
I. Aizenberg: Complex-Valued Neural Networks with Multi-Valued Neurons, SCI 353, pp. 173–206.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 5
Multi-Valued Neuron with a Periodic Activation
Function

“The opposite of a profound truth may well be another profound truth”

Niels Bohr

In this Chapter, we consider MVN with a periodic activation function. As we have
already seen, MVN’s functionality is higher than the one of, for example, sigmoi-
dal neurons. In this Chapter, we will consider how a single MVN may learn non-
linearly separable input/output mappings in that initial n-dimensional space where
they are defined. In Section 5.1, we consider a universal binary neuron (UBN),
which in fact is the discrete MVN with a periodic activation function for k=2. We
show how this neuron may learn non-linearly separable Boolean functions, for ex-
ample, XOR and Parity n, projecting them into larger valued logic. In Section 5.2,
we generalize that approach, which is used in UBN, and introduce a periodic acti-
vation function for the discrete MVN. We also consider the learning algorithm for
MVN with a periodic activation functions. In Section 5.3, we show how a number
of non-linearly separable benchmark classification problems can be solved using a
single MVN with a periodic activation function. Concluding remarks are given in
Section 5.4.

5.1 Universal Binary Neuron (UBN): Two-Valued MVN with a
Periodic Activation Function

5.1 Universal Binary Neuron (UBN): Two-Value d MVN

Introducing complex-valued neurons in Section 1.4, we have shown (see p. 41)
that a single complex-valued neuron can learn a classical non-linearly separable
problem, the XOR problem. We have mentioned there that a neuron, which can
learn the XOR problem, is called the universal binary neuron (UBN).

Actually, UBN is nothing else than the two-valued MVN with a periodic acti-
vation function. This periodicity is a main idea behind UBN.

5.1.1 A Periodic Activation Function for k=2

We have considered earlier the k-valued activation function (2.50) of the discrete
MVN for k=2 (see p. 60). It is transformed to the two-valued function (2.52)

174 5 Multi-Valued Neuron with a Periodic Activation Function

1;0 arg
()

1; arg 2 ,

z
P z

z

π
π π

≤ <⎧
= ⎨− ≤ <⎩

which divides the complex plane into two sectors, the top and the bottom half-planes
(see Fig. 5.48a). However, it was shown in [33, 35, 37, 60] that the functionality of a
neuron with this activation function exactly coincides with the functionality of the
threshold neuron with the activation function (1.1).

(a) MVN activation function (50) for k=2 (b) A periodic activation function

Fig. 5.48 MVN activation function for k=2 and a periodic activation function for k=2

This means that the discrete MVN with the activation function (2.50) with k=2 (or
with the activation function (2.52), which is (2.50) with k=2) can learn only line-
arly separable input/output mappings. Thus, such binary non-linearly separable
problems as XOR, Parity n and others cannot be learned using MVN with the ac-
tivation function (2.52).

An idea to modify the activation function (2.52) in such a way that it should
have ensured non-linearly separated Boolean functions to be learned by a single
neuron was developed by the author of this book in his Ph.D. dissertation in 1986.
This idea was as follows. We have to use complex weights with the binary inputs

and outputs taken from the set { }2 1, 1E = − . Hence, our weighted sum is a com-

plex number. If, dividing the complex plane into two sectors, we cannot learn non-
linearly separable Boolean functions, will we be able to do so dividing the com-
plex plane into more than two sectors and determining a periodic activation func-
tion? In the paper [29], which was published in 1985, the author of this book sug-
gested the activation function (1.40), which divides the complex plane into four
sectors, and ensures the implementation of the XOR function using a single neu-
ron with complex-valued weights (this example we have already considered in de-
tail in Section 1.4, see p. 41). The activation function (1.40)

5.1 Universal Binary Neuron (UBN): Two-Valued MVN 175

() 1, if 0 arg / 2 or arg 3 / 2

1, if / 2 arg or 3 / 2 arg 2

z z
z

z z

π π π
ϕ

π π π π
≤ < ≤ <⎧

= ⎨− ≤ < ≤ <⎩

divides the complex plane into four sectors (see Fig. 1.14, p. 41), and its value
(which is the neuron output) is determined as the alternating sequence 1, -1, 1, -1.
Let us number sectors in the natural order (0, 1, 2, 3). If a complex weighted sum
is located in an even sector, then the activation function is equal to 1, while if the
weighted sum is located in an odd sector, then the activation function is equal to
-1. In fact, the activation function (1.40) is periodic. Its period is 2, and its two
values 1 and -1 are repeated two times each. In his Ph.D. dissertation, the author
of this book also suggested the following generalization of the activation function
(1.40), which was explicitly presented in [30].

Let us have a neuron with n binary inputs taken from the set { }2 1, 1E = − . Let

weights of this neuron are arbitrary complex numbers ; 0,1,...,iw i n∈ = .

Thus, the weighted sum 0 1 1 ... n nz w w x w x= + + + is also a complex number.

Let us choose some even positive integer 2m l= where l n≥ . Let us consider
now the following l-multiple activation function, which was suggested in [30]

() (1) if 2 arg() 2 (1) ;

2 ,

j
BP z = , j / m z j+ / m

m = l, l n

π π− ≤ <
≥

(5.156)

where j is a non-negative integer 0 <j m≤ .

The activation function (5.156) is illustrated in Fig. 5.48b. It divides the com-
plex plane into m=2l equal sectors. It determines the neuron output by the alter-
nating periodic sequence of 1, -1, 1, -1,…, depending on the parity of the sector’s
number. The activation function (5.156) is equal to 1 for the complex numbers lo-
cated in the even sectors 0, 2, 4, ..., m-2 and to -1 for the complex numbers located
in the odd sectors 1, 3, 5, ..., m-1. Similarly to the MVN activation function (2.50),
function (5.156) also depends only on the argument of the weighted sum and does
not depend on its magnitude. The activation function (5.156) is a periodic and l-
multiple continuation of the activation function (2.52) or, which is the same, of the
discrete MVN activation function (2.50) for k=2. This is clearly illustrated in
Fig. 5.48. This periodicity of the activation function (5.156) is its main property. It
is also easy to check, that when 2, 4l m= = in (5.156), we obtain (1.40).

A neuron with the activation function (5.156) was called in [30] the universal
logical element over the field of complex numbers. A bit later, it was suggested to
call it the universal binary neuron (UBN) [87]. Its universality is determined by its
ability to learn and implement non-linearly separable input/output mappings
(along with the linearly separable ones). Let us illustrate this by the following
example.

176 5 Multi-Valued Neuron with a Periodic Activation Function

5.1.2 Implementation of the Parity n Function Using a Single
Neuron

We have already considered (see p. 41) how a single UBN with the activation
function (1.40) (which is the same as (4.156) with 2, 4l m= =) implements the

XOR function. Let us consider now how a single UBN with the activation func-
tion (5.156) with 3, 6l m= = (see Fig. 5.49) implements the Parity 3 function.

Fig. 5.49 Activation function (156) with l=3, m=6

Table 5.15 Solution of the Parity 3 problem using a single UBN with the activation func-

tion (5.156) with l=2, m=6 and with the weighting vector ()60, ,1,1W ε=

1x

2x

3x

0 1 1

2 2 3 3

z w w x

w x w x

= + +
+ +

arg z
Num-
ber of
sector

()BP z

1 2 3

1 2 3

(, ,)f x x x

x x x

=
= ⊕ ⊕

1 1 1 6 2ε + 0.335 0 1 1

1 1 -1 6ε / 3π 1 -1 -1

1 -1 1 6ε / 3π 1 -1 -1

1 -1 -1 6 2ε − 2.618=
5 / 6π

2 1 1

-1 1 1 6 2ε− + 11 / 6π 5 -1 -1

-1 1 -1 4
6 6ε ε− = 4 / 3π 4 1 1

-1 -1 1 4
6 6ε ε− = 4 / 3π 4 1 1

-1 -1 -1 6 2ε− − 3.475 3 -1 -1

5.1 Universal Binary Neuron (UBN): Two-Valued MVN 177

While the XOR function is a mod 2 addition of two Boolean variables, the
Parity n function is a mod 2 addition of n Boolean variables. The Parity n function
is a non-linearly separable Boolean function for any n. Let us consider a single
UBN with the activation function (5.156) with 3, 6l m= = . It is easy to check

that the weighting vector ()60, ,1,1W ε= (where 2 /6
6

ie πε = is the primitive 6th

root of a unity) implements the Parity 3 function 1 2 3 1 2 3(, ,)f x x x x x x= ⊕ ⊕ .

This is illustrated in Table 5.15.
In [88], it was experimentally shown by the author of this book that a single

UBN easily solves the Parity n problem up to n=14. This will be considered in
detail in Section 5.3.5. The ability of a single UBN, a neuron with complex-
valued weights, to implement non-linearly separable input/output mappings one
more time shows that the functionality of a single neuron with complex-valued
weights is higher than the functionality of real-valued neurons.

5.1.3 Projection of a Two-Valued Non-linearly Separable
Function into an m-Valued Threshold Function

Let us now consider in detail that mechanism, which makes it possible implemen-
tation of non-linearly separable input/output mappings by a single UBN. The fol-
lowing theorem is very important.

Theorem 5.20. If the input/output mapping ()1 2 2,..., : n
nf x x E E→ can be im-

plemented using a single UBN with the activation function (5.156) and the

weighting vector ()0 1, ,..., nW w w w= , then there exist a partially defined m-

valued threshold function ()1 2,..., : n
n mf x x E E→ , which can be implemented

using a single discrete MVN with the activation function (2.50) (where k=m) and

the same weighting vector ()0 1, ,..., nW w w w= as the function f.

Proof. Since a single UBN implements the input/output mapping

()1 2 2,..., : n
nf x x E E→ with the weighting vector ()0 1, ,..., nW w w w= , then

()1 2,..., nx x E∀ ∈ 0 1 1 ... n nw w x w x z+ + + = such that

() ()1,...,B nP z f x x= . This means that if ()1,..., 1nf x x = , then z is located

in one of the "even" sectors (0, 2, …, m-2) in which the activation function (5.156)

divides the complex plane (see Fig. 5.48b and Fig. 5.49). If ()1,..., 1nf x x = − ,

then z is located in one of the "odd" sectors (1, 3, …, m-1) in which the activation
function (5.156) divides the complex plane (see again Fig. 5.48b and Fig. 5.49).
This means that the number of a sector where the weighted sum z can be located,

belongs to the set { }0,1,..., 1M m= − .

178 5 Multi-Valued Neuron with a Periodic Activation Function

Let us apply the discrete MVN activation function (2.50) to z. Then we obtain

() j
mP z ε= , (j M∈ is the number of the sector on the complex plane where z is

located). Let us build a partially defined m-valued function

()1 2,..., : n
n mf x x E E→ in the following way (it is partially defined because

2
n n

mE E⊂ , thus, it is defined only on the binary inputs). Let us set

() () ()1 0 1 1,..., ... j
m n n m mf x x P z P w w x w x Eε= = + + + = ∈ ;

{ }0,1,..., 1j m∈ −

From the composition of the function f it is clear that it is an m-valued

threshold function with the weighting vector ()0 1, ,..., nW w w w= according to

Definition 2.5. Theorem is proven.

On the one hand, the function ()1 2,..., : n
n mf x x E E→ is a partially defined

m-valued function because 2
n n

mE E⊂ (its domain is a subset of n
mE). On the

other hand, Theorem 5.20 can easily be generalized for any function

2:f T E→ , where nT O⊂ , and O is the set of points located on the unit cir-

cle. This generalization leads us to the following statement.

If the input/output mapping ()1 2,..., :nf x x T E→ (where nT O⊂) can be

implemented using a single UBN with the activation function (5.156) and the

weighting vector ()0 1, ,..., nW w w w= , then there exist a partially defined m-

valued threshold function ()1,..., :n mf x x T E→ , which can be implemented

using a single discrete MVN with the activation function (2.50) (where k=m) and

the same weighting vector ()0 1, ,..., nW w w w= as the function f.

Theorem 5.20 and its generalization establish the mechanism that projects a

two-valued function ()1,..., nf x x , which can be implemented using a single

UBN, into an m-valued threshold function ()1,..., nf x x . The most important

here is the following.

If the two-valued function ()1,..., nf x x is a non-linearly separable function

in the real domain and cannot be implemented using a single real-valued neuron,

but can be implemented using a single UBN, then its projection ()1,..., nf x x , is

an m-valued threshold function, which can be learned using a single MVN.

For example, the Parity 3 function 1 2 3 1 2 3(, ,)f x x x x x x= ⊕ ⊕ is non-

linearly separable in the real domain. It follows from Theorem 5.20 that there ex-

5.1 Universal Binary Neuron (UBN): Two-Valued MVN 179

ists its projection 1 2 3(, ,)f x x x , which is built using the weighting vector

()60, ,1,1W ε= , as it is shown in Table 5.16.

Table 5.16 Projection of the non-linearly separable Parity 3 function into 6-valued multi-
ple-valued threshold function using a single UBN with the activation function (5.156) with

l=2, m=6 and with the weighting vector ()60, ,1,1W ε=

1x

2x

3x

0 1 1

2 2 3 3

z w w x

w x w x

= + +
+ +

arg z ()BP z

1 2 3

1 2 3

(, ,)f x x x

x x x

=
= ⊕ ⊕

()1 2 3, ,f x x x

1 1 1 6 2ε + 0.335 1 1 0
6ε

1 1 -1 6ε / 3π -1 -1 6ε

1 -1 1 6ε / 3π -1 -1 6ε

1 -1 -1 6 2ε − 2.618=
5 / 6π

1 1 2
6ε

-1 1 1 6 2ε− + 11 / 6π -1 -1 5
6ε

-1 1 -1 4
6 6ε ε− = 4 / 3π 1 1 4

6ε

-1 -1 1 4
6 6ε ε− = 4 / 3π 1 1 4

6ε

-1 -1 -1 6 2ε− − 3.475 -1 -1 3
6ε

It follows from Table 5.16 that the function 1 2 3(, ,)f x x x is a partially defined

6-valued threshold function with the weighting vector ()60, ,1,1W ε= .

According to Definition 2.9 (see p. 72) it is also a complex-valued threshold

function (we can always set 0
6(0) 1P ε= = , for example). Then according to

Definition 2.10 (see p. 82) such a 6-edge { }0 1 5, ,...,Q Q Q Q= exists that

()3
1 2 3 2 6(, ,) () ; 0,1,...,5j

jE Q P f jα α α α α ε∀ = ∈ = =∩ . The last equa-

tion means that this 6-edge separates a 3-dimensional space where the function

1 2 3(, ,)f x x x is defined, into six edges (subspaces) 0 1 5, ,...,Q Q Q , where our

function takes the values 0 1 5
6 6 6, ,...,ε ε ε , respectively. However, the same 6-edge

also separates the 1s of the Parity 3 function from its -1s! This is illustrated

180 5 Multi-Valued Neuron with a Periodic Activation Function

Fig. 5.50 6-edge separates a 3-dimensional space where the Parity 3 function and its 6-
valued projection are defined

in Fig. 5.50. The planes, which create the edges of the 6-edge are shown in color.

Since the Parity 3 function is defined on the set 3
2E , its 8 values are located in the

vertices of the cube, which is also shown in Fig. 5.50. The values of the Parity 3

function are shown in red, while the values of the function 1 2 3(, ,)f x x x located

in the same cube vertices are shown in blue. The labels 0 1 5, ,...,Q Q Q of the

edges of the 6-edge are also shown in blue. As we see, the cube vertices (1, 1, 1)
and (1, -1, -1) where the Parity 3 function takes the same value 1 are located in the

different edges - 0Q and 2Q , respectively (the function 1 2 3(, ,)f x x x takes

there the values 0
6ε and 2

6ε , respectively). The cube vertices (-1, 1, 1) and

(-1, -1, -1) where the Parity 3 function takes the same value -1 are also located in

the different edges - 5Q and 3Q , respectively (the function 1 2 3(, ,)f x x x takes

there the values 5
6ε and 3

6ε , respectively). At the same time, the cube vertices

(1, -1, 1) and (1, 1, -1) where the Parity 3 function takes the same value -1 are lo-

cated in the same edge 1Q where the function 1 2 3(, ,)f x x x takes the value 1
6ε .

The cube vertices (-1, -1, 1) and (-1, 1, -1) where the Parity 3 function takes the

same value 1 are also located in the same edge 4Q where the function

1 2 3(, ,)f x x x takes the value 4
6ε .

5.1 Universal Binary Neuron (UBN): Two-Valued MVN 181

While in the real domain the Parity 3 function is not linearly separable and can-
not be implemented using a single real-valued neuron, it becomes linearly separa-
ble in the complex domain. This separation is utilized by the 6-edge. As we have
seen, the Parity 3 function can be implemented using a single UBN. We have also
seen that this implementation is equivalent to the implementation of the partially

defined 6-valued threshold function 1 2 3(, ,)f x x x using a single MVN.

5.1.4 UBN Learning

According to Theorem 5.20, if a Boolean function 2 2
nE E→ can be implemented

using a single UBN with the activation function (5.156), then there exist a par-

tially defined m-valued threshold function 2
n

mE E→ , which can be implemented

using a single MVN with the activation function (2.50). Thus the UBN learning
can be reduced to the MVN learning. This means that the same learning rules
(3.81) or (3.92) or (3.94)-(3.98) that are used for the MVN learning can be used
for the UBN learning. The only special moment is specification of the desired
output for either of these learning rules. If we have to learn any multiple-valued
function, the desired output for each element of the learning set is always unambi-
guous. However, if we have to learn a Boolean function or a mapping like

2O E→ , the desired output in terms of multiple-valued logic is ambiguous. In-

deed, the activation function (5.156) divides the complex plane into m sectors (see
Fig. 5.48b). In a half of them the UBN output is equal to 1, while in another half it
is equal to -1. Where we have to direct the weighted sum during the learning
process? How we can specify the desired output, to be able to use the MVN learn-
ing rules?

It was suggested in [60] by the author of this book, Naum Aizenberg, and Joos
Vandewalle to resolve this problem in the following way. The choice of the de-
sired sector q in either of (3.81) or (3.92) or (3.94)-(3.98) should be based on the
closeness of the current weighted sum to the right or left adjacent sector. Indeed, if
the current UBN output is incorrect, this means that it should become corrected if
the weighted sum is moved to either left or right adjacent sector. This follows
from the construction of the activation function (5.156) (see also Fig. 5.48b). The
adjacent sector, which is closer to the current value of the weighted sum in terms
of angular distance, is chosen as the “correct” one. The number q of this sector
determines the desired output in either of the learning rules (3.81) or (3.92) or
(3.94)-(3.98).

Hence, the UBN learning algorithm can be described as follows.

Let
t
jX be the tth element of the learning set A belonging to the learning sub-

set Aj . Let N be the cardinality of the set A, A N= . Let 2tY E∈ and

182 5 Multi-Valued Neuron with a Periodic Activation Function

2tD E∈ be the actual and the desired UBN outputs, respectively, corresponding

to the tth element of the learning set.
Let Learning be a flag, which is “True” if the weights adjustment is required

and “False”, if it not required, and r be the number of the weighting vector in the

sequence wS of weighting vectors obtained during the learning process. Let tz

be the weighted sum corresponding to the tth element of the learning set.

Step 1. The starting weighting vector W0 is chosen arbitrarily (e.g., real and

imaginary parts of its components can be random numbers); m=0;
t=1; Learning = ”False”;

Step 2. Check for
t
jX :

if t tY D=

then go to the step 5
else begin Learning = “True”; go to Step 3 end;

Step 3. Find () s
t mP z ε= (where P is the MVN activation function (2.50)).

Find { }1 0,1,..., 1q M m∈ = − , which determines the adjacent sector

from the right (to the sth one), and find 2q M∈ , which determines

the adjacent sector from the left (to the sth one) one, where the output
is correct.

If

()() ()()1 2(1)2 / 2 /arg arg mod 2 arg arg mod 2i q m iq m
t tz e e zπ ππ π+− ≤ −

then 1q q=

else 2q q= , where q is the number of the desired sector.

Step 4. Obtain the vector 1rW + from the vector rW by setting the desired out-

put to q
mε and applying either of the learning rules (3.81) or (3.92) or

(3.94)-(3.98);
Step 5. t= t+1; if t≤N

then go to Step 2
else if Learning = ”False”

 then the learning process is finished successfully
 else begin t=1; Learning = ”False”; go to Step 2; end.

Since this UBN learning algorithm is reduced to the MVN learning algorithm, its
convergence directly follows from the convergence of the MVN learning algo-
rithm (see Theorem 3.16 and Theorem 3.17).

5.2 k-Valued MVN with a Periodic Activation Function 183

5.2 k-Valued MVN with a Periodic Activation Function

5.2.1 Some Important Fundamentals

We have just considered UBN – the universal binary neuron. We have shown that
UBN is nothing else than the discrete MVN with the activation function (2.50)
with k=2 (or simply with the activation function (2.52), which is (2.50) for k=2),
periodically extended. This periodic extension transforms (2.52) to the binary pe-
riodic activation function (5.156). While the activation function (2.52) divides the
complex plane into two sectors (top and bottom half-planes), the periodic activa-
tion function (5.156) divides the complex plane into m=2l equal sectors. In this
case, the neuron output is determined by the alternating periodic sequence of 1, -1,
1, -1,…, depending on the parity of the ordinal sector’s number.

As we have seen, this approach leads to one very important advantage. A single
UBN may implement those input/output mappings that are non-linearly separable
in the real domain. Perhaps, the most convincible examples, which illustrate this
advantage of UBN, are XOR and Parity n that can easily be learned by a single
UBN, without any network. Actually, this is achieved by the projection of
2-valued logic, where the initial non-linearly separable problem is defined, to
m-valued logic. While in 2-valued logic our input/output mapping is not linearly-
separable, in m-valued logic it becomes linearly separable.

A natural question is whether it is possible to generalize this approach for mul-
tiple-valued input/output mappings that is for the activation function (2.50) with

2k > ? In other words, if there is some k-valued input/output mapping kT E→

(where n
kT E= or nT O⊆), which is not a k-valued threshold function (and

therefore it cannot be learned using a single MVN with the k-valued
activation function (2.50)), can the same input/output mapping be a partially de-

fined m-valued threshold function mT E→ for m k> ?

This question is very important because there is a great practical sense behind
it. Suppose we have to solve some n-dimensional k-class classification problem
and the corresponding classes are non-linearly separable. The commonly used
approach for solving such a problem, as we already know from this book, is its
consideration in the larger dimensional space. One of the ways to utilize this
approach is a neural network, where hidden neurons form a new space, and a
problem becomes linearly separable. Another popular machine learning approach
to solving non-linearly separable problems projecting them into a higher
dimensional space is the support vector machine (SVM) introduced in [25]. In
SVM, a larger dimensional space is formed using the kernels and a problem
becomes linearly separable in this new space. We would like to approach the same
problem from a different angle, that is, to consider an n-dimensional k-class
classification problem as an n-dimensional m-class classification problem (where
m k> and each of k initial classes is a union of some of t disjoint subclasses
(clusters) of an initial class):

184 5 Multi-Valued Neuron with a Periodic Activation Function

1

, 1,..., ;1 ; ,
jt

j j j
j i j t s

i

C C j k t m C C t s
=

= = ≤ < = ∅ ≠∩∪ ,

where , 1,...,jC j k= is an initial class and each , 1,...,j
iC i m= is a new

subclass). Thus, we would like to modify the formation of a decision rule instead
of increasing the dimensionality. In terms of neurons and neural networks this
means increasing the functionality of a single neuron by modification of its
activation function.

Recently, this problem was comprehensively considered by the author of this
book in his paper [61]. Let us present these considerations here adding more de-
tails.

5.2.2 Periodic Activation Function for Discrete MVN

Let us consider an MVN input/output mapping described by some k-valued
function

()1 :n kf x ,...,x T E→

where n
kT E= or nT O⊆).

It is important to mention that since there exists a one-to-one correspondence

between the sets { }0,1,..., 1K k= − and { }0 1, ,..., k
k k k kE ε ε ε −= (see p. 49),

our function f can also be easily re-defined as :Kf T K→ . These both defini-

tions are equivalent.

Suppose that the function)(1 nx ..., ,xf is not a k-valued threshold function.

This means that it cannot be learned by a single MVN with the activation function
(2.50).

Let us now project the k-valued function)(1 nx ..., ,xf into m-valued logic,

where m kl= , and 2l ≥ similarly to what we have done in Section 5.1 for
2-valued functions projecting them into m-valued logic where we used 2m l= .
To do this, let us define the following new discrete activation function for MVN

() mod if 2 arg 2 (1) ,

0,1,..., 1; , 2.
lP z = j k, j / m z j+ / m

j m m kl l

π π≤ <
= − = ≥

 (5.157)

This definition is illustrated in Fig. 5.51. The activation function (5.157)
divides the complex plane into m equal sectors and d K∀ ∈ there are exactly l
sectors, in which the activation function (5.157) equals d.

5.2 k-Valued MVN with a Periodic Activation Function 185

This means that the activation function (5.157) establishes mappings from K

into { }0,1,..., 1, , 1,..., 1M k k k m= − + − , and from kE into

{ }2 11, , ,..., m
m m m mE ε ε ε −= , respectively.

Fig. 5.51 Geometrical interpretation of the k-periodic l- multiple discrete-valued MVN
activation function (5.157)

Since m kl= , then each element from M and mE has exactly l prototypes in

K and kE , respectively. In turn, this means that the neuron’s output determined

by (5.157) is equal to

0 1 1

0,1,..., 1,0,1,..., 1,...,0,1,..., 1,
l

lk m

k k k
−

=

− − −
(5.158)

depending on which one of the m sectors (whose ordinal numbers are determined
by the elements of the set M) the weighted sum is located in.

Hence, the MVN activation function in this case becomes k-periodic and
l-multiple.

In terms of multiple-valued logic, the activation function (5.157) projects a

k-valued function)(1 nx ..., ,xf into an m-valued function ()1 nf x , ..., x . Evi-

dently, ()1 nf x ,...,x is a partially defined function in m-valued logic because

, k mK M E E⊂ ⊂ , and n n
k mE E⊂ .

186 5 Multi-Valued Neuron with a Periodic Activation Function

If ()1,..., :n kf x x T E→ is not a k-valued threshold function, then its do-

main does not allow the edged decomposition (see Section 2.3)

[]0 1 1, , ..., kT C C C −= . Projecting ()1,..., nf x x into kl m= -valued logic

using the activation function (5.157), we create in this m-valued logic the function

()1,..., : ; n n
n m kf x x T E T E T O→ ⊆ ∨ ⊆ whose domain may have the

edged decomposition 0 1 1 1 1, , ..., , , ,...,k k k mT C C C C C C− + −⎡ ⎤= ⎣ ⎦ . Moreover, if

this edged decomposition exists, it exactly follows from its existence that

1

, 0,..., 1;1 ; ,
jt

j j j
j i j t s

i

C C j k t m C C t s
=

= = − ≤ < = ∅ ≠∩∪ .

It is important that both functions ()1,..., nf x x and ()1,..., nf x x have the

same domain T. This means that the initial function ()1,..., nf x x , not being a k-

valued threshold function, is projected to a partially defined m-valued threshold
function.

Let us refer the MVN with the activation function (5.157) as the multi-valued
neuron with a periodic activation function (MVN-P).

The following theorem, which generalizes Theorem 5.20 for k-valued in-
put/output mappings, is proven by the last considerations.

Theorem 5.21. If the input/output mapping ()1,..., :n kf x x T E→ can be im-

plemented using a single MVN-P with the activation function (5.157) and the

weighting vector ()0 1, ,..., nW w w w= , then there exist a partially defined m-

valued threshold function ()1,..., :n mf x x T E→ , which can be implemented

using a single discrete MVN with the activation function (2.50) (where k=m) and

the same weighting vector ()0 1, ,..., nW w w w= .

It is important to mention that if 1l = in (5.157) then m=k and the activation
function (5.157) coincides with the activation function (2.50) accurate within the
interpretation of the neuron’s output (if the weighted sum is located in the jth sec-

tor, then according to (2.50) the neuron’s output is equal to
2 /ij k j

ke Eπ ε= ∈ ,

which is the jth of kth roots of unity, while in (5.157) it is equal to j K∈), and

MVN-P becomes regular MVN. It is also important to mention that if k=2 in
(5.157), then the activation function (5.157) coincides with the UBN activation
function (5.156), sequence (5.158) becomes an alternating sequence 1, -1, 1, -1,
…, and MVN-P becomes UBN. Hence, the MVN-P is a neuron, for which both
MVN and UBN are its particular cases.

5.2 k-Valued MVN with a Periodic Activation Function 187

MVN-P may have a great practical sense if)(1 nx ..., ,xf , being a non-

threshold function of k-valued logic, could be projected into a partially defined
threshold function of m-valued logic and therefore it will be possible to learn it us-
ing a single MVN-P with the activation function (5.157).

When we told that the activation function (5.157) projects a k-valued function

)(1 nx ..., ,xf into m-valued logic, we kept in mind that the weighted sum z, on

which the activation functions depends, is known. But in turn, the weighted sum is

a function of the neuron weights for the fixed inputs 1,..., nx x

0 1 1 ... n nz w w x w x= + + + .

This means that to establish the projection determined by the activation function
(5.157), we have to find the corresponding weights. To find them, a learning algo-
rithm should be used.

5.2.3 Learning Algorithm for MVN-P

A learning algorithm, which we are going to present here, was recently developed
by the author of this book and comprehensively described in the paper [61]. On
the one hand, this learning algorithm is based on the modification of the MVN
learning algorithm considered above in Section 3.1. On the other hand, this learn-
ing algorithm is based on the same idea as the UBN learning algorithm, which we
have just presented in Section 5.1. The latter becomes clear when we take into ac-
count that UBN is nothing else than a particular case of MVN-P, just for k=2.

Let us take the MVN learning algorithm described in Section 3.1 and based on
either of the error-correction learning rules (3.92) or (3.94)-(3.96) as the initial
point for out MVN-P learning algorithm. Let us adapt this MVN learning algo-
rithm to MVN-P. Thus, we have to modify the standard MVN learning algorithm
based on the error-correction rule in such a way that it will work for MVN with
the periodic activation function (5.157) (for the MVN-P). Let us assume for sim-
plicity, but without loss of generality that the learning rule (3.92) will be used. It
is important to mention that the learning rules (3.94)-(3.96) can also be used
because, as we have seen (Theorem 3.17), the convergence of the MVN learning
algorithm with the error-correction learning rule does not depend on its modifica-
tion ((3.92) or (3.94)-(3.96)).

Let the MVN input/output mapping is described by the k-valued function

()1 nf x ,...,x , which is not a threshold function of k-valued logic. Since this

function is non-threshold, there is no way to learn it using a single MVN with
the activation function (2.50). Let us try to learn ()1 nf x ,...,x in m-valued logic

using a single MVN-P with the activation function (5.157).

188 5 Multi-Valued Neuron with a Periodic Activation Function

Thus, the expected result of this learning process is the representation of

()1 nf x ,...,x according to (2.51), where the activation function lP determined

by (5.157) substitutes for the activation function P determined by (2.50)

() ()1 0 1 1,..., ...n l n nf x x P w w x w x= + + + (5.159)

To organize this learning process, we will use the same learning rule (3.92).
To determine a desired output in the error-correction learning rule (3.92), we

may use the same approach, which we used for the UBN learning algorithm in
Section 5.1.

So, the learning rule (3.92) requires that a desired neuron output is pre-
determined. Unlike the case of regular MVN with the activation function (2.50), a
desired output in terms of m-valued logic cannot be determined unambiguously
for MVN-P with the activation function (3.157) for 2l ≥ . According to (3.157),
there are exactly l sectors out of m on the complex plane, where this activation
function is equal to the given desired output d K∈ (see (5.158) and Fig. 5.51).
Therefore, there are exactly l out of m mth roots of unity that can be used as the
desired outputs in the learning rule (3.92). Which one of them should we choose?

Let us make this choice using two self-adaptive learning strategies, which will
make it possible to determine a desired output during the learning process every
time, when the neuron’s output is incorrect.

The first strategy is based on the same idea, which was used for UBN. Since
MVN-P is a generalization of UBN for 2k > , we suggest using here the same
learning strategy that was used in the UBN error-correction learning algorithm in
Section 5.1. There is the following idea behind this approach. The UBN activation
function (5.156) determines an alterning sequence 1, -1, 1, -1, … with respect to
sectors on the complex plane. Hence, if the actual output of UBN is not correct, in
order to make the correction, we can “move” the weighted sum into either of the
sectors adjacent to the one where the current weighted sum is located. It was
suggested to always move it to the sector, which is the closest one to the current
weighted sum (in terms of angular distance).

Let us employ the same approach here for MVN-P. Let 2l ≥ in (5.157) and

{ }0,1,..., 1d k∈ − be the desired output. The activation function (5.157) deter-

mines the k-periodic and l-multiple sequence (5.158) with respect to sectors on the
complex plane. Suppose that the current MVN-P output is not correct and the

current weighted sum is located in the sector { }0,1,..., 1s M m∈ = − , where

m kl= .
Since 2l ≥ in (5.157), there are exactly l sectors on the complex plane, where

function (5.157) takes a correct value (see also Fig. 5.51). Two of these l sectors are
the closest ones to sector s (from right and left sides, respectively). From these two
sectors, we choose sector q whose border is closer to the current weighted sum z in
terms of the angular distance. Then the learning rule (3.92) can be

5.2 k-Valued MVN with a Periodic Activation Function 189

applied. Hence, the first learning strategy for the MVN-P with the activation
function (5.157) is as follows. Let a learning set for the function (input/output

mapping) ()1 nf x ,...,x to be learned contains N learning samples and

{ }1,...,j N∈

be the number of the current learning sample, r be the number of

the learning iteration, and Learning is a flag, which is “True” if the weights
adjustment is required and “False” otherwise.

The iterative learning process consists of the following steps:

Learning Strategy 1.
1) Set r=1, j=1, and Learning=’False’.
2) Check (5.159) for the learning sample j.
3) If (5.159) holds

then set 1j j= + , otherwise set Learning=’True’ and

go to Step 5.
4) If j N≤ then go to Step 2, otherwise go to Step 9.

5) Let z be the current value of the weighted sum and () ,s
mP z s Mε= ∈ ,

()P z is the activation function (2.50), where m is substituted for k. Hence

the MVN-P actual output is () modlP z s k= . Find

{ }1 0,1,..., 1q M m∈ = − , which determines the closest sector to the sth

one, where the output is correct, from the right, and find 2q M∈ , which de-

termines the closest sector to the sth one, where the output is correct, from
the left (this means that 1 modq k d= and 2 modq k d=).

6) If ()() ()()1 2(1)2 / 2 /arg arg mod 2 arg arg mod 2i q m iq mz e e zπ ππ π+− ≤ −

then 1q q=

else 2q q= .

7) Set the desired output for the learning rule (3.92) equal q
mε .

8) Apply the learning rule (3.92) to adjust the weights.
9) Set 1j j= + and return to Step 4.

10) If Learning=’False’
then go to Step 10,
else set r=r+1, j=1, Learning=’False’ and go to Step 2.

11) End.

Let us now consider the second learning strategy, which is somewhat different.
The activation function (5.157) divides the complex plane into l domains, and
each of them consists of k sectors (Fig. 5.51). Since a function f to be learned as a
partially defined function of m-valued logic (m lk=) is in fact a k-valued

190 5 Multi-Valued Neuron with a Periodic Activation Function

function, then each of l domains contains those k values, which may be used as the
desired outputs of the MVN-P. Suppose that the the current MVN-P output is not
correct, and the current weighted sum is located in the sector

{ }0,1,..., 1s M m∈ = − . This sector in turn is located in the tth l-domain (out

of l, []/t s k=). Since there are l l-domains and each of them contains a poten-

tial correct output, we have l options to choose the desired output. Let us choose it
in the same tth l-domain, where the current actual output is located. Hence,

()1,...,K nq tk f x x= + , where ()1,...,K nf x x is a desired value of the

function to be learned in terms of traditional multiple-valued logic

(() { }1,..., 0,1,..., 1K nf x x K k∈ = − and respectively,

() { }2 1
1,..., 1, , ,..., k

n k k k kf x x E ε ε ε −∈ =). Once q is determined, this means

that q
mε be the desired output and the learning rule (3.92) can be applied.

Let again a learning set for the function (input/output mapping))(1 nx ..., ,xf to

be learned contains N learning samples, { }1,...,j N∈

be the number of the cur-

rent learning sample, r be the number of the learning iteration, and Learning is a
flag, which is “True” if the weights adjustment is required and “False” otherwise.
The iterative learning process for the second strategy consists of the following
steps:

Learning Strategy 2.
1) Set r=1, j=1, and Learning=’False’.
2) Check (5.159) for the learning sample j.
3) If (5.159) holds

then set 1j j= + ,

else set Learning =’True’ and go to Step 5.
4) If j N≤

then go to Step 2,
else go to Step 8.

5) Let the actual neuron output is located in the sector

{ }0,1,..., 1 .s M m∈ = − Then [] { }/ 0,1,..., 1t s k l= ∈ − is the number

of that l-domain, where sector s is located. Set ()1,...,K nq tk f x x= + .

6) Apply the learning rule (3.92) to adjust the weights.
7) Set 1j j= + and return to Step 4.

8) If Learning=’False’
then go to Step 9,
else set r=r+1, j=1, Learning=’False’ and go to Step 2.

9) End.

5.2 k-Valued MVN with a Periodic Activation Function 191

The learning strategies 1 and 2 determine two variants of the same MVN-P learning
algorithm, which can be based on either of the learning rules (3.92), (3.94)-(3.98).
The convergence of this learning algorithm follows from the convergence of the
regular MVN learning algorithm with the error-correction learning rule

(see Theorem 3.17). Indeed, if our input/output mapping ()1 nf x ,...,x is a non-

threshold function of k-valued logic, but it can be projected to a partially defined

threshold function ()1 nf x ,...,x of m-valued logic (where , 2m kl l= ≥), then

the MVN learning algorithm has to converge for the last function according to
Theorem 3.17. The MVN-P learning algorithm based on the either of learning rules
(3.92), (3.94)-(3.96) differs from the MVN learning algorithm only at one point.
While for the regular MVN learning a desired output is pre-determined, for the
MVN-P learning a desired output in terms of m-valued logic should be determined

during the learning process. If the function ()1 nf x ,...,x obtained using either of

Learning Strategies 1 or 2 is a partially defined m-valued threshold function, its
learning has to converge to a weighting vector of this function (a weighting vector
of this function can always be obtained after a finite number of learning iterations).

Thus, in other words, if a non-threshold k-valued function ()1 nf x ,...,x can

be projected to and associated with a partially defined m-valued threshold function

()1 nf x ,...,x , then its learning by a single MVN-P is reduced to the learning of

the function ()1 nf x ,...,x by a single MVN.

We have to mention that we do not consider here any general mechanism of
such a projection of a k-valued function into m-valued logic that the resulting m-
valued function will be threshold and therefore it will be possible to learn it by a
single neuron. It is a separate problem, which is still open and can be a good and
interesting subject for the further work.

It is interesting that in terms of learning a k-valued function, the learning algo-
rithm presented here is supervised. However, in terms of learning an m-valued
function, this learning algorithm is unsupervised. We do not have a prior knowl-
edge about those m-valued output values, which will be assigned to the input sam-
ples. A process of this assignment is self-adaptive, and this adaptation is reached
by the learning procedure (Strategies 1 and 2), if a corresponding function is a par-
tially defined m-valued threshold function.

It should be mentioned that for k=2 in (5.157) the MVN-P learning algorithm
(Strategy 1) coincides with the UBN learning algorithm based on the error-
correction rule (see Section 5.1). On the other hand, for k>2 and l=1 in (5.157)
the MVN-P learning algorithm (both Strategy 1 and Strategy 2) coincides with
the MVN learning algorithm based on the error-correction rule (see Sections 3.1
and 3.3).

This means that a concept of the MVN-P generalizes and includes the corre-
sponding MVN and UBN concepts.

192 5 Multi-Valued Neuron with a Periodic Activation Function

5.3 Simulation Results for k-Valued MVN with a Periodic
Activation Function

As it was shown above, MVN-P can learn input/output mappings that are non-
linearly separable in the real domain. We would like to consider here a number of
non-linearly separable benchmark classification problems and a non-linearly sepa-
rable mod k addition problem, which can be learned using a single MVN-P.
Moreover, we would like to show that a single MVN-P not only formally learns
non-linearly separable problems, but it can really be successfully used for solving
non-linearly separable classification problems, showing very good results that are
better or comparable with the solutions obtained using neural networks or support
vector machines. However, it is very important to mention that MVN-P is just a
single neuron, and it employs fewer parameters than any network or SVM.

So, let us consider some examples. Most of them were presented by the author
of this book in his recently published paper [61], some of them will be presented
here for the first time, but even those published earlier will be presented here in
more detail. In all simulations, we used the MVN-P software simulator written
in Borland Delphi 5.0 environment, running on a PC with the Intel® Core™2
Duo CPU.

5.3.1 Iris

This famous benchmark database was downloaded from the UC Irvine Machine
Learning Repository [89]. The data set contains 3 classes of 50 instances each,
where each class refers to a type of iris plant. Four real-valued (continuous)
features are used to describe the data instances. Thus, we have here 4-dimensional
3-class classification problem. It is known [89] that the first class is linearly sepa-
rable from the other two but the latter are not linearly separable from each other.
Thus, a regular single MVN with the discrete activation function (2.50), as well as
any other single artificial neuron cannot learn this problem completely.

However, a single MVN-P with the activation function (5.157)
(3, 3, 9l k m= = =) learns the Iris problem completely with no errors. To trans-

form the input features into the numbers located on the unit circle, we used the
linear transformation (2.53) with 2 / 3α π= (this choice of α is based on the con-
sideration that there are exactly 3 classes in this problem). It is necessary to say that
the problem is really complicated and it is not so easy to learn it. For example, the
learning algorithm based on the Learning Strategy 1 does not converge even after
55,000,000 iterations independently from the learning rule, which is applied, al-
though the error decreases very quickly and after 50-100 iterations there are stably
not more than 1-7 samples, which still require the weights adjustment. However,
the learning algorithm based on the Learning Strategy 2 and the learning rule (3.96)
converges with the zero error. Seven independent runs of the learning algorithm

5.3 Simulation Results for k-Valued MVN with a Periodic Activation Function 193

starting from the different random weights1 converged after 9,379,027 –
43,878,728 iterations. Every time the error decreases very quickly and after 50-100
iterations there are stably 1 or just a few more samples, which still require the
weights adjustment, but their final adjustment takes time (5-12 hours). Neverthe-
less, this result is very interesting, because to our best knowledge this is the first
time when the “Iris” problem was learned using just a single neuron.

The results of the one of the learning sessions are shown in Fig. 5.52. In
Fig. 5.52a, the normalized weighted sums are plotted for all the 150 samples from
the data set. It is interesting that after the learning process converges, for the Class
“0” (known and referred to as “Iris Setosa” [89]), the weighted sums for all in-
stances appear in the same single sector on the complex plane (sector 6, see
Fig. 5.52a). By the way, according to the activation function (5.157), the MVN-P
output for all the samples from this class is equal to 6 mod3 0= . Thus, Class “0”
is a single cluster class.

Each of two other classes contains two different clusters (this is why they can-
not be linearly separated from each other in the real domain!). For the second class
(“Iris Versicolour”), 45 out of 50 learning samples appear in the sector 7, but other
5 learning samples appear in the sector 1 located in the different “l-domain” (clus-
ter) (see Fig. 5.52a). According to the activation function (5.157), the MVN-P
output for all the samples from this class is equal to 1 (7mod3 1= and
1mod3 1=). For the third class (“Iris Virginica”), the weighted sums for all the
instances except one appear in the same single sector on the complex plane (sector
2), but for the one instance (every time the same) the weighted sum appears in the
different sector (sector 8) belonging to the different “l-domain” (cluster). Accord-
ing to the activation function (5.157), the MVN-P output for all the samples from
this class is equal to 2 (2mod3 2= and 8mod3 2=). For the reader’s conven-
ience, a fragment showing where exactly five “special” elements from the Class 1
and one “special” element from the Class 2 are located is enlarged in Fig. 5.52b.
Hence, the second and the third classes, which initially are known as non-linearly
separable (in the real domain), become linearly separable in the complex domain.

This means that while there is no 3-edged decomposition []0 1 2, ,T C C C=

(where 0 1 2, ,C C C are our three classes) for the Iris problem, there exists the 9-

edged decomposition []0 1 8, ,...,T A A A= . Subsets 0 3 4 5, , ,A A A A are empty.

Other subsets of the edged decomposition contain all the elements of the Iris data-
set as follows (see Fig. 5.52a)

0 6 1 1 7 2 2 8; ;C A C A A C A A= = =∪ ∪ .

1 Here and further the initial weights (both real and imaginary parts) are random numbers

from the interval [0, 1] generated using a standard generator.

194 5 Multi-Valued Neuron with a Periodic Activation Function

(a) The results of learning of the “Iris” problem. + - Class 0, x – Class 1, * - Class 2
While Class 0 contains a single cluster (sector 6), Class 1 and Class 2 contain two

clusters each (Class 1 - sectors 1 and 7, Class 2 – sectors 2 and 8)

(b) 5 out of 50 representatives of Class 1 belong to the cluster located in the sector1,

and a single representative of Class 2 belong to the cluster located in the sector 8

Fig. 5.52 Learning of the “Iris” problem. Three “Iris” classes are linearly separated in
9-valued logic

5.3 Simulation Results for k-Valued MVN with a Periodic Activation Function 195

It is interesting that this effect is achieved by the self adaptation of the MVN-P
learning algorithm.

Another important experiment with the “Iris” data set was checking the MVN-
P’s ability to solve a classification problem. We used 5-fold cross validation. The
data set was every time randomly separated into a learning set containing 75 sam-
ples (25 from each class) and a testing set also containing 75 samples. The best
results are obtained for the activation function (5.157) with 2, 3, 6l k m= = = .

The Learning Strategy 1 and the learning rule (3.92) were used. The learning algo-
rithm requires for its convergence with the zero error 10-288 iterations (which
takes just a few seconds). The classification results are absolutely stable: 73 out of
75 instances are classified correctly (the classification rate is 97.33%). All
instances from the first class are always classified correctly and there is one classi-
fication error in each of other two classes. These results practically coincide with
the best known results for this benchmark data set [90]: (97.33 for the one-against-
one SVM and 97.62 for the dendogram-based SVM). However, it is important to
mention that the one-against-one SVM for 3 classes contains 3 binary decision
SVMs, the dendogram-based SVM for 3 classes contains 5 binary decision SVMs,
while we solved the Iris problem using just a single MVN-P.

5.3.2 Two Spirals

The two spirals problem is a well known non-linearly separable classification
problem, where the two spirals points (see Fig. 5.53) must be classified as belong-

ing to the 1st or to the
2nd spiral. Thus, this
is 2-dimensional, 2-
class classification
problem. The stan-
dard two spirals data
set usually consists of
194 points (97 belong
to the 1st spiral and
other 97 points be-
long to the 2nd spiral).
The following results
are known as the best
for this problem so
far. The two spirals
problem can be
learned completely
with no errors by the

MLMVN [62] containing 30 hidden neurons in a single hidden layer and a single
output neuron. This learning process requires about 800,000 iterations. The best
known result for the standard backpropagation network (MLF) with the same

Fig. 5.53 Two spirals

196 5 Multi-Valued Neuron with a Periodic Activation Function

topology is 14% errors after 150,000 learning iterations [91]. For the cross-
validation testing, where each second point of each spiral goes to the learning set
and each other second point goes to the testing set, one of the best known results is
reported in [92]. The classification accuracy up to 94.2% is shown there by
BDKSVM, which employs along with a traditional SVM the merits of the kNN
classifier. A fuzzy kernel perceptron shows the accuracy up to 74.5%. [93]. The
MLMVN shows the accuracy of about 70% [62].

A single MVN-P with the activation function (5.157) ()2, 2, 4l k m= = =

significantly outperforms all mentioned techniques. Just 2-3 learning iterations are
required to learn the two spirals problem completely with no errors using the
Learning Strategy 1 and learning rule (3.92). Just 3-6 iterations are required to
achieve the same result using the Learning Strategy 1 and learning rule (3.94).
These results are based on the ten independent runs of the learning algorithm for
each of the learning rules. We also used ten independent runs to check the classifi-
cation ability of a single MVN-P with the activation function (5.157)

()2, 2, 4l k m= = = using the cross-validation. The two spirals data were di-

vided into the learning set (98 samples) and testing set (96 samples). We reached
the absolute success in this testing: 100% classification accuracy is achieved in all
our experiments. Just 2-3 iterations were needed to learn the learning set using the
Learning Strategy 1 and the learning rule (3.92), and 3-5 iterations were needed to
do the same using the Learning Strategy 1 and the learning rule (3.94).

5.3.3 Breast Cancer Wisconsin (Diagnostic)

This famous benchmark database was downloaded from the UC Irvine Machine
Learning Repository [89]. The data set contains 2 classes, which are represented
by 569 instances (357 benign and 212 malignant) that are described by 30 real-
valued features. Thus, this is 30-dimensional, 2-class classification problem. To
transform the input features into the numbers located on the unit circle, we used
the linear transformation (2.53) with 6.0α = . The whole data set may be easily
learned by a single MVN-P with the activation function (5.157)

()2, 2, 4l k m= = = . Ten independent runs give from 280 to 370 iterations for

the Learning Strategy 1 – learning rule (3.92) and from 380 to 423 iterations for
the Learning Strategy 2 – learning rule (3.92) (there are the best results among dif-
ferent combinations of learning strategies and rules).

To check the classification ability of a single MVN-P, we used 10-fold cross-
validation as it is recommended for this data set, for example, in [89] and [94].
The entire data set was randomly divided into the 10 subsets, 9 of them contained
57 samples and the last one contained 56 samples. The learning set every time was
formed from 9 of 10 subsets and the remaining subset was used as the testing set.
We used the same parameters in the activation function (5.157)

()2, 2, 4l k m= = = . The best average classification accuracy (97.68%) was

5.3 Simulation Results for k-Valued MVN with a Periodic Activation Function 197

achieved with the Learning Strategy 2 and learning rule (3.92). The learning proc-
ess required from 74 to 258 iterations. The classification accuracy is comparable
with the results reported for SVM in [94] (98.56% for the regular SVM and
99.29% for the SVM with an additional “majority decision” tool) and a bit better
than 97.5% reported as the estimated accuracy for the different classification
methods in [89]. However, a single MVN-P use fewer parameters than, for exam-
ple, SVM (the average amount of support vectors for different kernels used in [94]
is 54.6, whereas the MVN-P uses 31 weights).

5.3.4 Sonar

This famous benchmark database was also downloaded from the UC Irvine Ma-
chine Learning Repository [89]. It contains 208 samples that are described by 60
real-valued features. Thus, this is 30-dimensional, 2-class classification problem,
which is non-linearly separable. To transform the input features into the numbers
located on the unit circle, we used (2.53) with 6.0α = . There are two classes
(“mine” and “rock”) to which these samples belong. The whole data set may be
easily learned by a single MVN-P with the activation function

(5.157) ()2, 2, 4l k m= = = . Ten independent runs give from 75 to 156 itera-

tions for the Learning Strategy 1 – learning rule (3.92) and from 59 to 78 iterations
for the Learning Strategy 2 – learning rule (3.92) (there are the best results among
different combinations of learning strategies and rules).

To check the classification ability of a single MVN-P, we divided the data set
into a learning set and a testing set (104 samples in each), as it is recommended by
the developers of this data set [89]. The same parameters were used in the activa-

tion function (5.157) ()2, 2, 4l k m= = = . The best classification results were

achieved using the Learning Strategy 2 - learning rule (3.92). The learning process
required from 24 to 31 iterations. The average classification accuracy for 10 inde-
pendent runs is 86.63% and the best achieved accuracy is 91.3%. This is compara-
ble to the best known results reported in [93] – 94% (Fuzzy Kernel Perceptron),
89.5% (SVM), and in [62] - 88%-93% (MLMVN). It is important to mention that
all mentioned competitive techniques employ more parameters than a single
MVN-P. It is also necessary to take into account that a Fuzzy Kernel Perceptron is
much more sophisticated tool than a single neuron.

5.3.5 Parity N Problem

Parity n problem is a mod 2 addition of n variables. Its particular case for n=2 is
XOR, perhaps the most popular non-linearly separable problem considered in the
literature. We have already convinced that the XOR problem can easily be solved
using a single UBN (see Table 1.7, p. 42). We have also seen (see Table 5.15, p.
176) that the Parity 3 problem can be solved using a single UBN. As we have

198 5 Multi-Valued Neuron with a Periodic Activation Function

mentioned, it was experimentally shown by the author of this book in [88] that the
Parity n problem is easily solvable using a single UBN up to n=14 (this does not
mean that for larger n it is not solvable, simply experimental testing was not per-
formed for n>14). Let us summarize the results of this experimental testing here.

Actually, as we have seen, UBN is nothing else than MVN-P for k=2. So, we
used MVN-P with the activation function (5.157) and the learning algorithm with
the Learning Strategy 1, which we have just described. The learning rule (3.92)
was used in this learning algorithm. The results are summarized in Table 5.17.
Everywhere we show the results for such minimal l in (5.157), for which the learn-
ing process converged after not more than 200,000 iterations.

Table 5.17 The results of solving Parity n problem for 3 14n≤ ≤ using a single MVN-P

Number of variables,
n in the Parity n

problem
l in (157)

Number of sectors
(m in (157))

Number of learning
iterations (average of
5 independent runs)

3 3 6 8
4 4 8 23
5 5 10 37
6 6 12 52
7 7 14 55
8 8 16 24312
9 11 22 57

10 14 28 428
11 15 30 1383
12 18 36 1525
13 19 38 16975
14 22 44 3098

5.3.6 Mod k Addition of n k-Valued Variables

This problem may be considered as a generalization of the famous and popular
Parity n problem for the k-valued case. In fact, Parity n problem is a mod 2
addition of n variables. mod k addition of n variables is a non-threshold k-valued
function for any k and any n and therefore it cannot be learned by a single MVN.
To our best knowledge there is no evidence that this function can be learned by
any other single neuron. However, as we will see now, it is not a problem to learn
this problem using a single MVN-P with the activation function (5.157).

We do not have a universal solution of the problem of mod k addition of n
variables in terms of the relationship between k and n on the one side and l in
(5.157) on the other side. However, we can show here that this multiple-valued
problem is really solvable at least for those k and n, for which we have performed
experimental testing [61, 95].

The experimental results are summarized in Table 5.18. Since the Learning
Strategy 1 showed better performance for this problem (fewer learning iterations
and time), all results are given for this strategy only.

5.3 Simulation Results for k-Valued MVN with a Periodic Activation Function 199

Our goal was to find a minimal l in (5.157), for which the learning process con-
verges. For each combination of k and n on the one hand, and for each learning
rule, on the other hand, such a minimal value of l is presented. The average num-
ber of iterations for seven independent runs of the learning process and its stan-
dard deviation are also presented for each combination of k and n for each learn-
ing rule. We considered the learning process non-converging if there was no
convergence after 200,000 iterations. The learning error for all learning rules
drops very quickly, but fine adjustment of the weights takes more time. For some
k and n and for some of learning rules we used a staggered learning technique.
This means that unlike a regular learning technique, where all learning samples
participate in the learning process from the beginning, the staggered method ex-
pands a learning set step by step. For example, let A be a learning set and its car-
dinality is N. The set A can be represented as a union of non-overlapping subsets

1 2, ,..., sA A A . Then the learning process starts from the subset 1A . Once it con-

verged, it has to continue for the extended learning set 1 2A A∪ starting from the

weights that were obtained for 1A . Once it converges, the learning set has to be

extended to 1 2 3A A A∪ ∪ , adding one more subset after the previous learning

session converged. Finally, we obtain the learning set

1 2 1... s sA A A A A− =∪ ∪ ∪ ∪ . This approach is efficient when the function to

be learned has a number of high jumps.
If there are exactly s high jumps, then s sequential learning sessions with s ex-

panding learning sets 1 1 2 1, ,..., ... sA A A A A A=∪ ∪ ∪ lead to faster conver-

gence of the learning algorithm. For example, the function mod k addition of n

variables has exactly nk learning samples. For any k and n, this function has mul-
tiple high jumps from k-1 to 0. These jumps can be used to determine partitioning

of the corresponding learning set into s non-overlapping subsets 1 2, ,..., sA A A .

First, the learning process has to be run for 1A . Once it converges, it has to be run

for 1 2A A∪ . This set contains one high jump, but since the starting weighting

vector, which already works for 1A , better approaches the resulting weighting

vector, the learning process for 1 2A A∪ converges better starting from this

weighting vector than starting from a random one. Then this process has to be

continued up to the learning set 1 ... sA A A=∪ ∪ . We used this staggered learn-

ing technique, for example, for 5, 2k n= = , for 6, 2k n= = and some other k

and n (see the footnote in Table 5.18.). While neither of learning rules (3.92),
(3.94)-(3.96) leads to the convergence of the standard learning algorithm after
200,000 iterations for these specific k and n, the staggered technique leads to very
quick convergence of the learning process for all four learning rules.

200 5 Multi-Valued Neuron with a Periodic Activation Function

Thus, for all the experiments, we show in Table 5.18 the smallest l in (5.157),

for which the convergence was reached.

Table 5.18 Simulation Results for mod k addition of n k-valued variables

k n

Average number of learning iterations (Iter.) for 7 independent runs, its standard deviation
(SD), and minimal value of l in (5.157), for which the learning process converged.

Learning rule (3.92) Learning rule (3.94) Learning rule (3.95) Learning rule (3.96)
Iter. SD l Iter. SD l Iter. SD l Iter. SD l

3 2 14 5 2 18048 44957 2 54 14 2 1005 1384 2
3 3 2466 2268 10 3773 1721 10 2568 1988 10 2862 676 12
3 4 4296 2921 11 391404 158688 7 2002 1272 14 1728 767 11
3 5 78596 87158 18 344440 308044 22 236242 188276 18 23372 8255 24
3 6 237202 172100 36 50292 91260 39 291950 346862 27 41083 23117 30
3 7 518313 395671 41 1556379 798841 41 489366 229706 22 390786 260953 25
4 2 2693 3385 3 135 163 3 9411 23 3 66011 567 3
4 3 2571 1772 7 12175 5407 7 411 190 7 602 436 7
4 4 50151 35314 10 140850 88118 10 47818 53349 13 3797 2756 13
4 5 73469111 231353 13 35591011 98208 13 17464911 148655 16 20962911 189481 15
4 6 13113911 185316 42 17126911 104685 15 5980711 57060 34 30667211 312548 30
4 7 108050 30309 39 110809 37286 38 90734 35474 37 95055 39581 38
5 2 9611 22 4 8111 16 4 8211 23 4 19711 82 5
5 3 120211 193 9 141911 264 9 146011 308 9 147011 191 9
5 4 460411 393 13 489311 211 13 560611 374 13 618211 616 13
5 5 2281211 3977 22 1727411 1682 18 1740211 3415 18 2147011 1959 18
5 6 10567211 20071 26 19644111 5635 22 6660911 9888 33 269311 310 24
5 7 630490 192494 52 557635 305579 49 16192 24618 35 5280 2433 31
6 2 27211 110 4 12011 33 4 9511 35 4 29511 65 4
6 3 109733 2400 14 4131 4039 10 861 150 11 834 221 10
6 4 118128 15596 14 48002 11652 14 961511 1159 16 1095111 1265 16
6 5 71241 74463 21 15986 14835 21 128550 105115 20 42122 26631 20
6 6 9225711 4773 33 19454411 203936 26 13040511 25104 27 12281411 9447 27
6 7 24723211 64747 31 26256411 13614 31 26065411 32977 37 25729811 2291 37
1 - staggered learning technique used. This means that a learning set was extended step by step. Initially
first k samples were learned, then starting from the obtained weights 2k samples were learned, then 3k, etc.
up to kn samples in a whole learning set

As we have discovered above (Theorem 5.21), if some k-valued input/output

mapping is a non-threshold k-valued function, but it can be learned using a single
MVN-P, this means that this non-threshold k-valued function is projected to a par-

tially defined kl m= -valued function. In practice, this partially-defined m-valued
threshold function, which is not known prior to the learning session, is generated
by the learning process.

5.3 Simulation Results for k-Valued MVN with a Periodic Activation Function 201

As it follows from our experiments mod k addition of n variables functions for
any 2k ≥ and any n are projected into partially defined kl m= -valued threshold
functions, which are so-called minimal monotonic functions.

This means the following. Let ()1 ,...,i i
i nX x x= and ()1 ,...,j j

j nX x x= . Vec-

tor iX precedes to vector jX (i jX X≺) if , 1,...,i j
s sx x s n≤ ∀ = . Function

()1,..., nf x x is called monotonic if for any two sets of variables iX and jX ,

such that i jX X≺ , the following holds

() () () ()1 1,..., ,...,i i j j
i n j nf X f x x f X f x x= ≤ = .

An m-valued function ()1,..., nf x x is called minimal monotonic [88], if it is

monotonic and for any two closest comparable sets of variables ()1 ,...,i i
i nX x x=

and ()1 ,...,j j
j nX x x= , if i jX X≺ , then () ()1 1,..., ,..., 1j j i i

n nf x x f x x− ≤ ,

that is ()1 ,...,j j
nf x x is either equal to ()1 ,...,i i

nf x x or is greater than

()1 ,...,i i
nf x x by exactly 1.

A very interesting experimental fact is that all partially defined m-valued func-
tions, to which mod k additions of n variables were projected by the learning
process are minimal monotonic m-valued functions. Let us consider several
examples for different k and n (see Table 5.19 - Table 5.24).

Table 5.19 XOR – mod 2 addition of 2 variables, l=2, m=4 in (5.157)

1x 2x
()
()

1 2

1 2

,

mod 2

f x x

x x

=

= +

{ }0,1, 2,3j M∈ =

2x2=4-valued function

()1 2,f x x

0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 2

In all these tables, the first columns contain values of the corresponding inputs

(input variables) 1 nx ,...,x . The second to the last column contains values of the k-

valued function ()1 nf x ,...,x , which we learn, and the last column contains

values of that partially defined kl=m-valued function ()1 nf x ,...,x , to which the

202 5 Multi-Valued Neuron with a Periodic Activation Function

initial function was projected by the learning algorithm. For simplicity, we show

the values of the input variables and functions f and f in the regular multiple-

valued alphabets { }0,1,..., 1K k= − and { }0,1,..., ,..., 1M k m= − . The

reader may easily convert these values to such that belong to kE and mE ,

respectively (if j K∈ , then 2 /i j k
ke Eπ ∈).

Table 5.20 Parity 3 – mod 2 addition of 3 variables, l=3, m=6 in (5.157)

1x 2x 3x
()
()

1 2 3

1 2 3

, ,

mod 2

f x x x

x x x

=

= + +

{ }0,1,...,5j M∈ =

2x3=6-valued function

()1 2 3, ,f x x x

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 2
1 0 0 1 1
1 0 1 0 2
1 1 0 0 2
1 1 1 1 3

Table 5.21 Parity 4 – mod 2 addition of 4 variables, l=3, m=6 in (5.157)

1x 2x 3x 4x

()
()

1 2 3 4

1 2 3 4

, , ,

mod 2

f x x x x

x x x x

=

= + + +

{ }0,1,...,7j M∈ =

2x4=8-valued function

()1 2 3 4, , ,f x x x x

0 0 0 0 0 0
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 2
0 1 0 0 1 1
0 1 0 1 0 2
0 1 1 0 0 2
0 1 1 1 1 3
1 0 0 0 1 1
1 0 0 1 0 2
1 0 1 0 0 2
1 0 1 1 1 3
1 1 0 0 0 2
1 1 0 1 1 3
1 1 1 0 1 3
1 1 1 1 0 4

5.3 Simulation Results for k-Valued MVN with a Periodic Activation Function 203

Table 5.22 mod 3 addition of 3 variables, l=3, m=9 in (5.157)

1x 2x 3x
()
()

1 2 3

1 2 3

, ,

mod3

f x x x

x x x

=

= + +

{ }0,1,...,9j M∈ =

3x3=9-valued function

()1 2 3, ,f x x x

0 0 0 0 21
0 0 1 1 22
0 0 2 2 23
0 1 0 1 22
0 1 1 2 23
0 1 2 0 24
0 2 0 2 23
0 2 1 0 24
0 2 2 1 25
1 0 0 1 22
1 0 1 2 23
1 0 2 0 24
1 1 0 2 23
1 1 1 0 24
1 1 2 1 25
1 2 0 0 24
1 2 1 1 25
1 2 2 2 26
2 0 0 2 23
2 0 1 0 24
2 0 2 1 25
2 1 0 0 24
2 1 1 1 25
2 1 2 2 26
2 2 0 1 25
2 2 1 2 26
2 2 2 0 27

As it is clearly seen from all three examples, the corresponding m-valued

functions are minimal monotonic functions. All these functions can be learned
using a single MVN with the activation function (2.50) because they are partially
defined kl=m-valued threshold functions.

204 5 Multi-Valued Neuron with a Periodic Activation Function

Table 5.23 mod 5 addition of 2 variables, l=4, m=20 in (5.157)

1x 2x
()
()

1 2

1 2

,

mod5

f x x

x x

=

= +

{ }0,1,...,9j M∈ =

5x4=20-valued function

()1 2,f x x

0 0 0 0
0 1 1 1
0 2 2 2
0 3 3 3
0 4 4 4
1 0 1 1
1 1 2 2
1 2 3 3
1 3 4 4
1 4 0 5
2 0 2 2
2 1 3 3
2 2 4 4
2 3 0 5
2 4 1 6
3 0 3 3
3 1 4 4
3 2 0 5
3 3 1 6
3 4 2 7
4 0 4 4
4 1 0 5
4 2 1 6
4 3 2 7
4 4 3 8

5.3 Simulation Results for k-Valued MVN with a Periodic Activation Function 205

Table 5.24 mod 6 addition of 2 variables, l=4, m=24 in (5.157)

1x 2x
()
()

1 2

1 2

,

mod 6

f x x

x x

=

= +

{ }0,1,..., 23j M∈ =

6x4=24-valued function

()1 2,f x x

0 0 0 6
0 1 1 7
0 2 2 8
0 3 3 9
0 4 4 10
0 5 5 11
1 0 1 7
1 1 2 8
1 2 3 9
1 3 4 10
1 4 5 11
1 5 0 12
2 0 2 8
2 1 3 9
2 2 4 10
2 3 5 11
2 4 0 12
2 5 1 13
3 0 3 9
3 1 4 10
3 2 5 11
3 3 0 12
3 4 1 13
3 5 2 14
4 0 4 10
4 1 5 11
4 2 0 12
4 3 1 13
4 4 2 14
4 5 3 15
5 0 5 11
5 1 0 12
5 2 1 13
5 3 2 14
5 4 3 15
5 5 4 16

It should be mentioned that neither of the learning rules (3.92), (3.94)-(3.96)

can be distinguished as the “best”. Each of them can be good for solving different
problems. It is also not possible to distinguish the best among Learning Strategies
1 and 2. For example, the “Iris” problem can be learned with no errors only using
the Strategy 2, while for some other problems Strategy 1 gives better results.

206 5 Multi-Valued Neuron with a Periodic Activation Function

A deeper study of advantages and disadvantages of the developed learning strate-
gies and rules will be an interesting direction for the further research.

5.4 Concluding Remarks to Chapter 5

In this Chapter, we have considered the multi-valued neuron with a periodic acti-
vation function (MVN-P). This is a discrete-valued neuron (whose inputs can be
discrete or continuous), which can learn input/output mappings that are non-
linearly separable in the real domain, but become linearly separable in the
complex domain.

First, we have considered the universal binary neuron (UBN). This neuron with
a binary output was a prototype of MVN-P. We have shown that UBN with its pe-
riodic activation function projects a binary input/output mapping, which is non-
linearly separable, into an 2l m= -valued partially defined threshold function,
which can be learned using a single neuron. We have considered the UBN learn-
ing algorithm, which is based on the MVN learning algorithm employing also
self-adaptivity. We have shown that a single UBN may easily learn such problems
as XOR and Parity.

Then we have introduced MVN-P. The MVN-P concept generalizes the two-
valued UBN concept for the k-valued case. The MVN-P has a periodic activation

function, which projects k-valued logic into kl m= -valued logic. Thus, this acti-
vation function is k-periodic and l-repetitive. The most wonderful property of
MVN-P is its ability to learn k-valued input/output mappings, which are
non-linearly separable in k-valued logic, but become linearly separable in
kl m= -valued logic. This means that MVN-P may project a non-linearly separa-
ble k-valued function into a partially defined linearly separable m-valued function.

We have considered the MVN-P learning algorithm with the two learning
strategies. This learning algorithm is semi-supervised and semi-self-adaptive.
While a desired neuron output is known in advance, a periodicity of its activation
function allows its self-adaptation to the input/output mapping. We have shown
that the MVN-P learning can be based on the same error-correction learning rules
that the regular MVN learning. The most important application of MVN-P is its
ability to solve multi-class and multi-cluster classification problems, which are
non-linearly separable in the real domain, without any extension of the initial
space where a problem is defined.

MVN-P can also be used as the output neuron in MLMVN. This may help to
solve highly nonlinear classification problems.

	Multi-Valued Neuron with a Periodic Activation Function
	Universal Binary Neuron (UBN): Two-Valued MVN with a Periodic Activation Function
	A Periodic Activation Function for k=2
	Implementation of the Parity n Function Using a Single Neuron
	Projection of a Two-Valued Non-linearly Separable Function into an m-Valued Threshold Function
	UBN Learning

	k-Valued MVN with a Periodic Activation Function
	Some Important Fundamentals
	Periodic Activation Function for Discrete MVN
	Learning Algorithm for MVN-P

	Simulation Results for k-Valued MVN with a Periodic Activation Function
	Iris
	Two Spirals
	Breast Cancer Wisconsin (Diagnostic)
	Sonar
	Parity N Problem
	Mod k Addition of n k-Valued Variables

	Concluding Remarks to Chapter 5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

