficiently through the inner product
defined in F , or K (xi , x j ) = �(xi )

T �(x j ). Common choices for kernels are
polynomial functions K (xi , x j ) = (xi ·x j +1)p and Gaussian radial basis functions

(RBF) K (xi , x j ) = exp
(
−‖xi−x j‖2

2σ 2

)
. More generally, K (xi , x j ) can be considered

as a similarity measure between instances xi and x j . (Theoretical justifications are
presented in [28].) For instance, when a Gaussian RBF function is employed, the
value of K (xi , x j ) ranges from 0 to 1, where K (xi , x j ) = 0 when xi and x j are
infinitely far away (dissimilar) in input space, and K (xi , x j ) = 1 when xi and x j

are infinitely close (almost identical). Thus, the choice of a good kernel is equivalent
to the choice of a good distance function for measuring similarity.

To tackle the imbalanced training-dataset problem, we propose to modify the
kernel by considering the imbalanced data distribution as the prior information.
There are two approaches to modify the kernel. The first approach is to modify
the kernel function K directly in input space I . The second approach is to modify
the kernel matrix K generated by a kernel function (for vector data) or a similarity
measurement (for non-vector data) on the training set X in feature space F . The
first approach relies on the data information in I , and hence the fixed-dimensional
input space must exist. However, the second approach to modify the kernel matrix in
F can bypass this limitation by only relying on the mapped data information in the
feature space. Indeed, as long as the resulting kernel matrix K maintains the positive
(semi-) definite property, the modification is mathematically valid.

In the remainder of this chapter, we first summarize ACT [29], our prior function-
modification approach, to set up the context for discussing KBA. (KBA must obey the
theoretical justification on which ACT is explicitly founded.) We then propose the
kernel-boundary-alignment (KBA) algorithm. This algorithm generalizes the work
of ACT, by modifying the kernel matrix in F , to deal with data that have a fixed-
dimensional vector-space representation and also data that do not (e.g., sequence
data). At the end of Sect. 9.3 we will discuss the differences between KBA and ACT,
and in particular, the additional flexibility that KBA enjoys in adjusting similarity
measures. Table 9.1 lists key notations used in this section.

9.3.1 Conformally Transforming Kernel K

Kernel-based methods, such as SVMs, introduce a mapping function � which
embeds the I into a high-dimensional F as a curved Riemannian manifold S
where the mapped data reside [31]. A Riemannian metric gi j (x) is then defined
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Table 9.1 Notations used
in ACT and KBA

Symbol Meaning

D(x) Conformal transformation function
τ 2

k , τ 2
b Parameters of D(x)

M Nearest neighborhood range
|SI| Number of support instances
|SI+| Number of minority support instances
|SI−| Number of majority support instances
x+,�(x+) A minority support instance
x−,�(x−) A majority support instance
xb,�(xb) An interpolated boundary instance
α Weight parameter of interpolation
Xtrain Set of the training instances
X ∗

b Sets of the interpolated boundary instances
X +

mis Set of the misclassified minority test instances
X −

mis Set of the misclassified majority test instances

for S , which is associated with the kernel function K (x, x′) by

gi j (x) =
(

∂2 K (x, x′)
∂xi∂x ′j

)
x′=x

. (9.2)

The metric gi j shows how a local area around x in I is magnified in F under the
mapping of �. The idea of conformal transformation in SVMs is to enlarge the margin
by increasing the magnification factor gi j (x) along the boundary (represented by
support vectors) and to decrease it around the other points. This could be implemented
by a conformal transformation3 of the related kernel K (x, x′) according to (9.2), so
that the spatial relationship between the data would not be affected too much [19].
Such a (quasi-) conformal transformation can be depicted as

K̃ (x, x′) = D(x)D(x′)K (x, x′). (9.3)

In (9.3), D(x) is a properly defined positive (quasi-) conformal function. D(x) should
be chosen in such a way that the new Riemannian metric g̃i j (x), associated with the
new kernel function K̃ (x, x′), has larger values near the decision boundary. Further-
more, to deal with the skew of the class boundary caused by imbalanced classes, we
magnify g̃i j (x) more in the boundary area close to the minority class. In [29], we
demonstrate that an RBF distance function such as

D(x) =
∑

k∈SV

exp

(
−|x − xk |

τ 2
k

)
(9.4)

is a good choice for D(x).

3 Usually, it is difficult to find a totally-conformal mapping function to transform the kernel. As
suggested in [19], we can choose a quasi-conformal mapping function for kernel transformation.
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In (9.4), we can see that if τ 2
k ’s are fixed (equal) for all support vectors xk’s, D(x)

would be very dependent on the density of support vectors in the neighborhood of x.
To alleviate this problem, we adaptively tune τ 2

k according to the spatial distribution
of support vectors in F . This goal can be achieved by the following equation:

τ 2
k = AVGi∈{|�(xi )−�(xk)|2<M, yi �=yk }

(
|�(xi )−�(xk)|2

)
. (9.5)

In the above equation, the average on the right-hand side comprises all support
vectors in �(xk)’s neighborhood within a radius of M but having a different class
label. If we choose a large M, such as the maximum distance |�(xi )−�(xk)|2, we
might not be able to achieve the local spatial distribution of the support vectors in
the neighborhood of �(x). On the contrary, if we choose a small M, we might not be
able to find enough support vectors in �(xk)’s neighborhood for density calculation.
To alleviate this problem, ACT automatically calculates M as the average distance of
support vectors that are nearest and farthest from �(xk). Setting τ 2

k in this way takes
into consideration the spatial distribution of the support vectors in F . Moreover,
since ACT aims to further increase the margin of SVMs, in (9.5), we only take
into account the support vectors which have different class labels with �(xi ) while
computing τ 2

k . With this method, we could expect to achieve higher magnification
around the margin area, compared to the method of counting the support vectors
without the constraint yi �= yk .

Although the mapping � is unknown, we can use the kernel trick to calculate the
distance in F :

|�(xi )−�(xk)|2 = K (xi , xi )+ K (xk, xk)− 2∗K (xi , xk). (9.6)

Substituting (9.6) into (9.5), we can then calculate the τ 2
k for each support vector,

which can adaptively reflect the spatial distribution of the support vector in F , not
in I .

When the training dataset is very imbalanced, the class boundary tends to be
skewed towards the minority class in the input space I . We hope that the new metric
g̃i j (x) would further magnify the area far away from a minority support vector xi so
that the boundary imbalance could be alleviated. Our algorithm thus assigns a multi-
plier for the τ 2

k in (9.5) to reflect the boundary skew in D(x). We tune τ̃ 2
k as ηpτ

2
k if xk

is a minority support vector; otherwise, we tune it as ηnτ
2
k . Examining (9.4), we can

see that D(x) is a monotonically increasing function of τ 2
k . To increase the metric

g̃i j (x) in an area which is not very close to the support vector xk , it would be better to
choose a larger ηp for the τ 2

k of a minority support vector. For a majority support vec-
tor, we can choose a smaller ηn , so as to minimize influence on the class-boundary.
We empirically demonstrate that ηp and ηn are proportional to the skew of support

vectors, or ηp as O
( |SV−|
|SV+|

)
, and ηn as O

( |SV+|
|SV−|

)
, where |SV+| and |SV−|

denote the number of minority and majority support vectors, respectively. (Please
refer to [29] for more details on the theoretical justification of ACT.)
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9.3.2 Modifying Kernel Matrix K

For data that do not have a fixed-dimensional vector-space representation (e.g.,
sequence data), it may not be feasible to transform kernel function K confor-
mally directly in a vector space. In this situation, KBA modifies kernel matrix K
based on the training-data distribution in F . Kernel matrix K encodes all pairwise-
similarity information between the instances in the training dataset. Hence, modify-
ing the kernel matrix transforms the kernel function indirectly. (Notice that KBA
is certainly applicable to data that do have a vector-space representation, since
K = (

kxx′ = K (x, x′)
)
.) Now, because a training instance x might not be a vec-

tor, we introduce a more general term, support instance,4 to denote x if its embedded
point via K is a support vector in F .

In the following subsections, we will first propose a data-dependent way to esti-
mate the “ideal” class boundary in F (Sect. 9.3.2.1). We then choose a feasible
conformal function D(x), which can assign a larger spatial resolution along the esti-
mated “ideal” boundary in F (Sect. 9.3.2.2). Finally, we present KBA’s iterative
training procedure (Sect. 9.3.2.3).

9.3.2.1 Estimation of Boundary

Performing transformation on K or K aims to magnify the spatial resolution along the
decision boundary, thereby improving the class separation. According to the work
of [19, 29], maximal magnification should be performed along the class boundary.
Unfortunately, locating the class boundary in input space I is difficult [19]. (When
the data do not have a fixed-dimensional vector-space representation, locating the
class boundary in I is impossible.) Instead, KBA locates the class boundary in
feature space F through interpolation. In F , the class boundary learned from the
training data is the center hyperplane in the margin. When the training dataset is
balanced, the center hyperplane approximates the “ideal” boundary well. However,
when the training dataset is imbalanced, the decision boundary is skewed toward the
minority class. To compensate for this skew, KBA gives the maximal magnification to
an interpolated boundary between the center hyperplane and the hyperplane formed
by the majority support instances in F .

Figure 9.3 illustrates how the interpolation procedure works. Let �(x+) and
�(x−) denote a minority support instance and a majority support instance, respec-
tively. A boundary instance �(xb) on the “ideal” boundary should reside between the
center hyperplane (the thick line in the middle of Fig. 9.3) and the majority support-
instance hyperplane (the dash line on the right-hand side of the figure). We can thus
estimate the location of �(xb) by interpolating the positions of �(x+) and �(x−)

as follows:

4 In the KBA algorithm, if x is a support instance, we call both x and its embedded support vector
via K in F support instance.
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Fig. 9.3 Estimate boundary
instances in F

�(xb) = (1− β)�(x+)+ β�(x−),
1

2
≤ β ≤ 1. (9.7)

When the training dataset is balanced, β is 1
2 , and �(xb) lies on the center hyper-

plane (e.g., point B1 in the figure). In this balanced case, the estimated “ideal” bound-
ary coincides with the learned boundary. When the training dataset is imbalanced,
however, we need to adjust β to estimate the “ideal” boundary. The key research
question to answer is: “How to determine β in a data-dependent way?"

We propose a cost function to measure the loss caused by false negatives and false
positives when different values of β are introduced. We then choose the β which can
achieve the minimal cost. Let X +

mis denote the set of the misclassified minority test-
instances and X −

mis the set of the misclassified majority test-instances. We define
the cost functional C(·) for any scalar decreasing loss functions cp(·) and cn(·) as
follows:

C(η) =
|X +

mis|∑
i=1

cp
(
yi f ′(xi )

)+ |X
−

mis|∑
i=1

cn
(
yi f ′(xi )

)
, (9.8)

where f ′(xi ) = f (xi )+η, and 0 ≤ η ≤ 1. In the equation above, f (xi ) is the SVM
predication score for test instance xi , η is the offset of the interpolated boundary from
the center hyperplane, as shown in Fig. 9.3, and yi f ′(xi ) is the associated margin in
F for instance xi with respect to the interpolated class boundary. The loss functions
cp(·) and cn(·) are used to penalize the misclassified5 minorities (false negative)

5 In KBA, we only consider the misclassified test instances among the margin so as to reduce the
influence from the outliers. Their SVM scores f (x) range from −1 to +1.
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and majorities (false positive), respectively. Each loss function, cp(·) or cn(·), can
be chosen as any scalar decreasing function of the margin yi f ′(xi ) according to the
prior knowledge. When no prior knowledge is available, usually, we can choose the
exponential loss function as cp(·) and the log-likelihood loss function as cn(·), i.e,

cp(yi f ′(xi )) = exp(−yi f ′(xi )),

cn(yi f ′(xi )) = ln(1+ exp(−yi f ′(xi ))).

The justification of choosing them as the loss functions comes from boosting
[32], where the exponential loss criterion concentrates much more influence (expo-
nentially) on observations with large negative margins (yi f ′(xi )<0), and the log-
likelihood loss concentrates relatively less influence (linearly) on such observations.
Since KBA aims to concentrate on false negatives, we use the exponential loss as
cp(·) and the log-likelihood loss as cn(·). Notice that since both exponential and
log-likelihood loss functions are convex [32], our cost formulation in (9.8) is also
convex with respect to η.

The optimal η∗ is then chosen by minimizing the total loss induced by all test
instances falling into the margin of SVMs,

η∗ = arg min
η

C(η), 0 ≤ η ≤ 1.

The optimal η∗ can be calculated from ∂C(η)
∂η
= 0 and truncated between 0 and 1.

The above optimization procedure involves with only one unknown variable η. It
can thus be efficiently solved using many numerical analysis methods such as the
conjugate gradient algorithm.

After the optimal position η∗ of the interpolated boundary is calculated, we can
obtain β in (9.7) as follows:

β = 1+ η∗

2
.

9.3.2.2 Selection of D(x)

After interpolating a boundary in the margin, we then magnify the spatial resolution
along the boundary by modifying the Riemannian metric gi j (x) according to (9.2)
and (9.3). When given a prior kernel, gi j (x) is determined by the conformal function
D(x). As what we discussed in 9.3.1, a good D(x) function should be larger when x
is closer to the boundary in F so as to achieve a larger spatial resolution around the
boundary. According to this criteria, we choose D(x) as a set of Gaussian functions:

D(x) = 1

|X ∗
b |

∑
xb∈X ∗

b

exp

(
−|�(x)−�(xb)

2

τ 2
b

)
, (9.9)
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where τ 2
b is a parameter controlling the magnitude of each exponential function in

D(x). For a given instance x, D(x) is calculated as the average of all exponential
functions, each of which is related with one interpolated boundary instance �(xb)

in X ∗
b set. In addition, |�(x)−�(xb)|2 is calculated via the kernel trick as follows

|�(x)−�(xb)|2
= |�(x)− (1− β)�(x+)− β�(x−)|2
= kxx + (1− β)2kx+x+ + β2kx−x− − 2(1− β)kxx+ − 2βkxx− + 2β(1− β)kx+x− ,

(9.10)

where kxx′ is from the kernel matrix K. When the instance x is an unseen test instance,
kxx′ is computed using the pre-defined similarity measurement which generates the
kernel matrix K.

According to [19, 28], we have the following corollary to guarantee the kernel
transformation induced by D(x), as defined in (9.9), performs a mathematically valid
conformal transformation.

Corollary 9.1 The function D(x) defined in (9.9) gives a valid conformal transfor-
mation on feature space F induced by the pre-defined kernel matrix K.

Proof Suppose the mapped vector of an input instance x is �(x) before transforma-
tion and �(x) after transformation. Equation 9.12 defines the kernel transformation
in k̃xx′ = D(x)D(x′)kxx′ . Thus, the cosine value of the angle between two mapped
vectors �(x) and �(x′) can be written as follows [28]:

cos
(
∠

(
�(x),�(x′)

))
= 〈�(x),�(x′)〉
|�(x)| · |�(x′)|

= D(x)D(x′)kxx′√
D(x)D(x)kxx

√
D(x′)D(x′)kx′x′

= kxx′√
kxx
√

kx′x′

= cos
(
∠(�(x),�(x′))

)
,

where we use the fact that D(x) defined in (9.9) is a positive function. We can see
that the kernel transformation by D(x) defined in (9.9) does not affect pairwise-
angles between the mapped data in feature space and hence is a valid conformal
transformation.
�

In KBA, we adaptively choose τ 2
b in a data-dependent way as

τ 2
b = AVG

i∈{Dist2
(xi ,xb)<M

(
Dist2(xi , xb)

)
, (9.11)

where the neighborhood range M is a constant. We choose the threshold M as the
margin value of SVMs. In ACT, we use the locations of support vectors to approx-
imate the decision boundary. Empirically, we found that selecting different M’s for
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different support vectors works better than using a fixed M, though it incurs higher
computational cost. In KBA, we approximate the “ideal” boundary by a set of interpo-
lated boundary instances xb’s. Since xb’s are already located on the decision bound-
ary, our empirical study showed that KBA is not very sensitive to M. We thus fix
M as the margin value of SVMs in KBA. The distance Dist2(xi , xb) between two
interpolated boundary instances xi and xb is |�(xi ) − �(xb)|2 and can be com-
puted using (9.7) and (9.10). Notice that we do not need to scale τ 2

b as in Sect. 9.3.1
for dealing with the imbalanced training-data problem, since we have considered
this factor when interpolating the class boundary and selecting D(x). Compared to
(9.5) in ACT, (9.11) does not include the constraint yi �= yb since the interpolated
boundary instance �(xb) does not have a label attribute.

We believe that our adjusted interpolation procedure and selection of D(x) enjoy
two benefits.

1. Improved class-prediction accuracy. In the imbalanced situation, most of misclas-
sified minority instances fall into the margin area between the center hyperplane
and the majority support-vector hyperplane. By maximizing the spatial resolution
in this area, we expect to move those ambiguous instances as far away from the
decision boundary as possible, so as to improve class-prediction accuracy.

2. Improved imbalance ratio. Since the majority support instances are located nearer
the interpolated boundary than the minority support instances ( 1

2 ≤ β ≤ 1 in
(9.7)), by choosing a proper form of D(x) as in (9.9), we can increase the degree
of similarity between majority support instances and make them close each other
in feature space after kernel transformation. This increase can lead to a reduction
of the number of majority support instances, and hence improve the imbalanced
support-instance ratio.

9.3.2.3 Retraining

After choosing D(x), KBA modifies the given kernel matrix K = (ki j ) in the fol-
lowing way:

k̃i j = D(xi )× D(x j )× ki j . (9.12)

The new kernel matrix K̃ after modification is then put back into the regular SVMs
algorithm for retraining. We have the following corollary, supported by the work of
[28], to guarantee that the new kernel matrix after transformation in (9.12) is a valid
kernel matrix.

Corollary 9.2 When given a positive (semi-) definite kernel matrix K, the kernel
transformation defined in (9.12) results in a new kernel matrix K̃ which is also
positive (semi-) definite.

Proof Since D(x) is a scalar function,

D(x)D(x′) = 〈D(x), D(x′)〉
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is a positive (semi-) definite (psd) kernel function, which is the so-called one-rank ker-
nel in [28]. Denoting d = (di ) as an n-dimensional vector with di = D(xi ), where n
is the number of training instances, we have a matrix ddT which is associated with
the psd function D(x)D(x′) for the training set Xtrain. Hence, ddT is a psd matrix.
On the other hand, (9.12) can be rewritten as

K̃ = ddT ⊗K.

Since the prior kernel K is also psd, using the closure property of kernels under
tensor product ⊗ [28], the new kernel matrix K̃ is a psd matrix, and hence a valid
kernel matrix.

Figure 9.4 summarizes the KBA algorithm. We apply KBA on the training dataset
X train for several iterations or until the imbalanced support-instance ratio cannot be
further decreased. In each iteration, KBA adaptively calculates τ 2

b for each interpo-
lated boundary instance (steps 8–10), based on the distribution in F . Then KBA
updates the training dataset X train using the support-instance set (step 11). Why do
we use the support-instance set as the training data in the next iteration? We do so
because the decision boundary of SVMs will not change if we just use the support-
instance set for retraining [5, 33]. One benefit of doing so is that we can reduce the
computational cost of training and we can also reduce the ratio of the majority-over-
minority support-instances. Finally, KBA updates the kernel matrix and performs
retraining on X train (steps 16–18).

9.4 Experimental Results

Our empirical study examined the effectiveness of the kernel-boundary-alignment
algorithm in two aspects.

1. Vector-space evaluation. We compared KBA with other algorithms for
imbalanced-data learning. We used six UCI datasets and an image dataset to
conduct this evaluation. (We present the datasets shortly.)

2. Non-vector-space evaluation. We evaluated the effectiveness of KBA on a set of
video surveillance data, which are represented as spatio-temporal sequences that
do not have a vector-space representation.

In our experiments, we used C-SVMs as our yardstick to measure how other meth-
ods perform. We employed Laplacian kernels of the form exp(−γ |x−x′|) as K (x, x′)
of C-SVMs. Then we used the following procedure. The dataset was randomly split
into training and test subsets generated in a certain ratio which was empirically
chosen to be optimal on each dataset for the regular C-SVMs. Hyper-parameters
(C and γ ) of K (x, x′) were obtained for each run using sevenfold cross-validation.
All training, validation, and test subsets were sampled in a stratified manner ensuring
each of them had the same negative/positive ratio [10]. We repeated this procedure
seven times, computed average class-prediction accuracy, and compared the results.
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Fig. 9.4 The KBA algorithm

For ACT and KBA, we chose the maximum running iterations T as 5. The detailed
choices of parameters are presented in Sects. 9.4.1.1 and 9.4.1.2.

9.4.1 Vector-Space Evaluation

For this evaluation, we used six UCI datasets and a 116-category image dataset. The
six UCI datasets we experimented with are abalone (19), car (3), segmentation (1),
yeast (5), glass (7), and euthyroid (1). The class-label in the parentheses indicates the
target class we chose. Table 9.2 shows the characteristics of these six datasets orga-
nized according to their negative-to-positive training-instance ratios. The top three
datasets (segmentation, glass, and euthyroid) are not-too-imbalanced. The middle
two (car and yeast) are mildly imbalanced. The bottom dataset (abalone) is the most
imbalanced (the ratio is about 130:1).

The image dataset contains 20K images in 116 categories collected from the Corel
Image CDs.6 Each image is represented by a vector of 144 dimensions including

6 We exclude from our testbed those categories that cannot be classified automatically, such as
“industry”, “Rome”, and “Boston”. (E.g., the Boston category contains various subjects, e.g., archi-
tectures, landscapes, and people, of Boston.)
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Table 9.2 Mean and standard deviation of g-Means accuracy on UCI datasets

Dataset # Attrib # Pos # Neg |SI−|
|SI+| SVMs SMOTE ACT KBA

Segmentation 19 30 180 1.8:1 98.1± 5.1 98.1± 5.1 98.1± 5.1 98.1± 5.1
Glass 10 29 185 2.0:1 89.9± 6.3 91.8± 6.5 93.7± 6.7 93.7± 6.6
Euthyroid 24 238 1762 1.5:1 92.8± 3.6 92.4± 4.3 94.5± 3.0 94.6± 2.9
Car 6 69 1659 1.8:1 99.0± 2.2 99.0± 2.3 99.9± 0.2 99.9± 0.2
Yeast 8 51 1433 3.0:1 59.0± 12.1 69.9± 10.0 78.5± 4.5 82.2± 7.1
Abalone 8 32 4145 9.0:1 0.0± 0.0 0.0± 0.0 51.9± 7.6 57.8± 5.4

Table 9.3 Mean and standard
deviation of AUCs (in %) on
UCI datasets

Dataset SVMs SMOTE ACT KBA

Segmentation 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Glass 96.9± 3.0 97.1± 3.1 98.5± 2.5 98.9± 2.6
Euthyroid 96.6± 2.2 96.0± 2.8 98.2± 1.8 98.8± 1.5
Car 99.8± 0.2 99.8± 0.2 99.9± 0.1 99.9± 0.1
Yeast 89.2± 5.4 91.1± 5.0 93.8± 2.2 95.2± 2.5
Abalone 62.5± 12.1 62.5± 12.1 80.2± 7.1 87.4± 6.8

color, texture, and shape features [6]. To perform class prediction, we employed
the one-per-class (OPC) ensemble [34], which trains 116 classifiers, each of which
predicts the class membership for one class. The class prediction on a testing instance
is decided by voting among the 116 classifiers.

9.4.1.1 Results on UCI Benchmark Datasets

Tables 9.2 and 9.3 report the experimental results with the six UCI datasets. In addi-
tion to conducting experiments with SVMs, ACT, and KBA, we also implemented
and tested one popular minority-oversampling strategy SMOTE [?]. We used the L2-
norm RBF function for D(x) in ACT. In each run, the training and test subsets were
generated in the ratio 6:1. For SMOTE,7 the minority class was over-sampled at 200,
400 and 1,000% for each of three groups of UCI datasets in Table 9.2 respectively.

We report in Table 9.2 using the Kubat’s g-means metric defined as
√

a+ · a−,

where a+ and a− are positive (the target class) and negative testing accuracy,
respectively [10]. Means and standard deviations of the experimental results are
both reported in the table. In all the six datasets, KBA achieves the highest or ties
for the highest accuracy. (The best results are marked in bold.) When the data is
very imbalanced (the last row abalone of Table 9.2), both SVMs and SMOTE cannot
make accurate predictions. KBA achieves 57.8% mean class-prediction accuracy (in
g-means), and shows 5.9 percentile points improvement over ACT.

7 For the datasets in Table 9.2 from top to bottom, for SMOTE, the optimal γ was
0.002,0.003,0.085,0.3,0.5, and 0.084, respectively. For SVMs, ACT, and KBA, the optimal γ was
0.004,0.003,0.08,0.3,0.5, and 0.086, respectively. All optimal C’s were 1,000.
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Table 9.4 Training time (in
second) on UCI datasets

Dataset SVMs SMOTE ACT KBA

Segmentation 7 12 33 30
Glass 8 11 33 30
Euthyroid 12 33 155 120
Car 9 10 55 45
Yeast 8 10 52 40
Abalone 10 25 109 83

We also report in Table 9.3 using AUC [35] defined as the area under an ROC
curve to compare the four strategies on the six UCI datasets. Means and standard
deviations of the AUC scores are reported in the table. For readability, we report
AUCs as percentages between 0 and 100%, instead of between 0 and 1. Again,
KBA achieves the highest mean AUCs in all six UCI datasets. Compared to ACT,
KBA generated better results especially for the last datasets (yeast and abalone),
with 1.4 and 7.2 percentile points improvement, respectively. Such gains bear out
the flexibility and superiority of KBA working in feature space F . Statistically, the
higher AUCs from KBA means that our KBA algorithm will favor in classifying a
positive (target) instance with a higher probability than other algorithms and hence
could well tackle the imbalanced training-dataset problem.

Finally, we report in Table 9.4 the total training time of each method. The time
is reported in seconds by averaging seven runs of training on different subsets of
the training data. Compared to SVMs and SMOTE, both ACT and KBA took longer
time to train. This was because some computational cost were spent on modifying
the kernel of SVMs in a data-dependent way to deal with the imbalanced-training
problem. However, we can see that for ACT , the training time increases only linearly
compared to SVMs. For euthyroid and abalone, which have the largest number of
training instances among the six UCI datasets, ACT’s training time is 14.5 and 9.9
times longer than that of SVMs. For all six datasets, the average increase in training
time is about seven times. In addition, compared to ACT, KBA takes shorter time to
train. For the six UCI datasets, KBA’s average training time is 16.1% shorter than
ACT’s. This is expected, since KBA only used the support-instance set from the last
iteration as the new training set in the current iteration, as described in Sect. 9.3.2.

9.4.1.2 Results on 20K Image Dataset

The image dataset is more imbalanced than the UCI datasets. We first set aside 4K
images to be used as the test subset; the remaining 16K images were used for training
and validation. We compared five schemes: SVMs, BM (the boundary movement
method by changing the parameter b in C-SVMs), BP (the biased penalty method of
assigning different C to penalize different class in C-SVMs), ACT, and KBA. (The
details of BM and BP has been presented in Sect. 9.2.) Notice that in this experiment,
we used the L1-norm RBF function for D(x) in ACT, since the L1-norm RBF works
best for the image dataset [6].
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Table 9.5 Image-dataset
prediction accuracy

Category Ratio SVMs BM BP ACT KBA

Mountain 34:1 24.8 21.2 24.8 33.3 34.5
Snow 37:1 46.4 47.5 47.8 54.6 52.3
Desert 39:1 33.7 31.8 34.3 39.1 36.8
Dog 44:1 32.9 28.5 35.2 41.5 42.7
Woman 54:1 27.9 25.3 26.2 35.3 39.1
Church 66:1 21.8 19.4 21.8 20.0 20.6
Leaf 80:1 26.1 27.2 24.8 32.6 37.2
Lizard 101:1 13.9 11.8 15.1 22.2 25.4
Parrot 263:1 7.1 3.5 7.1 14.3 18.4
Horse 264:1 14.3 10.4 14.3 28.6 32.9
Leopard 283:1 7.7 5.6 7.7 23.1 23.1
Shark 1232:1 0.0 0.0 0.0 16.6 16.6

Table 9.5 presents the prediction accuracy for 12 representative categories out
of 116, sorted by their imbalance ratios. KBA improves the accuracy over SVMs
by 5.3, 5.9, and 15.5 percentile points on the three subgroup datasets, respectively.
KBA achieves the best prediction accuracy for seven out of 12 categories among
all schemes (marked by bold font). BM is inferior to SVMs for almost all cate-
gories. Finally, BP outperforms SVMs, but only slightly. (We have predicted BP’s
ineffectiveness, due to the KKT conditions, in Sect. 9.2.)

Remark 9.1 From Table 9.5, we can see that on this challenging dataset of several
diversified classes, the results of all algorithms, including KBA, are not stellar (class-
predication accuracy is less than 50% for almost all classes). This low accuracy is
caused partly by a large number of classes (116), and partly by not-so-perfect image-
feature extraction. Nevertheless, a 50% prediction accuracy is far better than that of
a random predication, which is 1/116 = 0.86%.

9.4.2 Non-Vector-Space Evaluation

For our multi-camera video-surveillance project, we recorded video data at a cam-
pus parking lot. We collected trajectories depicting five motion patterns: circling
(30 instances), zigzag-pattern or M-pattern (22 instances), back-forth (40 instances),
go-straight (200 instances), and parking (3,161 instances). We divided these events
into benign and suspicious categories and aimed to detect suspicious events with high
accuracy. The benign-event category consists of patterns go-straight and parking, and
the suspicious-event category consists of the other three patterns.

For each experiment, we chose 60% of the data as the training set, keeping the
remaining 40% to use as our testing data. We employed a sequence-alignment kernel
to compare similarity between two trajectories (see [4] for details). Figure 9.5a reports
the sensitivities of using SVMs and three methods of improving the SVMs. All
three methods—BM, BP, and KBA—improve sensitivity. Among the three, KBA
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Fig. 9.5 Sensitivity vs. specificity on trajectory dataset (See color insert). a sensitivity, b specificity

achieves the largest magnitude of improvement over SVMs, around 30 percentile
points. Figure 9.5b shows that all methods maintain high specificity. We note that
BM method performs well for detecting M-pattern and back-forth; however, it does
not do well consistently over all patterns. The performance of the BM method can
be highly dependent on the data distribution. Overall, BP does not work effectively,
which bears out our prediction in Sect. 9.2.

9.5 Concluding Remarks

We have presented the kernel-boundary-alignment algorithm for tackling the imbal-
anced training-data challenge. Through theoretical justifications and empirical stud-
ies, we show this method to be effective. We believe that kernel-boundary alignment is
attractive, not only because of its accuracy, but also because it can be applied to learn-
ing both vector-data and sequence-data (e.g., DNA sequences and spatio-temporal
patterns) through modifying the kernel matrix directly. Future research includes stud-
ies on formulating a robust way of incorporating prior knowledge of the imbalanced
datasets to estimate the “ideal” boundary. Some prior work has been done in incorpo-
rating the prior knowledge into the optimization formulation of SVMs, such as [36].
However, the incorporation is usually not robust and very depends on the prediction
rules of the prior knowledge. Researchers can look into a more robust way and apply
it on KBA.
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Chapter 10
PSVM: Parallelizing Support Vector Machines
on Distributed Computers

Abstract Support Vector Machines (SVMs) suffer from a widely recognized scala-
bility problem in both memory use and computational time. To improve scalability,
we have developed a parallel SVM algorithm (PSVM), which reduces memory use
through performing a row-based, approximate matrix factorization, and which loads
only essential data to each machine to perform parallel computation. Let n denote
the number of training instances, p the reduced matrix dimension after factorization
(p is significantly smaller than n) and m the number of machines. PSVM reduces
the memory requirement by the Interior Point Method from O(n2) to O(np/m),
and improves computation time to O(np2/m). Empirical studies show PSVM to be
effective. This chapter† was first published in NIPS’07 [1] and the open-source code
was made available at [2].

Keywords Support vector machines · Interior point method · Incomplete Cholesky
factorization ·MPI · Distributed systems ·Matrix factorization

10.1 Introduction

Support Vector Machines (SVMs) are a core machine learning technology. They
enjoy strong theoretical foundations and excellent empirical successes in many pat-
tern recognition applications. Unfortunately, SVMs do not scale well with respect to
the size of training data. Given n training instances, the time to train an SVM model
is about O(n2) in the average case, and so is the memory required by the interior
point method (IPM) to solve the quadratic optimization problem. These excessive
costs make SVMs impractical for large-scale applications.

† © NIPS, 2007. This chapter is a minor revision of the author’s work with Kaihua Zhu, Hongjie
Bai, Hao Wang, Zhihuan Qiu, Jian Li, and Hang Cui published in NIPS’07 and then in Scaling Up
Machine Learning by Cambridge University Press. Permission to publish this chapter is granted
by copyright agreements.

E. Y. Chang, Foundations of Large-Scale Multimedia Information 213
Management and Retrieval, DOI: 10.1007/978-3-642-20429-6_10,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011
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Let us examine the resource bottlenecks of SVMs in a binary classification set-
ting to explain our proposed solution. Given a set of training data X = {(xi , yi )|
xi ∈ Rd}ni=1, where xi is an observation vector, yi ∈ {−1, 1} is the class label of xi ,
and n is the size of X , we apply SVMs on X to train a binary classifier. SVMs aim
to search a hyperplane in the Reproducing Kernel Hilbert Space (RKHS) that max-
imizes the margin between the two classes of data in X with the smallest training
error [3]. This problem can be formulated as the following quadratic optimization
problem:

min P(w, b, ξ) = 1

2
‖w‖22 + C

n∑
i=1

ξi

s.t. 1− yi (wT φ(xi )+ b) ≤ ξi , ξi > 0,

(10.1)

where w is a weighting vector, b is a threshold, C a regularization hyperparameter,
and φ(·) a basis function which maps xi to an RKHS space. The decision function of
SVMs is f (x) = wT φ(x)+ b, where w and b are attained by solving P in (10.1).
The optimization problem in (10.1) is called the primal formulation of SVMs with L1
loss. It is hard to solve P directly, partly because the explicit mapping via φ(·) can
make the problem intractable and partly because the mapping function φ(·) is often
unknown. The method of Lagrangian multipliers is thus introduced to transform the
primal formulation into the dual one

min D(α) = 1

2
αT Qα − αT 1

s.t. 0 ≤ α ≤ C, yT α = 0,

(10.2)

where [Q]i j = yi y jφ
T (xi )φ(x j ), and α ∈ Rn is the Lagrangian multiplier variable

(or dual variable). The weighting vector w is related with α in w =∑n
i=1 αiφ(xi ).

The dual formulation D(α) requires an inner product of φ(xi ) and φ(x j ). SVMs
utilize the kernel trick by specifying a kernel function to define the inner-product
K (xi , x j ) = φT (xi )φ(x j ). We thus can rewrite [Q]i j as yi y j K (xi , x j ). When the
given kernel function K is psd (positive semi-definite), the dual problem D(α) is a
convex Quadratic Programming (QP) problem with linear constraints, which can be
solved via the Interior-Point method (IPM) [4]. Both the computational and memory
bottlenecks of the SVM training is the IPM solver to the dual formulation of SVMs
in (10.2).

Currently, the most effective IPM algorithm is the primal–dual IPM [4]. The
principal idea of the primal–dual IPM is to remove inequality constraints using a
barrier function and then resort to the iterative Newton’s method to solve the KKT
linear system related to the Hessian matrix Q in D(α). The computational cost is
O(n3) and the memory usage O(n2).

In this work, we propose a parallel SVM algorithm (PSVM) to reduce memory
use and to parallelize both data loading and computation. Given n training instances
each with d dimensions, PSVM first loads the training data in a round-robin fash-
ion onto m machines. The memory requirement per machine is O(nd/m). Next,
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PSVM performs a parallel row-based Incomplete Cholesky Factorization (ICF) on
the loaded data. At the end of parallel ICF, each machine stores only a fraction of
the factorized matrix, which takes up space of O(np/m), where p is the column
dimension of the factorized matrix. (Typically, p can be set to be about

√
n without

noticeably degrading training accuracy.) PSVM reduces memory use of IPM from
O(n2) to O(np/m), where p/m is much smaller than n. PSVM then performs paral-
lel IPM to solve the quadratic optimization problem in (10.2). The computation time
is improved from about O(n2) of a decomposition-based algorithm (e.g., SVMLight
[5], LIBSVM [6], SMO [7], and SimpleSVM [8]) to O(np2/m). This work’s main
contributions are: (1) PSVM achieves memory reduction and computation speedup
via a parallel ICF algorithm and parallel IPM. (2) PSVM handles kernels (in con-
trast to other algorithmic approaches [9, 10]). (3) We have implemented PSVM on
our parallel computing infrastructures. PSVM effectively speeds up training time for
large-scale tasks while maintaining high training accuracy.

PSVM is a practical, parallel approximate implementation to speed up SVM
training on today’s distributed computing infrastructures for dealing with Web-scale
problems. What we do not claim are as follows: (1) We make no claim that PSVM
is the sole solution to speed up SVMs. Algorithmic approaches such as [9–12] can
be more effective when memory is not a constraint or kernels are not used. (2) We
do not claim that the algorithmic approach is the only avenue to speed up SVM
training. Data-processing approaches such as [13] can divide a serial algorithm (e.g.,
LIBSVM) into subtasks on subsets of training data to achieve good speedup. (Data-
processing and algorithmic approaches complement each other, and can be used
together to handle large-scale training.)

10.2 Interior Point Method With Incomplete Cholesky
Factorization

Interior Point Method (IPM) is one of the state-of-the-art algorithms to solve convex
optimization problem with inequality constraints and the primal–dual IPM is one of
the most efficient IPM methods. Whereas the detailed derivation could be found in
[4, 14], this section briefly reviews primal–dual IPM.

First, we take (10.2) as a primal problem (it is the dual form of SVMs, however,
it is treated as primal optimization problem here) and its dual form can be written as

max
ν,λ,ξ

D ′(α,λ) = −1

2
αT Qα − C

n∑
i=1

λi

s.t. −Qα − νy+ ξ − λ = −1

ξ ≥ 0, λ ≥ 0,

(10.3)

where λ, ξ and ν are the dual variables in SVMs for constraints α ≤ C, α ≥
0 and yT ,α = 0, respectively.
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Fig. 10.1 Interior Point Method

The basic idea of the primal–dual IPM is to optimize variables α, λ, ξ, and ν

concurrently. The algorithm applies Newton’s method on each variable iteratively to
gradually reach the optimal solution. The basic flow is depicted in Fig. 10.1, where
μ is a tuning parameter and the surrogate gap

η̂ = C
n∑

i=1

λi − αT λ+ αT ξ (10.4)

is used to compute t and check convergence. We omit how to compute s here as all
the details could be found in [14].

Newton update, the core step of IPM, could be written as solving the following
equation ⎛

⎜⎜⎝
Qnn Inn −Inn yn

−diag(λ)nn diag(C− α)nn 0nn 0n

diag(ξ)nn 0nn diag(α)nn 0n

yT 0T
n 0T

n 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�x
�λ

�ξ

�ν

⎞
⎟⎟⎠ ,

= −

⎛
⎜⎜⎝

Qα − 1n + νy+ λ− ξ

vec(λi (C − αi )− 1
t )

vec(ξiαi − 1
t )

yT α

⎞
⎟⎟⎠ (10.5)

where diag(v) means generating an n×n square diagonal matrix whose diagonal ele-
ment in the i th row is vi ; vec(αi ) means generating a vector with the i th component
as αi ; Inn is an identity matrix.

IPM boils down to solving the following equations in the Newton step iteratively.

�λ = −λ+ vec

(
1

t (C − αi )

)
+ diag

(
λi

C − αi

)
�x (10.6)

�ξ = −ξ + vec

(
1

tαi

)
− diag

(
ξi

αi

)
�x (10.7)
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�ν = yT �−1z+ yT α

yT �−1y
(10.8)

D = diag

(
ξi

αi
+ λi

C − αi

)
(10.9)

�x = �−1(z− y�ν), (10.10)

where � and z depend only on [α,λ, ξ , ν] from the last iteration as follows:

� = Q+ diag

(
ξi

αi
+ λi

C − αi

)
(10.11)

z = −Qα + 1n − νy+ 1

t
vec

(
1

αi
− 1

C − αi

)
. (10.12)

The computation bottleneck is on matrix inverse, which takes place on � for solv-
ing �ν in (10.8) and �x in (10.10). We will mainly focus on this part as the other
computations are trivial. Obviously, when the data set size is large, it is virtually
infeasible to compute inversion of an n × n matrix due to resource and time con-
straints. It is beneficial to employ matrix factorization to factorize Q. As Q is positive
semi definite, there always exists an exact Cholesky factor: a lower-triangular matrix
G that G ∈ R

n∗n and Q = GGT . If we truncate G to H(H ∈ R
n∗p and p 	 n) by

keeping only the most important p columns (i.e., minimizing trace(Q−HHT ), this
will become incomplete Cholesky factorization and Q ≈ HHT . In other words, H
is somehow “close” to Q’s exact Cholesky factor G.

If we factorize Q this way and D is an identity matrix, according to SMW (the
Sherman–Morrison–Woodbury formula) [15], we can write �−1 as

�−1 = (D+Q)−1 ≈ (D+HHT )−1

= D−1 − D−1H(I+HT D−1H)−1HT D−1,

where (I+HT D−1H) is a p× p matrix. As p is usually small, it is practically feasible
to compute it. In the following section, we will introduce how to parallelize the key
steps of IPM to further speed it up.

10.3 PSVM Algorithm

The key step of PSVM is parallel ICF (PICF). Traditional column-based ICF [16, 17]
can reduce computational cost, but the initial memory requirement is O(np), and
hence not practical for very large data set. PSVM devises parallel row-based ICF
(PICF) as its initial step, which loads training instances onto parallel machines and
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Fig. 10.2 Row-based PICF

performs factorization simultaneously on these machines. Once PICF has loaded n
training data distributedly on m machines, and reduced the size of the kernel matrix
through factorization, IPM can be solved on parallel machines simultaneously. We
present PICF first, and then describe how IPM takes advantage of PICF (Fig. 10.2).

10.3.1 Parallel ICF

ICF can approximate Q (Q ∈ Rn×n) by a smaller matrix H (H ∈ Rn×p, p 	 n),
i.e., Q ≈ HHT . ICF, together with SMW (the Sherman–Morrison–Woodbury for-
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mula), can greatly reduce the computational complexity in solving an n × n linear
system. The work of [16] provides a theoretical analysis of how ICF influences the
optimization problem in (10.2). They proved that the error of the optimal objective
value introduced by ICF is bounded by C2lε/2, where C is the hyperparameter of
SVM, l is the number of support vectors, and ε is the bound of ICF approximation
(i.e. trace(Q − HHT ) < ε). Experimental results in Sect. 10.4 show that when p is
set to

√
n, the error can be negligible.

Our row-based parallel ICF (PICF) works as follows: Let vector v be the diagonal
of Q and suppose the pivots (the largest diagonal values) are {i1, i2, . . . , ik}, the kth
iteration of ICF computes three equations:

H(ik, k) = √
v(ik), (10.13)

H(Jk, k) = (Q(Jk, k)−
k−1∑
j=1

H(Jk, j)H(ik, j))/H(ik, k), (10.14)

v(Jk) = v(Jk)− H(Jk, k)2, (10.15)

where Jk denotes the complement of {i1, i2, . . . , ik}. The algorithm iterates until the
approximation of Q by Hk H T

k (measured by trace(Q − Hk H T
k )) is satisfactory, or

the predefined maximum iterations (or say, the desired rank of the ICF matrix) p is
reached.

As suggested by Golub, a parallelized ICF algorithm can be obtained by con-
straining the parallelized Cholesky Factorization algorithm, iterating at most p times.
However, in the proposed algorithm [15], matrix H is distributed by columns in a
round-robin way on m machines (hence we call it column-based parallelized ICF).
Such column-based approach is optimal for the single-machine setting, but cannot
gain full benefit from parallelization for two major reasons:

1. Large memory requirement. All training data are needed for each machine to
calculate Q(Jk, k). Therefore, each machine must be able to store a local copy of
the training data.

2. Limited parallelizable computation. Only the inner product calculation

k−1∑
j=1

H(Jk, j)H(ik, j)

in (10.14) can be parallelized. The calculation of pivot selection, the summation
of local inner product result, column calculation in (10.14), and the vector update
in (10.15) must be performed on one single machine.

To remedy these shortcomings of the column-based approach, we propose a row-
based approach to parallelize ICF, which we summarize in Fig. 10.3. Our row-based
approach starts by initializing variables and loading training data onto m machines
in a round-robin fashion (steps 1–5). The algorithm then performs the ICF main loop
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until the termination criteria are satisfied (e.g., the rank of matrix H reaches p). In
the main loop, PICF performs five tasks in each iteration k:

1. Distributedly find a pivot, which is the largest value in the diagonal v of matrix Q
(steps 7–10). Notice that PICF computes only needed elements in Q from training
data, and it does not store Q.

2. Set the machine where the pivot resides as the master (step 11).
3. On the master, PICF calculates H(ik, k) according to (13) (step 12).
4. The master then broadcasts the pivot instance xik and the pivot row H(ik, :)

(step 13).
5. Distributedly compute (10.14) and (10.15) (steps 14 and 15).

At the end of the algorithm, H is stored distributedly on m machines, ready for
parallel IPM (presented in the next section). PICF enjoys three advantages: parallel
memory use (O(np/m)), parallel computation (O(p2n/m)), and low communi-
cation overhead (O(p2 log(m))). Particularly on the communication overhead, its
fraction of the entire computation time shrinks as the problem size grows. We will
verify this in the experimental section. This pattern permits a larger problem to be
solved on more machines to take advantage of parallel memory use and computation.

Example
We use a simple example to explain how PICF works. Suppose we have three

machines (or processors) and eight data instances, PICF first loads the data in a
round-robin fashion on the three machines (numbered as #0, #1, and #2).
Processor Data (label id : value [id : value · · · ]) Row index

# 0 − 1 1:0.943578 2:0.397088 0
# 1 − 1 1:0.397835 2:0.097548 1
# 2 1 1:0.821040 2:0.197176 2
# 0 1 1:0.592864 2:0.452824 3
# 1 1 1:0.743459 2:0.605765 4
# 2 − 1 1:0.406734 2:0.687923 5
# 0 − 1 1:0.398752 2:0.820476 6
# 1 − 1 1:0.592647 2:0.224432 7

Suppose the Laplacian kernel is used:

K (xi , x j ) = e−γ ||xi−x j ||,

and we set γ = 1.000. The first five columns of Qi j = yi y j K (xi , x j ) is

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000000 0.429436 −0.724372 −0.666010 −0.666010
0.429436 1.000000 −0.592839 −0.576774 −0.425776
−0.724372 −0.592839 1.000000 0.616422 0.614977
−0.666010 −0.576774 0.616422 1.000000 0.738203
−0.664450 −0.425776 0.614977 0.738203 1.000000

0.437063 0.549210 −0.404520 −0.656240 −0.657781
0.379761 0.484884 −0.351485 −0.570202 −0.571542
0.592392 0.724919 −0.774414 −0.795640 −0.587344

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

8×5
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Fig. 10.3 Speedup and overheads of three datasets (see color insert). a Image (200k) speedup, b
Covertype (500k) speedup, c RCV (800k) speedup, d Image (200k) overhead, e Covertype (500k)
overhead, f RCV (800k) overhead, g Image (200k) fraction, h Covertype (500k) fraction, i RCV
(800k) fraction
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Note that the kernel matrix doesn’t reside in memory, it is computed on-demand
according to (10.6).

10.3.1.1 Iteration k = 0

PICF initializes v , whose elements are all one at the start. The elements of v are
stored on the same machines as their corresponding xi .

processor local diagonal vector v row index

#0 v =
⎛
⎝ 1.000000

1.000000
1.000000

⎞
⎠ 0

3
6

processor local diagonal vector v row index

#1 v =
⎛
⎝ 1.000000

1.000000
1.000000

⎞
⎠ 1

4
7

processor local diagonal vector v row index

#1 v =
(

1.000000
1.000000

)
2
5

PICF next chooses the pivot. Each machine finds the maximum pivot and its index,
and then broadcasts to the rest of the machines. Each machine then finds the largest
value, and its corresponding index is the index of the global pivot. PICF sets the
machine where the pivot resides as the master machine. In the first iteration, since
all elements of v are one, the master can be set to machine #0. The global pivot value
is 1, and its index 0.

Once the global pivot has been identified, PICF follows (10.13) to compute
H(i0, 0) = H(0, 0) = √v(i0) =

√
1 = 1. The master broadcasts the pivot instance

and the first k+ 1 value (in iteration k = 0, the master broadcasts only one value) of
the pivot row of H (the i0th row of H). That is, the master broadcasts pivot instance
x0 = −11 : 0.9435782 : 0.397088 and 1.

Next, each machine can compute rows of the first column of H according to
(10.14). Take H(4, 0) as an example, which is located at machine #1. Q(4,0) can
be computed by the Laplacian kernel function using the broadcast pivot instance
x0 and x4 on machine #1 :

Q(4, 0) = y4 y0 K (x4, x0) = y4 y0 exp(−γ ||x4 − x0||) = −0.664450.

H(0,0) can be obtained from the pivot row of H, which has been broadcast in the
previous step. We thus get
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H(4, 0) = (Q(4, 0)−
−1∑
j=0

H(4, j)H(0, j))/H(0, 0) = Q(4, 0)/H(0, 0) = −0.664450.

Similarly, the other elements of the first column of H can be calculated on their
machines. The result on machine #0 is as follows:

H0 =
⎛
⎝ 1.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000

⎞
⎠

↓⎛
⎝ 1.000000 0.000000 0.000000 0.000000
−0.666010 0.000000 0.000000 0.000000
0.37961 0.000000 0.000000 0.000000

⎞
⎠

The final step of the first iteration updates v distributedly according to (10.15).

v =
⎛
⎝ v(0)− H(0, 0)2

v(3)− H(3, 0)2

v(6)− H(6, 0)2

⎞
⎠ =

⎛
⎝ 1.000000− 1.0000002

1.000000− (−0.666010)2

1.000000− 0.3797612

⎞
⎠ =

⎛
⎝ 0.000000

0.556430
0.855782

⎞
⎠

10.3.1.2 Iteration k = 1

PICF again, obtains local pivot values (the largest element of v on each machine, and
their indexes.

#0 local PivotV alue1,0 = 0.855782 local Pivot I ndex1,0 = 6

#1 local PivotV alue1,1 = 0.815585 local Pivot I ndex1,1 = 3

#2 local PivotV alue1,2 = 0.808976 local Pivot I ndex1,2 = 5

After the above information has been broadcast and received, the global pivot value
is identified as 0.855782, and the global pivot index i1 = 6. The id of the master
machine is 6%3 = 0. Next, PICF calculates H(i1, 1) on the master according to
(10.13). H(6, 1) = √v(i6) =

√
0.855782 = 0.925085. PICF then broadcasts the

pivot instance x6, and the first k + 1 elements on the pivot row of H, which are
0.379761 and 0.925085. Each machine then computes the second column of H
according to (10.14). The result on machine #0 is as follows:

H0 =
⎛
⎝ 1.000000 0.000000 0.000000 0.000000
−0.666010 0.000000 0.000000 0.000000
0.379761 0.000000 0.000000 0.000000

⎞
⎠

↓⎛
⎝ 1.000000 0.000000 0.000000 0.000000
−0.666010 −0.342972 0.000000 0.000000
0.37961 0.925085 0.000000 0.000000

⎞
⎠
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In the final step of the second iteration, PICF updates v distributedly according to
(10.15).

v =
⎛
⎝ v(0)− H(0, 1)2

v(3)− H(3, 1)2

v(6)− H(6, 1)2

⎞
⎠ =

⎛
⎝ 0.000000− 0.0000002

0.556430− (−0.342972)2

0.855872− 0.9250852

⎞
⎠ =

⎛
⎝ 0.000000

0.438801
0.000000

⎞
⎠

10.3.1.3 Iteration k = 3

We fast-forward to show the end result of the fourth and final iteration of this example.
The ICF matrix is obtained as follows:

Computer ICF matrix H Row index

# 0 1.000000 0.000000 0.000000 0.000000 0
# 1 0.429436 0.347862 0.833413 0.000000 1
# 2 − 0.724372 − 0.082584 − 0.303618 0.147541 2
# 0 − 0.666010 − 0.342972 − 0.205731 0.260080 3
# 1 − 0.664450 − 0.345060 − 0.024483 0.662451 4
# 2 0.437063 0.759837 0.116631 − 0.154472 5
# 0 0.379761 0.925085 0.000000 0.000000 6
# 1 0.592392 0.247443 0.461294 − 0.146505 7

10.3.2 Parallel IPM

Solving IPM can be both memory and computation intensive. The computation bot-
tleneck is on matrix inverse, which takes place on � for solving �ν in (10.8) and �x
in (10.10). Equation 10.11 shows that � depends on Q, and we have shown that Q
can be approximated through PICF by HHT . Therefore, the bottleneck of the Newton
step can be sped up from O(n3) to O(p2n), and be parallelized to O(p2n/m).

10.3.2.1 Parallel Data Loading

To minimize both storage and communication cost, PIPM stores data distributedly
as follows:

• Distribute matrix data. H is distributedly stored at the end of PICF.
• Distribute n × 1 vector data. All n × 1 vectors are distributed in a round-robin

fashion on m machines. These vectors are z, α, ξ , λ, �z, �α, �ξ , and �λ.
• Replicate global scalar data. Every machine caches a copy of global data including

ν, t, n, and �ν. Whenever a scalar is changed, a broadcast is required to maintain
global consistency.
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10.3.2.2 Parallel computation of �ν

Rather than walking through all equations, we describe how PIPM solves (10.8),
where �−1 appears twice. An interesting observation is that parallelizing �−1z (or
�−1 y) is simpler than parallelizing �−1. Let us explain how parallelizing �−1z
works, and parallelizing �−1 y can follow suit.

According to SMW (the Sherman–Morrison–Woodbury formula), we can write
�−1z as

�−1z = (D + Q)−1z ≈ (D + H H T )−1z

= D−1z − D−1 H(I + H T D−1 H)−1 H T D−1z

= D−1z − D−1 H(GGT )−1 H T D−1z.

�−1z can be computed in four steps:

1. Compute D−1z.
D can be derived from locally stored vectors, following (10.9). D−1z is an n × 1
vector, and can be computed locally on each of the m machines.

2. Compute t1 = H T D−1z.
Every machine stores some rows of H and their corresponding part of D−1z. This
step can be computed locally on each machine. The results are sent to the master
(which can be a randomly picked machine for all PIPM iterations) to aggregate
into t1 for the next step.

3. Compute (GGT )−1t1.
This step is completed on the master, since it has all the required data. G can
be obtained from I + H T D−1 H by Cholesky Factorization. Computing t2 =
(GGT )−1t1 is equivalent to solving the linear equation system t1 = (GGT )t2.
PIPM first solves t1 = Gy0, then y0 = GT t2. Once it has obtained y0, PIPM can
solve GT t2 = y0 to obtain t2. The master then broadcasts t2 to all machines.

4. Compute D−1 Ht2.
All machines have a copy of t2, and can compute D−1 Ht2 locally to solve for
�−1z.

Similarly, �−1 y can be computed at the same time. Once we have obtained both,
we can solve �ν according to (10.8).

10.3.3 Computing Parameter b and Writing Back

When the IPM iteration stops, we have the value of α and hence the classification
function

f (x) =
Ns∑

i=1

αi yi k(si , x)+ b.
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Here Ns is the number of support vectors and si are support vectors. In order to com-
plete this classification function, b must be computed. According to the SVM model,
given a support vector s, we obtain one of the two results for f (s) : f (s) = +1,
if ys = +1 or f (s) = −1, if ys = −1.

In practice, we can select M, say 1,000, support vectors and compute the average
of the bs:

b = 1

M

M∑
j=1

(ys j −
Ns∑

i=1

αi yi k(si , s j )).

Since the support vectors are distributed on m machines, PSVM collects them
in parallel to compute b. For this purpose, we transform the above formula into the
following:

b = 1

M

M∑
j=1

ys j −
1

M

Ns∑
i=1

αi yi

M∑
j=1

k(si , s j ).

The M support vectors and their labels ys are first broadcast to all machines. All
m machines then compute their local results. Finally, the local results are summed
up by a reduce operation [18]. When b has been computed, the last task of PSVM is
to store the model file on GFS [19] for later classification use.

10.4 Experiments

We conducted experiments on PSVM to evaluate its: (1) class-prediction accuracy, (2)
scalability on large datasets, and (3) overheads. The experiments were conducted on
up to 500 machines in our data center. Not all machines are identically configured;
however, each machine is configured with a CPU faster than 2 GHz and memory
larger than 4 GB.

10.4.1 Class-Prediction Accuracy

PSVM employs PICF to approximate an n×n kernel matrix Q with an n× p matrix
H. This experiment evaluated how the choice of p affects class-prediction accuracy.
We set p of PSVM to nt , where t ranges from 0.1 to 0.5 incremented by 0.1, and
compared its class-prediction accuracy with that achieved by LIBSVM. The first
two columns of Table 10.1 enumerate the datasets1 and their sizes with which we

1 RCV is located at http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004_rcv1v2_
README.ht. The image set is a binary-class image dataset consisting of 144 perceptual
features. The others are obtained from http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets. We
separated the datasets into training/testing (see Table 10.1 for the splits) and performed cross
validation.

http://jmlr.csail.mit.edu/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.ht
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets
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Table 10.1 Class-prediction accuracy with different p settings

Dataset Samples (train/test) LIBSVM p = n0.1 p = n0.2 p = n0.3 p = n0.4 p = n0.5

svmguide1 3,089/4,000 0.9608 0.6563 0.9 0.917 0.9495 0.9593
mushrooms 7,500/624 1 0.9904 0.9920 1 1 1
news20 18,000/1,996 0.7835 0.6949 0.6949 0.6969 0.7806 0.7811
Image 199,957/84,507 0.849 0.7293 0.7210 0.8041 0.8121 0.8258
CoverType 522,910/58,102 0.9769 0.9764 0.9762 0.9766 0.9761 0.9766
RCV 781,265/23,149 0.9575 0.8527 0.8586 0.8616 0.9065 0.9264

experimented. We use Gaussian kernel, and select the best C and σ for LIBSVM and
PSVM, respectively. For CoverType and RCV, we loosed the terminate condition (set
-e 1, default 0.001) and used shrink heuristics (set -h 1) to make LIBSVM terminate
within several days. The table shows that when t is set to 0.5 (or p = √n), the
class-prediction accuracy of PSVM approaches that of LIBSVM.

We compared only with LIBSVM because it is arguably the best open-source SVM
implementation in both accuracy and speed. Another possible candidate is CVM [12].
Our experimental result on the CoverType dataset outperforms the result reported by
CVM on the same dataset in both accuracy and speed. Moreover, CVM’s training
time has been shown unpredictable by [20], since the training time is sensitive to
the selection of stop criteria and hyper-parameters. For how we position PSVM with
respect to other related work, please refer to our disclaimer in the end of Sect. 10.1.

10.4.2 Scalability

For scalability experiments, we used three large datasets. Table 10.2 reports the
speedup of PSVM on up to m = 500 machines. Since when a dataset size is large, a
single machine cannot store the factorized matrix H in its local memory, we cannot
obtain the running time of PSVM on one machine. We thus used 10 machines as
the baseline to measure the speedup of using more than 10 machines. To quantify
speedup, we made an assumption that the speedup of using 10 machines is 10, com-
pared to using one machine. This assumption is reasonable for our experiments, since
PSVM does enjoy linear speedup when the number of machines is up to 30.

We trained PSVM three times for each dataset-m combination. The speedup
reported in the table is the average of three runs with standard deviation provided in
brackets. The observed variance in speedup was caused by the variance of machine
loads, as all machines were shared with other tasks running on our data centers. We
can observe in Table 10.2 that the larger is the dataset, the better is the speedup.
Figure 10.3a–c plot the speedup of Image, CoverType, and RCV, respectively. All
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Table 10.2 Speedup (p is set to
√

n); LIBSVM training time is reported on the last row for reference

Image (200k) CoverType (500k) RCV (800k)
Machines Time (s) Speedup Time (s) Speedup Time (s) Speedup

10 1,958 (9) 10∗ 16,818 (442) 10∗ 45,135(1373) 10∗
30 572 (8) 34.2 5,591 (10) 30.1 12,289 (98) 36.7
50 473 (14) 41.4 3,598 (60) 46.8 7,695 (92) 58.7
100 330 (47) 59.4 2,082 (29) 80.8 4,992 (34) 90.4
150 274 (40) 71.4 1,865 (93) 90.2 3,313 (59) 136.3
200 294 (41) 66.7 1,416 (24) 118.7 3,163 (69) 142.7
250 397 (78) 49.4 1,405 (115) 119.7 2,719 (203) 166.0
500 814 (123) 24.1 1,655 (34) 101.6 2,671 (193) 169.0
LIBSVM 4,334 NA NA 28,149 NA NA 184,199 NA NA

datasets enjoy a linear speedup2 when the number of machines is moderate. For
instance, PSVM achieves linear speedup on RCV when running on up to around
100 machines. PSVM scales well till around 250 machines. After that, adding more
machines receives diminishing returns. This result led to our examination on the
overheads of PSVM, presented next.

10.4.3 Overheads

PSVM cannot achieve linear speedup when the number of machines continues to
increase beyond a data-size-dependent threshold. This is expected due to communi-
cation and synchronization overheads. Communication time is incurred when mes-
sage passing takes place between machines. Synchronization overhead is incurred
when the master machine waits for task completion on the slowest machine. (The
master could wait forever if a child machine fails. We have implemented a check-
point scheme to deal with this issue.)

The running time consists of three parts: computation (Comp), communication
(Comm), and synchronization (Sync). Figure 10.3d–f show how Comm and Sync
overheads influence the speedup curves. In the figures, we draw on the top the com-
putation only line (Comp), which approaches the linear speedup line. Computation
speedup can become sublinear when adding machines beyond a threshold. This
is because the computation bottleneck of the unparallelizable step 12 in Fig. 10.3
(which computation time is O(p2)). When m is small, this bottleneck is insignifi-
cant in the total computation time. According to the Amdahl’s law; however, even
a small fraction of unparallelizable computation can cap speedup. Fortunately, the

2 We observed super-linear speedup when 30 machines were used for training Image and when up to
50 machines were used for RCV. We believe that this super-linear speedup resulted from performance
gain in the memory management system when the physical memory was not in contention with
other processes running at the data center. This benefit was cancelled by other overheads (explained
in Sect. 10.4.3) when more machines were employed.
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larger the dataset is, the smaller is this unparallelizable fraction, which is O(m/n).
Therefore, more machines (larger m) can be employed for larger datasets (larger n)
to gain speedup.

When communication overhead or synchronization overhead is accounted for
(the Comp + Comm line and the Comp + Comm + Sync line), the speedup deteri-
orates. Between the two overheads, the synchronization overhead does not impact
speedup as much as the communication overhead does. Figure 10.3g–i present the
percentage of Comp, Comm, and Sync in total running time. The synchronization
overhead maintains about the same percentage when m increases, whereas the per-
centage of communication overhead grows with m. As mentioned in Sect. 10.3.1, the
communication overhead is O(p2 log(m)), growing sub-linearly with m. But since
the computation time per node decreases as m increases, the fraction of the com-
munication overhead grows with m. Therefore, PSVM must select a proper m for a
training task to maximize the benefit of parallelization.

10.5 Concluding Remarks

In this chapter, we have shown how SVMs can be parallelized to achieve scalable
performance. PSVM distributively loads training data on parallel machines, reducing
memory requirement through approximate factorization on the kernel matrix. PSVM
solves IPM in parallel by cleverly arranging computation order. Through empirical
studies, we have shown that PSVM does not sacrifice class-prediction accuracy sig-
nificantly for scalability, and it scales well with training data size. Open source code
of PSVM was made available at [2].
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Chapter 11
Approximate High-Dimensional
Indexing with Kernel

Abstract Indexing high-dimensional data for efficient nearest-neighbor searches
poses challenges. It is well known that when data dimension is very high, the search
time can exceed the time required for performing a linear scan on the entire dataset.
To alleviate this dimensionality curse, indexing schemes such as locality sensitive
hashing (LSH) and M-trees were proposed to perform approximate searches. In this
chapter,† we present a hypersphere indexer, named SphereDex, to perform such
searches. SphereDex partitions the data space using concentric hyperspheres. By
exploiting geometric properties, SphereDex can perform effective pruning. Our
empirical study shows that SphereDex enjoys three advantages over competing
schemes for achieving the same level of search accuracy. First, SphereDex requires
fewer disk-seek operations. Second, SphereDex can maintain disk accesses sequen-
tial most of the time. And third, it requires fewer distance computations. More impor-
tantly, SphereDex can be extended to support hyperplane queries for Support Vector
Machines (SVMs) or the kernel methods. In classification problems using SVMs, the
data instances closest to the hyperplane are considered to be most ambiguous, and
the ones farthest away from the hyperplane to be most certain (or most confident)
regarding their class membership. Hyperplane queries, rather than point queries, are
essential to supporting fast retrieval of applications using SVMs. In the end of this
chapter, we illustrate how SphereDex can be extended to support both nearest and
farthest neighbor hyperplane query processing.

Keywords Dimensionality curse · High-dimensional indexing · Nearest neighbor
query · Approximate nearest neighbor query

† © ACM, 2006. This chapter is written based on my work with Navneet Panda [1] published in
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11.1 Introduction

Nearest neighbor search has generated a great deal of interest because of a wide range
of applications such as text, image/video, and bio-data retrieval. These applications
represent objects (text documents, images, or bio-data) as feature vectors in very
high-dimensional spaces. A user submits a query object to a search engine, which
returns objects that are similar to the query object. The degree of similarity between
two objects is measured by some distance function (e.g., Euclidean) over their feature
vectors. The search is performed by returning the objects that are nearest to the query
object in the high-dimensional vector space.

With the vast volume of data available for search, indexing is essential to provide
scalable search performance. However, when data dimension is high (higher than
20 or so), no nearest-neighbor algorithm can be significantly faster than a linear
scan of the entire dataset. Let n denote the size of a dataset and d the dimension of
data, the theoretical studies of [2–5] show that when d� log n, a linear search will
outperform classic search structures such as k–d-trees [6], SR-trees [7], and SS-trees
[8]. Several recent studies (e.g., [3, 4, 9]) provide empirical evidence, all confirming
this phenomenon of dimensionality curse.

The prohibitive nature of exact nearest-neighbor search has led to the development
of approximate nearest-neighbor search that returns instances approximately similar
to the query instance [2, 10]. The first justification behind approximate search is that a
feature vector is often an approximate characterization of an object, so we are already
dealing with approximations [11]. Second, an approximate set of answers suffices
if the answers are relatively close to the query concept. Of late, two approximate
indexing schemes, locality sensitive hashing (LSH) [12] and M-trees [13], have
been employed in applications such as image-copy detection [14] and bio-sequence-
data matching [15]. These approximate indexing schemes speed up similarity search
significantly (over a sequential scan) by slightly lowering the bar for accuracy.

This chapter presents a hypersphere indexer, named SphereDex, to perform
approximate nearest-neighbor searches. First, the indexer finds a roughly central
instance among a given set of instances. Next, the instances are partitioned based on
their distances from the central instance. SphereDex builds an intra-partition (or
local) index within each partition to efficiently prune out irrelevant instances. It also
builds an inter-partition index to help a query to identify a good starting location in a
neighboring partition to search for nearest neighbors. A search is conducted by first
finding the partition to which the query instance belongs. (The query instance does
not need to be an existing instance in the database.) SphereDex then searches in
this and the neighboring partitions to locate nearest neighbors of the query. Notice
that since each partition has just two neighboring partitions, and neighboring parti-
tions can largely be sequentially laid out on disks, SphereDex can enjoy sequential
IO performance (with a tradeoff of transferring more data) to retrieve candidate
partitions into memory. Even in situations (e.g., after a large batch of insertions)
when one sequential access might not be feasible for retrieving all candidate parti-
tions, SphereDex can keep the number of non-sequential disk accesses low. Once a
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partition has been retrieved from the disk, SphereDex exploits geometric properties
to perform intelligent intra-partition pruning so as to minimize the computational cost
for finding the top-k approximate nearest neighbors. Through empirical studies on
two very large, high-dimensional datasets, we show that SphereDex significantly
outperforms both LSH and M-trees in both IO and CPU time.

In summary, the main benefits of SphereDex are as follows:

1. SphereDex is a hypersphere partitioning scheme for indexing high-dimensional
data. By the nature of the partitioning, it can maintain sequential disk-IO perfor-
mance under reasonable volumes of insertions.

2. SphereDex employs an effective pruning algorithm, which performs actual dis-
tance computations on only a small fraction of instances in a partition.

3. SphereDex can work with data in the projected kernel space. SphereDex is
designed to support both point queries and hyperplane queries.

The rest of the chapter is organized into four sections. In Sect. 11.2, we discuss
related work. Section 11.3 describes in details SphereDex’s operations: creation,
search, insertion, and deletion. Section 11.4 presents experimental results. Finally,
we offer our closing remarks in Sect. 11.5.

11.2 Related Reading

For over a decade, indexing high-dimensional data has been an active area of research,
and a wide variety of approaches have been attempted. We present some represen-
tative methods in this section, but our discussion is by no means exhaustive. (For a
comprehensive survey, please consult [16, 17].)

Existing indexers can be divided into two categories: coordinate-based and
distance-based. The coordinate-based methods work on data instances residing in
a vector space by partitioning the space into minimum bounding regions (MBRs).
A top-k nearest-neighbor query can be treated as a range query, and ideally, only a
small number of MBRs need to be examined for finding the best matches. Example
coordinate-based methods are the X-tree [18], the R∗-tree [19], the TV-tree [20], the
SR-tree [7], and the M-tree [21], to name a few. A big disadvantage of these tree-
structures is the exponential decay in performance that accompanies an increase in
the dimensionality of data instances [5]. This phenomenon has been reported for the
R∗-tree, the X-tree, and the SR-tree, among others. The decay in performance can
be attributed to the almost exponential number of rectangular MBRs (in the cases
of the X-tree and the R∗-tree) or spherical MBRs (in the cases of the SR-tree, the
TV-tree, and the M-tree)1 that need to be examined for finding nearest neighbors.

1 Each dimension of a rectangular MBR has two neighboring rectangular MBRs. To ensure retrieval
of exact set of top-k nearest neighbors, a search needs to examine all 3d neighboring MBRs [11].
For the tree-structures using spherical MBRs, [5] reports that their performance decays almost as
rapid as the tree-structures using rectangular MBRs.
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In contrast to these tree-structures, each partition of SphereDex has only two neigh-
boring partitions, independent of data dimension.

The distance-based methods do not require an explicit vector space, but rely only
on the existence of a pairwise distance metric. The M-tree [21] is a representa-
tive scheme that uses the distances between instances to build an indexing struc-
ture. (Some other distance-based methods are the multi-vantage-point trees [22],
geometric near-neighbor access trees [23], and spatial approximation trees [24].) The
M-tree has been shown to be a more effective method for indexing high-dimensional
data [21]. Given a query point, it prunes out instances based on distance. The M-tree
performs IOs to retrieve relevant data blocks into memory for processing; however,
the disk accesses cannot be sequential since the data blocks can be randomly scat-
tered on disks. In contrast to the M-tree, SphereDex can largely maintain contiguous
layout of neighboring partitions on disks, and hence its IOs can be sequential and
efficient.

As mentioned in Sect. 11.1, when data dimension is very high, the cost of
supporting exact queries can be higher than that of a linear scan. The work of [12]
proposes an approximate indexing strategy using locality sensitive hashing (LSH).
This approach attempts to hash nearest-neighbor instances into the same bucket,
with high probability. A top-k approximate query can be supported by retrieving the
bucket into which the query point has been hashed. To improve search accuracy,
multiple hash functions must be used. Theoretically, the number of hash functions
to be used is given by ( n

B )ρ, where n is the number of instances in the dataset, B
is the number of instances that can be accommodated in a single bucket, and ρ a
tunable parameter. Another approximate approach is clustering for indexing [11, 25]
(ClinDex and DynDex). Queries are handled by ranking the clusters with respect
to their distances to the query and then processing the clusters in the order of their
closeness to the query.

As we will show in Sect. 11.4, SphereDex outperforms both LSH and an approx-
imate version of M-trees.2 First, SphereDex requires fewer IOs compared to com-
peting approaches to achieve the same level of search accuracy. Second, when a
dataset is relatively static (without a large number of insertions), SphereDex can
largely maintain its IOs sequential. Furthermore, as depicted in greater details in [1],
SphereDex can support hyperplane queries to work with kernel methods discussed
in Chaps. 2, 3 5, and 6, whereas traditional schemes cannot.

11.3 Algorithm SphereDex

Most high-dimensional indexing methods require a large number of buckets (data
blocks or data pages) to be retrieved for answering a query. Additionally, these buckets
may be located at random locations on disks, and hence a seek overhead is required

2 The M-tree also provides an approximate version of the algorithm [13]. For a fair comparison, we
use the approximate version of the code provided by M. Patella to conduct experiments. The code
is available on request, but is not part of the basic download available at [26].

http://dx.doi.org/10.1007/978-3-642-20429-6_2
http://dx.doi.org/10.1007/978-3-642-20429-6_3
http://dx.doi.org/10.1007/978-3-642-20429-6_5
http://dx.doi.org/10.1007/978-3-642-20429-6_6
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for reading each bucket. The large number of IOs and the high seek overhead of each
IO can make query processing exceedingly expensive.

SphereDex aims to improve the performance of nearest-neighbor searches using
a three-pronged approach. First, we attempt to reduce the number of IOs. Second,
when multiple disk blocks must be retrieved, we make the IO sequential as much
as possible. Third, when data is finally staged in main memory for processing, we
minimize the amount of data that needs to be examined to obtain the top-k approx-
imate nearest neighbors. Before we begin, let us present our problem statement
formally in the following definition.

Definition 11.1 (ε-Nearest Neighbor Search) [27] Given a set P of points in a normed
space ld

p, preprocess P so as to efficiently return a point p ∈ P for any query point q,
such that d(q, p) ≤ (1+ ε)d(q, P), where d(q, P) is the distance of q to its closest
point in P.

Generalizing this to k > 1, we wish to find the k points p1, p2, . . . , pk such that
the distance of pi to the query q is at most (1 + ε) times the distance from the i th
nearest point to q. Hereafter, we refer to the normed space ld

p as data space. Vectors
in this data space are referred to as data instances. In the remainder of this section,
We present the three operations of SphereDex :creation, search, and update.

11.3.1 Create: Building the Index

The indexer is created in four steps.

1. Finding the instance xc that is approximately centrally located in the data space,
2. Separating the instances into partitions based on their distances from the central

instance xc,

3. Constructing for each partition a local indexing structure (intra-partition indexer),
and

4. Creating an inter-partition index.

11.3.1.1 Choosing the Center Instance

Input:

1. Number of instances: n.
2. Dataset instances: x1, x2, . . . , xn .

Output: Approximate center instance xc.
We use an approximately central instance in the dataset to serve as the center of

the concentric hyperspherical partitions. This center is found by finding the instance
at the smallest distance from the centroid of the data instances. This is done to ensure
that the instances are “roughly” uniformly distributed in all directions around the
reference point.

The centroid of the available instances can be computed in O(nd) time, and
finding the instance at the smallest distance from the centroid takes O(nd) time.
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Therefore, overall this step can be accomplished in O(nd) time and O(d) space.
When the size of the dataset is large, we can use sampling to lower this cost, since
we are only interested in the approximate center of the distribution of data instances.

11.3.1.2 Partitioning the Instances

Input:

1. Number of instances: n.
2. Dataset instances: x1, x2, . . . , xn .
3. Approximate center instance: xc.
4. Number of instances per partition: g.

Output:

1. Number of partitions: n p.
2. Partitions: P[1], P[2], . . . , P[n p].

Once the center instance has been determined, our next step is to partition the
instances in the dataset based on their distances from the center instance. We sort
the distances of the instances from the central instance. To separate the instances, we
need to partition this sorted array. This step requires O(n log n+nd) time and O(n)

space. The created partitions are then placed on the disk. Our placement policy aims
to achieve two goals. First, we would like to place adjacent partitions contiguously
on disk to achieve sequential disk accesses. Second, we need to reserve space within
partitions to anticipate insertions of new data instances. Since instances within a
partition can be placed in any order, in-partition free-space management is straight-
forward. However, tradeoff exists between the amount of free space reserved for
insertions and IO efficiency. At one extreme, no free space is reserved and sequential
IOs can be ensured, but the dataset cannot permit insertions. At the other extreme,
abundant space is reserved for insertions, but IO resolution (the amount of useful data
retrieved over the amount of data retrieved) can be low. We discuss the placement
policy in greater detail when we discussion how SphereDex handles the insertion
operation in Sect. 11.3.3. In Sect. 11.4.5 we quantify the tradeoff between free space
and IO performance.

11.3.1.3 Intra-Partition Index

Input

1. Partitions: P[1], P[2], . . . , P[n p].
2. Number of instances per partition: g.

Output Local indices for each partition: S[1], S[2], . . . , S[n p].
An intra-partition (or local) index is created for each partition and stored on disk

along with the instances in the partition. For each instance, this local index stores
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a sorted list of instances ranked according to their distances from this instance.
Maintaining this data structure for all pairs would take up O(g2) space. Instead, we
store two reduced sets of information.

1. The distances of only O(log g) instances for every instance x in the partition.
Let L = (l1, l2, . . . , lg) be the ordering of all instances in the partition based on
their distances from x. Let L1 = (l1, l2, . . . , l g

2
) and L2 = (l g

2+1, l g
2+2, . . . , lg)

be two equal halves of L. In our local index we store the distances of 4 × log g
2

instances with log g
2 distances from each end of L1 and L2, thus selecting

l1, l2, l4, . . . , l
2�log g

2 � ;
l g

2
, l g

2−1, l g
2−3, . . . , l g

2−2�log g
2 �+1
;

l g
2+1, l g

2+2, l g
2+4, . . . , l g

2+2�log g
2 �+1
;

lg, lg−1, lg−3, . . . , l
g−2�log g

2 �+1
.

(11.1)

2. The distances of the r closest instances. Out of g instances, we store just a small
fraction of the distances. We show in our experiments that a typical g is on the
order of thousands, and setting r = 30, we can save tremendous amount of
space without losing search accuracy. We will discuss the detailed reason in
Sect. 11.3.2.3.

Combining the above two, the local index of SphereDex uses O(g log g)

space per partition. The total space required for the local index would therefore be
O(n log g). Constructing this local index for all partitions requires O(ng log g +
ngd) time. Operations on this local index are explained in Sect. 11.3.2 when we
discuss how query-processing takes place.

11.3.1.4 Inter-Partition Index

Input

1. Number of partitions: n p.
2. Partitions: P[1], P[2], . . . , P[n p].
3. Number of instances per partition: g.

Output Inter-partition indices: I.
We also maintain a data structure which contains neighborhood information across

adjacent partitions. This index gives SphereDex a good location to start searching
k-NN when a search transitions from one partition to the next. Intuitively, a good
starting point to continue searching is an instance that is very close to the current
set of top-k results. This index stores, for each instance in a partition, its nearest
neighbor(s) in the adjacent partition(s). Building this index requires O(ngd) time.
The storage required to maintain this index is of the order O(n).
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11.3.2 Search: Querying the Index

Given a query instance, query processing begins by finding approximate nearest
neighbors of the query in the partition to which it belongs. Thereafter, adjacent
partitions are retrieved and searched for better nearest neighbors. The set of near-
est neighbors improves as we continue to retrieve and process adjacent partitions.
SphereDex terminates its search for top-k when the constituents of the top-k set
do not change over the evaluation of multiple partitions, or the query time expires.
SphereDex achieves speedup over the naive linear scan method in two ways. First,
SphereDex does not examine all partitions for a query, and the partitions it exam-
ines could be sequentially retrieved from disks. Second, SphereDex examines only
a small fraction of the instances in a partition. The remainder of this section details
these steps, explaining how SphereDex effectively approximates the top-k result
for achieving significant speedup.

11.3.2.1 Identification of Starting Partition

Input

1. Query instance: xq .
2. Center instance: xc.
3. Delimiter distances: Delim.

Output Partition number: α.
First, we identify the partition to which the query instance xq belongs. Recall

that the partitions were constructed by separating the sorted list of instances in the
dataset, based on their distances to the center instance xc. Based on the distance
between xq and xc, we can find exactly where the query instance should be on the
sorted list via a binary search. (The query instance xq does not have to be an existing
query instance.) Instead of maintaining the distances of all the instances from the
center, we keep another sorted list, Delim, of the distances of only the starting instance
of each partition. The cost of this binary search is O(log n p) (n p denotes the number
of partitions).

11.3.2.2 Intra-Partition Pruning

Input

1. Query instance: xq .
2. Starting partition: P[α].
3. Intra-partition index: S[α].
4. Inter-partition index: I [α].
Output Approximate k-NNs of xq .

Once the starting partition P[α] has been identified, we retrieve the instances in
that partition and the associated local index S[α] from the disk (if not yet in main
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Fig. 11.1 Arrangement of instances

memory). We then find the one single nearest neighbor of xq among the instances
in P[α]. From that one single nearest neighbor, we can use the intra-partition index
S[α] to harvest the approximate k-NNs of xq .

The exact nearest neighbor of the query instance in the partition can be identified
by computing distances of all instances in P[α] to xq , but this is an expensive
operation. Instead, we use an iterative procedure to find the nearest neighbor. The
process starts by selecting an arbitrary instance x0 in P[α], and then iteratively finds
instances closer to xq (than x0) until no improvement is possible. At first glance,
this procedure might sound expensive, but it is not, as we explain next through an
example in Fig. 11.1.

Figure 11.1a depicts an example partition P[α]. The local index of x0 contains
nine data instances: x0 · · · x8. The query instance xq is located at the top of the figure
(we assume xq was not in the dataset). We use x0 as an anchor to find instances
closer to xq . Let the distance between x0 and xq be a. Starting at x0, we seek to
find an instance as close to xq as possible. The intra-partition index of x0 contains an
ordered list of instances based on their distances from x0. (Note that, we have, in fact,
stored O(log g) instances in the ordered list. We discuss its impact in Sect. 11.3.2.3).
For the example in Fig. 11.1, the neighboring points of x0 appear in the order of
x3, x1, x4, x5, x2, x6, x7, and x8 on the sorted list of x0.

To find an instance closer than x0 to xq , we search this list for instances with a
separation of about a from x0. Pictorially, Fig. 11.1b shows the region where a better
nearest neighbor can reside is in the radius of a centered at xq . Since we assume that
xq is an external data instance and we do not have an intra-partition index for it, we
must solely rely on the intra-partition index of x0 to find a better nearest neighbor.
Our pruning is performed in two steps. First, we prune out instances that cannot
possibly be closer to xq than x0. Second, we find an instance whose distance from
x0 is closest to a and which is nearer to xq .

1. Pruning away the impossible instances. We have only the intra-partition index
of x0 to work with. We are only interested in the instances that are a from xq .
Figure 11.1c shows that the instances lying outside of the PQ arc cannot be closer
to xq than x0. This step allows us to prune instances x7 and x8.

2. Finding an instance nearer to xq . Next, we would like to re-sort the instances
remaining on the list of x0, based on their likelihood of being close to xq .
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To quantify this likelihood for instance xi , we compute how close the distance
between xi and x0 is to the distance between xq and x0 (which is a). The list
does not need to be explicitly constructed since we have the distance between
xi and x0 sorted and stored in the intra-partition index. We find the position of
the instance, xr , whose distance from x0 is closest to a. The rest of the instances
on the re-sorted list can be obtained by looking up the adjacent instances of xr in
the local index. In our example, this re-sorted list is x4, x5, x1, x3, x2 and x6.
Now, it may be surprising to see that x5 and x4 appear before x1 on the re-sorted
list. This is because we know only their distances from x0. Fortunately, pruning
out x5 and x4 is simple—we need to remove instances that are farther from xq

than x0 as we go down the list. In this case, x5 and x4 are farther from xq than
x0. After removing them from the re-sorted list, we harvest x1 and use it as the
anchor instance for the next pruning iteration.

The iterations continue till no nearer instance than the current anchor can be
found. The approximate top-k instances nearest to xq are the k nearest neighbors on
the current anchor’s intra-partition sorted list.

11.3.2.3 Lowering the Size of the Local Index

The size of the local index, if we store the pairwise distances of all instances in the
partition would be equal to O(g2). Since there are n/g partitions in total assuming
that the instances are equally divided among the partitions, the total size of the index
would be O(ng). Here, we explain how this size can be reduced to O(n log g) with
a low probability of loss of accuracy.

To understand why a reduced index can be used, we revisit how the query
processing works. At each iteration, we are looking for instances based on their per-
ceived nearness to the query point. Suppose we were examining the local index of
instance x. Instances appearing in the local index of x can either be closer to the
query instance or farther away from it.

Now, instead of storing the distances of all the instances from x in the local index
of x, if we stored just the distances of log g items, the probability of not finding
an instance closer to the query point after evaluating all these instances would be

1
2log g , which is essentially 1

g . This probability can be reduced further by storing a
larger number of instances (> log g). How many do we need to store to maintain
high search accuracy?

Let L = (l1, l2, l3, . . . , lg) be the list representing the ordering of instances in
the partition based on their distances from x. Let L1 = (l1, l2, . . . , l g

2
) and L2 =

(l g
2+1, l g

2+2, . . . , lg) be two equal halves of L . In our local index we store distances

of 4× log g
2 instances with log g

2 distances from each end of both the lists L1 and L2
(shown in (11.1) in Sect. 11.3.1.)

For g = 1, 000, the probability of not finding an instance closer to the query
instance, after evaluating all the instances in the local index of x, is less than 10−11.
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Fig. 11.2 Identifying
relevant instances in other
partitions

As we get closer to the query instance, the number of instances on the list that
are examined becomes small and the possibility of not finding an instance closer to
xq becomes more likely. This situation can easily be addressed by also adding the
instances closest to x in the partition to our index. That is, we add the distances of the
instances, say l1, l2, . . . , l30 to our index. The figure of 30 was chosen because 1

230 is

approximately equal to 10−9. Thus, even when we do get close to the query instance,
the probability of not finding an instance is very low. An added advantage of picking
instances as explained above, is that the instances are picked from all regions of the
original list without excessively large gaps between the chosen instances.

Therefore, the number of distances stored in the local index of instance x is
bounded by 4× log g

2 + 30. (However, since some of the chosen positions overlap,
the number of instances chosen is lower than this number.) For g = 1, 000, the
number of instances stored is about 60. That is, the size of the local index for each
partition is of the order O(g log g), and the size of the index for all the partitions is
O(n log g).

11.3.2.4 Search within Adjacent Partition

As SphereDex progresses its search from the initial partition to which xq belongs to
the other partitions, identifying instances close to xq in a partition to which xq does
not belong requires a little more work. Considering the example in Fig. 11.2, we see
two partitions, with the query point xq belonging to one partition and the instance
being evaluated x belonging to another partition. The radii of the two partitions are
given by r1 and r2. The values of r1 and r2 are determined by the distances of
the instances from the center instance xc. In addition, we also know the distance a
between x and xq .

In order to identify suitable instances in the partition to which x belongs, we
need to compute the distance u shown in the figure. The instances of interest in this
partition lie close to the point of intersection of the line joining xq and xc with the
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hypersphere of radius r2. Since we know the lengths r1, r2 and a, we know the
angle formed at the center xc by the side a of the triangle with vertices xq , x and xc.
Now to find u we note that we have an isosceles triangle with two sides of length r2.
Since we know the angles between these sides we can find the length of the third side
which is actually u. We note that the computations outlined in this section would be
applicable for any instance x not lying on the surface of the hypersphere xq . That is,
even in the first partition examined, if the instance x does not lie on the surface of the
hypersphere corresponding to xq , we would need to perform the above computations.

11.3.2.5 Inter-Partition Co-operation

As the algorithm proceeds, we advance from the partition to which the query instance
belongs, to partitions adjacent to it. Having identified the instance x in a partition
close to the query instance, we use the inter-partition index to select a good starting
instance in the adjacent partition. Since the inter-partition index contains the instance
from the adjacent partition closest to the instance x, there is a high probability that the
inter-partition index gives us an instance very close to the query instance. This has
the effect of lowering the number of iterations needed to converge to the approximate
best instance in the adjacent partition.

11.3.2.6 Stopping Criteria

When query time is the criterion, and the time is limited, query processing terminates
when the time expires. SphereDex in such circumstances may not be able to find all
top-k results, but it can still provide reasonable results depending on the amount of
time available. In Sect. 11.4, we show the tradeoff between time and accuracy. One
can select a termination time when the expected accuracy will have a high probability
of being achieved.

When quality is the criterion, the selected stopping criterion can ensure that the
best approximate results are obtained. In our quest for the top-k instances closest to
the given query instances, we start evaluation in the partition containing the query
point. Having found the instance in the partition that is closest to the query point,
we select its k nearest neighbors as our results from the partition. Let the distance
of the instance among these k farthest from the query point be represented by d f

(Fig. 11.3). Then d f represents an upper bound on the farthest distance among the
best set of instances. A partition farther than d f from the partition containing the
query instance can safely be excluded from consideration, since it cannot contain
an instance with a distance less than d f from xq . We need to evaluate partitions
which are within a radius of d f from the current partition. Since d f is continually
revised as the partitions are processed, the stopping criteria can only be revised in the
direction of reducing the number of partitions that need to be processed, and hence
SphereDex will converge. Figure 11.4 documents the entire algorithm.
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Fig. 11.3 Stopping criteria

11.3.3 Update: Insertion and Deletion

SphereDex in general does not need to process a large number of partitions
to achieve high retrieval accuracy. In the experiment section, we will show that
SphereDex incurs less number of IOs compared to competing methods. In addi-
tion to keeping the number of IOs small, SphereDex intends take advantage of
the geometric property of the hyperspherical partitions, and keep the IOs largely
sequential.

When the dataset is static, i.e., no insertion is allowed, SphereDex can ensure
sequential IOs by placing adjacent partitions contiguously on disks. If insertions do
not take place often, one can keep a pool of inserted instances on the side, without
perturbing the indexer. The indexer can be periodically rebuilt. However, to make
SphereDex a general indexing method, we need to deal with online insertions.
We propose a placement scheme, which trades disk space for ensuring almost con-
tiguous placement of adjacent partitions. Of course, one can always hypothesize a
pathological scenario to break a contiguous placement scheme. However, we believe
that our scheme can work reasonably well most of time.

Our placement scheme is space reservation and migration. In each partition, we
allocate free space anticipating insertions. When a new instance is inserted, we can
find the partition to which it belongs, and then place the instance in the free space.
Since we have the flexibility to place the instances in a partition in any order, as long
as the space is available, we can handle insertion without breaking the contiguous
partition placement. When the free space in the inserted partition is full, we can
migrate data instances to adjacent partitions to continue maintaining contiguous
placement.

The storage of instances with free space set aside in each partition can be visu-
alized as in Fig. 11.5. The shaded areas are already populated with instances and
the unshaded areas can accept new instances. As new instances are inserted into a
partition, the free space can be filled up. Suppose each partition stores g instances,
and sets aside g free slots for insertions. After g new instances have been inserted
into the same partition, the free space is used up. When another new instance is to
be inserted in the same partition, we need to migrate some instances to the adjacent
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Fig. 11.4 Nearest neighbor search algorithm

partitions to maintain balanced free space. Suppose free space is available in P1. We
can move instances to P1 to free up space for the new instance. The placement scheme
needs to maintain balanced free space among partitions proactively to accommodate
insertions. (We will shortly discuss the situation when all partitions are full.)
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Fig. 11.5 Insertion of
instances

[Case Study] We now present a case study to estimate the cost of a worst-case
scenario. Suppose each partition contains g data instances and allocates free space
for g insertions. Suppose the size of the database doubles, and all new instances are
inserted into the same partition. Further, the worst choice of partition where this might
occur would be the partition Pc, in the center between both ends. This is because
insertions into this partition would need the maximum migration of data.

In order to store the first g instances, we need to access only the partition they
belong to. The next instance added to the partition causes a migration of g/2 instances
in P1, freeing up space for the next g/2 instances. This migration occurs in P1 again
after another g/2 instances have been added. The second migration is of size g/4.
Therefore, for the addition of the next g instances the number of migrations is log g.
The third set of g instances would cause a migration in P2 followed by a migration
in P1. The number of instances which cause migrations in total is n

g log g. Since
the average number of partitions accessed by a migration is n

2g , the total cost of the
seeks is given by

1

2

(
n

g

)2

log g.

The rest of the instances n − n
g log g, need a single disk access. Thus, the total

number of disk accesses is given by

1

2

(
n

g

)2

log g + n − n

g
log g.

Since this is the cost for the insertion of n new instances, the cost per instance is
given by

1

2

n

g2 log g + 1− 1

g
log g.
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Even if a million new instances were added into the same partition, with g = 1, 000,

this is fairly small cost. We further wish to stress that these are not random seeks,
since all the seeks would have been done in sequence.

In the above scenario, we assume additional instances do not cause a partition to
split. In case partitions do split, the above cost is essentially doubled and the cost of
splitting is added. Since the ordering of instances within a partition is unknown, when
a split does occur, we read in the partition and rearrange the instances in it before
writing that partition back to the disk as two partitions. From the computational
aspect, splitting a partition requires rebuilding a local index each for the old and the
new partition.

The above example presents the worst-case scenario for insertions. In Sect. 11.4
we present experimental data to show that in the usual course of operation, the number
of disk accesses and the number of partition-splitting cases are very minor even in
the face of insertions causing a doubling of the dataset.

When it becomes impossible to accommodate any further instances (all the parti-
tions are filled to capacity), two different approaches can be taken. The first approach
borrows from the above and migrates instances in each partition, starting with the
outermost partition and moving inwards, creating additional space in every partition.
The second approach is to leave the currently full structure untouched and build a
new indexing structure with the fresh instances on the same lines as the previously
constructed indexing structure. That is, now we have a fresh set of empty partitions
which can accommodate new instances based on their distances from the center.
In this case, a query would be handled by querying both the original structure and
the new one. If multiple disks are available, it would be advantageous to place the
second structure on a different disk, allowing parallel seeks to be conducted. If they
are placed on the same disk, the number of seeks doubles.

Insertion of instances requires an update of the local index. As explained in
Sect. 11.3.2.3, the instances in the partition maintain their closest 30 instances in
their local index to conserve storage. If an inserted instance changes this closest set
for a given instance in the partition, then the instance in the partition will necessitate
an update of the local index. Before the inserted instance creates its local index, we
compute its distances from the instances in the partition. If the inserted instance does
not lie within the neighborhood of the closest 30 instances in the partition, we then
choose the instance closest to the inserted instance and replace the appropriate entry.

Deletion of instances is helpful since it frees up space to store new instances.
Deletion is handled by setting a flag denoting that the instance has been deleted.
When a substantial number of the instances in the local index of an instance have
been deleted, that instance requires to reconstruct its local index by computing afresh
distances from the other instances in the partition.

11.4 Experiments

In this section, we present an evaluation of SphereDex and make comparisons with
existing techniques. We were interested in the following key questions:



11.4 Experiments 247

• Using random IOs, how does SphereDex compare with LSH/M-tree?
• When can SphereDex maintain sequential IOs, what is the additional gain of

SphereDex ?
• What is the percentage of data SphereDex needs to process compared to compet-

ing schemes?
• How do insertions affect sequential access?

11.4.1 Setup

We chose to compare SphereDex with two representative schemes: LSH algorithm
and the M-tree. LSH was chosen because it outperforms many traditional schemes,
and has been used in real applications. The M-tree was chosen partly because of its
popularity and partly because it is a distance-based indexing scheme. It should be
noted that the original formulation of the M-tree algorithm [21] was designed to per-
form exact nearest-neighbor searches. An approximate version of the algorithm was
presented in [13]. For a fair comparison, we chose the algorithm presented in [13] and
used the code provided by M. Patella. The code is available on request, but is not part
of the basic download available at http://www-db.deis.unibo.it/Mtree/download.htm.

11.4.1.1 Datasets

We used two datasets for conducting our experiments. The first dataset contains
275,465 feature vectors. Each of these is a 60-dimensional vector representing tex-
ture information of blocks of large aerial photographs. This dataset was obtained
from Manjunath [28]. The size and dimensionality of the dataset provides challeng-
ing problems in high dimensional indexing [29]. These features were obtained by
applying Gabor filters to the image tiles. The Gabor filter bank consists of five scales
and six orientations of filters. Therefore, the total number of filters is 30. The mean
and standard deviation of each filtered output are used to construct the feature vec-
tor, and hence we have a dimensionality of 60 (30 × 2). The texture features are
extracted from 40 large aerial photos. Before the feature extraction, each airphoto is
first partitioned into non-overlapping tiles, each sized 64 × 64. The feature vectors
are extracted from these tiles.

The second dataset contains 314,499 feature vectors. Each of these is a 144-
dimensional vector representing color and texture information in the image. Research
[30] has shown that colors that can be named by all cultures (“culture colors”) are
generally limited to eleven—black, white, red, yellow, green, blue, brown, purple,
pink, orange and gray. Color is first divided into 12 color bins, 11 for culture colors
and one bin for outliers. Each color is associated with eight additional features. These
are the color histograms: color means (in H, S and V channels), color variances (in
H, S and V channels) and two shape characteristics: elongation and spreadness.
Color elongation characterizes the shape of a color, and spreadness characterizes

http://www-db.deis.unibo.it/Mtree/download.htm
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how the color scatters within the image [31]. Thus, the feature vector contains 96
color features. The texture features are obtained using a discrete wavelet transform
(DWT) using quadrature mirror filters [32]. The wavelet decomposition of a 2D
image yields twelve features for each of four sub-images. Hence, we have 48 texture
features within a total of 144 features. (We use this feature set throughout this book.)

In our experiments on each dataset, we chose 2,000 instances randomly from the
dataset and created an index using the rest of the dataset. As in [12] our experiments
aimed at finding the performance for top-10 approximate NN search. The results are
averaged over all the approximate 10-NN searches.

11.4.1.2 Comparison Metric

The objective of our experiment was to ascertain how quickly the approximate results
could be obtained using the index. To quantify the degree of approximation, we used
the same error metric as used by LSH. Following [27] the effective error for the
1-nearest neighbor search problem is defined as

E = 1

|Q|
∑

query xq∈Q

(
dindex

d∗
− 1

)
,

where dindex denotes the distance from a query point xq to a point found by the
indexing approach, d∗ is the distance from xq to the closest point, and the sum is
taken over all queries. For the approximate k nearest neighbor problem, as in [12]
we measure the distance ratios between the closest point to the nearest neighbor, the
second closest one to the second nearest neighbor and so on, finally averaging the
ratios. In the case of LSH, the sum is calculated over all queries, each of which returns
more than k results. Under LSH, queries returning less than k results are defined as
misses.

Indexing strategies are usually compared using the number of disk IOs performed
to achieve a specified level of accuracy, the reasoning being that the more the number
of IOs performed the slower the retrieval. However, disk IO has the twin character-
istics of seek and transfer. While the transfer is usually fast, seeks are much slower.
Our method attempts to minimize the number of seeks by maximizing sequential
access. Thus, the number of seek operations carried out by our method is essentially
2. Directly comparing the number of IOs performed by our method with that per-
formed by other methods would be unfair, since the transfer time with our method
is not the same as the transfer time in the others.

To understand the relationship between seek time and data transfer time, we look
at the time the disk takes to transfer 1 MB of data. Current disk technology can
maintain a sustained throughput in the range 50–70 MB/s. Therefore, transferring
1 MB of data takes roughly 14–20 ms. Average seek times are usually in the range of
10 ms. Thus, it takes roughly twice the time to transfer 1 MB of data as it takes for a
seek operation. Since the exact time varies from disk to disk, we use the ratio of the
times in our calculations. Note that a higher value of the ratio has been selected to
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allow the competing index structures the maximum benefit. Further, since the other
index structures transfer only small chunks of data in each access to the disk, the time
required by them to transfer data has been assumed to be zero. We also present graphs
with different ratios between seek and transfer time for the sake of completeness.

11.4.2 Performance with Disk IOs

We also compared the performance of the two approaches in the cases when the index
needs to be accessed from the disk. In such cases, the cost of distance computations
becomes insignificant when compared to the cost of the disk access. As mentioned
above, we do not count the cost of data transfer for LSH. We count only the total
number of seeks performed by LSH. The number of seeks performed by LSH is
controlled by parameter l.

11.4.2.1 Performance Under Random Access

In the case of the first dataset, LSH used l ≈ 70 hash functions to achieve acceptable
error rates. Hence the total time taken by LSH would be given by

tLSH = l × tseek = 70× tseek.

Here tseek is the average seek time. Compared to this, our method requires to retrieve
whole partitions. Thus, we need to compute the space required to store the retrieved
partitions. In the case of the first dataset, where each instance has 60 features, each
partition takes up space

g × d + g × a × log g.

But a× log g is equal to 60×3.25 when g = 1,000. Hence, the total space consumed
is equal to

1,000× 60+ 1,000× 60× 3.25,

where, as in LSH, each dimension can be stored in 1 byte. Therefore, the total space
required to store a partition is given by 0.255 MB. The total time consumed is there-
fore given by

r × tseek + r × 0.255× ttransfer,

where ttransfer is the time taken to transfer 1 MB of data from the disk and r is the
number of partitions transferred. Since ttransfer takes less than twice the average seek
time, the equation simplifies to
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Fig. 11.6 SphereDex versus LSH under random access for both datasets

r × tseek(1+ 0.51).

Taking the ratio of the times taken by LSH and SphereDex we get

Speedup = 70× tseek

r × tseek(1+ 0.51)
= 70

r × (1.51)
.

Therefore, if our approach is able to retrieve the approximate set of instances in less
than 70

1.51 partitions, then we have speedup. This value is roughly equal to 46. We
show in the left-hand side of Fig. 11.6 that the average number of partitions that had
to be evaluated (the number of disk accesses) before achieving the same level of error
was 12. The speedup is hence on the order of ≈4 times.

Similar analysis for the second dataset can be done as follows. The space required
for each partition of the second dataset is given by 1, 000× (144+ 3.25× 60) bytes
(0.339 MB). For the second dataset, LSH required l > 130 to achieve 15% error rate.
Therefore,

Speedup = 130× tseek

r × tseek(1+ 2× 0.339)
= 130

r × (1+ 0.678)
.

To achieve parity with the time taken by LSH we would need to evaluate r = 77
partitions. We show in the right-hand side of Fig. 11.6 that in this case the average
value of r is 21. The speedup is approximately 3.5.

M-tree is another indexing structure which uses distances between instances.
Our experiments with M-tree show that the number of IO operations performed
by the index are much higher on both the data sets. This makes using M-trees for
searching prohibitively expensive. Figure 11.7 presents comparisons between our
indexing strategy and M-trees on the both datasets.

11.4.2.2 Performance Under Sequential Access

Next, we examined performance with sequential access of partitions. In this case, we
would need at most two seek operations and the rest of the time would be spent in
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Fig. 11.7 SphereDex versus M-tree under random access for both datasets

Fig. 11.8 SphereDex versus LSH under sequential access for both datasets

transferring the partitions. Here, we assume that space has been reserved for another
g instances in each partition to take care of insertions.

The total time consumed for the first dataset is therefore given by

2× tseek + 2r × 0.255× ttransfer.

Since ttransfer is less than twice the average seek time, the equation simplifies to

2× tseek(1+ 2r × 0.255).

Taking the ratio of the times taken by LSH and our method, we get

Speedup = 70× tseek

2× tseek(1+ r × 0.255)
= 35

1+ r × 0.255
.

Therefore, if our approach can retrieve the approximate set of instances in fewer than
34

2×0.255 partitions then we achieve speedup. This value is roughly equal to 66. Since
the average number of partitions required to be evaluated before achieving the same
level of error is 12, the speedup is on the order of 5.5 times (Fig. 11.8).

Similar analysis for the second dataset can be done as follows.

Speedup = 130× tseek

2× tseek(1+ 2r × 0.339)
= 65

1+ 2r × 0.339
.
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Fig. 11.9 SphereDex versus M-tree under sequential access for both datasets

To achieve parity with the time taken by LSH we would need to evaluate r =
94 partitions. The average value of r is 21 for 15% error. Hence, the speedup is
approximately 4.5 times.

Our experiments with M-tree show that the number of IO operations performed
by the index are much higher on both the data sets. Figure 11.9 presents comparisons
between our indexing strategy and M-trees on the both datasets.

11.4.3 Choice of Parameter g

These set of experiments focused on finding a good value of g. In Fig. 11.10, the
x-axis represents the value of g and the y-axis represents the number of instances that
needed to be retrieved to obtain error levels of <15%. The values for each g were
obtained by averaging over 200 query evaluations. We see that in both the cases,
there are a range of values over which g can be varied with approximately the same
number of instances being evaluated. From the cpu-performance point of view, we
would like to set g to a value such that, multiple partitions and their associated index
structures can be place in the L2 cache at the same time. We notice that, for both
the datasets, a g value of ≈1, 000 presents a threshold after which larger number of
instances need to be retrieved. Further, for both the datasets, the memory required
(0.255 and 0.339 MB) to store each partition with g=1000 allows us to place multiple
partitions in the L2 cache.

11.4.4 Impact of Insertions

Since insertions play such an important role in our indexing structure, we also exam-
ined the effect of inserting instances into the data set. To observe this effect, we
randomly picked a subset of instances in the original dataset to construct the index,
and then we inserted the rest of the instances into the index one at a time. We found
that for insertions of instances numbering less than 80% of the original dataset, no
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Fig. 11.10 Determination
of g

extra disk seeks were necessary for either dataset. When we inserted approximately
the same number of instances as the original dataset contained, the average number
of seeks that had to be performed in the case of the first dataset was 1.00376. Only
391 instances (out of nearly 137,000) needed 519 extra disk accesses because of full
partitions. This translates to roughly 1.327 extra accesses for each of these instances.

For the second dataset, the average number of disk accesses over all inserted
instances was 1.00285, with only 400 instances (out of nearly 157,000) needing a
total of 449 extra disk accesses because of full partitions. This translates to roughly
1.12 extra disk accesses for this subset of instances. Therefore, even with a doubling
of the dataset we are able to maintain an average insertion cost of almost one per
instance. Since we need at least one disk access for inserting an instance, this is very
close to the best possible.

11.4.5 Sequential Versus Random

To evaluate the impact of the volume of space reservation for both the datasets, we
examined the equations governing the time taken under random access and sequential
access. The time taken under random access is given by

r(tseek + ttransfer × size),

where r is the number of partitions evaluated, tseek is the seek time, ttransfer is the
transfer time per MB of data and size is the size each partition.

Under sequential access the total time taken is given by

2tseek + r × ttransfer × size× α,

where the additional variable α(≥ 1) indicates the volume of space reservation.
Equality is achieved when

r(tseek + ttransfer × size) = 2tseek + r × ttransfer × size× α.
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Assuming a ratio of 2 between ttransfer and tseek, we can now obtain the values of
α for each of the datasets based on the values of r and size. For the first dataset
(r = 12, size = 0.255 MB), we get α = 2.63. Therefore, we could potentially
reserve 1.63 times the space originally occupied in a partition for future instances
to achieve the same level of performance as random access. For the second dataset
(r = 21, size = 0.339 MB), we get α = 2.5. Thus, in the case of both the datasets
space reservation for an equal number of instances would still allow us to outperform
random access.

The above analysis helps us decide between random placement of partitions ver-
sus space reservation based on the expected volume of insertion. If the volume of
insertion is low, we can suitably lower the space reservation to get higher benefits
from sequential access of instances. Analytically, keeping size fixed we can obtain
the speedup of sequential over random access as

r × (1+ 2× size)

2r × α × size+ 2
≈ r × (1+ 2× size)

2r × α × size
= 1

α
+ 1

2α × size
.

This implies that if size× α < 0.5 we are guaranteed speedup.

11.4.6 Percentage of Data Processed

Real-world datasets are frequently too large in size to be stored in the main memory.
Therefore, we focus on datasets which require to perform IO operations on disks.
However, we do show that even if the instances could all be stored in memory, our
method uses fewer distance comparisons than those made by rival schemes.

LSH was initially proposed as a main memory algorithm [3]. However, newer
versions of LSH allow disk accesses also. The main advantage of having a main
memory algorithm is that the original LSH does not need to maintain multiple copies
of the entire dataset, only pointers to the data items. Thus, if we use l hash functions in
LSH, then each instance is hashed to l different buckets. This means that in addition
to the d features associated with each instance, we have another l pointers. In the
case of disk-based LSH however, l copies of the dataset must be maintained.

To compare the performance of our approach with that of LSH in the main memory
setting, we examined the space used by LSH for the two datasets under consideration.
For the results reported in [12], the authors needed l ≈ 70 to achieve an error rate
less than 15%. Thus, for each instance an additional 70 pointers were maintained.
Considering that the space used by a pointer is 4 bytes on our machine, the total
memory used by LSH for the pointers is of the order 4 × 70 bytes for each data
instance. Compared to this, the space used by our indexing structure is O(log g), g
being the number of instances assigned to a partition. As explained in Sect. 11.3.2.3,
when g = 1, 000, we store approximately 60 distances for each instance. If we limit
ourselves to 2 bytes for each instance, we can get 4 digits of precision. Also, since
there are 1000 instances in the partition, to maintain unique identifiers for them we
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need 10 bits only. The total storage space is therefore 60× (2+ 10
8 ), which is equal

to 60 × 3.25. Since the memory required by the index is comparable in both cases,
we can compare the number of distance computations to determine which method is
faster.

In the case of the second dataset, LSH requires at least l = 120 to achieve
reasonable error rates (<15%). However, the size of our index remains unchanged
at 60 distances per instance. Therefore, as the size of the dataset increases, the size
of the index per instance (and hence per partition) remains the same, while the size
of the index per instance for LSH grows. Again, in the memory-based scenario, we
can compare the results for the two approaches purely on the basis of the number of
distance computations they perform.

Remark We analytically examine the performance under sustained use. By sustained
use we mean that the indexing structure has already been queried multiple times. Here
we notice an important distinction between LSH and our indexing approach. In LSH
the query instance maps to a specific bucket. Unless the bucket is in memory, it must
be retrieved from the disk. Neighboring buckets do not contain any information that
can be useful for that query. In contrast, under our indexing scheme, even if the exact
partition is not available in main memory, processing can continue with the closest
partition available while the target partition and its neighbors are being retrieved from
the disk. The quality of results will vary according to the distance of the available
partition from the target partition. That is, if the closest available partition is far
away from the query instance’s target partition, the top-k results will not be very
good. But if there is a partition close to the target partition, the approximate top-k
results have a high probability of being good. Therefore, the presence of partitions
in memory allows us to address queries and generate intermediate results while the
missing partitions are being recovered from the disk.

The above procedure also provides a method of seeding the memory, since now
we can actually keep every r th partition in main memory, where r is the ratio of the
total number of partitions to the number of partitions that can fit into main memory.
As new partitions are retrieved, the least used partitions are paged out of memory.

11.4.7 Summary

We enumerate the advantages of SphereDex as compared to LSH.

1. The average time needed to address an approximate nearest neighbor query is
about a magnitude shorter.

2. In the case of LSH there is the possibility of turning up with no results (or fewer
than k results). This is defined as a miss. In our case there is no chance of a miss.

3. The size of the index in our method does not increase with the number of dimen-
sions in the dataset.

4. As discussed in [25] that it is possible to continue processing to obtain better
results if the user wishes to do so.
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Fig. 11.11 Farthest
instances

5. The number of hash functions, l, chosen in LSH depends on the size of the dataset.
Hence, the duplication of instances also grows with the size of the dataset in the
case of LSH.

11.5 Concluding Remarks

SphereDex can be extended to support hyperplane queries for Support Vector
Machines (SVMs) or the kernel methods. In classification problems using SVMs, the
data instances closest to the hyperplane are considered to be most ambiguous, and
the ones farthest away from the hyperplane to be most certain (or most confident)
regarding their class membership. Hyperplane queries, rather than point queries, are
essential to supporting fast retrieval of applications using SVMs. In the end of this
chapter, we illustrate how SphereDex can be extended to support both nearest and
farthest neighbor hyperplane query processing.

11.5.1 Range Queries

Range queries are specified by the query instance and a distance. These queries are
interested in determining nearest neighbors of the query instance which lie within the
given distance. Using our indexing structure handling range queries is straightforward
because the specified distance helps us determine the number of partitions that need to
be processed. This is because we now already know d f in Fig. 11.3. Thus, the query
processing proceeds exactly as before and terminates when the partitions beyond the
specified distance is encountered.

11.5.2 Farthest Neighbor Queries

Finding the farthest neighbors given the query point can also be accomplished with
minor modification. In Fig. 11.11, we are interested in finding the farthest instance
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from xq in the partition. We already know the distance s between x0) and xq and
need to find the distance s′. We can also determine the diameter 2r. The Pythagorus
theorem lets us find the distance s′ given s and 2r. It is important to note that we need
to start from the outermost ring when we look for farthest instances.
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Chapter 12
Speeding Up Latent Dirichlet Allocation with
Parallelization and Pipeline Strategies

Abstract Previous methods of distributed Gibbs sampling for latent Dirichlet allo-
cation (LDA) run into either memory or communication bottleneck. To improve scal-
ability, this chapter† presents two strategies: (1) parallelization—carefully assigning
documents among processors based on word locality, and (2) pipelining—masking
communication behind computation through a pipeline scheme. In addition, we
employ a scheduling algorithm to ensure load balancing both spatially (among
machines) and temporally. Experiments show that our strategies can significantly
reduce the unparallelizable communication bottleneck and achieve good load bal-
ancing, and hence improve LDA’s scalability.

Keywords Latent Dirichlet allocation · Pipeline processing · Data placement ·
Distributed systems

12.1 Introduction

Latent Dirichlet allocation (LDA) was first proposed by Blei et al. to model docu-
ments [2]. Each document is modeled as a mixture of K latent topics, where each
topic, k, is a multinomial distribution Vφk over a W-word vocabulary. For any doc-
ument d j , its topic mixture Vθ j is a probability distribution drawn from a Dirichlet
prior with parameter α. For each i th word xi j in d j , a topic zi j = k is drawn from
Vθ j , and xi j is drawn from Vφk . The generative process for LDA is thus given by

θ j ∼ Dir(α), φk ∼ Dir(β), zi j = k ∼ θ j , xi j ∼ φk, (12.1)

† © ACM, 2011. This chapter is a minor revision of the author’s work with Zhiyuan Liu, Yuzhou
Zhang, and Maosong Sun [1] appeared in ACM TIST’11. Permission to publish this chapter is
granted by ACM copyright agreement.

E. Y. Chang, Foundations of Large-Scale Multimedia Information 259
Management and Retrieval, DOI: 10.1007/978-3-642-20429-6_12,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2011
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Fig. 12.1 The graphical
model for LDA

where Dir(∗) denotes Dirichlet distribution. The graphical model for LDA is illus-
trated in Fig. 12.1, where the observed variables, i.e., words xi j and hyper parameters
α and β, are shaded.

The computation complexity of Gibbs sampling is K multiplied by the total
number of word occurrences in the training corpus. Prior work has explored multiple
alternatives for speeding up LDA, including both parallelizing LDA across multiple
machines and reducing the total amount of work required to build an LDA model.
Three representative distributed LDA algorithms are Dirichlet compound multino-
mial LDA (DCM-LDA) [3], approximate distributed LDA (AD-LDA) [4], and asyn-
chronous distributed LDA (AS-LDA) [5], which all parallelize Gibbs sampling on
distributed machines. These algorithms suffer from either high communication cost
or long convergence time (an approximate method reduces communication time but
increases number of Gibbs sampling iterations). In this chapter, we present PLDA+
[1], which uses distributed data-placement and pipeline strategies to reduce the com-
munication bottleneck. The distributed data placement strategy aims to first separate
CPU-bound tasks and communication-bound tasks onto two sets of machines. It then
ensures that both computation and communication loads can be balanced among par-
allel machines. The pipeline strategy aims to mask communication time by compu-
tation time; and hence the communication bottleneck can be reduced. Experiments
show that the strategies of PLDA+ can significantly improve scalability of LDA over
our initial attempt at Google [6].

The rest of the chapter is organized as follows: we first present LDA and related
distributed algorithms in Sect. 12.2. In Sect. 12.3 we present AD-LDA and explain
how it works via a simple example. In Sect. 12.4 we analyze the bottleneck of
AD-LDA. Sections 12.4.3 and 12.4.4 depict PLDA+ in details. Section 12.5 demon-
strates that the speedup of PLDA+ on large-scale document collections significantly
outperforms AD-LDA. In Sect. 12.6 we introduce two large-scale applications of
distributed LDA. Finally, we discuss future research plans in Sect. 12.7. For the con-
venience of readers, we summarize the notation used in this chapter in Table 12.1.
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Table 12.1 Symbols
associated with LDA used in
this chapter

D Number of documents
T Number of topics
W Vocabulary size
N Number of words in the corpus
xi j The i th word in d j document
zi j Topic assignment for word xi j

Ck j Number of topic k assigned to d j document
Cwk Number of word w assigned to topic k
Ck Number of topic k in corpus
Cdoc Document-topic count matrix
Cword Word-topic count matrix
C topic Topic count matrix
Vθ j Probability of topics given document d j

Vφk Probability of words given topic k
α Dirichlet prior
β Dirichlet prior
P Number of processors
Pw Number of Pw processors
Pd Number of Pd processors

pi The i th processor

12.2 Related Reading

According to the generative process of LDA shown in (12.1), the full joint distribution
over all parameters and variables is

p(Vx, Vz, Vθ, Vφ|α, β) = p(Vφ|β)

D∏
j=1

p(Vθ j |α)

N j∏
i=1

p(xi j |Vφ, zi j )p(zi j |Vθ j ), (12.2)

where Vx = {xi j } is the observed word occurrences in D documents, Vz = {zi j } is
the assigned latent topics to words Vx and N j the number of word occurrences in
document d j . Similar to most previous work, we use symmetric Dirichlet priors in
LDA for simplicity. Given the observed words Vx, the task of inference for LDA
is to compute the posterior distribution of the latent topic assignments Vz, the topic
mixtures of documents Vθ, and the topics Vφ.

Blei et al. [2] proposed using a variational expectation maximization (VEM)
algorithm for obtaining maximum-likelihood estimate of � from V. This algorithm
iteratively executes an E-step and an M-step, where the E-step infers the topic distrib-
ution of each training document, and the M-step updates model parameters using the
inference result. Unfortunately, this inference is intractable, so variational Bayes is
used in the E-step for approximate inference. Minka and Lafferty proposed a compa-
rable algorithm [7], which uses another approximate inference method, expectation
propagation (EP), in the E-step.

Griffiths and Steyvers [8] proposed using Gibbs sampling, a Markov-chain Monte
Carlo method, to perform inference for LDA. By assuming a Dirichlet prior, β, Vφ
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can be integrated (hence removed from the equation) using the Dirichlet-multinomial
conjugacy. MCMC is widely used as an inference method for latent topic models,
e.g., Author-topic model [9], Pachinko allocation [10], and special words with back-
ground model [11]. Moreover, since the memory requirement of VEM is not nearly
as scalable as that of MCMC [12], most existing distributed methods for LDA use
Gibbs sampling for inference, e.g., DCM-LDA [3], AD-LDA [4], and AS-LDA [5].
In this chapter, we thus focus on Gibbs sampling for approximate inference. In Gibbs
sampling, it is usual to integrate out the mixtures θ and topics φ and just sample the
latent variables z. The process is called collapsing. When performing Gibbs sam-
pling for LDA, we maintain two matrices: word-topic count matrix Cword in which
each element Cwk is the number of word w assigned to topic k, and document-topic
count matrix Cdoc in which each element Ckj is the number of topic k assigned to d j

document. Moreover, we maintain a topic count vector C topic in which each element
Ck is the number of topic k assignments in document collection. Given the current
state of all but one variable zi j , the conditional probability of zi j is

p(zi j = k|z¬i j , x¬i j , xi j = w, α, β) ∝ C¬i j
wk + β

C¬i j
k +Wβ

(
C¬i j

k j + α
)

, (12.3)

where ¬i j means that the corresponding word is excluded in the counts. Whenever
zi j is assigned to a new topic drawn from (12.3), Cword, Cdoc and C topic are updated.
After enough sampling iterations to burn in the Markov chain, Vθ and Vφ can be
estimated by

θk j = Ckj + α∑T
k=1 Ckj + T α

, and (12.4)

φwk = Cwk + β∑W
w=1 Cwk +Wβ

, (12.5)

where θk j indicates the probability of topic k given document j, and φwk indicates
the probability of word w given topic k. Griffiths and Steyvers conducted an empir-
ical study of VEM, EP and Gibbs sampling and the comparison shows that Gibbs
sampling converges to a known ground-truth model more rapidly than either VEM
or EP [8].

12.2.1 LDA Performance Enhancement

The computation complexity of Gibbs sampling is K multiplied by the total number
of word occurrences in the document collection. Prior work has explored multiple
alternatives for speeding up LDA, including both parallelizing LDA across multiple
processors and reducing the total amount of work required to build an LDA model.
Relevant distributed methods for LDA include:
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• Nallapati et al. [13] and Wolfe et al. [14] both reported distributed computing of
the VEM algorithm for LDA [2].

• Mimno and McCallum proposed DCM-LDA [3], where the data sets are distrib-
uted to processors, Gibbs sampling is performed in each processor independently
without any communication between processors, and finally a global clustering of
the topics is performed.

• Newman et al. [4] proposed AD-LDA, where each processor performs a local Gibbs
sampling iteration followed by a global update using a reduce-scatter operation.
Since the Gibbs sampling in each processor is performed with the local word-
topic matrix, which is only updated at the end of each iteration, it is named with
approximate distributed LDA.

• An asynchronous distributed learning algorithm of LDA was proposed in [5],
where no global synchronization step like that in [4] is required. Each processor
performs a local Gibbs sampling step followed by a step of communicating with
other random processors. We name this method as AS-LDA.

In addition to these parallelization techniques, the following optimizations can
reduce LDA model learning times by reducing the total computational cost:

• Gomes et al. [15] presented an enhancement of the VEM algorithm using a bounded
amount of memory.

• Porteous et al. [16] proposed a method to accelerate the computation of (12.3).
The acceleration is achieved by no approximations but using the property that the
topic probability vectors for document d j , Vθ j , are sparse in most cases.

12.3 Approximate Distributed LDA

Before introducing PLDA+, let us review our prior implementation [6] of the
AD-LDA algorithm [4]. We present the algorithm’s dependency on the collective
communication operation, AllReduce, and how to express the AD-LDA algorithm in
the model of MPI. AD-LDA serves as the performance yardstick of PLDA+.

12.3.1 Parallel Gibbs Sampling and AllReduce

AD-LDA distributes D training documents over P processors, with Dp = D/P docu-
ments on each processor. AD-LDA partitions document content Vx = {Vxd}Dd=1 into
{Vx|1, . . . , Vx|P } and the corresponding topic assignments Vz = {Vzd}Dd=1 into
{Vz|1, . . . , Vz|P }, where Vx|p and Vz|p exist only on processor p. Document-topic
count matrix, Cdoc, are likewise distributed. We denote the document-topic count
matrix on processor p as Cdoc|p . Each processor maintains its own copy of word-topic

count matrix, Cword. Moreover, AD-LDA uses Cword|p to temporarily store word-topic
counts accumulated from local documents’ topic assignments on each processor.
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In each Gibbs sampling iteration, each processor p updates Vz|p by sampling
every zi j |p ∈ Vz|p from the approximate posterior distribution:

p(zi j |p = k | Vz¬i j , Vx¬i j , xi j |p = w) ∝ C¬i j
wk + β

C¬i j
k +Wβ

(
C¬i j

jk|p + α
)

, (12.6)

and updates Cdoc|p and Cword|p according to the new topic assignments. After each

iteration, each processor recomputes word-topic counts of its local documents Cword|p
and uses the AllReduce operation to reduce and broadcast the new Cword to all
processors.

12.3.2 MPI Implementation of AD-LDA

Our AD-LDA implementation [6] uses MPI [17] to parallelize LDA learning. The
MPI model supports AllReduce via an API function:

int MPI_Allreduce (void ∗sendbuf, void ∗recvbuf, int

count, MPI_Datatype datatype, MPI_Op op);
When a worker, meaning a thread or a process that executes part of the parallel

computing job, finishes sampling, it shares topic assignments and waits for AllReduce
by invoking MPI_Allreduce, where sendbuf points to word-topic counts of its local
documents: a vector of count elements with type datatype. The worker sleeps until
the MPI implementation finishes AllReduce and the results are in each worker’s buffer
recvbuf. During the reduction process, word-topic counts vectors are aggregated
element-wise by the addition operation op explained in Sect. 12.3.1.

Figure 12.2 presents the detail of MPI implementation for AD-LDA. The algo-
rithm first attempts to load checkpoints Vz|p if a machine failure took place and
the computation is in the recovery mode. The procedure then performs initialization
(lines 5–9), where for each word, its topic is sampled from a uniform distribution.
Next, Cdoc|p and Cword|p can be computed from the histogram of Vz|p (line 11). To

obtain Cword, the algorithm invokes MPI_Allreduce (line 12). In the Gibbs sampling
iterations, each word’s topic is sampled from the approximate posterior distribution
(12.6) and Cword|p and Cdoc|p is updated accordingly (lines 14 to 18). At the end of

each iteration, the algorithm checkpoints Vz|p (line 20) and recomputes Cword|p (line

21). Using Cword|p , the algorithm perform global MPI_AllReduce to obtain up-to-

date Cword for the next iteration (line 22). After a sufficient number of iterations, the
“converged” LDA model is outputted by the master (line 24).

Different MPI implementations may use different AllReduce algorithms. The
state-of-the-art is the recursive doubling and halving (RDH) algorithm presented
in [17], which was used by many MPI implementations including the well known
MPICH2. RDH includes two phases: Reduce-scatter and All-gather. Each phase runs
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Fig. 12.2 The MPI implementation of AD-LDA

a recursive algorithm, and in each recursion level, workers are grouped into pairs
and exchange data in both directions. This algorithm is particularly efficient when
the number of workers is a power of two, because no worker would be idle during
communication.

RDH provides no facilities for fault recovery. In order to provide fault-recovery
capability in AD-LDA, the worker state can be check-pointed before AllReduce.
This ensures that when one or more processors fail in an iteration, the algorithm
can roll back all workers to the end of the most recent succeeded iteration, and
restart the failed iteration. The checkpointing code is executed immediately before
the invocation of MPI_Allreduce in AD-LDA. In practice, only Vz|p is flushed onto
the disk, because Vx|p can be reloaded from data set, Cdoc|p and Cword can also be
recovered from the histogram of Vz|p. The recovery code is at the beginning of
AD-LDA: if there is a checkpoint on the disk, load it; otherwise perform random
initialization.
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Fig. 12.3 The assignments
of documents and word-topic
count matrix for AD-LDA
and PLDA+

12.4 PLDA+

To further speed up AD-LDA [4], PLDA+ algorithm employs distributed data place-
ment and pipeline processing strategies.

12.4.1 Reduce Bottleneck of AD-LDA

As presented in the previous section, in our AD-LDA implementation [6], D docu-
ments are distributed over P processors with approximately D/P documents on each
processor. This is shown with a D/P-W matrix in Fig. 12.3a, where W indicates the
vocabulary of the collection of documents. The word-topic count matrix is also dis-
tributed, with each processor keeping a local copy, which is the W-K matrix in the
figure.

In AD-LDA, after each iteration of Gibbs sampling, local word-topic counts on
each machine are globally synchronized. This synchronization process is expensive
partly because a large amount of data is sent and partly because the synchronization
starts only when the slowest machine has completed its work. To avoid unnecessary
wait, AS-LDA does not perform global synchronization like AD-LDA. AS-LDA
only synchronizes word-topic counts with its neighbors. However, since word-topic
counts can be outdated, the sampling process may take a larger number of iterations
than that AD-LDA takes to converge. Figure 12.4 illustrates the spread patterns of
the updated topic distribution of a word from one processor to the others. AD-LDA
has to synchronize all word updates after one full Gibbs sampling iteration, whereas
AS-LDA performs updates only with a small subset of processors. The memory
requirement of both AD-LDA and AS-LDA is O(KW), since the whole word-topic
matrix is maintained on all machines.

Although having different strategies for model combination, existing distributed
methods share two characteristics:

• These methods have to maintain all word-topic counts in memory of each
processor; and

• These methods have to send and receive the entire word-topic matrix between
processors for updates.



12.4 PLDA+ 267

Fig. 12.4 The spread
patterns of the updated topic
distribution of a word from
one processor for AD-LDA,
AS-LDA and PLDA+

For the former characteristic, suppose we want to estimate a Vφ with W words
and K topics from a large-scale data set. When either W or K is large to a certain
extent, the memory requirement will exceed that available on a typical processor.
Due to the bottleneck of latency and transfer-rate of hard disks, it is not practical to
maintain the word-topic counts on hard disks. This characteristic makes the existing
distributed methods face a significant challenge in terms of memory scalability. For
the latter characteristic, the communication bottleneck caps the room for speeding
up the algorithm. This communication bottleneck will only acerbate over years as
a study of high performance computing [18] shows that floating-point instructions
improve speed historically at 59% a year, but inter-processor bandwidth improves
26% a year, and inter-processor latency improves only 15% a year.

12.4.2 Framework of PLDA+

To address the increasing communication bottleneck, PLDA+ uses an enhanced dis-
tributed method for LDA. In addition to partitioning documents, PLDA+ also parti-
tions the word-topic count matrix and distributes them to several processors. Thus,
processors are divided into two types: one maintains documents and document-topic
matrix to perform Gibbs sampling (Pd processors, and the other stores and maintains
word-topic count matrix (Pw processors). During each iteration of Gibbs sampling,
a Pd processor assigns a new topic to a word in a document in three steps:

1. Fetching the word’s topic distribution from a Pw processor,
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Fig. 12.5 Pipeline-based Gibbs sampling in PLDA+ (Top: ts > t f + tu . Bottom: ts < t f + tu)

2. Performing Gibbs sampling at the Pd processor and assigning a new topic to the
word, and

3. Updating all Pw processors maintaining that word.

There are two reasons to divide processors into two groups. First, the communi-
cation bottleneck can be halved on the CPU-bound processors. This way, not only
the communication time on Pw processors is cut into about one half, the reduced IO
time can also be masked by the computation time much easily. Second, by separating
two tasks onto two sets of machines, load balancing can be more flexibly performed.

Besides improving parallelization, PLDA+ employs pipeline processing. The
pipeline technique has been used in many applications to increase throughput, such
as the instruction pipeline in modern CPUs [19] and in graphics processors [20].
Although pipeline does not decrease the time for a job to be processed, it can
efficiently improve throughput by overlapping IOs with computation. Figure 12.5
illustrates the Pipeline-based Gibbs Sampling for four words, i.e.,w1, w2, w3 and w4,

where F indicates the fetching operation, U indicates the updating operation, and S
the Gibbs sampling operation. In this figure, the top chart demonstrates the case when
ts > t f + tu, and the bottom chart the case when ts < t f + tu, where ts, t f and tu
denote the time of Gibbs sampling, fetching topic distribution, and updating topic
distribution, respectively.

On the top chart of Fig. 12.5, PLDA+ begins by fetching the topic distribution of
w1. Then it begins Gibbs sampling on w1, and at the same time, it fetches the topic
distribution of w2. After it has finished Gibbs sampling for w1, it updates the topic
distribution of w1 on Pw processors. When ts > t f + tu, PLDA+ can begin Gibbs
sampling on w2 immediately after it has completed that for w1. Total ideal time for
PLDA+ to process W words is W ts + t f + tu .

The bottom chart of Fig. 12.5 shows a suboptimal scenario where the IO time
cannot be entirely masked. PLDA+ is not able to begin Gibbs Sampling for w3
until after some communication delay. The example shows that in order to mask
communication, the tasks must be scheduled to ensure as much as possible that
ts > t f + tu . There are two important scheduling considerations:
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1. Word bundling. To ensure ts to be sufficiently long to mask IOs, Gibbs sampling
can be performed on a group of words.

2. Low latency IO scheduling. IOs must be scheduled in such a way that a CPU-
bound task is minimally delayed by a fetch operation.

Since each round of Gibbs sampling can be performed in any word order, it makes
word bundling flexible. First, rather than processing one document after another,
PLDA+ performs Gibbs sampling according to a word order. A word that occurs
several times on the documents at a node can be process in a loop. Moreover, for
words that do not occur frequently, they can be bundled with frequently-occurred
words to ensure that ts is sufficiently long. In fact, if one can estimate t f + tu, one
can decide how many word-occurrences to process in each Gibb Sampling batch.
The remaining challenge is that one ought to ensure that t f + tu can indeed be shorter
than ts . If a fetch cannot be completed by the time when the last Gibbs sampling task
has completed, the wait time adds to the bottleneck, and hence hampers speedup.

To perform Gibbs sampling word by word, PLDA+ builds word indexes to docu-
ments on each Pd processor. Words are organized in a circular queue as shown on the
top of Fig. 12.6. Gibbs sampling is performed by going around the circular queue.
To avoid concurrent access to the same words, different processes are scheduled to
begin at a different position of the queue. For example, Fig. 12.6 shows four Pd

processors, Pd1, Pd2, Pd3 and Pd4 start their first word from w1, w3, w5 and w7,

respectively. To ensure that this scheduling algorithm works, PLDA+ must distribute
the word-topic matrix also in a circular fashion on Pw machines. This static allo-
cation scheme enjoys two benefits. First, the workload among Pw processors can
be relatively balanced. Second, avoiding two Pd nodes from concurrently updating
the same word can roughly maintain serializability of the word-topic matrix on Pw

nodes. This makes PLDA+ more advantageous over an asynchronous scheme such as
AS-LDA [5], which may miss updates. The detailed description of word placement
is presented in Sect. 12.4.3.1.

12.4.3 Algorithm for Pw Processors

The task of the Pw processors is to process fetch and update queries from Pd proces-
sors. PLDA+ distributes the word-topic matrix to Pw machines according to words.
After allocation, each Pw processor keeps approximately W/Pw words with their
topic distributions. Figure 12.7 depicts the word-topic matrix distribution process to
Pw machines.
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Fig. 12.6 Vocabulary
circular queue in PLDA+

Fig. 12.7 The construction
of word-topic matrix in Pw

processors

12.4.3.1 Word Placement Over Pw Processors

The goal of word allocation is to ensure spatial load balancing. To balance load,
one would like to make sure that all nodes receive about the same number of work
requests in a round of Gibbs sampling.

For bookkeeping, PLDA+ maintains two data structures. First, for each word,
it records how many Pd processors on which that word resides. Form W words,
PLDA+ maintains a Pd vector m = (m1, m2, . . . , mW ). The second data structure
keeps track of each Pw processor’s workload, or the number of word occurrences on
that processor. The workload vector is denoted as l = (l1, l2, . . . , lPw).

A simple placement method is to place words independently and uniformly at
random onto Pw processors. This method is referred to as random word allocation.
Unfortunately, this random placement method may cause load imbalance among
Pw processors in high probability. To balance workload, PLDA+ uses the weighted
round-robin method for word placement. It first sorts words in decreasing order by
their weights, and then picks the word with the largest weight from the vocabulary and
assigns to a processor in a round-robin fashion. This placement process is repeated
until all words have been placed. Weighted round-robin has been empirically shown
to achieve balanced load with high probability [21].
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12.4.3.2 Processing Requests from Pd Processors

Each Pw processor handles all requests related to the words it is responsible for
maintaining. After allocating words with their topic distributions over Pw processors,
Pw processors begin to receive and respond the requests from Pd processors. A Pw

processor pw first builds its responsible word-topic count matrix Cword|pw by receiving
initial word-topic counts from all Pd processors. Then, that Pw processor pw begins
to process requests from Pd processors. PLDA+ defines three types of requests
(communications):

• fetch(w, pw, pd). Node pw requests for fetching topic distribution of word w from
a Pd processor pd. For the request, the Pw processor pw retrieves the topic distri-
bution φ

(pw)
w , which will be used by the pd node as n¬i j

wk in (12.3) for performing
Gibbs sampling.

• update(w, u, pw, pd). Node pw updates topic distribution for word w using u after
receiving the information from node pd.

• fetch(pw, pd). Node pw requests for all topic counts from node pd. The Pw

Processor pw requires the data from pd to sum up the topic distributions of all
words on pw in vector n(pw) = (n(pw)

k , k = 1, . . . , T ), which will be used as n¬i j
k

in (12.3) for performing Gibbs Sampling.

12.4.4 Algorithm for Pd Processors

The algorithm for Pd processors executes according to the following steps:

1. At the beginning, it allocates documents over Pd processors and then builds
inverted index for documents on each Pd processor.

2. It groups the words in vocabulary into bundles for Gibbs Sampling and IO
requests.

3. It schedules word bundles to minimize communication bottleneck.
4. Finally, it performs pipelined Gibbs sampling iteratively until the terminate con-

dition is met.

In the following, we present these four steps in details.

12.4.4.1 Document Allocation and Building Inverted Index

Before performing Gibbs sampling, D documents must be distributed onto Pd

processors. The goal of document allocation is to achieve good CPU load balance
among Pd processors. AD-LDA may suffer from imbalanced load problem since
it has a global synchronization phase at the end of each Gibbs sampling iteration,
which may force fast processors to wait for the slowest processor. In contrast, Gibbs
sampling in PLDA+ is performed without the synchronization requirement. In other



272 12 Speeding Up Latent Dirichlet Allocation with Parallelization

Fig. 12.8 The construction
of data structure in Pd
processors

words, a processor that completes its work early can start its next round of sampling
without having to wait for stragglers. Dealing with stragglers is a critical issue in
distributed computing. PLDA+ tackles this problem through both static allocation
and dynamic migration. PLDA+ first allocates words to nodes in a balanced fashion.
Each Pd processor hosts approximate D/Pd documents. The time complexity of this
allocation step is O(D). After documents have been distributed, we build inverted
index for documents on each Pd processor. The construction process is demonstrated
in Fig. 12.8. If a node is always a straggler due to run-time load imbalance or hard-
ware configuration, the data on that node can be split and migrated onto additional
nodes to eliminate stragglers.

Using inverted index, each time after a Pd processor has fetched the topic distrib-
ution of a word w, that processor performs Gibbs sampling for all instances of w on
that node. After that, the processor (or node) sends back the updated information to
the corresponding Pw processor. The clear benefit is that for multiple occurrences of
a word on a node, PLDA+ requires to perform only two communications: one fetch
and one update, and substantially reducing communication cost. The index structure
for each word w is:

w→ {(d1, z1), (d1, z2), (d2, z1), . . .}, (12.7)

in which, w occurs in document d1 twice and there are two entries. In implementation,
to save memory, all occurrences of w in d1 can be recorded in one entry, (d1, {z1, z2}) .

12.4.4.2 Word Bundle

Bundling words is to prevent the situation that too short the duration of Gibbs
samplings cannot mask a communication IO. Use an extreme example: a word
appears only once in one document on a node. Performing Gibbs sampling on that
word takes a much shorter time than the time required to fetch and update the word-
topic matrix. The remedy is intuitive: combining a few words into a bundle so that
the IO time can be masked by the longer duration of Gibbs sampling time.

To bundle words, each Pd processor groups words in sets, each matches words
on a Pw processor. For each word set, words are sorted into a list according to their
occurrence times in descending order. Then, words are picked from both ends of the
list to form bundles. Each time a Pd node sends a request to a Pw node to fetch topic
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distributions for words in a bundle. The size of a bundle should be large enough so
that the time to perform Gibbs sampling on a bundle is longer than the time to fetch
the bundle from a Pw node.

12.4.4.3 Pipelined Gibbs Sampling

The core step of PLDA+ is the pipelined Gibbs sampling. As shown in (12.3), to
compute and assign a new topic for a given word xi j = w in a document d j , we have
to obtain Cword

w , C topic and Cdoc
j . The topic distribution of document j is maintained

by Pd processors. While the up-to-date topic distribution Cword
w is maintained by a

Pw processor, global topic count C topic should be collected over all Pw processors.
Therefore, before assigning a new topic for w in a document, a Pd processor has
to request Cword

w and C topic from Pw processors. After fetching Cword
w and C topic,

the Pd processor computes and assigns new topics for occurrences of w. Then the
Pd processor returns the updated topic distribution of word w to the responsible Pw

processor.
For a Pd processor pd, pipeline processing is performed according to the following

steps:

1. Fetch overall topic counts for Gibbs sampling.
2. Select F word bundles and put them in thread pool tp to fetch words’ topic dis-

tributions. Once a request is responded from Pw processors, the returned topic
distributions are put in a wait queue Q pd .

3. Pick words’ topic distributions from Q pd to perform Gibbs Sampling.
4. After Gibbs sampling, put the updated topic distributions in thread pool tp to send

update requests to Pw processors.
5. Select a new word bundle and put it in tp.
6. If the update condition is met, fetch new overall topic counts.
7. If the termination condition has not met, go to Step 3 to start Gibbs sampling for

other words.

In Step 1, processor pd fetches overall topic distributions C topic. In this step, pd
sends requests fetch(pw, pd) to each Pw processor pw = 1, 2, . . . , Pw. The requests
are returned with (C topic

|pw , pw = 1, 2, . . . , Pw), and pd thus gets C topic by sum
overall topic counts from each Pw processors:

C topic ←
∑
pw

C topic
|pw . (12.8)

Since thread pool tp can send requests and process the returned results in parallel,
in Step 2 it puts a number of requests to fetch topic distributions simultaneously in
case some requests are responded with latency. Thus, once a response is returned,
it can start Gibbs sampling immediately. Here, we mention the pre-fetch number of
requests as F. In PLDA+, F should be properly set to make sure that the wait queue
Q pd always has returned topic distributions of words waiting for Gibbs Sampling.
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Fig. 12.9 PLDA+ Gibbs sampling

If not, Gibbs sampling is stalled by communication, which is considered a part of
communication time of PLDA+. To make best use of threads in the thread pool, F
should be larger than the number of threads in the pool.

It is expensive for Pw processors to process the request for overall topic counts
because the operation has to access topic distributions of each word on each Pw

processor. Fortunately, as indicated by the results of AD-LDA, topic assignments in
Gibbs Sampling is not sensitive to the values of overall topic counts. Thus PLDA+
reduces the frequency of fetching overall topic counts to improve the efficiency of
Pw processors. Therefore, in Step 6, PLDA+ does not fetch overall topic counts
frequently. Experimental results show that fetching new overall topic counts only
after performing one pass of Gibbs sampling can obtain the same learning quality
compared to LDA and AD-LDA.

Figure 12.9 summarizes a Pd node’s interprocess communication with multiple
Pw nodes. The figure shows a key reason for PLDA+ to reduce communication
bottleneck: that a Pd node of PLDA+ commuicates with multiple Pw nodes, rather
than that multiple Pd nodes of AD-LDA communicate with one master Pw node.
Furthermore, the thread pool on Pd nodes enables pre-fetching, and thereby allows
communication to be masked by computation working on completed requests.

12.4.5 Straggler Handling

So far, both presented data placement and scheduling schemes of PLDA+ are static.
Static placement and scheduling cannot guarantee run-time load balancing. Run-time
imbalanced workload can be caused by at least three reasons:

1. Uneven hardware configuration. Not all nodes are equally configured. In a realistic
distributed environment, not all computer nodes are equipped with exactly the
same class of processors, memory, and disks. Also, not all nodes are equally
distanced. Computation on and communication with different nodes can thus
take different amount of time to complete.
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2. Resource contention. Distributed data centers must deal with a large number of
simultaneous computation tasks. It is impossible to ask all nodes to be in a quiesce
mode when PLDA+ is being executed. Therefore, PLDA+ can be slowed down
by tass competing for resources.

3. Failures. When a large number of nodes are involved, the probability of failure
becomes non-negligible. When a processor or a router fails, no static scheme can
continue ensuring balanced workload among all nodes.

PLDA+ deals with run-time dynamics by employing two simple approaches. First,
PLDA+ uses a reset and timeout scheme. When a Pw node notices that the number
of requests in its work queue has reached a threshold, it informs all Pd nodes to reset
their pointers into the circular queue depicted in Fig. 12.6. In each request, the Pd

node also registers a deadline. When the deadline has expired, the Pw node discards
that request and proceeds to processing the next request. Occasionally missing a
round of Gibbs Sampling does not affect overall performance due to the stochastic
nature of Gibbs sampling.

If a Pw node has missed too many request deadlines, then PLDA+ replicates
that node to balance workload. For the details of a data replication scheme that can
guarantee balanced workload in probability, please consult our previous work in [22].

12.4.6 Parameters and Complexity

In this section, we discuss the parameters that may influence the performance of
PLDA+. We also analyze the complexity of PLDA+ compared to other distributed
methods represented by AD-LDA.

12.4.6.1 Parameters

Given the total number of processors P, the first parameter is the proportion of the
number of Pw processors to Pd processors, γ = Pw

Pd
. The larger the value of γ, the

more processors serve as Pw, and hence the average time of communication at Pd

processors decreases. At the same time, the average time of Gibbs sampling will
increase due to less processors are used to perform that CPU-bound task. A good
system design must balance the number of Pw and Pd processors to (1) make both
computation and communication time low, and (2) ensure that communication is
short enough to be masked by computation. This parameter can be derived once the
average time for Gibbs sampling and communication of the word-topic matrix is
known. Suppose the total time of Gibbs sampling for the whole data set is Ts, the
communication time of transferring the topic distributions of all words from one
processor to another processor is Tt . For Pd processors, the sampling time will be
Ts/Pd . Suppose topic distributions of words can be simultaneously transferred to Pw

processors, and thus transfer time will be Tt/Pw. To make sure the sampling time
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can overlap the fetching and updating process, PLDA+ thus must make sure that

Ts

Pd
>

2Tt

Pw

. (12.9)

Suppose Ts = W t̄s where t̄s is the average sampling time for all instances of a word,
and Tt = W t̄ f = W t̄u, where t̄ f and t̄u are the average fetching and update time
for a word, we can get

γ = Pw

Pd
>

t̄ f + t̄u
t̄s

, (12.10)

where t̄ f , t̄u and t̄s can be obtained by performing PLDA+ on a small data set and
then empirically set a appropriate γ value. Under the computing environment of our
experiments, we empirically set γ = 3/5.

The second parameter is the number of threads in thread pool R, which caps the
number of parallel IO requests. Since thread pool is used to prevent from being
blocked by some busy Pw processors and thus R is determined by the network
environment. The setting of R can be empirically tuned during Gibbs sampling. That
is, when the waiting time during the previous iteration is large, the thread pool size
is increased.

The third parameter is the number of requests F for pre-fetching topic distributions
before performing Gibbs sampling on Pd processors. This parameter is dependent
on R.

The last parameter is the maximum interval intermax for fetching overall topic
counts from all Pw processors during Gibbs Sampling of Pd processors. This para-
meter influences the quality of PLDA+. Experiments show that in order to learn LDA
models with similar quality to AD-LDA and LDA, intermax should be set to W.

It should be noted that the optimal values of the parameters of PLDA+ are highly
related to the distributed environment including network bandwidth and processor
speed.

12.4.6.2 Complexity

Table 12.2 summarizes the complexity of Pd processors and Pw processors in both
time and space. For comparison, the table also lists the complexity of LDA and
AD-LDA. We assume P = Pw + Pd when comparing PLDA+ with AD-LDA.

Finally, let us analyze the speedup efficiency of PLDA+. Suppose δ→ 0 and γ =
Pw

Pd
for PLDA+, the ideal parallel efficiency will be always:

speedup efficiency = S/P

S/Pd
= Pd

P
= 1

1+ γ
, (12.11)

where S denotes the running time of LDA on a single machine, S/P is the ideal
time cost using P processors, and S/Pd is the ideal time achieved by PLDA+ with
communication completely masked by Gibbs sampling.
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Table 12.2 Algorithm
complexity

Method Time complexity Space complexity

LDA NT T(D + W) + N
AD-LDA N T

P + T W log P (N+T D)
P + T W

PLDA+ −Pd
N T
Pd
+ δ

(N+T D)
Pd

PLDA+ −Pw – T W
Pw

Table 12.3 Detailed
information of data sets

NIPS Dianping Wiki-20T Wiki-200T

Dtrain 1,540 113,754 2,122,618 2,122,618
W 11,909 27,752 20,000 200,000
N 1,260,732 3,625,275 447,004,756 486,904,674
Dtest 200 1,000 – –

12.5 Experimental Results

This section compares the performance of PLDA+ and AD-LDA. The comparisons
help understand benefits of data placement and pipeline processing strategies.

12.5.1 Datasets and Experiment Environment

We used four datasets shown in Table 12.3 to conduct experiments. The NIPS dataset
consists of scientific articles appeared at NIPS conferences. Dianping dataset consists
of restaurant reviews from dianping.com. NIPS and Dianping datasets are both
relatively small, and we used them to carry out training-quality assessment. Two
Wikipedia datasets were collected from English Wikipedia articles of the March 2008
snapshot from en.wikipedia.org. By setting the size of vocabulary to 20,000 and
200,000, respectively, the two Wikipedia datasets are named Wiki-20T and Wiki-
200T. These two large datasets were used for testing scalability of PLDA+. The
experiment environment was run on distributed machines with 2,048 processors,
each with a 2 HZ CPU, 3 GB memory, and disk allocation of 100 GB.

12.5.2 Perplexity

We used test set perplexity to measure the quality of LDA models learned by various
distributed methods for LDA. Perplexity is a common way of evaluating language
models in natural language processing, computed as:

Perp(xtest) = exp

(
− 1

N test log p(xtest)

)
, (12.12)
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Fig. 12.10 Test perplexity
on NIPS versus # topics T
when the number of
iterations is 400 (See color
insert)

where xtest denotes test set. A lower test perplexity value indicates a better quality.
For every test document in the test set, we randomly designated half the words for
fold-in, and the remaining words were used for testing. The document mixture θ j

was learned using the fold-in part, and the log probability of the test words was
computed using this mixture. This ensures the test words were not used in estimating
model parameters. The perplexity computation follows the standard way of averaging
over multiple chains when making predictions with LDA models trained via Gibbs
sampling as shown in [8]. For PLDA+ and LDA, the test perplexity was computed
using S = 40 samples from the posteriors of 40 independent chains using:

log p(xtest) =
∑
j,w

ntest
jw log

1

S

∑
k

θ S
k jφ

S
wk, (12.13)

where

θk j =
C S

kj + α∑T
k=1 C S

kj + T α
, φwk = C S

wk + β∑W
w=1 C S

wk +Wβ
. (12.14)

To compare the quality of PLDA+ to single-machine LDA and distributed AD-
LDA, we computed the test perplexity for all methods after each iteration of Gibbs
sampling going through a round of whole vocabulary. The test perplexities on NIPS
with the number of topics K = 10, 20, 40, 80, and Dianping with K = 8, 16, 32, 64
are shown in Figs. 12.10 and 12.11, respectively. (Since we concerned only about
training quality, the number of machines used in this experiment may not be relevant.)

From both figures we can see that the quality of PLDA+ is similar to single-
machine LDA and distributed AD-LDA. Thus, we can conclude that PLDA+ can
train as good a model as traditional LDA methods.

Figures 12.12 and 12.13 show the convergence of test perplexity versus # of itera-
tion for LDA, AD-LDA and PLDA+ on NIPS and Dianping with different number of
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Fig. 12.11 Test perplexity
on Dianping versus # topics
T when the number of
iterations is 400 (See color
insert)

Fig. 12.12 Convergence of
test perplexity versus
iteration on NIPS with T = 80
(See color insert)

Fig. 12.13 Convergence of
test perplexity versus
iteration on Dianping with
T = 64 (See color insert)

processors. (The parameters were set as depicted in Sect. 12.5.2.) The figures show
the convergence rate of PLDA+ is virtually identical to LDA and AD-LDA.
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Fig. 12.14 Parallel speedup
results for 64 to 1,024
processors on Wiki-20T (see
color insert)

12.5.3 Speedups and Scalability

The primary motivation for developing distributed algorithms for LDA is to achieve
a good speedup. In this section, we report the speedup of PLDA+ comparing to AD-
LDA. We used Wiki-20T and Wiki-200T for speedup experiments. By setting the
number of topics T = 1,000, we ran PLDA+ and AD-LDA on Wiki-20T using P = 64,
128, 256, 512 and 1,024 processors, and on Wiki-200T using P = 64, 128, 256, 512,
1,024 and 2,048 processors. For PLDA+, the ratio of Pw Pd was empirically set to
γ = 0.6 according to the unit sampling time and transferring time. The number of
threads in a thread pool is 50, which is sufficient to handle the peak load. As analyzed
in Sect. 12.4.6.2, the ideal speedup efficiency of PLDA+ is 1

1+γ
= 0.625.

Figure 12.14 compares speedup performance. The speedup was computed relative
to the time per iteration when using P = 64 processors, because it was not possible
to run the algorithms on a smaller number of processors due to memory limitations.
We assumed that the speedup on P = 64 to be 64, and then extrapolated on that basis.
From the figure, we can observe that when P increases, PLDA+ simply achieves
much better speedup than AD-LDA, thanks to the much reduced communication
bottleneck of PLDA+.

Figure 12.15 compares the ratio of communication time over computation time
when P = 1,024. The communication time of AD-LDA is 13.38 s, much longer than
that of PLDA+’s 3.68 s. The communication time of AD-LDA is about the same as
its computation time at P = 512.

From the results, we can conclude that: (1) when word-topic matrix is not large,
PLDA+ performs similarly to AD-LDA, and when the number of processors increases
to large enough (e.g., P = 512), PLDA+ begins to achieve better speedup than AD-
LDA; (2) In fact, if we take the waiting time for synchronization in AD-LDA into
consideration, the speedup of AD-LDA could have been even worse. For example, in
a busy distributed computing environment, when P = 128, AD-LDA may take about
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Fig. 12.15 Communication
and sampling time 64 to
1,024 processors on
Wiki-20T (see color insert)

Fig. 12.16 Parallel speedup
results for 64 to 2,048
processors on Wiki-200T
(see color insert)

70 s for communication in which only about 10 s are used for transmitting word-topic
matrix and most of time is used to wait for each other (Fig. 12.16).

On the larger Wiki-200T dataset, the speedup of AD-LDA starts to flat out at
P = 512, whereas PLDA continues to gain in speed.1 For this dataset, we also list the
sampling and communication time ratio of AD-LDA and PLDA+ in Fig. 12.17. As
shown in this figure, PLDA+ keeps communication time to quite low values from
P = 64 to P = 2,048. While for AD-LDA, the communication time finally became a
bottleneck to prevent it from speedup as the number of processors grows. Though
eventually the Amdahl’s law would kick in to cap speedup, it is evident that the
reduced overhead of PLDA+ permits it to achieve much better speedup for training
on larger datasets.

1 For PLDA+, the parameter of pre-fetch number and thread pool size was set to F = 100 and
R = 50. With W = 200,000 and W = 1,000, the matrix is 1.6 GB, which is large for communication.
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Fig. 12.17 Communication
and sampling time 64 to
2,048 processors on
Wiki-200T (see color insert)

12.6 Large-Scale Applications

LDA has been shown effective in many tasks (e.g., [23–25]). In this section, we use
two large-scale applications, community recommendation of Google Orkut and label
suggestion of Google Confucius [26], to demonstrate the usefulness of PLDA+.

12.6.1 Mining Social-Network User Latent Behavior

Users of social networking services (e.g., Orkut, Facebook, and MySpace) can con-
nect to each other explicitly by adding friends, or implicitly by joining communities.
When the number of communities grows over time, finding an interesting community
to join can be time consuming. We use LDA to model users’ community membership
[27]. On a matrix formed by users as rows and communities as columns, all values
in user-community cells are initially unknown. When a user joins a community, the
corresponding user-community cell is set to one. We apply LDA on the matrix to
assign a probability value between zero and one to the unknown cells. When LDA
assigns a high probability to a cell, this can be interpreted as a prediction that that
cell’s user would be very interested in joining that cell’s community.

The work of [27] conducted experiments on a large community data set of 492,104
users and 118,002 communities in a privacy-preserved way. The experimental results
show that PLDA V1.0 (AD-LDA based implementation) achieves effective perfor-
mance for personalized community recommendation.
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12.6.2 Question Labeling

Confucius is a Q&A system developed by my team at Google Beijing, and has
been launched in more than 60 countries [26]. The goal of Question Labeling is
to help organize and route questions with automatically recommended labels. The
Question Labeling subroutine takes a question as the input and outputs an ordered
list of labels that best describe the question. Labels consist of a set of words or
phrases that best describe the topic or type of the question. Confucius allows at most
five labels per question, but puts no limit on the size of the global label vocabulary.
Confucius organizes the most important category labels into a two-layer hierarchy,
in order to provide a better browsing experience. Question Labeling is used by two
other subroutines: User Rank and Question Labeling . When ranking users, User
Rank uses popular labels to compute the topic-dependent rank scores. Question
Routing assigns questions to users via either subscription or expert identification,
during which labels generated byQuestion Labeling are used for matching. The
precision and recall of suggested labels are two important metrics for measuring
Question Labeling performance. Precision measures the correctness of suggested
labels, while recall measures the completeness.

Figure 12.18 shows the two parts of Question Labeling offline training and online
suggestion. In the offline training part, we employ LDA to model the relationship
between words and topic labels. The training data is the existing set of questions
with user-submitted labels. First, we merge all questions with the same label l into
a meta-document dl , and form a set of meta-documents {dl} (Fig. 12.18, Steps 1
and 2). Second, we remove all stop words and rare words to reduce the size of
each meta-document (Step 3). Third, we use {dl} as the corpus to train LDA models
(Steps 5–6). The label corresponds to the document in LDA definition, while the
words in the meta-documents correspond to the words. The resulted LDA model
decomposes the probability Question Labeling—this is similar to the factor model
in recommendation algorithms, expressed in terms of probabilities. Instead of a
single model, Question Labeling trains several LDA models with different number
of latent topics. Using multiple LDA models with different k-s is known as bagging,
which typically outperforms a single model and avoids the difficult task of setting
an optimal k, as discussed by Hofmann [28]. In the current Question Labeling
Question Labeling system, the following numbers of topics are used: k = 32, 64,
128 and 256. We collect all LDA models into a set M (Step 7) and save it to disk.
The training part works offline. To handle large training data, we use PLDA+ on
thousands of machines in order to maintain training time within the range of a few
hours.

The online suggestion part assigns labels to a question as the user types it. The
bottom half of Fig. 12.18 depicts the suggestion algorithm. First, we use each LDA
model in M to infer the topic distributions {θq,k} of the question q (Step 1). Then,
we compute the cosine similarity CosSim(θq,k, θdl ,k) between θq,k and θdl ,k

(Step 2). Third, we use the mean similarity over different values of k as the final
similarity S(q,l) between a question and a label (Step 3). Finally, we sort all l ∈
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Fig. 12.18 Question Labeling subroutine

L by S(q, l) in descending order, and take the first N (say ten) labels as recommended
ones
(Step 4).

Using PLDA+ for Question Labeling has two benefits: semantic matching and
scalability. PLDA+ decomposes each question and answer into a distribution over
a set of latent topics. When encountering ambiguous words, PLDA+ can use the
context to decide the correct semantics. For example, Question Labeling suggests
only labels such as ‘mobile’ and ‘iPhone’ to the question How to crack an apple?,
although the word apple also means the fruit “apple.” In addition, PLDA+ is designed
to scale gracefully to more input data by employing more machines.

12.7 Concluding Remarks

In this chapter, we first presented the implementation of AD-LDA based on MPI.
We then analyzed the communication bottleneck of AD-LDA. In order to reduce
this communication bottleneck, PLDA+ divides processors into two types, namely
Pd processors and Pw processors, and also employs pipeline-based Gibbs sam-
pling (PGS). Though any distributed scheme may subject to pathological workload,
PLDA+ appears to be resilient to substantial deadline misses caused by imbalanced
workload. Extensive experiments on large-scale document collections demonstrated
that PLDA+ can achieve much higher speedup than AD-LDA, thanks to both its
improved load balancing and reduced communication overhead. From the experience
with implementing PLDA+ we learned that on top of MapReduce or MPI, advanced
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strategies such as data placement and pipeline processing should be considered to
further smooth out bottlenecks.
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Appendix: Open Source Software

By the end of 2010, my team have released three pieces of software to the public
through the Apache Open Source foundation to assist research communities of
signal processing, computer vision, data mining, machine learning, and database to
conduct large-scale studies and experiments. The locations of the software are as
follows

• PSVM http://www.code.google.com/p/psvm/.
• PLDA+http://www.code.google.com/p/plda/.
• Parallel spectral clustering http://www.code.google.com/p/pspectralclustering/.
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