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Chapter 3  
MVN Learning 

“Since we cannot know all that there is to be known about anything, 
 we ought to know a little about everything.” 

Blaise Pascal 
 
 

In this Chapter, we consider all aspects of the MVN learning. We start in Section 
3.1 from the specific theoretical aspects of MVN learning and from the representa-
tion of the MVN learning algorithm. Then we describe the MVN learning rules. In 
Section 3.2, we consider the first learning rule, which is based on the adjustment 
of the weights depending on the difference (in terms of the angular distance) be-
tween the arguments of the current weighted sum and the desired output. In Sec-
tion 3.3, we present the error-correction learning rule for MVN. For both learning 
rules presented in Sections 3.2 and 3.3, we prove theorems about the convergence 
of the learning algorithm based on these rules. In Section 3.4, we discuss the Heb-
bian learning rule for MVN. Section 3.5 contains some concluding remarks.  

3.1   MVN Learning Algorithm 

In Chapter 2, we have introduced discrete and continuous MVN. We also have 
considered the edged separation of an n-dimensional space, which is implemented 
by MVN using the k-edge generated by the weights that implement a correspond-
ing input/output mapping.  

As any other neuron, MVN creates the weights implementing its input/output 
mapping during the learning process. The ability to learn from its environment is a 
fundamental property of a neuron. We have already observed fundamentals of 
learning in Section 1.2. According to Definition 1.2, the MVN learning as well as 
any other neuron learning is the iterative process of the adjustments of the weights 
using a learning rule. In other words, it is reduced to the adaptation of the neuron 
to its input/output mapping thorough the adjustment of the weights using a learn-
ing rule every time, when for some learning sample the neuron’s actual output 
does not coincide with the desired output. 

In this Chapter, we present the MVN learning algorithm, which can be based on 
the two learning rules. One of the rules is based on the estimation of the closeness 
of the actual output to the desired one in terms of angular distance. Another one  
is the error-correction learning rule. We will also consider the Hebbian learning 
for MVN. 
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3.1.1   Mechanism of MVN Learning 

Let us now consider what MVN has to do when it learns, what is behind the learn-
ing process. It is also important to mention that those fundamentals of MVN learn-
ing, which we consider here are important not only for a single MVN, but for 
MLMVN (multilayer neural network based on multi-valued neurons), whose 
learning algorithm with the error backpropagation we will consider in Chapter 4. 

Let A be a learning set with the cardinality A N= , thus the learning set con-

tains N learning samples. They are such samples ( )1 ,..., , 1,...,i i
n ix x d i N→ =  

for which the exact desired output ( )1 ,..., , 1,...,i i
n if x x d i N= =  is known. 

If we return to the threshold neuron, its learning process can be presented in the 

following way. Its learning set can always be presented as 1 1A A A−= ∪ , where 

1A  is a subset of the learning samples where the neuron’s output has to be equal 

to 1, and 1A−  is a subset of the learning samples where the neuron’s output has to 

be equal to -1. As we have seen, learning in this case is reduced to the search for a 

hyperplane, which separates the subsets 1A  and 1A−  of the learning set in that n-

dimensional space where a problem to be learned is defined. The coefficients of a 
hyperplane equation are the weights implementing a corresponding input/output 
mapping. 

Let us consider now how the discrete MVN learns. Taking into account that the 
discrete MVN implements a k-valued input/output mapping, it is easy to conclude 

that a learning set should consist of k classes. Let 2k >  be some integer.  

Let us consider (n+1) - dimensional vectors ( )11, ,..., nX x x= , 

( )1,...,
n

nx x T O∈ ⊆ , where O is the set of points located on the unit circle. 

The 0th coordinate (constant 1) can be considered as a pseudo input corresponding 

to the weight 0w . We introduce it just to be able to consider a weighted sum 

0 1 1 ... n nw w x w x+ + +  as a dot product of two (n+1) - dimensional vectors 

( )11, ,..., nX x x=  and ( )0 1, ,..., nW w w w= . 

Let jA  be a learning subset { }( ) ( )
1 ,...,

j

j j
NX X  of the input neuron states  

corresponding to the desired output , 0,..., 1j j kε = − . In such a case we can 

present the entire learning set A as a union of the learning subsets 

, 0,1,..., 1jA j k= −  as follows 
0 1

j
j k

A A
≤ ≤ −

= ∪ . In general, some of the sets 

, 0,1,..., 1jA j k= −  may be empty if for some 0,..., 1j k= −  there is no 
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learning sample whose desired output is jε . It is also clear that A Ai j∩ = ∅  for 

any i ≠ j. A practical content behind this mathematical representation is, for ex-
ample, a k-class classification problem, which is presented by the learning set A 

containing learning subsets , 0,1,..., 1jA j k= −  such that each of them contains 

learning samples belonging only to one of k classes labeled by the corresponding 

class membership label , 0,..., 1j j kε = − . 

 
Definition 3.16. The sets A A Ak0 1 1, ,..., −  are called k-separable, if it is possible 

to find a permutation ( )0 1 1, ,..., kR α α α −=  of the elements of the set 

{ }0,  1,  ...,  1K k= − , and a weighting vector ( )0 1, ,..., nW w w w=  such that 

( ), jP X W
αε=  (3.73) 

 

for each , 0,1,..., 1jA j k= − . Here W is a vector with the components com-

plex-conjugated to the ones of the vector W, ( ),X W is a dot product of the 

(n+1)-dimensional vectors within the (n+1)-dimensional unitary space, P is the 
MVN activation function (2.50). Without loss of generality we may always supply 

(2.50) by ( ) 00,0 1P ε= = . This means that the function P is now determined 

on the entire set  of complex numbers. 

Let A be a learning set and 
0 1

j
j k

A A
≤ ≤ −

= ∪  is a union of the k-separable disjoint 

subsets 0 1 1, ,..., kA A A − . On the one hand, this means that (3.73) holds for any 

X A∈ . On the other hand, the MVN input/output mapping presented by such a 

learning set is described by the k-valued function ( )1   :n kf x , ..., x A E→ . It fol-

lows from the fact that the learning subsets 0 1 1, ,..., kA A A −  are k-separable and 

(3.73) holds for any X A∈  that (2.51) also holds for the function ( )1   nf x , ..., x  

on the its entire domain A, which means that according to Definition 2.7 this func-
tion is a k-valued threshold function. Hence, we proved the following theorem. 
 

Theorem 15. If the domain of a k-valued function ( )1   :n kf x , ..., x A E→  can 

be represented as a union of k-separable disjoint subsets 0 1 1, ,..., kA A A −  (some of 

them can be empty in general), then the function ( )1  nf x , ..., x  is a k-valued 

threshold function. 
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It directly follows from Definition 3.16 and (3.73) that the problem of MVN 
learning should be reduced to the problem of the k-separation of learning subsets. 
In other words, the learning problem for the given learning subsets 

0 1 1, ,..., kA A A −  can be formulated as a problem, how to find a permutation 

( )0 1,  ,  ...,  kα α α  and a weighting vector ( )0 1, ,..., nW w w w=  such that 

(3.73) holds for the entire learning set A. 
On the other hand, we see that the notion of k-separation of the learning subsets 

is closely related to the notion of edge-like sequence (see Definition 2.14). Evi-

dently, if the sets 0 1 1, ,..., kA A A −  are k-separable, and the permutation 

( )0 1 1, ,..., kR α α α −=  is applied to them, then the edge-like sequence results 

from such a permutation. From the geometrical point of view, the k-separation 
means that elements from only one learning subset (one class) 

{ }| ( ) j
jA X f X ε= =  belong to each edge of the k-edge. Moreover, the ele-

ments belonging to the same class cannot belong to the different edges. 

We will say that any infinite sequence Su  of objects 0 1 1, ,..., ku u u −  such that 

,    j u j ju S u A u A u u∈ ⇒ ∈ ∈ ⇒ =  for some j taking its values from the in-

finite set, forms a learning sequence from the set A. 
The MVN learning process should be defined as a process of finding such a 

permutation ( )0 1 1, ,..., kR α α α −=  of the elements of the set 

{ }0,  1,  ...,  1K k= −  and such a weighting vector ( )0 1, ,..., nW w w w=  that 

(3.73) holds for the entire learning set A.  

Let us suppose that the permutation ( )0 1 1, ,..., kR α α α −=  is already known. 

Then the learning process is reduced to obtaining the sequence Sw  of the weight-

ing vectors 0 1, ,...W W  such that starting from the some 0m  

0 0 01 2 ...m m mW W W+ += = =  and (3.73) holds. Each weighting vector in the  

sequence Sw  corresponds to the next learning sample. The process of finding the 

sequence Sw  of the weighting vectors is iterative. One iteration of the learning 

process consists of the consecutive checking for all the learning samples whether 
(3.73) holds for the current learning sample. If so, the next learning sample should 
be checked. If not, the weights should be adjusted according to a learning rule (we 
did not consider learning rules yet). One learning iteration (learning epoch) is a 

complete pass over all the learning samples ( )1 ,..., , 1,...,i i
n ix x d i N→ = . 
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Stabilization of the sequence wS  in conjunction with the fact that (3.73) holds 

means that the learning process converges with the zero error. 
As well as for any other neuron, there can be situations when MVN learning 

with the zero error is not reasonable. It depends on the particular problem, which 
is necessary to learn. If errors for some learning samples are acceptable (which 
means that (3.73) may not hold for some learning samples), the mean square error 
(MSE) (1.20) or the root mean square error (RMSE) (1.21) criteria should be used 
to stop the learning process. It is important to understand that for the discrete 
MVN both MSE and RMSE should be applied to the errors in terms of numbers of 
sectors (see Fig. 2.21), thus not to the elements of the set 

{ }0 1, ,..., k
k k k kE ε ε ε −= , but to the elements of the set { }0,1,..., 1K k= −  or to 

their arguments { }0 1arg ,arg ,..., arg k
k k kε ε ε − . Hence, in this case the error for 

the sth learning sample , 1,...,s s Nγ =  is either of 
 

( ) mod ; 1,...,
ss j s k s Nγ α α= − = , (3.74) 

( )arg arg mod 2 ; 1,...,js s
s s N

α αγ ε ε π= − = , (3.75) 

 

where js
αε  is the desired neuron’s output for the sth learning sample, and sαε  is 

the actual MVN output.  
The learning process continues until either of MSE or RMSE drops below some 

pre-determined acceptable minimal value λ . For the reader’s convenience, let us 
adapt here the expressions (1.20) and (1.21) for MSE and RMSE over all N learn-
ing samples for the local errors (3.74) and (3.75). Equations (1.20) and (1.21) are 
transformed to, respectively 

 

2

1

1 N

s
s

MSE
N

γ λ
=

= <∑ , (3.76) 

2

1

1 N

s
s

RMSE MSE
N

γ λ
=

= = <∑ . (3.77) 

 
If either of MSE (3.76) or RMSE (3.77) criteria is used to stop the learning proc-

ess, we have to take into account that the sequence of weighting vectors wS  may 

have left not stabilized when 0λ > . 
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The learning process for the continuous MVN does not differ from the one for 
the discrete MVN. Anyway, the learning set A even for the continuous-valued in-

put/output mapping ( )1,..., : , n
nf x x T O T O→ ⊆  is finite, which means that 

it can be represented as a union 
0 1

j
j k

A A
≤ ≤ −

= ∪  of the learning subsets 

, 0,1,..., 1jA j k= − , where k is the number of different values of the function 

( )1,..., nf x x  corresponding to the elements of the learning set. In other words, k 

is the cardinality of the range of the function ( )1,..., nf x x  with respect to the 

learning set A. If the continuous MVN should learn not with the zero error, then 
either of MSE (3.76) or RMSE (3.77) criteria with respect to the local errors 
(3.75) should be applied. 

3.1.2   Learning Strategy 

Let us have the learning set containing N learning samples 

( )1 ,..., , 1,...,i i
n ix x d i N→ = . As we told, one iteration of the learning process 

consists of the consecutive checking for all the learning samples whether (3.73) 
holds for the current learning sample. If it does not hold, the weights should be ad-
justed using a learning rule. This process continues either until the zero error is 
reached or one of (3.76) or (3.77) holds. It should be mentioned that in the latter 
case criterion (3.73) can be replaced by either of 

( )mod ; 1,...,
ii j k i Nγ α α β= − < = , (3.78) 

( )arg arg mod 2 ; 1,...,ji
i i N

α αγ ε ε π β= − < = , (3.79) 

where β is some acceptable error level for a single learning sample in terms of sec-
tors numbers (3.78) or angular distance (3.79). 

If (3.73) does not hold or one of (3.78) or (3.79) does not hold (depending on 
which error criterion is used), then the MVN weights must be adjusted using a 
learning rule. Two learning rules will be considered below (Sections 3.2 and 3.3). 
Geometrically, adjustment of the weights means movement of the weighted sum 
from the incorrect sector s (discrete MVN, see Fig. 3.33a) to the correct sector q or 
from the incorrect ray OY (continuous MVN, see Fig. 3.33b) to the correct ray OD. 

Thus, the following learning algorithm should be used for MVN learning. 
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Let 
s
jX  be the sth element of the learning set A belonging to the learning sub-

set Aj . Let N be the cardinality of the set A, A N= . 

Let Learning be a flag, which is ‘True’ if the weights adjustment is required 
and “False”, if it not required, and r be the number of the weighting vector in the 

sequence wS . 

 
Step 1. The starting weighting vector W0  is chosen arbitrarily (e.g., real and 

imaginary parts of its components can be random numbers); r=0; t=1; Learning = 
‘False’; 

Step 2. Check (3.73) or one of (3.78) or (3.79) (depending on the error  

criterion, which is used) for 
s
jX :  

if (3.73) or one of (3.78) or (3.79) holds  
then go to the step 4  
else begin Learning = ‘True’; go to Step 3 end; 

Step 3. Obtain the vector 1rW + from the vector rW by the learning rule (to be 

considered);  
Step 4. t = t+1;  if t≤N  

then go to Step 2  
else if Learning = ‘False’ 

  then the learning process is finished successfully 
  else begin t=1; Learning = ‘False’; go to Step 2; end. 

 

  

(a) Discrete MVN. 
qε  is the desired output, 

sε  is the actual output 

(b) Continuous MVN. D is the desired out-
put, Y is the actual output. 

Fig. 3.33 Geometrical interpretation of the weights adjustment. The weighted sum has to be 
moved from the incorrect domain to the correct one. 
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A learning rule, which should be applied on Step 3, is a key point of the learn-
ing algorithm. It determines the correction of the weights. It should ensure that  
after the weights adjustment a weighting vector resulted from this adjustment  

approaches us closer to the stabilization of the sequence wS  of the weighting vec-

tors. In other words, a learning rule should approach the convergence of the learn-
ing algorithm and ensure decreasing of the error after each learning step.  

We will consider here two learning rules. Their wonderful property is that they 
are derivative-free. The MVN learning based on this rules should not be consid-
ered as the optimization problem. Yes, we have to minimize the neuron error or 
even to reduce it to zero. But we will see that both learning rules, which we will 
consider here, generalize the Novikoff’s approach to the threshold neuron error-
correction learning [12] where the distance from the current weighting vector to 
the desired weighting vector is decreasing during the learning process without in-
volvement of any optimization technique. 

Let us consider the MVN learning rules in detail. 

3.2   MVN Learning Rule Based on the Closeness to the Desired 
Output in Terms of Angular Distance 

3.2   MVN Learning Rule Based on the Closeness to t he Desired Output  

3.2.1   Basic Fundamentals 

Both learning rules (that we consider in this section and in the following section) 
are based on the compensation of the MVN error by adding the adjusting term to 
each component of the current weighting vector. 

While the second learning rule, which we will consider below in Section 3.3, 
can be considered as a direct generalization of the Rosenblatt error-correction 
leaning rule for the threshold neuron, the first learning rule, which we are going to 
consider now, is based on the compensation of the error between the desired and 
actual neuron outputs in terms of angular distance between their arguments. This 
learning rule was initially proposed by N. Aizenberg and his co-authors in [34, 
36], then the convergence of the learning algorithm based on this rule was proven 
in [37], some more adjustments were made in [38] and [60]. Here we will present 
the most comprehensive description of this algorithm with its deeper analysis 
(compared to earlier publications). 

Let the discrete MVN has to learn some input/output mapping 

( )1,..., : ; n
n kf x x T E T O→ ⊆ . We have already mentioned that in the case 

of the continuous MVN and continuous-valued input/output mapping 

( )1,..., : ; n
nf x x T O T O→ ⊆ , all considerations can be reduced to the dis-

crete case because since a learning set with the cardinality N contains exactly N 
learning samples and the neuron may have at most k N≤  different outputs. So 
we may consider the learning algorithm just for the discrete MVN. 
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Let us define the following partial order relation on the set 

{ }0 1, ,..., k
k k k kE ε ε ε −= . Let us for simplicity use the following notation kε ε= . 

We will say that αε  precedes to βε  ( α βε ε≺ ) if and only if the following con-
dition holds 

( ) ( )mod mod 0 arg argk k β αα β ε ε π≤ ∧ ≤ − <  or 

( ) ( )mod mod arg arg 0k k β αα β π ε ε≥ ∧ − ≤ − < , 

where { }, 0,1,..., 1K kα β ∈ = − . In other words α βε ε≺  if and only if αε  

is located “lower” than βε  in the clockwise direction from βε  in the “right” half-

plane from the line crossing the origin and the point corresponding to αε  on the 
unit circle.  

Let qε  be the desired MVN output and sε  be the actual MVN output (see  
Fig. 3.33a). Let us discover how far they can be located from each other in terms of 

 

(a) (b) 

 
(c) 

Fig. 3.34 Thee cases of mutual location of the desired (
qε ) and actual (

sε ) MVN outputs 
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the angular distance accurate within the angle / 2π . Let us consider the case 
4k ≥  (see Fig. 3.34). There are three possible situations. 

1) sε  is located to the “left” (in the counterclockwise direction) from qε  such 

that ( )arg arg mod 2 / 2s qε ε π π− ≤  and ( ) ( )1 mod [ /4] modq k q k ksε ε ε+ +≺ ≺  

(see Fig. 3.34a, [k/4] is an integer part of k/4). 

2) sε  is located approximately across the unit circle with respect to qε , which 

means that ( )/ 2 arg arg mod 2 3 / 2s qπ ε ε π π< − <  and 

( ) ( )[ /4] 1 mod 3[ /4] 1 modq k k q k ksε ε ε+ + + −≺ ≺  (see Fig. 3.34b). 

3) sε  is located to the “right” (in the clockwise direction) from qε  such that 

( )arg arg mod 2 / 2s qε ε π π− ≤  and ( ) ( )3[ /4] mod 1 modq k k q k ksε ε ε+ + −≺ ≺  

(see Fig. 3.34c). 

The goal of a learning rule is to correct the error, which is approximately equal 
in terms of angular distance for the three just considered cases / 2,  π π− , and 

/ 2π , respectively. Thus, to correct the error, we need to “rotate” the weighted 
sum, compensating this error. This “rotation” must be done by the adjustment of 
the weights in such a way, that the adjusted weighting vector moves the weighted 
sum either exactly where we need or at least closer to the desired sector. 

This means that our learning rule has to contain some “rotating” term, which 
should vary depending on which of the considered above error cases takes place. 

The following learning rule was proposed in [34, 36, 37] to correct the weight-

ing vector ( )0 1, ,..., nW w w w=  

 

1
; 0,1,...,

1
q

i i r r iw w C x i n
n

ω ε= + =
+

, (3.80) 

 

where n is the number of the neuron inputs, iw  is the ith component of the 

weighting vector before correction, iw  is the same component after correction,
 

ix  is the ith neuron input complex-conjugated ( 0 1x ≡  as we agreed above is a 

pseudo-input corresponding to the bias 0w ), rC  is the learning rate, qε  is the  

desired output, and rω  is a rotating coefficient, which has to compensate the an-

gular error, which we have just considered. To choose rω , we have to consider 

the following cases corresponding to the error cases considered above. Let i be an 

imaginary unity, and 2 /i k
k e πε ε= = . 
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Case 1. m iω ε= − , if 1s qε ε += for k=2 and k=3, or 

( ) ( )1 mod [ /4] modq k q k ksε ε ε+ +≺ ≺  for k≥4.  

Case 2. 1mω = , if ( ) ( )[ /4] 1 mod 3[ /4] 1 modq k k q k ksε ε ε+ + + −≺ ≺  for k≥4 (for k<4 

such a case is impossible). 

Case 3. m iω = , if 2s qε ε +≺ for k=3, or 

( ) ( )3[ /4] mod 1 modq k k q k ksε ε ε+ + −≺ ≺  for k≥4 (for k=2 such a case is impossible). 

Thus, adjusting the weights according to (3.80), we obtain the following equation 

for the r+1st weighting vector belonging to the sequence wS  from the rth weight-

ing vector belonging to the same sequence 
 

1

1

1
q

r r r rW W C X
n

ω ε+ = +
+ , (3.81) 

 

where r is the number of the current weighting vector in the sequence wS , addi-

tion is component-wise, and ( )11, ,..., nX x x=  is the vector of neuron inputs 

with the complex-conjugated components. 

Before justification of the choice of rω  let us first clarify a very important 

role of the multiplier 
1

1n +
 in the learning rule (3.80) and let us see how the 

weighted sum changes after the weights are corrected. Let us find the updated 
weighted sum after the weights are corrected according to (3.80). The current 

weighted sum is 0 1 1 ... n nz w w x w x= + + + . Suppose for simplicity, but without 

loss of generality that 1mC = . For the updated weighted sum, taking into account 

that 1; 0,1,...,i ix x i n= = (since all ix are located on the unit circle) we obtain 

0 1 1 0 1 1 1

0 1 1

1 times

1 1
...

1 1

1
...

1

1 1
... ... .

1 1

q q
n n r r

q
n r n n

q q q
n n r r r

z
n

z w w x w x w w x x
n n

w x x
n

w w x w x z
n n

ω ε ω ε

ω ε

ω ε ω ε ω ε

+

⎛ ⎞ ⎛ ⎞= + + + = + + + +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
⎛ ⎞+ + + =⎜ ⎟+⎝ ⎠

= + + + + + + = +
+ +
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This means that after the weights are corrected, the weighted sum is changed by 

q
rω ε . The multiplier 

1

1n +
, which can be considered as a constant learning rate 

is important to avoid change of the weighted sum by ( )1 q
rn ω ε+ , which may 

lead to the jump over a desired output. Thus, using the multiplier 
1

1n +
, we share 

the adjusting term among all the weights. In fact, we do not know which of the 
weights contributes more to the error. Hence, if we assume that each of them con-
tributes uniformly, this assumption is natural. 

We can clarify now the choice of rω  in (3.80) (see Fig. 3.35).  

In the Case 1 (see Fig. 3.35a), the current weighted sum should be rotated 
clockwise, that is to the right side from its current location, because the actual out-

put sε  is located to the left from the desired output qε  and the difference between 

  
(a) Case 1 (b) Case 2 

 
(c) Case 3 

Fig. 3.35 Movement of the weighted sum z after the correction of the weights according  
to (3.80)  



3.2   MVN Learning Rule Based on the Closeness to the Desired Output 107
 

the arguments of the actual and desired outputs does not exceed / 2π . Choosing 

r iω ε= − , we ensure that after the correction of the weights the updated 

weighted sum 1q q q
rz z i z iω ε εε ε ++ = − = −  moves closer or exactly to the 

desired sector q and the MVN output moves closer or exactly becomes equal to 
qε , respectively. 
In the Case 3 (see Fig. 3.35c), situation is similar, the difference between the 

arguments of the actual and desired outputs does not exceed / 2π , but we need to 
rotate the current weighted sum counterclockwise, that is to the left side from its 

current location, because the actual output sε  is located to the right from the de-

sired output qε . Choosing r iω = , we ensure that after the correction of the 

weights the updated weighted sum q q
rz z iω ε ε+ = +  moves closer or exactly 

to the desired sector q and the MVN output moves closer or exactly becomes 

equal to qε , respectively. 
In the Case 2 (see Fig. 3.35b), the current weighted sum should be flipped be-

cause the actual output sε  is about the opposite to the desired output qε  and the 
difference between the arguments of the actual and desired outputs exceeds 

/ 2.π  Since in this case we cannot have any preference where to rotate the 
weighted sum (clockwise or counterclockwise), we should simply rotate it such 

that it will be moved to the desired output. Choosing 1rω = , we ensure that after 

the correction of the weights the updated weighted sum q q
rz zω ε ε+ = +  

moves closer or even exactly to the desired sector q and the MVN output moves 

closer or may exactly becomes equal to qε , respectively. 

3.2.2   Convergence Theorem 

Now we are ready to formulate and prove the theorem about the convergence of 
the MVN learning algorithm with the learning rule (3.80). We will provide the 
reader with a new proof of this theorem compared to [37] and [60]. This new 
proof is shorter and more elegant.  

Suppose that the permutation ( )0 1 1, ,..., kR α α α −=  such that (3.73) holds for 

the entire learning set A is known. 
 
Theorem 16 (About the convergence of the learning algorithm with the learning 

rule (3.80)). If the learning subsets 0 1 1, ,  ..., kA A A −  of the learning set A  

(
0 1

j
j k

A A
≤ ≤ −

= ∪ ) are k-separable for the given value of k according to Definition 

3.16 (which means that the corresponding MVN input/output mapping is a k-valued 



108 3   MVN Learning
 

threshold function), then the MVN learning algorithm with the rule (3.80) con-
verges after a finite number of steps. 

Proof. Suppose that the conclusion of the theorem is false. This means that the se-

quence wS  of the weighting vectors is infinite. Therefore the weights correction 

using the rule (3.80) gives the infinite amount of the new weighting vectors, which 
do not satisfy condition (3.73) at least for one element from some learning subset. 

According to our assumption the learning subsets 0 1 1, ,  ..., kA A A −  are k-

separable. Therefore the weighting vector W exist such that (3.73) holds for the 
entire learning set A.  

For simplicity and without loss of generality, let us start the learning process 

from the zero vector ( )1 (0,0), (0,0),..., (0,0)W = , where ( ),a b  is a complex 

number a bi+ , (i is an imaginary unity). Let ( )1 2, ,...,X NS X X X=  be a 

learning sequence of input vectors ( )11, ,..., , 1,...,j j
j nX x x j N= = , and 

( )1 2, ,..., ,...W rS W W W=  be a sequence of weighting vectors, which appear dur-

ing the learning process. We have to prove that this sequence cannot be infinite. 

Let us remove from the learning sequence those vectors for which 1r rW W+ = , in 

other words, those input vectors, for which (3.73) hold without any learning. Let 

W
S  be the reduced sequence of the weighting vectors. The Theorem will be prov-

en if we will show that the sequence 
W

S  is finite. Let us suppose that the opposite 

is true: the sequence 
W

S  is infinite. So from the assumption that 
W

S  is infinite, 

we have to get the contradiction with the conditions of the theorem.  

Without loss of generality we can take 1rC =  in (3.80). This leads to the fol-

lowing transformation of (3.81): 

1

1

1
q

r r r rW W X
n

ω ε+ = +
+ , (3.82) 

Thus, our sequence of the weighting vectors 
W

S  is obtained according to (3.82). 

The theorem will be proven, if we can prove that the sequence 
W

S  is finite. 

Suppose the desired MVN output for the first learning sample does not coin-
cide with the actual MVN output. Thus, we have to adjust the weights according 
to (3.82): 

12 1

1

1 mW X
n

ω=
+

, and then for the next correction we obtain 
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2 1 23 2 2 1 2

1 1
,....

1 1m m mW W X X X
n n

ω ω ω⎡ ⎤= + = +⎣ ⎦+ +

 Applying (3.82) to obtain the r+1st vector from the learning sequence, we have the 
following

 
11 1

1
... .

1 rr m m rW X X
n

ω ω+
⎡ ⎤= + +⎣ ⎦+

 (3.83) 

 

where { }1,2,3 ; 1,...,jm j r∈ = , and every time jm  is chosen depending on 

which of three cases (see above) for the angular error takes place. 
Let us find a dot product of both parts of (3.83) with the weighting vector W, 

which exists according to the condition of the theorem (subsets 0 1 1, ,  ..., kA A A −  

are k-separable): 

( ) ( ) ( )11 1

1
, , ... , .

1 rr m m rW W X W X W
n

ω ω+
⎡ ⎤= + +⎢ ⎥⎣ ⎦+

 (3.84) 

Let us now estimate the absolute value ( )1,rW W+  of the dot product 

( )1,rW W+ : 

( ) ( ) ( )11 1

1
, , ... , .

1 rr m m rW W X W X W
n

ω ω+
⎡ ⎤= + +⎢ ⎥⎣ ⎦+

 (3.85) 

Since for any complex number β Reβ β≥  and Imβ β≥ , then the abso-

lute value of the sum in the right-hand side of (3.85) is always greater than or 
equal to the absolute values of the real and imaginary parts of this sum. Let 

( )
1,...,

min Re ,
jm j

j r
a X Wω

=
= . Then it follows from (3.85) that 

( )1, .
1r

ra
W W

n+ ≥
+

 (3.86) 

 

According to the fundamental Schwarz inequality [74] the squared dot product of 
the two vectors does not exceed the product of the squared norms of these vectors 
or in other words, the norm of the dot product of the two vectors does not exceed 

the product of the norms of these vectors ( )1 2 1 2,V V V V≤ ⋅ . Thus, according 

to the Schwartz inequality 

( )1 1, .r rW W W W+ +≤ ⋅  (3.87) 
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Taking into account (3.86), we obtain from (3.87) the following 

( )1 1,
1 r r

ra
W W W W

n + +≤ ≤ ⋅
+

. 

Then it follows from the last inequality that  

( )1 .
1r

ra
W

W n+ ≥
+

 (3.88) 

Let for simplicity 
1

a
a

n
=

+
. Then (3.88) is transformed as follows: 

1 .r

ra
W

W+ ≥  (3.89) 

As we told, W is a weighting vector, which exist according to the condition of the 

Theorem. According to our assumption, the sequence 
W

S  of the weighting vec-

tors is infinite. Since r is the number of the weighting vector in the sequence 
W

S , 

let us consider (3.89) when r → ∞ . 1rW +  is a norm of the vector and therefore 

it is a non-negative finite real number, W  is a norm of the vector and it is a  

finite positive real number ( 0W ≠  because vector W is a weighting vector sat-

isfying (3.73) and therefore at least one of its components is not equal to 0), and 

a  is a finite positive real number. It follows from this analysis that 
r

ra

W →∞
→ ∞ . 

However, this means that from (3.89) we obtain 

1 .r

ra
W

W+ ≥ → ∞  (3.90) 

Inequality (3.90) is contradictory. Indeed, the norm of a vector, which is in the 
left-hand side, is a finite non-negative real number. However, it has to be greater 
than or equal to the infinity in the right-hand side of (3.90), which is impossible. 
This means that (3.90) is contradictory. This means in turn that either it is impos-
sible that r → ∞  or the vector W does not exist. The latter contradicts to the con-

dition of the Theorem. Hence, r →∞  and it is always a finite integer number. 

Thus, our assumption that the sequence 
W

S  of the weighting vectors is infinite, is 

false, which means that it is always finite. Theorem is proven. 
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So the MVN learning algorithm with the learning rule (3.80) converges after a 
finite number of learning iterations. As we see, this learning algorithm is deriva-
tive-free. It is not considered as the optimization problem of the minimization of 
the error functional. It is important that a famous local minima problem, which is 
typical for those learning rules that are based on the optimization technique and 
which we have considered in Section 1.3 (see Fig. 11), does not exist for the MVN 
learning algorithm based on the learning rule (3.80). The error in this MVN learn-
ing algorithm decreases because each following weighting vector in the sequence 

W
S  should be closer to the “ideal” weighting vector W, which exists if the MVN 

input/output mapping is described by some k-valued threshold function. Accord-
ing to (3.86) the absolute value of the dot product of the vector W and the weight-

ing vector 1rW +  in the sequence 
W

S  must be greater than or equal to the finite 

number proportional to r, which is the number of the correction. On the one hand, 

since r increases, this means that ( )1,rW W+  at least does not decrease. On the 

other hand, as we have proven, ( )1,rW W+  cannot increase to infinity. This 

means that the learning algorithm converges when ( )1,rW W+  reaches its maxi-

mum. This means that vectors 1rW +  and W  are as close to each other as it is  

possible. Ideally, they are collinear or close to collinearity. It follows from (3.85) 

and (3.86) that ( )1,rW W+  cannot decrease during the learning process. It may 

only increase or remain the same. If it increases, this means that the error de-
creases. This means that geometrically, the MVN learning algorithm based on the 

learning rule (3.80) “rotates” the initial weighting vector such that ( )1,rW W+  

should be maximized. It follows from this that the worst starting condition for the 

learning process is when the vectors 1W  (the starting weighting vector) and W  

are orthogonal to each other and ( )1,rW W+ =0, while the best starting condition 

is when the same vectors are about collinear. The closer they are to the collinear-
ity, the smaller is the error and the shorter way is required for the convergence of  
the learning process. This kind of “non-optimization” learning is based on the 
same idea, which was developed in [12] by A. Novikoff for the threshold neuron 
and its error-correction learning. 

Let us make one more remark. If the permutation ( )0 1 1, ,..., kR α α α −=  such 

that (3.73) holds for the entire learning set A is not known, it is possible to find 
such a permutation by k! means. This follows from the fact that there are  
exactly k! different permutations from the elements of the set A. 
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3.3   MVN Error-Correction Learning Rule 

3.3.1   Basic Fundamentals 

We have considered in Section 1.2 the error-correction learning rule (1.17) for the 
threshold neuron. For the reader’s convenience we repeat it here 

0 0 ;

, 1,..., ,i i i

w w

w w x i n

αδ
αδ

= +
= + =

  

where d yδ = −  is the error, which is according to (1.5) the difference between 

the desired neuron output and its actual output, and α is the learning rate. Is it pos-
sible to apply the same idea for MVN? Yes, the MVN error-correction learning 
rule was justified in [60] where the convergence of the MVN learning algorithm 
with the error-correction learning rule was also proven. 

The MVN error-correction learning rule was proposed in 1995 by the author of 
this book, Naum Aizenberg, and Georgy Krivosheev in [110] (then the conver-
gence of the learning algorithm based on it was proven by the author of this book, 
N. Aizenberg, and J. Vandewalle in [60]), as follows  

where n is the number of the neuron inputs, iw  is the ith component of the weight-

ing vector before correction, iw  is the same component after correction,
 ix  is the 

ith neuron input complex-conjugated ( 0 1x ≡  as we agreed above is a pseudo-

input corresponding to the bias 0w ), rC  is the learning rate, qε  is the desired 

output, sε  is the actual output. q sδ ε ε= −  is the error. It should be mentioned 

that throughout this Section we still use the notation kε ε=  for simplicity. As 

well, as the MVN learning algorithm based on the angular error compensation 
learning rule, the MVN learning algorithm based on the error-correction learning 

rule is also reduced to the straightening of the sequence wS  of the weighting vec-

tors. Thus, adjusting the weights according to (3.91), we obtain the following equ-

ation for the r+1st weighting vector belonging to the sequence wS  from the rth 

weighting vector belonging to the same sequence 
 

 

( ) ( ) ; 0,1,...,
1

q sr
i i i

C
w w x i n

n
ε ε= + − =

+
, (3.91) 

( ) ( )1 1
q sr

r r

C
W W X

n
ε ε+ = + −

+
, (3.92) 
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where r is the number of the current weighting vector in the sequence wS , addi-

tion is component-wise, and ( )11, ,..., nX x x=  is the vector of inputs with the 

complex-conjugated components. As we have done this earlier, we introduce the 

pseudo-input 0 1x ≡  corresponding to the weight 0w . 

 
Let us find the updated 

weighted sum after the weights are 
corrected according to (3.91). The 
current weighted sum is 

0 1 1 ... n nz w w x w x= + + + . Sup-

pose for simplicity, but without loss 

of generality that 1rC = .  

If q sδ ε ε= −  is the error, 
then for the updated weighted sum, 
taking into account that 

1; 0,1,...,i ix x i n= = (since all 

ix are located on the unit circle) we 

obtain 
 

 

 
This means that after the weights are corrected, the weighted sum is changed ex-
actly by δ  that is by the error. This is illustrated in Fig. 3.36. The current 
weighted sum located in the sector s has to be moved to the sector q. The direction 

of this movement is determined by the error q sδ ε ε= − , which is equal to the 

difference between the desired output qε  and actual output sε . Correcting the 
weights according to (3.91) (or (3.92), which is the same), we ensure that after the 
correction of the weights the updated weighted sum z δ+  moves closer or ex-
actly to the desired sector q and the MVN output moves closer or exactly becomes 

equal to qε , respectively. 

 

Fig. 3.36 Movement of the weighted sum z after 
the correction of the weights according to (3.91) 

0 1 1

0 1 1 1

0 1 1

1 times

...

1 1 1
...

1 1 1

1 1 1
... ...

1 1 1

.

n n

n n n

n n

z
n

z w w x w x

w w x x w x x
n n n

n
w w x w x z

n n n

z

δ δ δ

δ δ δ

δ
+

= + + + =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
+= + + + + + + = + =

+ + +

= +

(3.93) 
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In [62], it was suggested to modify the learning rule (3.92). A variable learning 

rate, which is equal to 1/ rz , the inverse absolute value of the current weighted 

sum, was introduce there. This modification should be reasonable for those in-
put/output mappings that are described by highly nonlinear functions with many 
irregular jumps. With this modification, the learning rule (3.92) becomes 

 

The use of the variable learning rate 1/ rz  makes movements of the weighted 

sum “softer”. This is illustrated in Fig. 3.37. If the absolute value of the current  

 

( ) ( )1 1
q sr

r r
r

C
W W X

n z
ε ε+ = + −

+
. (3.94) 

 
 

(a) |z|>1 (b) |z|>1 

 
(c) |z|<1 

Fig. 3.37 Movement of the weighted sum z after the correction of the weights according  
to (3.94) 
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weighted sum z is greater than 1 (it is located outside of the unit circle, see  

Fig. 3.37a), then 
1

1
z

< , and the weighted sum moves shorter than by q sε ε− . 

It cannot reach in this way its target, the sector q, but it also could not reach it 

moving by q sε ε− . However, it moved closer to the sector q, and on the next 

learning step it moves exactly there (see Fig. 3.37b). Moving by q sε ε− , the ad-
justed weighted sum would need even one more step to move to the desired sector, 

while moving by ( )1

| |
q s

z
ε ε− , it does not need it. In Fig. 3.37c, the absolute 

value of the current weighted sum z is less than 1 (it is located inside the unit  

circle). Therefore 
1

1
z

>  and the weighted sum moves further than by q sε ε− . 

It not only reaches its target – the desired sector q, but z  is located even more 
distant from the sector borders than z . The use of the learning rule (3.94) is espe-
cially reasonable for highly nonlinear input/output mappings, which may have 
multiple jumps, peaks, etc. Correcting the weights carefully, this learning rule 
makes the learning process more adaptive, which may lead to faster convergence 
of the learning algorithm. However, we will see below that the convergence of the 
learning algorithm with the error-correction learning rule does not depend on the 
particular form of this rule - (3.92) or (3.94). Moreover, in [61] another modifica-
tion of the learning rules (3.92) or (3.94) was proposed by the author of this book.  

To learn highly nonlinear input/output mappings, it might be reasonable to cal-
culate the error not as a difference between the desired and actual outputs, but as a 
difference between the desired output and the projection of the current weighted 

sum on the unit circle 
| |

q z

z
δ ε= − . 

This leads to the following modification of the learning rules (3.92) and (3.94),  
respectively: 

( )1 1
qr r

r r
r

C z
W W X

n z
ε+

⎛ ⎞
= + −⎜ ⎟⎜ ⎟+ ⎝ ⎠

, (3.95) 

( )1 1
qr r

r r
r r

C z
W W X

n z z
ε+

⎛ ⎞
= + −⎜ ⎟⎜ ⎟+ ⎝ ⎠

. (3.96) 

For the continuous MVN, the error-correction learning rule is derived from the 
same considerations. Just the error δ is not a difference of the kth roots of unity, but 
it is a difference of the desired output D and actual output Y, which can be arbitrary 
numbers located on the unit circle. Taking into account the D Yδ = −  and that 
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| |
r

r

z
Y

z
= , we obtain from (3.95) and (3.96) the following error-correction learn-

ing rules for the continuous MVN, respectively 

( ) ( ) ( )1 1 1
r r r

r r r
r

C C z
W W D Y X W D X

n n z+

⎛ ⎞
= + − = + −⎜ ⎟⎜ ⎟+ + ⎝ ⎠

, (3.97) 

( ) ( ) ( )1 .
1 1

r r r
r r r

r r r

C C z
W W D Y X W D X

n z n z z+

⎛ ⎞
= + − = + −⎜ ⎟⎜ ⎟+ + ⎝ ⎠

 (3.98) 

3.3.2   Convergence Theorem 

Now we can formulate and prove the theorem about the convergence of the learn-
ing algorithm for the discrete MVN with the learning rules (3.92), and  
(3.94)-(3.98). For the discrete MVN learning rules (3.92), and (3.94)-(3.96), the 
proof, which will be given here, was done by the author of this book in [61]. For 
the continuous MVN learning rules (3.97) and (3.98), the proof is based on the 
same approach and it is very similar. It will be given here for the first time. It is 
important to mention that for the discrete MVN learning algorithm with the learn-
ing rule (3.92) the convergence theorem was proven in [60]. The proof, which was 
done in [61] and will be presented here, is shorter and more elegant.  

So let us have the learning set A. Suppose that the permutation 

( )0 1 1, ,..., kR α α α −=  such that (3.73) holds for the entire learning set A is 

known. We use the learning algorithm presented in Section 3.1. Let us just make 
one important remark about the continuous MVN case. We have already men-
tioned in Section 3.1 that any learning set A for the continuous-valued input/output 

mapping ( )1,..., : , n
nf x x T O T O→ ⊆  is finite, which means that it can be 

represented as a union 
0 1

j
j k

A A
≤ ≤ −

= ∪  of the learning subsets 

, 0,1,..., 1jA j k= − , where k is the number of different values of the function 

( )1,..., nf x x  representing a continuous input/output mapping.  

 

Theorem 3.17 (About the convergence of the learning algorithm with the error-
correction learning rules (3.92), (3.94)-(3.98)). If the learning subsets 

0 1 1, ,  ..., kA A A −  of the learning set A (
0 1

j
j k

A A
≤ ≤ −

= ∪ ) are k-separable for the 

given value of k according to Definition 3.16 (which means that the corresponding 
MVN input/output mapping is a k-valued threshold function), then the MVN learning 
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algorithm with either of the learning rules (3.92), (3.94)-(3.98) converges after a 
finite number of steps. 

Proof. This proof is based on the same idea as the one of Theorem 3.16 and it is in 
major similar. Let us first proof the Theorem for the rule (3.92). Then we will 
prove it for the learning rules (3.94)-(3.98). 

Since we are given a condition that our learning subsets 0 1 1, ,  ..., kA A A −  are k-

separable, this means that there exists a weighting vector ( )0 1, ,..., nW w w w=  

such that (3.73) holds for any ( )1,..., nX x x=  from the domain of f and at least 

one of the weights is non-zero.  
Let us now look for a weighting vector applying the learning rule (3.92) accord-

ing to our learning algorithm. We may set 1rC =  in (3.92) for any r. For simplic-

ity and without loss of generality, let us start learning process from the zero vector 

( )1 (0,0), (0,0),..., (0,0)W = , where ( ),a b  is a complex number a bi+ , 

where i is an imaginary unity. Let ( )1 2, ,...,X NS X X X=  be a learning  

sequence of input vectors ( )1 ,..., , 1,...,j j
j nX x x j N= = , and 

( )1 2, ,..., ,...W rS W W W=  be a sequence of weighting vectors, which appear dur-

ing the learning process. We have to prove that this sequence cannot be infinite. 

Let us remove from the learning sequence those vectors for which 1r rW W+ = , in 

other words, those input vectors, for which (3.73) hold without any learning. Let 

W
S  be the reduced sequence of the weighting vectors. The Theorem will be prov-

en if we will show that the sequence 
W

S  is finite. Let us suppose that the opposite 

is true: the sequence 
W

S  is infinite. Let 1sε  be the actual output for the input  

vector 1X  and the weighting vector 1W  and 1qε  be the desired MVN output for 

the same input vector 1X . Since the desired and actual outputs do not coincide 

with each other, we have to apply the learning rule (3.92) to adjust the weights.  

According to (3.92) we obtain ( )1 1
2 1

1

1
q sW X

n
ε ε= −

+
, 

 
( )

( ) ( )

2 2

1 1 2 2

3 2 2

1 2

1

1
1

,....
1

q s

q s q s

W W X
n

X X
n

ε ε

ε ε ε ε

= + − =
+

⎡ ⎤− + −⎣ ⎦+

 



118 3   MVN Learning
 

( ) ( )1 1
1 1

1
... .

1
r rq s q s

r rW X X
n

ε ε ε ε+
⎡ ⎤= − + + −⎣ ⎦+

 (3.99) 

Let us find a dot product of both parts of (3.99) with W: 

( ) ( )( ) ( )( )1 1
1 1

1
, , ... , .

1
r rq s q s

r rW W X W X W
n

ε ε ε ε+
⎡ ⎤= − + + −⎢ ⎥⎣ ⎦+

 

Let , 1,...,j jq s

j j rε ε ω− = = .  

Then the last equation may be rewritten as follows: 
 

( ) ( ) ( )1 1 1

1
, , ... , .

1r r rW W X W X W
n

ω ω+
⎡ ⎤= + +⎢ ⎥⎣ ⎦+

 (3.100) 

 

Let us estimate the absolute value ( )1,rW W+ : 

( ) ( ) ( )1 1 1

1
, , ... , .

1r r rW W X W X W
n

ω ω+
⎡ ⎤= + +⎢ ⎥⎣ ⎦+

 (3.101) 

 

Since for any complex number β Reβ β≥  and Imβ β≥ , then the abso-

lute value of the sum in the right-hand side of (3.101) is always greater than or 
equal to the absolute values of the real and imaginary parts of this sum. Let 

( )
1,...,

min Re ,j j
j r

a X Wω
=

= . Then it follows from (3.101) that 

( )1, .
1r

ra
W W

n+ ≥
+

 (3.102) 

 

According to the fundamental Schwarz inequality [74] the squared dot product of 
the two vectors does not exceed the product of the squared norms of these vectors 
or in other words, the norm of the dot product of the two vectors does not exceed 

the product of the norms of these vectors ( )1 2 1 2,V V V V≤ ⋅ . Thus, according 

to the Schwartz inequality 

( )1 1, .r rW W W W+ +≤ ⋅  (3.103) 

 

Taking into account (3.102), we obtain from (3.103) the following 

( )1 1,
1 r r

ra
W W W W

n + +≤ ≤ ⋅
+

. 

Then it follows from the last inequality that  
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( )1 .
1r

ra
W

W n+ ≥
+

 (3.104) 

Let for simplicity 
1

a
a

n
=

+
. Then (3.104) is transformed as follows: 

1 / .rW ra W+ ≥  (3.105) 

 

As we told, W is some weighting vector, which exists for our input/output map-
ping. This vector exists according to the condition of the Theorem because the 

learning subsets 0 1 1, ,  ..., kA A A −  are k-separable. According to our assumption, 

the sequence 
W

S  of the weighting vectors is infinite. Since r is the number of the 

learning step, let us consider (3.105) when r → ∞ . 1rW +  is a non-negative  

finite real number, W  is a finite positive real number ( 0W ≠  because vector 

W is a weighting vector for our input/output mapping, and this means that at least 

one of the weights is not equal to 0), and a  is a finite positive real number. It fol-
lows from this analysis that  

r

ra

W →∞
→ ∞ . 

However, this means that from (3.105) we obtain 

1 .r

ra
W

W+ ≥ → ∞  (3.106) 

Inequality (3.106) is contradictory. Indeed, the norm of a vector, which is in the 
left-hand side, is a finite non-negative real number. However, it has to be greater 
than or equal to the infinity in the right-hand side of (3.106), which is impossible. 
This means that (3.106) is contradictory. This means in turn that either it is impos-
sible that r → ∞  or the vector W does not exist. The latter means that the  

learning subsets 0 1 1, ,  ..., kA A A −  are not k-separable. However, this contradicts 

to the condition of the Theorem. Hence, r →∞  and it is always a finite integer 

number. Thus, our assumption that the sequence 
W

S  of the weighting vectors is 

infinite, is false, which means that it is always finite. Hence, the learning algo-
rithm with the learning rule (3.92) converges after a finite number of steps. 

Let us now prove that the learning algorithm also converges when either of the 
learning rules (3.94)-(3.98) is used. For these three learning rules the proof of the 
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convergence of the learning algorithm is almost identical to the proof we have just 
presented, accurate within specifics of some equations. Let us demonstrate this. 

If we apply the learning rule (3.94), we obtain the following equation instead  
of (3.99) 

( ) ( )1 1
1 1

1

1 1 1
... .

1
r rq s q s

r r
r

W X X
n z z

ε ε ε ε+

⎡ ⎤
= − + + −⎢ ⎥+ ⎣ ⎦

 

Then putting ( )1
, 1,...,j jq s

j

j

j r
z

ε ε ω− = = , we obtain (3.100) and from that 

moment the proof continues with no changes.  
If we apply the learning rule (3.95), then (3.99) is substituted by the following 

expression 

1 1
1 1

1

1
... .

1
rq q r

r r
r

z z
W X X

n z z
ε ε+

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Then putting , 1,...,jq j
j

j

z
j r

z
ε ω− = = , we obtain (3.100) and from that mo-

ment the proof continues again with no changes.  
If we apply the learning rule (3.96), then we again have to substitute (3.99), 

this time as follows 

1 1
1 1

1 1

1 1 1
... .

1
rq q r

r r

r r

z z
W X X

n z z z z
ε ε+

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Then putting 
1

 , 1,...,jq j
j

j j

z
j r

z z
ε ω
⎛ ⎞
⎜ ⎟− = =
⎜ ⎟
⎝ ⎠

, we obtain (3.100) and from 

that moment the proof continues again with no changes. 
If we apply the learning rule (3.97), then we again have to substitute (3.99), 

this time as follows 

1
1 1

1

1
... .

1
r

r r

r

z z
W D X D X

n z z+

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Then putting  , 1,...,j
j

j

z
D j r

z
ω

⎛ ⎞
⎜ ⎟− = =
⎜ ⎟
⎝ ⎠

, we obtain (3.100) and from that 

moment the proof continues again with no changes. 
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If we apply the learning rule (3.98), then (3.99) should be substituted as follows 

1
1 1

1 1

1 1 1
... .

1
r

r r

r r

z z
W D X D X

n z z z z+

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Then putting 
1

 , 1,...,j
j

j j

z
D j r

z z
ω

⎛ ⎞
⎜ ⎟− = =
⎜ ⎟
⎝ ⎠

, we obtain (3.100) and from 

that moment the proof continues again with no changes. 
Theorem is proven. This means that the MVN learning algorithm with either of 

the learning rules (3.92), (3.94)-(3.98) converges after a finite number of learning 
iterations. As well as the learning algorithm based on the rule (3.80), the learning 
algorithm based on the rules (3.92), (3.94)-(3.98) is derivative-free. As well as the 
algorithm based on the rule (3.80), it is not considered as the optimization problem 
of the minimization of the error functional. Therefore, a local minima problem 
(see Section 1.3, Fig. 1.11), which is typical for those learning rules that are based 
on the optimization technique, does not exist for the MVN learning algorithm 
based on the learning rules (3.92), (3.94)-(3.98), as well as for the learning algo-
rithm based on the rule (3.80). 

The error in the MVN learning algorithm based on the learning rules (3.92), 
(3.94)-(3.98) naturally decreases because of the same reasons that for the learning 
algorithm based on the learning rule (3.80). Each following weighting vector in 

the sequence 
W

S  should be closer to the “ideal” weighting vector W, which exists 

if the MVN input/output mapping is described by some k-valued threshold func-

tion and the learning subsets 0 1 1, ,  ..., kA A A −  are k-separable. According to 

(3.99), for the learning rule (3.92), and according to corresponding equations for 
the learning rules (3.94)-(3.98), the absolute value of the dot product of the vector 

W and the weighting vector 1rW +  in the sequence 
W

S  should not decrease and 

moreover, as it follows from (3.103) and (3.104), it must be greater than or equal 
to the finite number proportional to r, which is the number of the correction. On 

the one hand, since r increases, this means that ( )1,rW W+  should not decrease. 

On the other hand, as we have proven, ( )1,rW W+  cannot increase to infinity. 

This means that the learning algorithm converges when ( )1,rW W+  reaches its 

maximum. This means that vectors 1rW +  and W  are as close to each other as it is 

possible. Ideally, they are collinear or close to collinearity. It follows from (3.99) 

and (3.100) that ( )1,rW W+  cannot decrease during the learning process. It may 

only increase or remain the same. If it increases, this means that the error  
decreases. This means that geometrically, the MVN learning algorithm based on 
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either of the learning rules (3.92), (3.94)-(3.98) “rotates” the initial weighting vec-

tor and the intermediate weighting vectors rW  such that ( )1,rW W+  should be 

maximized. It follows from this that the worst starting condition for the learning 

process is when the vectors 1W  (the starting weighting vector) and W  are or-

thogonal to each other and ( )1,rW W+ =0, while the best starting condition is 

when the same vectors are about collinear. The closer they are to the collinearity, 
the smaller is the error and the shorter way is required for the convergence of the 
learning process.  

Hence, the MVN learning algorithm based on the error-correction learning rule 
is another example of the “non-optimization” learning, which is based on the same 
idea that was developed in [12] by A. Novikoff for the threshold neuron and its er-
ror-correction learning. 

It is important that a beautiful approach to the learning through the direct error-
correction, which was proposed by F. Rosenblatt and developed by A. Novikoff 
for the threshold neuron about 50 years ago, was generalized for MVN. Unlike the 
threshold neuron, MVN employs this learning rule for multiple-valued and even 
continuous-valued input/output mappings. 

We should recall that if the permutation ( )0 1 1, ,..., kR α α α −=  such that 

(3.73) holds for the entire learning set A is not known, it is possible to find such a 
permutation by k! means. 

It is worth to mention that the MVN learning algorithm does not depend on the 
learning rate, unlike any learning algorithm for a real-valued neuron. As we saw, 

the learning rate rC  in the learning rules (3.80), and (3.92), (3.94)-(3.98) can al-

ways be equal to 1. Evidently, that a variable learning rate 
1

| |rz
 in (3.94), (3.96), 

and (3.98) is self-adaptive. 

3.3.3   Example of Error-Correction Learning 

Let us consider how MVN learns. We will use the learning algorithm with the er-
ror-correction rule (3.92). We have already considered above (see Table 2.8 and 
Fig. 2.22a) how the discrete MVN implements in 3-valued logic the Post function 

( )1 2max , ; ; 1,2iy y y K i∈ = , which becomes in k-valued logic over the field 

of complex numbers ( ) ( )max 1 2 1 2, max , ; ; 1,2i kf x x x x x E i= ∈ =  Let us 

consider it again for 3k = . We will obtain the weighting vector for this function 
using the learning algorithm with the error-correction learning rule (3.92). 

The results are summarized in Table 3.10 and Fig. 3.38. The learning  
process starts from the random weighting vector 

( )0 0.96 0.32 ,0.79 0.73 ,0.59 0.5  W i i i= + + + (all real and imaginary parts of 
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the weights are random numbers in the interval [0, 1]). With the initial weighting 
vector, the actual outputs for the learning samples 1, 5, 6, 7, 8, 9 coincide with the 
desired outputs, while for the learning samples 2, 3, 4 the desired outputs are in-
correct (see Fig. 3.38a and the column “Initial W” in Table 3.10). We have already 

shown in Section 2.1 that ( )max 1 2,f x x  is a threshold function, which can be im-

plemented using MVN with the weighting vector 

( )3 3 32 4 4 5 4 5W ε , + ε , + ε= − − .  

 

 

(a) with the initial random vector 

  

(b) after the 1st iteration (c) after the 2nd iteration 

Fig. 3.38 Learning of the ( ) ( )max 1 2 1 2, max ,f x x x x=  for k=3, using the MVN learning al-

gorithm with the rule (3.92).  
Locations of the weighted sums corresponding to the learning samples 1-9 are shown 
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Thus, we may consider this weighting vector as the “ideal” one. According to 
Theorem 3.16 and Theorem 3.17, if the learning process starts from some arbitrary 
weighting vector whose components are chosen randomly, then this process 
should lead to the weighting vector, whose absolute dot product with the “ideal” 
weighting vector reaches its maximum. Moreover, the absolute value of this dot 
product should not decrease during the learning process. 

For the starting weighting vector 0W  we obtain ( )0 , 6.34W W = . After the 

first learning iteration the actual outputs for the learning samples 1, 3, 5, 6, 7, 9 
coincide with the desired outputs, while for the learning samples 2, 4, 8 the de-
sired outputs are incorrect (see Fig. 3.38b and the column “Iteration 1” in Table 
3.10). 

 
Table 3.10 MVN learns the Post function max 1 2( , )f x x  in 3-valued logic using the learning  

algorithm with the error-correction learning rule (3.92) 

 

 

 

 

 
 
 
 
 
 
 

 
 
It should be mentioned that the weighted sums for the learning samples 2 and 4 

have moved much closer to the desired sector 1 compared to the initial state,  
while the weighted sum for the learning sample 8 has moved a little bit in  
the incorrect direction from the correct sector 2 to the incorrect sector 1.  
After the first learning iteration, the updated weighting vector is 

( )1 -1.04 - 0.84 ,0.79 1.31 ,0.59 1.08  W i i i= + + , and ( )1, 16.46W W = . 

After the second learning iteration, all actual outputs coincide with the  
desired outputs (see Fig. 3.38c and the column “Iteration 2” in Table 3.10) and  
therefore, the learning algorithm converges. The resulting weighting vector is 
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( )2 -1.04 -1.99 ,0.79 1.89 ,0.59 1.65  W i i i= + + , and ( )2 , 24.66W W = . We 

see that vectors W  and 2W  are not collinear, but they are close to collinearity (at 

least, all the real and imaginary parts of their components have the same sign) and 
this closeness is enough to ensure that both these vectors implement the same in-
put/output mapping. 

In Chapter 4, we will use the error-correction learning in the backpropagation 
learning algorithm for a feedforward neural network based on multi-valued  
neurons. 

A level of growing of ( ),rW W  where r is the number of the learning itera-

tion should be used as a measure of the learning energy, which the learning algo-
rithm spends correcting the weights. We will see in Section 3.4 that the best 
choice for the starting weighting vector in the learning algorithm is the Hebbian 
weighting vector that is the vector obtained using the Hebb rule. The learning 
process, which starts from the Hebbian vector leads to fewer corrections of the 
weights than the learning process starting from the random vector. 

3.4   Hebbian Learning and MVN 

We have started consideration of different neural learning techniques from the 
Hebbian learning (see Section 1.2). Let us consider how this important learning 
technique works for MVN. 

The mechanism of the Hebbian learning for MVN is the same as the one for the 
threshold neuron and as it was described by D. Hebb in his seminal book [8]. This 
is the mechanism of the association. The weight should pass the input signal or to 
enhance it or to weaken it depending on the correlation between the corresponding 
input and the output. As well as for the binary threshold neuron, the associations 
between the desired outputs and the given inputs should be developed through the 
dot product of the vector of all the desired outputs with the corresponding vectors 
of all the given inputs. 

The Hebbian learning rule does not change for MVN, and equations (1.3) and 
(1.4) that describe this rule for the threshold neuron also work for MVN. 

Just for the reader’s convenience we will repeat these equations here. 

Let us have N n-dimensional learning samples ( )1 ,..., , 1,...,j j
nx x j N= . Let 

( )1f ,...,
T

Nf f=  be an N-dimensional vector-column of the desired outputs. Let 

1,..., nx x  be N-dimensional vectors of all the inputs 

( ( )1 2
1 1 1 1, ,...,

TNx x x=x , ( )1 2
2 2 2 2, ,...,

TNx x x=x , …, ( )1 2, ,...,
TN

n n n nx x x=x ). 

Then according to the Hebbian learning rule (see (1.3)) the weights 1,..., nw w  

are calculated as dot products of vector f  and vectors 1,..., nx x , respectively. 
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Weight 0w  is calculated as a dot product of vector f  and the N-dimensional vec-

tor-constant ( )0 1,1,...,1
T=x : 

( ), , 0,...,i iw i n= =f x ,  

where ( ) 1 1, ... n na b a b= + +a b  is the dot product of vector-columns 

( )1,...,
T

na a=a  and ( )1,...,
T

nb b=b  in the unitary space (“bar” is a symbol of 

complex conjugation), thus 
 

( ) 1 2
1 2, ... , 0,1,...,N

i i i i N iw f x f x f x i n= = + + + =f x . (3.107) 

 
Equation (1.4) determines the normalized version of the Hebbian learning rule 

( )1
, , 0,...,i iw i n

N
= =f x . 

Let us now consider the following examples. Let k=4 in the MVN activation func-
tion (2.50). Thus, our MVN works in 4-valued logic whose values are encoded by 

the elements of the set { }4 1, , 1,E i i= − −  ( 2 /4
4

ii e πε= = is an imaginary unity 

and a primitive 4th root of a unity). 
Let us first consider four examples illustrated in Fig. 3.39. In all these examples 

we calculate a weight for one of the MVN inputs and for a single learning sample. 
In Fig. 3.39a, the desired MVN output is i and the corresponding input is also i. 

According to (3.107) 0 1 1 1, ( ) 1w i w f x i i= = = ⋅ − = , the weighted sum is 

1 2i i i+ ⋅ = , and according to (2.50) the neuron output is (2 )P i i= . Thus, if  

the desired output coincides with the input, the weight just “passes” the input to 
the output.  

In Fig. 3.39b, the desired MVN output is -i and the corresponding input is i. 
According to (3.107) 0 1 1 1, ( ) 1w i w f x i i= − = = − ⋅ − = − , the weighted sum is 

( 1) 2i i i− + − ⋅ = − , and according to (3.50) the neuron output is ( 2 )P i i− = − . 

Thus, if the desired output is opposite to the input, the weight inverts the input 
passing it to the output.  

The same situation is illustrated in Fig. 3.39c. Just the desired MVN output 
here is i, while the corresponding input is -i. According to (3.107) 

0 1 1 1, 1w i w f x i i= = = ⋅ = − , the weighted sum is ( 1) ( ) 2i i i+ − ⋅ − = , and 

according to (3.50) (2 )P i i= .  

In Fig. 3.39d, the desired output and the input are neither the same nor opposite 
to each other. The desired MVN output is -1 and the corresponding input is i.  
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According to (3.107) 0 1 1 11, 1 ( )w w f x i i= − = = − ⋅ − = , the weighted sum is 

1 1 1 2i i− + ⋅ = − − = − , and according to (2.50) the neuron output is 

( 2) 1P − = − . Thus, the weight “rotates” the input such that this input contributes 

to the desired output. 
 

 
Let us now consider calculation of the weights for the two MVN inputs using 

the Hebbian learning rule.  
In Fig. 3.40a, the desired MVN output is i, while its two inputs are i and -1,  

respectively. According to (3.107) 0 1 1 1, ( ) 1w i w f x i i= = = ⋅ − = , and 

2 1 2 ( 1)w f x i i= = ⋅ − = − , the weighted sum is 1 ( 1) ( ) 3i i i i+ ⋅ + − ⋅ − =  and 

according to (2.50) the neuron output is (3 )P i i= . Thus, the weight 1w  passes 

the input 1x  to the output, while the weight 2w  “rotates” the input 2x  passing it 

to the output. 

  
(a) the output coincides with the input, and 
the weight just pass the input to the output 

(b) the output is opposite to the input, and the 
weight inverts the input passing it to the output 

  
(c)  the output is opposite to the input, and  

the weight inverts the input passing it to the 
output 

(d) the weight “rotates” the input such that this 
input contributes to the desired output 

Fig. 3.39 Calculation of the MVN weight using the Hebb rule for one of the neuron inputs 
and for a single learning sample: the weight is equal to the product of the desired output 
and the complex-conjugated input  
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In Fig. 3.40b, the desired MVN output is -i, while its two inputs are i and 1, re-

spectively. According to (3.107) 0 1 1 1, ( ) 1w i w f x i i= − = = − ⋅ − = −  and 

2 1 2 1w f x i i= = − ⋅ = − , the weighted sum is ( 1) ( ) 1 3i i i i− + − ⋅ + − ⋅ = − , and 

according to (2.50) the neuron output is ( 3 )P i i− = − . Thus, the weight 1w  in-

verts the input 1x  passing it to the output, while the weight 2w  “rotates” the input 

2x  passing it to the output. 

 

 
In Fig. 3.40c, the desired MVN output is 1, while its two inputs are i and -i,  

respectively. According to (3.107) 0 1 1 11, 1 ( )w w f x i i= = = ⋅ − = − , and 

2 1 2 1w f x i i= = ⋅ = , the weighted sum is 1 ( ) ( ) ( ) 3i i i i+ − ⋅ + ⋅ − = , and ac-

cording to (2.50) the neuron output is (3) 1P = . Thus, both weights 1w  and 2w  

“rotate” the inputs 1x  and 2x  passing them to the output. 

In Fig. 3.40d, the desired MVN output is -i, while its two inputs are i and -i, re-

spectively. According to (3.107) 0 1 1 1, ( ) 1w i w f x i i= − = = − ⋅ − = −  and 

2 1 2 1w f x i i= = − ⋅ = , the weighted sum is ( 1) 1 ( ) 3i i i i− + − ⋅ + ⋅ − = − , and 

  
(a)  (b)  

  
(c)  (d)  

Fig. 3.40 Calculation of the MVN weights using the Hebb rule for the two neuron inputs 
and for a single learning sample: the weight is equal to the product of the desired output 
and the complex-conjugated input  
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according to (2.50) the neuron output is ( 3 )P i i− = − . Thus, the weight 1w  in-

verts the input 1x  passing it to the output, while the weight 2w  passes the input 

2x  to the output.  

Evidently, the Hebbian learning can also be considered for the continuous 
MVN. In this case, nothing changes, and the Hebb rule still is still described by 
(1.3), (1.4), and (3.107). 

It is important that the MVN Hebbian learning can be used for simulation of the 
associations that take place in biological neurons when they learn. We have al-
ready discussed above (Section 2.4) that the information transmitted by biological 
neurons to each other is completely contained in the frequency of the generated 
spikes. The phase, which determines the MVN state, is proportional to the  
frequency. Thus, the larger is phase, the higher is frequency. The reader may  
consider examples shown in Fig. 3.39 and Fig. 3.40 from the point of view of si-
mulation of the biological neuron learning. In this case, the neuron states should 
be interpreted as follows: 1 – “inhibition” (phase 0), i – slight excitation (phase 
π/2), -1 – moderate excitation (phase π), and -i – maximal excitation (phase 3π/2). 

In all examples of the Hebbian learning, which we have considered above, the 
learning set has contained a single learning sample. When there are more learning 
samples in the learning set, the Hebbian learning rule usually does not lead to a 
weighting vector, which implements the corresponding input/output mapping. 
However, there is a wonderful property of the weighting vector obtained using the 
Hebbian learning rule. Although this vector usually does not implement the corre-
sponding input/output mapping, the MVN learning algorithm based on the learn-
ing rules (3.80) and (3.92), (3.94)-(3.98) converges much faster when the learning 
process starts from this (Hebbian) vector than from a random vector.  

We can illustrate this property using the example of learning the input/output 

mapping presented by the function ( ) ( )max 1 2 1 2, max ,f x x x x=  for k=3, which 

we have already used several times. As it was shown in Section 2.1, this is a 3-
valued threshold function, which can be implemented using MVN with the 

weighting vector ( )3 3 32 4 ,4 5 ,4 5W ε ε ε= − − + + . Thus, we may consider this 

weighting vector as the “ideal” one. According to Theorem 3.16 and Theorem 
3.17, if the learning process starts from some arbitrary weighting vector whose 
components are chosen randomly, then this process should lead us to the weight-
ing vector, whose absolute dot product with the “ideal” weighting vector reaches 
its maximum. 

Let us find the Hebbian weights for ( )max 1 2,f x x . According to (1.4) and tak-

ing into account (3.107), we obtain the following Hebbian weighting vector 

( )0.33 0.19 ,0.5 0.096 ,0.5 0.096HW i i i= − + − − . This weighting vector 

does not implement the function ( )max 1 2,f x x . Distribution of the weighted sums 

with the weighting vector HW  is shown in Fig. 3.41a. The outputs for five  
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learning samples out of nine (samples 2, 4, 6, 8, 9) are incorrect (see the column 
“Hebbian Weights ” in Table 3.11). However, they can easily be corrected using 
the learning algorithm, for example, with the error-correction rule (3.92). More-
over, the number of corrections of the weights is fewer than for the same learning 
algorithm when it starts from the random weighting vector. 

 

 
After a single learning iteration the actual outputs for all the learning samples 

coincide with the desired outputs (see Fig. 3.41b and the column “Iteration 1” in 
Table 3.11). 

Let us evaluate the energy, which we have to spend for the learning, which 
starts from the Hebbian weights in terms of growing of the absolute value of the 

dot product ( ),rW W  of the current weighting vector rW  and the “ideal” 

weighting vector W . 

For the Hebbian weighting vector HW  we obtain ( ), 5.77HW W = . After a 

single learning iteration, for the weighting vector 

( )1 0.33 1.35 ,0.5 0.67 ,0.5 0.67W i i i= − − + +  resulted from this iteration we  

obtain ( )1, 12.47W W = . Comparing this result to the one considered in  

Section 3.3 for the learning process started for the same input/output mapping 
from the random weighting vector, we see that not only a single iteration was 
enough for the convergence of the learning algorithm, but significantly smaller 
amount of the corrections of the weights is required for the learning process, 
which starts from the Hebbian weights. In fact, in the example with the learning 

  
(a) Distribution of the weighted sums with the 

Hebbian weighting vector  
(b) Iteration 1 

Fig. 3.41 Movement of the weighted sum z after the correction of the weights according to (3.92) 
starting from the Hebbian weighting vector for the function  

( ) ( )max 1 2 1 2, max , ; 3f x x x x k= =  
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algorithm started from the random weights (see Section 3.3) the absolute value of 

the dot product ( ),rW W  was 6.34 for the initial weights, 16.46 after the first it-

eration, and 24.66 after the second iteration. Hebbian weights ensure that correct-
ing the weights for some learning sample, we do not corrupt the weights for other 
learning samples. Moreover, we may simultaneously improve the result for some 
other learning samples, which require correction of the weights. 

 
Table 3.11 MVN learns the Post function ( )max 1 2,f x x  in 3-valued logic using the learning  

algorithm with the error-correction learning rule (3.92) and starting from the Hebbian weighting 

vector HW  

Hebbian Weights Iteration 1
 

# 1x  2x  
arg( )z  ( )P z

 
arg( )z  ( )P z

 

( )max 1 2,f x x  

1 0
3ε 0

3ε  0.0 0
3ε  0.0 0

3ε  
0
3ε  

2 0
3ε 1

3ε  1.571 0
3ε  2.095 1

3ε  
1
3ε  

3 0
3ε 2

3ε  4.188 2
3ε  4.712 2

3ε  
2
3ε  

4 1
3ε  

0
3ε  1.571 0

3ε  2.095 1
3ε  

1
3ε  

5 1
3ε  

1
3ε  2.094 1

3ε  2.618 1
3ε  

1
3ε  

6 1
3ε  

2
3ε  2.808 1

3ε  4.321 2
3ε  

2
3ε  

7 2
3ε 0

3ε  4.188 2
3ε  5.759 2

3ε  
2
3ε  

8 2
3ε 1

3ε  2.808 1
3ε  4.321 2

3ε  
2
3ε  

9 2
3ε 2

3ε  3.665 1
3ε  4.827 2

3ε  
2
3ε  

 
As we see comparing the vectors HW  and 1W , only imaginary parts of the 

weights required correction. 

Comparing the vectors W  and 1W , we see that they are not collinear, but close 

to collinearity. At least, the real and imaginary parts of their components have the 
same sign. 

3.5   Concluding Remarks to Chapter 3 

In this Chapter, we have considered fundamentals of MVN learning. If the in-
put/output mapping is a k-valued threshold function, it can be learned by MVN. It 
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was shown that in this case, a learning set consists of k learning subsets, which are 
k-separable. The MVN learning algorithm is based on the sequential iterative ex-
amination of the learning samples and correction of the weights using a learning 
rule wherever it is necessary. 

The learning process may continue until the zero error is reached or until the 
mean square error (or the root mean square error) drops below some reasonable 
predetermined value. 

We have considered two learning rules. The first rule is based on the closeness 
of the actual output to the desired one in terms of angular distance. The second 
learning rule is the error-correction learning rule. The convergence theorems for 
the MVN learning algorithm based on both learning rules were proven. If the 
MVN input/output mapping is described by some k-valued threshold function, 
which means that a learning set corresponding to this mapping consists of k dis-
joint k-separable subsets, then the MVN learning algorithm based on either of the 
considered learning rules converges. 

It is fundamental that the MVN learning is based on the same principles as the 
perceptron learning in A. Novikoff’s interpretation. It is not considered as the op-
timization problem of the error functional minimization. It is shown that each step 
of the learning process decreases the distance between the current weighting vec-
tor and the “ideal” weighting vector, which exists because the input/output map-
ping is a k-valued threshold function. The more this distance decreases, the more 
the error decreases too, and the iterative learning process always converges after a 
finite number of iterations. 

We have also considered the Hebbian learning for MVN. It was shown that the 
Hebbian learning rule works for MVN in the same manner as for the threshold 
neuron. It builds associations between the inputs and desired outputs. We have al-
so shown that Hebbian weights, even when they cannot implement the in-
put/output mapping, should be optimal starting weights for the MVN learning al-
gorithm, leading to fewer corrections of the weights rather than starting from the 
arbitrary random vector. 

So we have considered all the MVN fundamentals, its mathematical back-
ground, its organization, and its learning rules.  

Now we are ready to consider how MVN works in networks and first of all in 
the feedforward neural network. 
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