
Symmetry for the Analysis of Dynamic Systems

Zarrin Langari and Richard Trefler∗

David R. Cheriton School of Computer Science
University of Waterloo, ON, Canada

{zlangari,trefler}@cs.uwaterloo.ca

Abstract. Graph Transformation Systems (GTSs) provide visual and
explicit semantics for dynamically evolving multi-process systems such
as network programs and communication protocols. Existing symmetry
reduction techniques that generate a reduced, bisimilar model for alle-
viating state explosion in model checking are not applicable to dynamic
models such as those given by GTSs. We develop symmetry reduction
techniques applicable to evolving GTS models and the programs that
generate them. We also provide an on-the-fly algorithm for generating
a symmetry-reduced quotient model directly from a set of graph trans-
formation rules. The generated quotient model is GTS-bisimilar to the
model under verification and may be exponentially smaller than that
model. Thus, analysis of the system model can be performed by check-
ing the smaller GTS-bisimilar model.

1 Introduction

Model checking is used to analyze finite state program models. Many of these
models are composed of similar components. In practice, the number of com-
ponents in these models may be dynamically changing within a given upper
bound. For instance, for many communication protocols, the given bound arises
naturally due to inherent limitations on system size. Examples of dynamic sys-
tems composed of similar components include communication protocols such as
IP-telephony protocols where telephony features are dynamically assembled in a
call over the Internet [15], network programs with a variable number of clients,
and object-oriented systems such as dynamic heap allocation programs [12].

Due to the use of similar components, symmetry is often a feature of the
above system models that can be exploited to reduce the state space of a model
under verification. Unfortunately, existing symmetry-reduction methods [13,7,9]
are not applicable to dynamic systems. In addition, they may offer only limited
reduction to system models that are not fully symmetric. Full symmetry causes
the system model to be invariant under arbitrary rearranging of the components,
resulting in an exponential reduction by defining an equivalence relation on sym-
metric states of the system model. An example of a fully symmetric system model
∗ The authors’ research is supported in part by the NSERC of Canada. Zarrin Langari

is currently in McMaster University, Hamilton, ON, Canada; and is supported in part
by Mathematics of Information Technology and Complex Systems (MITACS).

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 252–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Symmetry for the Analysis of Dynamic Systems 253

Fig. 1. a) A non-fully symmetric 3 × 3 and b) a fully symmetric 2 × 2 toroidal mesh

with four components is illustrated in Figure 1-b. We propose a symmetry reduc-
tion method for analyzing visual models of dynamically evolving systems. Our
symmetry reduction approach is applicable to non-fully symmetric system archi-
tectures such as hypercube, ring, and torus (used in metropolitan area networks
that need high scalability) used for modelling next-generation communication
and hardware protocols.

Motivation: Graphs provide visual and explicit operational semantics for
presenting states and demonstrating structural symmetries of a system. GTSs,
which use this graph-based semantics, are straight forward formalisms that offer
several key advantages over naive methods in modelling the dynamic evolution of
multi-process systems [15,16]. Recently, the GTS formalism has been used to per-
form reasoning, including verification and error detection, on multi-component,
reactive systems [16,11,2,5]. Our motivation is to exploit the advantages that
graph-based models provide for the modelling and analysis of dynamically evolv-
ing systems.

When systems are composed of several similar components, it is often conve-
nient to identify the various components by their process indices. In a Kripke
model of these systems, a state consists of the values of all global variables and
the local states of each process. For example, consider a 3 × 3 toroidal mesh
network of processes, as in Figure 1-a. A toroidal mesh is a grid network with
wrap-around links, where each process can communicate to two other processes.
A shared token is used to show the access of processes to some resource. In this
example, the local state T +

23 describes that the process in row 2, column 3 pos-
sesses a token (denoted by a plus sign) and is trying to access a shared resource
(denoted by T), and the other processes are in their non-trying modes (denoted
by N). Symmetries in these models are then represented as permutations of the
process indices. Symmetry-reduction methods [13,7,9,21] use the index permu-
tation to build a symmetry-reduced quotient model that is equivalent, up to
permutation, to the behaviour of the original model.

In Kripke models, the labelling of each state does not explicitly show the
architecture of the system. On the contrary, in a GTS model of the system, each
global state is represented by a graph that explicitly provides the architecture in

254 Z. Langari and R. Trefler

which processes are connected together. Since index permutations do not respect
the architecture of states, they cannot be used directly to represent symmetries
of graph semantics and build equivalence classes of state graphs in non-fully
symmetric GTS models. Instead, in graph-based semantic models, symmetries
are represented as graph isomorphisms [19] that are used to define an equivalence
relation on the set of states presented as graphs.

Contribution: Having several sets of permutations for graphs with different
number of nodes, we define a notion of symmetry for a dynamically evolving
symmetric multi-process system modelled as a GTS that may grow to a given
maximum size. The explicit GTS semantic modelling can directly be exploited
for reducing symmetric systems. Our symmetry reduction technique is based
on generating a reduced state space directly from the set of graph transforma-
tion rules that define the model under verification. For this purpose, we define
the notions of GTS symmetry, and GTS bisimulation based on graph isomor-
phism. With GTS bisimulation, we describe an on-the-fly algorithm that builds
a symmetry-reduced model using the set of graph transformation rules that de-
scribe the full dynamic behaviour of the system.

To improve the reduction for symmetric GTS models, we define vertex bisim-
ulation. Vertex bisimulation describes an equivalence relation on state graphs
based on their set of vertices and can be used in our algorithm for symmetry
reduction resulting in an exponential state space saving (cf [21]). We also show
that two vertex-bisimilar GTS models can prove the same reachability properties
given by a subset of CTL. In our method, we use proposition graphs to indicate
Boolean expressions of atomic propositions. We use proposition graphs, which
provide an abstraction of the process indices, to encode symmetric Boolean ex-
pressions describing local system states.

Related Work: Ip and Dill [13], Emerson and Sistla [9], and Clarke et al. [7]
have been the first who explored symmetry reduction for systems with a fixed
number of similar processes. These methods offers only polynomial reductions for
most non-fully symmetric systems; thus, in [10,21] the authors have addressed
those systems, however, those methods do not apply to graph-based models and,
furthermore, are restricted to models with a fixed number of components.

Our approach is also different than approaches such as regular model checking
[6] or parameterized verification (cf [1]). These methods provide abstractions
that generally are not an equivalent representation of the original model. Our
method provides an abstraction with an equivalence between the models.

In the area of GTS models, it is only Rensink’s [18,19] work that has directly
addressed symmetry in GTS models. In [18], a generalized definition of bisimu-
lation is used. This bisimulation is defined for graphs and for developing efficient
algorithms to check if two graphs are isomorphic, and not for the GTSs.

The rest of the paper is organized as follows: an overview of GTS modelling
is given in Section 2 and is followed by definitions of GTS symmetry and GTS
bisimulation in sections 3 and 4. We present vertex bisimulation for symmetric
dynamic GTSs in Section 5 and conclude in Section 6.

Symmetry for the Analysis of Dynamic Systems 255

2 Graph Transformation System Modelling

GTS is a powerful formalism for modelling the semantics of distributed reactive
systems [20,8]. In this formalism, graphs are used as the most natural represen-
tation of a system [11], where each node represents a process in the system and
edges show the direct communication between processes. In previous work [15],
GTS modelling was used to represent the dynamic behaviour of a telecommu-
nication system that included the creation and deletion of processes. In a GTS
model, each state of the system is specified as a graph. Transformation rules are
then used to describe how one state may change to another. The GTS formalism
that we use to describe multi-process systems is defined below.

Definition 1 (Graph). A graph G = (V, E, Src, T rg, Lab) consists of a set V
of nodes, a set E of edges, and functions Src, T rg : E → V , that define the
source and the target of a graph edge, and the labelling function Lab : E, V → l,
where l belongs to a set of labels.

Definition 2 (Graph Morphism). Let G = (VG, EG, SrcG, T rgG, LabG) and
H = (VH , EH , SrcH , T rgH , LabH). A graph morphism f : G → H maps nodes
(V) and edges (E) of graph G to nodes and edges of graph H where f = (fv, fe),
fv : VG → VH , and fe : EG → EH are structure-preserving functions. That
is, we have for all edges e ∈ EG, fv(SrcG(e)) = SrcH(fe(e)), fv(TrgG(e)) =
TrgH(fe(e)), and LabH(fe(e)) = LabG(e), LabH(fv(v)) = LabG(v). If fv, fe are
total functions, then we have a total morphism, and if these are partial functions,
and fe is defined on e, i.e. there is an e′ ∈ EH , such that fe(e) = e′,we have a
partial morphism.

Definition 3 (Graph Isomorphism). In the above definition, if f , respec-
tively fv and fe, are bijective functions, then we have a graph isomorphism. We
write G ∼= H if there exists an isomorphism between graphs G and H.

If fv and and fe map the set of all nodes and edges of graph G respectively,
then the morphism is called a total morphism. On the other hand, fv and fe

are partial morphisms iff the mapping is not from the whole source graph nodes
and edges. Note that in a structure-preserving mapping, the shape and the edge
labelling of the original graph are preserved.

Definition 4 (Graph Transformation Rule). A transformation rule r is
defined as r : L → R, where L and R are graphs, called the left side graph and
the right side graph of the rule, and there is a partial morphism between them.

To transform a graph, a rule is applied to the graph. The application of a rule r
to a graph G, is based on a total morphism between L and G. We write G0

r−→ G1

to show that the graph G0 is transformed to G1 by the application of rule r. In
general, the result of applying a rule to a graph is as follows: everything in the
left side graph (L) but not in the right side graph (R) will be deleted, everything
in R which is not in L will be created, and everything that is in both sides will
be preserved [20]. A total match between the left side subgraph of a rule and a

256 Z. Langari and R. Trefler

subgraph in the source graph is made, and then the source subgraph is deleted
and replaced by the right side subgraph R.

To describe how the states of a system defined as graphs transform as the
transformation rules are applied to them repeatedly starting from the initial
state, we give the definition of a graph transition system G = 〈S, T, I〉.
Definition 5 (Graph Transition System). A graph transition system is de-
fined as, G = 〈S, T, I〉, such that:

1. S is a set of states, where each state s ∈ S has a graph structure denoted as
Gs .

2. T is a set of transitions : T ⊆ S ×P ×S where P is a set of transformation
rules and for all t ∈ T, t is given by s1

r−→ s2, there is a graph transformation
rule r ∈ P that transforms Gs1 to Gs2 .

3. I is a set of initial state graphs.

The transformation sequence s0
r1−→ s1

r2−→ ...
rn−→ sn is called a GTS derivation.

We write s0
r∗−→ sn to denote that such a derivation from s0 to sn exists. Since in

our modelling all the transitions are made by the application of rules, we some-
times omit the r superscript and show a transition as s1 → s2 and a sequence
of transitions as a path, denoted by �, e.g. s0 � sn shows that there is a path
between the state s0 and sn in the graph transition system.

Later, in sections 4 and 5 we need to prove that a GTS and its bisimilar
quotient satisfy the same set of properties. Thus, at first, it is required that
we describe how these properties and their propositional formulas are expressed
in terms of graphs, and how the property satisfaction is defined for graphs. In
our previous work [16], we have defined the notion of graph satisfaction and
extended the definitions of graph and graph morphism to regular expression
graph (REG) and regular expression graph morphism. Here, we briefly present
these definitions again. REGs are used for expressing Boolean expressions of
propositions as graphs (called proposition graphs) with edges labelled as regu-
lar expressions (e.g. Kleene-star labels). Using regular expression graphs in the
proposition graphs and the transformation rule graphs makes these graphs more
expressive. REGs are used to compactly express component connectivity pat-
terns, for instance, to show that between two components of interest there may
be an arbitrary length sequence of intervening components.

Definition 6 (Regular Expression Graph (REG) [16]). An REG is a
graph G where for a set of labels, L, the labelling function Lab is defined as
Lab : EG → {l+ | l ∈ L} ∪ {l∗ | l ∈ L} ∪ L where l∗ and l+ represent Kleene
closure and the positive Kleene closure of l.

For REG morphism we need to define the notion of a graph path. On a graph, a
path is defined as a sequence of nodes connected by edges. Hence, the sequence
of edge labels in a graph path specifies a string (language).

Definition 7 (REG Morphism [16]). An REG morphism between G and H,
when either G or H is an REG or a graph is defined as, for a path p = {v1, ..., vn}
in G there is a path q = {u1, ..., un} in H such that:

Symmetry for the Analysis of Dynamic Systems 257

– There is a graph morphism m : VG → VH between the beginning and the end
nodes of these two paths.

– For 2 ≤ i ≤ n − 1, these cases may occur:
1. If both G and H are REGs, then the language specified by the sequence of

corresponding labels over the edges connecting nodes vi in p is a subset of
the language specified by the sequence of labels over the edges connecting
nodes ui in q.

2. If H is an REG, and G is a graph without Kleene-star-labelled elements,
then the string specified by the sequence of corresponding labels over the
edges connecting nodes vi in p is a member of the language specified by
the sequence of labels over the edges connecting nodes ui in q.

We have total or partial REG morphisms, if the mappings are respectively total
or partial.

Definition 8 (Graph Satisfaction [16]). An REG or a graph G satisfies an
REG or a graph φ, written as G |= φ, iff there exists a total graph or REG
morphism m between φ and G written as m : φ → G.

We adopt a GTS model with attributed graphs and node identification [20,3], in
which nodes are uniquely identified by their attributes.

3 Symmetry in Dynamic GTS Models

We define symmetry for dynamic GTS models of systems which may not be fully
symmetric, but that show some symmetry in their structure. Traditionally, for a
fixed size system, symmetries are represented by a group of index permutations
[7,9]. For GTS systems, we consider states to be symmetric if their associated
graphs are isomorphic.

Definition 9 (Graph Permutation). A permutation π : G → H is an iso-
morphism between a graph G and a graph H, G ∼= H.

Since π is an isomorphism, it associates vertices and edges of H (VH , EH) to
vertices and edges of G (VG, EG), such that VH = VG. For example, for a ring
graph with three labelled nodes 1, 2, 3, with edges: 1 → 2, 2 → 3, 3 → 1, a
permutation π that maps nodes 1 to 2, 2 to 3, and 3 to 1 permutes the graph
to the one that has the same set of vertices. Also π associates the edges 1 → 2,
2 → 3, and 3 → 1, respectively, to the edges 2 → 3, 3 → 1, and 1 → 2 in the
permuted graph.

In dynamic systems, where the number of components may change, we con-
sider sets of such permutations to define symmetries for different state sizes. In
fact, there are different groups of permutations for graphs with different sizes.
The state graph permutation implicitly considers the number of nodes in a graph
because graph isomorphism is used to define these permutations and isomor-
phism is based on a bijection on the sets of nodes and edges of the graph. For
specific graphs of n nodes, we use the notion πn to show a permutation on those

258 Z. Langari and R. Trefler

graphs. For a ring of size n this permutation is a rotation on an n-node ring. For
a k × k toroidal mesh (where n = k × k), a permutation is either the rotation of
k horizontal rings, the rotation of k vertical rings, or a mix of these rotations.
k − 1 horizontal rotations followed by a vertical one or k − 1 vertical rotations
followed by a horizontal one is actually a flip for the k × k toroidal mesh, where
the flip α is defined as α(i, j) = (j, i). These permutations are automorphisms
of a toroidal mesh network.

For a specific topology, consider a set composed of a disjoint union of graphs
with different sizes. We use the notation Ai to show a group of graph symmetries,
where i denotes size of the graph. The number of groups is finite as we work
with GTS models with an upper-bound maxsize on the number of graph nodes.
Γ is defined as a new generalized group of symmetries built from the product of
groups of permutations of graphs with different sizes. For details on this product
and for the reason on why this product forms a group we refer the reader to
[14]. Each element of Γ is a tuple (π1, π2, ..., πn) where πi ∈ Ai. Each πi can be
an identity permutation indicated as ei, which is a morphism that maps each
graph of size i to itself, where 1 ≤ i ≤ maxsize(G). Note that the group Ak

is isomorphic to the subgroup of elements (e1, e2, ..., πk, ..., en); therefore, for
simplicity we indicate (e1, e2, ..., πk, ..., en) as πk from now on.

Definition 10 (GTS Symmetry). A GTS G = 〈S, T, I〉 is symmetric with
respect to the set of graph permutations Γ if:

1. For all s1, s2 ∈ S, where s1 has an associated n-node graph and s2 has an
associated m-node graph, if t is a transition in T such that t : s1 → s2, then
for πn, an n-node symmetry in Γ , there is a path p ∈ T +, p : πn(s1) �
πm(s2) ∈ T + where πm is an m-node symmetry in Γ .

2. For all s0 ∈ I where Gs0 is an n-node graph associated with state s0 and for
all πn ∈ Γ , πn(Gs0) ∈ I.

A GTS model is fully symmetric if for all transitions and for all arbitrary in-
dex permutations on state graphs (not just isomorphisms), the GTS model is
invariant. GTS symmetry differs from architectural symmetry defined for fixed-
size systems in [21], because in the case that Gs1 (an n-node graph associated
with state s1) and Gs2 (an m-node graph associated with state s2) are of the
same size, then in the above definition, m = n and πn = πm, which means that
we have the same permutation for graphs with the same number of nodes. The
reason is that both πn and πm are isomorphisms on graphs of the same size and
architecture. In this case, the path p would be of length one, because for each
transition between two state graphs, there is one symmetric transition between
their isomorphic state graphs. In addition, the set of symmetries in architec-
tural symmetry differs from those in GTS symmetry, which are based on graph
isomorphisms.

In dynamic GTSs, it is important to describe the way the system evolves
within a maximum bound. Our methods are applicable when evolution of the
system does not change the architecture describing the model structure. For
example, the basic building block of a toroidal mesh is a ring, and the toroidal

Symmetry for the Analysis of Dynamic Systems 259

mesh evolves by the addition of these building blocks. Therefore, the dynamic
evolution is done by adding a certain number of k nodes to form a new vertical or
horizontal ring to keep a balanced toroidal mesh network. Therefore, in toroidal
mesh, m = n (when the toroidal mesh is not dynamic), or m = n + k (when k
nodes are added), or m = n − k (when k nodes are deleted).

We use graph isomorphism to build a bisimilar quotient of a GTS model. It
is notable that graph isomorphism requires that graphs be of the same size and
structure. We can use graph isomorphism as an equivalence relation on a GTS
model with state graphs of different sizes. Thus, in state-space reduction, we are
looking to cut down the number of isomorphic state graphs belonging to the
same equivalence class that are represented during verification.

4 GTS Bisimulation

Using graph isomorphism (Definition 3), we now define GTS bisimulation, and
then give an algorithm to generate a reduced bisimilar quotient of a GTS model.
Isomorphism provides a strong equivalence relation for generating the quotient,
because the same set of transformation rules are applicable to a state in the
quotient and the isomorphic state in the original model.

Definition 11 (GTS Bisimulation). Given two GTSs G1 = 〈S1, T1, I1〉 and
G2 = 〈S2, T2, I2〉, a relation ∼ ⊆ S1 × S2 is a GTS bisimulation if s1 ∼ s2

implies:

1. Gs1
∼= Gs2 .

2. For every t1 ∈ T1, t1 : s1 → s′1, there is a path p2 ∈ T2 of length at least one,
such that p2 : s2 � s′2 and s′1 ∼ s′2.

3. For every t2 ∈ T2, t2 : s2 → s′2, there is a path t1 ∈ T1 of length at least one
such that p1 : s1 � s′1 and s′2 ∼ s′1.

Quotient of a GTS: Let G = 〈S, T, I〉 be a GTS with a set P of transformation
rules and ≡ is an equivalence relation on S such that s1 ≡ s2 implies Gs1

∼=
Gs2 . If each equivalence class of state graphs is shown as [s], then the quotient
structure of a GTS is represented by Ḡ = 〈S̄, T̄ , Ī〉 such that

S̄ = {[s] : s ∈ S}, G[s]
∼= Gs,

T̄ = {[s] r−→ [t] ∈ S̄ × P × S̄ : ∃s0 ∈ [s], t0 ∈ [t] : s0
r−→ t0 ∈ T }, and

Ī = {[s] : s ∈ I}.

4.1 Generating a Bisimilar Quotient

In this section, we present an algorithm for generating a symmetry-reduced GTS
model of a dynamically evolving multi-process system. This algorithm (cf [9])
provides an on-the-fly generation of the symmetry-reduced model of a GTS-based
labelled-transition system. The algorithm may provide an exponential savings in
the cost of system analysis for fully symmetric GTS models, but for GTS models
with some symmetry we get a polynomial-size reduction.

260 Z. Langari and R. Trefler

GenerateQuotient(state s0, T , int n)
Input: s0: initial state, T : set of GTS rules, n: initial number of processes
Output: E: equivalence classes of states, R: quotient transition relation
E[1].st ← s01

CurrentState ← 1, LastState ← 12

// loops over E to apply the transformation rules

while CurrentState ≤ LastState do3

forall r ∈ T applicable to E[CurrentState].st do4

// applies rule r to a representative state st in table E

temp ← Apply(r, E[CurrentState].st)5

s̄ ← temp.st6

n̄ ← temp.n7

stateFound ← false8

// checks if the transformed state is a permutation of the

existing representative states

for i ← 1 to LastState do9

// finds the equivalence class based on the graph size

if (E[i].n = n̄) and (s̄ = E[i].st or I sAPermutation(E[i].st, s̄, E[i].n))10

then
stateFound ← true11

AddTransition(R,CurrentState, i)12

exit for loop13

endfor14

// the newly found equivalence class is inserted in E

if stateFound = false then15

LastState ← LastState+ 116

E[LastState].st ← s̄17

E[LastState].n = n̄18

AddTransition(R,CurrentState, LastState)19

endforall20

CurrentState ← CurrentState+ 121

endwhile22

return E, R23

Fig. 2. Quotient Generation Algorithm

The algorithm GenerateQuotient in Figure 2 accepts a set of graph trans-
formation rules, an initial-state graph labelling, and the initial number of pro-
cesses as input. As output, it generates a table E: the representatives of the
equivalence classes of state graphs, and a table R: the quotient transition rela-
tion. Each element in E consists of a single representative state graph (st), and
the number of processes in that state graph (n). Table R is a two-dimensional
table consisting of pointers to table E. There is a transition between each state
in E[i] and the state in E[R[i, j]], where j is an index iterating over all transi-
tions of the state in E[i]. By keeping track of the number of processes in each
representative state: E[i].n, our algorithm works correctly for dynamic architec-
tures in which processes can be added or deleted in the execution path.

Symmetry for the Analysis of Dynamic Systems 261

In line 10, the algorithm checks that two state graphs with the same size are a
permutation of each other. For more clarity, here we consider the node labelling of
a state graph instead of the graph itself. The function IsAPermutation iterates
over permutations to find the right permutation, and it can be specialized for
different topologies. For example, for ring networks, the permutations are circular
ones. For a toroidal mesh, they are appropriate horizontal or vertical rotations,
or flips. As an example, we have implemented the GTS modelling of mutual
exclusion for both a dynamic toroidal mesh and a dynamic token ring in [14].

Theorem 1. Let G = 〈S, T, I〉 be a GTS and symmetric with respect to the set
of graph permutations Γ , and Ḡ = 〈S̄, T̄ , Ī〉 be the quotient of G, then G and Ḡ
are GTS-bisimilar: G ∼ Ḡ.

Proof. Consider πn, πm ∈ Γ as graph permutations for a set of state graphs with
different number of nodes. The proof considers two claims: 1) for every graph
transformation s̄0 → s̄1 ∈ T̄ , there is a corresponding path p = s0 � s1 in G,
and 2) for every s0 → s1 ∈ T , there is a corresponding path p̄ = s̄0 � s̄1 in
Ḡ. We prove the first claim, and the other follows similarly. The proof for each
claim is broken into two cases: one for transformations s̄0 → s̄1 that do not
add or delete components (nodes) to or from the start graph s̄0 of size n. The
second case considers a transformation that changes the number of components
in the source state graph. For the second case, we only consider the addition of
components, as proof for the deletion is similar.

Case 1: Choose an arbitrary reachable state s0 ∈ S such that Gs0
∼= Gs̄0 .

Using on-the-fly generation of the quotient, we know that there exists a transition
s̄0 → s̄1 ∈ T̄ such that s̄0 and s̄1 are equivalence classes of state graphs. Thus,
there is a graph u ∈ S that belongs to the equivalence class of s̄0 and there
is a graph v ∈ S that belongs to the equivalence class of s̄1. Therefore, u →
v ∈ T . Thus, Gu

∼= Gs̄0 and Gv
∼= Gs̄1 . Since Gs0

∼= Gs̄0 and Gu
∼= Gs̄0 , by

transitivity Gs0
∼= Gu. Now let Gs1 be isomorphic to a permutation of graph

v, i.e. Gs1
∼= πn(Gv) which implies Gs1

∼= Gv and because we had Gv
∼= Gs̄1 ,

thus Gs1
∼= Gs̄1 . From u → v ∈ T , Gs0

∼= Gu, and Gs1
∼= Gv we deduce

πn(u) → πn(v) = s0
r−→ s1 ∈ T . Inductively, we can prove for each s̄i → ¯si+1 ∈ T̄ ,

there is a transformation si
r−→ si+1 ∈ T .

Case 2: In s̄0 → s̄1 ∈ T̄ , we know that Gs̄0 is of size n and Gs̄1 is of size
m, where m > n. Choose an arbitrary state s0 ∈ S such that Gs0

∼= Gs̄0 .
Since s̄0 → s̄1 ∈ T̄ , then based on the quotient generation algorithm, there is
a transformation rule u

r−→ v ∈ T in GTS G such that Gs̄0
∼= πn(Gu), Gs̄1

∼=
πm(Gv). Since G is GTS-symmetric, then for each transition u → v ∈ T there
exist permutations π′

n and π′
m such that π′

n(Gu) � π′
m(Gv) ∈ T , and since

permutation is based on isomorphism then every permutation of a graph is
isomorphic to it, so π′

n(Gu) ∼= πn(Gu). From Gs0
∼= Gs̄0 , Gs̄0

∼= πn(Gu), and
π′

n(Gu) ∼= πn(Gu) we have Gs0
∼= πn(Gu). Therefore, s0 � π′

m(v). Let s1 be the
permutation of graph v; hence, π′

m(Gv) ∼= Gs1 . We had Gs̄1
∼= πm(Gv), also we

know all permutations of a graph are isomorphic with each other, thus π′
m(Gv) ∼=

πm(Gv); hence, we have Gs̄1
∼= Gs1 , and conclude s0 � s1. Inductively, we can

prove for each s̄i → ¯si+1 ∈ T̄ that there is a path in T . �

262 Z. Langari and R. Trefler

As a result, we have a theorem about satisfaction of reachability properties,
EFf (eventually a long a path) and ¬EFf , where f is a propositional formula.
In GTS-bisimilar models, a transition matches with a path; therefore, neither X
(next-time) nor U (until) operators can be expressed in properties.

Theorem 2. Let φ be an EF formula over a set of atomic graph propositions
defined as graphs or REGs. For the graph transition system G, and its quotient
Ḡ and the property φ and state graphs s1 ∈ G and s̄1 ∈ Ḡ, where s1 ∼ s̄1 we have
G, s1 |= φ iff Ḡ, s̄1 |= φ.

Proof idea. This theorem is a direct consequence of exploiting symmetry and
GTS symmetry, and the proof is done using the bisimulation between the GTS
G and its quotient Ḡ, and it is similar to the proof given in [21].

5 Vertex Bisimulation

In this section, we introduce vertex bisimulation to be used for GTSs that are
not fully symmetric. Vertex bisimulation enables an exponential reduction with
respect to full symmetry group for GTS models. We require that the transfor-
mations of these GTSs preserve the architecture, which is the case that usually
occurs in practice, i.e., if the initial state graph architecture is a toroidal mesh,
then this architecture is preserved in all state graphs of the model and in the
state graphs of the symmetry-reduced model. Even if the structure dynamically
evolves, the evolution of components preserve the overall system structure.

Definition 12 (Vertex Bisimulation). For GTSs G1 = 〈S1, T1, I1〉 and G2 =
〈S2, T2, I2〉 a relation ∼v ⊆ S1 × S2 is a vertex bisimulation if s1 ∼v s2 implies:

1. Gs1 and Gs2 have the same set of vertices and the same architecture.
2. for every t1 ∈ T1, t1 : s1 → s′1, there is a path p2 : s2 � s′2 ∈ T2 and

s′1 ∼v s′2.
3. for every t2 ∈ T2, t2 : s2 → s′2, there is a path p1 ∈ T1 such that p1 : s1 � s′1

and s′2 ∼v s′1.

From a GTS-symmetric model with respect to full symmetry group, we derive
a vertex-bisimilar quotient. Thus, we can apply all permutations and obtain
full symmetry reduction resulting in an exponential reduction. To be able to
gain this reduction without the application of the large set of all permutations,
there are techniques that allow the representation of full symmetry-reduced state
spaces by a program translation into a symmetry-reduced program text [10,4].
Vertex bisimulation for GTS models is comparable to safety-bisimulation for
Kripke models [21], but unlike safety-bisimulation it can be used for dynamic
graph models. In the following theorem, we show the vertex-bisimilarity of a
model and its quotient. The proof of this theorem is similar to the proof of
Theorem 1.

Theorem 3. Let Ḡ = 〈S̄, T̄ , Ī〉 be the quotient model of a GTS-symmetric sys-
tem G = 〈S, T, I〉, then G is vertex-bisimilar to Ḡ.

Symmetry for the Analysis of Dynamic Systems 263

Fig. 3. Two atomic proposition graphs

5.1 Property Preservation

If we prove that the quotient of a GTS-symmetric system is vertex-bisimilar to
the original model, then we can use the quotient to prove interesting properties
of the system. As stated in [21], one of the problems of verifying properties on
the quotient models is that the property should have symmetric atomic proposi-
tions, that is, permutations of process indices in the property formula leaves the
formula and its significant sub-formulas invariant. Expressing Boolean expres-
sions of atomic propositions as graphs and using graph satisfaction (Definition 8)
[16] provides an abstraction on the process indices that solves this problem. The
reason is that when we use an REG in an atomic proposition and a generic node
that represents, for example, any of the processes appearing in the proposition,
then we do not need to specify each symmetric part of the atomic proposition
explicitly. For example, in a model with three processes, an atomic proposi-
tion for expressing that at least one of the processes is in the Critical state is:
Critical1 ∨ Critical2 ∨ Critical3. Figure 3-a illustrates such an expression in
which one process (any of 1, or 2, or 3) is in the Critical state and connected to
at least one other process. The condition “at least one” has been modelled as an
edge labelled with Connected+ between two processes.

As presented in Definition 6, we have used the regular-expression graph in
which edges may be labelled with a Kleene-star operator over the set of labels.
Therefore, all formulas with the existential process quantifier form, ∨i, can be
abstractly modelled as a proposition graph with nodes being an abstraction of
process indices. Also, the universal process quantifier form, ∧i, in a graphical
notation, is implicitly presented as all the process nodes that participate in
the ∧i formula connected together. For instance, in the property ¬EF(∃i �=
j : Criticali ∧ Criticalj) in a toroidal mesh or ring, the Boolean expression of
propositions can be expressed as a graph illustrated in Figure 3-b. In this figure,
two different processes are presented to be in the Critical state.

Thus reachability properties and all the properties that can be expressed in
terms of EF, such as AG φ which is equal to ¬ EF ¬φ, are verifiable on the
symmetry-reduced GTS model. For these properties, we prove that for a GTS
and its quotient that are vertex-bisimilar, they both satisfy the same properties.
Based on this theorem, we can use the vertex-bisimilar reduced GTS model of
a system to prove interesting properties of it.

264 Z. Langari and R. Trefler

Theorem 4. Let G = 〈S, T, I〉 be a symmetric GTS and Ḡ = 〈S̄, T̄ , Ī〉 be the
quotient of G and vertex-bisimilar to it, G ∼v Ḡ. For s1 ∈ S and s̄1 ∈ S̄, where
s1 ∼v s̄1 we have G, s1 |= φ iff Ḡ, s̄1 |= φ where φ is an EF formula over a set
of atomic propositions defined as graphs or REGs.

To prove this theorem, first in the lemma below, we show that there is a matching
path between two vertex-bisimilar GTSs for GTS symmetric models.

Lemma 1. Let G = 〈S, T, I〉 be a symmetric GTS and Ḡ = 〈S̄, T̄ , Ī〉 be its
vertex-bisimilar GTS, G ∼v Ḡ. For s1 ∈ S, s̄1 ∈ S̄, if s1 ∼v s̄1 then for any GTS
derivation in G, s1

r∗−→ sm, there is a derivation in Ḡ, s̄1
r∗−→ s̄n, and vice versa.

Proof. It is notable that there may not be a one-to-one correspondence between
transformations of these two derivations, which means that the lengths of the
two derivations may not be the same. We show the proof for (⇐), and the other
direction will follow because G and Ḡ are vertex-bisimilar.

For p̄ : s̄1
r∗
−→ s̄n in Ḡ, we prove that there is p : s1

r∗
−→ sm in G such

that sm ∼v s̄n. The proof is shown by breaking the derivation p̄ into individual
transformations and matching each graph transformation in the derivation p̄ to
a sequence of transformations in p. Later we match the concatenated transfor-
mations in p̄ to the concatenated sequence of transformations in p.

For the first transition in p̄, if the length of the GTS derivation p is zero, then
s1 = sm, and we have a mapping to a path of length zero. If the length of the
GTS derivation p is greater than or equal to one, then based on Definition 12,
we have s1 ∼v s̄1 and for one transition s̄1 → s̄2 in p̄, there is a derivation in p
of length at least one, thus s̄2 ∼v si. We proved that for the first transformation

in p̄, there is a sequence of transformations in p : s1
ri−→ si where s̄2 ∼v si. The

same reasoning can be used for the second and subsequent transformations, e.g.
s̄2 → s̄3 is matched to a path from si to sj in p.

We now use induction. As to the hypothesis, consider for a sequence of k

transformations in p̄ : s̄1
rk−→ s̄k, there is a sequence of l transformations in

p : s1
rl−→ sl, such that s1 ∼v s̄1 and sl ∼v s̄k. Based on the vertex bisimulation

definition, for the transformation s̄k → s̄k+1 in Ḡ, there is a path sl
r∗−→ v in G,

where s̄k ∼v sl, and s̄l+1 ∼v v, let v be sl+1. Therefore, for p̄ : s̄k
r−→ s̄k+1 in Ḡ

there is a derivation p : sl
r∗−→ sl+1 in G. We consider the application of the first

k transformations and the k + 1th transformation in Ḡ as one GTS derivation:
s̄1

r∗−→ ¯sk+1, and also the first l sequences of transformations and the l + 1th

transformation in G as the derivation p : s1
r∗−→ sl+1. Let k+1 = n and l+1 = m.

Thus, we have matched the two derivations. �
Proof (Theorem 4). To prove this theorem, we use the fact that G is GTS-
symmetric, to ensure the preservation of architecture in states of G and its quo-
tient, even though s1 and s̄1 only have the same set of vertices. The proof is
given for different cases of φ. It is sufficient to show the proof for one direction
(⇒). The other direction is similar.

Symmetry for the Analysis of Dynamic Systems 265

Atomic Propositions. The propositional formula is built as a graph with an
abstraction on process indices. Therefore, without considering specific in-
dices, if the formula is true for s1, it is symmetrically true for any other
communication graph of processes with the same set of local states. Since s1

and s̄1 are vertex-bisimilar, they have the same node labelling or the same
set of possible local states, and both satisfy the same formula.

EF formula. From G, s1 |= EF ϕ, we deduce that there is a derivation p : s1
r∗−→

u in G, where u is a state graph that satisfies the proposition graph ϕ. Since
s1 ∼v s̄1 and based on Lemma 1, we know that for each derivation p in G,
there is a matching derivation p̄ : s̄1

r∗−→ v in Ḡ such that u ∼v v. Therefore,
each property that is satisfied in u is satisfied in v as well, Ḡ, v |= ϕ, and v
is a state along the path starting at s̄1. Hence, Ḡ, s̄1 |= EF ϕ. �

6 Conclusion

We have described symmetry-reduction techniques for models that provide ex-
plicit visual semantics for dynamic multi-process systems. To generalize notions
of symmetry for dynamic GTS models, we defined GTS symmetry and GTS
bisimulation. Using these notions, we provided an on-the-fly algorithm for gen-
erating a symmetry-reduced GTS model based on graph isomorphism.

Determining if two graphs are permutations of each other needs graph iso-
morphism checking, which is a hard problem for unlabelled graphs, but it can
be shown to have a polynomial complexity for deterministic labelled graphs [18].
Also, McKay [17] has developed an algorithm for graph isomorphism that works
quite well in practice, handling graphs with up to millions of nodes.

We note that our work requires an upper bound on the number of nodes
(components) that can be added to a state, because verification of systems for an
arbitrary number of processes is generally undecidable [1]. We also have proved
that the generated quotient is GTS-bisimilar to the original GTS model, and thus
they both satisfy the same set of properties. To achieve better state-space savings
for dynamic GTS models that are not fully symmetric, we have defined vertex
bisimulation. The vertex-bisimilar GTS model provides exponential savings over
the original model. Vertex bisimulation defines an equivalence relation on state
graphs based on their vertices.

We showed that the vertex-bisimilar reduced model can prove an interesting
subset of CTL properties satisfied by the original model. This subset includes
all the properties expressed with the EF and ¬EF operators. This includes the
important class of safety properties that are typically checked in an industrial
verification setting. The propositional formula of these properties has been il-
lustrated as a graph. Proposition graphs provide an abstraction on the process
indices that take care of the symmetry of propositions. Currently, we are inves-
tigating the satisfaction of EF-CTL properties as well. These properties consist
of all Boolean connectives and CTL’s EF operator, including arbitrary nesting.

266 Z. Langari and R. Trefler

References

1. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Information Processing Letters 22, 307–309 (1986)

2. Baldan, P., Corradini, A., König, B.: Verifying finite-state graph grammars: an
unfolding-based approach. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004.
LNCS, vol. 3170, pp. 83–98. Springer, Heidelberg (2004)

3. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: A software
engineering perspective. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 402–429. Springer, Heidelberg (2002)

4. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction
for concurrent software. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 64–78. Springer, Heidelberg (2009)

5. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verifica-
tion for systems with dynamic structural adaptation. In: ICSE2006, pp. 72–81 (2006)

6. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000)

7. Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal
logic model checking. Form. Methods in Sys. Des. 9(1-2), 77–104 (1996)

8. Degano, P., Montanari, U.: A model for distributed systems based on graph rewrit-
ing. J. ACM 34(2), 411–449 (1987)

9. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Form. Methods Syst.
Des. 9(1/2), 105–131 (1996)

10. Emerson, E.A., Trefler, R.J.: From asymmetry to full symmetry: New techniques for
symmetry reduction in model checking. In: Pierre, L., Kropf, T. (eds.) CHARME
1999. LNCS, vol. 1703, pp. 142–157. Springer, Heidelberg (1999)

11. Heckel, R.: Compositional verification of reactive systems specified by graph trans-
formation. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382,
p. 138. Springer, Heidelberg (1998)

12. Iosif, R.: Symmetry reduction criteria for software model checking. In: Bošnački, D.,
Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 22–41. Springer, Heidelberg (2002)

13. Ip, C.N., Dill, D.L.: Better verification through symmetry. Form. Methods Syst.
Des. 9(1-2), 41–75 (1996)

14. Langari, Z.: Modelling and Analysis using Graph Transformation Systems. Ph.D.
thesis, University of Waterloo, Waterloo, Canada (2010)

15. Langari, Z., Trefler, R.: Formal modeling of communication protocols by graph
transformation. In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS,
vol. 4085, pp. 348–363. Springer, Heidelberg (2006)

16. Langari, Z., Trefler, R.: Application of graph transformation in verification of dy-
namic systems. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423,
pp. 261–276. Springer, Heidelberg (2009)

17. McKay,B.: Practical graph isomorphism. Congressus Numerantium30, 45–87 (1981)
18. Rensink, A.: Isomorphism checking in groove. ECEASST 1 (2006)
19. Rensink, A.: Explicit state model checking for graph grammars. In: Degano, P.,

De Nicola, R., Bevilacqua, V. (eds.) Concurrency, Graphs and Models. LNCS,
vol. 5065, pp. 114–132. Springer, Heidelberg (2008)

20. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations. Foundations, vol. 1. World Scientific, Singapore (1997)

21. Trefler, R.J., Wahl, T.: Extending symmetry reduction by exploiting system ar-
chitecture. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403,
pp. 320–334. Springer, Heidelberg (2009)

	Symmetry for the Analysis of Dynamic Systems
	Introduction
	Graph Transformation System Modelling
	Symmetry in Dynamic GTS Models
	GTS Bisimulation
	Generating a Bisimilar Quotient

	Vertex Bisimulation
	Property Preservation

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

