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Preface

This publication contains the proceedings of the Third NASA Formal Methods
Symposium (NFM 2011), which was held April 18–20, 2011, in Pasadena, CA,
USA. The NASA Formal Methods Symposium is a forum for theoreticians and
practitioners from academia, industry, and government, with the goal of identi-
fying challenges and providing solutions to achieving assurance in safety-critical
systems.

Within NASA, such systems include manned and unmanned spacecraft, or-
biting satellites, and aircraft. Rapidly increasing code size, as well as the adoption
of new software development paradigms, e.g., code generation and code synthe-
sis, static source code analysis techniques and tool-based code review methods,
bring new challenges and opportunities for significant improvement. Also gaining
increasing importance in NASA applications is the use of more rigorous software
test methods, founded in theory.

The focus of the symposium is understandably on formal methods, their
foundation, current capabilities, as well as their current limitations. The NASA
Formal Methods Symposium is an annual event that was created to highlight the
state of the art in formal methods, both in theory and in practice. The series was
originally started as the Langley Formal Methods Workshop, and was held under
that name in 1990, 1992, 1995, 1997, 2000, and 2008. In 2009 the first NASA
Formal Methods Symposium was organized by NASA Ames Research Center,
and took place at Moffett Field, CA. In 2010 the symposium was organized
by NASA Langley Research Center and NASA Goddard Space Flight Center,
and held at NASA Headquarters, in Washington DC. This year’s symposium
was organized by the Laboratory for Reliable Software at the Jet Propulsion
Laboratory / California Institute of Technology, and held in Pasadena CA.

The topics covered by NFM 2011 included but were not limited to: theorem
proving, logic model checking, automated testing and simulation, model-based
engineering, real-time and stochastic systems, SAT and SMT solvers, symbolic
execution, abstraction and abstraction refinement, compositional verification
techniques, static and dynamic analysis techniques, fault protection, cyber secu-
rity, specification formalisms, requirements analysis, and applications of formal
techniques.

Two types of papers were considered: regular papers describing fully devel-
oped work and complete results or case studies, and tool papers describing an
operational tool, with examples of its application. The symposium received 141
submissions (112 regular papers and 29 tool papers) out of which 38 were ac-
cepted (26 regular papers and 12 tool papers), giving an acceptance rate of 27%.
All submissions went through a rigorous reviewing process, where each paper
was read by at least three reviewers.



VI Preface

In addition to the refereed papers, the symposium featured three invited
talks and three invited tutorials. The invited talks were presented by Rustan
Leino from Microsoft Research, on “From Retrospective Verification to Forward-
Looking Development,” Oege de Moor from the University of Oxford in Eng-
land, and CEO of Semmle/Inc., on “Do Coding Standards Improve Software
Quality?,” and Andreas Zeller from Saarland University in Germany, on “Speci-
fications for Free.” The invited tutorials were presented by Andreas Bauer from
the Australian National University in Australia, and Martin Leucker from Insti-
tut für Softwaretechnik und Programmiersprache, Universität zu Lübeck in Ger-
many, on “The Theory and Practice of SALT—Structured Assertion Language
for Temporal Logic,” Bart Jacobs from the Katholieke Universiteit Leuven in
Belgium on “VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and
Java,” and Micha�l Moskal from Microsoft Research, on “Verifying Functional
Correctness of C Programs with VCC.”

The organizers are grateful to the authors for submitting their work to NFM
2011 and to the invited speakers for sharing their insights. NFM 2011 would not
have been possible without the collaboration of the outstanding Steering Com-
mittee, Program Committee, and external reviewers, and the general support of
the NASA Formal Methods community. The NFM 2011 website can be found at
http://lars-lab.jpl.nasa.gov/nfm2011.

Support for the preparation of these proceedings was provided by the Jet
Propulsion Laboratory, California Institute of Technology, under a contract with
the National Aeronautics and Space Administration.

February 2011 Mihaela Bobaru
Klaus Havelund

Gerard Holzmann
Rajeev Joshi
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From Retrospective Verification
to Forward-Looking Development

K. Rustan M. Leino

Microsoft Research, Redmond, WA, USA
leino@microsoft.com

Abstract. One obstacle in applying program verification is coming up with spec-
ifications. That is, if you want to verify a program, you need to write down what it
means for the program to be correct. But doesn’t that seem terribly wrong? Why
don’t we see it as “one obstacle in program design is coming up with code”? That
is, if you want to realize a specification, you need to write down how the ma-
chine is supposed do it. Phrased this way, we may want to change our efforts of
verification into efforts of what is known as correct-by-construction or stepwise-
refinement. But the choice is not so clear and there are plenty of obstacles on both
sides. For example, many programs are developed from specifications, but the
specifications are not in a form suitable for refinement tools. For other programs,
the clearest specifications may be given by pseudo-code, but such specification
may not be suitable for some verification tools. In this talk, I will discuss verifi-
cation tools and refinement-based tools, considering how they may be combined.

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Specifications for Free

Andreas Zeller

Saarland University, Saarbrücken, Germany
zeller@cs.uni-saarland.de

http://www.st.cs.uni-saarland.de/

Abstract. Recent advances in software validation and verification make
it possible to widely automate the check whether a specification is sat-
isfied. This progress is hampered, though, by the persistent difficulty of
writing specifications. Are we facing a “specification crisis”? By mining
specifications from existing systems, we can alleviate this burden, reusing
and extending the knowledge of 60 years of programming, and bridging
the gap between formal methods and real-world software. In this NFM
2011 invited keynote, I present the state of the art in specification min-
ing, its challenges, and its potential, up to a vision of seamless integration
of specification and programming.

1 Introduction

Automated validation of software systems has finally come of age. In software
testing, test case generation now routinely automatically explores the entire pro-
gram structure. In formal verification, the Coq prover has been used to produce
a fully verified C compiler; the Verisoft project has formally proven correctness
for a 10,000-line operating system kernels1.

Dependable software, however, requires specifications of the intended behav-
ior. Writing such specifications has always been hard; and while research has
made tremendous advances in systematically verifying and validating program
behavior, there has been little to no progress in actually specifying this behav-
ior. This lack of specifications effectively hinders widespread adoption of rigorous
methods in industry—not only formal methods, but also systematic automated
testing. On top, developing new, dependable systems from scratch is risky as one
may get the specification wrong—the software would be correct with respect to
its specification, but still may be full of unpleasant surprises.

At his keynote at the SIGSOFT/FSE 2010 conference, Ralph Johnson identi-
fied specifications as the single missing piece for formal verification: “Everybody
agrees it is crucial but nobody works on it.” All the pieces for rigorous, high-
quality software development are in place—except for one: Where are we going
to get good specifications from?

1 Verisoft project, http://www.verisoft.de/, and Verisoft XT project,
http://www.verisoftxt.de/

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 2–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.st.cs.uni-saarland.de/
http://www.verisoft.de/
http://www.verisoftxt.de/
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2 Specification Mining

In this talk, I give an overview of specification mining. The idea is to extract
specifications from existing systems, effectively leveraging the knowledge encoded
into billions of code lines. These specifications are models of software behavior,
but models so precise and concise so that they can act as specifications for
building, verifying, and synthesizing new or revised systems. Rather than writing
specifications from scratch, developers would thus rely on this existing knowledge
base, overcoming specification inertia.

Let us use a simple example to illustrate the challenges and perspectives of
specification mining. NanoXML is a popular open source Java package for pars-
ing XML files. Its central data structure is a tree of XMLElement
objects, defined in Figure 1. Each XMLElement node can have a number of
children, publicly accessible via the enumerateChildren() method. Methods like
removeChild() manipulate the set of children. Note that the individual methods
are well-documented—for humans, that is. If we were to validate removeChild()
(or any program using it), we need a formal specification denoting its pre- and
postconditions. How can we obtain such a specification?

1 public class XMLElement implements IXMLElement, Serializable
2 {
3 // The name.
4 private String name;
5
6 // The child elements.
7 private Vector children;
8
9 // Returns an enumeration of all child elements.

10 public Enumeration enumerateChildren() { ... }
11
12 // Returns the number of children.
13 public int getChildrenCount() { ... }
14
15 // Returns true iff children exist
16 public bool hasChildren() { ... }
17
18 // Removes a child element.
19 public void removeChild(IXMLElement child) { ... }
20
21 // more methods and attributes...
22 }

Fig. 1. The XMLElement class from the NanoXML parser

3 Static Analysis

One way to infer properties from software systems is static analysis of the pro-
gram code.
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1 public void removeChild(IXMLElement child) {
2 if (child == null)
3 throw new IllegalArgumentException
4 (”child must not be null”);
5 this.children.removeElement(child);
6 }

Fig. 2. XMLElement.removeChild() source

From the removeChild() code (Figure 2), any static analysis can easily de-
duce the precondition child �= null. But how would it know the postcondition,
namely that child has been removed? The code of called methods such as Vec-
tor.removeElement() might be dynamically dispatched, remote, inaccessible, or
come in another language.

The central problem with static analysis, though, is that it determines all
that could happen, without differentiating normal usage from exceptions. For
instance, static analysis cannot determine that the child parameter normally
denotes a child node of the target (“child? ∈ enumerateChildren”). Differenti-
ating “normal” from “abnormal” usage can only be deduced from actual call
sites—and thus, our reasoning must be complemented from actual usage.

4 Dynamic Invariants

The concept of dynamic invariants addresses the issues of static analysis by
analyzing actual executions. The key idea is to observe variable values at the
beginning and the end of each call, check them against a library of fixed invariant
patterns, and retain those patterns that match. This concept was pioneered by
Ernst’s DAIKON dynamic invariant detector [6]. From the NanoXML test suite
execution, DAIKON indeed infers that no element of children is ever null and
that all children again are of class XMLElement (Figure 3).

Dynamic invariants can be extremely helpful to get first insights into the be-
havior of a program. As specifications, however, dynamic invariants are still much
too limited. They might refer to internal details (such as the private attribute
“this.children”) or simply be irrelevant (“this.lineNr != size(this.children[])”).

1 this.children[] elements != null
2 this.children[].getClass() elements == net.n3.nanoxml.XMLElement.class
3 this.name.toString one of { ”BAR”, ”FOO” }
4 this.lineNr != size(this.children[])
5 // 26 more...

Fig. 3. DAIKON invariants for XMLElement

The worst problem of all existing dynamic approaches to specification mining,
though, is that their conclusions heavily depend on the set of observed executions.
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In the NanoXML test suite, for instance, this.name always is “BAR” or “FOO”,
resulting in a misleading overgeneralization. Furthermore, removeChild() is never
executed; hence, we obtain no pre- or postconditions.

5 Exploring Behavior

The problem of not having enough executions to observe can be alleviated by gen-
erating appropriate executions. Today’s test case generation has made tremen-
dous advances; successful test generation techniques include random selection of
test inputs [13], applying meta-heuristic search techniques to find test data [11],
or representing the test generation problem as a constraint solving problem,
leveraging the power of modern constraint solvers to derive test cases [9].

Interestingly enough, the power of test case generation has rarely been com-
bined with specification mining so far. In recent work [5], we have explored
the combination of test case generation and specification mining to systemati-
cally enrich specifications. Our TAUTOKO prototype is poised towards extract-
ing typestate automata—finite state machines that represent legal sequences of
method calls on individual objects. After initial bootstrapping via a small set
of (possibly random) executions, the key challenge is to explore (and test) the
full behavior of a system. For this purpose, TAUTOKO generates additional
executions as needed, systematically exploring the full behavior.

Let us assume we want to obtain a specification for XMLElement as defined in
Figure 1, characterizing the correct usage of the addChild() and removeChild()
methods. Let us also assume that we have one given run, consisting of a con-
structor call and adding one child. From this single run, TAUTOKO constructs
the initial model shown in Figure 4.

How does this model come to be? To characterize states, TAUTOKO leverages
inspector methods (i.e., methods without parameters or side effects) as detected
in the object interface. In the case of XMLElement, the two inspector methods
would be hasChildren() and enumerateChildren(). Before and after each call
to a public method, TAUTOKO retrieves the values of these inspectors, thus
characterizing the current object state. For numerical values, each sign of the
value returned becomes a state; boolean and enumeration values each map to
an individual state.

Fig. 4. XMLElement initial model
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Fig. 5. XMLElement state transitions

In Figure 4, we can already see the pre- and postcondition of addChild() as
observed so far. But what happens if we invoke addChild() when we are in the
hasChildren() state? And what do methods like removeChild() do? TAUTOKO
generates test cases that explore this behavior to enrich the original model.
(Among others, this also ensures that removeChild() will actually be executed.)
From these test cases, it then obtains state transitions as shown in Figure 5.

The specification now shows the full postcondition hasChildren() for add-
Child(), which is also a precondition for removeChild(). Invoking removeChild()
from the ¬hasChildren() state results in an exception; hence this is not part
of the resulting model. Besides being useful as documentation, such a mined
typestate model can be immediately used for verification purposes. In our ex-
periments, we fed them into static typestate verifiers and were able to discover
bugs with very high precision [5].

6 Pre- and Postconditions

TAUTOKO is a very dedicated system with a limited, yet powerful model of
program behavior. However, the general principle, combining test case generation
with specification mining, can easily be extended to the much more expressive
specifications as mined by DAIKON, for instance. Already right now, a typestate
model as in Figure 5 directly translates into a full-fledged specification with pre-
and postconditions; expressed as a parametric test case, this reads like the code
shown in Figure 6.

Now assume that we could extract specifications like these for every single
method in our system—complete as the generated test cases cover all aspects
of behavior and expressive as we leverage domain-specific methods. For a pro-
gram P , such specifications could boost quality and productivity in all software
development activities:

Verification and modeling. Mined specifications could be abstract enough
to be used for formal verification of P as well as its clients. In particular,
P ’s mined specifications are ideal starting points for modeling, building, or
synthesizing software that is similar to P or interacts with P . If one were to
rebuild current banking software in a rigorous, dependable fashion, mined
axioms can ensure that while legacy code goes, its behavior prevails.
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1 public void testRemoveChild(child c)
2 {
3 // Precondition
4 assume element.enumerateChildren().contains(c);
5 assume c != null;
6 assume element.hasChildren();
7 old getChildrenCount = element.getChildrenCount();
8
9 element.removeChild(c);

10
11 // Postcondition
12 assert !element.enumerateChildren().contains(c);
13 assert element.getChildrenCount() == old getChildrenCount − 1;
14 }

Fig. 6. A parametric removeChild() test

Software testing. Expressed as parametric test cases (Figure 6), one obtains a
test suite for free—a test suite that covers all behavior of P previously mined.
The test suite includes oracles (assertions) that validate pre- and postcon-
ditions as well as invariants such as “doors open() ⇒ current speed() =
0” for a bus on-board system. By systematically exploring corner cases
(¬doors open(), current speed() > 0, . . . ), we could cover all predicate varia-
tions. Such fully automated testing will have a profound impact on develop-
ment, as the programmer can assess the system at a much higher abstraction
level; all she has to do is to validate the mined specification against the (im-
plicitly) intended behavior.

Defect detection. Validating mined specifications can reveal undesired prop-
erties. A mined predicate like “2010 ≤ year < 2016 ⇒ balance′ = balance”
explicitly shows that the ATM card will not provide cash in 2010–20152.
Each such property would come with a test case demonstrating it.

Maintenance. Understanding what a piece of software does is an essential pre-
requisite for all maintenance activities; mining specifications could very much
ease these tasks. With specifications, one can also determine the impact of
changes: If a new revision violates the previous invariant vertical sensor() <
32767, the failing test case will automatically indicate a problem3.

Seamless integration. Specifications need not be extracted from legacy sys-
tems alone. They could also be derived from code as it is being written,
informing programmers immediately of the consequences of their actions:
“This change causes this assertion to fail. Do you want to revise your code,
or use this new assertion instead?”

By combining test case generation with dynamic state observation, we can apply
these techniques to arbitrary legacy code; all we need is the ability to execute
individual functions.
2 “German banks hope to repair faulty cards”, Wall Street Journal, January 6, 2010.
3 “Space dreams of Europeans crash, burn with Ariane 5”, Herald Journal, June 5,

1996.
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7 Some Challenges

After these promises, let us now get back to earth; indeed, there is still loads
of work to do and issues to face. Here’s a non-exhaustive list of the challenges
extracting the XMLElement behavior.

7.1 Domain-Specific Vocabularies

Current approaches to extracting dynamic invariants do not differentiate
between levels of abstraction, as shown in Figure 3. Invariants are typically ex-
pressed over internal variables, rendering them irrelevant for clients—and making
them useless as a basis for extracted specifications.

However, as we have demonstrated with TAUTOKO, modern design man-
dates the usage of specific inspector methods to access an object’s state. The
XMLElement class in Figure 1, for instance, provides methods like hasChildren()
or getChildrenCount() for this purpose; Figure 5 demonstrates the usage of such
inspectors in mined specifications.

7.2 Exploring Behavior

By systematically covering program structure (Figure 2), test cases would explore
yet uncovered conditions such as child = null and, for instance, enrich a state
model with a forbidden transition towards an IllegalArgument exception state.

However, if the Vector state is not accessible, we have little chance to sys-
tematically cover all of the Vector ’s behavior. For instance, the vector will
only remove the argument if it is an element of the Vector. Hence, XMLEle-
ment.removeChild() will do nothing if the argument is not a child; but how
would we discover this? The challenge here will be to leverage given ground
specifications for base classes like Vector as it comes to deriving high-level spec-
ifications.

7.3 Expressive Specifications

Approaches to extracting dynamic invariants take an “all or nothing” approach:
A potential invariant is retained only if it matches all observed runs. This brings
a problem with conditional behavior: If a postcondition holds only under certain
circumstances, it will not be retained unless these circumstances are especially
identified.

As an example, consider Figure 5. If we ever invoke removeChild with a non-
child, removeChild leaves everything unchanged. Therefore, the pre- and post-
conditions observed so far no longer hold for all observed runs and are not
retained—removeChild loses its specification. What we need is a splitting con-
dition that differentiates between child ∈ enumerateChildren (in which case the
given predicates hold) and child �∈ enumerateChildren (in which case the ob-
ject stays unchanged). Identifying such splitting conditions is hard due to the
large number of potential premises; possible solutions to this problem include
leveraging internal code structure or client usage.
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7.4 Ranking Specifications

Looking back at removeChild(), we now have covered three situations:

1. A child is passed and removed:

child ∈ enumerateChildren ⇒ child �∈ enumerateChildren′

2. A non-child is passed; everything stays as is:

child ∈ enumerateChildren ⇒ ΞXMLElement

3. The argument is null, raising an exception

child? = null⇒ IllegalArgumentException

Each of these three preconditions results in a different behavior, and together,
they make up the complete removeChild() specification. However, some of these
behaviors are more relevant than others—because they are relevant for the client,
or because they are helpful in detecting errors. How can we rank the individual
predicates that make up a specification such that the most relevant come out
first? One of the most promising solutions is client usage—focusing on those
specifications that are most relevant for program behavior.

7.5 Integration with Symbolic Approaches

Despite test generation attempting to cover all corner cases, mined specifications
can never claim completeness, as they are derived from a finite set of observed
executions. This becomes evident in corner cases, such as this one: If the same
child is added twice to an XMLElement, the removeChild() method will only
remove the first instance (because Vector.removeElement() does so). We either
have to state that all XMLElements span a tree (leveraging, say, an XMLEle-
ment.isTree() helper method), or extend the removeChild() specification.

While such corner cases may be ranked down as such (see above), one may
wonder whether there is a way we can ensure the specifications are complete
descriptions of behavior, making them universally valid. The challenge here is to
explore missing aspects and resolve inconsistencies using state-of-the-art SMT
solvers and model checkers.

7.6 Scalability and Efficiency

Finally, any approach for specification mining suffers from scalability issues.
Tools like DAIKON or TAUTOKO require a significant run time overhead for
their dynamic instrumentation; likewise, multiple executions of long-running pro-
grams consume a large amount of time.
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8 Related Work

The term “mining specifications” was first applied to mining finite state
automata from programs. Originally proposed by Ammons et al. [1], several
researchers have extracted such automata statically or dynamically; the most
recent work [8] focuses on inferring regular behavior from observed traces.

Mining specifications as pre- and postconditions from executions was first
explored in the DAIKON tool by Michael Ernst et al. [6]. DAIKON works by
instantiating invariant patterns such as “$1 = $2” against all possible variable
values, retaining only those patterns that universally match. The most impor-
tant usage of this work is the integration with theorem provers [2]; however,
a recent comparison of DAIKON-inferred and programmer-written specifica-
tions [14] finds two major issues, shared by all dynamic approaches: lack of
detail as it is hard to identify conditional behavior, and incompleteness as one
is restricted to observed executions.

Static specification mining aims at discovering specifications from program
code alone. For programs already annotated with pre- and postconditions, one
can infer additional candidates [7]. However, static mining is frequently seen as
a complement to dynamic mining [15,4].

Hybrid approaches combine specification mining with testing. The approach
by Henkel and Diwan [10] systematically generates test cases to extract alge-
braic specifications, yet is limited to functional methods without side effects.
Approaches integrating model checking and testing to refine abstractions [3] are
promising, but limited to finite-state behavior. Combinations of DAIKON and
random testing [13,12] so far focus on improving testing rather than the mined
specifications.

9 Conclusion and Consequences

In the past decade, automated validation of software systems has made spectac-
ular progresses. On the testing side, it is now possible to automatically generate
test cases that effectively explore the entire program structure; on the verifi-
cation side, we can now formally prove properties for software as complex as
operating systems. To push validation further, however, we need specifications
of what the software actually should do. But writing such specifications has al-
ways been hard—and so far significantly inhibited the deployment of rigorous
development methods.

By combining specification mining (extracting specifications from executions)
and test case generation (generating additional runs to explore execution space),
we have the chance to obtain specifications that are both complete and useful.
The proposed techniques all easily adapt to legacy programs; all we need is the
ability to execute individual functions.

Before we get there, many challenges remain, as listed in section 7. As re-
searchers, we should not see these challenges as obstacles, but rather as research
opportunities. Formal methods just need this single piece—let’s go and solve
the puzzle!
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Abstract. Salt is a general purpose specification and assertion lan-
guage developed for creating concise temporal specifications to be used
in industrial verification environments. It incorporates ideas of existing
approaches, such as PSL or Specification Patterns, in that it provides
operators to express scopes and exceptions, as well as support for a sub-
set of regular expressions. On the one hand side, Salt exceeds specific
features of these approaches, for example, in that it allows the nesting
of scopes and supports the specification of real-time properties. On the
other hand, Salt is fully translatable to LTL, if no real-time operators
are used, and to TLTL (also known as state-clock logic), if real-time op-
erators appear in a specification. The latter is needed in particular for
verification tasks to do with reactive systems imposing strict execution
times and deadlines. Salt’s semantics is defined in terms of a translation
to temporal (real-time) logic, and a compiler is freely available from the
project web site, including an interactive web interface to test drive the
compiler. This tutorial paper details on the theoretical foundations of
Salt as well as its practical use in applications such as model checking
and runtime verification.

1 Introduction

When considering specification language formalisms, we have at least three dif-
ferent characteristics for their classification, which are (i) expressiveness, (ii) con-
ciseness, and (iii) readability. In simple words, expressiveness means, which kind
of languages can be defined at all within the considered formalism, while concise-
ness studies the question, how long the shortest spefications for a given family of
languages is. Readability, on the other hand, deals with the question, how easy
it is, to specify a certain language within the given formalism for a typical hu-
man beeing—and is thus a vague, not formal notion. Salt, which is an acronym
for structured assertion language for temporal logic, aims to be a general pur-
pose specification and assertion language, and was first introduced in [1]. It has
been designed especially with readability in mind. Thus, one of the main goals
of Salt is to offer users, who are not necessarily experts in formal specification
and verification, a versatile tool that allows them to express system properties in
a formal and concise, yet intelligible manner. In that respect, Salt has the look
and feel of a general purpose programming language (e.g., it uses if-then-else
constructs, supports (a subset of) regular expressions, and allows the definition

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 13–40, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



14 A. Bauer and M. Leucker

LTL PastLTL

Prop. Logic

TLTL

FO

FOec
MSO

ec

MSO

RExp

RExp(*)

Fig. 1. Relationships between propositional, first-order, and temporal logics

of macros), yet it is fully translatable into standard temporal logics, such as
linear time temporal logic (LTL [2]) or, if dedicated real-time operators appear
inside a specification, to TLTL (also known as state-clock logic [3,4]). In other
words, the untimed fragment of Salt is equally expressive as LTL, whereas the
timed fragment is equally expressive as TLTL. D’Souza has shown in [4] that
TLTL corresponds exactly to the first-order fragment of monadic second order
logic interpreted over timed words. This resembles the correspondence of LTL
and first-order logic over words as shown by Kamp [5]. However, LTL is strictly
less expressive than second-order logic over words which, in turn, is expressively
equivalent to ω-regular expressions. This also explains why full support of regular
expressions is not possible when only LTL-expressible properties are in question
(see Figure 1 for an overview).

As such it is possible to employ Salt as a higher level specification front-
end to be used with standard model checking or runtime verification tools that
otherwise would accept plain LTL formulae with a minimal set of operators as
input. As a matter of fact, the freely available Salt compiler1, which takes as
input a Salt specification and returns a temporal logic formula, already supports
the syntax of two powerful and commonly used model checking tools, namely
SMV [6] and SPIN [7], such that deployment should be relatively straightforward,
irrespective of the choice of verification tool.

The emphasis of this paper, however, is less on motivating the overall ap-
proach (which was already done in [1]), but rather to give an overview of the
main language features, and to demonstrate how it can be used to specify com-
plex temporal properties in a concise and accurate manner. Another important
objective, which did not play an important role in [1], is to deepen our under-
standing of the similarities between Salt and some closely related approaches,
in particular

– Dwyer et al.’s frequently cited specification patterns [8] which have become
part of the Bandera system used to model checking Java programs [9],

– the Property Specification Language (PSL [10,11]), which is also a high-level
temporal specification language, predominantly used for the specification
of integrated circuits, and recently standardised by the IEEE (IEEE-Std
1850TM–2005),

1 For details, see http://salt.in.tum.de/ and/or the authors’ homepages.
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As a matter of fact, parts of the design of Salt were directly influenced by
the features existent in these approaches, but the goal was not to create yet
another domain-specific tool, but a generic one which like LTL is more or less
application-agnostic.

For instance, Salt offers operators to express complex temporal scopes (e.g.,
by means of from, upto, between, etc.), which is one of the main features under-
lying the specification patterns. On the other hand, Salt also offers operators to
express so called exceptions (by means of accepton and rejecton), which sim-
ilarly appear in PSL. While Salt’s use of scopes exceeds the possibilities of the
specification patterns, in that they allow the nesting of scopes, Sec. 4 will show
that the exception operators in Salt are basically equivalent to those of PSL.

The rest of the paper is structured as follows. The next section is a guided
tour of the language itself and highlights its main features; as such this section
intersects most with work already presented in [1], except for the extended list of
practical examples. Sec. 3 provides details on the translation of Salt expressions
into LTL, i.e., semantics and implementation. In Sec. 4, we discuss in a more
detailed manner the differences and similarities of Salt and other languages,
in particular PSL and the Bandera input language, whereas in Sec. 5, we dis-
cuss complexity and experimental results of using Salt as a general purpose
specification language. Finally, Sec. 6 concludes the paper.

2 Feature Overview

A Salt specification contains one or many assertions that together formulate
the requirements associated with a system under scrutiny. Each assertion is
translated into a separate LTL/TLTL formula, which can then be used in, say,
a model checker or a runtime verification framework. Salt uses mainly textual
operators, so that the frequently used LTL formula �(p → ♦q) would be written
as

assert always (p implies eventually q).

Note that the assert keyword precedes all Salt specifications, except meta-
definitions such as macros.

The Salt language itself consists of the following three layers, each covering
different aspects of a specification:

– The propositional layer provides the atomic, Boolean propositions as well as
the well-known Boolean operators.

– The temporal layer encapsulates the main features of the Salt language
for specifying temporal system properties. The layer is divided into a future
fragment and a symmetrical past fragment.

– The timed layer adds real-time constraints to the language. It is equally
divided into a future and a past fragment, similar to the temporal layer.
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Within each layer, macros and parameterised expressions can be defined and
instantiated by iteration operators, enlarging the expressiveness of each layer
into the orthogonal dimension of functions.

As pointed out in the introduction, depending on which layers are used for
specification, the Salt compiler generates either LTL or TLTL formulae (resp.
with or without past operators). For instance, if only operators from the propo-
sitional layer are used, the resulting formulae are purely propositional formulae.
If only operators from the temporal and the propositional layer are used, the
resulting formulae are LTL formulae, whereas if the timed layer is used, the
resulting formulae are TLTL formulae.

2.1 Propositional Layer

Atomic propositions. Boolean propositions are the atomic elements from
which Salt expressions are built. They usually resemble variables, signals, or
complete expressions of the system under scrutiny. Salt is parameterised with
respect to the propositional layer: any term that evaluates to either true or false
can be used as atomic proposition. This allows, for example, propositions to be
Java expressions when used for runtime verification of Java programs, or, simple
bit-vectors when Salt is used as front end to verification tools like SMV [6].

Usually, every identifier that is used in the specification and that was not
defined as a macro or a formal parameter is treated as an atomic proposition,
which means that it appears in the output as it has been written in the speci-
fication. Additionally, arbitrary strings can be used as atomic propositions. For
example,

assert always "state!=ERROR"

is a valid Salt specification and results in the output (here, in SMV syntax)

LTLSPEC G state!=ERROR.

However, the Salt compiler can also be called with a customised parser provided
as a command line parameter, which is then used to perform additional checks
on the syntactic structure of the propositions thus, making the use of structured
propositions more reliable.

Boolean operators. The well-known set of Boolean operators ¬, ∧, ∨, → and
↔ can be used in Salt both as symbols (!, &, |, ->, <->), or as textual operators
(not, and, or, implies, equals). Additionally, the conditional operators if-then
and if-then-else, which have been already mentioned in the introduction, can
be used. They tend to make specifications easier to read, because if-then-else
constructs are familiar to programmers in almost any language. With the help
of conditional operators, the introductory example could be reformulated as

assert always (if p then eventually q).

More so, any such formula can be arbitrarily combined using the Boolean con-
nectives.
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2.2 Temporal Layer

The temporal layer consists of a future and a past fragment. Although past
operators do not add expressiveness [12], they can help to write formulae that
are easier to understand and more efficient for processing [13].

In the following, we concentrate on the future fragment of Salt. The past
fragment is, however, completely symmetrical. Salt’s future operators are trans-
lated using only LTL future operators, and past operators are translated using
only LTL past operators. This leaves users the complete freedom as to whether
they do or do not want to have past operators in the result. This is useful as
not all verification frameworks support both fragments. That said, it would be
likewise possible to extend the current compilation process of Salt: The plain
Salt compiler translates past operators into LTL with past operators. If the
specification should be used say for a verification tool that does not support
past operators, a further translation process may be started compiling past for-
mulas to equivalent, possibly non-elementary longer future formulas. If, on the
other hand, both future and past operators are supported, either output might
be used, depending on how efficiently past operators are supported.

Standard LTL operators. Naturally, Salt provides the common LTL oper-
ators U, W, R, �, ♦ and ◦, written as until, until weak, releases, always,
eventually, and next.

Extended operators. Salt provides a number of extended operators that help
express frequently used requirements.

– never. The never operator is dual to always and requires that a formula
never holds. While this could of course be easily expressed with the standard
LTL operators, using never can, again, help to make specifications easier to
understand.

– Extended until. Salt provides an extended version of the LTL U operator.
The users can specify whether they want it to be exclusive (i. e., in ϕ U ψ,
ϕ has to hold until the moment ψ occurs) or inclusive (i. e., ϕ has to hold
until and during the moment ψ occurs)2

They can also choose whether the end condition is required (i. e., must
eventually occur), weak (i. e., may or may not occur), or optional (i. e., the
expression is only considered if the end condition eventually occurs).

– Extended next. Instead of writing long chains of next operators, Salt users
can specify directly that they want a formula to hold at a certain step in the
future. It is also possible to use the extended next operator with an interval,
e. g., specifying that a formula has to hold at some time between 3 and 6
steps in the future. Note that this operator refers only to states at certain
positions in the sequence, not to real-time constraints.

2 This has nothing to do with strict or non-strict U: strictness refers to whether the
present state (i. e., the left end of the interval where ϕ is required to hold) is included
or not in the evaluation, while inclusive/exclusive defines whether ϕ has to hold in
the state where ψ occurs (i. e., the right end of the interval). Strict Salt operators
can be created by adding a preceding next-operator.
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Counting quantifiers. Salt provides two operators, occurring and holding,
that allow to specify that an event has to occur a certain number of times.
occurring deals with events that may last more than one step and are separated
by one or more steps in which the condition does not hold. holding considers
single steps in which a condition holds. Both operators can also be used with
an interval, e. g., expressing the fact that an event has to occur at most 2 times
in the future. To express this requirement manually in LTL, one would have to
write

¬p W (p W (¬p W (p W �¬p))).

The corresponding Salt specification is written concisely as

assert occurring[<=2] p.

Exceptions. Salt also includes exception operators, named rejecton and
accepton, which interrupt the evaluation of a formula upon occurrence of an
abort condition. rejecton evaluates a formula to false if the abort condition
occurs and the formula has not been accepted before. For example, monitoring
a formula ♦ϕ when there has been no occurrence of ϕ yet would evaluate to
false. The dual operator, accepton, evaluates a formula to true if it has not
been rejected before.

While exceptions do not add expressiveness to the language (i.e., untimed
Salt using exceptions is fully translatable to standard LTL), they can be very
useful, for example, when specifying a communication protocol that requires
certain messages to be sent, but allows to abort the communication at any time
by sending a reset message. This would be expressed in Salt as

assert (con_open and next (data until con_close))
accepton reset.

Exceptions also play an important role in the specification and verification of
hardware systems. This is why languages such as PSL or ForSpec, which are
used in this domain, both include this feature (see Sec. 4).

Scope operators. Many temporal specifications use requirements restricted to
a certain scope, i. e., they state that the requirement has to hold only before,
after, or between some events, and not on the whole sequence [8]. This can be
expressed in Salt using the operators upto (or before), from (or after) and
between.

Figure 2 illustrates scopes. It should be clear from the figure that it is manda-
tory in Salt to specify whether the delimiting events are part of the interval
(i. e., inclusive) or not (i. e., exclusive).

Furthermore, for scope operators it has to be stated whether the occurrence of
the delimiting events is strictly required. For example, the following specification

assert p
between inclusive optional call ,

inclusive optional answer
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Fig. 2. Scopes of upto, from and between

means that p has to hold within the interval delimited by call and answer,
provided such an interval exists. Without the keyword optional, such an interval
would be required and within this interval, p must occur.

While it is possible to implement a translation of the from operator into
LTL relatively straightforward (see Sec. 3), the upto operator proves to be more
difficult, as can be seen in the following example.

A specification always ϕ upto b expresses that ϕ must always hold until the
occurrence of the end condition b. A näıve translation into LTL would be ϕ W b.
This is in order for a purely propositional ϕ, but might be wrong when temporal
operators are used: Consider for example ϕ := p -> (eventually s) yielding
the formula (p → ♦s)Wb, intending to say “p should be followed by s before b”.
The sequence pbs is a model for the latter formula, although s occurs after the
end condition b, which clearly violates our intuitions. To meet our intuition, the
negated end condition b has to be inserted into the U and ◦ statements of ϕ in
various places, e. g., like this: (p → (¬b U (¬b ∧ s))) W b. Dwyer et al. describe
this procedure in the notes of their specification pattern system [8]. It is however
a tedious and highly error-prone task if undertaken manually.

Salt supports automatic translation by internally defining a stop operator.
Using stop, the above example can be formulated as ((p → ♦s) stop b)Wb
with stop b expressing that (p → ♦s) shall not take into account states after
the occurrence of b. It is then transformed into an LTL expression in a similar
way as the rejecton and accepton operators. Details can be found in Sec. 3.

Regular expressions. Regular expressions are well-known to many program-
mers. They provide a convenient way to express complex patterns of events, and
appear also in many specification languages (see Sec. 4). However, arbitrary reg-
ular languages can be defined using regular expressions, while LTL only allows
to define so-called star-free languages (cf. [14]). Thus, regular expressions have
to be restricted in Salt in order to stay translatable to standard LTL. The main
operators of Salt regular expressions (SREs) are concatenation (;), union (|)
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and Kleene-star operators (*), but no complement. The argument of a Kleene-
star operator is required to be a propositional formula. The advantage of this
operator set—in contrast to the usual operator set for star-free regular expres-
sions, which contains concatenation, union and complement—is that it can be
translated more efficiently into LTL.

Salt provides further SRE operators that do not increase the expressiveness,
but, arguably, make dealing with expressions more convenient for users. For ex-
ample, the overlapping sequence operator : states that one expression follows an-
other one, overlapping in one step. The ? and + operators (optional expression and
repetition at least once) are common extensions of regular expressions. Moreover,
there are a number of variations of the Kleene-star operator such as *[=n] to ex-
press how many steps from now the argument has to consecutively hold, *[>n]
(resp. *[>n]) to express a minimum (resp. maximum) bound on the consecutive
occurrence of the argument, *[n..m] to express an exact bound, etc. All these op-
erators, however, have to adhere to the same restriction as the standard Kleene-
star operator; that is, their argument needs to be a propositional formula.

While traditional regular expressions match only finite sequences, a Salt
regular expression holds on an (infinite) sequence if it matches a finite prefix of
the sequence.

Finally, with the help of regular expressions, we can rewrite the example using
exception operators as

assert /con_open; data*; con_close/ accepton reset.

2.3 Timed Layer

Salt contains a timed extension that allows the specification of real-time con-
straints. Timed operators are translated into TLTL [3,4], a timed variant of
LTL.

Timing constraints in Salt are expressed using the modifier timed[∼], which
can be used together with several untimed Salt operators in order to turn them
into timed operators. ∼ is one of <, <=, =, >=, > for next timed and either < or
<= for all other timed operators.

– next timed[∼ c]ϕ
states that the next occurrence of ϕ is within the time bounds ∼ c. This
corresponds to the operator �∼cϕ in TLTL.

– ϕ until timed[∼ c] ψ
states that ϕ is true until the next occurrence of ψ, and that this occurrence
of ψ is within the time bounds ∼ c. The extended variants of until can be
used as timed operators as well.

– always timed[∼ c] ϕ
states that ϕ must always be true within the time bounds ∼ c.

– never timed[∼ c] ϕ
states that ϕ must never be true within the time bounds ∼ c.

– eventually timed[∼ c] ϕ
states that ϕ must be true at some point within the time bounds ∼ c.
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2.4 Macros and Parameterised Expressions

Salt allows user-defined sub-expressions as macros and to parameterise macros
and sub-expressions. Macro definitions do not begin with the assert keyword.
They can be called in the same way as built-in Salt operators. Within cer-
tain limits, this allows the user to extend the Salt language using their own
operators. For example, the following macro is called in infix notation:

define respondsto(x, y) := y implies eventually x
assert always (reply respondsto request)

Iteration operators allow to instantiate a parameterised sub-expression or macro
with a list of values provided by the user. For example, the following specification
states that either a or !b or c must hold forever.

assert someof list [a, !b, c] as i in always i

Parameters defined in a macro or an iteration expression can also be used to
parameterise Boolean variables, as in the following example, which states that
exactly one of the four variables, state_1, state_2, state_3 and state_4, must
be true.

assert exactlyoneof enumerate[1..4] as i in state_$i$

Macros can help to make a specification easier to understand, because compli-
cated sub-expressions can be transparently hidden from the user, and accessed
via an intuitive name that explains what the expression actually stands for.
Sub-expressions that are used several times have to be written down only once.

2.5 Further Examples

In this section, a concluding look at some more Salt specifications is taken, and
their corresponding LTL versions examined. The examples are mostly borrowed
from the survey presented in [8], except where indicated otherwise. Note that
propositions appearing in the specifications are not necessarily marked as such
and are denoted in plain text only, indicating their intuitive meaning wrt. the
respective application.

1. The requirement that a system should operate until a queue of jobs is either
empty, or an abort signal issued can be formulated in LTL as

¬((¬(queuelength == 0 ∨ abort)) U
(¬working ∧ (¬(queuelength == 0 ∨ abort)))).

The accompanying Salt specification would be:

assert working until weak
("queuelength == 0" | abort),

where abort is a proposition, and not the abort operator.
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2. To specify idle behaviour, the following LTL specification could be used:

�(¬return Execute ∨ (return Execute ∧ ((♦call Execute)⇒
(¬(¬call Execute U (call doWork ∧ ¬call Execute)))))).

It asserts that between the moment in which an execution completes, and
before a new one begins, there is no work done. In Salt, this example would
be written as:

assert always
(never call_doWork

between inclusive optional return_Execute ,
exclusive optional call_Execute).

3. Coming back to an example from the area of protocol specification, one
might assert that an answer was immediately preceded by a request. In LTL
this would be written as:

�(answer ⇒ (◦request)).

Using a macro, in Salt, precedes can be expressed as follows:

define precedes(x, y) := if y then once x
assert always (request precedes answer).

4. A system with n input channels, may be using at most one at a time. Given
that n = 4, this simple requirement would require

�(((in 0 ∧ (¬(in 1 ∨ (in 2 ∨ in 3))))∨
((in 1 ∧ (¬(in 0 ∨ (in 2 ∨ in 3))))∨

((in 2 ∧ (¬(in 0 ∨ (in 1 ∨ in 3))))∨
(in 3 ∧ (¬(in 0 ∨ (in 1 ∨ in 2)))))))∨

(¬(in 0 ∨ (in 1 ∨ (in 2 ∨ in 3)))))

if specified in LTL. The shorter Salt specification appears to be less error-
prone and more readable:

assert always
(exactlyoneof enumerate [0..3] as i in in_i) |
(noneof enumerate [0..3] as i in in_i).

5. To show that regular expressions can be very useful for specification pur-
poses, in the following it is expressed that a connection signal is eventually
answered by an acknowledgement, followed by at least four data packets and
a close signal. Again, this is first examined in LTL:

�(connection⇒

(♦(answer ∧ (◦(data U (data∧

(◦(data ∧ (◦(data ∧ (◦(data ∧ (◦ close))))))))))))).
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Now, consider the Salt counterpart using a regular expression:

assert always
(if connection then

eventually /answer; data*[ >=4]; close/)

6. Consider an elevator: A possible requirement could be that between the time
an elevator is called at a floor and the time it opens its doors at that floor,
the elevator can arrive at that floor at most twice. In Salt, this can be
specified as:

assert always
(occurring[<=2] atfloor
between inclusive optional call , exclusive

optional open)

7. This section is now concluded by extending this example further and thus,
showing most of Salt’s features in one use-case. The following specification
describes the following behaviour: On all three floors in a building, calling
the elevator at floor i implies that it may pass at most two times at that
floor without opening its doors, and that it must finally open its doors at
that floor within 60 seconds.

define max_twice_at_floor_before_open (i) :=
always (occurring[<=2] atfloor_$i$

between inclusive optional call_$i$ ,
exclusive optional open_$i$)

define max_60s_before_open(i) :=
always (call_$i$ implies

eventually timed [ <=60.0] open_$i$)

assert allof enumerate[1..3] as floor in
max_twice_at_floor_before_open (floor)

and max_60s_before_open(floor)

The modifiers optional in the between-statement make sure that atfloor_i
is only checked provided call_i occurs.

Note that the equality between the LTL specifications in the above examples
and their Salt counterparts, was established using the model checker SMV. For
this purpose the Salt specifications were first compiled into plain LTL using
the Salt compiler and then compared with the manually written requirements.

3 Semantics

Salt comes with a precisely defined semantics. It can be translated into either
LTL or TLTL; the latter only when timed operators are used in a specifica-
tion. Therefore, we define the semantics of Salt’s operators by means of their
corresponding LTL or respectively TLTL formulae.
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More precisely, we define a translation function T to translate a valid Salt
specification ψ into a temporal logic formula T (ψ), and define that an infinite
word w over a finite alphabet of actions satisfies ψ iff w |= T (ψ) (using the
standard satisfaction relation |= defined for LTL/TLTL [15]).

For brevity, we exemplify the translation on a few selected operators only
and refer to the extensive language reference and manual available from Salt’s
homepage at http://salt.in.tum.de/ for the remaining cases.

In what follows, let ψ, ϕ, and ϕ′ denote Salt specifications. Many of Salt’s
operators can be considered as simple syntactic sugaring and are easily translated
to LTL. For example, T (ϕ or ϕ′)) is translated inductively to T (ϕ)∨T (ϕ′). The
aforementioned accepton operator, which adds an exception to a specification
is inductively defined as follows:

T (b accepton a) = b ∨ a

T ((¬ϕ) accepton a) = ¬T (ϕ rejecton a)

T ((ϕ ∧ ψ) accepton a) = T (ϕ accepton a) ∧ T (ψ accepton a)

T ((ϕ ∨ ψ) accepton a) = T (ϕ accepton a) ∨ T (ψ accepton a)

T ((ϕ U ψ) accepton a) = T (ϕ accepton a) U T (ψ accepton a)

T ((◦ϕ) accepton a) = (◦T (ϕ accepton a)) ∨ a

T ((�ϕ) accepton a) = ¬(¬a U ¬T (ϕ accepton a))

T ((♦ϕ) accepton a) = ♦T (ϕ accepton a),

Whereas the rejecton operator, which is used in the above definition, is given
in terms of:

T (b rejecton r) = b ∧ ¬r

T ((¬ϕ) rejecton r) = ¬T (ϕ accepton r)

T ((ϕ ∧ ψ) rejecton r) = T (ϕ rejecton r) ∧ T (ψ rejecton r)

T ((ϕ ∨ ψ) rejecton r) = T (ϕ rejecton r) ∨ T (ψ rejecton r)

T ((ϕ U ψ) rejecton r) = T (ϕ rejecton r) U T (ψ rejecton r)

T ((◦ϕ) rejecton r) = (◦T (ϕ rejecton r)) ∧ ¬r

T ((�ϕ) rejecton r) = �T (ϕ rejecton r)

T ((♦ϕ) rejecton a) = ¬r U T (ϕ rejecton r).

However, not all Salt operators translate in such a straightforward inductive
manner, since their translation depends on what is defined by the according sub-
formulae occurring in a given expression. To guide the translation process for
such operators, we have introduced an artificial or helper operator, stop, which
is inductively defined as follows:
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T (b stopexcl s) = b

T ((¬ϕ) stopexcl s) = ¬T (ϕ stopexcl s)

T ((ϕ ∧ ψ) stopexcl s) = T (ϕ stopexcl s) ∧ T (ψ stopexcl s)

T ((ϕ ∨ ψ) stopexcl s) = T (ϕ stopexcl s) ∨ T (ψ stopexcl s)

T ((ϕ U ψ) stopexcl s) = (¬s ∧ T (ϕ stopexcl s)) U (¬s ∧ T (ψ stopexcl s))

T ((ϕ W ψ) stopexcl s) = T (ϕ stopexcl s) W (s ∨ T (ψ stopexcl s))

T ((◦ϕ) stopexcl s) = ◦(¬s ∧ T (ϕ stopexcl s))

T ((◦W ϕ) stopexcl s) = ◦(s ∨ T (ϕ stopexcl s))

T ((�ϕ) stopexcl s) = T (ϕ stopexcl s) W s

T ((♦ϕ) stopexcl s) = (¬s) U (¬s ∧ T (ϕ stopexcl s))

where b denotes an atomic proposition from the action alphabet and s an arbi-
trary formula, possibly atomic also.

Thus, stop selects certain aspects of a formula, and in ψ ≡ ϕ1 stop ϕ2,
intuitively asserts that the validity of ψ does not depend on events occurring
after ϕ2 has occurred. Again, for brevity, we consider only the exclusive variant of
stop and only for the future fragment of Salt. The past fragment and inclusive
semantics, however, are each symmetrical.

The more complicated scope operator upto, which was discussed earlier in
Sec. 2.2, and whose translation depends on stop, is then defined as:

T (ϕ upto excl req b) =
if T (ϕ) = �ψ: (ψ stopexcl b) U b
if T (ϕ) = ¬♦ψ: (¬ψ stopexcl b) U b
else: (♦b) ∧ (T (ϕ) stopexcl b)

T (ϕ upto excl opt b) =
if T (ϕ) = ♦ψ: ¬((¬ψ stopexcl b) U b)
else: (♦b) → (T (ϕ) stopexcl b)

T (ϕ upto excl weak b) = (T (ϕ) stopexcl b)

T (req ϕ upto excl req b) =
if T (ϕ) = �ψ: ¬b ∧ ((ψ stopexcl b) U b)
if T (ϕ) = ¬♦ψ: ¬b ∧ ((¬ψ stopexcl b) U b)
else: (♦b) ∧ ¬b ∧ (T (ϕ) stopexcl b)

T (req ϕ upto excl opt b) =
if T (ϕ) = ♦ψ: ¬((¬ψ stopexcl b) U b)
else: (♦b) → (¬b ∧ (T (ϕ) stopexcl b))
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T (req ϕ upto excl weak b) = ¬b ∧ (T (ϕ) stopexcl b)

T (weak ϕ upto excl req b) =
if T (ϕ) = �ψ: (ψ stopexcl b) U b
if T (ϕ) = ¬♦ψ: (¬ψ stopexcl b) U b
else: (♦b) ∧ (b ∨ (T (ϕ) stopexcl b))

T (weak ϕ upto excl opt b) =
if T (ϕ) = ♦ψ: b ∨ ¬((¬ψ stopexcl b) U b)
else: (♦b) → (b ∨ (T (ϕ) stopexcl b))

T (weak ϕ upto excl weak b) = b ∨ (T (ϕ) stopexcl b)

T (ϕ upto incl req b) = (♦b) ∧ (T (ϕ) stopincl b)

T (ϕ upto incl opt b) = (♦b) → (T (ϕ) stopincl b)

T (ϕ upto incl weak b) =
if T (ϕ) = �ψ: ¬(¬b U ¬(ψ stopincl b))
if T (ϕ) = ¬♦ψ: ¬(¬b U (ψ stopincl b))
else: (T (ϕ) stopincl b)

where, of course, stopexcl and stopincl are references to the exclusive and
inclusive variants of stop, respectively.

Similar translation schemes are defined for the remaining operators’ semantics,
which are detailed in the Salt language reference and manual.

4 Comparison with Existing Approaches

As already mentioned in the introduction, the design of Salt is influenced by a
number of existing (domain-specific) specification languages, in particular PSL
and specification patterns. In order to see the differences between these ap-
proaches and Salt, besides their domain-specifitivity, we go again through the
main list of Salt features and discuss similarities and differences between the
approaches.

4.1 Overview

Like Salt, the Property Specification Language PSL [11] is a high level specifi-
cation language, but predominantly used in the area of integrated circuit design.
The initial version of PSL, which underwent standardisation by the IEEE, be-
came available in March 2003, whereas the latest version, version 1.1, became
available in April 2004. The PSL standard incorporates concepts and ideas of var-
ious other specification languages, such as ForSpec, which has been developed at
Intel and been donated to Accellera in order to facilitate the then ongoing stan-
dardisation efforts (cf. [16]). PSL also comprises different layers, (i) a Boolean,
(ii) temporal, (iii) verification, and (iv) modelling layer. The Boolean layer is
much like Salt’s propositional layer, and available in different flavours, depend-
ing on the concrete application domain; for instance, there exists a VHDL flavour
which means that Boolean connectives follow roughly the same syntax used in
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VHDL, which is a standard hardware specification language and simulation en-
vironment (cf. [17]). The temporal layer, in turn, is divided into two separate
languages: the foundation language and the optional branching extension, with
the main difference being that the former employs a linear model of time, and
the latter a branching one. Therefore, in the following comparison with Salt, we
focus mainly on the foundation language, although some features are the same
for both languages. The foundation language, basically, consists of

– the usual Boolean connectives,
– future-time LTL operators,
– clocking operators,
– Sequential Extended Regular Expressions (SEREs), as well as
– an abort operator to model exceptions.

The verification layer consists of directives which describe how the temporal
properties should be used by verification tools. Unlike Salt, the assert keyword
is part of the verification layer, and not inherent to all specifications alike. Instead
of assert it is also possible to assume that a specification holds, or to check
if certain parts of a trace are covered by an SERE. As such, the verification
layer instructs an employed verification tool how to treat the specification. Note
that Salt specifications, basically, always use assert, except to define macros.
Finally, the modelling layer of PSL is used to introduce domain-specific modelling
constructs, e.g., in a VHDL-flavour or other hardware description language, to
model directly the behaviour of hardware designs, and therefore augment what
is possible using PSL alone. For example, it can be used to calculate an expected
value of an output or use custom data structures, but then typically exceeding
what is expressible using ω-regular languages alone. In fact, there exists currently
no accepted formal semantics for PSL’s modelling layer (cf. [18]). However, when
augmented models are merely used for simulation, e.g., to compare the observed
behaviour with a specified one (runtime verification), then such formal properties
of the system are of no concern as a runtime verification toolkit would not care
how a trace has been generated. Salt, on the other hand, aiming to be used as
a general specification front-end, rather than a system modelling tool does not
currently offer the integration of third-party languages as a means of extension.

Like PSL, the Bandera system [19,20] is also a domain-specific tool, in that
it targets the Java language as platform to perform software model checking
on. Dwyer et al.’s specification patterns [8] have been adopted by the Bandera
Specification Language (BSL), which has a compiler to translate high-level speci-
fications to LTL. Basically, Dwyer et al. analysed ca. 600 real-world specifications
in order to identify common patterns among them [8]. These patterns were then
formalised, and formed the foundation of their well-known specification patterns.
Conceptually, specification patterns are similar to design patterns in software en-
gineering [21]; that is, a pattern provides a solution to a recurring problem, often
including notes about its advantages, drawbacks, and alternatives. As such it en-
ables inexperienced users to reuse expert knowledge. The specification patterns
themselves consist of requirements, such as “absence” (i. e., a condition is false)
or “response” (i. e., an event triggers another one), that can be expressed under
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different scopes, like “globally”, “before an event r”, “after an event q”, or “be-
tween two events r and q”. Similarly to PSL and Salt, BSL consists of layers:
the assertion property specification layer allows developers to define constraints
on program contexts, whereas the temporal property specification layer provides
support for temporal properties.

4.2 A Comparison of Features

In what follows, we go through a list of core features of the Salt language, as
presented in Sec. 2, and discuss how the other specification languages mentioned
above realise them, if at all. Since this discussion is guided by the features existing
in Salt, it is not meant to distill a single best approach, but rather to show
where the similarities and the differences are between all three languages. An
objective comparison is also difficult because BSL and PSL each are optimised
for a different purpose, namely hardware design/verification and software model
checking.

Extended operators. Salt’s extended operators aim at providing a richer set
of LTL-like primitives, e.g., such as never as opposed to the frequently used
LTL-operator always. PSL also has the never operator and its own equivalent
operators to Salt’s different versions of the next and until operators. BSL, on
the other hand, discourages the use of low-level LTL primitives in favour of high-
level patterns and scopes. Hence it does not provide these operators although it
is easy to express them in terms of the standard LTL operators.

Scopes. Scopes have been identified by Dwyer et al. as an important issue in
the specification pattern system. However, their pattern system is restricted to
predefined requirements. That is, it does not allow nested scopes, and by default
only certain combinations of inclusive/exclusive and required/optional delim-
iters. Some—but by far not all—scopes can also be expressed in PSL using the
next event and different variants of before operators. Salt’s distinguishing
feature here is that scope operators can be used with arbitrary formulae, even
with nested scope operators as in the following example:

assert weak e between inclusive optional
(eventually (required a before exclusive required b)

from exclusive optional c),
exclusive required d

Here, the outer-most scope is a between, which uses a from scope which, in turn,
uses a before scope as one of its arguments. Admittedly, the example is hard to
read and rather artificial, but it does highlight this particular feature of Salt
in a very obvious manner.

Exceptions. Interestingly one of the main changes between versions 1.0 and
1.1 of PSL, besides precedence ordering, is the treatment of PSL’s abort oper-
ator, and whose Salt counterpart are the operators accepton and rejecton.
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The reason for this change is described in [22]. In this paper, Armoni et al. de-
scribe their discovery that the original definition of the abort operator would
cause, in the worst-case, a non-elementary blow-up when translating a specifi-
cation into an alternating Büchi automaton. In essence, this meant that PSL,
as it was defined in version 1.0, could render subsequent formal verification an
unnecessarily difficult if not impossible task, as the performance of most such
tools, which use temporal specifications, directly depends on the size of the re-
sulting automata representations. This problem has been addressed by basically
adopting the semantics of a similar language wrt. this operator, called ForSpec
[23], and which has been mainly developed at Intel and donated to Accellera in
2003. ForSpec also offers exception operators, called accept and reject, and
specifications are translatable into a logic termed Reset-LTL in [22]. Although
Reset-LTL contains two additional operators when compared to Pnueli’s LTL,
the two languages are actually equally expressive [22]. At this stage we only give
an intuitive semantics of Reset-LTL, and refer the reader to the Appendix for a
formal account.

An infinite word w at position i over some alphabet is said to satisfy a Reset-
LTL formula, ϕ, if 〈wi, false, false〉 |= ϕ holds. But unlike in standard LTL, this
satisfaction relation is not only defined between an infinite word and a formula,
but also between two additional Boolean formulae, which capture the exception
conditions for the accept and reject operators, respectively. Let us refer to the
former by a and the latter by r. Initially, when evaluating a formula, false and
false are used for a and r, and the definition of the semantics (see Appendix)
ensures that during evaluation, it is not possible for a and r to be true at the
same time. That is, in some relation 〈wi, a, r〉 |= ϕ, if a is satisfied in state wi

then the entire word wi is a model, irrespective of whether or not ϕ is satisfied by
wi using the standard LTL semantics. On the other hand, if r is satisfied, then
wi is not a model, irrespective of whether or not ϕ is satisfied using standard
LTL semantics. As such a and r are, indeed, exception conditions, and set to
a value other than false by the definition of the accept and reject operators
above. What is interesting to note is that Salt’s exception operators accepton
and rejecton are, in fact, compatible with Reset-LTL’s exception operators in
the following sense.

Theorem 1. The following relationship holds between the Reset-LTL operators
abort and reject and the Salt operators accepton and rejecton:

〈wi, false, false〉 |= accept e in φ if and only if wi |= φ accepton e,

and

〈wi, false, false〉 |= reject e in φ if and only if wi |= φ rejecton e.

Again, for a formal proof of this statement, see the Appendix.
Note also that although PSL adheres to Reset-LTL semantics with respect to

the two exception operators, it has adopted its own keyword (abort) and, unlike
Salt’s exception operators which are defined in a mutually recursive manner in
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Sec. 3, uses a direct definition, expressed in terms of two “helper” symbols, �
and ⊥, instead of the two Boolean context formulae as in Reset-LTL. These
helper symbols are not part of the underlying alphabet. Basically, the symbol �
is such that everything holds on it, including false, and ⊥ is such that nothing
holds on it, including true. As the two semantic definitions for the exception
operators are expressively equivalent, we abstain from giving further details at
this point, but the interested reader may refer to [22,24] and [10, §B2.1.1.2].

Regular expressions. As pointed out in Sec. 2, Salt supports a subset of
regular expressions, which is translatable to LTL. Note that as is the case with
PSL, Salt regular expressions (SREs) do not offer complementation as an oper-
ator. The reason being not to restrict expressiveness, but the fact that arbitrary
use of complementation in a specification can lead to exponentially larger LTL
formulae in the translation. It is, however, possible to negate the language an
expression defines by using not as can be seen in the example already employed
in Sec. 2:

assert not /con_open; data*; con_close/
accepton reset

As SEREs form a superset of SREs (modulo a different semantics, e.g., SEREs
are typically enclosed by brackets instead of slashes), the above is also a valid PSL
expression. Salt basically supports the same repetition operators as SEREs do,
but with further restrictions on their arguments to not allow specifications that
would otherwise exceed the expressiveness of star-free languages, and thus LTL:

– The argument of *, *[>n], *[>=n] and + has to be a propositional formula.
– All expressions except for the last in an SRE must be either Boolean propo-

sitions, or they must be other SRE combined by |. No other Boolean con-
nectives are allowed for the combination of SRE (although they can be used
to form propositional expressions).

– The last element in an SRE may be any Salt expression, however, because
of operator precedences it may be necessary to surround it with parentheses.

Other operators, like the overlapping sequence operator (“:”) are also inspired
from SEREs, and its semantics defined accordingly.

To the best of our knowledge, BSL does not currently offer any kind of support
for regular expressions.

Real-time support. As also pointed out in Sec. 2, Salt has dedicated support
for real-time specifications, in that temporal operators can be enriched with dis-
crete timeouts as is shown in the last example in Sec. 2.5. Recall that all speci-
fications employing real-time directives are translated into TLTL, and although
the timing constraints that appear in a Salt specification can only be discrete,
TLTL’s underlying model of time is continuous [4]. TLTL basically enriches stan-
dard LTL with two operators, each accepting a discrete value as argument: one
operator is used to express when a proposition was true in the past, and the other
one to express when it will be true in the future. Based on these operators, it is
easy to derive time-bounded variants of the typical LTL modalities.
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Neither PSL nor BSL currently offer real-time support in the above sense.
However, PSL supports clocked expressions using the “@” operator, which can
be appended to unclocked expressions, similarly as time-bounds in Salt can
be appended to untimed expressions. Clocks, however, are not used to model
real-time, but to match (parts of) expressions with different parts of the clock
cycles of the hardware system under scrutiny. For example, @rose defines that
something has to hold on a rising edge, @negedge on a negative edge, and so on.
As such, PSL adopts a hardware designer’s point of view. Salt on the other hand
adopts, more or less, a purely behavioural point of view, in that the intention
is not to let users model the actual implementation of an event-driven real-time
system, but its abstract behaviour. Arguably, a continuous model of time, as is
offered by TLTL and discrete time-outs, are an adequate language to achieve
this goal.

Macros and parameterised expressions. In comparison to Salt, PSL’s
macro definition capabilities are more akin to C or C++’s preprocessor. PSL
defines the well-known directives for #define, #ifdef, #undef, etc. which behave
in the expected way. In addition it offers two less common directives, %for and
%if, whose semantics can be explained as follows. The %for directive replicates
something a number of times. The syntax is as follows:

// using a range
%for var in expr1 .. expr2 do
...
%end
// using a list
%for var in { item1 , item2 , ... , itemN } do
...
%end

where var is an identifier, expr1 and expr2 are statically computable expres-
sions, and item1, item2 etc. are either a number or a simple identifier. In the first
case the text inside the %for...%end pairs will be replicated expr2− expr1 + 1
times (assuming that expr2 ≥ expr1). In the second case the text will be repli-
cated according to the number of items in the list (cf. [11, §8.5]). The following
PSL macro definition using %for

%for ii in 0..3 do
assign aa[ii] = ii > 2;
%end

is therefore equivalent to this slightly longer piece of PSL code:

assign aa[0] = 0 > 2;
assign aa[1] = 1 > 2;
assign aa[2] = 2 > 2;
assign aa[3] = 3 > 2;

As such, the %for directive is PSL’s counterpart to Salt’s enumeration operator,
whereas %if is similar to the #ifdef construct known from C/C++. However
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Table 1. Comparison of Salt language features with those of other specification lan-
guages

Ext. ops Scopes Exceptions Reg. exp. Real-time Macros Iterators
Salt � � � �� � � �
PSL � �� � � � � �
BSL � � � � � �� �

%if must be preferred over #ifdef when the condition refers to variables defined
in an encapsulating %for. For further details, refer to [11,10].

While BSL doesn’t directly support macros in the above sense, it has a rich and
powerful assertion language as well as predicate definition sublanguage. While
neither offers an if-then-else construct, the assertion language lets users define
assertions of the form of C’s conditional operator “:”, which is also part of
C++, Java, and other languages, e.g., as in a? b : c, which is equivalent to
if a then b else c. Also, assertions in BSL define static properties, in that
they are Boolean conditions which can be checked at certain control-flow points
throughout the execution of a Java program, such as method entry and return.
However, Salt’s parameterised expressions (and as such PSL’s %for operator)
have a match in BSL. Consider, for example, the following excerpt from a spec-
ification given in [19]:

FullToNonFull: forall[b:BoundedBuffer].
{Full(b)} leads to {!Full(b)} globally

which is translated into a parameterised specification, which during verification
is instantiated accordingly by all objects of type BoundedBuffer:

�(Full(b)→ ◦(¬Full(b))).

Obviously, this form of parameterisation using type information is geared to-
wards the verification of Java programs.

Summary. As an overview, we present a brief summary of our findings in the
form of a table in Table 1.

4.3 Further Related Work

EAGLE [25], is a temporal logic with a small but flexible set of primitives. The
logic is based on recursive parameterised equations with fix-point semantics and
merely three temporal operators: next-time, previous-time, and concatenation.
Using these primitives, one can construct the operators known from various
other formalisms, such as LTL or regular expressions. While EAGLE allows the
specification of real-time constraints, it lacks most high level constructs such as
nested scopes, exceptions, counting quantifiers currently present in Salt.

Duration calculus [26] and similar interval temporal logics overcome some of
the limitations of LTL that we mentioned. These logics can naturally encode past
operators, scoping, regular expressions, and counting. However, it is unclear how
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to translate specifications in these frameworks to LTL such that standard model
checking and runtime verification tools based on LTL can be employed.

Notably, [27] describes a symmetric approach by providing a more low-level
and formal framework in which the various different aspects of different tem-
poral logics can be expressed. The observational mu-calculus is introduced as
an “assembly language” for various extensions of temporal logic. In a follow-up
paper [28], first results from an integration of the observational mu-calculus into
the Object Constraint Language (OCL), which also forms part of the UML are
described. However, the goal of this work was not to provide a more rich and
natural syntax, but rather a sufficient set of temporal operators.

5 Realisation and Results

Specification languages like Salt, PSL, BSL, etc. aim at offering as many con-
venience operators to users as possible, in order to make the specifications more
concise, thus readable, and the task of specification ultimately less error-prone.
However, increased conciseness often comes at a price, namely that the com-
plexity of these formalisms increases. Although, to the best of our knowledge,
there does not exist a complexity result for PSL’s satisfiability problem, there
exist results for LTL and specific SERE features: While LTL is known to be
PSpace-complete, it turns out that adding even just a single operator of the
ones offered by SEREs makes the satisfiability problem at least ExpSpace hard
[29]. On the other hand in [22] it is noted, that Reset-LTL, which we have used
to express PSL’s exception operators in Sec. 4 is only PSpace-complete. As,
due to Theorem 1 we can easily create a Reset-LTL formula for every untimed
Salt specification that uses only the LTL operators, extended operators, and
exceptions, it follows that this fragment is also in PSpace. In fact, due to the
PSpace-completeness of LTL, it follows that this fragment is PSpace-complete.

The situation is different when we consider the complete untimed fragment
of Salt. In particular, it contains a variant of the ◦-operator, as in nextn[n]ϕ,
which states that ϕ is required to hold n steps from now in the future. It was
pointed out in [30], that the succinctness gains of this operator alone push the
complexity of a logic up by one exponent as the formula nextn[2n] is only
of length O(n). This is the same argument used in [23] to explain ExpSpace-
hardness of FTL, the logic underlying ForSpec. We thus get:

Theorem 2. The untimed Salt fragment consisting of LTL-, extended-, and
abort-operators is PSpace-complete. By adding the nextn operator, one obtains
an ExpSpace-complete fragment.

Note that we currently have no similar result for full Salt as it would require
analysing many more features than the ones above. In fact, to the best of our
knowledge, there does not exist a similar result for PSL, despite the fragments
considered in [29], presumably for the same reason.
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5.1 Experimental Results

We have implemented our concepts in terms of a compiler for the Salt lan-
guage. The compiler front end is currently implemented in Java, while its back
end, which also optimises specifications for size, is realised via the functional pro-
gramming language Haskell. Basically, the compiler’s input is a Salt specifica-
tion and its output a temporal logic formula. Like with programming languages,
compilation of Salt is done in several stages. First, user-defined macros, count-
ing quantifiers and iteration operators are expanded to expressions using only a
core set of Salt operators. Then, the Salt operators are replaced by expres-
sions in the subset Salt--, which contains the full expressiveness of LTL/TLTL
as well as exception handling and stop operators. The translation from Salt--
into LTL/TLTL is treated as a separate step since it requires weaving the abort
conditions into the whole subexpression. The result is an LTL/TLTL formula
in form of an abstract syntax tree that is transformed easily into concrete syn-
tax via a so-called printing function. Currently, we provide printing functions
for SMV [6] and SPIN [7] syntax, but the users can easily provide additional
printing functions to support their tool of choice. The use of optimised, context-
dependent translation patterns as well as a final optimisation step performing
local changes also help reducing the size of the generated formulae.

As the time required for model checking depends exponentially on the size
of the formula to check, efficiency was an important issue for the development
of Salt and its compiler. Because of the arguments presented in the discussion
above, one might suspect that generated formulae are necessarily bigger and less
efficient to check than handwritten ones. But our experiments show that the
compiler is doing a good job of avoiding this worst-case scenario in practice.

In order to quantify the efficiency of the Salt compiler, existing LTL formulae
were compared to the formulae generated by the compiler from a corresponding
Salt specification. This was done for two data sets: the specification pattern
system [8] (50 specifications) and a collection of real-world example specifica-
tions, mostly from the Dwyer’s et al.’s survey data [8] (26 specifications). The
increase or decrease of the formula was measured using the following parameters:

BA [Fri]: Number of states of the Büchi automaton (BA) generated using the
algorithm proposed by Fritz [31], which is one of the best currently known.
This is probably the most significant parameter, as a BA is usually used for
model checking, and the duration of the verification process depends highly
on the size of this automaton.

BA [Odd]: Number of states of the BA generated using the algorithm proposed
by Oddoux [32].

U: Number of U, R, � and ♦ in the formula.
X: Number of ◦ in the formula.
Boolean: Number of Boolean leafs, i. e., variable references and constants. This

is a good parameter for estimating the length of the formula.

The results can be seen in Figure 3. The formulae generated by the Salt compiler
contain a greater number of Boolean leafs, but use less temporal operators and,
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Fig. 3. Size of generated formulae

therefore, also yield a smaller BA. The error markers in the figure indicate the
simple standard error of the mean.

Discussion. As it turned out, using Salt for writing specifications does not de-
prave model checking efficiency in practice. On the contrary, one can observe
that it often leads to more succinct formulae. The reason for this result is that
Salt performs a number of optimisations. For instance, when translating a for-
mula of the form ϕWψ, the compiler can choose between the two equivalent
expressions

¬(¬ψ U (¬ϕ ∧ ¬ψ)) and (ϕ U ψ) ∨�ϕ.

While the first expression duplicates ψ in the resulting formula, the second ex-
pression duplicates ϕ, and introduces a new temporal operator. In most cases,
the first expression, which is less intuitive for humans, yields better technical
results.

Another equivalence utilised by the compiler is: �(ϕ W ψ) ⇐⇒ �(ϕ ∨ ψ).
With ϕ W ψ being equivalent to (ϕ U ψ) ∨ �ϕ, the left hand side reads as
�((ϕ U ψ) ∨ �ϕ). When ϕ and ψ are propositions, this expression results in
a BA with four states (using the algorithm proposed by Fritz [31]). �(ϕ ∨ ψ),
however, is translated into a BA with only a single state.

Of course, the benefit obtained from using the Salt approach is of no principle
nature: The rewriting of LTL formulae could be done without having Salt as a
high-level language. What is more, given an LTL-to-BA translator that produces
a minimal BA for the language defined by a given formula, no optimisations on
the formula level would be required, and such a translation function exists—at
least theoretically3. Nevertheless, the high abstraction level realised by Salt
makes the mentioned optimisations easily possible, and produces BAs that are
smaller than without such optimisations—despite the fact that today’s LTL-to-
BA translators already perform many optimisations.

3 As the class of BAs is enumerable and language equivalence of two BAs decidable, it
is possible to enumerate the class of BAs ordered by size and take the first one that
is equivalent to the one to be minimised. Clearly, such an approach is not feasible
in practice—and feasible minimisation procedures are hard to achieve.
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6 Conclusions

In this tutorial paper we gave an overview and a practical introduction to Salt,
a high-level extensible specification and assertion language for temporal logic.
We not only gave an overview over its core features, but also a detailed compar-
ison with related approaches, in particular PSL and the Bandera input language
BSL, as well as provided practical examples and results concerning the complex-
ity of Salt. Our experimental results show that the higher level of abstraction,
offered by Salt when compared to normal LTL, does not practically result in
an efficiency penalty, as compiled specifications are often considerably smaller
than manually written ones. This is somewhat in contrast with our more theo-
retical considerations, in that the satisfiability problem of Salt specifications,
depending on which features are used, can be exponentially harder than that of
LTL. However, the experiments show that this exponential gap does not show
up in many practical examples, and that our compiler, on the contrary, is able
to optimise formulae to result in smaller automata.

Our feature comparison between Salt, PSL, and the Bandera input language
BSL shows that Salt incorporates many of the features present in these domain-
specific languages, while still being fully translatable to standard temporal logic.
However, one could argue that this is also a shortcoming of Salt, in that it is
not possible to express the full fragment of ω-regular languages as can be done in
other approaches, but then of course not being able to map all specifications to
LTL formulae any longer. This fact could be compensated for by adding a direct
translation of Salt into automata as is suggested, for example, in [33], which
introduces a regular form of LTL, i.e., expressively complete wrt. ω-regular lan-
guages. Moreover, the feature comparison does not show a clear “winner” among
specification languages, since they have been designed for different purposes. In
fact, Salt could be used in combination with other approaches, such as BSL
where it would be possible to use the output of the Salt compiler, i.e., standard
LTL formulae, as input to BSL’s temporal property specification layer, which
offers support for LTL specifications.

Salt as presented in this tutorial paper is ready to use and we invite the reader
to explore it via an interactive web interface at http://salt.in.tum.de/, or to
download the compiler from the same location.
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A Proofs

In this appendix, we summarise the formal semantics of Reset-LTL [22] and give
a detailed proof of Theorem 1.

Definition 1 (Reset-LTL). Let Σ := 2AP be a finite alphabet made up of
propositions in the set AP , w ∈ Σω an infinite word, and a, r be two Boolean
formulae over AP , then

– 〈wi, a, r〉 |= p if wi |= a ∨ (p ∧ ¬r),
– 〈wi, a, r〉 |= ¬ϕ if 〈wi, r, a〉 �|= ¬ϕ

– 〈wi, a, r〉 |= ϕ ∨ ψ if 〈wi, a, r〉 |= ϕ or 〈wi, a, r〉 |= ψ

– 〈wi, a, r〉 |= ◦ϕ if wi |= a or 〈wi+1, a, r〉 |= ϕ and wi �|= r,
– 〈wi, a, r〉 |= ϕUψ if ∃k ≥ i. 〈wk, a, r〉 |= ψ ∧ ∀i ≤ l < k. 〈wl, a, r〉 |= ϕ,
– 〈wi, a, r〉 |= accept e in ϕ if 〈wi, a ∨ (e ∧ ¬r), r〉 |= ϕ,
– 〈wi, a, r〉 |= reject e in ϕ if 〈wi, a, r ∨ (e ∧ ¬a)〉 |= ϕ,

where wi denotes w’s infinite suffix after the i-th position, i.e., wi = wiwi+1 . . .
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Theorem 1. The following relationship holds between the Reset-LTL operators
abort and reject and the Salt operators accepton and rejecton:

〈wi, false, false〉 |= accept e in φ if and only if wi |= φ accepton e,

and

〈wi, false, false〉 |= reject e in φ if and only if wi |= φ rejecton e.

Proof. By structural induction. Note that the relevant semantic definitions for
Salt’s exception operators are given in Sec. 3. Let p ∈ AP and φ := p.

〈wi, false, false〉 |= accept e in p
⇔ 〈wi, e, false〉 |= p
⇔ wi |= e ∨ p
⇔ wi |= p accepton e.

〈wi, false, false〉 |= reject e in p
⇔ 〈wi, false, e〉 |= p
⇔ wi |= p ∧ ¬e
⇔ wi |= p rejecton e.

φ := ϕ ∨ ψ:
〈wi, false, false〉 |= accept e in ϕ ∨ ψ

⇔ 〈wi, e, false〉 |= ϕ ∨ ψ
⇔ 〈wi, e, false〉 |= ϕ ∨ 〈wi, e, false〉 |= ψ
⇔ wi |= ϕ accepton e ∨ wi |= ψ accepton e
⇔ wi |= ϕ ∨ ψ accepton e

The case for reject e in ϕ ∨ ψ is analogous.
φ := ◦ϕ:

〈wi, false, false〉 |= accept e in ◦ϕ
⇔ wi |= e ∨ 〈wi+1, e, false〉 |= ϕ
⇔ wi |= e ∨wi+1 |= ϕ accepton e
⇔ wi |= e ∨wi |= ◦(ϕ accepton e)
⇔ wi |= (◦ϕ) accepton e.

The case for reject e in ◦ϕ is analogous.
φ := ϕ U ψ:

〈wi, false, false〉 |= accept e in ϕ U ψ
⇔ wi |= e ∨ 〈wi, e, false〉 |= ϕ U ψ
⇔ ∃k ≥ i. 〈wk, e, false〉 |= ψ ∧ ∀i ≤ l < k. 〈wl, e, false〉 |= ϕ
⇔ ∃k ≥ i. wk |= ψ accepton e ∧ ∀i ≤ l < k. wl |= ϕ accepton e
⇔ wi |= ϕ accepton e U ψ accepton e
⇔ wi |= ϕ U ψ accepton e.

The case for reject e in ϕ U ψ is analogous.
φ := ¬ϕ: Negation is somewhat a special case due to the mutual recursive
definition of the semantics. Here, we treat the Reset-LTL side first by itself, and
use the duality between the accept and reject operators as follows.

〈wi, false, false〉 |= accept e in ¬ϕ
⇔ 〈wi, false, false〉 |= ¬(reject e in ϕ)
⇔ 〈wi, false, false〉 �|= (reject e in ϕ).
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Next, we observe that the following holds in Salt:

wi |= ¬ϕ accepton e⇔ wi �|= ϕ rejecton e.

Now, equivalence follows from case two of the induction hypothesis, i.e.,

wi |= ϕ rejecton e ⇔ 〈wi, false, false〉 |= (reject e in ϕ).

The case for reject e in ¬ϕ is dual. ��
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Abstract. VeriFast is a prototype verification tool for single-threaded
and multithreaded C and Java programs. In this paper, we first describe
the basic symbolic execution approach in some formal detail. Then we
zoom in on two technical aspects: the approach to permission accounting,
including fractional permissions, precise predicates, and counting permis-
sions; and the approach to lemma function termination in the presence
of dynamically-bound lemma function calls. Finally, we describe three
ongoing efforts: application to JavaCard programs, integration of shape
analysis, and application to Linux device drivers.

1 Introduction

VeriFast is a prototype verification tool for single-threaded and multithreaded
C and Java programs annotated with preconditions and postconditions written
in separation logic. To enable rich specifications, the programmer may define
inductive datatypes, primitive recursive pure functions over these datatypes,
and abstract separation logic predicates. To enable verification of these rich
specifications, the programmer may write lemma functions, i.e., functions that
serve only as proofs that their precondition implies their postcondition. The
verifier checks that lemma functions terminate and do not have side-effects. Since
neither VeriFast itself nor the underlying SMT solver need to do any significant
search, verification time is predictable and low. VeriFast comes with an IDE that
enables interactive annotation insertion and symbolic debugging and is available
for download at http://www.cs.kuleuven.be/˜bartj/verifast/.

For an introduction to VeriFast, we refer to earlier work [1]; furthermore, a
tutorial text is available on the web site. In this invited paper, we take the op-
portunity to zoom in on three aspects of VeriFast that have not yet been covered
in the same level of detail in earlier published work: in Section 2 we present in
some formal detail the essence of VeriFast’s symbolic execution algorithm; in
Section 3 we present VeriFast’s support for permission accounting; and in Sec-
tion 4 we present our approach for ensuring termination of lemma functions that
perform dynamically bound calls. Additionally, in Section 5, we briefly discuss
some of the projects currently in progress at our group.
� Jan Smans is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO).

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 41–55, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



42 B. Jacobs et al.

2 Symbolic Execution

In this section, we present the essence of VeriFast’s verification algorithm in
some formal detail.

2.1 Symbolic Execution States

VeriFast modularly verifies a C or Java program by symbolically executing each
routine (function or method) in turn, using other routines’ contracts to verify
calls. A symbolic execution state is much like a concrete execution state, except
that terms of an SMT solver, containing logical symbols, are used instead of
concrete values. For example, at the start of the symbolic execution of a routine,
each routine parameter’s value is represented using a fresh logical symbol.

Specifically, a symbolic state σ = (Σ, h, s) consists of a path condition Σ, a
symbolic heap h, and a symbolic store s. The path condition is a set of formulae
of first-order logic that constrain the values of the logical symbols that appear
in the symbolic heap and the symbolic store. The symbolic heap is a multiset of
heap chunks. Each heap chunk is of the form [f ]p〈τ〉(t), where f is the coefficient,
p the predicate name, τ the type arguments, and t the arguments of the chunk.
The coefficient f is a term representing a real number; if it is different from 1,
the chunk represents a fractional permission (see Section 3). The predicate name
is a term that denotes the predicate of which the chunk is an instance; it is either
the symbol associated with a built-in predicate, such as a struct or class field
predicate, or a user-defined predicate, or it is a predicate constructor application,
which is essentially a partially applied predicate (see [2] for more information),
or it is some other term, which typically means the predicate name was passed
into the function as a value. VeriFast supports type parameters on user-defined
predicates; hence the type arguments, which are VeriFast types. Finally, each
chunk specifies argument terms for the predicate’s parameters. The symbolic
store maps local variable names to terms that represent their value.

2.2 Algorithm: Preliminary Definitions

To describe the essence of the symbolic execution algorithm formally, we define
a highly stylized syntax of assertions a, commands c, and routines r (given an
unspecified syntax for arithmetic expressions e and boolean expressions b, and
given a set of variables x):

a ::= [e]e(e, ?x) | b | a ∗ a | if b then a else a
c ::= x := r(e) | (c; c) | if b then c else c

rdef ::= routine r(x) req a ens a do c

We assume all predicates have exactly two parameters, and we consider only
predicate assertions where the first argument is an expression and the second
argument is a pattern.

We will give the semantics of a symbolic execution step by means of sym-
bolic transition relations, which are relations from initial symbolic states σ to
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outcomes o. An outcome is either a final symbolic state or the special outcome
abort, which signifies that an error was found. A given initial state may be
related to multiple outcomes due to case splitting, and it may be related to no
outcomes if all symbolic execution paths are found to be infeasible.

VeriFast sometimes makes arbitrary choices. Specifically, it arbitrarily chooses
a matching chunk when consuming a predicate assertion that has multiple match-
ing chunks (a situation we call an ambiguous match). To model this, we define
the semantics of a symbolic execution step not as a single transition relation, but
as a set of transition relations. Each element of this set makes different choices
in the event of ambiguous matches. The soundness theorem states that if, for
a given initial symbolic state, there is any transition relation where this initial
state does not lead to an abort, then all concrete states represented by this
initial symbolic state are safe. It is possible that some choices cause VeriFast to
fail (i.e., lead to an abort), while others do not. It is up to the user to avoid such
unfortunate matches, for example by wrapping chunks inside predicates defined
just for that purpose to temporarily hide them.

A note about picking fresh logical symbols. We will use the function

nextFresh(Σ) = (u, Σ′)

which given a path condition Σ returns a symbol u that does not appear free in
Σ, and a new path condition Σ′ = Σ ∪ {u = u}, which is equivalent to Σ but
in which u appears free. Since path conditions are finite sets of finite formulae,
and there are infinitely many logical symbols, this function is well-defined. We
will also use this function to generate sequences of fresh symbols.

We use the following operations on sets of transition relations. Conjunction
W ∧W ′ denotes the pairwise union of relations from W and W ′:

W ∧W ′ = {R ∪R′ | R ∈W ∧R′ ∈ W ′}

Similarly, generalized conjunction
∧

i ∈ I. W (i) denotes the set where each
element is obtained by taking the union of one element of each W (i):

(
∧

i ∈ I. W (i)) = {
⋃

i ∈ I. ψ(i) | ∀i ∈ I. ψ(i) ∈W (i)}

We omit the range I if it is clear from the context. Sequential composition W ; W ′

denotes the pairwise sequential composition of relations from W and W ′:

W ; W ′ = {R; R′ | R ∈ W ∧R′ ∈W ′}

where the sequential composition of transition relations R; R′ is defined as

R; R′ = {(σ, abort) | (σ, abort) ∈ R} ∪ {(σ, o) | (σ, σ′) ∈ R ∧ (σ′, o) ∈ R′}

We denote the term or formula resulting from evaluation of an arithmetic ex-
pression e or boolean expression b under a symbolic store s as s(e) or s(b),
respectively. We abuse this notation for sequences of expressions as well.



44 B. Jacobs et al.

2.3 The Algorithm

A basic symbolic execution step is an assumption step assume(b), defined as
follows:

assume(b) = {{((Σ, h, s), (Σ ∪ {s(b)}, h, s)) | Σ ��SMT ¬s(b)}}

It consists of a single transition relation, which adds b to the path condition, un-
less doing so would lead to an inconsistency, in which case the symbolic execution
path ends (i.e., the initial state does not map to any outcome).

Symbolic execution of a routine starts by producing the precondition, then
verifying the body, and finally consuming the postcondition. Producing an as-
sertion means adding the chunks and assumptions described by the assertion to
the symbolic state:

produce([e]e′(e′′, ?x)) =
{{((Σ, h, s), (Σ′, h � {[s(e)]s(e′)(s(e′′), u)}, s[x := u])) |

(u, Σ′) = nextFresh(Σ)}}
produce(b) = assume(b)
produce(a ∗ a′) = produce(a); produce(a′)
produce(if b then a else a′) = assume(b); produce(a) ∧ assume(¬b); produce(a′)

Conversely, consuming an assertion means removing the chunks described by the
assertion from the symbolic heap, and checking the assumptions described by
the assertion against the path condition.

consume([e]e′(e′′, ?x)) =
choice({matches(Σ, h, s) | matches(Σ, h, s) �= ∅})

∧ {{((Σ, h, s),abort) | matches(Σ, h, s) = ∅}}
where choice(C) = {{ψ(c) | c ∈ C} | ∀c ∈ C. ψ(c) ∈ c}
and matches(Σ, h, s) =
{((Σ, h, s), (Σ, h′, s[x := t′])) |

h = h′ � {[f ]p(t, t′)} ∧Σ �SMT s(e, e′, e′′) = f, p, t}
consume(b) =
{{((Σ, h, s), (Σ, h, s)) | Σ �SMT s(b)} ∪ {((Σ, h, s), abort) | Σ ��SMT s(b)}}

consume(a ∗ a′) = consume(a); consume(a′)
consume(if b then a else a′) =

assume(b); consume(a) ∧ assume(¬b); consume(a′)

Notice that consuming a predicate assertion generates one transition relation for
each choice function ψ that picks one match for each initial state that has matches.

Verifying a routine call means consuming the precondition (under the symbolic
store obtained by binding the arguments), followed by picking a fresh symbol to
represent the return value, followed by producing the postcondition, followed by
binding the return value into the caller’s symbolic store. The other commands
are straightforward.
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verify(x := r(e)) =∧
s. {{((Σ, h, s), (Σ, h, [x := s(e)]))}}; consume(a);∧

r.{{((Σ, h, s′), (Σ′, h, s′[result := r])) | (r, Σ′) = nextFresh(Σ)}};
produce(a′); {{((Σ, h, s′′), (Σ, h, s[x := r]))}}

where routine r(x) req a ens a′

verify((c; c′)) = verify(c); verify(c′)
verify(if b then c else c′) = assume(b); verify(c) ∧ assume(¬b); verify(c′)

Verifying a routine means binding the parameters to fresh symbols, then produc-
ing the precondition, then saving the resulting symbolic store s′, then verifying
the body under the original symbolic store, then restoring the symbolic store s′

and binding the result value, and then finally consuming the postcondition. The
routine is valid if in at least one transition relation, the initial state does not
lead to abort.

valid(routine r(x) req a ens a′ doc) =
∃R ∈ W. ((Σ0, ∅, [x := u]), abort) /∈ R
where (u, Σ0) = nextFresh(∅)
and W =

∧
s. {{((Σ, h, s), (Σ, h, s))}}; produce(a);∧

s′. {{((Σ, h, s′), (Σ, h, s))}; verify(c);∧
s′′. {{((Σ, h, s′′), (Σ, h, s′[result := s′′(result)]))}}; consume(a′)

A program is valid if all routines are valid.

2.4 Soundness Proof Sketch

We now sketch an approach for proving the soundness of this algorithm. First,
we define abstracted execution operations aproduce, aconsume, and averify, that
differ from the corresponding symbolic execution operations only in that they
use concrete values instead of logical terms in heap chunks and store bindings.
We then prove that the relation between an abstracted state and a symbolic
state that represents it (through some interpretation of the logical symbols) is
a simulation relation: if some symbolic state represents some abstracted state,
then for every transition relation in the symbolic execution, there is a transition
relation in the abstracted execution such that if the abstracted state aborts,
then the symbolic state aborts, and if the abstracted state leads to some other
abstracted state, then the symbolic state either aborts or leads to some other
symbolic state that represents this abstracted state. It follows that if a program
is valid under symbolic execution, it is valid under abstracted execution.

We then prove two lemmas about abstracted execution. Firstly, we prove that
all abstracted execution operations are local, in the sense that heap contraction
is a simulation relation: for state (s, h�h0) and contracted state (s, h), for every
transition relation R2 there is a transition relation R1 such that if (s, h � h0)
aborts in R1, then (s, h) aborts in R2, and otherwise if (s, h�h0) leads to a state
(s′, h′) in R1, then either (s, h) aborts in R2 or h0 ⊆ h′ and (s, h) leads to state
(s′, h′ − h0) in R2.
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Secondly, we prove the soundness of abstracted assertion production and con-
sumption. Specifically, we prove that if we consume an assertion a in a state
(h, s), then this either aborts or we obtain some state (h′, s′), and for every
such final state it holds that producing a in some state (h′′, s) leads to state
(h′′ � (h− h′), s′).

Finally, given a big-step operational semantics of the programming language,
we prove that if all routines are valid, then concrete execution is simulated by
abstracted execution: for every initial state, if concrete execution leads to some
outcome, then in each transition relation either abstracted execution aborts or
leads to the same or a contracted outcome1. We detail the case of routine call.

Consider a routine call x := r(e) started in a state (s, h). Now, consider an
arbitrary transition relation of consumption of r’s precondition in state ([x :=
s(e)], h). Either this aborts, in which case abstracted execution of the routine call
aborts and we are done. Otherwise, it leads to a state (s′, h′). Then, by the second
lemma, production of the precondition in state ([x := s(e)], h′) leads to state
(s′, h). Now, consider the execution of the body of r in state ([x := s(e)], h). If
this aborts, then by the induction hypothesis, we have that abstracted execution
of the body aborts in all transition relations when started in the same state. By
locality, it follows that production of the precondition in state ([x := s(e)], ∅)
leads to state (s′, h−h′) and abstracted execution of the body in state (s′, h−h′)
aborts. This contradicts the assumption that the routine is valid.

Now consider the case where execution of the body of the routine, when
started in state ([x := s(e)], h), leads to some state (s′′, h′′). Consider an arbi-
trary transition relation of consumption of r’s postcondition in state (s′[result :=
s′′(result)], h′′). Either consumption aborts, in which case, by locality, the rou-
tine is invalid and we obtain a contradiction. Or it leads to some state (s′′′, h′′′).
Then, by the second lemma, production of r’s postcondition in state (s′[result :=
s′′(result)], h′) leads to state (s′′′, h′�(h′′−h′′′)). By locality, we have h′ ⊆ h′′′; as
a result, we have h′�(h′′−h′′′) ⊆ h′′′�(h′′−h′′′) = h′′, so the abstracted execution
leads to a contraction of the final concrete execution state (s[x := s′′(result)], h′′).

3 Permission Accounting

This section presents VeriFast’s support for permission accounting. Specifically,
to enable convenient sharing of heap locations, mutexes, and other resources
among multiple threads, and for other purposes, VeriFast has built-in support
for fractional permissions (Section 3.1), and library support for counting per-
missions (Section 3.4). To facilitate the application of fractional permissions to
user-defined predicates, VeriFast has special support for precise predicates (Sec-
tion 3.2). Finally, to facilitate unrestricted sharing of resources in case reassembly
is not required, VeriFast supports dummy fractions (Section 3.3).

1 A contracted outcome (i.e., with a smaller heap) occurs in the case of routine calls if
heap chunks remain after the routine’s postcondition is consumed. When verifying
a C program, VeriFast signals a leak error in this case; for a Java program, however,
this is allowed.



VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java 47

3.1 Fractional Permissions

VeriFast has fairly convenient built-in support for the fractional permissions sys-
tem proposed by Bornat et al. [3]. The basics of this support consist of the fol-
lowing elements: a coefficient term in each heap chunk, a relaxed proof rule for
read-only memory accesses, fractional assertions, opening and closing of frac-
tional user-defined predicate chunks, and autosplitting. Some more advanced
features are explained in later subsections.

Fractional Heap Chunks and Memory Reads. As mentioned in Section 2,
in VeriFast’s symbolic heap data structure, each heap chunk specifies a term
known as its coefficient. This term belongs to the SMT solver’s sort of real num-
bers. If the real number represented by this term is different from 1, we say the
chunk is a fraction. On any feasible symbolic execution path, the coefficient of
any chunk that represents a memory location lies between 0, exclusive, and 1, in-
clusive, where 1 represents exclusive write access, and a smaller value represents
shared read access. However, coefficients of user-defined predicates may feasibly
lie outside this range.

Fractional Assertions. Both points-to assertions and predicate assertions may
mention a coefficient f , which is a pattern of type real, using the syntax [f]

|-> v or [f]p(v). Just like other patterns, the coefficient pattern may be an
expression, such as 1/2 or x, where x is a previously declared variable of type
real. It may also be a question mark pattern ?x, which existentially quantifies
over the coefficient and binds it to x. Finally, it may be a dummy pattern _,
which also existentially quantifies over the coefficient but does not bind it to
any variable. Dummy coefficient patterns are treated specially; see Section 3.3.
If a points-to assertion or predicate assertion does not mention a coefficient, it
defaults to 1.

The following simple example illustrates a common pattern:

int read_cell(int *cell)
requires [?f]integer(cell, ?v);
ensures [f]integer(cell, v) &*& result == v;

{ return *cell; }

The above function requires an arbitrary fraction of the integer chunk that
permits access to the int object at location cell, and returns the same fraction.

Fractions andUser-Defined Predicates. The syntax of open and close ghost
statements allows mentioning a coefficient: open [f]p(v), close [f]p(v). By
definition, applying a coefficient f to a user-defined predicate is equivalent to mul-
tiplying the coefficient of each chunk mentioned in the predicate’s body by f .
There is no restriction on the value of f . If no coefficient is mentioned, a close op-
eration defaults to coefficient 1, and an open operation defaults to the coefficient
found in the symbolic heap.



48 B. Jacobs et al.

Autosplitting. When consuming a predicate assertion, the nano-VeriFast al-
gorithm presented in Section 2 requires a precise match between the coefficient
expression specified in the predicate assertion and the coefficient term in a heap
chunk. Full VeriFast is more relaxed: for assertion coefficient fa and chunk coeffi-
cient fc, it requires either fa = fc or 0 < fa < fc. In the latter case, consumption
does not remove the chunk, but simply reduces the chunk’s coefficient to fc−fa.

3.2 Precise Predicates

Autosplitting is sound both for built-in memory location predicates and for ar-
bitrary user-defined predicates. For built-in memory location predicates, we also
have a merge law:

[f1]
 �→ v1 ∗ [f2]
 �→ v2 ⇒ [f1 + f2]
 �→ v1 ∧ v2 = v1

This law states not only that two fractions whose first arguments are equal
can be merged into one, but also that their second arguments are equal. Veri-
Fast automatically performs this merge operation and adds this equality to the
path condition when producing a built-in predicate chunk if a matching chunk
is already present in the symbolic heap. Merging of fractional permissions is
important because it enables modifying or deallocating memory locations once
they are no longer shared between multiple threads.

However, VeriFast does not automatically merge arbitrary predicate chunks,
even if they have identical argument lists. Doing so would be unsound, as illus-
trated by the following pathological user-defined predicate:

predicate foo() = integer(_, _);
lemma void evil()

requires integer(_, _) &*& integer(_, _);
ensures [2]integer(_, _);

{ close foo(); close foo(); open [2]foo(); }

Specifically, this would violate the invariant that on feasible paths, memory
location chunks never appear with a coefficient greater than 1.

Therefore, VeriFast automerges only precise predicates. A user-defined pred-
icate may be declared as precise by using a semicolon in the parameter list to
separate the input parameters from the output parameters. If a predicate is de-
clared as precise, VeriFast performs a static analysis on the predicate body to
check that the merge law holds for this predicate. The merge law for a predicate
p with input parameters x and output parameters y states:

[f1]p(x, y1) ∗ [f2]p(x, y2)⇒ [f1 + f2]p(x, y1) ∧ y2 = y1

For example, the static analysis accepts the following definition of the classic list
segment predicate:
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struct node { struct node *next, int value };

predicate lseg(struct node *f, struct node *l; list<int> vs) =

f == l ? vs == nil :

f->next |-> ?n &*& f->value |-> ?v &*& malloc_block_node(f) &*&

lseg(n, l, ?vs0) &*& vs == cons(v, vs0);

As a result, the following lemma is verified automatically:

lemma void lseg_merge(struct node *f, struct node *l)
requires [?f1]lseg(f, l, ?vs1) &*& [?f2]lseg(f, l, ?vs2);
ensures [f1+f2]lseg(f, l, vs1) &*& vs2 == vs1;

{}

The static analysis for a predicate definition predicate p(x; y) = a; checks that
given fixed variables x, assertion a is precise and fixes variables y; formally:
x � a � y. The meaning of this judgment is given by a merge law for assertions:

[f1]a1 ∗ [f2]a2[x1/x2] ⇒ [f1 + f2]a1 ∧ y2 = y1

where a1 is a with all free variables subscripted by 1 and a2 is a with all free vari-
ables subscripted by 2. The static analysis proceeds according to the inference
rules shown in Figure 1. Notice that the analysis allows both expressions and

predicate q(x; y) |e| = |x| FreeVars(e) ⊆ X

X � q(e, pat) � X ∪ FixedVars(pat)

FreeVars(e) ⊆ X

X � x = e � X ∪ {x}

X � e � X

FreeVars(e) ⊆ X
X � a � Y

X � [e]a � Y

X � a � Y

X � [ ]a � Y

X � a1 � Y
Y � a2 � Z

X � a1 ∗ a2 � Z

FreeVars(b) ⊆ X X � a1 � Y X � a2 � Y

X � b ? a1 : a2 � Y

X � a � Y Y ′ ⊆ Y

X � a � Y ′

where

FixedVars(x) = {x} FixedVars(e) = ∅ FixedVars(?x) = {x} FixedVars( ) = ∅

Fig. 1. The static analysis for preciseness of assertions

dummy patterns as coefficients (but not question mark patterns). In allowing
dummy patterns, VeriFast’s notion of preciseness deviates from the separation
logic literature, where an assertion is precise if for any heap, there is at most
one subheap that satisfies the assertion. Indeed, in the presence of dummy frac-
tions, there may be infinitely many fractional subheaps that satisfy the assertion;
however, the merge law still holds.
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3.3 Dummy Fractions for Leakable Resources

VeriFast treats dummy coefficients in predicate assertions specially, to facilitate
scenarios where reassembly of fractions of a given resource is not required, and
as a result the resource can be shared arbitrarily. Specifically, when consuming
a predicate assertion with a dummy coefficient, VeriFast always performs an
autosplit; that is, it does not remove the matched chunk but merely replaces its
coefficient by a fresh symbol.

Furthermore, when verifying a C program, dummy fractions affect leak check-
ing. In general, when verifying a C function, if after consuming the postcondition
the symbolic heap is not empty, VeriFast signals a leak error. However, VeriFast
does not signal an error if for all remaining resources, the user has indicated
explicitly that leaking this resource is acceptable. The user can do so using a
leak a; command. This command consumes the assertion a, and then reinserts
all consumed chunks into the symbolic heap, after replacing their coefficients
with fresh symbols and registering these symbols as dummy coefficient symbols.
Leaking a chunk whose coefficient is a dummy coefficient symbol is allowed.

To allow this leakability information to be carried across function boundaries,
dummy coefficients in assertions are considered to match only dummy coefficient
symbols. That is, consuming a dummy fraction assertion matches only chunks
whose coefficients are dummy coefficient symbols, and producing a dummy frac-
tion assertion produces a chunk whose coefficient is a dummy coefficient symbol.

To understand the combined benefit of these features, consider the common
type of program where the main method creates a mutex and then starts an
unbounded number of threads, passing a fraction of the mutex to each thread.
Each thread leaks its mutex fraction when it dies. If the user performs a leak op-
eration on the mutex directly after it is created, VeriFast automatically splits the
mutex chunk when a thread is started, and silently leaks each thread’s fraction
when the thread finishes.

VeriFast also uses dummy fractions to represent C’s string literals.

3.4 Counting Permissions

Fractional permissions are sufficient in many sharing scenarios; however, an im-
portant example of a scenario where they are not applicable is when verifying
a program that uses reference counting for resource management. For this sce-
nario, another permission accounting scheme known as counting permissions [3]
is appropriate.

VeriFast does not have built-in support for counting permissions. However,
using VeriFast’s support for higher-order predicates, VeriFast offers counting
permissions support in the form of a trusted library, specified by header file
counting.h, reproduced in Figure 2. This library allows any precise predicate
of one input parameter and one output parameter to be shared by means of
counting permissions. VeriFast’s built-in memory location predicates satisfy this
constraint, so they can be used directly. Precise predicates that are of a different
shape can be wrapped in a helper predicate that bundles the input and output
arguments into tuples.
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predicate counting<a, b>(predicate(a; b) p, a a, int count; b b);

predicate ticket<a, b>(predicate(a; b) p, a a, real frac;);

lemma void start_counting<a, b>(predicate(a; b) p, a a);

requires p(a, ?b);

ensures counting(p, a, 0, b);

lemma void counting_match_fraction<a, b>(predicate(a; b) p, a a);

requires counting(p, a, ?count, ?b1) &*& [?f]p(a, ?b2);

ensures counting(p, a, count, b1) &*& [f]p(a, b2) &*& b2 == b1;

lemma real create_ticket<a, b>(predicate(a; b) p, a a);

requires counting(p, a, ?count, ?b);

ensures counting(p, a, count + 1, b)

&*& ticket(p, a, result) &*& [result]p(a, b) &*& 0 < result;

lemma void destroy_ticket<a, b>(predicate(a; b) p, a a);

requires counting(p, a, ?count, ?b1)

&*& ticket(p, a, ?f) &*& [f]p(a, ?b2) &*& 0 != count;

ensures counting(p, a, count - 1, b1) &*& b2 == b1;

lemma void stop_counting<a, b>(predicate(a; b) p, a a);

requires counting(p, a, 0, ?b);

ensures p(a, b);

Fig. 2. The specification of VeriFast’s counting permissions library

Once a chunk is wrapped into a counting chunk using the start_counting
lemma, tickets can be created from it using the create_ticket lemma. This
lemma not only increments the counting chunk’s counter and produces a ticket
chunk; it also produces an unspecified fraction of the wrapped chunk. In case
of built-in memory location chunks, this allows the memory location to be read
immediately. The ticket chunk remembers the coefficient of the produced frac-
tion. The same fraction is consumed again when the ticket is destroyed using
lemma destroy_ticket. When the counter reaches zero, the original chunk can
be unwrapped using lemma stop_counting.

Notice that this library is sound even when applied to predicates that are not
unique, i.e., predicates that can appear with a fraction greater than one. However,
the existence of non-unique precise predicates does mean that we cannot assume
that the counter of a counting chunk remains nonnegative, as illustrated in
Figure 3.

4 Lemma Function Termination and Dynamic Binding

VeriFast supports lemma functions, which are like ordinary C functions, except
that lemma functions and calls of lemma functions are written inside annota-
tions, and VeriFast checks that they have no side-effects on non-ghost memory
and that they terminate. Lemma functions serve mainly to encode inductive
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predicate foo(int *n; int v) = [1/2]integer(n, v);

predicate hide(int *n; int v) = counting(foo, n, 1, v);

lemma void test(int *n)

requires integer(n, ?v);

ensures counting(foo, n, -1, v) &*& hide(n, v);

{

close [2]foo(n, v);

start_counting(foo, n); create_ticket(foo, n);

close hide(n, v);

start_counting(foo, n); destroy_ticket(foo, n);

}

Fig. 3. Example where a counter decreases below zero

proofs of lemmas about inductive datatypes, such as the associativity of ap-
pending two mathematical lists, or inductive proofs of lemmas about recursive
predicates, such as a lemma stating that a linked list segment from node n1
to node n2 separately conjoined with a linked list segment from node n2 to 0
implies a linked list segment from node n1 to 0.

To enable such inductive proofs, lemma functions are allowed to be recursive.
Specifically, to ensure termination, VeriFast allows a statically bound lemma
function call if either the callee is defined before the caller in the program text,
or the callee equals the caller and one of the following hold: 1) after consuming
the precondition, at least one full (i.e., non-fractional) memory location predicate
remains, or 2) the body of the lemma function is a switch statement over one of
the function’s parameters whose type is an inductive datatype, and the callee’s
argument for this parameter is a component of the caller’s argument for this
parameter, or 3) the body of the lemma function is not a switch statement
and the first chunk consumed by the callee’s precondition was obtained from
the first chunk produced by the caller’s precondition through one or more open
operations. These three cases constitute induction on the size of the concrete
heap, induction on the size of an argument, and induction on the derivation of
the first conjunct of the precondition.

However, VeriFast supports not just statically bound lemma function calls, but
dynamically bound calls as well. Specifically, VeriFast supports lemma function
pointers and lemma function pointer calls. The purpose of these is as follows.

VeriFast supports the modular specification and verification of fine-grained
concurrent data structures. It does so by modularizing Owicki and Gries’s ap-
proach based on auxiliary variables. The problem with their approach is that
it requires application-specific auxiliary variable updates to be inserted inside
critical sections. If the critical sections are inside a library that is to be reused
by many applications, this is a problem. In earlier work [4], we propose to solve
this problem by allowing applications to pass auxiliary variable updates into the
library in a simple form of higher-order programming. In VeriFast, this can be
realized through lemma function pointers.

A simple approach to ensure termination of lemma functions in the presence
of lemma function pointers would be to allow lemma function pointer calls only
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in non-lemma functions. However, when building fine-grained concurrent data
structures on top of other fine-grained concurrent data structures, layer N needs
to be able to call lemma function pointers it receives from layer N + 1 inside of
its own lemma function, which it passes to layer N − 1.

To support this, we introduced a new kind of built-in heap chunks, called
lemma function pointer chunks. A call of a lemma function pointer p is allowed
only if the symbolic heap contains a lemma function pointer chunk for p, and
this chunk becomes unavailable for the duration of the call. Non-lemma functions
may produce lemma function pointer chunks arbitrarily. A lemma function may
only produce lemma function pointer chunks for lemma functions that appear
before itself in the program text, and furthermore, these chunks are consumed
again before the producing lemma function terminates, so the pointer calls must
occur within the dynamic scope of the producing lemma function.

We prove that this approach guarantees lemma function termination, by con-
tradiction. Consider an infinite chain of nested lemma function calls. Since we
have termination of statically bound calls, the chain must contain infinitely many
pointer calls. Of all functions that appear infinitely often, consider the one that
appears latest in the program text. It must be called infinitely often through
a pointer. Therefore, infinitely many pointer chunks must be generated during
the chain. However, these can only be generated by functions that appear later,
which is a contradiction.

5 Ongoing Efforts

In this section, we briefly describe three projects currently proceeding in our
group.

5.1 JavaCard Programs

JavaCard is a trimmed-down version of the Java Platform for smart cards such
as cell phone subscriber cards, payment cards, identity cards, etc. We are ap-
plying VeriFast to a number of JavaCard programs, to prove absence of runtime
exceptions and functional correctness properties.

An interesting aspect of the JavaCard execution environment is the fact that
by default, objects allocated by a JavaCard program (called an applet) are per-
sistent. That is, once a JavaCard applet is installed on a card, the applet object
and objects reachable from its fields persist for the entire lifetime of the smart
card. This interacts in interesting ways with the phenomenon of card tearing,
which occurs when the user removes the smart card from the card reader while
a method call on the applet object is in progress. To allow the programmer
to preserve the consistency of the applet object, JavaCard offers a transaction
mechanism, that ensures that modifications to objects during a transaction are
rolled back if a card tear occurs before the transaction is committed.

We developed a specification of the JavaCard API that is sound in the presence
of card tearing. We did not need to modify the VeriFast tool itself. In our specifi-
cation, when a newly installed applet is registered with the virtual machine, the
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virtual machine takes ownership of the applet’s state as defined by its valid pred-
icate. When an applet receives a method call, the method receives a 1/2 fraction
of the applet’s valid predicate. This allows the method to inspect but not modify
the applet’s state. As a result, the method is forced to call the beginTransaction
method before modifying the state. This API method produces the other half of
the valid chunk. Conversely, API method commitTransaction consumes the en-
tire valid chunk and produces a 1/2 fraction.

The soundness argument for this approach goes as follows. We need to show
that in every execution, even one where card tears occur, at the start of each
toplevel method call on the applet, the valid predicate is fully owned by the
VM. We do so by showing that at every point during a method call, either we
are in a transaction, or the VM owns half of valid and the method call owns the
other half. When a method call terminates, either normally or due to a card tear,
the method call’s fraction is simply transfered to the VM. This proof explains
the contract of commitTransaction: if commitTransaction merely consumed
1/2 of valid, it would not guarantee that the thread owned the other half.

5.2 Integrating Shape Analysis

We are in the process of integrating separation logic-based shape analysis algo-
rithms from the literature [5,6] into VeriFast. The goal is to enable a scenario
where annotations are inserted into a program using a mixed manual-automatic
process: the user writes some manual annotations; then they invoke the shape
analysis algorithm, which, given the existing annotations, infers additional ones;
then, the user adds further annotations where the algorithm failed; etc. We are
not yet at the point where we can report if this approach works or not.

We are currently targeting the scenario where the code is not evolving, i.e.,
the scenario where an existing, unannotated program is annotated for the first
time. In a later stage, we intend to consider the question whether shape analysis
can help to adapt existing annotations to code evolution. The latter problem
seems much more difficult, especially if the generated shape annotations have
been extended manually with functional information.

5.3 Linux Device Drivers

We are applying VeriFast to the verification of device drivers for the Linux op-
erating system. These programs seem particularly suited for formal verification,
because they are at the same time tricky to write, critical to the safety of the sys-
tem, written by many different people with varying backgrounds and priorities,
and yet relatively small and written against a relatively small API.

A significant part of the effort consists in writing specifications for the Linux
kernel facilities used by the driver being verified. Part of the challenge here
is that these facilities are often documented poorly or not at all, so we often
find ourselves inventing a specification based on inspection of the kernel source
code. Another part of the challenge is that VeriFast does not yet support all
C language features required to interface with these facilities. As a temporary
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measure, in these cases we write a thin intermediate library that implements a
VeriFast-friendly interface on top of the actual kernel interface.

We are only in the early stages of this endeavor. We have so far verified a
small “Hello, world” driver that exposes a simple /proc file with an incrementing
counter. This example, and the preliminary version of the VeriFast Linux Kernel
Module Verification Kit that enables its verification, are included in the current
VeriFast distribution. We are currently looking at a small USB keyboard driver.
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Abstract. VCC [2] is an industrial-strength verification environment for
low-level concurrent systems code written in C. VCC takes a program
(annotated with function contracts, state assertions, and type invariants)
and attempts to prove the correctness of these annotations. VCC’s ver-
ification methodology [4] allows global two-state invariants that restrict
update of shared state and enforces simple, semantic conditions sufficient
for checking those global invariants modularly. VCC works by translat-
ing C, via Boogie [1] intermediate verification language, to verification
conditions handled by the Z3 [5] SMT solver.

The environment includes tools for monitoring proof attempts and
constructing partial counterexample executions for failed proofs and has
been used to verify functional correctness of tens of thousands of lines of
Microsoft’s Hyper-V virtualization platform and of SYSGOs embedded
real-time operating system PikeOS.

In this talk, I am going to showcase various tools that come with VCC:
the verifier itself, VCC Visual Studio plugin, and Boogie Verification De-
bugger. I am going to cover the basics of VCC’s verification methodology
on various examples: concurrency primitives, lock-free data-structures,
and recursive data-structures.

The sources and binaries of VCC are available for non-commercial use
at http://vcc.codeplex.com/. A tutorial [3] is also provided. VCC can
be also tried online at http://rise4fun.com/Vcc.
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Abstract. Spark, a subset of Ada for engineering safety and security-critical sys-
tems, is designed for verification and includes a software contract language for
specifying functional properties of procedures. Even though Spark and its static
analysis components are beneficial and easy to use, its contract language is almost
never used due to the burdens the associated tool support imposes on developers.
In this paper, we present: (a) SymExe techniques for checking software contracts
in embedded critical systems, and (b) Bakar Kiasan, a tool that implements these
techniques in an integrated development environment for Spark. We describe a
methodology for using Bakar Kiasan that provides significant increases in au-
tomation, usability, and functionality over existing Spark tools, and we present
results from experiments on its application to industrial examples.

1 Introduction

Though first proposed by King [17] over three and a half decades ago, symbolic execu-
tion (SymExe) has experienced a renaissance in recent years as researchers have looked
for techniques that automatically discover wide-ranging properties of a program’s be-
havior with little or no developer intervention. Research has centered around using
symbolic execution for detection of common faults such as null-pointer de-referencing,
buffer overflows, array bounds violations, assertion checking, and test case generation
[16,22,23,5]. Much of the work has been carried out in the context of object-oriented
languages such as Java [16,8,22], C++, and C#.

While SymExe can be applied in many contexts, we are exploring the effectiveness of
SymExe in developing and assuring critical systems. Thus, in addition to an emphasis
on bug-finding and test-case generation, we also aim to support checking of formal
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code contracts written in rich specification languages capable of capturing complex
functional correctness properties. In this paper, we investigate how SymExe can add
value to a commercial framework for developing and verifying critical systems that is
based on the Spark/Ada (Spark for short) language [1].

Spark is a subset of Ada designed for programming and verifying high assurance
applications such as avionics applications certified to DO-178B Level A. It deliber-
ately omits constructs that are difficult to reason about such as dynamically created
data structures, pointers, exceptions, and recursion. Spark annotations allow develop-
ers to capture pre/post-conditions and embedded assertions as well as information flow
relationships between procedure parameters and global variables accessed in the proce-
dure. Spark tooling can be used to perform static checking of such annotations, mainly
through the generation and proof of verification conditions (VCs).

Our experience with Spark is derived from its use in security critical projects at
Rockwell Collins including the Janus high-speed cryptography engine and several other
embedded information assurance devices. Even though Spark and its static analysis
components are beneficial and easy to use, its contract language is almost never used
due to the burdens the associated tool support imposes on developers. In fact, we are
not aware of any industrial development effort that makes significant use of the Spark
pre/post-condition notation. We believe there are several reasons for this.

– Many uses of pre/post-conditions (e.g., those that include quantification for rea-
soning about arrays) will produce VCs that cannot be discharged automatically by
Spark tooling, thus developers must fall back on traditional code inspection or (la-
borious) manual proof using an interactive checker.

– Verification conditions and proof rules necessary for discharging contracts are rep-
resented using Functional Description Language (FDL) that is very different from
the Spark programming language. Shifting from source code to a specialized proof
language that requires additional training is disruptive to developer workflows.

– Specifying desired functionality as logical expressions in contracts is difficult for
complex properties; it is often necessary to introduce “helper” specification func-
tions. In Spark, the only mechanism to achieve this is to introduce functions without
implementations whose behavior is subsequently axiomatized in FDL. Reasoning
about these functions usually requires manual proof.

– Although they capture a variety of useful semantic properties, Spark contracts are
not leveraged by other quality assurance (QA) techniques in a manner that would
increase the “value proposition” of the framework to developers.

In practice, the above problems often cause projects to avoid using Spark contracts.
We believe that the foundational approach to symbolic execution that we have been

pursuing can significantly improve the usability and effectiveness of the Spark contract
language by providing a completely automated bounded verification technology that
scales to complex Spark contracts for industrial code bases. Our aim is not to replace
the VCGen framework of Spark but to complement it by offering highly automated
developer-friendly techniques that be used directly in the code(specify)-test(check)-
debug(understanding feedback) loop of typical developer workflows. Specifically, the
main contributions of this paper are:
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– Description of how Spark contracts can be represented to enable SymExe.
– Presentation of a SymExe algorithm and associated bounding strategies used to

check Spark code against our contract representation.
– Presentation of our SymExe tool for Spark, Bakar Kiasan1, which in addition to

leveraging contracts, includes behavior visualization and test case generation.
– A methodology, that includes use of Bakar Kiasan, that we believe will be effective

in critical system development.
– Illustrations of how SymExe provides greater flexibility including the ability to: (a)

specify complex behaviors working directly at the source code level as opposed to
a separate proof language, (b) forgo conventional compositional checking (as re-
quired by Spark’s existing VCGen approach) when methods are not fully specified,
and (c) to freely mix logical and executable specifications in Spark contracts.

– Evaluations that demonstrate significant improvements in the degree of automation
required for checking Spark contracts.

2 Example

Figure 1 shows excerpts of a Spark package LinkedIntegerSet that provides a rep-
resentation of a set of Item Type records. The intention is that the ID field uniquely
identifies the record within the set, while the Value holds data (the details of which are
irrelevant for this example—though, for sake of concreteness, we have made it Inte-
ger, hence the module name). This code (minus the contracts) is taken directly from
the code base of an embedded security device developed at Rockwell Collins (only
variables have been renamed to avoid revealing the nature of the application), and was
provided as a challenge problem to the academic authors for demonstrating contract
specification/checking capabilities. Academic authors worked with Rockwell Collins
engineers to develop what the engineers considered a reasonable approach to contract
specification for this example.

The set representation is based on a single-linked list. Since Spark does not include
heap-allocated data, the linked list is implemented using two arrays: (1) Item List that
holds the current elements of the set as well as free slots for elements to be added, and
(2) Next List implements “links” from a set element to another. Used Head gives the
index position in Item List of the first set item. Similarly, Free Head marks the index
position of the first of the free array elements.

Spark includes both procedures (which may have side-effects) and (side-effect-free)
functions; we refer to these collectively as methods. The parameter passing mechanism
is call-by-value-result. Each parameter and global variable referenced by a procedure
must be be classified as in, out, or in out. Each method can have a behavioral contract,
embedded in Ada comments beginning with a special delimiter # recognized by the
Spark tools. Procedures can have both pre and post conditions. The symbol ˜ is used
(e.g., Elem Array˜ in the post-condition of Add) to denote the pre-state value of the
variable. Instead of post-conditions, functions can have return constraints. Method im-
plementations can include in-line assertions, which may be used to state loop invariants.
The Spark contract language includes quantifiers and the usual boolean operators.

1 “Bakar” is the word for “spark” in Indonesian, while “Kiasan” is a word meaning “symbolic”.
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−− D a t a S t r u c t u r e s
type I t em Type i s record

ID : S e t D e f s . ID Type ; Value : S e t D e f s . Value Type ;
end record ;

Max Items : c o n s t a n t := 5 ; −− max num o f i t e m s i n s e t
subtype I t e m L i s t I n d e x T y p e i s

Se tUns igned . Word range 0 . . Max Items − 1 ;
subtype Link Type i s

Se tUns igned . Word range 0 . . Max Items ;
type I t e m L i s t T y p e i s

array ( I t e m L i s t I n d e x T y p e ) of I t em Type ;
type N e x t L i s t T y p e i s

array ( I t e m L i s t I n d e x T y p e ) of Link Type ;
I t e m L i s t : I t e m L i s t T y p e ; N e x t L i s t : N e x t L i s t T y p e ;
T e r m i n a t o r : c o n s t a n t := Link Type ’ L a s t ;
I n f L e n g t h : c o n s t a n t := Max Items + 1 ;
Free Head , Used Head : Link Type ;

−− I n v a r i a n t H e l p e r s ( e x c e r p t s )
f u n c t i o n F r e e E l e m e n t s I n v a r i a n t re turn Boolean
−−# g l o b a l I t e m L i s t , N e x t L i s t , Free Head ;

i s
C u r s o r : Link Type ;
R e s u l t : Boolean := True ;

begin
C u r s o r := Free Head ;
whi le R e s u l t and then C u r s o r /= T e r m i n a t o r loop

R e s u l t := I t e m L i s t ( Cu r s o r ) . ID=S e t D e f s . N u l l I D
and then
I t e m L i s t ( Cu r s o r ) . Value=S e t D e f s . N u l l V a l u e ;

C u r s o r := N e x t L i s t ( C u r s o r ) ;
end loop ;
re turn R e s u l t ;

end F r e e E l e m e n t s I n v a r i a n t ;

f u n c t i o n I n v a r i a n t re turn Boolean
−−# g l o b a l i n N e x t L i s t , Free Head , Used Head , I t e m L i s t ;

i s begin
re turn not I s C y c l i c ( Free Head ) and then

not I s C y c l i c ( Used Head ) and then
U s e d E l e m e n t s I n v a r i a n t and then
F r e e E l e m e n t s I n v a r i a n t and then
S i z e O f L i s t ( Free Head )

+ S i z e O f L i s t ( Used Head )=Max Items ;
end I n v a r i a n t ;

procedure Get Va lue
( ID : in S e t D e f s . ID Type ;

Value : out S e t D e f s . Value Type ;
Found : out Boolean )

−−# g l o b a l i n I t e m L i s t , Used Head , N e x t L i s t ;
−−# pre ID / = S e t D e f s . N u l l I D and t h e n
−−# I n v a r i a n t ( N e x t L i s t , Free Head ,
−−# Used Head , I t e m L i s t ) ;
−−# p o s t I n v a r i a n t ( N e x t L i s t , Free Head ,
−−# Used Head , I t e m L i s t ) and t h e n
−−# c o n t a i n s ( ID , Used Head ,
−−# I t e m L i s t , N e x t L i s t ) = Found and t h e n
−−# ( Found−>( Value / = S e t D e f s . N u l l V a l u e ) ) and
−−# t h e n ( n o t Found−>( Value = S e t D e f s . N u l l V a l u e ) )

i s
C u r r I n d e x : Link Type ;

begin
Value := S e t D e f s . N u l l V a l u e ;
C u r r I n d e x := Used Head ;
Found := F a l s e ;
whi le not Found and then C u r r I n d e x /= T e r m i n a t o r loop

i f I t e m L i s t ( C u r r I n d e x ) . ID = ID then
Value := I t e m L i s t ( C u r r I n d e x ) . Value ;
Found := True ;

e l s e C u r r I n d e x := N e x t L i s t ( C u r r I n d e x ) ;
end i f ;

end loop ;
end Get Va lue ;

procedure Add
( ID : in S e t D e f s . ID Type ;

Value : in S e t D e f s . Value Type ;
Response : out S e t D e f s . Response Type )
−−# g l o b a l i n o u t I t e m L i s t , N e x t L i s t ,
−−# Free Head , Used Head ;
−−# pre ( ID / = S e t D e f s . N u l l I D ) and t h e n
−−# ( Value / = S e t D e f s . N u l l V a l u e ) and t h e n
−−# and t h e n I n v a r i a n t ( N e x t L i s t , Free Head ,
−−# Used Head , I t e m L i s t ) ;
−−# p o s t I n v a r i a n t ( N e x t L i s t , Free Head ,
−−# Used Head , I t e m L i s t ) and t h e n
−−# ( Response = S e t D e f s . DB No Room −>
−−# ( Free Head ˜ = T e r m i n a t o r and t h e n
−−# Free Head ˜ = Free Head ) ) and t h e n
−−# ( Response = S e t D e f s . DB Success −> (
−−# ( f o r a l l I i n I t e m L i s t I n d e x T y p e =>
−−# ( ID / = I t e m L i s t ˜ ( I ) . ID ) )
−−# and t h e n
−−# ( f o r some I i n I t e m L i s t I n d e x T y p e =>
−−# ( ID = I t e m L i s t ( I ) . ID ) ) ) )
−−# and t h e n
−−# ( Response = S e t D e f s . D B A l r e a d y E x i s t s −>
−−# ( f o r some I i n I t e m L i s t I n d e x T y p e =>
−−# ( ID = I t e m L i s t ˜ ( I ) . ID and t h e n
−−# ID = I t e m L i s t ( I ) . ID ) ) ) ;

i s
C u r r I n d e x : Link Type ;
Temp Value : S e t D e f s . Value Type ;
Found : Boolean ;

begin
i f ID /= S e t D e f s . N u l l I D then

i f Free Head /= T e r m i n a t o r then
Get Va lue ( ID , Temp Value , Found ) ;
i f not Found then

C u r r I n d e x := Free Head ;
Free Head := N e x t L i s t ( Free Head ) ;
I t e m L i s t ( C u r r I n d e x ) . ID := ID ;
I t e m L i s t ( C u r r I n d e x ) . Value := Value ;
N e x t L i s t ( C u r r I n d e x ) := Used Head ;
Used Head := C u r r I n d e x ;
Response := S e t D e f s . DB Success ;

e l s e
Response := S e t D e f s . D B A l r e a d y E x i s t s ;

end i f ;
e l s e

Response := S e t D e f s . DB No Room ;
end i f ;

e l s e
Response := S e t D e f s . D B I n p u t C h e c k F a i l ;

end i f ;
end Add ;

Fig. 1. LinkedIntegerSet Example (excerpts)

Since Spark excludes dynamically-allocated data, all Spark arrays are allocated stat-
ically and must have statically determined bounds (whose sizes are known at compile
time). Spark arrays are values; passing arrays as parameters and assignment between
variables of an array type results in an array copy. Arrays can be compared for value
equality (structurally) in both method implementations and contracts. In addition, con-
tracts can utilize the array update notation A[I => V] which denotes an array value
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that is identical to that currently held by array A except that the position given by the
expression I maps to the value of the expression V.

3 Bakar Kiasan Symbolic Execution Engine

SymExe characterizes values flowing through a program using logical constraints. Con-
sider the Min example in Figure 2 that computes the minimum of two values. In this
case, we are interested in proving that the assertion in line 9 is never executed (i.e., the
true-branch in line 8 is infeasible) without knowing specific concrete values. Thus, we
introduce special symbolic values a and b to act as placeholders for concrete values
of A and B, respectively. The computation tree on the right side of Figure 2 illustrates
SymExe on the procedure by keeping track of the symbolic values bound to each vari-
able as well as logical constraints (i.e., the path condition given in curly brackets {..}).

Initially, the constraint set is empty because we know nothing about how a and b
are related. After executing line 3, we know that Z=a, thus, (A=a and B=b and Z=a).
At line 5, both the condition (a < b) and its negation (b >= a) are satisfiable (i.e.,
there are integer values for a and b that satisfy these conditions because a and b are
currently unconstrained), thus, we have to consider both program executions following
the conditional’s true-branch and its false-branch; thus, the initial path in on the right
side of the figure splits into two possible cases. At line 8, the program state is charac-
terized by either (A=a and B=b and Z=a and {a < b}) or (A=a and B=b and Z=b and
{b >= a}). The constraints imply that the if-condition at line 8 is false in either situation
(as indicated by the F for the path condition for the “true” cases) – there is no feasible
path (no possible assignment of concrete values to inputs) that lead to line 9—and thus
exploration along these paths is ignored.

Bakar Kiasan includes an interface to underlying decision procedures (including
CVC3 [2], Yikes [10], and Z3 [7]). These are used to determine if constraints in path
conditions are satisfiable in order to make decisions at branching points such as the
ones at lines 5 and 8, and more generally, to determine if boolean conditions in method
contracts are satisfiable. Constraints to be passed to conventional decision procedures
are first passed through Kiasan’s Lightweight Decision Procedure (LDP) module [4].
LDP contains a collection of rules for rapid solving of common constraint shapes and
for implementing various forms of constant propagation that allow many constraints
to be solved without the overhead of pushing constraints all the way out to an ex-
ternal decision procedure. It has been demonstrated that LDP can give a significant

1 f u n c t i o n Min (A, B : I n t e g e r )
2 return I n t e g e r i s
3 Z : I n t e g e r := A;
4 beg i n
5 i f B < A then
6 Z := B ;
7 end i f ;
8 i f Z>A or e l s e Z>B then
9 −−# a s s e r t f a l s e ;

10 n u l l ;
11 end i f ;
12 return Z ;
13 end Min ;

Fig. 2. Illustration of Symbolic Execution for a simple example
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reduction in analysis time (by an order of magnitude) [4]. For Spark scalar types, Bakar
Kiasan depends on LDP and the underlying decision procedures for constraint solv-
ing. Developing SymExe to better support dynamically-allocated objects [16,23,8] has
been a significant focus of previous research. Since Spark uses only statically-allocated
and value-based composite structures (array/records), previous approaches need to be
adapted to this setting.

In contrast to other approaches, however, Bakar Kiasan supports both logical and
graph-based symbolic representations of complex structures. In the logical representa-
tion, Bakar Kiasan uses supported theories in underlying decision procedures for rep-
resenting values of arrays and records. In the graph-based representation, Kiasan uses
an adaptation of [8] in which an explicit-state representation (similar to what would
be used in explicit-state model checking) is used to model composite structures, and
decision procedure support is used only to handle constraints on scalar values. Our
approach for Java is adapted for Spark by optimizing away aliasing cases, and it is en-
hanced to handle value-based structures instead of reference-based structures by using
an optimized form of copy-on-write state tree structures.

The symbolic value manipulation above is incorporated in a depth-first exploration.
Since SymExe does not merge state information at program joint points after branches
and loops, the analysis may not terminate when the program being checked contains
loops or recursion, unless inductive predicates such as loop invariants are provided at
these loops and recursion points, as shown by [13]. However, in the context of programs
manipulating complex structures, precise loop invariants are difficult to obtain.

A key goal of Bakar Kiasan is to offer developers an approach that provides mean-
ingful checking without requiring the effort of writing loop invariants. The usual ap-
proach to address the termination issue is to employ some form of bounding. There are
a variety of bounding mechanisms that have been used in the literature, such as loop
bounding, depth bounding (i.e., limiting the number of execution steps), bounding on
the length of method call chains, etc. The use of these bounding mechanisms leads to
an under-approximation of program behaviors. Technically, this means that the analysis
is unsound in general, and care must be taken when interpreting analysis reports that
indicate no bugs are found (errors may exist in the portion of the program’s state space
that was not explored). To compensate, Bakar Kiasan notifies users when a bound is
exhausted with the program point (and state) where it occurs, thus, users are warned of
potential behaviors that are not analyzed.

These are trade-offs that we are certainly willing to accept. The under-approximation
and path splitting means that the analysis yields no false positives. Moreover, the anal-
ysis will provide complete verification when the procedure includes no loops (as often
occurs in embedded programs). Most importantly, as we will explore in the following
section, it allows developers to easily check sophisticated properties that, in practice,
they would never check using totally automatic non-bounded methods.

4 Checking Spark Contracts in Kiasan

Most contract checking tools work compositionally and require that every method be
given a contract. Bakar Kiasan provides greater flexibility by providing the ability to
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check Spark program behaviors either compositionally, non-compositionally, or mixed.
Intuitively, when analyzing a procedure P, Kiasan starts by assuming P’s pre-condition
(i.e., adding the pre-condition to the path condition as a conjunct). The analysis pro-
ceeds by symbolically executing P’s body, and then asserting P’s post-condition (i.e.,
branching into two paths; one assumes the post-condition, and the other assumes the
negation of the post-condition that leads to an error state). If P calls another procedure
Q, Kiasan can symbolically execute Q directly (non-compositional), or substitute Q by
its contract (compositional, via translation of contracts to executable form described
below), as instructed by the user.

When applying non-compositional checking to Q, Kiasan asserts Q’s pre-condition,
performs appropriate parameter passing mechanics, and continues on with its depth-
first exploration. Kiasan asserts Q’s post-condition when it is encountered along each
explored path. When applying compositional checking to Q, Kiasan asserts Q’s pre-
condition, havocs (i.e., assigns fresh unconstrained symbolic values to) all Q’s out vari-
ables, and then assumes Q’s post-condition. These steps ensure that Q’s effect on out
variables as specified by its contract is captured by: (a) starting with no knowledge about
the variables’ values, and then (b) applying the constraints in Q’s post-condition which
would typically constrain the values of the out variables. If no contract is supplied for a
procedure, the procedure is treated as if its pre/post-condition expressions are both true
(i.e., checking always succeeds but the values of out variables are unconstrained).

Kiasan processes contracts by (automatically) translating each contract to an exe-
cutable representation in the Spark programming language that can be processed using
the same interpretive engine used to process Spark procedure implementations. Since
Spark’s contract language is a super set of the expression language of its programming
language, many aspects of this translation process are achieved rather directly. In the
following paragraphs, we describe how we obtain an executable representation for ad-
ditional elements of the contract language.

An “old” expression (i.e., e˜, for an expression e) in the post-condition of proce-
dure P is handled via transformation. Intuitively, e’s value is saved to a (fresh) vari-
able x before P is executed, and upon post-condition checking, e˜ is replaced with x.
This strategy applies both to Spark scalar and complex structure (array and record) val-
ues (recall that Spark has a value semantics for complex structures). In addition, since
Spark’s contract expression language is side-effect free, several occurrences of e˜ can
be substituted with the same variable. Old expression processing is illustrated for the
Inc procedure below; the code on the left hand side is transformed by Kiasan into the
one in the right hand side:
procedure I n c ( I : in out I n t e g e r )
−−# pr e I > 0;
−−# p o s t I = I ˜ + 1;

i s
begin

I := I +1;
end I n c ;

. . .
begin

assume I > 0 ;
o l d I := I ;
I := I +1;
a s s e r t I = o l d I + 1 ;

end I n c ;

Since Spark records and arrays are value-based, the contract language provides an
equality operation (=) that can be used to test entire records and arrays for equality
regardless of their level of complexity/nesting. In Kiasan’s logical representation of ar-
rays/records, there is a fairly direct translation to the equality operators and function
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update notation used by underlying decision procedures. In the graph-based arrays/
records symbolic mode, Kiasan uses its own optimized algorithm tailored specifically
for checking Spark value-based arrays and records adapted from [8].

Kiasan transforms quantifications into loops. Universal and existential quantifica-
tion of the forms for all x in τ => φ(x) and for some x in τ => φ(x), respectively, are
transformed as illustrated below (using a pseudo-code notation to capture the intuition):

−− u n i v e r s a l
R e s u l t := True ;
S := KiasanVa lues ( τ ) ;
f o r x in S l oop

i f not φ ( x ) then
R e s u l t := F a l s e ;
e x i t ;

end i f ;
end loop ;

−− e x i s t e n t i a l
R e s u l t := F a l s e ;
S := KiasanVa lues (τ ) ;
f o r x in S l oop

i f φ ( x ) then
R e s u l t := t r u e ;
e x i t ;

end i f ;
end loop ;

Using this transformation scheme, nested quantifications become nested loops. Use of
the Kiasan function KiasanValues allows the analysis to be configured to implement
different exploration strategies for the array elements. In its simplest form, the func-
tion simply returns all elements of the range specified by τ. Executing the loop body
implementing the quantification may lead to Kiasan’s loop bound being exhausted if
the number of array elements exceeds the loop bound. To work around this issue, users
can configure Kiasan to return a bounded number of distinct and ordered (i.e., strictly
ordered) fresh symbolic (or concrete) values in τ, with the hope that these values would
act as witnesses to uncover inconsistency between the program and its specification.
Regardless, Kiasan warns the users if there are potential behaviors that are not analyzed
(i.e., potentially unsound). We adopt this pragmatic approach for the sake of giving
users some helpful feedback due to the inherent limitation (i.e., incompleteness) of de-
cision procedures on general quantifications.

5 Bakar Kiasan Methodology and Tools

Developers can interact with Bakar Kiasan in two ways: (1) via the command line in-
terface for which a comprehensive HTML report is generated, and (2) via a GUI built
as an Eclipse plug-in. The GUI, which is integrated with both AdaCore’s GNATBench
and the Hibachi Eclipse plug-ins, provides the ability to invoke the AdaCore GNAT
compiler and Spark tools, and visualize typical Eclipse error mark-ups corresponding
to errors reported by the compiler and Spark tools. Space constraints do not allow us
to give screen-shots or details of the HTML report or GUI, but these can be found in
the extended version of this paper [3]. Below, we give a brief overview of Bakar Kiasan
capabilities that directly impact developer workflows and the methodology of the tool.

Visualizing procedure inputs/outputs and constraints: Gaining intuition and a proper
understanding of a procedure’s input and output behavior is an important element of
writing and debugging contracts. To assist in this, for each path explored in a contrac-
t/procedure, Kiasan generates a use case visualization that provides an example of a
concrete pre/post-state for that path. These use cases are constructed by calling model
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Add
Line Number: 249

ID = 3

Response = 0

Value = 1

pre-state

LinkedIntegerSet.Free_Head = 1

LinkedIntegerSet.Used_Head = 2

LinkedIntegerSet.Item_List_Type length = 3 0 1 2

LinkedIntegerSet.Item_Type

id = 1

value = -1

LinkedIntegerSet.Item_Type

id = 0

value = 0

LinkedIntegerSet.Item_Type

id = 2

value = -1

LinkedIntegerSet.Next_List_Type length = 3 [0] = 3 [1] = 3 [2] = 0

LinkedIntegerSet.Item_List

LinkedIntegerSet.Next_List

Add
Line Number: 285

Curr_Index = 1

Found = false

ID = 3

Response = 0

Temp_Value = 0

Value = 1

post-state:4

LinkedIntegerSet.Free_Head = 3

LinkedIntegerSet.Used_Head = 1

\result = 0

LinkedIntegerSet.Item_List_Type length = 3 0 1 2

LinkedIntegerSet.Item_Type

id = 1

value = -1

LinkedIntegerSet.Item_Type

id = 3

value = 1

LinkedIntegerSet.Item_Type

id = 2

value = -1

LinkedIntegerSet.Next_List_Type length = 3 [0] = 3 [1] = 2 [2] = 0

LinkedIntegerSet.Item_List

LinkedIntegerSet.Next_List

Fig. 3. Bakar Kiasan Pre/Post Use Case

finders that are usually part of decision procedures such as Yices and Z3 to find a so-
lution to the symbolic pre/post-state constraints for the path. Figure 3 shows a use case
for the LinkedIntegerSet.Add method of Figure 1 corresponding to a path through the
method where an entry is successfully added. The pre-state shows the element to be
added has ID=3 and Value=1. Index position 1 of the Item List holds a null entry, and
the post-state shows the newly added item replacing this entry. The index 3 is the ter-
minator for this example, thus the post-state with Free Head=3 indicates that the “free
list” is now empty.

Although this example is taken from a procedure with a contract, the use case vi-
sualizations are also useful when applied to procedures before contracts are written to
help understand input/output relationships and guide the developer in writing contracts.
In the GUI, developers can also step through the statements along each path in the use
case and see both concrete values and symbolic constraints at each step.

Test case generation: SymExe is widely used for test case generation, and the same
techniques can be applied here to generate, e.g., a test in the AUnit format using the
concrete values provided in the use cases2. Although the application of Kiasan already
“checks the code” and no additional bugs would be uncovered by running the generated
tests, we have found that generation of test cases can provide additional confidence to
people unfamiliar with formal methods because they provide evidence external to the
tool using quality assurance concepts that they are well acquainted with (i.e., testing)
that Kiasan is correctly exploring the program’s state-space.

Coverage information: Gaining an appropriate understanding of what portions of a
program’s behavior have been explored or omitted is an important methodological as-
pect of applying bounded verification. To aid in this, both the Kiasan HTML report and
GUI provide extensive branch and statement coverage information that allows devel-
opers to see portions of the code that may have been omitted during analysis due to
bounding. This information typically drives an iterative process where contracts/code
are debugged using smaller bounds and then bounds are increased to obtain desired
levels of coverage. It is important to note that Kiasan gives an exhaustive (i.e., com-
plete in a technical sense) exploration of program behavior within bounds (relative to

2 This capability is not yet provided but will be implemented in the near future.
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limitations of decision procedures such as non-linear arithmetic). The factor limiting
coverage is not precision of the analysis (e.g., within analysis bounds, Kiasan always
gives 100% MCDC coverage of reachable code), it is rather the required analysis time.

We now turn to key novel features of Bakar Kiasan that dramatically improve the
usefulness of the Spark contract language.

No loop invariants required: The existing Spark tool chain and other VCGen tech-
niques that only aim for complete verification require loop invariants. While progress
has been made on research for inferring invariants [19,6], these techniques typically
do not perform very well when complex data structures are involved. For example,
consider the loop in Get Value of Figure 1. An invariant for this loop would be very
difficult for a developer to write using the logical expressions of Spark’s contract lan-
guage because the loop is not iterating directly over the array (sequential progression
through indices), but rather over the logical structure of the “used list” which jumps
back and forth among index positions of the Item List array via indirection realized by
index values held in the Next List. We believe that it is unlikely that a typical developer
would ever use the existing Spark tools to check this contract/procedure. Insisting on
the presence of loop invariants before providing any sort of conclusive information is
a serious impediment to the practical use of contracts. In contrast, Kiasan checks this
contract without loop invariants automatically. Even though Kiasan requires relatively
small bounds to be tractable, this gives a very thorough analysis of the structure of the
code/contract.

Blended logical/executable contracts: Some constraints are quite simple and natu-
ral to express directly in Spark’s contract language. For example, the constraints on
DB.Success and DB.Already Exists in the bottom of Figure 1, even though non-trivial,
can be coded using universal/existential quantification. However, the invariant proper-
ties and the Contains predicate used in Get Value would be very difficult for a de-
veloper to write in the contract language. It is possible in the current Spark tools to
introduce calls to helper functions such as Invariant and Contains. However, VCGen in
Spark makes no connection between the use of such helper functions and their seman-
tics as provided by their implementations. In Spark, the semantics of such functions
must be specified as axioms (rewrite rules) in the FDL proof language. This adds a con-
siderable level of complexity to developer effort that almost always will result in devel-
opers not using contracts. In contrast, the SymExe foundation of Bakar Kiasan enables
the semantics of such functions to be directly specified in the SPARK programming lan-
guage as we illustrate in Figure 1—a task that would be straightforward for developers.
Since all functions are guaranteed to be side-effect free in Spark, this feature allows one
to express complex properties (e.g., the contains function of Figure 1) in a form that is
simpler and familiar to developers. We have found this capability to be extremely use-
ful in practice. Ultimately, we envision a methodology which would gracefully move
toward full functional verification by enabling the executable semantics of the helper
functions to be incrementally switched out and replaced by corresponding definitions
in an interactive theorem prover.

Compositional/Non-compositional checking: Kiasan’s ability to support both com-
positional and non-compositional checking (as described in Section 4) also makes it
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easier for developers to start benefiting from contracts. Contracts can be specified for
the most important methods and omitted for the rest.

Bounded checking matching well with Spark applications: The style of bounded
checking, while technically not providing the complete checking of VCGen/theorem-
prover frameworks, in practice, it often completes the verification of procedures in em-
bedded applications because such applications often have procedures without loops. In
addition, embedded applications usually statically bound the size of data structures—
which is a requirement in Spark. Compared to conventional applications, this increases
the likelihood that significant portions of a program’s state-space can be covered within
the bounding employed by Kiasan.

6 Evaluation

In this section, we report on the effectiveness of Bakar Kiasan when applied to a col-
lection of examples representative of code found in embedded information assurance
applications. Information about individual methods from these examples is displayed
in Table 1. The sorting examples are a collection of library methods that manipulate
array-based data structures as might be used to maintain configurable rules for manag-
ing message processing. IntegerSet and LinkedIntegerSet are representative of data
structures used to maintain data packet filtering and transformation. IntegerSet pro-
vides an array-based implementation of an integer set data structure that adds an ele-
ment by inserting it at the end of the occupied slots in the array and deletes an element
by sliding the contents of occupied slots at higher index positions down one slot to re-
claim the slot at which the element was deleted. LinkedIntegerSet, described earlier
in Section 2, comes directly from a Rockwell Collins code base and uses two arrays to
provide a set implementation with more efficient additions/deletions. The MMR (MILS
Message Router) is an idealized version of a MILS infrastructure component (first pro-
posed by researchers at the University of Idaho [20]) designed to mediate communi-
cation between partitions in a separation kernel [21]—the foundation of specialized
real-time platforms used in security contexts to provide strong data and temporal sepa-
ration. The MMR example is especially challenging to reason about because messages
flow through a shared pool of memory slots (represented as one large array) where the
partition “ownership” of slot contents changes dynamically and is maintained indirectly
via two other two-dimensional arrays that hold indices into the memory array.

For each of these examples, C-LoC and I-LoC in Table 1 gives the number of lines
of code in the method contract and implementation, respectively, broken down as X/Y
where X is the LoC appearing directly in the contract or implementation and Y is the
LoC appearing in helper functions. For Helper X/Y, X is the number of helper functions
used in the contract; Y is the number of methods called in the implementation.

We seek to answer two primary questions with this evaluation: Question (I): can
Bakar Kiasan provide a significant increase over the existing Spark tool chain VCGen
approach in the level of automation of contract checking? and Question (II): is the time
required for Kiasan contract checking short enough to allow the tool to be employed as
part of the developer code/test/debug cycles?
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Table 1. Experiment Data (excerpts)

Package.Procedure Name C-LoC I-LoC Helper Loop VC k=3 k=4 k=5 k=6 k=7 k=8
Sort.Bubble 1/23 14/4 3/1 2 13/18 0.17 0.96 2.09 8.43 71.72 890.18
Sort.Insertion 1/21 11/0 3/0 2 10/14 0.15 0.98 2.06 8.24 70.72 892.17
Sort.Selection 1/21 15/0 3/0 2 28/30 0.16 1.06 2.28 9.95 90.14 1356.18
Sort.Shell 1/21 15/0 3/0 3 17/18 0.15 0.98 2.12 8.47 74.09 941.99
IntegerSet.Get Element Index 7/0 8/0 0/0 1 8/11 0.04 0.05 0.06 0.07 0.08 0.10
IntegerSet.Add 8/29 4/2 4/3 0 3/5 0.24 0.44 0.62 0.79 0.80 1.04
IntegerSet.Remove 8/27 6/0 4/1 0 5/6 0.16 0.30 0.56 0.96 1.21 1.36
IntegerSet.Empty 1/0 2/0 0/0 0 3/3 0.02 0.02 0.02 0.02 0.02 0.02
LinkedIntegerSet.Get Value 6/45 12/0 6/0 1 9/10 0.64 0.88 1.13 1.51 2.19 2.85
LinkedIntegerSet.Add 15/51 23/12 6/1 0 14/16 0.43 0.73 1.66 5.26 34.96 379.34
LinkedIntegerSet.Delete 14/45 22/0 6/0 1 18/21 0.52 0.72 1.03 1.56 2.10 2.75
LinkedIntegerSet.Init 1/37 10/0 5/0 2 16/17 0.05 0.04 0.04 0.05 0.05 0.05
MMR.Fill Mem Row 3/1 6/1 0/1 1 8/10 0.18
MMR.Zero Mem Row 5/1 3/1 0/1 1 6/7 0.19
MMR.Zero Flags 4/0 3/0 0/0 1 6/7 0.05
MMR.Read Msgs 15/63 5/13 6/5 0 3/4 1.71
MMR.Send Msg 10/24 6/1 3/3 0 4/5 0.50
MMR.Route 22/82 22/1 9/2 2 62/67 13.90

Regarding Question (I), there are at least three forms of manual activity required to
use the Spark contract checking framework that go beyond what is required by Bakar
Kiasan: (1) the need to supply loop invariants, (2) the need to add axioms to provide the
semantics for uninterpreted functions used in contracts, and (3) the need to manually
discharge VCs that are left unproven by the Spark tools (we refer to these as “undis-
charged VCs”).

Loop invariants: The Loop column records the number of loops in the implementa-
tion and indicates that well over 50% of the methods require a loop invariant describing
properties of arrays when using Spark’s VCGen approach. For example, LinkedInte-
gerSet.Get Value requires a complex loop invariant that depends on logic encoded in
the helper function contains—which would either need to be coded in logical form
or axiomatized in the FDL proof language (either approach would be very difficult
and would likely fall outside of the scope of effort that a typical developer would be
expected to expend). Kiasan allows developers to obtain effective bounded contract
checking without having to add these loop invariants.

Verification Conditions: A VC column entry of X/Y indicates that X VCs were au-
tomatically discharged by Spark out of Y generated VCs. Our experiments show that
almost any contract that requires quantification (often required by functions that manip-
ulates arrays) will have undischarged VCs. To give an indication of the amount of effort
required to manually discharge VCs in the Spark Proof Checker3, a faculty member of
our team with extensive experience in automated proof checking used the Proof Checker
to prove the 3 undischarged VCs from one of our simplest examples—Value Present
which looks for an occurrence of a specified value in an array; 4 out of 7 of the VCs
(those dealing with simple range checks on integer subtypes and array bounds) were
automatically discharged by Spark. Of the 3 remaining, 2 of the VCs required two
proof steps to discharge while one required ten steps. Our best estimate is that it would
take a Proof Checker expert user approximately 15 minutes to proof these three VCs.
Given that the more realistic examples that we considered are much more complicated,

3 Proof Checker is Spark’s interactive prover.
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we can conclude that it is extremely unlikely that the Spark tool chain would be used
in its present form by typical developers to check contracts other than those that cap-
ture simple numeric constraints (though it is possible that the Proof Checker could be
used by verification engineers in an extensive verification period at the conclusion of
development). In contrast, Kiasan provides effective bounded contract checking auto-
matically for all the methods in all of our examples. Thus, it significantly improves the
accessibility and usefulness of Spark contracts.

Regarding Question (II), as discussed in the previous section, checking must be
bounded for Kiasan checking to be tractable. The bounding philosophy used here is
similar to that of Alloy [14]—bounded verification with relatively small bounds can be
very useful in uncovering program flaws (in design and implementation). Moreover, due
to the bounded nature of Spark, we believe our bounded approach fits well with how
developers use Spark. Table 1 shows timing data (in seconds) with array sizes from
k = 3 . . . 8 elements (an exception is the MMR, which uses two-dimensional arrays of
size 3 and a single dimensional array of size 9). The data shows that contract checking
for even an entire package (except the MMR.Route) can be completed in 1-2 seconds
for bounds of k = 3, 4 – indicating that Kiasan is clearly viable for incorporation in the
code/test/debug loop of the developers. As an indication of how the performance scales,
when we increased the array size for the LinkedIntegerSet example to 8, Delete and
Get Value completed in under 3 seconds each while Add required just over 6 minutes.
This suggests that Kiasan could be deployed to check within small bounds during typi-
cal development activity, and then applied to check within larger bounds over night.

7 Related Work

Our long term research plan seeks to demonstrate that SymExe can serve as a true veri-
fication technique (albeit bounded at this point) that can provide high confidence in the
domain of embedded safety/security-critical systems in a highly automated fashion. As
part of our effort to provide a rigorous foundation for SymExe, in previous work we have
justified SymExe execution algorithms by providing proofs of correctness for complex
optimizations [4,8] and by providing mathematical approaches to calculate minimum
number of test-cases and execution paths needed to achieve exhaustive exploration of
program’s data state [9].

There has been a lot of work on SymExe for programs that manipulate dynamically-
allocated structures (e.g., [16,12,22,11,23,5]). Bakar Kiasan directly leverages existing
decision procedures on complex structures (i.e., records and arrays) when it is in logical
representation mode [18]. This is similar to symbolic execution approaches that use a
logical approach such as XRT [12] (and many others), however, without the complica-
tion of modeling program heap and pointer aliasing due to Spark characteristics. When
graph-based symbolic representation is used, the underlying algorithm in Bakar Kiasan
is an adaptation of lazy initialization algorithms that were designed for Java [8], but
optimized for inherent properties of Spark programs. In addition, we focus on bounded
verification of program behavioral contracts, as opposed to mainly finding bugs.

Carrying out work that is crucial for moving the Spark infrastructure forward,
Jackson and Passmore [15] aim to improve the usability of Spark by building the
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Victor [25] tool that translates Spark VCs to the various SMT solvers including
CVC3 [2], Yices [10], and Z3 [7]. They note that concerns over the cost of handling
non-automatically proven VCs cause “most Spark users [to] settle for verifying little
more than the absence of run-time exceptions caused by arithmetic overflow, divide
by zero, or array bounds violations” and that “the number of non-automatically-proved
VCs is usually significant.” Using examples that primarily consist of VCs from run-time
checks instead of full contracts, they show that using SMT solvers instead of the Spark
tooling discharges roughly the same number of VCs, but provides better performance
and better error explanations. Their conclusions substantiate our arguments that, even
though better support for VC proving can improve the Spark tools, substantially in-
creasing the automation of VC proving is difficult even with state-of-the-art solvers. In
our opinion, this provides addition justification for considering a tool like Bakar Kiasan
to complement VC proving by trading off complete verification for highly-automated
bounded checking of expressive contracts.

8 Conclusion and Future Work

We have illustrated how symbolic execution techniques can increase the practicality of
contract-based specification and checking in development of safety and security criti-
cal embedded systems. These techniques are complementary and can be used in con-
junction with other contract verification techniques such as VCGen that more directly
target full functional verification. SymExe hits a “sweet spot” between trade-offs of:
the completeness of full functional verification to obtain a much greater degree of au-
tomation, the ability to more naturally blend processing of declarative and executable
specifications, better support for error trace explanation and visualization, and stronger
connections to other quality assurance methods such as testing. Although we have il-
lustrated these techniques in the context of Spark, they can be adapted easily to other
contexts as well, e.g., for safety critical subsets of C with contract languages [24]. In the
case of the current Spark tool chain, SymExe can play a key role in moving the Spark
contract framework from a method that is rarely used into one that is quite usable and
quite effective in development of critical systems.

Our experience in using the Spark contract language has exposed the need for several
extensions including first class support for specifying package and invariants and data
refinement. We are also investigating how contract extensions supporting rich secure
information flow specifications can be integrated with the work presented here.
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Abstract. This paper describes an approximate quantifier elimination
procedure for propositional Boolean formulae. The method is based on
computing prime implicants using SAT and successively refining over-
approximations of a given formula. This construction naturally leads to
an anytime algorithm, that is, it can be interrupted at anytime without
compromising soundness. This contrasts with classical monolithic (all or
nothing) approaches based on resolution or model enumeration.

1 Introduction

Model checking and abstract interpretation are sub-disciples of formal methods
that, for many years, have been diametrically opposed. In model checking a pro-
grammer prescribes a so-called model that formally specifies the behaviour of the
system or program. All paths through the program are then exhaustively checked
against this requirement. Either the requirement is discharged or a counterexam-
ple is found that illustrates how the program is faulty. The detailed nature of the
requirements entails that the program is simulated in a fine-grained way, some-
times down to the level of individual bits. Enumerating all these combinations
is computationally infeasible. Thus, there has been much interest in represent-
ing all the states of a program symbolically, which enables states that share
commonality to be represented without duplicating their commonality.

In abstract interpretation, the key idea is to abstract away from the detailed
nature of states. Then the program checker operates over classes of related states
— collections of states that are equivalent in some sense — rather than individual
states. If the number of classes is small, then all the paths through the program
can be enumerated one-by-one without incurring the problems of state-space
explosion. When carefully constructed, the classes of states can preserve sufficient
information to prove the correctness requirements.

Despite their philosophical differences, the fields of model checking and ab-
stract interpretation are converging, partly because they draw on similar com-
putational techniques. A case in point is given by Boolean formulae that are
typically either represented with BDDs [5] or manipulated using SAT [22]. BDDs
have been widely applied, both in symbolic model checking [7], and as an abstract
domain for tracking dependences [1]. Although some niche problems remain diffi-
cult for SAT [6], clever ideas and careful engineering have advanced DPLL-based
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SAT solvers [22] to the point they can rapidly decide the satisfiability of struc-
tured problems that involve thousands of variables. Conseqently SAT has been
almost universally adopted within symbolic model checking [9].

1.1 Quantifier Elimination and Abstract Interpretation

Yet SAT remains a comparative novelty in abstract interpretation where it is
more often than not relegated to solving auxiliary problems such as that of
synthesising best transformers [4,20,30] rather then being integrated into the
heart of the analysis itself [18]. This is not because there is no interest in using
Boolean functions as an abstract domain [1,16,18] but rather because projection
operations, namely existential and universal quantifier elimination, fit less com-
fortably with SAT than with BDDs. Eliminating a single variable from a BDD,
either existentially or universally, is worst-case quadratic in size of the input
BDD [5, Sect. 3.3]. By way of contrast, the natural way to existentially quantify
using a SAT solver is to systematically enumerate the models of a formula using
blocking clauses. Even when the blocking clauses only constrain the variables
in the projection space, such methods are inefficient when compared to BDD-
based techniques because of the large number of models that may need to be
enumerated [6]. This would be less of a problem if projection was an infrequent
operation in abstract interpretation; the guiding principle in domain design is
that the commonly arising operations should be fast whereas the speed of the
infrequent operations is less critical. However, in dependency analysis, elimina-
tion is applied whenever a call is encountered. This is because the dependencies
at the call site need to be restricted to those variables that occur as the argu-
ments of a call so as to propagate dependency information across the body of the
callee. Existential quantification is applied to flow information in the direction
of the control-flow [1] whereas universal quantification is needed to propagate
requirements against the control-flow [13]. The frequency of call handling and
the inefficiency of SAT-based elimination methods have tended to bias abstract
interpretation towards BDDs [1], though new algorithms for elimination would
break this dependency.

1.2 Quantifier Elimination by Resolution and Striking Out Literals

For formulae presented in CNF, existential and universal quantifiers can alter-
natively be eliminated by resolution and striking out literals [22]. To illustrate,
let f = (∧n1

i=0x∨Ci)∧ (∧n2
j=0¬x∨Dj)∧ (∧n

k=0Ek) and consider ∃x : f and ∀x : f
where Ci, Dj and Ek are clauses that involve neither x nor ¬x. A quantifier-free
version of ∃x : f can be obtained by resolving each x ∨ Ci with ¬x ∨Dj to give
∃x : f = (∧n1

i=0 ∧
n2
j=0 Ci ∨Dj) ∧ (∧n

k=0Ek), increasing the representation size by
as many as n1n2−n1−n2 clauses. By way of contrast, ∀x : f can be found by re-
moving the x and ¬x literals to give ∀x : f = (∧n1

i=0Ci) ∧ (∧n2
j=0Dj) ∧ (∧n

k=0Ek),
reducing the size of the representation.

One might be forgiven for thinking that calculating a quantifier-free version of
∀y : f is straightforward when f is propositional and y is a vector of variables.
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For such an f , an equisatisfiable CNF formula g can be found [28] by introducing
fresh variables z to give f = ∃z : g [33] . But then ∀y : f amounts to solving
∀y : ∃z : g and the quadratic nature of resolution compromises the tractability
of this approach as the size of z increases.

1.3 Contributions to Approximate Quantifier Elimination

In this paper, we show how upper-approximation can be applied to eliminate z
from ∃z : g where g is presented in CNF. We show how a SAT solver can be re-
peatedly called to compute a sequence of CNF formulae h0, h1, . . . that converge
onto ∃z : g from above in the sense that ∃z : g entails hi (each model of ∃z : g
is also a model of hi). Each hi+1 strictly entails hi so the sequence is ultimately
stationary. However, each hi is free from all variables in z, hence this approach
has the attractive property that generation of the sequence h0, h1, . . . , ht can be
stopped prematurely, at any time t, without compromising soundness since each
hi is an upper-approximation of ∃z : g.

This approach leads to a so-called anytime (or interruptible [2, Sect. 2.6]) for-
mulation of projection that compares favourably against resolution and model
enumeration techniques, which lead to all or nothing, monolithic approaches.
Specifically, if g0 = g and gi+1 is obtained from gi by applying resolution to
remove another variable of z, then it is only the final formula g|z| that is free
from z. Moreover, the number of clauses in gi do not necessarily decrease as i
increases, and the size of intermediate gi can be significantly larger than both
g and its projection g|z|. By way of contrast, the size of the hi increases mono-
tonically as the sequence converges. We also show how to construct a sequence
h0, h1, . . . , ht which rapidly converges onto ∃z : g based on the enumeration of
prime implicants, that is, small conjunctions of literals which entail ∃z : g. As
a final contribution, we show how this scheme can be implemented with incre-
mental SAT [35] and sorting networks [14,21].

Our paper makes a specific contribution to a specific problem, yet that prob-
lem appears in various guises in model checking and abstract interpretation. As
already stated, projection arises in dependency analysis which is itself finding
new applications in, for example, information flow analysis [16]. Projection arises
when computing transfer functions [4] and, very recently, in the synthesis of rank-
ing functions from template constraints for low-level code [10]. The existence of
a ranking function on a path π with a transition rπ(x, x′) amounts to solving
the formula ∃c : ∀x : ∀x′ : rπ(x, x′)→ p(c, x) < p(c, x′) where p(c, x) is a poly-
nomial over the bit-vector x whose coefficients constitute the vector c. However,
if intermediate variables are needed to express rπ(x, x′), the polynomials p(c, x)
and p(c, x′) or the size relation < in CNF, then the quantifiers take the form
∃c : ∀x : ∀x′ : ∃z where z is the vector of intermediate variables. The authors
proceed by instantiating elements of the c vector to values drawn from the set
{−1, 0, 1}, then testing the formula ¬∃x : ∃x′ : rπ(x, x′) ∧ ¬(p(c, x) < p(c, x′))
for unsatisfiability. The method advocated in this paper suggests a more direct
approach, which avoids enumerating combinations of coefficients, and restricts
the coefficients to a small set of allowable values.
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2 Existential Quantification in Five Steps

The idea behind our approach is to converge onto the set of solutions of a formula
ϕ by adding constraints formed from the prime implicants of ¬ϕ that are derived
using SAT solving. This approach contrasts with existing techniques in that it
is based on successive refinement and thereby provides an anytime approach to
existential quantifier elimination. We build towards the technique in five steps.

2.1 Under-Approximation Using Implicants

We first show how to under-approximate an existentially quantified formula by
deriving an implicant ν of ∃z : ϕ, that is, ν |= ∃z : ϕ. To illustrate, let:

ϕ = (¬x ∨ z) ∧ (y ∨ z) ∧ (¬x ∨ ¬w ∨ ¬z) ∧ (w ∨ ¬z)

Let X = {w, x, y, z} denote the set of variables in ϕ. To project ϕ onto Y1 =
{w, x, y}, i.e. remove all information pertaining to the variables Y2 = X \ Y1 =
{z}, we introduce fresh sets of variables Y +

1 = {v+ | v ∈ Y1} and Y −
1 = {v− |

v ∈ Y1}. Each occurrence of the literal v in ϕ is replaced with v+ if v ∈ Y1 and
each occurrence of ¬v is replaced with v− if v ∈ Y1. The transformed formula is
augmented with a constraint ¬v+ ∨¬v− for each v ∈ Y1 so as to prevent v+ and
v− holding simultaneously. Let tY1 denote this transformation, hence:

tY1(ϕ) =
{

(x− ∨ z) ∧ (y+ ∨ z) ∧ (x− ∨w− ∨ ¬z) ∧ (w+ ∨ ¬z) ∧
(¬w+ ∨ ¬w−) ∧ (¬x+ ∨ ¬x−) ∧ (¬y+ ∨ ¬y−)

Then the formula tY1(ϕ) is defined over the set of variables X ′ = Y +
1 ∪ Y −

1 ∪Y2,
and a model of tY1(ϕ) is a map M : X ′ → B such as:

M =
{

w+ �→ 1, w− �→ 0, x+ �→ 0, x− �→ 1, y+ �→ 0, y− �→ 0, z �→ 1
}

The model M can be equivalently represented by the set {v ∈ X ′ | M(v) = 1},
and henceforth we shall use the map and set representation interchangeably.
The variables of M∩ (Y +

1 ∪ Y −
1 ) define a cube (a conjunction of literals) that

is given by ν = (
∧

v+∈M∩Y +
1

v) ∧ (
∧

v−∈M∩Y −
1
¬v). Therefore ν = (¬x ∧ w).

Observe that ν |= ∃Y2 : ϕ hence ν is a so-called implicant of ∃Y2 : ϕ which
constitutes an under-approximation of ∃Y2 : ϕ. This can be seen since ν is
free from any variables of Y2 and the conjunction ¬ϕ ∧ ν is unsatisfiable. To
converge onto ∃Y2 : ϕ from below, we augment tY1(ϕ) with the blocking clause
(¬x− ∨ ¬w+) which suppresses the previously derived solution. The blocking
clause ensures that any cube that is subsequently found does not entail ν. Then
tY1(ϕ) ∧ (¬x− ∨ ¬w+) is checked for satisfiability, yielding a model:

M′ =
{

w+ �→ 0, w− �→ 0, x+ �→ 0, x− �→ 1, y+ �→ 1, y− �→ 0, z �→ 0
}

which defines another implicant (¬x ∧ y) of ∃Y2 : ϕ, hence the refined under-
approximation (¬x∧ y)∨ (¬x∧w). Adding another blocking clause and passing
tY1(ϕ) ∧ (¬x− ∨ ¬w+) ∧ (¬x− ∨ ¬y+) to a SAT solver reveals the
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formula to be unsatisfiable. Convergence onto ∃Y2 : ϕ has thus been achieved
and ∃Y2 : ϕ = (¬x ∧ y) ∨ (¬x ∧ w). This can be checked by applying Schröder-
expansion [22, Sect. 9.2.3] to compute ∃Y2 : ϕ = ϕ[z �→ 0] ∨ ϕ[z �→ 1] =
((¬x) ∧ (y)) ∨ ((¬x ∨ ¬w) ∧ (w)) = (¬x ∧ y) ∨ (¬x ∧ w).

2.2 Over-Approximation Using Implicants

To derive an over-approximation of ∃Y2 : ϕ, a formula κ is constructed which is
equisatisfiable to ¬ϕ:

κ =

⎧⎪⎪⎨
⎪⎪⎩

(x ∨ t1) ∧ (¬z ∨ t1) ∧
(¬y ∨ t2) ∧ (¬z ∨ t2) ∧
(x ∨ t3) ∧ (w ∨ t3) ∧ (z ∨ t3) ∧
(¬w ∨ t4) ∧ (z ∨ t4) ∧ (¬t1 ∨ ¬t2 ∨ ¬t3 ∨ ¬t4)

The formula κ is obtained by a standard CNF translation [28] which introduces
fresh variables T = {t1, . . . , t4} such that ¬ϕ ≡ ∃T : κ. The variable ti in-
dicates whether a truth assignment violates the ith clause of ϕ. Applying the
transformation introduced previously then gives:

tY1(κ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x+ ∨ t1) ∧ (¬z ∨ t1) ∧
(y− ∨ t2) ∧ (¬z ∨ t2) ∧
(x+ ∨ t3) ∧ (w+ ∨ t3) ∧ (z ∨ t3) ∧
(w− ∨ t4) ∧ (z ∨ t4) ∧ (¬t1 ∨ ¬t2 ∨ ¬t3 ∨ ¬t4) ∧
(¬w+ ∨ ¬w−) ∧ (¬x+ ∨ ¬x−) ∧ (¬y+ ∨ ¬y−)

To see how tY1(κ) can be applied to find an over-approximation ¬ν of ∃Y2 : ϕ
observe that ν |= ∀Y2 : ∃T : κ iff ¬∀Y2 : ∃T : κ |= ¬ν iff ∃Y2 : ¬∃T : κ |= ¬ν
iff ∃Y2 : ϕ |= ¬ν. Hence to find an over-approximation of ∃Y2 : ϕ it suffices
to find an implicant of ∀Y2 : ∃T : κ. To find such an implicant observe that
∀Y2 : ∃T : κ |= ∃Y2 : ∃T : κ hence every implicant of ∀Y2 : ∃T : κ is also an
implicant of ∃Y2 : ∃T : κ. This suggests a strategy in which the implicants of
∃Y2 : ∃T : κ are filtered to find the implicants of ∀Y2 : ∃T : κ, that is, the
implicants ν |= ∃Y2 : ∃T : κ are filtered by checking ∃Y2 : ϕ |= ¬ν. Moreover,
the check ∃Y2 : ϕ |= ¬ν amounts to deciding whether the conjoined formula
ϕ ∧ ν is unsatisfiable. Thus an unsatisfiability check can be used for filtering.
To illustrate, suppose that a SAT solver produces the following solution to the
formula tY1(κ):

M =
{

w+ �→ 0, w− �→ 1, x+ �→ 0, x− �→ 0, y+ �→ 0, y− �→ 0
z �→ 1, t1 �→ 1, t2 �→ 1, t3 �→ 1, t4 �→ 0

}

The cube ν = (¬w) is an implicant of ∃Y2 : ∃T : κ and therefore it remains to
check whether ∃Y2 : ϕ |= ¬ν. Since ϕ ∧ ν is satisfiable, the cube is discarded.
However, before doing so, the formula tY1(κ) is augmented with ¬w− ∨ x+ ∨
x− ∨ y− ∨ y+ to avoid the cube being found again. This blocking clause can be
interpreted as an implication w− → (x+ ∨x− ∨ y− ∨ y+) which ensures that any
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cube subsequently found that entails ν also has more literals than ν. Applying
a SAT solver then yields a model:

M′ =
{

w+ �→ 0, w− �→ 0, x+ �→ 1, x− �→ 0, y+ �→ 0, y− �→ 0
z �→ 0, t1 �→ 0, t2 �→ 1, t3 �→ 1, t4 �→ 0

}

and hence ν′ = (x). Since ϕ∧ν′ is unsatisfiable, we conclude that ∃Y2 : ϕ |= ¬ν′,
hence ¬ν′ constitutes an over-approximation of ∃Y2 : ϕ. The blocking clause
¬x+ is then added to tY1(κ) to prevent any cube which entails ν′ being found.
Note too that this blocking clause differs in structure from the one imposed
previously, and indeed the number of literals in the clause is merely n where n is
the number of literals in the cube. In the previous case, the number of literals in
the blocking clause is 2|Y1|−n. Reapplying a SAT solver yields a further model:

M′′ =
{

w+ �→ 0, w− �→ 1, x+ �→ 0, x− �→ 0, y+ �→ 0, y− �→ 1
z �→ 1, t1 �→ 1, t2 �→ 1, t3 �→ 1, t4 �→ 0

}

which defines the cube ν′′ = ¬w∧¬y. Since ϕ∧ν′′ is unsatisfiable, it again follows
that ∃Y2 : ϕ |= ¬ν′′, which refines the over-approximation of ∃Y2 : ϕ to the
conjunction (¬ν′)∧ (¬ν′′). The blocking clause ¬w− ∨¬y− is then added to the
augmented formula at which point one final application of the solver indicates
that the conjoined formula is unsatisfiable. Hence convergence onto ∃Y2 : ϕ
has been obtained from above where ∃Y2 : ϕ = ¬ν′ ∧ ¬ν′′ = (¬x) ∧ (w ∨ y).
Terminating the procedure early, before ν′′ is computed, would yield the over-
approximation ¬ν′ = ¬x which, though safe, has strictly more models than
(¬x) ∧ (w ∨ y). Thus the method is diametrically opposed to resolution: In the
resolution based scheme, the projection is found in the last step only when all
variables have been eliminated one after the other. In the above SAT based
scheme, a clause in the projection space is obtained in the first step, as in a
parallel form of elimination, which is subsequently refined by adding further
clauses.

2.3 Approximation Using Prime Implicants

Thus far we have seen how upper- and lower-approximation can be reduced to
finding an implicant c of a formula f where c is a cube, namely a conjunction
of literals. Suppose c1 |= f and c2 |= f where the cubes c1 and c2 are related by
c1 |= c2. Then ¬f |= ¬c2 |= ¬c1 where ¬c2 and ¬c1 are clauses. Furthermore, if
c2 is shorter than c1, that is, if c2 is constructed from fewer literals than c1, then
¬c2 constitutes a stronger (more descriptive) approximation than ¬c1. Rather
than using any implicant to approximate ¬f , it is better to use a shorter one, and
better still to use one that is said to be prime. The implicant c2 of f is prime (or
irreducible) if there is no shorter implicant c3 of f such that c2 |= c3 |= f . The
best approximations are thus constructed from the shortest prime implicants.

To derive shortest prime implicants, we turn to sorting networks [14,21]. Ex-
amples of sorting networks for 3 and 4 bits are given in Fig. 1. The 3-bit sorter
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Fig. 1. Sorting networks for 3 and 4 bits

has 3 input bits on the left and 3 output bits on the right. It also has 3 com-
parison operations, indicated with vertical bars, which compare and if necessary
swap bits. A comparator assigns its outgoing upper bit to the maximum of its
two incoming bits and its outgoing lower bit to the minimum. A comparator
with incoming bits i1 and i2 with outgoing bits u and 
 can be encoded propo-
sitionally as the formula (u ↔ i1 ∨ i2) ∧ (
 ↔ i1 ∧ i2). The value of a sorting
network is that it can be applied to compute the sum of a series of 0/1 values
[14] where the sum is represented in a unary fashion. Moreover, by instantiating
the output bits to fixed unary value, a cardinality constraint can be obtained.
For example, by constraining the output bits of the 4-bit sorter to 1100, the
cardinality constraint is derived which ensures that exactly two of the input bits
to the sorter are set. Constraining the output bits to 1110 would ensure that
exactly three input bits are set. Such cardinality constraints can be imposed in
conjunction with the formula tY1(κ) to rule out the discovery of implicants that
are not prime.

Let us return to the formula tY1(κ) from Sect. 2.2 where Y1 = {w, x, y}. The
construction proceeds by introducing variables, denoted v± for each v ∈ Y1,
which serve as input to the sorting network. Each v± indicates whether v or
¬v appear in the implicant, hence the relationship v± ↔ (v+ ∨ v−). A 3-bit
network is then used to constrain the output bits o1, o2, o3 (top-to-bottom) to
the unary sum of the inputs w±, x±, y± (again oriented top-to-bottom). Overall,
this construction yields the following propositional encoding, where h1, h2, h3 are
intermediate variables computed by the comparators:

μ = tY1(κ) ∧ (w± ↔ w+ ∨ w−) ∧ (x± ↔ x+ ∨ x−) ∧ (y± ↔ y+ ∨ y−) ∧
(h1 ↔ w± ∨ x±) ∧ (h2 ↔ w± ∧ x±) ∧ (h3 ↔ h2 ∨ y±) ∧
(o1 ↔ h1 ∨ h3) ∧ (o2 ↔ h1 ∧ h3) ∧ (o3 ↔ h2 ∧ y±)

To enforce the cardinality constraint, we set μk=1 = μ∧o1 ∧¬o2 ∧¬o3. Invoking
a SAT solver on μk=1 yields candidates ¬w, x and ¬y, but only x is implied
by ∃Y2 : ϕ. Then μk=1 is unsatisfiable, and we derive implicants for μk=2 =
μ ∧ o1 ∧ o2 ∧ ¬o3, which yields the clause w ∨ y that is implied by ∃Y2 : ϕ.
Enumerating implicants by their size may require more SAT instances, but it
ensures that the upper-approximation is always conjoined with a clause that is
as short as possible. Short clauses are likely to remove more models from the
approximation than long ones, thereby encouraging rapid convergence.
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2.4 Solution-Space Reduction Using Instantiation

In the example in Sect. 2.2, a SAT solver generates several false candidates ν for
implicants, which are then refuted by checking ϕ |= ¬ν. This scheme is based
on the observation that every implicant of ∀Y2 : ∃T : κ is also an implicant
of ∃Y2 : ∃T : κ, where in the case of the example Y2 = {z}. However, observe
that ∀Y2 : ∃Y : κ |= ∃Y : κz←0 where κz←0 denotes the formula obtained
by replacing each occurrence of z in κ with the truth value 0 (instantiation).
Therefore every implicant of ∀Y2 : ∃T : κ is also an implicant of ∃T : κz←0.
The formula ∃T : κz←0 is not only a simplification of ∃T : κ but ∃T : κz←0
will possess fewer models and hence fewer implicants than ∃Y2 : ∃T : κ provided
κ �|= ¬z.

Consider again the formula tY1(κ) given in Sect. 2.2 and consider tY1(κz←0) =
tY1(κ)z←0. Recall that originally the candidate implicant ν = (¬w) was derived
which was then refuted because ϕ �|= ¬ν. This candidate is suppressed by the
instantiation and is not a solution of tY1(κ)z←0. It turns out that 13 SAT in-
stances are required to converge onto ∃Y2 : ϕ whereas operating on tY1(κ)z←0
and tY1(κ)z←1 only requires 9 and 10 SAT instances, respectively. Interestingly,
the formulae derived for these cases are equivalent but different. For tY1(κ)z←0
we obtain the limit (¬x)∧(w∨y) as expected, but operating on tY1(κ)z←1 yields
(w ∨ y) ∧ (w ∨ ¬x) ∧ (¬w ∨ ¬x) which is equivalent to (¬x) ∧ (w ∨ y).

2.5 Solution-Space Reduction Using Multiple Instantiations

Instantiating the variables of Y2 with truth values can decrease the number
of spurious implications that are generated. This suggests instantiating κ in
several different ways and then combining the instantiations so as to limit the
search space a priori. Thus the basic idea is to derive multiple instantiations, say,
tY1(κ)z←0 and tY1(κ)z←1 and solve the conjunction μ = tY1(κ)z←0∧tY1(κ)z←1. In
actuality, care is needed to avoid accident coupling between the T variables in the
different instantiations. This can be avoided by introducing fresh, disjoint sets
of variables T1 = {ti,1 | ti ∈ T } and T2 = {ti,2 | ti ∈ T } by applying renamings
ρ1(ti) = t1,i and ρ2(ti) = t2,i to κz←0 and κz←1, respectively. By applying these
renamings, combining and then applying simplification we obtain:

μ =

⎧⎨
⎩

(x+ ∨ t1,1) ∧ (y− ∨ t1,2) ∧ (¬t1,1 ∨ ¬t1,2) ∧
(x+ ∨ t2,3) ∧ (w+ ∨ t2,3) ∧ (w− ∨ t2,4) ∧ (¬t2,3 ∨ ¬t2,4) ∧
(¬w+ ∨ ¬w−) ∧ (¬x+ ∨ ¬x−) ∧ (¬y+ ∨ ¬y−)

When solving for μ, the sequence of upper-approximations converges onto the
limit (w∨y)∧(w∨¬x)∧(¬w∨¬x) without encountering any spurious implicants.
Observe too that μ consists of 10 clauses whereas the tY1(κ) formula given in
Sect. 2.2 has 13 clauses. This is because instantiating the variables of Y2 often
confers significant opportunities for simplification, offering scope for applying
multiple instantiation without generating a formula that is unwieldy.
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3 Correctness of the Transformation

The techniques presented thus far for computing under- and over-approximations
of existentially quantified formula all rest on finding an implicant of a formula of
the form ∃Y2 : ϕ (Sect. 2.1) or ∃Y2 : ∃T : κ (Sect. 2.2 onwards). The transforma-
tion tY1 reduces this problem SAT. This section is concerned with correctness of
this transformation. The style of presentation is necessarily formal and a reader
who is concerned with the application of the technique (rather than establishing
its correctness) can proceed onto the following section.

3.1 Transforming Clauses

Let BoolX denotes the class of propositional formulae over the set of variables
X and suppose X is partitioned into two disjoint subsets Y1 and Y2. We shall
consider the problem of computing an implicant of ∃Y2 : f where the formula
f ∈ BoolX is presented in CNF. The transformation is formalised as a map tY1 on
the set of literals LitX = {x,¬x | x ∈ X}. This map is, in turn, defined in terms
of sets of propositional variables Y +

1 = {x+ | x ∈ Y1} and Y −
1 = {x− | x ∈ Y1}

for which we assume that Y +
1 ∩ Y −

1 = ∅ and (Y +
1 ∪ Y −

1 ) ∩X = ∅.

Definition 1. The literal transformation map tY1 : LitX → LitY +
1 ∪Y −

1 ∪Y2
(and

its inverse t−1
Y1

) are defined as follows:

tY1(l) =

⎧⎨
⎩

x+ if l = x ∧ x ∈ Y1
x− if l = ¬x ∧ x ∈ Y1

l otherwise
t−1
Y1

(l) =

⎧⎨
⎩

x if l = x+ ∧ x ∈ Y1
¬x if l = x− ∧ x ∈ Y1

l otherwise

A clause is considered to be a set of literals to simplify the lifting of the literal
transformation map from single literals to clauses. Thus if a clause is merely a
set C ⊆ LitX then tY1(C) = {tY1(l) | l ∈ C}.

3.2 Transforming Cubes

The literal transformation map is lifted to cubes and implicants (an implicant
is a merely a particular type of cube) by likewise considering these to be sets
of (implicitly conjoined) literals. The transformation relates cubes with literals
drawn from LitX to cubes with literals drawn from Y +

1 ∪Y −
1 ∪LitY2 . Our interest

is in cubes that are non-trivial, that is, they do not contain opposing literals.
These classes of non-trivial cubes are defined below:

Definition 2.

CubeX =
{
C ⊆ LitX

∣∣∀x ∈ X : {x,¬x} �⊆ C
}

CubeY1,Y2 =
{

C ∪C′
∣∣∣∣C ∈ CubeY2 ∧ C′ ⊆ Y +

1 ∪ Y −
1 ∧

∀x ∈ Y1 : {x+, x−} ∩ C′ �= ∅ ∧ {x+, x−} �⊆ C′

}

We transform between these two types of cubes with the following map:
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Definition 3. The mapping cY1 : CubeX → CubeY1,Y2 is defined:

cY1(C) = tY1(C) ∪ {¬x+,¬x− | x ∈ Y1 ∧ {x,¬x} ∩ C = ∅}

Observe that cY1 is both injective and surjective, hence it possesses an inverse
c−1
Y1

: CubeY1,Y2 → CubeX .

3.3 Equivalence

With the tY1 and cY1 maps defined on clauses and cubes, we can now state an
equivalence result which details how implicants are preserved by transformation.
Note that a formula f represented in CNF can be considered to be a set of
implicitly conjoined clauses F .

Proposition 1 (equivalence). Let f =
∧
{
∨

C | C ∈ F} where F ⊆ ℘(LitX)
and put f ′ =

∧
{
∨

tY1(C) | C ∈ F}. Then

– If D ∈ CubeX and (
∧

D) |= f then (
∧

cY1(D)) |= f ′

– If D′ ∈ CubeY1,Y2 and (
∧

D′) |= f ′ then (
∧

c−1
Y1

(D′)) |= f

Proof.

– Let C ∈ F . Since (
∧

D) |= f it follows (
∧

D) |= (
∨

C).
• Suppose x ∈ D ∩ C and x ∈ Y1. Then x+ ∈ tY1(C) ∩ cY1(D).
• Suppose ¬x ∈ D ∩C and x ∈ Y1. Then x− ∈ tY1(C) ∩ cY1(D).
• Suppose x ∈ D ∩ C and x ∈ Y2. Then x ∈ tY1(C) ∩ cY1(D).
• Suppose ¬x ∈ D ∩C and x ∈ Y2. Then ¬x ∈ tY1(C) ∩ cY1(D).

Hence (
∧

cY1(D)) |= (
∨

tY1(C)) whence (
∧

cY1(D)) |= f ′ as required.
– Let C ∈ F . Since (

∧
D′) |= f ′ it follows (

∧
D′) |= (

∨
tY1(C)).

• Suppose x+ ∈ D′ ∩ tY1(C) and x ∈ Y1. Then x ∈ C ∩ c−1
Y1

(D′).
• Suppose x− ∈ D′ ∩ tY1(C) and x ∈ Y1. Then ¬x ∈ C ∩ c−1

Y1
(D′).

• Suppose x ∈ D′ ∩ tY1(C) and x ∈ Y2. Then x ∈ C ∩ c−1
Y1

(D′).
• Suppose ¬x ∈ D′ ∩ tY1(C) and x ∈ Y2. Then ¬x ∈ C ∩ c−1

Y1
(D′).

Hence (
∧

c−1
Y1

(D′)) |= (
∨

C) whence (
∧

c−1
Y1

(D′)) |= f as required.

The following corollary of the above relates implicants with literals drawn from
LitY1 to the satisfiability of the transformed clause set:

Corollary 1. Suppose f and f ′ are defined as above. Then

– If D ∈ CubeY1 and ∧D |= f then (
∧

cY1(D)) ∧ f ′ is satisfiable
– If D′ ∈ CubeY1,∅ and (

∧
D′) ∧ f ′ is satisfiable then (

∧
c−1
Y1

(D′)) |= f

To present the final result, let �f� ⊆ ℘(X) denote the set of models of the Boolean
function f . (Recall the set-based representation of a model given in Sect 2.1, for
example, if X = {x, y} then �x∨y� = {{x}, {y}, {x, y}}.) We can now that state
how a prime implicant of the existentially quantifier formula (whose literals are
drawn from LitY1) fulfills two satisfiability conditions:
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Corollary 2. Suppose f , f ′ and F ⊆ ℘(LitX) are defined as above. Put
g′ = f ′ ∧ {¬x+ ∨ ¬x− | x ∈ Y1}. Then D ∈ CubeY1 is a prime implicant of
∃Y2 : f iff D = c−1

Y1
(M∗ ∩ (Y +

1 ∪ Y −
1 )) where

– M∗ ∈ �g′�
– |M∗ ∩ (Y +

1 ∪ Y −
1 )| ≤ |M ∩ (Y +

1 ∪ Y −
1 )| for all M ∈ �g′�

Note that g′ does not include any cardinality constraint on the set M∗ ∩ (Y +
1 ∪

Y −
1 ), hence the need to define a prime implicant in terms of an implicant no

longer than any other. The above result can straightforwardly adapted to specify
how an implicant of a given size can be defined as a SAT instance.

4 Experimental Results

We have implemented the techniques described in this paper in Java using the
Sat4J solver [23] so as to integrate with our analysis framework for machine
code, [mc]square [32], which is also coded in Java. To encode sorting proposi-
tionally, we implemented optimal networks for 9 or fewer variables and resorted
to bitonic sorting for larger networks [21]. All experiments were performed on a
MacBook Pro equipped with a 2.6 GHz dual-core processor and 4 GB of RAM,
but only a single core was used in our experiments. The results obtained for
deriving upper-approximations using the combination of methods described in
Sect. 2.2 and Sect. 2.3 (without applying instantiation) are summarised in Tab. 1.

The formulae originated from the Iscas benchmark set [17]. For some of these
benchmarks, quantifier elimination by model enumeration is intractable due to
the large numbers of models presented in column #models, and so is resolution.
This is highlighted by the benchmark 74L85b, which describes a 4-bit magni-
tude comparator. Whereas model enumeration required more than 6 minutes
for 74182b and 74283b, it ran out of memory for 74L85b after approximately
10 minutes. Column #vars/clauses shows the number of propositional variables
and clauses in the original formula, whereas column trans gives these numbers

Table 1. Experimental results without instantiation

Formula models #vars/clauses trans. length #primes #SAT runtime

74182b 262,144 227/526 780/1281
2/5 4 52 0.81
5/5 4 170 1.80s

74283b 262,144 266/646
966/1,633

4/8 13 1590 5.63s
6/8 20 4053 14.49s
8/8 20 4881 16.71s

74L85b >390,752 412/1084 1582/2747

4/10 6 4496 18.91s
5/10 14 12349 57.22s
6/10 30 24960 125.99s
8/10 30 47536 292.59s
10/10 30 51522 352.95s
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Table 2. Experimental results with a single instantiation

Formula length runtime speedup

74182b
2/5 0.50s 38%
5/5 0.85s 52%

74283b
4/8 4.26s 24%
6/8 10.54s 27%
8/8 12.34s 26%

Formula length runtime speedup

74L85b

4/10 12.61s 23%
5/10 38.85s 32%
6/10 84.68s 33%
8/10 203.45s 30%
10/10 84.68s 33%

after applying the transformation tY1 . The column length first contains the max-
imum length of prime implicants that were enumerated, followed by the size of
Y1. Thus in the 8/8 case the algorithm was run to completion, whereas the 2/8
case was terminated prematurely. Then #primes gives the number of implicants
found and #SAT the total number of calls to a SAT solver. The overall runtime
is given in the last column.

It is important to appreciate that the projection of the 74185b formula does
not contain any implicants with size between 7 and 10. Likewise 74283b does
not contain any implicants of size 7 and 8. This size distribution has been ob-
served elsewhere [19], though not in the context of projection, which suggests
that enumerating implicants up to a size threshold can achieve a good approxi-
mation of the projection. The ratio of number of calls to the solver to the number
of primes is largely due to spurious candidates (in our experiments, it roughly
doubled by increasing the prime length by one or two), which motivates inves-
tigating the impact of instantiating variables. Circuits can be simplified after
applying instantiation, which involves removing false literals from clauses and
removing all clauses that were already satisfied. The effects of single instantiation
based on a model of the original formula are highlighted in Tab. 2. The results
shown in column speedup suggest that instantiation can significantly increase
performance.

Finally, we study applying multiple instantiation, accompanied with simpli-
fication, for different instances of the 74L85b circuit. Note that simplification
reduces the size of the SAT instance which compensates somewhat for multiple
instantiation. The instantiations themselves were generated from various mod-
els of the formula that were themselves found by applying blocking clauses. By
choosing 6 instantiations that constrain the solution space in the 6/10 case a
priori, the number of SAT instances reduced from 24960 to 16954, and the run-
time decreased to 61.59s. This is a reduction of 32% in terms of the number of
calls to a SAT solver and an overall speedup of 51%. Using 10 instantiations,
reduced the number of calls to the solver was still further to 14273 and took
the runtime down to 52.45s yielding a speedup of 58%. The key point is that a
reduction occurs in the ratio of the number of calls to the SAT solver and the
number of primes. This is a measure of the effectiveness of the technique, that
is, how much effort is needed, on average, to find another implicant and thereby
refine the approximation. However, we conjecture, that it is not prudent to apply
too many instantiations simultaneously, because at some point the size of the
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combined SAT instance will become unmanageable (this would correspond to a
flattening of quantified bit-vector logic, which can be prohibitively expensive).

5 Related Work

The consensus method has been independently proposed by a number of re-
searchers [3,29,31] as a way of enumerating all the prime implicants of a propo-
sitional function in disjunctive normal form (DNF). If f is in CNF, then it is
straightforward to derive a DNF representation of ¬f , to which the consensus
procedure can be applied to find its prime implicants. Then ∃Y : f can be
found by conjoining all clauses ¬c where c is a prime implicant of ¬f which
has no variables in common with Y . One might think that this provides a way
to compute projection, but the key step of the consensus method combines two
elementary conjunctions of ¬f , say, x∧C and (¬x)∧D, to form the conjunction
C ∧ D, which is isomorphic to resolution. Hence the consensus method shares
the inefficiency problems associated with applying resolution to a formula in
CNF. The complexity of the shortest implicant problem for DNF formulae has
been studied by Umans [34] who showed that it is GC (log2(n), coNP)-complete.
Even though this result is not directly transferrable to CNF, it substantiates
our application of SAT solvers to the derivation of shortest implicants. Integer
linear programming techniques have also be used to find shortest implications,
as have SAT engines which have been modified to support inequalities [24]. In
this work a transformation is described which is similar to tY1 . However, the
work is not concerned with quantifier elimination, hence pairs of 0-1 variables
are introduced for each variable in the formula rather than merely those in Y1.

Operating on negated formulae has applications in bounded model check-
ing [8], in particular when using Craig interpolants [25]. Given two inconsistent
formulae ϕ and ψ, that is, ϕ∧ψ is unsatisfiable, a smaller upper-approximation
ξ of ϕ can be derived from the proof of unsatisfiability of ϕ ∧ ψ in linear time.
This approach is sound in the sense that ξ over-approximates ϕ, and at the
same time serves tractability, and thus can be regarded as a form of widening.
Prime implicants have been directly applied to widening Boolean functions rep-
resented as ROBDDs [19]. By appling a recursive meta-product construction
[12] collections of short primes can be used to derive an ROBDD that is an
upper-approximation of the input. Our work on applying SAT to projection was
motivated by the emperical finding that collections of short primes, for instance
those up to length 5, often yield good approximations of Boolean formulae [19].
Note that SAT-based enlargement of cubes also appears in the work of McMil-
lan [26], who uses SAT-based enumeration for existential quantification. The
idea of instantiating (multiple) instances of Boolean formulae with models can
be seen as a form of circuit co-factoring as described by Ganai et al. [15]. A
recent contribution to reasoning about quantified bit-vector formulae was made
by Wintersteiger et al. [36], who most notably used word-level simplifications
and template instantiations.

Another approach to quantifier elimination (of linear systems) was recently
proposed by Monniaux [27]. In his approach, satisfiability tests of quantified
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formulae are used to derive witnesses (models). Rather than computing quantifier-
free formulae directly, his algorithm uses substitution of witnesses to extend
the original system towards a quantifier-free formula. Comparing this technique
to our method, a similarity is in the use of witnesses to guide the elimination
process. His method, however, is not anytime, and thus, cannot be stopped
prematurely.

6 Conclusions

Synopsis. This paper advocates using SAT to derive upper-approximations
of existentially quantified propositional formulae The approach is designed to
be anytime so that it can be stopped early without compromising correctness.
This can be considered to be a pragmatic response to the complexity of projec-
tion [11]. Further, the technique avoids the blow-up in the number of clauses in
an intermediate representation that is associated with eliminating variables with
resolution.

Future Work. This work calls for further investigations of ways to reduce the
number of spurious candidates that appear when implicants of negations are
enumerated, possibly based on the recent work described in [36].
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Abstract. To ensure that an aircraft is safe to fly, a complex, lengthy
and costly process must be undertaken. Current aircraft control systems
verification methodologies are based on conducting extensive simulations
in an attempt to cover all worst-case scenarios. A Nichols plot is a tech-
nique that can be used to conclusively determine if a control system is
stable. However, to guarantee stability within a certain margin of uncer-
tainty requires an informal visual inspection of many plots. To leverage
the safety verification problem, we present in this paper a method for per-
forming a formal Nichols Plot analysis using the MetiTarski automated
theorem prover. First the transfer function for the flight control system
is extracted from a Matlab/Simulink design. Next, using the conditions
for a stable dynamical system, an exclusion region of the Nichols Plot
is defined. MetiTarski is then used to prove that the exclusion region is
never entered. We present a case study of the proposed approach applied
to the lateral autopilot of a Model 24 Learjet.

1 Introduction

Modern commercial passenger aircraft are extremely complex systems and their
designs must meet strict design and safety requirements. The Federal Aviation
Administration (FAA) specifies that the catastrophic failure rate of a passen-
ger aircraft digital flight-control system must be extremely improbable (less than
10−9 faults per hour) [1]. However, the system must be built using embedded
computers, sensors, actuators and control components each with individual fail-
ure rates several orders of magnitude higher than that of the level set by the
FAA. A combination of redundancy and fault tolerance must therefore be used
to achieve this strict reliability requirement.

In general, aircraft are verified using simulation methods. A mathematical
model based on the physical equations of flight is constructed and then simulated.
An extensive analysis of the experimental results is necessary to ensure a robust
result. There are several graphical aids such as Nyquist diagrams and Nichols
plots [9] that are commonly used to simplify this task. These techniques provide
easily identifiable zones for which the plot should not pass near or enter, clearly
indicating the control system’s margin of stability [11]. However these graphical
methods still require visual analysis to process the information.
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Even though there are over 78,000 flights without incident per day [10], we
cannot assume that the current verification methods are perfectly sound. The
first issue with this conclusion is that with simulation alone it is not possible
to give 100% safety assurance due to the great number of variations of the
model components and parameters. There will always be the possibility of a
catastrophic failure due to design errors. Second, to achieve the FAA’s failure rate
a complex multi-domain, labour intensive and costly process must be undertaken.
It is therefore quite important to investigate methods that will reduce the effort
and cost of the verification process while ensuring the reliability of the results.

Formal verification is a method where logical reasoning can be used to prove
that the implementation of a system correctly matches its design specification.
Unlike simulation, a formal proof is valid regardless of the input test cases.
There have been several breakthroughs in formal analysis of discrete systems.
Systems of large orders of magnitude can now be verified. The tools and methods
available for the formal verification of continuous and hybrid-systems cannot
handle systems at the same level of complexity. This is one major hurdle that has
limited the application of formal methods to the physical portion of aeronautical
models.

MetiTarski [2] is an automatic theorem prover for real-valued analytical func-
tions, including trigonometric and exponential functions. It works by a combi-
nation of resolution inference and algebraic simplification, invoking a decision
procedure (QEPCAD) [5] to prove polynomial inequalities over the real closed
filed (RCF). The output of MetiTarski is a complete proof that contains alge-
braic simplification and decision procedure calls that can be verified using other
tools.

This paper illustrates a methodology for ensuring the stability of a flight con-
trol system by performing a formal analysis of a Nichols plot using the MetiTarski
automated theorem prover. A Nichols plot is a transfer function’s gain plotted
versus its phase. Information about the stability of a system can be deduced
from a visual inspection of the plot. The formal analysis we present removes
the need for drawing and checking the Nichols plot visually. We present our
investigations on verifying the lateral autopilot of a Model 24 Learjet subsonic
business jet (SBJ) [4]. The control system model was implemented in Simulink
and the goal of our proposed verification methodology is to supplement design
work-flows that depend on the Matlab/Simulink Control Systems Toolbox [15].

The rest of the paper is organized as follows, we first discuss related work
in Sect. 2. A description of MetiTarski and its syntax is presented in Sect. 3.
Details of the proposed methodology are given in Sect. 4. This is followed by the
case study in Sect. 5, before concluding the paper with Sect. 6.

2 Related Work

The bulk of the work on formal verification for aeronautical systems has been on
the software components of flight control. Nevertheless, there have been several
interesting advancements on the verification of hybrid systems [16]. From those
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latest results and experiments, it is obvious that they will ultimately play a
strong role in the complete formal verification of aircraft autopilots.

Hardy [7] developed and implemented a decision procedure to reason about
functions that have a finite number of inflection points. This decision procedure
was implemented in the Nichols plot Requirements Verifier (NRV) to perform an
automated formal Nichols plot analysis. The tool was developed using the com-
puter algebra system Maple, the formal theorem prover PVS and the quantifier
elimination system QEPCAD [5]. NRV was successfully applied to two classic
control system examples: an inverted pendulum and a disk drive reader. Our
work is closely related to that of Akbarpour and Paulson [3] who successfully
formally verified these two examples using MetiTarski. Our main contribution
is to remove the required inflection point analysis. We prove over all frequency
values that the exclusion region is not entered, not just at single points. This is
particularly important when dealing with exclusion regions that are not bounded
by linear constraints. In particular, in the analysis of ellipsoid exclusion regions
Hardy’s [7] inflection point analysis does not hold.

SOSTOOLS [14] is a Matlab toolbox that can convert difficult optimiza-
tion problems into a sum of squares formulation that can then be analyzed
by a convex optimization technique known as semi-definite programming. It has
widespread use in the nonlinear control field. In particular, it can be used to
search for a Lyapunov function that can be used to verify the stability of dy-
namical systems. For a particular equilibrium to be stable, it is required that
the candidate Lyapunov function V be positive definite and its derivative with
respect to time be negative semi-definite [8]. SOSTOOLS can be used to prove
the un-satisfiability of systems of non-linear polynomial equations and inequal-
ities over the real numbers [12]. For many problems, SOSTOOLS could replace
QEPCAD as the polynomial reasoning engine under MetiTarski. This would not
be trivial to implement effectively. Nevertheless, improvements to the theory
behind SOSTOOLS would have the potential to enhance MetiTarski.

3 MetiTarski : An Automated Theorem Prover

There exist few methods to automatically prove statements involving inequalities
of elementary functions such as arctan, ln and sqrt that commonly appear in
flight control verification problems. MetiTarski replaces the functions with upper
and lower bounds in an attempt to reduce the problem to one that is decidable
over the real closed fields. It consists of a resolution theorem prover (Metis)
combined with a decision procedure (QEPCAD). The theorem prover is supplied
with axioms approximating the functions with continued fraction expansions
which in many cases are extremely accurate.

3.1 MetiTarski Input Syntax

MetiTarski operates on the first-order formula in the Thousands of Problems for
Theorem Provers (TPTP) format that includes the corresponding axioms. Take
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for instance the code in Fig. 1. The “fof” keyword indicates to MetiTarski that
the logic language used is a first-order formula. It is then followed by a label
of the proof as well as the keyword “conjecture” indicating that the following
formula is to be proved with the included axioms. The conjecture is read as
follows: For all (!) X between 0 and 2.39× 10−9 the formula is always less than
0.03. For a syntax guide see Table 1.

fof(

example1,conjecture, ! [X] :

(

(0 <= X & X <= 2.39*10^(-9)) =>

-0.0059 - 0.000016*exp(-2.55*10^8*X) + 0.031*exp(-5.49*10^7*X)

< 0.03

)

).

include(’Axioms/general.ax’).

include(’Axioms/exp-upper.ax’).

include(’Axioms/exp-lower.ax’).

Fig. 1. MetiTarski Syntax

Table 1. TPTP Syntax Guide for Figure 1

fof First-Order Logic Formula
! Universal Quantifier (∀)
X Quantified Variable
& Logical AND

exp e (Exponential Function)
< Less Than
<= Less Than Or Equal
=> Logical Implication

3.2 Axioms

In addition to the problem definition, the required axioms must be chosen using
the ’include’ keyword. It is critical that only axioms files for functions in the
problem definition are included. Each additional set of axioms can greatly in-
crease the time taken by MetiTarski to complete the proof. For example, there
are two sets of axiom declarations for the exponential function. One for regular
bounds and one for extended bounds. The extended bounds are used in cases
where a higher level of precision is needed.

There have been cases where including the extended bounds will make the
inequality test run until manually stopped. In that specific example, removing
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the extended axioms allowed MetiTarski to complete the proof in seconds. The
inverse can also happen, if for instance the TPTP description contains trigono-
metric functions and those axioms are not included, then MetiTarski will never
terminate. To mitigate this situation when running MetiTarski on a set of prob-
lems, as is done in the case study investigated in this paper, a CPU time limit
can be set. Deeper analysis is then required to choose the correct axioms for
those problems that were not proved.

There are automated scripts included in the MetiTarski distribution that can
insert the axioms directly into the TPTP file description. This enables a low level
analysis of the problem where specific axioms can be isolated and removed. This
axiom weeding out procedure is currently manual, but by doing so has led to
proofs for functions with extremely large arguments, such as arctan(1025×X16).

4 Proposed Methodology

An important verification property is to ensure that a system under design is
stable. Negative feedback is commonly used to achieve this. In this configuration,
the difference between the system’s current output and what is required is used
to steer the output to the correct value. Time delays around the feedback loop
can still cause the system to remain unstable. An in-depth stability analysis of
the feedback system is thus quite essential in the design process.

Classic control theory provides several graphical methods to assess the stabil-
ity of feedback systems: the Bode diagram, the Nyquist plot and the Nichols plot.
The idea behind these graphical methods is to show visually how much margin
the system has against instability [9]. Note that it is the analysis of the open-loop
response that reveals information on the stability of the closed-loop system. The
feedback loop must be “broken” to analyze how the signal is processed along the
signal loop path.

In this paper, we are concerned with the analysis of a Nichols plot. This type
of plot is commonly used in the analysis of flight control laws [6] and requires
repeated visual inspection. Our goal is to automate this analysis and provide a
formal proof guaranteeing the results.

A Nichols plot is constructed by plotting the gain (in decibels) on the x-axis
and the phase shift (in radians) on the y-axis of a Cartesian plane. If the system
is described using the transfer function G(jw) then the following equations are
used to construct the Nichols plot.

x = arctan
Im(G(jw))
Re(G(jw))

(1)

y = 20 log10 |G(jw)| (2)

where Re and Im represent, respectively, the real and imaginary parts of the
complex value and |G(jw)| represents the magnitude. When calculating the val-
ues of the phase shift, the arctan function will only return values between −π

2
and π

2 . It is therefore required to adjust the value by ±nπ to get the correct
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phase-shift. When Re(G(jw)) = 0 the phase shift is defined as being equal to
π
2 ± nπ.

In the Nichols plot, the required gain and phase margins can be described
as exclusion regions. If the Nichols plot does not pass through this region, then
the system is considered stable. For aeronautical systems, tighter and more de-
scriptive exclusion regions can be chosen to define such properties as a slow or
uncomfortable flight response [6].

The most basic exclusion region for aeronautical systems is a hexagon centered
at the point (−π, 0), see Fig. 2.
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Fig. 2. Nichols Exclusion Region for a Stable System

The conditions to remain outside of the edges of the exclusion region are
defined as

y > 12
π + 18 from (− 5

4π, 3) to (−π, 6)

y < − 12
π − 18 from (− 5

4π,−3) to (−π,−6)

y > − 12
π − 6 from (− 3

4π, 3) to (−π, 6)

y < 12
π + 6 from (− 3

4π,−3) to (−π,−6)

x < − 5
4π

x > − 3
4π

To perform the verification of a flight control system, we propose the methodol-
ogy described in Fig. 3. First, the flight control system is modeled in Simulink.
This will require that the complete dynamics of the aircraft also be modeled.
Then using MATLAB’s linmod [15] function, the open-loop transfer function of
the system can be automatically extracted.

An exclusion region of the Nichols plot is then chosen. In general, the ex-
clusion region is chosen from previous experience; depending on the response
required from the aircraft, different exclusion region bounds can be chosen. The
basic exclusion region is one that assures that the system is stable. In addition,
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Fig. 3. Verification Methodology

the bounds can be even more tightly chosen to determine the quality of the
flight control in terms of handling and response to pilot commands. This will be
discussed in more detail below.

The following step is the conversion of the bounds of the exclusion region (in
terms of decibels and radians) into inequalities described in terms of the transfer
function (frequency domain) using Maple. MetiTarski is first used to verify the
results that Maple produces. The resulting expressions for each boundary of the
exclusion region are then processed by MetiTarski which automatically generates
a proof if it can determine that the inequality holds. This resulting proof indicates
that the Nichols plot curve never enters the defined exclusion region.

If MetiTarski is successful, it delivers a proof and we are done. If unsuccessful,
it will run until terminated by the user. In the most recent version of MetiTarski
(v1.8) it is possible for the user to specify a CPU time limit on the proof. In the
event of the CPU limit being reached, we must consider modifying the exclusion
region. This has the effect of reducing the required stability margins. A relaxation
of the exclusion region can be performed automatically when the CPU limit is
reached.

The benefit of this method compared to other aeronautical verification meth-
ods is two-fold. First, there is no need to visually inspect any of the plots. If
MetiTarski returns that the proof is true then we can be sure that the specifica-
tion is met. MetiTarski also operates automatically on the continuous range of
variables.
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5 Case Study : Model 24 Learjet SBJ

To illustrate the application of the proposed methodology, we consider a part of
a lateral autopilot design for a Model 24 Learjet subsonic business jet (SBJ) [4].
The SBJ is modeled in Simulink by combining blocks that describe rigid body
dynamics and lateral aerodynamic forces. This implementation uses 3 degrees of
motion (DOM) equations that have been decoupled from the longitudinal motion
terms. This is possible by assuming that derivatives of lateral forces dependent on
longitudinal forces are negligible and that all other force and torque derivatives
are at trim. At trim, there is no rotation about the center of gravity of the
aircraft.

For a pilot, it is often difficult to control an aircraft at high altitude because
of high frequency yaw oscillations. Yaw is defined as the side to side motion of
an aircraft’s nose. In this case study, we are analyzing the SBJ model described
above that uses a yaw damper, also commonly known as a washout filter, to
augment the stability of the system.

Figure 4 shows a simplified view of the system. The block SBJ4 encapsulates
the rigid body dynamics and the lateral aerodynamic forces and moments of an
aircraft. We are specifically analyzing the response of the heading angle phi to
a deflection of the aileron da, dr is the input to the rudder deflection, r is the
yaw rate, p is the roll rate and psi is the heading angle. The washout filter was
then place around this block in a feedback configuration.

The first step in the analysis is to extract the transfer function from the
Simulink model. In this case study we focus only on the analysis of the re-
sponse between the aileron displacement da and the roll angle phi. Using Mat-
lab’s linmod function, the following transfer function G(s) is extracted from the
model,

G(s) = 1.065×10−14 s6+3.776 s5+19.0633 s4+24.543 s3+21.7634 s2−7.263×10−15 s
s7+7.695 s6+20.3724 s5+26.492 s4+22.0224 s3+0.0442 s2

The input to linmod is the Simulink design where an input port and an output
port have been explicitly defined. The output is a state space model, ẋ = Ax +

Out1
1

Washout3

s

s+1

SBJ4

da

dr

v

p

r

phi

psi

Hphi

0.1
In1
1

phi

Fig. 4. Flight Control Simulink Model
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Bu, y = Cx+Du. Then using the Matlab command ss2tf , the state space model
is converted into a transfer function G(s) and G(jw) is obtained by replacing
instances of the variable s with jw.

The gain and phase of the system with the transfer function G(jw) are com-
puted as described in (1) and (2), see Sect. 4.

The next step is to select the exclusion region of the Nichols plot as described
before. At the most basic level, we can choose a hexagonal region that is centered
around the point (-π,0) which is shown in Fig. 5.
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Fig. 5. Nichols Plot of the System G(s)

Now that the Nichols exclusion region has been defined, Maple is used to solve
for the frequencies where the Nichols plot passes through the endpoints of the
exclusion region. We use MetiTarski to ensure that Maple’s computations are in
fact correct.

The interval [−3, 3] of the gain (y-axis of Nichols plot), corresponds to the
interval w ∈ [23080/32333, 75843/46168] in the frequency domain. MetiTarski is
used to show that outside this frequency interval, we have (y ≥ 3) ∨ (y ≤ −3).
Then to show that the exclusion region is never entered from the right middle
segment, MetiTarski proves that

∀w. w > 23080/32333∧ w < 75843/46168⇒ x > −3π/4

The interval [−π,−3π/4] of the phase (x-axis of the Nichols plot) corresponds
to the interval w ∈ [42049/14953, 978208/3695] in the frequency domain. Meti-
Tarski is used to show that outside this frequency interval, we have (x ≥ −3π/4)∨
(x ≤ −π). Then to show that the exclusion region is never entered from the bot-
tom right segment, MetiTarski proves that

∀w. w < 978208/3695∧ w > 42049/14953⇒ y < −12
π

x + 6
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Table 2. Case Study Proof Times

Experiment Time (s)

right-middle-gain-check-U 1.546
right-middle-gain-check-L 0.259
right-middle-exclusion-1 0.221
right-middle-exclusion-2 0.996
right-middle-exclusion-3 0.221
right-middle-exclusion-4 2.322
right-bottom-phase-check 0.221
right-bottom-exclusion-1 3.56
right-bottom-exclusion-2 9.064

From the results obtained from Maple and MetiTarski, we can infer that the
Nichols plot does not pass through any other points of the exclusion region and
thus does not pass through any of the other four boundaries. A snapshot of the
code used to prove this fact is shown in Fig. 6.

The experimental results are shown in Table 2. For the “right-middle” ex-
periments, U and L indicate the upper and lower points at which the transfer
function could possibly enter the exclusion region. When an experiment is split
into multiple sub-experiments (1,2,3,4), this indicates that the phase function is
taking on different values due to arctan being defined only over (−π/2, π/2). The
“check” experiments are verifying Maple’s output. The “exclusion” experiments
are verifying that the transfer function does not enter the exclusion region. The
runtimes were measured on a 2.8 GHz Dual Quad-Core Mac Pro, with 4GB of
RAM. The middle boundary proofs completed faster because they are defined
using only the ln function, about which MetiTarski can reason very efficiently.
The right bottom boundary is defined using a combination of both the arctan
and ln functions, which is more difficult to reason about primarily because of
the extremely large values that their arguments take. The difference between
proof times is not problematic because the final positive result is eventually ob-
tained. Further improvements to the axioms used by MetiTarski, will ultimately
improve the proof times.

fof(Nichols-Exclusion,! [X] :

((X > 0.9582 & X < 2.86) =>

10/ln(10)*ln(0.25*10^(-24)*

(3862622500*X^20+0.3566432250*10^41*X^18+

... + 0.8478030764*10^17*X^8)))

< -6+(12/pi)*arctan(0.2*10^(-3)*(-6100459+

...+0.246*10^25*X^16)))

)).

Fig. 6. MetiTarski Input for Proving Lower Right Edge of the Exclusion Region
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6 Conclusion and Future Directions

In this paper, we have shown that it is possible to use an automated theorem
prover, MetiTarski, to verify properties of Nichols plots directly. The inequalities
analyzed contain instances of ln, sqrt and arctan functions that take on very
large values. This indicates that we will be able to further apply the method-
ology to similar sized aeronautical systems where the verification of stability is
dependent on phase and gain margins.

Building on the ideas demonstrated in this paper, there are directions we are
planning to investigate. In advanced flight control verification methods such as μ-
analysis, ν-gap analysis and Quantitative Feedback Theory (QFT), the exclusion
regions are defined as circles, ellipses, and complex polygons of varying sizes.
Since no assumption is made on the number of inflection points of the transfer
function, MetiTarski would be able to handle these types of problems. On the
other hand, previous methods would have difficulty. This is because MetiTarski
can handle inequalities containing transcendental and other special functions
over a real valued domain.

One way to guarantee safety of a dynamical system is to find a function called
a “barrier certificate” [13]. If a barrier certificate can be found for a specified
system, then it is possible to say that starting in some initial state, some unsafe
state will never be reached. By using barrier certificates, it is not necessary to
calculate the flows of the system directly. Such is the case with several reachabil-
ity analysis methods. Finding a barrier certificate is not easy, but this problem
can be reformulated as a sum-of-squares search problem [14], and we believe
MetiTarski will be quite useful for refuting incorrect sum-of-squares formulas
during this search.

We would like to have a more realistic model of the aircraft dynamics. Analyz-
ing the non-linear system using qualitative methods is one possible solution. It
will also be necessary to consider parameter variations and perturbation effects.
We also need to extend the methodology to other potential methods for stability
verification such as Lyapunov based methods.
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Generalized Rabin(1) Synthesis with Applications to
Robust System Synthesis�

Rüdiger Ehlers
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Abstract. Synthesis of finite-state machines from linear-time temporal logic
(LTL) formulas is an important formal specification debugging technique for re-
active systems and can quickly generate prototype implementations for realizable
specifications.

It has been observed, however, that automatically generated implementations
typically do not share the robustness of manually constructed solutions with re-
spect to assumption violations, i.e., they typically do not degenerate nicely when
the assumptions in the specification are violated. As a remedy, robust synthesis
methods have been proposed. Unfortunately, previous such techniques induced
obstacles to their efficient implementation in practice and typically do not scale
well.

In this paper, we introduce generalized Rabin(1) synthesis as a solution to this
problem. Our approach inherits the good algorithmic properties of generalized
reactivity(1) synthesis but extends it to also allow co-Büchi-type assumptions
and guarantees, which makes it usable for the synthesis of robust systems.

1 Introduction

The problem of synthesizing finite-state systems from specifications written in linear-
time temporal logic has recently received an increase in interest. Algorithmic advances
in the solution of the synthesis problem have strengthened the practical applicability
of synthesis algorithms and consequently, solution quality considerations that are com-
mon in the manual engineering process of reactive systems start to appear in the scope
of synthesis as well.

In practice, many specifications consist of a set of assumptions the system to be syn-
thesized can assume about the behavior of its environment, and a set of guarantees that
it in turn has to fulfill. Such a situation is typical for cases in which a part of a larger
system is to be synthesized. In this context, one particularly well-known solution qual-
ity criterion is the robustness of a system, i.e., how well it behaves under violations
of the assumptions. As an example, a bus arbiter system could be designed to work
in an environment in which not all clients request access to the bus as the same time.
This assumption might however be violated if a part of the system breaks at runtime
or errors were made in the engineering process. To counter these problems, manually
constructed safety-critical systems are typically built in a way such that at least some
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guarantees are still fulfilled in such a case. Automatically synthesized systems however
typically do not exhibit robust behavior in such situations. As an example, the bus ar-
biter synthesized under this assumption could stop giving grants to clients completely
once too many requests have occurred in a computation cycle.

To remedy these problems, a few techniques especially geared towards the synthe-
sis of robust systems have been proposed. In [7], a robustness criterion and a synthesis
algorithm based on cost automata have been defined, with the specification being re-
stricted to consist of only safety properties. On the other hand, in [4], a robustness
criterion based on the number of guarantees that still hold if assumptions are violated is
defined, which connects robust synthesis to solving generalized Streett games. In both
cases, the scalability of these techniques appears to be limited.

In this paper, we propose generalized Rabin(1) synthesis, an extension of the gen-
eralized reactivity(1) synthesis principle, originally proposed by Piterman, Pnueli and
Sa’ar [20]. Our approach extends the expressivity of the latter approach while retaining
its good algorithmic properties.

In particular, while generalized reactivity(1) synthesis is applicable to all specifi-
cations whose assumptions and guarantees are representable as deterministic Büchi
automata, we extend its expressivity by allowing also one-pair Rabin-type and, as a
special case, co-Büchi-type assumptions and guarantees, which are useful for represent-
ing persistence requirements [25]. Equally important, these extensions make the class
of specifications that can be handled closed under applying a fairly straight-forward
robustness criterion based on the number of computation cycles witnessing temporary
violations of the assumptions and guarantees. At the same time, our approach inherits
the good algorithmic properties of generalized reactivity(1) synthesis. Additionally, we
show that any further non-trivial expressivity extension would result in losing these.

In the following, we describe two algorithms solving the robust synthesis problem.
We start by showing how the generalized Rabin(1) synthesis problem can be reduced
to solving a parity game with 5 colors and describe its use for robust system synthesis.
Then, we discuss the fact that it is sometimes desirable to restrict the system to be syn-
thesized to having some upper time bound between a temporary violation of a safety
assumption and the final following violation of a safety guarantee afterwards, i.e., to
return to normal operation after some upper time bound. For such cases, we present an
adapted algorithm that has the additional advantage of extracting implementations hav-
ing an extra output signal that reports whether the system is currently in the recovery
mode after a violation of the assumption.

1.1 Related Work

Automatically synthesizing implementations from specifications given in linear-time
temporal logic (LTL) is a well-studied problem in the literature. Its solutions can be
classified into two sorts: (1) approaches that aim at handling the full expressivity of
LTL, and (2) techniques that trade the full expressivity of LTL against algorithmic ad-
vantages. One particularly well-known approach of the latter kind, which we also build
upon in this paper, is generalized reactivity(1) synthesis [20]. Its applicability in practice
is witnessed by the existence of several successful case studies [5,6,17,25].
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Synthesis of robust controllers is a relatively recent topic. In [3], Arora and Gouda
describe the closure and convergence robustness criteria. Bloem et al. [4] solve the
synthesis problem for the former criterion, where the number of guarantees that still
hold in case of assumption violations is to be maximized. The corresponding synthesis
problem is reduced to solving generalized Streett games. In [7], a quantitative approach
for safety assumptions and guarantees is proposed, where the robustness definition is
based on the number of computation cycles in which violations of the assumptions and
guarantees are witnessed. This approach thus uses the convergence robustness criterion.
Our work follows this line of research, but extends the idea to also allow liveness parts
in the specification. The restriction to qualitative robustness improves the scalability of
the proposed approach.

In the area of hybrid systems and control theory, work has been performed on robust
synthesis where only the continuous part of the controller to be synthesized is to be
made robust [25], while for the discrete part, generalized reactivity(1) synthesis is used.
This paper can be seen as being orthogonal to that work as it solves the problem of
introducing robustness in the discrete part of the controller. Thus, combining the two
approaches leads to robustness of the overall solution synthesized. Also, in [25], so-
called stability or persistence properties, which correspond to co-Büchi-type properties
in the framework here, are used but applied to the generalized reactivity(1) synthesis
approach in a way that leads to incompleteness of the overall procedure. Thus, our
methods also increase the scope of properties expressible in that approach.

Closely related to robust synthesis is also the field of fault-tolerant synthesis. Here,
fault models and fall-back specifications that need to hold in case of fault occurrences
are explicitly given as input to the synthesis process. Most works in this area are con-
cerned with adding robustness to completely specified systems, with a few exceptions
(e.g., [11]). Our work follows the line of research in which the system to be synthesized
should work in a reasonable way in case of assumption violations even if no explicit
such fall-back specifications are given [7,4]. Thus, the techniques presented in this pa-
per are even applicable if the fault model is unknown or it is not desired to invest time
in writing the additional fall-back specifications.

2 Preliminaries

Words, Languages and natural numbers: Let Σ be a finite set. By Σ∗/Σω we de-
note the set of all of its finite/infinite sequences, respectively. Such sequences are also
called words over Σ. Sets of words are also called languages. For some sequence
w = w0w1 . . ., we denote by wj the suffix of w starting with the jth symbol, i.e.,
wj = wjwj+1 . . . for all j ∈ IN.

Mealy machines: Reactive systems are usually described using a finite state machine
description. Formally, we define Mealy machines as five-tuplesM = (S, ΣI , ΣO, δ, s0)
where S is some finite set of states, ΣI and ΣO are input/output alphabets, respectively,
s0 ∈ S is the initial state and δ : S × ΣI → S × ΣO is the transition function of M.
The computation steps of a Mealy machine are called cycles.

For the scope of this paper, we set ΣI = 2API and ΣO = 2APO for some sets of
input/output atomic propositions API and APO.



104 R. Ehlers

The languages induced by Mealy machines: Given a Mealy machine M = (S, ΣI ,
ΣO, δ, s0) and some input word i = i0i1 . . . ∈ Σω

I , M induces a run π = π0π1 . . .
and some output word o = o0o1 . . . over i such that π0 = s0 and for all j ∈ IN:
δ(πj , ij) = (πj+1, oj). Formally, we define the language of M, written as L(M), to
be the set of words w = w0w1 . . . ∈ Σω with Σ = 2API�APO such that M induces
a run π over the input word i = w|ΣI = (w0 ∩ ΣI)(w1 ∩ ΣI) . . . such that w|ΣO =
(w0 ∩ΣO)(w1 ∩ΣO) . . . is the output word corresponding to π.

Linear-time temporal logic: For the description of the specification of a system, line-
ar-time temporal logic (LTL) is a commonly used logic. Syntactically, LTL formulas
are defined inductively as follows (over some set of atomic propositions AP):

– For all atomic propositions x ∈ AP, x is an LTL formula.
– Let φ1 and φ2 be LTL formulas. Then ¬φ1, (φ1 ∨ φ2), (φ1 ∧ φ2), Xφ1, Fφ1, Gφ1,

and (φ1Uφ2) are also valid LTL formula.

The validity of an LTL formula φ over AP is defined inductively with respect to an
infinite trace w = w0w1 . . . ∈ (2AP)ω . Let φ1 and φ2 be LTL formulas. We set:

– w |= p if and only if (iff) p ∈ w0 for p ∈ AP
– w |= ¬ψ iff not w |= ψ
– w |= (φ1 ∨ φ2) iff w |= φ1 or w |= φ2
– w |= (φ1 ∧ φ2) iff w |= φ1 and w |= φ2
– w |= Xφ1 iff w1 |= φ1
– w |= Gφ1 iff for all i ∈ IN, wi |= φ1
– w |= Fφ1 iff there exists some i ∈ IN such that wi |= φ1
– w |= (φ1Uφ2) iff there exists some i ∈ IN such that for all 0 ≤ j < i, wj |= φ1

and wi |= φ2

We use the usual precedence rules for LTL formulas in order to be able to omit unnec-
essary braces and also allow the abbreviations typically used for Boolean logic, e.g.,
that a → b is equivalent to ¬a ∨ b for all formulas a, b.

Labeled parity games: A labeled parity game is a tuple G = (V0, V1, Σ0, Σ1, E0, E1,
v0,F) with V0 and V1 being the sets of vertices of the two players 0 and 1, Σ0 and Σ1
being their sets of actions, and E0 : V0 × Σ0 → V1 and E1 : V1 × Σ1 → V0 being
their edge functions, respectively. We abbreviate V = V0 � V1 and only consider finite
games here, for which V0, V1, Σ0 and Σ1 are finite. The initial vertex v0 is always a
member of V0. The coloring function F : V0 → IN assigns to each vertex in V0 a color.
For the scope of this paper, we only assign colors to vertices of player 0. We introduce
the notationF−1 to denote the set of vertices of V0 having a given color, i.e., for c ∈ IN,
F−1(c) = {v ∈ V0 : F(v) = c}.

A decision sequence in G is a sequence ρ = ρ0
0ρ

1
0ρ

0
1ρ

1
1 . . . such that for all i ∈

IN, ρ0
i ∈ Σ0 and ρ1

i ∈ Σ1. A decision sequence ρ induces an infinite play π =
π0

0π
1
0π0

1π1
1 . . . if π0

0 = v0 and for all i ∈ IN and p ∈ {0, 1}, Ep(π
p
i , ρp

i ) = π1−p
i+p .

Given a play π = π0
0π1

0π
0
1π1

1 . . ., we say that π is winning for player 0 if max{F(v) |
v ∈ V0, v ∈ inf(π0

0π0
1 . . .)} is even for the function inf mapping a sequence onto the

set of elements that appear infinitely often in the sequence. If a play is not winning for
player 0, it is winning for player 1.
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Given some parity game G = (V0, V1, Σ0, Σ1, E0, E1, v0,F), a strategy for player
0 is a function f0 : (Σ0 × Σ1)∗ → Σ0. Likewise, a strategy for player 1 is a function
f1 : (Σ0 ×Σ1)∗ ×Σ0 → Σ1. In both cases, a strategy maps prefix decision sequences
to an action to be chosen next. A decision sequence ρ = ρ0

0ρ
1
0ρ

0
1ρ

1
1 . . . is said to be

in correspondence with fp for some p ∈ {0, 1} if for every i ∈ IN, we have ρp
i =

fp(ρ0
0ρ

1
0 . . . ρ1−p

i+p−1). A strategy is winning for player p if all plays in the game that
are induced by some decision sequence that is in correspondence to fp are winning for
player p. It is a well-known fact that for parity games, there exists a winning strategy
for precisely one of the players (see, e.g., [15]). We call a state v ∈ V0 winning for
player p if changing the initial state to v makes or leaves the game winning for player
p. Likewise, a state v′ ∈ V1 is called winning for player p if a modified version of the
game, that results from introducing a new initial state with only one transition to v′ is
(still) winning for player p.

If a strategy fp for player p is a positional strategy, then fp(ρ0
0ρ

1
0 . . . ρ1−p

n+p−1) =
f ′

p(E1−p (. . . E1(E0(v0, ρ
0
0), ρ

1
0), . . . , ρ1−p

n+p−1)) for some function f ′
p : Vp → Σp. By

abuse of notation, we call both f ′
p and fp positional strategies. Note that such a function

f ′
p is finitely representable as both domain and co-domain are finite. For parity games,

it is known that there exists a winning positional strategy for a player if and only if there
exists some winning strategy for the same player.

Note that a translation between this model and an alternative model where the color-
ing function is defined for both players is easily possible with only a slight alteration of
the game structure.

ω-automata: An ω-automaton A = (Q, Σ, q0, δ,F) is a five-tuple consisting of some
finite state set Q, some finite alphabet Σ, some initial state q0 ∈ Q, some transition
function δ : Q × Σ → 2Q and some acceptance component F (to be defined later).
We say that an automaton is deterministic if for every q ∈ Q and x ∈ Σ, |δ(q, x)| ≤ 1.
Given an ω-automaton A = (Q, Σ, q0, δ,F), we also call (Q, Σ, q0, δ) the transition
structure of A.

Given an infinite word w = w0w1 . . . ∈ Σω and an ω-automatonA = (Q, Σ, q0, δ,
F), we say that some sequence π = π0π1 . . . is a run for w if π0 = q0 and for all i ∈ IN,
πi+1 ∈ δ(πi, wi). The language ofA, written as L(A), is the set of all words for which
an accepting run throughA exists. The acceptance of π by F is defined with respect to
the type of F , for which many have been proposed in the literature [15].

– For a safety winning condition, all infinite runs are accepting. In this case, the F -
symbol can also be omitted from the automaton definition.

– For a Büchi acceptance condition F ⊆ Q, π is accepting if inf(π) ∩ F �= ∅. Here,
F is also called the set of accepting states.

– For a co-Büchi acceptance condition F ⊆ Q, π is accepting if inf(π) ∩ F = ∅.
Here, F is also called the set of rejecting states.

– For a parity acceptance condition, F : Q → IN and π is accepting in the case that
max{F(v) | v ∈ inf(π)} is even.

– For a Rabin acceptance condition F ⊆ 2Q × 2Q, π is accepting if for F =
{(E1, F1), . . . , (En, Fn)}, there exists some 1 ≤ i ≤ n such that inf(π) ∩ Ei = ∅
and inf(π) ∩ Fi �= ∅.
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– For a Streett acceptance condition F ⊆ 2Q × 2Q, π is accepting if for F =
{(E1, G1), . . . , (En, Fn)} and for all 1 ≤ i ≤ n, we have inf(π) ∩ Ei �= ∅ or
inf(π) ∩ Fi = ∅.

For a one-pair Rabin automaton A = (Q, Σ, q0, δ, {(E, F )}), we call F the Büchi
acceptance component of the automaton while E is denoted as being the co-Büchi ac-
ceptance component. This terminology is justified by the fact that a one-pair Rabin
automatonA = (Q, Σ, q0, δ, {(E, F )}) accepts some word if and only if it is accepted
by the co-Büchi automaton AC = (Q, Σ, q0, δ, E) and the Büchi automaton AB =
(Q, Σ, q0, δ, F ). Whenever a deterministic Rabin automatonA = (Q, Σ, q0, δ, (E, F ))
does not accept a word, we say that its Büchi part is violated if the states in F are vis-
ited only finitely often along the unique run, and say that its co-Büchi part is violated
if some state in E is visited infinitely often along this run. Henceforth, we assume that
all Büchi, co-Büchi, parity, Rabin and Streett automata are deterministic and without
loss of generality, for all of their states q ∈ Q and input symbols x ∈ Σ, we have
|δ(q, x)| = 1. We say that a parity automaton is weak if all states that are in the same
strongly connected component have the same color.

Parity automata and parity games: Given a deterministic parity automaton A =
(Q, Σ, q0, δ,F) with Σ = 2(API�APO), it is well-known that A can be converted to
a parity game G such that G admits a winning strategy for player 1 (the so-called system
player) if and only if there exists a Mealy machine M reading ΣI = 2API and out-
putting ΣO = 2APO such that the language induced byM is a subset of the language of
A (see, e.g., [23]). Furthermore, from a winning positional strategy in G, such a Mealy
machineM can easily be extracted.

Game solving and symbolic techniques: Many algorithms have been proposed for
solving parity games, of which some are implementable symbolically, i.e., the sets of
vertices and the edge functions can be represented implicitly by using, for example,
binary decision diagrams (BDDs) [8,14,10]. In practice, BDDs have been shown to be
useful when representing and computing properties of systems that are composed of
many components that run in parallel [20,12,2]. One particularly important operation
that needs to be performed in game solving is the computation of attractor sets. Given
two sets of vertices A and B, we define attrp(A, B) to be the set of game vertices from
which player p can enforce that eventually some vertex in B is visited while along the
way, the set of vertices A is not left. For the scope of this paper, we let attrp deal only
with vertices of player 0, i.e., A and B may only contain vertices of player 0 and we do
not restrict visits to vertices of player 1. The attractor set and a corresponding strategy
for player p can be computed symbolically [2,1].

Specifications: In this paper, we consider specifications of the form ψ = (a1∧a2∧. . .∧
ana) → (g1 ∧ g2 ∧ . . . ∧ gng ). By abuse of notation, we allow both LTL formulas and
deterministic automata as assumptions {a1, . . . , ana} and guarantees {g1, . . . , gng}. A
word w ∈ (2AP)ω satisfies ψ if either for some LTL assumption ai, w �|= ψ, for some as-
sumption automaton ai, w /∈ L(ai), or for all LTL and automata guarantees gi, w |= gi

and w ∈ L(gi), respectively. We assume that all LTL formulas in ψ range over the same
set of atomic propositions AP and all automata use 2AP as alphabet. Converting an LTL
formula to an equivalent deterministic automaton is a classical topic in the literature, is



Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis 107

explained in [15] and nowadays, suitable tools are available [16]. We say that an LTL
formula has a Rabin index of one if it can be converted to Rabin automata with one
acceptance pair.

In this paper, we are especially interested in specifications in which the assumption
and guarantee conjuncts are of the forms ψ, Gψ, GFψ, Fψ and FGψ with the only LTL
temporal operator occurring in ψ being X. These are called initialization, basic safety,
basic liveness, eventuality and persistence properties.

3 Generalized Rabin(1) Synthesis

In this section, we present the core construction of the generalized Rabin(1) synthesis
approach (abbreviated by GRabin(1) in the following) and then prove that its scope
cannot be extended without losing its good properties. Afterwards, we discuss its appli-
cation to the synthesis of robust systems. We start with a specification of the form

ψ = (a1 ∧ a2 ∧ . . . ∧ ana)→ (g1 ∧ g2 ∧ . . . ∧ gng )

for some set of assumptions {a1, . . . , ana} and some set of guarantees {g1, . . . , gng}.
We assume that these are given in form of deterministic one-pair Rabin automata. Most
specifications found in practice can be converted to such a form using commonly known
techniques [21,18,16].

Our construction transforms such a specification to a deterministic parity automaton
with at most 5 colors that accepts precisely the words that satisfy ψ. The number of
states of the generated automaton is polynomial in the product of the state numbers of
the individual Rabin automata a1, . . . , ana , g1, . . . , gng . The generated parity automa-
ton can then be syntactically transformed into a parity game (taking into account the
partitioning of the atomic propositions into input and output bits) that is winning for
player 1 if and only if there exists a Mealy machine over the given sets of inputs and
outputs such that all of its runs satisfy the specification. By using for example the par-
ity game solving algorithm by McNaughton/Zielonka [19], the realizability problem is
then solvable symbolically. This algorithm is constructive, i.e., it is able to produce a
winning strategy that can be used as a prototype implementation.

Let A be the set of assumption one-pair Rabin automata and G be the set of such
guarantee automata. For improved readability of the following description of the algo-
rithm, by abuse of notation, we introduce δ, Q, q0, Σ, and F as functions mapping au-
tomata onto their components. For example, given some automaton A = (Q̃, Σ̃, q̃0, δ̃,
(Ẽ, F̃ )), we have δ(A) = δ̃.

For A = {a1, . . . , ana} and G = {g1, . . . , gng}, we construct the deterministic
parity automatonA′ = (Q′, Σ′, δ′, q′0,F ′) that accepts precisely the words on which ψ
is satisfied as follows:

– Σ′ is chosen such that for all a ∈ A �G: Σ′ = Σ(a)
– Q′ = Q(a1)× . . .×Q(gng)× {0, 1, . . . , na} × {0, 1, . . . , ng} × B

– For all q = (qa
1 , . . . , qg

ng
, qW , qR, qV ) ∈ Q′ and x ∈ Σ′, we define δ′(q, x) =

(q′a1 , . . . , q′gng
, q′W , q′R, q′V ) such that:

• For all 1 ≤ i ≤ na: δ(ai)(qa
i , x) = q′ai
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• For all 1 ≤ i ≤ ng: δ(gi)(q
g
i , x) = q′gi

• q′W = (qW + 1) mod (na + 1) if q′aqW ∈ F (aqW ) or qW = 0, otherwise

q′W = qW .
• q′R = (qR + 1) mod (ng + 1) if q′g

qR ∈ F (gqR) or qR = 0, otherwise q′R =
qR.

• q′V = true if and only if (at least) one the following two conditions hold:
∗ qW = 0
∗ for all 1 ≤ i ≤ ng , q′gi /∈ E(gi) and qV = true

– For all q = (qa
1 , . . . , qg

ng
, qW , qR, qV ) ∈ Q′, we have that F ′ maps q to the least

value in c ∈ {0, 1, 2, 3, 4} such that:
• c = 4 if for some 1 ≤ i ≤ na: qa

i ∈ E(ai)
• c ≥ 3 if qV = true and for some 1 ≤ i ≤ ng, qg

i ∈ E(gi)
• c ≥ 2 if qR = 0.
• c ≥ 1 if qW = 0

– q′0 = (q0(a1), . . . , q0(gng ), 0, 0, false)

The components qa
1 , . . . , qg

ng
in a state tuple q = (qa

1 , . . . , qg
ng

, qW , qR, qV ) ∈ Q′ rep-
resent the automata of A �G running in parallel. The remaining part of the state tuples
corresponds to some additional control structure for checking if the overall specification
is satisfied. Note that adding the control structure only results in a polynomial blow-up.
The parts of the control structure have the following purposes:

– The counter qW keeps track of the assumption automaton number for which an
accepting state in its Büchi component is to be visited next. The construction is
essentially the same as for de-generalizing generalized Büchi automata (see, e.g.,
[22]).

– The counter qR does the same for the guarantees.
– The bit qV tracks if accepting states for the Büchi components of all automata in A

have been visited since the last visit to a rejecting state for the co-Büchi component
of some guarantee.

A full proof of the correctness of the construction can be found in [13].

3.1 Extending Generalized Rabin(1) Synthesis

The generalized Rabin(1) synthesis approach presented above is capable of handling all
assumptions and guarantees that have a Rabin index of one. A natural question to ask
at this point is whether the approach can be extended in order to be also able to handle
specifications with conjuncts of a higher Rabin index without losing its good properties.
These are:

– the fact that the state space of the generated parity automaton is the product of
the state spaces of the individual automata and some polynomially sized control
structure, which makes the automaton state space amenable to an encoding using
symbolic techniques, and

– the constant number of colors, which allows the application of efficient symbolic
parity game solving algorithms.



Generalized Rabin(1) Synthesis with Applications to Robust System Synthesis 109

Unfortunately, the approach cannot be extended while retaining these advantages. To
see this, consider Streett game solving, which is known to be co-NP-complete [15]. If
we were able to accommodate one-pair Streett automata (which are a special case of
two-pair Rabin automata) as guarantees in the synthesis approach presented, we could
decompose a Streett automaton with n acceptance pairs (for some n ∈ IN) into n one-
pair Streett automata, each having the transition structure of the original Streett automa-
ton, take these as guarantees and use no assumptions. The specification is then realizable
if and only if it is realizable for the original Streett automaton. Since however, the indi-
vidual one-pair Streett automata have the same transition structure and thus transition
in a synchronized manner, if we were able to build a parity game having the properties
stated above, the parity game would only have a number of vertices polynomial in the
size of the original Streett automaton and thus, due to the constant number of colors,
the realizability problem for the original Streett automaton would be solvable in poly-
nomial time. So the existence of a similar algorithm for generalized Streett(1) synthesis
or generalized Rabin(2) synthesis would imply P=NP.

3.2 Application to Synthesize Robust Systems

Assume that we have a specification of the form (a1 ∧ a2 ∧ . . . ∧ ana) → (g1 ∧ g2 ∧
. . . ∧ gng ), where all assumptions and guarantees are either initialization, basic safety,
basic liveness or persistence properties. During the run of a system satisfying ψ, the
assumptions may be violated temporarily. A common criterion for the robustness of a
system is that in such a case, it must at some point return to normal operation mode after
such a temporary assumption violation [7,3]. In the scope of synthesis, implementing
such a convergence [3] criterion requires fixing a definition of temporary assumption
violations. Taking a specification of the form stated above, only a violation of the ini-
tialization or basic safety assumptions can be detected during the run of the system.
Moreover, only the basic safety properties can be violated temporarily as an initializa-
tion property is only evaluated at the start of a system run. Thus we define:

Definition 1. Given a word w = w0w1 . . . ∈ (2AP)ω and an LTL formula ψ = Gφ, we
say that position i ∈ IN in the word witnesses the non-satisfaction of ψ if there exists
some j ≤ i such that for no w′ ∈ (2AP)ω, wj . . . wiw

′ |= φ. Furthermore, given a
specification of the form (a1 ∧ a2 ∧ . . . ∧ ana) → (g1 ∧ g2 ∧ . . . ∧ gng ), where all
assumptions are initialization, basic safety, basic liveness or persistence properties, we
say that the assumptions/guarantees are temporarily violated on a word w at position
i if position i witnesses the non-satisfaction of some basic safety assumption/guarantee
in the specification, respectively.

In [3], convergence has been defined for the safety case. In this paper, we extend the
definition to the liveness and persistence cases:

Definition 2. Given a specification of the form (a1 ∧ a2 ∧ . . . ∧ ana) → (g1 ∧ g2 ∧
. . . ∧ gng ), where all assumptions and guarantees are initialization, basic safety, ba-
sic liveness or persistence properties, we say that a system converges if the following
conditions hold for all words in the language of the system:
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– there exists a bound on the number of temporary basic safety guarantee violations
in between any two temporary basic safety assumption violations and after the last
temporary basic safety assumption violation, and

– If w is a word in the language of the system satisfying the initialization assumptions
and for some j ∈ IN, wj satisfies all non-initialization assumptions, then w satisfies
the initialization guarantees and for some j′ ≥ j, wj′ satisfies all non-initialization
guarantees.

In this definition, there is no requirement that a converging system also performs some
progress on its liveness (and persistence) properties in between two temporary assump-
tion violations even if they are sufficiently sparse, which in practice a robust system
should surely do. Nevertheless, we argue that for the scope of synthesis, this definition
is still useful. The reason is that all synthesis procedures used nowadays produce finite-
state solutions. Thus, if temporary assumption violations stop occurring for a couple of
computation cycles and at the same time, some progress is made with respect to liveness
assumptions (i.e., accepting states are visited for their automata), the system has, after a
finite period of time, also continue to work towards fulfilling the liveness guarantees. If
this was not the case, we could find a loop in the finite-state machine description of the
system that witnesses non-convergence, which would be a contradiction. Given that our
synthesis procedure only produces finite-state solutions (as parity game solving algo-
rithms typically do), it is thus enough to require that after the last temporary assumption
violation the system converges in order to ensure that the system converges in general.
We can easily express convergence after the last temporary assumption violation in LTL
by prefixing the guarantees and the basic safety assumptions in the specification using
the F (finally) operator of LTL.

Definition 3. Given a specification of the form ψ = (a1 ∧ a2 ∧ . . . ∧ ana) → (g1 ∧
g2 ∧ . . . ∧ gng ), where all assumptions and guarantees are initialization, basic safety,
basic liveness or persistence properties, and as, . . . , ana are precisely the basic safety
assumptions, we define the ruggedized version of ψ to be:

ψ′ = (a1 ∧ . . . ∧ as−1 ∧ F(as) ∧ . . .F(ana)) → (F(g1) ∧ F(g2) ∧ . . . ∧ F(gng ))

Note that when taking a generalized Rabin(1) specification consisting only of initial-
ization, basic safety, basic liveness and persistence properties, ruggedizing it does not
change its membership in this class, as basic safety properties are converted to persis-
tence properties, basic liveness properties stay untouched (as FGF(φ) is equivalent to
GF(φ) for all LTL formulas φ) and likewise, persistence properties are not altered. This
property does not hold for generalized reactivity(1) specifications, as the ruggedization
process converts pure safety properties to persistence properties.

Thus, we can solve the robust synthesis problem, where converging systems are to
be found that satisfy a given specification, by ruggedizing the specification and using
the generalized Rabin(1) synthesis approach. The convergence criterion above however
does not state that under no safety assumption violation, also no guarantee violation
should be performed by the system to be synthesized, which is also required in the
vast majority of practical cases where synthesis can be applied. In order to incorporate
this requirement to the synthesis process, we can build a deterministic weak automaton
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from the original specification but using only safety assumptions and guarantees. By
taking the conjunction of this automaton with the parity automaton obtained from the
ruggedized specification using the construction stated above, we obtain a five-color
parity game for which all implementations realizing the specification also have this
additional property.

So far, we have required all assumption and guarantee conjuncts to be initialization,
basic safety, basic liveness and persistence properties. We leave the question how to
ruggedize specifications consisting of arbitrary one-pair Rabin automata as assump-
tions and guarantees open, as there is no extension to the ruggedization concept that is
suitable in general. As an example, in general we could have the assumption in a spec-
ification that at precisely every second computation cycle, some input bit should be set
to true. If during the execution of the system, the environment flips the phase of the
signal (e.g., from setting the bit to true every even cycle to setting it to true every odd
cycle), whether this should count as only a temporary violation or a permanent one de-
pends on the application. Thus, a generic ruggedization construction for specifications
that do not only have initialization, basic safety or liveness and persistence conjuncts
cannot be given.

4 Bounded-Transition-Phase Generalized Rabin(1) Synthesis

In the preceding section, we defined generalized Rabin(1) synthesis and its application
to synthesize robust systems. These systems have the property that after a temporary
violation of some assumption, the system returns to normal operation mode after a
finite period of time. The system might however have the drawback that the length of
the period is not under its control and might grow arbitrarily. Consider the following
example, which is a realizable specification over API = {i} and APO = {o}:

(i ∧ GFi ∧ G(i ↔ Xi))→ (G(o ↔ i) ∧ Go)

The environment can temporarily violate its specification by switching from continu-
ously choosing i = true to i = false and vice versa. While the environment plays
a stream of i = false, the system has to violate some of its guarantees. However, the
environment has to switch back to setting i = true at some point in order not to violate
its liveness property. Thus, also the ruggedized version of the specification is realizable.
However, we cannot give a time bound on the duration of a phase in which i is set to
false continuously and thus, there is no implementation of the specification that has a
time bound on the length of the transition phase in which the system switches back to
normal operation mode after the last temporary assumption violation.

Definition 4. Given a specification ψ = (a1 ∧a2 ∧ . . .∧ana)→ (g1 ∧ g2 ∧ . . .∧ gng ),
where all assumptions and guarantees are initialization, basic safety, basic liveness
or persistence properties, we say that a robust system is in normal operation mode
with respect to ψ after the input/output prefix word w ∈ (2API�APO)∗ if the system can
enforce that the postfix word w′ ∈ (2API�APO )ω representing the following input/output
either has the property that the initialization assumptions are not satisfied in ww′, or no
safety guarantee temporary violation is witnessed in ww′ from position |w|+1 onwards
before the next safety assumption violation.
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We say that a system is in recovery mode whenever it is not in normal operation mode.
Undoubtedly, systems that guarantee an upper time bound on the number of computa-
tion cycles being in recovery mode after a temporary assumption violation has occurred
(provided that no further such violation occurs during the recovery process) are more
desirable [9]. In this section, we show how to obtain these with the generalized Rabin(1)
synthesis approach, whenever possible. As a side-result, the systems synthesized also
have an additional output bit that always indicates whether normal operation mode has
already been restored.

We solve the bounded-transition-phase generalized Rabin(1) synthesis problem by
borrowing ideas from [9], where finitary winning conditions for parity games are in-
troduced, but only apply these to the co-Büchi part of the specification that has been
introduced when ruggedizing the original specification. In contrast to [9], we thus avoid
that specifications in which the system to be synthesized is required to wait for some
external events for fulfilling its obligations become unrealizable, which applies to the
majority of the industrial case studies available for generalized reactivity(1) synthesis
at the moment (see, e.g., [5,6,26]).

Let ψ be a generalized reactivity(1) specification. We start by ruggedizing ψ and
convert the resulting LTL formula to a deterministic parity automaton A′ as described
in the previous section, but this time modify the construction slightly to always set the
qV flag to true. With this modification, if some rejecting state for the co-Büchi-part of
some guarantee Rabin automaton is visited along a run, this results in an occurrence of
color 3, except if at the same time some state in the co-Büchi-part of an assumption is
visited (which leads to color 4). When computing the automata from the specification
conjuncts, for the persistence properties, we make sure that their automata are co-Büchi-
tight. We say that a deterministic co-Büchi word automaton is co-Büchi-tight for some
LTL formula ψ = FGφ if a run of the automaton visits a rejecting state precisely at the
positions in the corresponding word that witness the non-satisfaction of Gφ. We define:

Definition 5. Given a parity gameA with colors {0, 1, 2, 3, 4}, we say that some strat-
egy f for player 1 is a winning color-3 bounded-transition-phase strategy if there exists
some constant c ∈ IN such that on every run ofA that is in correspondence to f , a visit
to color 3 along the run can only occur within c steps after an occurrence of color 4.

Whenever we have a winning color-3 bounded-transition-phase strategy for the game
induced by A′, the strategy represents an implementation realizing ψ using only a
bounded transition-phase before returning to normal operation mode after a tempo-
rary assumption violation, as in A′, all visits to color 3 signal visits to co-Büchi states
in some Rabin guarantee automaton, which in turn witness temporary guarantee viola-
tions. Thus, such a strategy represents a system implementation for which the number
of computation steps in which it can be in recovery mode between any two temporary
assumption violations is limited.

Let G = (V0, V1, Σ0, Σ1, E0, E1, v0, c) be the game built fromA′. We use a function
parityp(B, C) for computing the set of winning vertices in a parity game, i.e., for p ∈
{0, 1}, it maps the sets of V0-vertices B and C onto the set of vertices from which
player p can win the game, assuming all states in B to be winning for this player and
all states in C to be winning for the other player. We assume that the parityp function
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also computes a winning strategy. Note that the commonly used parity game solving
algorithms can easily be modified to handle such additional parameter sets B and C
and to compute such a strategy [14,10].

At any point during a run in which player 1 plays a bounded-transition strategy, she
is either in the transition phase or in a vertex from which she can win without being
in the transition phase, i.e., from which she has a winning strategy that does not visit a
vertex with color 3 before a vertex with color 4 is visited and at the same time, if a color-
4-vertex is never visited again, is winning using only vertices with colors 0, 1 and 2.
Using this observation, we can compute the set of V0-vertices from which player 1 can
win while being in the transition phase using a fixed point characterization of the set:

W = νX.X ∧ attr1(F−1(4) ∨ parity1(F−1(4) ∧X,F−1(3))) (1)

The subformula parity1(F−1(4)∧X,F−1(3)) computes from which vertices the game
can be won when not being in the transition phase, assuming that the states in X are
winning during the transition phase, as a visit to color 4 allows switching to the transi-
tion phase, and a vertex with color 3 must not be visited beforehand. Taking the attractor
set of parity1(F−1(4) ∧ X,F−1(3)) allows finding the vertices from which player 1
can enforce that either a vertex with color 4 is visited after a finite period of time or that
in a finite number of steps, vertices are reached which are winning even when not being
in the transition phase. Using this set W , the set of vertices from which player 1 can
win when not being in the transition phase can then be obtained by computing:

Y := parity1(F−1(4) ∧W,F−1(3) ∧W ) (2)

Theorem 1. Given a parity game G, the set of the vertices of player 0 in a game from
which a winning color-3 bounded-transition-phase strategy exists for player 1 is equal
to the set of vertices computed by Equation 2.

Note that in this setting, the parity function only needs to deal with three-color parity
games, as the vertices with color 4 and 3 are assumed to be winning and losing for the
system player, respectively, so they can be remapped to color 0 for the scope of the
parity function. This allows the usage of specialized three-color parity game solving
algorithms such as the one described in [10], which has been shown to work well for
symbolic game solving in practice. Also, as the computations of attractors, conjunc-
tions, disjunctions and fixed points can be done symbolically [14], we obtain a fully
symbolic algorithm for computing the states from which a winning color-3 bounded-
transition-phase strategy exists.

Extracting such a strategy is also simple. While being in Y , the system player plays
the strategy computed by the parity function. Whenever this is not the case, it moves
along the attractor towards Y . Since an implementation can track its current vertex in
the game, it can easily output a signal stating whether it is in Y or not. This signal then
serves as an indicator whether the system is in normal operation or recovery mode.

The description of the algorithm established in this section does not immediately
generalize to the case that the original specification also contains co-Büchi objectives,
as co-Büchi rejecting states may be visited before the first occurrence of a safety as-
sumption violation in practice, but after the ruggedization of the specification and the
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conversion to a parity game, such a visit is not allowed by a color-3 bounded-transition-
phase strategy. It is however easy to adapt our algorithm to fix this problem: we addi-
tionally introduce the colors 5 and 6 and map violations of the co-Büchi parts of Rabin
guarantee and assumption automata that correspond to safety conjuncts in the original
specification to these colors. The colors 3 and 4 are then still used for the persistence
properties of the original specification, using the qV bit of the construction from Sect.
3. Then, we only need to search for color-5 bounded-transition-phase strategies instead
of color-3 ones and alter the equations 1 and 2 to W = νX.X ∧ attr1(F−1(5) ∨
parity1(F−1(6) ∧X,F−1(5))) and Y := parity1(F−1(6) ∧W,F−1(5)).

5 Conclusion

In this paper, we presented generalized Rabin(1) synthesis. We have shown that our
approach is the maximally possible extension to generalized reactivity(1) synthesis that
has the same good algorithmic properties. As an application, we have defined a robust-
ness criterion suitable for specifications consisting of initialization, basic safety, basic
liveness, and persistence conjuncts and shown that the set of generalized Rabin(1) speci-
fications consisting only of these conjuncts is closed under the process of ruggedization,
which automatically transforms a specification into one for a system that needs to be
robust against environment assumption violations. By applying a special algorithm for
bounded-transition-phase generalized Rabin(1) synthesis, we can furthermore search
for implementations that are even more robust in the sense that the transition phase be-
tween the normal operation mode and the recovery mode after a temporary assumption
violation has to be bounded in length by some constant.

The practical applicability of the techniques described in this paper is witnessed by
the fact that in robotics, where generalized reactivity(1) synthesis starts to be applied,
the inability of generalized reactivity(1) synthesis to handle co-Büchi-type specifica-
tions is discussed in some publications in that field (see, e.g., [17,26]). Our techniques
allow specifying such properties and are implementable in a fully symbolic manner.
When applied to only Büchi-type assumptions and guarantees, the basic GRabin(1)
synthesis approach is equivalent to the one for generalized reactivity(1) synthesis de-
scribed in [4] and as a lightweight modification to the former algorithm, it inherits its
good algorithmic properties.
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Abstract. Agda is a dependently typed functional programming lan-
guage and a proof assistant in which developing programs and proving
their correctness is one activity. We show how this process can be en-
hanced by integrating external automated theorem provers, provide a
prototypical integration of the equational theorem prover Waldmeister,
and give examples of how this proof automation works in practice.

1 Introduction

The ideal that programs and their correctness proofs should be developed hand-
in-hand has influenced decades of research on formal methods. Specification
languages and formalisms such as Hoare logics, dynamics logics and temporal
logics have been developed for analysing programs, protocols, and other com-
puting systems. They have been integrated into tools such as theorem provers,
SMT/SAT solvers and model checkers and successfully applied in the industry.
Most of these formalisms do not analyse programs directly on the code, but use
external tools and techniques with their own notations and semantics. This usu-
ally leaves a formalisation gap and the question remains whether the underlying
program semantics has been faithfully captured.

But there are, in fact, programming languages in which the development of
a program and its correctness proof can truly be carried out as one and the
same activity within the language itself. An example are functional program-
ming languages such as Agda [7] or Epigram [15], which are based on dependent
constructive type theory. Here, programs are obtained directly from type-level
specifications and proofs via the Curry-Howard isomorphism. These languages
are therefore, in ingenious ways, programming languages and interactive theo-
rem provers. Program development can be based on the standard methods for
functional languages, but the need of formal proof adds an additional layer of
complexity. It requires substantial mathematical skill and user interaction even
for trivial tasks. Increasing proof automation is therefore of crucial importance.

Interactive theorem provers such as Isabelle [17] are showing a way forward.
Isabelle is currently being transformed into a versatile proof environment by
integrating external automated theorem proving (ATP) systems, SMT solvers,
decision procedures and counterexample generators [5,6,4]. Proof tasks can be
delegated to these tools, and the proofs they provide are internally reconstructed
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to increase trustworthiness. But all this proof technology is based on classi-
cal logic. This has two main consequences. First, on the programming side the
proofs-as-programs approach is not available in Isabelle, hence programs cannot
be extracted from Isabelle proofs. Second, because of the absence of the law of
excluded middle in constructive logic, proofs from ATP systems and SMT solvers
are not generally valid in dependently typed languages. An additional complica-
tion is that proof reconstruction in dependently typed languages must be part
of type-checking. This makes an integration certainly not straightforward, but
at least not impossible.

Inspired by Isabelle we provide the first ATP integration into Agda. To keep
it simple we restrict ourselves to pure equational reasoning, where the rule of
excluded middle plays no role and the distinction between classical and construc-
tive proofs vanishes. We integrate Waldmeister [10], the fastest equational ATP
system in the world1. Waldmeister also provides detailed proofs and supports
simple sorts/types. Our main contributions are as follows.

• We implement the basic data-types for representing equational reasoning
within Agda. Since Agda needs to manipulate these objects during the type
checking process, a reflection layer is needed for the implementation.

• Since Agda provides no means for executing external programs before com-
pile time, the reflection-layer theory data-types are complemented by a
Haskell module which interfaces with Waldmeister.

• We implement equational logic at Agda’s reflection layer together with func-
tions that parse Waldmeister proofs into reflection layer proof terms. We
verify this logic within Agda and link it with the level of Agda proofs. This
allows us to reconstruct Waldmeister proofs step-by-step within Agda.

• Mapping Agda types into Waldmeister’s simple sort system requires abstrac-
tion. Invalid proofs are nevertheless caught during proof reconstruction.

• We provide a series of small examples from algebra and functional program-
ming that show the integration at work.

While part of the integration is specific to Waldmeister, most of the concepts
implemented are generic enough to serve as templates for integrating other, more
expressive ATP systems. Our integration can also be used as a prototype for
further optimisation, for instance, by providing more efficient data structures
for terms, equations and proofs, and by improving the running time of proof
reconstruction. Such issues are further discussed in the final section of this paper.

Formal program development can certainly be split into creative and routine
tasks. Our integration aims at empowering programmers to perform proofs at
the level of detail they desire, thus making program development cleaner, faster
and less error-prone.

This paper aims to explain the main ideas and features of our approach to
a formal methods audience. Its more idiosyncratic aspects, which are mainly of
interest for Agda developers, are contained in a technical report [8]; the complete
code for our implementation can be found at our website2.
1 http://www.cs.miami.edu/~tptp/CASC/ , 15/02/2011
2 http://simon-foster.staff.shef.ac.uk/agdaatp
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2 Agda

Agda [7] is a dependently typed programming language and proof-assistant. It is
strongly inspired by Haskell and offers a similar syntax. In this section we briefly
introduce Agda as a programming language, whereas the next section focusses on
theorem proving aspects. Additional information about Agda, including libraries
and tutorials, can be found at the Agda Wiki3.

The data-types featured in this section come from Agda’s standard library.
The following inductive data-type declaration introduces vectors.

data Vec (A : Set) : N → Set where
[ ] : Vec A zero
_::_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)

In contrast to most other functional programming languages, Agda supports
dependent data-types. The data-type of vectors is defined depending on their
length n. In Agda syntax the parameters before the colon are constants, whose
values cannot be changed by the constructors. Parameters after the colon are
indices ; their definition depends on the particular constructor. In this example,
the element type A of a vector is fixed, whereas the size varies. Vectors have
two constructors: The empty vector [] has type Vec A zero and zero length. The
operation :: (cons) takes, for each n, an element x : A and a vector xs : Vec A n
of length n, and yields a vector Vec A (suc n) of length n + 1. Instances of this
data-type need not explicitly supply the parameter n, such hidden parameters
are indicated by braces. One can now define functions as usual.

head : ∀ {n} {A : Set} → Vec A (1 + n) → A
head (x :: xs) = x

Agda only accepts total functions, but head should only be defined when n �= 0.
The dependent type declaration captures this constraint. It thus allows a fine
control of data validity in specifications. Predicates can also be data-types:

data _�_ : N → N → Set where
z�n : ∀ {n} → zero � n
s�s : ∀ {m n} (m�n : m � n) → suc m � suc n

The expressions z�n and s�s are names. Agda is white-space sensitive, so they
are parsed as one token, whereas zero � n is parsed as three tokens. The ele-
ments of this data-type are inductive proofs of �. For instance, s�s (s�s z�n)
is a proof of 2 � 3. Hence, Agda data-types capture proofs as well as objects
such as numbers or vectors. Similarly, one can define n < m as suc n � m.

Agda provides two definitions of equality. Propositional equality, ≡, holds
when two values and their types have the same normal forms. Heterogeneous
equality, ∼=, only requires equality of values. Two vectors xs : Vec A (m + n) and
ys : Vec A (n + m) have different types in Agda, hence xs ≡ ys is not well typed.
But xs ∼= ys would hold if xs and ys have same normal form.

As a constructively typed language, Agda uses the Curry-Howard Isomor-
phism to extract programs from proofs. The above data-types provide examples
3 http://wiki.portal.chalmers.se/agda/pmwiki.php
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of how proofs yield programs for their inhabitants. A central tool for program
development by proof is the meta-variable; a “hole” in a program which can be
instantiated to an executable program by step-wise refinement.

greater : ∀ (n : N) → ∃ (λ (m : N) → n < m)
greater n = ?

The type of greater specifies that for every natural number n there exists a
natural number m greater than n. In the function body, ? indicates a meta-
variable for which a program must be constructed through proof. More precisely,
Agda requires a natural number m constructed in terms of n and a proof that
n < m. Agda provides a variety of tools for proof support. If the user invokes
the case-split command, two proof obligations are generated from the inductive
definition of natural numbers:

greater zero = { } 0
greater (suc n) = { } 1

Each contains a meta-variable indicated by the braces and number. The first
one requires a value of type ∃(λ m → 0 < m). The second one requires a value
of type ∃(λ m → suc n < m) for the parameter suc n, assuming ∃(λ m → n < m)
for the parameter n. In the first case, meta-variable refinement further splits the
goal into two meta-variables.

greater zero = { } 0, { } 1

This is now a pair consisting of a natural number m and a proof that this witness
satisfies zero < m. The following code displays a value and proof:

greater zero = 1, s�s z�n

In this case, m = 1 and s�s z�n are the names of the inference rules needed for
the proof. By the first rule, zero � zero, by the second rule, therefore, suc zero �
suc zero, whence zero < suc zero by the definition of <.

This proof style lends itself naturally to incremental program construction,
where writing a program and proving its correctness are one activity. To further
automate this, Agda provides the proof-search tool Agsy [14], which can some-
times automatically construct programs and proofs. The remaining proof goal
in the example above can be solved automatically by calling Agsy.

greater (suc n) = (suc (proj1 (greater n)), s�s (proj2 (greater n))

The functions proj1 and proj2 project on the value and the proof of the proof goal.
However, Agsy struggles with non-trivial proof goals. Increasing the degree of
automation is therefore highly desirable to free programmers from trivial proof
and construction tasks.

3 Integration of Automated Theorem Proving

ATP systems have already significantly increased proof automation in interactive
theorem provers. Isabelle [17], for instance, can use a tactic called Sledgehammer



120 S. Foster and G. Struth

to call external ATP systems. In contrast to interactive provers, which consist of a
relatively small inference engine, ATP systems are complex tools that depend on
a large number of heuristics. They are less trustworthy than interactive provers.
Consequently, Isabelle internally reconstructs all ATP proofs with the internally
verified ATP system Metis [11]. Since Metis is less efficient than the external
ATP systems, a relevance filter minimises the number of hypotheses given to
it. Metis then performs proof search to derive the goal from the hypotheses. In
practice, however, this macro-step proof reconstruction sometimes fails.

Evidently, Agda could benefit from a similar approach, but all state of the art
ATP systems are designed for classical predicate logic. The resolution principle,
which underlies most of these systems, is directly based on the law of excluded
middle. Since constructive proofs are needed for Agda, we have based a first inte-
gration on Waldmeister [10], an ATP system for pure equational logic, where the
difference between classical and constructive proof disappears. Equational logic
needs only rules for reflexivity, symmetry, transitivity, congruence, substitution
and a number of structural rules that are all present in constructive logic.

Our integration can serve as a basis for integrating full first-order ATP sys-
tems, which could still be used on subclasses of constructive formulae, such as
Harrop formulae [9] where classical and constructive proofs coincide.

Fig. 1. Overview of automated theorem prover integration in Agda

A Waldmeister integration into Agda is still not straightforward, for two main
reasons. Firstly, the built-in Agda normaliser changes hypotheses and proof
goals, but these are hidden within the proof state and cannot be accessed from
within Agda. Secondly, for both goal extraction and proof reconstruction, Agda
syntax must explicitly be manipulated as part of the type-checking process.
We see two main approaches to integrating an ATP system into Agda. The in-
ternal approach performs most of the goal extraction and proof reconstruction
within Agda itself. Reflection, which we explain below, provides a way of medi-
ating Agda proofs with ATP proofs. In the external approach, proof proceeds by
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accessing the Agda proof state with an external tool, for instance Haskell, passing
this state to the ATP system, and writing an ATP proof back into Agda.

Each approach offers advantages and disadvantages. In this paper, we use the
former because it is conceptually cleaner and all the steps of proof reconstruction
are internally verified in Agda itself. An additional design decision is whether
to use Metis style macro-step proof reconstruction, or micro-step reconstruction
of individual proof steps. Again, we take the latter approach. The former would
require an internally verified equational prover, and we expect Agda’s inter-
nal proof tools to be efficient enough to handle single proof steps. Fortunately,
Waldmeister output is sufficiently detailed for this purpose.

Our internal approach uses the mechanism of reflection which is similar to
a quoting mechanism in programming languages, lifting syntax to an internal
meta-level, protecting it from evaluation and allowing manipulation within Agda.
Therefore all Agda data-types needed in proofs are represented at Agda’s reflec-
tion level before and after passing them to Waldmeister. Our approach therefore
uses the three layers illustrated in Figure 1: The Agda layer contains the initial
proof goal and realises the final proof. The reflection layer represents the Agda
goal and reconstructed ATP proof output. The ATP layer runs the serialised
proof goal and outputs an ATP proof.

Agda’s quoting mechanism, however is still experimental. Currently we can
reflect and realise a large class of equational problem specifications and proofs.
The serialisation of the reflected proof input into an ATP input is obtained by a
Haskell module. It requires abstraction because Agda’s type system is much more
powerful than the simple sorts supported by Waldmeister. In general, types can
often be encoded as predicates in ATP systems. State of the art ATP systems can
prove quite complex mathematical theorems but they often fail. The integration
must be able to cope with this situation. The same holds for proof reconstruction.
Ultimately, if Agda succeeds in realising a proof of an initial proof goal, it is
guaranteed that this proof is correct in Agda.

4 Proof Cycle Example

This section provides an overview of our Waldmeister integration. It shows how
a simple inductive proof is passed from the Agda layer through the reflection
layer to Waldmeister, and how the proof obtained by Waldmeister is passed back
and reconstructed within Agda.

Consider the following Agda proof goal:

assoc : ∀ (x y z : N) → (x + y) + z ≡ x + (y + z)

We first perform a case-split on the first argument, yielding two meta-variables.

assoc zero y z = { } 0
assoc (suc n) y z = { } 1

Waldmeister can solve each individual goal. Within Agda, they must first be
lifted to a reflected signature Σ-Nat for natural numbers and their operations.
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Nat : HypVec -- Proof environment for natural numbers
Nat = HyVec Σ-Nat axioms -- Construct it from signature and axioms

where
+-zero = Γ1, ‘0 ‘+ α ≈ α -- Quotes indicate reflection layer
+-suc = Γ2, ‘suc α ‘+ β ≈ ‘suc (α ‘+ β)

axioms = (+-zero :: +-suc :: [ ])

assoc-zero : Nat, [ ],Γ2 � [ ] ⇒ (‘0 ‘+ α) ‘+ β ≈ ‘0 ‘+ (α ‘+ β)
assoc-zero = ?

assoc-suc : Nat, [ ],Γ3 � (α ‘+ β) ‘+ γ ≈ α ‘+ (β ‘+ γ) :: [ ]
⇒ (‘suc α ‘+ β) ‘+ γ ≈ ‘suc α ‘+ (β ‘+ γ)

assoc-suc = ?

The reflection layer types of assoc-zero and assoc-suc represent the proof goals
including environments for axioms, lemmas and variables used. The question
marks indicate meta-variables which need to be instantiated with a proof term.
This reflection layer data-type provides sufficient information for generating a
Waldmeister input file for the first proof obligation:

NAME agdaProof
MODE PROOF
SORTS Nat
SIGNATURE suc: Nat -> Nat

plus: Nat Nat -> Nat
zero,a,b: -> Nat

ORDERING LPO a > b > zero > suc > plus
VARIABLES x,y: Nat
EQUATIONS plus(zero,x) = x

plus(suc(x),y) = suc(plus(x,y))
CONCLUSION plus(plus(zero,a),b) = plus(zero,plus(a,b))

Waldmeister instantly returns with the following proof:

Axiom 1: plus(zero,x1) = x1
Theorem 1: plus(plus(zero,a),b) = plus(zero,plus(a,b))
Proof:

Theorem 1: plus(plus(zero,a),b) = plus(zero,plus(a,b))
plus(plus(zero,a),b)

= by Axiom 1 LR at 1 with {x1 <- a}
plus(a,b)

= by Axiom 1 RL at e with {x1 <- plus(a,b)}
plus(zero,plus(a,b))

Non-trivial proofs can easily have hundreds of steps. Waldmeister’s output con-
tains sufficient information to reconstruct this proof step-by-step at the reflection
layer and instantiate the first meta-variable:

assoc-zero =
fromJust ( reconstruct ((inj1 (# 0), true, eq-step (0 ::l [ ] l) (con (# 3) ([ ] x)

::s [ ] s))::l (inj1 (# 0), false, eq-step ([ ] l) (con (# 2) (con (# 3)
([ ] x) ::x con (# 4) ([ ] x) ::x [ ] x)::s [ ] s)) ::l [ ] l))
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The syntax in this proof need not concern us in this paper; it essentially expresses
the equational steps above. The function reconstruct uses the reflection layer
inference rules for equational logic, which we have internally proved to be sound.
To realise this proof in Agda it needs to be translated back to N.

N-�Σ� : �Signature� Σ-Nat -- code omitted
N-Nat : �HypVec� Nat N-�Σ� -- code omitted

These functions link the reflection layer signature to concrete Agda functions and
ground the axioms. The first function instantiates the reflection layer signature,
the second one instantiates the hypotheses. The reflection layer proof term is
instantiated to a valid Agda proof corresponding to the first meta-variable {}0:

assoc zero y z = ∼=-to-≡ (�≈-to-∼= [ ] � {�Σ� = add-∃-vars-�Σ� {Γ = Γ2}
N-TermModel (y, z, tt)} N-Nat assoc-zero [ ] f (λ x → z))

The proof cycle for the second meta-variable, {}1, is similar.

5 The Reflection Layer

Agda data-types and proofs must be lifted to the reflection layer to enable their
manipulation within Agda. This section shows how data-types, theories and
proofs that enable ATP proofs can be implemented at the reflection layer. First
we describe the data-types and theories.

Fig. 2. Dependency graph of reflective components

Figure 2 shows the data-types required. They provide the reflection layer
syntax for the terms and equations used in the proofs and the interpretations of
these objects within Agda. We will now describe each of them. The basis of our
reflection layer syntax are operations and signatures. Operations can either be
Agda functions or data-type constructors; we need not distinguish them.

First we define operations, signatures and variable sets at the reflection layer.

record Operation (sorts : FinSet) : Set where
field

arity : N

args : Vec (El sorts) arity
output : El sorts

record Signature : Set where
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field
sorts, ops : FinSet
operations : Vec (Operation sorts) ops

record VarVec (Σ : Signature) : Set where
open Signature Σ
field

vars : FinSet
vvec : Vec (El sorts) vars

FinSet is a finite set and El indicates an element of a finite set. An n-ary operation
is represented as a record parametrised over the set of sorts in its signature. It
consists of its arity, its input sorts args and its output sort. A signature is a finite
set of sorts together with a vector of operations. We also provide a data-type for
variables. Their sorts are determined by the signature under which they appear.
Therefore, variable vectors are parametrised by signatures. Next we define terms.

mutual
data Expr Σ (Γ : VarVec Σ) : VarSet Γ → Sort Σ → Set where

con : (i : El (ops Σ)) {ν : VarSet Γ} (es : ExprVec Γ ν (opArgs Σ i))
→ Expr Σ Γ ν (opOutput Σ i)

var : (x : Var Γ) → Expr Σ Γ { x } (varSort Γ x)

data ExprVec -- code omitted

The expression data-type has four parameters: (i) the signature Σ, (ii) the vari-
able context Γ which lists all variables available for building a term, (iii) the
subset of variables ν drawn from the context which the expressions contains,
represented by shorthand VarSet Γ and (iv) the sort s of the expression. Con-
structor con takes the operation index i, and an expression vector parametrised
over its argument sorts; it yields an expression with the output sort of i. Con-
structor var takes a variable index and yields an expression with a singleton free
variable {x} of the correct sort. Expressions and expression vectors are mutually
inductive. It is now possible to define equations and hypotheses sets.

record Equation (Σ : Signature) : Set where
constructor _≈_
field

{Γ} : VarVec Σ
{sort} : Sort Σ
{ν1 ν2} : VarSet Γ
lhs : Expr Σ Γ ν1 sort
rhs : Expr Σ Γ ν2 sort

record HypVec : Set where
constructor HyVec
field

Σ : Signature
{hyps} : FinSet
hypotheses : Vec (Equation Σ) hyps

We now move to the upper level of Figure 2, where corresponding data-types
are implemented. The complete code can, again, be found at our website.
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record �Signature� (Σ : Signature) : Set1 where -- code omitted
sem : ∀ {Σ} (�Σ� : �Signature� Σ) {Γ : VarVec Σ} {s} {ν } (�ρ� : �Subst� Γ �Σ�)

(e : Expr Σ Γ ν s) → �Signature�.types �Σ� s -- code omitted
record �Equation� -- code omitted
record �HypVec� -- code omitted

�Signature�, �Equation� and �HypVec� map the reflection layer objects indicated
into the Agda layer, and provide soundness proofs. Function sem realises reflec-
tion layer terms, using an Agda layer signature �Σ� and substitution �ρ�.

This implementation enables us to represent all elements of Waldmeister input
files in a well-typed way at the reflection layer, and to realise these elements
within Agda. Since Agda cannot run external program before compile-time, we
have written a Haskell module which interfaces with Waldmeister. It provides a
function which serialises a Waldmeister input file, as shown in Section 4, executes
the prover and parses the resulting Waldmeister proof output back into Agda.

To reconstruct Waldmeister proofs within Agda, we must provide data-types
for equational proofs at the reflection layer. First, the parsed proof output pro-
vided by Waldmeister must be translated into an inhabitant of a proof data-type.
Second, it must be proved that all inhabitants of this data-type are correct with
respect to heterogeneous equality.

At the core of proof reconstruction is an implementation of equational reason-
ing, as performed by Waldmeister. We need some notation and concepts from
term rewriting (cf. [19]). A substitution is a map ρ from variables to terms, which
extends to a function on terms. A term t matches a term s (or s subsumes t) if
sρ = t for some substitution ρ. We write t  s if s subsumes t. More specifically,
to denote the ternary relation sρ = t between s, ρ and t, we write t  ρ s.

With subsumption we can model one-step rewrites of equational logic. Let E
be a set of equations li ≈ ri. We write E � s = t if there is a substitution ρ, a
context C and an equation l ≈ r ∈ E such that s = C[lρ] and t = C[rρ]. Hence

E � s =1 t ⇐⇒ s  ρ C[l] ∧ t  ρ C[r] (1)

for some substitution ρ, context C and l ≈ r ∈ E. We extend this one-step
rewrite relation by inductively defining = as the transitive closure of =1. To
implement these concepts, we first provide a data-type for substitutions. The
expression Subst Γ1 Γ2 ν represents a substitution map from the variables in Γ2
to expressions with variables in Γ1. The finite subset ν of Γ2 indicates all those
variables that are changed by the substitution. This now allows us to implement
the relation  ρ.

mutual
data [_�_] {Σ} {Γ1 Γ2} {ν } (ρ : Subst Γ1 Γ2 ν) : ∀ {ν1 } {ν2} {s1 s2}

→ Expr Σ Γ1 ν1 s1 → Expr Σ Γ2 ν2 s2 → Set where
-- Code omitted

data [_�*_] -- Code omitted

The inhabitants of this data-type are proofs that two terms match under a given
substitution. If a user provides two terms and a substitution, this data-type
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yields the proof obligations that the user must fulfill to establish the matching
relation. These obligations correspond to the inductive definition of terms. The
case of a term f(t1 · · · tn) requires mutual induction, as defined by  ∗, over the
set of subterms. The complete code can be found at our website.

Using the subsumption data structure we can prove the following fact.

Lemma 1. s  ρ t =⇒ ∀σ . �s�σ ∼= �t�(σ◦�ρ�).

This lemma states that subsumption implies heterogeneous equality, where the
additional substitution σ can be used for further instantiating the resulting ex-
pression in equational proofs. The proof of this lemma has been formalised in
Agda. As an example, we show the Agda function type corresponding to the
lemma.

�-to-∼= : ∀ {Σ} {Γ1 Γ2} {�Σ�} {ν1 ν2} {s1 s2} (f : Expr Σ Γ2 ν2 s2)
(e : Expr Σ Γ1 ν1 s1) (ρ : Subst Γ1 Γ2 full) → ρ [e � f ]

→ (∀ �σ� → sem �Σ� �σ� e ∼= sem �Σ� (sem-subst {�Σ� = �Σ�} ρ �σ�) f)

In the next steps we have implemented one-step equational reasoning with and
without contexts and n-step equational reasoning, using the subsumption data-
type. We have proved soundness of the resulting procedure within Agda.

Theorem 1. Rewriting implies hetereogeneous equality.

1. u ≈ v � s = t =⇒ ∀ρ.�s�σ ∼= �t�σ.
2. E, L � s = t =⇒ �E�, �L� |= �s� ∼= �t�.

The Agda proofs can be found at our website. The antecedent of the first state-
ment expresses that s can be rewritten to t using the equation u ≈ v at the
reflection layer. Its left-hand side essentially states that the interpretation of
the reflection layer terms within Agda yield a valid equation. The interpretation
of the equation u ≈ v is part of the proof state and therefore not visible on
the right-hand side. The second statement lifts the first one to sets E of equa-
tional axioms, sets L of additional equational hypotheses and n-step proofs. This
theorem provides the formal underpinning for proof reconstruction.

Although the data-types presented have been designed predominantly for
equational reasoning, they can nevertheless easily be extended to full first-order
logic by adding quantifiers, the usual boolean connectives and predicate sym-
bols on top of our existing Equation data-type. Our implementation shows how
Agda’s reflection layer can be used to achieve such extensions.

6 Proof Reconstruction

We now show how Waldmeister proofs can be reconstructed within Agda as part
of the type-checking process. Proof reconstruction can fail since Waldmeister can
fail, types can be overabstracted, or Waldmeister introduces constants which
have not been accounted for in Agda.

As shown in Section 4, a Waldmeister proof consists of a list of equational
steps, each augmented by an axiom number, a term position at which the axiom
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is applied, its orientation (left-right or right-left), and the substitution used.
All these features have been implemented at the reflection layer in Section 5.
Execution of an individual rewrite from term e to term f proceeds in two stages
which correspond to the definition in Equation (1). Assume the equational proof
step e =1 f is obtained by applying the equation u ≈ v under the context g of
e, and using substitution ρ.

1. The function build-split uses the term position to split e = g[e′] and verify
this equality.

2. The function build-�≈1 takes an equation, substitution and split term, and
rewrites e to f . A matching algorithm for computing subsumptions is used
by this function.

These one-step reconstruction functions are then used together in reconstruct.

reconstruct : ∀ {E : HypVec} {Γ} {ν1 ν2} {s} {n} {L : Vec (Equation (Σ E)) n}
→ {e : Expr (Σ E) Γ ν1 s} {f : Expr (Σ E) Γ ν2 s}
→ EqProof E Γ L → Maybe (E, L,Γ � e ≈ f)

The type EqProof represents the raw input from Waldmeister which has been
reformatted by the Haskell module. A Waldmeister proof output may have been
subdivided into a number of lemmas and these are currently flattened out to
produced a single sequence of rewrites. reconstruct applies the one-step recon-
struction functions iteratively to yield the complete reflection layer proof.

Most first-order theorem provers support the TPTP format4 as a standard
input syntax. Some of them also support TSTP5 as a proof output standard.
For future implementations, Haskell modules supporting these standards should
be used instead of the current proprietary Waldmeister ones.

7 Examples

This section shows the Waldmeister integration at work. We have tested it on
simple examples about natural numbers (cf. Section 4), groups, Boolean algebras
and lists. The following code implements group theory.

Group : HypVec
Group = HyVec Σ-Group axioms

where
assoc = Γ3, (α · β) · γ ≈ α · (β · γ)
ident = Γ1, e · α ≈ α

inv = Γ1, α -1 · α ≈ e
axioms = (assoc :: ident :: inv :: [ ])

As an example, we show one of the most basic facts.

ident-var : Group, [ ],Γ2 � α -1 · (α · β) ≈ β

ident-var = fromJust (reconstruct ((inj1 (# 0), false, eq-step ([ ] l)

4 http://www.cs.miami.edu/~tptp/
5 http://www.cs.miami.edu/~tptp/TSTP/

http://www.cs.miami.edu/~tptp/
http://www.cs.miami.edu/~tptp/TSTP/
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(con (# 2) (var (# 0) ::x [ ] x) ::s var (# 0) ::s var (# 1)
::s [ ] s))::l (inj1 (# 2), true, eq-step (0 ::l [ ] l) (var
(# 0) ::s [ ] s)) ::l (inj1 (# 1), true, eq-step ([ ] l) (var
(# 1) ::s [ ] s)) ::l [ ] l))

The first line states that a certain equation follows from the group axioms, with
no additional hypotheses and a two variable context. The second line shows how
the Waldmeister proof output, parsed into Agda, is reconstructed. The function
fromJust lifts a Maybe A type to an A type in the case that the proof is successfully
reconstructed, otherwise the proof does not type-check. Additional lemmas can
be found at our website. On such very simple lemmas, Waldmeister returned
almost instantaneously. Proof reconstruction required several seconds.

Proofs in Boolean algebra are more complex, and proof-search is more in-
volved. In our experiments, Waldmeister returned within seconds. But reflection
layer proofs tended to become very long, and their reconstruction sometimes
took several minutes. There are some theorems that Waldmeister could easily
verify, but where proof reconstruction failed, e.g., when Waldmeister chose to
introduce new undeclared constants for non-obvious reasons. Further discussion
can be found in our extended version [8].

Finally we show some simple proofs about lists. This is especially interest-
ing for two reasons. First, lists are two-sorted structures and it is shown that
Waldmeister can handle this situation. Second, proofs require induction, which
is beyond first-order logic.

‘List : HypVec
‘List = HyVec Σ-List axioms

where
++-nil = Γ1, ‘[ ] ‘ ++ α ≈ α
++-cons = Γ3, (α ‘:: β) ‘++ γ ≈ α ‘:: (β ‘++ γ)

rev-nil = Γ0, ‘rev ‘[ ] ≈ ‘[ ]
rev-cons = Γ2, ‘rev (α ‘:: β) ≈ ‘rev β ‘++ (α ‘:: ‘[ ])

axioms = (++-nil :: ++-cons :: rev-nil :: rev-cons :: [ ])

Lists are essentially monoids with respect to append and nil and we first show
that the empty list is indeed a right identity.

rident-nil : ‘List, [ ],Γ0 � [ ] ⇒ ‘[ ] ‘++ ‘[ ] ≈ ‘[ ]
rident-nil = fromJust (reconstruct ((inj1 (# 0), true, eq-step ([ ]l)

(con (# 0) ([ ] x) ::s [ ] s)) ::l [ ]l))

rident-cons : ‘List, [ ],Γ2 � β ‘++ ‘[ ] ≈ β :: [ ]
⇒ (α ‘:: β) ‘++ ‘[ ] ≈ (α ‘:: β)

rident-cons = fromJust (reconstruct ((inj1 (# 1), true, eq-step
([ ]l) (con (# 4) ([ ]x) ::s con (# 5) ([ ]x) ::s con (# 0)
([ ]x) ::s [ ]s)) ::l (inj1 (# 4), true, eq-step (1 ::l

[ ]l)([ ]s))::l [ ]l))

The base case and the induction step can be tied together by a case split at the
Agda layer. The induction step goes beyond pure equational reasoning, but can
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still be handled by Waldmeister. The implication in the proof goal is skolemised,
which yields constants, and the antecedent of the resulting ground formula is
then added to the list of axioms. This is captured in our implementation by
the derived type E, L, Γ � H ⇒ s = t, where H contains the ground equations
resulting from the inductive hypothesis.

Additional lemmas are proved in a similar way. Previously proved lemmas can
be added as hypotheses to prove goals. Again, this is managed automatically by
Agda. Finally, we can automatically prove a classic.

rev-rev-nil : ‘List, [ ],Γ0 � [ ] ⇒ ‘rev (‘rev ‘[ ]) ≈ ‘[ ]
rev-rev-nil = -- proof omitted
rev-rev-cons : ‘List, ((Γ2, ‘rev (α ‘++ β) ≈ ‘rev β ‘++ ‘rev α) :: [ ]),

Γ2 � ((‘rev (‘rev β) ≈ β) :: [ ]) ⇒ (‘rev (‘rev (α ‘:: β))) ≈ (α ‘:: β)
rev-rev-cons = -- proof omitted

As previously, Waldmeister was very efficient with these proofs. Proof recon-
struction succeeded within seconds on these examples, too.

8 Conclusions and Future Work

We have presented a framework for integrating external ATP systems into Agda.
Some parts of it are generic while others are specific to the Waldmeister imple-
mentation. The main purpose of this work is to explore how such integrations
could be achieved by providing a prototype for one particular ATP system. Initial
experiments show that our integration works, but should further be optimised
to make proof reconstruction faster and more powerful.

First, reflection is experimental in Agda. It has already been used for integrat-
ing domain specific solvers and decision procedures [7], but does not suffice for
automatically constructing ATP input from a metavariable and a proof state.

Second, a simple command, integrated with Agsy [14], and like Isabelle’s
Sledgehammer could greatly simplify ATP invocation and proof representation.

Third, full first-order theorem provers should be integrated and syntax checks
(for Harrop formulae) could be used for applying them on safe fragments of
constructive logic. A theoretical framework for this has already been provided [1].

Fourth, proof reconstruction requires further optimisation. As an alternative
to the micro-step approach the unfailing completion procedure [2] underlying
Waldmeister could be implemented. The external approach mentioned in Section
3 should also be explored. A similar integration of SAT solvers into Agda is
currently undertaken [13]. Its main difference is that proof reconstruction is
sacrificed for the sake of efficiency in the tradition of provers such as PVS [18].

Fifth, functional program development methodology [3] has already been in-
tegrated into Agda [16,12]. Automating it could lift program development in
dependently typed languages to a new level.
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Abstract. Predicate abstraction is an effective technique for scaling
Software Model Checking to real programs. Traditionally, predicate ab-
straction abstracts each basic block of a program P to construct a small
finite abstract model – a Boolean program BP , whose state-transition
relation is over some chosen (finite) set of predicates. This is called Small-
Block Encoding (SBE). A recent advancement is Large-Block Encoding
(LBE) where abstraction is applied to a “summarized” program so that
the abstract transitions of BP correspond to loop-free fragments of P .
In this paper, we expand on the original notion of LBE to promote flex-
ibility. We explore and describe efficient ways to perform CEGAR bot-
tleneck operations: generating and solving predicate abstraction queries
(PAQs). We make the following contributions. First, we define a general
notion of program summarization based on loop cutsets. Second, we give
a linear time algorithm to construct PAQs for a loop-free fragment of a
program. Third, we compare two approaches to solving PAQs: a classical
AllSAT-based one, and a new one based on Linear Decision Diagrams
(LDDs). The approaches are evaluated on a large benchmark from open-
source software. Our results show that the new LDD-based approach
significantly outperforms (and complements) the AllSAT one.

1 Introduction

Predicate abstraction is a well-established technique for scaling Software Model
Checking to real systems [1]. Through predicate abstraction, model checking has
been successfully applied to the verification of device drivers, hardware designs,
and communication protocols. A core operation in predicate abstraction is the
predicate abstraction query (PAQ): given a set of quantifier-free predicates P ,
and a quantifier-free formula e in some first-order theory, compute the strongest
formula GP (e) over P that is implied by e. It is used to over-approximate sets
of states (when e and P are over program variables V ), and transition relations
(when e and P are over V and V ′).

Traditionally [1], PAQs are used to abstract transition relations of each indi-
vidual basic block of an input program – this is called a Small-Block Encoding
(SBE) [2]. Since transition relations of a basic blocks are simple (a few con-
junctions of equalities) the corresponding PAQs are computationally simple as
well [13]. Furthermore, SBE works well under a very coarse over-approximation
of PAQs (e.g., via Cartesian abstraction [1] combined with an aggressive refine-
ment [9]) simplifying PAQs even further. On the downside, SBE leads to a very
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large number of PAQs, a large number of predicates (often a different set for
each basic block), and does not take advantage of the state-of-the-art in deci-
sion procedures. For example, a safety of a loop-free program can be proved
with a single call to an SMT-solver, but with SBE often requires a large number
of predicates and many iterations of the CounterExample Guided Abstraction
Refinement (CEGAR) loop.

Beyer et al. [2] have proposed an alternative to SBE called the Large-Block
Encoding (LBE). LBE lifts predicate abstraction to program summaries (i.e.,
loop-free program fragments). This leads to fewer PAQs, but the PAQs are more
complex, harder to solve, and should not be over-approximated [2]. Overall, [2]
shows that LBE is more efficient than SBE, and, even provably exponentially
more efficient in some cases. While it is not clear whether LBE is preferable
to SBE in all cases, LBE by itself presents three new problems for predicate
abstraction. In this paper, we propose an expanded notion of LBE and present
solutions to these problems:

(1) What types of program summaries are compatible with LBE? We show
that LBE is compatible with a broad notion of a program summary. We argue
that a loop cutset summary where where all loop-free fragments are summarized
is a reasonable (but not the only) choice.

(2) How to efficiently generate PAQs? This problem is unique to LBE. We
present a novel algorithm for generating queries for a summary that avoids con-
structing the summary itself. The algorithm takes a program in SSA form [8] and
generates PAQs directly from the program’s syntax. The size and the complexity
of generating each query are linear in the size of the SSA.

(3) How to efficiently solve PAQs? With LBE, PAQs have a rich proposi-
tional structure. We present experiments with two algorithms: an AllSAT-based
algorithm due to Lahiri et al. [16] (as implemented in mathsat4), and a novel al-
gorithm based on Linear Decision Diagrams (LDDs) [5]. The two algorithms are
evaluated on a benchmark derived from open-source programs. Surprisingly, we
find that, on the whole benchmark, the LDD-based approach is superior to the
AllSAT-based one. Interestingly, the approaches are complementary: we found
that the “MIN” combination of the approaches (i.e., run both in parallel, stop
as soon as one completes) is much more effective than either one in isolation.

To evaluate end-to-end performance of our approach in the CEGAR framework,
we have built a safety checker for C and checked several classical examples from
the literature. Our experiments indicate that LBE is more effective than SBE,
and that the “MIN” combination of the AllSAT- and LDD-based approaches
is most effective. We leave further comparison between LBE and SBE and the
effect of LBE on the overall verification process to future work.

We envision that the algorithms proposed here will form a part of a complete
CEGAR-based software analysis infrastructure. In particular, we do not argue
for an exclusive use of any particular LBE or SBE. Instead, this work provides
the flexibility necessary for an analyzer to (heuristically) choose a good block
encoding and contributes efficient techniques to solve complex PAQs.
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Related work. LBE for predicate abstraction was proposed by Beyer et al. [2].
They show that LBE significantly reduces the size of the abstract state space,
the number of required predicates, and the verification time. They observe that
success of LBE depends on precise predicate abstraction (as opposed to approxi-
mations such as Cartesian abstraction [1]). They use the AllSAT-based predicate
abstraction [16] as implemented in mathsat4 [3]. We build on this work with a
formal and general definition of LBE, new algorithms for efficiently constructing
PAQs directly from an SSA program and for solving PAQs, and an extensive
empirical evaluation on a large and challenging benchmark.

A näıve predicate abstraction algorithm – enumerating all satisfiable minterms
– is exponential. Many heuristics have been proposed to improve its best-case
complexity (e.g., [9,10]), and worst-case complexity at expense of completeness
(e.g., [1,16]). For example, symbolic predicate abstraction [14,13] avoids expo-
nentially many calls to an SMT solver by generating a symbolic proof from which
the result is extracted by Boolean quantification, an exponential step.

Predicate abstraction is reducible to quantifier elimination. This leads to sev-
eral solutions. In [16], the quantification is delegated to an AllSAT SMT solver.
In [4], solutions are enumerated by a BDD and are discharged by an incremen-
tal SMT solver. Clarke et al. [6] use a SAT-solver for Boolean quantification
for predicate abstraction over propositional logic. Lahiri et al. [15] give an al-
gorithm for first-order logic via a reduction to propositional logic and Boolean
quantification with either SAT- or BDD-based method.

In this paper, we propose another alternative: predicate abstraction is reduced
to quantifier elimination over first-order logic, and the quantifiers are eliminated
using LDDs [5]. On our benchmark this is much more efficient than the corre-
sponding AllSAT-based solution.

The rest of the paper is structured as follows. Sec. 2 provides the necessary
background. Sec. 3 describes program summarization. Sec. 4 presents algorithms
to generate and solve PAQs. Sec. 5 presents experimental results. Sec. 6 concludes
the paper.

2 Background

For a set of variables V , we write V ′ for {v′ | v ∈ V }. For a binary relation ρ, we
write (s1, s2) |= ρ for (s1, s2) ∈ ρ. We write ρ∗ for reflexive transitive closure, and
ρ ◦ ρ for relational composition. We often represent sets and binary relations in
the standard way by Boolean expressions over primed and unprimed variables.
For an expression e, we write e[V/V ′], or e′, to mean the expression obtained by
replacing each variable v in e with v′.

A program P is a tuple (V,L, 
0, T ,LE), where V is a set of variables, L a set
of control locations, 
0 ∈ (L\LE ) a designated entry point, T a set of transitions,
and LE ⊂ L a set of exit locations. A program state is a valuation of all of the vari-
ables in V . The set of all states is denoted by Σ. Each transition τ ∈ T is a triple
(
1, ρ, 
2), where 
1, 
2 ∈ L and ρ ⊆ Σ ×Σ is a non-empty relation on program
states. By convention, the entry location 
0 and all exit locations in LE have no
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incoming and outgoing transitions, respectively. The control flow graph (CFG)
of P , CFG(P), is the graph (L, E), where E = {(
1, 
2) | ∃ρ � (
1, ρ, 
2) ∈ T }.

A trace in P is a finite sequence 〈
1, s1〉, . . . , 〈
n, sn〉 of location-state pairs
such that ∀1 ≤ i ≤ (n− 1) � ∃ρ � (
i, ρ, 
i+1) ∈ T ∧ (si, si+1) |= ρ. A computation1

is trace such that 
1 = 
0. A state s is reachable at location 
 iff there exists a
computation such that 
n = 
 ∧ sn = s; a location 
 is reachable iff there exists
a state s reachable at 
; an invariant of P at 
 is any superset of the states
reachable at 
.

A predicate is any ground formula. A cube over a set of predicates P is a
formula of the form p1 ∧ · · · ∧ pn ∧ ¬q1 ∧ · · · ∧ ¬qm, where pi, qj ∈ P and every
predicate appears at most once. A minterm is a cube of size |P |.

Let ψ be a quantifier-free first-order expression. A fundamental operation of
predicate abstraction is to compute GP (ψ) – a strongest Boolean combination
of P that is implied by ψ. GP (ψ) can be characterized as the set of all minterms
that do not contradict ψ:

GP (ψ) =
∨
{c | c is a minterm over P and c ∧ ψ is satisfiable} .

GP (ψ) can be computed by enumerating all minterms and using a decision pro-
cedure to decide satisfiability. Alternatively, the computation can be reduced to
quantifier elimination as follows. With each p ∈ P associate a unique Boolean
variable bp; let V be the set of all free variables in ψ and P ; and let FP be
the formula ψ ∧ (

∧
p∈P bp ⇔ p). Then, GP (ψ) is given by the result of eliminat-

ing all existential quantifiers in ∃V � FP , and then replacing every bp with the
predicate p.

Let P = (V,L, 
0, T ,LE) be a program, and μ a predicate map that assigns
to each location 
 a set of predicates denoted μ.
. The (most precise) predicate
abstraction of P with respect to μ is a program Pμ = (V,L, 
0, Tμ,LE), where

Tμ = {(
1,GP (ρ), 
2) | (
1, ρ, 
2) ∈ T and P = μ.
1 ∪ μ.
′2}.

Note that if μ is finite for every program location, then Pμ is finite as well.

3 Program Summary

Large-Block Encoding applies predicate abstraction to a summary of a program.
The original definition of LBE [2] uses a specific notion of summary, which we call
rule summary. In this section, we present a more general concept of summaries.
In particular, we define a loop cutset summary as the most general summary
that summarizes all loop-free program fragments. Cutset summaries subsume
useful classes of summaries, including (as we show later) the rule summary.

Let P = (V,L, 
0, T ,LE) be a program; let L′ ⊆ L such that 
1, 
n ∈ L′. A
trace 〈
1, s1〉, . . . , 〈
n, sn〉 of P is L′-free iff L′ ∩ {
2, . . . , 
n−1} = ∅. The L′-free
(
1, 
n) fragment of P comprises locations appearing on L′-free (
1, 
n) traces of
P , with 
1 and 
n as entry and exit locations, respectively.
1 In this paper, we only consider finite computations.
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Definition 1 (Summary). A program P ′ = (V,L′, 
0, T ′,LE) is a summary of
a program P = (V,L, 
0, T ,LE) iff: (i) L′ ⊆ L, and (ii) ∀
1, 
n ∈ L′ there exists a
L′-free (
1, 
n) trace 〈
1, s1〉, . . . , 〈
n, sn〉 of P iff ∃ρ�(
1, ρ, 
n) ∈ T ′∧(s1, sn) |= ρ.

A program and its summary share the same variables, entry and exit locations,
and state space Σ. A summary also preserves reachability of locations, as stated
by Theorem 1.

Theorem 1. Let P ′ = (V,L′, 
0, T ′,LE) be a summary of P = (V,L, 
0, T ,LE).
Then, ∀
 ∈ L′, s ∈ Σ is reachable at 
 in P iff s is reachable at 
 in P ′.

As a corollary, since an invariant is a set of states, a summary also preserves
invariants: I is an invariant of P ′ at 
 ∈ L′ iff it is an invariant of P at 
. Thus, any
program summary can be used for LBE. Ideally, we want the smallest summary
possible since it leads to smaller abstract models. In particular, we’d like a unique
minimal summary – when L′ = {
0} ∪ LE . Unfortunately, it is not computable
since its computation requires summarizing program loops. Instead, we want the
smallest summary that summarizes only loop-free program fragments.

Let G = (V, E) be a graph. A set S ⊆ V is a cycle cutset (or simply a cutset)
of G iff S contains a vertex from every cycle in G, i.e., the graph (V \ S, E \
((S × V ) ∪ (V × S))) is acyclic. We call an element s ∈ S a cutpoint.

Definition 2 (Loop Cutset Summary). A program P ′ = (V,
L′, 
0, T ′,LE) is a cutset summary of P iff P ′ is a summary of P and
L′ is a cutset of CFG(P).

The cutset summary of a program is not unique. Finding a minimal one is
hard since it requires solving the minimal feedback vertex set, which is known
to be NP-complete [12]. However, in practice, a good approximation is obtained
in polynomial time by letting L′ be the set of destinations of all back-edges
discovered by a DFS of CFG(P), together with 
0 and LE . Given a cutset of
CFG(P), the corresponding cutset summary of P is effectively computable since,
by definition, each edge in it corresponds to a loop-free fragment of P .

In the rest of this section, we compare cutset summaries with rule sum-
maries [2]. A rule summary is based on two program transformations, seq and
choice. Let P = (V,L, 
0, T ,LE), and 
1, 
2 ∈ L be two locations. The precon-
ditions of seq(P , 
1, 
2) are (a) 
1 �= 
2, (b) there is an edge from 
1 to 
2, (c) 
2
has no other incoming edges, and (d) 
2 has at least one successor. The output
is the program P ′ = (V,L′, 
0, T ′,LE), where L′ = L \ {
2} and

T ′ = (T ∪ {(
1, ρ ◦ ρi, 
i) | (
2, ρi, 
i) ∈ out(
2)}) \ (out(
2) ∪ in(
2)) ,

where out(
) and in(
) are the sets of all outgoing and incoming transitions of 
,
respectively. The precondition of choice(P , 
1, 
2) is that there are two distinct
edges (
1, ρ1, 
2) and (
1, ρ2, 
2) in T . The output is P ′ = (V,L, 
0, T ′,LE), where

T ′ = (T \ {(
1, ρ1, 
2), (
1, ρ2, 
2)}) ∪ {(
1, ρ1 ∪ ρ2, 
2)} .

Intuitively, seq removes a location with a single incoming edge, and choice
replaces multiple edges between the same locations with a single one.
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Definition 3 (Rule Summary). A rule summary of a program P =
(V,L, 
0, T ,LE), is a limit of the sequence P0,P1, . . ., where P0 = P, and Pi+1
is seq(Pi, 
1, 
2) if seq is applicable, choice(Pi, 
1, 
2) if choice is applicable,
and Pi otherwise.

The advantage of a cutset summary is that it is not restricted to a particular
cutset computation procedure. For example, suppose we construct a cutset of P
by taking the destinations of all back-edges in a topological ordering of CFG(P).
Let us call this back-edge summary and compare it to rule summary. In both
cases, the complexity of constructing a summary is polynomial in the size of
P . However, the locations of a rule summary of P subsumes those of a back-
edge summary of P . This is because: (i) the destination of a back-edge always
has at least two incoming edges, and hence can never be removed by seq, and
(ii) choice never eliminates locations. Thus, back-edge summary is never larger
than a rule summary. Thus, a rule summary is a custset summary as well.

4 Predicate Abstraction of Program Fragments

A cutset C of a program P has a BACK-EDGE-AT-END property if for every

1, 
2 ∈ C, 
2 is the sole destination of all back-edges in the C-free fragment
P�1,�2 . Note that a cutset C of any back-edge (or rule) summary satisfies this
since in any C-free fragment P�1,�2 , {
1, 
2} are the only possible destinations
of back-edges, but 
1 has no incoming edges at all. Let P be a program and C
its BACK-EDGE-AT-END cutset. In this section, we show how to compute a
predicate abstraction of a cutset summary of P (w.r.t. C), without explicitly
constructing the summary.

Our algorithm is called SummaryPA, and is shown in Fig. 1. We assume that
P is given in Static Single Assignment (SSA), and work directly on its syntax.
Function EdgeQuery takes P and two locations 
1, 
2 ∈ C and generates a
PAQ for the C-free (
1, 
2) fragment, P�1,�2 , of P . The size of the PAQ is linear
in the size of P�1,�2 . Function Solve takes this query and returns a predicate
abstraction of P�1,�2 . These two functions are applied to every pair of connected
cutpoints from C. The output of SummaryPA is the predicate abstraction of
the summary of P w.r.t. C. In the rest of this section, we give a brief overview of
SSA, describe the formula constructed by EdgeQuery, and give two strategies
for Solve: one based on an AllSAT SMT-solver, and one based on LDDs.

4.1 Single Static Assignment

We give here a brief overview of SSA. More details can be found elsewhere [8]. A
program is in SSA form if an assignment to each variable appears at most once
in its syntax. Any program can be put efficiently into SSA. As an example, an
SSA program corresponding to the C program in Fig. 2(a) is shown in Fig. 2(b).

In addition to normal assignments, SSA uses special φ-assignments. Their
syntax is x := PHI(v1 : 
1, . . . , vn : 
n), where x is a variable, 
1, . . . , 
n are
locations, and v1, . . . , vn are values. The PHI-function evaluates to value vi if it
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1: Input: SSA program P = (V,L, �0, T ,LE); a cutset C of P ; a predicate map μ
2: Output: Pμ the most precise predicate abstraction of P w.r.t. μ
3: function SummaryPA (P , C, μ)
4: Tμ = ∅
5: for all �1, �2 ∈ C s.t. ∃ a C-free (�1, �2)-path in CFG of P do
6: Q = EdgeQuery(P , C, �1, �2, μ.�1, μ.�2)
7: ρ = Solve(Q); Tμ = Tμ ∪ {(�1, ρ, �2)}
8: Pμ = (V,C, �0, Tμ,LE)

Fig. 1. Algorithm SummaryPA

is reached via location 
i. In our example, PHI(0:0, x 0:4) on line 2 evaluates
to 0 when reached from location 0 and to x 0 when reached from location 4.

We model an SSA program as a tuple (V,L, E, φ, G,Act , 
0,LE) where: V , L,

0, and LE are same as in programs, E ⊆ L×L is the set of control flow edges,
Act maps locations to assignments, and φ and G map edges to φ-assignments
and guards, respectively. Intuitively, each 
 ∈ L corresponds to a basic block;
each basic block is a sequence of assignments terminated by a branch; the branch
condition is stored on the edge, and each φ-assignment is replaced by the corre-
sponding assignments on the edges. This is a variant of the traditional compiler
SSA format, where φ-assignments and guards are pushed into the source and
destination blocks of their edges, respectively. Fig. 2(c) graphically shows the
SSA program from Fig. 2(b).

Operationally, an edge (
1, 
2) in an SSA program is executed by: (a) exe-
cuting the assignments Act(
1), (b) validating the guard G(
1, 
2), and (c) ex-
ecuting φ-assignments φ(
1, 
2). Formally, for a set of assignments A, let α(A)
be
∧

v:=e∈A v = e, and α′(A) be
∧

v:=e∈A v′ = e. The semantics of an SSA
program P = (V,L, E, φ, G,Act , 
0,LE) is a program P ′ = (V,L, 
0, T ′,LE),
s.t. (
1, ρ, 
2) ∈ T ′ iff ρ = α′(Act(
1)) ∧ Skip(K) ∧ G(
1, 
2)′ ∧ α(φ(
1, 
2))′,
where K = {v ∈ V | ¬∃e � (v := e) ∈ A ∨ (v := e) ∈ φ(
1, 
2)} and Skip(U) is∧

u∈U u′ = u. For example, the semantics of SSA program in Fig. 2(c) is shown in
Fig. 2(d). The semantics of the edge (3, 2) is y′

0 = y+1∧y′ = y′
0∧x′ = x∧x′

0 = x0.
Note that this definition depends on several properties of the SSA: assignments
in a block have no circular dependencies, guards do not depend on following
φ-assignments, etc.

4.2 Generating Predicate Abstraction Queries

EdgeQuery(P , C, 
1, 
2, P1, P2) takes an SSA program P , a cutset C, locations

1, and 
2 in C, and two sets of predicates P1 and P2, and generates a PAQ for
C-free (
1, 
2)-fragment, P�1,�2 , of P .

The result of EdgeQuery is similar to a typical “reachability query” , e.g.,
as in CBMC [7]. It is linear in the size of P�1,�2 and computable in linear time.
However, EdgeQuery works directly on SSA (as opposed to a more expensive
Gated SSA used in [7]). The resulting PAQ separates control- and data-flows,
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(a)

int x = 0,y;

while(x < 10) {

y = 0;

while(y < x)

y++;

x++;

}

(b)

0 : goto 1;

1 : x = PHI(0:0, x_0:4);

if (x < 10) goto 2 else goto 5;

2 : y = PHI(0:1, y_0:3);

if (y < x) goto 3 else goto 4;

3 : y_0 := y + 1; goto 2;

4 : x_0 := x + 1; goto 1;

5 :

(c)

x := 0

y := 0

x_0 := x + 1

x := x_0
1

2

y_0 := y + 13 4

y := y_0

[y >= x][y < x]

[x < 10]

[x >= 10]
5

0

(d)

1

2

43

[x’ = 0]

y_0’ = y + 1]

x_0’ = x + 1][x’ < 10 && y’ = 0]

[x’ >= 10]

[y’ < x’] [y’ >= x’]

0

5

[y’ = y_0’ &&

[x’ = x_0’ &&

Fig. 2. Representation of a C program: (a) traditional, (b) SSA, (c) graphical SSA,
(d) semantic. In (d), all expressions of the form v′ = v have been omitted.

and preservers control-flow structure in the query. These features are crucial for
our approach to discharging PAQs (see LDD-based approach in Section 4.3).

For ease of understanding, we present the query in parts. Let Lf denote the
set of all locations of P�1,�2 . Let A be a formula for all of the simple assignments
in the fragment, A =

∧
�∈Lf\{�2} α(Act(
)), where α is as defined in Sec. 4.1.

Intuitively, a complete satisfying assignment to A corresponds to executing, in
parallel, all assignments of all of the locations in Lf . A is always satisfiable
because, by assumption, P�1,�2 has no back-edges (except possibly to 
2), and
hence no circularly dependent assignments.

For each 
 ∈ L, let B� be a Boolean variable corresponding to 
, and V� the
set of all such variables. Let R� be a formula defined for a location 
 as follows:

R� =

⎛
⎝B� ⇒

∨
�′∈Preds(�)∩Lf

B�′ ∧G(
′, 
) ∧ α(φ(
′, 
))

⎞
⎠ ,

where Preds(
) is the set of all CFG-predecessors of 
. Intuitively, B� represents
whether 
 is visited in an execution, i.e., is reachable. R� states that if 
 is
reachable then at least one (but possibly more) of its predecessors 
′ must be
reachable, and the guards and the φ-assignments on the (
′, 
)-edge must be true.

For the final location 
2, we need a variant of R�, denoted R̂� and defined as:

R̂� =

⎛
⎝B� ⇒

∨
�′∈Preds(�)∩Lf

B�′ ∧G(
′, 
) ∧ α′(φ(
′, 
))

⎞
⎠ ,
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where α′ is as defined in Sec. 4.1. Since 
2 can be the destination of a back-
edge, the φ-assignment on that edge might be circularly dependent on another
assignment in P�1,�2 . Such dependencies are eliminated by using α′ instead of α.

Next, we define a formula CFG as follows:

CFG =

⎛
⎝B�2 ∧ R̂�2 ∧

∧
�∈Lf\{�1,�2}

R�

⎞
⎠ .

Every satisfying assignment to CFG corresponds to one (or several) paths of
P�1,�2 . B�2 guarantees that 
2 is visited, the implications in R� create the path,
and the guard and φ-assignment constraints ensure that the path is feasible (i.e.,
can always be elaborated into a concrete computation).

Consider the formula A ∧CFG . Each satisfying assignment to it corresponds
to at least one concrete execution from 
1 to 
2. Furthermore, note that any
assignment that corresponds to multiple non-contradicting executions can be
transformed into a satisfying assignment for a single execution. This is done by
picking one of the corresponding executions, setting B� to true for every location

 on that execution, and setting all other B� variables to false.

Next, we need formulas for predicates. With each predicate p ∈ P1 we associate
a Boolean variable bp, and with each predicate p ∈ P2 a Boolean variable b′p. Let
Src and Dst be formulas defined as:

Src =

⎛
⎝ ∧

p∈P1

bp ⇔ p

⎞
⎠ Dst =

⎛
⎝ ∧

p∈P2

b′p ⇔ Φ(p)

⎞
⎠ ,

where Φ(p) = p[v/v′ | ∃
 ∈ (Preds(
2) ∩ Lf ) � v ∈ LHS(φ(
, 
2))]. Note that this
renaming in Dst corresponds to the renaming in R̂�.

Finally, the PAQ produced by EdgeQuery is

∃V, V ′, V� � A ∧CFG ∧ Src ∧Dst .

This formula is linear in |Lf | and can be computed in linear time. Theorem 2
asserts the correctness of EdgeQuery.

Theorem 2. Let ρ ⊆ Σ × Σ be the summary of P�1,�2 . Then,
EdgeQuery(P , C, 
1, 
2, P1, P2) is equivalent to:

∃V, V ′ � ρ ∧

⎛
⎝ ∧

p∈P1

bp ⇔ p

⎞
⎠ ∧

⎛
⎝ ∧

p∈P2

b′p ⇔ p′

⎞
⎠

Example 1. Let P be the SSA program from Fig. 2(c) and C = {0, 1, 2, 5} its
loop cutset. Consider the C-free (2, 2) fragment of P and predicates y < 0, x < 0.

Lf = {2, 3} A = (y0 = y + 1)

Src = (by ⇔ y < 0) ∧ (bx ⇔ x < 0) R̂2 = (B2 ⇒ B3 ∧ y′ = y0)
Dst = (b′y ⇔ y′ < 0) ∧ (b′x ⇔ x < 0) R3 = (B3 ⇒ B2 ∧ y < x)
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The overall predicate abstraction query is:

∃y0, y, y′, x, B2, B3 � (y0 = y +1)∧ (B3 ⇒ B2 ∧ y < x)∧ (B2 ⇒ B3 ∧ y′ = y0)∧
B2 ∧ (by ⇔ y < 0) ∧ (b′y ⇔ y′ < 0) ∧ (bx ⇔ x < 0) ∧ (b′x ⇔ x < 0) .

4.3 Solving Predicate Abstraction Queries

Solve takes a PAQ of the form ∃V, V ′, V� � Ψ , eliminates the quantifiers, and
then replaces the Boolean variables introduced by EdgeQuery by the corre-
sponding predicates. In this section, we describe two strategies for the quantifier
elimination step: AllSAT-based – based on the approach of Lahiri et al. [16], and
LDD-based – based on a recently developed decision diagrams LDDs [5].

AllSAT-based approach. An SMT solver decides satisfiability of a quantifier-free
first-order formula F (over a theory T ). An AllSAT SMT solver takes a formula
F and a subset VImp of important Boolean terms of F and returns the set M of
all minterms over VImp that can be extended to a satisfying assignment to F .

A PAQ of the form ∃V, V ′, V� �Ψ is solved by giving an AllSAT solver a formula
Ψ and setting VImp to the set of all Boolean variables bp and b′p in Ψ . The output
is a set M of minterms such that

∨
M is equivalent to ∃V, V ′, V� � Ψ .

The key advantage of this approach is that all of the reasoning is delegated to
an AllSAT solver. Thus, it applies to queries in any SMT-supported theory and
leverages advancements in SMT-solvers. The main limitation – it enumerates all
minterms of the solution, which can be exponentially larger than the smallest
DNF representation. We illustrate this limitation further in Sec. 5.

LDD-based approach. An LDD is a Binary Decision Diagram (BDD) with nodes
labeled with atomic terms from Linear Arithmetic (LA). An LDD represents a
LA formula in the same way a BDD represents a Boolean formula. LDDs support
the usual Boolean operations (conjunction, disjunction, negation, etc.), Boolean
quantification, and variable reordering. Additionally, they provide quantification
over numeric variables via direct Fourier-Motzkin elimination on the diagram.

Let 
1 and 
k be two cutpoints. Recall that the query Q computed by
EdgeQuery for (
1, 
k) is of the form ∃V, V ′, V� � Ψ , where

Ψ = A ∧R�2 ∧ · · · ∧ R̂�k
∧B�k

∧ Src ∧Dst ,

and each R�i is of the form B�i ⇒ θi. A näıve way to solve Q is to first compute
and LDD for Ψ , and then use numeric and Boolean quantification to eliminate
the variables in V , V ′, and V�. Note that the result is a BDD (since all of the
remaining variables are Boolean).

Unfortunately, the näıve approach does not scale. The bottleneck is construct-
ing a diagram for Ψ . In large part, this is due to the variables B� used in encod-
ing control-flow constraints. The solution is to re-arrange the query to eliminate
these variables as early as possible.

Let Lf = 〈
1, . . . , 
k〉 be the set of locations in the cutpoint-free – and hence,
loop-free – (
1, 
k) fragment of P . Let Topo be a topological order on Lf . Without
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loss of generality, assume that the locations are numbered such that i ≤ j iff 
i

precedes 
j in some fixed linearization of Topo. Then, a variable B�i appears in
a constraint R�j iff i ≤ j. Therefore, Q is equivalent to ∃V, V ′ � Ψ ′, where

Ψ ′ = A ∧ Src ∧Dst ∧
(
∃B�1 � ∃B�2 � R�2 ∧ · · · ∧ ∃B�k

� R̂�k
∧B�k

)
.

In summary, our overall solution is to compute an LDD for Ψ ′, and then use
numeric quantification to eliminate V and V ′ variables. Note that it is possible
to apply early quantification to the numeric variables as well. However, we did
not explore this direction.

The main advantage of our approach is that the solution is computed directly
as an LDD. Thus, its running time is independent of the number of minterms in
the solution. Unlike the AllSAT-based approach, it is limited to Linear Arith-
metic and does not directly benefit from advances in SMT-solving. However, in
our experiments, it significantly outperformed the AllSAT-based approach.

We are not the first to use decision diagrams for predicate abstraction. How-
ever, previous approaches use BDDs by reducing numeric reasoning to proposi-
tional reasoning. This reduction introduces a large number of Boolean variables,
which makes the problem hard for BDDs. For example, Lahiri et al. [15] find
a SAT-based approach superior to a BDD-based one. In contrast, we use de-
cision diagrams that are aware of Linear Arithmetic. This avoids the need for
additional constraints, and makes the solution very competitive.

5 Experimental Results

We evaluated our approach on a large benchmark of PAQs and as a part of a
software model checker. We used the mathsat4 SMT-solver [3] for the AllSAT-
based solution, and our implementation of LDDs [5] for the LDD-based solution.
All PAQs were restricted to two-variables-per-inequality logic (TVPI), i.e., lin-
ear constraints with at most two variables. The benchmark and our tools are
available at lindd.sf.net.

lindd.sf.net
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The benchmark. To evaluate our approach on large queries, we constructed the
benchmark from C programs using the following technique: (1) convert a pro-
gram into LLVM bitcode [17] and optimize with loop unrolling and inlining;
(2) for each function, use all loop headers as the cutset summary; (3) over-
approximate the semantics of statements by TVPI constraints (e.g., loads from
memory and function calls are replaced by non-determinism); (4) for each lo-
cation 
, take the atomic formulas that appear in the weakest precondition of
some conditional branch reachable from 
 as the predicates at 
; (5) for each pair
of locations 
 and 
′ in the summary, generate a PAQ, as described in Sec. 4.2,
using the predicates at 
 and 
′.

In our view, the benchmark is quite realistic: steps 1-3 are a common pre-
processing techniques in program analysis; the choice of predicates is guided by
our experience with predicate abstraction.

The benchmark consists of over 20K PAQs. We report the results on the top
1061 cases (exactly the ones that required ≥ 5s to solve with at least one ap-
proach). These PAQs are from bash, bison, ffmpeg, gdb, gmp, httpd, imagemagick,
mplayer, and tar. As formulae in SMT-LIB format, they range in size from 280B
to 57KB (avg. 11KB, med. 8KB). The number of predicates per query ranges
from 10 to 56 (avg. 22, med. 19). Each experiment was limited to 60s CPU and
512MB of RAM, and was done on a 3.4GHz Pentium D with 2GB of RAM.

The experiments. The results of the experiments are summarized in the first
three rows of Table 4a. The first column indicates the experiment as follows –
MSAT : queries are solved using mathsat4; LDD : queries are solved using LDDs
with dynamic variable order (DVO); and LDD2 : queries are solved using LDDs
with static variable order (SVO). For LDD, diagram nodes were reordered by
the diagram manager based on memory utilization. For LDD2, a static order was
selected such that terms that appeared earlier in the query AST would appear
earlier in the diagram order. A query AST is ((A ∧ CFG) ∧ Src ∧Dst).

For each experiment, we report the total time to solve all 1061 queries (Total),
number of unsolved cases (Failed), average time per a solved instance (Avg.
per Solved), total time for all solved instances (Total Solved), total time for
all instances solved by mathsat4 (Total MSAT Solved), and total time for all
instances solved by mathsat4 with predicates in each query restricted to those
that appear in the support of the solution computed by LDD (Total MSAT2
Solved). All “Total” times include 60s for each failure.

Surprisingly, the AllSAT-based approach is the worst. It was only able to solve
60% of queries and was 7 times slower compared to the LDD-based solutions.
Even restricted to queries that it could solve, it is almost 4 times slower than
LDD, and 9 times slower than LDD2. Fig. 3a shows a detailed comparison be-
tween the MSAT and LDD experiments. In the chart, test case indices are on the
x-axis (sorted first by MSAT time, and then by LDD time), time per test case is
on the y-axis. There are several exceptional cases where mathsat4 significantly
outperforms LDD. However, overall, most test-cases appear to be easy for LDD
(solved in under 5s), but are much more evenly distributed for mathsat4.
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Name Total
(min)

Failed Avg.
per
Solved
(sec)

Total
Solved
(min)

Total
MSAT
Solved
(min)

Total
MSAT2
Solved
(min)

MSAT 610.00 429 17.12 180.29 180.29 523.86
LDD 83.54 35 2.84 48.48 60.64 72.15
LDD2 83.98 64 1.19 19.81 44.34 72.79
MIN 28.40 6 1.27 22.39 10.64 19.98

LDD3 85.66 74 0.70 11.51 57.64 77.08
MSAT2 188.14 91 6.87 102.00 9.04 102.00

(a) PAQ benchmark

Name LBE SBE
T It Pr CP T It Pr BB

LDD MSAT MIN

floppy.ok 0.18 0.16 0.16 1 0 3 0.44 4 6 83
tst lck 50 0.5 0.48 0.5 1 0 3 ++ ++ ++ 255
diamond-4 2.0 ++ 1.7s 4 42 4 ++ ++ ++ 24
ssl-srv-D 98.96 6.26 5.65 5 60 4 ++ ++ ++ 155

(b) End-to-end. T = times in sec; It = # of CE-
GAR iterations; CP = # of cutpoints; BB = #
of blocks; Pr = total # of preds.

Fig. 4. Summary of experimental results

The two LDD-based experiments clearly highlight the virtues and vices of
DVO: DVO makes an LDD-approach more robust (35 failures for LDD v.s. 64
for LDD2) but less efficient (about twice as slow on average). Out of 64 failures
for LDD2, 39 where due to memory running out. Coincidentally, with our choice
of using 60s for each failure, faster running times balance out more failures for
LDD2, and its overall time is very similar to that of LDD.

In our benchmark, LDD-based solution significantly outperforms the AllSAT-
based one. We conjecture that the two are complementary: AllSAT-based solu-
tion performs well when number of models to enumerate is small, and LDD-based
solution performs well when the intermediate (and final) diagrams are small. To
validate this conjecture, we computed the best-of time needed to solve a test-
case by either of the three techniques. This is equivalent to running the three
approaches in parallel and stopping as soon as one was successful. The results
are summarized in the fourth row (MIN) of Table 4a. The combination is ex-
tremely effective: taking only 28 minutes (3 times better than previous best) for
the benchmark and solving all but 6 instances. The improvement is even more
significant when restricted to instances that mathsat4 could solve.

Oracle experiments. To put our results into perspective, we conducted two exper-
iments against “oracle” solvers. Finding good variable ordering is the bottleneck
for LDD-based solution. With DVO most time is spend reordering, but without
it many cases run out of memory. We experimented with using the last order-
ing found by DVO during LDD experiment as a static ordering. The results
are shown in the fifth row (LDD3) of Table 4a. We classify this experiment as
“oracle” since we don’t know how to achieve this variable order other than by
repeating the LDD experiment.

Interestingly, the order did not help as much as we expected. The average
time per solved test-case did drop to 0.7s (2× and 4× better than LDD2 and
LDD, respectively). However, fewer instances could be solved, with 55 out of the
74 failures being memory outs. We believe this indicates that an order that is
good for the final result is not necessarily good for the intermediate steps (and
hence, overall) of the computation.

The bottleneck for the AllSAT-based solution is in enumerating all the
minterms (as opposed to cubes or prime implicants). We found that in many
cases that were hard for mathsat4, many of the predicates did not appear in
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the support of the LDD-based solution. That is, many predicates were not part
of any prime implicant. To evaluate the effect of this on mathsat4, we repeated
the MSAT experiment, but restricted the predicates in each query to those that
appeared in the support of the solution (as computed by LDD). The results are
shown in the last row (MSAT2) of Table 4a. Note that determining variables
in the support of a Boolean formula is NP-complete. We do not know how to
compute the support other than by solving the problem with LDDs first.

Overall, the running time has improved dramatically. There is a significant
improvement on the cases solved by MSAT, even compared to LDD-based solu-
tions. However, overall it is much slower than any of the LDD-based solutions,
even when restricted to cases it could solve. Overall, there are 91 failures (all
timeouts). Fig. 3b shows the details from the MSAT2 and MIN experiments.
There are two interesting points. First, the best-of LDD and MSAT is signifi-
cantly better than the idealized AllSAT-based solution. Second, there are cases
where the idealized AllSAT-based solution is an order-of-magnitude better.

End-to-end experiments. To evaluate the end-to-end performance of our ap-
proach, we implemented a CEGAR-based safety checker for C programs fol-
lowing Jhala et al. [11]. Fig. 4b is a sample of our results: floppy.ok is derived
from a device driver, test locks 50 is based on the example from Beyer et al. [2],
diamond-4 is a program with a “diamond-shaped” CFG, and ssl-srv-D is derived
from OpenSSL. We observe that LBE scales much better than SBE. The per-
formances of LDD and AllSAT are more evenly balanced. LDD scales better for
diamond-4. For ssl-srvr-D, LDD by itself is much worse than AllSAT. This is due
to a single PAQ that is very hard for LDD. However, LDD outperforms AllSAT
elsewhere, as seen by the MIN column.

Summary. Overall, our results show that the AllSAT-based solution is not com-
petitive for solving PAQs of a large program fragment, while the LDD-based solu-
tion performs surprisingly well. Moreover, the MIN of the LDD- and the AllSAT-
based approaches is the clear winner, even compared to an oracle-based solution.

6 Conclusion

Large-Block Encoding (LBE) [2] is a flavor of predicate abstraction applied to a
summarized program. In this paper, we present solutions to three problems for
predicate abstraction in the context of LBE. First, we define a general notion
of program summarization, called a loop cutset summary, that is compatible
with LBE and is efficiently computable. We show that it generalizes the rule-
based summary of Beyer et al. [2]. Second, we present a linear time algorithm to
construct PAQs for a loop-free program fragment. Our algorithm works directly
on the SSA representation of the program, and constructs a query that separates
control- and data-flow, while preserving both in its structure. Third, we study
two approaches to solving PAQs: a classical AllSAT-based, and a new based on
LDDs. The approaches are evaluated on a benchmark from open-source software.

Our approach builds on many existing components: SSA, loop-free program
fragments, and early quantification – all well known; LDDs are used in [5] for
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image computation. However, the combination of the techniques is novel, the
benchmarks are realistic and challenging, and the results show that our new
LDD-based solution outperforms (and complements) the AllSAT-based one.

References

1. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for
Model Checking C Programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 268–283. Springer, Heidelberg (2001)

2. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
Model Checking via Large-Block Encoding. In: FMCAD 2009 (2009)

3. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-
SAT4 SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123.
Springer, Heidelberg (2008)

4. Cavada, R., Cimatti, A., Franzén, A., Kalyanasundaram, K., Roveri, M., Shyama-
sundar, R.K.: Computing Predicate Abstractions by Integrating BDDs and SMT
Solvers. In: FMCAD 2007 (2007)

5. Chaki, S., Gurfinkel, A., Strichman, O.: Decision Diagrams for Linear Arithmetic.
In: FMCAD 2009 (2009)

6. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate Abstraction of ANSI-
C Programs using SAT. FMSD 25(2-3) (2004)

7. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs.
In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

8. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
Computing Static Single Assignment Form and the Control Dependence Graph.
TOPLAS 13(4) (1991)

9. Das, S., Dill, D.: Successive Approximation of Abstract Transition Relations. In:
LICS 2001, pp. 51–60 (2001)

10. Flanagan, C., Qadeer, S.: Predicate Abstraction for Software Verification. In:
POPL 2002, pp. 58–70 (2002)

11. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions From
Proofs. In: POPL 2004 (2004)

12. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Complexity of Com-
puter Computations, pp. 85–103 (1972)

13. Kroening, D., Sharygina, N.: Approximating Predicate Images for Bit-Vector Logic.
In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 242–256. Springer,
Heidelberg (2006)

14. Lahiri, S.K., Ball, T., Cook, B.: Predicate Abstraction via Symbolic Decision Pro-
cedures. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 24–38. Springer, Heidelberg (2005)

15. Lahiri, S.K., Bryant, R.E., Cook, B.: A Symbolic Approach to Predicate Ab-
straction. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 141–153. Springer, Heidelberg (2003)

16. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT Techniques for Fast Predicate Ab-
straction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 424–437.
Springer, Heidelberg (2006)

17. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: CGO 2004 (2004)



Synthesis for PCTL in
Parametric Markov Decision Processes

Ernst Moritz Hahn1, Tingting Han2, and Lijun Zhang3

1 Saarland University, Saarbrücken, Germany
2 Oxford University Computing Laboratory, United Kingdom

3 DTU Informatics, Technical University of Denmark, Denmark

Abstract. In parametric Markov decision processes (PMDPs), transi-
tion probabilities are not fixed, but are given as functions over a set of
parameters. A PMDP denotes a family of concrete MDPs. This paper
studies the synthesis problem for PCTL in PMDPs: Given a specification
Φ in PCTL, we synthesise the parameter valuations under which Φ is true.
First, we divide the possible parameter space into hyper-rectangles. We
use existing decision procedures to check whether Φ holds on each of the
Markov processes represented by the hyper-rectangle. As it is normally
impossible to cover the whole parameter space by hyper-rectangles, we
allow a limited area to remain undecided. We also consider an extension
of PCTL with reachability rewards. To demonstrate the applicability of
the approach, we apply our technique on a case study, using a preliminary
implementation.

1 Introduction

Markov processes [6,26] have been applied successfully to reason about quanti-
tative properties in networked, distributed, and recently biological systems. This
paper considers parametric Markov processes [24], in which transition probabili-
ties are not fixed, but depend on a set of parameters. As an example, consider a
communication network with a lossy channel, where whenever a package is sent,
it is received with probability x but lost with probability 1− x. In this context,
we are interested in, for instance, determining the parametric reachability prob-
ability with respect to a given set of states. This probability is a function in x.
By inserting an appropriate value for x in the function, we will obtain a concrete
model without parameters. The synthesis problem asks, for example, what are
the possible parameter valuations such that the reachability probability is below
the a priori specified threshold.

Daws has devised a language-theoretic approach to solve the reachability prob-
lem in parametric Markov chains [11]. In this approach, the transition proba-
bilities are considered as letters of an alphabet. Thus, the model is viewed as
a finite automaton. Based on the state elimination approach [21], the regular
expression describing the language of such an automaton is computed. In a post-
processing step, this regular expression is transformed into a rational function
over the parameters of the model. In previous works [17], we have improved this
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method by intertwining the state elimination and the computation of the ratio-
nal function. Briefly, in a state elimination step, we label the edges directly with
the appropriate rational function representing the flow of probabilities. Once all
states—except the initial one and the goal states—have been eliminated, we can
obtain the probabilities directly from the remaining edges. This improved algo-
rithm is implemented in our tool Param [16]. The tool also supports bounded
reachability, relying on matrix-vector multiplication with rational function en-
tries, and reachability rewards [7,13]. For the latter, we extended the model with
parametric rewards assigned to both states and transitions, and considered the
expected accumulated reward until a given set of states is reached.

In this paper, we extend our approach to solve the PCTL synthesis problem for
parametricMarkovdecisionprocesses (PMDPs). PCTL(ProbabilisticCTL) [6,19]
is a probabilistic extension of the logic CTL for reasoning about properties over
Markov models. In this paper, we extend the PCTL formulae with the reachability
reward properties [20,23] and can express properties like:

“The probability is larger than 0.99, that in the next step we move to a
state where the accumulated reward until we are able to reach a state in
which the property ‘a’ holds is less than 5.”

as P>0.99(X R<5(♦a)) in PCTL. We are interested in synthesising the concrete
models fulfilling a given specification. Markov decision processes contain both
probabilistic choices and nondeterministic choices. The notion of schedulers is
used to resolve nondeterminism, leading to a parametric Markov chain. Previ-
ously [17], we considered a method for PMDPs by encoding nondeterminism in
additional parameters. This method turned out to be limited by the number of
nondeterministic choices, and can not be extended to treat nested properties.
To handle the PCTL synthesis problem on PMDPs, we propose to divide the
parameter valuations into regions, which are hyper-rectangles in the dimension
of the number of variables. A region represents a family of concrete models. We
aim at computing regions that subsume models with the same truth value of the
specification. In general, it is not possible to cover the whole space completely.
Thus, we stop as soon as the size of regions is below a pre-specified threshold,
where it is unknown whether the specification is satisfied or not. To be on the
safe side, the unknown regions are usually assumed not to fulfil the specification.
To decide properties of a region of parameter valuations, we can use an approx-
imate but fast method [18] which might derive false positive or false negative
results. It can thus be used to get a quick overview for which areas the formula
may hold, but should not be used if this information is critical. We can also use
slower decision procedures with correctness guarantees [14,25,27].

In Fig. 1, we give an example for illustration. Zeroconf [9] is a protocol allow-
ing the dynamic configuration of a network. When a new host enters a network,
it randomly chooses an ID and asks the existing members of the network whether
the ID is already in use. The request is conducted maximally n times, to minimise
the probability of not getting an answer in an unreliable network even though the
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p

q

0 0.6

0

Fig. 1. Dividing the parameter space
into regions in the Zeroconf example

ID is used. If the host does not get an an-
swer within n tries, it assumes the ID to be
unused. Here, we assume n = 10. The pa-
rameter p denotes the probability that the
host gets no answer in case of a collision,
and q denotes the probability that a cho-
sen ID is already in use. We ask whether
the expected number of requests till the
protocol terminates (with an either unique
or duplicate ID) is below 11. In PCTL
(with reward extensions), this property
can be expressed asR<11(♦IDConfirmed).
In Fig. 1, regions for which this holds (resp.
does not hold) are given as white (resp.
black) boxes, while the gray boxes are unknown regions. As we can see, an in-
crease of p or q leads to an increase of the expected number of trials.

To the best of our knowledge, parameter synthesis for PCTL properties in
PMDPs has not been handled before. The most closely related work is due
to Fribourg and André [15]: For a given PMDP and an instantiation of the
parameters, they compute a scheduler for this instantiation which is optimal for
a certain (non-nested) property. Afterwards, they compute the set of parameter
evaluations for which the scheduler is still optimal. Compared to their work, we
can deal with nested formulae and do not have a fixed scheduler a priori, but
use different optimising schedulers for different regions if necessary.

Organisation of the paper. In Section 2 we give some preliminaries and define
the parametric models and the variant of PCTL used in this paper. Then, in
Section 3, we describe our parameter synthesis algorithm. We provide experi-
mental results in Section 4. Finally, Section 5 concludes the paper.

2 Preliminaries

In this section, we first introduce the definitions of non-parametric Markov mod-
els and the logic PCTL. Afterwards, we introduce our parametric extensions and
hyper-rectangles needed later for the synthesis problem.

2.1 Non-parametric Models

Definition 1. A Markov chain (MC) is a tuple D = (S, s0,P, L) where S is a
finite set of states, s0 is the initial state, P : S×S → [0, 1] denotes the probability
matrix, where for all s ∈ S we require that

∑
s′∈S P(s, s′) = 1. Finally, L : S →

2AP is a state labelling, mapping states to a subset of a given set of atomic
propositions AP.

Markov chains are the most basic model class. Next, we consider Markov decision
processes which extend MCs by nondeterministic decisions.
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Definition 2. A Markov decision process (MDP) is defined as a tuple M =
(S, s0,Act ,P, L) where S, s0 and L are as for MCs, and Act is a finite set of
actions. The transition probability matrix P is a function P : S×Act×S → [0, 1].
For all states s ∈ S and actions α ∈ Act, we require that

∑
s′∈S P(s, α, s′) ∈

{0, 1}. We also require that for each s ∈ S there is at least one α ∈ Act with∑
s′∈S P(s, α, s′) = 1.

With Act(s) = {α |
∑

s′∈S P(s, α, s′) = 1} we specify the set of enabled actions
of a state. The nondeterministic choices are resolved by the notion of schedulers.
A simple scheduler is a function δ : S → Act assigning one enabled action to each
state. A counting scheduler is a function δ : S × [1, n] → Act , for some n ∈ N.
Notice that for each i ∈ {1, . . . , n} we have that δ(·, i) is a simple scheduler. For
our purposes, simple and counting schedulers suffice. A simple scheduler induces
an MC from an MDP as follows.

Definition 3. Given an MDP M = (S, s0,Act ,P, V ) and a simple scheduler
δ, the MC induced by δ is defined as Mδ := (S, s0,Pδ, V ) where the transition
matrix Pδ : S × S → [0, 1] is defined by Pδ(s, s′) := P(s, δ(s), s′).

For MDPs with exactly one enabled action for each state, there is a one-to-one
correspondence to MCs, so we can consider MCs as a special case of MDPs.

When model checking PCTL formulae, we will have to consider modified
versions of our models, in which certain states are made absorbing.

Definition 4. Let sink : S → {false, true} be a function mapping states to
boolean values. For the transition matrix P of an MDP, we define a transition
matrix P[sink] where states s with sink(s) = true are made absorbing by setting

P[sink](s, α, s′) :=

⎧⎨
⎩

P(s, α, s′) if sink(s) = false ,
1 if sink(s) = true ∧ s = s′,
0 else.

By skipping the action α above we get the definition for MCs.

We now extend our models by rewards, which can be interpreted as either costs
or bonuses, depending on the model under consideration.

Definition 5. A reward structure for an MDP with state space S and action
set Act is a partial function r : S ×Act ⇀ R≥0 assigning a reward to each state
and enabled action. For an MC, a reward structure is a function r : S → R≥0
assigning a reward to each state.

Similar to the probability matrices, if r is a reward structure for an MDP and
δ is a simple scheduler, we define rδ such that rδ(s) = r(s, δ(s)). Given a func-
tion sink : S → {true, false} and a reward structure r for an MDP, we let
r[sink](s, α) = 0 if sink(s) = true and r[sink](s, α) = r(s, α) otherwise. For an
MC, we define r[sink](s) = 0 if sink(s) = true and r[sink](s) = r(s) otherwise.
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2.2 Probabilistic CTL

To specify properties, we consider the logic Probabilistic CTL (PCTL) [6, 19].
The syntax is given by:

Φ = true | a | ¬Φ | Φ ∧ Φ | P	
p(ϕ) | R	
m(♦Φ), ϕ = X Φ | Φ U Φ | Φ U≤n Φ,

where �� ∈ {<,≤,≥, >}, n ∈ N, p ∈ [0, 1], m ∈ R and a ∈ AP . Here, Φ is a
formula which has a boolean value in a state, whereas ϕ is interpreted on paths.
PCTL can be interpreted on MDPs [6].

The truth values of true, a and ∧ in a state are straightforward. For state s,
the formula P	
p(ϕ) is fulfilled if for all schedulers the probability of paths which
start in s and fulfil ϕ meets the bound �� p. For �� ∈ {<,≤}, this is equivalent
to asking whether the maximal probability fulfils �� p, whereas for �� ∈ {≥, >}
we only need to consider the minimal probability.

Given a path, the next formula X Ψ asks whether on the second state of this
path Ψ holds. The unbounded until formula Ψ1 U Ψ2 requires that a state on
the path fulfils Ψ2, and for all states on the path before that point, Ψ1 must
hold. The bounded until formula Ψ1 U≤n Ψ2 is similar, but additionally requires
that Ψ2 occurs at latest n steps after the first state of the path. The formal
semantics of PCTL on MDPs has been introduced by Bianco and De Alfaro [6].
We write M |= Φ if the initial state of an MDP fulfils the PCTL state formula
Φ. The reachability reward formula [20,23] R	
m(♦Ψ) states that the expected
accumulated reward until a state satisfying Ψ is reached should meet the bound
�� m. The formula holds, if under all schedulers this expectation fulfils �� m.

2.3 Parametric Models

We fix V = {x1, . . . , xn} as the set of variables with domain R. With each
variable x, we associate a closed interval range(x) = [Lx, Ux] specifying which
values of x are valid. An evaluation v is a function v : V → R respecting the
variable ranges. A polynomial g over V is a sum of monomials

g(x1, . . . , xn) =
∑

i1,...,in

ai1,...,inxi1
1 · · ·xin

n ,

where each ij ∈ N0 and each ai1,...,in ∈ R. A rational function f over a set of
variables V is a fraction f(x1, . . . , xn) = g1(x1,...,xn)

g2(x1,...,xn) of two polynomials g1, g2

over V . Let FV denote the set of rational functions from V to R. Given f ∈ FV

and an evaluation v, we let f〈v〉 := f(v(x1), . . . , v(xn)) denote the rational
number obtained by substituting each occurrence of xi with v(xi).

We now extend MCs to parametric models [11, 24]. The difference to the
original model lies in the extension by parameters and the definition of the
probability matrix.

Definition 6. A parametric Markov chain (PMC) is defined as a tuple D =
(S, s0,P, L, V ) where S, s0 and L are as in Definition 1, V = {x1, . . . , xn} is a
finite set of parameters and P is the probability matrix P : S × S → FV .

A parameter evaluation induces a non-parametric MC from a PMC.
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Definition 7. Let D = (S, s0,P, L, V ) be a PMC. The MC Dv induced by
an evaluation v is defined as Dv := (S, s0,Pv, L) where the transition matrix
Pv : S × S → [0, 1] is given by Pv(s, s′) := P(s, s′)〈v〉 if this matrix fulfils the
requirements of Definition 1.

We already considered [16, 17] how to compute a rational function which rep-
resents the unbounded reachability probability from the initial state to a set of
target states in a PMC. Evaluating this rational function with a certain param-
eter evaluation leads to the same result as first computing the induced PMCs
and then computing the probability in this model. With a simple extension of
our previous techniques, we can compute reachability values for all states of
the model at the same time, which is necessary when checking nested formulae.
Below we define parametric MDPs.

Definition 8. A parametric Markov decision process (PMDP) is a tuple M =
(S, s0,Act ,P, L, V ) where S, s0, L and V are as for PMCs, and Act is a finite
set of actions. The transition matrix P is of the form P : S ×Act × S → FV .

As for PMCs, we introduce the MDP induced by a valuation function.

Definition 9. Given a PMDP M = (S, s0,Act ,P, L, V ) and an evaluation v,
the MDP induced by v is defined by Mv := (S, s0,Act ,Pv, L) where Pv :
S × Act × S → [0, 1] is defined by Pv(s, α, s′) := P(s, α, s′)〈v〉. For Pv, the
requirements of Definition 2 must be fulfilled.

The notions of making a state absorbing as well as models and rewards induced
by a scheduler are defined as in the non-parametric models. We allow reward
structures to take rational functions as values. In turn, for an evaluation v, we
define rv as rv(s, α) := r(s, α)〈v〉 or rv(s) := r(s)〈v〉 respectively. As required by
the optimality equation used in the later model checking algorithm, we assume
nonnegative rewards, i.e., rv ≥ 0, for all evaluations under consideration.

We assume that our evaluation functions fulfil the following assumption.

Assumption 1. Let v be an evaluation function and let P be the probability
matrix of a PMC or PMDP. Then no transition probability of Pv is zero or one,
except this entry is zero or one for any evaluation.

s0 s1
x

1− x

Fig. 2. Example PMC of Assumption 1

Our assumption guarantees that the
structure of the underlying graph of
P remains unchanged from v. In other
words, a transition with a parameter
should not disappear (due to the null
probability) no matter what value it
takes. It excludes extreme cases such
as when x = 0 or x = 1 (see Fig. 2). This is not a severe restriction, as such
cases are seldom interesting in practice: They correspond to cases where an error
happens either not at all or with certainty. These corner cases can be treated
separately, with exponential blow-up in the number of variables, by fixing each
such possible evaluation combinations before applying our approach.
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2.4 Hyper-rectangles

A region is a high-dimensional rectangle r =×x∈V
[lx, ux] such that for all

x ∈ V it is [lx, ux] ⊆ range(x). A region represents those evaluations v with
v(x) ∈ [lx, ux] for all x ∈ V : In this case, we write v ∈ r. We define the centre
of a region r =×x∈V

[lx, ux] by centre(r)(x) := lx+ux

2 for x ∈ V . Later on, we
might have to split a region r into several smaller parts, provided r is too coarse
with respect to a property, i.e., we are not sure whether the property holds for
all evaluations it represents. For this, we introduce the splitting function. For
A ⊆ V , we let

INT2(r, x, A) :=

{
{[lx, ux]} if x �∈ A,

{[lx, centre(r)(x)], [centre(r)(x), ux]} if x ∈ A

be the function dividing the interval [lx, ux] (of region r) on dimension x ∈ A
into two halves. Define

split(r, 2, A) :=

{
×
x∈V

Intx
∣∣∣ ∀x ∈ V. Intx ∈ INT2(r, x, A)

}

as the set of split (small) regions, or sub-regions. Moreover, INTm(r, x, A) and
split(r, m, A) for m > 2 can be defined in a very similar way, where they equally
divide the interval in each dimension for each x ∈ A into m sub-intervals and
compute the set of m-divided regions, respectively. The set A will be skipped in
case of A = V , and we also write split(r) for split(r, 2).

We define the volume μ of a region r =×x∈V
[lx, ux] in a straight-forward

way by setting μ(r) :=
∏

x∈V
ux−lx
Ux−Lx

. This way, the volume is the product of the
relative lengths of sides of the hyper-rectangle. For a set K = {r1, . . . , rn} of
regions, we define μ(K) :=

∑n
i=1 μ(ri).

A decision procedure is a tool deciding the validity of formulae for a given
region. There exist both approximate decision procedures [18] as well as precise
ones [14,25,27]. Consider a predicate constraint := f �� q where f is a rational
function over the variables in V , �� ∈ {<,≤,≥, >} and q ∈ R. Let r be a
given region. For an evaluation v, with constraint〈v〉 we denote f〈v〉 �� q, i.e.,
the constraint obtained under the valuation v. We assume that we are given a
decision procedure check(constraint , r) which

– returns true only if for all v ∈ r we have that constraint〈v〉 is true, and
– returns false in case this does not hold or the result can not be decided.

3 Synthesis for PCTL

In this section we present the algorithm for synthesising PCTL formulae against
PMDPs. The main routine of the algorithm is given in Algorithm 1. It main-
tains a set unprocessed of regions for which the result is still unknown, initially
containing only×x∈V

range(x). Then, it takes a largest region out of this set
and tries to decide its value using the procedure checkState. If checkState
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Algorithm 1. main(M = (S, s0,Act ,P, L, V ), Φ, ε)

unprocessed := {×x∈V
range(x)}

result := ∅
while μ(unprocessed) ≥ ε do

choose one largest r ∈ unprocessed
unprocessed := unprocessed \ {r}
b := checkState(r, Φ)
if b = ? then

unprocessed := unprocessed ∪ split(r)
else

result := result ∪ {(r, b)}
return result

returns a definite answer, the pair (r, b) is added to result . In this case, the truth
value for a state s is the same for all non-parametric MDPs represented by r.
Then, b(s) maps each state s to this truth value, which is constant within the
region. If ? is obtained, we split the region and add the newly generated regions
to unprocessed . The procedure is repeated until the volume of unprocessed is
smaller than ε.

Algorithm 2 describes the procedure checkState discussed above. If success-
ful, it returns a function mapping each state to either true or false. It may also
return ? if either the truth value is different for certain parts of the region, or the
truth values can not be decided for the whole region at once. Notice that for two
functions b, b′ : S → {true, false, ?}, the boolean connectors b ∧ b′, etc. are to be
understood state-wise, that is (b ∧ b′)(s) = b(s) ∧ b′(s), etc. For ∧ and ¬ opera-
tions, the result is always ? in case one of the operands is ?. For �� ∈ {<,≤,≥, >},
we define the negation as < := ≥, ≤ :=>, ≥ :=<, > :=≤. Boolean formulae are
trivial. Below we discuss the probabilistic and reward formulae.

Since the maximal and minimal probabilities are dual, in the rest of the paper
we will only consider the minimal properties and set �� ∈ {>,≥} for simplicity.

3.1 Reward Formula R��m(♦ Ψ)

Recursively, we first compute reach := checkState(r, Ψ). Then, we instanti-
ate the PMDP with reward structure at centre(r) where r is the region under
consideration. We obtain a non-parametric MDP, from which we compute the
minimising scheduler. It is well-known that simple schedulers are sufficient to
minimise (or maximise) reachability rewards for MDPs [8,10,29,30]. The proce-
dure minReachRewSched returns this simple scheduler δ such that the reach-
ability reward is minimised for each state in the induced MDP with respect
to the evaluation centre(r). A PMC Mδ is further induced under this simple
scheduler δ, with the corresponding matrix Pδ. Using reachRew, we compute
the parametric reachability rewards function optRew : S → FV in this induced
PMC (as in a previous publication [17]).
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Algorithm 2. checkState(r, Φ)

switch Φ do
case a return b such that b(s) = (if a ∈ AP(s) then true else false)
case ¬Ψ return ¬checkState(r, Ψ)
case Ψ1 ∧ Ψ2 return checkState(r, Ψ1) ∧ checkState(r, Ψ2)
case P	
p(ϕ)

val := computeProb(r, ϕ)
if val = ? then return ?

for s ∈ S do b(s) :=

⎧⎨
⎩

true if check(val (s) �� p, r),
false if check(val (s) �� p, r),

? else
if ∃s.b(s) = ? then return ? else return b

case R	
m(♦Ψ)
reach := checkState(r, Ψ)
if reach = ? then return ?
c := centre(r)
δ := minReachRewSched(Pc[reach ], rc[reach], reach)
optRew := reachRew(Pδ[reach], rδ[reach], reach)
for s ∈ S, α ∈ Act(s) do

checkRew(s) := r[reach](s, α)+
∑

s′∈S P[reach ](s, α, s′)·optRew(s′)
valid := valid ∧ check(optRew(s) ≤ checkRew(s), r)

if ¬valid then return ?
for s ∈ S do b(s) := check(optRew(s) �� m, r)
if ∃s.b(s) = ? then return ? else return b

Recall that the scheduler δ is minimising with respect to the evaluation
centre(r). Our next for loop checks whether this is also the case for all evalua-
tions in the region r. It works in a similar way as the optimality equation [26,30].
For all states s and enabled actions α, we check whether δ is indeed minimising,
but this time for all concrete models represented by the region, through the de-
cision procedure check. In more detail, if the obtained reward checkRew (s) in
the for loop satisfies the constraint optRew(s) ≤ checkRew (s) for each concrete
model in the region, then indeed δ(s) is minimising. In this case we have proven
that δ is locally optimal for each state, which induces global optimality of the
current scheduler.

3.2 Probabilistic Formula P��p(ϕ)

The function computeProb, in Algorithm 3, returns a function mapping each
state s to the minimal probability of all paths which fulfil ϕ when starting in
s. Again, if this value can not be decided, the result is ?. The functions work
recursively: The cases for atomic propositions, negation and conjunction are as
for usual model checking procedures. For P	
p(ϕ), we use the procedure check
discussed in Section 2.4 to decide the truth value for each state, if this is possible.
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Algorithm 3. computeProb(r, ϕ)

switch ϕ do
case Ψ1 U Ψ2

left := checkState(r, Ψ1), right := checkState(r, Ψ2)
if (left = ? or right = ?) then return ?
c := centre(r)
δ := minUReachSched(Pc[¬left ∨ right ], right)
optProb := uReachProb(Pδ[¬left ∨ right ], right)
valid := true
for s ∈ S, α ∈ Act(s) do

checkProb(s) :=
∑

s′∈S P[¬left ∨ right ](s, α, s′) · optProb(s′)
valid := valid ∧ check(optProb(s) ≤ checkProb(s), r)

if valid then return optProb else return ?
case Ψ1 U≤n Ψ2

left := checkState(r, Ψ1), right := checkState(r, Ψ2)
if (left = ? or right = ?) then return ?
c := centre(r)
δ := minBReachSched(Pc[¬left ∨ right ], right)
forall the s do optProb(s) := if right(s) then 1 else 0
valid := true
for step = n, . . . , 1 do

optProb ′ := Pδ(·,step)[¬left ∨ right ] · optProb
for s ∈ S, α ∈ Act(s) do

checkProb(s) :=
∑

s′∈S P[¬left ∨ right ](s, α, s′) · optProb(s′)
valid := valid ∧ check(optProb ′(s) ≤ checkProb(s), r)

optProb := optProb ′

if valid then return optProb else return ?

In computeProb, for Ψ1 U Ψ2 we compute a minimising scheduler to fulfil the
unbounded until formula for the centred parameter evaluation, using standard
means, by calling minUReachSched. Notice that the minimising scheduler is
a simple scheduler, which suffices for minimal reachability probabilities [6]. By
uReachProb, we compute the reachability probability of the PMC induced by
this scheduler (as in a previous work [17]). Note that the probability obtained
this way is only valid for parameter evaluations which fulfil Assumption 1. Af-
terwards, we use another optimality equation [4] to check whether the decision
is minimal for all parameter evaluations of the region.

For the bounded until Ψ1 U≤n Ψ2, we need to consider the minimum over all
counting schedulers. We compute the minimising scheduler for one instantiation.
Afterwards, we use a recursive (backward) characterisation [2] to prove that
for each step the choices the scheduler takes are indeed optimal for the whole
parameter region. We leave out the case X Ψ , as it can be handled by a simpler
variant of the algorithm for the bounded until.
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3.3 Termination and Correctness

To guarantee termination of our algorithm, we need the following assumption.

Assumption 2. Let r0 :=×x∈V
range(x) denote the initial region, and ε the

given precision. We assume that there exists m ∈ N with the following property.
There exists a set K ⊆ split(r0, m) of regions such that 1.) for all regions r ∈ K,
either for all evaluations v ∈ r it is Mv |= Φ, or for all evaluations v ∈ r it is
Mv �|= Φ, 2.) μ(K) > 1 − ε and 3.) the decision procedure is able to decide all
constraints occurring during the parameter synthesis of all regions r ∈ K.

The assumption requires that by repeated splitting we arrive at a sufficiently
large set of regions (with volume larger than 1 − ε) in which each state has a
constant truth value, decidable by the (possibly incomplete) decision procedure.
It is similar to an assumption used to reason about the quasi-decidability of hy-
brid systems [28]. In case the assumption is valid, the following lemma guarantees
termination.

Lemma 1. Let M be a PMDP, Φ be a PCTL formula and ε > 0 the analysis
precision. Then Algorithm 1 terminates in finite time with this input, given that
Assumption 2 holds.

Lemma 1 follows by a simple structural induction on the formula, provided
Assumption 2 holds. We now state the correctness of the algorithm.

Lemma 2. Let M = (S, s0,Act ,P, V ) be a PMDP, Φ be a PCTL state formula
and ε > 0 the analysis precision. Further, assume we are using a precise decision
procedure. Then Algorithm 1 is correct in the following sense. For each tuple
(r, b) of the result, and for each v ∈ r for which Mv is a valid MDP and for
which Assumption 1 is valid, we have Mv |= Φ iff b(s0)〈v〉 = true.

Notice that its correctness does not depend on Assumption 2, thus the result
is correct also in case termination is not guaranteed. The proof of the correct-
ness of Lemma 2 also follows by structural induction. For atomic propositions
and boolean connectors, the induction step is trivial. For until and reachability
rewards, we use the correctness of the corresponding optimality equations.

4 Experiments

We implemented the model checking procedure of Algorithm 1 in a prototypical
way in our tool Param 2.0α. For the analysis to be feasible, it was necessary
to implement a number of optimisations. We minimise induced PMCs using
weak [3] or strong [12] bisimulation. We use a caching technique to avoid com-
puting reachability probabilities in PMCs twice, in case the same PMCs are
induced from several calls to checkState or checkRegion. We also reuse
known truth values of constraints. Because we usually have to split large regions
into smaller ones anyway, we do some pre-checks whether the truth value may be
constant. To minimise the number of regions to be considered, and thus the over-
all time, we split regions along one widest side, i.e., split(r, 2, {x}) with variable
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x representing the (or a) widest side. For the case study under consideration,
we extended an approximate decision method [18], which does not guarantee
correctness. Initial experiments with exact solvers have not been successful, as
verifying a single region did not terminate within several minutes. In the method
used, for a constraint f �� q we evaluate f in the corners of the region as well
as some randomly chosen points inside. The more points we evaluate, the more
unlikely is a wrong result, but still correctness cannot be guaranteed formally.

We applied the implementation on a randomised consensus shared coin pro-
tocol by Aspnes and Herlihy [1], based on an existing Prism model [22]. In this
case study, there are N processes sharing a counter c, which initially has the
value 0. In addition, a value K is fixed for the protocol. Each process i decides
to either decrement the counter with probability pi or to increment it with prob-
ability 1−pi. In contrast to the original Prism model, we do not fix the pi to 1

2 ,
but use them as parameters of the model. After writing the counter, the process
reads the value again and checks whether c ≤ −KN or c ≥ KN . In the first
case, the process votes 1, in the second it votes 2. In both cases, the process stops
afterwards. If neither of the two cases hold, the process continues its execution.
As all processes which have not yet voted try to access the counter at the same
time, there is a nondeterministic choice on the access order.

A probabilistic formula. As the first property, we ask whether for each execu-
tion of the protocol the probability that all processes finally terminate with a
vote of 2 is at least K−1

2K . With appropriate atomic propositions finished and
allCoinsEqualTwo , this property can be expressed as P≥K−1

2K
(true U (finished ∧

allCoinsEqualTwo)). For the case N = 2 and K = 2, we give results in Fig. 3.
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Fig. 3. Randomised consensus: P≥K−1
2K

(true U (finished ∧ allCoinsEqualTwo))

The leftmost part of the figure provides the minimal probabilities among
all schedulers that all processes terminate with a vote of 2, depending on the
parameters pi. With decreasing pi, the probability that all processes vote 2
increases, since it becomes more likely that a process increases the counter and
thus also the chance that finally c ≥ KN holds. The plot is symmetric, because
both processes are independent and have an identical structure.

On the right part of the figure, we give an overview which schedulers are
optimal for which parameter values. Here, boxes labelled with the same number
share the same minimising scheduler. In case p1 < p2, to obtain the minimal
probability the nondeterminism must be resolved such that the first process is
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activated if it has not yet voted. Doing so maximises the probability that we
have c ≤ −KN before c ≥ KN , and in turn minimises the probability that both
processes vote 2. For p1 > p2, the second process must be preferred.

In the middle part of the figure, we give the truth values of the formula. White
boxes correspond to regions where the property holds, whereas in black boxes
it does not hold. In gray areas, the truth value is undecided. To keep the gray
areas viewable, we chose a rather high tolerance of 0.15. The truth value decided
is as expected by inspecting the plot on the left part of the figure, except for
the gray boxes along the diagonal of the figure. In the gray boxes enclosed by
the white area, the property indeed holds, while in the gray areas surrounded by
the black area, it does not hold. The reason that these areas remain undecided
is that the minimising scheduler changes at the diagonals, as discussed in the
previous paragraph. If the optimal scheduler in a box is not constant for the
region considered, we have to split it. Because the optimal scheduler always
changes at the diagonals, there are always some gray boxes remaining.

A reward formula. As a second property, we ask whether the expected number
of steps until all processes have voted is above 25, expressed as R>25(♦ finished).
Results are given in Fig. 4. On the left part, we give the expected number of
steps. This highest value is at pi = 1

2 . Intuitively, in this case the counter does
not have a tendency of drifting to either side, and is likely to stay near 0 for
a longer time. Again, gray boxes surrounded by boxes of the same colour are
those regions in which the minimising scheduler is not constant. We see from
the right part of the figure that this happens along four axes. For some values
of the parameters, the minimising scheduler is not always the one which always
prioritises one of the processes. Instead, it may be necessary to schedule the first
process, then the second again, etc. As we can see, this leads to a number of
eight different schedulers to be considered for the considered variable ranges.
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Fig. 4. Randomised consensus: R>25(♦ finished)

Runtime. In Table 1 we give the runtime of our tool (on an Intel Core 2 Duo
P9600 with 2.66 GHz running on Linux) for two processes and different constants
K. Column“States” contains the number of states. The columns labelled with
“Until” contain results of the first property while those labelled with “Reward”
contain those of the second. Columns labelled with “min” contain just the time
to compute the minimal values whereas those labelled with “truth” also include
the time to compare this value against the bound of the formula. For all analyses,
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we chose a tolerance of ε = 0.05. The time is given in seconds, and “–” indicates
that the analyses did not terminate within 90 minutes.

Table 1. Randomised consensus: per-
formance statistics

K States Until Reward

min truth min truth

2 272 4.7 22.8 287.8 944.7
3 400 13.7 56.7 4610.1 –
4 528 31.7 116.1 – –
5 656 65.5 215.2 – –
6 784 123.4 374.6 – –
7 912 272.6 657.4 – –

As we see, the performance drops quickly
with a growing number of states. For
reward-based properties, the performance
is worse than for unbounded until. These
analyses are more complex, as rewards have
to be taken into account, and weak bisim-
ulation can not be applied for minimisa-
tion of the induced models. In addition, a
larger number of different schedulers has
to be considered to obtain minimal values,
which also increases the analysis time. We
are however optimistic that we will be able
to improve these figures, using a more ad-
vanced implementation.

5 Conclusion

In this paper, we have studied the parameter synthesis problem of PCTL formu-
lae for PMDPs. We have demonstrated the principal applicability of the method,
using a prototypical implementation. As future work we aim to make the method
applicable to models with larger state space. It will be necessary to improve the
technique, from both the theory and implementation perspective. To guarantee
correctness of the results, we intend to try out different solver tools, and to bring
the rational functions into a form which is easier to be handled by the respective
solver. Another possible future work is to extend the recent interesting work
about model repair systems for PMCs [5] to PMDPs.
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Abstract. A safety claim for a system is a statement that the system,
which is subject to hazardous conditions, satisfies a given set of prop-
erties. Following work by John Rushby and Bev Littlewood, this paper
presents a mathematical framework that can be used to state and for-
mally prove probabilistic safety claims. It also enables hazardous condi-
tions, their uncertainties, and their interactions to be integrated into the
safety claim. This framework provides a formal description of the proba-
bilistic composition of an arbitrary number of hazardous conditions and
their effects on system behavior. An example is given of a probabilis-
tic safety claim for a conflict detection algorithm for aircraft in a 2D
airspace. The motivation for developing this mathematical framework is
that it can be used in an automated theorem prover to formally verify
safety claims.

1 Introduction

In [9,5], Rushby and Littlewood present a framework for formalizing safety claims
for systems, which is illustrated with probabilistic safety claims in an automated
theorem prover. In this paper, the mathematics behind their ideas is formalized.
The mathematical framework presented will equip the reader to formalize a
probabilistic safety claim about a system with an arbitrary number of hazardous
conditions in a precise mathematical formula that can be proved in a theorem
prover. One advantage that this adds to Rushby’s approach is that it provides a
formal way for new hazardous conditions to be considered without changing the
overall structure of the safety argument.

A safety claim is a statement that a system will behave in a desired manner
with an acceptable probability. A hazard is a state or set of conditions that,
together with other conditions in the environment, will cause a system to enter
an undesirable state. For more on terminology related to safety analyses and sys-
tem hazards, see [4]. In this paper, a potentially hazardous condition, referred to
hereafter simply as a hazardous condition, is anything that may cause a system
to behave in an unexpected or undesired manner. Examples of hazardous condi-
tions may include such things as signal noise, timing delays, or interruptions of
service. The number of hazardous conditions in a safety argument typically de-
pends on the available expertise in analyzing the system, and it is important to
� This work was supported in part by the National Aeronautics and Space Adminis-
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allow the safety claim to evolve as new factors are uncovered. Hazardous Condi-
tions typically have uncertainties associated with them, and they can therefore
be modeled as random variables. This paper proposes a formal mathematical
framework for modeling hazardous conditions as random variables in a way that
makes it possible to also model interactions between different hazardous con-
ditions. The underlying concepts are due to Rushby [9], but this paper gives
precise mathematical definitions of probabilistic safety claims and provides a
concrete example of such a claim. The example presented is for a state based
conflict detection system.

In general, a probabilistic safety claim can be expressed as a mathematical
formula stating that the probability of a certain event occurring is bounded in a
specific range. Since new factors affecting system behavior may become known
in the future, is desirable for the safety argument to be easily updated without
reconstructing the entire argument. The mathematical formalism presented in
this paper allows hazardous conditions to be modeled in a way that is modular
and can handle the addition of new hazardous conditions.

The interdependency between random variables, e.g., hazardous conditions, is
modeled by probabilistic kernels, which uses the fact that the set of all hazardous
conditions can be modeled via a concatenation of σ-algebras, as seen in [10]. A
σ-algebra is a set of sets where it is possible to assign probabilities to elements
in a consistent way, and is often used to model events. See Section 2.5 for more
compete discussion of probabilistic kernels.

The composition of hazardous conditions is formalized through the concate-
nations of Lebesgue integrals. This allows hazardous conditions and assumptions
to be incorporated into the formula in a modular fashion. The majority of the
complexity is encapsulated in sub-formulas specific to the assumption or haz-
ardous condition in question, while the main safety claim formula need only
be modified in a limited and systematic fashion. The mathematics behind this
formalization is presented in following sections.

2 Systems

Systems of interest are those that can modeled as well-defined functions with
inputs and outputs. In this formalization, a system is a function S with n pa-
rameters and m variables:

S : (K1 × . . .×Kn; L1 × L2 × . . .× Lm)→ T0,

where K1, . . . , Kn and L1, . . . , Lm are the types of the n parameters and m
variables of S, respectively. The type T0 consists of the possible outputs of S,
and if ki ∈ Ki and lj ∈ Lj , then S(k1, . . . , kn; l1, . . . , lm) is an element of T0.
It will sometimes be useful to view the system S as only a function on its
m variables l1, . . . , lm, where the n parameters k1, . . . , kn are fixed, the nota-
tion Sk1,...,kn(l1, . . . , lm) is used in place of S(k1, . . . , kn; l1, . . . , lm). Because the
system S will be modeled as a random variable in order to reason about it
probabilistically, it is assumed that T0 is a measure space with σ-algebra σ(T0).
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The values k1, . . . , kn of the parameters of the system are predetermined and
their values, without any errors, are known to the system. In a real system,
the values of the input variables l1, . . . , lm are measured by the system, and
the measurements can have errors. These errors may be due to either expected
accuracy problems with instruments or faulty components in other systems from
which the instruments receive data. In either case, events that can cause such
measurement errors in the system are referred to as hazardous conditions, which
are formally modeled in this context in Section 2.2.

For a system described in this way, a probabilistic safety claim is a statement
that, given some set of possible hazardous conditions, the probability that the
value of the system S lies in a predetermined subtype Z0 of T0 is contained in
particular range [p0, p1].

2.1 Modeling Uncertainty in System Variables

As noted above, the values of the n parameters k1, . . . , kn of the system S are
known to the system without errors. The errors in the measurements of the input
variables l1, . . . , lm can be modeled as random variables

li : Ω → Li

where (Ω, σ(Ω)) is a probability space (σ(Ω) is a σ-algebra on the set Ω). Thus,
given a fixed value κ = {k1, . . . , km} for the set of parameters, the system S
becomes a random variable as well:

Sκ : (Ω, σ(Ω))→ (T0, σ(T0))
χ �→ S(κ, l1(χ), l2(χ), . . . , lm(χ)) ∈ T0.

Thus, if Z0 is any measurable subset of T0 (i.e. an element of σ(T0)), and if the
distributions of the random variables li are known, then the probability that the
output of Sκ lies in Z0 can be computed.

2.2 Modeling Hazardous Conditions

As noted in Section 2, the errors in the variables l1, . . . , lm of the system S may be
due to either expected accuracy problems with instruments or faulty components
in other systems from which the instruments receive data. Conditions in the
environment of a system that can cause such measurement errors in the system
are referred to as hazardous conditions.

In a model of the environment of the system S, which includes the output
of possible hazardous conditions, these conditions can be modeled as random
variables

Hi : (Ω, σ(Ω)) → (Ti, σ(Ti)),

where i ≥ 1, Ti is an arbitrary type, and σ(Ti) is a σ-algebra on Ti. This mod-
eling framework allows for the computation of the probability that a hazardous
condition Hi takes values in a particular subtype of Ti.
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2.3 Modeling All Possible Hazardous Conditions

It is possible that the environment of a system S has an arbitrary number of
hazardous conditions. Further, it may be the case that when developing a model
of system behavior, only a few of these possible hazardous conditions are under-
stood. Even in this case, the environment of the system can be modeled as an
infinite product

T =
∞∏

i=0

Ti,

where T0 is the type of the output values of S, and for i ≥ 1, Ti is the type
of the output of the i-th hazardous condition Hi. This is a measure space with
σ−algebra σ(T ) =

∏∞
i=0 σ(Ti). This type of model is possible even though there

are only finitely many hazardous conditions, because for i large enough, Ti can
be defined to be a singleton set, and Hi : Ω → Ti as the trivial function.

In general, for any choice κ = {k1, . . . , km} of system parameters, there is a
random variable

Sκ ×H1 ×H2 × . . . : Ω → T (1)

given by χ �→ (S ◦ (κ× l1 × l2 × . . .× lm))(χ), ×H1(χ), H2(χ), . . . ). Thus, the
type T inherits the structure of a probability space from (Ω, σ(Ω)) and from the
random variable (1).

Definition 1. Since the random variable (1) depends on the choice κ of param-
eters for the system S, the probability distribution of T depends on κ as well.
Thus, the probability function on T induced by S and κ will be denoted Pκ.

If β is a subtype of T , then the probability Pκ[β] can be defined and possibly
computed.

2.4 Probabilistic Safety Claims

Suppose that the r hazardous conditions H1, . . . , Hr, the corresponding types
T1, . . . , Tr, and the probability distributions of the random variables Hi are all
known. Let βi ∈ σ(Ti) be events in Ti. That is, each βi is a subtype of Ti, and
the probability that the value of Hi is an element of βi can be computed.

In general, the probability that the value of every Hi (for i = 1, . . . , n) is in
βi and that the system S takes a value in β is given by

Pκ[σ(β0, β1, . . . , βr)],

where σ(β0, β1, . . . , βr) is the concatenation of σ-algebras given by

σ(β0, β1, . . . , β2) = {ω ∈ T |ω0 ∈ β0, ω1 ∈ β1, . . . , and ωn ∈ βr}.

An introduction to concatenations of σ-algebras can be found in [10]. As more
sigma algebras are concatenated, the concatenation becomes smaller:

σ(β0) ⊇ σ(β0, β1) ⊇ σ(β0, β1, β2) ⊇ σ(β0, β1, β2, β3) ⊇ . . . ,
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and the sequence of associated probabilities is decreasing:

Pκ[σ(β0)] ≥ Pκ[σ(β0, β1)] ≥ Pκ[σ(β0, β1, β2)] ≥ Pκ[σ(β0, β1, β2, β3)] ≥ . . .

With this formalism, it is possible to formally state a safety claim in a way that
can be specified in an automated theorem prover. Let p0 and p1 be any two
probabilities, and let β0 and α0 be two subtypes of T0.

Definition 2. A probabilistic safety claim on the system S is a statement of the
following form: If lmeas

1 , . . . , lmeas
m are measured values for the variables of the

system S such that the system output value S(κ′; lmeas
1 , . . . , lmeas

m ) is an element
of α0, then the probability that the system S, with parameter set κ, takes values
in β0 is between p0 and p1. i.e.

Pκ[σ(β0)] ∈ [p0, p1]. (2)

It should be noted that the hypothesis that S(κ; lmeas
1 , . . . , lmeas

m ) is an element
of α0 is not needed to formally state a safety claim in a theorem prover. How-
ever, such a hypothesis will often be required to prove such a safety claim,
because the expected values of the random variables l1, . . . , lm are often equal to
lmeas
1 , . . . , lmeas

m , respectively. Thus, the computation of the probability (2) often
depends on these measured values.

Another important property of this definition is that the set of system pa-
rameters κ′ is different than the set κ. In practice, the parameter set κ′ may be
chosen so that if S(κ; lmeas

1 , . . . , lmeas
m ) is an element of T0, then the probability

Pκ[σ(β0)] is more likely to be between p0 and p1. An example of this is given
below in Section 3.2, where the radius of the protected zone around an aircraft
and the lookahead time for conflict detection are artificially increased to ensure
that if a conflict detection probe returns False, then the probability that the
two aircraft are actually in conflict (using the correct radius and lookahead time)
is reduced.

It is also important to note that neither the infinite product T nor concate-
nations of sigma algebras are required to make a safety claim on a system.
However, as illustrated in Section 2.4, both of these concepts are necessary when
developing a formal proof of such a safety claim.

An example of such a safety claim, for a conflict detection probe, is presented
in Section 3.

2.5 Dependence of System Variables on Hazardous Conditions

In general, the hazardous conditions Hi for the system S may have an impact
on the accuracy of the variables of S, which are modeled as random variables
l1, . . . , lm, as in Section 2.1. It is possible to model the dependence of the random
variables li on the random variables Hi using probabilistic kernels. This section
provides a brief introduction to probabilistic kernels, and the construction follows
that in [10].
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Probabilistic Kernels. Suppose that the distribution of the random variable
Sκ : Ω → T0 (the output of the system S) depends on the value of H1 : Ω → T1.
That is, if ω1 ∈ T1, then there is an associated random variable Ω → T0 × T1
given by

χ �→ (Sκ(χ), ω1), (3)

for χ ∈ Ω and the distribution of this random variable depends on the choice of
ω1. If this is the case, then there is an induced probability function

p : T1 × σ(T0)→ [0, 1].

Since this function depends on the parameter κ of the system S, it will be written
as pκ. Given ω1 ∈ T1 and β0 ∈ T0, the corresponding output of pκ is written
pκ(ω1; β0), which is the probability that the random variable (3) takes a value
in β0 × {ω1}. If β0 and β1 are elements of σ(T0) and σ(T1), respectively, then
the probability Pκ[σ(β0, β1)], defined in Section 2.4, is given by the Lebesgue
integral

Pκ[σ(β0, β1)] =
∫

ω1∈β1

∫
ω0∈β0

pκ(ω1; dω0)p(dω1).

It is important to note that there is no assumption of independence required for
this equation. In order to compute this integral, it is necessary to know how the
random variable Sκ depends on the random variable H1.

Probabilistic Kernels with Several Variables. The construction of this
probabilistic kernel can be generalized to handle multiple hazardous conditions
as follows. Suppose as above that the random variable Sκ : Ω → T0 depends on
the random variables H1, . . . , Hr. Suppose further that for all i = 1, . . . , r, the
random variable Hi : Ω → Ti depends on the values of the random variables
Hi+1, . . . , Hr. That is, Sκ depends on H1, . . . , Hr; H1 depends on H2, . . . , Hr;
H2 depends on H3, . . . , Hr; etc. As above, this means that if i ≥ 0, then for
ωi+1 ∈ Ti+1, . . . , ωr ∈ Tr, the distribution of the random variable Ω → Ti×. . . Tr,
given by

χ �→ (Hi(χ), ωi+1, . . . , ωr), (4)

depends on the values of ωi+1, . . . , ωr (by abuse of notation, H0 = Sκ in this
equation). Further, there is an induced probability function

p : Tr × · · · × Ti+1 × σ(Ti)→ [0, 1]

given by (ωr, . . . , ωi+1; βi) �→ p(ωr, . . . , ωi+1; βi), which is the probability that
the random variable (4) takes a value in βi×{ω1}× · · ·× {ωr}. This probability
is written with a subscript of κ if i = 0 to indicate the dependence on the system
parameter κ. If βi is an element of the σ−algebra σ(Ti) for i = 0, . . . , r, then the
probability Pκ[σ(β0, . . . , βr)] (cf. Section 2.4) is given by the Lebesgue integral∫

ωr∈βr

· · ·
∫

ω0∈β0

pκ(ωr, . . . , ω1; dω0)p(ωr, . . . , ω1; dω1) · · · p(ωr; dωr−1)p(dωr).

An example of such an integral is given in Section 3.2, where this integral is
explicitly computed to prove a safety claim for a conflict detection system.
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3 A Proved Safety Claim for Conflict Detection

This section illustrates the framework presented in the previous sections with
an example of a safety claim for a conflict detection probe in a 2D airspace.
This is an algorithm that detects conflicts between two aircraft, referred to here
as the ownship and the intruder. Its variables include the state information of
the aircraft, which consists of their current positions and velocities, which are
represented by points and vectors in R

2, respectively.
Aircraft trajectories are represented by a point moving at constant linear

speed, i.e., if the current state of an aircraft is given by the position s and the
velocity vector v, then its predicted position at time t is s + tv. In this paper,
the vectors so,vo, si, and vi represent the ownship’s position and velocity and
the intruder’s position and velocity, respectively. The formalization presented
here usually considers a relative view where the intruder is fixed at the origin
of the coordinate system. The vectors s and v will denote the relative position
so − si and the relative velocity vo − vi, respectively.

In the airspace, it is required that aircraft maintain a certain horizontal sepa-
ration, specified by a minimum horizontal distance D. Typically, D is 5 nautical
miles. A conflict detection probe detects conflicts between the aircraft over some
given lookahead time T , usually less than five minutes. A conflict between the
ownship and the intruder aircraft occurs when there is a time t ∈ [0, T ] at which
the horizontal distance between the aircraft is projected to be less than D, i.e.,

‖(so + t vo)− (si + t vi)‖ < D.

Since (so+t vo)−(si+tvi) = (so−si)+t (vo−vi), the predicate that characterizes
conflicts can be defined in terms of the relative vectors s = so−si and v = vo−vi,
i.e., the relative position and velocity vectors, respectively, of the ownship with
respect to the intruder. The predicate horizontal conflict?, parametric on the
lookahead time T and the horizontal distance D, is formally defined as follows.

horizontal conflict?(D, T, s,v) ≡ ∃ t ∈ [0, T ] : ‖s + t v‖ < D.

A conflict detection probe is an algorithm that computes whether the predicate
horizontal conflict? holds for the current states of two aircraft. One example of
such an algorithm is cd2d, developed at NASA Langley [6]. Formally, a conflict
detection probe is defined as a function

cd : R
+ × R

+; R2 × R
2 −→ {True, False}.

It is designed so that cd(D, T ; s,v) ⇐⇒ horizontal conflict?(D, T, s,v), for all
D, T ∈ R

+ and s,v ∈ R
2. Such a conflict detection probe is a system, as de-

scribed above. The distance D and time T are parameters of cd because their val-
ues are typically known to the aircraft without error. For instance, the airspace
may have a 5 nautical mile minimum horizontal separation, and a standards
document may define the lookahead time T to be 3 minutes.
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3.1 GPS and ADS-B Hazardous Conditions

If the ownship is using the conflict probe cd to detect conflicts, it must depend
on broadcast signals from the intruder to determine the intruder’s position and
velocity vectors. In this example, the aircraft use Automatic Dependent Surveil-
lance Broadcast (ADS-B)[8] messages to communicate their positions and ve-
locities, and it is assumed that ADS-B messages with state information are sent
by each aircraft once per second. When the ownship uses the algorithm cd, it
is possible that several consecutive position and velocity updates from the in-
truder have been dropped due to signal attenuation, which results in greater
uncertainty in the values of si and vi. Thus, ADS-B message loss due to signal
attenuation can be modeled as a hazardous condition:

H2,adsb : Ω → T2,adsb T2,adsb = {0, 1, 2, 3, . . .}.

The random variable H2,adsb returns the number of consecutive ADS-B messages
from the intruder that were not received by the ownship, since the last received
message from the intruder. At a given instant of time when a conflict detection
probe is used, τ will be used to represent this number of consecutive dropped
messages. The number τ is easy for the ownship to compute, since it just has to
know when the last ADS-B update from the intruder was received. The number
τ is an integer, and τs will be used to represent the time period τ seconds.

In addition, if the conflict detection probe cd is being used by the ownship,
then the position and velocity vectors so, si, vo, and vi will be estimated using
instruments such as GPS. These instruments can be faulty or have expected
errors. For instance, there may be some error in the position predicted by a
GPS device. The effects of uncertainty in positions and velocities of aircraft on
conflict detection have been studied before [3].

Error in GPS is modeled as a hazardous condition as follows. The vectors
sm
i and vm

i represent the intruder’s reported position and velocity vectors, re-
spectively, from the last ADS-B signal that was received by the ownship, and
the vectors sm

o and vm
o represent the ownship’s measured position and velocity

at that time. The relative vectors sm and vm are defined by sm = sm
o − sm

i

and vm = vm
o − vm

i . The true positions of the ownship and the intruder at the
time when the vectors sm and vm were measured (τ seconds ago) are given by
so − τsvo and si − τsvi, respectively. It is clear that if the measured vectors
sm
o ,vm

o , sm
i , and vm

i have no error, then sm = s − τsv and vm = v. In this
case, if cd(D, T + τs; sm,vm) = False, then cd(D, T ; s,v) = False as well.
Thus, the symbol eee (called GPS error) denotes the fact that one of the following
inequalities is satisfied.

(i) ||(so − τsvo)− sm
o || ≥ ao ||(si − τsvi)− sm

i || ≥ ai (iii)
(ii) ||vo − vm

o || ≥ bo ||vi − vm
i || ≥ bi (iv)

Here, the distances ao and ai and the speeds bo and bi are predetermined parame-
ters. For instance, one set of these parameters that is used in the proof of a safety
claim in Section 3.3 is ao, ai = 30 m and bo, bi = 0.3 m/s, which correspond to
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certain navigation accuracy categories (NACP 9 and NACV 4, respectively), as
specified by RTCA, Inc. in DO-242A for precision in ADS-B messages [8]. This
specification is for 95 percent confidence intervals on the position and velocity
vectors of aircraft, within the given ranges. Other choices for ao, ai, bo, and bi

may be considered, and thus in the next few sections they are simply treated as
variables.

With this construction, GPS error is modeled as a hazardous condition

H1,gps : Ω → T1,gps (where T1,gps = {eee,¬eee}).

The return type T2,adsb of the second hazardous condition H2,adsb represents the
number of seconds since the last ADS-B update from the intruder aircraft. If d is
any non-negative integer, it is possible to formally define the probability that the
most recent ADS-B message that was sent by the intruder and detected/decoded
by the ownship occurred within the last d seconds.

As noted above, inaccuracies in the measurements of the positions so and si

and the velocities vo and vi imply that the conflict detection probe cd can be
modeled as a random variable:

cdD,T : Ω → T0 = {True, False}
χ �→ cd(D, T ; s(χ),v(χ))

This random variable depends on the hazardous conditions H1,gps and H2,adsb.

3.2 Probabilistic Kernels in Conflict Detection

It is clear that the random variable SD,T , which takes values in {False, True},
depends on the hazardous conditions H1,gps and H2,adsb. Thus, as in Section 2.5,
if β2 ⊂ T2,adsb, β1 ⊂ T1,gps, and β0 ⊂ T0 = {False, True}, then the probability
that H2,adsb and H1,gps take values in β2 and β1, respectively, and that cdD,T

takes a value in β0, is given by

PD,T [σ(β0, β1, β2)] =
∫

ω2∈β2

∫
ω1∈β1

∫
ω0∈β0

pD,T (ω1, ω2; dω0)p(ω2; dω1)p(dω2).

As a simple example of this, if i ∈ T2,adsb, then the probability that the random
variable (conflict probe) cdD,T returns True, that there is no error in GPS, and
that the last ADS-B signal from the intruder aircraft was exactly i seconds ago
is given by

PD,T [σ({True}, {¬eee}, {i})]

=
∫

ω2∈{i}

∫
ω1∈{¬eee}

∫
ω0∈{True}

pD,T (ω1, ω2; dω0)p(ω2; dω1)p(dω2)

=
∫

ω1∈{¬eee}

∫
ω0∈{True}

pD,T (ω1, i; dω0)p(i; dω1)p({i})

=
∫

ω0∈{True}
pD,T (¬eee, i; dω0)p(i; {¬eee})p({i})

= pD,T (¬eee, i; {True})p(i; {¬eee})p({i})
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The random variables cdD,T , H1,gps, and H2,adsb are all discrete, so the probabil-
ity that cdD,T returns True, which is given by PD,T [σ({True})], can be computed
as an infinite sum as follows.

PD,T [σ({True})]

=
∫

ω2∈{0,1,2,...}

∫
ω1∈{eee,¬eee}

∫
ω0∈{True}

pD,T (ω1, ω2; dω0)p(ω2; dω1)p(dω2)

=
∞∑

i=0

∫
ω1∈{eee,¬eee}

∫
ω0∈{True}

pD,T (ω1, i; dω0)p(i; dω1)p(i)

=
∞∑

i=0

(∫
ω0∈{True}

pD,T (eee, i; dω0)p(i; {eee})p({i})

+
∫

ω0∈{True}
p(¬eee, i; dω0)p(i; {¬eee})p({i})

)

=
∞∑

i=0

(pD,T (eee, i; {True})p(i; {eee})p({i})

+ pD,T (¬eee, i; {True})p(i; {¬eee})p({i}))

(5)

Distribution of the ADS-B Hazardous Condition. Under the assumption
that there is no ADS-B signal interference due to multiple intruder aircraft, the
distribution of the hazardous condition H2,adsb follows a Poisson distribution, as
discussed in [2]. In that paper, the probability that a given ADS-B message from
the intruder aircraft will not be detected and decoded by the ownship, which is
equal to p({0}), is (approximately) given by p({0}) = 1 −

(
r
r0

)k with r ≤ r0,
where k = 6.4314 and r0 = 96.6 nmi [2]. The number r is the current distance
between the two aircraft. Thus, if it is known that the ownship and the intruder
are no greater than 60 nmi apart, a reasonable distance for most commercial
aircraft given short lookahead times such as 3 minutes, then p({0}) ≥ η, where

η = 0.953.

The key assumption that can be used to deduce that H2,adsb follows a Poisson
distribution is that whether any particular ADS-B message from the intruder
aircraft is received by the ownship is independent from whether any other, dif-
ferent, ADS-B message from the intruder is received. Under this assumption,

p({i}) = η(1− η)i for i ≥ 0.

This is because the last i messages (sent 0, 1, . . . and i−1 seconds ago) have been
dropped, which has a probability of (1− η)i of occurring, and the message sent
exactly i-seconds ago was not dropped, which has a probability of η of occurring.
The equation above can be used to replace p({i}) in Equation (5).

Probability of GPS Error. A key assumption in this example is that proba-
bilities pso, psi, pvo and pvi are known that satisfy the following properties.



172 H. Herencia-Zapana, G. Hagen, and A. Narkawicz

– At any given time, the probability, that the distance between the ownship’s
predicted position (by GPS) and its actual position is at least ao, is bounded
above by pso.

– At any given time, the probability, that the difference (speed) between the
ownship’s predicted velocity (by GPS) and its actual velocity is at least bo,
is bounded above by pvo.

– At any given time, the probability, that the distance between the intruder’s
predicted position (by GPS) and its actual position is at least ai, is bounded
above by psi.

– At any given time, the probability, that the difference (speed) between the
intruder’s predicted velocity (by GPS) and its actual velocity is at least bi,
is bounded above by pvi.

Specific examples of such numbers can be found in the RTCA, Inc. document
DO-242A [8], which provides examples for the analyses in Section 3.3.

At a given instant of time, the actual positions of the ownship and the in-
truder τ seconds ago were given by so − τsvo and si − τsvi, respectively. The
positions at that time, as predicted by GPS, are by definition given by sm

o and
sm
i , respectively. Thus, the following four equations hold.

P [||(so − τmvo)− sm
o || ≥ ao] ≤ pso P [||(si − τmvi)− sm

i || ≥ ai] ≤ psi

P [||vo − vm
o || ≥ bo] ≤ pvo P [||vi − vm

i || ≥ bi] ≤ pvi

By the definition of the error eee in Section 3.1, p(i; {eee}) ≤ pso + pvo + psi + pvi.
Set perror = pso + pvo + psi + pvi. Equation (5) implies that if d is any integer
(a specific number of seconds), then

PD,T [σ({True})]

=
∞∑

i=0

(pD,T (eee, i; {True})p(i; {eee})p({i})

+ pD,T (¬eee, i; {True})p(i; {¬eee})p({i}))

≤
∞∑

i=0

(
Perror η(1− η)i + pD,T (¬eee, i; {True})p(i; {¬eee})p({i})

)

= Perror +
∞∑

i=0

pD,T (¬eee, i; {True})p(i; {¬eee})p({i})

≤ Perror +
∞∑

i=0

pD,T (¬eee, i; {True})η(1− η)i

≤ Perror +
∞∑

i=d+1

η(1− η)i +
d∑

i=0

pD,T (¬eee, i; {True})η(1− η)i

= Perror + (1− η)d+1 +
d∑

i=0

pD,T (¬eee, i; {True})η(1− η)i

(6)
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The number d, which is an element of T2,adsb can chosen so that the finite sum is
a good approximation to the infinite sum (since (1− η)d+1 is quite small). This
equation is true for any choice of d.

An Upper Bound on the Probability of Failure. Equation (6) implies
that if pD,T (¬eee, i; {True}) = 0 for i ∈ {0, . . . , d}, then the probability that
cd(D, T ; s,v) = True, which is given by PD,T [σ({True})], is bounded above by
Perror+(1−η)d+1. As noted in Section 2.4, to mitigate the effect of measurement
errors on the conflict detection probe cd, a positive distance ψ and a positive time
λ can be artificially added to the distance D and the time T when they are used
as parameters in cd. The important question here is how large do ψ and λ need
to be so that if cd(D + ψ, T + λ; sm,vm) = False, then pD,T (¬eee, i; {True}) = 0
for i ∈ {0, . . . , d}. This question is answered by the following lemma. It refers
to the distances ao and ai and the speeds bo and bi that define the probabilities
pso, pvo, psi, pvi (cf. Section 3.1).

Lemma 1. If λ = d seconds, ψ = ao + ai + (T + λ)(bo + bi), and cd(D +ψ, T +
λ; sm,vm) = False, then pD,T (¬eee, i; {True}) = 0 for i ∈ {0, . . . , d}.

Proof. Suppose that ¬eee holds, and recall from Section 3.1 that τ denotes the
number of seconds since the ownship successfully received position and velocity
updates from the intruder aircraft’s ADS-B device. Suppose that τ = i, where
i ≤ d. Then in order to show that pD,T (¬eee, i; {True}) = 0, it suffices to prove
that cd(D, T ; s,v) = False. Since τ ≤ d, it follows from the hypotheses of the
lemma that cd(D + ψ, T + τs; sm,vm) = False. Further, since ¬eee holds, the
equations ||(so − (i sec)vo) − sm

o || < ao and ||(si − (i sec)vi) − sm
i || < ai and

||vo − vm
o || < bo and ||vi − vm

i || < bi are all satisfied.
By contradiction, suppose that cd(D, T ; s,v) = True, and choose t∗ ∈ [0, T ]

such that ||s + t∗v|| < D. Then t∗ + τs ∈ [0, T + λ] and since s = so − si and
v = vo − vi, it follows that

||sm + (t∗ + τs)vm||
= ||(sm

o − sm
i ) + (t∗ + (i sec))(vm

o − vm
i )||

= ||(sm
o − sm

i ) + (t∗ + (i sec))(vm
o − vm

i )− (s + t∗v) + (s + t∗v)||
= ||(sm

o − (so − (i sec)vo))− (sm
i − (si − (i sec)vi)) + (t∗ + (i sec))(vm

o − vo)
− (t∗ + (i sec))(vm

i − vi) + (s + t∗v)||
≤ ||sm

o − (so − (i sec)vo)||+ ||sm
i − (si − (i sec)vi)||+ (t∗ + (i sec))||vm

o − vo||
+ (t∗ + (i sec))||vm

i − vi||+ ||s + t∗v)||
< ao + ai + (t∗ + λ)bo + (t∗ + λ)bi + D

≤ a + (t∗ + (i sec))b + D

≤ ψ + D.

This is a contradiction, since cd(D + ψ, T + λ; sm,vm) = False and λ = d
seconds. This completes the proof. ��
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3.3 The Safety Claim for Conflict Detection

The safety claim that can be proved by using Lemma 1 is stated below. It has
not been formally proved in a theorem prover, but the formal mathematics has
been developed in this paper that enables a standard mathematical proof. It
follows trivially from that Lemma and from Equation 6 in Section 3.2.

Proved Safety Claim for the Conflict Probe cd. Let λ = d seconds, ψ =
ao+ai+(T +λ)(bo+bi). Suppose that cd(D+ψ, T +λ; sm,vm) = False and that
the ownship and the intruder aircraft are no greater than 60 nmi apart. Then
the probability that the aircraft are in conflict, i.e. that cd(D, T ; s,v) = True, is
no greater than pso + pvo + psi + pvi + (1− η)d+1.

A missed alert is a conflict that is not detected. Artificially increasing the distance
D and the lookahead time T in the conflict probe cd will make missed alerts less
likely. The proved safety claim above gives a formula that returns the amount
that D and T must be increased, as well as an upper bound on the probability of
a missed alert if D is increased in this way, assuming that the ownship and the
intruder aircraft are within 60 nmi of each other. The inputs to these formulas
are the distances ao and ai, the speeds bo and bi, the probabilities pso, pvo, psi and
pvi, and the number of seconds d that T is to be increased in the conflict probe
cd. Equation (6) expresses the relationships between ao, ai, bo, bi, pso, pvo, psi and
pvi. Given these inputs, the associated upper bound for the probability of a
missed alert is

pmissed−alert = pso + pvo + psi + pvi + (1− η)d+1, (7)

where, as in Section 3.2, η is a lower bound for the probability that a given
ADS-B message from the intruder aircraft will not be detected and decoded by
the ownship, and in this example η = 0.953.

In the equation above, the amount ψ that D should be artificially increased
to ensure that the probability of a missed alert is less than pmissed−alert is given
by

ψ = ao + ai + (T + λ)(bo + bi), (8)

where λ = d second. It should be noted that Equations (8) and (7) imply that
if the velocity b dominates the calculation of ψ, then as ψ increases, d increases
as well, and so the probability of a missed alert decreases.

Computing Actual Probabilities. DO-242A [8] specifies several system per-
formance confidence-levels that are to be included in ADS-B messages detailing
how precise and trusted the contained state information is. The relevant ones
here are the navigation accuracy categories for position and velocity (NACP and
NACV). NACP is a maximum distance for errors in position; similarly NACV is
a maximum velocity error. That is, these numbers specify the parameters a0, ai

and bo, bi, respectively. Both NACP and NACV specify that the stated values
will fall within a 95% confidence interval, which is equivalent to saying that
pso, pvo, psi and pvi are all equal to 0.05. Table 1 uses these numbers along with
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Table 1. Horizontal uncertainty, lookahead, and buffer sizes. The < 30 m position
error corresponds to the NACP 9 error category (NACP 11 is the most accurate) and
the < 0.3 m/s velocity error corresponds to the NACV 4 (most accurate) error category.
The velocity error dominates in calculating ψ these cases. When the position error is
< 185.2 m (NACP 7) and the velocity error is < 1.0 m/s (NACV 3) the position error
dominates the calculation of ψ for lookahead times less than 186 seconds.

Position Error Velocity Error Time +λ Buffer ψ pmissed−alert

< 30 m < 0.3 m/s 180+0 sec +0.09 nmi (168 m) 0.24700
< 30 m < 0.3 m/s 180+1 sec +0.09 nmi (169 m) 0.20221
< 30 m < 0.3 m/s 180+2 sec +0.09 nmi (169 m) 0.20010
< 30 m < 0.3 m/s 180+3 sec +0.09 nmi (170 m) 0.20000
< 185.2 m < 1.0 m/s 180+0 sec +0.39 nmi (730 m) 0.24700
< 185.2 m < 1.0 m/s 180+3 sec +0.40 nmi (736 m) 0.20000

Equations (7) and (8) to compute the amount the distance that D needs to be
increased, as well the associated upper bounds on the probabilities of missed
alerts for different choices of the number of seconds d.

It should be noted that the upper bounds on the probabilities of missed alerts
in this table are quite high, but that this is not due to imprecision in the presented
methods. This is mostly due to the fact that the confidence intervals specified
in DO-242A are for 95% confidence and provide little knowledge of what is
happening the other 5% of the time. It is quite possible that these formulas
could calculate the probability of missed alerts to be less than 4 × 10−9, if
1− (10−9)-confidence intervals were available for the positions and velocities of
the aircraft.

4 Conclusion and Future Work

This paper has built on Rushby and Littlewood’s framework [9,5] for formalizing
safety claims, specifically providing a mathematical basis for dealing with certain
probabilistic safety claims. The mathematics behind this is based on the notion
of probabilistic kernels, which were illustrated in a safety claim for a conflict
detection system for aircraft. The framework presented allows for an arbitrary
number of potentially hazardous conditions. Future work in this area will include
formalizing the mathematics presented here in a theorem prover such as PVS [7].
Many of the tools needed for this task already exist, including PVS libraries for
Riemann integration [1] and Riemann-Stieltjes integration, as well as a Lebesgue
measure and integration library developed by David Lester. Some additions are
needed to these libraries to facilitate manipulations of multiple integrals.

An additional area for future work would be to incorporate a degree of as-
sumption checking into the framework. This may include formally capturing
the assumptions of independence between hazardous conditions, which could
be formed into a verification condition that can be automatically checked for
inconsistencies by a satisfiability checker (a SAT-solver).
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Abstract. Interactive theorem proving is tackling ever larger formal-
ization and verification projects, and there is a critical need for theory
engineering techniques to support these efforts. One such technique is
cross-prover package management, which has the potential to simplify
the development of logical theories and effectively share theories between
different theorem prover implementations. The OpenTheory project has
developed standards for packaging theories of the higher order logic im-
plemented by the HOL family of theorem provers. What is currently
missing is a standard theory library that can serve as a published con-
tract of interoperability and contain proofs of basic properties that would
otherwise appear in many theory packages. The core contribution of this
paper is the presentation of a standard theory library for higher order
logic represented as an OpenTheory package. We identify the core theory
set of the HOL family of theorem provers, and describe the process of
instrumenting the HOL Light theorem prover to extract a standardized
version of its core theory development. We profile the axioms and the-
orems of our standard theory library and investigate the performance
cost of separating the standard theory library into coherent hierarchical
theory packages.

1 Introduction

Interactive theorem proving has grown from toy examples to major formalization
and verification projects in mathematics and computer science. Recent examples
include: the 20 man-year verification of the seL4 operating system kernel [24];
the CompCert project, which verified an optimizing compiler from a large subset
of C to PowerPC assembly code [25]; and the Flyspeck project, which aims to
mechanize a proof of the Kepler sphere-packing conjecture [14].

Just as the term software engineering was coined in 1968 [26] to give a name
to techniques for developing increasingly large programs, there is now a need for
theory engineering techniques to develop increasingly large proofs (“proving in
the large”). One software engineering technique that can be applied to proof de-
velopment is effective package management. Modern operating systems [8] and
programming languages [6] bundle software into packages that carry their de-
pendencies, supporting easy distribution and automatic checking at installation
time to ensure that the system can properly support the package. The goal of

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 177–191, 2011.
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the OpenTheory project is to transfer the benefits of package management to
aid the development of logical theories1.

The initial case study of the OpenTheory project is to develop the infras-
tructure necessary to port theories between three related interactive theorem
provers: HOL Light [15], HOL4 [28] and ProofPower [23]. These three theorem
provers implement the same higher order logic, namely Church’s simple theory
of types extended with Hindley-Milner style type variables [10]. They also have
a similar design of an interactive interface where the user invokes proof tools to
prove subgoals, built on top of a small logical kernel that enforces soundness.
The logical kernel design is inherited from Milner’s pioneering work on the LCF
theorem prover [11], which Gordon reused to implement higher order logic in
the HOL theorem prover [12], and from which the three chosen theorem provers
are all descended [13].

Even though HOL Light, HOL4 and ProofPower implement the same logic
using the same conceptual design, they each contain significant theory formal-
izations that are not accessible to each other. For example, HOL Light has a
formalization of complex analysis [16], HOL4 has a formalization of probabil-
ity theory [18], and ProofPower has a formalization of the Z specification lan-
guage [2]. The reason that these useful theories are not available in all of the
theorem provers is that it requires significant human effort to port a theory to
a new environment, due to differences in the native theories and proof tools2.

To overcome the differences between the name and behavior of proof tools
between the theorem provers, the OpenTheory project has developed a standard
article file format for serializing proofs of higher order logic [21]. Proofs are
reduced to a standard set of primitive inferences that are precisely specified and
can be simulated by any theorem prover in the HOL family. This bypasses the
differences in the proof tools, at the cost of archiving proofs in a format that is
hard to modify.

Once the differences between the proof tools have been removed as an obstacle,
the challenge that remains is to reconcile the differences between the native
theories available in each theorem prover. To illustrate the need for this, suppose
we desire to port the theory of complex numbers from HOL Light to HOL4. One
way to do this is to export every theory that the HOL Light complex numbers
depend on as proof articles, and then import these into HOL4. However, now
we have two copies of the theory of real numbers inside HOL4: the original real
number theory of HOL4 and the real number theory imported from HOL Light
that the complex numbers depend on. Because of this, we cannot easily combine
the new theory of complex numbers with other HOL4 theories that depend on
the original real number theory, such as the theory of probability.

To avoid this duplicate theory problem, when we speak of porting theories
between theorem provers we usually have in mind the following procedure:

1 The OpenTheory project homepage is http://gilith.com/research/opentheory
2 The author has first-hand experience of this: his introduction to theorem proving

was porting a theory of real numbers from HOL Light to HOL4.

http://gilith.com/research/opentheory
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1. Export the theory of complex numbers from HOL Light, leaving the ref-
erences to native theories as uninterpreted type operators, constants, and
assumptions.

2. Import the theory of complex numbers into HOL4, binding the references to
native theories to native type operators, constants and theorems.

Note that the success of this porting procedure depends on there being a degree
of alignment between the native theories of HOL Light and HOL4. The native
theories do not have to be identical: type operators and constants may have
different names in the two theorem provers; and HOL4 may contain additional
theorems beyond the set required for the import of the HOL Light theory to suc-
ceed. But beyond these superficial differences, to port a theory from the theorem
prover context A to B there must be a semantic embedding A → B mapping
type operators and constants from A to ones in B with properties that are at
least as logically strong. This notion of semantic embeddings between theorem
prover contexts has been formalized in category theory as theory morphisms [32],
and this provides a theoretical foundation for the OpenTheory project.

To support the use case of porting theories between the HOL Light, HOL4 and
ProofPower, we will need semantic embeddings from the core theories of each
theorem prover to the core theories of the others. As an alternative to explicitly
maintaining these semantic embeddings, we instead take the set of core theories
that the theorem provers share and release a standard theory library of them in
OpenTheory format. The advantage of a standard theory library are as follows:

– Each theorem prover is responsible for maintaining mappings between its
core theories and the OpenTheory standard library, reducing the number of
semantic embeddings that must be maintained from O(n2) to O(n) (where
n is the number of theorem provers that wish to share theories).

– The standard theory library is a published contract of interoperability: “If
your theory uses only the standard theory library, we promise it will work on
all of the supported theorem provers.”

– If a property such as associativity of addition is in the standard theory
library, it does not need to be proved in every theory that relies on it. This
is analogous to dynamic linking of programs to standard libraries.

– Constructions in the standard library can serve as standard specifications. A
formal proof of Fermat’s Last Theorem that uses the version of the natural
numbers in the standard theory library is much easier to check than one that
uses a custom version.

This paper presents the OpenTheory standard theory library and describes the
process of identifying and extracting the core theory set of the HOL family of
theorem provers. The proof articles that result from this process are combined
to form higher level theories such as natural numbers or lists, and the final step
is to combine these to form the standard theory library.

The remainder of the paper is structured as follows: Section 2 reviews the
OpenTheory formats and infrastructure that we used and extended to support
this work; Section 3 identifies the core theories that are included in the stan-
dard theory library; Section 4 describes the process of extracting standard proof



180 J. Hurd

articles by instrumenting an existing theorem prover; Section 5 profiles the re-
sult of combining proof articles into the standard theory library; and finally
Sections 6–8 examine related work, summarize and consider future directions.

2 The OpenTheory Proof Archive

In this section we review the OpenTheory proof article [19] and theory
package [20] formats, which are used to represent the standard theory library.
These formats are now stable, and tools for processing theory packages are in-
cluded with the OpenTheory toolset3. Tools exist for displaying meta-information,
querying dependencies, pretty-printing assumptions and theorems, and compil-
ing theory packages to proof articles.

2.1 Articles of Proof

The unit of composition in OpenTheory is a higher order logic theory Γ � Δ,
which consists of:

1. A set Γ of assumption sequents.
2. A set Δ of theorem sequents.
3. A proof that the theorems in Δ logically derive from the assumptions in Γ .

An article is a compact representation of a higher order logic theory, encoded
as instructions for a stack-based virtual machine. The format was designed to
simplify the process of importing theories into theorem prover implementations:
all that is required is to execute the article instructions in the desired context.

The initial version of the proof article format [19] contained instructions for
constructing types and terms, but the inference rules were system dependent.
However, after receiving comments from the interactive theorem proving com-
munity, this system dependence was replaced with a set of 10 article instructions
for executing precisely specified primitive inferences. These new instructions are
shown in Figure 1.

2.2 Theory Packages

The proof article format supports a theorem prover independent representation
of theories. The theory package format is a domain-specific language for com-
bining theories, supporting the following operations:

1. Renaming type operators and constants in theories, either to avoid names-
pace clashes or to bind the arguments of a parametric theory.

2. Forming compound theories by satisfying the assumptions of one theory with
the theorems of others.

3 The OpenTheory toolset is available for download at
http://gilith.com/software/opentheory

http://gilith.com/software/opentheory
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� t = t
refl t {φ} � φ assume φ

Γ � φ = ψ Δ � φ
Γ ∪Δ � ψ eqMp

Γ � t = u

Γ � (λv. t) = (λv. u)
absThm v

Γ � f = g Δ � x = y

Γ ∪Δ � f x = g y
appThm

Γ � φ Δ � ψ
(Γ − {ψ}) ∪ (Δ− {φ}) � φ = ψ

deductAntisym
Γ � φ

Γ [σ] � φ[σ]
subst σ

� (λv. t) u = t[u/v]
betaConv ((λv. t) u) � c = t

defineConst c t

� φ t
� abs (rep a) = a � φ r = (abs (rep r) = r)

defineTypeOp n abs rep vs

Fig. 1. The OpenTheory logical kernel

function

function-def

  schroeder-bernstein

natural

natural-def

natural-induction

Fig. 2. Example theory dependency graph

Theory packages are hierarchical, using the above operations to build up from
basic theory packages containing proof articles to more complex theories. An im-
portant concept for a standard theory library is the compilation theory package,
which is designed to help construct coherent theory packages in the face of the
complex dependency structures that often arise in theory development.

An example of compilation theories is shown in Figure 2, where four the-
ory packages are contained in two compilation theory packages, and the arrows
indicate package dependencies. The statement of the Schroeder-Bernstein theo-
rem depends only on the function theory definitions, but the proof also depends
on natural number induction. Natural numbers in turn are constructed using
function theory definitions. The most coherent function theory package would
contain both the function theory definitions and the Schroeder-Bernstein the-
orem, but this package would then have a cyclic dependency with the natural
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number theory package. Defining the function theory package as a compilation
of two theory packages allows finer grained theory package dependencies, which
removes the offending cycle.

Early experimentation with the theory package language revealed some desir-
able properties of a reusable theory package:

1. a clear topic (e.g., trigonometric functions);
2. assumptions that are satisfied by the theorems of other reusable theory pack-

ages;
3. a carefully chosen set of theorems, presenting an abstract interface to the

theory (hiding construction details).

We will refer to these guiding principles when describing the construction details
of the OpenTheory standard theory library.

3 Identifying Core Theories

The first step in the construction of the OpenTheory standard theory library is to
identify the core theories shared by the HOL family of theorem provers. Looking
at the system documentation and source code for HOL Light, HOL4 and Proof-
Power turns up the following set of core theories, sorted into the OpenTheory
standard namespace:

– Data.Bool – A theory of the boolean type
– Data.List – A theory of list types
– Data.Option – A theory of option types
– Data.Pair – A theory of product types
– Data.Sum – A theory of sum types
– Data.Unit – A theory of the unit type
– Function – A theory of functions
– Number.Natural – A theory of natural numbers
– Number.Numeral – A theory of natural number numerals
– Relation – A theory of relations

This is not intended to be a complete list, but sufficient to demonstrate the
practicality of building an OpenTheory standard theory library, and full-featured
enough upon which to build some non-trivial theories. The above theories are
all present in version 1.0 of the standard theory library, and future versions can
standardize other shared theories such as integers, reals, sets, characters and
strings.

4 Extracting Standard Articles

The next step in the construction of the standard theory library is to represent
the core theories as a set of proof articles that can be turned into basic theory
packages. One approach to this would be to create an OpenTheory version of
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the standard theory library from scratch, proving everything using the standard
inference rules. However, since the standard theory library is (by definition)
shared by each member of the HOL family of theorem provers, an alternative
to this is to instrument one of the theorem provers to emit its version of the
standard theory library in proof article format. We take this latter approach and
choose the HOL Light theorem prover as having the simplest logical kernel to
instrument. The remainder of this section describes the experience of extracting
standard proof articles from HOL Light theories.

4.1 Granularity

With the primitive inferences of HOL Light instrumented to emit proof articles,
the next choice to be made is the granularity of the proof articles. At the coarsest
extreme of the granularity spectrum, the whole standard theory library could
be emitted as one big proof article. However, this would violate Guideline 1
of constructing reusable theories from Section 2.2, because the resulting theory
would not have a clear topic. At the finest extreme, we could put every exported
theorem into its own proof article file, with the caveat that proof articles that
make definitions need to export enough theorems to form a minimal abstract
interface. This would result in a set of theories that score well according to the
reusability guidelines (except possibly for Guideline 3 that asks for a carefully
chosen set of theorems), but introduces myriad theory packages to be stored and
processed.

We choose an intermediate point on the granularity spectrum where theory
packages that make definitions export enough theorems to form a minimal ab-
stract interface, and theory packages that make no definitions can export any
number of theorems so long as they form a coherent topic. This design choice
is made to maximize the reusability of the resulting theory packages while re-
specting performance goals.

Another issue is that there are two kinds of proved theorems in HOL Light:
visually appealing theorems designed for the user to apply as lemmas in future
proofs; and auxiliary pro-forma theorems designed to be used internally by proof
tools. The reusable theory guidelines dictate that only the visually appealing the-
orems should appear in the standard theory library. This is achieved by collecting
together the auxiliary theorems as they are proved and storing them in a sepa-
rate proof article, which is ‘statically linked’ to standard proof articles as they are
generated. When the whole standard theory library has been harvested, the aux-
iliary proof article is packaged as a special theory to support theory development
building on the standard theory library using the HOL Light proof tools.

4.2 Standardization

In addition to statically linking auxiliary theorems, we used other methods to
standardize the proof articles generated from HOL Light. As a simple example,
the names of HOL Light type operators and constants are mapped into the
OpenTheory standard namespace (as described in Section 3).



184 J. Hurd

Another source of system dependence is the presence of ‘tags’ in terms. For
example, in HOL Light every natural number numeral is a term of the form
NUMERAL t, where the constant NUMERAL is defined as a synonym for the
identity function. The presence of NUMERAL has no logical significance, but is
a tag to help proof tools and other theorem prover infrastructure. Different the-
orem prover implementations may have different tagging schemes, so we remove
tags from theorems that we add to the standard theory library. The scheme we
use to do this is to rename the tag constant NUMERAL to be called Unwanted.id,
and then rewrite all generated proof articles to remove all type operators and
constants in the Unwanted namespace.

Finally, during the process of extracting proof articles from HOL Light we
discovered many improvements to HOL Light that would simplify the extraction
process, including: removing duplicate theorems; simplifying the definition of
numerals; universally quantifying theorems with free variables. We submitted
these as patches to the HOL Light developer, and several have already been
incorporated into the upstream version.

4.3 Partial Functions

Partial functions require special handling in a classical two-valued logic such
as higher order logic. For example, the natural number div and mod functions
are not mathematically defined when the denominator is zero, but since every
function in higher order logic is total the term 1 div 0 must be some natural
number. In this case the solution we adopt is for the theory defining div and
mod to export the single theorem

� ∀m, n. n �= 0 =⇒ m = (m div n) ∗ n + m mod n ∧ m mod n < n ,

preventing client theories from deducing anything about the value 1 div 0 (that
could not be deduced about every natural number).

There are a few situations when this information-hiding approach cannot be
used. Both HOL Light and HOL4 (but not ProofPower) define a predecessor
function pre as an inverse to the successor function, and set pre 0 = 0 even though
the inverse of successor is not mathematically defined for zero. The value of pre 0
is subsequently relied on, among other things to define cut-off subtraction, and so
we choose to ‘grandfather’ the value of pre 0 into the standard library. However,
in the theory that defines the predecessor function we separate the definition
into the two theorems

� pre 0 = 0 and � ∀n. pre (suc n) = n ,

to encourage client theories to rely only on the standard domain.

5 The Standard Theory Library

After identifying the core theories of the HOL family of theorem provers and
extracting them as proof articles, the final step is to use them to construct the
standard theory library.
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5.1 Construction

This is the procedure for converting the proof articles extracted from HOL Light
into the standard theory library:

1. Create a basic theory package for each proof article.
2. Create theory packages for higher-level topics, such as bool or list, which

are compilations of lower-level theory packages.
3. Create a theory package called base, which is a compilation of the highest-

level theory packages.

Although the standard theory library consists of the whole collection of these
theory packages, the base theory package exports all the theorems needed to
build client theories on top of the standard theory library. The other theory
packages can be regarded as scaffolding by most users of the standard theory
library, and safely ignored.

As we expected, it was straightforward to carry out Steps 1 and 2 of the
above procedure. We expected the difficulty to appear in Step 3, when compil-
ing highest level theories with potentially complex dependencies between them.
Surprisingly, it turned out that there was a natural order to arrange the highest-
level theories where each one only depended on the previous ones: bool; unit;
function; pair; natural; relation; sum; option; and list. Because of this,
there was no need to unpack the compilation theories to eliminate cyclic de-
pendencies as described in Section 2.2. The real-life example shown in Figure 2
demonstrates that this functionality will be required for some theories, but the
current version of the standard theory library is naturally acyclic.

5.2 Axioms

Before looking at the theorems and proofs of the standard theory library, it is
worth examining what it depends on. The OpenTheory primitive inference rules,
shown in Figure 1, were taken from HOL Light and refer only to:

– the type operator bool;
– the function space type operator · → · ; and
– the equality constant = : α→ α→ bool.

These two type operators and one constant can be considered to be implicitly
axiomatized by the primitive inferences. In addition, the standard theory library
explicitly asserts the following three axioms, each of which is contained in its
own theory package:
� ∀t. (λx. t x) = t (axiom-extensionality)
� ∀P, x. P x =⇒ P (select P ) (axiom-choice)
� ∃f : ind→ ind. injective f ∧ ¬surjective f (axiom-infinity)

The formulation of these three axioms is taken from HOL Light, but can be
proved as theorems in HOL4 and ProofPower.

The standard theory library offers a simple way to check that a theory package
developed on a HOL family theorem prover will easily port to other theorem
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provers. Just statically link the new theory package to the base theory package,
and any system dependent behavior will appear as extra axioms (beyond the
standard three). This static linking procedure could also be used to develop
theories that avoid the axiom of choice, while still making use of theorems from
the standard theory library that do not use choice in their proof.

5.3 Theorems

The current version of the standard theory library exports 450 theorems, con-
taining 64 defined constants and 6 defined type operators. For reasons of space
the theorems cannot all be shown here, but an HTML version of the base pack-
age can be viewed at the following URL:

http://opentheory.gilith.com/?pkg=base-1.0

The standard theory library comprises 139 packages: 102 of which are basic the-
ory packages wrapping proof articles; 36 of which are higher-level theory pack-
ages; and one is the base package. The left side of Table 1 shows the primitive
inference count of replaying all the proofs in the standard theory library, for a
total of 211,058 inferences. The cost of separating the standard theory library
into 102 basic theory packages is highlighted by the axiom count of 1,672, which
is increased whenever one basic theory uses a theorem proved by an imported
theory.

It is possible to compile the whole of the standard theory library into a sin-
gle proof article (with 965,433 commands), and then repeat the experiment of
replaying all of the proofs and counting the primitive inferences: the results are
shown on the right side of Table 1. The total number of primitive inferences
drops by 40%, and the axiom count is only three: one for each of the standard
axioms. It is also remarkable that the number of auxiliary defined type oper-
ators and constants (used in proofs but that do not appear in any theorems)

Table 1. The primitive inference count of replaying all the proofs in the standard
theory library, when split into theories (left) and compiled into a single article (right)

Primitive Inference Count

eqMp 55,209
subst 45,651
appThm 44,130
deductAntisym 28,625
refl 17,388
betaConv 8,035
absThm 7,765
assume 2,455
axiom 1,672
defineConst 119
defineTypeOp 9
Total 211,058

Primitive Inference Count

eqMp 32,386
subst 27,949
appThm 27,796
deductAntisym 17,300
refl 9,332
absThm 6,313
betaConv 3,646
assume 1,169
defineConst 85
defineTypeOp 7
axiom 3
Total 125,986

http://opentheory.gilith.com/?pkg=base-1.0
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drops from 55 and 3 to 21 and 1 (respectively). This provides some concrete
data quantifying the performance cost of splitting the standard theory library
into coherent hierarchical theory packages.

6 Related Work

Extracting proofs from LCF theorem provers is not new: Wong’s pioneering
Recording and checking HOL proofs in 1995 appears to be the first [35]. More
recently, Obua and Skalberg [29] instrumented HOL4 and HOL Light to export
theories in XML format that could be imported into the Isabelle/HOL theorem
prover. The present work differs from this line of proof recording work by its
focus on the theory as the central concept, independent of any particular theorem
prover implementation.

From this point of view, the most related work is the AWE project [5], which
builds on the explicit proof terms in Isabelle [4]. Though tied to one theorem
prover, it nevertheless focuses on the theory as the central concept, and has de-
veloped sophisticated mechanisms for theory interpretation based on rewriting
proof terms. The present work differs from AWE by being theorem prover inde-
pendent, and also by its technique of processing proofs one step at a time rather
than requiring the whole proof to be in memory, which may allow it to scale up
more effectively.

The HOL Zero project [1] has aims similar to OpenTheory of making proofs
portable between different implementations of the HOL family of theorem provers,
by creating a minimal theorem prover “for checking and/or consolidating proofs
created on other theorem provers”, “designed with trustworthiness as its top pri-
ority”. OpenTheory differs from HOL Zero by its focus on proofs that have been
reduced to the object format of primitive inferences, and the theory packaging
mechanisms that can be built on top of this starting point. HOL Zero com-
plements OpenTheory by encouraging portability at the earlier stage of proof
source files.

Many theorem provers implement a theory infrastructure that offers func-
tionality similar to the theory operations in the OpenTheory package format.
ProofPower has a sophisticated system for building and navigating a hierarchy
of theories which contain both logical data and information for tools such as
parsers, pretty printers and proof tools [23]. Theory interpretations are imple-
mented in the EVES [7], IMPS [9], PVS [31] and Specware [34] theorem provers.
Called locales in the Isabelle theorem prover [22], they are integrated with its
declarative proof language [3]. The present work differs from these efforts by
pursuing a theorem prover independent approach to theory combination and
interpretation.

Another approach to higher order logic theory operations is to extend the logic
so that theories can be directly represented with theorems [33,17]. The goal of
the present work is to implement a theory infrastructure on top of the existing
logic, but extending the logic has the significant advantage of supporting theory
operations without replaying proofs.
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7 Summary

In this paper we motivated the need for a standard library of higher order logic
theories to support large-scale logical theory development and increase portabil-
ity of theories between the HOL family of theorem provers.

The core contribution of this paper is the presentation of a theorem prover
independent standard theory library, represented as an OpenTheory package.
We identified the core theory set of the HOL family of theorem provers, and
described the process of instrumenting the HOL Light theorem prover to extract
a standardized version of its core theory development.

The OpenTheory package language is suitable to package proof articles ex-
tracted from HOL Light, and we showed how to combine these first into higher
level theory packages, and then into a single package representing the user in-
terface to the whole standard theory library. Finally, we profiled the axioms
and theorems of the standard theory library, and investigated the performance
cost of separating the standard theory library into coherent hierarchical theory
packages.

8 Future Work

The current version of the standard theory library is not fixed, and in fact is
expected to evolve as more theories are standardized between the HOL family of
theorem provers. One desirable goal would be keep later versions of the standard
theory library backwards compatible with earlier versions, which implies that we
should exercise caution when adding theorems, because they might be hard to
remove later.

The current version of the standard theory library does not make any use of
parametric theories containing assumptions about uninterpreted type operators
and constants, which users are expected to interpret to defined type operators
and constants in their proof context. The advantage of using parametric theories
is that proving a theorem once in a parametric theory makes it available ‘for
free’ in every context in which it is used. The use of parametric theories has
the potential to reduce the effort required to extend the standard theory library,
while giving users more tools to use in their theory developments.

The standard theory library is based on the simple version of higher order
logic implemented by the HOL family of theorem provers. There is a straightfor-
ward semantic embedding from this logic to the more complex versions of higher
order logic implemented by the Isabelle/HOL [27] and PVS [30] theorem provers,
making it technically possible to import OpenTheory packages into these sys-
tems. However, there is an interesting line of research in designing importers that
result in ‘natural-looking’ theories in the target system. Such an importer could
modify the theories as they were processed (similar to the de-tagging rewriting
described in Section 4.2) to use logical features of the target system such as
Isabelle/HOL type classes or PVS subtypes.
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Instantiation-Based Invariant Discovery�

Temesghen Kahsai, Yeting Ge, and Cesare Tinelli
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Abstract. We present a general scheme for automated instantiation-based in-
variant discovery. Given a transition system, the scheme produces k-inductive in-
variants from templates representing decidable predicates over the system’s data
types. The proposed scheme relies on efficient reasoning engines such as SAT and
SMT solvers, and capitalizes on their ability to quickly generate counter-models
of non-invariant conjectures. We discuss in detail two practical specializations of
the general scheme in which templates represent partial orders. Our experimen-
tal results show that both specializations are able to quickly produce invariants
from a variety of synchronous systems which prove quite useful in proving safety
properties for these systems.

1 Introduction

The automated verification of hardware or software systems benefits greatly from the
specification of invariants, state properties that hold over all iterations of a program
loop or over all reachable states of a transition system. Since invariants are notoriously
difficult or time-consuming to specify manually, a lot of research in verification over
the years has been dedicated to their automatic generation.

In much of previous work, invariants are synthesized from a system’s description
(formal specification or source code), using sophisticated algorithms guided by the se-
mantics of the description language. In this paper, we propose a complementary ap-
proach based on a somewhat brute-force invariant discovery scheme which has proven
quite effective in our experimental evaluation. The approach looks for possible invari-
ants by sifting through a large set of automatically generated formulas. These formulas
are all instances of the same template, the parameter of the scheme, representing a de-
cidable relation over one of the system’s data types.

Our approach relies on efficient reasoning engines such as SAT and SMT solvers,
and capitalizes on their ability to quickly generate counter-models. For the invariant
discovery scheme to be practical, they key point is to encode large sets of candidate
invariants compactly and process them efficiently. One case when this is possible is
when the chosen template represents a partial order, that is, a reflexive, transitive and
antisymmetric relation. This paper investigate two specializations of the scheme, one
for general partial order sets (posets) and one for binary posets.

Our primary intended use for the discovered invariants is to assist the automatic ver-
ification of safety properties. To illustrate the effectiveness of our approach, we devel-
oped a new tool based on it. While our invariant discovery scheme can be applied to any
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transition system, our tool applies to programs in the synchronous data flow language
Lustre [8] and generates invariants over their Boolean and integer variables. We have
carried extensive experiments with a large set of Lustre programs and annotated with
safety properties. Our experimental results indicate that our techniques are quite effec-
tive in practice. As we discuss later, the generated invariants considerably increase the
number of provable safety properties; moreover, they do not slow down the processing
of safety properties already provable without those invariants.

Related work. Automatic invariant generation has been intensively investigated since
the 1970s, producing a large body of literature. Manna and Pnueli [10] provide a com-
pendium of this research and an extensive set of references. They present a number
of methods for generating invariants to prove safety properties, which have been later
extended by others (e.g., [13,2]). These methods could be classified as either top-down
or bottom-up. Top-down invariant generation begins with a property to be verified for
a particular system. When attempts to prove the property fail, various heuristics are
applied to strengthen it. Bottom-up methods look at the system and use it to deduce
properties of it. Until recently, invariants generated with these methods tended to be
simple properties and not very useful. The invariant discovery scheme described in this
paper could be classified as a bottom-up method. Its major distinction with respect to
previous approaches is its ability to produce more complex invariants efficiently.

Counterexample guided refinement is a popular technique in model checking that has
also been used for invariant generation [15,3,11]. Thalmaier et al. propose an induction-
guided refinement process to approximate reachability analysis by providing inductive
invariants to a SAT-based property checker [14]. Such analysis is based on BDD tech-
niques. Another line of research on invariant generation builds on predicate abstraction
techniques [6,11]. De Moura et al. describe invariant strengthening techniques based on
quantifier elimination. That work is one of the first to use modern SMT solvers as rea-
soning engines for the verification of safety properties. There is recent interest in using
SMT-solvers for generating inductive loop invariants. Srivastava and Gulwani describe
a technique combining templates and predicate abstraction [12].

The work by Hunt et al. [9] is more closely related to ours, and was in fact its main
inspiration. They propose a SAT-based method to prove safety properties of circuits
that uses induction to identify equivalent sub-circuits inexpensively before attempting
to prove the given property. This equivalence information either implies the property
directly or can be used to decrease the amount of state space traversal by the main
model checking procedure. Compared with that work, our approach is more general,
with respect to both the transition systems it applies to and the relations it discovers
between sub-circuits.

Synopsis. In the next sub-section we give a brief description of the notions and nota-
tions that will be used throughout the paper. Section 2 presents a general scheme for
invariant discovery using k-induction. Section 3 describes two specializations of the
general scheme. Experimental results are reported in Section 4. Section 5 concludes
with a discussion of further research.
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Formal Preliminaries. We denote finite tuples (or vectors) by letters in bold font. If t
is an n-tuple, t(i) is the i-th element of t for i = 1, . . . , n.

For generality, we consider here an arbitrary logic L (with classical semantics)
extending propositional logic. We employ L’s notion of variable, term, formula, free
variable, model, and formula satisfiability in a model. Relevant examples ofL are propo-
sitional logic or any of the logics used in SMT: linear arithmetic, linear arithmetic with
uninterpreted function symbols, and so on. If Γ is a set of formulas in L, a modelM
satisfies Γ if it satisfies every formula in it; Γ is L-(un)satisfiable in L if some (no)
model of L satisfies it. We define an entailment relation |=L in L as usual: for any set
Γ ∪ {F} of formulas in L, we have that Γ |=L F iff every model of L that satisfies Γ
satisfies F as well. Two formulas F and G are L-equivalent if F |=L G and G |=L F .

If F is a formula with free variables x1, . . . , xm, and t1, . . . , tm are any terms in the
logic, we use F [t1, . . . , tm] to denote the formula obtained from F by simultaneously
replacing each occurrence of xi in F by ti, for all i = 1, . . . , m. Abusing the notation,
we will write F [x1, . . . , xm] also to denote that F has free variables x1, . . . , xm, and
sometimes just F [ , . . . , ] when the name of the free variables is unimportant.

Let Q be a set of states, a state space. A transition system S over Q is a pair (SI, ST)
where SI ⊆ Q is the set of S’s initial states, and ST ⊆ Q×Q is S’s transition relation.
A state q ∈ Q is 0-reachable if q ∈ SI; it is k-reachable with k > 0 if it is (k − 1)-
reachable or (s, q) ∈ ST for some (k−1)-reachable state s. A state is (S-)reachable if it
is k-reachable for some k ≥ 0. We assume some encoding of the state space Q in terms
of n-tuples of ground terms in L, for some fixed n1. Then, we say that (the encoding of)
a state q satisfies a formula F [x], where x is an n-tuple of distinct variables, if F [x] is
satisfied by every model of L interpreting x as q. This terminology extends to formulas
over several n-tuples of free variables in the obvious way.

Let S = (SI, ST) be a transitions system. A (state) property is any formula P [x]
over an n-tuple x of variables. It is invariant (for S) if it is satisfied by all S-reachable
states. An L-encoding of S is a pair (I[x], T [x, y]) of formulas of L respectively over
the n-tuples of variables x and x, y, where

– I[x] is a formula satisfied exactly by the initial states of S;
– T [x, y] is a formula satisfied by two reachable states q, q′ iff (q, q′) ∈ ST.

For any formula F over a single state and formula G over two states, we will write Fi

and Gi+1 as an abbreviation of G[xi] and G[xi, xi+1], respectively, where xi and xi+1
are n-tuples of distinct variables.

Definition 1. A state property P [x] is k-inductive (wrt T ) for some k ≥ 0 if

I0 ∧ T1 ∧ · · · ∧ Tk |=L P0 ∧ · · · ∧ Pk (1)

T1 ∧ · · · ∧ Tk+1 ∧ P0 ∧ · · · ∧ Pk |=L Pk+1 (2)

A property is inductive in the usual sense if it is 0-inductive. Every property that is
k-inductive for some k is invariant (but not vice versa). An invariant P [x] is trivial if
T1 |=L P1. Note that this includes all properties P [x] that are valid in L.

1 Depending on L, states may be encoded for instance as n-tuples of Boolean constants or as
n-tuples of integer constants, and so on.
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2 A General Scheme for Invariant Discovery

Given an L-encoding S = (I[x], T [x, y]) of a system S = (SI,ST), we are inter-
ested in discovering invariants for S automatically. We describe here a general scheme
for doing so. The scheme is parameterized by a template formula R[ , ] and produces
invariants for S that are conjunction of instances R[s, t] of R where s, t are in prin-
ciple arbitrary terms over a single state2. The scheme relies on the existence of an
L-solver, a decision procedure for L-satisfiability, which for each L-satisfiable formula
F [x1, . . . , xm] is also able to return a state list q1, . . . , qm that satisfies F [x1, . . . , xm]3.
The scheme also relies on a procedure that can generate from S a non-empty instanti-
ation set U of terms over x to be used to generate the instance of R. In this setting, a
naive approach would be to check every possible instance R[s, t] individually for invari-
ance. This would be highly impractical since the number of instances of R is quadratic
in the size of the instantiation set U . In our approach, we check the satisfiability of all
instances at the same time and rely on the model generation ability of the L-solver to
weed out several non-invariant instances at once.

The general scheme consists of a simple two-phase procedure, with an optional third
phase. Given the formula R[ , ] and the term set U , the first phase starts with the opti-
mistic conjecture that the property

C[x] =
∧

s,t∈U

R[s, t]

is invariant. Then, it uses the L-solver to weaken that conjecture by eliminating from
it as many conjuncts R[s, t] as possible—specifically, all conjuncts falsified by a k-
reachable state, for some heuristically determined k. The resulting formula C is passed
to the second phase, which attempts to prove C k-inductive by establishing the entail-
ment (2) in Definition 1. Counterexamples to (2), i.e., models that falsify the entailment,
are used to weaken C further by eliminating additional conjuncts until (2) holds. The
final formula—the empty conjunction in the worst case—is guaranteed to be invariant.
That formula can be further processed in the optional third phase by removing from
it any conjunct that is a trivial invariant. The rationale for the last phase is that triv-
ial invariants are never needed, for being directly implied by the formula encoding the
transition relation, and including them could put extra burden on the L-solver.

The pseudo-code for the procedure sketched above is provided in Figure 1. The ter-
mination condition for Phase 1 is a heuristic one: the search for the value k stops when
C is falsified by no k-reachable states. Furthermore, every conjunct of C that does not
pass the test in Phase 2 is conservatively assumed not to be invariant (even if it may be
k′-inductive for some k′ > k) and removed. It is not difficult to show that both phases
are terminating. The final C is invariant because, by construction, it is k-inductive for
the final k.

The practical feasibility of this invariant discovery scheme depends on the possibil-
ity of representing the conjecture C compactly, i.e., by an equivalent formula using less

2 The restriction to binary templates is used here only to simplify the exposition.
3 Modern SAT or SMT solvers are of course examples of L-solvers for specific L’s.
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Require: a template formula R[ , ] and a term set U
Ensure: P is invariant
i := 0
C :=

∧
{R[s, t] | s, t ∈ U}

---------------- Phase 1 ----------------
repeat
i := i+ 1; refined := FALSE
repeat
a := SAT(I0 ∧ T1 ∧ · · · ∧ Ti−1 ∧ ¬Ci−1)
if a = (q0, . . . , qi−1) then
C := filter(C, qi−1); refined := TRUE

until a = unsat
until ¬refined
---------------- Phase 2 ----------------
k := i− 1
repeat
a := SAT(T1 ∧ · · · ∧ Tk ∧ C0 ∧ · · · ∧ Ck−1 ∧ ¬Ck)
if a = (q0, . . . , qk) then
C := filter(C, qk)

until a = unsat
P := C
---------------- Phase 3 ----------------
repeat
a := SAT(T1 ∧ ¬C1)
if a = (q0, q1) then
C := filter(C, q1)

until a = unsat
P := P \ C

Fig. 1. Pseudo-code for the general invariant discovery scheme. The function SAT implements
the L-solver. It takes a formula F over n states and returns either unsat or a sequence of n states
that satisfies F . The function filter takes a conjunctive property P and a state q and returns the
property obtained from P by removing all conjuncts that are falsified by q. In the last statement,
P \ C denotes the conjunction of the conjuncts of P that do not occur in C.

than O(n2) space with n being the size of the instantiation set U , and refining it effi-
ciently, i.e., in less than O(n2) time . This may not be the case in general for arbitrary
template formulas R[ , ]. Hence, we focus on a class of templates for which in practice,
if not in theory, these space and time costs are sub-quadratic in n: L-formulas denoting
a partial order. Common useful examples of partial orders include implication over the
Booleans, the usual orderings over numeric domains, set inclusion over finite sets, as
well as equality over any domain.

3 Partial Order Templates

In this section, we describe two specializations of the general invariant discovering
scheme provided in Figure 1. Both specializations rely on the properties of partial or-
ders in order to represent the conjunctive conjecture C compactly and process it effi-
ciently. We start with one that works for any domain D and partial order � ⊆ D × D
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provided that both the identity relation ≈ (i.e., equality) over D and the partial order�
are expressible in a logic L with a decidable satisfiability problem. For example, this is
the case when L is rational (resp., linear integer) arithmetic and� is≤ or≥ over the ra-
tional numbers (resp., the integers). Then, we discuss a further specialization for binary
domains. For simplicity, in both cases we assume that ≈ and � are built-in symbols of
L. As a consequence, the template R[ , ] will be just � .

Let U be again the given instantiation set, and let M be a sequence (q1, . . . , qm)
of m ≥ 0 states from Q. To each t ∈ U we associate an m-vector vt where, for
i = 1, . . . , m, vt(i) is the value of t in state qi, i.e., the element of D that t evaluates
to in qi. The state sequence M induces an equivalence relation≡M over the terms in U
where s ≡M t iff vs = vt.

Definition 2. Let M be a state sequence. Suppose≡M has m equivalence classes and
let r1, . . . , rm be their respective representatives. Let the point-wise extension of � to
m-vectors over D be denoted by � as well4. The strongest conjecture CM consistent
with M is the smallest conjunction of ≈- and �-atoms that satisfies the following.

1. For each i = 1, . . . , m and t ∈ U \ {ri}, CM contains t ≈ ri if t ≡M ri.
2. For each distinct i, j = 1, . . . , m, CM contains the atom ri � rj if vri � vrj .

We can specialize the procedure described in Figure 1 by using the formula CM above
instead of C where M is a sequence of states produced by the L-solver. We describe
this specialization in the following. We consider just Phase 1 since the other phases are
analogous.

Specializing the general scheme (Phase 1). For each iteration of the repeat loop in
Phase 1 let M be the sequence of all the states generated until then (those passed to
filter in Figure 1). Initially, M is the empty sequence, which means that ≡M is U × U
and so CM has the form t2 ≈ t1 ∧ · · · ∧ tm ≈ t1 with {t1, . . . , tm} = U . Calls to filter
now amount to computing the formula CM for the most recent M . This specialization
maintains the following (meta-)invariants on M : for all s, t ∈ U , (i) s ≡M t iff none
the models generated by the L-solver so far falsifies the formula s ≈ t, i.e., contradicts
the conjecture that s ≈ t is invariant; (ii) vs � vt iff at least one of the models so far
falsifies the formula t � s but none falsify s � t; in other words, the evidence so far
disproves the conjecture that s ≈ t is invariant but not that s � t is.

Relying on the two properties above it possible to show that, at each step of Phase 1,
the formula CM is L-equivalent to the formula C in Figure 1. The formula CM is more
compact than C because it replaces the quadratically many �-atoms between distinct
≡M -equivalent terms by linearly-many equality atoms between these terms and their
equivalence class representative (e.g., {t2 ≈ t1, t3 ≈ t1} in place of {t1 � t2, t1 �
t3, t2 � t3, t2 � t1, t3 � t1, t3 � t2}).

An even more compact version of CM is possible by exploiting the transitivity of
�. In concrete, this can be done by computing a minimal, or close to minimal, base
for the poset (VM ,�) where VM = {vr1 , . . . , vrm} (vr1 , . . . , vrm are again the repre-
sentatives of ≡M ’s classes). A base for the poset is a binary relation B on VM whose

4 So (u1, . . . , un) � (v1, . . . , vn) iff ui � vi for i = 1, . . . , n.
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transitive closure B+ coincides with � over VM
5. A base is minimal if no strict subset

of B is a base for the poset. Then, given a base B, Requirement 2 in the definition of
CM (Definition 2) can be relaxed to having CM contain ri � rj only if (vri , vrj ) ∈ B.

Partial order sorting. One way to compute a base B for the poset (VM ,�) is to use
a procedure for partial order sorting. We describe here a procedure that, while probably
not as efficient in general as those in the most recent literature (see, e.g., [4]), is much
simpler to describe and implement, and is explicitly geared towards posets with many
incomparable elements such as those generated by our invariant discovery scheme.

A chain over VM is a list [v1, v2, . . . , vp] of members of VM such as v1 � v2 �
. . . � vp. Our sorting procedure takes the set VM as input, and computes a set C of
chains over VM as well as a mapping σ from VM to 2VM such that v � v′ for all
v′ ∈ σ(v). In essence, C is a selection of chains in the partial order, and for each
element v in a chain, σ(v) collects all the immediate successors of v in chains of C that
do not contain v. The base B for the poset (VM ,�) is obtained by collecting all pairs
(v, v′) such that v′ ∈ σ(v) or v and v′ occur consecutively in a chain of C.

The procedure, shown in Figure 2, works as follows. For each v ∈ VM and for each
existing chain c ∈ C, it inserts v into c if possible. That is the case if, with respect to �,
v is smaller than the first value of c, greater than the last, or in between two consecutive
elements of c. Otherwise, if c contains elements smaller than v, it adds v to the set σ(vi)
where vi is the greatest of these elements; also, if c contains elements greater than v,
it adds vj to the set σ(v) where vj is the least of these elements. If the procedure is
unable to add v to any existing chain, it puts v in its own chain and adds that to C.

Example 1. We briefly illustrate the partial order sorting procedure where D is the
domain of the integers and � is the usual ≤ relation. Consider a sequence M with
two states. Let s, t, q, r, p ∈ U be terms, and let the associated poset (VM ,�) be
({vs, vt, vq, vr, vp},≤) where

vs = (6, 5), vt = (5, 2), vq = (5, 3), vr = (10, 2), vp = (2, 4) .

Initially, the chain C and the mapping σ are empty. The following table shows the value
of C and σ after each main iteration of the sorting procedure.

C σ
1 [vs] vs �→ ∅
2 [vt, vs] vs �→ ∅, vt �→ ∅
3 [vt, vq, vs] vs �→ ∅, vt �→ ∅, vq �→ ∅, vr �→ ∅
4 [vt, vq, vs], [vr] vs �→ ∅, vt �→ {vr}, vq �→ ∅, vr �→ ∅
5 [vt, vq, vs], [vr], [vp] vs �→ ∅, vt �→ {vr}, vq �→ ∅, vr �→ ∅, vp �→ {vs}

��

Analysis of the sorting procedure. Our sorting procedure is trivially terminating be-
cause the input VM is finite and the set C and map σ are initially empty. It is correct

5 That is, for all distinct v,v′ ∈ VM , v � v′ iff (v,v′) ∈ B+.
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Require: (VM ,�) is a poset,
Ensure: C is set of chains over VM , σ : VM → 2VM , and v � v′ for all v′ ∈ σ(v)

C := ∅; σ := ∅
for v ∈ VM do
σ := σ ∪ {v 	→ ∅}
for c ∈ C do
i := greatestBelow(v, c)
j := leastAbove(v, c)
if j = 1 then

insert v at the beginning of c
else

if i = j − 1 then
insert v at position j in c

else
if i = the length of c then

append v at the end of c
else

if 0 < i then
add v to σ(c(i))

if 0 < j then
add c(j) to σ(v)

if v was not inserted into any chain then
C := C ∪ {[v]}

Fig. 2. A partial order sorting procedure. The call greatestBelow(v, c) returns the position in
the chain c of its greatest element smaller than v, if any; otherwise, it returns 0. The call
leastAbove(v, c) returns the position of the least element of c larger than v, if any; otherwise, it
returns 0. The notation c(i) stands for the i-th element of c.

in the sense that the set B determined by C and σ is a base of (VM ,�). It is not opti-
mal because it may produce non-disjoint chains, giving rise to non-minimal bases; but it
seemed to work fairly well during the experimental evaluation we describe in Section 4.

A coarse-grained worst-case complexity analysis shows that the procedure has time
complexity O(nwh), where w is the width of the poset (VM ,�), the cardinality of the
largest anti-chain in it, h is the height of the poset, the length of its longest chain, and n
is the cardinality of VM

6. This analysis assumes that comparing two elements of VM for
� takes constant time and that we store chains into arrays, which allows the functions
greatestBelow and leastAbove in Figure 2 to be implemented by binary search. The
former assumption does not generally hold because � is a point-wise ordering over
vectors. One can make it only with a careful implementation based on the fact that
the elements of VM are built incrementally at each round of the invariant discovery
procedure: vectors of length k + 1 are obtained by adding a new component to vectors
of length k. Since (u1, . . . , uk+1) � (v1, . . . , vk+1) iff (u1, . . . , uk) � (v1, . . . , vk)
and uk+1 � vk+1, by caching in a hash table the results of vector comparisons at round
k, vector comparisons at round k + 1 can be reduced to two constant time operations7.

6 Note that h ≤ n−w + 1, h = n when w = 1, and h = 1 when w = n.
7 The hash table will have quadratic size only in the worst case when a linear number of vectors

are all pairwise comparable.



200 T. Kahsai, Y. Ge, and C. Tinelli

A recent and efficient partial sorting algorithm by Daskalakis et al. based on merge
sort [4] has complexity O(w2n log n

w ), where again n is the cardinality of the poset
and w its width. This complexity and that of our procedure do not easily compare in
general. But we note that the posets we work with tend to have a small height, because
most value vectors are incomparable. Now, with an upper bound on a poset’s height,
the poset’s width grows proportionally with its cardinality. This makes our procedure
quadratic in n and the one by Daskalakis et al. more than cubic.

3.1 Binary Domains

When the domain D has cardinality 2, for example in the Boolean case, there is a bet-
ter way to compute a base B for the poset (VM ,�). Instead of a partial order sorting
procedure, we can use one that represents B more directly as a directed acyclic graph
(dag) GM whose nodes are the equivalence classes of ≡M , and whose edges represent
(selected) pairs in �. More precisely, the set of edges is such that for all distinct equiv-
alence classes S and T of ≡M with respective representatives s and t, S and T are
connected in GM iff vs � vt. The graph for the initial, empty state sequence is simply
the graph with no edges and a single node, the whole instantiation set U .

Graph generation. We developed a procedure to compute the graph GM for state
sequences M , relying on the fact that each M is built incrementally, by appending a
new state q to a previous sequence L. Given a sequence L and its graph GL, and a
new state q, the procedure computes the graph GM for the sequence M obtained by
appending q to L. We do not describe the procedure in detail here for space constraints.
Instead, we give a general intuition on how it works.

Assume for concreteness that D = {0, 1} and 0 � 1, and let X be an arbitrary
node of the old graph GL. For i = 0, 1, let Xi be the set consisting of all the terms in
X that evaluate to i in the new state q. The set Xi becomes a node of the new graph
GM iff Xi �= ∅. In other words, GM gets a node identical to X if all the terms of X
have the same value in q, and gets two new nodes, partitioning X , otherwise. Whenever
both X0 and X1 are added to GM , the edge X0 −→ X1 is also added. Edges between
old nodes in GL are inherited by the corresponding new nodes consistently with the
ordering induced by M . In general, every edge Xi −→ Yj of GM (where X and Y are
nodes of GL) comes from a path of length at most 2 from X to Y in GL; moreover,
i ≤ j. The effect of the procedure is best illustrated with an example.

Example 2. Let M = (L, q) and suppose GL is the following dag.

A B C

Suppose B1 is empty, and A0, A1, B0, C0, C1 are all non-empty. The procedure starts
by creating GM with the following nodes and edges.

A0 A1 B0 C0 C1

Then it adds edges derived from GL, returning the following dag as GM .
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A0

B0 C0

C1

A1

The edge A0 −→ B0 comes from A −→ B. Similarly, B0 −→ C0 comes from B −→
C. In contrast, A1 −→ C1 comes from the path A −→ B −→ C, because of the
absence of B1. ��

The procedure works in three phases. In the first phase, it scans GL’s node set to gener-
ate the nodes of GM and the edges between nodes X0 and X1. It also builds a map from
each node of GL to its corresponding node(s) in GM . In the second phase, it traverses
the dag GL bottom up (from leaves to roots), to determine for each of its nodes which
nodes of GM should inherit the node’s incoming edges, and how. A marking mecha-
nism is used to visit each node of GL only once. In the third phase, it scans GL’s edge
set to generate the corresponding edges in GM .

Analysis of the graph generation procedure. From the above high-level description
of the procedure it is perhaps already clear that its time complexity is linear in the
number of nodes and edges of GL. The linearity, however, comes at the cost of sub-
optimality. Since in the second phase each node of GL is visited only once, it is possible
for GM to end up containing redundant edges, edges connecting directly two nodes
also connected by a longer path. Redundant edges lead to non-minimal bases for the
associated poset because the inequations they generate are implied by other inequations
in the base.

For example, the edge A −→ C is redundant if A −→ B and B −→ C are also
in GM . By the transitivity of �, the inequation rA � rB between the A’s and C’s
representatives is then superfluous. In our implementation, discussed next, redundant
edges are removed in an optional post-processing step on the final dag.

4 Experimental Evaluation

To evaluate experimentally the specialized invariant discovery procedures described in
the previous section we implemented two instances of the general invariant discovery
scheme: one for the domain of linear integer arithmetic, with ≤ as the partial order,8

and one for the Boolean domain, with implication as the partial order. The instances
are implemented in a new tool, called KIND-INV9, built with components of the KIND

model checker [7]. Kind was developed to check safety properties of Lustre programs.
Lustre [8] is a synchronous data-flow language with infinite streams of values of three
basic types: bool, int, and real. It is typically used to model circuits at a high level or
control software in embedded devices.

KIND is a k-induction-based model checker for programs in an idealized version of
Lustre that uses (mathematical) integers in place of machine integer values, and rational

8 This instance works with rational numbers as well, but we ignore that here for simplicity.
9 System and experimental data can be found at http://clc.cs.uiowa.edu/Kind/.

http://clc.cs.uiowa.edu/Kind/
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numbers in place of floating values. The underlying logic of KIND, and of KIND-INV,
is a quantifier-free logic that includes both propositional logic and linear arithmetic.
We’ll refer to it as IL (for Idealized Lustre logic) here. Lustre programs can be readily
encoded in IL as transition systems of the sort we use here (see [7] for more details).
The SMT solvers CVC3 [1] and Yices [5] are used, in alternative, as satisfiability solvers
for this logic. A Lustre program can be structured as a set of modules called nodes
which can be understood as macros. KIND-INV currently takes a single-node Lustre
program as input. A multi-node program can be treated by expanding it in advance to
a behaviorally equivalent single-node one. The invariants discovered by KIND-INV are
then added to the Lustre input program as “assertions.” Contrary to other languages,
such as C, assertions in Lustre are expressions of type bool that are assumed to be true
at each execution step of the program.

KIND-INV accepts two options for generating invariants: bool and int. The first
option produces invariants of the form s→ t or s = t where s and t are Lustre Boolean
terms. The second produces invariants of the form s ≤ t or s = t where s and t are
integer terms. The instantiation set U currently consists of heuristically selected terms
from the input Lustre program plus some distinguished constant terms such as true and
false. Note that bool terms may contain int terms, as in (x + y > 0) or done, and vice
versa, as in x + (if y > 0 then y else 1).

KIND-INV provides three binary options affecting invariant generation. The first two
work only with the bool invariant option, the last one with both options:

No Ands : When this flag is turned on, KIND-INV will not consider candidate terms of
the form s∧ t. The rationale behind this flag is that, conjunctive terms lead to many
trivial invariants, for instance, those of the form (s ∧ t) → s. Having too many of
these unnecessary invariants can be burdensome for the SMT-solver, limiting the
effectiveness of the non-trivial invariants in the generated assertion.

No Redundant Edges : When this flag is on, KIND-INV will remove redundant edges
from the final dag storing the computed poset (see Section 3.1).

No Trivial Invariants : This flags governs whether the third phase of the invari-
ant discovery procedure is performed or not. Its rationale is that the third phase is
expensive and may not be worthwhile.

Evaluation setup. To evaluate KIND-INV, we used a benchmark set derived from
the one used in [7], which consists of a variety of benchmarks from several sources.
Each benchmark in the original set is a Lustre program together with a single prop-
erty to check, expressed as a Lustre bool term. Our derived set discards some duplicate
benchmarks—included in the original set by mistake—and converts each program to a
single-node one using the pollux tool from the Lustre 4 distribution.

Let us call a benchmark valid if its safety property holds for the associated program,
and invalid otherwise. KIND is able to prove 438 of the 941 benchmarks in our set
invalid by returning a (independently verified) counter-example trace for the program.
KIND reports 309 of the remaining benchmarks as valid, and diverges on the remaining
194 benchmarks, even with very large timeout values. We conjecture that those 194
unsolved benchmarks are all valid but contain a property that is either k-inductive for
an extremely large k or, more plausibly, not k-inductive for any k.
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Fig. 3. Distribution of solved and unsolved benchmarks for three classes of invariants. Green
bars indicate the percentage of benchmarks solvable only with invariants. All bars are drawn to
scale.

For the experiments described here the benchmark set consists of the valid and the
unsolved benchmarks, 503 in total. Our main goal was to evaluate how effective the
invariants generated by KIND-INV are at improving KIND’s precision, measured as
the percentage of solved benchmarks. The experiments were run on a small dedicated
cluster of identical machines with a 3.0 GHz Intel Pentium 4 cpu, 1GB of memory
and Redhat Enterprise Linux 4.0. Version 1.0.9 of the Yices solver was used both for
KIND-INV and KIND.

In a first step, we ran KIND-INV on the benchmark set twice, once for the bool
and once with the int invariant generation option. For each of the benchmarks where
KIND-INV did not time out, we obtained a set of invariants, and added them to the
benchmark as a single conjunctive assertion. The added assertion was the constant true
when KIND-INV timed out or ended up discarding all conjectures from the initial set.
To make sure that the added assertions were indeed invariants, we verified each of them
independently by formulating it as a safety property and asking KIND to prove it10. In
a second step, we ran KIND in inductive mode on each benchmark, with and without
the assertion that collects the discovered invariants. In that mode, KIND attempts to
prove the benchmark’s property by k-induction, using any assertion in the program to
strengthen the k-induction hypothesis with the invariant in the assertion. The timeout
for KIND-INV was set to 300 seconds and that for KIND to 120 seconds.

We did an extensive evaluation over our benchmarks with various configurations. By
and large, all configurations are comparable in terms of the precision achieved by KIND

when using their generated invariants. The only significant differences are with respect
to invariant generation speed. A statistical analysis of the results obtained with the var-
ious configurations, not reported here, indicated that the following configuration is su-
perior to the others: No Ands = on, No Redundant Edges = on, and No Trivial In-

variants = off. Hence, we report our results just for that configuration.

Precision results. The size of the generated invariants, measured as their number of
conjuncts, varies from 0 to 1150, with a median value of 133. With the bool option,
KIND-INV times out in 19 cases (out of 503), and terminates normally but with an
empty invariant in 2 cases. With the int option, it times out in 62 cases and terminates
with an empty invariant in 12 cases.

Using only bool invariants, i.e., invariants generated by KIND-INV with the bool

option, KIND is able to prove 40% of the 194 previously unsolved benchmarks; using

10 Since KIND-INV and KIND used the same SMT solver it is possible that we missed incorrect
assertions because of a bug in the solver, but we believe this to be unlikely.
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Fig. 4. Solving times without invariants versus int invariant generation times plus solving times
with int invariants. In the parallel simulation, solving without invariants is attempted during in-
variant generation. Invariants are then used once available, and only if still needed.

int invariants, invariants generated with the int option, it proves 53% of the unsolved
benchmarks; using both bool and int invariants, it proves 63% of the unsolved bench-
marks. In the three cases above, Kind’s precision over all 513 benchmarks grows from
61% (without invariants) to 77%, 82%, and 85%, respectively. For all the newly solv-
able benchmarks the properties goes from (most likely) not k-inductive for any k to
k-inductive with some k ≤ 16. The set of new benchmarks solved with bool invariants
and that solved with int invariants have a large overlap, which we find somewhat sur-
prising. Less surprising is that using bool and int invariants together allows KIND to
solve all the benchmarks solvable with either type alone, and more.

The addition of invariants preserves the set of benchmarks proved valid by KIND

without them. Furthermore, it often shortcuts the k-induction process. In fact, without
invariants, 14.5% of the previously valid benchmark have a safety property that is k-
inductive for some k > 1; that percentage goes down respectively to 6.7%, 8.7% and
3.8%, with only bool, only int and both bool and int invariants.

Figure 4 summarizes graphically the various effects achieved with bool and int in-
variants, alone and in combination. For each of these three cases, column A represents
benchmarks solvable by KIND without invariants; columns B to E represent bench-
marks solvable with the generated invariants; column F represents benchmarks that
remain unsolved, either because KIND-INV was not able to generate an invariant for
them or because the generated invariant is not helpful. Columns C and D represent the
benchmarks solved only with int and only with bool invariants, respectively. Column E
represents the benchmarks solved only with both bool and int invariants together.

Runtime results. Adding invariants to previously solvable benchmarks systemati-
cally makes them slightly faster to solve. The total time to solve them decrease from
305.7 to 246.5 seconds. Individual solving times in the presence of invariants are very
small; on average just 0.95s for all solvable benchmarks. In addition to the substantial
increase in precision, this provides further evidence that our invariant discovery pro-
cedure produces high quality invariants. Invariant generation has of course its own,
non-insignificant cost. Over the whole benchmark set, KIND-INV runtimes vary from
less than a second to hundreds of seconds, to timing out at 300s. However, their median
value is fairly small: 22.4s for int invariants and just 6.3s for bool ones. For the great
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majority of benchmarks (84%) bool invariant generation takes less than a minute per
benchmark.

Evaluating invariant generation costs against the increase in precision is a difficult
task because it also depends on the relative importance of precision versus prompt
response. A supporting argument is that invariant generation and k-induction model
checking can be done in parallel—with invariants fed to the k-induction loop as soon
as they are generated—mitigating this way the cost of invariant generation. Develop-
ing a parallel model checker integrating KIND and KIND-INV was beyond the scope of
this work. An approximate analysis, however, can be provided with a rough conceptual
simulation of such a concurrent system.

Since the synchronization overhead in the parallel model checker would be arguably
very small, we can ignore it here for simplicity. Then we can imagine the parallel
checker’s runtimes to be, for each benchmark, the minimum between the following
two values: (i) the time KIND takes to prove the property without invariants and (ii)
the sum of the times KIND-INV takes to output an invariant and KIND takes to prove
the property using that invariant. The scatter plots in Figure 4 illustrate this comparison
with int invariants—the results are similar for bool invariants. The first plot compares
for each benchmark the runtime of KIND with no invariants and a 420s timeout11 against
the runtime of a hypothetical sequential checker that uses KIND-INV with a timeout of
120s, to add an invariant to the program, and then calls KIND with a timeout of 300s.
The considerable invariant generation time penalty paid by the sequential checker (il-
lustrated by all the points above the diagonal lines in the first plot) essentially disappears
with the parallel checker, as shown in the second plot.

5 Conclusion and Future Work

We presented a novel scheme for discovering invariants in transition systems. The
scheme is parametrized by a formula template representing a decidable relation over the
system’s datatypes, and by a set of terms used to instantiate the template. Its main fea-
tures are that it checks all template instances for invariance at the same time and makes
heavy use of a satisfiability solver for the logic in which the system and the instances
are encoded. We described two specializations of the scheme to templates representing
partial orders where we can exploit the properties of posets to achieve space and time
efficiencies. Initial experimental results are very encouraging in terms of the speed of
invariant generation and the effectiveness of the generated invariants in automating the
verification of safety properties.

In the implementation discussed in the previous section, invariant generation is done
off-line. We are developing a parallel model checking architecture and implementation
in which k-induction and invariant generation are done concurrently, with invariants fed
to the k-induction loop as soon as they are produced.

Our invariant discovery scheme lumps together, in a single invariant produced at the
end, instances of the template that may be k-inductive for different values of k. We be-
lieve that the effectiveness of the parallel model checking architecture would increase

11 Increasing the timeout from 300s to 420s does not change the set of solved benchmarks.
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if invariant instances were identified and output progressively—with k-inductive in-
stances produced before (k + 1)-inductive ones. We are working on a new version of
the scheme based on this idea.

We are also investigating techniques for compositional reasoning with synchronous
systems based on the invariant discovery method presented in this paper. The main idea
is to generate invariants separately for each module of a multi-module system, and then
use them to aid the verification of properties of the entire system.
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Abstract. We study the process theoretic notion of stuttering equiv-
alence in the setting of parity games. We demonstrate that stuttering
equivalent vertices have the same winner in the parity game. This means
that solving a parity game can be accelerated by minimising the game
graph with respect to stuttering equivalence. While, at the outset, it
might not be clear that this strategy should pay off, our experiments
using typical verification problems illustrate that stuttering equivalence
speeds up solving parity games in many cases.

1 Introduction

Parity games [6,13,22] are played by two players (called even and odd) on a
directed graph in which vertices have been assigned priorities. Every vertex
in the graph belongs to exactly one of these two players. The game is played
by moving a token along the edges in the graph indefinitely; the edge that is
moved along is chosen by the player owning the vertex on which the token
currently resides. Priorities that appear infinitely often along such infinite plays
then determine the winner of the play.

Solving a parity game essentially boils down to computing the set of vertices
that, if the token is initially placed on a vertex in this set, allows player even (resp.
odd) to win. This problem is known to be in NP∩ co-NP; it is still an open problem
whether a polynomial time algorithm exists for the problem, but even in case such
an algorithm is found, it may not be the most efficient algorithm in practice.

Parity games play a crucial role in verification; the model checking prob-
lem for the modal μ-calculus can be reduced to the problem of solving a given
parity game. It is therefore worthwile to investigate methods by which these
games can be solved efficiently in practice. In [7], Friedman and Lange describe
a meta-algorithm that, combined with a set of heuristics, appears to have a
positive impact on the time required to solve parity games. Fritz and Wilke con-
sider more-or-less tried and tested techniques for minimising parity games using
novel refinement and equivalence relations, see [9]. The delayed simulation they
introduce, and its induced equivalence relation, however, are problematic for quo-
tienting, which is why they go on to define two variations of delayed simulations
that do not suffer from this problem. As stated in [8], however, “Experiments

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 207–221, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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indicate that simplifying parity games using our approach before solving them
is not faster than solving them outright in practice”.

Despite the somewhat unsatisfactory performance of the delayed simulation
in practice, we follow a methodology similar to the one pursued by Fritz and
Wilke. As a basis for our investigations, we consider stuttering equivalence [3],
which originated in the setting of Kripke Structures. Stuttering equivalence has
two qualities that make it an interesting candidate for minimising parity games.
Firstly, vertices with the same player and priority are only distinguished on
the basis of their future branching behaviour, allowing for a considerable com-
pression. Secondly, stuttering equivalence has a very attractive worst-case time
complexity of O(n ·m), for n vertices and m edges, which is in stark contrast to
the far less favourable time complexity required for delayed simulation, which
is O(n3 · m · d2), where d is the number of different priorities in the game. In
addition to these, stuttering equivalence has several other traits that make it
appealing: quotienting is straightforward, distributed algorithms for computing
stuttering equivalence have been developed (see e.g. [2]), and it admits efficient,
scalable implementations using BDD technology [21].

On the basis of the above qualities, stuttering equivalence is likely to signifi-
cantly compress parity games that stem from typical model checking problems.
Such games often have a rather limited number of priorities (typically at most
three), and appear to have regular structures. We note that, as far as we have
been able to trace, quotienting parity games using stuttering equivalence has
never been shown to be sound. Thus, our contributions in this paper are twofold.

First, we show that stuttering equivalent vertices are won by the same player
in the parity game. As a side result, given a winning strategy for a player for
a particular vertex, we obtain winning strategies for all stuttering equivalent
vertices. This is of particular interest in case one is seeking an explanation for the
solution of the game, for instance as a means for diagnosing a failed verification.

Second, we experimentally show that computing and subsequently solving
the stuttering quotient of a parity game is in many cases faster than solving the
original game. In our comparison, we included several competitive implementa-
tions of algorithms for solving parity games, including several implementations
of Small Progress Measures [11] and McNaughton’s recursive algorithm [13].
Moreover, we also compare it to quotienting using strong bisimulation [15]. For
an up-to-date overview of experiments we refer to [5], which we plan to keep
updated with new results. While we do not claim that stuttering equivalence
minimisation should always be performed prior to solving a parity game, we are
optimistic about its effects in practical verification tasks.

Structure. The remainder of this paper is organised as follows. Section 2 briefly
introduces the necessary background for parity games. In Section 3 we define
both strong bisimilarity and stuttering equivalence in the setting of parity games;
we show that both can be used for minimising parity games. Section 4 is devoted
to describing our experiments, demonstrating the efficacy of stuttering equiva-
lence minimisation on a large set of verification problems. In Section 5, we briefly
discuss future work and open issues.
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2 Preliminaries
We assume the reader has some familiarity with parity games; therefore, the
main purpose of this section is to fix terminology and notation. For an in-depth
treatment of these games, we refer to [13,22].

2.1 Parity Games
A parity game is a game played by players even (represented by the symbol 0)
and odd (represented by the symbol 1). It is played on a total finite directed
graph, the vertices of which can be won by either 0 or 1. The objective of the
game is to find the partitioning that separates the vertices won by 0 from those
won by 1. In the following text we formalise this definition, and we introduce
some concepts that will make it easier to reason about parity games.

Definition 1. A parity game G is a directed graph (V,→, Ω,P), where
– V is a finite set of vertices,
– →⊆ V × V is a total edge relation (i.e., for each v ∈ V there is at least one
w ∈ V such that (v, w) ∈→),

– Ω : V → N is a priority function that assigns priorities to vertices,
– P : V → {0, 1} is a function assigning vertices to players.

Instead of (v, w) ∈→ we will usually write v → w. Note that, for the purpose of
readability later in this text, our definition deviates from the conventional one:
instead of requiring a partitioning of V into vertices owned by player even and
vertices owned by player odd, we achieve the same through the function P .

Paths. A sequence of vertices v1, . . . , vn for which vi → vi+1 for all 1 ≤ i < n
is called a path, and may be denoted using angular brackets: 〈v1, . . . , vn〉. The
concatenation p · q of paths p and q is again a path. We use pn to denote the nth

vertex in a path p. The set of paths of length n, for n ≥ 1 starting in a vertex v
is defined inductively as follows.

Π1(v) = {〈v〉}
Πn+1(v) = {〈v1, . . . , vn, vn+1〉 | 〈v1, . . . , vn〉 ∈ Πn(v) ∧ vn → vn+1}

We use Πω(v) to denote the set of infinite paths starting in v. The set of all
paths starting in v, both finite and infinite is defined as follows:

Π (v) = Πω(v) ∪
⋃

n∈N

Πn(v)

Winner. A game starting in a vertex v ∈ V is played by placing a token on
v, and then moving the token along the edges in the graph. Moves are taken
indefinitely according to the following simple rule: if the token is on some vertex
v, player P(v) moves the token to some vertex w such that v → w. The result
is an infinite path p in the game graph. The parity of the lowest priority that
occurs infinitely often on p defines the winner of the path. If this priority is even,
then player 0 wins, otherwise player 1 wins.
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Strategies. A strategy for player i is a partial function φ : V ∗ → V , that for each
path ending in a vertex owned by player i determines the next vertex to be played
onto. A path p of length n is consistent with a strategy φ for player i, denoted
φ � p, if and only if for all 1 ≤ j < n it is the case that 〈p1, . . . , pj〉 ∈ dom(φ)
and P(pj) = i imply pj+1 = φ(〈p1, . . . , pj〉). The definition of consistency is
extended to infinite paths in the obvious manner. We denote the set of paths
that are consistent with a given strategy φ, starting in a vertex v by Πφ(v);
formally, we define:

Πφ(v) = {p ∈ Π (v) | φ � p}
A strategy φ for player i is said to be a winning strategy from a vertex v if
and only if i is the winner of every path that starts in v and that is consistent
with φ. It is known from the literature that each vertex in the game is won by
exactly one player; effectively, this induces a partitioning on the set of vertices
V in those vertices won by player 0 and those vertices won by player 1.

Orderings. We assume that V is ordered by an arbitrary, total ordering �. The
minimal element of a non-empty set U ⊆ V with respect to this ordering is
denoted �(U). Let |v, u| denote the least number of edges required to move from
vertex v to vertex u in the graph. We define |v, u| =∞ if u is unreachable from
v. For each vertex u ∈ V , we define an ordering ≺u⊆ V × V on vertices, that
intuitively orders vertices based on their proximity to u, with a subjugate role
for the vertex ordering �:

v ≺u v′ iff |v, u| < |v′, u| or (|v, u| = |v′, u| and v � v′)

Observe that u ≺u v for all v �= u. The minimal element of U ⊆ V with respect
to ≺u is written 	u(U).

3 Strong Bisimilarity and Stuttering Equivalence

Process theory studies refinement and equivalence relations, characterising the
differences between models of systems that are observable to entities with differ-
ent observational powers. Most equivalence relations have been studied for their
computational complexity, giving rise to effective procedures for deciding these
equivalences. Prominent equivalences are strong bisimilarity, due to Park [15]
and stuttering equivalence [3], proposed by Browne, Clarke and Grumberg.

Game graphs share many of the traits of the system models studied in process
theory. As such, it is natural to study refinement and equivalence relations for
such graphs, see e.g., delayed simulation [9]. In the remainder of this section, we
recast the bisimilarity and stuttering equivalence to the setting of parity games,
and show that these are finer than winner equivalence, which we define as follows.

Definition 2. Let G = (V,→, Ω,P) be a parity game. Two vertices v, v′ ∈ V
are said to be winner equivalent, denoted v ∼w v′ iff v and v′ are won by the
same player.
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Because every vertex is won by exactly one player (see, e.g., [22]), winner equiv-
alence partitions V into a subset won by player 0 and a subset won by player 1.
Clearly, winner equivalence is therefore an equivalence relation on the set of
vertices of a given parity game. The problem of deciding winner equivalence, is
in NP∩ co-NP; all currently known algorithms require time exponential in the
number of priorities in the game.

We next define strong bisimilarity for parity games; basically, we interpret the
priorities and players of vertices as state labellings.

Definition 3. Let G = (V,→, Ω,P) be a parity game. A symmetric relation
R⊆ V × V is a strong bisimulation relation if v R v′ implies

– Ω(v) = Ω(v′) and P(v) = P(v′);
– for all w ∈ V such that v → w, there should be a w′ ∈ V such that v′ → w′

and w R w′.

Vertices v and v′ are said to be strongly bisimilar, denoted v ∼ v′, iff a strong
bisimulation relation R exists such that v R v′.

Strong bisimilarity is an equivalence relation on the vertices of a parity game;
quotienting with respect to strong bisimilarity is straightforward. It is not hard
to show that strong bisimilarity is strictly finer than winner equivalence. More-
over, quotienting can be done effectively with a worst-case time complexity of
O(|V | log |V |).

Strong bisimilarity quotienting prior to solving a parity game can in some cases
be quite competitive. One of the drawbacks of strong bisimilarity, however, is its
sensitivity to counting (in the sense that it will not identify vertices that require
a different number of steps to reach a next equivalence class), preventing it from
compressing the game graph any further.

Stuttering equivalence shares many of the characteristics of strong bisimilarity,
and deciding it has only a slightly worse worst-case time complexity. However,
it is insensitive to counting, and is therefore likely to lead to greater reductions.
Given these observations, we hypothesise (and validate this hypothesis in Sec-
tion 4) that stuttering equivalence outperforms strong bisimilarity and, in most
instances, reduces the time required for deciding winner equivalence in parity
games stemming from verification problems.

We first introduce stuttering bisimilarity [14], a coinductive alternative to
the stuttering equivalence of Browne, Clarke and Grumberg; we shall use the
terms stuttering bisimilarity and stuttering equivalence interchangeably. The
remainder of this section is then devoted to showing that stuttering bisimilarity
is coarser than strong bisimilarity, but still finer than winner equivalence. The
latter result allows one to pre-process a parity game by quotienting it using
stuttering equivalence.

Definition 4. Let G = (V,→, Ω,P) be a parity game. Let R ⊆ V × V . An
infinite path p is R-divergent, denoted divR(p) iff p1 R pi for all i. Vertex v ∈ V
allows for divergence, denoted divR(v) iff there is a path p such that p1 = v and
divR(p).
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We generalise the transition relation→ to its reflexive-transitive closure, denoted
=⇒, taking a given relationR on vertices into account. The generalised transition
relation is used to define stuttering bisimilarity. Let G = (V,→, Ω,P) be a parity
game and let R ⊆ V × V be a relation on its vertices. Formally, we define the
relations→R⊆ V × V and =⇒R⊆ V ×V through the following set of deduction
rules.

v → w v R w

v →R w v =⇒R v
v →R w w =⇒R v′

v =⇒R v′
We extend this notation to paths: we sometimes write 〈v1, . . . , vn〉 → u if vn → u;
similarly, we write 〈v1, . . . , vn〉 →R u and 〈v1, . . . , vn〉 =⇒R u.

Definition 5. Let G = (V,→, Ω,P) be a parity game. Let R ⊆ V × V be a
symmetric relation on vertices; R is a stuttering bisimulation if v R v′ implies

– Ω(v) = Ω(v′) and P(v) = P(v′);
– divR(v) iff divR(v′);
– If v → u, then either (v R u ∧ u R v′), or there are u′, w, such that v′ =⇒R
w → u′ and v R w and u R u′;

Two states v and v′ are said to be stuttering bisimilar, denoted v � v′ iff there
is a stuttering bisimulation relation R, such that v R v′.

Note that stuttering bisimilarity is the largest stuttering bisimulation. Moreover,
stuttering bisimilarity is an equivalence relation, see e.g. [14,3]. In addition,
quotienting with respect to stuttering bisimilarity is straightforward.

Stuttering bisimilarity between vertices extends naturally to finite paths.
Paths of length 1 are equivalent if the vertices they consist of are equivalent.
If paths p and q are equivalent, then p · 〈v〉 � q iff v is equivalent to the last
vertex in q (and analogously for extensions of q), and p · 〈v〉 � q · 〈w〉 iff v � w.
An infinite path p is equivalent to a (possibly infinite) path q if for all finite
prefixes of p there is an equivalent prefix of q and vice versa.

We next set out to prove that stuttering bisimilarity is finer than winner
equivalence. Our proof strategy is as follows: given that there is a strategy φ
for player i from a vertex v, we define a strategy for player i that from vertices
equivalent to v schedules only paths that are stuttering bisimilar to a path
starting in v that is consistent with φ.

If after a number of moves a path p has been played, and our strategy has to
choose the next move, then it needs to know which successors for p will yield a
path for which again there is a stuttering bisimilar path that is consistent with
φ. To this end we introduce the set reachφ,v(p).

Let φ be an arbitrary strategy, v an arbitrary vertex owned by the player for
which φ defines the strategy, and let p be an arbitrary path. We define reachφ,v(p)
as the set of vertices in new classes, reachable by traversing φ-consistent paths
that start in v and that are stuttering bisimilar to p.

reachφ,v(p) = {u ∈ V | ∃q ∈ Πφ(v) : p � q ∧ φ � q · 〈u〉 ∧ q · 〈u〉 �� q}
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Observe that not all vertices in reachφ,v(p) have to be in the same equivalence
class, because it is not guaranteed that all paths q ∈ Πφ(v), stuttering bisimilar
to p, are extended by φ towards the same equivalence class.

Suppose the set reachφ,v(p) is non-empty; in this case, our strategy should
select a target class to which p should be extended. Because stuttering bisimilar
vertices can reach the same classes, it does not matter which class present in
reachφ,v(p) is selected as the target class. We do however need to make a unique
choice; to this end we use the total ordering � on vertices.

targetclassφ,v(p) = {u ∈ V | u � �(reachφ,v(p))}
Not all vertices in the target class need be reachable from p, but there must
exist at least one vertex that is. We next determine a target vertex, by selecting
a unique, reachable vertex from the target class. This target of p, given a strategy
φ and a vertex v is denoted τφ,v(p); note that the ordering � is again used to
uniquely determine a vertex from the set of reachable vertices.

τφ,v(p) = �{u ∈ targetclassφ,v(p) | ∃w ∈ V : p =⇒� w → u}

Definition 6. We define a strategy mimickφ,v for player i that, given some strat-
egy φ for player i and a vertex v, allows only paths to be scheduled that have
a stuttering bisimilar path starting in v that is scheduled by φ. It is defined as
follows.

mimickφ,v(p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	t{u ∈ V | p→� u},
t = τφ,v(p)
p �→ τφ,v(p)
reachφ,v(p) �= ∅

τφ,v(p)
p→ τφ,v(p)
reachφ,v(p) �= ∅

�{u ∈ V | p→� u}, reachφ,v(p) = ∅

Lemma 1. Let φ be a strategy for player i in an arbitrary parity game. Assume
that v, w ∈ V and v � w, and let ψ = mimickφ,v. Then

∀l ∈ N : ∀p ∈ Π l+1
ψ (w) : ∃k ∈ N : ∃q ∈ Πkφ(v) : p � q

Proof. We proceed by induction on l. For l = 0, the desired implication follows
immediately. For l = n+ 1, assume that we have a path p ∈ Πn+1

ψ (w). Clearly,
〈p1, . . . , pn〉 is also consistent with ψ. The induction hypothesis yields us a q ∈
Πkφ(v) for some k ∈ N such that 〈p1, . . . , pn〉 � q. Let q be such. We distinguish
the following cases:
1. pn � pn+1. In this case, clearly p � 〈p1, . . . , pn〉 � q, which finishes this case.
2. pn �� pn+1. We again distinguish two cases:

(a) Case P(pn) �= i. Since pn � qk, we find that there must be states u,w ∈ V
such that qk =⇒� w → u and pn+1 � u. So there must be a path r and
vertex u such that p � q·r·〈u〉, for which we know that r � qk. Therefore,
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all vertices in r are owned by P(qk) = P(pn), so φ is not defined for the
extensions of q along p. We can therefore conclude that φ � q · r · 〈u〉.

(b) Case P(pn) = i. Then it must be the case that pn+1 = τφ,v(〈p1, . . . , pn〉).
By definition, that means that there is a φ-consistent path r ∈ Πφ(v),
such that r � p. ��

In the following lemma we extend the above obtained result to infinite paths.

Lemma 2. Let φ be a strategy for player i in an arbitrary parity game. Assume
that v, w ∈ V and v � w, and let ψ = mimickφ,v. Then

∀p ∈ Πωψ (w) : ∃q ∈ Πωφ (v) : p � q.

Proof. Suppose we have an infinite path p ∈ Πωψ (w). Using Lemma 1 we can
obtain a path q starting in v that is stuttering bisimilar, and that is consistent
with φ. The lemma does not guarantee, however, that q is of infinite length. We
show that if q is finite, it can always be extended to an infinite path that is still
consistent with φ.

Notice that paths can be partitioned into subsequences of vertices from the
same equivalence class, and that two stuttering bisimilar paths must have the
same number of partitions. This also follows from the original definition of stut-
tering equivalence given in [3].

Suppose now that q is of finite length, say k + 1. Then p must contain such
a partition that has infinite size. In particular, there must be some n ∈ N such
that pn+j � pn+j+1 for all 0 ≤ j ≤ |V |. We distinguish two cases.

1. P(pn) = i. We show that then also reachφ,v(〈p0, p1, . . . pn〉) = ∅. Suppose
this is not the case. Then we find that for some u ∈ V , u = τφ,v(p) exists,
and therefore pn+j ≺u pn+j+1 for all j ≤ |V |. Since ≺u is total, this means
that the longest chain is of length |V |, which contradicts our assumptions.
So, necessarily reachφ,v(〈p0, p1, . . . pn〉) = ∅, meaning that no path that is
consistent with φ leaves the class of pn. But this means that the infinite
path that stays in the class of pn is also consistent with φ.

2. P(pn) �= i. Since pn � qk, also P(qk) �= i. Since pn � pn+j for all j ≤ |V |+1,
this means that there is a state u, such that u = pn+l = pn+l′ . But this
means that u is divergent. Since P(u) �= i, and u � qk, we find that also
qk is divergent. Therefore, there is an infinite path with prefix q that is
consistent with φ and that is stuttering bisimilar to p. ��

Theorem 1. Stuttering bisimilarity is strictly finer than winner equivalence,
i.e., �⊆∼w.

Proof. The claim follows immediately from Lemma 2 and the fact that two
stuttering bisimilar infinite paths have the same infinitely occurring priorities.
Strictness is immediate. ��
Note that strong bisimilarity is strictly finer than stuttering bisimilarity; as
a result, it immediately follows that strong bisimilarity is finer than winner
equivalence, too.
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As an aside, we point out that our proof of the above theorem relies on
the construction of the strategy mimickφ,v; its purpose, however, exceeds that
of the proof. If, by solving the stuttering bisimilar quotient of a given parity
game G, one obtains a winning strategy φ for a given player, mimickφ,v defines
the winning strategies for that player in G. This is of particular importance in
case an explanation of the solution of the game is required, for instance when
the game encodes a verification problem for which a strategy helps explain the
outcome of the verification (see e.g. [18]). It is not immediately obvious how a
similar feature could be obtained in the setting of, say, the delayed simulations
of Fritz and Wilke [9], because vertices that belong to different players and that
have different priorities can be identified through such simulations.

4 Experiments

We next study the effect that stuttering equivalence minimisation has in a practi-
cal setting. We do this by solving parity games that originate from three different
sources (we will explain more later) using three different methods: direct solv-
ing, solving after bisimulation reduction and solving after stuttering equivalence
reduction. Parity games are solved using a number of different algorithms, viz. a
naive C++ implementation of the small progress measures algorithm [11] due to
Jurdziński, and the optimised and unoptimised variants that are implemented
in the PGSolver tool [7] of the small progress measures algorithm, the recursive
algorithm due to McNaughton [13], the bigstep algorithm due to Schewe [16]
and a strategy improvement algorithm due to Vöge [20]. We compare the time
needed by these methods to solve the parity games, and we compare the sizes of
the parity games that are sent to the solving algorithms.

To efficiently compute bisimulation and stuttering equivalence for parity games
we adapted a single-threaded implementation of the corresponding reduction al-
gorithms by Blom and Orzan [2] for labelled transition systems.

All experiments were conducted on a machine consisting of 28 Intel® Xeon®
E5520 Processors running at 2.27GHz, with 1TB of shared main memory, run-
ning a 64-bit Linux distribution using kernel version 2.6.27. None of our experi-
ments employ multi-core features.

4.1 Test Sets

The parity games that were used for our experiments are partitioned into three
test sets, of which we give a brief description below.

Test set 1. Our main interest is in the practical implications of stuttering
equivalence reduction on solving model checking problems, so a number of typical
model checking problems have been selected and encoded into parity games.

Five properties of the Firewire Link-Layer protocol (1394) [12] were consid-
ered, as they are described in [17]. They are numbered I–V in the order in which
they can be found in that document.

Four properties are checked on the specification of a lift in [10]; a liveness
property (I), a property that expresses the absence of deadlock (II) and two safety
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properties (III and IV). These typical model checking properties are expressed
as alternation-free μ-calculus formulae.

On a model of the sliding window protocol [1], a fairness property (I) and a
safety property (II) are verified, as well as 7 other fairness, liveness and safety
properties.

Note that some of the properties are described by alternation free μ-calculus
formulae, whereas others use alternation. The parity games induced by the al-
ternation free μ-calculus formulae have different numbers of priorities, but the
priorities along the paths in the parity games are ascending. In contrast, the
paths in the parity games induced by alternating properties have no such prop-
erty and are therefore computationally more challenging. Note that the parity
games generated for these problems only have limited alternations between ver-
tices owned by player 0 and 1 in the paths of the parity games.

Test set 2. The second test set was taken from [7] and consists of several
instances of the elevator problem and the Hanoi towers problem described in
that paper. For the latter, a different encoding was devised and added to the
test set.

Test set 3. This test set consists of a number of equivalence checking problems
encoded into parity games as described in [4].

The problems taken from [7], as well as some of the equivalence checking prob-
lems, give rise to parity games with alternations between both players and pri-
orities.

4.2 Results

To analyse the performance of stuttering equivalence reduction, we measured
the number of vertices and the number of edges in the original parity games,
the bisimulation-reduced parity games and the stuttering-reduced parity games.
Some of the results for test set 1 are shown in Table 1. For the Elevator model
from [7], the results are shown in Table 2.

Figure 1.a compares these sizes (and those not shown in the tables) graphi-
cally; each plot point represents a parity game, of which the position along the
y-axis is determined by its stuttering-reduced size, and the position along the
x-axis by its original size and its bisimulation-reduced size, respectively. The
plotted sizes are the sum of the number of vertices and the number of edges.

In addition to these results, we measured the time needed to reduce and to
solve the parity games. The time needed to solve a parity game using stuttering
equivalence or bisimulation reduction is computed as the time needed to reduce
the parity game, plus the time needed to solve the reduced game. Also, the time
needed to solve these games directly was measured. The solving time for a game
is the time that the fastest of the solving algorithms needs to solve it. The results
are plotted in Figure 1.b. Again, every data point is a parity game, of which the
solving times determine the position in the scatter plot.
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Fig. 1. Sizes and solving times (in seconds) of the stuttering-reduced parity games
set out against sizes and solving times of the original games and of the bisimulation-
reduced games. The vertical axis is shared between the plots in each subfigure. The
dotted line is defined as x = y and serves as a reference. Note that axes are in log scale.

4.3 Discussion

At a glance, stuttering reduction seems a big improvement on bisimulation
reduction in terms of size reduction. Figure 1.a shows clearly that stuttering
equivalence gives a better size reduction than bisimulation equivalence in the
majority of cases. The difference is often somewhere between a factor ten and
a factor thousand. Looking at solving times, the results also seem promising. In
Figure 1.b we see that in most cases reducing the game and then solving it costs
significantly less time. We will discuss the results in more detail for each test set
separately.
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Table 1. Statistics for the parity games for experiments from test set 1. In the Lift
case, N denotes the number of distributed lifts; in the case of SWP, N denotes the size
of the window. The number of priorities in the original (and minimised) parity games
is listed under Priorities.

IEEE 1394 original � ∼
Property Priorities |V | |→| |V | |→| |V | |→|
I 1 346 173 722 422 1 1 1 1
II 1 377 028 679 157 3 730 3 086 5 990 11 180
III 4 1 190 395 2 025 022 102 334 13 551 22 166
IV 2 524 968 875 296 4 6 10 814 17 590
V 1 1 295 249 2 150 590 1 1 1 1

Lift original � ∼
Property Priorities N |V | |→| |V | |→| |V | |→|
I 4 2 1 691 4 825 22 58 333 1 021
I 4 3 63 907 240 612 131 450 5 148 23 703
I 4 4 1 997 579 9 752 561 929 4 006 74 059 462 713
II 2 2 846 2 172 5 9 94 240
II 2 3 31 954 121 625 16 39 1 092 4 514
II 2 4 998 790 5 412 890 64 193 14 353 80 043
III 1 2 763 1 903 1 1 1 1
III 1 3 26 996 99 348 1 1 1 1
III 1 4 788 879 4 146 139 1 1 1 1
IV 2 2 486 1 126 4 6 151 396
IV 2 3 11 977 39 577 5 9 1 741 6 951
IV 2 4 267 378 1 257 302 7 15 23 526 122 230

SWP original � ∼
Property Priorities N |V | |→| |V | |→| |V | |→|
I 3 1 1 250 3 391 4 7 314 849
I 3 2 14 882 47 387 4 7 1 322 4 127
I 3 3 84 866 291 879 4 7 4 190 14 153
I 3 4 346 562 1 246 803 4 7 11 414 40 557
II 2 1 1 370 4 714 5 8 90 316
II 2 2 54 322 203 914 5 8 848 3 789
II 2 3 944 090 3 685 946 5 8 5 704 28 606
II 2 4 11 488 274 45 840 722 5 8 34 359 183 895

Test set 1. For these cases, we see that the size reduction is always better
than that of bisimulation reduction, unless bisimulation already compressed the
parity game to a single state. Solving times using stuttering equivalence are in
general better than those of direct solving.

The experiments indicate that minimising parity games using stuttering equiv-
alence before solving the reduced parity games is at least as fast as directly
solving the original games.
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Table 2. Statistics for the parity games for the FIFO and LIFO Elevator models taken
from [7]. Floors indicates the number of floors.

Elevator Models original � ∼

Model Floors Priorities |V | |→| |V | |→| |V | |→|
FIFO 3 3 564 950 351 661 403 713
FIFO 4 3 2 688 4 544 1 588 2 988 1 823 3 223
FIFO 5 3 15 684 26 354 9 077 16 989 10 423 18 335
FIFO 6 3 108 336 180 898 62 280 116 044 71 563 125 327
FIFO 7 3 861 780 1 431 610 495 061 919 985 569 203 994 127
LIFO 3 3 588 1 096 326 695 363 732
LIFO 4 3 2 832 5 924 866 2 054 963 2 151
LIFO 5 3 16 356 38 194 2 162 5 609 2 403 5 850
LIFO 6 3 111 456 287 964 5 186 14 540 5 763 15 117
LIFO 7 3 876 780 2 484 252 16 706 51 637 18 563 53494

The second observation we make is that stuttering equivalence reduces the
size quite well for this test set, when compared to the other sets. This may be
explained by the way in which the parity games were generated. As they encode
a μ-calculus formula together with a state space, repetitive and deterministic
parts of the state space are likely to generate fragments within the parity game
that can be easily compressed using stuttering reduction.

Lastly, we observe that solving times using bisimulation reduction are not in
general much worse than those using stuttering reduction. The explanation is
simple: both reductions compress the original parity game to such an extent that
the resulting game is small enough for the solvers to solve it in less than a tenth
of a second.

Test set 2. Both stuttering equivalence and strong bisimulation reduction per-
form poorly on a reachability property for the Hanoi towers experiment, with
the reduction times vastly exceeding the times required for solving the parity
games directly. A closer inspection reveals that this is caused by an unfortunate
choice for a new priority for vertices induced by a fixpoint-free subformula. As
a result, all paths in the parity game have alternating priorities with very short
stretches of the same priorities, because of which hardly any reduction is possi-
ble. We included an encoding of the same problem which does not contain the
unfortunate choice, and indeed observe that in that case stuttering equivalence
does speed up the solving process.

The LIFO Elevator problem shows results similar to those of the other model
checking problems. The performance with respect to the FIFO Elevator however
is rather poor. This seems to be due to three main factors: the relatively large
number of alternating fixed point signs, the alternations between vertices owned
by player 0 and vertices owned by player 1, and the low average branching degree
in the parity game. This indicates that for alternating μ-calculus formulae with
nested conjunctive and disjunctive subformulae, stuttering equivalence reduction
generally performs suboptimal. This should not come as a surprise, as stuttering
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equivalence only allows one to compress sequences of vertices with equal priorities
and owned by the same player.

Test set 3. The results for these experiments indicate that reduction using stut-
tering equivalence sometimes performs poorly. The subset where performance is
especially poor is an encoding of branching bisimilarity, which gives rise to par-
ity games with alternations both between different priorities as well as different
players. As a result, little reduction is possible.

5 Conclusions

We have adapted the notion of stuttering bisimilarity to the setting of parity
games, and proven that this equivalence relation can be safely used to minimise
a parity game before solving the reduced game.

Experiments were conducted to investigate the effect of quotienting stuttering
bisimilarity on parity games originating from model checking problems. In many
practical cases this reduction leads to an improvement in solving time, however
in cases where the parity games involved have many alternations between odd
and even vertices, stuttering bisimilarity reduction performs only marginally bet-
ter than strong bisimilarity reduction. Although we did compare our techniques
against a number of competitive parity game solvers, using other solving algo-
rithms, or even other implementations of the same algorithms, may give different
results.

The fact that stuttering bisimilarity does not deal at all well with alternation
leads us to believe that weaker notions of bisimilarity, in which vertices with
different players can be related under certain circumstances, may resolve the
most severe performance problems that we saw in our experiments. We regard
the investigation of such weaker relations as future work.

Stuttering bisimilarity has been previously studied in a distributed setting [2].
It would be interesting to compare its performance to a distributed implementa-
tion of the known solving algorithms for parity games. However, we are only
aware of a multi-core implementation of the Small Progress Measures algo-
rithm [19].
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Abstract. Behavior models are often used to describe behaviors of the
system-to-be during requirements analysis or design phases. The correct-
ness of the specified model can be formally verified by model checking
techniques. Model checkers provide counterexamples if the model does
not satisfy the given property. However, the tasks to analyze counterex-
amples and identify the model errors require manual labor because coun-
terexamples do not directly indicate where and why the errors exist, and
when liveness properties are checked, counterexamples have infinite trace
length, which makes it harder to automate the analysis. In this paper, we
propose a novel automated approach to find errors in a behavior model
using an infinite counterexample. We find similar witnesses to the coun-
terexample then compare them to elicit errors. Our approach reduces
the problem to a single-source shortest path search problem on directed
graphs and is applicable to liveness properties.

Keywords: Requirements Analysis, Design, Model Checking, Error
Localization.

1 Introduction

Model Driven Engineering (MDE) is being accepted as a practical approach to
develop reliable software efficiently [24]. Following MDE, a model of the software-
to-be is built first, which goes through a series of model transformations to derive
final code. It is obvious that the whole scheme crucially depends on correctness
and appropriateness of the initial model.

As widely acknowledged, model checking [5] is one of the most powerful meth-
ods for formally validating correctness and appropriateness of a given model.
The mostly used type of model checking technique takes behavior models rep-
resented as state machines as its target and checks if a given set of properties
hold, employing graph searching algorithms or symbolic logical formula decision
algorithms. Comparing the model checking approach to the theorem proving
approach, one of the advantages of the former is often attributed to its capabil-
ity of presenting counterexamples when verification fails. E. Clarke writes “It is
impossible to overestimate the importance of the counterexample feature [4].”

But in practice, difficulties arise after counterexamples are obtained. Coun-
terexamples do not directly indicate where in the model the errors that cause
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c© Springer-Verlag Berlin Heidelberg 2011



Counterexample-Based Error Localization of Behavior Models 223

them exist. It is up to the developer’s effort and intuition to find the part of the
model that should be fixed to prevent occurrence of the counterexamples.

In this paper, we propose a new method and a tool that help developers fix
errors in their models based on the detected counterexamples. In the research
field of software model checking and debugging of source code, there exist a
certain number of techniques that explain counterexamples and localize errors
[1,13,3,12,11,16]. However, those existing methods for programs [1,13,12,11] only
treat the violation of safety properties due to the limitation of software model
checkers for source programs. Counterexamples for safety properties are by na-
ture composed of event traces with finite length. Then it is relatively easy to
automate identification of bad events in the trace. On the other hand, error lo-
calization for liveness properties poses a greater challenge, because in general it
requires analysis of infinite-length counterexamples.

The state space of a program at the source code level is in general quite huge
and when there is a loop structure, it is hard to decide when to stop expanding
the state model graph. Techniques such as predicate abstraction are used to
circumvent the problem. It is all right if a counterexample against some safety
property is found in the current abstraction, because it can safely be concluded
that the program violates the property. Otherwise, to explore the unsearched
space, loops have to be expanded and it is not easy to decide when to stop
the search. To deal with liveness properties, it induces much harder problems,
because it is essential to identify precise loop structures (strongly connected
components) and moreover even if counterexamples are found in an abstracted
model, it is not sound to conclude that the original concrete model also violates
the liveness property.

There are some pieces of work trying to treat liveness properties [3,16]. How-
ever, they have limitations such that it involves highly expensive computational
complexity [3] or only specific kinds of liveness properties are supported [16].

In this paper, we proposeLLL-S, a novel error localization technique in the given
behavior model. We address the problem of analyzing an infinite trace, which takes
the form of a finite prefix followed by an infinite cycle. Our idea is to find infi-
nite and lasso-shaped witnesses (traces that satisfy the property) that resemble
the given counterexample, and identify events to be modified by comparing each
witness with the counterexample. We report all transitions that trigger the differ-
ences as candidate errors and the corresponding witnesses as their explanations.
We use a Büchi automaton recognizing the target property as a set of witnesses,
and adopts the edit distance between strings to measure distances between infi-
nite and lasso-shaped traces. We find appropriate witnesses based on the distance
by solving a single-source shortest path search problem on the Büchi automaton.
LLL-S can be applied to the safety property class as well, where the length of coun-
terexamples is finite and that of witness traces is infinite.

The main contributions of LLL-S are as follows. LLL-S can be applied to any
Linear Temporal Logic formulas [9,21], including both liveness properties and
safety properties. LLL-S focuses on errors in the behavior models that are used
in MDE. We do not have to prepare a set of witnesses in advance, because it is
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given as a Büchi automaton. Since LLL-S is based on well-established techniques
combined together, it is easily automated.

Section 2 presents a motivating example. Section 3 explains the background.
We explain LLL-S in Section 4. In Section 5, we report the results of the tool im-
plementation of LLL-S and some case studies. We discuss some issues concerning
our work and introduce related work in Section 6, and conclude in Section 7.

2 Motivating Example

Consider a concurrent system with a semaphore [21], CSys, whose LTS is shown
in Fig. 1 (a). A LTS is a finite state machine described in terms of events.
CSys consists of three processes: p.1, p.2 and Sema. The initial states of the
processes are labeled 0. Two processes p.1 and p.2 repeatedly enter and leave
the critical region by p.{1,2}.enter and p.{1,2}.exit, respectively. Their exclusive
access to the critical region is controlled by the mutual exclusion mechanism of
the semaphore process Sema such that p.i.mx.down (i = 1, 2) lets p.i enter
the critical region, and blocks the entrance of the other process until p.i.mx.up
occurs. The transitions sharing source and destination states are depicted by a
single arrow. For example, the transition (0, p.{1,2}.mx.up, 1) of Sema denotes
(0, p.1.mx.up, 1) and (0, p.2.mx.up, 1). The behavior of CSys is presented by
parallel composition [21] of three processes, which is based on interleaving of
unshared events and simultaneous executions of shared events.

To verify the correctness of CSys’s behavior, consider the fluent Linear Tem-
poral Logic property EXIT1= G(p.1.enter ⇒ Fp.1.exit), where G, F and ⇒
respectively denote always, eventually and implication. EXIT1 says that when
p.1 enters the critical region, p.1 eventually leaves it. However, CSys does not
satisfy EXIT1, because when p.1 stays in the critical region, p.2 can access it
infinitely many times. The flaw in CSys is the incorrect mutual exclusion mech-
anism realized by Sema. A counterexample is πc = PCω, where the prefix P
and the cycle C are finite event sequences shown in Table 1. The problem is to
identify erroneous transitions of Sema.

We will find a witness τ = P ′C′ω that are closest to πc. A set of witnesses
is given by a Büchi automaton recognizing EXIT1, B(EXIT1) in Fig. 1 (b). Its
initial state is b0 and its event set is A1, identical to the event set of CSys. Term
(p, A, q) represents the transitions that share the source state p and destination

(a) (b)

Fig. 1. Concurrent System CSys (a) and B(EXIT1) (b)
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Table 1. Counterexample of CSys for EXIT1 (πc), and Witnesses (from τ 1 to τ 4)

πc=[p.1.mx.down, p.1.enter ( p.2.mx.down, p.2.enter, p.2.exit, p.2.mx.up)ω]
τ 1=[p.1.mx.down, p.1.enter, p.1.exit (p.2.mx.down, p.2.enter, p.2.exit, p.2.mx.up)ω]
τ 2=[p.1.mx.down, p.1.enter (p.2.mx.down, p.1.exit, p.2.exit, p.2.mx.up)ω]
τ 3=[p.1.mx.down, p.1.enter, p.1.exit ( p.2.mx.down, p.2.enter, p.2.exit )ω]
τ 4=[(p.1.mx.down, p.1.enter, p.1.exit, p.2.mx.down, p.2.enter, p.2.exit, p.2.mx.up)ω]

state q, and whose events constitute the set A. To explain the advantage of using
the closest witnesses to the counterexample for error localization and show the
limitation of existing techniques, consider witnesses accepted by B(EXIT1) shown
in Table 1. One of the simplest distances between πc and τ is the number of edit
operations required in transforming PC into P ′C′ ignoring the cycling of C and
C′ (denoted by de(πc, τ)), whose concept is almost the same as those proposed
by Chaki et al. [3] and Groce et al. [12].

The witness τ1 is the closest to πc because at least one insertion of p.1.exit
after the second event p.1.enter of πc should be applied to make πc satisfy EXIT1
(de(πc, τ1) = 1). The witness τ1 tells us that p.1 should leave the critical region
before p.2 enters there. Thus, τ1 indicates that Sema does not correctly control
p.1 and p.2’s access to the critical region, and that the events other than p.1.enter
have nothing to do with making πc satisfy EXIT1. By comparing πc with τ1, we
know the erroneous transitions (0, p.1.mx.down, 1) and (1, p.2.mx.down, 2) of
Sema that are the nearest to the inserted event p.1.enter. These transitions show
that Sema allows p.2 to enter the critical region by p.2.mx.down after it allows
p.1 to enter there by p.1.mx.down but without following p.1.mx.up.

Another witness τ2 is also the closest to πc, i.e. de(πc, τ2) = 1. Their difference
is interpreted that p.2.enter of πc should be forbidden. Therefore, p.2 should
not enter the critical region infinitely many times when p.1 stays there, and the
transition (1, p.2.mx.down, 2) of Sema enables p.2 to enter the region.

However, the witness τ3 is unsuitable for showing the errors because τ3 ad-
ditionally requires the deletion of p.2.mx.up from τ1, which is an unnecessary
operation to make πc satisfy EXIT1 (i.e. de(πc, τ3) = 2). This deletion may mis-
lead the developers into believing that p.2.mx.up should not occur. The distance
de appropriately shows that τ1 and τ2 are closer to πc than τ3, and that τ3 must
not be used for error localization.

The witness τ4 is the closest to πc according to de because τ1 and τ4 consist of
the same finite event sequence. However, τ4 does not provide useful information
to determine whether every event in P should be repeated infinitely many times,
or P does not contain errors and p.1.exit is the only significant event to modify
the violation of EXIT1 as the case of τ1. Thus, we wish to judge that τ4 is not
as close to πc as τ1, but de does not work for our purpose. The cause of the
problem is that de does not separate differences between the prefixes and the
cycles of πc and τ4. Other existing methods [15,27,1,13,23,6,11] have the similar
limitation due to their assumption that traces are of finite-length.
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To summarize, it is desirable for error localization to obtain τ1 and τ2, but
not τ3 or τ4 . In Section 4, we present a novel method to automatically find such
witnesses based on a specific distance and the errors in CSys.

3 Background

A LTS is a tuple L = (S, A, Δ, s0), where S is a finite set of states, A is a set
of events, Δ ⊆ S × A × S is a transition relation, and s0 ∈ S is the initial
state. A trace of L is a sequence of events π = [a0, a1, . . . , an−1] (∀0 ≤ i <
n.(si, ai, si+1) ∈ Δ). For π, the sequence of states [s0, s1, . . . , sn] is called a path
of π. If n =∞, we call π an infinite trace. Otherwise, we call π a finite trace. A
set of all traces of L is denoted by Tr(L). The suffix of a trace π ∈ Tr(L) from
ai is denoted by π[i]. A transition (s, a, s) ∈ Δ is called a self transition.

Concerning model checking on L, a Büchi automaton-based technique has
been proposed for FLTL [9]. A fluent is an atomic proposition whose truth value
is determined over occurrence of events appearing in a trace. A fluent is a tuple
fl = (Ifl, Tfl, bfl), where Ifl, Tfl ∈ A are a set of initiating and terminating events
respectively such that Ifl ∩ Tfl = ∅, and bfl ∈ {t, f} is the initial truth value. For
π ∈ Tr(L), π[i] satisfies fl (π[i] |= fl) iff one of the following conditions holds:
either bfl ∧ (∀j ∈ N .0 ≤ j ≤ i ⇒ aj �∈ Tfl), or ∃j ∈ N .(j ≤ i ∧ aj ∈ Ifl) ∧ (∀k ∈
N .j < k ≤ i⇒ ak �∈ Tfl). The set of fluents considered is denoted by FL.

A FLTL formula is defined inductively with the boolean and temporal op-
erators as follows: φ, ψ = t | fl ∈ FL | φ ∧ ψ | ¬φ | Xφ | φUψ. Given a trace
π ∈ Tr(L), the satisfaction operator |= is defined inductively as follows:

π |= t, π |= fl ∈ FL iff π[0] |= fl, π |= ¬φ iff π �|= φ,
π |= φ ∧ ψ iff (π |= φ) and (π |= ψ), π |= Xφ iff π[1] |= φ,
π |= φUψ iff ∃j ≥ 0.π[j] |= ψ and ∀0 ≤ i < j.π[i] |= φ.

Other operators are derived from the above operators: φ ∨ ψ = ¬(¬φ ∧ ¬ψ),
φ ⇒ ψ = ¬φ ∨ ψ, Fφ = tUφ and Gφ = ¬F¬φ. We define L |= φ (L satisfies
φ) iff ∀π ∈ Tr(L).π |= φ. FLTL formulas are classified into safety and liveness
properties [21]. A safety property such as G¬p asserts that nothing bad ever
happens, while a liveness property such as Fp asserts that something good will
eventually happen. EXIT1 is an instantiation of liveness properties.

Model checking on LTS L for FLTL formula φ is conducted as follows [9]: 1)
build a Büchi automaton that accepts all traces satisfying ¬φ, B(¬φ), 2) build
the parallel composition of L and B(¬φ), and 3) search for an accepting trace,
which is a counterexample. A Büchi automaton B = (Sb, Ab, Δb, s0, Sa

b ) is a LTS
augmented with a set of accepting states, where Sa

b ⊆ Sb is an accepting state set
and the other constructs are the same as those of a LTS. A trace π is accepted
by B if π passes some accepting state infinitely many times.

Parallel composition (‖) [21] captures the concurrent and interactive execution
of LTSs. Let L1 = (S1, A1, Δ1, s1

0) and L2 = (S2, A2, Δ2, s2
0) be LTSs. L1 ‖ L2 =

(S1 × S2, A1 ∪ A2, Δ, (s1
0, s

2
0)), where Δ ⊆ (S1 × S2) × (A1 ∪ A2)× (S1 × S2)

is computed as follows: Δ = {((s1, s2), a, (t1, t2))|(s1, a, t1) ∈ Δ1, (s2, a, t2) ∈
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Fig. 2. Shape of Counterexample and Witness

Δ2} ∪ {((s1, s2), a, (t1, s2)) | (s1, a, t1) ∈ Δ1, a /∈ A2} ∪ {((s1, s2), a, (s1, t2)) |
(s2, a, t2) ∈ Δ2, a /∈ A1}.

At step 3 of the checking procedure for liveness properties, algorithms to
search for strongly connected components such as nested depth-first search [14]
are used by many existing model checkers (e.g. SPIN [14]). They find a coun-
terexample that forms an infinite and lasso-shaped trace π = PCω (see Fig. 2),
where the prefix P and the cycle C are finite event sequences whose subsequences
contain no cycle. C passes some accepting state of B(¬φ) depicted as a double
circle in Fig. 2. Hence, we assume π = PCω . An example is πc in Table 1. A
witness is a trace satisfying φ and is assumed to have a form τ = P ′C′ω.

4 Error Localization Procedure

This section presents an error localization technique LLL-S. The idea is that
we find the closest (i.e. the most similar) witnesses to π, and then detect their
differences. The inputs to LLL-S are a LTS L = (S, A, Δ, s0), a FLTL formula
φ where L �|= φ, and a counterexample π = PCω, where P = [a0, a1, . . . , am−1]
and C = [b0, b1, . . . , bn−1] for 0 ≤ m and 1 ≤ n. Let B(φ) = (Sφ, Aφ, Δφ, u0, S

a
φ).

We assume that Aφ ⊆ A and a witness to be searched has a form τ = P ′C′ω .
If we consider an event as a character, a trace is regarded as an infinite string.

We define the distance D between π and τ using the edit distance between finite
strings on the edit operations insertion, deletion and replacement [20]. The edit
distance between finite strings s1 and s2, denoted by d(s1, s2), is the minimum
cost to change one string to the other. We assume that the cost of each edit
operation is 1. The distance D is defined as follows: D(π, τ) = d(P, P ′)+d(C, C′).

D meets all properties of a metric, i.e. positive definiteness, symmetry and
triangle inequality when we define π = τ iff P = P ′ and C = C′. D is appropriate
for our goal because it distinguishes the distance of prefixes and cycles. For
example, in Table 1, D(πc, τ1) = D(πc, τ2) = 1, D(πc, τ3) = 2 and D(πc, τ4) =
5. D judges that both τ1 and τ2 are the closest to πc while τ3 and τ4 are not.

4.1 Outline

As a set of witnesses is given by traces accepted by B(φ), we find every witness
τ in B(φ) such that D(π, τ) is the smallest. In order to make τ meet the Büchi’s
acceptance condition (see Fig. 2), we divide the procedure to find τ into two
steps: 1) finding a sequence that ends in an accepting state sa

φ ∈ Sa
φ (i.e. the
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sequence (1) in Fig. 2) and 2) finding a sequence that leaves sa
φ and returns to

a state on the path from u0 to sa
φ (i.e. the sequence (2) in Fig. 2).

First we construct a model WA
π from the counterexample π, embedding edit

operations and their costs. WA
π is a Weighted Transition System (WTS) [19], a

LTS augmented with a cost function ζw : Transitions→ Cost. As π has a struc-
ture PCω, WA

π consists of a linear path corresponding to P , followed by a cycle
corresponding to C. For the P = [a0, . . . , am−1] part, states pi and transitions
(pi, ai, pi+1) (i = 0, . . . , m − 1) are generated. For the C = [b0, . . . , bn−1] part,
states ci and transitions (ci, bi, ci+1) (i = 0, . . . , n − 1) are generated, where cn

is identical to c0. All the transitions thus generated have cost 0. The transitions
are augmented by the following three types of new transitions with cost 1.

1. Replace: for a pair (pi, pi+1), transitions (pi, a, pi+1) where a ∈ (A − {ai}),
meaning replacing the event ai with the event a. Likewise, for a pair (ci, ci+1),
transitions (ci, b, ci+1) where b ∈ (A− {bi}).

2. Delete: for a pair (pi, pi+1), transition (pi, ε, pi+1) meaning deleting ai. ε is
a null event. Likewise, for a pair (ci, ci+1), transition (ci, ε, ci+1).

3. Insert: for a state pi, transitions (pi, a, pi) where a ∈ A, meaning inserting a
at pi. Likewise, for a state ci, transitions (ci, b, ci) where b ∈ A.

Next, we build a product model W�� = B(φ) 	
 WA
π . The problem of finding

witnesses of the property that are the most similar to the counterexample is
reduced to the problem of finding the shortest paths in the graph of W��, starting
from the initial vertex, visiting a vertex corresponding to an accepting state of
B(φ) and ending in a vertex that closes the path to make a cycle. The vertex of
the accepting state should be included in the cycle. We can employ a shortest
path algorithm such as Dijkstra’s method [7] to solve this problem. In the first
step, the shortest paths from the initial vertex to the accepting vertices are
obtained. Then, for each accepting vertex that has been reached from the initial
vertex, the second shortest path problem is solved starting from the accepting
vertex, ending in the vertices on the shortest path from the initial vertex to the
accepting vertex, so as to close a cycle. Thus, we need to solve the single-source
shortest path problem va + 1 times, where va is the number of accepting states.

The differences between τ and π indicate potential errors. LLL-S detects every
difference and extracts every transition that has the erroneous event.

4.2 Constructing WTS Models

We define a WTS as an extension of a LTS [19]. A WTS is a tuple W =
(Sw, Aw, Δw, q0, ζ, Mw), where Sw is a finite set of states, Aw is a set of event la-
bels, Δw ⊆ Sw×Aw×Sw is a transition relation, and q0 ∈ Sw is the initial state,
the total function ζ : Δw → R is a weight to every transition, and Mw ⊆ Sw is
a set of end states. We use the terms on a LTS also for a WTS, e.g. traces.

A WTS WA
π made from π consists of two parts: the part constructed from P

and that from C which respectively show edit operations and their costs applied
to P and C. Finite traces of WA

π that pass the P and C part respectively provide
P ′ and C′. A set of end states includes all states of the C part to indicate that a
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Fig. 3. WTS WA1
πc Constructed from πc

finite trace in WA
π ends in any element of the set, and that an accepting state of

B(φ) appearing in the element is the destination of the sequence (1) in Fig. 2.
The WTS WA

π = (Sw, A ∪ {ε}, Δw, q0, ζw, Mw) of π is constructed as follows.
The state set Sw = {pi|0 ≤ i < m} ∪ {ci|0 ≤ i < n}. The initial state q0 = p0 if
m �= 0; otherwise, q0 = c0. The transition relation Δw = Δp ∪Δb ∪Δc, where
Δp, Δb and Δc are defined as follows. Δp = {(pi, a, pi+1)| 0 ≤ i < m − 1, a ∈
A ∪ {ε}} ∪ {(pi, a, pi)|0 ≤ i < m, a ∈ A}. Δb = {(pm−1, a, c0)|a ∈ A ∪ {ε}}
if m �= 0; otherwise, Δb = ∅. Δc = {(ci, a, ci+1)|0 ≤ i < n − 1, a ∈ A ∪
{ε}} ∪ {(cn−1, a, c0)|a ∈ A ∪ {ε}} ∪ {(ci, a, ci)|0 ≤ i < n, a ∈ A}. For each
δ ∈ Δw, ζw(δ) = 0 if either of the following conditions holds: δ = (pi, ai, pi+1)(i =
0, . . . , m − 2), δ = (pm−1, am−1, c0), δ = (ci, bi, ci+1) (i = 0, . . . , n − 2), or δ =
(cn−1, bn−1, c0); otherwise, ζw(δ) = 1. The set of end states Mw = {ci|0 ≤ i < n}.

Fig. 3 shows the WTS model WA1
πc constructed from πc in Table 1.The initial

state is p0 and end states are states with dashed circles ci (i = 0, . . . , 3). A weight
to each transition is written after the event. The set of transitions (p, A1, q) with
weight w indicates that every transition in (p, A1, q) has the same weight w. The
P part of WA1

πc consists of the states pi(i = 0, 1) and c0, and the transitions de-
fined by Δp and Δb. For example, a transition (p0, p.1.mx.down, p1) with weight
0 shows p.1.mx.down in P . Transitions (p0, A1 − {p.1.mx.down}, p1) mean that
p.1.mx.down is replaced by another event. A transition (p0, ε, p1) represents that
p.1.mx.down is deleted. Self transitions (p0, A1, p0) show insertion operations
just before p.1.mx.down. Likewise, the C part of WA1

πc consists of the states ci

(i = 0, . . . , 3) and the transitions defined by Δc.
Finite traces that pass from p0 to c0 present P ′. Similarly, finite traces that

pass from c0 to itself via ci(i = 1, . . . , 3) present C′.

4.3 Finding Witnesses

We next find a witness τ such that D(π, τ) is the smallest by conducting the
single-source shortest path search twice.

We first find a sequence that ends in an accepting state sa
φ ∈ Sa

φ. We compute
the product of the WTS WA

π and B(φ) so that such event sequences can be
obtained by the shortest path from the initial state of the product graph.

We extend the parallel composition operation of LTSs to the operation (	
)
of a LTS and a WTS [19]. Let B = (Sb, Ab, Δb, s0, S

a
b ) and W = (Sw, Aw, Δw,

q0, ζ, Mw) be a Büchi automaton and a WTS such that Ab ⊆ Aw, respectively.
Their product is a WTS B 	
 W = (Sb × Sw, Aw, Δ′

w, (s0, q0), ζ′, Sa
b × Mw),

where Δ′
w ⊆ (Sb × Sw) × Aw × (Sb × Sw) is a transition relation such that
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Fig. 4. Fragment of B(EXIT1) 
� WA1
πc

Δ′
w = Δ1

w ∪Δ2
w where Δ1

w = {((sb, sw), a, (s′b, s
′
w))|(sb, a, s′b) ∈ Δb, (sw, a, s′w) ∈

Δw} and Δ2
w = {((sb, sw), a, (sb, s

′
w))|(sw, a, s′w) ∈ Δw, a /∈ Ab}. For each δ =

((sb, sw), a, (s′b, s
′
w)) ∈ Δ′

w, we define ζ′ : Δ′
w →R by ζ′(δ) = ζ((sw , a, s′w)).

Intuitively, the WTS B(φ) 	
 WA
π labels transitions of B(φ) with costs of edit

operations applied to π. Each end state (sa
φ, cM ) ∈ Sa

φ×Mw is both an accepting
state sa

φ of B(φ) and an end state cM of WA
π . The shortest paths from the initial

state (u0, q0) to (sa
φ, cM ) present the event sequences that end in sa

φ.
For each end state (sa

φ, cM ), we conduct the second shortest path search to find
sequences ending in a state on each shortest path from (u0, q0) to (sa

φ, cM ). The
witness τ = P ′C′ω is finally generated by combining the sequences computed
by the two shortest path searches. We remove τ whose C′ is an empty sequence
from candidate witnesses. We collect every witness such that the sum of the
distances obtained by the first and second search is the smallest of all possible
witnesses.

Consider B(EXIT1) and WA1
πc . A fragment of their product is shown in Fig. 4,

where the only relevant information to find τ1 are written. One of the shortest
paths from the initial state (b0, p0) to an end state (b0, c0) presents the sub-
sequence of τ1 to the accepting state b0 of B(EXIT1): H1 = [ p.1.mx.down,
p.1.enter, p.1.exit ]. Next, the sequence T 1 = [ p.2.mx.down, p.2.enter, p.2.exit,
p.2.mx.up] is presented by the shortest path from (b0, c0) to itself, which is one of
the states on the shortest path from (b0, p0) to (b0, c0). We find τ1 by combining
H1 and T 1. Another witness τ2 is obtained using the same procedure.

4.4 Identifying Errors

To find errors in L, we compute the differences between π = [a0, a1, . . . ] and τ .
We can assume that the different events between π and τ directly or indirectly
designate causes of the property violation. If L consists of r processes, each of
which is denoted by Lh = (Sh, Ah, Δh, sh

0 ) where 0 ≤ h < r and A = ∪0≤h<rA
h,

we identify a set of transitions over the processes triggered by the events as
error candidates. However, some of the processes might not have transitions
corresponding to the events to be modified. For such processes, we take a set of
last transitions that occur before the differences due to the assumption that the
events of these transitions trigger the events to be modified.

If an event ad is replaced or deleted, we say that ad is a mismatched event. A
candidate error in Lh is its transition with the mismatched event ad if ad ∈ Ah;
otherwise, the last transition that occurs before ad. LLL-S returns the transition
(s, aj , t) ∈ Δh such that 0 ≤ j ≤ d and aj ∈ Ah ∧∀l ∈ N .(j < l ≤ d⇒ al /∈ Ah).

Consider πc and τ2. p.2.enter is the mismatched event as it is replaced by
p.1.exit. LLL-S finds error candidates for p.1, p.2 and Sema using the mismatched
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event. For Sema, we have to examine the preceding events in Sema in explor-
ing the cause of error because p.2.enter does not belong to the event set of
Sema. The Sema’s last event occurring before p.2.enter is p.2.mx.down. LLL-
S reports Sema’s error candidate (1, p.2.mx.down, 2), which is interpreted that
p.2.mx.down triggers p.2.enter of p.2. In addition, LLL-S respectively returns
(1, p.1.enter, 2) of p.1 and (1, p.2.enter, 2) of p.2 as the other error candidates.

If an event is inserted between ad−1 and ad, LLL-S reports a pair of transitions
of Lh that enclose the inserted event as follows. 1) Return the transition of Lh

with ad−1 if ad−1 ∈ Ah; otherwise, its last transition occurring before ad−1 using
the procedure above by regarding ad−1 as a mismatched event. 2) Return the
transition of Lh with the event ad if ad ∈ Ah; otherwise, its first transition
occurring after ad. LLL-S returns the transition (s, aj , t) ∈ Δh such that j ≥ d
and aj ∈ Ah ∧ ∀l ∈ N .(d ≤ l < j ⇒ al /∈ Ah).

Consider finding the error candidate of Sema using τ1. The events that en-
close the inserted event p.1.exit in πc are p.1.mx.down and p.2.mx.down. LLL-S
returns the transitions (0, p.1.mx.down, 1) and (1, p.2.mx.down, 2) as a candi-
date cause of the violation. The inserted event p.1.exit may be demanded by the
preceding event p.1.mx.down or the succeeding event p.2.mx.down or both.

Of all transitions computed by LLL-S, developers decide which transitions
appropriately capture the erroneous behavior of L with the help of the witnesses.
For example, the erroneous mutual exclusion realized by Sema is captured by the
transitions given above, and both τ1 and τ2 show how this behavior is avoided.
The presentation of witnesses and error candidates enable developers to easily
identify the incorrect processes, which is an important character of LLL-S.

5 Implementation and Case Studies

We implemented a prototype tool in Java that automatically executes LLL-S.
The inputs to the tool are a LTS model, the Büchi automaton of a property and
a counterexample. The tool outputs a list of potential erroneous transitions and
the corresponding witnesses. To enhance its performance, we have implemented
some heuristics, e.g., the tool does not conduct the second search in Section 4.3 if
the edit distance obtained by the first search is larger than the smallest value of
distance D computed in previous iterations. The tool also supports error local-
ization for safety property violation, which produces finite counterexamples [9].
Since the cycle of a counterexample, in this case, is regarded as an empty se-
quence [ε], we revise the way of synthesizing the WTS model in Section 4 so
that ε can be replaced by another event [19]. The witnesses to be searched are
infinite and lasso-shaped because they satisfy the Büchi’s acceptance condition.

We conducted seven case studies with the prototype tool: the microwave
oven (MOvn) [5], the Andrew File System (AFS-1) [26], CSys, the mine pump
(MPmp) [25], and the distributed databases (DDb1, DDb2 and DDb3) [21]. Each
case study was conducted as follows: 1) we made a LTS model consisting of one
or more processes, 2) we prepared a FLTL property that the model did not sat-
isfy, 3) we obtained a counterexample and a Büchi automaton recognizing the
property using the model checker LTSA [21], and 4) we executed our tool and
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Table 2. The Number of Generated Witnesses Indicating Errors (A) out of Total
Number of Generated Witnesses (B) and Execution Time for Each Case

System Büchi Automaton Counterexample Witnesses Time
Model States/Trans. Property States/Trans. Prefix/Cycle (A) (B) [s]
MOvn 7/21 HEAT 7/91 0/4 2 10 0.23
AFS-1 16/21 VALID 4/28 5/- 2 8 0.05
CSys 16/32 MUTEX 4/16 4/- 7 7 0.04

EXIT2 6/99 5/4 3 12 0.34
MPmp 22/56 EMG 2/30 3/4 2 9 0.16
DDb1 160/402 QUIS 10/897 12/1 2 23 0.25
DDb2 6460/18537 QUIS 10/890 26/33 10 40 5.35
DDb3 - SAFE 452/33900 18/- 57 467 37.14

manually investigated whether its result contained the transitions that were the
causes of violations and the witnesses that appropriately explained the causes
or not. Table 2 shows the results of the case studies. When the target property
is a safety property, the length of the counterexample cycle is written as ”-” in
the table. We executed our tool ten times for each case on 3.4GHz Pentium 4
with 2GB RAM (JDK 1.6.0), and its average is shown as execution time. The
DDb3 model has more than 2 million states and 60 million transitions, but its
size could not be computed due to the heap memory limitation (shown as ”-”).

MOvn and MPmp are models with a single process. Although in the case of
MOvn, we had to change the shape of the counterexample beforehand because
LLL-S generates witnesses based on its shape, LLL-S successfully pointed out
transitions that include the erroneous ones in both cases. Compared to manual
error search, LLL-S made the search space for errors reduced. AFS-1, CSys,
DDb1, DDb2 and DDb3 models consist of multiple processes. To find errors
in component processes by hand, we have to investigate the behavior of all
processes. The composite behavior analysis of all processes requires a complex
composite model and makes it hard to manually identify errors whose cause is
rooted in concurrency. LLL-S generated error candidates for all the processes we
investigated and in all the cases, real errors were located from its subset. The
task of examining the error candidates saves us much effort in locating errors
compared to the case of analyzing the counterexample without any other clues.

Let us see the DDb1 case. It consists of a ring of three database nodes and a
controller that allows a single update of the local data of each node. QUIS requires
that every node become inactive, i.e., each node is not engaged in an update [21].
LLL-S found error candidates and the corresponding witnesses showing that an
inactive node should not update or the controller should not terminate. LLL-S
also reported the appropriate cause of violation that the controller terminates
before checking inactivity of all nodes. We selected the error of the controller
guided by two witnesses indicating how its incorrect behavior was avoided.

We next investigated how execution time of our tool respectively scaled ac-
cording to the size of the Büchi automaton, and the prefix and cycle length
of the counterexample using the MPmp case (shown in Table 3 and Fig. 5).
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Table 3. Execution Time vs. Büchi automaton Size

Büchi Automaton States 4 8 11 14 29 29 35 35 52 50 64 64
Trans. 58 176 216 302 534 650 751 855 931 1190 1327 1471

Time [s] 0.16 0.69 0.40 0.66 0.35 1.13 0.97 1.42 0.60 2.59 1.00 1.05
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Fig. 5. Execution Time vs. Length of Counterexample Prefix (left) and Cycle (right)

In Table 3, each Büchi automaton was made by adding safety properties to
EMG that the model satisfied. In Fig. 5, we expanded the cycle of the coun-
terexample in Table 2 to make longer counterexamples to be used as samples of
different size. Both results indicates that LLL-S practically handles large Büchi
automata, and counterexamples with long prefixes or cycles. The execution time
for large automata is almost the same as that for medium-sized ones due to the
heuristics explained at the beginning of this section. Fig. 5 shows that the cycle
length of a counterexample has a larger impact on the execution time of LLL-S
than its prefix length. This is because the cycle length influences on the running
time of the first search in Section 4.3 as well as the second search, whereas the
prefix only influences on the first search.

6 Discussions and Related Work

Computational Complexity. We estimate the time to find witnesses using LLL-S.
Let the counterexample π = PCω where |P | = m and |C| = n, and the Büchi
automaton of the property φ be B(φ) = (Sφ, Aφ, Δφ, u0, S

a
φ) where |Sφ| = vφ

and |Sa
φ| = va

φ. WTS WA
π has m+n states and n end states, and B(φ) 	
 WA

π has
vφ(m+n) states and va

φn end states. The first shortest path search in Section 4.3
requires O(vφ(m + n) log(vφ(m + n))) time. The second search is conducted va

φn

times because a source of the search is an end state of B(φ) 	
 WA
π . Each search

is conducted on the subgraph of the product consisting of vφn states because
only the C part of WA

π is used for the search. For each end state, a shortest path
search requires O(vφn log(vφn)) time. Thus, the total time of the second search
is O(va

φvφn2 log(vφn)). If m ≈ n, the running time is dominated by the total
time of the second search. Thus, LLL-S requires O(va

φvφn2 log(vφn)) time.



234 T. Kumazawa and T. Tamai

On Fairness Constraints. When we verify a liveness property on a LTS, we often
assume a kind of fairness constraints, fair choice [10]. Fair choice asserts that if
a choice over a set of transitions is executed infinitely often, every transition in
the set will be executed infinitely often. Model checking with fair choice finds
an infinite and lasso-shaped counterexample under the constraint, which is the
same assumption of LLL-S. Thus, LLL-S is applicable to the case.

On Property Patterns. It is useful to investigate what kinds of witnesses LLL-S
produces for each property pattern [8]. Some of the liveness properties used in our
case studies are written in the response pattern formula G(p ⇒ Fq) [8]. In this
case LLL-S generated two kinds of witnesses: witnesses in which p never holds, or
in which q holds after or at the same time as p holds. For example, the witnesses
for πc are classified into either those in which p.1 never enters the critical region,
or those in which p.1 leaves the critical region after entering there. Although
developers need to identify the appropriate ones out of all found witnesses, this
information may enable them to narrow down the candidate errors.

Related Work. We previously proposed a method to find behavior model errors
with infinite counterexamples [19]. Although it finds the witnesses that resemble
the counterexample analogous to LLL-S, it is not based on a solid criterion to
measure distances between infinite traces and may miss witnesses that appro-
priately point out errors. LLL-S solves the problem using the distance D.

J. Beer et al. [2] proposes a way to explain counterexamples for LTL model
checking. While its goal is not error localization, it complements LLL-S.

Our work is related to the debugging techniques for programs as a result
of model checking. A way to identify C program errors and their causes was
developed by Groce and Visser with multiple counterexamples leading to the
same error state [13], and later by Groce et al. with a single counterexample [12].
Chaki et al. extends the work [12] to abstracted programs [3]. Griesmayer et al.
proposed an error localization technique for C programs [11]. Ball et al. proposed
a technique to isolate causes of errors using counterexamples [1].

In software testing, Zeller proposed a way to find the cause-effect chains of
errors in C programs [27]. Cleve and Zeller later developed a complementary tech-
nique that identifies when failure causes propagate to faults [6]. Spectrum-based
fault localization techniques collect faulty runs and correct runs and compare
them with certain criteria to locate faults in programs [15,23].

The above approaches resemble ours in that the comparison of a faulty run
with a correct run tells us errors where the correct run is the closest to the faulty
run based on the specific distance between finite runs. However, even if these dis-
tances are adapted to our context, they do not distinguish between prefixes and
cycles of infinite runs and cannot overcome the problem discussed in Section 2.
Although Chaki et al. [3] tackles the error localization problem of liveness prop-
erties, their technique reduced the problem to the SAT, which is NP-complete.
LLL-S solves the classical graph search problem and performs much more effi-
ciently. Finally, the existing methods [13,12,1,3,27,6] assume the existence of at
least one correct run. LLL-S uses Büchi automata to build witnesses and does
not require any correct runs supplied by the user.
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Killian et al. developed a model checker for C++ programs, MACEMC, and its
debugger MDB [16]. MACEMC supports verification of liveness properties. MDB
helps developers understand errors by returning a comparison of a faulty run
obtained by MACEMC with a correct run which shares a common prefix. The
idea resembles ours, but only focuses on a certain kind of liveness properties.

Mohri [22] and Konstantinidis and Silva [17] developed graph-based methods
that compute the edit distance between finite regular languages. LLL-S focuses
on infinite strings, whose similarity cannot be computed by their methods.

7 Conclusions

In this paper, we have presented a novel automated technique to locate errors
in behavior models based on the result of fluent model checking. We adopt a
counterexample-based and model-based approach, which require only the model
composition and classical graph search techniques. In particular, we can generate
infinite-length witnesses that fix the given infinite counterexample to satisfy the
property, which, we believe, is a major breakthrough.

There is much future work including integration of fluent model checking [9]
with LLL-S, further practical case studies and generation of domain-specific wit-
nesses. The last issue extends our work to help developers fix model errors [18].
Since witnesses are searched on Büchi automata, they do not reflect knowledge
of the whole range of the problem domain. One of the possible solutions to
this problem is to introduce the properties that hold in the target model. The
introduced properties are formal descriptions of the domain knowledge.
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Abstract. Program verifiers based on first-order theorem provers model
the program heap as a collection of mutable maps. In such verifiers, pre-
serving unmodified facts about the heap across procedure calls is diffi-
cult because of scoping and modification of possibly unbounded set of
heap locations. Existing approaches to deal with this problem are either
too imprecise, require introducing untrusted assumptions in the verifier,
or resort to unpredictable reasoning using quantifiers. In this work, we
propose a new approach to solve this problem. The centerpiece of our
approach is the call invariant, a new annotation for procedure calls. A
call invariant allows the user to specify at a call site an assertion that
is inductively preserved across an arbitrary update to a heap location
modified in the call. Our approach allows us to leverage existing tech-
niques for reasoning about call-free programs to precisely and predictably
reason about programs with procedure calls. We have implemented the
approach and applied it to the verification of examples containing dy-
namic memory allocations, linked lists, and arrays. We observe that most
call invariants have a fairly simple shape and discuss ways to reduce the
annotation overhead.

1 Introduction

Floyd-Hoare logic is a framework for decomposing the partial correctness check-
ing of a program into smaller proof obligations, where a Floyd-Hoare triple
{P} s {Q} is associated with each statement s in the program [10]. Verification
condition (VC) generation based on Dijkstra’s weakest liberal precondition (wp)
predicate transformer allows precise reasoning about Floyd-Hoare triples with-
out requiring intermediate assertions for loop-free and call-free statements [7].
The use of automated theorem provers (including satisfiability modulo theories
(SMT) solvers [20]) for checking the verification conditions provide a scalable
and precise approach to program verification, and forms the basis of several
tools (e.g. ESC/Java [8], Spec# [5], HAVOC [12]).

However, this framework is not as effective in the presence of the heap and
procedure calls. The main issue is to preserve unmodified facts about the part
of the heap in the caller’s scope that is not in scope of the callee. More formally,
a procedure specification comprises of (a) preconditions, (b) postconditions and
(c) set of variables modified by the procedure. Since the heap is modeled as a
collection of maps, a procedure that modifies a location in a map has to spec-
ify that the entire map is potentially modified. The only facts related to such a
modified map, known after a procedure call has to come from the postconditions
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c© Springer-Verlag Berlin Heidelberg 2011



238 S.K. Lahiri and S. Qadeer

of the callee procedure. However, the postconditions can only refer to part of
the map in scope, i.e. the locations reachable from globals and parameters. This
means that unmodified facts at caller’s scope about a modified map may not be
preserved across a procedure call. Matters are further complicated as a proce-
dure call might update an unbounded number of locations in a map. Efficiently
decidable SMT-based logics (e.g. linked lists [12], arrays [6]) that deal with a
bounded number of heap updates (for a loop-free, call-free program fragment)
are rendered ineffective in the presence of the unbounded number of updates.

An existing approach to address this problem has been to introduce frame
axioms to allow preserving certain unmodified facts [14]. These axioms are not
verified in the same spirit as the rest of the user annotations, and may introduce
unsoundness in the verifier. Moreover, these frame axioms are encoded using
complex quantified facts in the verification condition that severely compromises
the predictability of the underlying theorem prover. Verification of such quanti-
fied formulas require expert users to be able to guide the theorem provers. These
shortcomings make wp based Floyd-Hoare reasoning less appealing for reasoning
about programs with scoping and the heap.

In this work, we present an alternative approach based on the following insight:

For any statement s in the program, if an assertion R is preserved by an
abstract (re-)execution of s in which the heap locations modified by s are
updated nondeterministically, then R is preserved across the statement
s.

We use an instance of this general rule for procedure calls to deal with the im-
precision due to scoping. We also provide a new annotation called call invariant
for the user to specify an inductive hypothesis when the abstract execution could
be unbounded. Given a program with call invariant annotations, we perform a
source-to-source transformation to create another program that can be reasoned
with any existing technique for call-free programs. In particular, this allows a
user to leverage existing wp-based verifiers to analyze programs with procedure
calls with unbounded heap updates.

One can also view our approach as a strategy to augment the underlying first-
order theorem provers with an induction scheme to verify formulas containing
unbounded number of heap updates. The call invariant (provided by the user)
plays the role of an inductive hypothesis and the underlying theorem prover is
used to discharge the proof obligations for establishing the inductive hypothesis.
However, there are several advantages of formalizing the inductive hypothesis at
the program level instead of at the level of a formula:

1. The call invariants are specified as program annotations independent of the
underlying prover. Therefore, the user does not need to interact with the
specific syntax of the underlying theorem provers.

2. We formulate the call invariants as loop invariants. This opens the possibility
to leverage existing loop invariant synthesis techniques to infer call invariants
in many cases.
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We have augmented the Boogie [3] verifier with call invariant annotations, and
have applied it to verify a set of examples containing dynamic memory allocation,
linked lists and arrays. These examples were already annotated with precondi-
tions and postconditions — we discuss the additional annotation burden due to
call invariants. We introduce useful syntactic sugars and observe the common
shape of most call invariants and additional specification required to prove these
examples. We also discuss tradeoffs in reducing the additional burden at the cost
of slight complication of the assertion logic, without sacrificing soundness.

2 Motivation

Consider two versions of a program in Figure 1 written in a variant of the
Boogie language [3]. The example is an abstraction of a real-life device driver
kbdclass [21] that uses multiple lists of device extensions. The first version (on
the left) has single procedure with no procedure calls, and the second version
(on the right) has a procedure call.

2.1 Program without Procedure Calls

Let us first look at the example in Figure 1(a). Initially ignore the lines starting
with pre, post, inv and modifies, which denote annotations. The example
contains two map (or array) variables N and D to model two fields in an object.
The procedure Proc1 takes two pointers p and q to denote the heads of the
two disjoint acyclic lists {p, N[p], N[N[p]], . . . , nil} and {q, N[q], N[N[q]], . . . , nil}
respectively. The procedure first initializes the D field of all the pointers in the
linked list starting at p in a while loop, and then non-deterministically deletes
some entries from the list starting at q — this mimics removing elements from a
list that satisfy some criteria. We would like to prove that the D field has been
correctly initialized for the list from p.

The assertions in pre and post denote preconditions and postconditions
of a procedure. The precondition states that the two lists are disjoint and
acyclic: we use the set constructor Btwn(m, u, v), where m is a map value of
type int → int and u and v are values of type int, to denote the set of values
{u, m[u], m[m[u]], . . . , v} when v lies in the set, or {} otherwise [17,12]. The post-
condition states that the value of D map at all the elements of list from p is 1.
The “modifies” clause in modifies says that the maps N and D are modified by
the procedure, possibly at all locations. Loop invariant assertions are provided
using inv annotations. The expression old(x) denotes the value of a variable x
at the entry to a procedure (when used in a postcondition), or at the entry of
a loop (when used in a loop invariant). The loop invariants on the first loop
states that the variable iter points to the list from p, and all the entries upto
iter have been initialized to 1. The first loop establishes the postcondition of
the procedure on exit from the loop — the problem is to preserve it across the
second loop. The first loop invariant for the second loop states that the set of
pointers in the list from p remains unchanged. The second loop invariant says
that the iterator variable iter points to elements in the list from q.
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var N : int → int;
var D : int → int;

pre Btwn(N, p, nil) ∩ Btwn(N, q, nil) = {nil}
post ∀u ∈ Btwn(N, p, nil).u = nil ∨ D[u] = 1
modifies D,N
proc Proc1(p : int, q : int) : void =

var iter : int;
iter := p;

inv iter ∈ Btwn(N, p,nil)
inv ∀u : int ∈ Btwn(N, p,nil).

u ∈ Btwn(N, iter, nil) ∨ D[u] = 1
while (iter) do D[iter] := 1; iter := N[iter];

iter := q;

inv Btwn(N, p, nil) = Btwn(old(N), p, nil)
inv iter ∈ Btwn(old(N), q, nil)
while (iter ∧ N[iter]) do

if (∗) N[iter] := N[N[iter]];
iter := N[iter];

var N : int → int;
var D : int → int;

pre Btwn(N, p, nil) ∩ Btwn(N, q, nil) = {nil}
post ∀u ∈ Btwn(N, p,nil). u = nil ∨ D[u] = 1
modifies D, N
proc Proc1(p : int, q : int) : void =

var iter : int;
iter := p;

//Loop invariants omitted
while (iter) do D[iter] := 1; iter := N[iter];

cinv cframe(Btwn(N, p, nil))
call Proc2(q);

updates N @ Btwn(N, t, nil)
proc Proc2(t : int) : void =

var iter : int;
iter := t;

inv iter ∈ Btwn(old(N), t, nil)
while (iter ∧ N[iter]) do

if (∗) N[iter] := N[N[iter]];
iter := N[iter];

Fig. 1. Example with (a) no procedure calls and (b) a procedure call

These annotations are sufficient to prove the postcondition, since the map D
does not change in the second loop. The annotated program can be encoded
precisely in the assertion logic if the logic is closed under weakest (liberal) pre-
condition [7] of statements in the programming language. Such logics with deci-
sion procedures have been proposed in [12], thereby providing an algorithm for
checking such annotated programs.

2.2 Program with Procedure Calls

Now let us look the second version in Figure 1(b), where the second loop has been
moved to a procedure Proc2. Let us initially ignore the annotation in cinv, and
the updates N @ . annotation on Proc2. Instead, let us pretend that we only have a
modifiesN annotation for Proc2. Since Proc2 modifies the map N, any fact involv-
ing N will be invalidated after the call to Proc2. Therefore, the postcondition of
Proc1 will not be provable. It is not hard to see that we cannot write any specifica-
tion about the heap in the scope of Proc2 (namely the pointers in the list reachable
from t) that would allow us to prove the postcondition for Proc1.

One approach to address the imprecision has been to use frame axioms that
allow the user to specify how to preserve certain unmodified facts [14]. However,
the use of frame axioms can lead to unsoundness as they are not verified. Besides,
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these frame axioms have complex quantified structure that may destroy the
predictability of the underlying theorem provers. In the rest of this section, we
show how our approach helps retain precision in the presence of procedure calls,
without requiring the use of frame axioms.

First, let us look at the new annotation on Proc2. The annotation updates X @
S denotes that the map X could have been modified only at locations in S by the
procedure., where the set-expression S is interpreted at entry to a procedure.
This annotation is actually a syntactic sugar for a particular postcondition that
we explain in Section 3.2, and does not introduce any new annotation construct.
In this example, the annotation is used to specify that the map N is only modified
in the locations present in the list from t at the start of the procedure.

Second, we introduce a new annotation construct called call invariants (using
cinv) that allows the user to annotate a call site of a procedure. A user can specify
an assertion R inside cinv at a call site of a procedure — with the intention that
R is preserved across modifications to the maps in the callee. We use the syntactic
sugar cframe(e) to denote the assertion that the value of the expression e is pre-
served across the call. In this example, the assertion in cinv states that the set of
pointers in the list from p is preserved across the call to Proc2.

These annotations suffice to prove the postcondition of Proc1. Indeed, we can
prove the specifications of this example (including the new proof obligations for
showing that assertions in cinv are really preserved across a call). Not only that,
the proof obligations can be encoded using the same logic that was used to prove
the example without a procedure call in Figure 1(a).

3 Call Invariants

3.1 Source and Assertion Language

Figure 2 shows a simple programming language. The language supports scalar
and map variables (Scalars and Maps respectively) and various operations on
them. Let Vars = Scalars ∪ Maps . The type of any variable x ∈ Scalars is
integer (int), and the type of any variable X ∈ Maps is a map from integers to
integers (int→ int). The standard assignment statement for scalars is extended
with assignment statements for maps. The statement for variable introduction
var x in s endvar introduces a variable x with an arbitrary value in s (the variable
introduction rule for a map variable is similar). The statement assert φ behaves
as a skip when the formula φ evaluates to true in the current state; else the
execution of the program fails. The statement assume φ behaves as a skip
when the formula φ evaluates to true in the current state; else the execution
of the program is blocked. Expression terms of the statements and formulas are
denoted by Expr , and include scalar variables, constants, arithmetic expressions
and map lookups. The language also supports sequential composition, procedure
calls, conditional statements and while loops. Allocation and deallocation can
be modeled by introducing a special map Alloc to track the allocation status of
objects, but is not built into the language. We show an example of dymamic
allocation in the next section 4.1.
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x, y ∈ Scalars
X,Y ∈ Maps
e ∈ Expr ::= x | c | e± e | X[e]
s, t ∈ Stmt ::= skip | assert φ | assume φ | x := e | X := Y | X[e] := e |

var x in s endvar | var X in s endvar | s; s | x := call f(e) |
if (e) then s else t | while (e) do s

P,Q,R, φ, ψ ∈ Formula ::= e ≤ e |φ ∧ φ | ¬φ | e ∈ S | S ⊆ S | . . .
S ∈ SetExpr ::= Btwn(X, e, e) | Inverse(X, e) | [e, e) | . . . |S ∪ S | S \ S | . . .

Fig. 2. A simple programming language and assertion logic

The formulas in Formula constitute the assertion logic for specifying contracts
for programs in this language. The language of formulas in Formula is extensible,
and includes relational, Boolean operations and set operations. SetExpr repre-
sent set-valued expressions and can be constructed from various set constructors
such as Btwn and [e, e) and other operations on sets. The weakest (liberal) pre-
condition of an assertion φ ∈ Formula with respect to a statement s ∈ Stmt is
denoted as wp(s, φ). Intuitively, wp(s, φ) is a formula that represents the set of
states for which executing s does not fail any assertions in s and moreover if the
execution terminates, it does so in a state satisfying φ. The weakest precondition
for the simple statements in our language are described in the appendix of the
detailed report [13], and are fairly standard [4]. The assertion logic in Formula is
closed under wp, when for any φ ∈ Formula and s ∈ Stmt, wp(s, φ) ∈ Formula.
The following proposition relates checking partial correctness of statements us-
ing Floyd-Hoare triples [10] and provability in a logic. Let us refer to loop-free
and call-free statements as simple statements.

Proposition 1. If the assertion logic in Formula is closed under wp for simple
statements in Stmt, then for any simple statement s, (i) the logical formula
(P =⇒ wp(s, Q)) is in Formula, and (ii) is valid if and only if the Floyd-Hoare
triple {P} s {Q} holds.

In such a case, an automated theorem prover for checking assertions in Formula
provides a method (an algorithm when the theorem prover is complete and
terminating) to check Floyd-Hoare triples expressed in the logic. In the presence
of loops that may have unbounded updates, the user decomposes the problem
by specifying a loop invariant.

However, the presence of procedure calls and heap makes reasoning in Floyd-
Hoare logic imprecise because it introduces the challenge of preserving unmod-
ified facts about the heap in the callers scope (and not in the callee’s scope)
across (a possibly unbounded) update to the heap in the callee.

3.2 Call Invariant and Program Instrumentation

In this section, we instrument the source program with additional (ghost) vari-
ables to track the set of locations modified by a procedure and then introduce a
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new annotation called call invariants at the call site of a procedure. The purpose
of the call invariants at a call site is to specify the assertions that are preserved
across the procedure call.

First, for each global map X ∈ Maps , we introduce a state variable MSX, whose
interpretation is a set of locations. Intuitively, the value of MSX at exit from a
procedure captures the set of locations where X was modified between the entry
and exit to the procedure. The source program is automatically instrumented to
update the MSX variables as follows:

– For any explicit update to the map X, X[e1] := e2;, we insert MSX := MSX ∪
{e1}; before the update to X.

– Every procedure has a precondition pre MSX = {}.
– Before any procedure call that has a modifies X annotation, we save the

current value of MSX into a caller local variable, set MSX to {}. Upon return
from the procedure, we union the saved set with the value of the set after
the procedure call.

It is not hard to see that the value of MSX at exit from a procedure captures
the set of locations where X was modified between the entry and exit to the
procedure. For this instrumented program, the user can specify preconditions,
postconditions and loop invariants in terms of MSX variable just as any other
state variable.

Next, we introduce an annotation construct called call invariant at the call
site of a procedure specified using cinv R, where R ∈ Formula. For a call site
that may (transitively) modify locations in the map X, we provide the following
instrumentation in addition to the updates for MSX :

var Xpre, Xpost in
Xpre := X;
call Foo(e); //procedure call
Xpost := X;
X := Xpre;

inv R[Xpre/old(X)]
while (∗) do

var u, v in assume u ∈ MSX; X[u] := v; endvar

assume X = Xpost;
endvar

First, it copies the value of X before and after the call into local variables Xpre

and Xpost respectively. It restores X to the value before the call, and introduces
a non-deterministic loop that updates X at one of the locations in MSX. Fi-
nally, the assume relates the value of X after the loop with the value at the end
of the procedure call Xpost. The purpose of the loop is to model the abstract
re-execution of the procedure call that nondeterministically modifies the heap
locations modified by the callee, starting from the state before the call. The call
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invariant R (specified using cinv R) is checked as a loop invariant for this loop;
any occurrence of old(X) is replaced with copy Xpre, the value of X just before
the procedure call. Although we have described the instrumentation for a single
map variable, our implementation allows for multiple maps and is presented in
the detailed report [13].

Syntactic sugars. We introduce two syntactic sugars to make the specifications
concise and readable:

1. We introduce updates X @ S for a set-valued expression S, as a syntactic
sugar for the following annotations:

modifies X, MSX;
post MSX ⊆ old(S)

2. The use of old(X) in a call invariant R refers to the value of X prior to the
procecudure call (same as Xpre at the time of the call). We provide a sugar
cframe(.) to denote that an expression is preserved by the procedure. For
an expression e, cframe(e) expands to e = old(e). This is most useful when
specifying that the value of a scalar expression or a set-valued expression is
preserved.

Bounded updates. Recall that the scoping problem exists even when a callee
modifies a bounded number of heap locations. Our program instrumentation
is still essential to preserve facts at the callers scope. However, if callee has a
postcondition that bounds MSX to a bounded number of locations (say n), then
one does not require the user to specify a call invariant R. In such cases, it
suffices to unroll the loop that modifies locations in MSX n times, and eliminate
the need for the call invariant.

4 Evaluation

We have built a prototype implementation of call invariant annotations over the
Boogie program verifier [3]. In addition to specifying procedure preconditions,
postconditions and loop invariants, the user can specify call invariants at call
sites using the cinv annotation. We highlight the annotations required related
to call invariants in the program in addition the already provided preconditions
and postconditions. We discuss more about the cinv . call invariants (the call
invariants that are both highlighted and underlined) later in Section 4.4.

We perform the program instrumentation to create the transformed program
where the call invariants are desugared as loop invariants as described earlier.
The resultant annotated program is verified by Boogie by generating a logi-
cal formula (verification condition) and checking the formula with satisfiability
modulo theories (SMT) solvers. The assertion logics used in these programs use
sophisticated set constructors in addition to the usual theories of uninterpreted
functions, select-update arrays and arithmetic supported by most SMT solvers.
In spite of the complexity, the assertion logics used in these examples are closed



Call Invariants 245

var Alloc : int → bool;
var D : int → int;

updates D @ Inverse(Alloc, false)
proc Proc4() : void =

var y : int;
while (∗) do

y := new; D[y] := 0;
/* Add y to a list */

proc Proc3() : void =
var x : int;
x := new;
D[x] := 5;

cinv cframe(D[x])
call Proc4();

assert D[x] = 5;

Fig. 3. Example with dynamic memory allocation and the Inverse set constructor

under the wp predicate transformer with respect to call-free and loop-free state-
ments in the language. For a few cases, we even have decision procedures (i.e. a
sound, complete and terminating procedure) for deciding formulas in the asser-
tion logic [6,12].

4.1 Dynamic Allocation

In the example in Figure 3, we consider a map Alloc whose range contains two
Boolean values true and false. The map is used to track the set of allocated
elements of the domain; Alloc[u] = true if and only if u is an allocated element.
The statement x := new is a sugar for the following statements: {var u in x :=
u endvar;assume Alloc[x] = false; Alloc[x] := true; }. In this example, the map
D is mutated at an unbounded set of freshly allocated locations in procedure
Proc4 — namely at the locations u for which Alloc[u] = false at entry to Proc4 .
In this case, this modified set excludes x in Proc3 .

To specify the modified set, we use the set constructor Inverse : (int → int) ∗
int → 2int, which takes a map and returns all elements of the domain that map
to a given value; i.e. Inverse(X, v) .= {u | X[u] = v}. For this set constructor,
wp(X[x] := y, u ∈ Inverse(X, v)) is given by [12]:

(y = v ∧ u ∈ Inverse(X, v) ∪ {x}) ∨ (y �= v ∧ u ∈ Inverse(X, v) \ {x})

4.2 Linked Lists

Reverse. Consider the recursive implementation of list reversal in Figure 4(a).
This implementation performs an in-place reversal of an input list. The precondi-
tion requires the argument h to point to a nonempty acyclic list. The procedure
may modify the N map only at the pointers in this list. The first postcondition as-
serts that the set of elements in the output list is the same as the set of elements in
the input list. The second postcondition strengthens this assertion to ensure that
the ordering in the output list is the reverse of the ordering in the input list.

The recursive call to reverse requires a call invariant stating that the value of
N[h] remains unchanged by the call. This assertion is crucial for ensuring that
subsequent updates to N first, do not trash the list reversal performed by the
recursive call itself and second, successfully reverse the link from h to N[h].
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var N : int → int;

pre h 	= nil
pre nil ∈ Btwn(N, h, nil)
updates N @ Btwn(N, h,nil)
post Btwn(old(N), h, nil) = Btwn(N, r, nil)
post ∀u ∈ Btwn(old(N), h, nil).

u = nil ∨
Btwn(old(N), h, u) = Btwn(N, u, h)

proc reverse(h : int) : (r : int) =
if (N[h] = nil) {

r := h;
} else {

cinv cframe(N[h])
r := reverse(N[h]);
N[N[h]] := h;
N[h] := nil;

}

var N : int → int;
var D : int → int;

pre r ∈ Btwn(N, l, r)
updates N @ ROS(N, l, r);
post Sorted(N, D, hd, r)
post r ∈ Btwn(N, hd, r)
post ROS(old(N), l, r) = ROS(N, hd, r)
proc quick sort(l : int, r : int) returns (hd : int) =

var ret : int;

if (l = r ∨ N[l] = r) {
hd := l;

} else {
hd := partition(l, r);
cinv cframe(ROS(N, hd, N[l]));
cinv cframe(N[l]);
ret := quick sort(N[l], r);
N[l] := ret;
cinv cframe(ROS(N, N[l], r));
cinv Sorted(N, D,N[l], r);
ret := quick sort(hd, N[l]);
hd := ret;

}

Fig. 4. List examples (a) reverse, (b)list-based quick sort

List sort. We have also verified an implementation of quick sort for lists. This
example (present in Figure 4(b)), required nontrivial call invariants. We have
used the following helper predicates to define the annotations for this example:

ROS(X , u, v) .= Btwn(X,u, v) \ {v}
UpperBound(X ,Y , l , r , d) .= ∀u ∈ ROS(X , l , r) : Y [u] ≤ d
LowerBound(X ,Y , l , r , d) .= ∀u ∈ ROS(X , l , r) : Y [u] ≥ d
Sorted(X ,Y , l , r) .= ∀u ∈ ROS(X , l , r) : ∀v ∈ ROS(X , u, r) : Y [u] ≤ Y [v ]

The example requires reasoning about shapes of lists, properties of a collection
of pointers, and arithmetic relationship on the data elements of the list. The
recursive nature of the procedure makes the proof highly non-trivial — which
explains the complexity of the call invariants. The proof illustrates the benefits
of combination frameworks present in first-order theorem provers for precise
reasoning of such examples.

Merge and append. In addition to these programs, we have also success-
fully verified recursive implementations for appending and merging two lists.
These implementations and their specifications are described in the appendix of
the detailed report [13]. Interestingly, in spite of the presence of recursive calls
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var A : int → int;

post idx ∈ [l, r)
post Deref(A, [l, r)) = Deref(old(A), [l, r))
updates A @ [l, r)
proc Partition(l : int, r : int, pivot : int) : (idx : int) =

/* Partitions A and returns the final index of pivot */

pre 0 < l ≤ r
post Deref(A, [l, r)) = Deref(old(A), [l, r))
updates A @ [l, r)
proc QuickSort(l : int, r : int) : void =

var pivot : int, idx : int;
if (l = r) return;
pivot := A[l];
idx := Partition(l, r, pivot);
cinv cframe(Deref(A, [idx, r)));
QuickSort(l, idx);
cinv cframe(Deref(A, [l, idx + 1)));
QuickSort(idx + 1, r);

Fig. 5. Example of quicksort over an array A

and unbounded number of updates, no call invariants were required for proving
the correctness of these examples.

4.3 Arrays

In this example, we illustrate the use of two new set constructors, (i) the range
set constructor [i, j), and (ii) a set constructor Deref to collect the content of a
set of locations. Consider the quicksort algorithm in Figure 5 where the array
map A is being sorted with recursive invocations to QuickSort. The procedure
QuickSort sorts the indices of the array A in the range [l, r). The procedure
Partition (we omit the procedure body) takes a value pivot and returns an index
idx such that idx ∈ [l, r).

Let us check a simple property that the algorithm preserves the contents of
A, assuming distinct elements in the array. Since the postcondition of Partition
establishes this constraint, the main challenge is in establishing this fact across
the two recursive calls to QuickSort. The two call invariants serve to preserve
facts at the call-site required to establish the postcondition. For example, the
first call invariant states that the contents of A in the range [idx, r) is preserved by
the call to QuickSort(l, idx) since the procedure does not modify these locations.

The specifications for this example refer to a dependent set constructor Deref :
(int → int) ∗ 2int → 2int that takes a map and a set and constructs a set with
the union of values of the map at elements in the set. Formally, Deref(X, S) .=
{X[u] | u ∈ S}. Interestingly, this assertion logic is still closed under wp with
respect to statements of our language. For this set constructor, wp(X[x] := y, u ∈
Deref(X, S)) is defined as follows:
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∨
x �∈ S ∧ u ∈ Deref(X, S)∨
x ∈ S ∧ X[x] ∈ Deref(X, S \ {x}) ∧ u ∈ Deref(X, S) ∪ {y}∨
x ∈ S ∧ X[x] /∈ Deref(X, S \ {x}) ∧ u ∈ (Deref(X, S) \ {X[x]}) ∪ {y}

The first disjunct corresponds to the case when Deref(X, S) remains unchanged;
the second (and the third) disjunct corresponds to the cases when the value X[x]
is contained (respectively not contained) in X at an index other than x.

4.4 Discussion

We now discuss the call invariant annotations highlighted as cinv . . These call
invariants are interesting because their specification can be obviated by adding
the following postcondition automatically for each procedure:

post ∀u : int :: u ∈ MSX ∨ X[u] = old(X)[u]

This postcondition ensures that the map X is preserved at a location disjoint from
MSX. However, the postcondition introduces a quantifier, which may compromise
the termination of a theorem prover. For example, the decision procedure for
reasoning about linked lists with sets [12] may not terminate when reasoning
with quantified facts of the above form. The invariants marked with cinv . are
the ones that do not have to be specified, when the theorem prover can prove
the program with this quantified postcondition. The reader may observe that
these are precisely those call invariants that do not contain a set constructor or
a predicate that depends on the map being modified by the callee. This explains
why most call invariants using Btwn are not removed.

The example of the list implementation of quick sort uses a call invariant
which is not specified using the cframe(.) syntactic sugar. We needed to specify
a single-state predicate to specify the sortedness of the list, instead of a set or
a scalar expression inside cframe(.) — one may view this as a way to preserve a
relation (in this case sortedness). Finally, several examples did not need a call
invariant (e.g. list append and merge) even in the presence of unbounded updates
in callees. This is due to the fact that these recursive procedures are actually
tail-recursive, where one does not need to carry facts before the procedure call.

5 Related Work

In this work, we provide a simple approach for leveraging precise verifiers for
call-free programs to reason about programs with procedure calls. An important
benefit of our approach is that it does not require adding additional unchecked
or complex frame axioms [14] to the verification conditions. However, the benefit
comes at the cost of additional user-specified annotations. Our contribution is
complementary to the large body of work on modular verification in the presence
of data hiding [5,11,2]. The implementations of these approaches invariably use
complex quantifiers to encode variants of frame axioms that make verification
unpredictable [1]; our work could potentially be used to eliminate or simplify
these frame axioms.
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Separation logic [18] is a specialization of Floyd-Hoare logic that requires
a specialized assertion logic. The assertion logic contains formulas to describe
heaps, where the formula φ ∗ ψ denotes a heap with two disjoint subheaps for
which φ and ψ hold respectively. The following frame rule [16] allows preservation
of the fact R whose domain does not intersect with the modified locations in the
statement s.

[Frame rule]
{P} s {Q}

{P ∗R} s {Q ∗ R}

However, the specialized extension prevents leveraging existing tools for doing
precise verification of call-free programs. Many of the inference rules for Floyd-
Hoare logic do not apply in a straightforward manner; for example, the rule of
constancy is no longer sound [18] in this extension. In addition, the specifications
of s has to precisely describe the locations in the heap that s reads or write from,
which is not required in Floyd-Hoare logic. Besides, one cannot use the standard
wp-based methods to generate verification conditions. Although scalable and au-
tomatic shape analysis engines have been recently developed based on separation
logic [22], proof obligations for expressive separation logic properties are often
checked with higher order theorem provers [15].

The frame problem due to procedure scoping has also been explored in the
context of automatic shape analysis [19,9], where the caller’s heap is separated
from the callee’s heap by identifying a set of cutpoints which are dominators for
any location in the heap of the callee. These cutpoints are treated as ghost pa-
rameters, but precision is lost when when the set of cutpoints can be unbounded.
We believe that call invariants may alleviate the need to introduce cutpoints to
pass a local heap to a callee.

6 Conclusion

This paper makes two important contributions. First, we provide an automatic
program instrumentation to address the imprecision due to procedure scoping.
The call invariant annotation allows a user to specify an inductive hypothe-
sis while dealing with unbounded updates in a callee. Such an instrumented
and annotated program can be verified using any off-the-shelf verifier without
any need to interact with the lower-level theorem prover to specify the induc-
tive hypothesis. This has allowed us to leverage existing precise verifiers for
call-free programs to verify non-trivial examples with a small annotation bur-
den. Second, we have separated the problem of specifying the frame from infer-
ring the frame automatically for procedure calls. We imagine exploiting various
loop invariant inference algorithms to synthesize most call invariants, given their
restricted shape in practice. However, it still allows the user to explicitly
specify the frame when the inference algorithm fails to discover the necessary
frame.
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Abstract. Graph Transformation Systems (GTSs) provide visual and
explicit semantics for dynamically evolving multi-process systems such
as network programs and communication protocols. Existing symmetry
reduction techniques that generate a reduced, bisimilar model for alle-
viating state explosion in model checking are not applicable to dynamic
models such as those given by GTSs. We develop symmetry reduction
techniques applicable to evolving GTS models and the programs that
generate them. We also provide an on-the-fly algorithm for generating
a symmetry-reduced quotient model directly from a set of graph trans-
formation rules. The generated quotient model is GTS-bisimilar to the
model under verification and may be exponentially smaller than that
model. Thus, analysis of the system model can be performed by check-
ing the smaller GTS-bisimilar model.

1 Introduction

Model checking is used to analyze finite state program models. Many of these
models are composed of similar components. In practice, the number of com-
ponents in these models may be dynamically changing within a given upper
bound. For instance, for many communication protocols, the given bound arises
naturally due to inherent limitations on system size. Examples of dynamic sys-
tems composed of similar components include communication protocols such as
IP-telephony protocols where telephony features are dynamically assembled in a
call over the Internet [15], network programs with a variable number of clients,
and object-oriented systems such as dynamic heap allocation programs [12].

Due to the use of similar components, symmetry is often a feature of the
above system models that can be exploited to reduce the state space of a model
under verification. Unfortunately, existing symmetry-reduction methods [13,7,9]
are not applicable to dynamic systems. In addition, they may offer only limited
reduction to system models that are not fully symmetric. Full symmetry causes
the system model to be invariant under arbitrary rearranging of the components,
resulting in an exponential reduction by defining an equivalence relation on sym-
metric states of the system model. An example of a fully symmetric system model
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Fig. 1. a) A non-fully symmetric 3 × 3 and b) a fully symmetric 2 × 2 toroidal mesh

with four components is illustrated in Figure 1-b. We propose a symmetry reduc-
tion method for analyzing visual models of dynamically evolving systems. Our
symmetry reduction approach is applicable to non-fully symmetric system archi-
tectures such as hypercube, ring, and torus (used in metropolitan area networks
that need high scalability) used for modelling next-generation communication
and hardware protocols.

Motivation: Graphs provide visual and explicit operational semantics for
presenting states and demonstrating structural symmetries of a system. GTSs,
which use this graph-based semantics, are straight forward formalisms that offer
several key advantages over naive methods in modelling the dynamic evolution of
multi-process systems [15,16]. Recently, the GTS formalism has been used to per-
form reasoning, including verification and error detection, on multi-component,
reactive systems [16,11,2,5]. Our motivation is to exploit the advantages that
graph-based models provide for the modelling and analysis of dynamically evolv-
ing systems.

When systems are composed of several similar components, it is often conve-
nient to identify the various components by their process indices. In a Kripke
model of these systems, a state consists of the values of all global variables and
the local states of each process. For example, consider a 3 × 3 toroidal mesh
network of processes, as in Figure 1-a. A toroidal mesh is a grid network with
wrap-around links, where each process can communicate to two other processes.
A shared token is used to show the access of processes to some resource. In this
example, the local state T +

23 describes that the process in row 2, column 3 pos-
sesses a token (denoted by a plus sign) and is trying to access a shared resource
(denoted by T ), and the other processes are in their non-trying modes (denoted
by N). Symmetries in these models are then represented as permutations of the
process indices. Symmetry-reduction methods [13,7,9,21] use the index permu-
tation to build a symmetry-reduced quotient model that is equivalent, up to
permutation, to the behaviour of the original model.

In Kripke models, the labelling of each state does not explicitly show the
architecture of the system. On the contrary, in a GTS model of the system, each
global state is represented by a graph that explicitly provides the architecture in
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which processes are connected together. Since index permutations do not respect
the architecture of states, they cannot be used directly to represent symmetries
of graph semantics and build equivalence classes of state graphs in non-fully
symmetric GTS models. Instead, in graph-based semantic models, symmetries
are represented as graph isomorphisms [19] that are used to define an equivalence
relation on the set of states presented as graphs.

Contribution: Having several sets of permutations for graphs with different
number of nodes, we define a notion of symmetry for a dynamically evolving
symmetric multi-process system modelled as a GTS that may grow to a given
maximum size. The explicit GTS semantic modelling can directly be exploited
for reducing symmetric systems. Our symmetry reduction technique is based
on generating a reduced state space directly from the set of graph transforma-
tion rules that define the model under verification. For this purpose, we define
the notions of GTS symmetry, and GTS bisimulation based on graph isomor-
phism. With GTS bisimulation, we describe an on-the-fly algorithm that builds
a symmetry-reduced model using the set of graph transformation rules that de-
scribe the full dynamic behaviour of the system.

To improve the reduction for symmetric GTS models, we define vertex bisim-
ulation. Vertex bisimulation describes an equivalence relation on state graphs
based on their set of vertices and can be used in our algorithm for symmetry
reduction resulting in an exponential state space saving (cf [21]). We also show
that two vertex-bisimilar GTS models can prove the same reachability properties
given by a subset of CTL. In our method, we use proposition graphs to indicate
Boolean expressions of atomic propositions. We use proposition graphs, which
provide an abstraction of the process indices, to encode symmetric Boolean ex-
pressions describing local system states.

Related Work: Ip and Dill [13], Emerson and Sistla [9], and Clarke et al. [7]
have been the first who explored symmetry reduction for systems with a fixed
number of similar processes. These methods offers only polynomial reductions for
most non-fully symmetric systems; thus, in [10,21] the authors have addressed
those systems, however, those methods do not apply to graph-based models and,
furthermore, are restricted to models with a fixed number of components.

Our approach is also different than approaches such as regular model checking
[6] or parameterized verification (cf [1]). These methods provide abstractions
that generally are not an equivalent representation of the original model. Our
method provides an abstraction with an equivalence between the models.

In the area of GTS models, it is only Rensink’s [18,19] work that has directly
addressed symmetry in GTS models. In [18], a generalized definition of bisimu-
lation is used. This bisimulation is defined for graphs and for developing efficient
algorithms to check if two graphs are isomorphic, and not for the GTSs.

The rest of the paper is organized as follows: an overview of GTS modelling
is given in Section 2 and is followed by definitions of GTS symmetry and GTS
bisimulation in sections 3 and 4. We present vertex bisimulation for symmetric
dynamic GTSs in Section 5 and conclude in Section 6.
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2 Graph Transformation System Modelling

GTS is a powerful formalism for modelling the semantics of distributed reactive
systems [20,8]. In this formalism, graphs are used as the most natural represen-
tation of a system [11], where each node represents a process in the system and
edges show the direct communication between processes. In previous work [15],
GTS modelling was used to represent the dynamic behaviour of a telecommu-
nication system that included the creation and deletion of processes. In a GTS
model, each state of the system is specified as a graph. Transformation rules are
then used to describe how one state may change to another. The GTS formalism
that we use to describe multi-process systems is defined below.

Definition 1 (Graph). A graph G = (V, E, Src, T rg, Lab) consists of a set V
of nodes, a set E of edges, and functions Src, T rg : E → V , that define the
source and the target of a graph edge, and the labelling function Lab : E, V → l,
where l belongs to a set of labels.

Definition 2 (Graph Morphism). Let G = (VG, EG, SrcG, T rgG, LabG) and
H = (VH , EH , SrcH , T rgH , LabH). A graph morphism f : G → H maps nodes
(V) and edges (E) of graph G to nodes and edges of graph H where f = (fv, fe),
fv : VG → VH , and fe : EG → EH are structure-preserving functions. That
is, we have for all edges e ∈ EG, fv(SrcG(e)) = SrcH(fe(e)), fv(TrgG(e)) =
TrgH(fe(e)), and LabH(fe(e)) = LabG(e), LabH(fv(v)) = LabG(v). If fv, fe are
total functions, then we have a total morphism, and if these are partial functions,
and fe is defined on e, i.e. there is an e′ ∈ EH , such that fe(e) = e′,we have a
partial morphism.

Definition 3 (Graph Isomorphism). In the above definition, if f , respec-
tively fv and fe, are bijective functions, then we have a graph isomorphism. We
write G ∼= H if there exists an isomorphism between graphs G and H.

If fv and and fe map the set of all nodes and edges of graph G respectively,
then the morphism is called a total morphism. On the other hand, fv and fe

are partial morphisms iff the mapping is not from the whole source graph nodes
and edges. Note that in a structure-preserving mapping, the shape and the edge
labelling of the original graph are preserved.

Definition 4 (Graph Transformation Rule). A transformation rule r is
defined as r : L → R, where L and R are graphs, called the left side graph and
the right side graph of the rule, and there is a partial morphism between them.

To transform a graph, a rule is applied to the graph. The application of a rule r
to a graph G, is based on a total morphism between L and G. We write G0

r−→ G1
to show that the graph G0 is transformed to G1 by the application of rule r. In
general, the result of applying a rule to a graph is as follows: everything in the
left side graph (L) but not in the right side graph (R) will be deleted, everything
in R which is not in L will be created, and everything that is in both sides will
be preserved [20]. A total match between the left side subgraph of a rule and a
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subgraph in the source graph is made, and then the source subgraph is deleted
and replaced by the right side subgraph R.

To describe how the states of a system defined as graphs transform as the
transformation rules are applied to them repeatedly starting from the initial
state, we give the definition of a graph transition system G = 〈S, T, I〉.
Definition 5 (Graph Transition System). A graph transition system is de-
fined as, G = 〈S, T, I〉, such that:

1. S is a set of states, where each state s ∈ S has a graph structure denoted as
Gs .

2. T is a set of transitions : T ⊆ S×P ×S where P is a set of transformation
rules and for all t ∈ T, t is given by s1

r−→ s2, there is a graph transformation
rule r ∈ P that transforms Gs1 to Gs2 .

3. I is a set of initial state graphs.

The transformation sequence s0
r1−→ s1

r2−→ ...
rn−→ sn is called a GTS derivation.

We write s0
r∗
−→ sn to denote that such a derivation from s0 to sn exists. Since in

our modelling all the transitions are made by the application of rules, we some-
times omit the r superscript and show a transition as s1 → s2 and a sequence
of transitions as a path, denoted by �, e.g. s0 � sn shows that there is a path
between the state s0 and sn in the graph transition system.

Later, in sections 4 and 5 we need to prove that a GTS and its bisimilar
quotient satisfy the same set of properties. Thus, at first, it is required that
we describe how these properties and their propositional formulas are expressed
in terms of graphs, and how the property satisfaction is defined for graphs. In
our previous work [16], we have defined the notion of graph satisfaction and
extended the definitions of graph and graph morphism to regular expression
graph (REG) and regular expression graph morphism. Here, we briefly present
these definitions again. REGs are used for expressing Boolean expressions of
propositions as graphs (called proposition graphs) with edges labelled as regu-
lar expressions (e.g. Kleene-star labels). Using regular expression graphs in the
proposition graphs and the transformation rule graphs makes these graphs more
expressive. REGs are used to compactly express component connectivity pat-
terns, for instance, to show that between two components of interest there may
be an arbitrary length sequence of intervening components.

Definition 6 (Regular Expression Graph (REG) [16]). An REG is a
graph G where for a set of labels, L, the labelling function Lab is defined as
Lab : EG → {l+ | l ∈ L} ∪ {l∗ | l ∈ L} ∪ L where l∗ and l+ represent Kleene
closure and the positive Kleene closure of l.

For REG morphism we need to define the notion of a graph path. On a graph, a
path is defined as a sequence of nodes connected by edges. Hence, the sequence
of edge labels in a graph path specifies a string (language).

Definition 7 (REG Morphism [16]). An REG morphism between G and H,
when either G or H is an REG or a graph is defined as, for a path p = {v1, ..., vn}
in G there is a path q = {u1, ..., un} in H such that:
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– There is a graph morphism m : VG → VH between the beginning and the end
nodes of these two paths.

– For 2 ≤ i ≤ n− 1, these cases may occur:
1. If both G and H are REGs, then the language specified by the sequence of

corresponding labels over the edges connecting nodes vi in p is a subset of
the language specified by the sequence of labels over the edges connecting
nodes ui in q.

2. If H is an REG, and G is a graph without Kleene-star-labelled elements,
then the string specified by the sequence of corresponding labels over the
edges connecting nodes vi in p is a member of the language specified by
the sequence of labels over the edges connecting nodes ui in q.

We have total or partial REG morphisms, if the mappings are respectively total
or partial.

Definition 8 (Graph Satisfaction [16]). An REG or a graph G satisfies an
REG or a graph φ, written as G |= φ, iff there exists a total graph or REG
morphism m between φ and G written as m : φ→ G.

We adopt a GTS model with attributed graphs and node identification [20,3], in
which nodes are uniquely identified by their attributes.

3 Symmetry in Dynamic GTS Models

We define symmetry for dynamic GTS models of systems which may not be fully
symmetric, but that show some symmetry in their structure. Traditionally, for a
fixed size system, symmetries are represented by a group of index permutations
[7,9]. For GTS systems, we consider states to be symmetric if their associated
graphs are isomorphic.

Definition 9 (Graph Permutation). A permutation π : G → H is an iso-
morphism between a graph G and a graph H, G ∼= H.

Since π is an isomorphism, it associates vertices and edges of H (VH , EH) to
vertices and edges of G (VG, EG), such that VH = VG. For example, for a ring
graph with three labelled nodes 1, 2, 3, with edges: 1 → 2, 2 → 3, 3 → 1, a
permutation π that maps nodes 1 to 2, 2 to 3, and 3 to 1 permutes the graph
to the one that has the same set of vertices. Also π associates the edges 1→ 2,
2 → 3, and 3 → 1, respectively, to the edges 2 → 3, 3 → 1, and 1 → 2 in the
permuted graph.

In dynamic systems, where the number of components may change, we con-
sider sets of such permutations to define symmetries for different state sizes. In
fact, there are different groups of permutations for graphs with different sizes.
The state graph permutation implicitly considers the number of nodes in a graph
because graph isomorphism is used to define these permutations and isomor-
phism is based on a bijection on the sets of nodes and edges of the graph. For
specific graphs of n nodes, we use the notion πn to show a permutation on those



258 Z. Langari and R. Trefler

graphs. For a ring of size n this permutation is a rotation on an n-node ring. For
a k× k toroidal mesh (where n = k× k), a permutation is either the rotation of
k horizontal rings, the rotation of k vertical rings, or a mix of these rotations.
k − 1 horizontal rotations followed by a vertical one or k − 1 vertical rotations
followed by a horizontal one is actually a flip for the k× k toroidal mesh, where
the flip α is defined as α(i, j) = (j, i). These permutations are automorphisms
of a toroidal mesh network.

For a specific topology, consider a set composed of a disjoint union of graphs
with different sizes. We use the notationAi to show a group of graph symmetries,
where i denotes size of the graph. The number of groups is finite as we work
with GTS models with an upper-bound maxsize on the number of graph nodes.
Γ is defined as a new generalized group of symmetries built from the product of
groups of permutations of graphs with different sizes. For details on this product
and for the reason on why this product forms a group we refer the reader to
[14]. Each element of Γ is a tuple (π1, π2, ..., πn) where πi ∈ Ai. Each πi can be
an identity permutation indicated as ei, which is a morphism that maps each
graph of size i to itself, where 1 ≤ i ≤ maxsize(G). Note that the group Ak

is isomorphic to the subgroup of elements (e1, e2, ..., πk, ..., en); therefore, for
simplicity we indicate (e1, e2, ..., πk, ..., en) as πk from now on.

Definition 10 (GTS Symmetry). A GTS G = 〈S, T, I〉 is symmetric with
respect to the set of graph permutations Γ if:

1. For all s1, s2 ∈ S, where s1 has an associated n-node graph and s2 has an
associated m-node graph, if t is a transition in T such that t : s1 → s2, then
for πn, an n-node symmetry in Γ , there is a path p ∈ T +, p : πn(s1) �
πm(s2) ∈ T + where πm is an m-node symmetry in Γ .

2. For all s0 ∈ I where Gs0 is an n-node graph associated with state s0 and for
all πn ∈ Γ , πn(Gs0 ) ∈ I.

A GTS model is fully symmetric if for all transitions and for all arbitrary in-
dex permutations on state graphs (not just isomorphisms), the GTS model is
invariant. GTS symmetry differs from architectural symmetry defined for fixed-
size systems in [21], because in the case that Gs1 (an n-node graph associated
with state s1) and Gs2 (an m-node graph associated with state s2) are of the
same size, then in the above definition, m = n and πn = πm, which means that
we have the same permutation for graphs with the same number of nodes. The
reason is that both πn and πm are isomorphisms on graphs of the same size and
architecture. In this case, the path p would be of length one, because for each
transition between two state graphs, there is one symmetric transition between
their isomorphic state graphs. In addition, the set of symmetries in architec-
tural symmetry differs from those in GTS symmetry, which are based on graph
isomorphisms.

In dynamic GTSs, it is important to describe the way the system evolves
within a maximum bound. Our methods are applicable when evolution of the
system does not change the architecture describing the model structure. For
example, the basic building block of a toroidal mesh is a ring, and the toroidal
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mesh evolves by the addition of these building blocks. Therefore, the dynamic
evolution is done by adding a certain number of k nodes to form a new vertical or
horizontal ring to keep a balanced toroidal mesh network. Therefore, in toroidal
mesh, m = n (when the toroidal mesh is not dynamic), or m = n + k (when k
nodes are added), or m = n− k (when k nodes are deleted).

We use graph isomorphism to build a bisimilar quotient of a GTS model. It
is notable that graph isomorphism requires that graphs be of the same size and
structure. We can use graph isomorphism as an equivalence relation on a GTS
model with state graphs of different sizes. Thus, in state-space reduction, we are
looking to cut down the number of isomorphic state graphs belonging to the
same equivalence class that are represented during verification.

4 GTS Bisimulation

Using graph isomorphism (Definition 3), we now define GTS bisimulation, and
then give an algorithm to generate a reduced bisimilar quotient of a GTS model.
Isomorphism provides a strong equivalence relation for generating the quotient,
because the same set of transformation rules are applicable to a state in the
quotient and the isomorphic state in the original model.

Definition 11 (GTS Bisimulation). Given two GTSs G1 = 〈S1, T1, I1〉 and
G2 = 〈S2, T2, I2〉, a relation ∼ ⊆ S1 × S2 is a GTS bisimulation if s1 ∼ s2
implies:

1. Gs1
∼= Gs2 .

2. For every t1 ∈ T1, t1 : s1 → s′1, there is a path p2 ∈ T2 of length at least one,
such that p2 : s2 � s′2 and s′1 ∼ s′2.

3. For every t2 ∈ T2, t2 : s2 → s′2, there is a path t1 ∈ T1 of length at least one
such that p1 : s1 � s′1 and s′2 ∼ s′1.

Quotient of a GTS: Let G = 〈S, T, I〉 be a GTS with a set P of transformation
rules and ≡ is an equivalence relation on S such that s1 ≡ s2 implies Gs1

∼=
Gs2 . If each equivalence class of state graphs is shown as [s], then the quotient
structure of a GTS is represented by Ḡ = 〈S̄, T̄ , Ī〉 such that

S̄ = {[s] : s ∈ S}, G[s]
∼= Gs,

T̄ = {[s] r−→ [t] ∈ S̄ × P × S̄ : ∃s0 ∈ [s], t0 ∈ [t] : s0
r−→ t0 ∈ T }, and

Ī = {[s] : s ∈ I}.

4.1 Generating a Bisimilar Quotient

In this section, we present an algorithm for generating a symmetry-reduced GTS
model of a dynamically evolving multi-process system. This algorithm (cf [9])
provides an on-the-fly generation of the symmetry-reduced model of a GTS-based
labelled-transition system. The algorithm may provide an exponential savings in
the cost of system analysis for fully symmetric GTS models, but for GTS models
with some symmetry we get a polynomial-size reduction.
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GenerateQuotient(state s0, T , int n)
Input: s0: initial state, T : set of GTS rules, n: initial number of processes
Output: E: equivalence classes of states, R: quotient transition relation
E[1].st ← s01

CurrentState ← 1, LastState ← 12

// loops over E to apply the transformation rules

while CurrentState ≤ LastState do3

forall r ∈ T applicable to E[CurrentState].st do4

// applies rule r to a representative state st in table E

temp ← Apply(r, E[CurrentState].st)5

s̄ ← temp.st6

n̄ ← temp.n7

stateFound ← false8

// checks if the transformed state is a permutation of the

existing representative states

for i ← 1 to LastState do9

// finds the equivalence class based on the graph size

if (E[i].n = n̄) and (s̄ = E[i].st or I sAPermutation(E[i].st, s̄, E[i].n))10

then
stateFound ← true11

AddTransition(R,CurrentState, i)12

exit for loop13

endfor14

// the newly found equivalence class is inserted in E

if stateFound = false then15

LastState ← LastState+ 116

E[LastState].st ← s̄17

E[LastState].n = n̄18

AddTransition(R,CurrentState, LastState)19

endforall20

CurrentState ← CurrentState+ 121

endwhile22

return E, R23

Fig. 2. Quotient Generation Algorithm

The algorithm GenerateQuotient in Figure 2 accepts a set of graph trans-
formation rules, an initial-state graph labelling, and the initial number of pro-
cesses as input. As output, it generates a table E: the representatives of the
equivalence classes of state graphs, and a table R: the quotient transition rela-
tion. Each element in E consists of a single representative state graph (st), and
the number of processes in that state graph (n). Table R is a two-dimensional
table consisting of pointers to table E. There is a transition between each state
in E[i] and the state in E[R[i, j]], where j is an index iterating over all transi-
tions of the state in E[i]. By keeping track of the number of processes in each
representative state: E[i].n, our algorithm works correctly for dynamic architec-
tures in which processes can be added or deleted in the execution path.
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In line 10, the algorithm checks that two state graphs with the same size are a
permutation of each other. For more clarity, here we consider the node labelling of
a state graph instead of the graph itself. The function IsAPermutation iterates
over permutations to find the right permutation, and it can be specialized for
different topologies. For example, for ring networks, the permutations are circular
ones. For a toroidal mesh, they are appropriate horizontal or vertical rotations,
or flips. As an example, we have implemented the GTS modelling of mutual
exclusion for both a dynamic toroidal mesh and a dynamic token ring in [14].

Theorem 1. Let G = 〈S, T, I〉 be a GTS and symmetric with respect to the set
of graph permutations Γ , and Ḡ = 〈S̄, T̄ , Ī〉 be the quotient of G, then G and Ḡ
are GTS-bisimilar: G ∼ Ḡ.
Proof. Consider πn, πm ∈ Γ as graph permutations for a set of state graphs with
different number of nodes. The proof considers two claims: 1) for every graph
transformation s̄0 → s̄1 ∈ T̄ , there is a corresponding path p = s0 � s1 in G,
and 2) for every s0 → s1 ∈ T , there is a corresponding path p̄ = s̄0 � s̄1 in
Ḡ. We prove the first claim, and the other follows similarly. The proof for each
claim is broken into two cases: one for transformations s̄0 → s̄1 that do not
add or delete components (nodes) to or from the start graph s̄0 of size n. The
second case considers a transformation that changes the number of components
in the source state graph. For the second case, we only consider the addition of
components, as proof for the deletion is similar.

Case 1: Choose an arbitrary reachable state s0 ∈ S such that Gs0
∼= Gs̄0 .

Using on-the-fly generation of the quotient, we know that there exists a transition
s̄0 → s̄1 ∈ T̄ such that s̄0 and s̄1 are equivalence classes of state graphs. Thus,
there is a graph u ∈ S that belongs to the equivalence class of s̄0 and there
is a graph v ∈ S that belongs to the equivalence class of s̄1. Therefore, u →
v ∈ T . Thus, Gu

∼= Gs̄0 and Gv
∼= Gs̄1 . Since Gs0

∼= Gs̄0 and Gu
∼= Gs̄0 , by

transitivity Gs0
∼= Gu. Now let Gs1 be isomorphic to a permutation of graph

v, i.e. Gs1
∼= πn(Gv) which implies Gs1

∼= Gv and because we had Gv
∼= Gs̄1 ,

thus Gs1
∼= Gs̄1 . From u → v ∈ T , Gs0

∼= Gu, and Gs1
∼= Gv we deduce

πn(u)→ πn(v) = s0
r−→ s1 ∈ T . Inductively, we can prove for each s̄i → ¯si+1 ∈ T̄ ,

there is a transformation si
r−→ si+1 ∈ T .

Case 2: In s̄0 → s̄1 ∈ T̄ , we know that Gs̄0 is of size n and Gs̄1 is of size
m, where m > n. Choose an arbitrary state s0 ∈ S such that Gs0

∼= Gs̄0 .
Since s̄0 → s̄1 ∈ T̄ , then based on the quotient generation algorithm, there is
a transformation rule u

r−→ v ∈ T in GTS G such that Gs̄0
∼= πn(Gu), Gs̄1

∼=
πm(Gv). Since G is GTS-symmetric, then for each transition u → v ∈ T there
exist permutations π′

n and π′
m such that π′

n(Gu) � π′
m(Gv) ∈ T , and since

permutation is based on isomorphism then every permutation of a graph is
isomorphic to it, so π′

n(Gu) ∼= πn(Gu). From Gs0
∼= Gs̄0 , Gs̄0

∼= πn(Gu), and
π′

n(Gu) ∼= πn(Gu) we have Gs0
∼= πn(Gu). Therefore, s0 � π′

m(v). Let s1 be the
permutation of graph v; hence, π′

m(Gv) ∼= Gs1 . We had Gs̄1
∼= πm(Gv), also we

know all permutations of a graph are isomorphic with each other, thus π′
m(Gv) ∼=

πm(Gv); hence, we have Gs̄1
∼= Gs1 , and conclude s0 � s1. Inductively, we can

prove for each s̄i → ¯si+1 ∈ T̄ that there is a path in T . ��
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As a result, we have a theorem about satisfaction of reachability properties,
EFf (eventually a long a path) and ¬EFf , where f is a propositional formula.
In GTS-bisimilar models, a transition matches with a path; therefore, neither X
(next-time) nor U (until) operators can be expressed in properties.

Theorem 2. Let φ be an EF formula over a set of atomic graph propositions
defined as graphs or REGs. For the graph transition system G, and its quotient
Ḡ and the property φ and state graphs s1 ∈ G and s̄1 ∈ Ḡ, where s1 ∼ s̄1 we have
G, s1 |= φ iff Ḡ, s̄1 |= φ.

Proof idea. This theorem is a direct consequence of exploiting symmetry and
GTS symmetry, and the proof is done using the bisimulation between the GTS
G and its quotient Ḡ, and it is similar to the proof given in [21].

5 Vertex Bisimulation

In this section, we introduce vertex bisimulation to be used for GTSs that are
not fully symmetric. Vertex bisimulation enables an exponential reduction with
respect to full symmetry group for GTS models. We require that the transfor-
mations of these GTSs preserve the architecture, which is the case that usually
occurs in practice, i.e., if the initial state graph architecture is a toroidal mesh,
then this architecture is preserved in all state graphs of the model and in the
state graphs of the symmetry-reduced model. Even if the structure dynamically
evolves, the evolution of components preserve the overall system structure.

Definition 12 (Vertex Bisimulation). For GTSs G1 = 〈S1, T1, I1〉 and G2 =
〈S2, T2, I2〉 a relation ∼v ⊆ S1 × S2 is a vertex bisimulation if s1 ∼v s2 implies:

1. Gs1 and Gs2 have the same set of vertices and the same architecture.
2. for every t1 ∈ T1, t1 : s1 → s′1, there is a path p2 : s2 � s′2 ∈ T2 and

s′1 ∼v s′2.
3. for every t2 ∈ T2, t2 : s2 → s′2, there is a path p1 ∈ T1 such that p1 : s1 � s′1

and s′2 ∼v s′1.

From a GTS-symmetric model with respect to full symmetry group, we derive
a vertex-bisimilar quotient. Thus, we can apply all permutations and obtain
full symmetry reduction resulting in an exponential reduction. To be able to
gain this reduction without the application of the large set of all permutations,
there are techniques that allow the representation of full symmetry-reduced state
spaces by a program translation into a symmetry-reduced program text [10,4].
Vertex bisimulation for GTS models is comparable to safety-bisimulation for
Kripke models [21], but unlike safety-bisimulation it can be used for dynamic
graph models. In the following theorem, we show the vertex-bisimilarity of a
model and its quotient. The proof of this theorem is similar to the proof of
Theorem 1.

Theorem 3. Let Ḡ = 〈S̄, T̄ , Ī〉 be the quotient model of a GTS-symmetric sys-
tem G = 〈S, T, I〉, then G is vertex-bisimilar to Ḡ.
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Fig. 3. Two atomic proposition graphs

5.1 Property Preservation

If we prove that the quotient of a GTS-symmetric system is vertex-bisimilar to
the original model, then we can use the quotient to prove interesting properties
of the system. As stated in [21], one of the problems of verifying properties on
the quotient models is that the property should have symmetric atomic proposi-
tions, that is, permutations of process indices in the property formula leaves the
formula and its significant sub-formulas invariant. Expressing Boolean expres-
sions of atomic propositions as graphs and using graph satisfaction (Definition 8)
[16] provides an abstraction on the process indices that solves this problem. The
reason is that when we use an REG in an atomic proposition and a generic node
that represents, for example, any of the processes appearing in the proposition,
then we do not need to specify each symmetric part of the atomic proposition
explicitly. For example, in a model with three processes, an atomic proposi-
tion for expressing that at least one of the processes is in the Critical state is:
Critical1 ∨ Critical2 ∨ Critical3. Figure 3-a illustrates such an expression in
which one process (any of 1, or 2, or 3) is in the Critical state and connected to
at least one other process. The condition “at least one” has been modelled as an
edge labelled with Connected+ between two processes.

As presented in Definition 6, we have used the regular-expression graph in
which edges may be labelled with a Kleene-star operator over the set of labels.
Therefore, all formulas with the existential process quantifier form, ∨i, can be
abstractly modelled as a proposition graph with nodes being an abstraction of
process indices. Also, the universal process quantifier form, ∧i, in a graphical
notation, is implicitly presented as all the process nodes that participate in
the ∧i formula connected together. For instance, in the property ¬EF(∃i �=
j : Criticali ∧ Criticalj) in a toroidal mesh or ring, the Boolean expression of
propositions can be expressed as a graph illustrated in Figure 3-b. In this figure,
two different processes are presented to be in the Critical state.

Thus reachability properties and all the properties that can be expressed in
terms of EF, such as AG φ which is equal to ¬ EF ¬φ, are verifiable on the
symmetry-reduced GTS model. For these properties, we prove that for a GTS
and its quotient that are vertex-bisimilar, they both satisfy the same properties.
Based on this theorem, we can use the vertex-bisimilar reduced GTS model of
a system to prove interesting properties of it.
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Theorem 4. Let G = 〈S, T, I〉 be a symmetric GTS and Ḡ = 〈S̄, T̄ , Ī〉 be the
quotient of G and vertex-bisimilar to it, G ∼v Ḡ. For s1 ∈ S and s̄1 ∈ S̄, where
s1 ∼v s̄1 we have G, s1 |= φ iff Ḡ, s̄1 |= φ where φ is an EF formula over a set
of atomic propositions defined as graphs or REGs.

To prove this theorem, first in the lemma below, we show that there is a matching
path between two vertex-bisimilar GTSs for GTS symmetric models.

Lemma 1. Let G = 〈S, T, I〉 be a symmetric GTS and Ḡ = 〈S̄, T̄ , Ī〉 be its
vertex-bisimilar GTS, G ∼v Ḡ. For s1 ∈ S, s̄1 ∈ S̄, if s1 ∼v s̄1 then for any GTS
derivation in G, s1

r∗
−→ sm, there is a derivation in Ḡ, s̄1

r∗
−→ s̄n, and vice versa.

Proof. It is notable that there may not be a one-to-one correspondence between
transformations of these two derivations, which means that the lengths of the
two derivations may not be the same. We show the proof for (⇐), and the other
direction will follow because G and Ḡ are vertex-bisimilar.

For p̄ : s̄1
r∗
−→ s̄n in Ḡ, we prove that there is p : s1

r∗
−→ sm in G such

that sm ∼v s̄n. The proof is shown by breaking the derivation p̄ into individual
transformations and matching each graph transformation in the derivation p̄ to
a sequence of transformations in p. Later we match the concatenated transfor-
mations in p̄ to the concatenated sequence of transformations in p.

For the first transition in p̄, if the length of the GTS derivation p is zero, then
s1 = sm, and we have a mapping to a path of length zero. If the length of the
GTS derivation p is greater than or equal to one, then based on Definition 12,
we have s1 ∼v s̄1 and for one transition s̄1 → s̄2 in p̄, there is a derivation in p
of length at least one, thus s̄2 ∼v si. We proved that for the first transformation

in p̄, there is a sequence of transformations in p : s1
ri

−→ si where s̄2 ∼v si. The
same reasoning can be used for the second and subsequent transformations, e.g.
s̄2 → s̄3 is matched to a path from si to sj in p.

We now use induction. As to the hypothesis, consider for a sequence of k

transformations in p̄ : s̄1
rk

−→ s̄k, there is a sequence of l transformations in

p : s1
rl

−→ sl, such that s1 ∼v s̄1 and sl ∼v s̄k. Based on the vertex bisimulation
definition, for the transformation s̄k → s̄k+1 in Ḡ, there is a path sl

r∗
−→ v in G,

where s̄k ∼v sl, and s̄l+1 ∼v v, let v be sl+1. Therefore, for p̄ : s̄k
r−→ s̄k+1 in Ḡ

there is a derivation p : sl
r∗
−→ sl+1 in G. We consider the application of the first

k transformations and the k + 1th transformation in Ḡ as one GTS derivation:
s̄1

r∗
−→ ¯sk+1, and also the first l sequences of transformations and the l + 1th

transformation in G as the derivation p : s1
r∗
−→ sl+1. Let k+1 = n and l+1 = m.

Thus, we have matched the two derivations. ��

Proof (Theorem 4). To prove this theorem, we use the fact that G is GTS-
symmetric, to ensure the preservation of architecture in states of G and its quo-
tient, even though s1 and s̄1 only have the same set of vertices. The proof is
given for different cases of φ. It is sufficient to show the proof for one direction
(⇒). The other direction is similar.
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Atomic Propositions. The propositional formula is built as a graph with an
abstraction on process indices. Therefore, without considering specific in-
dices, if the formula is true for s1, it is symmetrically true for any other
communication graph of processes with the same set of local states. Since s1
and s̄1 are vertex-bisimilar, they have the same node labelling or the same
set of possible local states, and both satisfy the same formula.

EF formula. From G, s1 |= EF ϕ, we deduce that there is a derivation p : s1
r∗
−→

u in G, where u is a state graph that satisfies the proposition graph ϕ. Since
s1 ∼v s̄1 and based on Lemma 1, we know that for each derivation p in G,
there is a matching derivation p̄ : s̄1

r∗
−→ v in Ḡ such that u ∼v v. Therefore,

each property that is satisfied in u is satisfied in v as well, Ḡ, v |= ϕ, and v
is a state along the path starting at s̄1. Hence, Ḡ, s̄1 |= EF ϕ. ��

6 Conclusion

We have described symmetry-reduction techniques for models that provide ex-
plicit visual semantics for dynamic multi-process systems. To generalize notions
of symmetry for dynamic GTS models, we defined GTS symmetry and GTS
bisimulation. Using these notions, we provided an on-the-fly algorithm for gen-
erating a symmetry-reduced GTS model based on graph isomorphism.

Determining if two graphs are permutations of each other needs graph iso-
morphism checking, which is a hard problem for unlabelled graphs, but it can
be shown to have a polynomial complexity for deterministic labelled graphs [18].
Also, McKay [17] has developed an algorithm for graph isomorphism that works
quite well in practice, handling graphs with up to millions of nodes.

We note that our work requires an upper bound on the number of nodes
(components) that can be added to a state, because verification of systems for an
arbitrary number of processes is generally undecidable [1]. We also have proved
that the generated quotient is GTS-bisimilar to the original GTS model, and thus
they both satisfy the same set of properties. To achieve better state-space savings
for dynamic GTS models that are not fully symmetric, we have defined vertex
bisimulation. The vertex-bisimilar GTS model provides exponential savings over
the original model. Vertex bisimulation defines an equivalence relation on state
graphs based on their vertices.

We showed that the vertex-bisimilar reduced model can prove an interesting
subset of CTL properties satisfied by the original model. This subset includes
all the properties expressed with the EF and ¬EF operators. This includes the
important class of safety properties that are typically checked in an industrial
verification setting. The propositional formula of these properties has been il-
lustrated as a graph. Proposition graphs provide an abstraction on the process
indices that take care of the symmetry of propositions. Currently, we are inves-
tigating the satisfaction of EF-CTL properties as well. These properties consist
of all Boolean connectives and CTL’s EF operator, including arbitrary nesting.
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Abstract. When discussing protocol properties in the symbolic
(Dolev-Yao; term-based) model of cryptography, the set of cryptographic
primitives is defined by the constructors of the term algebra and by the
equational theory on top of it. The set of considered primitives is not
easily modifiable during the discussion. In particular, it is unclear what
it means to define a new primitive from the existing ones, or why a primi-
tive in the considered set may be unnecessary because it can be modeled
using other primitives. This is in stark contrast to the computational
model of cryptography where the constructions and relationships be-
tween primitives are at the very foundation of the theory. In this paper,
we explore how a primitive may be constructed from other primitives in
the symbolic model, such that no protocol breaks if an atomic primitive
is replaced by the construction. As an example, we show the construc-
tion of (symbolic) “randomized” symmetric encryption from (symbolic)
one-way functions and exclusive or.

1 Introduction

One of the main tasks of cryptographic research is the building of secure and
efficient protocols needed in various systems, and the construction of primitives
that these protocols need. In the computational model [12,21] of cryptography,
where messages are modeled as bit-strings and the adversary as a probabilistic
polynomial-time adversary, these primitives are constructed from simpler primi-
tives, all the way down to certain base primitives (one-way functions or trapdoor
one-way functions). The security properties of constructed primitives are derived
from the properties of the base primitives. In the further development, only de-
rived properties are important, making the whole approach modular (in theory).

The research in the symbolic model of cryptography (also known as the
Dolev-Yao model, or perfect cryptography assumption) [10] has so far almost
fully concentrated on the construction and analysis of cryptographic protocols.
The messages are modeled as elements of some term algebra where the con-
structors of that algebra are seen as abstractions of cryptographic algorithms.
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In these treatments, the set of constructors has been fixed, causing the set of
primitives (in our treatment, a primitive is a set of cryptographic algorithms)
also to be fixed. There is no notion of implementing a primitive using some al-
ready existing primitives. This can hinder the generalization of certain kinds of
results. For example, as stated, the impossibility result of [13] only applies to
hash functions and XOR operations.

Another obvious application of our result is the modularization of security proofs
of protocols in the symbolic model. While the symbolic model is generally more
amenable to automatic analysis, certain commonly-used operations (exclusive or,
and to lesser extent, Diffie-Hellman computation) are only handled with difficulty.
Certain other operations (addition and multiplication, equipped with the theory
for rings) are not handled at all. If these primitives are only used in a certain man-
ner (e.g. to define the session key) then the construction of messages containing the
uses of those primitives can be seen as a primitive itself, which may have properties
that are simpler to handle by the automatic analysis.

The main difficulty in defining that a primitive has been securely implemented
by a set of messages with variables is the difference in signatures. In general, the
implementation satisfies different (more) equalities than the primitive. Hence
the set of meaningful operations is richer and a simple observational equivalence
is not a useful definition of security. In this paper, we give a suitable defini-
tion that in our opinion precisely captures the intuition of the equivalence of
processes using the primitive operation and the processes using the implemen-
tation. We propose a technique for proving the security of the implementation.
The technique does not require the prover to universally quantify over processes
and contexts, but just provide an observationally equivalent process to a specific,
the “most powerful” attacker against processes using the implementation of the
primitive. We apply the technique by providing a secure implementation for the
randomized symmetric encryption primitive in terms of one-way hash functions
and exclusive or, thereby generalizing our impossibility result [13].

The paper is structured as follows. Sec. 2 gives the necessary background on
process calculi, introducing the applied pi-calculus that we will be working with.
Sec. 3 provides the main definitions and proof techniques, while Sec. 4 applies
them to the randomized symmetric encryption primitive. Finally, Sec. 5 reviews
related work and Sec. 6 concludes.

2 Applied Pi-calculus

Let us recall the syntax and semantics of the applied pi-calculus [2], in which
our results will be stated. We have a countable set Vars of variables, ranged
over by x, y, . . ., and a countable set Names of names, ranged over by m, n, . . ..
We let u, v, . . . range over both names and variables. Additionally, we have a set
Σ of function symbols, ranged over by f, g, . . ., each with a fixed arity. Func-
tion symbols abstract cryptographic and other operations used by protocols. In
the current paper, more often occurring function symbols besides tupling and
projections are the ternary randomized encryption Enc(R, K, X) and binary de-
cryption Dec(K, Y ), as well as the unary one-way (or hash) function H(X) and
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the binary XOR (written using infix notation) X ⊕ Y together with its nullary
neutral element 0. A term in signature Σ, ranged over by M, N, . . . is either a
name, a variable, or a function application f(M1, . . . , Mk), where the arity of f
is k. Let TΣ(Vars ∪ Names) denote all terms over the signature Σ, where the
atomic terms belong to the set Vars ∪Names .

An equational theory E is a set of pairs of terms in signature Σ. It defines a
relation =E on terms which is the smallest congruence containing E and is closed
under the substitution of terms for variables and bijective renaming of names
[20]. Equational theories capture the relationships between primitives defined in
Σ. The properties of tupling are captured by the equations πn

i ((x1, . . . , xn)) =E

xi for all i and n (we let πn
i denote the i-th projection from an n-tuple). Encryp-

tion and decryption are related by Dec(k, Enc(r, k, x)) =E x. The XOR-operation
has its own set of equations capturing commutativity (x⊕ y =E y⊕ x), associa-
tivity ((x⊕y)⊕z =E x⊕(y⊕z)), unit (x⊕0 =E x) and cancellation (x⊕x = 0).
No equations are necessary to capture the properties of H. If E is clear from the
context, we abbreviate M =E N as M = N .

Processes, ranged over by P, Q, . . ., extended processes, ranged over by A, B, . . .,
and their structural equivalence are defined in Fig. 1. We use −→x and

−→
M to de-

note a sequence of variables or terms. In the if-statement, the symbol = denotes
equality modulo the theory E, not syntactic equality. The extended process
{M/x} represents a process that has previously output M which is now available
to the environment through the handle x. Variable x is free in {M/x}. As indi-
cated by the structural equivalence, {M/x} can replace the variable x with M
in any process it comes to contact with under the scope of νx. Here A[x ← M ]
denotes the process A where all free occurrences of the variable x have been re-
placed with the term M , without capturing any free variables in M . If {M/x} is
outside the scope of νx then we say that the variable x is exported. The domain
of an extended process is the set of variables it exports. An extended process is
closed if it exports all its free variables. The internal reduction relation describes
a single step in the evolution of a process. As usual, we consider only well-sorted
processes: all variables and names have sorts and all operations (conditional
checking, communication, substitution) must obey them. In our sort system,
there is a sort Data; the inputs and output of any function symbol have this
sort. For any sequence of sorts T1, . . . , Tl there is also a sort C〈T1, . . . , Tl〉 for
channels communicating values of that sort. Let Proc(Σ) and Ctxt(Σ) denote
the sets of all extended processes and evaluation contexts with function symbols
from the set Σ. We refer to [2,20] for details and justifications.

In this paper we want to state that two processes, where the second has been
obtained from the first by replacing in it certain term constructors with their
“implementations”, are somehow indistinguishable. Observational equivalence,
denoted ≈ is the standard notion capturing indistinguishability by all environ-
ments. For defining it, we denote with A ⇓ c the existence of an evaluation
context C not binding c, a term M and a process P , such that A→∗ C[c〈M〉.P ].

Definition 1. The observational equivalence is the largest symmetric relation
R over closed extended processes with the same domain such that A R B implies



270 P. Laud

P ::= 0 | P |Q | !P | νn.P | if M = N then P else Q | u(−→x ).P | u〈−→M〉.P
A ::= P | A | B | νn.A | νx.A | {M/x} C ::= [ ] | A | C | C | A | νn.C | νx.C

A ≡ A | 0 A | (B | C) ≡ (A |B) | C A | B ≡ B |A !P ≡ P |!P
νn.0 ≡ 0 νuνv.A ≡ νvνu.A A | νu.B ≡ νu.(A | B) if u not free in A

νx.{M/x} ≡ 0 {M/x} |A ≡ {M/x} |A[x←M ] {M/x} ≡ {N/x} if M =E N

c〈−→x 〉.P | c(−→x ).Q→ P |Q if N = N then P else Q→ P

if M = N then P else Q→ Q for ground terms M and N , where M �=E N

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
A→ B

C[A] → C[B]

Fig. 1. Applied pi calculus processes and extended processes, evaluation contexts,
structural equivalence ≡, and internal reduction → [20]

(a) if A ⇓ c for some c, then B ⇓ c; (b) if A→∗ A′, then B →∗ B′ and A′ R B′

for some B′; (c) C[A] R C[B] for all closing evaluation contexts C. [20]

3 Secure Implementation of Primitives

We start by defining the notions of cryptographic primitive and implementing a
cryptographic primitive. A cryptographic primitive Prim is a subset of Σ, e.g.
the randomized symmetric encryption primitive is R-ENC = {Enc, Dec, e r, isenc}.
Beside the encryption and decryption function we also have a unary randomness
extraction function with the equality e r(Enc(r, k, x)) =E r and the unary type
verifier with the equality isenc(Enc(r, k, x)) =E true, where true is a nullary
operation. Many implementations of symmetric randomized encryption (in the
computational model) allow the randomness used in encryption to be recovered
from the ciphertext, and our intended implementation has the same property.
The possibilities it gives to the adversary must be reflected at the primitive level.
Another reason for including e r and isenc in R-ENC is, that the security proof
of our implementation in Sec. 4 makes significant used of these symbols.

An implementation assigns to each function symbol f ∈ Prim a term f i over Σ
with no free names and with free variables x1, . . . , xarity(f). The implementation
defines a mapping (a second-order substitution) tr from terms to terms, replacing
each occurrence of each f ∈ Prim in the term with f i. Formally,

tr(u) = u

tr(f(M1, . . . , Mn)) = f(tr(M1), . . . , tr(Mn)) if f �∈ Prim

tr(f(M1, . . . , Mn)) = f i[x1 ← tr(M1), . . . , xn ← tr(Mn)] if f ∈ Prim.

To make the translation well-behaved with respect to the equational theory
E we require tr(M) =E tr(N) for each (M, N) ∈ E. The mapping tr can
be straightforwardly extended to processes, extended processes and evaluation
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contexts. When defining secure implementations, we want to state that A and
tr(A) are somehow indistinguishable for all extended processes A.

Example 1. We can give the following implementation to the randomized sym-
metric encryption primitive R-ENC. Let eq? be a ternary function symbol. Let
eq?(x, x, y) =E y be a pair of terms in the equational theory E. Let the imple-
mentation of R-ENC be

Enci = (x1, H(x2,H(x2, x1, x3)) ⊕ x3,H(x2, x1, x3))

Deci = eq?(H(x1, π
3
1(x2),H(x1, π

3
3(x2)) ⊕ π3

2(x2)), π3
3(x2),H(x1, π

3
3(x2)) ⊕ π3

2(x2))

e ri = π3
1(x1)

isi
enc = eq?((π3

1(x1), π3
2(x1), π3

3(x1)), x1, true)

(recall that the arguments of Enc were the formal randomness x1, the key x2 and
the plaintext x3, while the arguments of Dec were the key x1 and the ciphertext
x2). The application of H to several arguments denotes the application of H to
the tuple of these arguments.

Our implementation of Enc(r, k, x) is similar to the OFB- or CTR-modes of
operation of block ciphers [11]. The randomness r (the initialization vector IV)
is included in the ciphertext and used, together with the key k, to generate a
random-looking sequence which is then reversibly combined with the plaintext x.
Hence the result of the OFB- or CTR-mode can be modelled as (r, H(k, r)⊕ x).
Formal encryption also provides integrity of the plaintext. Thus we add the
third component H(k, r, x) as a formal message authentication code. Finally, we
note that if the randomness r is reused (this case is ruled out in computational
definitions, but in this paper we are considering the most general way of using the
primitives), then the adversary is able to find x⊕x′ from the implementations of
Enc(r, k, x) and Enc(r, k, x′) by XOR-ing their second components. Such recovery
of x⊕x′ is not possible with primitive Enc. We rule out the reuse of randomness
by making it depend also on the key and the plaintext — we replace r in the
second component H(k, r)⊕ x by H(k, r, x). In this construction, similarities to
the resettable encryption [22] can be seen. But the use of H(k, r, x) in two roles
seems to be novel to our construction.

The decryption Dec(k, y) recovers the plaintext by extracting H(k, r, x) from
y, XOR-ing the second component of y with H(k, H(k, r, x)), and checking the
authentication tag.

The only pair in E relating Enc and Dec to other primitives (or each other)
is Dec(k, Enc(r, k, x)) =E x. It is simple to verify that Deci(k, Enci(r, k, x) =E x.
Also, obviously e ri(Enci(r, k, x)) =E r and isienc(k, Enci(r, k, x)) =E true. The
implementation of isenc is unsatisfactory because it declares all triples to be
ciphertexts, but in the following we’ll see how to improve it.

Defining the secureness of the implementation as A ≈ tr(A) for all extended
processes A immediately leads to problems. Consider e.g. the following process

νrνkνx.(c〈Enc(r, k, x)〉|c(y).if y = (π3
1(y), π3

2(y), π3
3(y)) then PImpl else PPrim) .

(1)
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It generates a ciphertext and then proceeds to check whether it is a triple or
not. A triple means that we are dealing with the implementation, while a non-
triple is a sign of using primitive encryption. Clearly, we have to restrict the
processes A if we want to have a meaningful definition. There should be a set of
function symbols Σfb ⊆ Σ that it is forbidden to apply. These function symbols
express the “internal details” of the implementation of the primitive. A process
just using the primitive should have no need to use them. Denote Σok = Σ\Σfb.

Example 2. It is unreasonable to restrict A from constructing and decomposing
triples. We thus introduce (̄·, ·, ·̄) as the tagged [9,6] version of tripling and H̄ as
the tagged version of hashing (these can be thought of as normal operations with
one extra argument that is fixed as a constant that is used nowhere else). We use
these operations to implement R-ENC. The use of these operations, as well as
the projections π̄1, π̄2 and π̄3 from tagged triples, should be unnecessary for any
process A whose security we care about (and for which we desire A ≈ tr(A)).

Continuing our running example, we redefine

Enci = (̄x1, H̄(x2, H̄(x2, x1, x3))⊕ x3, H̄(x2, x1, x3))̄

Deci = eq?(H̄(x1, π̄1(x2), H̄(x1, π̄3(x2))⊕ π̄2(x2)), π̄3(x2), H̄(x1, π̄3(x2))⊕ π̄2(x2))

e ri = π̄1(x1)

isienc = eq?(̄(π̄1(x1), π̄2(x1), π̄3(x1 )̄), x1, true)

The forbidden set of function symbols is Σfb = {H̄, π̄1, π̄2, π̄3, (̄·̄)}. The newly
introduced symbols are related to each other by π̄i(̄(x1, x2, x3)̄) =E xi. No other
(M, N) ∈ E contains those function symbols. We see that the tagging of triples
induces the tagging also for encryptions.

In the definition of observational equivalence, the usage of function symbols in
Σfb has to be restricted in evaluation contexts, too, or the test (1) can still be
performed in cooperation with the process A (generating the ciphertext) and the
context (testing whether it is a tagged triple). We see that the contexts must
also be translated — if A is enveloped by C[ ], then tr(A) should be enveloped
by tr(C)[ ]. This models the fact that both A and C implement the primitive
Prim in the same manner (otherwise they would be different primitives). Thus
we modify the notion of observational equivalence as follows.

Definition 2. The observational equivalence modulo implementation, denoted
≈tr , is the largest relation R over closed extended processes with the same domain
such that A R B implies
1. A ⇓ c if and only if B ⇓ c, for all channel names c;
2. if A→∗ A′, then there exists a process B′, such that B →∗ B′ and A′ R B′;
3. if B →∗ B′, then there exists a process A′, such that A →∗ A′ and A′ R B′;
4. C[A] R tr(C)[B] for all closing evaluation contexts C ∈ Ctxt(Σok)

While we can show that A ≈tr tr(A) for all extended processes in the random-
ized symmetric encryption example, the relation ≈tr also does not satisfactorily



Implementing Cryptographic Primitives in the Symbolic Model 273

capture the meaning of secure implementation. Namely, the context is restricted
in the operations it can perform; as it cannot use the function symbols in Σfb, it
cannot attack the implementation of the cryptographic primitive. We would like
to have a simulation-based definition — for any attacker D attacking tr(A) there
is an attacker S attacking A, such that A |S and tr(A) |D are indistinguishable
[7,17]. This motivates our definition of secure implementation.

Definition 3. Let Σ be a signature and E an equational theory over it. An im-
plementation of a cryptographic primitive Prim ⊆ Σ = Σok ∪̇Σfb with forbidden
symbols Σfb is secure if for any closed process A ∈ Proc(Σok) and any closed pro-
cess D ∈ Proc(Σ) (the adversary) there exists a closed process S ∈ Proc(Σok)
(the simulator), such that A | S ≈tr tr(A) | D. Here the mapping tr is induced
by the implementation.

The definition captures the notion of tr(A) being at least as secure as A — any-
thing that the environment tr(C) can experience when interacting with tr(A),
it (as C) can also experience when interacting with A. Hence, if nothing bad
can happen to C when running together with A, then nothing bad can happen
to tr(C) when running together with tr(A). The first can be established by an-
alyzing A (and possibly C), without considering the implementation details of
the cryptographic primitive.

An immediate consequence of the definition is, that the process A we’re trying
to protect does not have to be quantified over.

Proposition 1. Let an implementation of a cryptographic primitive Prim ⊆
Σ = Σok ∪̇Σfb with forbidden symbols Σfb be given; let the mapping tr be induced
by the implementation. If for any closed process D ∈ Proc(Σ) there exists a
closed process S ∈ Proc(Σok), such that S ≈tr D, then the implementation is
secure.

Proof. Let A ∈ Proc(Σok) and D ∈ Proc(Σ) be closed processes. By the
premise of the proposition, there exists a closed process S ∈ Proc(Σok), such
that S ≈tr D. Consider the context C[ ] = A | [ ]. It does not use symbols in Σfb.
Item 4 of the definition of ≈tr implies that A|S = C[S] ≈tr tr(C)[D] = tr(A)|D.

�
We propose the following method for showing the security of a certain imple-
mentation. We rewrite any process D as νcq.(Dctrl | VM ) where VM does not
depend on D (it only depends on Σ) and Dctrl does not contain any function
symbols. Intuitively, the process Dctrl sends computation requests to the process
VM (the “virtual machine”) which performs those computations and stores their
results in its database, responding with handles (new names) that the process
Dctrl can later use to refer to them. The channel cq is used for communication
between the two processes. We then construct a process VM sim and show that
VM sim ≈tr VM (this construction is primitive-specific). As tr(Dctrl) = Dctrl, we
deduce that νcq.(Dctrl |VM sim) ≈tr νcq.(Dctrl |VM ).

By defining a suitable bisimulation [2], it will be straightforward to show that
D ≈ νcq.(Dctrl | VM ). To complete the security proof, we only need refer to the
following proposition that is given here in a somewhat more general form.
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VM = νcint.
(
!
(
cq(=put, x, cb).νn.(cb〈n〉 | !cint(=n, co).co〈x〉)

)
|

!
(
cq(=get, x, cb).cint〈x, cb〉

)
|

!
(
cq(=compf , (x1, . . . , xk), cb).νco.cint〈x1, co〉.co(v1) . . . cint〈xk, co〉.co(vk).

νn.(cb〈n〉 | !cint(=n, co).co〈f(v1, . . . , vk)〉)
))

Fig. 2. The process VM

[[u]]Nc = c〈u〉 if u �∈ N
[[n]]Nc = cq〈put, n, c〉 if n ∈ N

[[f(M1, . . . ,Mk)]]
N
c = νc1 . . . νck.

(
[[M1]]

N
c1 | · · · | [[Mk]]

N
ck | c1(x1) . . . ck(xk).cq〈compf , (x1, . . . , xk), c〉

)

[[0]]N = 0

[[P | Q]]N = [[P ]]N | [[Q]]N

[[!P ]]N = ![[P ]]N

[[νu.P ]]N = νnνcb.cq〈put, n, cb〉.cb(u).[[P ]]N\{u} if u is data

[[νc.P ]]N = νc.[[P ]]N if c is channel

[[if M = N then P else Q]]N = νcMνcN .
(
[[M ]]NcM | [[N ]]NcN | cM (xM ).cN (xN ).

νcb.(cq〈get, xM , cb〉.cb(yM ).cq〈get, xN , cb〉.cb(yN ).if yM = yN then [[P ]]N else [[Q]]N )
)

[[c(u1, . . . , uk,
−→c ).P ]]N = c(x1, . . . , xk,

−→c ).
νcb.cq〈put, x1, cb〉.cb(u1) . . . cq〈put, xk, cb〉.cb(uk).[[P ]]N

[[c〈M1, . . . ,Mk,
−→c 〉.P ]]N = νc1 · · · νck.

(
[[M1]]

N
c1 | · · · | [[Mk]]

N
ck | c1(x1) . . . ck(xk).νcb.

cq〈get, x1, cb〉.cb(y1) . . . cq〈get, xk, cb〉.cb(yk).c〈y1, . . . , yk,−→c 〉.[[P ]]N
)

Fig. 3. Transforming out computations

Proposition 2. Let A1, A2, B1, B2 be four closed extended processes with the
same domain. If A1 ≈ A2, A2 ≈tr B1 and B1 ≈ B2, then A1 ≈tr B2.

Proof. Co-induction over the definition of ≈tr . Consider the relation ≈ ◦ ≈tr

◦ ≈. It is easy to verify that it satisfies the requirements put on relations R in
Def. 2. Hence (≈ ◦ ≈tr ◦ ≈) ⊆≈tr . �

The process VM is depicted in Fig. 2. We use syntactic sugar u(=key,−→x ).P
for the process u(z,−→x ).if z = key then P else u〈z,−→x 〉 that reads a tuple of
values from the channel u and continues as P , with the restriction that the first
component of the tuple must be equal to key. The VM process can “obey” the
commands for putting a new value in the database (input: the value; output: a
handle to it), getting a value from the database (input: handle; output: corre-
sponding value) and applying a function symbol f to the values in the database
(input: handles to arguments; output: handle to result). Here “put”, “get”, and
“compf” for each function symbol f ∈ Σ are fixed free names. The process VM
gives its output on a channel cb that is given together with the input.
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The translation from D to Dctrl = [[D]]fn(D) is given in Fig. 3. The process
[[M ]]Nc causes the handle to the value of M to be sent on the channel c if run
in parallel with VM . Here N is a set of names of sort Data that are supposed
to be free in the transformed process. In the transformed process, the values of
the names in N will be the same as in the original process, while the variables
and the names not in N will contain handles to their values in the original
process. The notations c(−→u ,−→c ) and c〈−→M,−→c 〉 indicate the inputs and outputs
of sort Data and C(. . .), respectively. We see that data is handled by the virtual
machine, while the values of sort “channel” are not affected by the translation.

The bisimilarity relates each closed process P to a process P̂ = ([[P ]]N |VM |
Store) where N is a subset of free names in P and Store is a parallel composition
of processes of the form !cint(=n, co).co〈M〉 associating the names n to values M .
Moreover, the terms occurring in P (except for names in N ) must correspond to
names in [[P ]]N that are mapped to the same terms by Store. One transition step
of P may correspond to several internal steps of P̂ . The processes at intermediate
steps are also related to P .

4 Security of the Implementation of Randomized
Symmetric Encryption

We have to present a process VM sim, such that VM sim ≈tr VM . The process VM
performs computations on behalf of the processes knowing the channel name cq.
Given handles to values v1, . . . , vk, it returns the handle to value f(v1, . . . , vk),
where f ∈ Σ = Σok ∪̇ Σfb. The process VM sim must respond to the same com-
putation (and put/get) queries, but it may not use the operations in Σfb. These
queries must be handled in some other way.

For the R-ENC primitive, the set Σ of function symbols contains at least
tupling, projections, Enc, Dec and the operations in Σfb outlined in Example 2.
Any other operations must be handled by VM sim, too. In the following, we are
not going to present VM sim as precisely as VM in Fig. 2, but we explain in detail
the operations it performs and appeal to the Turing-completeness of π-calculus
[16] in order to convince ourselves that such VM sim exists.

The process VM sim responds to the same commands as VM in the same
manner (receives a channel for sending its output as part of the input). It keeps
a table Tval of values it has received or constructed. Each entry (row) R in Tval has
the fields “handle” (denoted R.hnd), “value” (denoted R.v) and extra arguments
for bookkeeping (denoted R.args). For the rows R where R.v has been computed
by VM sim after a request to apply a symbol in Σfb, the extra arguments record
that request.

The process VM sim also keeps a second table Tct of ciphertexts it has seen
or constructed. Each row R in this table has the fields R.ct (the ciphertext),
R.snd , R.thd (the second and third component of the ciphertext, considered as
a tagged triple), R.k (the correct key) and R.pt (the corresponding plaintext).
The field ct is a unique identifier for rows in this table. We let Tct[M ] denote
the row of the table Tct where the field ct equals M .
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The process VM sim handles the commands as follows.

Storing. To a store a value M , the process VM sim generates a new name n and
a new row R in the table Tval with R.hnd = n, R.v = M and R.args = ⊥. If M
is a valid ciphertext (checked by comparing isenc(M) to true) and Tct does not
yet contain a row Tct[M ], then this row is added, the field ct is initialized to M
and other fields to ⊥. The command returns n.

Retrieving. To retrieve a value by handle n, the process VM sim locates the row
R of Tval with R.hnd = n, and replies with R.v. If there is no such R, there will
be no answer (This is similar to the behavior of VM ).

Computing. To apply a function symbol f to values with handles n1, . . . , nk,
the process VM sim locates the rows R1, . . . , Rk of Tval with Ri.hnd = ni for
i ∈ {1, . . . , k}. If some Ri cannot be located, or if k is different from the arity
of f , there will be no answer. Otherwise, VM sim generates a new name n and a
new row R in Tval with R.hnd = n, and replies with n. Before replying, it also
defines R.v and R.args as follows.

– If f ∈ Σok, then R.v = f(R1.v, . . . , Rk.v) and R.args = ⊥. Additionally,
• If the operation was Enc and the row Tct[R.v] was not present, then it

is added (and the field ct initialized with R.v). The field k of this row is
set to R2.v and the field pt to R3.v.

• If the operation was Dec, the row Tct[R2.v] exists (recall that ciphertext
was the second argument of Dec), and R1.v was the correct key (checked
by comparing Enc(e r(R2.v), R1.v, R.v) to R2.v) then the field k of this
row is updated to R1.v and the field pt is updated to R.v.

– If f ∈ Σfb and there exists a row R′, such that R′.args indicates that the
same computation query has been made to VM sim before (i.e. R′.args names
the operation f and the arguments R1.v, . . . , Rk.v), then let R.v = R′.v and
R.args = R′.args . In the following cases, we assume that the same query has
not been made before.

– If f is H̄ and the argument R1.v is a triple (x, y, z) then check whether Tct

contains a row Tct[M ], where M = Enc(y, x, z). If such row exists, then its
fields k and pt are updated to x and z. If such row does not exist, then it
is created and its fields k and pt likewise set to x and z. If Tct[M ].thd is
not ⊥ then VM sim sets R.v to Tct[M ].thd , otherwise it generates new names
n′, n̄, sets both R.v and Tct[M ].thd to n′, and adds a new row R̄ to Tval with
hnd = n̄, v = n′ and args = (π̄3, M). Next, it generates new names ñ, n̂ and
adds a two new rows R̃, R̂ to the table Tval with R̃.hnd = ñ, R̂.hnd = n̂,
R̃.v = (x, R.v), R̃.args = ⊥, R̂.args = (H̄, R̃.v). If Tct[M ].snd is not ⊥ then
VM sim sets R̂.v to Tct[M ].snd ⊕ z. Otherwise it generates a new name n′′,
sets R̂.v to n′′ and Tct[M ].snd to n′′ ⊕ z, and adds a new row to Tval with
hnd = ⊥, v = n′′ ⊕ z and args = (π̄2, M).

We see that if VM sim is requested to create a value that may serve as the
third component of a ciphertext then this ciphertext will also appear in the
table Tct and the entire row corresponding to it will be initialized. Also, all
entries in that row will also appear in Tval.
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– If f is H̄ and the argument R1.v is a pair (x, y) then check whether there ex-
ists a row Tct[M ], such that Tct[M ].thd = y and x is the correct key for M . If
there is no such row then y cannot have the form H̄(a, b, c); hence VM sim gen-
erates a new name n and sets R.v = n. Otherwise check whether Tct[M ].snd
is not ⊥. If this is the case, then set R.v = Tct[M ].snd⊕Dec(x, M). Otherwise
generate a new name n′, set R.v = n′ and Tct[M ].snd = n′⊕Dec(x, M), and
add a new row to Tval with hnd = ⊥, v = n′⊕Dec(x, M) and args = (π̄2, M).

– If f is H̄ and the argument R1.v is neither a pair nor a triple then generate
a new name n′ and set R.v = n′.

– If f is (̄·, ·, ·̄) then check whether there exists a row Tct[M ], such that e r(M) =
R1.v, Tct[M ].snd = R2.v and Tct[M ].thd = R3.v. If such row exists then
set R.v = M . Otherwise generate new names nk, nx and add a new row
Tct[Enc(R1.v, nk, nx)] to the table Tct. Initialize the field snd of this row to
R2.v and field thd to R3.v. Also set R.v = Enc(R1.v, nk, nx).

We see that the result of applying the symbol (̄·̄) is always a ciphertext.
If the three components would result in an invalid ciphertext, then we gen-
erate this ciphertext using a throw-away key, thereby making its decryption
impossible.

– If f is π̄1 then set R.v = e r(R1.v).
– If f is π̄2 and there is a row Tct[R1.v] in Tct and Tct[R1.v].snd is not ⊥, then

let R.v = Tct[R1.v].snd . If Tct[R1.v].snd is ⊥ then generate a new name n′

and let both R.v and Tct[R1.v].snd equal it. If the row Tct[R1.v] does not exist
then R1.v is not a ciphertext, because this fact would have been noticed at
the time when the row R1 was added to Tval. Generate a new name n′ and
let R.v = n′.

– If f is π̄3 then behave similarly to the case f = π̄2.

In all cases of handling a function symbol f from Σfb, the process VM sim sets
the fields args of the newly created row R of Tval to (f, R1.v, . . . , Rk.v), where
R1.hnd, . . . , Rk.hnd were the arguments given to f .

Proposition 3. VM sim ≈tr VM.

Proof (Sketch). Both VM and VM sim maintain a database that maps from
handles to values, update it according to certain rules, and reveal the values
of queried elements. A context C ∈ Ctxt(Σok) trying to distinguish VM and
VM sim (i.e. having a channel c, such that C[VM sim] ⇓ c, but tr(C)[VM ] �⇓ c)
will at some point query for certain elements of the database and then perform
a test (check the equality of two terms built from the queried elements), the
result of which determines whether the communication on c happens. We will
show that at no point in the execution there exists a test that can tell apart
the databases of VM and VM sim. Formally, a test is a pair of test messages
M, N ∈ TΣok

(Names ∪ Refs), where Refs is the set of “references” to the cells
of the database of VM sim. A reference r ∈ Refs can either be n.v, where n is the
handle of a row R in Tval, or Tct[Me].field , where the ciphertext Me identifies a
row in Tct and the value of field ∈ {snd , thd} in this row is different from ⊥. The
context C can access these references by using get-queries, possibly preceded by
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a compπ̄2
or compπ̄3

query. The names that a test message may contain are free
names generated by C.

If the context C[ ] encapsulating VM sim evaluates a test message M , then the
value 〈〈M〉〉sim it learns is obtained by replacing the references to database cells
in M with their actual values, as kept by VM sim. If C[ ] encapsulates VM , then
it learns the value 〈〈M〉〉real instead, where the reference n.v is replaced with the
value VM associates with the handle n. In this case, the references Tct[Me].snd
and Tct[Me].thd are replaced with π̄2(tr(Me)) and π̄3(tr(Me)), respectively.

Example 3. Suppose that the context C[ ] issues the following commands: n1 ←
put(r); n2 ← put(k); n3 ← put(x); n4 ← comp(,,)(n2, n1, n3); n5 ← compH̄(n4);
n6 ← comp(,)(n2, n5); n7 ← compH̄(n6); n8 ← comp⊕(n7, n3); and finally n9 ←
comp(̄,,̄)(n1, n8, n5). Through these queries, the handle n9 will correspond to the
ciphertext Enc(r, k, x). Let M = (n9.v, n5.v, Tct[Enc(r, k, x)].thd) and nhash be a
new name generated by VM sim.. Then 〈〈M〉〉sim = (Enc(r, k, x), nhash, nhash) and
〈〈M〉〉real = (̄(r, H̄(k, H̄(k, r, x))⊕ x, H̄(k, r, x))̄, H̄(k, r, x), H̄(k, r, x)).

We show that the following claim holds.
Claim (*) At any step of the computation of VM sim, the equivalence 〈〈M〉〉sim =
〈〈N〉〉sim ⇔ 〈〈M〉〉real = 〈〈N〉〉real holds for all M, N ∈ TΣok

(Names ∪ Refs).
If (*) would not hold for some M , N at some step of VM sim, then we can

show that for some Mprev, Nprev ∈ TΣok
(Names ∪ Refs) the claim (*) would not

hold at the previous step. We will not present the full analysis of cases in this
paper, but as an example, consider the computation step where f is H̄ and
the argument R1.v is a triple (x, y, z). If M and N do not refer to any newly
created entries of Tval or Tct, then we can set Mprev = M and Nprev = N .
Otherwise we obtain Mprev and Nprev by replacing the new entries in M and
N as follows. Let Me = Enc(y, x, z). We consider four possibilities, depending
on whether Tct[Me].thd is defined (1&2) or not (3&4), and whether Tct[Me].snd
is defined (1&3) or not (2&4). Fig. 4 outlines the replacements for references
to possibly new entries in Tct and Tval. An empty cell indicates that the refer-
ence existed before the current computation step, or the row was not created
in this computation step. We refer to the description of VM sim for the meaning
of new rows and definitions of new names. The table in Fig. 4, describing how
Mprev is constructed from M , should be understood as follows: if e.g. M con-
tains the reference ñ.v, and the cells Tct[Me].thd and Tct[Me].snd are not defined
(4th case), then ñ.v should be substituted with the pair (x, n′), where n′ is a
new name.

The replacement gives us Mprev and Nprev , such that 〈〈M〉〉sim = 〈〈Mprev〉〉sim
and 〈〈N〉〉sim = 〈〈Nprev 〉〉sim. The induction assumption states that 〈〈Mprev 〉〉sim =
〈〈Nprev 〉〉sim if and only if 〈〈Mprev 〉〉real = 〈〈Nprev 〉〉real. The values 〈〈M〉〉real and
〈〈N〉〉real are obtained from 〈〈Mprev〉〉real and 〈〈Nprev 〉〉real by substituting some
names with (possibly more complex) values. If 〈〈Mprev〉〉real = 〈〈Nprev 〉〉real then
also 〈〈M〉〉real = 〈〈N〉〉real. If 〈〈Mprev〉〉real �= 〈〈Nprev 〉〉real then we also have 〈〈M〉〉real �=
〈〈N〉〉real, because the structure of substituted values cannot be explored using
only the function symbols in Σok.
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ref. replacement

Tct[Me].snd n′′ ⊕ z n′′ ⊕ z

Tct[Me].thd n′ n′

n.v Tct[Me].thd Tct[Me].thd n′ n′

n̄.v n′ n′

ñ.v (x, Tct[Me].thd) (x, Tct[Me].thd) (x,n′) (x,n′)
n̂.v Tct[Me].snd ⊕ z n′′ Tct[Me].snd ⊕ z n′′

Fig. 4. Replacement of new references in simulating H̄(x, y, z)

In such manner we obtain a bisimilarity modulo implementation between
VM sim and VM even for the case where their entire databases are public. Hence
also VM sim ≈tr VM . �

5 Related Work

The implementation of cryptographic primitives is a certain case of process
refinement. While various aspects of refinement have been explored [3,19,18],
mostly concerned with the refinement of possible behaviors of a process, the work
reported in this paper has primarily been inspired by the notions of universal
composability [7] and (black-box) reactive simulatability [17], both originating
in the computational model of cryptography. The notion of indifferentiability by
Maurer et al. [15] is similar. These definitions have been recently carried over to
the symbolic model by Delaune et al. [9]. In all these definitions, there is a notion
of two interfaces — one for the “legitimate” user and one for the adversary —
of the process under investigation. Two processes can be equivalent (or in the
refinement relation) only if the user’s interface stays the same. The adversary’s
interface can change and a simulator process is used to translate between differ-
ent interfaces. This is in contrast to our problem, where the user’s interface is
also naturally considered as changing, and the replacement of the primitive with
the implementation is more invasive for the user process. While we think that
the definition of secure implementation could be based on the notion of strong
simulatability by Delaune et al. [9], the setup would be less natural and possibly
the virtual machine process VM has to be included even in the definition.

The question of secure protocol composition is related to the issues of im-
plementability of abstract processes or primitives. In recent work, Ciobâcă and
Cortier [8] give sufficient conditions for the security of composition of two proto-
cols using arbitrary primitives to follow from the security of stand-alone proto-
cols. Interestingly, they have a similar restriction on primitives used by different
protocols — the sets of primitives have to be disjoint.

Regarding the study of implementability of primitives, it is worth mentioning
that in the same paper where they introduced applied pi-calculus, Abadi and
Fournet [2, Sec 6.2] also considered an implementation of the MAC primitive,
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inspired from the HMAC construction [5]. Still, the construction is ad hoc and
puts restrictions on how the process uses certain values.

6 Conclusions

We have explored the notion of securely implementing a cryptographic primi-
tive in the symbolic model, and presented definitions that are more general and
convenient to use than definitions that could be obtained from the application
of existing treatment of process refinement and simulation. We have shown the
usefulness of the proposed definition by demonstrating a secure implementation
for the randomized symmetric encryption primitive. Future work in this topic
would involve a systematic treatment of the implementability of common cryp-
tographic primitives from each other. Obtained reductions and simulations may
also give new insights to the security proofs in the computational model. The
first step in this direction would be the analysis of the Luby-Rackoff construction
[14] for constructing pseudorandom permutations (“deterministic” symmetric
encryption, where Enc(k, ·) and Dec(k, ·) are inverses of each other) from ran-
dom functions (modeled in the symbolic model as hashing) and exclusive or.
Another line of future work is the application of the results of this paper, as well
as [9], to the analysis of complex protocols.
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Abstract. A main idea underlying bounded model checking is to limit
the length of the potential counter-examples, and then prove proper-
ties for the bounded version of the problem. In software model checking,
that means that only program traces up to a given length are consid-
ered. Additionally, the program’s input space must be made finite by
defining bounds for all input parameters. To ensure the finiteness of the
program traces, these techniques typically require that all loops are ex-
plicitly unrolled some constant number of times. Here, we show how to
avoid explicit loop unrolling by using the SMT Theory of Lists to model
feasible, potentially unbounded program traces. We argue that this ap-
proach is easier to use, and, more importantly, increases the confidence in
verification results over the typical bounded approach. To demonstrate
the feasibility of this idea, we implemented a fully automated prototype
software model checker and verified several example algorithms. We also
applied our technique to a non software model-checking problem from
biology – we used it to analyze and synthesize correct executions from
scenario-based requirements in the form of Live Sequence Charts.

1 Introduction

We present a finite-state model-checking technique, based on satisfiability solv-
ing, that does not require the user to explicitly bound the length of the search
traces. We use the SMT Theory of Lists [7] to model potentially infinite search
traces. A benefit of this approach is that it does not require providing the number
of loop unrollings. Similarly, when trying to solve a planning problem, we do not
have to specify the maximum number of steps needed to solve the problem. This
way, we can achieve most of the benefits of the unbounded case. Unfortunately,
in some cases our approach cannot prove that no counter-example exists (e.g.,
in the presence of infinite loops in the program), so it is not fully unbounded.

We use a list to model an unbounded search path. Every list element represents
a single state traversed during the search. In order to find a path to an error
state, we impose the following constraints on that list: (1) the first element is
a valid initial state, (2) every two consecutive elements represent a valid state
transition; and (3) the last element corresponds to one of the states we want
to reach (error states). Having formulated the problem in this way, we can run
an SMT solver, namely Z3 [23], to search for such a list, without constraining
its length. If Z3 terminates and reports that the problem is unsatisfiable, we
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c© Springer-Verlag Berlin Heidelberg 2011



Model Checking Using SMT and Theory of Lists 283

have proved that the error states are unreachable; otherwise, we have found a
counter-example.

This idea is readily applicable to software model checking. In the presence of
loops, program traces become infinite. A common resort is to explicitly perform
loop unrolling, as it is the case with CBMC [10], Forge [16] and [5]. The limitation
of this approach is that the number of unrollings must be specified beforehand
by the user. Typically, the number of unrollings and the bounds for the input
space are specified independently of each other, even though they are almost
never independent in practice. For example, in order to verify the “selection
sort” algorithm for arrays of length up to N , at least N − 1 loop unrollings
are needed. If the user provides a number less than N − 1, a tool for bounded
verification will typically report that no counter-example can be found within
the given bounds, which may trick the user into believing that the algorithm
is proven to be correct for all arrays of length up to N . With our approach,
to verify the “selection sort” algorithm, the user only specifies the bound for
N . Bounds for array elements are not needed in this case, so we can prove the
algorithm correct for all integer arrays up to the given length N .

The main contributions of this paper are:

– A novel approach to model checking using SMT and the theory of lists: we
explain how lists can be used to model unbounded traces;

– Application of this idea to software model checking: we present an optimized
encoding of a program, and show that loops need not be explicitly unrolled;

– Execution of Live Sequence Charts case study: we analyzed scenario-based
models of biological systems [19], written in the language of Live Sequence
Charts (LSC) [15]. We show that declarative scenario-based specifications,
written in LSC, can be translated into the logic of SMT, and an off-the-shelf
solver can be used to automatically execute them.

2 Background

In order to check whether a safety property holds within some number of states
k, one can define k sets of variables, one set for each state, s1, s2, · · · , sk, and
then, as with any model-checking problem, assert that the following hold:

1. Initial State constraint: Θ(s1);
2. Transition constraint: ρ(s1, s2) ∧ ρ(s2, s3) ∧ · · · ∧ ρ(sk−1, sk); and
3. Safety Property constraint: P(s1) ∧ P(s2) ∧ · · · ∧ P(sk−1) ∧ ¬P(sk).

Θ encodes constraints that must hold in the initial state; ρ(si−1, si) is a transition
function which returns true if and only if the system is allowed to go from state
si−1 to state si; finally, P(si) is the safety property that we want to prove. In
order to find a counter-example, we assert that the safety property doesn’t hold
in the last state while holding in all previous states. Additionally, the transition
function must hold for every two consecutive states. The conjunction of these
three formulas is passed to an off-the-shelf solver, which either returns a model
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encoding a counter-example, or proves that the formula is unsatisfiable (meaning
that the safety property is verified for the given k). This approach is commonly
referred to as bounded model checking using satisfiability solving.

We focus on how to use the theory of lists to avoid having k copies of the
state variables. The theory of lists is currently supported by many state-of-the-
art SMT solvers. A description of how other theories can be used to encode
programs and why that can be advantageous is presented in [5].

SMT lists are defined recursively: List<E> = nil | cons (head: E, tail: List).
For a given list, only two fields, head and tail are immediately accessible. In
addition, predicates is cons and is nil are readily available to check whether a
given list variable is cons or nil. As a consequence, it is not possible to directly
access the list element at a given position, or immediately get the length of the
list, which is inconvenient when asserting properties about lists.

3 Approach

Our approach is based on the idea of bounded model checking using satisfiability
solving, except that instead of explicitly enumerating all state variables (s1, s2,
· · · , sk), and thus bounding the length of a potential counter-example, we use
only a single variable of type List of States. Every list element is of type State,
which is a tuple of all variables needed to represent the problem state. We still
assert the same three constraints, (1) initial state, (2) transition; and (3) safety
constraint, but now in terms of a single list variable.

Expressing the initial state constraint is easy, since the first element of the
list is immediately accessible. To express the other two constraints, we use an
uninterpreted function accompanied with an axiom. More precisely, in order
to enforce the transition constraint between every two consecutive elements of
the list, we first define an uninterpreted function, named check tr, that takes a
list and returns a boolean value. Next we add an axiom (transition axiom) to
assert that check tr returns true when applied to a list if and only if every two
consecutive states of that list represent a valid state transition.

A recursive definition of the transition axiom is given in Figure 1. The only
case of importance is when the list argument, namely lst, is not nil and has
a non-nil next element (tail). This is because we only care to assert the tran-
sition property between two consecutive elements. We do that by inlining the
actual model-checking transition constraint between the current and the next
list element. In addition, we have to make sure that all subsequent consecutive
elements represent valid state transitions, so we recursively assert that the same
check tr function returns true for the tail of the given list argument.

In order to enforce the safety property on all list elements but the last one, we
could similarly define another uninterpreted function and an additional axiom.
However, since we already have an axiom that “traverses” the whole list, we
decided to include the safety property check in the existing transition axiom.
This can simply be done by checking whether the next list element (tail(lst))
corresponds to an error state (by inlining the error condition, i.e. ¬P(si)). If the
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DEF check tr: StateList → bool

ASSERT FORALL lst: StateList

IF (is cons(lst) ∧ is cons(tail(lst))) THEN

transition condition(head(lst), head(tail(lst))) ∧
check tr(tail(lst)) ∧
IF (error condition(tail(lst)))

THEN is nil(tail(tail(lst)))

ELSE is cons(tail(tail(lst)))

:PAT {check tr(lst)}

Fig. 1. Axiom for the check tr function

DEF states: StateList

ASSERT

is cons(states) ∧
initial condition(head(states)) ∧
check tr(states)

CHECK

Fig. 2. SMT logic context

next element is in fact an error state, we have found a counter-example, so we
force the list to end right there (i.e. its next element must be nil). Otherwise,
we must keep searching, so the next element in the list must be cons.

Finally, it is important to stress the purpose of the instantiation pattern (PAT:
{check tr (lst)}) in the FORALL clause. This axiom states something about all
lists. However, it would be impossible for the SMT solver to try to prove that the
statement indeed holds for all possible lists. Instead, the common approach is to
provide an instantiation pattern to basically say in which cases the axiom should
be instantiated and therefore enforced by the solver. In our case, we simply say
that every time we apply check tr function to a list, the axiom must be enforced,
so that the evaluation of check tr indeed indicates whether the list satisfies both
transition and safety property constraints.

The rest of the SMT logic context is given in Figure 2. It provides a generic
template for model-checking problems. For a specific problem, the user only
needs to define: (1) the State tuple (basically enumerate all state variables), (2)
initial condition, (3) transition condition; and (4) error condition.

4 Applicability to Software Model Checking

4.1 The Idea

We observe a program as a traditional Control Flow Graph (CFG) [3]. The state
of the execution of a program consists of the current basic block (at a given
moment, the execution is exactly in a single basic block) and the evaluations
of relevant program variables. The edges between the basic blocks are called
transitions. An edge is guarded by a logic condition that specifies when the
program execution is allowed to go from one basic block to another. The goal of
model checking is to find a feasible execution trace (a path in the CFG) from
the start node to one of the error nodes.

Programs with loops have cyclic control flow graphs, which means that some
of their traces are infinite. Using unbounded lists seems like a very natural way to
model program traces. Instead of truncating loops up front, we let the satisfiabil-
ity solver simulate them, by effectively executing loops until the loop condition
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becomes false. Even though some traces may be infinite, the number of ba-
sic blocks is always finite, meaning that the transition condition (i.e. the logic
expression that defines all valid transitions from a given state) is also finite and
can be expressed in a closed form.

4.2 Formal Definitions

Program Graph (PG). We formally introduce Program Graphs, which are a
variation of Control Flow Graphs.

A PG is defined over a set of typed variables V ar. We will use Eval(V ar)
to denote the set of possible evaluations of variables, Expr(V ar) to denote the
set of all expressions over V ar (e.g., constants, integer arithmetic, “select” and
“store” operations over integer arrays, and boolean expressions), and Cond(V ar)
to denote the set of all boolean expressions over V ar (Cond(V ar) ⊂ Expr(V ar)).
A PG is then defined as a tuple:

PG = (L,Act,Eff,→, l0,E)

L is a set of program locations (corresponding to basic blocks), l0 is the start
location (l0 ∈ L) and E is a set of error locations (E ⊂ L). Act is a set of actions
(program statements) and function Eff : Act×Eval(V ar) �→ Eval(V ar) defines the
effects of actions on variable evaluations. Finally, →: L × Cond(V ar) × Act× L is
the conditional transition relation with side effects (i.e., actions assigned to it).
This definition is very similar to the one presented in [6].

The semantics of the → relation is defined by the following rule

η |= g η′ = Eff(α, η)

〈l, η〉 g:α→ 〈l′, η′〉
where the notation l

g:α→ l′ is a shorthand for (l, g, α, l′) ∈→.

4.3 Example

We introduce a simple example that will be used throughout this section to ex-
plain optimizations and the actual translation to SMT logic. The code is shown
in Figure 6, the algorithm is named simpleWhile, the corresponding CFG is
shown in Figure 3(a). Blocks with grey background are simply branch condi-
tions, and they do not modify the program state. The red block represents the
error state. All steps presented here are fully automated.

4.4 Optimizing Transformations from CFG to PG

We decided to model state changes as transitions between basic blocks, and not
between single statements. This is useful because it makes the traces explored
by the solver much shorter. While searching for a counter-example, the solver
creates a list node for every new state it explores. If every statement caused a
state transition (which is what happens in reality), then the solver would have
to add a new node to the list after every variable assignment, growing the list
rapidly. Instead, we accumulate the effects of all statements of a basic block (by
symbolically executing them) and use the resulting effect to define a single state
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(a) Original CFG (b) Empty blocks removed

(c) Blocks without self loops eliminated

Fig. 3. Control Flow Graphs for the “SimpleWhile” example

transition. That way we enable the solver to perform more computation in every
step (basically execute the entire basic block at once), thus reducing the overall
number of states it has to explore, and significantly improving the solving time.

Since the solver can thus execute an entire basic block at once, we can think of
the search process as a graph path finding problem: the solver is given a task of
finding a path from the start block to one of the error blocks in the CFG. The
search traces become sequences of basic blocks. The idea of shortening traces
explored by the solver (i.e., reducing the number of basic blocks) is the basic
idea behind our optimizations.

Symbolic Execution of Basic Blocks. In order to arrive at the final expres-
sion for every variable at the end of a basic block, we must execute the entire
basic block symbolically. Since our goal is to formulate how variables are up-
dated when transitioning from one basic block to another, the final expressions
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must be in terms of symbolic variables in the previous state. For example, the
effect of the following code fragment x++; y = 2*x; x--; is x := (x+1)-1; y :=

2*(x+1);. Formally, we introduce the expression update operator ✧, which takes
an expression e and an action α and updates variables in e according to α:

e✧α =
{
e, if α = ∅
e[v1/ev1 , · · · , vk/evk ], if α = v1 := ev1 , · · · , vk := evk

In short, we start with an empty action α, we go through all the basic block
instructions of type v = e, and for each of them we add v := e✧α to α (overwriting
the previous assignment, if one existed).

Optimization 1: Empty Location Removal. We do not want the solver to
grow the list by exploring basic blocks that do not change the state. Therefore,
the first optimization step takes the original CFG and removes all locations
that do not have any actions that modify the program state (so-called empty
locations). For such a location lx, selected for removal, every incoming transition
is split into several new transitions so that, after the transformation, each of the
lx’s parents points to all of the lx’s successor locations. The guards of the newly
created transitions are the same as the guards of the original outgoing transitions
conjoined with the guard of the original incoming transition:

(∀lp
gp−→ lx) (∀lx gs−→ ls) lp

gp∧gs

−→′ ls

Optimization 2: Non-looping Location Elimination. Here, the idea is to
completely remove basic blocks that do not have any self-loops. We can split the
incoming transitions, similarly to what we did in the previous step. However,
we cannot simply move the actions to their parent locations, since they are not
to be executed every time the parent locations are executed. The solution is to
switch from CFG to PG, since program graphs allow us to associate actions
with transitions instead of locations, which is exactly what we need here: we will
add the actions of the location to be removed to newly created transitions.

Before this optimization step is performed, the CFG has to be converted to
its corresponding PG. This can trivially be done by moving actions associated
with states to their incoming transitions. Next, we iteratively keep eliminating
locations that do not contain any self-loops (non-looping locations) until only
locations with self-loops are left in the graph. Elimination of a non-looping lo-
cation lx involves three steps: (1) splitting the incoming transitions (similarly as
before); (2) merging their actions; and (3) updating their guards:

elim((L,Act,Eff,→, l0, E), lx) �→ (L \ {lx}, Act,Eff,→′, l0, E)

(∀lp
g1:α1−→ lx) (∀lx

g2:α2−→ ls) lp
g◦:α◦
−→′ ls , where α◦ = α1 ◦ α2, g◦ = g1 ∧ (g2✧α1)

We have introduced another operator, the action merge operator ◦. The idea
of merging two actions α1 and α2 is to get a new action whose effect is going
to be the same as the final effect of α1 and α2 when executed in that order on
any variable evaluation η: Eff(α1 ◦α2, η) �→ Eff(α2,Eff(α1, η)). In terms of merging
actions α1 and α2, expressions in α2 refer to the state after α1 has been executed,



Model Checking Using SMT and Theory of Lists 289

initial condition ≡ head(statesList).stateId = 0 ∧ head(statesList).x = 0 ∧ head(statesList).i = 0

transition condition

≡ IF head(lst).stateId = 0 THEN
IF i < N ∧ i % 2 �= 0 THEN

head(tail(lst)).stateId = 1 ∧ head(tail(lst)).i = head(lst).i + 1

ELSE IF i < N ∧ i % 2 = 0 THEN
head(tail(lst)).stateId = 1 ∧ head(tail(lst)).x = head(lst).x + 2 ∧ head(tail(lst)).i = head(lst).i + 1

ELSE IF i ≥ N ∧ x = N THEN
head(tail(lst)).stateId = 2

ELSE IF i ≥ N ∧ x �= N ∧ x = N + 1 THEN
head(tail(lst)).stateId = 2

ELSE
head(tail(lst)).stateId = 3

ELSE IF head(lst).stateId = 1 THEN
IF i < N ∧ i % 2 �= 0 THEN

head(tail(lst)).stateId = 1 ∧ head(tail(lst)).i = head(lst).i + 1

IF i < N ∧ i % 2 = 0 THEN
head(tail(lst)).stateId = 1 ∧ head(tail(lst)).x = head(lst).x + 2 ∧ head(tail(lst)).i = head(lst).i + 1

ELSE IF i ≥ N ∧ x = N THEN
head(tail(lst)).stateId = 2

ELSE IF i ≥ N ∧ x �= N ∧ x = N + 1 THEN
head(tail(lst)).stateId = 2

ELSE
head(tail(lst)).stateId = 3

error condition ≡ head(lst).stateId = 3

Fig. 4. Translation of the CFG shown in Figure 3(c) to SMT logic

therefore, it would be incorrect to simply append α2 to α1. Instead, α2 has to be
updated first (	 operator in the listing below) so that for each variable assignment
v2 := e2 in α2, expression e2 is updated with respect to α1 (e2✧α1). Once α2 has
been updated, the result of the merge operation is the updated α2 appended with
variable assignments in α1 that do not already appear in it. A similar intuition
holds for updating transition conditions, it is not correct to simply conjoin g1
and g2, instead, g2 has to be updated first.

α � β =
{
∅, if α = ∅
{v := ev✧β} ∪ (α \ {v := ev}) � β, if ∃(v := ev) ∈ α

α1 ◦ α2 = (α1 \ α2) ∪ (α2 � α1)

Figure 3(c) shows the PG for the “Simple While” example, after all non-looping
locations have been eliminated. First, the action i:=i+1 from the state with id=1

is moved to its incoming transitions c0, c1, c2, and c6. Next, the location with
x:=x+2 action is eliminated, and as a result, edges c2 and c6 are redirected and
updated to include the x:=x+2 action.

4.5 Translation of PG to SMT

Figure 4 shows the actual translation of the PG in Figure 3(c) to initial, tran-
sition, and error conditions, needed for the template SMT context given in
Figures 1 and 2. The translation is pretty straightforward. An extra field, stateId,
is first added to the state tuple to identify the current location. In this case, the
state consists of 3 variables: stateId, x, i (the variable N is constant so it is kept
outside of the state tuple). The initial condition is a direct representation of the
state in the entry block. The error condition is also easy to formulate, since all er-
ror states are explicitly known upon the CFG creation. The transition condition
contains two big nested if-then-else statements. The outer if-then-else has a case
for every non-leaf location. Inside each such case, there is an inner if-then-else
that has a case for each of the location’s outgoing transition, where it specifies
how the state is updated when that transition is taken.
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Finally, we need to define the set of possible values for the input variable N
(e.g., N > 0 ∧N ≤ 10). This additional constraint is necessary because integers
are unbounded in SMT theories. Recall that this technique effectively simulates
program loops inside SMT. Since the value of N influences the number of loop
iterations, if a bound is not provided for N , the solver will try to simulate the
loop for all possible values of N , and thus never terminate.

5 Execution of Live Sequence Charts

In this section we show how this model-checking technique can be applied to
a non-trivial biological model-checking problem. We use the theory of lists to
encode Live Sequence Charts and then run Z3 to analyze and execute them.

5.1 Example

We will use an example to briefly introduce LSCs and their semantics.
Figure 5(a) shows the specification of the interaction between a cell phone and
the user. A single LSC consists of a number of Instances passing messages be-
tween them. Instances either belong to the System or the Environment. Every
Instance has an associated timeline (represented as vertical bars) which is used
to impose the ordering between messages. The upper portion of the chart (bor-
dered with a dotted line) is called the Pre-Chart, whereas the rest of the chart
is called the chart body. Every chart is initially inactive. It becomes active when
its Pre-Chart is satisfied, i.e., when messages that appear in the Pre-Chart occur
in the specified order. The semantics of LSCs require that once a chart becomes
active, it must finish its execution according to the specification in its body,
when it becomes closed. The chart specifies only partial ordering of the message
occurrences: only messages that have a common timeline as either source or tar-
get must happen in the given ordering; messages that do not have a timeline in
common may appear in an arbitrary order.

In terms of the example in Figure 5(a), once the chart becomes active, as a
result of open occuring, there are 3 possible valid executions: (1) SetColor(Grey),
SetColor(Green), activate, (2) SetColor(Grey), activate, SetColor(Green),
and (3) activate, SetColor(Grey), SetColor(Green). Note that it is not allowed
that message SetColor(Green) appears before SetColor(Grey), that would be
considered as an immediate violation of the specification. Also note that it is
allowed that some other messages, not shown in this chart are sent at any point
during the execution of this chart. The chart’s body specifies only messages that
must happen, and partial ordering between them, it does not forbid other mes-
sages. This way, a formal contract is established saying that every time the user
opens the cover (message open is sent from User to Cover), the cell phone must
respond as specified in the chart’s body.

5.2 Motivation

Single step is defined as a single message sent by the System that does not cause
an immediate violation. Super step is a sequence of messages that drives all
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active charts to their completion, without causing any violations. It is allowed
for a super step to activate some new charts along the way, but at the end of
it, no charts must be active. For example, consider another scenario given in
Figure 5(b). The message activate activates the antenna act chart. Its body
contains a single conditional element that states that the color must be Grey

after the chart is activated. Adding this additional scenario rules out the first of
the three valid executions of the “open cover” scenario given above.

We describe our solution for encoding of LSCs into the logic of SMT with
the theory of lists, which allows for using the Z3 SMT solver to automatically
find all valid super steps from a given point in the execution of the system. Here
we illustrate the applicability and usefulness of our technique to this problem;
a more detailed discussion and formal translation is not presented due to space
limitations and will be reported in a future paper.

(a) “open cover” scenario (b) “antenna activated” scenario

Fig. 5. The cell phone LSC example

5.3 Solution

We formulate the problem of finding a super step as a model-checking problem.
For every Instance, we keep an integer variable to keep track of its location (a
point on its timeline) in the current state of the execution. We also maintain
variables for object properties (e.g., Color as in the example) and a single variable
for the message sent by the system in the current step. The initial state is
explicitly given and consists of current locations of all instances and evaluation of
all properties. In the transition constraint, we let the solver non-deterministically
pick a message to be sent by the system and based on that decision we specify
how the rest of the state should be updated. We assert that the chosen message
must be enabled at the current step (i.e., that at least one Instance is at a location
where this message can be sent from) and that it must not cause any violations
in other charts. The safety property that we want the solver to prove is that
the state where all charts are closed can never be reached from the initial state.
If the solver proves this property, that means that no valid super step exists.
Otherwise, the solver will come back with a counter-example that contains a list
of state changes, which lets us decode which message is sent at each step.
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Formulating this problem using the theory of lists seems very convenient, since
the number of steps needed to find a counter-example is not known in advance.
We analyzed several models of biological systems [2] and were able to find valid
super steps for systems with more than ten charts within seconds.

6 Evaluation and Results

We implemented a fully automated prototype model checker for Java programs
to evaluate the idea of using the SMT theory of lists to model program traces.
Currently, we support only a subset of Java programs. We used this tool to verify
the correctness of several algorithms. We also applied this technique to solve the
Rush Hour puzzle [1]. All experiments were conducted on a 64-bit Intel Core
Duo CPU @2.4GHz box, with 4GB of RAM, running 32-bit Windows Vista.

Verifying Simple Algorithms. We used this technique to verify the “Simple-
While” algorithm, two sorting algorithms, and the integer square root algorithm
from Carroll Morgan’s book Programming with Specifications [22] (Figure 6).
We present the comparison of verification times between the optimized and non-
optimized translation for several different bounds. We compare our tool to a
representative tool from the bounded model-checking category – JForge [16,26],
and a finite model checker that doesn’t require explicit loop unrolling – Java
PathFinder [25]. The results are shown in Figure 7. The “Related Work” section
describes these tools in detail and discusses the obtained results.

Non-monotonicity of some of the graphs in Figure 7 can be explained by the
nature of satisfiability solvers. The solving time is highly dependent on internal
heuristics (e.g., [24, 20]), so it can happen that a larger problem is solved faster
simply because the heuristics worked better (for example, it happened that a
large portion of the search space was pruned early on).

Finally, this approach performs quite efficiently when a counter-example ex-
ists. For all of the presented benchmarks, our tool was able to find different
(manually introduced) bugs within seconds.

Solving the Rush Hour Puzzle. RushHour is a well known puzzle where the
goal is to get the designated car (the red car in Figure 9) out of the traffic jam.
This puzzle is easily expressible as a model-checking problem: the initial state
is the given configuration of cars at the starting point, the transition function
constrains the allowed movements of the cars so that they do not crash or go
over each other, and the safety property is that the red car can never reach the
far right side of the stage. If we find a counter-example to this model-checking
problem, we have found the way to get the red car out of the jam.

We took several puzzles from [1] and compared the execution times of the two
approaches: bounded (the case when we know the optimal number of steps) and
unbounded with lists (Figure 8). SMT solvers are optimized to deal with large
flat formulas, so the fact that the bounded encoding currently performs better
does not come as a surprise. However, we were able to solve the most difficult
puzzles (e.g., Jam 38-40 require more than thirty steps) within a minute.
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void s impleWhile ( int N) {
int x = 0 , i = 0 ;
while ( i < N) {
i f ( i % 2 == 0)

x += 2 ;
i++;

}
assert x == N | | x == N + 1 ;

}

void s e l e c t S o r t ( int [ ] a , int N) {
for ( int j =0; j<N−1; j++) {
int min = j ;
for ( int i=j +1; i < N; i++)
i f ( a [ min ] > a [ i ] ) min = i ;

int t = a [ j ] ; a [ j ] = a [ min ] ; a [ min ] = t ;
}
for ( int j =0; j<N−1; j++)
assert a [ j ] <= a [ j +1] ;

}

void bubbleSort ( int [ ] a , int N) {
for ( int j =0; j<N−1; j++)
for ( int i =0; i<N−j −1; i++)
i f ( a [ i ] > a [ i +1]) {

int t = a [ i ] ;
a [ i ] = a [ i +1] ;
a [ i +1] = t ;

}
for ( int j =0; j<N−1; j++)
assert a [ j ] <= a [ j +1] ;

}

int intSqRoot ( int N) {
int r = 1 , q = N;
while ( r+1 < q ) {

int p = ( r+q ) / 2 ;
i f (N < p∗p) q = p ;
e lse r = p ;

}
assert r∗ r <= N && ( r+1)∗( r+1)>N;
return r ;

}

Fig. 6. Benchmark Algorithms
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Fig. 7. Benchmark Results

This problem is quite different from the software model-checking problems,
because at every step, there are typically several available valid moves, so at
every step, the solver has to non-deterministically decide which move to take
in order to finally reach an error state (this never happens in software model
checking if programs are deterministic). This puzzle is a typical example of how
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B U
Jam 25 1.20s 1.88s
Jam 30 1.21s 2.17s
Jam 38 4.47s 36.6s
Jam 39 1.90s 14.66s
Jam 40 6.31s 17.89s

Fig. 8. RushHour benchmark (B –
Bounded, U – unbounded)

Fig. 9. RushHour instance

this technique can be used to solve planning problems without bounding the
number of steps in advance.

One limitation of our current implementation is that it is not able to prove it if
the solution does not exist. The solver gets stuck exploring the same states over
and over again (e.g., moving the red car back and forth between the neighboring
cells). However, if a solution exists, this problem is not manifested. Also note
that this does not happen in software model checking if the target program
always terminates. An obvious solution is to forbid the same states to appear
in the states list. This additional constraint is expressible in SMT logic, but in
practice it does not perform that well. Instead, we believe that the SMT solver
could be tweaked so that it internally knows that while building the states list
it should never include the same state twice in a single search path. It would be
very efficient to implement this inside the solver, because the state is represented
explicitly inside list elements, so it would be easy to compare states for equality.

7 Related Work

Model checking was originally defined as a technique for proving properties about
Finite State Machines (FSM) [12]. The pioneering tools had used an explicit
representation of the entire state graph, which led to what is known as the
state explosion problem. To mitigate that problem, Binary Decision Diagrams
(BDD) were introduced by McMillan [14] to symbolically represent a set of
states with a single propositional logic formula. Both of these techniques used
a custom search algorithm to explore paths in the FSM. Infinite traces were
supported by computing a fixpoint, i.e., not visiting the same state twice on the
same search path. The growing popularity and efficiency of satisfiability solvers
had influenced another branch of model checking, called Bounded Model Check-
ing [8,9,11], which significantly improved the scalability of model checking. The
idea was to bound the traces by unrolling the FSM for some number of times k.
As a result, the whole problem could be formulated as a single propositional for-
mula, solvable by off-the-shelf SAT solvers. On the other side, Counter-Example
Guided Abstraction Refinement [13] was developed to deal with infinite state
machines. In comparison, our approach lies somewhere between bounded and
unbounded finite state model checking: in many cases, we achieve benefits of the
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unbounded method, but in some, our tool cannot prove the absence of counter-
examples.

JForge is a bounded software model checker that uses SAT. It requires the
user to bound the program input space by specifying the bit-width for integers, in
addition to providing the number of loop unrollings. In all benchmarks, we used
the minimal bit-width needed to represent the bound N , and an appropriate
number of loop unrollings needed to verify the code for the given input size.
JForge enumerates all integers within the given bit-width so that it has the
explicit representation of the whole universe. That turns out to be the reason
why JForge does not perform as well as our tool in these benchmarks.

Alloy [17] is a bounded model finder that can be used to search for traces
(sequences of events) that satisfy certain logic property, but it also requires that
the number of events is specified in advance.

JPF [25] is an extensible plaform for running model checkers for Java pro-
grams. The explicit-state version of JPF directly executes the program on all
possible inputs, whereas we translate the program into logic and formulate a
satisfiability problem. We present results for JPF only for the two sorting algo-
rithms. In the other two examples, JPF is a clear winner. However, the sorting
examples show the case where the ability of our tool to symbolically represent
array elements brings a significant advantage. To verify the sorting algorithms
using JPF on arrays of size exactly n, we ran the algorithm on all possible ar-
rays of size n whose elements are between 1 and n, which turned out to be very
expensive in terms of both memory and time. Symbolic JPF [4] can treat the
variables symbolically, but it currently does not support arrays.

Armando et al. [5] present a bounded software model-checking technique (re-
quires explicit loop unrolling) based on SMT, and report significant improve-
ment over the traditional SAT-based technique. Other techniques for unbounded
model checking with satisfiability solving (e.g., [18, 21]) iteratively invoke the
solver until they reach a fixpoint, whereas our approach translates the whole
problem into a single formula.

8 Conclusion

We have presented a novel technique for finite-state unbounded model checking
using the theory of lists and satisfiability solving. Our technique is a finite-state
technique, in the sense that it requires explicit bounds on certain parts of the
input state (e.g., those that influence the length of the state machine traces). On
the other hand, it can prove properties for infinite-state systems, as shown for
the “sorting” examples. We have shown the generic pattern for solving model-
checking problems, and also provided detailed explanation of how it can be
applied to software model checking in particular. The results of the comparison
with some of the existing tools for software model checking seem promising. The
applicability of this method to analyzing and executing scenario-based models in
the form of Live Sequence Charts seems to have a stong potential and will enable
efficiently supporting a larger subset of the LSC language including arithmetic
operations that are more natural to handle using SMT solvers.
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Abstract. In this paper we describe an approach for automated model-
based test case and test data generation based on constraint types well
known from bounded model checking. Our main contribution consists of a
demonstration showing how this process can be considerably
accelerated by using abstract interpretation techniques for preliminary
explorations of the model state space. The techniques described sup-
port models for concurrent synchronous reactive systems under test with
clocks and dense-time.

1 Introduction

Motivation and Overview. In this paper we present results for model-based test
case and test data generation for concurrent real-time systems. The expected
behavior of the system under test is specified by a model whose abstract syntax
representation is used to derive suitable symbolic test cases which are represented
as logical constraints G over model computations. The term “symbolic” is used in
the sense that at this stage no concrete test data exists yet in order to stimulate
a model computation satisfying G. The concrete test data is gained by handling
constraint satisfaction problems (CSPs) of the type

tc(c, G) ≡def

c−1∧
i=0

Φ(σi, σi+1) ∧G(σc) (1)

These CSPs are well-known from the field of bounded model checking: σ0 is a
pre-state from where a model exploration should start. Φ(σi, σi+1) denotes the
transition relation, represented as a first order predicate relating pre-states σi

to possible post-states σi+1. G(σc) is a predicate representing the symbolic test
case, so solving tc(c, G) yields test data to satisfy G by performing c transitions
from the pre-state σ0.

In the general case G will not only refer to the target state σc but to the com-
plete computation σ0, . . . , σc. By introducing additional observer components,
however, this more general situation can be reduced to the one captured in (1):
the observer runs concurrently with the model and checks whether G(σ0, . . . , σc)
is satisfied. If this is the case the observer performs an auxiliary transition to a
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target location � indicating “G(σ0, . . . , σc) is satisfied”. Then the test case may
be re-formulated to “� shall be reached after c+1 transitions”. In practice, how-
ever, this introduction of observers is only infrequently required, because most
test cases can be identified by means of predicates on a model state σc alone.

For HW/SW integration and system integration testing it is desirable to find
the shortest path from σ0 to a state satisfying G. Therefore it is tried to con-
secutively solve tc(1, G), tc(2, G), . . ., and stop as soon as a c has been found for
which solution of tc(c, G) exists. Given a collection of test cases G1, . . . , Gk it
is desirable to find a model computation σ0, . . . , σn where all of these Gi are
covered (not necessarily in a given order). The existence of such a computation
has the advantage that the SUT will be driven into a larger number of internal
states, as when testing only one Gi at a time and resetting the SUT in between,
since this increases the confidence into the SUT reliability. Moreover, SUT resets
are often time consuming when testing integrated HW/SW systems. Therefore
G is usually specified as the disjunction of the remaining goals to be covered,
and every Gi that is reached is removed from this disjunction. If, however, a
test case Gi cannot be covered from a given pre-state σp within an acceptable
number of steps, it is advisable to perform backtracking to a suitable state σp−q

from where it is less time consuming for the SMT solver to reach this goal (recall
that in general, the running time of the SMT solver depends exponentially on
the number c in formula (1), specifying how many times the transition relation
is unrolled). Finding this state represents another challenge, because trying to
solve the CSP from some σp−q where Gi cannot be reached within the given
limit of transitions wastes time to an extent where backtracking no longer offers
any advantage. For tackling CSPs of the type (1) we use an SMT solver which
is sketched in Section 2.

Main Contribution. We present an abstract interpretation algorithm for concur-
rent synchronous real-time models which, given an initial state σ0 and a test case
goal G returns a natural number c0 such that it is guaranteed that no solution
of tc(i, G) exists for 0 < i < c0. Additionally the abstract interpretation yields
boundary conditions to be fulfilled by every solution of tc(j, G), j ≥ c0. These
conditions can be exploited by the SMT solver to speed up the solution process.
To our best knowledge no abstract interpretation algorithms for the concurrent
synchronous real-time system paradigm have been suggested before, in partic-
ular not for the objective of speeding up automated test data generation (see
paragraph on related work below).

The experiments described in Section 5 show that use of the abstract inter-
preter accelerates a solution process of tc(1, G), tc(2, G), . . . by an average factor
of 1.44 just by being able to avoid infeasible tries to solve tc(i, G) for i < c0. If
backtracking is applied the results are even more significant, since the abstract
interpreter is very fast in detecting states from where no solution of tc(i, G) ex-
ists within admissible range of i: here the average acceleration is 3.09. Observe
that the experiments have not been performed on case studies, but on models
developed for real-world testing campaigns in the automotive domain.
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While our test automation framework is independent on the concrete modeling
language1, we sketch an UML2-based modeling formalism in Section 3 which is
suitable to specify the expected behavior of synchronous concurrent real-time
systems, in order to illustrate the main contribution of the paper.

Related Work. Modeling formalisms for synchronous systems are of consider-
able practical value in the field of safety-critical control systems. The formalism
presented here is based on UML2.0. A more powerful formalism is SCADE [8]
which is widely used in the avionic domain. Our main contribution would work
equally well for the SCADE modeling language, because it does not depend on
the concrete syntax “front-end”, but only on the synchronous paradigm and the
availability of the transition relation.

Our abstract interpretation approach is inspired by Cousot’s work [5,4] and
uses facts from interval analysis [12]. The Astrée abstract interpreter [6] is spe-
cialized on the analysis of embedded C-code and can also handle the effect of
concurrent access to global program variables. Our abstract interpretation al-
gorithm does not compete with, but is somewhat complementary to Astrée and
its underlying methods: our abstract interpreter aims at the analysis of models
on a more abstract level than C code. Similar to Timed Automata, it takes into
account the valuations of dense-time clocks (“timers”) which is not needed in
the domain where Astrée is applied. Moreover, the modeling formalism used in
this paper follows closely Harel’s Statecharts in the semantics presented in [10]
with synchronous execution of enabled transitions in parallel components, while
Astrée operates on the semantics of a restricted class of C programs, where
concurrency is expressed by interleaving of actions.

The problem of deciding the satisfiability of logical (first order) formulas where
propositions may be constraints of certain background theories is commonly re-
ferred to as the Satisfiability Modulo Theories (SMT) problem. SMT solvers
have been developed for numerous theories and combinations thereof. In recent
years SMT solvers have become important tools for software verification [14].
Like most other state-of-the-art SMT solvers [2,13] solving these kind of for-
mulas our SMT solver, SONOLAR, is based on the bit-blasting approach that
translates an SMT formula to a purely propositional formula and lets a SAT
solver decide the satisfiability. Various extensions to pure bit blasting have been
proposed [3,1,16] which have inspired the SONOLAR implementation, and our
solver was ranked second in the division for solving closed quantifier-free for-
mulas over fixed-size bit vectors (QF BV) at the Satisfiability Modulo Theories
Competition (SMT COMP 2010).

2 SMT Solver

Our SMT solver SONOLAR follows the bit blasting approach, so Boolean, in-
tegral and floating-point variables are encoded as fixed-width bit vectors, where
1 An algorithm to generate the transition relation Φ from a given abstract syntax

representation of the model suffices in order to support the formalism.
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the bit widths are given by the associated data types. Arithmetic and logical op-
erations on these variables are transformed to Boolean constraints that encode
the exact relationship of input and output bits. This allows us to have bit-precise
results in the presence of modular arithmetic.

To this end the SMT formula is first transformed into a directed acyclic for-
mula graph, where each single arithmetic and logical operation is represented as
a single node. Structural hashing ensures that structurally identical terms are
shared among expressions. On this formula graph a series of word-level simpli-
fications like the evaluation of constant expressions, normalizations and term
rewriting is performed. This word-level formula graph is then transformed to a
bit-level, purely propositional And-Inverter Graph (AIG). AIGs are commonly
used among recent bit vector SMT solvers for synthesising propositional formulas
[2,13]. AIGs represent propositional formulas as directed acyclic graphs (DAGs),
where nodes are propositional variables or two-input AND-gates and edges may
be optionally inverted. These AIG nodes are structurally hashed, too, and allow
us to perform simplifications on bit level.

Although a number of competitive SAT solvers accept AIGs as input [15,11],
most SAT solvers require the input to be in CNF. To generate the CNF, for
each node of the AIG a boolean variable is introduced. Each node with possibly
inverted inputs n ⇔ in1∧ in2 is then translated to (¬n∨ in1)∧ (¬n∨ in2)∧ (n∨
¬in1 ∨ ¬in2). For each root of the AIG an additional unit clause containing the
associated variable asserts the corresponding boolean formula to be either true
or false, respectively.

SONOLAR has the capability to be called incrementally. This technique al-
lows us to add constraints between solver runs and to add constraints that are
only valid for one run (so-called assumptions). The SAT solver can then re-use
conflict clauses learned in previous runs to speed up the following ones.

3 Modeling Formalism

In this section we sketch a modeling formalism for illustration purposes. It is
based on an UML2 profile, and Fig. 1 — 3 present a sample model specifying the
operation of an automotive controller handling turn indication and emergency
flashing. Each model is structured into hierarchic components operating concur-
rently. Fig. 1 shows the SUT interacting with the testing environment TE via
SUT input interfaces (TurnIndLeft,TurnIndRight) (positions (0,0), (1,0), (0,1)
of the turn indicator lever), EmerFlash (=1 if emergency flash button is pressed),
Voltage (percentage of the nominal voltage) and outputs (FlashLeft,FlashRight)
(state of turn indication lamps left and right). The legal ranges of variables are
specified by a model invariant (for example, TurnIndLeft/Right may not both
be 1 in a normal behavior test), and optionally the admissible TE behaviors can
be further restricted by associating nondeterministic timed state machines with
the TE model component.

In our example the SUT is further structured into sub-components FLASH -
and and OUTPUT CTRL. The former controls the decision whether or not to
activate the turn indication lamps on the left-hand, right-hand or both sides.
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OUTPUT_CTRLFLASH_CTRLTurnIndRight

Voltage

TurnIndLeft Left

Right

FlashLeft

FlashRight

SUT

EmerFlash

TE

INV = 

SYSTEM

TE

not (TurnIndRight and TurnIndLeft)

Fig. 1. Complete system consisting of TE and SUT

The latter controls the flashing cycles and automatically switches the lamps off
if the actual voltage is less or equal 80% of the nominal voltage. This behavior
is encoded by means of state machines S1, S2 as shown in Fig. 2 and 3.

While the EmerFlash button is not pressed, state machine S1 resides in control
state EMER OFF, where the state of the turn indicator lever is simply passed on
to OUTPUT CTRL via internal variables Left and Right, which is expressed by
the do-action and its associated assignments. As soon as the EmerFlash button
is pressed a state machine transition to basic control state EMER ACTIVE is
performed, where both Left and Right are switched to 1. The state machine
transitions inside higher-level control state EMER ON cope with the situation
where the turn indicator lever state changes while emergency flashing is active:
turn indication overrides emergency flashing (state TURN IND OVERRIDE).
When resetting the turn indication lever, emergency flashing is resumed.

State machine S2 reacts on the status of Left, Right and Voltage. As long as
Voltage > 80, non-zero states of Left and Right lead to flash cycles with periods
of 560 time units. This is controlled by a clock variable t which is reset in basic
control states ON and OFF and leads to state machine transitions as soon as
the guards t ≥ 340 or t ≥ 220 become true. Semantically the clock is encoded as
an ordinary real-valued variable, and each clock reset corresponds to storing the
current model execution time t̂ in t. The guard conditions are then internally
evaluated as conditions t̂ ≥ t + 340 and t̂ ≥ t + 220, respectively.

The behavioral semantics of concurrent components is synchronous: both state
machines evaluate the same pre-state. If the guard conditions of some transitions
between control states evaluate to true a discrete model transition is performed
by deterministically and simultaneously firing the enabled transitions with the
highest priority in each component. The effect of each state machine transition
may consist in a change of control states accompanied by a write to internal vari-
ables and outputs, while inputs remain unchanged. For calculating these write
effects all expressions on the right-hand sides of assignments are evaluated in the
pre-state, so that no evaluation order has to be considered. On the other hand,
synchronous assignments performed by concurrent components to the same vari-
ables have to be consistent, otherwise a racing condition occurs which has to be
fixed in order to gain a valid model. Only if discrete state machine transitions
are disabled, a delay model transition is performed: the model execution time t̂
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[ (TurnIndLeft or TurnIndRight)
  and
  (TurnIndLeft != Left1 or
   TurnIndRight != Right1) ]

Left = TurnIndLeft;

[ (Left1 or Right1) and

[ EmerFlash ]EMER_OFF

EMER_ON

EMER_ACTIVE

TURN_IND_OVERRIDE

entry/ Left = TurnIndLeft;
Right = TurnIndRight;

entry/ Left = 1;
Right = 1;
Left1 = TunrIndLeft;
Right1 = TurnIndRight;

[ not EmerFlash ]

not (TurnIndLeft or
            TurnIndRight) ]

do/

[ not (TurnIndLeft or TurnIndRight) ]

Right = TurnIndRight;

S1

Fig. 2. Statechart S1 associated with component FLASH CTRL, controlling decisions
“flash left” and “flash right”

IDLE

FLASHING

ON OFF

entry/

do/

t = 0;
FlashLeft = Left;
FlashRight = Right;

FlashLeft = Left;
FlashRight = Right;

[ not (Left or Right) or Voltage <= 80 ]

[ t >= 340 ]

[ t >= 220 ]

entry/ t = 0;
FlashLeft = 0;
FlashRight = 0;

entry/ FlashLeft = 0;
FlashRight = 0;

S2

[ (Left or Right) and Voltage > 80 ]

Fig. 3. Statechart S2 associated with component OUTPUT CTRL managing indica-
tion lights and associated flash cycles

is advanced by a positive amount, but at most as up to a value where the next
timer condition might become true. New values may be placed on the input
interfaces, otherwise the model state remains unchanged.

4 Abstract Interpretation

In this section the detailed specification of the abstract interpretation algorithm
is presented. The exposition requires some basic knowledge about lattices and
Galois connections, for details readers are referred to [7].
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Abstract Domains. Abstract interpretation performs over-approximation on pos-
sible model computations. For this approximation we map the concrete data
types of state space components to so-called abstract domains which are lat-
tices suitable for approximating concrete value sets for each state component.
(1) The basic control states � ∈ Loc(s) of each state machine s in the model
have concrete data type Boolean, σ(�) = 1 signifying that the state machine
resides in � when the system is in state σ. We use the power set lattice 2Loc(s) as
the associated abstract domain: an element {�1, . . . , �k} ∈ 2Loc(s) represents the
knowledge that the state machine currently resides in one of the basic control
state �1, . . . , �k. We use symbol �s

A to denote this set-valued control state ab-
straction for state machine s. (2) Model variables of type Boolean are mapped
to the lattice L(B) = {⊥, 0, 1,�} with ⊥ � 0, 1 � � and 0, 1 incomparable.
Floating point and integer types are mapped to their associated interval lat-
tices. Recall that the lattice join operation is defined by [x0, x1] � [y0, y1] =def
[min(x0, y0), max(x1, y1)] for interval lattices, and that the meet operation is just
set intersection, [x0, x1]  [y0, y1] =def [x0, x1] ∩ [y0, y1]. Model execution time t̂
and timer variables are abstracted to intervals over non-negative reals.

Galois Connection. A set U =def {σ1, . . . , σn} of concrete model states is
mapped to its abstraction σA =def U� by setting σA(x) = [min({σ(x) | σ ∈
U}), max({σ(x) | σ ∈ U}) for integer and float variable symbols x. For Booleans
b we define σA(b) = � if {σ(b) | σ ∈ U} = {0, 1}, σA(b) = 0 if {σ(b) | σ ∈
U} = {0} and σA(b) = 1 if {σ(b) | σ ∈ U} = {1}. Furthermore, σA(�s

A) = {� ∈
Loc(s) | ∃σ ∈ U : σ(�) = 1} for the abstracted locations �s

A of state machines s.
Conversely, each abstract state σA may be mapped to a set of concrete states
by means of the mapping

σA
� =def {σ | ∀ b : σ(b) � σA(b) ∧ ∀ x : σ(x) ∈ σA(x) ∧

∀s : ∀ � ∈ Loc(s) : σ(�) = 1⇔ � ∈ σA(�s
A)}

where b denotes Booleans, s state machines and x floating point and integer model
variables. The pair of mappings �, � represents a Galois connection and its char-
acteristic property a� �2 b ⇔ a �1 b� ensures that the algorithm introduced
below really computes an over-approximation of all possible computation states.

Goal of the Abstract Interpretation Algorithm. The abstract interpretation al-
gorithm starts from the abstraction σ0

A = {σ0}� of a concrete pre-state σ0 and
calculates a single bounded abstract computation sequence 〈σ0

A, . . . , σc
A〉 such

that each concrete computation 〈σ0, . . . , σc〉 starting in σ0 is approximated by
the abstract sequence in the sense that

∀i ∈ {0, . . . , c} : σi ∈ σi
A

�

Now suppose that the test case goal G is fulfilled in state σc of the concrete
computation. Interpreted as a Boolean function on the state space, predicate G
may be lifted to the abstract domain by defining
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[G](σA) =

⎧⎨
⎩

1 if ∀σ ∈ σA
� : G(σ) = 1

0 if ∀σ ∈ σA
� : G(σ) = 0

� otherwise

Since σc ∈ σc
A

� and G(σc) = 1, evaluation of [G](σc
A) will result in 1 or �, that

is, 1 � [G](σc
A). Conversely, G will not hold in any σi as long as [G](σi

A) = 0.
Therefore the objective of the abstract interpretation algorithm is to return the
smallest c0 ≥ 0 such that 1 � [G](σc0

A ) holds. Given this c0 the SMT solver can
try to solve the test case constraint satisfaction problems tc(c, G) specified in
(1) with c = c0, c0 + 1, . . ., and without having to investigate the feasibility of
tc(m, G) for m < c0. Since the abstract interpreter operates significantly faster
than the SMT solver, a considerable speed-up can be expected from the fact
that the solver skips these tc(m, G).

Abstract Interpretation Algorithm – Introductory Example. To give an intuitive
idea of the abstract interpretation algorithm specified formally further below,
we assume that our sample system is initialized in a state σ with σ(t̂) = 0
and σ(TurnIndLeft/Right) = 0, σ(EmerFlash) = 1, σ(Voltage) = 85 and all
internal variable and output valuations equal to zero. Suppose further that
our test objective is to cover the condition G ≡ S1.ACTIVE.OVERRIDE ∧
S2.FLASHING.OFF starting from this given initial system state. If the abstract
interpretation function exploreGoal() is called with c = 6 then the algorithm
explores abstract interpretation states as shown in the table below, where the
columns have the following meaning: TT = transition type (DIScrete or DELay
or both (DD)); Si = sets of possible control states state machines S1, S2 reside
in; TIL, TIR, E, V = input valuations for TurnIndLeft,. . . ,Voltage; L, R, L1,
R1 = valuations of model variables Left,. . . ,Right1; t,̂t = valuations of timer
variable t and current execution time t̂; FL, FR valuation of outputs FlashLeft,
FlashRight.

The abstract interpretation algorithm starts by mapping the concrete initial
state into its abstract counterpart; the result is displayed in row 0 of the table
below: control states are mapped to singleton sets because there is no uncertainty
which locations are active. Boolean values are represented in L(B) in the same
way, and numeric values are mapped to their single-point interval counterparts.
As a result of the initial state valuation only discrete transitions are possible
until abstract state 2 is reached, from where only a delay transition may occur.
After the delay the inputs may assume arbitrary values, so they are marked by
�. Moreover, the model time t̂ may have been increased by some positive amount
less or equal 340, where the next timer is bound to elapse. The next transition
leading to abstract state 4 may be discrete or a delay, and – due to the full-
range input valuations – all guards depending on inputs evaluate to �. As a
consequence abstract state 4 admits arbitrary control states, and [G] evaluates
to �, so this is the first state where a solution for G may be found. The abstract
interpretation algorithm returns with c0 = 4 and also provides a constraint
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β ≡ ACT1 ∧ IDLE1 ∧ t1 = 0 ∧ t̂1 = 0 ∧
ACT2 ∧ON2 ∧ t2 = 0 ∧ t̂2 = 0 ∧
ACT3 ∧ON3 ∧ t3 = 0 ∧ t̂3 ∈ (0, 340] ∧
t4 ∈ [0, 340] ∧ t̂4 ∈ (0, 679]

indicating the restrictions valid at each concrete computation step. This may be
used by the SMT solver to reduce the search space.

# TT S1 S2 TIL TIR E V L R L1 R1 t t̂ FL FR

0. {OFF} {IDLE} 0 0 1 [85,85] 0 0 0 0 [0,0] [0,0] 0 0
1. DIS {ACT} {IDLE} 0 0 1 [85,85] 1 1 0 0 [0,0] [0,0] 0 0
2. DIS {ACT} {ON} 0 0 1 [85,85] 1 1 0 0 [0,0] [0,0] 1 1
3. DEL {ACT} {ON} � � � [0,100] 1 1 0 0 [0,0] (0,340] 1 1
4. DD {OFF,

ACT,
OVR}

{IDLE,
ON,
OFF}

� � � [0,100] � � 0 0 [0,340] (0,679] � �

Main Function. The top-level function of the abstract interpretation algorithm
operates as specified in Fig. 4. Function exploreGoal() is invoked on the current
concrete system state σ, and inputs the test case goal G according to Formula (1).
Integer c > 0 denotes the limit of interpretation steps to be performed. Output β
represents a constraint to be constructed by the function. On function return, β
contains restrictions about the possible computations states leading to a solution.
This auxiliary information may be used by the SMT solver to restrict the search
space. The assignment σA := {σ}� creates the abstract start state associated
with input σ. In each loop cycle i an abstract interpretation step is performed
by means of procedure call absInt(σA, σ′

A), creating a new abstract state σ′
A.

The knowledge that each concrete computation state σi is contained in σ′
A

� is
exploited by adding conjuncts to constraint β, restricting the possible valuations
of σi: for each state machine s the disjunction of all possible basic control states
� the machine may reside in are added as a conjunct to β. Observe that index
i adds version information to the basic location identifier �, since this applies
to the ith computation state reachable from start state σ. Further restrictions
added to β are the bounds for the model execution time t̂ in step i and intervals
for admissible variable values in this step.

Condition (1 � [G](σ′
A)) is evaluated to check whether there is a chance of

solving the test case goal in step i. If this is the case the function returns with
value i as the first possible computation step number where G may become true,
and β contains the restrictions accumulated up to step i. If [G](σ′

A) evaluates
to 0, the next interpretation cycle is prepared. If limit c is reached without
encountering an abstract state satisfying (1 � [G](σ′

A)) the function returns
with code -1.

Abstract Interpretation Step Procedure. Fig. 5 shows the procedure absInt() for
performing one abstract interpretation step: if the trigger condition for discrete
transitions evaluates to 1 in the current abstract state σA then only an abstract
interpretation of possible discrete transitions takes place. If the condition for a
discrete model transition to be enabled, [triggerD](σA), is guaranteed to be false,
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function exploreGoal(σ : S, G : BExpr, c : N,out β : BExpr) : Z

begin
i := 1; σA := {σ}� ; β := 1; r := −1;
while i ≤ c do

absInt(σA, σ
′
A);

foreach s ∈ SM do β := β ∧ (
∨

�∈σ′
A

(�s
A

)
�i); enddo

β := β ∧ t̂i ∈ σ′
A(t̂) ∧ (

∧
x∈I

xi ∈ σ′
A(x)) ∧ (

∧
v∈L∪O

vi ∈ σ′
A(v));

if (1 � [G](σ′
A)) then r := i; break; endif

σA := σ′
A; i := i+ 1;

enddo
exploreGoal := r;

end

Fig. 4. Top-level procedure of the state space exploration by means of abstract inter-
pretation. Sets I,L, O denote input, local and output variables, respectively.

only a delay can occur. In that case, function absIntTime() (Fig. 6) calculates
the boundaries of the new execution time stamp t̂, and the abstractions of all
input values x are set to their maximal ranges Dx

� ∈ L(Dx)2. If [triggerD](σA)
evaluates to �, both discrete and delay transitions have to be taken into account
and, consequently, the potential post-state is the maximum σ1

A�σ2
A of the post-

states resulting from these two transition types.

Abstraction of Delay Transitions. The calculation of the time bounds for a delay
transition is subtle, as can be seen in Fig. 6: The maximal delay may be infinite
if no active timer is being observed in the current system state abstracted by σA.
Therefore the variable limit which is used to store intermediate and final upper
bounds of the time growth is initialised by ∞3. If some timers are active, the
delay is limited by the shortest value at which some state machine is guaranteed
to fire a discrete transition. Therefore a loop over all state machines indexed
by i ∈ 1, . . . , p is performed, and the maximal delay which may occur in one
state machine is stored in smLimit. To determine smLimit, the minimal delay
locLimit for each location the state machine may currently reside in, where a
timed transition guard is guaranteed to become true is determined. The smallest
smLimit-value calculated over all state machines is the global upper bound limit
to be returned as the upper bound of the new t̂-value4, because at least one state
2 Dx denotes the concrete data type of x. Operator ⊕ used in Fig. 5 denotes functional

overriding: function f ⊕ {x �→ y} coincides with f(z) for all arguments z �= x, but
maps x to y.

3 In concrete test equipment implementations some suitable value greater than the
longest timeout value defined in the SUT model is used instead of ∞, in order to
guarantee new stimuli from test equipment to SUT within a reasonable amount of
time.

4 For variables x interpreted in an interval lattice we use σA(x) and σA(x) to denote
the lower and upper bounds of their interval valuation, respectively.
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procedure absInt(σA : L(S),out σ′
A : L(S))

begin
if [triggerD](σA) = 1 then

absIntDisc(σA, σ
′
A);

elseif [triggerD](σA) = 0 then
σ′

A := σA ⊕ {t̂ �→ absIntTime(σA)} ⊕ {x �→ Dx
� | x ∈ I};

else
absIntDisc(σA, σ

1
A);

σ2
A := σA ⊕ {t̂ �→ absIntTime(σA)} ⊕ {x �→ Dx

� | x ∈ I};
σ′

A := σ1
A � σ2

A;
endif

end

Fig. 5. Single step abstract interpreter

function absIntTime(σA : L(S)) : IR+

begin
limit := ∞;
foreach i ∈ {1, . . . , p} do

smLimit := σA(t̂);
foreach �0 ∈ σA(�iA) do

locLimit := ∞;
foreach � ∈ �0..si, (�, g, a, �′) ∈ ωsi(�) do

if (∃g′, t, x : g ≡ (t̂ ≥ x+ t ∧ g′)) ∧ [g′](σA) = 1 then

m := σA(x) + σA(t);
if m < locLimit then locLimit := m; endif

endif
enddo
if locLimit > smLimit then smLimit := locLimit; endif

enddo
if smLimit < limit then limit := smLimit; endif

enddo
absIntTime := (σA(t̂), limit];

end

Fig. 6. Function calculating the maximal time interval associated with a delay
transition

machine is guaranteed to fire a discrete transition until limit. Since some time
has to pass during delay transitions, the lower bound of the new t̂-value has to
be greater than the old lower bound σA(t̂).

Abstraction of Discrete Transitions. The abstract interpretation of a discrete
transitions is specified in Fig. 7. A partial auxiliary function ζ : V �→

⋃
w∈V L(Dw)

is used for intermediate recordings of assignments to abstracted variables. For
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procedure absIntDisc(σA : L(S),out σ′
A : L(S))

begin
ζ := ∅; (q1, . . . , qp) := (∅, . . . ,∅);
foreach i ∈ {1, . . . , p} do

foreach �0 ∈ σA(�iA) do
leave := 0;
foreach � ∈ �0..si, τ ∈ ωsi(�), τ ordered by priority do

if 1 � [triggersi
(τ )](σA) then

σ1
A := σA; C(triggersi

(τ ), σ1
A);

absIntTransEffect(σ1
A, τ, ζ, qi);

if 1 = [triggersi
(τ )](σA) then leave := 1; break; endif

endif
enddo
if ¬leave then
σ2

A := σA; C(
∧

�∈�0..si, τ∈ωsi
(�)

¬triggersi
(τ ), σ2

A);
absIntDoEffect(σ2

A, �0, ζ, qi);
endif

enddo
enddo
σ′

A := σA ⊕ {ei �→ qi | i = 1, . . . , p} ⊕ {w �→ ζ(w) | w ∈ dom ζ};
end

Fig. 7. Discrete transition abstract interpreter

each basic control state �0 a state machine may potentially reside in, all em-
anating transitions from �0 and its higher-level locations are investigated. If a
transition τ may fire, that is, if its abstracted trigger condition triggersi

(τ) eval-
uates to 1 or � in the pre-state σA, a copy σ1

A of the pre-state is first contracted,
using the knowledge that triggersi

(τ) must have evaluated to 1 in order to get
the effect of τ5.

This effect on the abstracted state space is then calculated by procedure
absIntTransEffect() which records these results by changing ζ: Suppose the effect
of the transition comprises a value assignment w := expr. If w is not yet in the
domain of ζ, this means that it is the first potential write to w during this
abstracted discrete transition. Therefore ζ’s domain is extended by setting ζ :=
ζ⊕{w �→ [expr](σ1

A)}, where [expr] is the lifted version of the assignment’s right-
hand side expression. The abstract expression evaluation is performed on the
contracted abstract state σ1

A. If w is already in dom ζ, this means that another
transition might also write to w. In order to approximate the discrete transition
effects in a conservative manner, we build the join of both potential effects, that
is, we set ζ := ζ ⊕ {w �→ ζ(w) � [expr](σ1

A)}. Finally, absIntTransEffect() adds
the target basic control state associated with τ to the set qi of potential target
5 For interval lattices we have natural contractors for arithmetic constraints: for ex-

ample in L(Z), C<(x < y; [x, x], [y, y]) =def ([x,min(x, y − 1)], [max(x + 1, y), y])
defines contractions for x and y under the hypothesis that x < y evaluated to true.
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Model/Config #gt #s ds (#gr) dsa (#gr) dsb (#gr) dsba (#gr)

TURNIND/1 15 35 5.49 (3) 2.95 (3) 18.06 (3) 3.45 (3)
TURNIND/2 27 35 53.26 (7) 20.91 (7) 82.21 (7) 22.08 (7)
TURNIND/3 46 35 11.68 (8) 7.67 (8) 45.15 (8) 9.70 (8)
TURNIND/4 9 35 5.30 (2) 3.17 (2) 21.39 (2) 3.81 (2)
TURNIND/5 17 35 5.19 (3) 2.94 (3) 18.08 (3) 3.56 (3)
TURNIND/6 11 35 5.32 (2) 2.54 (2) 17.43 (2) 3.02 (2)
POWERTRUNK/1 2 50 55.68 (1) 67.90 (2) 109.93 (2) 67.71 (2)
POWERWINDOW/1 58 40 27.99 (9) 18.18 (9) 89.15 (9) 21.58 (9)
STOP-START/1 13 50 269.62 (3) 376.01 (3) 436.06 (13) 546.09 (13)
STOP-START/2 9 50 3.23 (9) 5.83 (9) 3.20 (9) 5.83 (9)
STOP-START/3 19 50 378.67 (15) 434.45 (15) 619.66 (15) 451.08 (15)
STOP-START/4 28 50 10.93 (17) 10.19 (17) 69.99 (17) 14.07 (17)
STOP-START/5 32 50 6.59 (7) 2.96 (7) 18.44 (7) 3.72 (7)
STOP-START/6 36 50 6.60 (7) 2.96 (7) 18.40 (7) 3.71 (7)
STOP-START/7 36 50 217.12 (36) 191.28 (36) 217.58 (36) 191.39 (36)
STOP-START/8 28 50 998.58 (28) 478.49 (28) 995.35 (28) 477.65 (28)
STOP-START/9 4 50 340.88 (4) 365.99 (4) 341.35 (4) 367.15 (4)
STOP-START/10 12 50 331.50 (8) 358.51 (8) 479.75 (8) 356.80 (8)
STOP-START/11 26 50 337.62 (18) 302.26 (18) 508.46 (18) 315.20 (18)
STOP START SYS/1 21 50 588.45 (10) 523.12 (10) 833.10 (21) 648.90 (21)

#gt: number of goals to be covered, #s: maximal number of transition steps, ds:
execution duration [s] with solver, dsa: execution duration [s] with solver and abstract
interpretation, dsb: execution duration [s] with solver and backtracking, dsba: execution
duration [s] with solver, abstract interpretation and backtracking, #gr: number of
covered goals

Fig. 8. Test generation results

locations. This join of potential write results and target locations ensures that
all potential concrete target states σi are really contained in σ′

A
�.

If no transition emanating from a location in �0..si is guaranteed to fire,
that is, triggersi

(τ) ∈ {0,�} for all of these τ and therefore leave = 0, the do
actions associated with the locations in �0..si may be executed. Their effect on
the abstract state space is calculated by absIntDoEffect() which works similar
to absIntTransEffect(), but adds the source location �0 to qi and operates on
a copy of the source state contracted with the knowledge that all transition
triggers must have evaluated to 0, in order to get the effect of these do-actions.
At the end of procedure absIntDisc() the new abstract state σ′

A is constructed
by changing the pre-state σA with respect to the new sets of potentially active
basic control states and the new abstract valuations of variables that have been
potentially written to during the abstract interpretation step.

5 Conclusion and Evaluation Results

The evaluation of the combined abstract interpretation, SMT-solving and back-
tracking approach has been performed using five real-world test models for
the system test of automotive control functions which are intellectual property
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of Daimler6: (1) Model TURNIND specifies all automotive functions acting on
the turn indication lights, such as turn indication and emergency flashing. (2)
Models STOP-START and (3) STOP START SYS specify the behavior of the
stop-start mechanism controlling automated engine cutoff when stopping at red
lights on HW/SW integration and system integration level, respectively. (4)
Model POWERWINDOW specifies the functionality of the electronic window
regulation, including detection of and reaction on blocking window states, and
specialized functions like automated opening of windows for the purpose of ven-
tilation in crash situations and automated closing of windows when entering
tunnels. (5) Model POWERTRUNK describes the functionality of the electronic
closing mechanism of the trunk lid. Although none of these models involves
floating-point arithmetic our system is capable of handling these.

For the evaluation, coverage goals were defined for each model. These goals
consisted in specific state machine transitions to be reached, which was equiva-
lent to coverage of certain requirements. Then the test case/test data generation
was activated with different techniques, and the execution times have been mea-
sured and inserted into the table shown in Fig. 8. This table shows considerable
performance improvements for the situations where abstract interpretation is
used, with very few outliers where the abstract interpretation leads to a slow-
down. Without backtracking the generator was 1.44 times faster on average when
using the abstract interpreter. The results were even better with backtracking
enabled: with abstract interpretation we observed an average acceleration by a
factor of 3.09. This dramatic speed-up when using the abstract interpreter in
combination with backtracking can largely be attributed to the fact that the
abstract interpreter is very fast at immediately discarding backtracking points
from which no new goals can be covered, whereas the solver would spend a lot
of time to do so.

While in our current approach the algorithm stops unrolling the transition
relation as soon as at least one goal can be satisfied it is generally desirable to
satisfy as many goals as possible within a sequence of transitions. Therefore we
plan to explore the possibility to extend the present constraint satisfaction prob-
lem to an optimization problem that aims to maximize the number of satisfied
goals. The necessary means to achieve this are provided by Partial MAX-SAT
techniques [9].
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Abstract. Data race is one of the most dangerous errors in multi-
threaded programming, and despite intensive studies, it remains a no-
torious cause of failures in concurrent systems. Detecting data races is
already a hard problem, and yet it is even harder for a programmer to
decide whether or how a reported data race can appear in the actual
program execution. In this paper we propose an algorithm for generat-
ing debugging aid information called witnesses, which are concrete thread
schedules that can deterministically trigger the data races. More specifi-
cally, given a concrete execution trace, e.g. non-erroneous one which may
have triggered a warning in Eraser-style data race detectors, we use a
symbolic analysis based on SMT solvers to search for a data race witness
among alternative interleavings of events of that trace. Our symbolic
analysis precisely encodes the sequential consistency semantics using a
scalable predictive model to ensure that the reported witness is always
feasible.

Keywords: Data Race, Debug, SMT, Concurrent Programs.

1 Introduction

A data race occurs in a multithreaded program when two threads access the
same memory location with no ordering constraints enforced in between, and at
least one of the accesses is a write. Programs containing data races are difficult
to debug because they may exhibit different behaviors under the same input.
In practice, a single synchronization error caused by data race can take weeks
for programmers to identify [3,21]. For the Java Memory Model (JMM) and
other relaxed memory models, it is absolutely crucial to remove all data races in
user applications even if they do not appear to cause logic errors, because these
models guarantee sequential consistency only to race-free programs [15].

Stateful model checking is one of the approaches for finding bugs in concur-
rent programs [10,11,23]. As more scalable exhaustive techniques, statelss model
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chekers [2,16] have been developed. Being exhaustive in nature, model check-
ers in principle can be used to provide counter-examples. Unfortunately, most
existing model checking tools do not scale.

The numerous static and dynamic techniques that have been developed to de-
tect data races [8,1,6,18,17,13,24,5,9], except for exhaustive techniques, can only
report data race warnings, often in the form of pairs of program locations. None
of these methods provide witnesses to help the programmers deterministically
reproduce the reported data race during actual program executions. By witness,
we mean a concrete thread schedule of the program execution that leads to a
program state in which two concurrent events with data conflict are both en-
abled. It is essential debugging information for programmers to decide whether
the race is benign, and subsequently figure out how to fix it.

The problem of generating witnesses is orthogonal to detecting data races. The
latter problem, which have been studied extensively, ends with a set of data race
warnings. The witness generation starts from where the data race detection ends,
with the goal of providing a concrete thread schedule to reproduce each data race
during execution. The witness generation problem is significantly harder, since it
has to concern with the feasibility (or existence) of particular concrete executions.
It is also a practically important problem with no satisfying solution yet.

In this paper we present an algorithm to generate data race witnesses in mul-
tithreaded Java programs based on analyzing a single execution trace. The key
idea is to perform a postmortem analysis on a log of the access events. Here we
can use any of the existing data race detection algorithms [8,1,6,18,17,13,24,5,9]
to compute a set of potential data races, which then act as input to our wit-
ness generation algorithm. Given a trace and a set of potential data races, we
model the access events of that trace using suitable classes of constraints and
formulating the witnesses generation problem as constraint solving. What these
constraints represent is not just the given trace itself, but a maximal set of inter-
leavings of events of that trace, and all these alternative traces are guaranteed
to be actual program executions. The constraints generated by our algorithm
are in a quantifier-free first-order logic. They can be decided by off-the-shelf
Satisfiability Modulo Theory (SMT) solvers, and therefore can benefit from the
significant performance advances in recent SMT solvers (e.g. [4]).

Our symbolic predictive model improves over the maximal causal model
(MCM) proposed by Serbănută, Chen and Rosu [22]. We improve over the MCM
based method in the following aspects. First, the MCM considers semaphores as
the only synchronization primitives, whereas in this paper, we precisely model
a wide range of synchronization primitives in Java, including wait, notify, and
notifyall. Second, the search algorithm used in [22] is based on explicitly enu-
merating the feasible interleavings, which may become a bottleneck for practical
uses; in our method, we conduct the search symbolically using an SMT solver.

To further reduce the overhead of the symbolic search, we pre-simplify the
SMT formulas by applying a trace-based conservative analysis [14]. Our anal-
ysis is based on computing lock acquisition histories and a must-happen-before
relation defined by thread creation/join and matching wait/ notify/notifyall.
The goal is to reduce the cost of the more precise, but also expensive, symbolic
analysis, by quickly weeding out (bogus) data races that do not have concrete
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witnesses. The constraints derived from this analysis can also be added as hints
to speed up the SMT search.

We have implemented the proposed method for multithreaded Java programs.
Our trace logging is implemented using an agent interface that captures the Java
Virtual Machine Execution events, and our symbolic analysis uses the Yices
SMT solver [4]. Our preliminary results on public benchmarks show that the
witness generation algorithm is scalable enough as a post-mortem analysis, to
help programmers better understand the data races.

2 Multithreaded Trace

2.1 Execution Traces

We consider a multithreaded Java program as a set of concurrently running
threads, and use T id = {1, . . . , n} to denote the set of thread indices. The oper-
ations on global or shared variables are called visible operations, while those on
thread-local variables are called invisible operations. In particular, synchroniza-
tion primitives such as operations on locks and condition variables are regarded
as visible operations. An execution trace π is a sequence of instances of visible
operations in a concrete execution of the multithreaded program. Each instance
is called an event. For Java programs, both read/write accesses to shared vari-
ables and the synchronization operations are recorded as events, while invisible
operations are ignored. An event is represented as a tuple (tid, type, var, val),
where tid is the thread index, type is the event type, var is either a shared vari-
able (in read/write) or a synchronization object, val is either a concrete value (in
read/write) or the child thread index (in thread creation/join). The event type
is one of {read, write, fork, join, acquire, release, wait, notify, notifyAll}.
They can be classified into three categories:

1. read and write denote the read and write access to a shared variable, where
var is the variable and val is the concrete value;

2. fork and join denote the creation and termination of a child thread, where
(tid, fork,−, val) creates a child thread whose index is val, and (tid, join,−
, val) joins the child thread back;

3. the rest correspond to synchronization operations over locks and condition
variables. The synchronized keyword is translated into a pair of acquire
and release events over the lock implicitly associated with an object.

For an event e and its attribute a, we will use e.a. In addition, given an execution
π and an event e in it, e.idx denote the unique index of event e in π. For example,
in event ei : (1, fork,−, 2), we have ei.tid = 1, ei.type = fork, ei.val = 2, and
ei.idx = i.

2.2 Partial Order and Linearizations

Let π = e1 . . . en be a concrete execution. The trace can be viewed as a total
order of the set {e1, . . . , en} of events. To capture all the alternative and yet
feasible interleavings of the events in π, we define a partially ordered set, denoted
Tπ = (T,�), such that
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– T = {e | e is an event in Tπ}.
– � is a partial order such that

• if ei.tid = ej .tid and ei appears before ej in π, then ei � ej,
• if ei = (tid1, fork,−, tid2) and ej is the first event of thread tid2 in π,

then ei � ej ,
• if ei = (tid1, join,−, tid2) and ej is the last event of thread tid2 in π,

then ej � ei.
• � is transitively closed.

That is, Tπ orders events from the same thread based on their execution order
in π, but does not order events from different threads except for fork and join.

In the presence of shared variables and synchronization primitives, not all
linearizations (total orders) of Tπ correspond to actual program executions. We
define a sequentially consistent linearization τπ of Tπ as one that satisfies � as
well as the following requirements:

– Write-Read Consistency: the value read by an event is always written by the
most recent write in τπ, and

– Synchronization Consistency: τπ does not violate the semantics of the syn-
chronization events.

The set of all linearizations of Tπ forms the search space of our witness generation
algorithm. That is, we search for a sequentially consistent linearization that leads
to a state in which two data-conflict events are both enabled.

Our notion of sequentially consistent linearization is inspired by the maximal
causal model in [22]. However, the maximal causal model considers semaphore
as the only synchronization primitive, and does not explicitly model thread cre-
ation and join (fork and join), whereas we precisely model a wide range of Java
synchronization primitives. Our symbolic method for searching sequentially con-
sistent linearizations is also related to the symbolic predictive analysis [25] based
on concurrent trace programs (CTPs). However, in CTPs each event is not a con-
crete read or write (as in our case) but a symbolic statement derived from the
program source code. The concurrent trace program in general captures more
feasible interleavings, but it is also more expensive to check.

As an example, consider the Java program in Figure 1. Inside the main
method, thread t1 creates threads t2 and t3, which execute methods t1.run()
and t2.run(), respectively. The shared variables are a.x and b.x. Note that, ac-
cording to the Java execution semantics, a.x is aliased to t2.v1.x and t3.v2.x,
and b.x is aliased to t2.v2.x and t3.v1.x.

class Value {
1 private int x = 1;
2 public synchronized void add(Value v) {
3 x = x+v.get();
4 }
5 public int get() {
6 return x;
7 }}
class Task extends Thread {
8 Value v1; Value v2;
9 public Task(Value v1, Value v2) {
10 this.v1 = v1;
11 this.v2 = v2;
12 }

13 public void run() {
14 v1.add(v2);
15 }}
class Main {
16 public static void main (String[] args) {
17 Value a = new Value();
18 Value b = new Value();
19 Thread t2 = new Thread (new Task(a, b));
20 Thread t3 = new Thread (new Task(b, a));
21 t2.start();
22 t3.start();
23 }}

Fig. 1. A Java program with data races
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Let T id = {1, 2, 3}. Executing the program may result in the following partial
trace, i.e. a subsequence of events from threads t2 and t3 as follows: . . . (2,13-14),
(2,2-3), (2,5-7), (2,4), (2,15), (3,13-14), (3,2-3), (3,5-7), (3,4), (3,15), where each
event is denoted as a pair of the thread index and the line number(s). During
this execution, the shared variable b.x is read by thread t2 at line 6 (aliased as
t2.v1.x) and written by thread t3 at line 3 (aliased as t3.v2.x). However, this
trace is not a witness of data race because the two aforementioned accesses to
b.x are never simultaneously enabled. There exists an alternative interleaving of
the same set of events: . . . (2,13-14), (2,2-3), (2,5), (3,13-14), (3,2), (2,6), (3,3),
(3,5-7), (3,4),(3,15), (2,7), (2,4), (2,15). It is a data race witness because there
exists a state in which the read access by event (2,6) and the write access by
event (3,3) are both enabled. It is guaranteed to be an actual program execution
because both write-read consistency and synchronization consistency

The goal of our symbolic analysis is to search for witnesses among all sequen-
tially consistent linearizations of Tπ derived from the concrete execution π. We
formulate the data race witness generation problem as a satisfiability problem.
That is, we construct a quantifier-free first-order logic formula ψπ such that
the formula is satisfiable if and only if there exists a sequentially consistent lin-
earization of Tπ that leads to a state in which two data-conflict events are both
enabled. The formula ψπ is a conjunction of the following subformulas

ψπ := απ ∧ βπ ∧ γπ ∧ ρπ

In Section 3 we present algorithms to encode the partial order (απ), write-read
consistency (βπ), and data race property (ρπ) in first-order logic (FOL) formulas.
In Section 4 we discuss the encoding of synchronization consistency (γπ).

3 Symbolic Encoding of the Write-Read Consistency

3.1 Encoding the Partial Order

Given a multithreaded trace π, let π|t = 〈et
1, . . . , e

t
n〉 be a sub-sequence that is a

projection of π onto the thread t. Let t.f irst and t.last be the first and last event
of thread t in π,i.e., et

1 and et
n, respectively. For each event e, we introduce an

event order (EO) variable whose value represents its position in a linearization
of Tπ. To ease our presentation, we assume that an EO variable shares the same
unique index with the corresponding event. Therefore oe.idx is the EO variable
for e. Let the number of events be |π|. The domain of oi, where 1 ≤ i ≤ |π|, is
[1..|π|]. Furthermore, we have oi �= oj if i �= j.

Equation 1 encodes the partial order requirement of sequentially consistent
linearizations of Tπ . It enforces a total order within each thread-local sequence
π|t(1 ≤ t ≤ N), and enforces the order between the first (or last) event of
a thread and the corresponding fork (or join) event, if such event exists. In
Equation 1 FORK and JOIN denote the set of fork and join events in Tπ. For
an event e ∈ FORK, e.val gives the child thread index, thus (te.val).f irst.idx
is the index of the first event in the child thread.

απ ≡

⎛
⎜⎜⎝

T∧
t=1

(
oet

1.idx < · · · < oet
n.idx

)
∧ ∧

e∈F ORK

(
oe.idx < o(te.val).first.idx

)
∧

∧
e∈JOIN

(
o(te.val).last.idx < oe.idx

)
⎞
⎟⎟⎠ (1)
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e0 : (1, fork,−, 2)
e1 : (1, write, x, 1)
e2 : (1, acquire, o,−)
e3 : (1, write, x, 0)
e4 : (1, wait, o,−)
e5 : (2, acquire, o,−)

e6 : (2, read, x, 0)
e7 : (2, notifyAll, o,−)
e8 : (2, release, o,−)
e9 : (2, read, x, 0)
e10 : (1, release, o,−)

partial order:
α1 : o0 < o1 < o2 < o3 < o4 < o10
α2 : o5 < o6 < o7 < o8 < o9
α3 : o0 < o5

write-read consistency:
β : (o6 < o1 ∨ o3 < o6)

∧(o9 < o1 ∨ o3 < o9)

Fig. 2. An execution with initial value x = 0

βπ ≡
∧

e∈π∧e.type=read

⎛
⎜⎜⎜⎜⎝

(
(e.tiwp = null) ∧ (e.val = e.var.init) ∧ ∧

e1∈e.pws
(oe.idx < oe1.idx)

)
∨

∨
e1∈e.pwsv

(
(oe1.idx < oe.idx)∧∧
e2∈e.pws∧e2�=e1

(oe.idx < oe2.idx ∨ oe2.idx < oe1.idx)

)
⎞
⎟⎟⎟⎟⎠

(2)

ρπ ≡
∨

(e1,e2)∈P DR

((oe1′.idx < oe2.idx < oe1′′.idx) ∧ (oe2′.idx < oe1.idx < oe2′′.idx)) (3)

Figure 2 show an execution trace π with 11 events e0, . . . , e10 generated by two
threads. The last column in Figure 2 lists the partial order constraints: α1 and
α2 enforces a total order on the events from thread 1 and 2, respectively; α3
ensures that the fork of thread 2 happens before the first event in thread 2.

3.2 Encoding Write-Read Consistency

Given a linearization l, we use e1 ≺l e2 to denote that event e1 happens before
e2 in l. Similarly, we use e1 ≺t e2 to denote that e1 happens before e2 within
the same thread t.

Definition 1. Linearization Immediate Write Predecessor: Given a read
event e in a linearization l, we define its linearization immediate write prede-
cessor , denoted as e.liwp, to be a write event e′ ≺l e such that e.var = e′.var
and there does not exist another write event e′′ such that e′ ≺l e′′ ≺l e and
e′′.var = e.var.

Definition 2. Thread Immediate Write Predecessor: Let π|t be the pro-
jection of execution π onto thread t. The thread immediate write predecessor
to a read event e, denoted as e.tiwp, is a write event e′ ≺t e in π|t such
that e.var = e′.var and there does not exist another write event e′′ such that
e′ ≺t e′′ ≺t e and e′′.var = e.var.

Definition 3. Write-Read Consistency: A linearization l is write-read con-
sistent iff for any read event e (1) if there exists a write event e′ such that
e′ = e.liwp, then e.val = e′.val; (2) if e′ does not exist, then e.val = e.var.init.
Here e.var.init is the initial value of variable e.var.

Definition 4. Predecessor Write Set: Given an execution π, the predecessor
write set of a read event e, denoted as e.pws is a set that includes any write
event e′ such that e′.var = e.var and (1) e′.tid �= e.tid, or (2) e′.tid = e.tid
and e′ = e.tiwp. The predecessor write of the same value set to a read event
e, denoted as e.pwsv, is a subset of e.pws, where for any e′ ∈ e.pwsv, we have
e′.val = e.val.
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Equation 2 considers all the possible linearizations that satisfy the write-read
consistency requirement. For each read event e in π, there are two possible cases:

1. e has no thread immediate write predecessor (e.tiwp = null), its read value is
the same as the variable’s initial value (e.val = e.var.init), and all the write
events in the predecessor write set of e happen after e (oe.idx < oe1.idx).
Note that the two equality constraints evaluate to either true or false stati-
cally, and therefore will not be added in the SMT formula.

2. e follows a write event e1 in its predecessor write of the same value set
(oe.idx < oe1.idx), and all other writes to e.var happens either before e1
(oe2.idx < oe1.idx), or after e (oe.idx < oe2.idx). This constraint guarantees
that e reads the value written by e1 and no other writes can interfere with
this write-read pair.

If all the read events satisfy the above constraints, as specified in Equation 2,
the linearizations are write-read consistent. Consider the example in Figure 2.
Column 3 shows the write-read constraints, along with some implementation
optimizations, described as follows:

1. o6 < o1 requires that the read event e6 appears before any write to x.
Note that although o6 < o3 is also required as in Equation 2, it is removed
(constant true) because it is implied by (o6 < o1) together with α1.

2. o3 < o6 requires that the read event e6 happens after e3. Although the full
constraint as in Equation 2 is (o3 < o6)∧ (o1 < o3 ∨ o6 < o1), we remove the
second conjunct because o1 < o3 is implied by α1.

3.3 Encoding the Data Race

Definition 5. Data Race Witness: An execution π = π1e1e2π2, where π1
and π2 are the trace prefix and suffix, respectively, has a data race on e1 and e2
if the two events belong to different threads, access the same shared variable and
at least one access is a write.

Let PDR be the set of potential data races in Tπ, where each data race is
represented as a pair (e1, e2) of events that belong to different thread (e1.tid �=
e2.tid), access the same variable (e1.var = e2.var), and at least one access is a
write (e1.type = write ∨ e2.type = write).

Given every event pair (e1, e2) ∈ PDR, let e1′ and e1′′ be the events imme-
diately before and after e1 in the same thread, and e2′ and e2′′ be the events
immediately before and after e2 in the same thread. Equation 3 captures the
existence of a witness in which e1 and e2 are simultaneously reachable.

We can further reduce the number of data race constraints (currently 4)
into 3 by adding oe1.idx < oe2.idx, since it implies the two existing constraints
oe1′.idx < oe2.idx and oe1.idx < oe2′′.idx. A data race exists in an execution π if
e1 is immediately followed by e2 in π. We do not need to consider the dual case
that e1 immediately follows e2 because if such linearization exists, since it is
guaranteed that the linearization in which e2 follows e1 exists as well.
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4 Symbolic Encoding of the Synchronization Consistency

4.1 Synchronization Interpretation

The interpretation of the synchronization operations involves replacing object
variables with simple-type variables available to SMT solvers, and map the syn-
chronization operations on objects to logic operations on simple-type variables.
Although Java allows recursive locks, they happen rarely in executions. An ex-
ecution π has a recursive lock if there exist two events ei and ej in π such that
ei = ej = (t, acquire, o,−) and there is no event (t, release, o,−) in between;
otherwise π is called recursive-lock-free. If an execution π is recursive-lock-free,
then any sequentially consistent linearization of Tπ is also recursive-lock-free (a
reorder of events within the same thread is not allowed). In this section we dis-
cuss the interpretation for recursive-lock-free executions and defer the discussion
for executions with recursive locks until Section 4.3.

We introduce the following simple-type shared variables for each object o.

– An integer variable oo with domain [0..N ], where N is the number of threads.
Object o is free if oo is 0. Otherwise oo is the thread index that owns object
o.

– N Boolean variables ow t(1 ≤ t ≤ N). The value of ow t is true iff thread t
is in object o’s wait set.

In the following we list the interpretation of the synchronization operations. For
each variable v, we use the normal form v to indicate its current value, and use
the primed version v′ to indicate its value at the next step.

– Event (t, acquire, o,−) is interpreted as oo = 0 → o′o = t. It requires that
the object is free, and then set the owner of object o to thread t.

– Event (t, release, o,−) is interpreted as oo = t → o′o = 0. It requires that
the owner of object o is thread t, and then set object o to be free.

– Event (t, wait, o,−) is converted into two consecutive atomic events. The
first atomic event is interpreted as (oo = t → o′w t ∧ oo = 0), which requires
that the owner of thread o is thread t, and then sets object o to free and the
flag o′w t to true. The second atomic event is interpreted as (oo = 0∧¬ow t) →
o′o = t, which requires that object o is free and thread t is no longer waiting.
For the wait event to complete, a notify or notifyAll event from another
thread needs to interleave in between to reset ow t.

– Event (t, notifyAll, o,−) is interpreted as oo = t→
∧

t1∈o.wait ¬o′w t1, where
o.wait is the set of threads waiting on object o. It requires that the owner
of o is thread t, and then reset ow t1 for any waiting thread t1.

– Event (t, notify, o,−) requires that one and only one thread waiting on o, if
any, is waken up. We introduce N auxiliary variables Hwt with domain {0, 1},
one for each thread t ∈ T id, such that (1) Hw t must have value 0 if thread t is
not waiting for on o and (2) exactly one Hw t has value 1 if the waiting set for
o is not empty. The requirement can be obtained by the following constraints:∧

1≤t≤N (¬ow t → ¬Hw t = 0) , (
∨

1≤t≤N ow t)→ (Σ1≤t≤NHw t = 1) Finally,
the notify event is interpreted as

∧
t∈Tid(Hw t = 1 → ¬o′w t ∧Hw t = 0 →

o′w t = ow t), which states that thread t is no longer waiting on object o if it
is chosen; otherwise its waiting status remains the same.
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4.2 The Recursive-Lock-Free Encoding

In this section we present the constraints that enforce synchronization con-
sistency for recursive-lock-free multithreaded traces. The first two columns in
Table 1 give the interpretation of the synchronization events in Figure 2. The
original wait event e3 is split into two new events: e3 and and its shadow event
e′3. Correspondingly we introduce an event order variable o′3 and adds partial
order constraint o3 < o′3 < o4.
Definition 6. Initial Value: The initial value v.iv, is defined as follows: (1)
the value for a variable oo that denotes the ownership of an object is 0, i.e.
oo.iv = 0, (2) the value for a variable that denotes whether thread t is waiting
for an object is false, i.e. ow t.iv = false for 1 ≤ t ≤ N .
Assumed Value: The assumed value of a variable v in a synchronization event
e in the format of assume→ update, denoted ve.av, is the value specified in the
sub-formula e.assume. Here v is called an assumed variable in e, and e.assume
is the set of assumed variables in e.
Written Value: The written value of a variable v in a synchronization event e
in the format of assume → update, denoted as ve.wv, is the value specified in
the sub-formula e.update. v is called an updated variable in e, and e.updated is
the set of updated variables in e.

γe ≡
∧

v∈e.assume

⎛
⎜⎜⎜⎜⎝

(
ve.av = v.iv ∧ ve.first ∧ ∧

e1∈ve.pws
oe.idx < oe1.idx

)
∨

∨
e1∈ve.pwsv

⎛
⎝
(
oe.idx < oe1.idx

) ∧∧
e2∈ve.pws∧e2 �=e1

(
oe.idx < oe2.idx ∨ oe2.idx < oe1.idx

) ⎞⎠

⎞
⎟⎟⎟⎟⎠ (4)

Given a synchronization event e, Equation 4 enforces a valid position in any
linearization for e with respect to other synchronization events. It considers
each assumed variable v in e, and adds constraints on the position of e based on
the v’s assumed value:

– If v’s assumed value in e, ve.av, is the same as v’s initial value v.iv, then e can
be in a position that is before any write to v. That is,

∧
e1∈ve.pws

oe.idx < oe1.idx.

Note that if there exist writes to v before e from the same thread, this
constraint contradicts the partial order constraint thus becomes false.

– Event e follows an event e1 ∈ ve.pwsv. In this case e happens after e1(oe1.idx <
oe.idx) so the assumed value at e can take updated value at e′, and other

Table 1. Recursive-lock-free synchronization consistency Interpretation

Synchronization Event Interpretation Predecessor Write Set Predecessor Write Set
with Same Value

e2 : (1, acquire, o,−) oo = 0 → o′
o = 1 oo : {e5, e8} oo : {e8}

e4 : (1, wait, o,−) oo = 1 → o′
w 1 ∧ o′

o = 0 oo : {e2, e5, e8} oo : {e2}
e′
4 oo = 0 ∧ ¬ow 1 → o′

o = 1 oo : {e4, e8, e5}
ow 1 : {e4, e7} oo : {e4, e8}, ow 1 : {e7}

e5 : (2, acquire, o,−) oo = 0 → o′
o = 2 oo : {e2, e4, e′

4, e10} oo : {e4, e10}
e7 : (2, notifyAll, o,−) oo = 2 → ¬o′

w 1 oo : {e2, e4, e′
4, e5, e10} oo : {e5}

e8 : (2, release, o,−) oo = 2 → o′
o = 0 oo : {e2, e4, e′

4, e5, e10} oo : {e5}
e10 : (1, release, o,−) oo = 1 → o′

o = 0 oo : {e′
4, e5, e8} oo : {e′

4}
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Table 2. Recursive-lock-free synchronization consistency encoding

Event Encoding Encoding with Optimization
e2 (o2 < o5 ∧ o2 < o8) ∨ ((o8 < o2) ∧ (o5 < o8 ∨ o2 < o5)) (o2 < o5) ∨ (o8 < o2)
e4 (o2 < o4) ∧ (o5 < o2 ∨ o4 < o5) ∧ (o8 < o2 ∨ o4 < o8) (o5 < o2 ∨ o4 < o5) ∧ (o8 < o2 ∨ o4 < o8)

e′4

⎛
⎝
(

o4 < o4′
)

∧
(

o5 < o4 ∨ o4′ < o5
)

∧
(

o8 < o4 ∨ o4′ < o8
)

⎞
⎠ ∨

⎛
⎝
(

o8 < o4′
)

∧
(

o4 < o8 ∨ o4′ < o4
)

∧
(

o5 < o8 ∨ o4′ < o5
)

⎞
⎠

⎛
⎝
(

o4 < o4′
)

∧
(

o5 < o4 ∨ o4′ < o5
)

∧
(

o8 < o4 ∨ o4′ < o8
)

⎞
⎠ ∨

((
o8 < o4′

)
∧ (o4 < o8)

)
(o7 < o′4) ∧ (o4 < o7 ∨ o′4 < o4) (o7 < o′4) ∧ (o4 < o7)

e5

(
o5 < o2 ∧ o5 < o4 ∧ o5 < o′4 ∧ o5 < o10

)
∨(

(o4 < o5) ∧ (o2 < o4 ∨ o5 < o2) ∧(
o′4 < o4 ∨ o5 < o′4

)
∧ (o10 < o4 ∨ o5 < o10)

)
∨(

(o10 < o5) ∧ (o2 < o10 ∨ o5 < o2) ∧(
o′4 < o10 ∨ o5 < o′4

)
∧ (o4 < o10 ∨ o5 < o4)

)
(o5 < o2) ∨ (o10 < o5) ∨(

o4 < o5 ∧ o5 < o′4 ∧ o5 < o10
)

e7
(o5 < o7) ∧ (o2 < o5 ∨ o7 < o2) ∧ (o4 < o5 ∨ o7 < o4) ∧(

o′4 < o5 ∨ o7 < o′4
)

∧ (o10 < o5 ∨ o7 < o10)
(o2 < o5 ∨ o7 < o2) ∧ (o4 < o5 ∨ o7 < o4)∧(

o′4 < o5 ∨ o7 < o′4
)

∧ (o10 < o5 ∨ o7 < o10)

e8
(o5 < o8) ∧ (o2 < o5 ∨ o8 < o2) ∧ (o4 < o5 ∨ o8 < o4) ∧(

o′4 < o5 ∨ o8 < o′4
)

∧ (o10 < o5 ∨ o8 < o10)
(o2 < o5 ∨ o8 < o2) ∧ (o4 < o5 ∨ o8 < o4)∧(

o′4 < o5 ∨ o8 < o′4
)

∧ (o10 < o5 ∨ o8 < o10)

e10 (o′4 < o10) ∧ (o5 < o′4 ∨ o10 < o5) ∧ (o8 < o′4 ∨ o10 < o8) (o5 < o′4 ∨ o10 < o5) ∧ (o8 < o′4 ∨ o10 < o8)

events that write to v do not interfere by happening either before the write
at e1 or after the read at e.

Column 3 and 4 in Table 1 list the predecessor write set of the shared variables
oo and ow 1 and its subset, predecessor write with the same value set, respec-
tively. Table 2 gives the encoding based on Equation 4. Although in Equation 4

there is a constraint

(
ve.av = v.iv ∧

∧
e1∈ve.pws

oe.idx < oe1.idx

)
, the constraint

can be removed if ve’s value is not the same as the initial value, or be reduced
to

∧
e1∈ve.pws

oe.idx < oe1.idx if the values are the same. In addition, several other

straightforward optimizations can be applied. Column 3 gives more concise en-
coding than Column 2 due to the following optimizations:

– A sub-formula s that can be implied by partial order constraint. For example,
o6 < o9 in e1 and o1 < o3 in e3. This reduces s ∧ s′ to s, and s ∨ s′ to true.

– A sub-formulas s that contradicts partial order constraint. For example,
o′3 < o3 in e4 and o5 < o3 in e6. This reduces s ∨ s′ to s.

– A sub-formula s that is weaker than s′ in s∧s′. For example, in o1 < o6∧o1 <
o9 in e1, o1 < o9 can be removed because o6 < o9.

Finally the synchronization consistency constraint is specified by γπ ≡ ∧
e

γe,

where e is a synchronization event in π.

4.3 Encoding with Recursive Locks

If an execution π has recursive locks, we define a variable deptht
o that denotes the

depth of object o that has been locked by thread t. The initial value of deptht
o

is 0. For each sequence π|t that is a projection of π on thread t, we increase
the value of deptht

o by 1 for each (t, acquire, o,−), and decrease the value by 1
for each (t, release, o,−). Depending on the value of deptht

o, acquire and release
events are encoded differently as the following:

– An event e : (t, acquire, o,−) is called the first acquire event if e.deptht
o = 0.

Its corresponding constraint is oo = 0 → o′o = t.
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(1, acquire, l, -);
(1, write, x, 10);
(1, release , l, -);

(1, acquire, l, -);
(1, write, x, 20);
(1, release , l, -);
(1, write, y, 30);

(2, acquire, l, -);
(2, read, x, 10);
(2, write, y, 20);
(2, release , l, -);

Fig. 3. An execution with shared variables x, y

– For event e : (t, acquire, o,−) that is not a first acquire event, its correspond-
ing constraint is oo = t→ o′o = t.

– An event e : (t, release, o,−) is called the last release event if e.deptht
o = 0.

Its corresponding constraint is oo = t→ o′o = 0.
– For event e : (t, release, o,−) that is not a last release event, its correspond-

ing constraint is oo = t→ o′o = t.

We do not need to explicitly record the depth of recursive locks. It is based on
the observation that (1) π is a valid execution, thus the number of acquire and
release events must be balanced; and (2) The depths of recursive locks associated
with an acquire or release event (a thread-local property) will not be changed
by thread interleavings.

4.4 Correctness and Complexity

Theorem 1. Let π be the given multithreaded trace. There exists a data race
witness in a sequentially consistent linearization of Tπ iff ψπ is satisfiable:

ψπ ≡ απ ∧ βπ ∧ γπ ∧ ρπ

According to the definitions of partial order constraint απ , write-read consistency
constraint βπ, and synchronization consistency constraint γπ, a linearization of
Tπ that satisfies απ ∧ βπ ∧ γπ is sequentially consistent. Since the events are all
from a real execution, a sequentially consistent linearization represents events
from a valid execution as well. In addition, the definition of data race property
enforces that in the linearization there are two adjacent events (at least one is a
write event) from different threads accessing the same variable.

Our approach eliminates the bogus warnings reported by typical data race
detection algorithms, e.g. those based on lock-set analysis. Consider the execu-
tion shown in Figure 3 where x, y are shared variables with initial value 0. A
lock-set analysis will reports a data race warning between the two write events to
y as one of them is not protected by any lock. Our approach will not produce a
data race witness because write-read consistency enforces the read event of x in
thread 2 must happen between the two write events to x in thread 1. In addition,
each corresponding acquire-release pair is atomic according the synchronization
constraints. Therefore the two write events are never enabled at the same time.

For most Java executions the number of synchronization events is very small
compared with the number of total events. Since the majority of the constraints
are generated from encoding read, write events and data race properties, their
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complexity determines the scalability of our approach. We note that these con-
straints are in pure integer difference logic (IDL) – an efficiently decidable subset
of FOL where each IDL constraint is of the form (x− y ≤ c), where x and y are
integer variables and c is 0.

5 Static Optimizations

In the implementation, we use the incremental feature of the Yices SMT solver [4].
We divide the constraints in ψπ into two parts: ψπ = (απ ∧ βπ ∧ γπ)∧ ρπ, where
the first part encodes all the sequentially consistent linearizations, and the sec-
ond part states that a data race exists. Let ρπ be a conjunction of subformulas
ρπ(ei, ej), each of which states the simultaneous reachability of an event pair
(ei, ej) ∈ PDR. Instead of building and checking ρπ in one step (same as com-
bining all potential data races in one check), we check each individual event pair
in isolation. The incremental SAT procedure is as follows.

1. Within the SMT solver, we first construct the subformula (απ ∧ βπ ∧ γπ).
2. Then for the first data race event pair we construct ρπ(ei, ej) and add this

subformula as a retractable assertion. The retractable assertion can be re-
moved after satisfiability checking, while allowing the SMT solver to retain
the lemmas (clauses) learned during the process. If the result is satisfiable,
then the SMT solver returns a satisfying assignment (witness); otherwise,
such witness does not exists.

3. After retracting the first assertion ρπ(ei, ej), we construct ρπ(e′i, e
′
j) for the

second event pair (e′i, e
′
j) and add it to the SMT solver.

We keep repeating steps 2 and 3 till all the event pairs in PDR are checked. The
benefit of using incremental SAT is reducing the overall runtime by sharing the
cost of checking different data races. Although it might appear to be costly to
call the SMT solver once for each potential data race in PDR, the entire process
turns out to be efficient because of incremental SAT1.

Typical data race detection algorithms (e.g. those based on locksets) have
false alarms—sometimes many of them, which means the input to our witness
generation algorithm, the set PDR of (potential) data races, may have event
pair (ei, ej) such that ei, ej are not simultaneously reachable. Therefore, it is
often advantageous to check, before calling the precise SMT analysis, whether
(ei, ej) simultaneously reachable by using a conservative analysis. Our analysis
is based on statically computing the following information: (1) lock acquisition
histories [14]; (2) must-happen-before constraints, where event e1 must happen
before e2 iff that is the case in every linearization of Tπ. This analysis is in general
comparable to and sometimes more precise than standard data race detectors
(e.g. [8,1,6,18,17,13,24,5,9]).

1 Often the first few SAT calls take a significant portion of the total runtime; after
that, the “learned clauses” make the subsequent SAT calls extremely fast.
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6 Experiments

We have implemented the proposed method and conducted experiments on
some public benchmarks. We collected traces using a Java agent interface that
captures the Java Virtual Machine Execution events. Our symbolic analysis is
implemented using the Yices SMT solver [4]. All benchmark programs are ac-
companied by test cases to facilitate the concrete execution. Our experiments
were conducted on a workstation with 2.8 GHz processor and 2GB memory.

Table 3 shows the experimental results. Among the benchmarks, Example
(run 1) is the simple example illustrated in Figure 1, Example (run 2) is the
same example except that the get method is synchronized. All other benchmarks
are publicly available in [12,20,10,19,7]. The first two columns show the statis-
tics of the test program, including the name and the number of threads. The
next three columns show the statistics of the given trace, including the length
(visible events only), the number of acquire/release events, and the number of
wait/notify/notifyAll events. The next three columns show the number of data
variables (rw), the number of lock variables (lk) and the number of condition
variables (wn) in the trace. The last four columns show the statistics of the
symbolic witness generation algorithm, including the number of potential data
races after the lock acquisition history analysis (lsa), the number of potential
data races after the must-happen-before analysis (mhb), the number of witnesses
generated (wtns), and the runtime of our symbolic algorithm in seconds. During
symbolic witness generation, we call the SMT solver incrementally, one at a time,
only for the potential data races in the column mhb. The runtime in seconds is
the combined processing time for all these potential data races.

The runtime results show that our witness generation algorithm scale to
medium length traces, and is fast enough to be used as a postmortem analy-
sis. In almost all cases, our static pruning based on lock acquisition history and
must-happen-before constraints is able to reduce the number of potential data
races significantly, therefore reducing the burden on the symbolic algorithm. We
also note that, even after pruning, most of the potential data races do not have

Table 3. Performance of the symbolic data race witness generation algorithm

Test Program Given Trace (events) Shared Variables Witness Generation
name threads length lk-evs wn-evs rw lk wn lsa mhb wtns time (s)
Example run1 3 25 4 0 6 2 0 8 2 1 0.01
Example run2 3 29 8 0 6 2 0 6 0 0 0.01
Remote Agent 3 45 12 5 6 3 4 12 4 2 0.01
connectionpool 4 85 16 5 5 1 3 21 0 0 0.01
liveness.BugGen 7 241 44 6 12 9 6 138 10 1 0.36
account #1 6 336 82 10 17 11 5 125 45 4 0.09
account #2 11 651 162 20 32 21 10 250 90 9 0.28
account #3 21 1281 322 40 62 41 20 500 180 19 0.79
SyncBench #1 2 107 22 0 3 2 0 8 2 1 0.01
SyncBench #2 13 722 156 0 16 3 0 805 333 40 18.3
BarrierBench #1 7 407 80 14 10 2 7 229 12 0 0.7
BarrierBench #2 13 653 136 28 16 2 7 361 38 0 2.04
philo 6 1050 126 41 23 6 22 563 0 0 0.0
hedc 10 1457 234 0 85 23 0 508 164 40 57.7
Daisy 3 1998 330 14 34 9 12 328 16 7 5.65
elevator 4 8000 1298 0 121 12 0 12 0 0 0.0
tsp 4 45637 20 5 42 5 3 83 4 3 0.05
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concrete witnesses – they are likely to be bogus errors. This result highlights the
problem associated with many data race detection algorithms in the literatures.
Reporting such data races (warnings) directly to programmers could be counter-
productive in practice, since it imposes significant burden (manual effort) on the
programmers for deciding whether a reported data race is real.

7 Conclusion

Despite that numerous static and dynamic techniques exist to detect data races,
few are capable of providing witnesses to help programmers understand how a
data race can happen during program execution. In this paper we propose a
SMT-based symbolic method to produce concrete witnesses for data races in
concurrent programs. Our tool can be integrated seamlessly with traditional
testing procedure because of the following reasons: (1) the inputs to our tool are
ordinary program execution traces, (2) our approach amplifies the effectiveness
of each testing run by considering all the alternative event interleavings, (3) the
witnesses produced by our tool pinpoint data races and thus help programmers
better understanding the erroneous behaviors. Our experimental results show
that the proposed algorithm is scalable enough for a postmortem analysis.
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Abstract. Event-B is a formal method for modeling and verifying con-
sistency of systems. In formal methods such as Event-B, refinement is the
process of enriching or modifying an abstract model in a step-wise man-
ner in order to manage the development of complex and large systems.
To further alleviate the complexity of developing large systems, Event-B
refinement can be augmented with two techniques, namely atomicity de-
composition and model decomposition. Our main objective in this paper
is to investigate and evaluate the application of these techniques when
used in a refinement based development. These techniques have been ap-
plied to the formal development of a space craft system. The outcomes
of this experimental work are presented as assessment results. The expe-
rience and assessment can form the basis for some guidelines in applying
these techniques in future cases.

1 Introduction

Event-B [2] is a formal method that evolved from the B-Method [8] and Action
Systems [10]. Simplicity of notation and structure is one of the primary reasons
for choosing Event-B to develop formal models of our case study. Event-B also
is proven to be applicable in different domains including distributed systems [2].
Moreover Event-B supports refinement and uses mathematical proofs to verify
consistency of models. Furthermore there is good tool support for modeling and
proving.

Exploration of the planet Mercury is the main goal of the BepiColombo mis-
sion [13], which consist of two orbiters. One of the orbiters is the Mercury Plan-
etary Orbiter (MPO) which performs global remote sensing and radio science
investigations. An important part of this orbiter consist of a core and four de-
vices: Solar Intensity X-ray Spectrometer (SIXS-X and SIXS-P) and Mercury
Imaging X-ray Spectrometer (MIXS-T and MIXS-C). The whole system is con-
trolled by mission-critical software. The core and the control software are re-
sponsible for controlling the power of devices and their operation states and to
handle TeleCommand (TC) and TeleMessage (TM) communications. In the rest
of this paper we refer to the core and the devices including control software as
the probe system. Our aim is to present a part of the probe system related to
the management of TC and TM communications.

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 328–342, 2011.
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Modeling a large and complex system such as this probe system, can result
in large and complex models with difficult proofs [3]. However Event-B provides
some techniques to address this problem. One such technique is refinement that
allows us to add details during a sequence of models instead of building a model
in a flat manner. The Event-B refinement rules are very general and they do
not explicitly represent relationships between abstract events and new events,
introduced during refinement. Refinement can be augmented with another tech-
nique called atomicity decomposition [4] that provides a structuring mechanism
for refinement in Event-B. Atomicity decomposition provides definitions and a
diagrammatic notation to explicitly represent relationships between refinement
levels. Using atomicity decomposition we can also illustrate the explicit sequenc-
ing between events of a model that is not always explicit in Event-B model. Model
decomposition [6], [7] is another technique to divide a large model into smaller
and more easily manageable sub-models.

Figure 1 presents the development architecture of Event-B model of the probe
system. In the abstraction, M0 , the main goal of the system is modeled. The
details of the system are added through three refinement levels, M1, M2 and
M3. Then the last model, M3, is decomposed to two sub-models, called Core
and Device. The intention in decomposing M3 is to decrease the complexity of
the produced Event-B sub-models. Also this model decomposition reflects the
structure of target architecture by separating the core from the devices. Finally
the core sub-model is refined further in two levels of refinement, M4 and M5.
During the refinement process both before and after model decomposition, the
atomicity decomposition technique is employed to explicitly represent the event
sequencing and relationships between abstract and refined events.

Refinement
D i

M1 M2 M3

Before Decomposition Device

M0
Refinement

After Decomposition

Model Decomposition M4 M5Core

After Decomposition

Fig. 1. Development Architecture of Event-B Model

The contribution of this paper is to assess the Event-B atomicity and model
decomposition techniques in the development of a complex and large distributed
system. In the development process of this case study we will explore how the
atomicity decomposition technique will help us to structure refinement steps.
After some refinement levels we will see how model decomposition can help us
to manage the large model by cutting it into two smaller sub-models. Using the
probe system as a carrier, our intention is to identify challenges and provide
some solutions by using atomicity and model decomposition techniques. These
solutions are presented as assessment results which can lead towards a guideline
in using the atomicity decomposition and model decomposition techniques.

This paper is organized into 6 sections. Section 2 outlines the background of
this work. Here we overview Event-B method and related techniques, namely
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atomicity decomposition and model decomposition. In Section 3 we present the
Event-B model of the probe system including abstraction and refinement levels.
Assessment results are outlined in Section 4 and finally we outline related work
in Section 5 and conclude this paper in Section 6.

2 Background

2.1 Event-B and Refinement

The Event-B formal method [2] models the states and events of a system. Vari-
ables present the states. Events transform the system from a state to another
state by changing the value of variables. The modeling notation is based on set
theory and logic. Event-B uses mathematical proof to ensure consistency of a
model.

Event-B Structure: An Event-B model [11] is made of several components of
these two types, Context and Machine. Contexts contain the static part(types
and constants) of a model while Machines contain the dynamic part(variables
and events). A context can be “extended” by other contexts and “referenced” by
machines. A Machine can be “refined” by other machines and reference contexts.

Refinement in Event-B: In Event-B development, rather than having a single
large model, it is encouraged to construct the system in a series of successive lay-
ers, starting with an abstract representation of the system. The abstract model
provides a simple view of the system, focusing on main purposes of the system.
The details of how the purposes are achieved are ignored in the abstract speci-
fication. Details are added gradually to the abstract model in stepwise manner.
This process called refinement [3]. In Event-B refinement is used to introduce
new functionality or add details of current functionality. One of the important
features of Event-B refinement is the ability to introduce new events in a re-
finement step. From a given machine, Machine1, a new machine, Machine2,
can be built as a refinement of Machine1. In this case, Machine1 is called an
abstraction of Machine2, and Machine2 will said to be a concrete version of
Machine1.

Event-B Tool: Rodin [9] is an Eclipse-based tool for formal modeling and
proving in Event-B. Rodin is an extensible tool that can be extended to include
new features.

2.2 Atomicity Decomposition

Although refinement in Event-B provides a flexible approach to modeling, it has
the limitation that we cannot explicitly represent the relationship between new
events in a refinement and abstract events. To overcome this issue, the atomicity
decomposition approach is proposed in [4]. The idea is to augment Event-B re-
finement with a graphical notation that is capable of representing the relations
between abstract and concrete events explicitly. Using the atomicity decom-
position approach has another advantage which is that we can represent event



Applying Atomicity and Model Decomposition to a Space Craft System 331

Root, abstract event, is decomposed into sub nodes

Event1 (par)

, , p

A dashed line: refine skip A solid line: refinement relation

Event2 (par) Event3 (par) Event4 (par)Event2 (par) Event3 (par) Event4 (par)

The sub nodes are read from left to right and indicate sequential control

Fig. 2. Atomicity Decomposition Diagram

sequencing explicitly. An example of an atomicity decomposition diagram is pre-
sented in Figure 2. This diagram explicitly illustrates that the effect achieved
by Event1 at the abstract level is realized at the refined level by occurrence of
Event2 followed by Event3 followed by Event4. The execution order of the leaf
events is always from left to right (this is based on JSD diagrams of Jackson [5]).
We say that Event1 is a causal event for Event2 since it must occur before
Event2 and so on. The solid line indicates that Event4 refines Event1 while
the dashed lines indicate that Event2 and Event3 are new events. In standard
Event-B refinement, Event2 and Event3 do not have any explicit connection
with Event1. Technically, Event4 is the only event that refines Event1 but the
diagram indicates that we break the atomicity of Event1 into three (sub-)events
in the refinement.

The parameter par in the diagram indicates that we are modelling multiple
instances of Event1 and its refining sub-events. Refined sub-events associated
with different values of par may be interleaved thus modelling interleaved ex-
ecution of multiple processes. Further details may be found in [4]. Two more
diagrammatic concepts, “XOR case splitting” and “ALL replicator”, are used
in development of the case study and they will be explained later. Atomicity
decomposition has been applied to a distributed file system in [4] and to a
multi media protocol in [12]. The Event-B model for the diagram of Figure 2 is

event Event2
any par

event Event3
any par

event Event4 refines Event1
any pary p

where
@grd1 par PARAMETERS Event2

then
@act1 Event2 Event2 {par}

y p
where
@grd1 par Event2 Event3

then
@act1 Event3 Event3 {par}

y p
where
@grd1 par Event3 Event4

then
@act1 Event4 Event4 {par}@ {p }

end
@ {p }

end
@ {p }

end

Fig. 3. Event-B Model

presented in Figure 3. The effect of a refined event with parameter par is to add
the value of par to a set with the same name as the event, i.e., par ∈ Event1
means that Event1 has occured with value par. The use of a set means that the
same event can occur multiple times with different values for par. The guard
of an event with value par specifies that the event has not already occured for
value par but has occured for the causal event, e.g., the guard of Event3 says
that Event2 has occurred and Event3 has not occurred for value par.
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2.3 Model Decomposition

The motivation for model decomposition [6], [7] is to decrease the complexity of
large models, increase the modularity and reflect the target architecture. After
several layers of refinement and as a result of introducing new events, we can end
up having to deal with many events and many state variables. The main idea of
decomposition is to cut a model into sub-models which can be refined separately
and more easily than the initial model. Independent sub-models provides the
possibility of team development which seems a very attractive option for the
industry.

1 e2: any p 3 4

Machine M

e1 e2: any p
G1(p, v1)
G2(p, v2)
then

e3 e4

then
v1 := E1(p, v1)
v2 := E2(p, v2)

V1 V2 V3

M hi M1 M hi M2

e1 e4e3

Machine M1 Machine M2
e2_1: any p
G1(p, v1)
th

e2_2: any p
G2(p, v2)
th

V1 V2 V3

then
v1 := E1(p, v1)

then
v2 := E2(p, v2)

V1 V2 V3

Fig. 4. Model Decomposition, Shared-event Style

In Event-B there are two ways of decomposing a model, shared-variable and
shared-event. The shared-event approach is particularly suitable for message-
passing in distributed systems, whereas the shared-variable approach is more
suitable for concurrent systems. Since the probe system is a distributed system
we use the shared-event approach in decomposing its model after three levels of
refinement. In the shared-event model decomposition, variables are partitioned
among the sub-models, whereas in shared-variable approach, events are parti-
tioned among the sub-models. Shared-event model decomposition is presented
graphically in Figure 4. First variables of the initial model M are partitioned
among sub-models M1; ...; Mn according to the devised policy. Then events of
the initial model, M , are distributed among sub-models M1; ...; Mn, according
to the variable partitioning. Events that are using variables allocated to different
sub-models, called shared events, must be split between these sub-models. For
example event e2 uses both v1 and v2 which are going to different sub-models.
Therefore as depicted we have split it to e2 1 and e2 2 corresponding to vari-
able v1 and v2 respectively. In the next stages the sub-models can be refined
independently.
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3 Event-B Model of the Probe System

3.1 An Overview of System Requirements and Development
Process

The core software (CSW) plays a management role over the devices. CSW is
responsible for communication with Earth on one hand and with the devices on
the other hand. Here is the summary of the system requirements:

– A TeleCommand (TC) is received by the Core from Earth.
– The CSW checks the syntax of the received TC.
– Further semantic checking has to be carried out on the syntactically validated

TC. If the TC contains a message for one of the devices, it has to be sent to
the device for semantic checking, otherwise the semantic checking is carried
out in the core.

– For each validate TC a control TeleMessage (TM) is generated and sent to
Earth.

– For some particular types of TC, one or more data TMs are generated and
sent back to Earth.

As mentioned earlier, we only present the part of the probe system that handles
TeleCommands and TeleMessages communications. In Figure 1 of Section 1 we
diagrammatically presented the development process of the probe system in
Event-B. The development process consists of:

– Machine M0 models the goal of the probe system. Three main events are
receiving a TC, validating the received TC, and generating one or more
TM(s) if it is needed.

– In machine M1 the validation phase is refined and further details of validation
process are added.

– In machine M2 we distinguish between validation checking of TCs that
should be carried out by the core or the devices.

– In machine M3 we refine the model to introduce the process of sending
related TCs to the devices for further validation and processing.

– Machine M4 and M5 model producing and sending TMs carried out in the
core.

3.2 Abstract Specification

In the abstract model, the main goal of the system is modeled. Abstract events
are illustrated in Figure 5 with a diagram resembling an atomicity decomposition
diagram. Note that the top box is the system name rather than an event name (as
the case in an atomicity decomposition diagram). In addition to this we only use
solid lines to show the events of the abstract specification. After receiving a TC,
three different scenarios are possible. Scenario(a): the received TC is validated
and in response to this TC, it is necessary to produce some data. This is achieved
by the occurrences of the third event. The response is sent back to Earth in the



334 A. Salehi Fathabadi, A. Rezazadeh, and M. Butler

form of some data TMs by the occurrences of the fourth event. Scenario(b): for
some TC’s type there is no need to generate data TMs in response. Producing
a control TM is later done by refining the TC Validation Ok event. Scenario(c):
it shows the case that the validation of a received TC fails. This is modeled by
TC Validation Fail event.

BepiColombo ( tc )

ReceiveTC (tc) TCValid_ReplyDataTM (tc)TC_Validation_Ok (tc) TC_GenerateData (tc)

(a)
BepiColombo (tc)

(a)
BepiColombo (tc)

ReceiveTC (tc) TC_Validation_Fail (tc)
(c)

ReceiveTC (tc) TC_Validation_Ok (tc)
(b)

Fig. 5. Abstract Events, Machine M0

The sequencing between events is specified by following the rules explained in
Section2.2. In abstract machine, M0, there are five sets used as control variables.
Using sets allows multiple instance of a TC to be processed concurrently in an
interleaved fashion. Figure 6 shows variables and invariants of M0. For each
event there is a variable with the same name as the event, and if one event
appears after another one in the sequence, its variable is a subset of the variable
associated with the former. For example, as described before TC Validation Ok
event can occur only after occurrence of ReceiveTC event, so invariant inv2
describes TC Validation Ok variable as a subset of ReceiveTC variable.

variables
ReceiveTC

invariants
@inv1 ReceiveTC TCReceiveTC

TC_Validation_Ok
TCValid_GenerateData
TCValid ReplyDataTM

@inv1 ReceiveTC TC
@inv2 TC_Validation_Ok ReceiveTC
@inv3 TCValid_GenerateData TC_Validation_Ok
@inv4 TCValid ReplyDataTM TCValid GenerateDataTCValid_ReplyDataTM

TC_Validation_Fail
@inv4 TCValid_ReplyDataTM TCValid_GenerateData
@inv5 TC_Validation_Fail ReceiveTC
@inv6 TC_Validation_Ok  TC_Validation_Fail = 

Fig. 6. Variables and Invariants of the Abstract Machine M0

To enforce the exact ordering of Figure 5.(a), when a TC is received we add
it to the variable ReceiveTC of the ReceiveTC event. This event is represented
in Figure 7. The guard of TC Validation Ok event means that only after this
stage, it is possible for the TC Validation Ok event to occur and to add this TC
to the list of validated TCs.

3.3 First Level of Refinement: Introducing Validation Steps

In the abstract model, the validation process is carried out in a single stage.
The outcome can be either ok or fail which is modeled by TC Validation Ok and
TC Validation Fail events. However validating a received TC is not an atomic
action, accomplished in a single stage. It is done in two steps, checking the
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BepiColombo (tc)

event ReceiveTC
any tc
where

event TC_Validation_Ok
any tc
wherewhere

@grd1 tc TC ReceiveTC

then
@act1 ReceiveTC ReceiveTC {tc}

d

where
@grd1 tc ReceiveTC (TC_Validation_Ok TC_Validation_Fail)
then
@act1 TC_Validation_Ok TC_Validation_Ok {tc}

dend end

Fig. 7. Event-B Model of Sequencing between Events of the Abstract Machine M0

syntax and semantic of a received TC. After syntax and semantic checks, in
the third step a control TM is produced and sent. These details are modeled
in the first level of refinement, named machine M1. It can be seen in Figure 8
that TC Validation Ok and TC Validation Fail are decomposed to sub-events
which show further details of the validation process. Checking the syntax of a
received TC is modeled by TCCheck Ok and TCCheck Fail events. The seman-
tic checking is modeled by TCExecute Ok and TCExecute Fail events. TCExe-
cOk ReplyCtrlTM, TCExecFail ReplyCtrlTM and TCCheckFail ReplyCtrlTM are
events for generating control TMs. Again the Event-B model can be produced
following the rules explained in Section2.2.

TC_Validation_Ok (tc)

TCCheck_Ok (tc) TCExecute_Ok (tc) TCExecOk_ReplyCtrlTM (tc)

TC V lid ti F il (t ) TC V lid ti F il (t )
(a)

TC_Validation_Fail (tc)

( ) ( ) ( )

TC_Validation_Fail (tc)

h k il ( ) h k il l l ( )TCCheck_Ok (tc) TCExecute_Fail (tc) TCExecFail_ReplyCtrlTM (tc) TCCheck_Fail (tc) TCCheckFail_ReplyCtrlTM (tc)

(b) (c)

Fig. 8. Atomicity Decomposition of Validation Events, Machine M1

For each solid line in atomicity decomposition diagram there is an invariant
which shows the relation between the set variable corresponding to abstract
event and concrete variable of the refined event. There are three invariants in
machine M1, shown in Figure 9. For example, inv9 shows that concrete variable
of TCExecute Ok is a subset of abstract variable of TC Validation Ok, since the
TCExecute Ok event refines TC Validation Ok event.

@inv9 TCExecute_Ok TC_Validation_Ok

@inv10 TCExecute_Fail TC_Validation_Fail
@inv11 TCCheck_Fail TC_Validation_Fail

Fig. 9. Invariants, Machine M1
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3.4 Second Level of Refinement: Distinguish between Different
Types of TCs

In this stage we are in a position to distinguish between two different types of
TCs. There are TCs that should be handled by the core, called csw TCs, and
TCs that should be sent from the core to the devices, (mixsc, mixst, sixsp, sixsx),
to be processed. To model this new aspect, we define a new function called PID
which maps every TC either to the core or the devices.

So far semantic checking of a received TC is done regardless of considering
the type of TC. Now that we have the distinction between the core TCs and the
devices TCs. If a received TC belongs to the core, its semantic should be checked
in the core, otherwise it should be sent to a one of the devices for validation and
processing. It is helpful to emphasis that syntax checking is exclusively carried
out in the core.

TCExecute_Ok (tc) TCExecute_Fail (tc)

XOR XOR

TCDevice_Execute_Ok (tc)TCCore_Execute_Ok (tc) TCDevice_Execute_Fail (tc)TCCore_Execute_Fail (tc)

(a) (b)(a) (b)

Fig. 10. Case Splitting, Machine M2

To model different cases associated with different types of TCs, both TCEx-
ecute Ok event and TCExecute Fail event are split into two sub-events. The
splitting of these events, illustrated in Figure 10, is carried out using a special
construct, called XOR or case splitting. In case splitting, an event is split into
some sub-events in a way that only one of them is executed. As it can be seen in
Figure 10, XOR, case splitting is graphically represented by a circle containing
an ”XOR”. We draw the attention of the reader to the fact that XOR refers to
mutual exclusion of events’ execution, but guards of events do not need to be
disjoint.

Figure 11 presents the Event-B model of Figure 10.(a). Note that both sub-
events refine the abstract event. In the both sub-events we have added a new
guard, grd2, which check the type of TCs.

3.5 Third Level of Refinement: Refining TCs Processing by the
Devices

In the previous level we introduced the distinction between two types of TCs
that are processed by the core and the devices respectively. In this level our
aim is to refine the case of processing TCs by the devices. As presented in Fig-
ure 12, we applied the atomicity decomposition approach to three events of the
previous level. By introducing communication between the core and devices,
the abstract event, TCDevice Execute ok, is refined to SendTC Core to Device,
CheckTC in Device Ok and SendOkTC Device to Core events. These three



Applying Atomicity and Model Decomposition to a Space Craft System 337

TCExecute_Ok (tc)

XOR

event TCCore_Execute_Ok refines TCExecute_Ok event TCDevice_Execute_Ok refines TCExecute_Ok
any tc
where

@grd1 tc TCCheck_Ok
( TCCore_Execute_Ok TCCore_Execute_Fail)

@ d2 PID(t )

any tc
where

@grd1 tc TCCheck_Ok
( TCDevice_Execute_Ok Device_Execute_Fail )

@ d2 PID(t ) { i i t i i }@grd2 PID(tc) = csw
then
@act1 TCCore_Execute_Ok TCCore_Execute_Ok {tc}
end

@grd2 PID(tc) {mixsc, mixst, sixsp, sixsx}
then
@act1 TCDevice_Execute_Ok TCDevice_Execute_Ok {tc}
end

Fig. 11. Event-B Model, Machine M2

events model the case where a TC is successfully processed by a device and
some response is generated for the core. In Figure 12.(b) a very similar approach
is followed for the case when processing of a TC fails in a device and the atomicity
of the abstract event, TCDevice Execute Fail, is decomposed to three sub-events
based on the atomicity decomposition rules. Note that in Figure 12.(a) and (b)
the event with the solid line, which directly refines the abstract event, appears in
the middle rather than being the last one. Finally in Figure 12.(c), we show how
TCValid GenerateData is refined into two events to represent the case where
extra data is produced in response to a TC.

TCDevice_Execute_Ok (tc)

(a)

SendTC_Core_to_Device (tc) CheckTC_in_Device_Ok (tc) SendOkTC_Device_to_Core (tc)

TCDevice_Execute_Fail (tc)

(b)

SendTC_Core_to_Device (tc) CheckTC_in_Device_fail (tc) SendFailTC_Device_to_Core (tc)

( d) f ( )

TCValid_GenerateData(tc)

TC_GenerateData_in_Device(tc, d) TC_TransferData_Device_to_Core(tc)

(c)

Fig. 12. Atomicity Decomposition Diagrams, Machine M3

3.6 Decomposing the Probe Model to the Core and Devices
Sub-models

So far by applying atomicity decomposition in a few consecutive steps, we have
managed to distinguish between events of the core and devices. Also we have
reached the stage that we have a big model consisting of several events and many
variables. Therefore it is a good time to take the next step and by applying
the model decomposition, divide our current Event-B model to two sub-models,
namely core and devices. When it comes to model decomposition we can identify
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three types of events, events that belong to the core or the devices or events that
are shared between them. Shared events usually represent communication links
and they should be split between the core and devices sub-models.

In Figure 13 shared events are presented using rectangles and variables are
presented using ovals. For instance, SendTC Core to Device event uses
TCCheck ok variable from the core sub-model and SendTC Core to Device
from the devices sub-model. Therefore it should be slit between these sub-models.

SendTC_Core_to_Device (tc)SendTC_Core_to_Device (tc) SendFailTC_Device_to_Core (tc)SendFailTC_Device_to_Core (tc)

TCCheck_Ok SendFailTC_Device_to_Core

SendOkTC_Device_to_Core (tc)SendOkTC_Device_to_Core (tc)

SendTC_Core_to_Device CheckTC_in_Device_Fail

TC_TransferData_Device_to_Core (tc)TC_TransferData_Device_to_Core (tc)

SendOkTC_Device_to_Core CheckTC_in_Device_Ok Data_Transfered_to_Core Data_Generated_in_Device

Core Variables Devices Variables Core Variables Devices Variables

Fig. 13. Shared Events

3.7 Further Refinements of the Core Sub-model

After decomposing our intermediate Event-B model to two sub-models, we have
carried out two further refinement of the core sub-model as depicted in Figure 1.
These refinements introduce some details about how TMs are produced in re-
sponse to TCs. We have omitted details of these refinements. Figure 14 presents
the TCValid ReplyCtrlTM event and its two consecutive levels of atomicity de-
composition. This is modeling the case where a TC has successfully processed
and in response some data TMs should be produced and sent back to Earth.

Here using Figure 14 an extra atomicity decomposition concept is explained.
In response to a TC, it is possible to produce more than one data TM . To
model such a situation we have used a construct [12] called “ALL replicator”
applied to TCV alid ProcessDataTM event. The ALL, parameterized by tm,
means that TCV alid ProcessDataTM occurs for multiple values of tm and the
TCV alid CompleteDataTM can only occur when all the values of tm associated
with a tc have occurred. In Event-B we model this by adding a parameter, which
is a set containing all possible TMs that should be produced in response to a
TC.

Another interesting aspect in Figure 14 is the sequencing order between leaf
events. Based on the atomicity decomposition rules, Produce DataTM event
should be completed before TCValid CompleteDataTM event. However there is
no sequencing enforced between Send DataTM and TCValid CompleteDataTM
events. This means that sending TMs to Earth can be carried out before or
after occurrence of TCValid CompleteDataTM event. This concept is discussed
in more detail in [12].



Applying Atomicity and Model Decomposition to a Space Craft System 339

TCValid_ReplyDataTM (tc)

ALL (tm)ALL (tm)

TCValid_ProcessDataTM (tc, tm) TCValid_CompleteDataTM (tc)

ALL (tm)

Produce_DataTM (tc, tm) Send_DataTM (tc, tm)

Fig. 14. “ALL” Construct, the Core Sub-Model

4 Assessment

In this section we discuss how the atomicity and model decomposition techniques
helped us in enhancing the development process of the probe system. We also ex-
plain notable effects of these techniques in term of methodological contribution
that can form a basis for a set of future guidelines. As a part of our formal mod-
eling, we have developed a substantial set of Event-B models including three
levels of refinement before model decomposition and two levels of refinement
after it. In total the Rodin tool produced 174 proofs, 158 of them discharged
automatically. The remaining proofs are discharged interactively. Atomicity de-
composition diagrams enabled us to explore and explain our formal develop-
ment without getting into technical details of the underlying Event-B models.
We consider this as an advantage of the atomicity decomposition technique.
The next important advantage of this technique is that we can explicitly rep-
resent refinement relations between events of different levels. Another merit of
atomicity decomposition technique is the capability of representing sequencing
between events of the same model. Further aspects are discussed in the following
sections.

4.1 Providing Insight for Appropriate Event Decomposition

During the development process, atomicity decomposition diagrams helped us
to spot some flaws in our decomposition approach. For example if the adapted
approach did not cover all desired scenarios, we managed to discover this from
the diagrams before attempting to produce any Event-B code.

To clarify this further, in Figure 15 we present one possible way of decom-
posing the atomicity of TC validation process. Applying two successive levels of
atomicity decomposition to the abstract event TC Validation results in four sub-
events. The diagram shows that the possible scenarios are: <TCCheck OK(tc)
and TCExecute OK(tc)> or <TCCheck Fail(tc)> or <TCExecute Fail(tc)>.
Clearly this approach does not cover the case where TCCheck Ok and TCEx-
ecute Fail events can happen together as described in Section 3.3. This helped
us to go back to the abstract level and followed an appropriate of atomicity
decomposition which was presented in Section 3.3.
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TC V lid ti (t )

XOR

TC_Validation (tc)

TC_Validation_Ok (tc) TC_Validation_Fail (tc)

TCCheck Ok (tc) TCExecute Ok (tc) TCCheck Fail (tc)

XOR

TCExecute Fail (tc)TCCheck_Ok (tc) TCExecute_Ok (tc) TCCheck_Fail (tc) TCExecute_Fail (tc)

Fig. 15. An Example of Wrong Atomicity Decomposition

4.2 Assessing the Influence of Atomicity Decomposition and Model
Decomposition over Each Other

In this case study we have used both atomicity decomposition and model decom-
position together. One interesting aspect is to investigate whether by analyzing
atomicity decomposition diagrams a decision can be made on a proper point
that model decomposition can be applied. Atomicity decomposition diagrams
provide an overall visualization of the refinement process. By grouping relevant
events together, it is easier to decide about the point at which we can apply
model decomposition.

Usually when we develop a system, we have a target architecture in mind.
Therefore the outcome of the model decomposition should give us the desired
sub-models. To be able to decompose an Event-B model, all events should either
belong to one of sub-models or otherwise they should model communication
links between its sub-models. In this regard model decomposition can provides
us with some hint to which events, atomicity decomposition should be applied
as a preparation stage for model decomposition.

To clarify this aspect we use a part of development process presented in
Figure 16. As a preparation for model decomposition, we have applied atom-
icity decomposition to events such as TCExecute Ok to distinguish between
functionality of the core and devices. Note that leaf events satisfy the pre-
mentioned condition that either should belong to one of the sub-models or
represent communication links.

BepiColombo(tc)

ReceiveTC(tc) TCValid_ReplyDataTM(tc)TC_Validation_Ok(tc) TCValid_GenerateData(tc)

( )( )

TC_TransferData_Device_to_Core(tc)TC_TransferData_Device_to_Core(tc)

ALL (tm)

TC_GenerateData_in_Device(tc, d)TC_GenerateData_in_Device(tc, d)

TCCheck_Ok(tc) TCExecute_Ok(tc) TCExecOk_ReplyCtrlTM(tc)

XORXOR

TCDevice_Execute_Ok (tc)TCCore_Execute_Ok (tc)

SendTC_Core_to_Device (tc)SendTC_Core_to_Device (tc) CheckTC_in_Device_Ok (tc)CheckTC_in_Device_Ok (tc) SendOkTC_Device_to_Core (tc)SendOkTC_Device_to_Core (tc)

Fig. 16. Overall Refinement Structure before Model Decomposition
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5 Related Work

The desire to explicitly model control flow is not restricted to Event-B. To
address this issue usually a combination of two or more formal methods are
suggested. A good example of such approach is Circus [14] combining CSP [15]
and Z [16]. The combination of CSP and Classical B [8] also has been investi-
gated in [17] and [18] with some differences. To explicitly define event sequencing
in Event-B the Flows Approach is suggested in [19]. Another method to provide
explicit control flow for an Event-B model is presented in [20] which is again
based on using CSP alongside Event-B. These methods only deal with event se-
quencing; they do not support the explicit refinement of atomicity decomposition
diagrams. UML-B [21] provides a “UML-like” graphical front-end for Event-B.
It adds support for class-oriented and state machine modeling. State machines
provide us with a graphical notation to explicitly define event sequencing.

Atomicity decomposition approach provides a graphical front-end to Event-B
along other features such as supporting event sequencing and expressing refine-
ment relations between concrete and abstract events. Also it can be combined
effectively with other techniques such as model decomposition.

6 Conclusion

In this paper we demonstrated how atomicity decomposition diagrams provide a
systematic means of introducing control structure into the Event-B development
process. It also provides a means to express refinement relations between events
of different refinement levels, through a set of hierarchal diagrams. In addition it
can be merged with model decomposition technique to manage the complexity
of large models. We have done an assessments of this approach and some merits
of it explained in the previous section. In future work we hope that the outcomes
of this stage can contribute toward providing some guidelines for atomicity and
model decomposition. During the development of this case study, translation
from atomicity decomposition diagrams to Event-B was carried out manually.
As a continuation of this work, currently we are working on a tool providing
support for producing atomicity decomposition diagrams as well as translating
them to Event-B. This tool will be developed as a plug-in for the Rodin toolset.

Acknowledgement. This work is partly supported by the EU research project
ICT 214158 DEPLOY (Industrial deployment of system engineering methods
providing high dependability and productivity) www.deploy-project.eu.
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Abstract. This paper presents a theory of skiplists with a decidable
satisfiability problem, and shows its applications to the verification of
concurrent skiplist implementations. A skiplist is a data structure used
to implement sets by maintaining several ordered singly-linked lists in
memory, with a performance comparable to balanced binary trees. We
define a theory capable of expressing the memory layout of a skiplist and
show a decision procedure for the satisfiability problem of this theory.
We illustrate the application of our decision procedure to the temporal
verification of an implementation of concurrent lock-coupling skiplists.
Concurrent lock-coupling skiplists are a particular version of skiplists
where every node contains a lock at each possible level, reducing granu-
larity of mutual exclusion sections.

The first contribution of this paper is the theory TSLK. TSLK is a de-
cidable theory capable of reasoning about list reachability, locks, ordered
lists, and sublists of ordered lists. The second contribution is a proof that
TSLK enjoys a finite model property and thus it is decidable. Finally, we
show how to reduce the satisfiability problem of quantifier-free TSLK for-
mulas to a combination of theories for which a many-sorted version of
Nelson-Oppen can be applied.

1 Introduction

A skiplist [14] is a data structure that implements sets, maintaining several sorted
singly-linked lists in memory. Skiplists are structured in multiple levels, where
each level consists of a single linked list. The skiplist property establishes that
the list at level i+1 is a sublist of the list at level i. Each node in a skiplist stores
a value and at least the pointer corresponding to the lowest level list. Some nodes
also contain pointers at higher levels, pointing to the next element present at
that level. The advantage of skiplists is that they are simpler and more efficient
to implement than search trees, and search is still (probabilistically) logarithmic.
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5 22 25 53 70 88

head

level 0

level 1

level 2

level 3

tail

−∞ +∞

Fig. 1. A skiplist with 4 levels

Consider the skiplist shown in Fig. 1. Contrary to single-linked lists imple-
mentations, higher-level pointers allow to skip many elements during the search.
A search is performed from left to right in a top down fashion, progressing as
much as possible in a level before descending. For instance, in Fig. 1 a search for
value 88 starts at level 3 of node head . From head the pointer at level 3 reaches
tail with value +∞, which is greater than 88. Hence the search algorithm moves
down one level at head to level 2. The successor at level 2 contains value 22,
which is smaller than 88, so the search continues at level 2 until a node con-
taining a greater value is found. At that moment, the search moves down one
further level again. The expected logarithmic search follows from the probability
of any given node occurs at a certain level decreasing by 1/2 as a level increases
(see [14] for an analysis of the running time of skiplists).

We are interested in the formal verification of implementations of skiplists, in
particular in temporal verification (liveness and safety properties) of sequential
and concurrent implementations. This verification activity requires to deal with
unbounded mutable data. One popular approach to verification of heap programs
is Separation Logic [17]. Skiplists, however, are problematic for separation-like
approaches due to the aliasing and memory sharing between nodes at different
levels. Based on the success of separation logic some researchers have extended
this logic to deal with concurrent programs [23, 7], but concurrent datatypes
follow a programming style in which the activities of concurrent threads are
not structured according to critical regions with memory footprints. In these
approaches based on Separation Logic memory regions are implicitly declared
(hidden in the separation conjunction), which makes the reasoning about un-
structured concurrency more cumbersome.

Most of the work in formal verification of pointer programs follows program
logics in the Hoare tradition, either using separation logic or with specialized
logics to deal with the heap and pointer structures [9, 24, 3]. However, extending
these logics to deal with concurrent programs is hard, and though some success
has been accomplished it is still an open area of research, particularly for liveness.

Continuing our previous work [18] we follow a complementary approach. We
start from temporal deductive verification in the style of Manna-Pnueli [11], in
particular using general verification diagrams [5, 19] to deal with concurrency.
This style of reasoning allows a clean separation in a proof between the tem-
poral part (why the interleavings of actions that a set of threads can perform
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satisfy a certain property) with the underlying data being manipulated. A veri-
fication diagram decomposes a formal proof into a finite collection of verification
conditions (VC), each of which corresponds to the effect that a small step in
the program has in the data. To automatize the process of checking the proof
represented by a verification diagram it is necessary to use decision procedures
for the kind of data structures manipulated. This paper studies the automatic
verification of VCs for the case of skiplists.

Logics like [9, 24, 3] are very powerful to describe pointer structures, but they
require the use of quantifiers to reach their expressive power. Hence, these logics
preclude a combination a-la Nelson-Oppen [12] or BAPA [8] with other aspects
of the program state. Instead, our solution starts from a quantifier-free theory
of single-linked lists [16], and extends it in a non trivial way with order and
sublists of ordered lists. The logic obtained can express skiplist-like properties
without using quantifiers, allowing the combination with other theories. Proofs
for an unbounded number of threads are achieved by parameterizing verification
diagrams, splitting cases for interesting threads and producing a single verifi-
cation condition to generalize the remaining cases. However, in this paper we
mainly focus in the decision procedure. Since we want to verify concurrent lock-
based implementations we extend the basic theory with locks, lock ownership,
and sets of locks (and in general stores of locks). The decision procedure that we
present here supports the manipulation of explicit regions, as in regional logic [2]
equipped with masked regions, which enables reasoning about disjoint portions
of the same memory cell. We use masked regions to “separate”different levels of
the same skiplist node.

We call our theory TSLK, that allows to reason about skiplists of height at
most K. To illustrate the use of this theory, we sketch the proof of termination
of every invocation of an implementation of a lock-coupling concurrent skiplist.

The rest of the paper is structured as follows. Section 2 presents lock-coupling
concurrent skiplists. Section 3 introduces TSLK. Section 4 shows that TSLK is
decidable by proving a finite model property theorem, and describes how to con-
struct a more efficient decision procedure using the many-sorted Nelson-Oppen
combination method. Finally, Section 5 concludes the paper. Some proofs are
missing due to space limitation.

2 Fine-Grained Concurrent Lock-Coupling Skiplists

In this section we present a simple concurrent implementation of skiplists that
uses lock-coupling [6] to acquire and release locks. This implementation can be
seen as an extension of concurrent lock-coupling lists [6, 23] to multiple layers
of pointers. This algorithm imposes a locking discipline, consisting of acquiring
locks as the search progresses, and releasing a node’s lock only after the lock
of the next node in the search process has been acquired. A näıve implementa-
tion of this solution would equip each node with a single lock, allowing multiple
threads to access simultaneously different nodes in the list, but protecting con-
current accesses to two different fields of the same node. The performance can
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Fig. 2. A skiplist with the masked region given by the fields locked by thread j

be improved by carefully allowing multiple threads to simultaneously access the
same node at different levels. We study here an implementation of this faster
solution in which each node is equipped with a different lock at each level. At
execution time a thread uses locks to protect the access to only some fields of
a given node. A precise reasoning framework needs to capture those portions
of the memory protected by a set of locks, which may include only parts of
a node. Approaches based on strict separation (separation logic [17] or regional
logic [2]) do not provide the fine grain needed to reason about individual fields of
shared objects. Here, we introduce the concept of masked regions to describe re-
gions and the fields within. A masked region consists of a set of pairs formed by a
region (Node cell) and a field (a skiplist level): mrgn =̂ 2Node×N

We call the field a mask, since it identifies which part of the object is rele-
vant. For example, in Fig. 2 the region within dots represents the area of the
memory that thread j is protecting. This portion of the memory is described
by the masked region {(n2, 2), (n5, 2), (n2, 1), (n4, 1), (n3, 0), (n4, 0)}. As with
regional logic, an empty set intersection denotes separation. In masked regions
two memory nodes at different levels do not overlap. This notion is similar to
data-groups [10].

Fig. 3(a) contains the pseudo-code declaration of the Node and SkipList
classes. Throughout the paper we use //@ to denote ghost code added for veri-
fication purposes. Note that the structure is parametrized by a value K, which
determines the maximum possible level of any node in the modeled skiplist. The
fields val and key in the class Node contains the value and the key of the element
used to order them. Then, we can store key-value pairs, or use the skiplist as a
set of arbitrary elements as long as the key can be used to compare. The next
array stores the pointers to the next nodes at each of the possible K different
levels of the skiplist. Finally, the lock array keeps the locks, one for each level,
protecting the access to the corresponding next field. The SkipList class contains
two pointer fields: head and tail plus a ghost variable field r. Field head points
to the first node of the skiplist, and tail to the last one. Variable r, only used for
verification purposes, keeps the (masked) region represented by all nodes in the
skiplist with all their levels. In this implementation, head and tail are sentinel
nodes, with key = −∞ and key = +∞, respectively. For simplicity, these nodes
are not eliminated during the execution and their val field remains unchanged.
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class Node {
Value val ;

Key key ;

Array〈Node∗〉(K) next ;

Array〈Node∗〉(K) lock ;

}

class SkipList {
Node∗ head ;

Node∗ tail ;

//@ mrgn r;

}

(a) data structures

1: procedure Insert(SkipList sl, Value newval)
2: Vector〈Node∗〉upd [0..K − 1] //@ mrgnmr := ∅
3: lvl := randomLevel(K)
4: Node∗pred := sl.head
5: pred .locks[K − 1].lock() //@ mr := mr ∪ {(pred ,K − 1)}
6: Node∗curr := pred .next [K − 1]
7: curr .locks[K − 1].lock() //@ mr := mr ∪ {(curr ,K − 1)}
8: for i := K − 1 downto 0 do
9: if i < K − 1 then

10: pred .locks[i].lock() //@ mr := mr ∪ {(pred , i)}
11: if i ≥ lvl then
12: curr .locks[i+ 1].unlock() //@ mr := mr − {(curr , i+ 1)}
13: pred .locks[i+ 1].unlock() //@ mr := mr − {(pred , i+ 1)}
14: end if
15: curr := pred .next [i]
16: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
17: end if
18: while curr .val < newval do
19: pred .locks[i].unlock() //@ mr := mr − {(pred , i)}
20: pred := curr
21: curr := pred .next [i]
22: curr .locks[i].lock() //@ mr := mr ∪ {(curr , i)}
23: end while
24: upd [i] := pred
25: end for
26: Bool valueWasIn := (curr .val = newval)
27: if valueWasIn then
28: for i := 0 to lvl do
29: upd [i].next [i].locks[i].unlock() //@ mr := mr−{(upd [i].next [i], i)}
30: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}
31: end for
32: else
33: x := CreateNode(lvl,newval)
34: for i := 0 to lvl do
35: x.next [i] := upd [i].next [i]
36: upd [i].next [i] := x //@ sl.r := sl.r ∪ {(x, i)}
37: x.next [i].locks[i].unlock() //@ mr := mr − {(x.next [i], i)}
38: upd [i].locks[i].unlock() //@ mr := mr − {(upd [i], i)}
39: end for
40: end if
41: return ¬valueWasIn
42: end procedure

(b) insertion algorithm

Fig. 3. Data structure and insert algorithm for concurrent lock-coupling skiplist
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Fig. 3(b) shows the implementation of the insertion algorithm. The algorithms
for searching and removing are similar, and omitted due to space limitations.
The ghost variable mr stores a masked region containing all the nodes and fields
currently locked by the running thread. The set operations ∪ and − are used for
the manipulation of the corresponding sets of pairs.

Let sl be a pointer to a skiplist (an instance of the class described in Fig. 3(a)).
The following predicate captures whether sl points to a well-formed skiplist of
height 4 or less:

SkipList4(h, sl : SkipList) =̂ OList(h, sl, 0) ∧ (1)(
h[sl].tail .next [0] = null ∧ h[sl].tail .next [1] = null
h[sl].tail .next [2] = null ∧ h[sl].tail .next [3] = null

)
∧ (2)

⎛
⎜⎝

SubList(h, sl.head , sl.tail , 1, sl.head , sl.tail , 0) ∧
SubList(h, sl.head , sl.tail , 2, sl.head , sl.tail , 1) ∧
SubList(h, sl.head , sl.tail , 3, sl.head , sl.tail , 2)

⎞
⎟⎠ (3)

The predicate OList in (1) describes that in heap h, the pointer sl is an ordered
linked-lists when repeatedly following the pointers at level 0 starting at head . The
predicate (2) indicates all levels are null terminated, and (3) indicates that each
level is in fact a sublist of its nearest lower level. Predicates of this kind also allow
to express the effect of programs statements via first order transition relations.
Consider the statement at line 36 in program insert shown in Fig. 3(b) on a
skiplist of height 4, taken by thread with id t. This transition corresponds to a
new node x at level i being connected to the skiplist. If the memory layout from
pointer sl is that of a skiplist before the statement at line 36 is executed, then
it is also a skiplist after the execution:

SkipList4(h, sl) ∧ ϕaux ∧ ρ
[t]
36(V, V ′)→ SkipList4(h

′, sl′)

The effect of the statement at line 36 is represented by the first-order transition
relation ρ

[t]
36. To ensure this property, i is required to be a valid level, and the

key of the nodes that will be pointing to x must be lower than the key of node
x. Moreover, the masked region of locked nodes remains unchanged. Predicate
ϕaux contains support invariants. For simplicity, we use prev for upd [t][i]. Then,
the full verification condition is:

SkipList4(h, sl) ∧

⎛
⎜⎜⎜⎜⎜⎜⎝

x.key = newval ∧
prev.key < newval ∧

x.next [i].key > newval ∧
prev.next[i] = x.next [i] ∧
(x, i) /∈ sl.r ∧ 0 ≤ i ≤ 3

⎞
⎟⎟⎟⎟⎟⎟⎠
∧

⎛
⎜⎜⎜⎜⎜⎜⎝

at36[t] ∧
prev′.next[i] = x ∧

at ′37[t] ∧
h′ = h ∧ sl = sl′ ∧

x′ = x . . .

⎞
⎟⎟⎟⎟⎟⎟⎠
→

SkipList4(h′, sl′)

As usual, we use primed variables to describe the values of the variables after the
transition is taken. Section 4 contains a full verification condition. This example
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illustrates that to be able to automatically prove VCs for the verification of
skiplist manipulating algorithms, we require a theory that allows to reason about
heaps, addresses, nodes, masked regions, ordered lists and sublists.

3 The Theory of Concurrent Skiplists of Height K: TSLK

We build a decision procedure to reason about skiplist of height K combining
different theories, aiming to represent pointer data structures with a skiplist
layout, masked regions and locks. We extend the Theory of Concurrent Linked
Lists (TLL3) [18], a decidable theory that includes reachability of concurrent
list-like structures in the following way:

– each node is equipped with a key field, used to reason about element’s order.
– the reasoning about single level lists is extended to all the K levels.
– we extend the theory of regions with masked regions.
– lists are extended to ordered lists and sub-paths of ordered lists.

We begin with a brief description of the basic notation and concepts. A signature
Σ is a triple (S, F, P ) where S is a set of sorts, F a set of functions and P a
set of predicates. If Σ1 = (S1, F1, P1) and Σ2 = (S2, F2, P2), we define Σ1 ∪
Σ2 = (S1 ∪ S2, F1 ∪ F2, P1 ∪ P2). Similarly we say that Σ1 ⊆ Σ2 when S1 ⊆ S2,
F1 ⊆ F2 and P1 ⊆ P2. If t(ϕ) is a term (resp. formula), then we denote with
Vσ(t) (resp. Vσ(ϕ)) the set of variables of sort σ occurring in t (resp. ϕ).

A Σ-interpretation is a map from symbols in Σ to values. A Σ-structure is
a Σ-interpretation over an empty set of variables. A Σ-formula over a set X
of variables is satisfiable whenever it is true in some Σ-interpretation over X .
Let Ω be a signature, A an Ω-interpretation over a set V of variables, Σ ⊆ Ω
and U ⊆ V . AΣ,U denotes the interpretation obtained from A restricting it to
interpret only the symbols in Σ and the variables in U . We use AΣ to denote
AΣ,∅. A Σ-theory is a pair (Σ,A) where Σ is a signature and A is a class of Σ-
structures. Given a theory T = (Σ,A), a T -interpretation is a Σ-interpretation
A such that AΣ ∈ A. Given a Σ-theory T , a Σ-formula ϕ over a set of variables
X is T -satisfiable if it is true on a T -interpretation over X . Formally, the theory
of skiplists of height K is defined as TSLK = (ΣTSLK

,TSLK), where

ΣTSLK
= ΣlevelK ∪Σord ∪Σthid ∪Σcell ∪Σmem ∪Σreach ∪

Σset ∪Σsetth ∪Σmrgn ∪Σbridge

The signature of TSLK is shown in Fig. 4. TSLK is the class of ΣTSLK
-structures

satisfying the conditions depicted in Fig. 5. The symbols of Σset and Σsetth follow
their standard interpretation over sets of addresses and thread identifiers resp.

Informally, sort addr represents addresses; elem the universe of elements that
can be stored in the skiplist; ord the ordered keys used to preserve a strict order
in the skiplist; thid thread identifiers; levelK the levels of a skiplist; cell models
cells representing a node in a skiplist; mem models the heap, mapping addresses
to cells or to null ; path describes finite sequences of non-repeating addresses to
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Signt Sort Functions Predicates

ΣlevelK levelK 0, 1, . . . ,K − 1 : levelK <: levelK × levelK

Σord ord −∞,+∞ : ord � : ord × ord

Σthid thid � : thid

Σcell

cell

elem

ord

addr

thid

error : cell

mkcell : elem × ord × addrK × thidK → cell

.data : cell → elem

.key : cell → ord

.next [ ] : cell × levelK → addr

.lockid [ ] : cell × levelK → thid

.lock [ ] : cell × levelK → thid → cell

.unlock [ ] : cell × levelK → cell

Σmem

mem

addr

cell

null : addr

[ ] : mem × addr → cell

upd : mem × addr × cell → mem

Σreach

mem

addr

path

ε : path

[ ] : addr → path

append : path × path × path

reachK : mem × addr × addr

× levelK × path

Σset

addr

set

∅ : set

{ } : addr → set

∪,∩, \ : set × set → set

∈ : addr × set

⊆ : set × set

Σsetth

thid

setth

∅T : setth

{ }T : thid → setth

∪T ,∩T , \T : setth × setth → setth

∈T : thid × setth

⊆T : setth × setth

Σmrgn

mrgn

addr

levelK

empmr : mrgn

〈 , 〉mr : addr × levelK → mrgn

∪mr,∩mr,−mr : mrgn × mrgn → mrgn

∈mr : addr × levelK × mrgn

⊆mr : mrgn × mrgn

#mr : mrgn × mrgn

Σbridge

mem

addr

set

path

path2set : path → set

addr2setK : mem × addr × levelK → set

getpK : mem × addr × addr × levelK → path

fstlockK : mem × path × levelK → addr

ordList : mem × path

Fig. 4. The signature of the TSLK theory

model non-cyclic list paths; set models sets of addresses – also known as regions
–, while setth models sets of thread identifiers and mrgn masked regions.

ΣlevelK contains symbols for level identifiers 0, 1, . . . , K− 1 and their conven-
tional order. Σord contains two special elements −∞ and ∞ for the lowest and
highest values in the order �. Σthid only contains, besides = and �= as for all the
other theories, a special constant  to represent the absence of a thread iden-
tifier. Σcell contains the constructors and selectors for building and inspecting
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Interpret. of sorts: addr, elem, thid, levelK, ord, cell, mem, path, set, setth and mrgn

Each sort σ in ΣTSLK is mapped to a non-empty set Aσ such that:
(a) Aaddr and Aelem are discrete sets (b) Athid is a discrete set containing �
(c) AlevelK is the finite collection 0,. . . ,K-1 (d) Aord is a total ordered set
(e) Acell = Aelem ×Aord ×AK

addr ×AK
thid (f) Amem = AAaddr

cell

(g) Apath is the set of all finite sequences of (h) Aset is the power-set of Aaddr

(pairwise) distinct elements of Aaddr (i) Asetth is the power-set of Athid

(j) Amrgn is the power-set of Aaddr ×AlevelK

Signature Interpretation

Σord

x�Ay ∧ y�Ax→ x = y x�Ay ∨ y�Ax for any x, y, z ∈ Aord

x�Ay ∧ y�Az → x�Az −∞A�Ax ∧ x�A+∞A

Σcell

– mkcellA(e, k,−→a ,−→t ) = 〈e, k,−→a ,−→t 〉 – errorA.nextA = nullA

– 〈e, k,−→a ,−→t 〉.dataA = e – 〈e, k,−→a ,−→t 〉.keyA = k

– 〈e, k,−→a ,−→t 〉.nextA[j] = aj – 〈e, k,−→a ,−→t 〉.lockidA[j] = tj

– 〈e, k,−→a , ...tj−1, tj , tj+1...〉.lockA[j](t′) = 〈e, k,−→a , ...tj−1, t
′, tj+1...〉

– 〈e, k,−→a , ...tj−1, tj , tj+1...〉.unlockA[j] = 〈e, k,−→a , ...tj−1,�, tj+1...〉
for each e ∈ Aelem, k ∈ Aord, t0, . . . , tj , tj+1, tj−1, t

′ ∈ Athid,
−→a ∈ AK

addr,
−→
t ∈ AK

thid and j ∈ AlevelK

Σmem
m[a]A = m(a) updA(m,a, c) = ma �→c mA(nullA) = errorA

for each m ∈ Amem, a ∈ Aaddr and c ∈ Acell

Σreach

– εA is the empty sequence
– [i ]A is the sequence containing i ∈ Aaddr as the only element
– ([i1 .. in] , [j1 .. jm] , [i1 .. in, j1 .. jm]) ∈ appendA iff ik �= jl.
– (m,ainit, aend, l, p) ∈ reachK

A iff ainit = aend and p = ε, or there exist
addresses a1, . . . , an ∈ Aaddr such that:

(a) p = [a1 .. an] (c) m(ar).nextA[l] = ar+1, for r < n

(b) a1 = ainit (d) m(an).nextA[l] = aend

Σmrgn

– empA
mr = ∅ – r ∪A

mr s = r ∪ s – (a, j) ∈A
mr r ↔ (a, j) ∈ r

– 〈a, j〉Amr = {(a, j)} – r ∩A
mr s = r ∩ s – r ⊆A

mr s↔ r ⊆ s
– r −A

mr s = r \ s – r#A
mrs↔ r ∩A

mr s = empA
mr

for each a ∈ Aaddr, j ∈ AlevelK and r, s ∈ Amrgn

Σbridge

– path2setA(p) = {a1, . . . , an} for p = [a1, . . . , an] ∈ Apath

– addr2setK
A(m,a, l) =

{
a′ | ∃p ∈ Apath . (m,a, a′, l, p) ∈ reachK

}
– getpK

A(m,ainit, aend, l) =

{
p if (m,ainit, aend, l, p) ∈ reachK

A

ε otherwise
for each m ∈ Amem, p ∈ Apath, l ∈ AlevelK and ainit, aend ∈ Aaddr

– fstlockA (m, [a1 .. an], l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ak if there is k ≤ n such that

for all j < k,m[aj ].lockid [l] = �
and m[ak].lockid [l] �= �

null otherwise
– ordListA (m, p) iff p = ε or p = [a] or p = [a1 .. an] with n ≥ 2 and
m(ai).keyA � m(ai+1).keyA for all 1 ≤ i < n, for any m ∈ Amem

Fig. 5. Characterization of a TSLK-interpretation A
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cells, including error for incorrect dereferences. Σmem is the signature for heaps,
with the usual memory access and single memory mutation functions. Σset and
Σsetth are theories of sets of addresses and thread ids resp. Σmrgn is the theory of
masked regions. The signature Σreach contains predicates to check reachability of
address using paths at different levels, while Σbridge contains auxiliary functions
and predicates to manipulate and inspect paths and locks.

4 Decidability of TSLK

We show that TSLK is decidable by proving that it enjoys the finite model
property with respect to its sorts, and exhibiting upper bounds for the sizes of
the domains of a small interpretation of a satisfiable formula.

Definition 1 (Finite Model Property). Let Σ be a signature, S0 ⊆ S be a set
of sorts, and T be a Σ-theory. T has the finite model property with respect to S0 if
for every T -satisfiable quantifier-free Σ-formula ϕ there exists a T -interpretation
A satisfying ϕ such that for each sort σ ∈ S0, Aσ is finite.

The fact that TSLK has the finite model property with respect to domains
elem, addr, ord, levelK and thid, implies that TSLK is decidable by enumerating
all possible ΣTSLK

-structures up to a certain cardinality. We now define the set
of normalized TSLK-literals.

Definition 2 (TSLK-normalized literals). A TSLK-literal is normalized if it
is a flat literal of the form:

e1 �= e2 a1 �= a2 l1 �= l2
a = null c = error c = rd(m, a)
k1 �= k2 k1 � k2 m2 = upd(m1, a, c)
c = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tK−1)
s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3
g = {t}T g1 = g2 ∪T g3 g1 = g2 \T g3
r = 〈a, l〉mr r1 = r2 ∪mr r3 r1 = r2 −mr r3
p1 �= p2 p = [a] p1 = rev(p2)
s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)
s = addr2setK(m, a, l) p = getpK(m, a1, a2, l)
t1 �= t2 a = fstlock (m, p, l) ordList(m, p)

where e, e1 and e2 are elem-variables; a, a0, a1, a2, . . . , aK−1 are addr-variables;
c is a cell-variable; m, m1 and m2 are mem-variables; p, p1, p2 and p3 are path-
variables; s, s1, s2 and s3 are set-variables; g, g1, g2 and g3 are setth-variables;
r, r1, r2 and r3 are mrgn-variables; k, k1 and k2 are ord-variables; l, l1 and l2
are levelK-variables and t, t0, t1, t2, . . . , tK−1 are thid-variables.

Lemma 1. Every TSLK-formula is equivalent to a collection of conjunctions of
normalized TSLK-literals.

Proof (sketch). First, transform a formula in disjunctive normal form. Then each
conjunct can be normalized introducing auxiliary fresh variables when necessary.
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The phase of normalizing a formula is commonly known [15] as the “variable
abstraction phase”. Note that normalized literals belong to just one theory.

Consider an arbitrary TSLK-interpretation A satisfying a conjunction of nor-
malized TSLK-literals Γ . We show that if A consists of domains Aelem, Aaddr,
Athid, AlevelK and Aord then there are finite sets Belem, Baddr, Bthid, BlevelK and
Bord with bounded cardinalities, where the finite bound on the sizes can be com-
puted from Γ . Such sets can in turn be used to obtain a finite interpretation B
satisfying Γ , since all the other sorts are bounded by the sizes of these sets.

Lemma 2 (Finite Model Property). Let Γ be a conjunction of normal-
ized TSLK-literals. Let e = |Velem (Γ )|, a = |Vaddr (Γ )|, m = |Vmem (Γ )|, p =
|Vpath (Γ )|, t = |Vthid (Γ )| and o = |Vord (Γ )|. Then the following are equivalent:

1. Γ is TSLK-satisfiable;
2. Γ is true in a TSLK interpretation B such that

|Baddr| ≤ a + 1 + m a K + p2 + p3 + (K + 2)m p |Belem| ≤ e + m |Baddr|
|Bthid| ≤ t + K m |Baddr|+ 1 |Bord| ≤ o + m |Baddr|
|BlevelK | ≤ K

Proof. (2 → 1) is immediate. (1 → 2) is proved on a case analysis over the set
of normalized literals of TSLK. �

4.1 A Combination-Based Decision Procedure for TSLK

Lemma 2 enables a brute force method to automatically check whether a set of
normalized TSLK-literals is satisfiable. However, such a method is not efficient
in practice. We describe now how to obtain a more efficient decision procedure
for TSLK applying a many-sorted variant [22] of the Nelson-Oppen combination
method [12], by combining the decision procedures for the underlying theories.
This combination method requires that the theories fulfill some conditions. First,
each theory must have a decision procedure. Second, two theories can only share
sorts (but not functions or predicates). Third, when two theories are combined,
either both theories are stable infinite or one of them is polite with respect to the
underlying sorts that it shares with the other. The stable infinite condition for a
theory establishes that if a formula has a model then it has a model with infinite
cardinality. In our case, some theories are not stable infinite. For example, TlevelK

is not stably infinite, Tord, and Tthid need not be stable infinite in same instances.
The observation that the condition of stable infinity may be cumbersome in the
combination of theories for data structures was already made in [16] where they
suggest the condition of politeness :

Definition 3 (Politeness). T is polite with respect to sorts S : {σ1 . . . σn}
whenever:

(1) Let ϕ be a satisfiable formula in theory T , A be one model of ϕ and let
|Aσ1 |, . . . , |Aσn | be the cardinalities of the domains of A for sorts in S. For
every tuple of larger cardinalities k1 ≥ |Aσ1 |, . . . , kn ≥ |Aσn |, there is a
model B of ϕ with |Bσi | = ki.
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(2) There is a computable function that for every formula ϕ returns an equivalent
formula (∃v)ψ (where v = Vψ \Vϕ) such that, if ψ is satisfiable, then there
is an interpretation A with Aσ = [Vσ(ψ)]A for each sort σ.

Condition (1 ) is called smoothness, and guarantees that interpretations can be
enlarged as needed. Condition (2 ) is called finite witnessability, and gives a
procedure to produce a model in which every element is represented by a variable.
The Finite Model Property, Lemma 2 above, guarantees that every sub-theory
of TSLK is finite witnessable since one can add as many fresh variables as the
bound for the corresponding sort in the lemma. The smoothness property can
be shown for:

Tcell ⊕ Tmem ⊕ Tpath ⊕ Tset ⊕ Tsetth ⊕ Tmrgn

with respect to sorts addr, levelK, elem, ord and thid. Moreover, these theories can
be combined because all of them are stably infinite. The following can also be
combined: TlevelK⊕Tord⊕Tthid because they do not share any sorts, so combination
is trivial. The many-sorted Nelson-Oppen method allows to combine the first
collection of theories with the second. Regarding the decision procedures for each
individual theory, TlevelK is trivial since it is just a finite set of naturals with order.
For Tord we can adapt a decision procedure for dense orders as the reals [21], or
other appropriate theory. For Tcell we can use a decision procedure for recursive
data structures [13]. Tmem is the theory of arrays [1]. Tset, Tsetth and Tmrgn are
theories of (finite) sets for which there are many decision procedures [25, 8]. The
remaining theories are Treach and Tbridge. Following the approaches in [16, 18]
we extend a decision procedure for the theory Tpath of finite sequences of (non-
repeated) addresses with the auxiliary functions and predicates shown in Fig. 6,
and combine this theory to obtain:

TSLKBase = Taddr⊕Tord⊕Tthid⊕TlevelK⊕Tcell⊕Tmem⊕Tpath⊕Tset⊕Tsetth⊕Tmrgn

Using Tpath all symbols in Treach can be easily defined. The theory of finite se-
quences of addresses is defined by Tfseq =(Σfseq, TGen), where Σfseq =

(
{addr,fseq},

{nil : fseq, cons : addr × fseq → fseq, hd : fseq → addr, tl : fseq → fseq}, ∅
)

and
TGen as the class of term-generated structures that satisfy the axioms of dis-
tinctness, uniqueness and generation of sequences using constructors, as well
as acyclicity (see, for example [4]). Let Σpath be Σfseq extended with the sym-
bols of Fig. 6 and let PATH be the set of axioms of Tfseq including the ones
in Fig. 6. Then, we can formally define Tpath = (Σpath, ETGen) where ETGen
is
{
AΣpath |AΣpath 
 PATH and AΣfseq ∈ TGen

}
. Next, we extend TSLKBase with

definitions for translating all missing functions and predicates from Σreach and
Σbridge appearing in normalized TSLK-literals by definitions from TSLKBase. Let
GAP be the set of axioms that define ε, [ ], append , reachK, path2set , getpK,
fstlock and ordList . For instance: ispath (p) ∧ ordPath (m, p) ↔ ordList (m, p)
We now define T̂SLK = (Σ

T̂SLK
, ÊTGen) where Σ

T̂SLK
is ΣTSLKBase

∪ { append ,

reachK, path2set , getpK, fstlock , ordList } and ÊTGen :=
{
AΣ

̂TSLK |AΣ
̂TSLK 


GAP and AΣTSLKBase ∈ ETGen
}
.
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app : fseq × fseq → fseq
app(nil , l) = l app(cons(a, l), l′) = cons(a,app(l, l′))

fseq2set : fseq → set

fseq2set(nil) = ∅ fseq2set(cons(a, l)) = {a} ∪ fseq2set(l)

ispath : fseq

ispath(nil) ispath(cons(a,nil)) {a} � fseq2set(l) ∧ ispath(l) → ispath(cons(a, l))

last : fseq → addr
last(cons(a,nil)) = a l �= nil → last(cons(a, l)) = last(l)

isreachK : mem × addr × addr × levelK
isreachK(m,a, a, l) m[a].next [l] = a′ ∧ isreachK(m,a′, b, l) → isreachK(m,a, b, l)

isreachpK : mem × addr × addr × levelK × fseq

isreachpK(m,a, a, l, nil)
m[a].next [l] = a′ ∧ isreachp(m,a′, b, l, p) → isreachp(m,a, b, l, cons(a, p))

fstmark : mem × fseq × levelK × addr

fstmark(m,nil , l,null)
p �= nil ∧ p = cons(a, q) ∧m[a].lockid [l] �= � → fstmark(m,p, l, a)

p �= nil ∧ p = cons(a, q) ∧m[a].lockid [l] = � ∧ fstmark(m, q, l, b) → fstmark(m, p, l, b)

ordPath : mem × fseq

ordPath(h,nil)(
h[a].next [0] = a′ ∧ h[a].key � h[a′].key ∧
p = cons(a, q) ∧ ordPath(h, q)

)
→ ordPath(h, p)

Fig. 6. Functions, predicates and axioms of Tpath

Using the definitions of GAP it is easy to prove that if Γ is a set of normalized
TSLK-literals, then Γ is TSLK-satisfiable iff Γ is T̂SLK-satisfiable. Therefore,
T̂SLK can be used in place of TSLK for satisfiability checking. The reduction from
T̂SLK into TSLKBase is performed in two steps. First, by the finite model theorem
(Lemma 2), it is always possible to calculate an upper bound in the number
of elements of sort addr, elem, thid, ord and level in a model (if there is one
model), based on the input formula. Therefore, one can introduce one variable
per element of each of these sorts and unfold all definitions in PATH and GAP ,
by symbolic expansion, leading to terms in Σfseq, and thus, in TSLKBase. This
way, it is always possible to reduce a T̂SLK-satisfiability problem of normalized
literals into a TSLKBase-satisfiability problem. Hence, using a decision procedure
for TSLKBase we obtain a decision procedure for T̂SLK, and thus, for TSLK. Notice,
for instance, that the predicate subPath : path × path for ordered lists can be
defined using only path2set as: subPath(p1, p2) =̂ path2set(p1) ⊆ path2set(p2).

For space reasons, we do not provide complete specification and proofs of the
temporal properties. However, in [18] is detailed an example of a termination
proof over concurrent lists, which easily carries over to skiplists. For illustration
purposes, we now show the full verification condition for the verification of the
safety property 

(
SkipList4(h, sl)

)
when executing transition 36 of program

insert by a thread with id t, from Section 2. For clarity, we again use prev as
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a short for upd [t][i[t]], and we use the auxiliary predicate setnext(c, d, i, x) that
makes the cell d identical to c except that c.next [i] = x.

setnext(c, d, i, x)=̂

(
d.data = c.data ∧ d.key = c.key ∧ d.lock [j] = c.lock [j] ∧
(i �= j)→ d.next [j] = c.next [j] ∧ d.next [i] = x

)

The VC is (SkipList4(h, sl) ∧ ϕ→ SkipList4(h′, sl′)) where ϕ is:

⎛
⎜⎜⎜⎜⎜⎜⎝

x[t].key = newval ∧
prev.key < newval ∧

x[t].next [i[t]].key > newval ∧
prev.next [i[t]] = x[t].next [i[t]] ∧
(x[t], i[t]) /∈ sl.r ∧ 0 ≤ i[t] ≤ 3

⎞
⎟⎟⎟⎟⎟⎟⎠
∧

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

at36[t] ∧ at ′37[t] ∧
prev′.next [i[t]] = x[t] ∧

setnext(h[prev],newcell , i[t], x[t]) ∧
h′ = upd(h, prev,newcell ) ∧

sl = sl′ ∧ x′[t] = x[t] ∧

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

5 Conclusion and Future Work

In this paper we have presented TSLK, a theory of skiplists of height at most
K, useful for automatically prove the VCs generated during the verification of
concurrent skiplist implementations. TSLK is capable of reasoning about mem-
ory, cells, pointers, masked regions and reachability, enabling ordered lists and
sublists, allowing the description of the skiplist property, and the representation
of memory modifications introduced by the execution of program statements.

We showed that TSLK is decidable by proving its finite model property, and
exhibiting the minimal cardinality of a model if one such model exists. More-
over, we showed how to reduce the satisfiability problem of quantifier-free TSLK

formulas to a combination of theories using the many-sorted version of Nelson-
Oppen, allowing the use of well studied decision procedures. The complexity
of the decision problem for TSLK is easily shown to be NP-complete since it
properly extends TLL [16].

Current work includes the translation of formulas from Tord, TlevelK , Tset, Tsetth

and Tmrgn into BAPA [8]. In BAPA, arithmetic, sets and cardinality aids in the
definition of skiplists properties. Paths can be represented as finite sequences of
addresses. We are studying how to replace the recursive functions from Treach

and Σbridge by canonical set and list abstractions [20], which would lead to a
more efficient decision procedure, essentially encoding full TSLK formulas into
BAPA. The family of theories presented in the paper is limited to skiplists of a
fixed maximum height. Typical skiplist implementations fix a maximum number
of levels and this can be handled with TSLK. Inserting more than than 2levels

elements into a skiplist may slow-down the search of a skiplist implementation
but this issue affects performance and not correctness, which is the goal pursued
in this paper. We are studying techniques to describe skiplists of arbitrary many
levels. A promising approach consists of equipping the theory with a primitive
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predicate denoting that the skiplist property holds above and below a given
level. Then the reasoning is restricted to the single level being modified. This
approach, however, is still work in progress.

Furthermore, we are working on a direct implementation of our decision proce-
dure, as well as its integration into existing solvers. Future work also includes the
temporal verification of sequential and concurrent skiplists implementations, in-
cluding one at the java.concurrent standard library. This can be accomplished
by the design of verification diagrams that use the decision procedure presented
in this paper.
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Abstract. Symbolic execution is a powerful automated technique for
generating test cases. Its goal is to achieve high coverage of software.
One major obstacle in adopting the technique in practice is its inability
to handle complex mathematical constraints. To address the problem,
we have integrated CORAL’s heuristic solvers into NASA Ames’ Symbolic
PathFinder symbolic execution tool. CORAL’s solvers have been designed
to deal with mathematical constraints and their heuristics have been
improved based on examples from the aerospace domain. This integration
significantly broadens the application of Symbolic PathFinder at NASA
and in industry.

1 Introduction

Systematic testing is widely accepted in academia and industry as a major ap-
proach to improve quality of general-purpose software. Perhaps less popularized
is the role of testing as an economic viable technique to improve reliability of
critical systems. In the aerospace domain, for instance, systematic testing has
been used to reduce cost of bug finding, i.e., to increase application reliability.
NASA, in particular, maintains open-source tools to assist systematic testing.

Symbolic execution [15] is an automated technique to generate test input data.
The input to symbolic execution is a parameterized method m of the applica-
tion under test and the output is a test suite that maximizes path coverage for
m. Internally, a symbolic execution tool is organized in two components: the
constraint generator and the constraint solver. The constraint generator builds
constraints on the input parameters of m for achieving path coverage while the
solver attempts to solve these constraints, i.e., to generate concrete assignments
to input parameters. A major obstacle for techniques that build on constraint
solvers, such as symbolic execution, is the inability to deal with complex con-
straints. In particular, constraints that build on undecidable theories, constraints
that build on decidable theories but are very expensive to deterministically solve,
and constraints that the solver cannot handle.

The goal of this work is to improve the solving of constraints that use floating-
point variables and complex mathematical functions. Such constraints often
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occur in the analysis of software from the aerospace domain; for example,
consider software such as TSAFE [4,5] that helps air-traffic controllers in de-
tecting and resolving short-term conflicts between aircrafts. This software esti-
mates the location of an aircraft based on several factors including speed and
direction and makes extensive use of floating-point variables and trigonometric
functions. Good handling of complex constraints is fundamental for testing soft-
ware of this kind using a symbolic execution tool such as NASA Ames’ Symbolic
Pathfinder [20].

Symbolic PathFinder (SPF) is a symbolic execution tool used at NASA and
Fujitsu for testing complex applications. This paper reports the results of using
the constraint solver CORAL to solve the complex mathematical constraints gener-
ated with SPF. CORAL uses meta-heuristic search, such as genetic algorithms [12]
and particle-swarm optimization [14], to look for solutions to constraints that
the SPF tool generates. The hypothesis is that search can be effective in solving
such constraints not managed by traditional decision procedures. The princi-
ple of meta-heuristic search is to iteratively refine a set of solution candidates,
initially chosen at random, for a fixed number of times. Informed fitness func-
tions evaluate the quality of a candidate to solve a constraint in each generation
round. A new generation of candidates is obtained with modifications to the best
fit candidates. The search terminates after a determined number of iterations.
In our case, it succeeds only when the best fit candidate is also a solution to the
input constraint.

To deal with numeric constraints CORAL uses a specialized fitness function
that conceptually measures the distance of a candidate solution to satisfying a
particular constraint. To reduce the search space, it additionally tries to infer
the units and ranges of variables from the functions where these variables are
used. The design of CORAL has been influenced in part by the constraints that
SPF generated from the analysis of several NASA applications. In particular,
some rewriting rules have been added and the fitness function has been adjusted
based on examples from the NASA domain.

This paper makes the following contributions:

– New constraint solver: We present CORAL a meta-heuristic constraint
solver specialized to handle complex mathematical constraints;

– Integration: We report the integration of SPF and CORAL. This integration
moves forward the limits of symbolic execution to manage a wider range of
programs;

– Evaluation: We evaluate this integration on several examples from NASA
and also compare the use of CORAL with other constraint solvers (with some
support for real arithmetic) that have been previously integrated in SPF.

The rest of the paper is organized as follows. Section 2 briefly illustrates how
symbolic execution works. Section 3 describes the Symbolic PathFinder tool.
Section 4 describes CORAL. Section 5 evaluates the integration of CORAL in Sym-
bolic PathFinder. Finally, Section 6 discusses related work and Section 7 gives
our conclusions.
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2 Symbolic Execution

Symbolic execution is a program analysis technique that executes a program
with symbolic inputs as opposed to concrete inputs. It computes the effect of
program execution on a symbolic state, which maps variables to symbolic expres-
sions. When execution evaluates a branching instruction, the technique needs to
decide which branching choice to select. In a regular execution the evaluation
of a boolean expression is either true or false so only one branch of the condi-
tional can be taken. In the case of a symbolic execution the evaluation of the
boolean expression is a symbolic value, so both branches can be taken resulting
in different paths through the program. Symbolic execution characterizes each
path it explores with a path condition over the input variables −→x . This condi-
tion is defined with a conjunction of boolean expressions pc(−→x ) =

∧
bi. Each

boolean expression bi denotes a branching decision made during the execution
of a distinct path in the program under test. Symbolic execution terminates
when it explores all such paths corresponding to the different combinations of
decisions. Note, however, that programs with loops and recursion can have an
infinite number of paths. In those cases, symbolic execution needs to bound the
number of paths it explores.

We illustrate symbolic execution using a simple example. Consider the
fragment of code from Figure 1 (left) taken from a flight abort executive:

i f ( p r e s su r e < 640 .0 | |
pre s su r e > 960 . 0 ) {

abort ( ) ;
} else { continue ( ) ; }

1. SY M < 640.0
2. SY M >= 640.0 ∧ SY M > 960.0
3. SY M >= 640.0 ∧ SY M <= 960.0

Fig. 1. Abort example and corresponding path conditions

If the value of the input variable pressure is outside nominal values 640.0
and 960.0, then the mission is aborted, otherwise the mission is continued.
Traditional testing of this code involves assigning some concrete values to the
inputs and executing the code; for example, if the value of variable pressure
is 460.0, testing will exercise only one path through the code, corresponding to
the condition pressure < 640.0 being true, resulting in an abort. In contrast,
symbolic execution assigns a symbolic value to the input variable pressure and
analyzes all the three possible paths through the code, corresponding to the three
path conditions in Figure 1 (right). The path conditions correspond respectively
to the cases where the first term of the disjunction ( “||”) is satisfied, the
second term is satisfied, and none is satisfied. Note that due to the short-
circuit operator, it is only possible to satisfy the second term of the con-
dition negating the first. Solving these path conditions with a constraint
solver gives the test inputs that achieve complete path coverage through the
code.



362 M. Souza et al.

3 Symbolic PathFinder

Symbolic PathFinder (SPF) is a symbolic execution tool for Java bytecode.
SPF is used primarily for automated test case generation of code and also of
Simulink/Stateflow and UML models, via a translation into bytecode [19]. SPF
has been used at NASA (JSC Onboard Abort Executive, fault tolerant protocols,
PadAbort-1 models, T-SAFE Java code), in industry (most notably at Fujitsu
– 60K LOC), and in various research projects from academia. SPF is part of the
Java PathFinder verification tool-set [8], a freely available open-source project.
We describe here SPF’s main features and how it builds complex mathematical
constraints, which are then used with CORAL’s heuristic solvers.

Features. The Java Pathfinder tool-set includes the JPF-core project, an
explicit-state model checker for Java programs, and several extension projects,
one of them being SPF (jpf-symbc Java project). The JPF-core implements
an extensible custom Java Virtual Machine (VM), equipped with state stor-
age and backtracking capabilities, different search strategies, as well as listeners
for monitoring and influencing the search. By default, JPF-core executes the
program based on the standard semantics of Java. SPF replaces this concrete
execution semantics with a non-standard symbolic interpretation of bytecodes.
It uses a custom bytecode instruction factory for that. More precisely, SPF uses
the instruction factory class SymbolicInstructionFactory to build bytecode
instructions that manipulate symbolic values and expressions. For example, the
result of the symbolic interpretation of the bytecode IADD is to pop from the
stack two symbolic integers sym1 and sym2 and to push the symbolic expression
sym1 + sym2 back to the stack. SPF stores these symbolic values that symbolic
execution computes in special “attributes” associated with the program data,
i.e. variables, fields and stack operands.

The symbolic execution of conditional instructions (such as if statements)
leads to the exploration of distinct program paths, corresponding to the boolean
expression of the conditional evaluating to true or to false. SPF relies on the
JPF-core framework to systematically explore the different choices of symbolic
execution paths as well as thread interleavings. These choices are explored ex-
haustively (up to some bounds) using a mechanism of the JPF-core known as
choice generators. The SPF implementation uses a specialized choice generator,
the PCChoiceGenerator, for the construction of path conditions. Each gener-
ated choice is associated with a path condition encoding the condition or its
negation, respectively. The path conditions are checked for satisfiability using
off-the-shelf decision procedures or constraint solvers. If the path condition is
satisfiable, the search continues; otherwise, the search backtracks (meaning that
the path is unreachable).

Decision Procedures and Constraint Solvers. To check the feasibility of
path conditions, SPF uses multiple decision procedures and constraint solvers
through a generic interface. Currently, SPF supports the following solvers:
CHOCO for integer/real constraints, CVC3 for linear constraints, and the interval
arithmetic solver IASolver, as well as the SMT decision procedures CVC3 and
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YICES. Both CHOCO and IASolver have support for handling constraints on re-
als and complex mathematical functions, however they both perform poorly in
practice (in terms of correctness, speed and tool support). This paper reports the
integration of a new constraint solver to SPF for handling complex mathematical
constraints, namely CORAL.

Handling Math Functions. SPF uses JPF-core’s native peers mechanism to
model native libraries and any other program parts that cannot be analyzed
directly with symbolic execution. Most notably, SPF incorporates native peers
models for the methods in the java.lang.Math library; these models create
symbolic expressions encoding the mathematical functions, that are left un-
interpreted. Such use of native peers lifts the interpretation of Math functions
from the concrete level to the abstract “model” level: whenever the symbolic exe-
cution reaches a call to a complex Math function, that call is intercepted by SPF
and it is used as a symbolic operator to build a new symbolic expression. The
path conditions containing such expressions are dispatched to an appropriate
constraint solver that can handle complex Math constraints, such as CORAL.

SPF uses native peers for the following functions from the Java Math library:
ACOS, ASIN, ATAN, ATAN2, COS, EXP, LOG, POW, ROUND, SIN, SQRT, TAN.
For the rest of the Math functions, which are much simpler, we provide simple
implementations that are interpreted directly by SPF.

i f (Math . pow( in , 2 . 0 ) >16 . 0 ) {
do1 ( ) ;

} else { do2 ( ) ; }

1. pow(in SY M, CONST 2.0) < CONST 16.0
2. CONST 16.0 == pow(in SY M, CONST 2.0)
3. pow(in SY M, CONST 2.0) > CONST 16.0

Fig. 2. Example with Math function and corresponding path conditions

Figure 2 shows one example that uses the pow math function. Variable in
stores the symbolic input in SY M . The symbolic execution of this code produces
the three path conditions to the right side of this figure. As mentioned before SPF
does not directly interpret the call to the standard Java library function Math.pow.
Instead, it constructs a symbolic expression pow(in SYM,CONST 16.0) which is
then used to build the symbolic constraints. When executing the if statement
above, SPF creates a 3-choice split point related to the outcomes of the relational
expression1. Each execution will explore one choice. As execution goes along,
more boolean expression are added to the current path, building longer path
constraints. The constraints are solved with an appropriate constraint solver;
i.e., one that can handle such complex mathematical functions directly.

4 CORAL Heuristic Solvers

This section describes design and implementation of the CORAL heuristic con-
straint solvers. We first elaborate on the representation of the search space and
1 The 3-way split reflects the three possible outcomes of the Java bytecode that com-

pares two doubles, according to the Java semantics.
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the search strategies used by CORAL. Then we illustrate the fitness function used,
and finally, the optimizations.

4.1 Search Algorithms

Representation of Space and Search. Our characterization of a candidate
solution is a map from symbolic variables to concrete values. A population cor-
responds to the set of candidates that are active in a given moment in the
search. Our work follows an evolutionary approach to search. In this setting, the
population evolves during the search according to some user-defined principle.
Conceptually, each evolution step approximates the candidates to a solution.
The search starts with a population obtained from the random assignment of
values to variables and terminates after a fixed number of iterations or when it
finds candidates with optimal fitness.

The CORAL infrastructure provides two different search strategies: random and
Particle-Swarm Optimization (PSO). We discuss here PSO, the strategy that
performed best in our experiments. Random search is described elsewhere [21,22].
PSO is a search algorithm, similar to the popular genetic algorithm search (GA),
used in combinatorial optimization problems. Both PSO and GA use special op-
erators to mutate candidates during the evolution process. While GA mimics
biological evolution (e.g., with mutation and reproduction) PSO mimics move-
ments of a group of animals in swarms. Although GA and PSO operate similarly
with successive refinements of the population, they have different computational
costs. At each iteration, GA needs to eliminate less fitted individuals, add new
ones with crossover, and modify existing ones with mutation. The PSO algorithm
updates the search state more efficiently: it uses efficient matrix arithmetic to up-
date a fixed-size population. In PSO terminology candidate solutions are called
particles. The particles collaborate to compute a solution (this is a central dif-
ference between GA and PSO). Each particle has a position in the search space
and a contributing factor to the population, typically called velocity, which PSO
uses to update the next position of each particle. The next position of a parti-
cle depends on its current position and velocity. The next velocity of a particle
depends on the best position the swarm has seen from the start of the search
(global) and the best position of that particle from the start (local). Details on
design and implementation of these algorithms can be found elsewhere [12,14].

Fitness Functions. The role of a fitness function (a.k.a. objective function) is
to drive the search towards (fitter) solutions. This function gives a score denot-
ing the quality of an input candidate to solve the problem. Our solvers use a
variation of the Stepwise Adaptive Weighting (SAW) fitness function that dy-
namically adjusts the importance of different sub-problems for solving the whole
problem [9]. For constraint solving, the problem is to solve the entire path con-
dition pc(−→x ) =

∧
bi and the sub-problem is to solve a clause bi of the input path

condition. The definition of SAW is as follows:

f(−→x ) =
∑

i

wi ∗ gi(−→x )
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Function f is the weighted sum of gi(−→x ), which denotes the score of candidate
−→x to solve the clause bi of the path condition. This score is given in the con-
tinuous interval [0.0, 1.0] with higher values (respectively, low) indicating better
(respectively, worse) fitness. The search goal is to maximize function f , i.e., to
find inputs that produce maximal outcomes: high valuations of inputs on this
function indicate fitter candidates. The search procedure dynamically increases
the weight wi associated to each clause bi as that clause remains unsolved for
longer than some specified number of times. The use of weights helps the search
to positively differentiate candidate solutions that satisfy “difficult” clauses from
solutions that satisfy many “easy” clauses. We note that a final solution is only
relevant if it satisfies all clauses bi.

SAW was originally created to solve SAT problems, i.e., propositional formula
with boolean variables. We adjusted the definition to handle numeric variables.
Recall that gi(−→x ) denotes the score of −→x on bi. Function gi is defined as follows,
where each clause bi is a disjunction of terms bi1 ∨ . . . ∨ bim:

gi(−→x ) = max
1<j<m

1 − d(bij ,−→x )

Note that the codomain of functions gi and d are the same; the interval [0.0, 1.0].
Function d conceptually measures “how far” the candidate −→x is from a so-
lution that satisfies the term bij . We want to maximize gi and for that we
need to minimize d, the distance to solution. For example, for the case where
bij is an equality expression of the form eq(e1, e2) we define the distance d as
norm(|e2(−→x ) − e1(−→x )|). The modulo of the difference denotes the distance be-
tween the evaluations of the expressions e1 and e2 on input −→x . The function
norm normalizes the distance in the expected range. This function considers
any input above some defined threshold t to return the upper bound 1 for the
distance, otherwise it divides the input by t to obtain a value in the expected
range. The evaluation of function d on a satisfying solution produces value 0.
Definitions of the distance function d to other relational operators are similar.

Example. This example illustrates how the meta-heuristic search operates to
find a solution to the constraint sin(a) = −sin(b) ∧ sin(a) > 0 using the fitness

it. (a, b) distance (weight) fitness
sin(a)=−sin(b) sin(a) > 0

0 0.0000,0.0000 0.0 (1) 0.01 (1) 1.9900
0.3927,5.7596 0.0011 (1) 0.0 (1) 1.9988

1 0.3927,6.2832 0.0038 (1) 0.0 (2) 2.9962
0.3927,5.4978 0.0032 (1) 0.0 (2) 2.9968

2 0.5236,6.2832 0.0049 (2) 0.0 (2) 3.9900
0.3927,5.7596 0.0011 (2) 0.0 (2) 3.9977

3 0.5236,5.2360 0.0036 (3) 0.0 (2) 4.9890
0.3927,5.7596 0.0011 (3) 0.0 (2) 4.9965

4 0.0000,6.2832 0.0 (4) 0.01 (2) 5.9800
0.5236,5.7596 0.0 (4) 0.0 (2) 6.0000

Fig. 3. Fitness-guided constraint solving

function we defined. Fig 3 il-
lustrates the evolution of a
fixed-size population of only
two candidates. Each row de-
tails one candidate in a given it-
eration. Columns “it.”, “(a, b)”,
“distance(weight)”, and “fit-
ness” show respectively the
iteration number, the input-
break assignment (candidate),
the distance to satisfy a clause
of the constraint with the cur-
rent weight of the clause in
parenthesis, and the fitness
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Table 1. Some rewriting rules of CORAL

1. Math.Pow(E, E1) == Math.Pow(E, E2) ⇒ E1 = E2
2. Math.Pow(E1, E) == Math.Pow(E2, E) ⇒ E1 = E2
3. Math.Log(E) == c ⇒ E = POW (2, c)
4. Math.Log10(E) == c ⇒ E = POW (10, c)
5. x1 [+,−, ∗, /] x2 == E ⇒ x1 = E [−, +, /, ∗] x2
6. x1 + c ∗ x1 = E ⇒ x1 = E/(1 + c)

value of the candidate. The constraint is satisfied when the fitness equals the
sum of the weights. Iteration 0 denotes the initial population. CORAL performs
4 iterations to find a solution. Note the increase in weight of the first clause
(equality) relative to the second (inequality) as the search progresses.

Implementation. We have integrated CORAL in SPF by specializing SPF’s
generic decision procedure interface for CORAL; this involves encoding SPF’s sym-
bolic expressions into a format that is suitable for solving with CORAL and reading
the solutions from CORAL back into SPF. CORAL currently uses the opt4j Java
library [3] for implementing the search. The library essentially requires the user
to define a fitness function and the representation of candidate solution, which,
in our case, is a vector of integers and reals.

4.2 Optimizations

This section describes optimizations that CORAL uses.

Inference of Variable Domains. The quality of initial states is an important
factor to determine overall search quality: a solution is obtained with a sequence
of modifications on candidate inputs, starting from their initial assignments.
CORAL tries to improve the quality of initial random assignments by inferring
specific domains associated to each symbolic variable. The principle is that the
search becomes more exhaustive when confined to a smaller space. For example,
it infers the unit radian for variables that appear free within the context of
sine and cosine expressions. For variables of this kind, CORAL starts the search
assigning random values from a selection of values in the range 0 − 2π. It also
infers ranges which are explicit on the input constraint. For example, it will
update the range [lo0 , hi0 ] associated to variable v to [c, hi0 ] if the constraint
v >= c is observed in the path condition and c > lo0 holds, where c is a constant.

Elimination of Variables. Before passing a constraint to the search procedure,
CORAL attempts to simplify the input formula. The approach it uses for that is to
identify variables whose values can be fully determined by others. This is similar
to a decision procedure for equality that partitions expressions in equivalence
classes [17]. CORAL uses rewriting rules in attempt to isolate variables. Table 1
shows some of the rewriting rules it uses. Note that rule 2 is lossy, e.g., E1=−2
and E2=2. Rule 5 inverts the side of the arithmetic operation to isolate the
variable. Rule 6 factors variable x1 and inverts the side of the multiplication
factor. Note that, considering fixed-precision arithmetic, the rules could lead to
incorrect results. However, the search only terminates successfully if the optimal
input satisfies the original constraint.
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Table 2. Sample of constraints that CORAL handles

constraint source

(1.5 − x1 ∗ (1 − x2)) == 0 Beale
(−13 + x1 + ((5− x2) ∗ x2− 2) ∗ x2)+ (−29 + x1 + ((x2 + 1) ∗ x2− 14) ∗ x2) == 0 Freudenstein

and Roth
pow((1 − x1), 2) + 100 ∗ (pow((x2 − x1 ∗ x1), 2)) == 0 Rosenbrock
((pow(((x ∗ (sin((((y ∗ 0.017) − (z ∗ 0.017)) + ((((((((pow(w,2.0))/((sin((t∗

TSAFE

0.017)))/(cos((t∗0.017)))))/68443.0)∗0.0)/w)∗−1.0)∗x)/(((pow(x, 2.0))/((sin((t∗
0.017)))/(cos((t ∗ 0.017)))))/68443.0)))))) − (w ∗ 0.0)), 2.0)) + (pow(((x∗
(cos((((y ∗ 0.017) − (z ∗ 0.017)) + ((((((((pow(w,2.0))/((sin((t ∗ 0.017)))/(cos((t∗
0.017)))))/68443.0)∗0.0)/w)∗−1.0)∗x)/(((pow(x, 2.0))/((sin((t∗0.017)))/(cos((t∗
0.017)))))/68443.0)))))) − (w ∗ 1.0)), 2.0))) == 0.0
((exp(x) − exp((x ∗ −1.0)))/(exp(x) + exp((x ∗ −1.0)))) > PISCES(((exp(x) + exp((x ∗ −1.0))) ∗ 0.5)/((exp(x) − exp((x ∗ −1.0))) ∗ 0.5))
xtan(y)+z < x∗atan(z)∧sin(y)+cos(y)+tan(y) >= x−z∧atan(x)+atan(y) > y manual

Evaluation of Boolean Expressions in Postfix Notation. In our context,
evaluation refers to the operation that checks whether a candidate solution
satisfies the input formula. Random(ized) search is very sensitive to evaluation
time in general [12]. In principle, random search performs increasingly better as
evaluation time decreases: more distinct inputs will be selected from an uniform
distribution in the same allotted time. It is in our interest to improve evaluation
time for a fair comparison with random solving and for more efficient solving. To
that end the solver uses a postfix notation to evaluate path conditions on a given
input. A postfix expression is scanned from left to right, therefore the operators
can be applied efficiently to the operands located at the top of an operand stack.
We use a fixed-size array of reals to implement such stack.

4.3 Sample Constraints

Table 2 gives a set of representative constraints that CORAL is able to solve.
The first column shows the constraint and the second shows the source of the
constraint. Some of these constraints are taken from the literature while others
were generated by CORAL users and also by SPF from the analysis of NASA
applications. Capitalized names indicate subjects from NASA. Note that most
of the constraints are non-linear and use mathematical functions. The first 3
constraints are used elsewhere to evaluate the FloPSy constraint solver [18] (see
also Section 6). The PISCES subject is discussed in Section 5.4. The manual
constraints have been written by 3 users of CORAL. Note that solving equality
constraints such as the first 4 in this table is challenging with random and
heuristic search as they significantly reduce the solution space.

5 Evaluation

This section presents our evaluation of CORAL. Section 5.1 shows the setup of
the various constraint solvers we used in our comparison. Section 5.2 compares
the use of CORAL in SPF with other public solvers already integrated to SPF
and also compares variations of CORAL. Section 5.3 discusses the impact of the
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number of search iterations set in CORAL on effectiveness and runtime. Finally,
sections 5.4 and 5.5 discuss the analysis of the NASA PISCES library and the
Java translation of the Apollo Lunar Autopilot Simulink model.

5.1 Setup

Solvers. The user can control the duration of a solving task in CORAL either by
time or number of iterations. In our experiments we use number of iterations
to obtain deterministic results. When not mentioned otherwise CORAL uses in
each query request PSO as search strategy and 600 iterations (See Section 5.3).
We consider the following solvers in our comparison: CORAL, CHOCO [1], CVC3 [2],
and YICES [7]. All these solvers have been already integrated to SPF. We note
that these solvers have different goals. For example, CVC3 and YICES are decision
procedures for Satisfiability Modulo Theories (SMT). In particular, YICES can
decide over linear real arithmetic and CVC3 can decide over rational linear arith-
metic. But neither CVC3 nor YICES can handle complex mathematical functions
directly. CHOCO, on the other hand, is a constraint-programming solver for the
theories of integers and reals with support to mathematical functions.

The Wrapper Solver. In order to compare the different solvers, we developed
a “wrapper solver” to encapsulate all the solvers considered in our evaluation.
Similar to the basic solvers, such solver needs to implement a SPF-defined Java
interface with operations for building the objects denoting the terms of a con-
straint and for calling the solver. We implemented the general solver for two
reasons. First, it is possible that one of the solvers fails to solve a constraint that
appears in a shallow exploration depth even though it could solve more elabo-
rated constraints. With the wrapper solver, exploration will continue if at least
one solver answers positively to a satisfiability check query. All solvers have the
chance to answer each query generated with the symbolic execution. Second,
the wrapper solver was useful to detect discrepancies between results that would
often point to a bug in the SPF-solver integration or the solver itself.

5.2 Comparison with Other Solvers

Results for Decidable Constraints. We evaluated CORAL with all the other
solvers for the symbolic execution of two set data-structures popularly used in
testing: binary search tree and tree map. For these subjects, we used the im-
plementation and test drivers available on the SPF codebase. The test drivers
explore all sequences of method calls and inputs up to informed bounds. The
symbolic execution of these data-structures generates constraints that only in-
volve decidable theories. A decision procedure with support for linear integer
arithmetic should be able to find solutions to all satisfiable path constraints.
We observed that CORAL could solve as many constraints as any other solver in
this experiment. The test driver was set to generate sequences up to bound 5.
Solving decidable fragments is also important in this context as it is often the
case that the input constraint mix decidable and undecidable parts.
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Results for Constraints with Math Functions. We evaluated CORAL with
78 manually-written test cases including mathematical function expressions. In
this setup, three users of CORAL first developed the constraints with the help of
the Wolfram Alpha visualization tool [6] and then translated to Java. Although
each constraint is satisfiable the translation to Java creates unsatisfiable paths.
To note that Java models short-circuit boolean expression with control flow. In
this setup we compared only CORAL and CHOCO since they provide support to
math functions. Out of 678 queries CORAL solved 595 (87.7% of total). Of these,
CHOCO did not solve 526. In addition, for no query CHOCO could solve and CORAL
could not. CHOCO solved a total of 68 constraints (10.1% of total).

pso-opt pso ran-opt ran total
pso-opt - 116 38 209 722

pso 36 - 50 118 642
ran-opt 10 102 - 179 694

ran 12 1 10 - 525
Total: # Queries=838, SOLVED=763

Fig. 4. Different configurations of CORAL

Results for Different Configu-
rations of CORAL. In this experi-
ment, we used all manually-written
test cases. This includes complex
constraints with and without math
functions. The table from Figure 4
compares four instances of CORAL in
this setup. We use a matrix to show
how many constraints one solver could
solve that another could not. More specifically, each cell A[i, j] of the square
matrix A stores the number of constraints that solver i could solve and solver j
could not. Last column and row show summaries. Last column shows the total
of constraints the solver in that line could solve. Last row shows the total num-
ber of queries submitted to the solvers and the total number of queries solved.
The label “pso” refers to CORAL using particle swarm optimization, while “ran”
refers to use of random search. The label “-opt” indicates that the solver enabled
optimization with the inference of variable domains and attempted to isolate
variables that no other variables depend as discussed in Section 4. The random
solvers use a bound of 360,000 iterations while the PSO solvers a bound of 600
corresponding to approximately the same time of search. (See Section 5.3.) We
make the following observations:

– CORAL performed well even for cases where it was not designed for. It solved
well the linear integer constraints generated from the symbolic execution
of binary search and treemap. This result is important considering that
symbolic execution of scientific applications builds constraints with both
decidable and complex parts.

– CORAL performed significantly better than CHOCO for the queries including
Math functions derived from constraints manually-written by CORAL devel-
opers. In particular, we found cases when CHOCO would report incorrect so-
lutions (e.g. the constraint Math.sin(x)+Math.cos(y)==1). We note that
we did not tweak any parameter of CHOCO. We used the configuration set in
SPF.

– Figure 4 shows that the versions of CORAL with optimizations found more
solutions on average. In addition, “pso-opt” found more solutions than
“ran-opt”. In some cases the optimized solver missed the solution of some
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constraints that its non-optimized version finds. As discussed in Section 4.2
the optimizations can reduce not only the search space but also the solution
space. Note also that the difference in total number of constraints solved
between “pso-opt” and “ran-opt” is not huge. We observed that one affect-
ing factor for this result is the relative high number of inequality constraints
(e.g., >=) compared to that of equality constraints for which random search
would conceptually have more difficulty to find solutions.

5.3 Impact of Number of Iterations on Precision and Runtime

This section discusses the impact of the number of iterations (using the PSO
search) in runtime and precision (as measured by the number of solutions found)
and present the method used to select a default value for the maximum number
of iterations per query to the solve.

We considered manually-written and NASA’s benchmarks in this experiment.
We varied the number of iterations from 10 to 3000 and measured how many
solutions the solver can find for each selection. The leftmost plot from Figure 5
relates number of iterations with numbers of solutions that CORAL finds for each
assignment. The plot indicates that the ratio of increase varies in different rates.
For the lower end of the range (say, less than 500 iterations) the increase is
sharp; for larger values the increase is smoother and often unpredictable. For
example, CORAL finds 1153 solutions when using 600 iterations and only 51 more
when using 3000 iterations (which is 5x increase in number of iterations). The
vertical line in the figure shows this point of “stabilization”, which we use as
default selection for the maximum number of iterations. It is perhaps worth
mentioning that the plot is not increasing monotonically with the number of
iterations. This occurs because the search algorithm in the opt4j library uses the
number of iterations itself as a factor to regulate the perturbation of candidate
solutions. That does not imply, however, that the search is non-deterministic for
given seed and maximum number of iterations.
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Fig. 5. Left plot relates number of iterations with number of solutions. Right plot
relates number of iterations with runtime.
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The rightmost plot shows average runtime in milliseconds for each assignment
of number of iterations. For that, we used a machine with an Intel Core i7-920
processor (8M Cache, 2.66GHz), 8GB RAM, and running Ubuntu 10.04 32bits.
In contrast to the previous experiment, we only considered unsolved constraints
as they dominate runtime. In principle, the cost of a search iteration varies with
the size of the constraint. In this setup, however, the size of the constraints
does not vary significantly and the plot reveals an apparent linear relationship
between number of iterations and average runtime.

Considering only the constraints that the solver could solve in the experiments
from Section 5.2, CORAL took on average 60ms, CHOCO 3ms, CVC3 9ms, and YICES
<1ms. As mentioned, this runtime difference can increase favorably to non-
CORAL solvers when considering the constraints that CORAL cannot find solutions.
Section 7 points to our plans to improve CORAL’s runtime.

5.4 Analysis of the PISCES Library

We have applied SPF with the new CORAL solvers to the analysis of the PISCES
(Platform Independent Software Components for the Exploration of Space)
mathematical library. PISCES implements a collection of mathematical util-
ity functions and it is used at NASA’s Johnson Space Center for Web-based,
collaborative development of computer programs for planning trajectories and
trajectory-related aspects of spacecraft-mission design.

We have analyzed 20 methods in the library (version 2006), that perform com-
plex mathematical computations such as hyperbolic (arc) sine, cosine, tangent,
floating point reminder, factorial, as well as converting time and degrees into
radians and back, etc. We were able to analyze all the methods with CORAL, and
we discovered some problems, that were due to illegal arguments not properly
caught in the code. Furthermore, we tested the implementations by performing
checks of known mathematical properties of the PISCES functions.
For example, we checked the following:

public static void testHyperbolicTangent(double x) {
double sinH = MathFunctions.sinh(x); /* hyperbolic sine */
double cosH = MathFunctions.cosh(x); /* hyperbolic cosine */
double tanH = MathFunctions.tanh(x); /* hyperbolic tangent */
assert (tanH == sinH/cosH);

}

SPF with CORAL generates 6 path conditions, and it correctly determines that
only 2 are feasible and that the assertion is not violated. If the assertion is
changed to assert (tanH != sinH/cosH), SPF correctly finds two cases when
the assertion is violated.

5.5 Analysis of the Apollo Lunar Autopilot

We have also applied SPF with CORAL to the analysis of the Apollo Lunar Au-
topilot, a Simulink model that was automatically translated to Java using the
Vanderbilt tool-set [19]. This 2.6KLOC subject is deployed in a single package
with 54 classes. (Numbers computed with the JavaNCSS tool [13].) The Simulink
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model was created by one of the engineers who worked on the Apollo Lu-
nar Module digital autopilot design team to see how he would have done it
using Simulink if it had been available in 1961. The model is available from
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MathWorks2. It contains both
Simulink blocks and Stateflow di-
agrams and makes use of complex
Math functions (e.g. Math.sqrt).
The model could not be analyzed
using CHOCO (or other constraint
solvers that were previously in
SPF), since these solvers could
not handle the sqrt operation. In
this experiment we set the bound
on the length of a path condition
to 50 and the bound on time to
2h. The bound on length makes
the search to backtrack when it
makes more than 50 consecutive
branching choices. CORAL could solve 383 out of 905 queries generated (i.e., 42%
of total) during the state-space exploration. Figure 6 summarizes the search. In
one axis it shows the number of queries the constraint solver received (note the
5x scale) and the other shows the number of solutions found. The figure high-
lights the 1h data point. Note from the plot a small increase in saturation as
time advances: in 50% of the time 57% (217 out of 383) of the total number of
solutions are found. One reason for this is the increase of the path condition size
(and cost of solving) with the increase of exploration depth. CORAL is sensitive
to the path condition size in two ways. On the one hand as the path condition
grows bigger the evaluation time also increases. On the other hand, a fitness
function conceptually makes better judgments when more conjuncts appear in
the path condition.

6 Related Work

Random-symbolic solving [11,21,22] has been recently proposed as an approach
to solve constraints with undecidable fragments. The approach is to selectively
randomize variables from the input constraint before passing a simplified version
of it to a decision procedure. Empirical results show that such collaboration is
very promising. We plan to investigate novel ways to promote collaboration
between CORAL and decision procedures. For example, to first pass the input
constraint to a decision procedure (with mathematical functions uninterpreted)
and use solutions to seed the initial state of CORAL.

The constraint solver FloPSy [18] has been recently developed with similar
purpose and approach as CORAL. CORAL and FloPSy use a similar notion of

2 http://www.mathworks.com/products/simulink/demos.html?file=/products/

demos/shipping/simulink/aero dap3dof.html

http://www.mathworks.com/products/simulink/demos.html?file=/products/
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distance in their fitness functions. Different from CORAL, FloPSy does not adjust
the weights of constraint clauses in its fitness function as the search advances.
As for the search, FloPSy uses a variation of the AVM method [16] and genetic
algorithms. Another difference is that CORAL performs some optimizations (e.g.,
inference of domains and rewriting to eliminate variables) which are orthogonal
to the search. (See Section 5.) FloPSy is used under the concolic execution of
PEX [23], developed at Microsoft Research. CORAL has been customized specially
for SPF; this could not be done readily with FloPSy.

Heuristic search has been previously proposed to improve random (concrete)
testing [24,10] as opposed to symbolic testing. In the context of a concrete exe-
cution the fitness function operates directly over program elements. It measures
how close execution is to discover a new program path using structural path
coverage. One central distinction between the concrete and symbolic approaches
is that, to evaluate fitness with concrete testing, one needs to execute the pro-
gram to collect path coverage data while in the context of symbolic execution
one needs to evaluate path conditions, which is an abstraction of the path.

7 Conclusions

This paper proposes the meta-heuristic solver CORAL for dealing with constraints
involving mathematical functions and floating-point variables that symbolic ex-
ecution can generate. The integration of CORAL with the NASA’s Symbolic
PathFinder tool (SPF) indicates that the approach is promising. The use of
CORAL broadens the application of SPF at NASA and industry. CORAL is publicly
available for use at the following address.

http://pan.cin.ufpe.br/coral

In future work, we plan to add incremental solving capability to CORAL (within
the context of symbolic execution) and to investigate novel ways to collaborate
with decision procedures. Finally, we plan to thoroughly evaluate CORAL in the
context of constraints generated from the analysis of other NASA applications.
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Abstract. Clock synchronization is the foundation of distributed real-
time architectures such as the Timed-Triggered Architecture. Maintain-
ing the local clocks synchronized is particularly important for fault
tolerance, as it allows one to use simple and effective fault-tolerance
algorithms that have been developed in the synchronous system model.

Clock synchronization algorithms have been extensively studied since
the 1980s, and many fundamental results have been established. Tra-
ditionally, the correctness of a new clock synchronization algorithm
is shown by reduction to these results. Until now, formal proofs of
correctness all relied on interactive theorem provers such as PVS or Is-
abelle/HOL. In this paper, we present an automated proof of the TTEth-
ernet clock-synchronization algorithm that is based on the SAL model
checker.

1 Introduction

Distributed real-time systems are omnipresent in our daily lives and are becom-
ing increasingly large and complex. It is becoming apparent that the correct
development of such complex systems requires a sound architectural basis. The
time-triggered architecture (TTA) [1] is intended to facilitate the development
of fault-tolerant, real-time systems. TTA has been successfully adopted in in-
dustries that demand a high level of determinism, such as the avionics industry
in which predictability of system operation is key. Upon others, TTEthernet (an
implementation of the TTA) has been selected for the Orion Space Program [2].
The prime concept of TTA is a common perception of time in the devices that
form the distributed system. These devices rely on local hardware clocks to build
a common logical time base that is consistent across the system: any two logical
clocks must read approximately equal values at any time during the system evo-
lution. To maintain consistency, a clock synchronization algorithm must be used
to compensate for the imperfection of the physical clocks. The maximal differ-
ence between two non-faulty logical clocks in the system is the synchronization
quality or precision achieved by the algorithm.

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 375–390, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Clock synchronization has been studied for decades. Fundamental results
provide answer to basic questions such as how well can clocks be synchronized in
a distributed system [3] or how to construct fault-tolerant clock synchronization
algorithms (e.g., [4]). Applications of these results to specific implementations
and industrial products is described in several publications (e.g., [5]). Even with
recent technological improvements in hardware clocks (e.g., embedding atomic
clocks on a chip), clock synchronization remains highly relevant to modern real-
time distributed systems. Fault-tolerant synchronization algorithms are required
to align the clocks initially and to tolerate clock failures.

In many systems, safety depends critically on correct clock synchronization.
As a consequence, significant effort has been dedicated to developing rigorous
correctness proofs of various clock-synchronization algorithms. Schneider has
shown that these algorithms share very similar properties and has introduced a
general proof scheme for establishing their correctness [6]. Formal proofs of clock-
synchronization algorithms have been developed by Rushby et al. [7], Shankar [8],
and Miner [9] using the EHDM theorem prover; other formal proofs used PVS,
the successor of EHDM [10,11]. Both EHDM and PVS are interactive theorem
provers that require human guidance and expertise. Recently, more automated
proof methods have been investigated that attempt to reduce the need for hu-
man expertise, by leveraging advances in model checking technology and auto-
mated reasoning engines known as SMT solvers. For example, Barsotti et al. [12]
combine Isabelle/HOL and the SMT solvers CVC3 and Yices to formally ver-
ify Schneider’s generic scheme. Another example of combined PVS and SAL
proof method has been presented by Pike [13]. In [14], we used a model-checking
approach to verify the “compression master” functionality of the TTEthernet
clock synchronization algorithm (see next section). This verification was almost
automated except that it required us to provide a few auxiliary lemmas by
hand. In this paper, we extend the latter work to the full TTEthernet clock-
synchronization algorithm and to analyzing the synchronization quality achieved
by this algorithm. Model-checking clock synchronization algorithms has been
done before in [15]. However, these studies are limited to four fully connected
nodes and symbolic representation of time with fixed timing parameters. In this
paper we treat time as a continuous entity while leaving the parameters un-
interpreted. Thus, our proofs are valid for all timing parameterizations of the
TTEthernet clock synchronization protocol.

This paper continues in the following section with an informal presentation of
the TTEthernet clock synchronization algorithm. In Section 3 we then give an
overview of the proof method and discuss the formal model in detail. We present
the results of the formal proofs as well as some example testcases in Section 4.
Finally, we conclude in Section 5.

2 TTEthernet Clock Synchronization Algorithm

TTEthernet is an extension of the traditional Ethernet standard, with additional
services that guarantee reliable, deterministic delivery of time-critical messages.
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A TTEthernet network consists of end systems and switches. End systems are
connected to switches with bi-directional communication links and switches may
connect to each other. Each switch belongs to one and only one channel and in
its simplest form a channel is formed by a single switch and the communication
links to the end systems. For fault-tolerance reasons a TTEthernet network
can implement redundant channels. An example network with two redundant
channels is depicted in Figure 1.

CM2CM1

SM1 SM2 SMn

...

Synchronization Masters

Compression Masters

CM2CM1

SM1 SM2 SMn

...

Synchronization Masters

Compression Masters

Step 1 Step 2

Fig. 1. Overview of the TTEthernet two step clock synchronization algorithm

2.1 Clock Synchronization Overview

End system and switches define physical components in the TTEthernet network
and for the clock synchronization algorithm we use three different “roles”: Syn-
chronization Master (SM), Compression Master (CM), and the Synchronization
Client (SC). For simplicity of discussion we assume a network consisting of five
end systems and two channels, as depicted in Figure 1. Furthermore, end systems
implement the SM role and the CMs are realized in the switches. SCs are only
passively synchronizing to the timebase as maintained by the SMs and CMs and
we exclude this role therefore from our discussion. In the clock synchronization
algorithm SMs and CMs inform each other about their current state of their
local clock by exchanging Protocol Control Frames (PCF).

In TTEthernet the clocks are synchronized in two steps. In the first step, the
SMs send PCFs to the CMs. The CMs extract from the arrival points in time
of the PCFs the current state of their local clocks and execute a first conver-
gence function, the so-called compression function. The result of the convergence
function is then delivered to the SMs in form of new PCFs (the “compressed”
PCFs). In the second step the SMs collect the compressed PCFs from the CMs
and execute a second convergence function. Our contribution in [14] has been
restricted to showing the correctness of the implementation of the compression
function, which we therefore assume in this paper.

TTEthernet requires an inconsistent-omission failure model for the CMs.
This means that a faulty CM is able to arbitrarily accept and reject PCFs from
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the SMs and can also decide to which SMs it sends the compressed PCF and
to which not. Babbling idiot failures of the CM are excluded by the design of
the CM as self-checking pair. The SMs, on the other hand, may fail arbitrarily,
and in particular, they may start to babble PCFs. The CMs implement a central
guardian functionality that ensures that only one PCF per SM is used per re-
synchronization cycle. Though, in the worst case, we assume that the clock value
provided by a faulty SM can be arbitrary.

2.2 First Step Convergence: Compression Master (CM)

The CMs collect the current states of the local clocks of the SMs. We denote
these values by SM clocki, where 1 ≤ i ≤ |SM | and assume that the SM clocki

values are sorted in increasing order. To minimize the impact of the faulty SMs
TTEthernet uses a variant of the fault-tolerant median to calculate the new
“compressed” clock. Following rules define the compressed clock depending on
the number of SM clocki values received.

– one SM clock: compressed clock = SM clock1
– two SM clocks: compressed clock = SM clock1+SM clock2

2
– three SM clocks: compressed clock = SM clock2
– four SM clocks: compressed clock = SM clock2+SM clock3

2
– five SM clocks: compressed clock = SM clock3
– more than five SM clocks: average of the (k + 1)th largest and (k + 1)th

smallest clocks, where k is the number of faulty SMs to be tolerated.

The compressed clock is delivered back to the SMs in a new “compressed” PCF
and the SMs are able to read the compressed clock value from the arrival point
in time of the compressed PCF. In addition to the compressed clock value, the
CMs also generate a membership vector pcf membership new. Each position in
this vector is assigned to one and only one SM. The CMs will set the bit of a
SM, if the respective SM i has provided a local clock value SM clocki and will
clear the bit otherwise. The CMs transmit the pcf membership new vector in
the payload of the compressed PCF. The self-checking pair design of the CM
guarantees that the compressed clock and the pcf membership new vector are
consistent. Hence, the design prevents a faulty CM to set an arbitrary number
of bits in pcf membership new.

2.3 Second Step Convergence: Synchronization Master (SM)

In the second step of the clock synchronization algorithm, the SMs receive the
compressed PCFs, extract the compressed clock values from them, and correct
their local clocks. In the fault-free case each SM receives exactly one compressed
PCF per CM from which it extracts the compressed clock values CM clockj ,
where 1 ≤ j ≤ |CM | and we assume the CM clockj values sorted in increasing
order. Under the assumption of one CM per channel and up to three channels
maximum, the convergence function has to cover following three cases:
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– one CM clock: SM clock = CM clock1
– two CM clocks: SM clock = CM clock1+CM clock2

2
– three CM clocks: SM clock = CM clock2

In the case of a faulty CM, a SM may receive at maximum one compressed
PCF per CM (as the faulty CM may decide not to send its compressed PCF
to some SMs). Furthermore, a SM will only use a compressed PCF in the con-
vergence function discussed above if the pcf membership new field has at least
accept threshold of bits set. accept threshold is calculated as follows:

1. current max = maximum of bits set in the pcf membership new field of any
compressed PCF

2. accept threshold = current max minus the allowed number of faulty SMs

The SM will discard a compressed PCF that has less than accept threshold bits
set in the pcf membership new field. This mechanism ensures that a SM excludes
compressed PCFs that represent relative low numbers of SM clocks.

The pcf membership new vector is also used in other TTEthernet algorithms
such as clique detection or startup as well as in network configurations that use
more than one CM per channel. We do not discuss this functionality and config-
urations in this paper. For the analysis of the clock synchronization algorithm
the description above is sufficient.

2.4 Clock Synchronization Example

Figure 2 gives and example scenario of the TTEthernet clock synchronization.
The x-axis represents progress in time as alternating intervals of clock drift and
re-synchronization using the two-steps approach. Note that these are logic steps
and do not represent real time. Odd values on the x-axis represent the SM
local clock values immediately before the synchronization, even values represent
the values of the SM local clocks immediately after synchronization. The y-axis
depicts the clock-time of the SMs. We will discuss the representation of the clock
time in the next section.
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Fig. 2. Fault-free scenario of the TTEthernet clock synchronization algorithm



380 W. Steiner and B. Dutertre

The example depicted in Figure 2 shows a fault-free execution trace of five
SMs and two CMs. Initially, the SMs are perfectly synchronized. SMs 1, 2, and
3 have maximum positive drift and SMs 4, 5 have maximum negative drift.
As there are no failures involved and when neglecting digitalization errors and
transmission jitter on the network, the local clocks of the SMs become perfectly
re-synchronized with each execution of the clock synchronization algorithm.

3 Automated Formal Verification Procedure

We give an overview of the proof method next. We then discuss the formal model
in the SAL notation and the proof procedure.

3.1 Proof Method Overview

The TTEthernet clock synchronization algorithm has been formalized in SAL
[16] as state-transition system of the form 〈S, I,→〉. Here, S defines the set of
system states σi, I the set of initial system states with I ⊆ S and → the set
of transitions between system states. Each system state σ maps the variables to
particular values according their defined variable type. Furthermore, SAL sup-
ports structured modeling such that we can define the SM and CM functionality
in encapsulated modules.

SAL provides several tools (symbolic, bounded, and bounded infinite-state
model checking). While we experimented with all of them, we finally use the
bounded infinite-state model checker sal-inf-bmc to prove the TTEthernet syn-
chronization quality as well as to generate testcases. With sal-inf-bmc we can
treat time as continuous entity and can use k-induction [17] as proof method.
The proof of a property �P by k-induction is a generalized form of regular
induction and consists of following stages [18]:

– Base Case: Show that all the states reachable from I in no more than k − 1
steps satisfy P

– Induction Step: For all trajectories σ0 → . . . → σk of length k, show that
σ0 |= P ∧ . . . ∧ σk−1 |= P ⇒ σk |= P

In our studies we have observed an interesting dependency between k and the
synchronization quality: increasing k allowed to calculate the upper bound on
the precision more tightly. This means there is a trade-off between the depth
(k) of the proof and the quality of its result (calculated upper bound on the
precision).

The SMs are modelled as state machines with two states representing the
alternating drift and correction intervals. The example scenario in Figure 2 also
gives an overview of our modelling method. As we are only interested in the
maximum difference between any two non-faulty local clocks, we can abstract
from the nominative length of the synchronization interval. All we need to model
is the maximum difference to the nominative length that would result from a
non-faulty clock. In many current industrial use cases the drift offset, i.e., the
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offset as a result of the imperfect physical local clocks, is the dominant part of
this offset and we refer therefore to the offset as “drift offset”. Note, although
we use the term drift offset we implicitly also take into account network jitter,
digitalization errors and similar error terms. We argue that these effects can be
summarized by a sufficiently high value for what we call the drift offset. As we do
not specify a particular value for the drift offset in our proofs, but only require an
upper bound on it, the proofs are also valid for real systems rather than only for
idealized models. We have been able to directly proof the value of the precision
in certain TTEthernet networks by only specifying the functionality of the SM
and the CM without any additional lemma or further modelling tricks. However,
we see a significant performance gain if we use a lemma informing the model-
checker that all SMs consistently change their state (from the drift interval to
the correction interval and vice versa). For this lemma we use a simple system
level abstraction as introduced in [18].

3.2 Formal Model

POSREAL: TYPE = {x: REAL | x>=0 };
max_drift: POSREAL; max_clock: REAL; max_SM: NATURAL = 5; max_CM: NATURAL = 2;

The formal model1 starts with some constants and types. POSREAL defines the
positive real numbers. max drift describes the absolute value of the maximum
drift offset of a clock within one re-synchronization interval. max clock describes
the time horizon. Both, max drift and max clock, have no value assigned, hence,
we leave them “uninterpreted”. This means that they may have any value. max SM

defines the maximum number of SMs in the network. max CM defines the number
of redundant channels in the network. We define exactly one CM per channel.

We define dedicated types to denote the sets of nodes, SMs, channels etc. The
formal model is then executed fully synchronously in alternating steps send and
sync as denoted by the SM’s state.

TYPE_drift: TYPE = REAL; TYPE_clock: TYPE = REAL;
TYPE_SM: TYPE = [1..max_SM]; TYPE_CM: TYPE = [1..max_CM];
TYPE_states: TYPE = {send, sync};

In the send state the SMs provide the values of their local clocks to the CMs
which execute the first step convergence function and return the converged values
back to the SMs. In the sync state, the SMs execute the second step convergence
function and update their local clock accordingly. We discuss this process in
more detail next based in the SM and CM implementation in SAL.

3.2.1 Synchronization Master Module. The synchronization master
module SM is parameterized by TYPE SM, to identify a particular SM by id.

1 A more detailed report and the models can be found at
http://sal-wiki.csl.sri.com

http://sal-wiki.csl.sri.com
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SM[id:TYPE_SM]: MODULE = BEGIN
INPUT list_compressed_clock: ARRAY TYPE_CM OF TYPE_clock
OUTPUT state: TYPE_states, clock: ARRAY TYPE_CM OF TYPE_clock
LOCAL drift: TYPE_drift, interval_ctr: NATURAL

The SMs receive their input from the CMs. list compressed clock represents
the first-step converged clock values, i.e., the compressed clock value. An SM will
output its current state and the value of its local clock clock. clock is modeled as
an array of size TYPE CM, which allows us to model inconsistent faulty behavior
of a faulty SM as discussed later on. In addition to the input and output we
also define some local variables in for an SM. drift defines the drift offset for
a given re-synchronization interval. interval ctr counts the re-synchronization
intervals; it is used to derive test traces. We initialize the model to a clean state.

INITIALIZATION interval_ctr = 0; state = sync; clock = [[j:TYPE_CM] 0];
drift IN {x: TYPE_drift | x=-max_drift OR x=max_drift};

We use the formal model for both testcase generation and formal proof of
the synchronization quality. Depending on the purpose of the formal experiment
drift can be set to a static value to pretty-print counterexamples or to an
arbitrary value. In the case above, our aim is to generate a nice trace for which
we initialize drift to take either the positive or the negative maximum drift
offset. The model checker is free to chose either value once for the complete
execution of the model. The SAL construct IN models this non-deterministic
choice. It is interpreted as: let drift be an x which satisfies the condition as
specified above. We use the IN construct at several positions in our model.

In case of the formal proof we want cover a more general case of clock drift,
for which we have to define drift as a DEFINITION.

DEFINITION %drift IN {x: TYPE_drift | x>=-max_drift AND x<=max_drift};

The “%” sign indicates a comment line in SAL. We use it here to emphasize
that drift may either be initialized or defined, but not both. The definition of
drift says that in every step of the model execution drift may take an arbitrary
value in between the maximum negative and positive drift offset and this value
may change with each step. We use this definition for the formal proofs.

[ state=sync -->
state’=send; interval_ctr’=interval_ctr + 1; clock’=[[j:TYPE_CM] clock[j] + drift];

[] state=send -->
state’=sync;
clock’ IN {x: ARRAY TYPE_CM OF TYPE_clock |

x[1]=x[2] AND average(list_compressed_clock[1], list_compressed_clock[2],x[1])}; ]

In the fault-free case there are only two transitions in the the state machine of
an SM (expressed by guarded commands in the form guard --> commands). When
the SMs are in the sync state their local clocks are closely synchronized. The next
state will be send for which they increase the counter of the re-synchronization
intervals, and select a new value for their local clocks. This new value is simply
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the sum of the current clock value and the drift offset as specified by drift. Our
treatment of clock is different from the traditional correctness proofs which aim
to show that clock-time simulates real-time with a certain accuracy. This is not
necessary in our approach. We are only interested in the maximum difference of
any two clock values of non-faulty components. Hence, we update clock only for
the differences in the nominative length of the re-synchronization interval and
can omit its actual length. In the send state the local clocks of the SMs are far
apart and they process the compressed clock values received from the CMs to
bring the local clocks back into agreement for the following sync state.

In a faulty-free system with two channels and one CM per channel, the SM
applies the arithmetic average to the received compressed clock values. In the
transition of the SM we specify that clock shall take a new value such that the
average predicate is satisfied. The predicate is satisfied when the third parameter
is the arithmetic mean of the first two parameters.

average(value1, value2, avg: TYPE_clock): BOOLEAN = avg=(value1+value2)/2

3.2.2 Compression Master Module. The CM is parameterized by TYPE CM,
such that id identifies a particular CM. It takes the clock values as input and
returns the compressed clock value to the SMs as a result of the first step conver-
gence. The CM uses the local variable order to sort the clock values as provided
by the SMs.

CM[id:TYPE_CM]: MODULE = BEGIN
INPUT clocks_cm: ARRAY TYPE_SM OF TYPE_clock
OUTPUT compressed_clock: TYPE_clock
LOCAL order: ARRAY TYPE_SM OF TYPE_SM

We model the CM as a stateless process. Its only purpose is the calculation of
the first step convergence function, the compression function. In a system with
even number of SMs or more than five SMs the CM has to apply the averaging
function as discussed previously.

compressed_clock IN {x: TYPE_clock | average(clocks_cm[order[2]], clocks_cm[order[3]], x)}

In a system with one, three, or five SMs, the compressed clock is simple
the middle value, e.g., for five SMs (compressed clock=clocks cm[order[3]];). In
both cases order determines the order of the clock values. We have introduced
this method in [14] and summarize it here for completeness. We define order

to be an array of SM identifiers that satisfies the sort predicate. sort is satis-
fied when sorted list is an array in which the entries point to the elements of
unsorted list in increasing order.

order IN {x: ARRAY TYPE_SM OF TYPE_SM | sort(clocks_cm, x)};
sort(unsorted_list: ARRAY TYPE_SM OF TYPE_clock,

sorted_list:ARRAY TYPE_SM OF TYPE_SM): BOOLEAN =
(FORALL (i:TYPE_SM): i<max_core =>

unsorted_list[sorted_list[i]] <= unsorted_list[sorted_list[i+1]]) AND
(FORALL (i,j:TYPE_SM): sorted_list[i] = sorted_list[j] => i=j);
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3.3 Automated Formal Proof

We are interested in verifying the precision in the system (property distance):

distance: LEMMA world |- G(FORALL (i,j: TYPE_SM):
(list_states[i]=send AND list_clocks[i][1]>list_clocks[j][1] =>
list_clocks[i][1]-list_clocks[j][1]) <= FACTOR*max_drift));

distance says that when the SMs are in the send state, which is just before
the execution of the clock synchronization algorithm, the maximum difference of
any two local clocks is bound by FACTOR*max drift (when faulty SMs are present
they have to be excluded). As introduced earlier, max drift is the maximum drift
offset of a correct clock in the system from real time within one synchronization
inverval. The value of FACTOR has to be assigned by hand in the model. This
value is typically the result of an informal analysis of the algorithm. E.g., in the
case of faulty CM we suspect that the value is (8/3). When FACTOR has not been
determined upfront, we can even “search” for it by manually testing assignments
for FACTOR until the model checker stops producing counter-examples and proves
distance to be correct.

We invoke sal-inf-bmc using the following command, where clocksync is the
model name, --depth 3 specifies the analysis depth, and -i invokes k-induction:

> sal-inf-bmc clocksync distance --depth=3 -i

This direct proof works well for a low number of nodes and relatively benign
failure modes. We can speed-up the verification time significantly with a simple
abstraction method introduced in [18]. For this we define two abstract system
states, BIG and SMALL.

abstractor: MODULE =
BIG = (FORALL (i:TYPE_SM): list_states[i]=send) AND

(FORALL (i,j:TYPE_SM): list_clocks[i][1]>list_clocks[j][1] =>
(list_clocks[i][1]-list_clocks[j][1] <= FACTOR * max_drift));

SMALL = (( ... <= FACTOR_small * max_drift));

In the system-level abstraction we formulate that all SMs are at the same time
either in the send state or in the sync state and they are synchronously proceed-
ing between the two states. Furthermore, we already define FACTOR*max drift

here, which makes the proof of distance later on trivial. We can proof that
the system-level abstraction abstract invar is correct and verify distance while
using abstract invar as lemma (option -l).

> sal-inf-bmc clocksync abstract_invar --depth=3 -i
> sal-inf-bmc clocksync distance -l abstract_invar --depth=3 -i
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4 Fault-Injection Experiments and Results

In this section we show how to model failures and discuss the TTEthernet syn-
chronization quality. We use a system model consisting of five SMs and two
CMs. We want to show the synchronization quality of the TTEthernet clock
synchronization algorithm under a single SM failure, a single CM failure, and
under concurrent SM and CM failures.

4.1 Inconsistent Omission Faulty CM

In TTEthernet the failure mode of a CM is inconsistent omission faulty. Hence,
a faulty CM may arbitrarily decide which clock values from the SMs to use and
which to discard. It can also arbitrarily decide to which SMs it will send it’s
compressed clock value. However, even a faulty CM will correctly represent the
set of SMs that is selected in the pcf membership new vector in its compressed
PCF. We define CM with id 1 to be the faulty CM (FAULTY CM: NATURAL=1).

A non-faulty CM receives clock values from all SMs. As in our network five
SMs are present and they all are non-faulty (for now), a correct CM receives five
SM values. According to the algorithm definition (Sec. 2.2) it selects the median
value, i.e., the third value as its compressed clock value.

compressed_clock IN {x: TYPE_clock |
IF id /= FAULTY_CM THEN x=clocks_cm[order[3]]
ELSE x=clocks_cm[order[3]] OR
average(clocks_cm[order[2]], clocks_cm[order[3]], x) OR
average(clocks_cm[order[2]], clocks_cm[order[4]], x) OR
average(clocks_cm[order[3]], clocks_cm[order[4]], x)

ENDIF};

The inconsistent-omission faulty CM may accept only an arbitrary subset of
the five SM clock values, but this choice is reflected in the number of bits it sets
in the pcf membership new vector. As the correct CM will deliver its compressed
PCF with a pcf membership new vector having five bits set, the accept threshold
will be four. Hence, in order that there is a chance at all that the compressed
clock of the faulty CM is not excluded in the second convergence step in the
SMs it may only discard one of the SMs clock values. There are four options for
the CM to calculate the first step convergence function, as depicted in the SAL
model above. In the first case the CM accepts all SM clocks, and the following
three cases cover when it discards any one of the SM clocks.

In order to simulate the inconsistent-omission faulty transmission behavior of
the faulty CM we define a second transition in the SM state machine for the
send state.

[] state=send
--> state’=sync; clock’ = [[j:TYPE_CM] list_compressed_clock[CORRECT_CM]];

Hence, we map the inconsistent transmission failure of the CM to an
non-deterministic choice in the SM: the SM is free to decide whether it received
a clock value from the faulty CM or not.
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Fig. 3. Example scenarios of the TTEthernet clock synchronization algorithm with a
faulty CM (left), and a faulty SM and CM (right)

Figure 3(a) gives an example trace of the algorithm execution in presence
of a faulty CM. Again, the x-axis represents alternating intervals of drift and
convergence and the y-axis the clock time. In contrast to Figure 2 we see the
impact of the faulty CM resulting in a non-zero difference in the local clocks
of the SMs after re-synchronization. We have formally verified the precision
in this system setup to be (8/3) × drift offset , by k-induction at depth three.
FACTOR = (8/3) has been calculated from an informal reasoning, which is also
depicted in Figure 3(a): some SMs have fast clocks, some slow ones, and the
faulty CM sends its compressed clock to only one of these groups. Consequently,
only the SMs in one group correct their clocks towards the respective other one.
In the figure we see that the faulty CM provides it clock only to the SMs with
negative drift, which correct their clocks, while the SMs with positive drift do
not correct their clock as they only receive the compressed clock values from the
correct CM.

4.2 Arbitrarily Faulty SM

An arbitrarily faulty SM is free to fake its local clock values. We define the SM
with id 1 to be faulty (FAULTY SM: NATURAL=1). The communication of the local
clock values is modelled by an array indexed by the CMs and the faulty SM
may send different clock values to different CMs by assigning different values to
different array entries. We model the arbitrary clock value by the failure term
failure that simulates the faulty local clock values. failure can take any value
for the faulty SM and is 0 for non-faulty SMs. Finally, we update the transition
in the SM to reflect the failure (i.e., a change in the update of clock’).

LOCAL failure: ARRAY TYPE_CM OF TYPE_drift
failure IN {x: ARRAY TYPE_CM OF TYPE_drift |

IF id = FAULTY_SM THEN TRUE ELSE x[1]=0 AND x[2]=0 ENDIF};
clock’= [[j:TYPE_CM] clock[j] + drift + failure[j]];
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The impact of a faulty SM only on the precision of the network is limited,
even non-existent. Although the CMs can receive different clock values from the
faulty SM and consequently derive different compressed clocks, they still will
send their compressed clock values to all SMs. Hence, all non-faulty SMs receive
the compressed clocks from the CMs consistently. The precision of the system
with an arbitrarily faulty SM is, thus, the same as the precision in a fault-free
system: 2× drift offset .

4.3 Inconsistent Omission Faulty SM and CM

One particular failure combination of interest is when SM and CM are
inconsistent-omission faulty. Hence, both may accept only a subset of clock val-
ues and send their clock value to only a subset of SMs or CMs. We can reuse
the modelling of the faulty CM and have to introduce two additional transitions
for the faulty SM. First, a faulty SM may decide to receive only the compressed
clock from the faulty CM, and, secondly, the faulty SM may decide not to receive
any compressed clock.

[] state=send AND id=FAULTY_SM
--> state’=sync; clock’ = [[j:TYPE_CM] list_compressed_clock[FAULTY_CM]];

[] state=send AND id=FAULTY_SM
--> state’=sync;

For completeness, we note here that the remaining case of the faulty SM
receiving only the compressed clock of the correct CM has been already covered
by the transition below by modelling the faulty CM.

[] state=send
--> state’=sync; clock’ = [[j:TYPE_CM] list_compressed_clock[CORRECT_CM]];

In addition to the model of the SM we also have to add additional cases
to the calculation of the compressed clock in the CM. This can be done in a
systematic way as depicted in the SAL source code below. There are two general
cases, in the first case the faulty SM provides a clock value to the correct CM.
This case is identical with the behavior of the faulty CM scenario discussed
previously. In the second case the faulty SM does not provide a clock value to the
correct CM. For this case we define the predicate order part which is identical to
the order predicate, except that it only orders the clock values from the correct
SMs. The correct CM will calculate the compressed clock as the average from
the second and third clock value. The faulty CM is free to use either option as
discussed previously. In addition it may use the average as the correct CM or
it may even decide to accept only three of the four correct SM clocks. In the
latter case compressed clock from the faulty CM is either the second or the third
correct SM clock.

compressed_clock IN {x: TYPE_clock |
( ... case as faulty CM only ... ) OR

(IF id /= FAULTY_CM THEN average(clocks_cm[order_part[2]], clocks_cm[order_part[3]],x)
ELSE ( ... case as faulty CM only ... ) OR

average(clocks_cm[order_part[2]], clocks_cm[order_part[3]],x) OR
x=clocks_cm[order_part[2]] OR x=clocks_cm[order_part[3]] ENDIF) }
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For a TTEthernet network with five SMs and two CMs and an inconsistent-
omission faulty SM and CM we have verified the precision to be bound by
4× drift offset .

4.4 Inconsistent Omission Faulty CM and Arbitrarily Faulty SM

The failure modelling of a network with inconsistent-omission fault CM and
arbitrarily faulty SM is simply the combination of the individual failure models
as introduced above. Figure 3(b) shows an example trace of the failure scenario.
The main difference to the previous figures is that the clock of the faulty SM 1
is depicted as two clocks 1.1 and 1.2. This is, again, because the faulty SM may
send different values to the different CMs, and, indeed, this scenario is shown
in Figure 3(b). On the odd numbers on the x-axis the local clock readings just
before the algorithm execution are depicted. Some clocks are fast and some are
slow, and the faulty SM supports both groups. We also see that arbitrarily faulty
behavior of the clock of SM 1, as the jumps from one extreme to the other. We
have proven the precision to be (12/3) × drift offset in this configuration of
five SMs and two CMs with faulty CM and SM. This number also confirms an
informal argument of the worst-case scenario similar to the one discussed for a
faulty CM only.

4.5 Summary of Verification Results

The verification times are summarized in Table 1. The precision Π for the sce-
narios follows from FACTOR as Π = FACTOR × drift offset . “distance” gives the
verification times without system level abstraction. “abstraction” shows the ver-
ification times of the invariant for the system level abstraction, i.e., the verifi-
cation that the abstraction is correct, and the last row depicts the verification
times of “distance” when the abstraction is used as lemma.

Table 1. Verification results; FACTOR is a scalar, verification times are given in seconds

Property No Faults Faulty
CM SM CM/SM io CM/SM a

FACTOR 2 (8/3) 2 (12/3) (12/3)
distance 10.5 28.25 8.66 N/A N/A

abstraction 0.5 0.58 0.49 85.3 44.43
distance+abst. 0.34 0.36 0.38 0.39 0.4

We clearly observe that the verification times decrease dramatically when the
system-level abstraction is used. For difficult failure scenarios it is even essential
to derive a formal proof. The arbitrarily faulty SM and inconsistent omission
faulty CM faulty scenario terminates at depth five after eight-hundred seconds
without counterexample and without proof. The inconsistent omission CM SM
scenario returns the same result after sixteen-hundred seconds (indicated by
N/A). Note that “N/A” in the table means that the inductive proof without the
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abstraction lemma was not possible. However, “distance” has been proven by
k-induction using the abstraction lemma (as shown in the last row of the table),
providing full coverage of our failure assumptions.

5 Conclusion

In this paper we have shown for the first time that fault-tolerant clock syn-
chronization proofs can be fully automatized even in a model of continuous
uninterpreted time. This is a significant advancement over the state-of-the-art
which involves heavy-duty theorem provers or imposes significant modeling re-
strictions. We have shown that the precision in a TTEthernet network is between
two and four times the drift offset (including network jitter and digitalization ef-
fects), depending on the failures to be tolerated. The only step requiring human
interaction that one may argue being required in the synchronization verification
is in the definition of the failure cases to model faulty components realistically.
However, as we have discussed, the failure model can be constructed fairly sys-
tematically. For TTEthernet the failure cases are limited by design. For more
complex protocols it can make sense to separately model check for the complete-
ness of these cases. In our experiments we used a system of five Synchronization
Masters and two Compression Masters. While this is a small system, industry
trends indicate that mostly a core set of nodes for clock synchronization is used
anyhow. Hence, the limitation to a small number of clocks does not impose an
industrial shortcoming. On the other hand, given the fast verification times and
low memory use of our approach, we will target larger systems in future work.
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Abstract. Nowadays formal methods are required for high assurance security
and safety systems. Formal methods allow a precise specification and a deep
analysis of system designs. However, usage of formal methods in a certification
process can be very expensive. In this context, we analyse the security policy
proposed by Greve et al in the theorem prover Isabelle�HOL. We show how this
policy with some extensions can be applied in a modular way, and hence, reduce
the number of formal models and artifacts to certify. Thus, we show how the
security policy for a separation kernel is derived from the security policy of the
micro-kernel that forms the basis of the separation kernel. We apply our approach
to an example derived from an industrial real-time operating system.

1 Introduction

Modern usage of software and hardware systems in safety and security critical areas
requires certification. Usually certification depends on the application area, e.g. avion-
ics [18, 19], railway [4], IT security [5]. Today formal methods are required for certi-
fication of high assurance security and safety systems, e.g. Common Criteria requires
them in di�erent depths for Evaluation Assurance Levels five (EAL5) and above with
EAL7 being the highest level [5, 12]. Such a certification is an extremely expensive
task [6, 3, 26, 16] and any industrial application has to keep these costs low.

This work is carried out as a part of the SeSaM and TECOM [23] projects. In our
part we use formal methods to increase the level of trust as required by the Common
Criteria. We apply formal methods to analyse information flow in an operating system.
Keeping in mind certification costs we target creating reusable certification artifacts.

Related Work and Context. In this paper we analyse and apply the GWV security pol-
icy [11] which is well known and accepted in industry [10, 8, 9]. This policy models a
separation kernel [20] which enforces partitioning between applications running on a
single CPU system. The main benefit of a separation kernel is the control over direct
communications between applications running in di�erent partitions. Moreover, highly
critical systems require absence of covert channels to ensure that no illicit information
flow can take place. To prove that a separation kernel forbids such channels it has to
possess the non-interference property [7]. The GWV policy satisfies this property [1].
There are several formalisations of the GWV policy: in ACL2 [11, 1], in PVS [21].
There are also applications of this policy to microprocessors and separation kernels [15]

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 391–405, 2011.
c� Springer-Verlag Berlin Heidelberg 2011
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as well as its usage for information flow analysis [2]. We extend these works, formalise
the extended result in Isabelle�HOL, and show an interesting application.

Our case study is a separation kernel which is built on top of a micro-kernel [14].
The purpose of a separation kernel is to provide isolated execution environments, called
partitions, for user applications. In our case study the separation functionality is based
on the resource separation provided by the micro-kernel. Thus, security policies have
to exist on both the micro- and the separation kernel levels. We apply the GWV pol-
icy on both components and formally show (via formal proofs) that the policy on the
micro-kernel level implies the policy on the level of the separation kernel. Thus, the
main contribution of this paper is the usage of the same security policy on two sys-
tem components and a formal proof of the separation property for the separation kernel
from the assumed separation property of the micro-kernel. We also show how the GWV
policy can be applied in a modular way. The modular and reusable application of the
security policy reduces the number of formal models, and hence, the number of artifacts
to certify.

All our models are formalised in the theorem prover for higher-order logic Isabelle�
HOL [17]. The largest part of this paper is directly synthesised from the formal theories,
thus, the consistency between the paper and the formal theories is guaranteed. All our
results are also available online [24].

The paper is organised as follows. In the next section we present the example which
motivates this work. In Section 3 we describe the original the GWV policy and in-
troduce and formalise clarifications proposed by Alves-Foss and Taylor [1]. Section 4
contains modifications to the GWV policy which are needed to apply it in a modular
way. We apply the modified model on an abstract version of our motivating example in
Section 5. Finally, we sum up the paper and present the future work.

2 Motivating Example: PikeOS

PikeOS is a real-time operating system for safety and security critical applications [13,
22]. PikeOS is certified for the DO-178B standard [18]. The PikeOS main usage lies
in the avionic area (e.g. Airbus A350, A400M) which is well-known for requiring
highly robust components. PikeOS is highly modular and runs on a variety of hardware
platforms.

Architecturally PikeOS consists of two major components: a micro-kernel and a
para-virtualisation layer (see Figure 1). The micro-kernel is very compact and provides
the very basic functionality inspired by the ideas of Liedtke [14]. The para-virtualisation
layer is implemented on the top of the micro-kernel and provides separated execution
partitions for user applications. The para-virtualisation layer is a separation kernel. User
applications run in the isolated partitions which can be “personalised” with APIs, e.g.
POSIX, OSEK, Linux etc. Thus, the trusted base consists of only the micro-kernel, the
separation kernel, the hardware, and some optional extensions which we don’t cover in
this paper.

In this paper we focus on the micro-kernel and the separation-kernel from the
perspective of the access control and the separation of resources.
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Fig. 1. Architecture of PikeOS

2.1 Micro-Kernel Layer

The micro-kernel runs on a hardware and controls all resources in the system. There are
two major abstractions in the micro-kernel (MK): tasks and threads. A task is a passive
entity and defined via an address space of the physical memory and can be considered
as an object in the system. A thread is an active entity, i.e. a subject in a system which
operates on the task state. A thread is always associated with a task.

Communication rules can be defined based on tasks and�or threads. For example, “a
set of tasks can communicate with each other” means that the thread from a task from
this set can access resources of other tasks in that set. Another example: “a thread can
deny receiving any IPC message from a specific thread”. The micro-kernel enforces the
communication rules and controls access to all system resources.

2.2 Virtualisation Layer (Separation Kernel)

The separation kernel (SK) is implemented on the top of the micro-kernel. The main
goal of this layer is to provide isolated partitions where user applications are executed.
The isolation property guarantees that applications with di�erent degree of trust (e.g.
multiple independent levels of security MILS [25]) run on the same hardware without
interference. Moreover, the separation kernel enforces a predefined communication pol-
icy between partitions. Thus, applications in di�erent partitions cannot influence each
other unless they are allowed to.

A partition consists of a set of tasks, a set of threads, and a set of communication
ports. The communication ports are used to define uni-directed communication chan-
nels. Partitions can also communicate via shared memory which is implemented via
a special built-in file system. User applications can access system resources under the
supervision of the separation kernel.

2.3 The Motivation: Putting the Layers Together

The layered structure of PikeOS inspired the idea to use the GWV policy in a modular
way. First, the PikeOS system integrator works directly with the separation kernel and
she�he has to define a security policy between partitions. The separation kernel is built
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up on the top of the micro-kernel, and hence, its security mechanisms rely on the ser-
vices provided by the micro-kernel. Thus, there has to be a security model on the level
of the micro-kernel too.

In this paper we create one instance of the GWV policy for each kernel. We also
show that if this policy holds for the micro-kernel and the separation kernel is defined
in terms of the former, then the GWV policy holds for the separation kernel. Thus,
only one policy has to be evaluated in the certification process and this is applied in a
modular way.

3 The GWV Model

In this section we formalise the original GWV (Greve, Wilding, and Vanfleet) security
policy [11] (Section 3.1 and Section 3.2) and its extension (Section 3.3) in the theorem
prover Isabelle�HOL. Similarly to the original work we prove several corollaries which
express some useful properties of the defined policy. This policy can also be referred to
as a specification and be used in the certification of an implementation of the separation
kernel [8, 10, 12]. The policy is defined abstractly without any system specific details.
Thus, the same specification can be used to verify many implementations.

3.1 Definitions

We put all definitions for the original GWV model [11] into an Isabelle theory. This
theory is parametrized and it will be used twice. In the Isabelle language such a theory is
called “locale”. Providing parameters to the locale instantiates all locale facts�theorems
with the given ones. Additionally, refinement of a locale generates proof obligations for
the assumptions from the locale which have to be met by the parameters. Definitions
from the entire Section 3 and Section 4 are part of the ��� locale.

We start with a notion of the currently active partition which is returned by the
function ������	 for a given system state as input. Note, 
� is a name for a polymorphic
placeholder for a type named � and such types are input parameters when instantiating
a locale; keyword fixes introduces a function name with its signature. Inside a locale
such a function is fixed but it is a locale parameter for the outside world.

fixes ������� �� �	
�
�
����� � 	�����������

A partition has a number of assigned resources (i.e. objects) which in the GWV model
are called segments and can be uniquely identified. Function ��� for a given partition
returns the set of associated segments.

fixes 
��
 �� �	���������� � 	
�������� 
���

A segment in a given system state has a value which can be accessed via the function
�����	. It takes a system state and a segment name and returns the segment value (note
that we employ curried notation).

fixes 
����� �� �	
�
�
����� � 	
�������� � 	�������

The GWV model contains an auxiliary function ������ which tests whether segments
from a given set have an equivalent value in two given system states. Note: the keyword
������ will generate a proof obligation when refining a locale.
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fixes ����
 �� �	
�������� 
�� � 	
�
�
����� �

	
�
�
����� � �����

assumes ����
�����

�����
 � 
 
� � ��  � �� 
����� 
  � 
����� 
� ��

A separation policy introduces communication rules between partitions. Such commu-
nication rules (e.g. allow�deny rules) are defined based on the use case of a system.
These rules are then enforced by the implementation of a separation kernel. The GWV
model specifies these rules via the function ��� and the name stands for direct interac-
tion allowed. For a given segment function ��� returns the set of segments with which
the segment is allowed to communicate.

fixes �� �� �	
�������� � 	
�������� 
���

The function ���	 corresponds to one step in the model and computes the next state of
the model based on a given state.

fixes ���� �� �	
�
�
����� � 	
�
�
������

3.2 The GWV Security Policy

The GWV security policy is expressed as the assumption ������	��� which has to
be met by a concrete implementation. The policy is based on the interaction between
segments and is stated about the model which progresses via the function ���	. The
assumption ������	��� considers two arbitrary system states and claims that if

– the current partitions in these two states are the same,
– the value of some segment � is the same in both states, and
– values of segments which can interact with � are the same in both states, then

the value of the segment � after one step matches in both next states. Formally:

assumes 
��������

�[[������� 
 � ������� � 


����� 
  � 
����� �  

����
 ���� � � �
��
 �������� 
��� 
 �

]] ��


����� ����� 
�  � 
����� ����� �� �

Thus, if the assumption ������	��� is satisfied, then the only way partitions (on a
single processor system) can communicate is via the function ���.We also prove several
corollaries from ������	��� which highlight several properties [24]. These are: 1. the
corollary �����	��	��� states that computations in the current partition do not a�ect
memory locations outside its access domain w.r.t. ���; 2. the corollary �����	��	���

states that the data processing in the current partition is not a�ected by the data outside
that partition unless a communication channel is defined; 3. the corollary �����	���

states that if segments of the current partition do not change, then an arbitrary memory
cell does not change as well.



396 S. Tverdyshev

3.3 Clarifying the GWV Security Policy

Alves-Foss and Taylor [1] give several clarifications and propose changes that refine�
restrict the GWV model. In this section we briefly describe them and apply them to the
formalized GWV policy above.

Flow Based on Source Segment. The original GWV model is based on segment ab-
straction and ignores that these segments belong to a partition. Let us consider some
partition � and three segments ���, ���, ��� such that: (i) ��� and ��� belong to
� (i.e. ����� ���� � ��� �), (ii) information can flow from ��� to ��� (i.e. ���
� ��� ���), (iii) information cannot flow from ��� to ��� (i.e. ��� � ��� ���).
Such a policy is too powerful for common hardware and operating systems because a
subject in a partition could copy information from either ��� or ��� into a hardware
register and then to ���. To avoid this one has to tag information with the source name
and this is not supported by modern micro-processors. Therefore, we weaken ��� by al-
lowing communication between segments of the same partition and we have now rather
an “intra-partition communication” policy as suggested in [1].

assumes ������	 ����!

"� � ��� � �� ��� � � ��� �"

Trustworthiness of Partitions. The original GWV model defines information flow
only in terms of the information source. Thus, the following scenario is possible. If two
partitions can read some segment �� and this segment can influence another segment
��# (i.e. �� � ��� ��#), then both partitions can write to this segment ��#. In the
case that one of these partitions is untrusted and should only read the segment �� ,
the original GWV policy cannot forbid writes to the segment ��#. To avoid such write
operations we add a restriction to ��� by considering partition names. We define a
function ��� 	��� which for a given segment and a given partition name returns the
set of segments which the given segment can influence.

fixes ��� 	��� !! "
�����	$	 � 
���	�	���$	 �


�����	$	 ��	"

We assume that ��� 	��� restricts ���:
assumes ��� 	��� �%��	!

"&��� 	��� � �' � &��� �'"

We re-define ������	��� where we use ��� 	��� instead of ��� and prove that the new
version implies the original version of ������	��� [24].

4 Extending the GWV Model with Subjects

Our goal is to instantiate the GWV model for two layers of the PikeOS system (Sec-
tion 2.3) and to show that from the policy for the micro-kernel we can deduce the policy
for the separation kernel. Note that there can be a confusion for the term partition, there-
fore, from now on whenever this term is used in the context of the GWV model we name
it as the GWV-partition.

Let us consider two possible instantiations of the GWV model for PikeOS. First
for the micro-kernel, we can instantiate the GWV-partitions with the PikeOS tasks and
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the GWV-segments with memory addresses. Second for the separation kernel, we can
instantiate the GWV-partitions with the PikeOS partitions and the GWV-segments with
memory addresses. In our context the first case is used as the base for the second one.

Our goal is to deduce the security policy for the separation kernel from the security
policy for the micro-kernel.

If we try to deduce the security policy for the separation kernel from the security
policy for the micro-kernel based on the so far presented GWV model, we run into the
following problem: the separation theorem for separation kernel gives us that the current
partition in two system runs is the same. However, to use the separation theorem for the
micro-kernel (from the first instance of the original GWV model), we have to prove that
the current task in these system runs is the same. This is impossible to prove because in
the same current partition there can be di�erent active tasks. To avoid it, we introduce
a notion of subject into the GWV model. A subject is an active entity which operates
on segments of a GWV-partition. Now, we add two functions to the Isabelle theory for
GWV (i.e. to the GWV locale) and one consistency statement.

We define the currently active subject via the function ������	 �%(��	 which returns
it for a given system state as input.

fixes �������!��"��� �� �	
�
�
����� � 	
��"������

Every subject is associated with a GWV-partition where it runs. Therefore, we add a
function ��%(��	���	 which for a given system state and a subject returns the corre-
sponding GWV-partition.

fixes 
��"���#�� �� �	
�
�
����� � 	
��"����� �

	�����������

We can easily express the consistency between the current partition and the current
subject.

assumes �������#���

�������� 
 � 
��"���#�� 
 ��������!��"��� 
��

The modification in the assumption ������	���)) is quite trivial: we add into its as-
sumptions one more, i.e. the current subject in two system runs is the same.
Formally:

assumes 
�������$$�

�[[������� 
 � ������� � 

�������!��"��� 
 � �������!��"��� � 


����� 
  � 
����� �  

����
 ����!����� � � �
��
 �������� 
��� 
 � ]] ��


����� ����� 
�  � 
����� ����� �� �

We don’t present here other adaptations of the GWV model because they are trivial and
proofs for lemmas run without changes (see sources [24]).

5 A Modular Usage of the Modified GWV-Policy

In this section we instantiate the extended GWV model from Section 4. We create two
instances: one for each layer in PikeOS (Section 2). First, we instantiate the GWV
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model with a model of the micro-kernel, where we target separation of tasks. Second,
we instantiate the GWV model with a model of the separation kernel, where we target
separation of partitions. In this section we also present a modular usage of the GWV
policy by formally showing how the policy for the separation kernel is derived from the
policy for the micro-kernel.

5.1 The Micro-Kernel Model

In this section we define a basic model for the micro-kernel. The major abstractions
of the kernel are tasks (objects) and threads (subjects). First we introduce several basic
types:

– �%����� – thread as the subject type
– �
&�� – task as the GWV-partition type, i.e. the object type
– ����

�� – physical address as the GWV-segment type (every task has a set of addresses

it owns)
– ������ – value type for the data saved in the physical memory

We introduce components of the micro-kernel model. The state of the micro-kernel
�*$�	�	�$	 consists of the current thread and a set of tasks. Note that the Isabelle�HOL
keyword record introduces a record type.
record �&�
����� �

�������'%���() �� ��%������

�
&
 �� ��
&�� 
���

We define a task’s address set via the function 	��*���� �	 which returns the address
set for a given task as input.
consts �
&����!�� �� ��
&�� � ����

�� 
���

A thread is always assigned to a task. We model this relation via functions 	+����,��*
and 	��*,+����. Assumptions 	+����,��*,+���� and 	��*,+����,��* specify the
properties of those functions.
consts �%���'
& �� ��%����� � �
&���

consts �
&'%��� �� ��
&�� � �%����� 
���

axioms �%���'
&'%����

��% � �
&'%��� ��%���'
& �%��

axioms �
&'%���'
&�

�� �% � �
&'%��� �
&� �%���'
& �% � �
&�

We define a set of all subjects in the system as the union of all threads for a given
state �:
definition �%���
 �� ��&�
����� � �%����� 
��� where
��%���
 
 �

�
�
& � �
&
 
� �
&'%��� �
&�

In the micro-kernel the current thread is one of the threads:
axioms �������'%$�'%���
�

��������'%���() 
 � �%���
 
�
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The definitions above allow us to prove that for a given thread there is a unique task.
Note: � ! denotes “exists uniquely”. The proof is available on our website [24]
lemma �
&*�����()�

��% � �%���
 
 �� � + �
& � �
&
 
� ��
&'%��� �
& � �%��

The notion of the current thread (������	 �%(��	, Section 4) allows us to define the
notion of the current task (������	, Section 3).
definition �������'
& �� ��&�
����� � �
&��� where
��������'
& 
 � �%���'
& 
 ��������'%���() 
��

Retrieving a value for a given address is modelled as reading memory with function
����-�� which corresponds to �����	 in the GWV model.
consts ���(�� �� ��&�
����� � ����

�� � �������

The security policy in the micro-kernel is defined on the level of memory addresses, i.e.
which addresses can influence each other. For this purpose we introduce function ���-.

which specifies the data flow policy for tasks. We don’t give any specific definition
because it depends on the use-case of the micro-kernel.
consts ��() �� �����

�� � ����

�� 
���

In Section 3.3 we introduced a restriction to the original GWV policy which defines
information flow in terms of the GWV-segment and the GWV-partition. We model this
restriction as function ��� 	���-. whose exact definition is not important for this
paper but we assume that ��� 	���-. restricts ���-.:
consts ��!�����() �� �����

�� � �
&�� � ����

�� 
���

axioms ��!�����!��
��'
&�

���!�����()  �
& � ��() �

The function ���	 	��-. represents the next-step function for the micro-kernel.
consts ����!���() �� ��&�
����� � �&�
������

Finally, we instantiate the GWV model and call it -����.�����. We instantiate all poly-
morphic types and fixed functions from Section 3.1 with the given ones (see parameters
for ��� below). This instantiation inherits all assumptions from the ��� locale. Thus,
herewith we assume that the instantiated separation property holds for the micro-kernel,
i.e. the micro-kernel separates tasks. Note that instantiation of a locale inherits all as-
sumptions and refinement of a locale generates proof obligations.

locale (����)����� �

,-. �� �� �%���'
& ��������'%���() ���

— instantiation of ������	
��������'%���()� — instantiation of ������	 �%(��	
�� �� �%���'
&� — instantiation of ��%(��	���	
��
&����!��� — instantiation of ���
����(��� — instantiation of �����	
���()� — instantiation of ���
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�����!���()� — instantiation of ���	
�� � 
� 
���

� ��� � �� ���(�� 
� ��� � ���(�� 
�� ���

— instantiation of ������
���!�����()� — instantiation of ��� 	���

5.2 The Separation Kernel Model

In this section we define a model for the separation kernel. This model is built up on the
top of the micro-kernel from the previous section. We wrap the definition of the separa-
tion kernel into a locale called  �����	���.�����. We also present several properties to
highlight how the micro-kernel model is related to the model of the separation kernel.

Subjects in the separation kernel are threads, thus, we reuse the subject type 	+����$	.
A partition in the separation kernel consists of a set of tasks.
record ���������� �

���'
&
 �� ��
&�� 
���

We model the state of the separation kernel as a record consisting of the current thread
and a set of partitions.
record 
&�
����� �

�������'%���!) �� ��%������

���
 �� ����������� 
���

We define the separation kernel on the top of the micro-kernel. First we need a way to
relate the states of these two kernels. We introduce an abstraction function �%� *,�-*

which constructs a state of the micro-kernel from a given state of the separation kernel
by collecting tasks of all partitions into one set.
definition �
!&'�(& �� �
&�
����� � �&�
������ where
��
!&'�(& 
 �

�/ �������'%���() � �������'%���!) 
0

�
&
 �
�

� � ���
 
� ���'
&
 � /��

A thread in the separation kernel always belongs to a partition. We capture this property
via function 	+�������	 which takes a system state � and a thread 	+ and returns the
partition thread 	+ belongs to. This function returns a unique partition such that (i) it
is a partition in the system state � (ii) and there is a task in this partition where the
thread 	+ is running. Note: in this function we use the Isabelle�HOL operator ,/0; the
expression ,/0 �1 � � defines a unique element satisfying � if one exists, otherwise
the expression is typed but undefined (sometimes ,/0 is called a strict version of the
Hilbert’s choice operator).
definition �%���#�� �� �
&�
����� � �%����� �

����������� where
��%���#�� 
 �% �

'12 �� � � ���
 
 �

�� +�
& � ���'
&
 �� �
& � �%���'
& ��
!&'�(& 
� �%��
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In a separation kernel there is the currently active partition which we define via the
notion of the current thread.
definition �������#�� �� �
&�
����� � ����������� where
��������#�� 
 � �%���#�� 
 ��������'%���!) 
��

In the separation kernel a task is always assigned to a unique partition and we capture
this fact by assumption 	��*2����� .

assumes �
&*�����!)�

�[[�� � ���
 
 �3 � ���
 
 ����3]] ��

���'
&
 �� � ���'
&
 �3 � 	

In our architecture the separation kernel imports functionality of the micro-kernel. Thus,
we define the transition function of the separation kernel model in terms of the micro-
kernel model. We do the latter axiomatically to simplify definitions and proofs.
fixes ����!���!) �� �
&�
����� � 
&�
������

assumes ����!���!).�����!���()�

� ���(�� �����!���() ��
!&'�(& 
�� � �

���(�� �����!���() ��
!&'�(& ��� �

��

���(�� ��
!&'�(& �����!���!) 
�� � �

���(�� ��
!&'�(& �����!���!) ��� ��

From the uniqueness of a thread we prove that the thread’s task is always in the thread’s
partition (Lemma 	+����,��*)����	). This is the consistency between the mapping
from threads to tasks and the mapping from threads to partitions.
lemma �%���'
&$�#���

��% � �%���
!) 
 ��

�%���#�� 
 �% � ���
 
 �

�%���'
& �% � ���'
&
 ��%���#�� 
 �%��

In PikeOS the security policy is defined over physical memory addresses. Threfore, we
consider a GWV-segment as a memory address and associate a partition with memory
addresses. For this purpose we introduce the function ���	���� �	 which defines the
partition’s address set by collecting addresses of all tasks of a partition into one set.
definition �������!�� �� ����������� � ����

�� 
��� where
��������!�� � �

�
�
& � ���'
&
 �� �
&����!�� �
&�

Since the security policy is to be defined on the level of memory addresses, we need
a function which specifies the communication policy (the GWV-function ���, Sec-
tion 3.1). Function ��� . defines such a communication policy between addresses of
partitions. It relaxes the policy for tasks (Section 5.1) by allowing addresses in one par-
tition to a�ect each other (Section 3.3). Note that 
�� 4���� denotes a predicate set
where every element satisfies predicate Q.
definition ��!) �� �����

�� � ����

�� 
��� where
���!) ��� � ��() ��� �

5�� �� �� � � �������!�� � � ��� � �������!�� ��6�
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At last, we define the stronger version of the communication policy (see ��� 	���,
Section 3.3) by the function ��� 	��� .. It defines the communication policy between
addresses of partitions and is based on the ��� 	���-..
definition ��!�����!) �� �����

�� � ���������� �

����

�� 
��� where
���!�����!) ��� � �

�
�

�
& � ���'
&
 �� ��!�����() ��� �
&� �

5�� �� �� � � �������!�� � � ��� � �������!�� ��6�

5.3 The Separation Kernel Security Policy

In Isabelle�HOL one can refine a locale with a desired model such that (i) all assump-
tions of the locale become proof obligations and one has to prove them (ii) then one
enjoys all lemmata�definitions�theorems etc. based on this locale. We employ the Is-
abelle�HOL keyword sublocale to state that the locale  �����	���.����� is a refine-
ment of the locale ��� (note this is the second usage of the generic model ���, the first
one is at the end of Section 5.1). This refinement starts a proof for all assumptions of
the ���. In this proof we can use the information of the model  �����	���.����� from
the section above.

sublocale !�������)����� �

,-. ��������#��� — instantiation of ������	
��������'%���!)� — instantiation of ������	 �%(��	
��%���#��� — instantiation of ��%(��	���	
��������!��� — instantiation of ���
��� 
� ��� ���(�� ��
!&'�(& 
�� ����

— instantiation of �����	
���!)� — instantiation of ���
�����!���!)� — instantiation of ���	
��� � 
� 
��� � ��� � ��

�����(�� ��
!&'�(& 
�� ��� �

����(�� ��
!&'�(& 
��� ������

— instantiation of ������
���!�����!)� — instantiation of ��� 	���

The refinement proof consists of proofs for assumptions from the ��� locale: ������$���
from Section 3.1, ������	 ���� and ��� 	��� �%��	 from Section 3.3 as well as
������	��� and ������	���	 from Section 4. This proof is rather lengthy and therefore
we don’t present it here in the full length (yet it can be found on our web page [24]). The
main goal of the proof is to show that the assumption ������	��� holds for the sepa-
ration kernel. The instantiation of the GWV model with the micro-kernel (Section 5.1)
gives us the fact that ������	��� holds for the micro-kernel. Applying the former fact
to the main goal is the modular usage of the GWV policy. To apply it, we show how the
separation kernel is related to the micro-kernel, i.e. show that the separation kernel is
correctly defined on the top of the micro kernel (e.g. we use lemma 	+����,��*)����

as one of the crucial facts) and that definition does not violate the policy.
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5.4 An Alternative Way to Instantiate the GWV Model with PikeOS

We can define the security policy of the separation kernel on the level of the tasks. Thus,
we hide physical memory addresses at this level and consider the GWV segments as the
tasks. This alternative instantiation follows the pattern presented above. One important
change is that the ��� function has to be defined for tasks, i.e. for a given task it will re-
turn a set of tasks the task is allowed to communicate. The proof is barely changed. The
complete formal description of the alternative can also be found on our web page [24].

6 Summary

Formal models can be a great help to understand how a system works and to provide
additional assurance in the system behavior. This is also recognized by the industry
and is reflected in di�erent standards, e.g. DO-178C [19], Common Criteria [5]. We
use a formal model proposed by Greve et al and we are the first to present its usage
in a modular way and applied the results to a separation kernel: we have one uniform
specification for all layers and we apply a uniform instantiation mechanism, and thus,
only one policy as a certification artifact.

We propose extensions to the GWV model and formal proofs to illustrate a formal
modular usage of the modified GWV security policy. This paper is mainly generated
directly from the theorem prover Isabelle�HOL, thus, usage of definitions, lemmas, and
proofs can be replayed independently. This is also an important fact for the certification
process because, for instance, the “Common Criteria” require that a certifier has to be
able to re-run tests�proofs for the system.

The motivating example comes from analysis of PikeOS which is an operating sys-
tem for safety and security critical applications developed at SYSGO AG [22]. We for-
mally proved the that the separation kernel indeed separates based on the assumption
that the micro-kernel works correctly. Our results are quite generic and can be reused
for similar designs. The next step is to apply the developed formal models on PikeOS
to produce artifacts for certification for high EALs of the “Common Criteria”.
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2 Université catholique de Louvain
charles.pecheur@uclouvain.be

Abstract. BDD-based symbolic techniques and partial-order reduction
(POR) are two fruitful approaches to deal with the combinatorial explo-
sion of model checking. Unfortunately, past experience has shown that
BDD-based techniques do not work well for loosely-synchronized mod-
els, whereas POR methods allow explicit-state model checkers to deal
with large concurrent models. This paper presents an algorithm that
combines symbolic model checking and POR to verify linear temporal
logic properties without the next operator (LTLX), which performs bet-
ter on models featuring asynchronous processes. Our algorithm adapts
and combines three methods: Clarke et al.’s tableau-based symbolic LTL
model checking, Iwashita et al.’s forward symbolic CTL model check-
ing and Lerda et al.’s ImProviso symbolic reachability with POR. We
present our approach, outline the proof of its correctness, and present a
prototypal implementation and an evaluation on two examples.

1 Introduction

Two common approaches are commonly exploited to fight the combinatorial
state-space explosion in model-checking, with different perspectives: partial-
order reduction methods (POR) explore a reduced state space in a property-
preserving way [1,2] while symbolic techniques use efficient structures such as
binary decision diagrams (BDDs) to concisely encode and compute large state
spaces [3]. In their basic form, symbolic approaches tend to perform poorly on
asynchronous models where concurrent interleavings are the main source of ex-
plosion, and explicit-state model-checkers with POR such as Spin [4] have been
the preferred approach for such models.

This paper presents an approach that integrates POR in BDD-based model
checking for LTLX to provide an efficient and scalable symbolic verification
solution for models featuring asynchronous processes. Our approach proceeds as
follows:
� This work is supported by project MoVES under the Interuniversity Attraction Poles
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1. We start from the tableau-based reduction of LTL verification to fair-CTL
of Clarke et al. [5], which results in looking for fair executions in the product
P of the model and a tableau-based encoding of the (negated) property.

2. We construct Pr, a property-preserving partial-order reduction of P , using
an adaptation of Lerda et al.’s ImProviso algorithm [6]. We also implemented
the algorithm of Alur et al. [7] for comparison purposes.

3. Finally, we check within Pr whether P contains a fair cycle using the forward
traversal approach of Iwashita et al. [8]. We also implemented the classical
backward as a basis for comparison, though experimental results show the
forward approach to be more efficient than the backward approach.

We have implemented this new approach in a prototype and obtained experi-
mental results that show a significant performance gain with respect to symbolic
techniques without POR.

The main contributions of this paper are the global symbolic verification algo-
rithm for checking LTLX properties which adapts and combines tableau-based
LTL, fair-cycle detection and partial-order reduction, a proof of correctness of
the global algorithm, a prototype implementation, and an experimental evalua-
tion on two models.

The remainder of the paper is structured as follows. Section 2 establishes ba-
sic definitions and notations and presents the tableau-based reduction of LTL
to fair-CTL and the forward traversal approach. Section 3 presents partial-order
reduction and its application to symbolic model checking in ImProviso. In Sec-
tion 4, we present our new approach for LTL model-checking with POR and
detail our adapation of the ImProviso algorithm. Section 5 presents our im-
plementation and reports experimental results. Section 6 reviews related work.
Finally, Section 7 gives conclusions as well as directions for future work.

2 Symbolic LTL Model Checking

2.1 Transitions Systems

We represent the behavior of a system as a transition system, with labelled
transitions and propositions interpreted over states. In the rest of this paper, we
assume a set AP of atomic propositions and a set A of actions1. Without loss of
generality, the set AP can be restricted to the propositions that appear in the
property to be verified on the system. A fair transition system is a transition
system enriched with a set of fairness constraints, each constraint consisting of
a set of states.

Definition 1 (Transition System). Given a set of actions A and a set of
atomic propositions AP , a transition system (over A and AP ) is a structure
M = (S,R, I, L) where S is a finite set of states, I ⊆ S are initial states,
R ⊆ S × A × S is a transition relation, and L : S → 2AP is an interpretation
function over states.
1 Often called transitions in the literature, notably in [9]. For clarity, we only call

transitions specific transition instances s a−−→ s′.
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Definition 2 (Fair Transition System). A fair transition system is a struc-
ture M = (S,R, I, L, F ) where (S,R, I, L) is a transition system and F ⊆ 2S is
a set of fairness constraints.

We write s a−−→ s′ for (s, a, s′) ∈ R. An action a is enabled in a state s iff there is a
state s′ such that s a−−→ s′. We write enabled(s,R) for the set of enabled actions
of R in s. When the context is clear, we write enabled(s) instead of enabled(s,R).
We assume that R is total (i.e. enabled(s) �= ∅ for all s ∈ S). The set of all paths
of M is defined as tr(M) = {s0 a0−−→ s1 a1−−→ . . . | s0 ∈ I ∧∀i ∈ N · si ai−−→ si+1}.
A path π is said to be fair if and only if for every Fi ∈ F , inf(π) ∩ Fi �= ∅,
where inf(π) is the set of states that appear infinitely often in π. The set of all
fair paths, or fair traces, of M is defined as ftr(M) = {π |π ∈ tr(M) ∧ ∀Fi ∈
F · inf(π) ∩ Fi �= ∅}.

We write M � M ′ iff M is a sub-transition system of M ′, in the following
sense:

Definition 3 (Inclusion of fair transition systems). Let M =
(S,R, I, L, F ), M ′ = (S′, R′, I ′, L′, F ′) be two fair transition systems. M is a
sub-transition system of M ′, denoted M � M ′, if and only if S ⊆ S′, R ⊆ R′,
I ⊆ I ′, L(s) = L′(s) for s ∈ S, and ∀F ′i ∈ F ′ · ∃Fi ∈ F · Fi ⊆ F ′i .
We can see that if M �M ′, each fair path of M is a fair path of M ′.

Lemma 1. if M �M ′ then ftr(M) ⊆ ftr(M ′).

2.2 From LTL to Fair-CTL

This section outlines the algorithm, introduced in [5], to verify LTL properties
using BDD-based symbolic model checking.

We consider the verification of properties expressed in LTLX , linear propo-
sitional temporal logic without the next operator. LTL formulæ are interpreted
over each (infinite) execution path of the model. We denote the classical tempo-
ral operators as F, G and U. Informally, let π be a execution path, G f (globally
f) says that f will hold in all future states of π, Ff (finally f) says that f will
hold in some future state of π, f U g (f until g) says that g will hold in some
future state of π and, at every preceding state of π, f will hold. We will reason
for the most part in terms of (un)satisfiability of the negation of the desired
property ¬f . We write (M, s) |= Eg to express that there exists a path from
state s in M that satisfies a formula g.

Given a transition system M and an LTL property f , the tableau of ¬f
is constructed. The tableau of a formula g is a fair transition system T =
(ST , RT , IT , LT , FT ) over the singleton alphabet A = {⊥} and the set AP of
propositions which appear in g. Each state of the tableau is a set of formulae
derived from g, which characterizes the sub-formulae of g that are satisfied on
fair traces from that state. Initial states are those that entail g, and the fair-
ness constraints ensure that all eventualities occurring in g are fulfilled. The fair
traces of the tableau correspond to the traces that satisfy g. See [5] for details.
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The tableau of ¬f is then composed with the initial system M to produce a
new fair transition system P . If P contains deadlocks, we remove from SP all
the states which lead necessarily to deadlocks and restrict Rp to the remaining
states.

Definition 4 (Product of M and T ). Given a system M = (S,R, I, L) and
a tableau T = (ST , RT , IT , LT , FT ), the product of M and T , denoted M × T , is
a fair transition system P = (SP , RP , IP , LP , FP ) where:

– SP = {(st, s) ∈ ST × S |LT (st) = L(s)}
– RP = {((st, s), a, (s′t, s′)) |RT (st,⊥, s′t) ∧R(s, a, s′)}
– IP = SP ∩ (IT × I)
– LP ((st, s)) = LT (st) = L(s)
– FP =

{{(st, s) ∈ SP | st ∈ F iT } |F iT ∈ FT
}

It is shown in [5] thatM contains a path which satisfies ¬f iff there is an infinite
fair path in P that starts from an initial state (it, i). Furthermore, the existence
of fair traces is captured by the fair CTL formula EFG true, to be read as “there
exists a fair path such that globally true”. The interest is that fair-CTL formulae
can be verified with BDD-based symbolic model checking.

Theorem 1. Let T be the tableau of ¬f and P be the product of M and T .
Given a state i ∈ I, (M, i) |= E¬f if and only if there is a state (it, i) in IP
such that (P, (it, i)) |= EFG true.

2.3 Forward Symbolic Model-Checking

In [8], Iwashita et al. present a model-checking algorithm for a fragment of fair-
CTL based on forward state traversal. In the following sections, we enrich this
algorithm with partial-order reduction to efficiently check the unsatisfiability of
the EFG true formula derived from tableau-based LTL model-checking.

The semantic of a CTL formula f is defined as a relation s |= f over states
s ∈ S. We define the language of f as L(f) = {s ∈ S | s |= f}. In the sequel we
assimilate a temporal logic formula f to the set of states L(f) that it denotes,
for the sake of simplifying the notations.

Given a model M , a formula f and initial conditions i, conventional BDD-
based symbolic model-checking can be described as evaluating L(f) over the
sub-formulæ of f in a bottom-up manner, and checking whether L(i) ⊆ L(f).
The evaluation of (future) CTL operators in f results in a backward state-
space traversal of the model. L(i) ⊆ L(f) can be expressed as checking whether
i =⇒ f , or equivalently, checking unsatisfiability of i ∧ ¬f in M .

The forward exploration from [8] works by transforming a property h∧ op(g)
into op′(h)∧ g, where a future, backward-traversal CTL operator op in the right
term is transformed into a past, forward-traversal operator op′ in the left term.
It is shown in [8] that these formulae are equisatisfiable in M , in the sense that
there exists a state in M which satisfies the transformed formula iff there exists
a state in M which satisfies the original formula.
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In general, h is then a past-CTL formula. The following (past-temporal) op-
erations over formulæ are defined2:

FwdUntil(h, g) = μZ.[h ∨ post(Z ∧ g)]
FairEH(h) = νZ.[h ∧ post(

∧
Fi∈F FwdUntil(Fi, Z) ∧ Z)]

where post(X) = {s′ ∈ S | ∃s ∈ X, a ∈ A · s a−−→ s′} is the post-image of X .
FwdUntil(h, g) computes states s that can be reached from h within g (except for
s itself), and FairEH(h) computes states reachable from a fair cycle all within
h3. On this basis, it is established that h ∧ EFG g is equisatisfiable in M to
FairEH(FwdUntil(h, g) ∧ g).

In particular, for h = i and g = true this reduces to FairEH(FwdUntil(i, true)),
where FwdUntil(i, true) exactly computes the reachable state space ofM , which
we denote Reachable(M). We thus obtain the following fact.

Theorem 2

∃i ∈ I · (M, i) |= EFG true iff ∃s ∈ S · (M, s) |= FairEH(Reachable(M))

In essence, this theorem captures the fact that the fair-CTL model-checking
problem resulting from the tableau-based reduction of LTL can be decomposed
into two distinct parts, the computation of the reachable state space and the
search for a fair cycle. Besides, the POR theory shows that only a subset of the
reachable state space needs to be computed to see whether a property is satisfied
or not. The following sections will demonstrate that different methods can be
used to compute the (reduced) reachable state space, and also that different
methods can be used to perform the fair-cycle detection.

3 Partial-Order Reduction

The goal of partial-order reduction methods (POR) is to reduce the number
of states explored by model-checking, by avoiding the exploration of different
equivalent interleavings of concurrent transitions [10,2,9].

Partial-order reduction is based on the notions of visibility of actions and inde-
pendence between actions. An action a is invisible if and only if it does not affect
atomic propositions, i.e. if L(s) = L(s′) for any s a−−→ s′ (and visible otherwise).
Two actions are independent if they do not disable one another and executing
them in either order results in the same state. Intuitively, if two independent ac-
tions a and b are invisible with respect to the property f that one wants to verify,
then it does not matter whether a is executed before or after b, because they lead
2 The notation μZ.τ (Z) (resp. νZ.τ (Z)) denotes the least fixed point (resp. greater

fixed point) of the predicate transformer τ . For more details, we refer the reader
to [5].

3 Both FwdUntil and FairEH can be expressed in the past version of fair-
CTL: FairEH(h) corresponds to EFGh and FwdUntil(h, f) corresponds to h ∨
EX E[f U (h ∧ f)], where the direction of temporal operators is reversed.
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to the same state and do not affect the truth of f . Partial-order reduction consists
in identifying such situations and restricting the exploration to either of these
two alternatives. Given a transition system M = (S,R, I, L), POR amounts to
exploring a reduced model MR = (SR, RR, I, LR) with SR ⊆ S, RR ⊆ R, and
LR = {(sr, A) ∈ L | sr ∈ SR}. In practice, classical POR algorithms [2,9] exe-
cute a modified depth-first search (DFS). At each state s, an adequate subset
ample(s) of the actions enabled in s are explored. To ensure that this reduction
is adequate, that is, that verification results on the reduced model hold for the
full model, ample(s) must respect the following set of conditions as set forth in
[9,10]:
C0 ample(s) = ∅ if and only if enabled(s) = ∅.
C1 Along every path in the full state graph that starts at s, an action a /∈

ample(s) that is dependent on an action in ample(s) cannot be executed
without an action in ample(s) occurring first.

C2 If ample(s) �= enabled(s), then all actions in ample(s) are invisible.
C3 A cycle is not allowed if it contains a state in which some action is enabled,

but is never included in ample(s) on the cycle.

Conditions C0, C1, C2 and C3 are sufficient to guarantee that the reduced model
preserves properties expressed in LTLX , but does not preserve properties ex-
pressed in LTL [9]:

Theorem 3. Given M a transition system, f a LTLX property, if MR is a
POR reduction of M using an ample(s) that satisfies conditions C0–C3, then
(M, i) |= Ef iff (MR, i) |= Ef .

Conditions C1 and C3 depend on the whole state graph. C1 is not directly
exploitable in a verification algorithm. Instead, one uses sufficient conditions,
typically derived from the structure of the model description, to safely decide
where reduction can be performed. Contrary to C1, C3 can be checked on the
reduced graph, though in a nontrivial way. However, a stronger condition can
be used. A sufficient condition for C3 is that at least one state along each cycle
is fully expanded.

3.1 Process Model

In the sequel, we assume a process-oriented modeling language. We define a
safe process model as an extension of a transition system which distinguishes
disjoint subsets of local actions Ai, that are suitable candidates for partial-order
reduction. Typically, such actions will correspond to local transitions of different
processes pi in a concurrent program.

Definition 5 (Safe Process Model). Given a transition system M =
(S,R, I, L), a process model for M consists of a finite set of disjoint sets of
local actions A0, A1, . . . , Am−1 with Ai ⊆ A. The local transitions are defined
as Ri = R ∩ (S ×Ai × S). A process model is safe with respect to M iff all its
local transitions are safe, that is, for all a ∈ Ai, a is invisible, and for all s ∈ S,
ample(s) = enabled(s,Ri) satisfies condition C1.
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Note that this definition guarantees that ample(s) = enabled(s,Ri) respects
conditions C1 and C2, but not C3, which is ensured dynamically by detecting
cycles within the reduction algorithm.

3.2 Partial-Order Reduction with BDDs

In this section we discuss two algorithms which implement a symbolic version
of the POR method presented in Section 3. Both approaches can be used to
compute a reduced reachable state space.

In [6], Lerda et al. propose ImProviso, a BDD-based symbolic version of
the Two-Phase POR algorithm for computing a reduced state space. The Two-
Phase algorithm was first presented by Nalumasu and Gopalakrishnan in [11].
ImProviso alternates between two distinct phases: Phase-1 and Phase-2. Phase-
1 expands only safe transitions considering each process at a time, in a fixed
order. As long as a process offers safe transitions, those transitions alone are ex-
ecuted, otherwise the algorithm moves on to the next process. Phase-2 performs
a full expansion of the final states reached in Phase-1, then Phase-1 is recursively
applied to the reached states.

In [7], Alur et al. propose another approach based on a modified breadth-first
search (BFS) algorithm which respects conditions C0–C3, using BDD techniques.
It produces a reduced graph by expanding at each step a subset of the transition
relation.

Both approaches perform a BFS instead of a DFS. Hence, it is much harder
to detect cycles. To tackle this problem, both algorithms over-approximate the
cycles. The over-approximation guarantees that all cycles are correctly identified,
but possibly needlessly decreases the number of states where the reduction can
be applied.

Although Alur’s method and ImProviso are similar, they differ in the following
ways:

– In Alur’s method, a single subset of the whole transition relation is computed
at each step. In ImProviso, for each process a transition relation which con-
tains only safe actions is precomputed. These transition relations are used
during Phase-1. We contend that this leads to better performance because
each Phase-1 step is computed with much smaller BDDs.

– The Two-Phase approach reduces the over-approximation by limiting cycle
detection to the current execution of Phase-1.

4 LTL Model Checking with Partial-Order Reduction

In this section we bring together the computation of the reachable state space
by means of POR and the fair-cycle detection. Given a transition system
M = (S,R, I, L) with a safe process model A1, . . . , An and a LTLX property
f , our algorithm verifies whether M satisfies f by building a tableau T for ¬f
and checking the absence of accepting traces in P = (SP , RP , IP , LP , FP ), the
product of M and T .
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This check is performed symbolically. We first compute a reduced state space
of P , and then we check whether P contains a fair cycle within the reduced state
space. In this section, we use a variant of the ImProviso to compute the reduced
state space. We also use the forward model checking to perform the fair-cycle
detection. In other words, this check is performed symbolically, by checking the
emptiness of the following formula using BDDs: FairEH(ReachablePOR(P )). In
Section 5, we compare different methods to compute the reduced graph, as well
as to look for fair cycles.

4.1 Computation of the Reachable States

A key new element is the algorithm ReachablePOR which constructs a reduced
reachable state space of P . It is given in Figure 1, and is based on the ImProviso
algorithm of [6]. In order to apply partial-order reduction on the product system
P , we lift the process model from M to P and pre-compute, for each safe action
set Ai, the BDD of the partial transition relation RP,i = RP ∩ (SP ×Ai × SP ).

1 global RP

2 global RP,i [0..m -1]
3
4 global frontier // current frontier
5 global visited // visited states
6
7 procedure ReachablePOR (PI )
8 frontier , visited := IP , IP

9 while ( frontier �= {}) {
10 phase1 ()
11 phase2 ()
12 }
13 }
14
15 function deadStates (R, X) {
16 return X \ dom R
17 }
18
19 procedure phase2 () {
20 local image := post(RP , frontier )
21 frontier := image \ visited
22 visited := visited ∪ image
23 }
24
25

26 procedure phase1 () {
27 local cycleApprox := {}
28 local stack := frontier
29
30 foreach (i in 0, · · · , m − 1) {
31 local image :=
32 post(RP,i [i], frontier )
33 local dead :=
34 deadStates (RP,i [i], frontier )
35
36 while (( image \ stack ) �= {}) {
37 stack := stack ∪ image
38 cycleApprox := cycleApprox ∪
39 ( image ∩ stack )
40 frontier := image \ stack
41 image := post(RP,i [i], frontier )
42 dead := dead ∪
43 deadStates (RP,i [i], frontier )
44 }
45
46 frontier := frontier ∪ dead
47 }
48 frontier := frontier ∪ cycleApprox
49 visited := visited ∪ stack
50 }

Fig. 1. ReachablePOR algorithm

ReachablePOR performs the two phases alternatively until no states to visit
remain. The global variable frontier contains the current frontier, that is, the
set of states which have been reached but not expanded yet. The global vari-
able visited contains all the reached states. The first phase (phase1) performs
partial expansion of the safe transitions of each process. The outer loop (lines
30–47) iterates over the processes. The inner loop (lines 36–44) expands all safe
transitions of the current process, until no more new states can be found. The
following invariants hold at line 36:
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– The stack variable contains all the states which have already been reached
during the current run of phase1.

– The cycleApprox contains all the states already in stack which have been
reached again in a consecutive iteration. Those states over-approximate the
set of states closing a cycle; they are added back to the current frontier when
moving to Phase-2 (line 48).

– The dead variable contains all the reached states with no enabled transitions
for the current process, as computed by deadStates. Those states are added
back to the frontier when moving to the next process (line 46).

The second phase (phase2) performs a single-step full expansion of the states of
the current frontier.

ReachablePOR differs from ImProviso in the following ways:

1. ReachablePOR explores a product system P . The ample sets, captured in
RP,i, depend only on the model M , while the cycle condition is checked on
the product P . In ImProviso, there is no tableau and everything is computed
on the original model M .

2. When a presumed cycle is detected on state s in Phase-1, ImProviso will
expand s during the expansion of the next process, whereas ReachablePOR
will postpone expansion of s to the next Phase-2. When a product P is
reduced, we have noticed that this modification tends to improve both the
number of visited states and the verification time.

3. ReachablePOR keeps track of states that have no transition with the current
process (lines 34 and 43) and passes them to the next processes. If this
computation was not done, we could have missed some states during the BFS.
So, we could have violated the condition C0. The need for this computation
was apparently not addressed in [6].

4. ImProviso performs an additional outermost loop in Phase-1, to expand any
additional safe actions that have been enabled by the previous round over
all processes, such as receiving a message on a channel where it has been
previously sent. This is not needed in ReachablePOR because by construc-
tion our notion of safe action does not allow this kind of situation. It would
easily be added back if it were to become useful.

ReachablePOR(P ) explores a reduced transition system PR =
(SR, RR, IP , LR, FR), where LR = {(sr, A) ∈ LP | sr ∈ SR}, and FR is
the restriction of FP to SR, i.e. FR = {Fi ∩ SR |Fi ∈ FP }. It returns the
explored states SR = ReachablePOR(P ) as the final value of visited. By
construction, PR � P .

4.2 Fair-Cycle Detection

The reduced state space SR is used to search for infinite fair paths by computing
FairEH(SR). From the definition of FairEH, it is clear that FairEH(SR) only
explores states within SR. Note, however, that FairEH uses the full transition
relation RP rather than the reduced transition relation RR implicitly explored
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by ReachablePOR. FairEH(SR) thus explores an induced fair transition system
PI = (SR, RP ∩ (SR ×A× SR), IP , LP , FP ). By construction PR � PI � P and
thus, by Lemma 1, ftr(PR) ⊆ ftr(PI) ⊆ ftr(P ). Note that SR is evidently equal
to Reachable(PI). Hence evaluating FairEH(ReachablePOR(P )) in P amounts
to evaluating FairEH(Reachable(PI)) in PI and we have the following lemma:

Lemma 2. Given P = (SP , RP , IP , LP , FP ), SR = ReachablePOR(P ),
PI = (SR, RP ∩ (SR × A × SR), IP , LP , FP ) and sP ∈ SP , (P, sP ) |=
FairEH(ReachablePOR(P )) if and only if (PI , sP ) |= FairEH(Reachable(PI)).
When (PI , sP ) |= FairEH(Reachable(PI)), sP ∈ SR.

4.3 Correctness

To demonstrate the correctness of our approach, we have to prove that, given
a property f and a model M , f holds in M iff FairEH(ReachablePOR(P ))
returns an empty set, where P is the product of M and the tableau for ¬f .
Conversely, we will prove that there is a path from an initial state i in M
on which ¬f holds, written (M, i) |= E¬f , iff there is a state in P satisfying
FairEH(ReachablePOR(P )).

Before getting to this main result, we need to address two technical issues.
First, the following two lemmas establish that the preservation of properties
when reducing M to MR is carried over when reducing P to PR based on the
transitions of M , as performed in ReachablePOR.

Lemma 3. Given a product system P = M × T and PR the reduced transition
system explored by ReachablePOR(P ), there exists a reduced transition system
MR such that PR = MR × T and MR is a property-preserving reduction of M ,
i.e. (M, i) |= E¬f iff (MR, i) |= E¬f .
Proof. We follow the same reasoning as Theorem 4.2 in [1], which we only out-
line here. In [1], given a transition system G and a LTL property f , a Büchi
automaton B which accepts the language L(¬f) is constructed4. It is shown
that G |= Af if and only if the intersection (i.e. product) A of G and B is
empty, or equivalently if A does not contain any cycle, reachable from some
initial state, that contains some accepting state. A reduced version A′ of A is
constructed by choosing at each step of the DFS a valid ample set. The con-
ditions C1 and C2 are checked on G alone, while C0 and C3 are checked on
the whole product. It is shown that A′ corresponds to a product of a reduced
system GR and B such that GR is a property-preserving reduction of G, i.e.
(G, i) |= E¬f iff (GR, i) |= E¬f .

The ReachablePOR procedure follows the same process. It constructs a
reduced version PR of P by choosing at each step a valid ample set, i.e
ample((st, s)) = {a | (st, s) a−−→ (s′t, s′) ∧ a ∈ ample(s)}. By following the same
4 Although Theorem 4.2 in [1] considers only deterministic transition systems, both

the theorem and its proof remain valid with non-deterministic transition systems.
The proof remains exactly the same.
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reasoning as in [1] we can conclude that PR is the product of a reduced sys-
tem MR and T such that MR is a property-preserving reduction of M, i.e.
(M, i) |= E¬f iff (MR, i) |= E¬f . ��
Together with Theorem 1, the following lemma follows directly.

Lemma 4. (P, iP ) |= EFG true if and only if (PR, iP ) |= EFG true.

Secondly, the following lemma establishes that PI , which corresponds to the
system explored by FairEH, preserves the properties of PR, which corresponds
to the system explored by ReachablePOR.

Lemma 5. (PR, iP ) |= EFG true if and only if (PI , iP ) |= EFG true.

Proof. We know that ftr(PR) ⊆ ftr(PI) ⊆ ftr(P ). Therefore, any fair path of PR
is also a fair path of PI . Conversely, any fair path of PI is also a fair path of P
and therefore there exists a corresponding fair path in PR by Lemma 4. ��
We now get to the main result.

Theorem 4. Given a model M , a property f and the product P of M and the
tableau of ¬f , there exists a state i ∈ I such that (M, i) |= E¬f iff there exists
a state sP ∈ SP such that (P, sP ) |= FairEH(ReachablePOR(P )).

Proof. Let PR and PI be defined as previously. We have successively:
∃i ∈ I · (M, i) |= E¬f

⇔ ∃iP ∈ IP · (P, iP ) |= EFG true (Theorem 1)
⇔ ∃i′P ∈ IP · (PR, i′P ) |= EFG true (Lemma 4)
⇔ ∃i′′P ∈ IP · (PI , i′′P ) |= EFG true (Lemma 5)
⇔ ∃sP ∈ SR · (PI , sP ) |= FairEH(Reachable(PI)) (Theorem 2)
⇔ ∃sP ∈ SP · (P, sP ) |= FairEH(ReachablePOR(P )) (Lemma 2)

��
Given any algorithm which constructs a valid POR-reduced reachable state set
Reduced(M) of a transition system M , we can use that algorithm instead of
ReachablePOR in our approach, checking the emptiness of FairEH(Reduced(P )).
In the same way, other algorithms can be used to detect fair cycles, for instance
the classical backward CTL model-checking algorithm can be used. Actually,
these approaches are valid, and the demonstration of Section 4.3 remains the
same.

5 Evaluation

We extended the Milestones model checker presented in [12] to support the
method presented in this paper. Milestones is available under the GNU General
Public License at http://lvl.info.ucl.ac.be/Tools/Milestones. Milestones
allows us to describe concurrent systems and to verify LTLX properties. It
defines a language for describing transition systems. The design of the language

http://lvl.info.ucl.ac.be/Tools/Milestones


Combining POR and Symbolic Model Checking to Verify LTL Properties 417

0 10 20 30 40 50 60 70

0.1

1

10

100

103

104

n

tim
e

(s
ec

)
Spin

NuSMV
bwd

bwd + Alur
bwd + ReachablePOR

fwd
fwd + Alur

fwd + ReachablePOR

Fig. 2. Verification times for the Producer-Consumer property P3

has been influenced by the NuSMV language [13] and by the synchronization by
rendez-vous mechanism. Milestones detects fair cycles either with the classical
backward fair CTL model-checking algorithm [9] (hereafter denoted as bwd),
or with the forward approach described in Section 2.3 (denoted as fwd). The
reachable state space can be generated using the ReachablePOR approach, as
well as Alur’s method mentioned in Section 3.2, or without any POR reduction.
Together these offer 2× 3 = 6 different modes of operation.

In order to assess the effectiveness and scalability of the approach proposed in
this paper, we discuss two models which were translated both into the language
of Milestones, NuSMV, and Spin. This section presents the models and the
results we obtained. All the tests have been run on a 2.16 GHz Intel Core 2
Duo with 2 GB of RAM. We compare the verification performance between all
six different modes. We also compare to NuSMV, which performs bwd without
POR, and Spin which performs explicit model checking [4].

The first model is a variant of a producer-consumer system where all produc-
ers and consumers contribute on the production of every single item. The model
is composed of 2×m processes: m producers and m consumers. Each producer
and each consumer has two local transitions. The producers and consumers com-
municate together via a bounded buffer composed of eight slots. Each producer
works locally on a piece p, then it waits until all producers terminate their task.
Then, p is added to the buffer, and the producers start processing the next piece.
When the consumers remove p from the buffer, they work locally on it. When all
the consumers have terminated their local work, another piece can be removed
from the buffer. The size of the reachable state space grows exponentially by a
factor of 40 at each step of m.

Five properties have been analyzed on this model. For instance, P3 states that
at any time the producers will eventually add a piece into the buffer (satisfied),
and P4 states that the buffer will never overflow (unsatisfied). Figure 2 com-
pares the times for the verification of the property P3. Similar results have been
obtained for the other four properties.
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Fig. 3. Verification times for the Turntable property T3

The second model is a turntable model, described in [14]. The turntable system
consists of a round turntable, an input place, an output place, n drills and
a testing device. The turntable transports products in sequence between the
different tools, where they are drilled and tested. The turntable has n + 3 slots
that each can hold a single product. The original model had only one drill; we
extended it to represent an arbitrary number of drills. The size of the reachable
state space grows exponentially by a factor of 7 at each step of n.

We have verified six properties on this system: four properties that the system
satisfies, and two properties which are not fulfilled. For instance, the property
T3 states that if in the future there will be a piece which is not well drilled, the
alarm will necessarily resonate. Here is the translation of this property in LTL:
G [F a piece is not well drilled =⇒ F an alarm is raised]. Figure 3
compares the times for the verification of the property T3.

Table 1 compares the state space computed by the three forward methods
(without POR, with Alur’s method and with ReachablePOR), in terms of num-
ber of BDD nodes, number of states and computation time. It is quite interesting
to note that while POR substantially decreases the number of reached states,
the number of BDD nodes is increased (likely due to breaking some symmetry in
the full state space). However, it still results in substantial speed improvements.
We also notice that the state spaces produced by the Alur’s method and the
ReachablePOR method have approximately the same size.

6 Related Work

Besides the approaches of Alur [7] and Improviso [6] on which this work is
based (as presented in Section 3.2), several other approaches have been proposed
that combine symbolic model checking and POR to verify different classes of
properties.

This paper builds on our previous work combining POR and the forward state
traversal approach to verify CTLX properties5 [12]. It remains to evaluate the
5 CTLX is the subset of the CTL logic without the next operator.
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Table 1. BDD size (in # nodes), state space size (in # states) and computation time
(in seconds) for the P reachable state space computed either by the forward method
without POR, or the forward method and Alur’s approach, or the ReachablePOR
method. “–” indicates that the computation did not end within 1000 seconds.

# drills # nodes # states time (sec)
Fwd Fwd + Alur ReachPOR Fwd Fwd + Alur ReachPOR Fwd Fwd + Alur ReachPOR

1 197 318 282 86488 27408 26668 .11 .28 .17
2 442 880 744 521944 39188 38044 .17 .45 .23
4 975 2444 2021 2.49 × 10+7 62804 60796 .35 .90 .34
8 2040 5832 4717 5.98 × 10+10 111012 106300 1.08 2.59 .65

16 4168 17165 14126 3.45 × 10+17 207120 197308 5.13 9.34 1.49
32 8421 57467 47218 1.15 × 10+31 394208 379324 37.09 57.68 4.35
40 – 91214 75104 – 495668 470332 – 173.84 6.37
47 – 125194 103300 – 580484 549964 – 971.60 8.59
50 – – 105844 – – 584092 – – 9.76
61 – – 146912 – – 709228 – – 14.9

compared merits of the two approaches for properties that can be expressed in
both LTLX and CTLX . For conventional BDD-based model checking, experi-
ments in [5] have found that, in the absence of POR, CTL verification tends to
be faster.

In [15], we present another LTLX model-checking algorithm which combines
the Two-Phase algorithm and SAT-based bounded model checking (BMC). On
the property P2 of the producer-consumer system of Section 5, the BMC algo-
rithm of [15] takes approximately 68 minutes to find a counter-example of length
1,017, while the algorithm presented here takes only 314 milliseconds to show
the violation.

In [16], Abdulla et al. present a general method for combining POR and
symbolic model checking. Their method can check safety properties either by
backward or forward reachability analysis. So as to perform the reduction, they
employ the notion of commutativity in one direction, a weakening of the depen-
dency relation which is usually used to perform POR. This approach deals both
with backward and forward analysis but for reachability only, while we are able
to check LTLX properties but using only forward analysis.

In [17], Kurshan et al. perform partial-order reduction at compile time. The
method applies static analysis techniques to discover local cycles and produce a
reduced model, which can be verified using standard symbolic model checking.
It could be interesting to investigate whether this kind of analysis could help in
ensuring the cycle condition C3 in our approach.

In [18], Holzmann performs a reduction of individual processes by merging
local transitions. Then, the processes are put in parallel to be explicitly verified.
Merging local transitions can be seen as a special application of partial reduction
method. It avoids to create intermediate states between local transitions. Actu-
ally, all the transitions which are merged will be considered as safe transitions
by our approach. Those transitions will be explored dynamically during phase1,
i.e. when POR is applied. By contrast, the Holzmann algorithm removes them
statically at compile time. We notice that our approach might visit more than
once a state which will be removed by the Holzmann algorithm.
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7 Conclusion

In this paper, we presented an improved BDD-based model-checking algorithm
for verifying LTLX properties on asynchronous models. Our approach combines
the tableau-based reduction of LTL model-checking to fair-CTL from [5], forward
state-traversal of fair-CTL formulæ from [8] used to detect fair cycles, and a
symbolic partial-order reduction based on ImProviso [6] to reduce the forward
state traversal.

We implemented the new algorithm in our existing model checker and ob-
served on two case studies that our approach achieves a significant improvement
in comparison to the tableau-based approach of [5] without POR, in both its
backward and forward versions. It remains to confirm those results on a larger
range of case studies and to compare with other methods and tools.

The reduced state set computed by ReachablePOR could as well be used
in other BDD-based model-checking circumstances: as a filter during fixpoint
computations in classical backward model-checking, or even to restrict the BDD
of the transition relation before standard, non-POR techniques are applied. It
would be interesting to compare the benefits of the reduction in the different
approaches. For the latter case, however, the size of the BDD representing the
transition relation of MR could become unmanageable due to the loss of some
symmetry.
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Abstract. In this paper, we propose a new method to perform large
scale grid model checking. A manager distributes the workload over many
embarrassingly parallel jobs. Only little communication is needed be-
tween a worker and the manager, and only once the worker is ready for
more work. The novelty here is that the individual jobs together form
a so-called cumulatively exhaustive set, meaning that even though each
job explores only a part of the state space, together, the tasks explore
all states reachable from the initial state.

Keywords: parallel model checking, state space exploration.

1 Introduction

In (explicit-state) Model checking (MC), the truth-value of a logical statement
about a system specification, i.e. design, (or directly software code) is checked by
exploring all its potential behaviour, implicitly described by that specification,
as a directed graph, or state space. A flawed specification includes undesired
behaviour, which is represented by a trace through the corresponding state space.
With MC, we can find such a trace, and report it to the developers. To show
flaw (bug) absence, full exploration of the state space is crucial. However, in
order to explore a state space at once, it needs to be stored in the computer’s
main memory, and often, state spaces are too large, possibly including billions
of states. A secondary point of concern was raised in [22,23]: as the amount of
available main memory gets bigger, it becomes technically possible to explore
large state spaces using existing sequential, i.e. single-processor, techniques, but
the time needed to do so is practically too long. Therefore new techniques are
needed, which can exploit multi-core processors and grid architectures.

We envision an ’MC@Home’, similar to SETI@Home [34], where machines in a
network or grid can contribute to solving a computationally demanding problem.
In many application areas, this is very effective. BOINC [8] has about 585,000
computers processing around 2.7 petaFLOPS, topping the current fastest super-
computer (IBM Roadrunner with 1.026 PFLOPS). However, flexible grid MC
does not exist yet; current distributed MC methods, in which multiple machines
are employed for a single MC task, need lots of synchronisation between the
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computers (‘workers’), which is a serious bottleneck. MC is both computation-
ally expensive, and cannot obviously be distributed over so-called embarrassingly
parallel [14] processes, i.e. processes which do not synchronise with each other.
In this paper, we propose a method to divide a state space reachability task
into multiple smaller, embarrassingly parallel, subtasks. The penalty for doing
so is that some parts of the state space may be explored multiple times, but, as
noted by [22], this is probably unavoidable, and not that important, if enough
processing power is available. What sets the method which we present in this
paper apart from previous ones is that we distribute the work over a so-called
cumulatively exhaustive set (Ces) of search instructions, where each individual
instruction yields a strictly non-exhaustive search, in which a strict subset of the
set of reachable states is explored, hence less time and memory is needed, while
it is also guaranteed that the searches yielded by all instructions together search
the whole state space. This is novel, since partial (or non-exhaustive) searches,
such as random walk [40] and beam search [28,38,41] are typically very useful to
detect bugs quickly, but cannot provide a guarantee of bug-absence. In our case,
if all searches instructed by the (finitely-sized) Ces cannot uncover a bug, we
can conclude that the state space is bug-free. We believe that a suitable method
for large scale grid MC must be efficient both memory-wise and time-wise; dis-
tributed MC techniques tend to scale very well memory-wise, but disappointingly
time-wise, while papers on multi-core MC, in which multiple cores on a single
processor are employed for a single MC task, tend to focus entirely on speedup,
while assuming that the state space fits entirely in the main memory of a sin-
gle machine. Therefore, we wish to focus more on the combination of time and
memory improvements. Our approach is built on the observation that state space
explosion is often due to the fact that a system specification is defined as a set of
processes in parallel composition, while those processes in isolation do not yield
large state spaces. The only serious requirement which systems must meet for
our method to be applicable at the moment, is that at least one process in the
specification yields finite, i.e. cycle-free, behaviour; we can enforce this by per-
forming a bounded analysis on a process yielding infinite behaviour, but then,
we do not know a priori whether the swarm will be cumulatively exhaustive.

The structure of the paper is as follows: in the next Section, related work
is discussed. In Section 3, preliminary notions are explained. Then, Section 4
contains a discussion on directed search techniques. After that, in Section 5, we
explain the basics of our method for system with independent parallel processes.
A more challenging setup with synchronising parallel processes, together with
our algorithms, are presented in Section 6. Then, experimental results are given
in Section 7, and finally, conclusions and future work appear in Section 8.

2 Related Work

Concerning the state space explosion problem, over the years, many techniques
have been developed to make explicit-state MC tasks less demanding. Prominent
examples are reduction techniques like partial order reduction [31], and directed
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MC [12], which covers the whole range of state space exploration algorithms.
Some of these use heuristics to find bugs quickly, but if these are inaccurate, or
bugs are absent, they have no effect on the time and memory requirements.

In distributed algorithms such as e.g. in [3,4,5,6,10,15,27,32], multiple workers
in a cluster or grid work together to perform an MC task. This has the advantage
that more memory is available; in practice, though, the techniques do not scale
as well as desired. Since the workers need to synchronise data quite frequently,
for very large state spaces, the time spent on synchronisation tends to be longer
than the time spent on the actual task. Furthermore, if one of the workers is
considerably slower than the others or fails entirely, this has a direct effect on
the whole process. Another development is multi-core MC. Since a few years,
Moore’s Law no longer holds, meaning that the speed of new processors does
not double every two years anymore. Instead, new computers are equipped with
a growing number of processor cores. For e.g. MC, this means that in order to
speedup the computations, the available algorithms must be adapted. In multi-
core MC, we can exploit that the workers share memory. Major achievements are
reported in e.g. [1,20,21,26]. [26] demonstrates a significant speedup in a multi-
core breadth-first search (Bfs) using a lock-free hash table. However, papers
on multi-core MC tend to focus on reducing the time requirements, and it is
assumed that the entire state space fits in the main memory of a single machine.

A major step towards efficient grid MC was made with Swarm Verification
(SV) [22,23,24] and Parallel Randomized State Space Search [11,35], which in-
volve embarrassingly parallel explorations. They require little synchronisation,
and have been very successful in finding bugs in large state spaces quickly. Bug
absence, though, still takes as much time and memory to detect than a tradi-
tional, sequential search, since the individual workers are unaware of each other’s
work, and each worker is not bounded to a specific part of the state space. The
method we propose is based on SV, and since each worker uses particular in-
formation about the specification to guide the search, we call it informed SV
(ISV), relating it to informed search techniques in directed MC. Similar ideas
appear in related work: in [27], it is proposed to distribute work based on the be-
haviour of a single process. The workers are not embarrassingly parallel, though.
A technique to restrict analysis of a program based on a given trace of events is
presented in [16]. It has similarities with ISV, but also many differences; their
technique performs slicing on a deterministic C program, and is not designed
for parallel MC, whereas ISV distributes work to analyse concurrent behaviour
of multiple processes based on the behaviour of a subsystem. Finally, a similar
approach appears in [36], but there, it is applied on symbolic execution trees
to generate test cases for software testing. Unlike ISV, they distribute the work
based on a (shallow) bounded analysis of the whole system behaviour.

3 Preliminaries

Labelled Transition Systems Labelled transition systems (Ltss) capture the op-
erational behaviour of concurrent systems. An Lts consists of transitions s

�−→s′,
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meaning that being in a state s, an action � can be executed, after which a state
s′ is reached. In model checking, a system specification, written in a modelling
language, has a corresponding Lts, defined by the structural operational seman-
tics of that language.

Definition 1. A labelled transition system (Lts) is a tupleM = (S,A, T , sin),
where S is a set of states, A a set of actions or transition labels, T a transition
relation, and sin the initial state. A transition (s, �, s′) ∈ T is denoted by s

�−→s′.

A sequence of labels σ = 〈�1, �2, . . . , �n〉, with n > 0, describes a sequence
of events relating to a trace in an Lts, starting at sin , with matching labels,
i.e. it maps to traces in the Lts with s0, . . . , sn ∈ S, �1, . . . , �n ∈ A, with
s0 = sin , such that s0

�1−→ s1
�2−→ · · · �n−→ sn. Note that σ maps to a single

trace iff the Lts is label-deterministic, i.e. that for all s ∈ S, if there exist

s
�′−→ s′ and s

�′′−→ s′′ with s′ �= s′′, then also �′ �= �′′. If the Lts is not label-
deterministic, then σ may describe a set of traces. In this paper, we assume that
Ltss are label-deterministic, but this is strictly not required. The set of enabled
transitions restricted to a set of labels A ∈ A in state s of LtsM is defined as
enM(s, A) = {t ∈ T | ∃s′ ∈ S, � ∈ A. t = s

�−→s′}. Whenever enM(s,A) = ∅, we
call s a deadlock state. For T ⊆ T , we define nxt(T ) = {s ∈ S | ∃s′ �−→ s ∈ T }.
This means that nxt(enM(s,A)) is the set of immediate successors of s.

System specifications often consist of a finite number of process specifications
in parallel composition. Then, the process specifications describe the potential
behaviour of individual system components. The potential behaviour of all these
processes concurrently then constitutes the Lts of the system as a whole. What
modelling language is being used to specify these systems is unimportant here;
we only assume that the process specifications can be mapped to process Ltss,
and that the processes can interact using synchronisation actions.

Next, we will highlight how a system Lts can be derived from a given set
of process Ltss and a so-called synchronisation function. System behaviour can
be described by a finite set Π of n > 0 process Ltss Mi = (Si,Ai, Ti, sin,i),
for 1 ≤ i ≤ n, together with a partial function C : As × As → Af , with
As =

⋃
1≤i≤nAi and Af a set of actions representing successful synchronisation,

describing the potential synchronisation behaviour of the system, i.e. it defines
which actions �, �′ ∈

⋃
1≤i≤nAi can synchronise with each other, resulting in an

action �′′ ∈ Af . We write C({�, �′}) = �′′, to indicate that the order of � and
�′ does not matter.1 Furthermore, we assume that each action � is always only
involved in at most one synchronisation rule, i.e. for each �, there are no two
distinct �′, �′′ such that both C({�, �′}) and C({�, �′′}) are defined. Definition 2
describes how to construct a system Lts from a finite set Π of process Ltss.

Definition 2. Given a set Π of n > 0 process Ltss Mi = (Si,Ai, Ti, sin,i),
for 1 ≤ i ≤ n, and synchronisation function C : As × As → Af , with As =
1 In practice, synchronisation rules can also be defined for more than two parties,

resulting in broadcasting rules. In this paper, we restrict synchronisation to two
parties. Note, however, that the definitions can be extended to support broadcasting.
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⋃
1≤i≤nAi and Af a set of actions representing successful synchronisation, we

construct a system Lts M = (S,A, T , sin) as follows:

– sin = (sin,1, . . . , sin,n);
– Let z1 = (s1, . . . , si, . . . , sj , . . . , sn) ∈ S with i �= j.

• If for some Mi ∈ Π, si
�−→ s′i with � ∈ Ai, and there does not exist

�′ ∈ As such that C({�, �′}) = �′′, for some �′′ ∈ Af , then z2 = (s1, . . . ,

s′i, . . . , sj , . . . , sn) ∈ S. In this case, � ∈ A and z1
�−→ z2 ∈ T ;

• If for some Mi ∈ Π, si
�−→ s′i with � ∈ Ai, and for some Mj ∈ Π

(i �= j), sj
�′−→ s′j with �′ ∈ Aj, and C({�, �′}) = �′′, for some �′′ ∈ Af ,

then z2 = (s1, . . . , s′i, . . . , s′j, . . . , sn) ∈ S. In this case, �′′ ∈ A and

z1
�′′−→ z2 ∈ T .

4 Directed Lts Search Techniques

The two most basic Lts exploration algorithms available in model checkers are
Bfs and depth-first search (Dfs). They differ in the order in which they consider
states for exploration. In Bfs, states are explored in order of their distance from
sin . Dfs gives priority to searching at increasing depth instead of exploring all
states at a certain depth before continuing. If at any point in the search, the se-
lected state has no successors, or they have all been visited before, then Dfs will
backtrack to the parent of this state, and explore the next state from the parent’s
set of successors, according to the ordering function. Bfs and Dfs are typical
blind searches, since they do not take additional information about the system
under verification into account. In contrast to this are the informed searches
which do use such information. Examples of informed searches are Uniform-cost
search [33], also known as Dijkstra’s search [9], and A∗ [19].

All searches, both blind and informed, mentioned so far are examples of ex-
haustive searches, i.e. in the absence of deadlocks, they will explore all states
reachable from sin . Another class of searches is formed by the non-exhaustive
searches. These searches prune the Lts on-the-fly, completely ignoring those
parts which are deemed uninteresting according to some heuristics. At the cost
of losing completeness, these searches can find deadlocks in very large Ltss fast,
since they can have drastically lower memory and time requirements, compared
to exhaustive searches. A blind search in this category is random walk, or sim-
ulation, in which successor states are chosen randomly. An informed example
is beam search, which is basically a Bfs-like search, where in each iteration,
i.e. depth, only up to β ∈ �, which is given a priori, states are selected for
exploration. For the selection procedure, various functions can be used; in clas-
sic beam search, a (state-based) function as in A∗ is used, in priority beam
search [38,39,41], a selection procedure based on transition labels is employed,
while highway search [13] uses random selection, and is therefore a blind variant
of beam search.
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For a search L, let us define its scope ReachM(L) in a given LtsM as the set
of states inM that it will explore. For all exhaustive L, we have ReachM(L) =
S, while for all non-exhaustive L, ReachM(L) ⊂ S. Let us consider two searches
L1 and L2, such that ReachM(L1) ∪ReachM(L2) = S. Then, we propose to
call {L1, L2} cumulatively exhaustive on M. Such cumulatively exhaustive sets
(Cess) are very interesting for SV; the elements can be run independently in
parallel, and once they are all finished, the full Lts will have been explored.

Some existing searches lead to Cess. Iterative deepening [25] uses depth-
bounded Dfs in several iterations, each time relaxing the bound. Each itera-
tion can be seen as an individual search, subsequent searches having increasing
scopes. Iterative searches form a class, which includes e.g. Ida∗ [25]. Another
class leading to Cess consists of random searches like random walk and highway
search. However, all these are not suitable for grid computing. Iterative searches
form Cess containing an exhaustive search. If M is bug-free, then eventually
this search is performed, which is particularly inefficient. With random searches,
there is no guarantee that after n searches, all reachable states are visited. If
n → ∞, the set will eventually be cumulatively exhaustive, but performing the
searches may take forever. Moreover, the probabilities to visit states in a random
walk are not uniformly distributed, but depend on the graph structure [30].

We want to derive Cess with a bounded number of non-exhaustive elements
from a system under verification. Preferably, all scopes have equal size, to en-
sure load-balancing, but this is not necessary (in SV, workers do not synchronise,
hence load-balancing is less important [22,23]). To achieve this, we have devel-
oped a search called informed swarm search (Iss) which accepts a guiding func-
tion, and we have a method to compute a set of guiding functions f0, f1, . . . , fn

given a system specification, such that {Iss(f0), Iss(f1), . . .} is a Ces. The guid-
ing functions actually relate to traces through the Lts of a subsystem π of the
system under verification, which are derived from an Lts exploration of π. Such
an Lts can in practice be much smaller than the system Lts. For now, we require
that π yields finite behaviour, i.e. that its Lts is cycle-free.

Iss only selects those transitions for exploration which either do not stem from
π, or which correspond with the current position in the given trace through
the Lts of π. This is computationally inexpensive, since it only entails label
comparison. The underlying assumption is that labels can be uniquely mapped
to process Ltss; given a label, we know from which process it stems. If a given
set of Ltss does not meet this requirement, some label renaming can fix this.

5 Systems with Independent Processes

In this section, we will explain our method for constructing Cess for very ba-
sic specifications which consist of completely independent processes in parallel
composition. We are aware of the fact that such specifications may practically
not be very interesting. However, they are very useful for our explanation.

Figure 1 presents two Ltss of a beverage machine, and a snack machine,
respectively. Both are able to dispense goods when one of their buttons is pressed.
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There is no interaction between the machines. We have Π = {Mb,Ms}, withMb

andMs the Ltss of the beverage machine and the snack machine, respectively.
If we perform a Dfs through Mb, and we record the encountered traces

whenever backtracking is required, we get the following set: {〈push button(1 ),
get coffee〉, 〈push button(2 ), get tea〉}. Note that all reachable states of Mb

have been visited. We use these two traces as guiding principles for two different
searches through Mbs, which is the Lts obtained by placing the two Ltss in
parallel composition. Algorithm 1 presents the pseudo-code of our Iss, which
accepts a trace σ and a set of transition labels Aex to guide the search. In our
example, each Iss, with one of the two traces and Aex = Ab as input, focusses
on specific behaviour of the beverage machine within the bigger system context.

Fig. 1. Two Ltss of a beverage and a snack machine

Fig. 2 shows which
states will be visited
in Mbs if we per-
form an Iss based
on 〈push button(1 ),
get coffee〉. Alg. 1 ex-
plains how this is
done. Initially, we put
sin in Open. Then,
we add all successors

reached via a transition with a label not in Aex in Next , and add all successors
reached via a transition labelled σ(i) in Step. Here, σ(i) returns the (i + 1)th

element in the trace σ; if i is bigger than or equal to the trace length, we say
that σ(i) = ⊥, where ⊥ represents ‘undefined’, and {⊥} is equivalent to ∅. For
now, please ignore the next step concerning Fi; it has to do with feedback to
the manager, and will be explained later. Finally, sin is added to Closed , i.e.
the set of explored states, and the states in Next which have not been explored
constitute the new Open. Then, the whole process is repeated. This contin-
ues until Open = ∅. Then, the contents of Step is moved to Open, and the
Iss moves on to the next step in σ. In this way, the Iss explores all traces
γ = 〈α0, σ(0), α1, . . . , αn, σ(n), αn+1〉, with n the length of σ and the αi traces

Fig. 2. A search through Mbs with Mb restricted to 〈push button(1 ), get coffee〉
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Algorithm 1. Bfs-based Informed Swarm Search
Require: Implicit description of M, exclusion action set Aex, swarm trace σ
Ensure: M restricted to σ is explored

i ← 0
Open ← sin ; Closed, Next, Step, Fi ← ∅
while Open �= ∅ ∨ Step �= ∅ do

if Open = ∅ then
i ← i + 1
Open ← Step \ Closed; Step,Fi ← ∅

end if
for all s ∈ Open do

Next ← Next ∪ nxt(enM(s,A \ Aex))
Step ← Step ∪ nxt(enM(s, {σ(i)}))
Fi ← Fi ∪ {� | ∃s′ ∈ S.(s �−→ s′) ∈ enM(s,Aex)}

end for
Closed ← Closed ∪ Open
Open ← Next \ Closed; Next ← ∅

end while

containing only labels from A\Ab. If we perform an Iss for every trace through
Mb, we will visit all reachable states inMbs. Figure 2 shows what the Iss with
〈push button(1 ), get coffee〉 explores; out of the 9 states, 6 are explored, mean-
ing that 33% of Mbs could be ignored. The Iss using 〈push button(2 ), get tea〉
also explores 6 states, namely 0, 3 and 4 (the states reachable via behaviour
fromMs), and 1, 5, and 6. In this way, some states are explored multiple times,
but we have a Ces of non-exhaustive searches throughMbs.

6 Systems with Synchronising Processes

Next, we consider parallel processes which synchronise. In such a setting, things
get slightly more complicated. Before we continue with an example, let us first
formally define a subsystem and the Lts it yields.

Definition 3. Given a set Π of n > 0 process Ltss Mi = (Si,Ai, Ti, sini), for
1 ≤ i ≤ n, and a synchronisation function C : As × As → Af , we call a subset
π ⊆ Π of Ltss a subsystem of Π. We can derive a synchronisation function
Cπ : As

π ×As
π → Af

π from C as follows: As
π =

⋃
Mi∈πAi, and for all �, �′ ∈ As

π,
if C({�, �′}) = �′′, for some �′′ ∈ Af , we define Cπ({�, �′}) = �′′ and �′′ ∈ Af

π.

Note that the Lts of a subsystem π, which can be obtained with Definition 2, de-
scribes an over-approximation of the potential behaviour of π within the bigger
context of Π . This is because in π, it is implicitly assumed that all synchro-
nisation with external processes (which are in Π , but not in π) can happen
whenever a process in π can take part in it. For the Iss, we have to choose Aex

more carefully, and we need to post-process traces σ yielded from π; we must
take synchronisation between π and the larger context into account. For this,
we define a relabelling function R : Aπ → Af as follows: R(�) = � if there exists
no �′ such that C({�, �′}) is defined, and R(�) = �′′ if there exists an �′ such that
C({�, �′}) = �′′. Then, we say that Aex = {R(�) | � ∈ Aπ} and σ′(i) = R(σ(i)) for
all defined σ(i), such that Aex and σ′ are applicable in the system Lts, because
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actions from π which are forced to synchronise are relabelled to the results of
those synchronisations. In this case, σ′ relates to a single trace iff C is injective.

Fig. 3. Ltss of a user of a beverage machine, and
a beverage machine, respectively

Fig. 3 shows two Ltss: one
of a modified beverage ma-
chine Mb, and one of a user
Mu (for now, please ignore the
numbers between curly brack-
ets). For the parallel composition
Mub, we define: C({push button,
push button}) = button pushed2,
C( {get coffee, get coffee}) =
take coffee, C( {get tea, get tea})
= take tea.

First, if π = {Mu}, observe
that a Dfs through Mu does
not give us the full set of traces
through Mu; if we consider the
transition ordering from left to

right, a Dfs will first provide trace 〈push button(2 ), get tea, push button(2 ),
get tea, walk away〉. Then, it will backtrack to state 3, and continue via 5 to 6.

Algorithm 2. Trace-counting Dfs

Require: Implicit description of cycle-free M
Ensure: M and tc : S → � are constructed

Closed ← ∅
tc(sin) ← dfs(sin)

dfs(s) =
if s �∈ Closed then

tc(s) ← 0
for all s′ ∈ nxt(enM(s,A)) do

tc(s) ← tc(s) + dfs(s′)
end for
if nxt(enM(s,A)) = ∅ then

tc(s) ← 1
end if
Closed ← Closed ∪ {s}

end if
return tc(s)

Since 6 has already been ex-
plored, the Dfs produces trace
〈push button(2 ), get tea, push button
(1), get coffee〉 and backtracks to 0.
Note that this new trace does not fin-
ish with walk away. Continuing from
0, the search will finally produce the
trace 〈push button(1 ), get coffee〉.

Figure 4 presents Mub. If we use
these three traces (after relabelling
with R) as guiding functions as in
Alg. 1, and define Aex as mentioned
earlier, none of the searches will visit
(the marked) state 5! The reason for
this is that although inMu, multiple
traces may lead to the same state, in Mub, the corresponding traces may not.
This is due to synchronisation. Since the different traces inMu synchronise with
different traces in Mb which do not lead to the same state, also in Mub, the
resulting traces will lead to different states. One solution is to fully exploreMu

with a Dfs without a Closed set. However, this is very inefficient, since the com-
plete reachable graph from a state s needs to be explored n times, if n different
traces reach s. Instead, we opt for constructing a weighted Lts, where each state
is assigned a value indicating the number of traces that can be explored from

2 When transition labels have parameters, they can synchronise iff they have the same
parameter values. Then, the resulting transition also has these parameter values.
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that state. In Figure 3, these numbers are displayed between curly brackets. The
advantage of this is that we can avoid re-exploration of states, and it is in fact
possible to uniquely identify traces throughMu by a trace ID ∈ �.

Fig. 4. The Lts of a beverage machine and
a user in concurrency

Alg. 2 presents our trace counting
search (in which Closed is a global
variable), which not only explores a
full Lts, but also constructs a func-
tion tc : S → � indicating the num-
ber of traces one can follow from a
state. Deadlock states get weight 1,
and other states get a weight equal to
the sum of the weights of their imme-
diate successors. In Dfs, a state s is
placed in Closed once all states reach-
able from s have been explored, hence
at that moment, we know the final
weight of s. This allows us to reuse
weight information whenever we visit

an explored state. Note that tc(sin ) equals the number of possible traces through
the Lts. Alg. 3 shows how to reconstruct a trace, given its ID between 0 and
tc(sin ). It is important here that for each state, its successor states are always
ordered in the same way. In the weighted Lts, each trace from sin to a state
s represents a range of trace IDs from lower, the maintained lower-bound, to
lower + tc(s). Starting at sin , the algorithm narrows the matching range down
to the exact ID. At each state, it explores the transition with a matching ID in-
terval to the next state, and continues like this until a deadlock state is reached.

Algorithm 3. Trace Reconstruction

Require: Cycle-free M, tc : S → �, ID ∈ �
Ensure: Trace with given ID is constructed in σ

i, lower ← 0
crt ← sin

for all (crt �−→ s) ∈ enM(crt,A) do
if lower + tc(s) > ID then

crt ← s
σ(i) ← �; i ← i + 1

else
lower ← lower + tc(s)

end if
end for

The method works as follows: first,
an explicit weighted Lts of a sub-
system π is constructed. Whenever a
worker is ready for work, he contacts
a manager, who then selects a trace
ID from the given set of IDs, and con-
structs the associated trace σ using
the weighted Lts. This trace, after re-
labelling with R, is used by the worker
to guide his Iss. Next, we discuss the
Fi in Alg. 1. For each σ(i), set Fi is
constructed to hold all labels from Aπ

after relabelling which are encountered inM while searching for σ(i). SinceMπ

is an over-approximation of the potential behaviour of π inM,3 the set of trace
IDs is likely to contain many false positives, i.e. behaviour of π which cannot be
fully followed inM.

3 Note that only 2 of the 4 traces through Mu can be followed completely in Mub by
a swarm search.
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These Fi provide invaluable feedback, allowing the manager to prune non-
executable traces from the work-list. This is essential to on-the-fly reduce the
number of Isss drastically. The manager performs this pruning by traversing
the weighted Lts, similar to Algorithm 3, and removing all ranges of trace IDs
corresponding to traces which are known to be false positives from a maintained
trace set. E.g. if a worker discovers that after an action a of π, the only action of π
which can be performed is b, then the manager will first follow a in the weighted
Lts of π from sin to a state s, and remove all ID ranges corresponding to the
immediate successors of s which are not reached via a transition labelled b from
the trace set. The manager will also remove the ID of the trace followed by that
worker, if the worker was able to process it entirely. From that moment on, the
manager will select trace IDs from the pruned set. This allows for embarrassingly
parallel workers, and the manager can dynamically process feedback and provide
new work in the form of traces. Furthermore, only little communication is needed,
and if a worker fails due to a technical issue, the work can easily be redone.

Note that trace-counting Dfs, like Dfs, runs in O(|S| + |T |), and the trace
reconstruction search and the ID pruning algorithm run in O(n + (n ∗ b)), with
n the length of the largest trace through the weighted Lts, and b the maximum
number of successors of a state in the Lts. Finally, the complexity of Iss depends
on the Lts structure; it is less than O(|S| + |T |), as it is non-exhaustive, but
also not linear in the length of the longest trace through the Lts, like e.g. beam
search, as it prunes less aggressively (not every Bfs-level has the same size).

7 Experiments

All proposed algorithms are implemented as an extension of LTSmin [7]. The
advantage of using this toolset as a starting point is that it has interfaces with
multiple popular model checkers, such as DiVinE [2] and mCRL2 [17]. However,
DiVinE is based on Kripke structures, where the states instead of the transitions
are labelled. Future work, therefore, is to develop a state-based ISV.

We have two bash scripts for performing real multi-core ISVs and simulating
ISVs, in case not enough processors are available. We do not yet support commu-
nication between workers and the manager over a network. The functionality of
the manager is implemented in new tools to perform the pruning on the current
trace ID set, and select new trace IDs from the remaining set. All intermediary
information is maintained on disk; Initially, the user has to create a subsystem
specification based on the system specification, which is used for trace-counting,
leading to a weighted Lts on disk. The selection tool can select available trace
IDs from that Lts, and write explicit traces into individual files. Relabelling
can also be applied, given the synchronisation rules. The IDs are currently se-
lected such that they are evenly distributed over the ID range. The trace files
are accepted by the Iss in LTSmin, applied on the system specification. Fi-
nally, the written feedback can be applied on a file containing the current trace
ID set.
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Table 1. Results for two protocol specifications. ISV n indicates an ISV with n workers.
# π-traces: estimated # Isss needed. (1 for single Bfs)# Isss: actual # Isss needed.
max. states: largest # states explored by an Iss, or # states explored by Bfs. max.
time: longest running time of an Iss, or running time of Bfs.

case search results

# π-traces # Isss max. states max. time

DRM (1nnc, 3ttp)

Bfs 1 1 13,246,976 19,477 s

ISV 10 1.31 ∗ 1013 7,070 70,211 177 s

ISV 100 1.31 ∗ 1013 9,900 70,211 175 s

1394 (3 link ent.)

Bfs 1 1 137,935,402 105,020 s

ISV 10 3.01 ∗ 109 1,160 236,823 524 s

ISV 100 3.01 ∗ 109 1,400 236,823 521 s

We performed a number of experiments using μCRL [18] specifications of a
DRM protocol [37] and the Link Layer Protocol of the IEEE-1394 Serial Bus
(Firewire) [29] with three parallel link protocol entities. In the first case, we
performed trace-counting on the two iPod devices in parallel composition. In the
second case, we isolated one of the link protocol entities for the trace-counting,
and bounded its infinite behaviour, only allowing the traversal through cyclic
behaviour up to 2 times. The experiments were performed on a machine with two
dual-core amd opteron (tm) processors 885 2.6 GHz, 126 GB RAM, running
Red Hat 4.3.2-7. Creating the weighted Ltss took no more than a few minutes;
the DRM weighted Lts contained 962 states, the 1394 weighted Lts 73 states.
We simulated the ISVs, executing Isss in sequence. This influences the outcome
slightly, since we process feedback each time n new Isss have been performed; we
do this to approach a real ISV, where, on the one hand, feedback can be processed
as it becomes available, but on the other hand, many Isss can be launched in
parallel at the same time, hence when a certain amount of feedback has been
processed. Therefore, updating the remaining set of traces after each individual
Iss is not really fair. The need to simulate was the main reason that we have not
looked at larger Ltss yet. Table 1 presents the results. For smaller instances, we
validated that the swarm was cumulatively exhaustive, by writing the full state
vectors of states to disk. Observe that initially, the first analyses produced a large
over-approximation of the number of Isss needed (see “#π-traces”). The quality
of the estimation has an effect on the ISV efficiency, even with feedback. This
also has an effect on the difference in efficiency when changing n (the number
of parallel workers); when the over-approximation is large, many Isss may be
launched which can not process the given trace entirely, since it is a false positive.
As n is increased, the probability of launching such Isss gets higher, as more Isss
are launched before any new feedback is given. On the other hand, increasing n
still reduces the overall execution time, because there is more parallellism.

The ISVs take more time4 compared to a Bfs. This seems to indicate that the
method is not interesting. However, keep in mind that already the first few Isss

4 Note that the overall execution time takes at most max . time ∗ (#Isss/n) seconds.
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reach great depths, and they go into several directions. Therefore, even though
we did no bug-hunting, in many cases, it is to be expected that like SV, our ISV
will find bugs much quicker than a single search. This could perhaps even be
improved by using a Dfs-based version of Alg. 1. We plan to do an empirical
comparison between such a Dfs-based ISV and SV. For full exploration, ISV
does not provide a speedup, but this was not intended; instead, observe that the
maximum number of states explored in an Iss is much smaller than the Lts size
(in the DRM case about 1

2% of the overall size, in the 1394 case about 1
6%). A

better trade-off could be realised by guiding each Iss with a set of subsystem
traces; for the DRM case, an Iss following 10 traces would still explore no more
than 5% of the Lts (probably less depending on the amount of redundant work
which could now be avoided), while the number of Isss could be decreased by
an order of magnitude. This makes ISV applicable in clusters and grids with
large numbers of processors, each having access to e.g. 2 GB memory, even if
exploring the whole Lts at once would require much more memory.

8 Conclusions

In this paper, we have proposed a new approach to parallel MC, aimed at large
scale grid computing. Part of the system behaviour is analysed in isolation,
yielding a set of possible traces, each representing a search through the full Lts.
These searches are embarrassingly parallel, since only a trace, the set of actions
of the subsystem, and the specification are needed for input. Once a search
is completed, feedback is sent to the manager, giving him information on the
validity of the remaining traces, which is invaluable, since the set of traces is an
over-approximation of the possible traces of the subsystem in the bigger context
of the full system. We believe that our method is fully compatible with existing
techniques. E.g. one can imagine having multiple multi-core machines available;
the ISV method can then be used to distribute the work over these machines,
but each machine individually can perform the work using a multi-core search.
Also reduction techniques like partial order reduction should be compatible with
ISV. For good results, we expect it to be important that both during the analysis
of the subsystem and the full system, the same reduction techniques are applied.

For future work, we plan to test ISV more thoroughly to see if it scales to
real-life problems, and make the tools more mature. As the size of the subsystem
has an effect on the work distribution, it is interesting to investigate what an
ideal subsystem relative to a system would be. We also wish to generalise ISV,
such that subsystems yielding infinite behaviour can be analysed, and to improve
the trace set approximation with e.g. static analysis. One could also construct
the trace set according to the MC task, e.g. taking the property to check into
account. We plan to investigate different strategies for trace selection. A good
strategy sends the workers into very different directions. Finally, [16,36] provide
good pointers to develop a state-based ISV.
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Abstract. Ability to scale up from toy examples to real life problems is a cru-
cial issue for formal methods. Formalizing a algorithm used in vehicle automation
(platooning control) in a certification perspective, we had the opportunity to study
the scaling up when going from a (toy) model in 1D to a (more realistic) model in
2D. The formalism, Event-B, belongs to the family of mathematical state based
methods. Increase was quantitative: 3 times more events and 4 times more proofs;
and qualitative: trigonometric functions and integrals are used. Edition and ver-
ification of the specification scale up well. The crucial part of the work was the
adaptation of the mathematical and physical model through standard heuristics.
The validation of temporal properties and behaviors do not scale up so well. Anal-
ysis of the difficulties suggests improvements in both tool support and formalism.

1 Introduction

This paper relates our experience with the specification of a realistic algorithm for the
control of autonomous vehicles. The problem to solve has interesting characteristics:

– the development should lead to a certified product (a component for a car moving
in the public space),

– the physical and mathematical model uses common mathematical notions such as
trigonometric, kinematics, integrals, and so on,

– there is an existing empirical solution.

The problem is known as platooning: autonomous vehicles that move as virtual trains.
All vehicles follow the virtual track defined by the first vehicle while keeping to a
minimum the distance between them. The issue is then to guarantee that the control
algorithm is safe, i.e., that vehicles can never collide.

We chose Event-B because the concepts of proof obligation and formal refinement
are well fitted for the task of guaranteeing an implementation. However, several points
needed to be assessed. Could a non-functional property such as non-collision be spec-
ified in Event-B? Is the support environment, particularly the provers, strong enough
for such a problem? Can we model adequately a system which contains continuous
functions, real numbers, or geometric relationships, in a framework which is based on
discrete sets and integers?
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A first specification was written on a simplified version of the problem. The model
considered only a linear track (1D) and the control was only aimed at keeping some
ideal distance while avoiding collisions. While simplistic, this model was important on
three respects: it allowed us to identified the “hard” parts, it prototyped the properties
of interest, and it provided us with a neat structure for the development.

The next specification considered the platooning problem from a realistic point of
view. Vehicles are now moving on a plane, the leader of the platoon is not constrained to
a predefined track, the properties of interest are now the non-collision and the distance
form the virtual track drawn by the leading vehicle.

The changes between a model in 1D to a model in 2D do not seem that big. In-
stead of one value, the control law must now compute two values: linear acceleration
and derivative of the curvature. Furthermore, the system is assumed to stay within the
boundaries which guarantee that the lateral and longitudinal controls can be modeled
and computed independently.

However, working on a plane introduces notions such as trigonometric functions,
curvature, and so on. While this means a modest increase in complexity for a mathemat-
ically literate person, those new concepts introduce genuine difficulties for the specifier;
e.g, how to model a sine function when co-domains are restricted to integers?

The paper discusses some scaling-up issues when going from a 1D model to a 2D
model. We could solve some, most importantly the consistency proofs and the adapta-
tion of the mathematical model. Other issues can be solved but at a high cost, proving
global temporal properties is among them. Last, some are yet beyond our reach because
the tools cannot deal with the complexity; animation falls in this case for instance.

The paper is structured as follows: Section 2 introduces the notation and semantics
for Event-B; Section 3 describes the platoon problem and the model used; Sections 4, 5,
6, 7 and 8 discuss the different aspects of scaling up with Event-B: mathematics, speci-
fication structure, temporal properties, tools and process; finally, Section 9 concludes.

2 Event-B Language

Event-B [18,2] is an evolution of the classic B method [1]. Designed for modeling the
environment where a piece of software developed with the B-method must execute,
Event-B proved to be a good formalism for specifying and reasoning about systems
such as concurrent systems, reactive systems, or complex algorithms. Event-B is a state
based specification technique. It embodies a process: formal refinement.

Formal Model. A formal model consists of a state and events. A state is a set of vari-
ables constrained by invariants. Values associated to variables are either symbols, inte-
gers, or set-theoretic constructions upon those (powersets, relations, functions, etc.). In-
variants are expressed as formulae in first-order predicate calculus. Events are guarded
generalized substitutions. Guards are formulae on the state and substitutions apply si-
multaneously on a subset of state’s variables.

The semantics of a model is given by a few rules. Substitutions use the weakest pre-
condition calculus of Dijkstra [8]; events must keep the invariant; when several guards
are true, the choice of the event to fire is non-deterministic; there must exist a com-
putable initial state. The intuitive behavior of a specification is easy to explain: first,
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the INITIALISATION event is fired, then a cycle begins where: all guards are evaluated,
one event is picked among those with a “true” guard, and its substitutions are executed.
The cycle ends when no guard is true, which means either that the system has reached a
terminal state, or that the system is deadlocked. Infinite cycles are also possible, which
could be the correct behavior or indicate a reachability problem for a terminal state.

The formal semantic rules are implemented as proof obligations. To verify a model,
that is, to assess its consistency, we need to discharge all the proof obligations.

Refinement. Event-B allows one to express that a model is a refinement of another,
more abstract model. Refinement consists in introducing new variables. An abstraction
invariant relates the new variables to the abstract variables. Events from the abstract
model can be kept untouched in the refinement, or can be rewritten using the new vari-
ables. New events can be introduced too. In practice, it is often useful to think in term
of reification of variables and of decomposition of an event into several smaller ones.

The semantics of refinement is given by proof obligations. Proving a refinement
correct amounts to prove that concrete events maintain the invariant of the abstract
model, the abstraction invariant, and do not prevent abstract events to be triggered.

The syntactic structure of the language was designed so that the proof obligations can
be easily generated and broken into small formulae. The Rodin platform [20] provides
the practical framework to carry out modeling in Event-B. It seamlessly integrates mod-
eling and proving, and provides mechanisms for extension and configuration so that it
can be tailored to different application domains or development methods.

3 The Platooning Problem

3.1 Platoons

Research on urban mobility systems based on fleets of small electric vehicles stresses
the importance of a new moving mode: platooning. A platoon is defined as a convoy of
autonomous vehicles which follow exactly the same path and which are spaced at very
close distance one from the other.

In this work, we consider platoons formed by a leader vehicle and followers. Lead-
ers and followers have different control laws. We specify only the follower control law.
Its aim is to keep as close as possible to the preceding vehicle while following a vir-
tual ideal track without colliding. We use a model of vehicle where the control can be
decomposed into longitudinal (distance with preceding vehicle) and lateral laws. We
assume operating conditions such that the two controls can be set independently [7].

There are numerous strategies to form and maintain platoons, characterized by their
degree of centralization and the volume of communication. We specify a minimal strat-
egy: no central control and no communication between vehicles other than perception,
i.e., a vehicle can sense a few information from the preceding vehicle (distance, speed,
etc.). The virtual track is set by the leader. The control is local to each vehicle, based on
current state and perceptions. This strategy may not be the most efficient but it is very
robust. In particular, it can be used as a fall-back in case of failure in a system using
more sophisticated algorithms. Hence the need to guarantee its correctness.

Within this problem setting, platoons can be considered as situated multi-agent sys-
tems (MAS) which evolve following the Influence/Reaction model [10,9]. Development
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of the specification follows a stepwise refinement process based on this model: (i) driv-
ing systems perceive, (ii) decisions are taken, and (iii) physical vehicles move.

3.2 Research Goal and System Hypotheses

We aim at modeling formally a pragmatic strategy known as Daviet-Parent algorithm [7]
in order to prove that implementations enjoy certain properties [12] such as: (i) the
model is sound bound-wise, (ii) no collision occurs between the vehicles, (iii) no un-
hooking occurs, and (iv) no oscillation occurs.

Presently, we focus on two essential safety properties: no collision within a platoon
occurs1 and the soundness is maintained.

Our model is based on the following system hypotheses:

– we consider a set of N(≥ 2) vehicles forming a linear platoon,
– motion of vehicles is limited by fixed bounds on velocity, acceleration, curvature

and derivative of curvature,
– we consider forward-only motions on a non self-intersecting track,
– we suppose that the frequency of the control algorithm is the same for all vehicles,

so they can be modeled as synchronized,
– sensors are perfect and their accuracy is such that the velocity of the previous vehi-

cle can be precisely known,
– actuators of the engine are perfect.

The hypotheses are strong but not that far from reality considering (1) we are not mod-
eling fault, fault-tolerance, or such matters, (2) near perfect abstract sensors or actuators
can be built from merging results of several concrete ones.

3.3 State of Vehicles

In the 1D model, vehicles move on a linear track, equivalent to a rail. The state of the
ith vehicle at time t is the pair (xposi(t),speedi(t)), where xposi represents position on
the track and speedi represents the velocity. Control consists in setting of an acceler-
ation to modulate speed. The behavior law is represented by (1) extracted from [24],
where MaxSpeed is the maximum velocity, acceli is the acceleration, and Δt is the time
increment:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n_speed = speedi(t)+ acceli(t).Δt

xposi(t + Δt) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xposi(t)+ MaxSpeed.Δt if n_speed > MaxSpeed

xposi(t)− speedi(t)2

2.acceli(t)
if n_speed < 0(

xposi(t)+ speedi(t).Δt

+ acceli(t).Δt2

2

)
otherwise

speedi(t + Δt) =

⎧⎨
⎩

MaxSpeed if n_speed > MaxSpeed
0 if n_speed < 0
n_speed otherwise .

(1)

1 Collisions between platoons or between a vehicle and an obstacle should of course be consid-
ered in a real system. First kind should be taken care by the control law of leaders, second kind
is dealt with by lower level emergency systems. Both are outside the scope of this work.
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The acceleration acceli is chosen according to the current state of the ith vehicle and
the values sensed on the preceding vehicle.

In the 2D model, vehicles move on a plane. The vehicle state η must model its
position, represented by cartesian coordinates (x,y), and its attitude, represented by the
orientation θ of vehicle’s axis with respect to x-axis. The behavior law now contains a
velocity v and a trajectory’s curvature κ which are controlled by application of a linear
acceleration a and a derivative of the curvature χ. When a control (a,χ) is applied to a
state (x0,y0,θ0,v0,κ0) at time t for a period Δt, the new state at time t + Δt becomes:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = x0 + cosθ0FC(Δt,v0,κ0,a,χ)− sinθ0FS(Δt,v0,κ0,a,χ)
y = y0 + cosθ0FS(Δt,v0,κ0,a,χ)− sinθ0FC(Δt,v0,κ0,a,χ)
θ = θ0 + v0κ0Δt +(aκ0 + v0χ)Δt2

2 + aχ Δt3

3
v = v0 + aΔt
κ = κ0 + χΔt

(2)

where FC(Δt,v0,κ0,a,χ) =
∫ Δt

0 (v0 + at)cos(v0κ0t +(aκ0 + v0χ)t2/2 + aχt3/3)dt
and FS(Δt,v0,κ0,a,χ) =

∫ Δt
0 (v0 + at)sin(v0κ0t +(aκ0 + v0χ)t2/2 + aχt3/3)dt .

At this mathematical level, the increase in complexity is noticeable but not dramatic:
most of it boils down to the expansion of standard geometric formulae.

4 Scaling Up with Event-B: Mathematics

4.1 1D Model Adaptation

The formulae in the 1D model are basic arithmetic expressions; they contain no special
mathematical functions. The values of xposi, speedi and acceli can easily be modeled
as integer numbers. It suffices to choose a system of units small enough to reach the
accuracy needed in practice. Hence, they can be expressed straight away in Event-B.

4.2 2D Model Adaptation

By contrast, a simple look at the 2D model shows that we need to transform the model
so it can be expressed in Event-B. The most obvious “problems” are the sine and cosine
functions (meaningless on Integers) and the integral in FC and FS expressions.

The Discretization Issue. The heart of the difficulty lies in the discretization of con-
tinuous kinematic values such as position, speed or acceleration. The question is then:
Why not use continuous values? We are not ready to answer positively for two reasons.

First reason is practical. Current provers within the B world consider only integer
numbers. Even with these “simple” numbers, proofs are often complex and intricate. It
is not clear that provers doing a good job with real numbers will be available soon.

Second reason is deeper. Software systems are inherently discrete. Because of nu-
merous latencies in the autonomous car (sensing data, computing controls, driving ac-
tuators), the control system will operate at a rather slow frequency. So, the actual system
will run as if time is discrete.

The B formal method aims at producing code which is proven to maintain functional
invariants. So, we need to introduce the discretization at some point. Our position is
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that we must introduce this fundamental feature early in the models: as soon as we need
“continuous” values in the specification. Of course, we must then develop techniques
and strategies to take care of this feature.

Although reasonably simple from a mathematician point of view, the 2D model can-
not be translated directly in Event-B. We need to “refine” it. We used three heuristics.

(1) Free Physical Units. In Event-B, the easiest representation of continuous kine-
matic values such as position, velocity, acceleration is integer numbers. By keeping the
physical units unspecified but homogeneous (e.g., the unit of velocity is equal to unit of
distance divided by unit of time.), we can adapt the representation to the desired accu-
racy of the computations. Distances can be millimeters as well as meters, and times can
be milliseconds as well as seconds.

(2) Approximate Mathematical Functions. The restriction to Integers of the ranges
of sine or cosine is a three value set: not very interesting. To solve this problem, we in-
troduce a special dimensionless constant µ and we consider µcosθ and µsinθ instead of
cosθ and sinθ. We do the same with FC and FS and consider µFC and µFS. By choosing
a µ with a big value, expressions can be reasonably coded with integers.

Event-B provers know about standard rules of arithmetic but ignore trigonometric or
general calculus rules. In order to use the provers, we use Taylor series and identities to
transform expressions into arithmetic approximations.

Last, the vehicle state η = (x,y,θ,v,κ) is represented by a 6-tuple (x,y,γθ,σθ,v,κ).
The values of x,y,v and κ are integers; the units must be taken small enough to obtain
a good accuracy. The values of γθ and σθ are also integers which respectively represent
µcosθ and µsinθ. We define a carrier set POINT to denote the set of all possible vehicle
states. The approximate, but accurate, model of 2D platooning is then:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x = x0 +(γθ
0F̃C(Δt,v0,κ0,a,χ)−σθ

0F̃S(Δt,v0,κ0,a,χ))/µ2

y = y0 +(γθ
0F̃S(Δt,v0,κ0,a,χ)+ σθ

0F̃C(Δt,v0,κ0,a,χ))/µ2

γθ = (µCγθ
0−µSσθ

0)/µ
σθ = (µCσθ

0−µSγθ
0)/µ

v = v0 + aΔt
κ = κ0 + χΔt

(3)

where µC = µ− β2/(2µ), µS = β− β3/(6µ2) with β = v0κ0Δt + (aκ0 + v0χ)Δt2/2 +
aχΔt3/3, F̃C(Δt,v0,κ0,a,χ) and F̃S(Δt,v0,κ0,a,χ) expanded as Taylor series.

Event-B translation is straightforward but yields overly long expressions.

(3) Check and Rewrite Mathematical Formulae for Provability. Many properties of
formulae on real numbers can be safely assumed when we restrict their use to integer
numbers, but not all. Consider the true equality with real numbers: a ∗ (b/c) = (a ∗
b)/c. Its equivalent with natural numbers is a∗ (b÷ c) = (a∗b)÷ c. Unfortunately, this
equality is not true anymore (hint: ÷ denotes the integer quotient). So any proof which
relies on the equality cannot be discharged anymore.

In the initial 1D platooning model, we found two reviewed goals that were instances
of the above example. The “obvious” formula below, straight translation of the 1D
mathematical model, introduces non provable proof obligations.
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xpos0+MAX_SPEED−(((MAX_SPEED−speed0)∗(MAX_SPEED−speed0))/(2∗accel0))

We proved the model by avoiding the problem with the equivalent expression:

xpos0 + ((MAX_SPEED−speed0)∗(MAX_SPEED−speed0))/(2∗accel0) +
speed0∗((MAX_SPEED−speed0)/accel0) +
MAX_SPEED∗(1−(MAX_SPEED−speed0)/accel0)

5 Scaling Up with Event-B: Specification Structure

An important question when we started the 2D modeling was: can we keep the same
development structure as for 1D modeling? We had two reasons. First, a great deal of
effort had been put into it so it is intelligible, consistent with the general MAS model,
then easy to validate. Second, we can expect proofs structures (and even whole proofs)
too to be similar if developments are similar.

We have been able to keep the exact same structure of the development. The same
refinements with the same rationales are present in both specifications. In fact, we used
the development of 1D specification as a “road-map” for development of the new model.

The structure of the specification [12] consists of an abstract machine Platoon and
four refinements. Each development introduces a clearly identified concept. Platoon
sets the “vocabulary” and the safety property of interest. Platoon_1 splits the platoon’s
movement into each vehicles’ movements. Platoon_2 implements the physical reaction
laws. Platoon_3 introduces the decision step. Platoon_4 introduces the perception step
and implements the decision laws.

5.1 Decomposition of Events

During the refinement, the number of events increased much more steeply. A simple
pattern explains this explosion.

Both specifications implement the reaction laws in machine Platoon_2 and the de-
cision laws in machine Platoon_4. We need to decompose the abstract events move1
and move in machine Platoon_1, and the abstract events decide1 and decide in machine
Platoon_3 into more concrete ones. Let us consider the decomposition of event move.

The mathematical model (1) in 1D indicates that three cases must be considered
when computing a new state. This is due to the fact that speed is bounded. In Event-B,
conditional definitions are expressed by the use of guards. This means that the move
event must be decomposed into three events, one for each situation (speed reaching
lower bound, reaching upper bound, or within bounds.)

All events where speed is a parameter are decomposed following the analysis exem-
plified in Table 1.

In the 2D model, we have to consider two bounded parameters: speed and curvature.{
n_speedi = speedi + acceli.Δt
n_κi = κi + χi.Δt .

(4)

The analysis must then take into account the combination of three cases for n_speedi

and three cases for n_κi. So, events are refined into nine following the pattern of Table 2.
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Table 1. Decomposition of move event in the 1D model

n_speedi < 0 ∈ 0..MAX_SPEED > MAX_SPEED

move move_reduce move_normal move_max

Table 2. Decomposition of move event in the 2D model

n_speedi \ n_κi <−MAX_κ ∈−MAX_κ..MAX_κ > MAX_κ

< 0 move_vmin_κmin move_vmin_κ move_vmin_κmax
∈ 0..MAX_SPEED move_v_κmin move_v_κ move_v_κmax
> MAX_SPEED move_vmax_κmin move_vmax_κ move_vmax_κmax

5.2 Statistics of the Specifications

The multiplication of events depicted above happened a few times. It should be noted
that other refinement strategies for the abstract event move could have been chosen.
For instance, we could have kept the refined event unique, but at the expense of very
complex guards. Our trade-off lengthens the specification text and increases the number
of proof obligations but each proof is much simpler.

Table 3 shows the increase in complexity when passing from the 1D initial model,
to the 1D revised model using the technique presented in Sect. 4.2 and augmented with
deadlock-freeness, to the 2D model.

Introducing a safety property such as deadlock-freeness has little impact on complex-
ity. While the number of variables roughly doubled when going 2D, all other measures
varied by a four-fold increase. Interestingly, the ratio between manually and automat-
ically discharged proof obligations increases just a little: most of the new proof obli-
gations are simple ones. The most important increase is the number of theorems. They
are used to ease the proofs by introducing only once standard mathematical properties.

Table 3. Statistics of the specifications

1D initial model 1D revised model 2D model

Sets 0 0 1
Constants 15 15 50
Axioms 27 27 86
Variables (last refinement) 10 10 16
Invariants 16 17 29
Events (last refinement) 15 15 39
Guards (last refinement) 81 81 354
Theorems 1 4 46
Variants 3 3 3
Automatic POs 187 196 743
Manual POs 29 36 177
Reviewed POs 4 1 0
Undischarged POs 0 0 0
Total POs 220 233 920
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This is a consequence of the introduction of more complex arithmetic expressions in
the 2D model.

6 Scaling Up with Event-B: Temporal Properties

Temporal properties can be classified into two categories. Safety properties specify that
nothing bad will happen. Liveness properties specify that something good will eventu-
ally happen [11]. Our model must guarantee a safety property: deadlock-freeness.

This safety property was introduced after a long period of perplexity where we were
baffled by observing collisions in our programmed simulations of the exact same model
that was verified, i.e., where we had proven that firing any event kept a strictly positive
distance between vehicles as invariant [12]. The mystery was lifted when we realized
that if a moving vehicle cannot react, i.e., its control system is deadlocked, then it will
likely collide with something.

Deadlock-freeness is not well integrated into the Event-B framework. As for many
other temporal properties, we can use “tricks”. For deadlock-freeness, we build the
disjunction of the guards of all events other than INITIALISATION and we prove it is a
theorem. So, we can be sure that one event at least can always be fired.

The trick works well on small models but does not scale up. In the 1D specification,
the deadlock-freeness theorem in machine Platoon_2 is a formula with around 42 lines
(7 events times 6 lines per guard). It would be around 390 lines long in the last refine-
ment of the 2D specification (39 events times 10 lines per guard). Two problems arise
then. One concerns the management of a proof of a disjunction of 39 cases. Rodin proof
explorer is well thought out and we are quite confident that, with time and patience, we
could discharge the proof. The second concerns the construction of the formula. Right
now, we must rely on a manual cut and paste procedure. Needless to say, the probability
of introducing a non obviously detectable error is too high for the result to be trusted.
Clearly, we need a tool to build automatically this formula.

7 Scaling Up with Event-B: Tools

Formal methods depend heavily on automated support. They require long, intricate, and
generally tedious chains of reasoning to discharge or establish properties, even trivial
ones. This is the nature of formal proof systems. Effective tools are not a “nice addition”
to a formal method, but a key factor for its deployment. Event-B is supported by Rodin,
a framework which integrates gracefully tools to edit, verify and validate models.

7.1 Edition and Verification

The increase in size shown in Table 3 did not pose any problems to Rodin editors, ei-
ther the native structural editor or pluggable text-editors such as Camille [5]. Likewise,
visualization tools such as the LaTeX generator or the pretty-printer were up to the task.

Provers were also able to deal with the increase in complexity. In fact, the general
strategy of breaking a verification proof into several smaller proof obligations as used
by B spreads the increase in complexity on much more proof obligations, but each one
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remains reasonably simple. Some proofs were more complex because the model uses
more complex formulae, not because it is bigger.

7.2 Animation Plug-In for Validation

Animation is a technique to execute specifications. Thus, we can play, experiment and
observe the behavior of models. Several tools support the technique [4,13,26,21,23].
The principle of animating an Event-B specification is a simple three-step process:

1. the user gives values to the constants and carrier sets in the contexts,
2. the INITIALISATION event is fired to set the system in its initial state,
3. the animator enters a loop:

(a) compute the guard of all events, enable those for which the guard is true. When
events are parameterized, pick one value, if any, which makes the guard true,

(b) the specifier fires one of the enabled event; the substitutions are computed,
(c) check if the invariants still hold [optional].

The computation of the invariant is superfluous when the animated specification has
been fully proven. However, it is a very valuable feature when animation is used on un-
proven specifications, in particular to check potential candidate for invariant formulae.

It may sound strange to use anecdotal observations in a context where mathematical
proofs are pivotal to the method. However, we firmly believe that such semi-formal
activities are useful, and even sometimes necessary, for three reasons.

The first reason relates to the notion of validation. Proofs show that a particular text
is logically consistent and that the last model in a sequence of refinements is a correct
concretization of the initial model. However, proofs do not tell if a model is an adequate
description of the desired behavior of the system. Animation exhibits behavior.

The second reason concerns temporal properties. Not all properties can be expressed
in Event-B. Animation can then be used to “test” the specification for certain properties.
We can set up scenarios and look if the system goes only through safe states. Like tests,
animation does not prove correctness but shows errors.

The last reason is that animation is a good, practical, tool to get deep insights on
complex specifications. Actually, animation was mainly invented for this reason [3].

We used intensively animation to understand the collision problem in the 1D platoon-
ing specification. In particular, animation helped us to understand which values lead to
deadlocks. From those, we could abstract to general configurations, and then relate to
parts of the deadlock-freeness theorem.

We also found out, in another work [16], that animation could be a reasonably cheap
way to get a correct refinement of an abstract fact into a complex behavior. Animation
helped to define the guards and the explicit coding of causal order required by Event-B.

7.3 Breaking Animators

The positive experience with 1D induced us to use animation early in the 2D model
development. Unfortunately, animators failed us even on the first refinement.
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We tried with two different animators, Brama2 and ProB [14]. In both cases, the
notion of POINT (3) was the first visible obstruction. We needed to code it, either
crudely as integers with Brama or more abstractedly as symbols with ProB. Either way,
a list should be provided by hand. This is not realistic and even meaningful.

One way to get rid of POINTs is to refine them as their coordinates. Each coordi-
nate is an integer function which could be individually managed but six of them create
too complex a space. Brama seems to enumerate values, ProB uses more sophisticated
constraint solving techniques; both strategies fail on the 6-dimensions space.

This can be explained by two important features of Event-B: non-determinism and
definition of values by their properties. Animators are then more oriented toward “pick-
ing” values rather than “computing” values. This orientation is fine most of the time, but
it should not be exclusive. Sometimes, even in abstract specifications, we know some
expressions are deterministic computations: kinematic functions are a good example. In
those cases, we would appreciate to be able to tell this to the animator.

In the transformations we developed to make specifications “animatable” [17], we
have some ad-hoc heuristics which force a computation. Their major drawback is to
make the text of the guards and the substitutions much more complex. While in principle
they are applicable, we have not yet tried them in the 2D specification. We lack the
automated editors required by the number of expressions to transform.

8 Scaling Up with Event-B: Process

Like for any complex artifact, we need a precise and definite process to build good
formal specifications. A good formal specification should have the following properties:
(a) it is logically consistent, (b) it has proven functional properties, (c) it meets non-
functional properties, and (d) it is a reasonable model of the problem.

Formal refinement is the keystone around which the B-method is designed. Its em-
bodiment into the language and the support tools allows one to develop pieces of soft-
ware where an implementation is proven against its specification. Refinements break
down the verification process into discharging many, but small, proof obligations. So
issues (a) and (b) are well taken care of. Event-B uses the same strategy. Here, models
are complexified while retaining the same functional properties.

To deal with the issues (c) and (d), i.e., the validation of the specification, we have
defined an extended refinement process depicted in Fig. 1.

The idea is to associate validation activities to formal refinement steps. A develop-
ment step is then composed of four activities:

1. refinement of the physical/mathematical model. The mathematical expressions are
refined so that they can be translated into Event-B and lead to provable properties.
Discretization is studied at this stage.

2. formal refinement of the Event-B specification with all proof obligations discharged.
3. animation of the specification. The specification is transformed in order to be ani-

matable [17], scenarios are elaborated, and behavior is observed with the animator.

2 http://www.brama.fr

http://www.brama.fr
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Fig. 1. A step of development process
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4. analysis and refinement of temporal properties. This activity leads to the introduc-
tion of variants and theorems for temporal properties and their proof.

The order of the activities is important. A mis-adapted physical model may lead to
non provable, although correct, formulae. There is no point to validate an unproven
specification as it may be inconsistent. Animation can help get better insights on the
temporal constraints which need to be formalized.

The process was successfully tested with the 1D model. Actually, it was through
replaying the construction of the 1D model with the full process that we were able
to identify the flaws in the initial model and to produce a revised, correct, version.
As can be inferred from the above discussion on tools, we could not fully validate
the 2D specification due to the lack of automated tool support. However, the process
helped us the ask the pertinent questions when validating through “walkthrough” of the
specification. Furthermore, it gave us ideas on improvements of the environment.

9 Conclusion and Future Works

Our experience with a real-world model is both reassuring and worrying. This is consis-
tent with our findings on using Event-B for the modeling of transportation domain [15].
On the very positive side: we could model a reasonably complex algorithm and prove its
correctness. Daviet-Parent algorithm is a good representative of a class of problems of
great practical importance: problems for which we have empirical solutions, prototype
implementation, and a strong need to certify it before we can use it in practice.

Event-B is a good candidate for formal modeling and development of real systems.
First, the language has sufficient power to express complex mathematical models and
algorithms. Second, the formalism embodies a sound, effective, and easy to use refine-
ment based process. Last, the tool support for edition and verification is up to the task.
Of course, stronger provers or syntactic sugar-coating to help navigate long texts would
be welcome improvements but are not mandatory to make the method usable.

A second reason to be optimistic was our ability to deal with a physical and math-
ematical model which incorporates complex functions and continuous time. This has
required some sweat and efforts, but was never a blocking factor. We think that there
are a few “conditioning techniques” that can be used at the mathematical level to put
continuous model in a form suitable to Event-B. We have identified some of them.

Whether Event-B should support continuous functions or real numbers is an interest-
ing question. The answer may not be clear-cut. In our system, real numbers would have
eased the writing and maybe some consistency proofs. However, they would not help
much improving an implementation because actual vehicles will operate on a discrete
time. The control software of actual prototype vehicles operates around 20 Hz. That
makes for quite a discrete time.

The worrying issue lies with the checking of temporal properties, either formally
through proofs, or pragmatically through animation.

On the formal side, the current situation is not adequate. Only “coarse” properties
can be expressed and even then, awkwardly. This is clearly an area where research is
needed. A way to overcome this limitation is to associate B or Event-B with another
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formalism which supports temporal modelling. CSP||B proposed in [22,25] is a candi-
date. Experiments [6,19] conducted on the specification of the platoon problem indicate
a good potential. However, two big issues are still opened: the automation of the proof
of consistency between CSP and B parts, and the refinement divergence between CSP
and B. Whether CSP||B will scale up soon to realistic models is not yet clear.

On the pragmatic side, we need better animators. Such tools have a very important
property: they act on the specification itself. We can be confident that observing anima-
tions is observing the model’s behavior. It is not clear that the failures to use animators
that we have identified can be overcome soon. We are currently working on the idea
of translating the specification into an executable language like C or MATLAB. Such
translators could be used as a “fall-back” when standard animation fails. They will not
exhibit the real model’s behavior but a reasonably close version.
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1 Verimag Laboratory, Université Joseph Fourier Grenoble, CNRS
2 State Key Laboratory of Computer Science, Institute of Software, CAS, Beijing

3 INRIA/IRISA, Rennes

Abstract. D-Finder 2 is a new tool for deadlock detection in concurrent
systems based on effective invariant computation to approximate the ef-
fects of interactions among modules. It is part of the BIP framework,
which provides various tools centered on a component-based language
for incremental design. The presented tool shares its theoretical roots
with a previous implementation, but was completely rewritten to take
advantage of a new version of BIP and various new results on the theory
of invariant computation. The improvements are demonstrated by com-
parison with previous work and reports on new results on a practical
case study.

1 Context

Language. D-Finder 2 is part of a framework of tools that share a common
language, BIP, to describe component-based systems [1]. The language is based
on atomic components and connectors to describe their interactions. Compo-
nents can also be hierarchically organized to build new components. An atomic
component is a transition system B = (L, P, T ), where L = {l1, l2, . . . , lk} is
a set of control locations, P is a set of ports, and T ⊆ L × P × L is a set of
transitions. A component additionally can contain data and use C code for ac-
tions and conditions on the transitions to manipulate this data. Figure 1 shows
a graphical representation of two atomic components B1 and B2. We use cycles
for locations and arrows for transitions. Every transition is labeled by a port to
synchronize with ports of other components to create interactions. In the exam-
ple, the ports trigger and tick of the two components are synchronized, which
means the corresponding transitions have to be executed concurrently, and are
only available if the guards in both components are fulfilled. The transition rel
can be taken whenever a component is in the fire location. We can give only a
very brief description of BIP here, please refer to [1] for more details.

Verification. Previous work [3,4] introduced an efficient verification method
for the models above. Key to this method is the approximation of the reachable
states by compositional invariant computation based on (1) component invari-
ants Φi that capture the constraints on local data of a component Bi, and (2)

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 453–458, 2011.
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Fig. 1. A BIP model Fig. 2. BIP tools and work-flow

the interaction invariant Ψ , which captures constraints on the global state space
induced by the synchronization. More formally, we have the following rule:

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧

i Φi) ∧ Ψ ⇒ Φ
‖γ{Bi}i < Φ >

The rule states that if all components Bi fulfill their respective component in-
variants Φi, the composition of all components II(‖γ{Bi}i, {Φi}i) with the inter-
actions γ fulfills an interaction invariant Ψ , and if furthermore the conjunction
of the invariants (

∧
i Φi) ∧ Ψ implies a predicate on the global system Φ, then

also the global system ‖γ{Bi}i itself fulfills Φ. In this paper we concentrate on
global deadlock-freedom. Indeed, it suffices to prove the invariance of the pred-
icate ¬DIS, where DIS is the set of states of the system from which all the
interactions are disabled.

Tool Chain. The design flow between BIP and D-Finder is sketched in Figure 2.
The framework allows to (1) start from scratch and describe a composite system
with the BIP language, or (2) to use the Language Factory to translate existing
models described in languages such as C, DOL [15] or Simulink [13] into the BIP
framework. These models then are used for validation, verification, model to
model transformation and eventually generation of C++ code for simulation or
deployment. D-Finder plays a central role in this process to verify the initial
models as well as ensuring correctness after transformation steps.

2 D-Finder 2

Recently, BIP has been updated and enriched with new features to improve the
modeling process for building hierarchical models and add new interactions in
an incremental manner. Furthermore, since the tool presentation in [4], new,
more efficient techniques for computing Ψ were introduced in [6,2]. To show the
results of unifying those recent developments, this paper presents D-Finder 2, the



D-Finder 2: Towards Efficient Correctness of Incremental Design 455

Expression Analysis

satisfiability
Φ ∧Ψ ∧ DIS

Model

Abstraction
Φi

generation
DIS

generation

Ψ
generation

BIP

DIS
∧

ΦiΨ

Predicate-
abstraction

DL free
false DL 

suspects

CEX
generation

Analysy is

feasibility
check

predicates

true

CEX

Omega

Yices

BDD
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#> dfinder -f p1000.bip --incr_file incr_15.incr

--method=pm --analysis=dl

# overall analysis :

# compute II using incremental pm :

# Eliminate Variables Abstraction(Phil... :

# Compute CI for Philosopher : 0:01

# Eliminate Variables Abstraction(Phil... : 0:02

...

# get common locations : 0:03

# compute BBCs[0] : 0:01

...

# integrate for increment[1] : 0:00

...

# dual compuatation : 0:00

# concretization : 0:02

# compute II using incremental pm : 0:41

# incremental DIS : 0:24

Found 1 deadlocks:

# overall analysis : 1:07

Fig. 4. Call from the command line

second edition of the D-Finder tool-set. The tool has been entirely rewritten and
new techniques for computing invariants have been implemented in a modular
manner.

2.1 Computing Interaction Invariants in an Incremental Manner:
the Theory behind D-Finder 2

D-Finder 2 implements new efficient techniques for computing Ψ that were re-
cently introduced in [6,2]. Those techniques build on the new concept of Boolean
Behavioral Constraints (BBCs) that allow to relate the communication between
different components with their internal transitions and hence model a unified in-
variant of the model. Solutions of BBCs can be used to symbolically compute a
strong interaction invariant. There are two different techniques that exploit BBCs:
(1) a symbolic computation based on a Fixed-Point iteration (FP), and (2) a sym-
bolic algorithm to solve the BBCs using so called Positive Mapping (PM). Both
methods allow an efficient implementation for computing interaction invariants
using BDDs and show their strengths for different topologies of the model to check.
The main advantage of the two aforementioned techniques is that they allow to ex-
ploit the component based design of BIP and compute interaction invariants in-
crementally. In the Incremental Fixed Point (IFP) and Incremental Positive Map-
ping (IPM) methods, D-Finder 2 partitions the model into subsystems (also called
increments). The internal interactions in these subsystems are used to compute
“partial” interaction invariants. Relations between different increments are con-
sidered in a second step and used to integrate the intermediate results to the final
Ψ . Computing the global interaction invariant from smaller intermediate results
allows to reduce the size of the data structures involved in the computation.

2.2 Implementation Details

D-Finder 2 was developed with modularity and extensibility in mind. The tool
is written in Java and uses external tools and native code via the Java Native
Interface (JNI) for computations. Fig. 3 gives an overview of the main modules
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of the tool. The Model block handles the parsing of the BIP code into an internal
model and provides the means to compute Φ, Ψ , and DIS. Available implemen-
tations comprise the methods from the previous tool and additionally the new
algorithms using fixed-point and positive mapping computation and their incre-
mental versions. The results from Model are used from various implementations
of the Analysis block, which perform further steps like the generation of pos-
sible deadlocks and, most recently, generation of counterexamples for Boolean
systems (CEX). The Expression block is used by both Model and Analysis. Its
main purpose is to provide an uniform interface for different back-ends that store
the actual expressions. The abstraction from the back-ends allows a high degree
of flexibility for implementing the algorithms. The most general implementation
is a wrapper to the actual parse tree representation of the expressions (using the
Eclipse Modeling Framework, EMF) and uses external tools for computations.
For algorithms on Boolean variables, like computation of Ψ , a more succinct
implementation with BDDs as back-end is used, while large systems that in-
corporate non-Boolean data require to directly create and maintain input files
for an SMT solver on disk. These different versions of expressions can be used
interchangeably in many contexts, with the respective tools being called trans-
parently for actual computations. The Expression block also provides methods
to translate between representation and manage the scopes of variables. Fig. 3
shows the use of external tools for models with non-Boolean data; for models
with only Boolean variables, BDDs are used in all computation steps.

The three main blocks are complemented by a common configuration module
that reads settings from default values, configuration files and command line
and provides the means to instantiate the proper modules for an example to
check. The used tools for SMT solving (Yices, [16]) and variable quantification
(omega library, [12] are accessed using wrappers, giving rise for easy extension
and replacement. Similarly, the used BDD-Manager (JavaBDD, [11]) provides
a Java implementation, but has the option to use native BDD managers on
supported machines. Currently we use CUDD [14] on Linux and OS X. This
flexibility provides the means to develop and maintain new and experimental
algorithms in the tool while leaving the main behavior intact, which is currently
done, e.g., for experimental modules to perform predicate abstraction to create
Boolean systems, check the reachability of deadlocks to remove false positives,
and to construct error traces to understand the causes of reachable deadlocks,
all of which were not present in the previous tool.

2.3 Availability of the Tool and Example of Use

The D-Finder 2 and BIP tools, along with the examples discussed in this paper,
can be freely downloaded from [9] and [7] respectively. An excerpt of a call
to D-Finder 2 for the case of dining philosophers is given in Figure 4. The
example shows verification of a problem size of 1000 Philosophers partitioned
into 20 increments. The first step is the computation of an abstraction to remove
the variables for Ψ computation (using the post conditions from Φ computation
to split the states), followed by the local computations (BBC) for each of the
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Table 1. Comparison of D-Finder versions.
Times in min, timeout one hour.

System Information D-Finder 1 D-Finder 2
scale comps locs intrs Enum PM FP IPM IFP

Dining Philosopher
100 philos 200 600 500 0:06 0:09 - 0:03 0:21
500 philos 1000 3000 2500 1:51 3:32 - 0:22 3:09
1000 philos 2000 6000 5000 7:08 14:57 - 0:50 19:05
1500 philos 3000 9000 7500 19:30 34:23 - 1:34 -
3000 philos 6000 18000 15000 - - - 4:57 -

Gas Station
300 pumps 3301 12902 12000 33:02 36:01 11:32 2:03 4:18
400 pumps 4401 17202 16000 - - 21:40 3:41 10:30
500 pumps 5501 21502 20000 - - - 5:48 20:05

ATM System
2 atms 6 48 38 0:59 0:05 0:02 0:02 0:02
20 atms 42 444 362 - 1:12 1:00 0:43 1:13
50 atms 102 1104 902 - 7:14 8:00 1:57 11:22
100 atms 202 2204 1802 - - - 4:60 -
200 atms 402 4404 3602 - - - 17:07 -

Table 2. Verification times for the
Dala robot

timemodule comps locs intrs vars
D-Finder 1 D-Finder 2

RFLEX 56 308 227 35 9:39 3:07
NDD 27 152 117 27 8:16 1:15
SICK 43 213 202 29 1:22 1:04
Aspect 29 160 117 21 0:39 0:21
Antenna 20 97 73 23 0:14 0:13
Combined 198 926 724 132 - 5:05

increments and their integration. Computation of the dual and mapping to the
concrete values finishes the computation of Ψ , which is used to directly compute
the intersection with DIS. Finally, the tool successfully reports one deadlock.

Large examples from real world applications may require manual assump-
tions on the components to rule out false positives. D-Finder 2 supports these
additional inputs on the component and global level. To support organization of
the required models, specifications, and output files, the tool supports so called
example configuration files, which allow to collect the required files in own direc-
tories. The examples and case studies on the web site are organized in this way.
The Web page of BIP [7] gives more information to introduce the language as
well as details on usage and case studies. The web page of D-Finder 2 [9] comes
up with illustrations of the use of the tool as well as many other case studies of
huge size. The sites also reference a series of publications that give more details
on the theory implemented in the tool.

3 Experimental Results
We compare the performance of the original version of D-Finder with the new
version of the tool presented in this paper on some case studies (see [9] for more
experiments). Experiments where conducted with a 32Bit Linux on Xeon 2.67GHz
We started by considering verification of deadlock properties for the classical case
studies of Dining Philosopher, the Gas Station [10], for which we assume that every
pump has 10 customers, and the Automatic Teller Machine (ATM) [8]. The results
are given in Table 1, where scale is the parameter of the example, comps the num-
ber of components, locs the number of control locations, and intrs the total number
of interactions. The experiments where performed on Mac-Book Pro laptops with
CUDD as back end for BDD computations. We see that especially the incremen-
tal versions of the new Ψ computation methods led to major improvements in run
time compared to the original version of the tool from [4].

To demonstrate the application of D-Finder 2 to industrial problems we want
to refer to a case study on the application of BIP to autonomous robots Dala [5].
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The case study uses software written in Genom, a tool to design modular real
time software architectures, which were then translated to BIP. The translated
modules implement features of the robot like movement (RFLEX), navigation
(NDD) and self localization using a laser range finder (SICK), and themselves
consist of more internal components, for more details see [5]. The case study
shows how to use BIP code generation tools and the BIP engine to create C
code from the model, which runs at the functional level of the robot to guarantee
coordination of the various modules in a correct manner. The previous tool
was not able to verify this model. And while prototypes were able to show
the deadlock-freedom of single modules in the past, only D-Finder 2 allowed
us recently to verify the combination of all five main components. (Results are
reported in Table 2). This use of the work flow of D-Finder 2 and BIP is a
major change with respect to other methodologies to design autonomous robots.
Indeed, most of other existing works propose functional levels that are designed
manually, without any formal guarantee of correctness.

References

1. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM, Washington, DC, USA, pp. 3–12. IEEE, Los Alamitos (2006)

2. Bensalem, S., Bogza, M., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.: Incremen-
tal component-based construction and verification using invariants. In: FMCAD
(2010)

3. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: Compositional verification for
component-based systems and application. In: Cha, S(S.), Choi, J.-Y., Kim, M.,
Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer,
Heidelberg (2008)

4. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-finder: A tool for composi-
tional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

5. Bensalem, S., de Silva, L., Gallien, M., Ingrand, F., Yan, R.: Rock solid software: A
verifiable and correct by construction controller for rover and spacecraft functional
layers. In: ISAIRAS, pp. 859–866 (2010)

6. Bensalem, S., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.: Incremental invariant
generation for compositional design. In: TASE, pp. 157–167 (2010)

7. BIP tool page, http://www-verimag.imag.fr/BIP-Tools,93.html
8. Chaudron, M.R.V., Eskenazi, E.M., Fioukov, A.V., Hammer, D.K.: A framework

for formal component-based software architecting. In: SVCS (2001)
9. DFinder tool page, http://www-verimag.imag.fr/dfinder/

10. Heimbold, D., Luckham, D.: Debugging Ada tasking programs. IEEE Softw. 2(2),
47–57 (1985)

11. JavaBDD tool page, http://javabdd.sourceforge.net/
12. Omega library tool page, http://www.cs.umd.edu/projects/omega/
13. Simulink, http://www.mathworks.com/products/simulink/
14. Somenzi, F.: CUDD tool page, http://vlsi.colorado.edu/~fabio/CUDD/
15. Thiele, L., Bacivarov, I., Haid, W., Huang, K.: Mapping applications to tiled mul-

tiprocessor embedded systems. In: ACSD, pp. 29–40. IEEE, Los Alamitos (2007)
16. Yices tool page, http://yices.csl.sri.com/

http://www-verimag.imag.fr/BIP-Tools,93.html
http://www-verimag.imag.fr/dfinder/
http://javabdd.sourceforge.net/
http://www.cs.umd.edu/projects/omega/
http://www.mathworks.com/products/simulink/
http://vlsi.colorado.edu/~fabio/CUDD/
http://yices.csl.sri.com/


Infer: An Automatic Program Verifier for
Memory Safety of C Programs

Cristiano Calcagno and Dino Distefano
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Abstract. Infer1 is a new automatic program verification tool aimed
at proving memory safety of C programs. It attempts to build a com-
positional proof of the program at hand by composing proofs of its
constituent modules (functions/procedures). Bugs are extracted from
failures of proof attempts. We describe the main features of Infer and
some of the main ideas behind it.

1 Introduction

Proving memory safety has been traditionally a core challenge in program verifi-
cation and static analysis due to the high complexity of reasoning about pointer
manipulations and the heap. Recent years have seen an increasing interest of the
scientific community for developing reasoning and analysis techniques for the
heap. One of the several advances is separation logic, a formalism for reasoning
about mutable data structures and pointers [14], and based on that, techniques
for automatic verification. Infer is a commercial program analyzer aimed at the
verification of memory safety of C code. Infer combines many recent advances in
automatic verification with separation logic. Some of the features are:

– It performs deep-heap analysis (a.k.a. shape analysis) in presence of dynamic
memory allocation. Infer’s abstract domain can precisely reason about com-
plex dynamic allocated data structures such as singly/doubly linked lists,
being them circular or non-circular, nested with other lists, etc.

– It is sound w.r.t. the underlying model of separation logic. Infer synthesizes
sound Hoare triples which imply memory safety w.r.t. that model.

– It is scalable. Infer implements a compositional inter-procedural analysis and
has been applied to several large software projects containing up to several
millions of lines of code (e.g. the Linux kernel).

– It is completely automatic: the user is not required to add any annotations
or modify the original source code. Moreover, for large software projects,
Infer exploits the information in the project’s build to perform the analysis.

– It can analyze incomplete code. Infer can be applied to a piece of code in
isolation, independently from the context where the code will be used.

1 Special thanks to Dean Armitage, Tim Lownie, and John Lownie from Monoidics
USA, Richard Retting and Bill Marjerison from Monoidics Japan, and Hongseok
Yang, for their invaluable contributions to Infer.

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 459–465, 2011.
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Being an automatic program verifier, when run, Infer attempts to build a proof
of memory safety of the program. The outcomes of the attempt can be several:

– Hoare triples of some procedures are found. Then, because of soundness, one
can conclude that those procedures will not make erroneous use of memory
in any of their executions. If a triple for the top level procedure (e.g., main)
is found, one can conclude the memory safety of the entire program.

– The proof attempt fails for some procedures. Infer extracts from this failed
attempt the possible reasons which prevented it to establish memory safety.
These findings are then returned to the user in the form of a bug report.

– For some procedures the proof attempt fails due to internal limitations of In-
fer (e.g., expressivity of the abstract domain, or excessive over-
approximation). In this case nothing can be concluded for those procedures.

Infer’s theoretical foundations are mainly based on [5], but also include techniques
from [8,2,4,11]. This paper focusses on the tool mainly from a user perspective.
We refer the interested reader to the above articles for the underlying theory.

2 Procedure-Local Bugs

In this section we illustrate Infer’s concept of procedure-local bugs by example,
focusing on memory leaks in the context of incomplete code (e.g. without main)
and inter-procedural reasoning. The usual notion that all memory allocated must
be eventually freed does not apply in the context of incomplete code. The ques-
tion then arises of what is a memory leak in this context and how to assign
blame. We will apply the following general principle: when a new object is allo-
cated during the execution of a procedure, it is the procedure’s responsibility to
either deallocate the object or make it available to its callers; there is no such
obligation for objects received from the caller.

Consider the function alloc0() in Figure 1. It allocates an integer cell and
stores its address into i when the flag b is true, or sets i to zero when b is
false. This function by itself does not cause memory leaks, because it returns the
newly allocated cell to the caller using the reference parameter i. It is the caller’s
responsibility to make good use of the returned cell. example1() shows a first
example of procedure-local bug. The first call to alloc0() sets the local variable
i to zero. However, after the second call, i will point to a newly allocated integer
cell. This cell is then leaked since it is not freed before example1() completes.
Infer blames example1() for leaking the cell pointed to by i. The bug is fixed
in example2() where i is returned to the caller. It becomes the caller’s respon-
sibility to manage the cell, perhaps by freeing it, perhaps by making it available
to its own caller. This passing of responsibility carries on, up the call chain, as
long as source code is available. In the extreme case, when the whole program
with a main function is available, we recover the usual (global) notion of mem-
ory leak. Even in that case, it is important to blame the appropriate procedure.
A more subtle leak is present in example3(), which is a slight modification of
example2(). As in the previous case, after the second call to alloc0(), i points
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void alloc0(int **i, int b) {
if (b) *i = malloc(sizeof (int));

else *i = 0;

}

void example1() {
int *i;

alloc0(&i, 0); //ok

alloc0(&i, 1); // memory leak

}

int *example2() {
int *i;

alloc0(&i, 0); // ok

alloc0(&i, 1); // ok, malloc

return i; // no memory leak }

int *example3() {
int *i;

alloc0(&i, 0); // ok

alloc0(&i, 1); // ok, malloc

alloc0(&i, 1); // leak: i overwritten

return i; }

int *global;

int *example4() {
int *i;

alloc0(&i, 0); // ok

alloc0(&i, 1); // ok, malloc

global = i;

alloc0(&i, 1); // ok, i in global

return i; }

Fig. 1. Examples of procedure-local bugs

to a newly allocated cell. However, the third call to alloc0() creates a second
cell and makes the first one unreachable and therefore leaked. The problem is
fixed in example4() where the first cell is stored in a global variable, and the
second one passed to the caller. Hence, example4() does not leak any memory.

Specifications. Infer automatically discovers specs for the functions that can
be proven to be memory safe (in this case, those which do not leak memory). The
spec discovered for example2() is2 {emp} example2() {ret�→−} meaning that
the return value points to an allocated cell which did not exist in the (empty)
precondition. The spec discovered for example4() is

{&global�→−} example4() {∃x. &global�→x ∗ x�→ − ∗ ret�→−}

meaning that variable global in the postcondition contains the address x of
some memory cell, and the return value points to a separate cell. Notice that
a call to example4() could produce a leak if global were overwritten. In that
case, since the leaked cell exists before the call, Infer would blame the caller.

3 Infer

3.1 Bi-abduction and Compositional Analysis

The theoretical notion used by Infer to automatically synthesize specifications is
bi-abductive inference [5]. It consists in solving the following extension of entail-
ment problem: H ∗X � H ′ ∗Y . Here H and H ′ are given formulae in separation
2 We use the standard separation logic notation: x →y describes a single heap-allocated

cell at address x whose content is y; we write “–” to indicate some value; emp
represents the empty heap; the ∗ operator separates allocated cells.
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logic and X (anti-frame) and Y (frame) needs to be deduced. The usefulness of
bi-abductive inference derives from the fact that it allows to discover the part
of the heap missing (the anti-frame in the above entailment) for using a speci-
fication within a particular calling context of another procedure. For example,
consider the specification

{x �→ −} void use cell(int *x){emp}

and the function void g(int *x, int y) { y=0; use cell(x);} . Infer uses
bi-abductive inference for comparing the calling heap of use cell within g
against the spec’s preconditon. In doing so, Infer will understand by means of the
resulting anti-frame that g’s precondition must require x to be allocated. The
construction of g’s specification is therefore compositional (that is: the specs of a
procedure are determined by the specs of the procedures it calls). The precondi-
tions of specs computed with bi-abductive inference approximate the procedures’
footprint (the parts of memory that a procedure uses). One consequence of this
feature when combined with the principle of local reasoning is that these specs
can be used independently of the calling context in the program. Moreover, these
specs can be used as procedure summaries for implementing an inter-procedural
shape analysis. Such analysis can be seen as the attempt to build proofs for Hoare
triples of a program. The triples are constructed by symbolically executing the
program and by composing triples of procedures in the program in a bottom-
up fashion according to the call graph. For mutually-recursive procedures an
iterative fixed-point computation is performed. This bottom-up analysis pro-
vides Infer with the ability to analyze incomplete code (a useful features since in
practice the entire program is not always available).

An immediate consequence of Infer’s compositional nature is its great ability to
scale. Procedures are analyzed in isolation, and therefore, when analyzing large
programs, only small parts of the source code needs to be loaded into memory.
Infer has a low memory requirement even when analyzing programs composed
by millions of lines of code. Moreover, the analysis results can be reused: Infer
implements an incremental analysis, and in successive runs of the analysis of the
same program, only the modified procedures need to be re-analyzed. The results
of previous analyses for unchanged procedures are still valid.

3.2 Infer’s Architecture

Figure 2 shows Infer’s basic architecture. Infer refers to a collection of related
source code files to be analyzed together as a ‘project’. When analyzing a project,
a number of intermediate files are created and stored in the “Project Results
Directory” for use between different phases of the verification.

The Infer system consists of three main components: InferCapture, InferAnalyze,
and InferPrint. These implement the three phases of the verification.
Capture Phase. Like ordinary compilation, the source code is parsed and con-
verted to an internal representation necessary for analysis and verification.
Analysis Phase. This phase performs the actual static and verification analysis,
based on the internal representation produced during the Capture Phase.
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InferCapture

InferAnalyzer

Infermediate 
Data
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All Results

INFER 1.5
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SpecsBugs

Fig. 2. Left: Infer’s architecture. Right: screenshot of error trace high-lighted in yellow.

Results Post-Processing Phase. For the set of analyzed procedures where
bugs have been identified, a list of bugs can be output in CSV or XML format.
In addition, the list of specifications obtained for the set of procedures can be
generated in either text or graphical format for use with external tools.

3.3 Implementation

Infer is available as a command line tool, in the cloud, or as an Eclipse plug-in.
Command-line. Infer can be used in a terminal as a command-line tool. This
facilitates the integration in an existing tool chain. The output are lists of errors
and procedure specifications in several formats (CSV, XML, dotty, SVG).
In the cloud. Alternatively, Infer comes with a GUI which can be used with any
web-browser. In this version, the core back-end and the GUI are hosted in servers
in the cloud. Users can login into their account, upload projects and run the
analysis from anywhere. The GUI visualizes errors and procedure specifications
in a user-friendly way (see the screenshot on the right of Fig. 2). Moreover,
statistics comparing results of different runs of the analysis on the same projects
are also visualized. This makes it easy for programmers or managers to track
improvements of the reliability of their software during the development process.
Eclipse plug-in. Infer can also be used within Eclipse with a special plug-in. The
developer can benefit from a complete integrated environment which goes from
editing, to compilation, to verification. Since Infer can analyze incomplete code,
the developer can constantly check his code before committing to the central
repository of his organization and avoid critical errors at very early stages.
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4 Related Work and Conclusions

Recent years have seen impressive advances in automatic software verification
thanks to tools such as SLAM [1] and BLAST [10], which have been used to
verify properties of real-world device drivers and ASTREE [3] applied to avionics
code. However, while striking in their domain, these tools either eschew dynamic
allocation altogether or use coarse models for the heap that assume pointer
safety. Instead, as shown in this paper, these are the areas of major strength
of Infer. Several academic tools have been proposed for automatic deep-heap
analysis but only on rare cases some of these have been applied to real industrial
code [12,9,6,13,7,11]. To our knowledge, Infer is the first industrial-strength tool
for automatic deep-heap analysis applicable to C programs of any size.
Conclusions. This paper has presented Infer, a commercial tool for proving mem-
ory safety of C code. Based on separation logic, Infer is precise in the presence
of deep-heap updates and dynamic memory allocation. Thanks to the composi-
tional nature of its analysis, Infer is able to scale to large industrial code.
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Abstract. VissBIP is a software tool for visualizing and automatically
orchestrating component-based systems consisting of a set of components
and their possible interactions. The graphical interface of VissBIP al-
lows the user to interactively construct BIP models [3], from which exe-
cutable code (C/C++) is generated. The main contribution of VissBIP
is an analysis and synthesis engine for orchestrating components. Given
a set of BIP components together with their possible interactions and a
safety property, the VissBIP synthesis engine restricts the set of possible
interactions in order to rule out unsafe states. The synthesis engine of
VissBIP is based on automata-based (game-theoretic) notions. It checks
if the system satisfies a given safety property. If the check fails, the tool
automatically generates additional constraints on the interactions that
ensure the desired property. The generated constraints define priorities
between interactions and are therefore well-suited for conflict resolution
between components.

1 Introduction

We present VissBIP1, an open-source tool to construct, analyze, and synthe-
size component-based systems. Component-based systems can be modeled using
three ingredients: (a) Behaviors, which define for each basic component a finite
set of labeled transitions (i.e., an automaton), (b) Interactions, which define syn-
chronizations between two or more transitions of different components, and (c)
Priorities, which are used to choose between possible interactions [3].

In the BIP framework [3], the user writes a model using a programming lan-
guage based on the Behavior-Interaction-Priority principle. Using the BIP tool-
set, this model can be compiled to run on a dedicated hardware platforms. The
core of the execution is the BIP engine, which decides which interactions are
executed and ensures that the execution follows the semantics.

1 VissBIP is a shortcut for Visualization and Synthesis of Simple BIP models.
It is available at http://www6.in.tum.de/~chengch/vissbip

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 466–471, 2011.
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VissBIP is a tool for constructing and visualizing BIP models. Its graphical
interface allows the user to model hierarchical systems. The analysis and syn-
thesis engine can currently only interpret non-hierarchical model, which we call
simple. In BIP, a system is built by constructing a set of basic components and
composing them using interactions and priorities. The interactions and priorities
are used to ensure global properties of the systems. For instance, a commonly
seen problem is mutual exclusion, i.e., two components should avoid being in two
dedicated states at the same time. Intuitively, we can enforce this property by
requiring that interactions that exit one of the dedicated states have higher pri-
ority than interactions that enter the states. Adding interactions or priorities to
ensure a desired behavior of the overall systems is often a non-trivial task. Viss-
BIP supports this step by automatically adding a set of priorities that enforce a
desired safety property of the composed systems. We call this technique priority
synthesis. We concentrate on adding priorities because (1) priorities preserve
already established safety properties as well as deadlock-freedom of the system,
and (2) priorities can be implemented efficiently by allowing the components to
coordinate temporarily [6].

2 Visualizing Simple Interaction Systems

The user can construct a system using the drag-and-drop functionality of Viss-
BIP’s graphical user interface shown in Figure 1. BIP objects (components,
places, properties, and edges) can be simply dragged from the menu on the left
to the drawing window on the right.

We use the system shown in Figure 1 to illustrate how a system is represented.
The system consisting of two components (Process1 and Process2) depict as
boxes. Each component has two places (high and low) and a local variable (var1
and var2, respectively). A place (also called location) is represented by a circle.
A green circle indicates that this place is an initial location of a behavioral com-
ponent. E.g., place v1 is marked as initial in Process1. Squares denotes variables
definitions and their initialization within a component. E.g., var1 and var2 are
both initialized to 1. Edges between two locations represent transitions. Each
transition is of the format {precondition} port-name {postcondition}. E.g.,
the transition of Process1 from place low to high is labeled with port name a
and upon its execution the value of var1 is increased by 1. For simplicity we
use port-name bindings to construct interactions between components, i.e.,
that transitions using the same port name are automatically grouped to a single
interaction and are executed jointly2. In the following, we refer to an interac-
tion by its port name. Finally, additional squares outside of any component, are
used to define system properties such as priorities over interactions and win-
ning conditions (for synthesis or verification). In particular, we use the keyword
PRIORITY to state priorities. E.g., the statement Process2.d < Process1.b
means that whenever interactions b and d are available, the BIP engine always
2 It is possible to pass data through an interaction. The user specifies the data flow

associated to an interaction in the same way she describes priorities (see below).
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Fig. 1. Model construction using VissBIP

executes b. The keyword RISK is used to state risk conditions. E.g., the con-
dition RISK = {(Process1.high, Process2.high)} states that the combined
location pair (Process1.high, Process2.high) is never reached. Apart from
the stated conditions, we also implicitly require that the system is deadlock-free,
i.e., at anytime, at least one interaction is enabled. When only deadlock avoid-
ance is required, the keyword DEADLOCK can be used instead. Lines started with
## are comments.

3 Priority Synthesis

We define priority synthesis as an automatic method to introduce a set of new
priorities over interactions on a BIP system such that the augmented system
satisfies the specified property. A priority is static if it does not contain eval-
uations over ports or locations in components as a precondition to make the
priority active. We focus on synthesizing static priorities. We consider safety
(co-reachability) properties, i.e., the property specifies a set of risk states, and
the system should never reach any of them. For the rest of this section, we first
show the results of priority synthesis under VissBIP. Then, we give some details
about the underlying algorithm and the implementation.

3.1 Safety Synthesis by Adding Global Priorities: Examples

The user can invoke the synthesis engine on a system like to one shown in
Figure 1. The engine responds in one of the following three ways: (1) It reports
that no additional priorities are required. (2) It returns a set priority constraints
that ensure the stated property. (3) It states that no solution based on priorities
can be found by the engine.
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reach ∩ risk

Attr1(reach ∩ risk)

s1

s2
c

a

a
b

creach

Fig. 2. The automatically synthesized priority for the model in Figure 1 (left), and an
example for priority resolution (right)

Figure 2 shows the Strategy panel of VissBIP, which displays the results
obtained by invoking the synthesis engine on the example of Figure 1. Recall,
that in the example, we stated that the combined location pair (Process1.high,
Process2.high) is never reached. The engine reports that the priority constraint
Process1.a < Process2.f should be added. Note that if the system is in state
(Process1.low, Process2.low), then the interaction Process1.a (which is a
joint action from Process 1 and Process 2) would immediately leads to a risk
state (a state satisfying the risk condition). This can be avoided by executing
Process2.f first. The new priority ensures that interaction f is executed forever,
which is also deadlock-free.

3.2 Safety Synthesis by Adding Global Priorities: Algorithmic
Issues

The algorithm of priority synthesis is based on concepts in games [5]. A game
is a graph partitioned into player-0 and player-1 vertices. We refer to Player 0
as the system (which is controllable) and Player 1 as the environment (which is
uncontrollable). In controllable vertices, the system can choose among the set of
available transitions during execution. Conceptually, a play between two players
is proceeded as follows:

1. A player-1 vertex is a product of (i) locations of behavioral components
and (ii) evaluations of their variables. Since the values of the variables are
not relevant in our example, we omit them for simplicity. E.g., in Figure 1,
(Process1.low, Process2.low) is a player-1 vertex.

2. From a player-1 vertex the game moves to a player-0 vertex that represents all
the available interactions.E.g., from location (Process1.low,Process2.low),
the game proceeds to state labeled with the interactions a and f .

3. Then, Player 0 responds by selecting one interaction and updates the location
(i.e., to a new vertex of player-1). Note that its selection is constrained by
the pairing of interactions as well as the priority specified in the system.

Admittedly now in our formulation player-1 is deterministic (thus it can be
viewed as 1-player game, or automaton). Nevertheless, a non-deterministic
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player-1 is introduced when data is considered using abstraction techniques.
The algorithmic flow for priority synthesis is as follows.

• (Game construction) First, VissBIP creates a symbolic representation of
the game specified above using the BDD package JDD [2]. Then, the engine
compute the set of reachable risk states by intersecting the set of reachable
states reach with the set of risk states risk derived from the specification. In
order to obtain a good initial variable ordering, we use heuristics to keep
variables from component that participate in the same interaction close.
• (Game solving and risk-edge generation) Once the symbolic rep-

resentation of the game is constructed, VissBIP solves the safety game
by symbolically computing the risk attractor Attr1(reach ∩ risk), which is
the set of states from which player-1 can force to move to a risk state,
regardless of moves done by Player 0 [5]. If all the reachable moves of
Player 0 avoid the risk attractor, then the model running on the BIP en-
gine is guaranteed to be safe. Otherwise, we derive a set of risk edges, which
are all the edges leading to the risk attractor. E.g., Figure 2 shows that
from (Process1.low, Process2.low) interaction a corresponds to a risk
edge. We compute the set of risk edges Trisk with the following formula:
(reach\Attr1(reach∩risk)) ∩ T �

0 ∩ Attr′1(reach∩risk), where Attr′1(reach∩risk)
is the primed version of Attr1(reach ∩ risk).
• (Risk-edge interpretation) We aim to introduce priority constraints to

prevent the BIP engine from selecting transitions in Trisk. This can be done by
examining interactions that are also available at the locations from which a
risk edge can be taken. E.g., in our example (Figure 1), the engine examines
all alternative interactions at state (Process1.low, Process2.low). Since
Process2.f can also be selected, the engine generates the priority constraint
Process1.a < Process2.f to avoid using Process1.a.
To avoid enumerating all the risk edges, VissBIP aims to rule out risk-edges
in a symbolic fashion. More precisely, VissBIP proceeds on cubes of the risk-
edges, which are sets of edges that can be represented by a conjunction over
the state variables or their negation. For each cube, the engine generates a
set of candidate priorities that can be used to avoid these risk edges.
• (Priority generation) When the engine has collected the set of priorities

for each cube in Trisk, these priorities are as priority fixes having preconditions
(E.g., in Figure 2 if on state s2 we should use priority c < a to escape
from the attractor). We are interested in adding static priorities, which are
independent of the actual state. VissBIP offers the user to select between
two incomplete algorithms to obtain static priorities.
– Priority resolution using SAT solvers: From the set of candidate pri-

orities obtained for each cube, the engine needs to select a set of non-
conflicting priorities. E.g., consider the example in Figure 2, for state s1
VissBIP generates a candidate set {(a < b), (a < c)} and for s2 it gives
{(c < a)}. The engine should not report {(a < c), (c < a)} as a static
priority fix, as it does not satisfy the strict partial order. Finding a set
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of priorities satisfying each cube while obeying the strict partial order
can be done using SAT solvers. In VissBIP we use SAT4J [1].

– Fixed-size priority selection: For this scheme, the engine examines all
possible subsets of the collected priorities with the size bounded by a
user-specified number, starting from the smallest subset. Since in general
a small number of modification of the system is desirable, this is a natural
approach. Furthermore, it gives appealing results on our examples.

4 Evaluation and Summary

In this paper, we present a tool for constructing simple BIP systems together
with a technique called priority synthesis, which automatically adds priorities
over interactions to maintain system safety and deadlock-freedom.

We have evaluated the tool on some examples, e.g., traditional dining philoso-
phers problems, and problems related to critical region control. On these exam-
ples, VissBIP enables to generate small yet interesting priority fixes. Due to the
limitation concerning the number of components to be placed in a single can-
vas, examples under investigations are admittedly not very big, but they can be
solved within reasonable time. E.g., the dining philosophers problem with size
12 (i.e., a total of 24 interacting components) is solved within 1 seconds using
the SAT-resolution method and within 3 seconds using constant-depth fixing3.
As the fix is automatically generated without human intervention, we treat this
as a promising step towards computer-aided synthesis in BIP. Algorithms in
VissBIP can be viewed as new features for the future D-Finder tool [4], which
focuses on deadlock finding and verification over safety properties. Nevertheless,
the front-end GUI targeted for the ease of model construction is also important.

Lastly, as priority synthesis is essence a method of synthesizing simple compo-
nent glues for conflict resolution, under suitable modifications, our technique is
applicable for multicore/manycore systems working on task models for resource
protection, which is our next step.
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Abstract. The Java Modeling Language is a widely used specification
language for Java. However, the tool support has not kept pace with
advances in the Java language. This paper describes OpenJML, an im-
plementation of JML tools built by extending the OpenJDK Java tool
set. OpenJDK has a readily extendible architecture, though its details
could be revised to further facilitate extension. The result is a suite of
JML tools for Java 7 that provides static analysis, specification documen-
tation, and runtime checking, an API that is used for other tools, uses
Eclipse as an IDE, and can be extended for further research. In addition,
OpenJML can leverage the community effort devoted to OpenJDK.
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1 The Java Modeling Language

The Java Modeling Language [16] was first proposed in 1999 [14] as a specifi-
cation language for Java programs; it is accompanied by a tool suite that can
process those specifications for a variety of purposes. The language expresses
specifications in a traditional style: pre-, frame and post-conditions for methods,
and invariants for objects and classes. Examples can be found in the reference
manual [16] and in tutorials (e.g. [15]). Part of the goal of JML is to be easy to
read and write, by drawing as much as possible from the syntax and semantics of
its host programming language and thereby to be familiar to Java programmers.
The specifications are often intermingled with the code, in the same .java file;
the specifications can also be written in separate files, for situations in which the
source code is not available or not writable by the specification author.

JML is now widely used1 as a basis for research and education about formal
methods using Java. Tools supporting JML have been applied to verification
of industrial software [2,6,8]. Maintaining current and robust tool support is
essential to further exploration, education, and use of formal methods in Java.

As a specification language, JML enables many different, complementary
capabilities:

1 cf. the list of groups on http://www.eecs.ucf.edu/~leavens/JML/index.shtml
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– verifying that specifications and implementations logically agree (software
verification and bug finding) [8]

– inferring specifications (e.g. loop invariants, pre- and post-conditions) from
an implementation [13] or live use [11]

– generating run-time checks, compiled into programs [5]
– augmenting documentation with specification information [3]
– generating test oracles from specifications [21]
– as a guide to generating test cases that exercise relevant execution paths

OpenJML extends OpenJDK to create JML tools for Java 7. The tools are
available at http://jmlspecs.sourceforge.net. Its source code is available at
http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs.

2 Precursors to OpenJML

JML was first used in an early extended static checker (ESC/Java [17]) and
was implemented in a set of tools called JML2 [3]. The second generation
of ESC/Java, ESC/Java2 [8], was made current with Java 1.4 and with the
definition of JML. Further research produced tools for runtime checking, docu-
mentation generation (jmldoc), test generation, and integration with Eclipse [3].

However, the JML2 tools were based on hand-crafted compilers; the effort
of maintaining those Java compilers overwhelmed the volunteer and academic
resources as Java evolved. A new approach was needed, one that built on an
existing compiler in a way that leveraged further developments in that compiler,
yielded compact command-line tools, but allowed easy integration with a Java
IDE environment, and was readily maintainable and extensible.

The JML community considered two alternatives: the Eclipse JDT [10] and,
later, OpenJDK [19], with discussion on relevant mailing lists2. Both are full-
fledged, well-supported compilers; neither is designed for extension; the Eclipse
compiler is well-integrated into an IDE; the OpenJDK compiler is more compact,
functions well stand-alone, but has no natural IDE. The JML3 project to extend
the Eclipse environment with pure plug-ins was abandoned: too much integration
with the Eclipse internals was required. A later attempt to extend the Eclipse
JDT directly, JML4 [4], found that the internals were complicated, progress was
slow and resource intensive, and the result would be difficult to extend by a wide
group of researchers. The JML4 work has transformed into the JIR/JMLEclipse
projects, still based on the Eclipse JDT but with a different emphasis.

OpenJDK offered an alternative; the OpenJML project described here found
the OpenJDK compiler, while not designed for extension, to be much more ex-
tensible in a less invasive way, than the current Eclipse JDT. Command-line
tools to parse and type-check JML constructs along with the Java source were
readily produced; verification checking made use of back-end SMT solvers (ex-
periments [7] were performed with Yices, CVC3, and Simplify). IDE integration

2 jmlspecs-reloaded@sourceforge.net, particularly from Sept. 2007 on, and white pa-
pers on http://sourceforge.net/apps/trac/jmlspecs/wiki/DevelopmentNotes

http://jmlspecs.sourceforge.net
http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs
http://sourceforge.net/apps/trac/jmlspecs/wiki/DevelopmentNotes
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is accomplished with conventional Eclipse plug-ins. The principal drawback is
that in an Eclipse-integrated system, the Eclipse compiler is used (as is) for Java
compilation and the OpenJML/OpenJDK compiler is used as a back-end tool
for handling JML and verification tasks.

OpenJML is a reimplementation, on a completely new code-base, of tools
such as the JML2 tools for JML on Java 1.4 (including jmldoc and jmlrac) and
ESC/Java2 and ESC/Java for static checking.

3 OpenJDK

History. OpenJDK [19] is an open-source version of the Java toolkit, announced
by Sun in 2006. Since then, numerous groups have collaborated to establish a
firm open foundation for OpenJDK, including porting it to other architectures.
Researchers have also used the OpenJDK to create other applications or to
experiment with language extensions3.

Extending the OpenJDK Architecture. The goal of the OpenJML project
is to produce a usable and extensible set of JML tools while being minimally
invasive to the OpenJDK implementation. The architecture of OpenJDK is quite
amenable to extension, with the difficulties lying in the details rather than the
overall architecture. The compilation process makes use of a chain of components:
lexical analysis, parsing, symbol table maintenance, annotation processing, name
resolution, type-checking, semantic use checks, flow checks, AST desugaring,
and code generation. Each component is registered in a compilation context; the
context creates instances of or references to various tools as needed. The tools
are called in succession, passing partially-processed ASTs from tool to tool.

The behavior of the compiler is readily altered by registering replacement,
JML-aware components in the compilation context before a compilation be-
gins. The new components need to be derived classes of the old components, as
no Java interfaces are defined. In some cases, such as the scanner and parser,
the replacement component has significant new functionality; in others, the re-
placement component simply inserts a new phase. For example, the desugaring
component is altered simply to invoke static analysis rather than continuing on
to code generation; alternately, a component that adds runtime assertion checks
can be inserted between desugaring and code generation.

Some of the complications in extending OpenJDK were these:

– The lexical scanner and parser are hand-coded, not generated by code-
generation tools. This complicates altering the parsing phase. However, the
parser design is mostly a top-down parser with limited look-ahead, so over-
riding relevant methods in the parser can accomplish most of the needed
extension. JML text is wholly contained in Java comments, so overriding the
comment handling methods (which are already present to process javadoc
comments) makes it straightforward to parse the JML specifications.

3 cf. the projects listed on http://openjdk.java.net/

http://openjdk.java.net/
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– The JML expression language includes nearly all of the Java expression
language, leaving out only expressions with side-effects, but including method
and class declaration. However, JML also adds some new syntax and many
reserved tokens with special meaning (e.g. \result for the return value of a
method) that must be recognized at the leaves of the AST.

– JML specifications can occur in more than one file and in the absence of any
Java source code. Merging the specifications and connecting the specifica-
tions with the correct Java construct requires some amount of type resolution
before the ASTs can be completely built.

– Declarations that occur in specifications are not in scope in Java code; but
both Java and JML specifications are in scope in specifications. Name reso-
lution must be sensitive to context while still using a common symbol table.

– The set of AST nodes must be extended to include JML constructs. This
refactoring was more complicated than it might be because Java Enums are
used to indicate the kind of AST node and Enums are not extensible.

– Lack of interfaces for tools, AST nodes, and visitor classes.

Overall, the tools code of OpenJDK (as of the current base build) contains
683 source files. OpenJML modified just 41 of them, with only 9 requiring sig-
nificant change; one-third required only visibility changes, with others needing
minor changes or corrections. The code contains cautions that most classes do
not constitute a public API and may change; however, merges to new builds
have generally been smooth and not resulted in significant rework. OpenJML is
currently based on OpenJDK build 116 (November 2010); merges are performed
periodically to remain current with the upcoming release of Java 1.7.

4 OpenJML

The result of the tool development work described above is the OpenJML
command-line tool, with the following functionality.

– the ability to parse and type-check current JML, producing internal ASTs.
The definition of JML is currently under review, simplifying its syntax and
clarifying its semantics; corresponding changes in OpenJML are in progress.

– the ability to perform static verification checks using backend SMT solvers
– the ability to explore counterexamples (models) provided by the solver [7]
– integration with the features of Java 1.5 and 1.6, including generics and

annotations, with Java 1.7 features in progress; the main work is to represent
the semantics of the features in the verification logic, rather than, as was
previously the case, compiler development

– partial implementation of JML-aware documentation generation
– a proof of concept implementation of runtime assertion checking
– independently, JMLUnitNG [21] has used OpenJML to create a test

generation tool, using OpenJML’s API to access the parsed specifications

In addition, the previously developed Eclipse plug-in was modernized and inte-
grated with OpenJML, providing an IDE that permits working with JML within
Eclipse’s Java development environment, with this functionality:
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– the ability to parse and type-check JML (either embedded in .java files or
in standalone specification files), showing any errors or warnings as Eclipse
problems, but with a custom icon and problem type;

– the ability to check JML specifications against the Java code — verification
conditions are produced from the internal ASTs and submitted to a back-end
SMT solver, and any proof failures are shown as Eclipse problems;

– the ability to use files with runtime checks along with Eclipse-compiled files;
– the ability to explore specifications and counterexamples within the GUI;
– functionality integrated as Eclipse menus, commands, and editor windows.

Exploring Counterexamples from Static Checking. The Eclipse GUI en-
ables exploring counterexamples produced by failed static checking much more
effectively than previous JML tools. Tools such as ESC/Java and ESC/Java2
created verification conditions, shipped them to a back-end solver, which pro-
duced counterexample information that was essentially a dump of the prover
state and was notoriously difficult to debug. The Eclipse GUI for OpenJML in-
terprets the counterexample information and relates it directly to the program
as seen in the Eclipse editor windows.

This capability allows implementing two particularly useful bits of function-
ality. First, the counterexample information can be interpreted to determine the
control flow through the program that the particular counterexample represents.
This control flow can then be highlighted with suitable color coding, making it
clear which sequence of computations violates which verification condition.

Second, either from the counterexample or from subsequent interactions with
the prover, the value of any subexpression along the flow of control can be
determined. Thus the user can interrogate, through the GUI, the value of any
expression, in order to understand the precise sequence of computations that
lead to the invalid verification condition.

Note that this interaction is completely static. One can obtain similar infor-
mation from a dynamic debugger. But one must proceed step-by-step, forward
through the program. Most debuggers do not permit backtracking. Furthermore,
the code module under study must be executable, is only explorable for the
particular conditions in which it is called, and does not execute specifications.

In contrast, using “static debugging”, the user can explore backwards and
forwards at will, always obtaining program variable values in the context in
which they occur (that is, with the values they have at that point in the program
execution). Assertions and other specifications that are not executable (but are
part of the logical representation) are also explorable. The program snippet need
not be executable.

5 Related Tools

JML is sufficiently widely used in education, application, and research that there
are other tools that support and use the language. Some of the publicly available
tools with continuing development are these:
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– Key [2] – This substantial project researched software verification workflow
and produced corresponding tools. The project began by targeting OCL
as a specification language, but has changed to using JML for Java pro-
grams. The project uses its own parser for both Java and JML, creating
proof obligations; these verification conditions are then proved interactively
(with semi-automated assistance) using the Why and Coq proof systems. Its
target has been JavaCard rather than full Java.

– JMLEclipse [4] – JMLEclipse is a partial integration of JML functionality
into the Eclipse IDE, by modifying the Eclipse JDT.

– Mobius [18] – The Mobius project combined a large number of tools in an
integrated verification environment, including existing JML-aware tools and
a companion Byte-code Modeling Language (BML).

– Why [22] – The Why tool integrates both back-end solvers and programming
language-specific verification condition generators (e.g. Krakatoa for Java)
into its custom IDE, creating a verification workbench. Krakatoa uses a
custom compiler and has been applied particularly to JavaCard applications.

– Spec# [1], CodeContracts [12] – These tools target C# (and .NET), rather
than Java; the analog to JML is the Spec# specification language, which
is integrated with the Visual Studio tools for C#. Spec# is available in
a research mode, but has not been commercialized. Instead, Microsoft has
released the CodeContracts system as part of .NET.

Pluggable type-checkers [9] are another mechanism for adding static analysis to
Java. These type checkers use Java’s annotation mechanism (with the JSR308
extensions expected in Java 1.8) to implement a variety of type checks, such as
non-null types, readonly types, and types that check for interned values. It would
be possible to implement static verification-like checks through this mechanism
as well. The principal drawback is the extra complication and messy syntax
of writing annotation expressions as annotation arguments (and as character
strings) [20]. Nevertheless the type annotation mechanism is well-engineered and
is slated to become part of Java, so it is worth exploring its integration with JML
and with static checking of verification conditions.

6 Availability and Use

The OpenJML tool suite is available at http://jmlspecs.sourceforge.net,
with the Eclipse update site at http://jmlspecs.sourceforge.net/openjml-
updatesite. The parsing and type-checking aspects of OpenJML have been
stable for more than a year; that portion has been used in the JmlUnitNG
tool [21]. The translations to verification conditions and to compiled run-time
checks are still in alpha release stage. Producing output in BoogiePL and in
SMT-LIBv2 is in progress. A draft user guide is also available at the above
web site.

To date, I am aware of OpenJML being used in publications (e.g. [21][7]), in
an MSc and a PhD thesis, in a released tool, and in teaching.

http://jmlspecs.sourceforge.net
http://jmlspecs.sourceforge.net/openjml-
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7 Future Work

The future tasks for OpenJML development are these (as of 14 February 2011):

– adapt OpenJML to recent evolutions in the JML language
– complete the SMT-LIBv2 interface so that OpenJML’s static checking can

use any (conforming) SMT solver
– complete capabilities that are underway: verification generation, runtime as-

sertion checking, documentation generation, integration with test generators
(e.g. JMLUnitNG)

– integrate specification inference to simplify the task of writing specifications
– implement specification refactoring capabilities within the Eclipse plug-in
– complete a BoogiePL interface
– integration with Java 1.7 features and, eventually, with JSR 308 (type an-

notations in Java)

More important is applying the tool to further application and research. In
particular, the field needs

– substantial verification case studies of a variety of realistic sets of code,
– review and research of the constructs needed to specify mid- and high-level

design features, not just the absence of low-level errors,
– integration of specification concepts developed for easier reasoning about

frame conditions, ownership, memory separation, and concurrency,
– specification inference to reduce the burden of user-written specifications,
– and continued development of OpenJML as a basis for building other tools.
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Abstract. The SMT-LIB standard defines an input format and re-
sponse requirements for Satisfiability-Modulo-Theories automated rea-
soning tools. The standard has been an incentive to improving and
comparing the increasing supply of SMT solvers. It could also be more
widely used in applications, providing a uniform interface and portabil-
ity across different SMT tools. This tool paper describes a tutorial and
accompanying software package, jSMTLIB, that will help users of SMT
solvers understand and apply the newly revised SMT-LIB format; the
tutorial also describes fine points of the SMT-LIB format which, along
with a compliance suite, will be useful to SMT implementors. Finally,
the tool suite includes adapters that allow using some older solvers, such
as Simplify, as SMT-LIB compliant tools.

Keywords: SMT solvers, SMT-LIB, validation, software verification,
automated reasoning, jSMTLIB, OpenJML.

1 SMT Solvers and SMT-LIB

Automated reasoning engines for Satisfiability-Modulo-Theories (SMT) logics
have improved in capability and increased in number in recent years. This trend
is partly driven by challenging applications in software verification and model
checking. The progress is made visible through public competitions, spurring
practical advances, theoretical research, and collegial rivalry. The SMT-COMP
competition has been held annually since 2005 in conjunction with well-known
conferences. Competing solvers vie to solve the most problems in the shortest
time. At the 2010 SMT workshop [8], 10 different provers demonstrated their
capability and performance in open competition, with 8 other tool development
groups participating in 2008 or 2009.

But such a competition needs to be able to express problems in a format that
is readable by all participants — hence the need for the SMT-LIB language. This
standard form for stating SMT problems was proposed in 2003 [13]; a significant
revision as version 2.0 [3] has just been released. Version 2.0 is significantly dif-
ferent from previous versions. It simplified the syntax, removed the distinction
between terms and formulas, introduced a command language, and added simple
parameterization and polymorphism. Version 2.0 was developed with consider-
able input from SMT implementors and users; intentionally, it is much more

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 480–486, 2011.
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useful for representing the semantics of software than was the previous version
and for interacting with front-end, possibly interactive, tools. In the remainder
of this document, SMT-LIB refers to this new version.

This standard language for SMT solvers enables an application that states
problems in SMT-LIB to (eventually) use any of a wide set of conforming SMT
provers as its back-end constraint solver. The transition from one solver to an-
other is not seamless: solvers may specialize in one kind of problem or another,
and the way a problem is stated may still affect different solvers differently.
Nevertheless, not having to change the software in order to interface with a new
solver promotes flexibility and experimentation. A position paper by Barrett and
Conway [1] identified gaps between users and implementors as a significant im-
pediment to more wide-spread application, and therefore improvement, of SMT
solvers. The goal of the tools and tutorial described in this paper is to narrow that
gap by providing information and readily available tools to those implementing
applications that use SMT solvers or those simply wishing to experiment with
and use SMT solvers.

2 Tools and Materials

While implementors of SMT solvers are quite aware of the SMT competition
and SMT-LIB, potential new users of the SMT-LIB format and of SMT solvers
may not be. Thus, in support of the overall SMT-LIB endeavor and to encourage
use of SMT solvers in appropriate applications, the following tools and materials
have been created and made available. These items complement related material
described in Section 5.

– a tutorial introduction to SMT-LIB, targeting users of SMT solvers, but also
useful to implementors

– a Java parser and type-checker for SMT-LIB command scripts
– a wrapper for the tools that operates as a network client and server
– adapters that translate SMT-LIB command scripts into the input languages

of various existing solvers
– a Java API for programmatic interaction with SMT solvers
– an Eclipse plug-in for editing and executing SMT-LIB scripts
– a validation suite of command scripts to test SMT-LIB compliance
– extensibility
– a user guide to the listed software tools

The SMT-LIB Tutorial. The first contribution is a tutorial overview of the
SMT-LIB standard. The tutorial provides students and application developers
with an introduction to SMT solvers and to using the SMT-LIB format. SMT
solver developers will be very familiar with the details of SMT solver implemen-
tations, but not necessarily with the SMT-LIB interface; this tutorial gives them
an overview and a discussion of fine points. The tutorial includes the following:

– quick start examples that enable an impatient reader to learn by example
and experimentation;
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– an informal but detailed description of the syntax, sort and expression
languages, and command language, with examples;

– an overview of the different logics and theories that SMT-LIB provides;
– a description of available tools for SMT-LIB;
– a survey of recent SMT solvers.

The tutorial is not intended to be an introduction to first-order logic or SMT
solver implementations, though some important concepts are presented briefly
to put the SMT-LIB format in context. It is also not a formal definition of
SMT-LIB; rather it is an informal, but correct and detailed description of the
capabilities and use of the language. Just as occurs with software development,
the writing of a tutorial by someone not an author of the original standard was
effective in ferreting out misstatements, ambiguities and omissions in the first
versions of the SMT-LIB v.2 definition.1

The first version of the tutorial2, incorporating a round of review and correc-
tion of typos, is available from http://www.grammatech.com/resources/smt/
SMTLIBTutorial.pdf. Other resources described in this paper are also available
at http://www.grammatech.com/resources/smt.

jSMTLIB: An SMT-LIB Type-checker. A Java parser and type-checker for
SMT-LIB was written as a tool, called jSMTLIB, that validates SMT-LIB scripts
and constitutes an alternate implementation of the standard. This exercise was
also effective in uncovering unspecified aspects of the language.3

The tool is packaged as an executable jar file, and operates on SMT-LIB com-
mand scripts. In type-checking mode, it will report any syntax errors, mis-sorted
(mis-typed) expressions, and errors in the use of the command language; the tool
does not do any satisfiability checking. It is also the front-end to the adapters and
the basis for the API described below. The tool accepts the standard concrete
syntax defined by SMT-LIB. However, the tool is readily extensible; alternate
parsers and printers can be written for alternate syntax, and translation tools
are easily created.

An alpha version of the jSMTLIB software package is available from
http://www.grammatech.com/resources/smt/jSMTLIB.tar.

A Network Service. The command script validator takes its input from files.
A simple modification allows the input to come through a network port. This
enables jSMTLIB to act as a network service for checking SMT-LIB input; a
companion piece of software is a client. Though there are no immediate plans
to do so, this functionality could provide a publicly available network service for
experimenting with SMT-LIB.
1 As acknowledged in the preface of [4]. A few examples are correcting inconsistencies

with the definition, clarification of unspecified behavior, setting restrictions on the
order of commands, and clarifying the allowed escape characters in strings.

2 As of 13 February 2011.
3 Some, but not all, of these have been discussed on the smt-lib@cs.nyu.edu or smt-

api@cs.nyu.edu mailing lists. Others have been resolved privately and are being
included in the next (as of 12/21/2010) revision of the standard.

http://www.grammatech.com/resources/smt/
http://www.grammatech.com/resources/smt
http://www.grammatech.com/resources/smt/jSMTLIB.tar
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jSMTLIB: SMT Solver Adapters. The SMT-LIB v.2 language is relatively
new and few, if any, current SMT solvers completely adhere to it as yet. Solvers
under active development will likely eventually be compliant. However, adjusting
to a new input language is not the highest priority for some development groups,
and some tools, such as Simplify [9], are no longer under development but still
frequently used. Thus adapters that convert SMT-LIB to the input language of
some existing but non-compliant tools are useful.

The SMT-LIB parser produces, internally, an abstract syntax tree of the
parsed SMT-LIB command script. It is a straightforward matter to translate
the parsed tree into the input syntax of existing SMT tools. What is not so
straightforward, but still possible, is to adjust to other differing aspects of SMT
tools: some tools require all function symbols and sorts to be declared, others
do not; some distinguish terms and formulas, others do not; some implement a
sorted first-order logic, others use unsorted first-order logic.

The tool contains preliminary implementations of these adapters on the
Windows OS: Simplify 1.5.4 [9], CVC3 2.2 [5], Yices 1.0.28 [10], and Z3 2.11 [7].

jSMTLIB: A Java API. The jSMTLIB software package can also be used as
a Java API and library for a tool that wishes to link in its parsing, printing,
and type-checking functionality; such a tool would thereby have access to the
back-end interfaces to compliant and, through the adapters described above,
non-compliant SMT solvers. The OpenJML [6] project is using this capability
to connect SMT solvers performing static analysis and verification proofs to
OpenJML’s implementation of the Java Modeling Language using OpenJDK
(cf. http://openjdk.java.net/).

The SMT-LIB standard explicitly did not standardize the abstract syntax of
the language, only one instance of a concrete syntax. Nevertheless, the abstract
syntax proved to be a good abstract interface for an API for SMT-LIB. ASTs
are built using the abstract interface; a parser for the concrete syntax uses ob-
ject factories to produce concrete AST node instances. Visitors over the AST
implement type-checkers, printers (to any concrete syntax) or translators (for
specific SMT solvers). The design enables easy implementation of other concrete
syntaxes and other extensions of the standard.

Note that the API allows direct linking into the jSMTLIB library; the library
still communicates with solvers through text-based (SMT-LIB-based) inter-
process communication channels. This is not a generic API directly into each
solver’s implementation.

An Eclipse Plug-in for jSMTLIB. The jSMTLIB library can also be con-
nected to the Eclipse (www.eclipse.org) IDE through a conventional Eclipse
plug-in. The overall functionality is the same as the command-line version of
jSMTLIB, but the IDE environment may be more accessible to students
or for small-scale experimentation with SMT-LIB and SMT solvers.

http://openjdk.java.net/
www.eclipse.org
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The plug-in provides this functionality:

– a GUI text editor customized to SMT-LIB with syntax coloring, allowing
creation and editing of files containing SMT-LIB command scripts, auto-
matically associated with the .smt2 filename suffix

– syntax and type-checking with errors reported by Eclipse problem markers
– Eclipse menu items to perform actions on SMT-LIB files, interfaces for set-

ting preferences, and the ability to associate keyboard combinations with
menu commands

– the ability to send scripts to a choice of backend solvers for evaluation,
receiving the responses within the Eclipse environment

– (in later versions) the ability to explore proofs and counterexamples using
GUI interactions

– (in later versions) the ability to refactor SMT-LIB scripts

The plug-in (alpha release) is available from a typical Eclipse plug-in site:
http://www.grammatech.com/resources/smt/jSMTLIB-UpdateSite .

Validating SMTLIB-compliant Solvers. Part of the development of the
jSMTLIB library and application included the creation of a test suite. The test
suite also constitutes a compliance test suite for solvers that seek to be SMT-
LIB compliant. The test suite does not test the actual solving capabilities of the
solvers — that is the task of the SMT-COMP competitions. Rather the tests
determine whether all of the standard commands and expressions are properly
accepted and produce the appropriate responses.

The results of compliance tests applied to SMT solvers are not given here,
both because space is limited and because those tools are under active develop-
ment. None of the discrepancies found affect the core utility of SMT solvers —
determining satisfiability—but, they do affect their usability in a setting that ex-
pects an SMT-LIB-compliant interface. This compliance suite should be viewed
and used as an aid to more compliant SMT solver interfaces.

Until some nuances of the SMT-LIB definition are resolved, documented, and
can be implemented in the validation suite, the suite is available by email from
the author, rather than by download.

Extending jSMTLIB. The jSMTLIB software library is designed to be ex-
tensible. Java naturally provides extension in one dimension by inheritance; the
library uses Java reflection to provide extension in multiple dimensions. The
library can readily be extended to provide

– parsers and printers for new concrete syntaxes,
– additional commands,
– additional solver adapters,
– additional logics and theories (some aspects of SMT-LIB logics and theories

must currently be built-in),
– and, in a future version, additional kinds of expressions.

http://www.grammatech.com/resources/smt/jSMTLIB-UpdateSite


jSMTLIB: Tutorial, Validation and Adapter Tools for SMT-LIBv2 485

Extending jSMTLIB will allow a researcher or developer to provide additional
functionality that is still integrated with the rest of SMT-LIB; it also allows easy
experimentation with features proposed for future versions of SMT-LIB.

3 Availability

The materials described in this paper are available fromhttp://www.grammatech.
com/resources/smt. During the two months since the first announcement, there
have been emails giving feedback and expressing appreciation. In addition an MSc
thesis using jSMTLIB has been started.

4 Future Work

The tools and documents described here are under active development. E-mail
feedback on the documents has already been incorporated into revisions or is
slated for later major additions. The pace and direction of future work will be
driven by feedback, interest and needs of users. The primary items currently
envisioned are these (as of 15 February 2011):

– for the tutorial:
addition of examples and case studies;
more information on the logics and theories for new users;
maintaining currency with the SMT-LIB language as it evolves;
expansion of the discussion of current SMT solvers and related tools

– the jSMTLIB tool, library, and user guide:
completion and refactoring of some language features (e.g. par definitions
in theories);
complete the API and validate it with use cases in a user guide;
complete and add to the set of adapters, expanding to Linux
implementations as well;
fill out the user guide

– the Eclipse plugin:
adding additional editor options, including word-completion, word-
wrapping and pretty printing;
customizing and expanding built-in choices such as syntax coloring;
additional navigation short-cuts;
exploring proofs and counterexamples through the GUI;
refactoring capabilities

– the validation suite:
expand the range of tests;
document the performance of many current solvers

5 Related Tools and Materials

The formal definition of SMT-LIB is the technical report by Barrett, Stump
and Tinelli [4]. The most recent version is dated December 21, 2010. The most
recent SMT-COMP, its results, and the participating solvers are described on

http://www.grammatech.com/resources/smt
http://www.grammatech.com/resources/smt
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http://www.smtcomp.org/2010/, which also has links to the competitions of
previous years. Barrett et al. [2] describes the results of the 2007 competition;
journal publications about the more recent competitions will appear.

The tools described in this paper are implemented for Java. Some tools have
also been announced for other languages: a parser and lexer implemented in
C99 [11], an parser in OCaml [14], and one in Haskell [12].
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Abstract. We present a new open source model checker, opaal, for au-
tomatic verification of models using lattice automata. Lattice automata
allow the users to incorporate abstractions of a model into the model
itself. This provides an efficient verification procedure, while giving the
user fine-grained control of the level of abstraction by using a method
similar to Counter-Example Guided Abstraction Refinement. The opaal

engine supports a subset of the UPPAAL timed automata language ex-
tended with lattice features. We report on the status of the first public
release of opaal, and demonstrate how opaal can be used for efficient
verification on examples from domains such as database programs, lossy
communication protocols and cache analysis.

1 Introduction

Common to almost all applications of model checking is the notion of an under-
lying concrete system with a very large—or sometimes even infinite—concrete
state space. In order to enable model checking of such systems, it is necessary to
construct an abstract model of the concrete system, where some system features
are only modelled approximately and system features that are irrelevant for a
given verification purpose are “abstracted away”.

The opaal model checker described in this paper allows for such abstractions
to be integrated in the model through user-defined lattices. Models are formalised
by lattice automata: synchronising extended finite state machines which may
include lattices as variable types. The lattice elements are ordered by the amount
of behaviour they induce on the system, that is, larger lattice elements introduce
more behaviour. We call this the monotonicity property. The addition of explicit
lattices makes it possible to apply some of the advanced concepts and expressive
power of abstract interpretation directly in the models.

Lattice automata, as implemented in opaal, are a subclass of well-structured
transition systems [1]. The tool can exploit the ordering relation to reduce the
explored state space by not re-exploring a state if its behaviour is covered by
an already explored state. In addition to the ordering relation, lattices have a
join operator that joins two lattice elements by computing their least upper
bound, thereby potentially overapproximating the behaviour, with the gain of a
reduced state space. Model checking the overapproximated model can however
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be inconclusive. We introduce the notion of a joining strategy affording the user
more control over the overapproximation, by specifying which lattice elements
are joinable. This allows for a form of user-directed CEGAR (Counter-Example
Guided Abstraction Refinement) [2,3]. The CEGAR approach can easily be au-
tomated by the user, by exploiting application-specific knowledge to derive more
fine-grained joining strategies given a spurious error trace. Thus providing, for
some systems and properties, efficient model checking and conclusive answers at
the same time.

Fig. 1. opaal GUI and CLI

The opaal model checker is
released under an open source li-
cense, and can be freely down-
loaded from our webpage:
www.opaal-modelchecker.com.
The tool is available both in a
GUI and CLI version, shown in
Fig. 1. The UPPAAL [4] GUI is
used for creation of models.

The opaal tool is implemented
in Python and is a stand-alone
model checking engine. Mod-
els are specified using the UP-
PAAL XML format, extended
with some specialised lattice fea-
tures. Using an interpreted lan-
guage has the advantage that it
is easy to develop and integrate
new lattice implementations in
the core model checking algo-
rithm. Our experiments indicate
that although opaal uses an in-
terpreted language, it is still suf-
ficiently fast to be useful.

Users can create new lattices
by implementing simple Python
class interfaces. The new classes
can then be used directly in the
model (including all user-defined methods). Joining strategies are defined as
Python functions.

An overview of the opaal architecture is given in Fig. 2, showing the five main
components of opaal. The “Successor Generator” is responsible for generating
a transition function for the transition system based on the semantics of UP-
PAAL automata. The transition function is combined with one or more lattice
implementations from the “Lattice Library”.

The “Successor Generator” exposes an interface that the “Reachability
Checker” can use to perform the actual verification. During this process a

www.opaal-modelchecker.com
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Fig. 2. Overview of opaal’s architecture

“Passed-Waiting List” is used to save explored and to-be explored states; it
employs a user-provided “Joining Strategy” on the lattice elements of states,
before they are added to the list.

2 Examples

In this section we present a few examples to demonstrate the wide applicability
of opaal. The tool currently has a number of readily available lattices that are
used to abstract the real data in our examples.

2.1 Database Programs

In recent work by Olsen et al. [5], the authors propose using present-absent sets
for the verification of database programs. The key idea is that many behavioural
properties may be verified by only keeping track of a few representative data
values.

This idea can be naturally described as a lattice tracking the definite present-
and absent-ness of database elements. In the model, this is implemented using
a bit-vector lattice. For the experiment we adopt a model from [5], where users
can login, work, and logout. The model has been updated to fit within the
lattice framework, as shown in Fig. 3(a). In the code in Fig. 3(b), the construct
extern is used on line 3 to import a lattice from the library. Subsequently two
lattice variables, pLogin and aLogin, are defined at line 4 and 5, both vectors of
size N USERS. The lattice variables are used in the transitions of the graphical
model, where e.g. a special method “num0s()” is used to count the number of 0’s
in the bitvector. The definition of a lattice type in Fig. 3(c) is just an ordinary
Python class with at least two methods: join and the ordering.

We can verify that two users of the system cannot work at the same time using
explicit exploration, or by exploiting the lattice ordering to do cover checks, see
Fig. 4.
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pLogin[i] = 0 ; aLogin[i] = 1

aLogin.setall()

pLogin[i] = 1 ;
aLogin[i] = 0

Bad

not aLogin[i]

not pLogin[i]

aLogin[i] == 0

pLogin[i] == 0

Logout

Work

aLogin.num0s() ==
N_USERS

Login

Init

aLogin.num0s() < (N_USERS − 1)

work[i]?

workErr[i]!

loginOK[i]!

login[i]?

logoutErr[i]!

workOK[i]!

logoutOK[i]!

logout[i]?

1 const i n t N USERS = 17 ;
2 . . .
3 extern In t e r sB i tVec to r ;
4 In t e r sB i tVec to r pLogin [N USERS ] ;
5 In t e r sB i tVec to r aLogin [N USERS ] ;

1 class In t e r sB i tVec to r :
2 def j o i n ( s e l f , o the r ) :
3 . . .
4
5 def l e ( s e l f , o the r ) :
6 . . .

Fig. 3. (a) Database model (b) Lattice variables (c) Lattice library (in Python)

Number of users explicit exploration cover check
2 224 (<1s) 56 (<1s)
3 2352 (2s) 336 (<1s)
4 21952 (28s) 1792 (2s)
5 192080 (8:22m) 8960 (9s)
6 - 43008 (48s)
7 - 200704 (4:38m)

Fig. 4. Explored states and time for the property “no two users work at the same
time”

Another property to check is that the database cannot become full. For this
property we can exploit a CEGAR approach: A näıve joining strategy will give
inconclusive results, but refining the joining strategy not to join two states if
the resulting state has a full database, leads to conclusive results while still
preserving a significant speedup, see Fig. 5.

2.2 Asynchronous Lossy Communication Protocol: Leader Election

Communication protocols where messages are asynchronously passed via an un-
reliable (lossy and duplicating) medium can be modelled as a lattice automa-
ton. As long as we are interested in safety properties, such a communication
can be modelled as a set of already sent messages called pool. Initially the set
pool is empty. Once a message it sent, it is added to the set pool and it remains
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Number of users explicit exploration joining (näıve strategy) joining (refined strategy)
8 6312 (15s) (Inconclusive) 51 (<1s) 787 (1s)
9 14228 (56s) (Inconclusive) 57 (<1s) 1238 (2s)
10 31614 (4:19m) (Inconclusive) 63 (<1s) 976 (2s)
11 69478 (21:35m) (Inconclusive) 69 (<1s) 1036 (2s)
12 - (Inconclusive) 75 (<1s) 1707 (3s)
16 - (Inconclusive) 99 (<1s) 25900 (4:18m)
17 - (Inconclusive) 105 (<1s) 66490 (25:01m)

Fig. 5. Explored states and time for the property “database cannot become full”

Number of agents explicit exploration cover check joining
5 840 (5s) 37 (<1s) 17 (<1s)
6 5760 (5:20m) 58 (<1s) 23 (<1s)
7 45360 (671:02m) 86 (1s) 30 (<1s)
15 - 682 (4:21m) 122 (2s)
25 - 2927 (283:16m) 327 (12s)
50 - - 1277 (4:19m)
100 - - 5052 (98:45m)

Fig. 6. Explored states and time for the leader election protocol

there forever (duplication). As the protocol parties are not forced to read any
message from pool and we ask about safety properties, lossiness is covered by
the definition too.

It is obvious that 2pool , i.e. the set of all subsets of pool, together with the
subset ordering is a complete lattice. As long as the set of messages is finite and
all parties in the protocol behave in the way that their steps are conditioned
only on the presence of a message in the pool and not on its absence, the system
will satisfy the monotonicity property and we can apply our model checker.

We have modelled the asynchronous leader election protocol [6] in opaal.
Here we have N agents with their unique identifications 0, 1, . . . , N −1 and they
select a leader with the highest id. Experimental data, for the property that only
the agent with the highest id can become leader, are provided in Fig. 6. The
cover check column refers to using only the monotonicity property to reduce the
explored state-space. We can see that while being exact (no overapproximation),
the speed-up is considerable. Moreover, using the join strategy provides even
more significant speed-up while still providing conclusive answers.

2.3 Cache Analysis

To ensure safe scheduling of real-time systems, the estimation of Worst-Case
Execution Time (WCET) of each task in a given system is necessary [7]. One
major part of determining WCETs for modern processors is accounting for the
effects of the memory cache. Efficient abstractions exist for analysing some types
of caches [8], which we have implemented as a lattice. By recasting the cache
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analysis into our framework we gain the ability to give WCET guarantees, and
gradually refine those guarantees by being more and more concrete with respect
to the data-flow of the program.

On a simple program (binary search in array of size 100) and a simple cache
we get the same WCET using all approaches. The complete state space has 5726
states (computed in 6s), cover update reduces this to 4043 states (3s), while join
only needs to store 3944 states (3s). On more complex examples join will start
to give overapproximated guarantees, which can be further refined.

2.4 Timed Automata

It is well-known that the theory of zones of timed automata (see e.g. [9,10]) is
a finite-state abstraction of clock values with a lattice structure. A zone-lattice
is currently being developed for use in opaal, but has not matured to a point
where meaningful experiments can be made yet.

3 Conclusion

We presented a new model checker, opaal, for lattice automata and provided
a number of applications. The expressiveness of the formalism, derived from
well-structured transition systems, promises broad applicability of the tool. Our
initial experiments indicate that careful abstraction using the techniques imple-
mented in opaal lead to efficient verification.

We plan on extending the foundations of opaal to additional formalisms such
as Petri nets, as well as on improving the performance of the tool by rewriting
core parts in a compiled language. Of course, additional lattices and areas of
application are also to be investigated.
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Abstract. Tabular expressions have been successfully used in develop-
ing safety critical systems, however insufficient tool support has ham-
pered their wider adoption. To address this shortfall we have developed
the Tabular Expression Toolbox for Matlab/Simulink1. An intuitive user
interface allows users to easily create, modify and check the completeness
and disjointness of tabular expressions using the ATP PVS or SMT solver
CVC3. The tabular expressions are translated to m-functions allowing
their seamless use with Matlab’s simulation and code generation.

1 Introduction

Model based design (MBD) has gained increased industrial acceptance, but suc-
cessful commercial tools such as Matlab/Simulink lack formal semantics and
notations that would directly support formal methods. On the other hand for-
mal (and semi-formal) methods have not provided support tools that integrate
with existing industrial software development practices and typically overburden
developers with the complexity of their formal notation and user interfaces. For
example, tabular expressions provide a formal method of specifying mathemati-
cal functions that are readable by domain experts, but inadequate tool support
has hampered industrial adoption of tabular expressions. To address these prob-
lems we have designed a tabular expression toolbox for Matlab/Simulink. We
support some of the most common types of tables and have designed the toolbox
to allow easy extension to other table types.

The rest of the paper is organized as follows. In Section 2 we discuss some
background on work done on formalizing Simulink and existing table tools.
Section 3 presents some preliminary information on tabular expressions, and
Matlab/Simulink. In Section 4 we provide details of the development and use of
the toolbox. A case study using the toolbox is briefly presented in section 5.

� Supported by the Ontario Research Fund, and the National Science and Engineering
Research Council of Canada.

1 Toolbox is available from
http://www.mathworks.com/matlabcentral/

fileexchange/28812-tabular-expression-toolbox
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2 Related Work

In the area of formalizing Simulink models Roy and Shankar [2] describe a tool
that provides a richer type system for Simulink diagrams. Whalen et al. [3] have
discussed an integrated approach for formally analyzing model based designs
using a combination of commercial and custom tools. Tiwari [10] has proposed a
method for formally analyzing Simulink and Stateflow models using push down
automata.

Examples of table tools for software engineering include an Eclipse IDE plu-
gin for designing tabular expressions using the OMDoc language to represent
tables and PVS for verification purposes [4]. The SCR∗ toolset [5] supports a
wide variety of tables and formal analysis techniques but is only available under
strict licensing terms. Our work differs from these tools by providing an open
source toolset for formally checking a Simulink tabular expression block, or set
of tabular expression blocks from within Matlab. We do not attempt to verify
the entire model. The Toolbox is the first attempt to integrate tabular methods
with a widely available commercial MBD framework.

3 Preliminaries

3.1 Tabular Expression

To specify software, designers often need to describe what should be done for
different equivalence classes of inputs. It has been shown that tables provide a
formal yet convenient way to specify these functions [6]. We believe that tabular
expressions allow for easier readability of documentation, and facilitate inspec-
tion of completeness and consistency of specified functionality. Below, a sim-
ple example is used to explain tabular expressions. For a detailed discussion of
tabular expressions semantics, we refer the reader to Jin and Parnas [7].

In Fig. 1 a formal logical specification of a function appears on the left and
its semantically equivalent two dimensional tabular expression as displayed by
the toolbox appears on the right. For the one-dimensional function table in (1),
we require the Boolean conditions in x, y (the ci’s) in the table’s predicate grid
to be complete (2) and disjoint (3). We can then return the unique value of the
expression ei from the output grid when ci is true. Disjointness ensures that the
specified function is deterministic, and completeness guarantees that we have
considered all possible inputs, both critical properties for safety applications.
Although the graphical layout of tables lends itself to ease of visual inspection of
these properties, we would prefer to automate the checking of these obligations,
to avoid human errors.

f(x, y) df=
{

c1 c2 . . . cn

e1 e2 . . . en
(1)

disjointness df= i �= j → (ci ∧ cj ↔ ⊥) (2)

completeness df= (c1 ∨ c2 ∨ . . . ∨ cn)↔  (3)
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f(x, y) df=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x+ y if x > 1 ∧ y < 0
x− y if x ≤ 1 ∧ y < 0
x if x > 1 ∧ y = 0
xy if x ≤ 1 ∧ y = 0
y if x > 1 ∧ y > 0
x/y if x ≤ 1 ∧ y > 0

Fig. 1. A logical description of a function and its tabular expression

3.2 Matlab/Simulink

The Simulink modeling language is considered the de facto Model Based Design
platform for industrial MBD applications [1]. A commonly cited problem with
Matlab/Simulink is its lack of formal semantics. We believe that by considering a
smaller “safe” subset of the Matlab language, we will be able to convincingly ar-
gue that the semantics of Matlab tables are consistent with target languages[1,3].

4 Toolbox

We desired an intuitive user interface that facilitated tabular expression creation
and editing, code generation, verification, and graphical counter-example gener-
ation. Rather than building all of components for such a tool from the ground
up, we have leveraged the power of existing tools, namely Matlab/Simulink,
PVS and CVC3. The toolbox combines these tools, integrating them into the
Simulink workflow while hiding the detailed verification steps from the end user.

The tool currently supports one and two dimensional normal function tables
and also allows for sub-grids in one dimension. The toolbox generates embedded
Matlab code for each table which can be saved to a Simulink block or to an M-file.
Thus once created, a table can be immediately executed, integrated with other
Matlab scripts and functions, or used to generate code for the target platform.

We support predicate subtyping on inputs/outputs of tables, as both CVC3
and PVS have support for predicate subtyping. The complexity of conditional
and output expressions is only limited by that of the embedded Matlab language,
as well as the capabilities of the backend verification languages. As complexity
of expressions increases the verification time generally increases and the chance
of finding a counter-example decreases.

4.1 Model

Our model of tabular expressions is similar to that presented by Jin and Parnas
[7]. We identify two different constituents which are related to form the table;
one or more predicate grids and an output grid. We can evaluate a grid by
locating the root predicate grids, determine the true predicate cell, if the cell
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Fig. 2. Class Diagram

has a sub-grid we then evaluate that recursively, otherwise we select the output
cell. A class diagram of this model is presented in Fig. 2, where the numbers on
the relationships represent the multiplicity of the classes.

4.2 Table Toolbox GUI

The current version of the toolbox has been developed using the Matlab GUI
API. The Tool has been integrated into Matlab/Simulink so that users do not
have to leave the primary development environment to use the tool. In Fig. 3
a screenshot of the current version of the tool shows a table that has failed
the disjointness check and the m-function generated from the table has been
executed and viewed to assist in debugging. The table can be fixed by changing
the “||” to “&&” in the second predicate. Colour coding is used to differentiate
the columns that overlap for the counter example generated by CVC3. Both c1
and c2 are one colour, since they are true, while c3 is a different colour to indicate
it is false.

4.3 Verification and Validation

For V & V of functions we have chosen to use the theorem prover PVS [8], as well
as the SMT solver CVC3 [9]. These tools offer a diverse approaches to verifying
the disjointness (2) and completeness (3) conditions.

PVS has built-in support for tabular expressions, so the toolbox only needs
to generate PVS for the table and then PVS generates proof obligations for (2)
and (3). We make use of the random-testing functionality of PVS to attempt to
find counterexamples to unprovable obligations.

We use CVC3 for the same purpose as PVS, to ensure that tables are disjoint
and complete. As CVC3 does not directly support tabular expressions, we must
generate the obligations (2) and (3) for CVC3 in the form of queries which are
pushed onto the proof stack. CVC3 will output a counter-model of a query if it
is shown to be invalid.

Strategy. We have found that by utilizing tools based on different technologies
and theoretical models, we can solve a greater variety of problems. While the
automatic proof strategies are often adequate for simple tables, PVS allows users
to manually control proofs when required for more complicated obligations. The
cost of this flexibility is a larger overhead and greater time required to prove.
CVC3 as an SMT solver does not allow for guided proofs but in our experience is

||
&&
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Fig. 3. Screenshot of Tabular Expression Toolbox

very fast and guarantees generation of counter-example via its constraint solving
when it is applicable. For tables involving nonlinear expressions, PVS generally
gives better results as CVC3 if incomplete for nonlinear constraints.

When both tools are applicable, having two diverse tools to check the tables
has the potentially benefit of mitigating against an error in one of the tools. In
regulated industries this has the effect of lowering the level of rigour required for
qualification of a V & V tool.

5 Case Study

The table tool was used to model a power estimation module based upon re-
quirements for the shutdown system of a nuclear power plant. This system,
previously described in Wassying and Lawford [6], used tabular expressions in
word documents to document the software requirements. Based upon the re-
quirements document, the example module was implemented in Simulink by an
undergraduate student.The module design used 42 different tabular expressions
for the power estimation module. Upon typechecking the implemented tabular
blocks in the model it was discovered that two contained typographical errors
which affected the blocks functionality but would not produce syntax errors or
compilation errors. Fig. 3 is an example of one of the detected errors. Errors of
this nature are very easy to fix if detected immediately, and become much more
difficult and expensive to detect and correct later in the development life cycle.
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6 Conclusion and Future Work

Early case studies and feedback have shown that the Tabular Expression Toolbox
can be a great asset in developing requirements, designs and implementations
in a MBD software development process. By leveraging the power and diversity
of tools such as PVS and CVC3 we achieve a greater level of assurance of table
correctness. We have managed to hide the formal verification process “under
the hood” leaving the designer to concentrate on the design of their system
rather than having to learn two new, diverse formal system. Future goals of this
project involve additional case studies; consideration of inter-block typing issues,
including leveraging existing tools [2]; as well as a more detailed investigation of
the consistency of the semantics of Matlab and the analysis tools employed.
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Abstract. In this paper, we present the llvm2csp tool which extracts
CSP models from the LLVM compiler intermediate representation of con-
current programs. The generation of CSP models is controlled by user
annotations and designed to create models of different levels of abstrac-
tion for subsequent analysis with standard CSP tools.

1 Introduction

Communicating Sequential Processes (CSP) [9] is a mature formalism support-
ing the design and verification of safety critical concurrent systems. However,
verifying that a concurrent C/C++ implementation refines such a CSP design
remains a major obstacle. In [4] we present our approach to the verification of
concurrent C/C++ programs using CSP. The approach is based on the auto-
mated extraction of CSP models from the Low Level Virtual Machine (LLVM) [5]
compiler intermediate representation (IR) of programs. The models are tailored
for subsequent analysis with established CSP tools such FDR [9], ProB [6] or the
CSP Prover [2]. Conformance of the LLVM IR of a program and the generated
CSP model can be established using the approach presented in [1]. In this pa-
per, the llvm2csp tool is described, which extracts CSP models from concurrent
C/C++ programs. It is realized as an LLVM compiler back-end that outputs
CSP models encoded in the machine-readable dialects CSPM (for automated re-
finement checking with FDR or animation and LTL model checking with ProB)
and CSPTP (for interactive theorem proving with the CSP Prover).

Background: The LLVM compiler infrastructure [5] provides a modular frame-
work that is designed to be extended by user-defined compilation passes and
custom compiler back-ends. It also offers a diverse set of predefined analyses and
optimizations that can be used out of the box. The heart of the compiler infras-
tructure project is its intermediate representation (IR). It is a typed assembler-
like language using SSA form for all scalar register values. The LLVM framework
provides gcc-based front-ends for a variety of programming languages, including
C and C++.

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 500–505, 2011.
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CSP [9] is a process calculus supporting the specification and verification of
concurrent systems. It is based on events and processes. Processes are compu-
tations observable only by the sets of events that they may accept or refuse at
any point in their evolution. Events are commonly regarded as abstractions of
arbitrary actions. In the context of llvm2csp, events model arbitrary user-defined
observation points (e.g. “a” or “debug.5”) of a system or communication of a
processing unit with the memory of the computing system (when observing a
variable).

Related Work: SVA [10] defines a simple proprietary input language to express
concurrent shared variable programs and a compiler to transform such programs
into CSPM for subsequent analysis with FDR. Any feature present in the input
language is translated, only type widths are reduced to rather small sets. SVA
targets the analysis of concurrent algorithms on a rather low level. In [11], Scug-
lik and Sveda present an approach go generate CSP models from UML diagrams
or while-languages. Java2CSP [12] inputs Java Bytecode and generates CSP
models for analysis with FDR. This tool attempts to avoid the state space ex-
plosion problem by some built-in abstractions. Our approach also suffers from
the state space explosion problem on the CSPM level when used with FDR or
ProB. However, llvm2csp also supports generation of CSPTP models for interac-
tive theorem proving and the use of annotations (ghost code) allowing the user
to define his own abstractions. Using the approach described in [1] soundness of
the abstractions can then be proved with the help of the operational semantics
of LLVM.

2 Assembling CSP Models of Concurrent Programs

The llvm2csp tool is implemented as an LLVM tool, providing an LLVM back-
end and using additional compiler passes and analyses. It compiles concurrent
C/C++ programs into CSP models. The tool outputs CSP models that come in
different flavors. The first is a CSPM model particularly suited for subsequent
animation and verification with ProB. Then there are two CSPM models opti-
mized for use with FDR. The tool also outputs CSPTP models for verification
with the CSP Prover. In each of the models LLVM instructions are translated
into terminating sequential processes. Memory is divided into private and shared
memory and modeled as separate processes. Composing these processes with a
domain-specific scheduling process results in a CSP model reflecting the seman-
tics of the program (with respect to its operational LLVM semantics [1]).

Figure 1 shows that models generated by llvm2csp consist of three parts: an
application-specific part, describing the behavior of threads; a domain-specific
part, which encapsulates low-level software concepts such as scheduling; and a
platform-specific part, which is the hardware model. The terminating sequential
processes extracted from the instructions of a program, form the application-
specific part of the final model. The application-specific part, and parameters
for the domain-specific and the platform-specific parts are generated by our
llvm2csp tool, while the fixed fraction of the other parts is modeled manually.
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Fig. 1. Extracting CSP models from LLVM IR requires manual modeling of platform-
and domain-specific parts

Parameters of these two manually modeled parts are typing information for the
channels and the set of thread identifiers, for example. Automated generation is
symbolized by solid and manual modeling by dashed arcs in Figure 1. While the
domain-spefic part is configurable, the platform-specific part is not configurable
yet and limited to a single processor machine for now.

2.1 Optimizing Models for FDR

The structure of a CSPM model determines how efficiently it can be handled by
FDR. It is, for example, important to synchronize processes as early as possible
and to hide events as low in the process structure as possible. Furthermore, re-
naming and copying processes is to be used in preference to the parameterizing
of a process definition (see [9] for details). Since the domain structure heavily
influences the performance gain that can be achieved using the rules above, it
is made configurable to match the application’s needs. llvm2csp supports two
predefined domain specific parts modeling a nondeterministic preemptive sched-
uler. In the first version, threads are modeled as a union process while the second
version models threads as independent processes.

The combined union process contains the instructions of the program, which
are composed with a scheduler and communicate with processes modeling the
system’s memory. This way, the threads are implicitly defined by the union
process. It is generated as follows: First, the instructions are embedded into
the scheduler process, which executes them one after another, possibly handling
preemption in between. The resulting process is then synchronized with the
threads’ private memory processes. Finally, it is synchronized with the shared
memory.

In the case of multiple independent processes, the threads are first synchro-
nized with their private memory, then copied and finally composed with the
scheduler and the shared memory. This latter model is structured as follows:
First, the threads’ instructions are embedded into a sequential process possibly
handling preemption between any two instructions. This raw thread process is
then synchronized with its private memory, resulting in the basic thread pro-
cess. The private memory holds all variables not meant to be manipulated by
other threads. These processes can then be copied if there are multiple threads
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using the same code-base. Each thread is then synchronized with the scheduler
process. Finally, it is synchronized with the shared memory.

The two differently structured models result in semantically equivalent pro-
cesses. Which of the models performs best, depends on the number of instruc-
tions, the size of the private memory and the usage of shared memory. Experience
shows that highly interacting threads are best put together in the former way,
while the latter way suits independent threads better.

2.2 The llvm2csp User Interface

The llvm2csp user interface consists of annotations defined in header files and
command line switches of the tool. The annotations are realized as two ghost
functions [4] and a dedicated ghost constant (a configuration string named
CSP USERSCRIPT ). Since we advocate the idea that specification and veri-
fication should reside in the same development artifacts, this ghost constant is
supposed to hold the specification and verification information (e.g. the FDR
assertions). The value of this ghost constant is always included in the generated
CSPM script. Although not being a native feature of C/C++, llvm2csp deals
with concurrent programs. Since concurrency does not show up in the IR of a
program, the ghost functions are used to annotate concurrency related aspects
of a program (which must match the predefined platform- and domain-specific
parts, of course).

The llvm2csp static ghost function is used to set static values, e.g. the entry
points of threads, the size of the model’s integer or a maximum number of
stackframes for a function. Once set, these values are fixed at runtime. Calls
to this function are eliminated by the compiler after interpreting the function’s
parameters.

The llvm2csp dynamic ghost function is used to include dynamic parts in the
final model. Call sites of this function are only relevant if they reside within
functions that are included in the generated model. Call sites are replaced with
the elements computed from the parameters of this ghost function. This ghost
function allows custom CSPM code snippets to be inserted into the final model
(to control the domain-specific part of the model by inserting user-defined events
or to enable and disable preemption) or to replace modules of the program with
their respective specifications, for example. Replacing parts of the program with
user-defined processes allows the user to define abstractions attacking the state
space explosion problem to simplify the generated models while maintaining
the desired properties. For example, conditionals can be abstracted to nonde-
terministic (internal) choice and functions or blocks of code can be replaced by
user-defined processes. Soundness of the abstractions cannot be proved within
llvm2csp itself but is to be done using the approach presented in [1].

Context-bounded verification [8] is supported using the command line option
numswitches. This option defines the upper bound of context switches and thus
reduces the state-space of the generated model. The output format is also chosen
on the command line.
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Examples of how to use these ghost functions and the ghost constant are given
on the llvm2csp demo-website https://group.swt.tu-berlin.de/llvm2csp.

2.3 Functions and Variables

Models generated by llvm2csp contain only those functions of the program that
are actually called in the translated code (if not annotated otherwise). The set of
functions that may get called in the code that is visible to the compiler is com-
puted by a custom analysis. Function pointers are also supported. This analysis
works with different entries for all threads and includes a cautious approximation
on what function pointers may get exchanged between two locations. Recursive
functions are supported up to a user-defined recursion depth, which can be set
using a ghost function.

The compiler reduces the set of global variables to those that are actually
used by the program. These are then treated as shared variables. They can
be referenced and accessed by any thread. Shared variables, which are neither
referenced by any translated instruction nor pointed to by any other shared
variable, are not included in the generated model.

Local variables are treated as shared variables, because, in general, pointers to
local variables can be exposed to other threads. Since many instances of a local
variable can coexist, a number of them is allocated, depending on the number
of threads and the allowed number of calls to the function they belong to. Any
other value (e.g. constants) are inlined.

2.4 Types and Arithmetics

Booleans, bytes, integers of any size, pointers to any data type and also function
pointers are all mapped to the model’s integer type. Owing to the state-space
explosion problem, llvm2csp uses reduced ranges of data-types. Its initial size is
set by ghost functions. If the address space of the shared variables in the model
or the total number of functions translated is too big for the initial size of the
model’s integer, its upper bound is adjusted accordingly. Complex data types
such as classes, structs or arrays, containing any other primitive or complex
types recursively are also supported.

Arithmetic is supported on the data-types mentioned above. Since the final
model uses reduced ranges, arithmetic operations can produce overflows that are
different from those that would occur in the original program. As described in [4],
these situations are handled by so-called error code events, using the following
subprocess: error code -> STOP where error code is a fresh event introduced
to signal the incident. Using error codes ensures that no false positives occur
during refinement checking and maintains the soundness of our approach.

There is currently no support to execute globals constructors before any
threads start in their entry functions. The current workaround is that one thread
calls all global constructors while preemption is disabled. Exception handling is
not supported. Neither are floating point types, floating point arithmetic and
dynamic memory allocation.

https://group.swt.tu-berlin.de/llvm2csp
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3 Conclusions

To date, llvm2csp is a quite generic tool supporting the generation of detailed or
abstract CSP models optimized for use with FDR, ProB or the CSP Prover. Mod-
els generated for use with FDR or ProB may suffer from state space explosion.
Even simple programs (just a few dozen lines of code) require severe abstractions
if used with FDR. Sometimes restructuring the model or using FDR’s built-in
compression functions solves the problem. However, many interesting properties
like deadlock-freedom are provable on a rather abstract view of a system. Thus,
it is advisable to always start with generating very abstract models when using
the llvm2csp tool. Another result obtained so far is that the modular structure of
the generated models can be exploited to replace the generated models of lower-
level components with their specifications. This way, compositionality of CSP
can be exploited. The tool was used to generate the CSP model of an operating
system scheduler [3]. It is currently being used for a case study on verifying the
core components and basic applications of the BOSS operating system [7].
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Abstract. The LTSmin toolset provides multiple generation and on-
the-fly analysis algorithms for large graphs (state spaces), typically gener-
ated from concise behavioral specifications (models) of systems. LTSmin
supports a variety of input languages, but its key feature is modular-
ity: language frontends, optimization layers, and algorithmic backends
are completely decoupled, without sacrificing performance. To comple-
ment our existing symbolic and distributed model checking algorithms,
we added a multi-core backend for checking safety properties, with sev-
eral new features to improve efficiency and memory usage: low-overhead
load balancing, incremental hashing and scalable state compression.

1 LTSmin in a Nutshell

The LTSmin1 toolset serves as a testbed for our research in the design of model
checking tools which sacrifice neither modularity and composability nor perfor-
mance. Previously, we described general features of LTSmin [4]: its wide support
for input languages through reuse of existing implementations (mCRL, NipsVM,
DVE, Maple and GNA, ETF), which can be combined with algorithms for
checking safety properties: enumerative, distributed and BDD-based symbolic
reachability analysis, several language-independent on-the-fly optimizations (lo-
cal transition caching, regrouping) [2], as well as off-line state-space minimization
algorithms.

The unifying concept in LTSmin is an Interface based on a Partitioned Next-
State function. PINS connects language frontends, on-the-fly optimizations, and
algorithmic backends. In Sec. 2, we describe how our new multi-core (MC) back-
end utilizes PINS for parallel shared-memory reachability [6] for all supported
thread-safe language frontends (DVE, NipsVM, ETF).

Our MC backend provides several new contributions in the area of high- per-
formance model checking: multi-core load balancing (Sec. 2.1), incremental hash-
ing (Sec. 3), and scalable state compression (Sec. 4). The latter reduces memory
requirements drastically, but can also improve running time of the MC tool. This
is remarkable, as compression techniques generally trade space off for computa-
tional overhead.

1 http://fmt.cs.utwente.nl/tools/ltsmin/ , current version: 1.6, open-source.
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2 LTSmin Multi-Core Architecture

PINS carefully exposes just enough structure of the models to enable high-
performance algorithms and optimizations, while remaining abstract to the spe-
cific modeling language. For the purpose of this exposition, we limit the PINS
description to the state and transition representation, their dependency matrices,
and the next-state function. Further details can be found elsewhere [2].

In LTSmin, states are generally represented by fixed-length vectors of N
slots : 〈s1, . . . , sN 〉 ∈ S. The transition relation →⊆ S × S is partitioned dis-
junctively into K transition groups (→1, . . . ,→K),→i⊆→. Language modules
provide these subrelations. We exploit that often, a transition group depends
not on the full state vector, but only on a small subset of all slots, which can
be statically approximated. Hence, a K ×N binary dependency matrix records
which slots are needed per group (read matrix, DR), and another records which
slots are modified (write matrix, DW ). A value DR

i,j = 0 indicates that all transi-
tions in group →i are independent of slot j, hence its value sj can be arbitrary.
A value DW

i,j = 0 indicates that slot j will not be modified by any transition
in group →i. The dependency matrices are utilized by our multi-core tool via
incremental hashing and state compression.

Our multi-core backend is implemented using the pthreads library. The same
reachability algorithm [6] is started in multiple threads (workers) that share a
state storage holding the set of states already visited by the search algorithm
(closed set). The main operation is the FindOrPut(s) function, which (atom-
ically) reports if state s is already present in the set and otherwise inserts it.
We have shown that this architecture is at least as efficient as a widely used
approach based on static (hash-based) partitioning [6], despite being simpler.

2.1 Multi-Core Load Balancing

To provide all processors with some initial work, static load balancing (SLB)
can be used. E.g., we could (sequentially) explore a sufficiently large prefix of
the state space, and partition it over all workers. In parallel, each worker then
explores all states reachable from its initial partition until no unvisited states
are left. This simple scheme is surprisingly effective for many models, but pre-
dictably, for some inputs it leads to bad work distribution, or starvation of
workers. Therefore, we tailored a synchronous random polling (SRP) load bal-
ancing algorithm [9] to our multi-core setting by using atomic reads and writes
on shared data.

The number of explored transitions are used as measure for the work load,
since it gives a close estimation of the number of actual computations (or rather,
memory accesses) performed by a worker. Our measurements show that SRP
provides almost perfect work distribution (less than 1% deviation from average)
with negligible overhead compared to SLB. Together with shared state storage
we obtain linear scalability for the LTSmin multi-core backend, which currently
outperforms both SPIN [5] and DiVinE [1] on the BEEM benchmark set [8].
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2.2 Example Use Cases

LTSmin tool names are composed of a prefix for the language frontend and a
suffix for the algorithmic backend: <language><algorithm>. For example, the
ETF frontend in combination with the multi-core backend is named etf2lts-mc.

Multi-Core Reachability Analysis using ETF can be launched with:

etf2lts-mc --threads=4 -s22 --lb=srp leader-7-14.etf

The command performs multi-core reachability with four workers (--threads=4)
and the SRP load balancer (--lb=srp, default as described in --help). The hash
table size is fixed to 222 states (-s). This parameter needs to be chosen carefully
to fit the model size or the available memory of the machine, because of our hash
table design decisions [6]. Slow language frontends like NipsVM and mCRL can
optionally enable transition caching (-c) to speed up state generation. Caching
is implemented efficiently using the dependency matrix [2].

The following command searches for deadlocks (-d):

etf2lts-mc -s22 --strategy=bfs -d --trace=trace.gcf leader-7-14.etf

A parallel (pseudo) breadth-first search (bfs) generally finds a short counter
example, which is stored in file trace.gcf and can be analyzed in detail, for
example by conversion into comma-separated value format (only recording dif-
ferences between subsequent state vectors), and loading into a spreadsheet:

ltsmin-tracepp --diff trace.gcf trace.csv

3 Incremental State Hashing

Hash tables are a common implementation choice to represent the closed set of
a search. Hence, the previously mentioned FindOrPut(s) operation calculates
the hash value of a given state s. For large state vectors and small transition
delays (the time needed to calculate the effects of a transition on a state), hash
calculations can easily take up to 50% of the overall run time (e.g., for C-compiled
DVE2 models), even when using optimized hash functions. Given the observation
that for most transitions s→ s′, the difference between s and s′ are small (often
in the order of 1–4 slots), incremental hashing has been investigated [7]. We have
added an alternative scheme to LTSmin, which is based on Zobrist hashing [10]
commonly used in games like computer chess. We believe this is the first time
that Zobrist’s approach has been used in the context of model checking.

Zobrist hashing incrementally composes a hash value from a matrix Z of
random numbers. Each random number is bound to a fixed configuration of
the game, for example, pawn at H3. When the numbers are combined using
the XOR (⊕) operation, the hash value can be updated incrementally between
different game configurations. For example, if a pawn P moves from H3 to H4,
we manipulate the hash value h as follows: h′ := (h ⊕ Z[P][H3]) ⊕ Z[P][H4].
Algebraic properties of ⊕ guarantee that a hash is unique for a configuration,
independently of the path through which the configuration was reached.
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The number of possible configurations of our models (slot values) is usually
not known up front or too large to generate random numbers for. Therefore, we
only generate a fixed amount of L numbers per state slot and map each slot
value to one of them using the modulo operation (the Z matrix is of size L×N).

Input : transition s→i s′

Input : hash value h of s
Output: hash value h′ of s′

s = 〈s1, . . . , sN〉
s′ = 〈s′1, . . . , s′N〉
h′ ← h

for j ∈ {j | DW
i,j = 1} do

h′ ← h′ ⊕ Z[j][sj mod L]
h′ ← h′ ⊕ Z[j][s ′j mod L]

Algorithm 1. Calculating a hash h′

for successor s′ of state s with hash
h, using Zobrist and PINS.

Alg. 1 shows how PINS can be
used to update only those slots of a
state s′, which (potentially) changed
with respect to its predecessor s.
Based on initial experimenting, we
concluded that L = 26 is sufficient
to yield a hash distribution at least
as good as standard hash functions.2

The size of the Zobrist matrix Z is
insignificant (4L×N bytes).

The following command launches
a multi-core state space exploration
(reachability) with the DVE2 fron-
tend using Zobrist hashing with
L = 26 (option -z6), and a hash ta-
ble of size 218 (option -s18):

dve22lts-mc -s18 -z6 firewire tree.4.dve

While the availability of large amounts of RAM in recent years shifted the “model
checking bottleneck” towards processing time (we would run out of patience
before running out of memory), with our improved multi-core algorithms we can
easily surpass 10 million states/sec with 16 cores, sometimes claiming memory
at a rate of 1 GB/sec. This causes memory to be the bottleneck again.

4 Multi-Core State Compression

We improve the memory efficiency of our tools by introducing a multi-core ver-
sion of tree compression [3]. The following command uses it:

dve22lts-mc --state=tree --threads=16 firewire tree.5.dve

Compared to a hash table (--state=table, default), memory usage for the
closed set drops from 14 GB to 96 MB, while the run-time decreases as well,
from 5.4 sec to 3.3 sec! The model, firewire_tree.5.dve, is an extreme case
because of its long state vectors of 443 integers. In Sec. 5, we show that tree
compression also performs well for 250 other models from the BEEM database.

The tree structure used for compression is a binary tree of indexed sets which
map pairs of integers to indices, starting at the fringe of the tree with the slots of
a state vector [3]. To provide the necessary stable indexing efficiently, we inject
all indexed sets Ik into a single table [6] by appending the set number k to the
lookup key. In addition to our earlier work, the tree structure is now updated
incrementally using the PINS dependency matrix.
2 Results available at: http://fmt.ewi.utwente.nl/tools/ltsmin/nfm-2011/

http://fmt.ewi.utwente.nl/tools/ltsmin/nfm-2011/
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Reducing Open Set Memory. In the above case of firewire_tree.5.dve, the
open set becomes the new memory hot-spot, using 200 MB. Hence, we can also
opt to only store (32-bit) references to state vectors in the open set, at the
expense of extra lookup operations:

dve22lts-mc --state=tree --threads=16 --ref firewire tree.5.dve

This reduces the memory footprint of the open set from 200 MB to about
250 KB. Alternatively, depth-first search could be used, which often succeeds
with a smaller open set than BFS:

dve22lts-mc --state=tree --strategy=dfs firewire tree.5.dve

5 Experiments

We performed benchmarks on a 16-core AMD Opteron 8356 with 64 GB RAM.
All models of the BEEM database [8] were used with command lines illustrated in
the previous section. The hash table size was fixed for all tools to avoid resizing.

Table 1. All possible combinations of the
use cases for model firewire link.5

Cores: 1 16

Options: none --ref -z6 none --ref -z6

Total bfs table 5.4 5.7 4.7 0.3 0.3 0.3
time tree 4.8 4.4 – 0.2 0.2 –
[sec] dfs table 5.7 5.7 4.8 0.4 0.4 0.3

tree 4.1 4.4 – 0.2 0.2 –

Total bfs table 12.6 12.5 12.6 12.6 12.5 12.6
mem. tree 0.9 0.7 – 0.9 0.7 –
[GB] dfs table 12.5 12.5 12.5 12.5 12.5 12.5

tree 0.7 0.7 – 0.7 0.7 –

Tab. 1 shows an example of the ef-
fects of tree compression, Zobrist and
references on the run-time and the
memory usage of the different algo-
rithms. The memory totals represent
the space occupied by states on the
open set and closed set (tree or hash
table). Zobrist is not implemented for
the tree structure.

Analysis revealed that the compres-
sion factors of tree compression and
SPIN’s collapse are primarily (lin-
early) dependent on the state length
[3]. Fig. 1 shows absolute compression
factors as values for all BEEM models that fitted into memory (250 out of 300).
We established a maximum line for both compression techniques. On average,
tree compression is about four times as effective as collapse.

Fig. 2 compares the performance of our MC backend with other tools. We
translated BEEM models to Promela for SPIN; only those 100 models with
similar state counts were used (less than 20% difference). Despite slower sequen-
tial performance due to the (larger) PINS state format, LTSmin ultimately scales
better than DiVinE and SPIN. Tree compression results in only 20% run-time
overhead (aggregated) compared to the fastest hash table-based method.

Future Work. In the lab, we have working versions of LTSmin that support full
LTL model checking, partial-order reduction and multi-core swarmed LTL. All of
these features are implemented as additional PINS layers and search strategies,
building on the current infrastructure.

Conclusions. Several use cases and experiments show how LTSmin can be ap-
plied to solve verification problems. Multi-core runs with Zobrist hashing can
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Fig. 1. Tree/collapse compression for
250 models
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solve problems quickly provided that enough memory is available, while tree
compression and state references can solve problems with large state vectors or
on machines with little memory.
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Abstract. We present the growing C++ library GiNaCRA, which provides
efficient and easy-to-integrate data structures and methods for real al-
gebra. It is based on the C++ library GiNaC, supporting the symbolic
representation and manipulation of polynomials. In contrast to other
similar tools, our open source library aids exact, real algebraic computa-
tions based on an appropriate data type representing real zeros of poly-
nomials. The only non-standard library GiNaCRA depends on is GiNaC,
which makes the installation and usage of our library simple. Our long-
term goal is to integrate decision procedures for real algebra within the
Satisfiability-Modulo-Theories (SMT) context and thereby provide tool
support for many applied formal methods.

R
·
+
<G GiNaCRA – GiNaC Real Algebra package

http://ginacra.sourceforge.net/

1 Introduction

Formal methods for simulation, analysis, and synthesis have been making great
progress during the last decades. The success of new methods in these fields often
depends on efficient solvers for specific, well-established problems. For instance,
there is a growing interest in Satisfiability-Modulo-Theories (SMT) solvers, im-
plementing decision procedures for first-order logics over various theories [9]. The
demand on these solvers is also growing; in particular, there is a need for more
expressive logics. One example is the highly expressive but still decidable first-
order logic over the reals with addition and multiplication, called real algebra.
Whereas SMT-solvers for the linear fragment of this logic are very successful
nowadays, even in industrial contexts, full real algebra still has not crossed this
border. Nevertheless, several decision procedures were developed since the 1950s,
which are currently operational in some computer algebra systems.

Although those computer algebra systems are frequently used and well-suited
to solve a wide range of problems, they have some common drawbacks. First
of all, many of them are either not free, or depend on non-free software. Fur-
thermore, most of the free systems are not open source, restricting the exten-
sibility and modification of the underlying algorithms. Another disadvantage is

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 512–517, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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that many computer algebra systems do not allow an easy integration of their
functionalities into other external programs: Firstly, because they only offer
graphical or textual user interfaces rather than a programming interface. Sec-
ondly, their output is usually a string displayed on screen, complicating its reuse
in further external, exact computations.

Our long-term goal is to integrate an efficient decision procedure for real al-
gebra into an SMT-solver. However, in view of the drawbacks mentioned above,
current implementations of these decision procedures as, for example, the cylin-
drical algebraic decomposition (CAD) method, the virtual substitution method,
or methods using Gröbner bases are not suited for an SMT-integration.

In this paper we introduce our open source C++ library GiNaCRA, which is free
of the above-mentioned drawbacks. Besides the standard C++ library, GiNaCRA
is based on a single non-standard library GiNaC [1]. GiNaCRA is under active and
continuous development, and it already aids some functionalities not yet sup-
ported by any other C++ library. For example, GiNaCRA provides data types for
real algebraic numbers as well as arithmetic and relational operations on them.
In addition, an algorithm finding the common real roots of a set of univariate
polynomials with rational coefficients is available. These features are useful not
only for SMT-solving, but in a variety of other domains for computations with
real algebraic constraints. Support for finding common real roots of multivari-
ate polynomials is being implemented at the present time. In the near future,
GiNaCRA will be also capable of computing realizable sign conditions of a set of
multivariate polynomials [10, Algorithm 13.1].

Related Work. To our knowledge, there is currently no open source C++ imple-
mentation of real algebraic numbers, able to perform exact arithmetic operations
from scratch. Nevertheless, very close to at least providing real-root computa-
tions are Libreduce, a C++ library of the Reduce computer algebra system,
CoCoALib [8], a C++ library of the CoCoA computer algebra system, Givaro [2],
and SYNAPS [3]. Singular [12], KANT [4], and PARI/GP [15] are examples of soft-
ware packages for arithmetic and algebraic computations supporting algebraic
numbers, but no computations with real algebraic ones. Maple [5], MATLAB [6],
and Mathematica [7] are prominent examples of quite a number of further com-
puter algebra systems providing computations with polynomials. There are also
several programs implementing decision procedures for real algebra. QEPCAD [11]
is a C++ implementation of the CAD method. Another example is the Redlog
package [13] of the computer algebra system Reduce, offering an optimized
combination of the virtual substitution and the CAD method.

Most of GiNaCRA’s algorithms are based on the textbook [10], a comprehensive
guide to real algebra comprising many methods of practical importance.

2 Real Algebra

Real algebra denotes the first-order logic over the reals with addition, multiplica-
tion, and the order relation. A real algebraic formula ϕ is a possibly quantified

http://ginacra.sourceforge.net/
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http://ljk.imag.fr/CASYS/LOGICIELS/givaro/
http://www-sop.inria.fr/galaad/logiciels/synaps/
http://www.singular.uni-kl.de
http://www.math.tu-berlin.de/~kant/kash.html
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Boolean combination of real algebraic constraints c. Each constraint, in turn, is
an equality or inequality of polynomials in one or more variables x. The syntax
can be formalized by the following abstract grammar:

p ::= 0 | 1 | x | (p + p) | (p · p)
c ::= p = p | p < p
ϕ ::= c | (¬ϕ) | (ϕ ∧ ϕ) | (∃xϕ)

Real algebra belongs to the mathematical theory of algebraic geometry, which
is, to a great extent, based on Hilbert’s Nullstellensatz. This field of research is
the source of highly topical algorithms for solving the satisfiability problem of
real algebra, that is, the question if we can assign real values to the variables of
a quantifier-free real algebraic formula such that the formula evaluates to true.
Solving this problem involves a lot of sophisticated computations, but they ulti-
mately depend on a central problem: finding real roots of a univariate polynomial
with rational coefficients. Note that there is no restriction to the degree of the
polynomial. In particular, this problem can not be solved by applying a solution
formula as in the quadratic case. In addition, it requires a representation of the
root itself, a real algebraic number.

3 Features of GiNaCRA

GiNaCRA is a C++ library providing a collection of basic and advanced methods
for real algebraic computations. It supports different representations of real alge-
braic numbers (order, sign, and interval representation [14, p. 327]). The different
representations can be transformed into each other, such that for each computa-
tion the most suitable one can be chosen. A wrapping class for all representation
types is under current development, providing an easy way of computing with
real algebraic number objects and at the same time the ability to switch to an
appropriate representation efficiently. In addition, a numerical representation of
a real algebraic number can be computed.

The following list comprises some more features of GiNaCRA.

Open Source: GiNaCRA is meant to be accessible by everyone: researchers, stu-
dents, industrial and commercial developers. It shall be possible to enhance
GiNaCRA by everyone as well as to use GiNaCRA in other non-proprietary
projects. Therefore, GiNaCRA is licensed under the GNU Lesser General
Public License version 3 (LGPLv3).

Standalone: This library depends solely on one non-standard library GiNaC,
which is licensed under the GNU General Public License version 2 (GPLv2).
In particular, GiNaCRA does not depend on any closed-source software. GiNaC
is currently available in many Linux distributions innately, what makes it
very easy to install GiNaCRA, once downloaded.

Object-oriented: Being written in C++, GiNaCRA is class-based and object-
oriented. It offers classes as types for real algebraic numbers, univariate
polynomials with rational coefficients, multivariate polynomials, multivari-
ate monomials, open intervals with rational endpoints, and many more.
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This increases maintainability, extensibility, and reduces error-proneness in
programs using this library.

Powerful interface: We provide a clear interface for an uncomplicated and
efficient communication between a C++ application and GiNaCRA’s real al-
gebraic functionality. In contrast, several state-of-the-art computer-algebra
systems for real algebraic computations, such as Reduce, MATLAB or Maple,
can not be integrated so smoothly. In addition to the library, a simple console
application for testing purposes is included in the GiNaCRA package.

Reliable: GiNaCRA comes with an extensive CppUnit test suite, currently con-
taining nearly 100 test cases for the various functions of the library. There
are separate test classes defining test cases for any GiNaCRA class, providing
the opportunity to enhance the testing framework easily, for example, in case
of a bug being found. Moreover, we make use of prevailing, well-tested C++
implementations, like the C++ standard library, wherever possible.

SMT-compliant: This library was specially designed to enable the implemen-
tation of an SMT-solver for real algebra. For this purpose, existing techniques
for solving real algebraic constraint systems have to be adapted to the SMT-
framework. This particularly means incremental solving algorithms for real
algebra, being capable of (re)storing a state during search. This functionality
can be realized by means of GiNaCRA’s data structures, and is a content of
current developments.

4 How to Use GiNaCRA

We give three simple examples on how GiNaCRA can be used inside a C++ program.

Example 1: Enumerating and Refining Real Roots

The following example program computes the real roots of the polynomial x5 −
39x4 +574x3−3954x2+12673x−15015 = −(3−x)(5−x)(7−x)(11−x)(13−x).

1 #include <iostream>
using namespace std ;
#include <ginacra / g inacra . h>
using namespace GiNaC ;

5
int main ( int argc , char ∗∗ argv )
{

symbol x( "x" ) ;
9 ex e (−15015 + 12673∗x − 3954∗pow(x , 2 ) + 574∗pow(x , 3 ) − 39∗pow(x , 4 ) + pow(x , 5 ) ) ;

RationalUnivariatePolynomial p( e , x ) ;
l i s t <IntervalRepresentation> root s = IntervalRepresentation : : r ea lRoots ( p ) ;
cout << p << "␣has␣" <<

13 root s . s i z e ( ) << "␣ r e a l ␣ roo t s : " << endl ;
for ( l i s t <IntervalRepresentation >:: cons t_ i t e ra to r

root = root s . begin ( ) ;
root != root s . end ( ) ;

17 ++root )
cout << "␣␣" << ∗ root << endl ;

cout << " L i s t ␣ o f ␣ r e f i n ed ␣ i n t e r v a l s ␣ f o r ␣ the ␣ roo t s : " << endl ;
for ( l i s t <IntervalRepresentation >:: i t e r a t o r

21 root = root s . begin ( ) ;
root != root s . end ( ) ;
++root )

{
25 for ( register unsigned i = 0 ; i < 10 ; ++i )

root−>r e f i n e ( ) ;
cout << "␣␣" << root−>Order ( ) << " : ␣" << root−>In t e r va l ( ) << endl ;

}
29 return 0 ;

}

http://ginacra.sourceforge.net/
http://ginacra.sourceforge.net/
http://www.reduce-algebra.com/
http://www.mathworks.de/
http://www.maplesoft.com/
http://ginacra.sourceforge.net/
http://ginacra.sourceforge.net/
http://sourceforge.net/projects/cppunit/
http://ginacra.sourceforge.net/
http://ginacra.sourceforge.net/
http://ginacra.sourceforge.net/
http://ginacra.sourceforge.net/
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Line 9 contains the definition of the input polynomial as a GiNaC expression
e. In line 10, a univariate polynomial p with rational coefficients is constructed
from e and the GiNaC symbol x. After computing the real roots of p as a list
of real algebraic numbers in line 11, the program outputs them in the first
loop (lines 14 to 18). The second loop (lines 20 to 28) iterates through the
roots again, but this time we change the iterated objects by calling the method
refine () ten times, thereby gaining tighter bounds on the roots. refine () is
implemented by a divide and conquer algorithm, using Sturm’s theorem for real
root counting. The refinement is done automatically whenever necessary for the
interval representation in arithmetic or relational operations.

The listing below shows the compiler call followed by the call and the output
of the example program. In the first loop, the output displays each real root as a
triplet, consisting of the polynomial, an interval that contains exactly this single
root, and the position of the root with respect to the order <. In the second
loop, the polynomials are omitted in the output.

> g++ −l g i n a c −l g i n a c r a −o example1 example1 . cpp
> ./ example1
−15015+574∗x^3−3954∗x^2+12673∗x−39∗x^4+x^5(x ) has 5 r e a l roo t s :

{−15015+574∗x^3−3954∗x^2+12673∗x−39∗x^4+x^5(x ) : ] 0 , 1877/512[ : 1}
{−15015+574∗x^3−3954∗x^2+12673∗x−39∗x^4+x^5(x ) : ]1877/512 , 5631/1024[ : 2}
{−15015+574∗x^3−3954∗x^2+12673∗x−39∗x^4+x^5(x ) : ]5631/1024 , 1877/256[ : 3}
{−15015+574∗x^3−3954∗x^2+12673∗x−39∗x^4+x^5(x ) : ]5631/512 , 13139/1024[ : 4}
{−15015+574∗x^3−3954∗x^2+12673∗x−39∗x^4+x^5(x ) : ]13139/1024 , 1877/128[ : 5}

L i s t o f r e f i n ed i n t e r v a l s for the roo t s :
1 : ]1571049/524288 , 786463/262144[
2 : ]5242461/1048576 , 2622169/524288[
3 : ]3669535/524288 , 7340947/1048576[
4 : ]11534165/1048576 , 5768021/524288[
5 : ]6815387/524288 , 13632651/1048576[

Example 2: Computing Common Real Roots of Two Polynomials

This example addresses the computation of the common real roots of x5−39x4+
574x3− 3954x2 + 12673x− 15015 and −x4 + 26x3− 236x2 + 886x− 1155 where
−x4 +26x3−236x2 +886x−1155 = −(3−x)(5−x)(7−x)(11−x) is a factor of
the polynomial of Example 1. Since the same headers are needed as in Example
1, we show only the important snippet from the main method here.

ex e1 (−15015 + 12673∗x − 3954∗pow(x , 2 ) + 574∗pow(x , 3 ) − 39∗pow(x , 4 ) + pow(x , 5 ) ) ;
2 ex e2 (−1155 + 886∗x − 236∗pow(x , 2 ) + 26∗pow(x , 3 ) − pow(x , 4 ) ) ;

l i s t <RationalUnivariatePolynomial> l = l i s t <RationalUnivariatePolynomial >();
l . push_back (RationalUnivariatePolynomial ( e1 , x ) ) ;
l . push_back (RationalUnivariatePolynomial ( e2 , x ) ) ;

6 l i s t <IntervalRepresentation> root s = IntervalRepresentation : : commonRealRoots ( l ) ;
cout << l . f r on t ( ) << "␣and␣" << l . back ( ) << endl << "have␣" <<

root s . s i z e ( ) << "␣common␣ r e a l ␣ roo t s : " << endl ;
for ( l i s t <IntervalRepresentation >:: cons t_ i t e ra to r

10 root = root s . begin ( ) ;
root != root s . end ( ) ;
++root )

cout << "␣␣" << ∗ root << endl ;

A list containing the two polynomials is constructed in lines 1 to 5. In line
6, the method commonRealRoots is called with this list as input. The method
returns a list of real algebraic numbers, which is displayed as follows:

−15015−39∗x^4+x^5−3954∗x^2+574∗x^3+12673∗x (x ) and −1155−x^4−236∗x^2+26∗x^3+886∗x (x )
have 4 common r e a l roo t s :

{1155+x^4+236∗x^2−26∗x^3−886∗x (x ) : ] 0 , 289/64[ : 1}
{1155+x^4+236∗x^2−26∗x^3−886∗x (x ) : ]289/64 , 867/128[ : 2}
{1155+x^4+236∗x^2−26∗x^3−886∗x (x ) : ]867/128 , 289/32[ : 3}
{1155+x^4+236∗x^2−26∗x^3−886∗x (x ) : ]289/32 , 289/16[ : 4}

http://www.ginac.de/
http://www.ginac.de/
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Example 3: Real Algebraic Number Arithmetic

Finally, we give a short code snippet illustrating arithmetic and relational oper-
ations on real algebraic numbers in GiNaCRA. For the sake of simplicity, we take
the zeros of x2 − 2 and x− 1 as example numbers.

RationalUnivariatePolynomial p1 ( pow(x ,2) −2 , x ) ;
2 RationalUnivariatePolynomial p2 ( x−1, x ) ;

l i s t <IntervalRepresentation> sqr t2 s = IntervalRepresentation : : r ea lRoots ( p1 ) ;
cout << " In t e r va l ␣ r ep r e s en ta t i on ␣ o f ␣ sq r t ( 2 ) : ␣" << sqr t2 s . back ( ) << endl ;
l i s t <IntervalRepresentation> one = IntervalRepresentation : : r ea lRoots ( p2 ) ;

6 cout << " In t e r v a l ␣ r ep r e s en ta t i on ␣ o f ␣ 1 : ␣" << one . f r on t ( ) << endl << endl ;
cout << " sqr t (2)+(− sq r t ( 2 ) ) ␣=␣" << sqr t2 s . back ()+ sq r t 2 s . f r on t ( ) << endl ;
IntervalRepresentation minustwo = sq r t2 s . back ()∗ sq r t 2 s . f r on t ( ) ;
cout << " sqr t (2)∗− sq r t (2) ␣=␣" << minustwo << endl ;

10 IntervalRepresentation two = one . f r on t ()+one . f r on t ( ) ;
cout << "1+1␣=␣" << two << endl ;
cout << " ( sq r t (2)∗− sq r t ( 2 ) ) ␣==␣−(1+1)?␣" << (( minustwo==−two )? "Yes ! " : "No ! " ) << endl ;

This program generates the following output:
I n t e r v a l r ep r e s en ta t i on o f sq r t ( 2 ) : {−2+x^2(x ) : ] 0 , 2 .2360679774997896964[ : 2}
I n t e r v a l r ep r e s en ta t i on o f 1 : {−1+x(x ) : ] 0 , 1 .4142135623730950488[ : 1}

sq r t (2) + (− sq r t ( 2 ) ) = {x^4−8∗x^2(x ) : ] 0 , 0 [ : 2}
sq r t (2) ∗ −sq r t (2) = {16+x^4−8∗x^2(x ) : ] −6.708203932499369089 , −1/17[ : 1}
1 + 1 = {−2+x(x ) : ] 1/3 , 2 .8284271247461900975[ : 1}
( sq r t (2) ∗ −sq r t ( 2 ) ) == −(1 + 1)? Yes !

These arithmetic operations each produce a new interval representation by
computing a new polynomial, based on the original ones, and a new interval,
whose bounds depend on the original bounds. The original intervals are then
refined until the new interval isolates exactly one real root of the new polynomial.
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Abstract. We are developing Kopitiam, a tool to interactively prove full
functional correctness of Java programs using separation logic by inter-
acting with the interactive theorem prover Coq. Kopitiam is an Eclipse
plugin, enabling seamless integration into the workflow of a developer.
Kopitiam enables a user to develop proofs side-by-side with Java pro-
grams in Eclipse.

1 Introduction

It is challenging to reason about object-oriented programs, because these contain
implicit side effects, shared mutable data and aliasing. Reasoning with Hoare logic
always has to consider the complete heap, which does not preserve the abstractions
of the programming language. Separation logic [18] extends Hoare logic to allow
modular local reasoning about programs with shared mutable state.

Coq [4] is an interactive theorem prover based on the calculus of constructions
with inductive definitions. Kopitiam generates proof obligations from specifica-
tions written in Java, which the user needs to discharge by providing Coq proof
scripts. A proof script is a sequence of tactics.

The contribution is Kopitiam, a tool combining the following verification
properties:

– Modular. Extensions of a verified Java library can rely on the specification
of the library, without reverifying the library.

– Incremental. While parts of the code can be verified and proven, other
parts might remain unverified, and development of proofs and code can be
interleaved, as in Code Contracts [10].

– Interactive. Automated proof systems like jStar [8] are limited in what
they can prove. We use an interactive approach where the user discharges
the proof obligations using provided tactics, thus Kopitiam does not limit
what a user can prove.

– Full functional. Given a complete, precise formal specification the proof
shows that the implementation adheres to its specification.

– Static. The complete verification is done at compile time, without execu-
tion of the program. Other code verification approaches, like design by con-
tract [15], may depend on run time checks. Especially in mission critical
systems, compile time verification is indispensable, since a failing run time
check would be disastrous.

M. Bobaru et al. (Eds.): NFM 2011, LNCS 6617, pp. 518–524, 2011.
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The structure of the paper is: we give an overview of Kopitiam in Section 2,
demonstrate a detailed example in Section 3, relate Kopitiam to similar tools in
Section 4, and in Section 5 conclude and present future work.

2 Overview of Kopitiam

Kopitiam provides an environment that is familiar to both Java programmers
and Coq users. Coq developers use Proof General (based on Emacs) or CoqIDE
(a self-hosted user interface). Many Java programmers use an IDE for develop-
ment, the major Java IDEs are Eclipse and IntelliJ. To integrate seamlessly into
the normal development workflow we develop Kopitiam as a plugin for Eclipse,
so a developer does not have to switch tools to prove her code correct. We base
Kopitiam on Eclipse because it is open source, popular and easily extendible
via plugins. While an Eclipse integration for Coq [6] already exists, Kopitiam
provides a stronger integration of Java code and Coq proofs. This is achieved
by a single intermediate representation for both code and proofs. A change to
either code or proof directly changes this intermediate representation.

Fig. 1. Java and Coq editor side-by-side; closeup of Coq editor in Fig 2

In Figure 1 Kopitiam is shown. It consists of a standard Eclipse Java editor
on the left and a specially developed Coq proof editor on the right. The con-
tent of the Java editor is the method fac, a recursive implementation of the
factorial function. The Java code contains a call to Coq.requires and a call to
Coq.ensures, whose arguments are the pre- and postcondition of the method.
The right side shows the Coq lemma fac valid, stating that factorial fulfills
its specification, together with parts of the proof script (full code in Section 3).
Due to the single intermediate language, Kopitiam reflects every change to the
content of one editor to the other editor, e.g. a change to the specification on
the Java side changes the Coq proof obligation.

Kopitiam consists of a Java parser, with semantic analysis, a transformer to
SimpleJava (presented in Section 2.2), a Coq parser, and communication to Coq
via standard input and output. All these parts are expressible in a functional
way, so we chose Scala [16] as the implementation language of Kopitiam. Scala is
a type-safe functional object-oriented language supporting pattern matching. It
compiles to Java bytecode, allowing for seamless integration with Eclipse (every
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Scala object is a Java object and vice versa). Kopitiam is open source under the
Simplified BSD License and available at https://github.com/hannesm/Kopitiam.

2.1 Coq Editor and Goal Viewer

To develop proofs, Kopitiam provides a Coq editor and a goal viewer, shown in
Figure 2. The Coq code on the left side states the lemma fac step: for all n, n
greater than 0 implies that n ∗ fac(n - 1) equals fac(n) (lines 1-3). All except
the last 2 lines of the Coq code that have been processed by Coq (highlighted
in blue in Kopitiam, the unprocessed ones are black). The goal viewer on the
right side shows the current state of proof assumptions, proof obligations and
subgoals. The current state is after doing induction over n and discharging the
base case using the intuition tactic. The remaining proof obligation is the
induction step.

As in other Coq user interfaces, there are buttons (not shown) to step forward
and backward through the proof.

Fig. 2. Coq editor and goal viewer of Kopitiam, closeup of Figure 1

If Coq signals an error while processing, this error is highlighted in Kopitiam.
Figure 3 shows on the left side the erroneous Coq proof script next to Eclipse’s
corresponding problems tab. Errors are indicated by red wiggly lines, similar to
the way programming errors are displayed in Eclipse.

Fig. 3. Coq proof script containing an error and Eclipse’s problems tab

2.2 The SimpleJava Programming Language

We formalized SimpleJava, a subset of Java, and implemented it using a shal-
low embedding in Coq (details in an upcoming paper by Bengtson, Birkedal,
Jensen and Sieczkowski). SimpleJava syntax is a prefix (S-expression) notation
of Java’s abstract syntax tree. Dynamic method dispatch is the core ingredient
of object oriented programming, and supported by SimpleJava. A SimpleJava
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class FacC {
int fac (int n) {
Coq.requires("ege n 0");
Coq.ensures

("ret ·=· facZ n");
int x;
if (n > 0)
x = n * fac(n - 1);

else x = 1;
return x;

}
}

Fig. 4. Java code

(cif (egt (var_expr "n") 0)
(cseq
(ccall "x" "this" "fac"
((eminus
(var_expr "n") 1))

(TClass "FacC"))
(cassign "x"
(etimes
(var_expr "n")
(var_expr "x"))))

(cassign "x" 1))

Fig. 5. SimpleJava code

Fixpoint fac n :=
match n with
| S n => (S n) * fac n
| 0 => 1
end.

Definition facZ :=
fun (n:Z) =>
match ((n ?= 0)%Z) with
| Lt => 0
| _ =>
Z_of_nat(fac(Zabs_nat n))

end.

Fig. 6. Coq definitions

program consists of classes and interfaces. An interface contains a set of method
signatures and a set of interfaces, that it inherits from; a class consists of a set of
implemented interfaces, a set of fields, and a set of method implementations. A
method body consists of a sequence of statements (allocation, conditional, loop,
call, field read, field write and assignment) followed by a single return statement.
Automatic transformation of unstructured returns to a single return would im-
pose method-global control flow changes; and the SimpleJava code would distract
the Java programmer while proving.

3 Example Verification of Factorial

An example program is the factorial, shown in Figure 4. Figure 5 shows the
SimpleJava code, automatically translated by Kopitiam. A call (lines 3-6) con-
sists of the return value binding (x), the receiver (this), the method (fac), the
argument list and the receiver class (TClass "FacC").

In Figure 6 the fixpoint fac is defined, which is the common factorial function
on natural numbers. Our Java code uses integers, so we additionally need facZ,
which extends the domain of fac to integers.

The specification of a program consists of specifications for all classes and
interfaces. An example specification of method fac is shown in Figure 7, whose
code is automatically generated by Kopitiam from the Java code (Figure 4). The
precondition (line 3 of both Figures) requires that the parameter n must be equal
or greater (ege) than 0. The postcondition (lines 4-5 of both Figures) ensures
that the returned value (ret) is equal to facZ n. The bottom block of Figure
7 defines Spec, which connects the specification fac s to the actual program,
class FacC, method fac.

Figure 8 shows the hand-written proof that the Java implementation of facto-
rial satisfies its specification. The proof uses the forward tactic [2]. This extracts
the first Hoare triple; the resulting proof obligation (Hoare triple) is the original
precondition combined with the extracted postcondition, the remaining state-
ment sequence, the original postcondition. If the extracted precondition cannot
be discharged trivially, the user has to do it. After applying forward twice
(line 4, for cif and cseq), the proof obligation for the call is discharged by the
call rule tactic (line 5).
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Definition fac_s :=
Build_spec unit (fun _ =>
(ege "n" 0,
((("ret":expr) ·=·

(facZ ("n":expr))):asn))).

Definition Spec := TM.add
(TClass "FacC")
(SM.add "fac" ("n" :: nil, fac_s))
(SM.empty _)

(TM.empty _).

Fig. 7. Specification

Lemma fac_valid : |=G {{spec_p Fac_spec.fac_spec ()}}

Fac.fac_body {{spec_qret Fac_spec.fac_spec () "x"}}.

Proof.

unfold_valid. forward. forward.

call_rule (TClass "FacC") ().

- substitution. unentail. intuition.

- reflexivity. substitution.

forward. unentail. intuition. subst. simpl.

rewrite Fac_spec.facZ_step; [reflexivity | omega].

forward. unentail. intuition. subst.

destruct (Z_dec (val_to_int k) 0).

assert False; [|intuition]. destruct s; intuition.

rewrite e. intuition.

Existential 1:=().

Qed.

Fig. 8. Coq proof script for factorial

4 Related Work

Several currently available proof tools are compared in Table 1. Only Krakatoa
[11], jStar [8] and Kopitiam target Java. Krakatoa uses Why, which uses a simple
While language where mutable variables cannot be aliased. The automated proof
system jStar targets Jimple [19], a Java intermediate language built from Java
bytecode. Kopitiam directly translates from a subset of Java source code to
SimpleJava.

Different code contracts [15] implementations focus on C# (Code Contracts
[10]) and Java (JML [5]). Code contract implementations translate some non-
trivial specifications to run time checks, while we focus on static verification.
The integration of code contracts in an IDE is beneficial, as the developer can
incrementally develop code and proofs in the same environment. An example
for an industrial grade IDE with code contracts is the KeY tool [1], based on
UML and OCL. Code Contracts [10] do not focus on full functional correctness,
while some JML tools such as Mobius [3] do. In contrast to those tools, we use
separation logic, thus a user does not need to specify frame conditions.

Dafny [14] is a proof tool for an imperative programming language supporting
generics and algebraic data types, but not subtyping. Dafny is well integrated
into Microsoft Visual Studio and also allows incremental proofs. It provides a
multi-sorted first-order logic as specification logic.

Ynot [7] uses a shallow embedding in Coq for a higher-order imperative pro-
gramming language without inheritance. Thus to verify code with Ynot the
program has to be reimplemented in the Ynot tool.

Table 1. Comparison of verification tools

Name T Language Specification logic Automation
Krakatoa sta Java; While multi-sorted FOL several provers
Ynot sta higher-order imp separation logic Coq tactics
jStar sta Java; Jimple separation logic user proof rules, SMT
Spec# dyn C# C#/Java run time assertions
Dafny inc imp + generics Boogie Z3 (SMT-solver)
Kopitiam inc Java; SimpleJava separation logic Coq tactics
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The jStar [8] tool is fully automated and does a proof search on available proof
rules, which are extensible by the user. A user can introduce unsound proof rules,
since these are treated as axioms and are not verified. Moreover it is difficult to
guide the proof search in jStar, since the order of rules matters. Both Ynot and
Kopitiam use the proof assistant Coq, in which proof rules have to be proven
before usage.

5 Conclusion and Future Work

We are developing Kopitiam, an Eclipse plugin for interactive full functional
static verification of Java code using separation logic. Our implementation is
complete enough to prove correctness of factorial and in-place reversal of linked
lists. We currently do not handle the complete Java language, e.g. unstructured
returns and switch statements. Class to class inheritance is also not supported.
Kopitiam does not support more advanced Java features like generics and ex-
ceptions.

We plan to integrate more automation: We will provide context aware sugges-
tions, a technique widely used in Eclipse for code completion, for specifications,
whose syntax we also plan to improve. We will provide separation logic lemmas
and tactics for Coq, allowing the user to focus on the non-trivial proof obli-
gations. We also want the user to discharge separation logic proof obligations
instead of exposing the Coq layer.

We are also working on more and larger case studies ranging from simple
object-oriented code (Cell and ReCell from [17]), to the composite pattern and
other verification challenges [20], to real-world data structures like Linked Lists
with Views [12] and Snapshottable Trees [9], to the C5 collection library [13],
the extensive case study of our research project.

Acknowledgement. We want to thank Peter Sestoft, Jesper Bengtson, Joe
Kiniry and the anonymous reviewers for their valuable feedback.
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3. Barthe, G., Crégut, P., Grégoire, B., Jensen, T., Pichardie, D.: The MOBIUS proof
carrying code infrastructure. In: Boer, F.S., Bonsangue, M.M., Graf, S., Roever,
W.P. (eds.) Formal Methods for Components and Objects. Springer, Heidelberg
(2008)
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Abstract. Symbolic techniques and partial order reduction (POR) are
two fruitful approaches to deal with the combinatorial explosion of model
checking. Unfortunately, past experience has shown that symbolic tech-
niques do not work well for loosely-synchronized models, whereas, by
applying POR methods, explicit-state model checkers are able to deal
with large concurrent models. This paper presents the Milestones model
checker which combines symbolic techniques and POR. Its goal is to ver-
ify temporal properties on concurrent systems. On such a system, Mile-
stones allows to check the absence of deadlock, LTL properties, and CTL
properties. In order to compare our approach to others, Milestones is
able to translate a model into an equivalent Spin model [7] or NuSMV
model [4]. We briefly present the theoretical foundation on which Mile-
stones is based on. Then, we present the Milestones model checker, and
an evaluation based on an example.

1 Introduction

Two common approaches are commonly exploited to fight the combinatorial
state-space explosion problem in model checking. On one hand, the partial-order
reduction methods (POR) explore a reduced state space in a property-preserving
way [10,6]. On the other hand, symbolic techniques use functional representa-
tions of the state space to tackle the state-space explosion problem. Two different
approaches to symbolic model-checking have been broadly considered: the BDD-
based approach uses binary decision diagrams (BDDs) to concisely encode and
compute state spaces [3], while the bounded model-checking (BMC) approach
translates the original problem into a SAT problem. In their basic form, symbolic
approaches tend to perform poorly on asynchronous models where concurrent in-
terleavings are the main source of explosion, and explicit-state model-checkers
with POR have been the preferred approach for such models.

This paper presents the Milestones model checker, which combines POR tech-
niques and symbolic methods. Milestones defines a language for describing tran-
sition systems. CTL properties (as well as absence of deadlock) can be checked
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by combining BDD-based approach and POR [11]. LTL properties can be veri-
fied by combining POR either with the BDD-based approach or with the BMC
approach [12]. In order to evaluate our approaches, Milestones can translate its
model into a Promela model [7] or into a NuSMV model [4]. In order to make the
comparison as fair as possible, the resulting state machines are (almost) exactly
the same as those generated by Milestones. In the case of NuSMV, the gener-
ated BDDs are the same as well. Milestones is available under the GNU General
Public License at http://lvl.info.ucl.ac.be/Tools/Milestones.

2 Model Checking

When applying model-checking to verify a concurrent system, the size of the
combined state space can grow exponentially in the number of processes, due to
all the different interleavings among the executions of all the processes. Different
approaches were developed to tackle this problem, among which the partial order
methods (POR) and symbolic model checking.

The goal of partial-order reduction is to reduce the number of states explored
by model-checking, by not exploring different equivalent interleavings of concur-
rent events. Naturally, these methods are best suited for strongly asynchronous
programs. Interleavings which are required to be preserved may depend on the
property to be checked. Intuitively, if two concurrent transitions α and β do not
interfere with each other and do not affect the property f that one wants to
verify, then it does not matter whether α is executed before or after β, and the
exploration can be restricted to either of these two alternatives.

Symbolic model-checking, based on Binary Decision Diagrams (BDD), allows
to reason on set of states rather than individual states. This technique made it
possible to verify systems with a very large number of states [3]. However for
large models, the size of the BDD structures themselves can become intractable.
In contrast, bounded model-checking characterizes an error execution path of
length k as a propositional formula, and searches for solutions to that formula
with a SAT solver. BMC is limited by the need to fix the bound k but takes only
polynomial space with respect to the model.

3 The Milestones Symbolic Model-Checker

Our tool, Milestones, is a symbolic model-checker which takes as input a model
of a concurrent system annotated with temporal logic properties and produces
as output the truth value of those properties. It also generates statistical data
such as verification time, memory usage, BDD construction time, etc. Because
collecting this information can significantly influence the verification time, the
data generation can be switched off.

3.1 Modeling Language

Milestones defines a language for describing transition systems. The design of
the language has been influenced by the NuSMV language [4] but supports

http://lvl.info.ucl.ac.be/Tools/Milestones
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1 SYNC
2 ADD;
3 ERR;
4
5 ex i t ;
6 REQremoveTrue;
7 REQremoveFalse ;
8 . . .
9 END //SYNC

10
11 VARIABLE
12 INTEGER r : 1 :=0 ;
13 INTEGER tr : 1 :=0 ;
14 . . .
15 END //VARIABLES

16
17 LOCAL MC4
18 SYNC
19 ex i t ;
20 REQremoveTrue ;
21 REQremoveFalse ;
22 . . .
23 END //SYNC

24
25 ACTION
26 tau ;
27 END //ACTION

28
29 VARIABLE
30 INTEGER pc : 4 :=0 ;
31 INTEGER mr : 4 ;
32 . . .
33 END //VARIABLES

34 CASE [ 0 ]
35 [ e x i t ] p3 == 0 :
36 pc := 3 ;
37 [ REQremoveTrue ] p3==1 & tr==1:
38 pc := 1 ;
39 [ REQremoveFalse ] p3==1 & tr==0:
40 pc := 1 ;
41 END // CASE [ 0 ]

42
43 CASE [ 1 ]
44 . . .
45 END //CASE [ 1 ]

46 END //LOCAL MC4

47
48 GLOBAL
49 VAR mc1 : MC1;
50 VAR mc2 : MC2[ 3 ] ;
51 VAR mc3 : MC3;
52 VAR mc4 : MC4;
53 VAR mc5 : MC5;
54
55 CASE
56 [ e x i t ] t rue : p3 := 0 ;
57 p0 := 1 ;
58 . . .
59 END //CASE

60 END//GLOBAL

61
62 LTL
63 F (p0 == 1 ) ;
64 END //LTL

Fig. 1. A Milestone model of a turntable system

synchronization by rendez-vous. Figure 1 shows parts of the Milestones model of
the turntable system discussed in Section 4.

A model of a concurrent system declares a set of integer variables. Each vari-
able is declared as follows INTEGER name: n [:= expr] where name is its
name, n is the number of bits which are used to encode it, and expr is an
expression which represents its initial value. The expression expr is optional. If
it is not mentioned the initial value can be any values which are representable
with n bits. A model declares a set of global variables (line 11), a set of shared
actions (line 1) and a set of processes (line 17). A process p declares a set of
local variables (line 29), a set of local actions (line 25) and the set of shared
actions which p is synchronized on (line 18). Each process has a distinguished
local program counter variable pc (line 30). For each value of pc, the behavior of
a process is defined by means of a list of action-labelled guarded commands of the
form [α] c : u, where α is an action, c is a condition on variables and u is an
assignment updating some variables (line 36). Shared actions are used to define
synchronization between the processes. A shared action occurs simultaneously in
all the processes that share it, and only when all enable it. Properties can be
expressed in CTL as well as LTL (line 62).



528 J. Vander Meulen and C. Pecheur

Milestones consists of a set command-line tools; it does not provide any graph-
ical interface.

3.2 BDD-Based CTL Verification

Milestones allows to check whether a model verifies a CTL property. The check
can be performed with or without POR reduction (commands checkCTLWithPOR
and checkCTL). Without POR, the classical backward CTL model checking algo-
rithm of [3] is applied, as in NuSMV. With POR, Milestones uses the
FwdUntilPOR approach which was first presented in [11]. In order to perform
the verification, a forward CTL model checking approach of Iwashita et al. [8] is
combined with a symbolic POR forward exploration derived from Lerda et al.’s
Improviso [9]. Contrary to the backward algorithm which does not apply POR
methods, the forward approach is only applicable for a subset of CTL. Both
methods can be combined together to check all the possible CTL formulæ.

3.3 BDD-Based LTL Verification

Milestones is able to verify LTL properties, with or without POR reduction (com-
mands checkLTLWithPOR and checkLTL), using the symbolic tableau-based LTL
model checking algorithm of [5]. This method results in looking for fair executions
in the product P of the model and a tableau-based encoding of the (negated)
property. With POR, we construct Pr, a property-preserving partial-order reduc-
tion of P , using an adaptation of Lerda et al.’s ImProviso algorithm [9]. Finally,
we check within Pr whether P contains a fair cycle using the forward traversal
approach of Iwashita et al. [8].

3.4 SAT-Based LTL Verification

LTL properties can also be checked by means of the Bounded Model Checking
(BMC) approach, either with or without POR (command checkLTLWithSBTP
and checkLTLWithBMC). Without POR, the algorithm of Biere et al. is exe-
cuted [1]. With POR, we use the Stuttering Bounded Two-Phase algorithm
(SBTP) first described in [12]. This algorithm merges a variant of Improviso [9]
with the BMC procedure. In short, from a model and the negation of a property
f , the BMC method constructs a propositional formula which represents a finite
unfolding of the transition relation and ¬f . Our method proceeds in the same
way, but instead of using the entire transition relation during the unfolding of
the model, we only use a safe subset based on POR considerations.

Intuitively, SBTP alternately executes two phases. For each process of the
model under verification, the first phase of SBTP unfolds some fixed number
m of safe deterministic transitions. If less than m deterministic transitions are
allowed, an idle transition which does not modify anything is performed instead.
In the second phase, a full expansion occurs, even if there are safe determinis-
tic transitions remaining. This avoids cycles of partial expansions, thus ensuring
a property-preserving reduction. Because the generated propositional formula
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contains only few disjunctions, its satisfiability verification generates little back-
tracking, making it well-suited for modern DPLL-based SAT-solvers.

3.5 Exporting to Promela and NuSMV

Milestones can translate a model which is defined in its own language to
NuSMV [4] (command translateIntoNuSMV) or to Promela, the language used
by Spin [7] (command translateIntoPromela). We think it is important to com-
pare Milestones to NuSMV and Spin, respectively the most prominent symbolic
and explicit-state model-checkers.

The generated NuSMV model defines exactly the same state machine as the
Milestones model. Because BDD variable ordering can considerably influence
the size of BDDs, and so the performance of the algorithm, a file which repre-
sents this order is generated1. This file can be used by NuSMV to construct its
BDDs. Together these allow a close and fair comparison between Milestones and
NuSMV.

The generated Promela model also defines almost the same state machine as
the Milestones model, except for one more state which is necessary to correctly
initialize the variables. We thus have good support for fair comparison between
Spin and Milestones as well.

The accuracy of the translation was confirmed by comparing number of states
and BDD nodes (in the NuSMV case), as well as by detailed comparison on small
examples.

4 Evaluation

To evaluate the performance of Milestones, we used it to verify a turntable model
which was first described in [2]. We also verified this model with NuSMV and Spin.

The turntable system consists of a round turntable, n drills and a testing
device. The turntable transports products between the drills, the testing device
and input and output positions. The drills bore holes in the products. After being
drilled, the products are delivered to the tester, where the depth of the holes is
measured, since it is possible that drilling went wrong. The turntable has n + 3
slots that each can hold a single product.

In [11], thirteen CTL properties have been checked on this model, For instance,
the p11 property states that each piece will be removed from the turntable after
it is tested. It is shown that a turntable with 40 drills can be checked in approxi-
matively 40 seconds with the classical backward approach and in 4 seconds when
the POR reduction is applied.

Six LTL properties, three of which are invalid, have been verified on the
turntable model. For instance, the property T3 states that if in the future there is
a piece which is not well drilled then the alarm will necessarily resonate. Within a
max time of 16 minutes, we are able to check T3 on a turntable model composed
of 61 drills with the Milestones model checker (with POR), 20 drills with the
Spin model checker, 6 drills with the NuSMV model checker.
1 For more details about the Milestones variable ordering, we refer the reader to [11].



530 J. Vander Meulen and C. Pecheur

In essence, the length of the failure traces influences greatly the performance of
the BMC algorithms. It turns out that the turntable model features failure traces
that are too long for BMC approaches. On a variant of the producer-customer
model which is composed of n producers and n consumers, SBTP achieves an im-
provement in comparison to the classical bounded model checking algorithm [12].
For n = 3 (resp. n = 7), the reachable state space of this system is approxi-
matively equal to 3 × 106 states (resp. 1014). When n = 3, the classical BMC
approach verifies such a system in 11,679 seconds, and it takes more than 8 hours
to verify a bigger model. By contrast, when n = 7, SBTP checks such a system
in 77 seconds.

5 Conclusion

In this paper, we introduced the Milestones model checker. It merges POR meth-
ods and symbolic approaches to provide automatic verification of CTL and LTL
properties on asynchronous models. The CTL properties are checked by means
of a BDD-based approach, and the LTL properties can be verified either by the
BDD-based technique or by the bounded model checking approach.

We show on a realistic-sized case study that our methods achieve an improve-
ment in comparison to the classical algorithms. Although it is usually considered
that symbolic model checking is inadequate for asynchronous systems, our re-
sults show that with appropriate optimization this approach might in fact be
quite effective to tackle the state space explosion problem.

Although Milestones is able to check temporal properties, it needs to be
extended by adding generation of counter-examples for failed properties. The
heuristic used to determine safe transitions, i.e. transitions which can be ex-
ploited to perform POR, is quite simple. Instead of defining a set of processes,
we could define a hierarchy of processes, and exploit it to discover more safe
transitions.
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