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Abstract. We study the process theoretic notion of stuttering equiv-
alence in the setting of parity games. We demonstrate that stuttering
equivalent vertices have the same winner in the parity game. This means
that solving a parity game can be accelerated by minimising the game
graph with respect to stuttering equivalence. While, at the outset, it
might not be clear that this strategy should pay off, our experiments
using typical verification problems illustrate that stuttering equivalence
speeds up solving parity games in many cases.

1 Introduction

Parity games [6,13,22] are played by two players (called even and odd) on a
directed graph in which vertices have been assigned priorities. Every vertex
in the graph belongs to exactly one of these two players. The game is played
by moving a token along the edges in the graph indefinitely; the edge that is
moved along is chosen by the player owning the vertex on which the token
currently resides. Priorities that appear infinitely often along such infinite plays
then determine the winner of the play.

Solving a parity game essentially boils down to computing the set of vertices
that, if the token is initially placed on a vertex in this set, allows player even (resp.
odd) to win. This problem is known to be in NP∩ co-NP; it is still an open problem
whether a polynomial time algorithm exists for the problem, but even in case such
an algorithm is found, it may not be the most efficient algorithm in practice.

Parity games play a crucial role in verification; the model checking prob-
lem for the modal μ-calculus can be reduced to the problem of solving a given
parity game. It is therefore worthwile to investigate methods by which these
games can be solved efficiently in practice. In [7], Friedman and Lange describe
a meta-algorithm that, combined with a set of heuristics, appears to have a
positive impact on the time required to solve parity games. Fritz and Wilke con-
sider more-or-less tried and tested techniques for minimising parity games using
novel refinement and equivalence relations, see [9]. The delayed simulation they
introduce, and its induced equivalence relation, however, are problematic for quo-
tienting, which is why they go on to define two variations of delayed simulations
that do not suffer from this problem. As stated in [8], however, “Experiments
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indicate that simplifying parity games using our approach before solving them
is not faster than solving them outright in practice”.

Despite the somewhat unsatisfactory performance of the delayed simulation
in practice, we follow a methodology similar to the one pursued by Fritz and
Wilke. As a basis for our investigations, we consider stuttering equivalence [3],
which originated in the setting of Kripke Structures. Stuttering equivalence has
two qualities that make it an interesting candidate for minimising parity games.
Firstly, vertices with the same player and priority are only distinguished on
the basis of their future branching behaviour, allowing for a considerable com-
pression. Secondly, stuttering equivalence has a very attractive worst-case time
complexity of O(n ·m), for n vertices and m edges, which is in stark contrast to
the far less favourable time complexity required for delayed simulation, which
is O(n3 · m · d2), where d is the number of different priorities in the game. In
addition to these, stuttering equivalence has several other traits that make it
appealing: quotienting is straightforward, distributed algorithms for computing
stuttering equivalence have been developed (see e.g. [2]), and it admits efficient,
scalable implementations using BDD technology [21].

On the basis of the above qualities, stuttering equivalence is likely to signifi-
cantly compress parity games that stem from typical model checking problems.
Such games often have a rather limited number of priorities (typically at most
three), and appear to have regular structures. We note that, as far as we have
been able to trace, quotienting parity games using stuttering equivalence has
never been shown to be sound. Thus, our contributions in this paper are twofold.

First, we show that stuttering equivalent vertices are won by the same player
in the parity game. As a side result, given a winning strategy for a player for
a particular vertex, we obtain winning strategies for all stuttering equivalent
vertices. This is of particular interest in case one is seeking an explanation for the
solution of the game, for instance as a means for diagnosing a failed verification.

Second, we experimentally show that computing and subsequently solving
the stuttering quotient of a parity game is in many cases faster than solving the
original game. In our comparison, we included several competitive implementa-
tions of algorithms for solving parity games, including several implementations
of Small Progress Measures [11] and McNaughton’s recursive algorithm [13].
Moreover, we also compare it to quotienting using strong bisimulation [15]. For
an up-to-date overview of experiments we refer to [5], which we plan to keep
updated with new results. While we do not claim that stuttering equivalence
minimisation should always be performed prior to solving a parity game, we are
optimistic about its effects in practical verification tasks.

Structure. The remainder of this paper is organised as follows. Section 2 briefly
introduces the necessary background for parity games. In Section 3 we define
both strong bisimilarity and stuttering equivalence in the setting of parity games;
we show that both can be used for minimising parity games. Section 4 is devoted
to describing our experiments, demonstrating the efficacy of stuttering equiva-
lence minimisation on a large set of verification problems. In Section 5, we briefly
discuss future work and open issues.
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2 Preliminaries
We assume the reader has some familiarity with parity games; therefore, the
main purpose of this section is to fix terminology and notation. For an in-depth
treatment of these games, we refer to [13,22].

2.1 Parity Games
A parity game is a game played by players even (represented by the symbol 0)
and odd (represented by the symbol 1). It is played on a total finite directed
graph, the vertices of which can be won by either 0 or 1. The objective of the
game is to find the partitioning that separates the vertices won by 0 from those
won by 1. In the following text we formalise this definition, and we introduce
some concepts that will make it easier to reason about parity games.

Definition 1. A parity game G is a directed graph (V,→, Ω,P), where
– V is a finite set of vertices,
– →⊆ V × V is a total edge relation (i.e., for each v ∈ V there is at least one
w ∈ V such that (v, w) ∈→),

– Ω : V → N is a priority function that assigns priorities to vertices,
– P : V → {0, 1} is a function assigning vertices to players.

Instead of (v, w) ∈→ we will usually write v → w. Note that, for the purpose of
readability later in this text, our definition deviates from the conventional one:
instead of requiring a partitioning of V into vertices owned by player even and
vertices owned by player odd, we achieve the same through the function P .

Paths. A sequence of vertices v1, . . . , vn for which vi → vi+1 for all 1 ≤ i < n
is called a path, and may be denoted using angular brackets: 〈v1, . . . , vn〉. The
concatenation p · q of paths p and q is again a path. We use pn to denote the nth

vertex in a path p. The set of paths of length n, for n ≥ 1 starting in a vertex v
is defined inductively as follows.

Π1(v) = {〈v〉}
Πn+1(v) = {〈v1, . . . , vn, vn+1〉 | 〈v1, . . . , vn〉 ∈ Πn(v) ∧ vn → vn+1}

We use Πω(v) to denote the set of infinite paths starting in v. The set of all
paths starting in v, both finite and infinite is defined as follows:

Π (v) = Πω(v) ∪
⋃

n∈N

Πn(v)

Winner. A game starting in a vertex v ∈ V is played by placing a token on
v, and then moving the token along the edges in the graph. Moves are taken
indefinitely according to the following simple rule: if the token is on some vertex
v, player P(v) moves the token to some vertex w such that v → w. The result
is an infinite path p in the game graph. The parity of the lowest priority that
occurs infinitely often on p defines the winner of the path. If this priority is even,
then player 0 wins, otherwise player 1 wins.
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Strategies. A strategy for player i is a partial function φ : V ∗ → V , that for each
path ending in a vertex owned by player i determines the next vertex to be played
onto. A path p of length n is consistent with a strategy φ for player i, denoted
φ � p, if and only if for all 1 ≤ j < n it is the case that 〈p1, . . . , pj〉 ∈ dom(φ)
and P(pj) = i imply pj+1 = φ(〈p1, . . . , pj〉). The definition of consistency is
extended to infinite paths in the obvious manner. We denote the set of paths
that are consistent with a given strategy φ, starting in a vertex v by Πφ(v);
formally, we define:

Πφ(v) = {p ∈ Π (v) | φ � p}
A strategy φ for player i is said to be a winning strategy from a vertex v if
and only if i is the winner of every path that starts in v and that is consistent
with φ. It is known from the literature that each vertex in the game is won by
exactly one player; effectively, this induces a partitioning on the set of vertices
V in those vertices won by player 0 and those vertices won by player 1.

Orderings. We assume that V is ordered by an arbitrary, total ordering �. The
minimal element of a non-empty set U ⊆ V with respect to this ordering is
denoted �(U). Let |v, u| denote the least number of edges required to move from
vertex v to vertex u in the graph. We define |v, u| =∞ if u is unreachable from
v. For each vertex u ∈ V , we define an ordering ≺u⊆ V × V on vertices, that
intuitively orders vertices based on their proximity to u, with a subjugate role
for the vertex ordering �:

v ≺u v′ iff |v, u| < |v′, u| or (|v, u| = |v′, u| and v � v′)

Observe that u ≺u v for all v �= u. The minimal element of U ⊆ V with respect
to ≺u is written �u(U).

3 Strong Bisimilarity and Stuttering Equivalence

Process theory studies refinement and equivalence relations, characterising the
differences between models of systems that are observable to entities with differ-
ent observational powers. Most equivalence relations have been studied for their
computational complexity, giving rise to effective procedures for deciding these
equivalences. Prominent equivalences are strong bisimilarity, due to Park [15]
and stuttering equivalence [3], proposed by Browne, Clarke and Grumberg.

Game graphs share many of the traits of the system models studied in process
theory. As such, it is natural to study refinement and equivalence relations for
such graphs, see e.g., delayed simulation [9]. In the remainder of this section, we
recast the bisimilarity and stuttering equivalence to the setting of parity games,
and show that these are finer than winner equivalence, which we define as follows.

Definition 2. Let G = (V,→, Ω,P) be a parity game. Two vertices v, v′ ∈ V
are said to be winner equivalent, denoted v ∼w v′ iff v and v′ are won by the
same player.
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Because every vertex is won by exactly one player (see, e.g., [22]), winner equiv-
alence partitions V into a subset won by player 0 and a subset won by player 1.
Clearly, winner equivalence is therefore an equivalence relation on the set of
vertices of a given parity game. The problem of deciding winner equivalence, is
in NP∩ co-NP; all currently known algorithms require time exponential in the
number of priorities in the game.

We next define strong bisimilarity for parity games; basically, we interpret the
priorities and players of vertices as state labellings.

Definition 3. Let G = (V,→, Ω,P) be a parity game. A symmetric relation
R⊆ V × V is a strong bisimulation relation if v R v′ implies

– Ω(v) = Ω(v′) and P(v) = P(v′);
– for all w ∈ V such that v → w, there should be a w′ ∈ V such that v′ → w′

and w R w′.

Vertices v and v′ are said to be strongly bisimilar, denoted v ∼ v′, iff a strong
bisimulation relation R exists such that v R v′.

Strong bisimilarity is an equivalence relation on the vertices of a parity game;
quotienting with respect to strong bisimilarity is straightforward. It is not hard
to show that strong bisimilarity is strictly finer than winner equivalence. More-
over, quotienting can be done effectively with a worst-case time complexity of
O(|V | log |V |).

Strong bisimilarity quotienting prior to solving a parity game can in some cases
be quite competitive. One of the drawbacks of strong bisimilarity, however, is its
sensitivity to counting (in the sense that it will not identify vertices that require
a different number of steps to reach a next equivalence class), preventing it from
compressing the game graph any further.

Stuttering equivalence shares many of the characteristics of strong bisimilarity,
and deciding it has only a slightly worse worst-case time complexity. However,
it is insensitive to counting, and is therefore likely to lead to greater reductions.
Given these observations, we hypothesise (and validate this hypothesis in Sec-
tion 4) that stuttering equivalence outperforms strong bisimilarity and, in most
instances, reduces the time required for deciding winner equivalence in parity
games stemming from verification problems.

We first introduce stuttering bisimilarity [14], a coinductive alternative to
the stuttering equivalence of Browne, Clarke and Grumberg; we shall use the
terms stuttering bisimilarity and stuttering equivalence interchangeably. The
remainder of this section is then devoted to showing that stuttering bisimilarity
is coarser than strong bisimilarity, but still finer than winner equivalence. The
latter result allows one to pre-process a parity game by quotienting it using
stuttering equivalence.

Definition 4. Let G = (V,→, Ω,P) be a parity game. Let R ⊆ V × V . An
infinite path p is R-divergent, denoted divR(p) iff p1 R pi for all i. Vertex v ∈ V
allows for divergence, denoted divR(v) iff there is a path p such that p1 = v and
divR(p).
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We generalise the transition relation→ to its reflexive-transitive closure, denoted
=⇒, taking a given relationR on vertices into account. The generalised transition
relation is used to define stuttering bisimilarity. Let G = (V,→, Ω,P) be a parity
game and let R ⊆ V × V be a relation on its vertices. Formally, we define the
relations→R⊆ V × V and =⇒R⊆ V ×V through the following set of deduction
rules.

v → w v R w

v →R w v =⇒R v
v →R w w =⇒R v′

v =⇒R v′
We extend this notation to paths: we sometimes write 〈v1, . . . , vn〉 → u if vn → u;
similarly, we write 〈v1, . . . , vn〉 →R u and 〈v1, . . . , vn〉 =⇒R u.

Definition 5. Let G = (V,→, Ω,P) be a parity game. Let R ⊆ V × V be a
symmetric relation on vertices; R is a stuttering bisimulation if v R v′ implies

– Ω(v) = Ω(v′) and P(v) = P(v′);
– divR(v) iff divR(v′);
– If v → u, then either (v R u ∧ u R v′), or there are u′, w, such that v′ =⇒R
w → u′ and v R w and u R u′;

Two states v and v′ are said to be stuttering bisimilar, denoted v � v′ iff there
is a stuttering bisimulation relation R, such that v R v′.

Note that stuttering bisimilarity is the largest stuttering bisimulation. Moreover,
stuttering bisimilarity is an equivalence relation, see e.g. [14,3]. In addition,
quotienting with respect to stuttering bisimilarity is straightforward.

Stuttering bisimilarity between vertices extends naturally to finite paths.
Paths of length 1 are equivalent if the vertices they consist of are equivalent.
If paths p and q are equivalent, then p · 〈v〉 � q iff v is equivalent to the last
vertex in q (and analogously for extensions of q), and p · 〈v〉 � q · 〈w〉 iff v � w.
An infinite path p is equivalent to a (possibly infinite) path q if for all finite
prefixes of p there is an equivalent prefix of q and vice versa.

We next set out to prove that stuttering bisimilarity is finer than winner
equivalence. Our proof strategy is as follows: given that there is a strategy φ
for player i from a vertex v, we define a strategy for player i that from vertices
equivalent to v schedules only paths that are stuttering bisimilar to a path
starting in v that is consistent with φ.

If after a number of moves a path p has been played, and our strategy has to
choose the next move, then it needs to know which successors for p will yield a
path for which again there is a stuttering bisimilar path that is consistent with
φ. To this end we introduce the set reachφ,v(p).

Let φ be an arbitrary strategy, v an arbitrary vertex owned by the player for
which φ defines the strategy, and let p be an arbitrary path. We define reachφ,v(p)
as the set of vertices in new classes, reachable by traversing φ-consistent paths
that start in v and that are stuttering bisimilar to p.

reachφ,v(p) = {u ∈ V | ∃q ∈ Πφ(v) : p � q ∧ φ � q · 〈u〉 ∧ q · 〈u〉 �� q}
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Observe that not all vertices in reachφ,v(p) have to be in the same equivalence
class, because it is not guaranteed that all paths q ∈ Πφ(v), stuttering bisimilar
to p, are extended by φ towards the same equivalence class.

Suppose the set reachφ,v(p) is non-empty; in this case, our strategy should
select a target class to which p should be extended. Because stuttering bisimilar
vertices can reach the same classes, it does not matter which class present in
reachφ,v(p) is selected as the target class. We do however need to make a unique
choice; to this end we use the total ordering � on vertices.

targetclassφ,v(p) = {u ∈ V | u � �(reachφ,v(p))}
Not all vertices in the target class need be reachable from p, but there must
exist at least one vertex that is. We next determine a target vertex, by selecting
a unique, reachable vertex from the target class. This target of p, given a strategy
φ and a vertex v is denoted τφ,v(p); note that the ordering � is again used to
uniquely determine a vertex from the set of reachable vertices.

τφ,v(p) = �{u ∈ targetclassφ,v(p) | ∃w ∈ V : p =⇒� w → u}

Definition 6. We define a strategy mimickφ,v for player i that, given some strat-
egy φ for player i and a vertex v, allows only paths to be scheduled that have
a stuttering bisimilar path starting in v that is scheduled by φ. It is defined as
follows.

mimickφ,v(p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�t{u ∈ V | p→� u},
t = τφ,v(p)
p �→ τφ,v(p)
reachφ,v(p) �= ∅

τφ,v(p)
p→ τφ,v(p)
reachφ,v(p) �= ∅

�{u ∈ V | p→� u}, reachφ,v(p) = ∅

Lemma 1. Let φ be a strategy for player i in an arbitrary parity game. Assume
that v, w ∈ V and v � w, and let ψ = mimickφ,v. Then

∀l ∈ N : ∀p ∈ Π l+1
ψ (w) : ∃k ∈ N : ∃q ∈ Πkφ(v) : p � q

Proof. We proceed by induction on l. For l = 0, the desired implication follows
immediately. For l = n+ 1, assume that we have a path p ∈ Πn+1

ψ (w). Clearly,
〈p1, . . . , pn〉 is also consistent with ψ. The induction hypothesis yields us a q ∈
Πkφ(v) for some k ∈ N such that 〈p1, . . . , pn〉 � q. Let q be such. We distinguish
the following cases:
1. pn � pn+1. In this case, clearly p � 〈p1, . . . , pn〉 � q, which finishes this case.
2. pn �� pn+1. We again distinguish two cases:

(a) Case P(pn) �= i. Since pn � qk, we find that there must be states u,w ∈ V
such that qk =⇒� w → u and pn+1 � u. So there must be a path r and
vertex u such that p � q·r·〈u〉, for which we know that r � qk. Therefore,
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all vertices in r are owned by P(qk) = P(pn), so φ is not defined for the
extensions of q along p. We can therefore conclude that φ � q · r · 〈u〉.

(b) Case P(pn) = i. Then it must be the case that pn+1 = τφ,v(〈p1, . . . , pn〉).
By definition, that means that there is a φ-consistent path r ∈ Πφ(v),
such that r � p. ��

In the following lemma we extend the above obtained result to infinite paths.

Lemma 2. Let φ be a strategy for player i in an arbitrary parity game. Assume
that v, w ∈ V and v � w, and let ψ = mimickφ,v. Then

∀p ∈ Πωψ (w) : ∃q ∈ Πωφ (v) : p � q.

Proof. Suppose we have an infinite path p ∈ Πωψ (w). Using Lemma 1 we can
obtain a path q starting in v that is stuttering bisimilar, and that is consistent
with φ. The lemma does not guarantee, however, that q is of infinite length. We
show that if q is finite, it can always be extended to an infinite path that is still
consistent with φ.

Notice that paths can be partitioned into subsequences of vertices from the
same equivalence class, and that two stuttering bisimilar paths must have the
same number of partitions. This also follows from the original definition of stut-
tering equivalence given in [3].

Suppose now that q is of finite length, say k + 1. Then p must contain such
a partition that has infinite size. In particular, there must be some n ∈ N such
that pn+j � pn+j+1 for all 0 ≤ j ≤ |V |. We distinguish two cases.

1. P(pn) = i. We show that then also reachφ,v(〈p0, p1, . . . pn〉) = ∅. Suppose
this is not the case. Then we find that for some u ∈ V , u = τφ,v(p) exists,
and therefore pn+j ≺u pn+j+1 for all j ≤ |V |. Since ≺u is total, this means
that the longest chain is of length |V |, which contradicts our assumptions.
So, necessarily reachφ,v(〈p0, p1, . . . pn〉) = ∅, meaning that no path that is
consistent with φ leaves the class of pn. But this means that the infinite
path that stays in the class of pn is also consistent with φ.

2. P(pn) �= i. Since pn � qk, also P(qk) �= i. Since pn � pn+j for all j ≤ |V |+1,
this means that there is a state u, such that u = pn+l = pn+l′ . But this
means that u is divergent. Since P(u) �= i, and u � qk, we find that also
qk is divergent. Therefore, there is an infinite path with prefix q that is
consistent with φ and that is stuttering bisimilar to p. ��

Theorem 1. Stuttering bisimilarity is strictly finer than winner equivalence,
i.e., �⊆∼w.

Proof. The claim follows immediately from Lemma 2 and the fact that two
stuttering bisimilar infinite paths have the same infinitely occurring priorities.
Strictness is immediate. ��
Note that strong bisimilarity is strictly finer than stuttering bisimilarity; as
a result, it immediately follows that strong bisimilarity is finer than winner
equivalence, too.
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As an aside, we point out that our proof of the above theorem relies on
the construction of the strategy mimickφ,v; its purpose, however, exceeds that
of the proof. If, by solving the stuttering bisimilar quotient of a given parity
game G, one obtains a winning strategy φ for a given player, mimickφ,v defines
the winning strategies for that player in G. This is of particular importance in
case an explanation of the solution of the game is required, for instance when
the game encodes a verification problem for which a strategy helps explain the
outcome of the verification (see e.g. [18]). It is not immediately obvious how a
similar feature could be obtained in the setting of, say, the delayed simulations
of Fritz and Wilke [9], because vertices that belong to different players and that
have different priorities can be identified through such simulations.

4 Experiments

We next study the effect that stuttering equivalence minimisation has in a practi-
cal setting. We do this by solving parity games that originate from three different
sources (we will explain more later) using three different methods: direct solv-
ing, solving after bisimulation reduction and solving after stuttering equivalence
reduction. Parity games are solved using a number of different algorithms, viz. a
naive C++ implementation of the small progress measures algorithm [11] due to
Jurdziński, and the optimised and unoptimised variants that are implemented
in the PGSolver tool [7] of the small progress measures algorithm, the recursive
algorithm due to McNaughton [13], the bigstep algorithm due to Schewe [16]
and a strategy improvement algorithm due to Vöge [20]. We compare the time
needed by these methods to solve the parity games, and we compare the sizes of
the parity games that are sent to the solving algorithms.

To efficiently compute bisimulation and stuttering equivalence for parity games
we adapted a single-threaded implementation of the corresponding reduction al-
gorithms by Blom and Orzan [2] for labelled transition systems.

All experiments were conducted on a machine consisting of 28 Intel® Xeon®
E5520 Processors running at 2.27GHz, with 1TB of shared main memory, run-
ning a 64-bit Linux distribution using kernel version 2.6.27. None of our experi-
ments employ multi-core features.

4.1 Test Sets

The parity games that were used for our experiments are partitioned into three
test sets, of which we give a brief description below.

Test set 1. Our main interest is in the practical implications of stuttering
equivalence reduction on solving model checking problems, so a number of typical
model checking problems have been selected and encoded into parity games.

Five properties of the Firewire Link-Layer protocol (1394) [12] were consid-
ered, as they are described in [17]. They are numbered I–V in the order in which
they can be found in that document.

Four properties are checked on the specification of a lift in [10]; a liveness
property (I), a property that expresses the absence of deadlock (II) and two safety
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properties (III and IV). These typical model checking properties are expressed
as alternation-free μ-calculus formulae.

On a model of the sliding window protocol [1], a fairness property (I) and a
safety property (II) are verified, as well as 7 other fairness, liveness and safety
properties.

Note that some of the properties are described by alternation free μ-calculus
formulae, whereas others use alternation. The parity games induced by the al-
ternation free μ-calculus formulae have different numbers of priorities, but the
priorities along the paths in the parity games are ascending. In contrast, the
paths in the parity games induced by alternating properties have no such prop-
erty and are therefore computationally more challenging. Note that the parity
games generated for these problems only have limited alternations between ver-
tices owned by player 0 and 1 in the paths of the parity games.

Test set 2. The second test set was taken from [7] and consists of several
instances of the elevator problem and the Hanoi towers problem described in
that paper. For the latter, a different encoding was devised and added to the
test set.

Test set 3. This test set consists of a number of equivalence checking problems
encoded into parity games as described in [4].

The problems taken from [7], as well as some of the equivalence checking prob-
lems, give rise to parity games with alternations between both players and pri-
orities.

4.2 Results

To analyse the performance of stuttering equivalence reduction, we measured
the number of vertices and the number of edges in the original parity games,
the bisimulation-reduced parity games and the stuttering-reduced parity games.
Some of the results for test set 1 are shown in Table 1. For the Elevator model
from [7], the results are shown in Table 2.

Figure 1.a compares these sizes (and those not shown in the tables) graphi-
cally; each plot point represents a parity game, of which the position along the
y-axis is determined by its stuttering-reduced size, and the position along the
x-axis by its original size and its bisimulation-reduced size, respectively. The
plotted sizes are the sum of the number of vertices and the number of edges.

In addition to these results, we measured the time needed to reduce and to
solve the parity games. The time needed to solve a parity game using stuttering
equivalence or bisimulation reduction is computed as the time needed to reduce
the parity game, plus the time needed to solve the reduced game. Also, the time
needed to solve these games directly was measured. The solving time for a game
is the time that the fastest of the solving algorithms needs to solve it. The results
are plotted in Figure 1.b. Again, every data point is a parity game, of which the
solving times determine the position in the scatter plot.
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Fig. 1. Sizes and solving times (in seconds) of the stuttering-reduced parity games
set out against sizes and solving times of the original games and of the bisimulation-
reduced games. The vertical axis is shared between the plots in each subfigure. The
dotted line is defined as x = y and serves as a reference. Note that axes are in log scale.

4.3 Discussion

At a glance, stuttering reduction seems a big improvement on bisimulation
reduction in terms of size reduction. Figure 1.a shows clearly that stuttering
equivalence gives a better size reduction than bisimulation equivalence in the
majority of cases. The difference is often somewhere between a factor ten and
a factor thousand. Looking at solving times, the results also seem promising. In
Figure 1.b we see that in most cases reducing the game and then solving it costs
significantly less time. We will discuss the results in more detail for each test set
separately.
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Table 1. Statistics for the parity games for experiments from test set 1. In the Lift
case, N denotes the number of distributed lifts; in the case of SWP, N denotes the size
of the window. The number of priorities in the original (and minimised) parity games
is listed under Priorities.

IEEE 1394 original � ∼
Property Priorities |V | |→| |V | |→| |V | |→|
I 1 346 173 722 422 1 1 1 1
II 1 377 028 679 157 3 730 3 086 5 990 11 180
III 4 1 190 395 2 025 022 102 334 13 551 22 166
IV 2 524 968 875 296 4 6 10 814 17 590
V 1 1 295 249 2 150 590 1 1 1 1

Lift original � ∼
Property Priorities N |V | |→| |V | |→| |V | |→|
I 4 2 1 691 4 825 22 58 333 1 021
I 4 3 63 907 240 612 131 450 5 148 23 703
I 4 4 1 997 579 9 752 561 929 4 006 74 059 462 713
II 2 2 846 2 172 5 9 94 240
II 2 3 31 954 121 625 16 39 1 092 4 514
II 2 4 998 790 5 412 890 64 193 14 353 80 043
III 1 2 763 1 903 1 1 1 1
III 1 3 26 996 99 348 1 1 1 1
III 1 4 788 879 4 146 139 1 1 1 1
IV 2 2 486 1 126 4 6 151 396
IV 2 3 11 977 39 577 5 9 1 741 6 951
IV 2 4 267 378 1 257 302 7 15 23 526 122 230

SWP original � ∼
Property Priorities N |V | |→| |V | |→| |V | |→|
I 3 1 1 250 3 391 4 7 314 849
I 3 2 14 882 47 387 4 7 1 322 4 127
I 3 3 84 866 291 879 4 7 4 190 14 153
I 3 4 346 562 1 246 803 4 7 11 414 40 557
II 2 1 1 370 4 714 5 8 90 316
II 2 2 54 322 203 914 5 8 848 3 789
II 2 3 944 090 3 685 946 5 8 5 704 28 606
II 2 4 11 488 274 45 840 722 5 8 34 359 183 895

Test set 1. For these cases, we see that the size reduction is always better
than that of bisimulation reduction, unless bisimulation already compressed the
parity game to a single state. Solving times using stuttering equivalence are in
general better than those of direct solving.

The experiments indicate that minimising parity games using stuttering equiv-
alence before solving the reduced parity games is at least as fast as directly
solving the original games.



Stuttering Mostly Speeds Up Solving Parity Games 219

Table 2. Statistics for the parity games for the FIFO and LIFO Elevator models taken
from [7]. Floors indicates the number of floors.

Elevator Models original � ∼

Model Floors Priorities |V | |→| |V | |→| |V | |→|
FIFO 3 3 564 950 351 661 403 713
FIFO 4 3 2 688 4 544 1 588 2 988 1 823 3 223
FIFO 5 3 15 684 26 354 9 077 16 989 10 423 18 335
FIFO 6 3 108 336 180 898 62 280 116 044 71 563 125 327
FIFO 7 3 861 780 1 431 610 495 061 919 985 569 203 994 127
LIFO 3 3 588 1 096 326 695 363 732
LIFO 4 3 2 832 5 924 866 2 054 963 2 151
LIFO 5 3 16 356 38 194 2 162 5 609 2 403 5 850
LIFO 6 3 111 456 287 964 5 186 14 540 5 763 15 117
LIFO 7 3 876 780 2 484 252 16 706 51 637 18 563 53494

The second observation we make is that stuttering equivalence reduces the
size quite well for this test set, when compared to the other sets. This may be
explained by the way in which the parity games were generated. As they encode
a μ-calculus formula together with a state space, repetitive and deterministic
parts of the state space are likely to generate fragments within the parity game
that can be easily compressed using stuttering reduction.

Lastly, we observe that solving times using bisimulation reduction are not in
general much worse than those using stuttering reduction. The explanation is
simple: both reductions compress the original parity game to such an extent that
the resulting game is small enough for the solvers to solve it in less than a tenth
of a second.

Test set 2. Both stuttering equivalence and strong bisimulation reduction per-
form poorly on a reachability property for the Hanoi towers experiment, with
the reduction times vastly exceeding the times required for solving the parity
games directly. A closer inspection reveals that this is caused by an unfortunate
choice for a new priority for vertices induced by a fixpoint-free subformula. As
a result, all paths in the parity game have alternating priorities with very short
stretches of the same priorities, because of which hardly any reduction is possi-
ble. We included an encoding of the same problem which does not contain the
unfortunate choice, and indeed observe that in that case stuttering equivalence
does speed up the solving process.

The LIFO Elevator problem shows results similar to those of the other model
checking problems. The performance with respect to the FIFO Elevator however
is rather poor. This seems to be due to three main factors: the relatively large
number of alternating fixed point signs, the alternations between vertices owned
by player 0 and vertices owned by player 1, and the low average branching degree
in the parity game. This indicates that for alternating μ-calculus formulae with
nested conjunctive and disjunctive subformulae, stuttering equivalence reduction
generally performs suboptimal. This should not come as a surprise, as stuttering
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equivalence only allows one to compress sequences of vertices with equal priorities
and owned by the same player.

Test set 3. The results for these experiments indicate that reduction using stut-
tering equivalence sometimes performs poorly. The subset where performance is
especially poor is an encoding of branching bisimilarity, which gives rise to par-
ity games with alternations both between different priorities as well as different
players. As a result, little reduction is possible.

5 Conclusions

We have adapted the notion of stuttering bisimilarity to the setting of parity
games, and proven that this equivalence relation can be safely used to minimise
a parity game before solving the reduced game.

Experiments were conducted to investigate the effect of quotienting stuttering
bisimilarity on parity games originating from model checking problems. In many
practical cases this reduction leads to an improvement in solving time, however
in cases where the parity games involved have many alternations between odd
and even vertices, stuttering bisimilarity reduction performs only marginally bet-
ter than strong bisimilarity reduction. Although we did compare our techniques
against a number of competitive parity game solvers, using other solving algo-
rithms, or even other implementations of the same algorithms, may give different
results.

The fact that stuttering bisimilarity does not deal at all well with alternation
leads us to believe that weaker notions of bisimilarity, in which vertices with
different players can be related under certain circumstances, may resolve the
most severe performance problems that we saw in our experiments. We regard
the investigation of such weaker relations as future work.

Stuttering bisimilarity has been previously studied in a distributed setting [2].
It would be interesting to compare its performance to a distributed implementa-
tion of the known solving algorithms for parity games. However, we are only
aware of a multi-core implementation of the Small Progress Measures algo-
rithm [19].
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