
Counterexample-Based Error Localization of

Behavior Models

Tsutomu Kumazawa and Tetsuo Tamai

Graduate School of Arts and Sciences, The University of Tokyo,
Tokyo, Japan

{kumazawa,tamai}@graco.c.u-tokyo.ac.jp

Abstract. Behavior models are often used to describe behaviors of the
system-to-be during requirements analysis or design phases. The correct-
ness of the specified model can be formally verified by model checking
techniques. Model checkers provide counterexamples if the model does
not satisfy the given property. However, the tasks to analyze counterex-
amples and identify the model errors require manual labor because coun-
terexamples do not directly indicate where and why the errors exist, and
when liveness properties are checked, counterexamples have infinite trace
length, which makes it harder to automate the analysis. In this paper, we
propose a novel automated approach to find errors in a behavior model
using an infinite counterexample. We find similar witnesses to the coun-
terexample then compare them to elicit errors. Our approach reduces
the problem to a single-source shortest path search problem on directed
graphs and is applicable to liveness properties.

Keywords: Requirements Analysis, Design, Model Checking, Error
Localization.

1 Introduction

Model Driven Engineering (MDE) is being accepted as a practical approach to
develop reliable software efficiently [24]. Following MDE, a model of the software-
to-be is built first, which goes through a series of model transformations to derive
final code. It is obvious that the whole scheme crucially depends on correctness
and appropriateness of the initial model.

As widely acknowledged, model checking [5] is one of the most powerful meth-
ods for formally validating correctness and appropriateness of a given model.
The mostly used type of model checking technique takes behavior models rep-
resented as state machines as its target and checks if a given set of properties
hold, employing graph searching algorithms or symbolic logical formula decision
algorithms. Comparing the model checking approach to the theorem proving
approach, one of the advantages of the former is often attributed to its capabil-
ity of presenting counterexamples when verification fails. E. Clarke writes “It is
impossible to overestimate the importance of the counterexample feature [4].”

But in practice, difficulties arise after counterexamples are obtained. Coun-
terexamples do not directly indicate where in the model the errors that cause

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 222–236, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Counterexample-Based Error Localization of Behavior Models 223

them exist. It is up to the developer’s effort and intuition to find the part of the
model that should be fixed to prevent occurrence of the counterexamples.

In this paper, we propose a new method and a tool that help developers fix
errors in their models based on the detected counterexamples. In the research
field of software model checking and debugging of source code, there exist a
certain number of techniques that explain counterexamples and localize errors
[1,13,3,12,11,16]. However, those existing methods for programs [1,13,12,11] only
treat the violation of safety properties due to the limitation of software model
checkers for source programs. Counterexamples for safety properties are by na-
ture composed of event traces with finite length. Then it is relatively easy to
automate identification of bad events in the trace. On the other hand, error lo-
calization for liveness properties poses a greater challenge, because in general it
requires analysis of infinite-length counterexamples.

The state space of a program at the source code level is in general quite huge
and when there is a loop structure, it is hard to decide when to stop expanding
the state model graph. Techniques such as predicate abstraction are used to
circumvent the problem. It is all right if a counterexample against some safety
property is found in the current abstraction, because it can safely be concluded
that the program violates the property. Otherwise, to explore the unsearched
space, loops have to be expanded and it is not easy to decide when to stop
the search. To deal with liveness properties, it induces much harder problems,
because it is essential to identify precise loop structures (strongly connected
components) and moreover even if counterexamples are found in an abstracted
model, it is not sound to conclude that the original concrete model also violates
the liveness property.

There are some pieces of work trying to treat liveness properties [3,16]. How-
ever, they have limitations such that it involves highly expensive computational
complexity [3] or only specific kinds of liveness properties are supported [16].

In this paper, we proposeLLL-S, a novel error localization technique in the given
behavior model. We address the problem of analyzing an infinite trace, which takes
the form of a finite prefix followed by an infinite cycle. Our idea is to find infi-
nite and lasso-shaped witnesses (traces that satisfy the property) that resemble
the given counterexample, and identify events to be modified by comparing each
witness with the counterexample. We report all transitions that trigger the differ-
ences as candidate errors and the corresponding witnesses as their explanations.
We use a Büchi automaton recognizing the target property as a set of witnesses,
and adopts the edit distance between strings to measure distances between infi-
nite and lasso-shaped traces. We find appropriate witnesses based on the distance
by solving a single-source shortest path search problem on the Büchi automaton.
LLL-S can be applied to the safety property class as well, where the length of coun-
terexamples is finite and that of witness traces is infinite.

The main contributions of LLL-S are as follows. LLL-S can be applied to any
Linear Temporal Logic formulas [9,21], including both liveness properties and
safety properties. LLL-S focuses on errors in the behavior models that are used
in MDE. We do not have to prepare a set of witnesses in advance, because it is

224 T. Kumazawa and T. Tamai

given as a Büchi automaton. Since LLL-S is based on well-established techniques
combined together, it is easily automated.

Section 2 presents a motivating example. Section 3 explains the background.
We explain LLL-S in Section 4. In Section 5, we report the results of the tool im-
plementation of LLL-S and some case studies. We discuss some issues concerning
our work and introduce related work in Section 6, and conclude in Section 7.

2 Motivating Example

Consider a concurrent system with a semaphore [21], CSys, whose LTS is shown
in Fig. 1 (a). A LTS is a finite state machine described in terms of events.
CSys consists of three processes: p.1, p.2 and Sema. The initial states of the
processes are labeled 0. Two processes p.1 and p.2 repeatedly enter and leave
the critical region by p.{1,2}.enter and p.{1,2}.exit, respectively. Their exclusive
access to the critical region is controlled by the mutual exclusion mechanism of
the semaphore process Sema such that p.i.mx.down (i = 1, 2) lets p.i enter
the critical region, and blocks the entrance of the other process until p.i.mx.up
occurs. The transitions sharing source and destination states are depicted by a
single arrow. For example, the transition (0, p.{1,2}.mx.up, 1) of Sema denotes
(0, p.1.mx.up, 1) and (0, p.2.mx.up, 1). The behavior of CSys is presented by
parallel composition [21] of three processes, which is based on interleaving of
unshared events and simultaneous executions of shared events.

To verify the correctness of CSys’s behavior, consider the fluent Linear Tem-
poral Logic property EXIT1= G(p.1.enter ⇒ Fp.1.exit), where G, F and ⇒
respectively denote always, eventually and implication. EXIT1 says that when
p.1 enters the critical region, p.1 eventually leaves it. However, CSys does not
satisfy EXIT1, because when p.1 stays in the critical region, p.2 can access it
infinitely many times. The flaw in CSys is the incorrect mutual exclusion mech-
anism realized by Sema. A counterexample is πc = PCω, where the prefix P
and the cycle C are finite event sequences shown in Table 1. The problem is to
identify erroneous transitions of Sema.

We will find a witness τ = P ′C′ω that are closest to πc. A set of witnesses
is given by a Büchi automaton recognizing EXIT1, B(EXIT1) in Fig. 1 (b). Its
initial state is b0 and its event set is A1, identical to the event set of CSys. Term
(p,A, q) represents the transitions that share the source state p and destination

(a) (b)

Fig. 1. Concurrent System CSys (a) and B(EXIT1) (b)

Counterexample-Based Error Localization of Behavior Models 225

Table 1. Counterexample of CSys for EXIT1 (πc), and Witnesses (from τ 1 to τ 4)

πc=[p.1.mx.down, p.1.enter (p.2.mx.down, p.2.enter, p.2.exit, p.2.mx.up)ω]

τ 1=[p.1.mx.down, p.1.enter, p.1.exit (p.2.mx.down, p.2.enter, p.2.exit, p.2.mx.up)ω]
τ 2=[p.1.mx.down, p.1.enter (p.2.mx.down, p.1.exit, p.2.exit, p.2.mx.up)ω]

τ 3=[p.1.mx.down, p.1.enter, p.1.exit (p.2.mx.down, p.2.enter, p.2.exit)ω]
τ 4=[(p.1.mx.down, p.1.enter, p.1.exit, p.2.mx.down, p.2.enter, p.2.exit, p.2.mx.up)ω]

state q, and whose events constitute the set A. To explain the advantage of using
the closest witnesses to the counterexample for error localization and show the
limitation of existing techniques, consider witnesses accepted byB(EXIT1) shown
in Table 1. One of the simplest distances between πc and τ is the number of edit
operations required in transforming PC into P ′C′ ignoring the cycling of C and
C′ (denoted by de(πc, τ)), whose concept is almost the same as those proposed
by Chaki et al. [3] and Groce et al. [12].

The witness τ1 is the closest to πc because at least one insertion of p.1.exit
after the second event p.1.enter of πc should be applied to make πc satisfy EXIT1
(de(πc, τ1) = 1). The witness τ1 tells us that p.1 should leave the critical region
before p.2 enters there. Thus, τ1 indicates that Sema does not correctly control
p.1 and p.2’s access to the critical region, and that the events other than p.1.enter
have nothing to do with making πc satisfy EXIT1. By comparing πc with τ1, we
know the erroneous transitions (0, p.1.mx.down, 1) and (1, p.2.mx.down, 2) of
Sema that are the nearest to the inserted event p.1.enter. These transitions show
that Sema allows p.2 to enter the critical region by p.2.mx.down after it allows
p.1 to enter there by p.1.mx.down but without following p.1.mx.up.

Another witness τ2 is also the closest to πc, i.e. de(πc, τ2) = 1. Their difference
is interpreted that p.2.enter of πc should be forbidden. Therefore, p.2 should
not enter the critical region infinitely many times when p.1 stays there, and the
transition (1, p.2.mx.down, 2) of Sema enables p.2 to enter the region.

However, the witness τ3 is unsuitable for showing the errors because τ3 ad-
ditionally requires the deletion of p.2.mx.up from τ1, which is an unnecessary
operation to make πc satisfy EXIT1 (i.e. de(πc, τ3) = 2). This deletion may mis-
lead the developers into believing that p.2.mx.up should not occur. The distance
de appropriately shows that τ1 and τ2 are closer to πc than τ3, and that τ3 must
not be used for error localization.

The witness τ4 is the closest to πc according to de because τ1 and τ4 consist of
the same finite event sequence. However, τ4 does not provide useful information
to determine whether every event in P should be repeated infinitely many times,
or P does not contain errors and p.1.exit is the only significant event to modify
the violation of EXIT1 as the case of τ1. Thus, we wish to judge that τ4 is not
as close to πc as τ1, but de does not work for our purpose. The cause of the
problem is that de does not separate differences between the prefixes and the
cycles of πc and τ4. Other existing methods [15,27,1,13,23,6,11] have the similar
limitation due to their assumption that traces are of finite-length.

226 T. Kumazawa and T. Tamai

To summarize, it is desirable for error localization to obtain τ1 and τ2, but
not τ3 or τ4 . In Section 4, we present a novel method to automatically find such
witnesses based on a specific distance and the errors in CSys.

3 Background

A LTS is a tuple L = (S,A,Δ, s0), where S is a finite set of states, A is a set
of events, Δ ⊆ S × A × S is a transition relation, and s0 ∈ S is the initial
state. A trace of L is a sequence of events π = [a0, a1, . . . , an−1] (∀0 ≤ i <
n.(si, ai, si+1) ∈ Δ). For π, the sequence of states [s0, s1, . . . , sn] is called a path
of π. If n = ∞, we call π an infinite trace. Otherwise, we call π a finite trace. A
set of all traces of L is denoted by Tr(L). The suffix of a trace π ∈ Tr(L) from
ai is denoted by π[i]. A transition (s, a, s) ∈ Δ is called a self transition.

Concerning model checking on L, a Büchi automaton-based technique has
been proposed for FLTL [9]. A fluent is an atomic proposition whose truth value
is determined over occurrence of events appearing in a trace. A fluent is a tuple
fl = (Ifl, Tfl, bfl), where Ifl, Tfl ∈ A are a set of initiating and terminating events
respectively such that Ifl ∩ Tfl = ∅, and bfl ∈ {t, f} is the initial truth value. For
π ∈ Tr(L), π[i] satisfies fl (π[i] |= fl) iff one of the following conditions holds:
either bfl ∧ (∀j ∈ N .0 ≤ j ≤ i ⇒ aj �∈ Tfl), or ∃j ∈ N .(j ≤ i ∧ aj ∈ Ifl) ∧ (∀k ∈
N .j < k ≤ i⇒ ak �∈ Tfl). The set of fluents considered is denoted by FL.

A FLTL formula is defined inductively with the boolean and temporal op-
erators as follows: φ, ψ = t | fl ∈ FL | φ ∧ ψ | ¬φ | Xφ | φUψ. Given a trace
π ∈ Tr(L), the satisfaction operator |= is defined inductively as follows:

π |= t, π |= fl ∈ FL iff π[0] |= fl, π |= ¬φ iff π �|= φ,
π |= φ ∧ ψ iff (π |= φ) and (π |= ψ), π |= Xφ iff π[1] |= φ,
π |= φUψ iff ∃j ≥ 0.π[j] |= ψ and ∀0 ≤ i < j.π[i] |= φ.

Other operators are derived from the above operators: φ ∨ ψ = ¬(¬φ ∧ ¬ψ),
φ ⇒ ψ = ¬φ ∨ ψ, Fφ = tUφ and Gφ = ¬F¬φ. We define L |= φ (L satisfies
φ) iff ∀π ∈ Tr(L).π |= φ. FLTL formulas are classified into safety and liveness
properties [21]. A safety property such as G¬p asserts that nothing bad ever
happens, while a liveness property such as Fp asserts that something good will
eventually happen. EXIT1 is an instantiation of liveness properties.

Model checking on LTS L for FLTL formula φ is conducted as follows [9]: 1)
build a Büchi automaton that accepts all traces satisfying ¬φ, B(¬φ), 2) build
the parallel composition of L and B(¬φ), and 3) search for an accepting trace,
which is a counterexample. A Büchi automaton B = (Sb, Ab, Δb, s0, S

a
b) is a LTS

augmented with a set of accepting states, where Sa
b ⊆ Sb is an accepting state set

and the other constructs are the same as those of a LTS. A trace π is accepted
by B if π passes some accepting state infinitely many times.

Parallel composition (‖) [21] captures the concurrent and interactive execution
of LTSs. Let L1 = (S1, A1, Δ1, s10) and L2 = (S2, A2, Δ2, s20) be LTSs. L1 ‖ L2 =
(S1 × S2, A1 ∪ A2, Δ, (s10, s20)), where Δ ⊆ (S1 × S2) × (A1 ∪ A2) × (S1 × S2)
is computed as follows: Δ = {((s1, s2), a, (t1, t2))|(s1, a, t1) ∈ Δ1, (s2, a, t2) ∈

Counterexample-Based Error Localization of Behavior Models 227

Fig. 2. Shape of Counterexample and Witness

Δ2} ∪ {((s1, s2), a, (t1, s2)) | (s1, a, t1) ∈ Δ1, a /∈ A2} ∪ {((s1, s2), a, (s1, t2)) |
(s2, a, t2) ∈ Δ2, a /∈ A1}.

At step 3 of the checking procedure for liveness properties, algorithms to
search for strongly connected components such as nested depth-first search [14]
are used by many existing model checkers (e.g. SPIN [14]). They find a coun-
terexample that forms an infinite and lasso-shaped trace π = PCω (see Fig. 2),
where the prefix P and the cycle C are finite event sequences whose subsequences
contain no cycle. C passes some accepting state of B(¬φ) depicted as a double
circle in Fig. 2. Hence, we assume π = PCω . An example is πc in Table 1. A
witness is a trace satisfying φ and is assumed to have a form τ = P ′C′ω.

4 Error Localization Procedure

This section presents an error localization technique LLL-S. The idea is that
we find the closest (i.e. the most similar) witnesses to π, and then detect their
differences. The inputs to LLL-S are a LTS L = (S,A,Δ, s0), a FLTL formula
φ where L �|= φ, and a counterexample π = PCω, where P = [a0, a1, . . . , am−1]
and C = [b0, b1, . . . , bn−1] for 0 ≤ m and 1 ≤ n. Let B(φ) = (Sφ, Aφ, Δφ, u0, S

a
φ).

We assume that Aφ ⊆ A and a witness to be searched has a form τ = P ′C′ω .
If we consider an event as a character, a trace is regarded as an infinite string.

We define the distance D between π and τ using the edit distance between finite
strings on the edit operations insertion, deletion and replacement [20]. The edit
distance between finite strings s1 and s2, denoted by d(s1, s2), is the minimum
cost to change one string to the other. We assume that the cost of each edit
operation is 1. The distanceD is defined as follows:D(π, τ) = d(P, P ′)+d(C,C′).
D meets all properties of a metric, i.e. positive definiteness, symmetry and

triangle inequality when we define π = τ iff P = P ′ and C = C′.D is appropriate
for our goal because it distinguishes the distance of prefixes and cycles. For
example, in Table 1, D(πc, τ1) = D(πc, τ2) = 1, D(πc, τ3) = 2 and D(πc, τ4) =
5. D judges that both τ1 and τ2 are the closest to πc while τ3 and τ4 are not.

4.1 Outline

As a set of witnesses is given by traces accepted by B(φ), we find every witness
τ in B(φ) such that D(π, τ) is the smallest. In order to make τ meet the Büchi’s
acceptance condition (see Fig. 2), we divide the procedure to find τ into two
steps: 1) finding a sequence that ends in an accepting state saφ ∈ Sa

φ (i.e. the

228 T. Kumazawa and T. Tamai

sequence (1) in Fig. 2) and 2) finding a sequence that leaves saφ and returns to
a state on the path from u0 to saφ (i.e. the sequence (2) in Fig. 2).

First we construct a model WA
π from the counterexample π, embedding edit

operations and their costs. WA
π is a Weighted Transition System (WTS) [19], a

LTS augmented with a cost function ζw : Transitions → Cost. As π has a struc-
ture PCω, WA

π consists of a linear path corresponding to P , followed by a cycle
corresponding to C. For the P = [a0, . . . , am−1] part, states pi and transitions
(pi, ai, pi+1) (i = 0, . . . ,m − 1) are generated. For the C = [b0, . . . , bn−1] part,
states ci and transitions (ci, bi, ci+1) (i = 0, . . . , n − 1) are generated, where cn
is identical to c0. All the transitions thus generated have cost 0. The transitions
are augmented by the following three types of new transitions with cost 1.

1. Replace: for a pair (pi, pi+1), transitions (pi, a, pi+1) where a ∈ (A − {ai}),
meaning replacing the event ai with the event a. Likewise, for a pair (ci, ci+1),
transitions (ci, b, ci+1) where b ∈ (A− {bi}).

2. Delete: for a pair (pi, pi+1), transition (pi, ε, pi+1) meaning deleting ai. ε is
a null event. Likewise, for a pair (ci, ci+1), transition (ci, ε, ci+1).

3. Insert: for a state pi, transitions (pi, a, pi) where a ∈ A, meaning inserting a
at pi. Likewise, for a state ci, transitions (ci, b, ci) where b ∈ A.

Next, we build a product model W�� = B(φ) 	
 WA
π . The problem of finding

witnesses of the property that are the most similar to the counterexample is
reduced to the problem of finding the shortest paths in the graph ofW��, starting
from the initial vertex, visiting a vertex corresponding to an accepting state of
B(φ) and ending in a vertex that closes the path to make a cycle. The vertex of
the accepting state should be included in the cycle. We can employ a shortest
path algorithm such as Dijkstra’s method [7] to solve this problem. In the first
step, the shortest paths from the initial vertex to the accepting vertices are
obtained. Then, for each accepting vertex that has been reached from the initial
vertex, the second shortest path problem is solved starting from the accepting
vertex, ending in the vertices on the shortest path from the initial vertex to the
accepting vertex, so as to close a cycle. Thus, we need to solve the single-source
shortest path problem va + 1 times, where va is the number of accepting states.

The differences between τ and π indicate potential errors. LLL-S detects every
difference and extracts every transition that has the erroneous event.

4.2 Constructing WTS Models

We define a WTS as an extension of a LTS [19]. A WTS is a tuple W =
(Sw, Aw, Δw, q0, ζ,Mw), where Sw is a finite set of states, Aw is a set of event la-
bels, Δw ⊆ Sw×Aw×Sw is a transition relation, and q0 ∈ Sw is the initial state,
the total function ζ : Δw → R is a weight to every transition, and Mw ⊆ Sw is
a set of end states. We use the terms on a LTS also for a WTS, e.g. traces.

A WTS WA
π made from π consists of two parts: the part constructed from P

and that from C which respectively show edit operations and their costs applied
to P and C. Finite traces of WA

π that pass the P and C part respectively provide
P ′ and C′. A set of end states includes all states of the C part to indicate that a

Counterexample-Based Error Localization of Behavior Models 229

Fig. 3. WTS WA1
πc Constructed from πc

finite trace in WA
π ends in any element of the set, and that an accepting state of

B(φ) appearing in the element is the destination of the sequence (1) in Fig. 2.
The WTS WA

π = (Sw, A ∪ {ε}, Δw, q0, ζw,Mw) of π is constructed as follows.
The state set Sw = {pi|0 ≤ i < m} ∪ {ci|0 ≤ i < n}. The initial state q0 = p0 if
m �= 0; otherwise, q0 = c0. The transition relation Δw = Δp ∪Δb ∪Δc, where
Δp, Δb and Δc are defined as follows. Δp = {(pi, a, pi+1)| 0 ≤ i < m − 1, a ∈
A ∪ {ε}} ∪ {(pi, a, pi)|0 ≤ i < m, a ∈ A}. Δb = {(pm−1, a, c0)|a ∈ A ∪ {ε}}
if m �= 0; otherwise, Δb = ∅. Δc = {(ci, a, ci+1)|0 ≤ i < n − 1, a ∈ A ∪
{ε}} ∪ {(cn−1, a, c0)|a ∈ A ∪ {ε}} ∪ {(ci, a, ci)|0 ≤ i < n, a ∈ A}. For each
δ ∈ Δw, ζw(δ) = 0 if either of the following conditions holds: δ = (pi, ai, pi+1)(i =
0, . . . ,m − 2), δ = (pm−1, am−1, c0), δ = (ci, bi, ci+1) (i = 0, . . . , n − 2), or δ =
(cn−1, bn−1, c0); otherwise, ζw(δ) = 1. The set of end statesMw = {ci|0 ≤ i < n}.

Fig. 3 shows the WTS model WA1
πc constructed from πc in Table 1.The initial

state is p0 and end states are states with dashed circles ci (i = 0, . . . , 3). A weight
to each transition is written after the event. The set of transitions (p,A1, q) with
weight w indicates that every transition in (p,A1, q) has the same weight w. The
P part of WA1

πc consists of the states pi(i = 0, 1) and c0, and the transitions de-
fined by Δp and Δb. For example, a transition (p0, p.1.mx.down, p1) with weight
0 shows p.1.mx.down in P . Transitions (p0, A1 − {p.1.mx.down}, p1) mean that
p.1.mx.down is replaced by another event. A transition (p0, ε, p1) represents that
p.1.mx.down is deleted. Self transitions (p0, A1, p0) show insertion operations
just before p.1.mx.down. Likewise, the C part of WA1

πc consists of the states ci
(i = 0, . . . , 3) and the transitions defined by Δc.

Finite traces that pass from p0 to c0 present P ′. Similarly, finite traces that
pass from c0 to itself via ci(i = 1, . . . , 3) present C′.

4.3 Finding Witnesses

We next find a witness τ such that D(π, τ) is the smallest by conducting the
single-source shortest path search twice.

We first find a sequence that ends in an accepting state saφ ∈ Sa
φ. We compute

the product of the WTS WA
π and B(φ) so that such event sequences can be

obtained by the shortest path from the initial state of the product graph.
We extend the parallel composition operation of LTSs to the operation (
)

of a LTS and a WTS [19]. Let B = (Sb, Ab, Δb, s0, S
a
b) and W = (Sw, Aw, Δw,

q0, ζ, Mw) be a Büchi automaton and a WTS such that Ab ⊆ Aw, respectively.
Their product is a WTS B 	
 W = (Sb × Sw, Aw, Δ

′
w, (s0, q0), ζ′, Sa

b × Mw),
where Δ′

w ⊆ (Sb × Sw) × Aw × (Sb × Sw) is a transition relation such that

230 T. Kumazawa and T. Tamai

Fig. 4. Fragment of B(EXIT1) �� WA1
πc

Δ′
w = Δ1

w ∪Δ2
w where Δ1

w = {((sb, sw), a, (s′b, s
′
w))|(sb, a, s′b) ∈ Δb, (sw, a, s′w) ∈

Δw} and Δ2
w = {((sb, sw), a, (sb, s

′
w))|(sw, a, s′w) ∈ Δw, a /∈ Ab}. For each δ =

((sb, sw), a, (s′b, s
′
w)) ∈ Δ′

w, we define ζ′ : Δ′
w → R by ζ′(δ) = ζ((sw , a, s′w)).

Intuitively, the WTS B(φ) 	
 WA
π labels transitions of B(φ) with costs of edit

operations applied to π. Each end state (saφ, cM) ∈ Sa
φ×Mw is both an accepting

state saφ of B(φ) and an end state cM of WA
π . The shortest paths from the initial

state (u0, q0) to (saφ, cM) present the event sequences that end in saφ.
For each end state (saφ, cM), we conduct the second shortest path search to find

sequences ending in a state on each shortest path from (u0, q0) to (saφ, cM). The
witness τ = P ′C′ω is finally generated by combining the sequences computed
by the two shortest path searches. We remove τ whose C′ is an empty sequence
from candidate witnesses. We collect every witness such that the sum of the
distances obtained by the first and second search is the smallest of all possible
witnesses.

Consider B(EXIT1) and WA1
πc . A fragment of their product is shown in Fig. 4,

where the only relevant information to find τ1 are written. One of the shortest
paths from the initial state (b0, p0) to an end state (b0, c0) presents the sub-
sequence of τ1 to the accepting state b0 of B(EXIT1): H1 = [p.1.mx.down,
p.1.enter, p.1.exit]. Next, the sequence T 1 = [p.2.mx.down, p.2.enter, p.2.exit,
p.2.mx.up] is presented by the shortest path from (b0, c0) to itself, which is one of
the states on the shortest path from (b0, p0) to (b0, c0). We find τ1 by combining
H1 and T 1. Another witness τ2 is obtained using the same procedure.

4.4 Identifying Errors

To find errors in L, we compute the differences between π = [a0, a1, . . .] and τ .
We can assume that the different events between π and τ directly or indirectly
designate causes of the property violation. If L consists of r processes, each of
which is denoted by Lh = (Sh, Ah, Δh, sh

0) where 0 ≤ h < r and A = ∪0≤h<rA
h,

we identify a set of transitions over the processes triggered by the events as
error candidates. However, some of the processes might not have transitions
corresponding to the events to be modified. For such processes, we take a set of
last transitions that occur before the differences due to the assumption that the
events of these transitions trigger the events to be modified.

If an event ad is replaced or deleted, we say that ad is a mismatched event. A
candidate error in Lh is its transition with the mismatched event ad if ad ∈ Ah;
otherwise, the last transition that occurs before ad. LLL-S returns the transition
(s, aj , t) ∈ Δh such that 0 ≤ j ≤ d and aj ∈ Ah ∧∀l ∈ N .(j < l ≤ d⇒ al /∈ Ah).

Consider πc and τ2. p.2.enter is the mismatched event as it is replaced by
p.1.exit. LLL-S finds error candidates for p.1, p.2 and Sema using the mismatched

Counterexample-Based Error Localization of Behavior Models 231

event. For Sema, we have to examine the preceding events in Sema in explor-
ing the cause of error because p.2.enter does not belong to the event set of
Sema. The Sema’s last event occurring before p.2.enter is p.2.mx.down. LLL-
S reports Sema’s error candidate (1, p.2.mx.down, 2), which is interpreted that
p.2.mx.down triggers p.2.enter of p.2. In addition, LLL-S respectively returns
(1, p.1.enter, 2) of p.1 and (1, p.2.enter, 2) of p.2 as the other error candidates.

If an event is inserted between ad−1 and ad, LLL-S reports a pair of transitions
of Lh that enclose the inserted event as follows. 1) Return the transition of Lh

with ad−1 if ad−1 ∈ Ah; otherwise, its last transition occurring before ad−1 using
the procedure above by regarding ad−1 as a mismatched event. 2) Return the
transition of Lh with the event ad if ad ∈ Ah; otherwise, its first transition
occurring after ad. LLL-S returns the transition (s, aj , t) ∈ Δh such that j ≥ d
and aj ∈ Ah ∧ ∀l ∈ N .(d ≤ l < j ⇒ al /∈ Ah).

Consider finding the error candidate of Sema using τ1. The events that en-
close the inserted event p.1.exit in πc are p.1.mx.down and p.2.mx.down. LLL-S
returns the transitions (0, p.1.mx.down, 1) and (1, p.2.mx.down, 2) as a candi-
date cause of the violation. The inserted event p.1.exit may be demanded by the
preceding event p.1.mx.down or the succeeding event p.2.mx.down or both.

Of all transitions computed by LLL-S, developers decide which transitions
appropriately capture the erroneous behavior of L with the help of the witnesses.
For example, the erroneous mutual exclusion realized by Sema is captured by the
transitions given above, and both τ1 and τ2 show how this behavior is avoided.
The presentation of witnesses and error candidates enable developers to easily
identify the incorrect processes, which is an important character of LLL-S.

5 Implementation and Case Studies

We implemented a prototype tool in Java that automatically executes LLL-S.
The inputs to the tool are a LTS model, the Büchi automaton of a property and
a counterexample. The tool outputs a list of potential erroneous transitions and
the corresponding witnesses. To enhance its performance, we have implemented
some heuristics, e.g., the tool does not conduct the second search in Section 4.3 if
the edit distance obtained by the first search is larger than the smallest value of
distance D computed in previous iterations. The tool also supports error local-
ization for safety property violation, which produces finite counterexamples [9].
Since the cycle of a counterexample, in this case, is regarded as an empty se-
quence [ε], we revise the way of synthesizing the WTS model in Section 4 so
that ε can be replaced by another event [19]. The witnesses to be searched are
infinite and lasso-shaped because they satisfy the Büchi’s acceptance condition.

We conducted seven case studies with the prototype tool: the microwave
oven (MOvn) [5], the Andrew File System (AFS-1) [26], CSys, the mine pump
(MPmp) [25], and the distributed databases (DDb1, DDb2 and DDb3) [21]. Each
case study was conducted as follows: 1) we made a LTS model consisting of one
or more processes, 2) we prepared a FLTL property that the model did not sat-
isfy, 3) we obtained a counterexample and a Büchi automaton recognizing the
property using the model checker LTSA [21], and 4) we executed our tool and

232 T. Kumazawa and T. Tamai

Table 2. The Number of Generated Witnesses Indicating Errors (A) out of Total
Number of Generated Witnesses (B) and Execution Time for Each Case

System Büchi Automaton Counterexample Witnesses Time
Model States/Trans. Property States/Trans. Prefix/Cycle (A) (B) [s]

MOvn 7/21 HEAT 7/91 0/4 2 10 0.23

AFS-1 16/21 VALID 4/28 5/- 2 8 0.05

CSys 16/32 MUTEX 4/16 4/- 7 7 0.04
EXIT2 6/99 5/4 3 12 0.34

MPmp 22/56 EMG 2/30 3/4 2 9 0.16

DDb1 160/402 QUIS 10/897 12/1 2 23 0.25

DDb2 6460/18537 QUIS 10/890 26/33 10 40 5.35

DDb3 - SAFE 452/33900 18/- 57 467 37.14

manually investigated whether its result contained the transitions that were the
causes of violations and the witnesses that appropriately explained the causes
or not. Table 2 shows the results of the case studies. When the target property
is a safety property, the length of the counterexample cycle is written as ”-” in
the table. We executed our tool ten times for each case on 3.4GHz Pentium 4
with 2GB RAM (JDK 1.6.0), and its average is shown as execution time. The
DDb3 model has more than 2 million states and 60 million transitions, but its
size could not be computed due to the heap memory limitation (shown as ”-”).

MOvn and MPmp are models with a single process. Although in the case of
MOvn, we had to change the shape of the counterexample beforehand because
LLL-S generates witnesses based on its shape, LLL-S successfully pointed out
transitions that include the erroneous ones in both cases. Compared to manual
error search, LLL-S made the search space for errors reduced. AFS-1, CSys,
DDb1, DDb2 and DDb3 models consist of multiple processes. To find errors
in component processes by hand, we have to investigate the behavior of all
processes. The composite behavior analysis of all processes requires a complex
composite model and makes it hard to manually identify errors whose cause is
rooted in concurrency. LLL-S generated error candidates for all the processes we
investigated and in all the cases, real errors were located from its subset. The
task of examining the error candidates saves us much effort in locating errors
compared to the case of analyzing the counterexample without any other clues.

Let us see the DDb1 case. It consists of a ring of three database nodes and a
controller that allows a single update of the local data of each node. QUIS requires
that every node become inactive, i.e., each node is not engaged in an update [21].
LLL-S found error candidates and the corresponding witnesses showing that an
inactive node should not update or the controller should not terminate. LLL-S
also reported the appropriate cause of violation that the controller terminates
before checking inactivity of all nodes. We selected the error of the controller
guided by two witnesses indicating how its incorrect behavior was avoided.

We next investigated how execution time of our tool respectively scaled ac-
cording to the size of the Büchi automaton, and the prefix and cycle length
of the counterexample using the MPmp case (shown in Table 3 and Fig. 5).

Counterexample-Based Error Localization of Behavior Models 233

Table 3. Execution Time vs. Büchi automaton Size

Büchi Automaton States 4 8 11 14 29 29 35 35 52 50 64 64
Trans. 58 176 216 302 534 650 751 855 931 1190 1327 1471

Time [s] 0.16 0.69 0.40 0.66 0.35 1.13 0.97 1.42 0.60 2.59 1.00 1.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120

T
im

e
[s

]

Length of Counterexample Prefix

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120

T
im

e
[s

]
Length of Counterexample Cycle

Fig. 5. Execution Time vs. Length of Counterexample Prefix (left) and Cycle (right)

In Table 3, each Büchi automaton was made by adding safety properties to
EMG that the model satisfied. In Fig. 5, we expanded the cycle of the coun-
terexample in Table 2 to make longer counterexamples to be used as samples of
different size. Both results indicates that LLL-S practically handles large Büchi
automata, and counterexamples with long prefixes or cycles. The execution time
for large automata is almost the same as that for medium-sized ones due to the
heuristics explained at the beginning of this section. Fig. 5 shows that the cycle
length of a counterexample has a larger impact on the execution time of LLL-S
than its prefix length. This is because the cycle length influences on the running
time of the first search in Section 4.3 as well as the second search, whereas the
prefix only influences on the first search.

6 Discussions and Related Work

Computational Complexity. We estimate the time to find witnesses using LLL-S.
Let the counterexample π = PCω where |P | = m and |C| = n, and the Büchi
automaton of the property φ be B(φ) = (Sφ, Aφ, Δφ, u0, S

a
φ) where |Sφ| = vφ

and |Sa
φ| = va

φ. WTS WA
π has m+n states and n end states, and B(φ) 	
 WA

π has
vφ(m+n) states and va

φn end states. The first shortest path search in Section 4.3
requires O(vφ(m+n) log(vφ(m+n))) time. The second search is conducted va

φn

times because a source of the search is an end state of B(φ) 	
 WA
π . Each search

is conducted on the subgraph of the product consisting of vφn states because
only the C part of WA

π is used for the search. For each end state, a shortest path
search requires O(vφn log(vφn)) time. Thus, the total time of the second search
is O(va

φvφn
2 log(vφn)). If m ≈ n, the running time is dominated by the total

time of the second search. Thus, LLL-S requires O(va
φvφn

2 log(vφn)) time.

234 T. Kumazawa and T. Tamai

On Fairness Constraints. When we verify a liveness property on a LTS, we often
assume a kind of fairness constraints, fair choice [10]. Fair choice asserts that if
a choice over a set of transitions is executed infinitely often, every transition in
the set will be executed infinitely often. Model checking with fair choice finds
an infinite and lasso-shaped counterexample under the constraint, which is the
same assumption of LLL-S. Thus, LLL-S is applicable to the case.

On Property Patterns. It is useful to investigate what kinds of witnesses LLL-S
produces for each property pattern [8]. Some of the liveness properties used in our
case studies are written in the response pattern formula G(p ⇒ Fq) [8]. In this
case LLL-S generated two kinds of witnesses: witnesses in which p never holds, or
in which q holds after or at the same time as p holds. For example, the witnesses
for πc are classified into either those in which p.1 never enters the critical region,
or those in which p.1 leaves the critical region after entering there. Although
developers need to identify the appropriate ones out of all found witnesses, this
information may enable them to narrow down the candidate errors.

Related Work. We previously proposed a method to find behavior model errors
with infinite counterexamples [19]. Although it finds the witnesses that resemble
the counterexample analogous to LLL-S, it is not based on a solid criterion to
measure distances between infinite traces and may miss witnesses that appro-
priately point out errors. LLL-S solves the problem using the distance D.

J. Beer et al. [2] proposes a way to explain counterexamples for LTL model
checking. While its goal is not error localization, it complements LLL-S.

Our work is related to the debugging techniques for programs as a result
of model checking. A way to identify C program errors and their causes was
developed by Groce and Visser with multiple counterexamples leading to the
same error state [13], and later by Groce et al. with a single counterexample [12].
Chaki et al. extends the work [12] to abstracted programs [3]. Griesmayer et al.
proposed an error localization technique for C programs [11]. Ball et al. proposed
a technique to isolate causes of errors using counterexamples [1].

In software testing, Zeller proposed a way to find the cause-effect chains of
errors in C programs [27]. Cleve and Zeller later developed a complementary tech-
nique that identifies when failure causes propagate to faults [6]. Spectrum-based
fault localization techniques collect faulty runs and correct runs and compare
them with certain criteria to locate faults in programs [15,23].

The above approaches resemble ours in that the comparison of a faulty run
with a correct run tells us errors where the correct run is the closest to the faulty
run based on the specific distance between finite runs. However, even if these dis-
tances are adapted to our context, they do not distinguish between prefixes and
cycles of infinite runs and cannot overcome the problem discussed in Section 2.
Although Chaki et al. [3] tackles the error localization problem of liveness prop-
erties, their technique reduced the problem to the SAT, which is NP-complete.
LLL-S solves the classical graph search problem and performs much more effi-
ciently. Finally, the existing methods [13,12,1,3,27,6] assume the existence of at
least one correct run. LLL-S uses Büchi automata to build witnesses and does
not require any correct runs supplied by the user.

Counterexample-Based Error Localization of Behavior Models 235

Killian et al. developed a model checker for C++ programs, MACEMC, and its
debugger MDB [16]. MACEMC supports verification of liveness properties. MDB
helps developers understand errors by returning a comparison of a faulty run
obtained by MACEMC with a correct run which shares a common prefix. The
idea resembles ours, but only focuses on a certain kind of liveness properties.

Mohri [22] and Konstantinidis and Silva [17] developed graph-based methods
that compute the edit distance between finite regular languages. LLL-S focuses
on infinite strings, whose similarity cannot be computed by their methods.

7 Conclusions

In this paper, we have presented a novel automated technique to locate errors
in behavior models based on the result of fluent model checking. We adopt a
counterexample-based and model-based approach, which require only the model
composition and classical graph search techniques. In particular, we can generate
infinite-length witnesses that fix the given infinite counterexample to satisfy the
property, which, we believe, is a major breakthrough.

There is much future work including integration of fluent model checking [9]
with LLL-S, further practical case studies and generation of domain-specific wit-
nesses. The last issue extends our work to help developers fix model errors [18].
Since witnesses are searched on Büchi automata, they do not reflect knowledge
of the whole range of the problem domain. One of the possible solutions to
this problem is to introduce the properties that hold in the target model. The
introduced properties are formal descriptions of the domain knowledge.

References

1. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. In: POPL 2003, pp. 97–105 (2003)

2. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterexam-
ples using causality. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 94–108. Springer, Heidelberg (2009)

3. Chaki, S., Groce, A., Strichman, O.: Explaining abstract counterexamples. In: SIG-
SOFT 2004/FSE 12, pp. 73–82 (2004)

4. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008)

5. Clarke, E.M.J., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge
(1999)

6. Cleve, H., Zeller, A.: Locating causes of program failures. In: ICSE 2005,
pp. 342–351 (2005)

7. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische
Mathematik, 269–271 (1959)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE 1999, pp. 411–420 (1999)

9. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems.
In: ESEC/FSE 2003, pp. 257–266 (2003)

236 T. Kumazawa and T. Tamai

10. Giannakopoulou, D., Magee, J., Kramer, J.: Checking progress with action priority:
Is it fair? In: ESEC/FSE 1999, pp. 511–527 (1999)

11. Griesmayer, A., Staber, S., Bloem, R.: Automated fault localization for C pro-
grams. Elec. Notes in Theor. Comp. Sci. 174, 95–111 (2007)

12. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. STTT 8(3), 229–247 (2006)

13. Groce, A., Visser, W.: What went wrong: explaining counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–135. Springer,
Heidelberg (2003)

14. Holzmann, G.J.: The SPIN model checker: primer and reference manual. Addison-
Wesley, Reading (2004)

15. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist
fault localization. In: ICSE 2002, pp. 467–477 (2002)

16. Killian, C., Anderson, J.W., Jhala, R., Vahdat, A.: Life, death, and the critical
transition: finding liveness bugs in systems code. In: NSDI 2007, pp. 243–256 (2007)

17. Konstantinidis, S., Silva, P.V.: Computing maximal error-detecting capabilities and
distances of regular languages. Technical report, CMUP 2008-28 (2008)

18. Kumazawa, T., Tamai, T.: Iterative model fixing with counterexamples. In: APSEC
2008, pp. 369–376 (2008)

19. Kumazawa, T., Tamai, T.: Localizing errors and presenting alternatives: a model-
based approach. In: SES 2009, pp. 55–62 (2009) (in Japanese)

20. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10(8), 707–710 (1966)

21. Magee, J., Kramer, J.: Concurrency: state models & Java programming, 2nd edn.
John Wiley & Sons, Chichester (2006)

22. Mohri, M.: Edit-distance of weighted automata: general definitions and algorithms.
Int. J. of Found. of Comp. Sci. 14(6), 957–982 (2003)

23. Renieris, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: ASE
2003, pp. 30–39 (2003)

24. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2), 25–31 (2006)
25. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behaviour models from

properties and scenarios. IEEE TSE 35(3), 384–406 (2009)
26. Wing, J.M., Vaziri-Farahani, M.: A case study in model checking software systems.

Sci. of Comp. Prog. 28, 273–299 (1997)
27. Zeller, A.: Isolating cause-effect chains from computer programs. In: SIGSOFT

2002/FSE 10, pp. 1–10 (2002)

	Counterexample-Based Error Localization of Behavior Models
	Introduction
	Motivating Example
	Background
	Error Localization Procedure
	Outline
	Constructing WTS Models
	Finding Witnesses
	Identifying Errors

	Implementation and Case Studies
	Discussions and Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

