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Chapter 1  
Why We Need Complex-Valued Neural 
Networks? 

“Why is my verse so barren of new pride,  
So far from variation or quick change? 
Why with the time do I not glance aside 
To new-found methods and to compounds strange?” 

William Shakespeare, Sonnet 76 

This chapter is introductory. A brief observation of neurons and neural networks is 
given in Section 1.1. We explain what is a neuron, what is a neural network, what 
are linearly separable and non-linearly separable input/output mappings. How a 
neuron learns is considered in Section 1.2, where Hebbian learning, the percep-
tron, and the error-correction learning rule are presented. In Section 1.3, we con-
sider a multilayer feedforward neural network and essentials of backpropagation 
learning. The Hopfield and cellular neural networks are also presented. Complex-
valued neural networks, their naturalness and necessity are observed in Section 
1.4. It is shown that a single complex-valued neuron can learn non-linearly sepa-
rable input/output mappings and is much more functional than a single real-valued 
neuron. Historical observation of complex-valued neural networks and the state of  
the art in this area are also presented. Some concluding remarks will be given in 
Section 1.5.  

1.1   Neurons and Neural Networks: Basic Foundations and 
Historical View 

1.1.1   What Is a Neural Network? 

As we have clearly mentioned, this book is devoted to complex-valued neural 
networks, even only to those of them that are based on multi-valued neurons. 
However, it should not be correct, if we will start immediately from complex-
valued neurons and neural networks. To understand, why complex-valued neurons 
were introduced and to understand that motivation, which was behind their intro-
duction, it is important to observe what a neural network is. It is also important to 
have a good imagination about those solutions that existed in neural networks that 
time when the first complex-valued neuron was proposed and about state of the art 
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in neural networks, to understand why complex-valued neurons are even more im-
portant today. It is also important to understand those limitations that are specific 
for real-valued neurons and neural networks. This will lead us to much clearer un-
derstanding of the importance of complex-valued neurons and the necessity of 
their appearance for overcoming limitations and disadvantages of their real-valued 
counterparts. 

So let us start from the brief historical overview. 
 

What an artificial neural network is? Among different definitions, which the 
reader can find in many different books, we suggest to use the following given in 
[1] by Igor Aleksander and Helen Morton, and in [2] by Simon Haykin. 

 

Definition 1.1. A neural network is a massively parallel distributed processor that 
has a natural propensity for storing experimental knowledge and making it 
available for use. It means that: 1) Knowledge is acquired by the network through 
a learning process; 2) The strength of the interconnections between neurons is 
implemented by means of the synaptic weights used to store the knowledge. 

Let us consider in more detail what stands behind this definition. It is essential 
that an artificial neural network is a massively parallel distributed processor whose 
basic processing elements are artificial neurons. The most important property of 
any artificial neural network and of its basic element, an artificial neuron, is their 
ability to learn from their environment. Learning is defined in [2] as a process by 
which the free parameters of a neural network (or of a single neuron) are adapted 
through a continuing process of simulation by the environment in which the net-
work (the neuron) is embedded. This means that both a single artificial neuron and 
an artificial1 neural network are intelligent systems. They do not perform computa-
tions according to the pre-defined externally loaded program, but they learn from 
their environment formed by learning samples that are united in a learning set. 
Once the learning process is completed, they are able to generalize relying on that 
knowledge, which was obtained during the learning process. The quality of this 
generalization is completely based on that knowledge, which was obtained during 
the learning process. 

Compared to biological neural networks, artificial neural networks are “neu-
ral” in the sense that they have been inspired by neuroscience, but they are not true 
models of biological or cognitive phenomena. The important conclusion about ar-
tificial neural networks, which is done by Jacek Zurada in [3], states that typical 
neural network architectures are more related to mathematical and/or statistical 
techniques, such as non-parametric pattern classifiers, clustering algorithms, 
nonlinear filters, and statistical regression models.  

In contrast to algorithmic approaches usually tailored to tasks at hand, neural 
networks offer a wide palette of versatile modeling techniques applicable to a 
large class of problems. Here, learning in data-rich environments leads to mod-
els of specific tasks. Through learning from specific data with rather general 
                                                           
1 We will omit further the word “artificial” keeping in mind that across this book we have 

deal with artificial neurons and artificial neural networks. Wherever it will be needed, 
when a biological neuron will be considered, we will add the word “biological”. 
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neural network architectures, neurocomputing techniques can produce problem-
specific solutions [3]. 

1.1.2   The Neuron 

We just told that there are many equivalent definitions of a neural network. How-
ever, it is quite difficult to find a strict definition of a neuron. We may say that an 
artificial neuron is on the one hand, an abstract model of a biological neuron, but 
on the other hand, it is an intelligent information processing element, which can 
learn and can produce the output in response to its inputs. As a result of learning 
process, the neuron forms a set of weights corresponding to its inputs. Then by 
weighting summation of the inputs and transformation of the weighted sum of in-
put signals using an activation (transfer) function it produces the output. 

This is really quite similar to 
what a biological neuron is do-
ing. Let us consider its sche-
matic model (see Fig. 1.1). In-
deed, a biological neuron 
receives input signals thorough 
its dendrites that are connected 
to axons (which transmit output 
signals) of other neurons via 
synapses where the input signals 
are being weighted by the syn-
aptic weights. Then the biologi-
cal neuron performs a weighting 
summation of inputs in soma 

where it also produces the output, which it transmits to the dendrites of other neu-
rons through the synaptic connections. 

The first artificial neuron model was proposed by W. McCulloch and W. Pitts in 
1943 [4]. They tried to create a mathematical model of neural information process-
ing as it was considered that time. A common view was that a neuron receives some 

input signals 1,..., nx x  that can be excitatory (“1”) or inhibitory (“-1”), calculates 

the weighted sum of inputs 1 1 ... n nz w x w x= + +  and then produces the excitatory 

output (“1”) if the weighted sum of inputs exceeds some predetermined threshold 
value and the inhibitory output (“-1”) if it does not. For many years, it is a com-
monly known fact that a biological neuron is much more sophisticated from the sig-
nal processing view point. It is not a discrete binary processing element, its inputs 
and outputs are continuous, etc. Thus, the McCulloch-Pitts model as a model of a 
biological neuron is very schematic and it just approaches a basic idea of neural in-
formation processing. Nevertheless it is difficult to overestimate the importance of 
this model. First of all, it is historically the first model of a neuron. Secondly, this 
model was important for understanding of learning mechanisms that we will con-
sider below. Thirdly, all later neural models are based on the same approach that 

 

Fig. 1.1 A schematic model of a biological neuron 
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was in the McCulloch-Pitts model: weighted summation of inputs followed by the 
transfer function applied to the weighted sum to produce the output. 

Let us take a closer look at the McCulloch-Pitts model. As we have mentioned, 
in this model the neuron is a binary processing element. It receives binary inputs 

1,..., nx x  taken their values from the set {-1, 1} and produces the binary output 

belonging to the same set. The weights 1,..., nw w  can be arbitrary real numbers 

and therefore the weighted sum 1 1 ... n nz w x w x= + +  can also be an arbitrary 

real number. The neuron output ( )1,..., nf x x is determined as follows: 

( )1

 1,if 
,...,

1, if ,n

z
f x x

z

≥ Θ⎧
= ⎨− < Θ⎩

 

where Θ is the pre-determined threshold. The last equation can be transformed if 

the threshold will be included to the weighted sum as a “free weight” 0w = −Θ , 

which is often also called a bias and the weighted sum will be transformed accord-

ingly ( 0 1 1 ... n nz w w x w x= + + + ): 

( )1

1,if 0
,...,

1, if 0.n

z
f x x

z

≥⎧
= ⎨− <⎩

 

This is the same as 

( ) ( )1,..., sgnnf x x z= , (1.1) 

where sgn is a standard sign function, which is equal to 1 when its argument is 
non-negative and to -1 otherwise (see Fig. 1.2). Thus, function sgn in (1.1) is an 

activation function. It is usually referred 
to as the threshold activation function. 
The McCulloch-Pitts neuron is also often 
called the threshold element or the 
threshold neuron. [5]. These names were 
especially popular in 1960s – 1970s. 

It is important to mention that func-
tion sign is nonlinear. Hence, the first 
neuron was a nonlinear processing ele-
ment. This property is very important. 
All popular activation functions that are 
used in neurons are nonlinear. It will  

not be the overestimation, if we will say that the functionality of a neuron is 
mainly (if not completely) determined by its activation function. 

Let us consider now the most general model of a neuron, which is commonly 

used today (see Fig. 1.3). A neuron has n inputs 1,..., nx x  and weights 1,..., nw w  

 
Fig. 1.2 Threshold Activation Function 
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corresponding to these inputs. It also has a “free weight” (bias) 0w , which does 

not correspond to any input. All together weights form an (n+1)-dimensional 

weighting vector ( )0 1, ,..., nw w w . There is a pre-determined activation function 

( )zϕ  associated with a neuron. It generates the neuron output limiting it to some 

reasonable (permissible) range. The neural processing consists of two steps. The 
first step is the calculation of the weighted sum of neuron inputs  

0 1 1 ... n nz w w x w x= + + + . 

The second step is the calcu-
lation of the value of the  

activation function ( )zϕ  

for the value z of the 
weighted sum. This value of 
the activation function forms 
the output of the neuron. If 
input/output mapping is de-
scribed by some function 

( )1,..., nf x x , then 

 

( ) ( )1 0 1 1,..., ( ) ...n n nf x x z w w x w xϕ ϕ= = + + + . (1.2) 
 

Initially only binary neuron inputs and output were considered. Typically, they 

were taken from the set { }2 1, 1E = −  or (rarely) from the set { }2 0,1K = 2. It is 

important to mention that it is very easy to move from one of these alphabets to 

another one. For example, if 2y K∈  then 21 2x y E= − ∈ , and if 2x E∈  then 

( ) 21 / 2y x K= − − ∈ , respectively. Hence, 0 1,  1 1↔ ↔ − . As for the 

weights, they were taken from the set R  of real numbers. Therefore, the weighted 
sum in this case is also real and an activation function is a function of a real vari-
able. We may say that mathematically the threshold neuron implements a mapping 

( )1 2 2,..., : n
nf x x E E→ . 

                                                           
2 In [4], in the original McCulloch-Pitts model, a classical Boolean alphabet { }2 0,1K =  

was used. However, especially for the learning purpose, the bipolar alphabet 

{ }2 1, 1E = −  is much more suitable. We will consider a bit later, why it is better to use 

the bipolar alphabet for learning. 

 

Fig. 1.3 A general model of a neuron 
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1.1.3   Linear Separability and Non-linear Separability:  
XOR Problem 

If the neuron performs a mapping ( )1 2 2,..., : n
nf x x E E→ , this means that 

( )1,..., nf x x  is a Boolean function. If the function sgn is used as the activation 

function of a neuron (thus, if it is the threshold neuron), then this Boolean function 
is called and commonly referred to as a threshold (linearly separable) Boolean 
function. Linear separability means that there exists an n-dimensional hyperplane 
determined by the corresponding weights (it is evident that the equation 

0 1 1 ... n nz w w x w x= + + +  determines a hyperplane in an n-dimensional space) 

and separating 1s of this function from its -1s (or 0s from 1s if the classical Boo-

lean alphabet { }2 0,1K =  is used). It is very easy to show this geometrically for 

n=2. Let us consider the function ( )1 2 1 2,  or f x x x x= , the disjunction of the 

two Boolean variables. A table of values of this function is shown in Table 1.1. 
Fig. 1.4a demonstrates a geometrical interpretation of this function. It also shows 

what a linear separability is. There is a line, which separates a single “1” value of this 
function from three “-1” values. It is also clear that there exist infinite amount of such 
lines. In 1960s study of threshold Boolean functions was very popular. 

Table 1.1 Values of function ( )1 2 1 2,  or f x x x x=  

1x  2x  ( )1 2 1 2,  or f x x x x=  

1 1 1 
1 -1 -1 
-1 1 -1 
-1 -1 -1 

 
We can mention at least two comprehensive monographs devoted to this sub-

ject [6, 7]. However, the number of threshold or linearly separable Boolean func-
tions is very small. While for n=2 there are 14 threshold functions out of 16 and 
for n=3 there are 104 threshold functions out of 256, for n=4 there are just about 
2000 threshold functions out of 65536. For 4n > , the ratio of the number of 

threshold Boolean functions of n variables to 22
n

 (the number of all Boolean 
functions of n variables) approaches 0.  

While threshold Boolean functions can be implemented using a single 
threshold neuron, other functions that are not threshold cannot. May be the most 
typical and the most popular example of such a function is XOR problem  
 



1.1   Neurons and Neural Networks: Basic Foundations and Historical View 7 
 

 

(the Exclusive OR) ( )1 2 1 2,  xor f x x x x= , mod 2 sum of the two Boolean 

variables. This function is non-linearly separable. Let us take a look at the  
table of values of this function (see Table 1.2) and its graphical representation 
(see Fig. 1.4b). Geometrically, this problem belongs to the classification of the 
points in the hypercube, as any problem described by the Boolean function (see 
Fig. 1.4). Each point in the hypercube is either in class "1" or class "-1". In the 
case of XOR problem the input patterns (1, 1) and (-1, -1) that are in class "1" 
are at the opposite corners of the square (2D hypercube). On the other hand, the 
input patterns (1, -1) and (-1, 1) are also at the opposite corners of the same 
square, but they are in class "-1". It is clear from this that the function XOR is 
non-linearly separable, because there is no way to draw a line, which can sepa-
rate two “1” values of this function from its two “-1” values, which is clearly 
seen from Fig. 1.4b. Since such a line does not exist, there are no weights using 
which XOR function can be implemented using a single threshold neuron. 

Table 1.2 Values of function ( )1 2 1 2,  xor f x x x x=  

1x  2x  ( )1 2 1 2,  xor f x x x x=  

1 1 1 
1 -1 -1 
-1 1 -1 
-1 -1 1 

 
The existence of non-linearly separable problems was a starting point for  

neural networks design and likely the XOR problem stimulated creation of  
the first multilayer neural network. We will consider this network in Section 1.3. 
However, the most important for us will be the fact that XOR problem can be  
easily solved using a single complex-valued neuron. We will show this solution  
in Section 1.4. 

  
(a) ( )1 2 1 2,  or f x x x x= is a linearly sepa-

rable function. There exists a line, which sepa-
rates 1 value of this function (a transparent 
circle) from its -1s (filled circles) 

(b) ( )1 2 1 2,  xor f x x x x= is a non-linearly 

separable function. There is no way to find a 
line, which separates 1s value of this function 
(transparent circles) from its -1s (filled circles) 

Fig. 1.4 
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1.2   Learning: Basic Fundamentals 

1.2.1   Hebbian Learning 

We told from the beginning that the main property of both a single neuron and any 
neural network is their ability to learn from their environment. How a neuron 
learns? The first model of the learning process was developed by Donald Hebb in 
1949 [8]. He considered how biological neurons learn. As we have already men-
tioned, biological neurons are connected to each other through synaptic connec-
tions: axon of one neuron is connected to dendrites of other ones through synapses 
(Fig. 1.1). To represent the Hebbian model of learning, which is commonly re-
ferred to as Hebbian learning, let us cite D. Hebb’s fundamental book [8] directly. 
The idea of the Hebbian learning is as follows ([8], p. 70). 

"The general idea is … that any two cells or systems of cells that are repeat-
edly active at the same time will tend to become 'associated', so that activity in one 
facilitates activity in the other."  

The mechanism of Hebbian learning is the following ([8], p. 63). 
"When one cell repeatedly assists in firing another, the axon of the first cell 

develops synaptic knobs (or enlarges them if they already exist) in contact with 
the soma of the second cell." 

Let us “translate” this idea and mechanism into the language of the threshold 
neuron. In this language, “1” that is a “positive” signal, means excitation, and “-1” 
that is a “negative” signal, means inhibition. When the neuron “fires” and pro-
duces “1” in its output, this means that weights have to help this neuron to “fire”. 
For example, if the neuron receives a “positive” signal (“1”) from some input, 
then the corresponding weight passing this signal can be obtained by multiplica-
tion of the desired output “1” by the input “1” (see Fig. 1.5a). Thus, the weight is 
equal to 1 and the “positive” input signal will contribute to the positive output of 
the neuron. Indeed, to produce a “positive” output, according to (1) the weighted 
sum must be positive. On the contrary, if the neuron “fires”, but from some input 
it receives a “negative” (inhibitory) signal, the corresponding weight has to invert 
this signal, to make its contribution to the weighted sum and the neuron output 
positive. Again, the simplest way to achieve this, is to multiply the desired output 
“1” by the input “-1” (see Fig. 1.5b). The corresponding weight will be equal to -1 
and when multiplied by the input, will produce a positive contribution 
( 1) ( 1) 1− ⋅ − =  to the weighted sum and output. Respectively, if the neuron does 

not “fire” and has to produce a “negative” inhibitory output (”-1”), the weights 
have to help to inhibit the neuron and to produce a negative weighted sum. The 
weights should be found in the same way: by multiplication of the desired output 
“-1” by the corresponding input value. If the input is " 1"−  (inhibitory), then  
the weight ( 1) ( 1) 1− ⋅ − =  just passes it (see Fig. 1.5c). If the input is “1” (excita-

tory), the weight ( 1) 1 1− ⋅ = −  inverts it (see Fig. 1.5d). 
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To obtain a bias 0w , we just need to multiply the desired output by 1, which 

can be considered as a “virtual constant input” corresponding to this weight. 
It is clear that if the threshold neuron has to learn only a single learning sam-

ple, then this Hebb rule always produces the weighting vector implementing the 
corresponding input/output mapping. However, learning from a single learning 
sample is not interesting, because it is trivial. What about multiple learning sam-
ples? In this case, the weights can be found by generalization of the rule for a sin-
gle learning sample, which we have just described. This generalization leads us to 
the following representation of the Hebbian learning rule for a single threshold 
neuron. Let us have N n-dimensional learning samples (this means that our neuron 

has n inputs 1,..., nx x ). Let f  be an N-dimensional vector-column3 of output  

                                                           
3 Here and hereafter we will use a notation ( )1f ,...,

T

nf f=  for a vector-column, while 

a notation ( )1,..., nF f f=  will be used for a vector-row. 

  
(a) the neuron “fires” and a “firing” input is 
passed to the output by the positive weight 

(b) the neuron “fires” and an “inhibitory” 
input is inverted by the negative weight 

  
(c) the neuron “inhibits” and an “inhibi-
tory” input is passed to the output by the 
positive weight 

(d) the neuron “inhibits” and a “firing”  
input is inverted by the negative weight 

Fig. 1.5 Calculation of the weight using the Hebb rule for one of the neuron’s inputs and 
for a single learning sample: the weight is equal to the product of the desired output and  
input value  
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values. Let 1,..., nx x  be N-dimensional vectors of all possible values of inputs 

1 ,..., , 1,...,j j
nx x j N= . 

Then according to the Hebbian learning rule the weights 1,..., nw w  should be 

calculated as dot products of vector f  and vectors 1,..., nx x , respectively.  

The weight 0w  should be calculated as a dot product of vector f  and an  

N-dimensional vector-constant ( )0 1,1,...,1
T=x : 

( ), , 0,...,i iw i n= =f x , (1.3) 

where ( ) 1 1, ... n na b a b= + +a b  is the dot product of vector-columns 

( )1,...,
T

na a=a  and ( )1,...,
T

nb b=b  in the unitary space (“bar” is a symbol of 

complex conjugation, in the real space it should simply be ignored). 
It can also be suggested to normalize the weights obtained by (1.3): 

( )1
, , 0,...,i iw i n

N
= =f x . (1.4) 

Let us check how rule (1.4) works.  

Example 1.1 Let us learn using this rule the OR problem ( )1 2 1 2,  or f x x x x= , 

which is linearly separable and which we have already considered  
for illustration of the linear separability (Table 1.1, Fig. 1.4a). Let us use  
rule (1.4) to obtain the weights. From Table 1.1, we have 

( ) ( ) ( ) ( )0 1 21, 1, 1, 1 ; 1,1,1,1 ; 1,1, 1, 1 ; 1, 1,1, 1 .
T T T T= − − − = = − − = − −f x x x

Then, applying Hebbian learning rule (1.4), we obtain the following weights 

( ) ( ) ( )0 0 1 1 2 2, 0.5; , 0.5; , 0.5w w w= = − = = = =f x f x f x . Let us now 

check the results of this learning and apply the weighting vector 
( 0.5,0.5,0.5)W = −  to all four possible binary inputs of the threshold neuron. 

The results are summarized in Table 1.3. We see that the weighting vector, which 
we obtained learning the OR function using the Hebbian learning rule really im-
plements the OR function using the threshold neuron.  

The reader for whom neural networks is a new subject may say “Hurrah! It so 
simple and beautiful!” It is really simple and beautiful, but unfortunately just a 
minority of all threshold Boolean functions of more than two variables can be 
learned in this way. 
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It is also clear that neither of non-threshold Boolean functions can be learned 
by the threshold neuron using rule (1.4) (non-threshold functions cannot be 
learned by the threshold neuron at all). By the way, different non-threshold  
Boolean functions may have the same weighting vectors obtained by rule (1.4).  
If we apply rule (1.4) to such a non-threshold Boolean function, like XOR (see 
Table 1.2 and Fig. 1.4b), which is symmetric (self-dual (or odd, in other words) or 
even), we get the zero weighting vector (0, …, 0). 

 
Table 1.3 Threshold neuron implements ( )1 2 1 2,  or f x x x x=  function with the weighting 

vector (-0.5, 0.5, 0.5) obtained by Hebbian learning rule (1.4) 

1x  2x  
0 1 1 2 2z w w x w x= + +

 
sgn( )z

 ( )1 2 1 2,  or f x x x x=  

1 1 0.5 1 1 
1 -1 -0.5 -1 -1 
-1 1 -0.5 -1 -1 
-1 -1 -1.5 -1 -1 
 
The following natural questions can now be asked by the reader. How those 

threshold Boolean functions that cannot be learned using the Hebb rule, can be 
learned? What about multiple-valued and continuous input/output mappings, is it 
possible to learn them? If the Hebb rule has a limited capability, is it useful? The 
answer to the first question will be given right in the next Section. Several answers 
to the second question will be given throughout this book. The third question can 
be answered right now. The importance of Hebbian learning is very high, and not 
only because D. Hebb for the first time explained mechanisms of associations de-
veloping during the learning process. A vector obtained using the Hebb rule, even 
if it does not implement the corresponding input/output mapping, can often be a 
very good first approximation of the weighting vector because it often can “draft” a 
border between classes when solving pattern recognition and classification prob-
lems. In [6] it was suggested to call a vector obtained by (1.4) for a Boolean func-
tion the characteristic vector of that function. Later the same notion was considered 
for multiple-valued functions and the Hebb rule was used to learn them using the 
multi-valued neuron. We will consider this aspect of Hebbian learning later when 
we will consider multi-valued neurons and their applications (Chapters 2-6). 

Using the Hebbian learning it is possible to develop associations between the 
desired outputs and those inputs that stimulate these outputs. However, the Heb-
bian learning cannot correct the errors if those weights obtained by the Hibbian 
rule still do not implement the corresponding input/output mapping. To be able to 
correct the errors (to adjust the weights in such a way that the error will be mini-
mized or eliminated), it is necessary to use the error-correction learning rule. 

1.2.2   Perceptron and Error-Correction Learning 

The perceptron is historically the first artificial neural network. The perceptron 
was suggested in 1958 by Frank Rosenblatt in [9] as “a hypothetical nervous  
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system”, and as the illustration of “some of the fundamental properties of intelli-
gent systems in general”. 

Today we may say that the Rosenblatt’s perceptron as it was defined in the 
seminal paper [9] is the simplest feedforward neural network (it will be considered 
in Section 1.3), but in 1958 when F. Rosenblatt published his paper, this today’s 
most popular kind of a neural network was not invented yet. The perceptron was 
suggested as a network consisted of three types of elements that can simulate rec-
ognition of visual patterns (F. Rosenblatt demonstrated the perceptron’s ability to 
recognize English typed letters). The perceptron in its original concept contained 
three types of units (Fig. 1.6): S-units (sensory) for collecting the input informa-
tion and recoding it into the form appropriate for A-units (associate units), and R-
units (responses). While S-units are just sensors (like eye retina) and R-units are 
just responsible for reproduction of the information in terms suitable for its under-
standing, A-units are the neurons, for example the ones with the threshold activa-
tion function (later a sigmoid activation was suggested, we will also consider it  
below). Thus, A-units form a single layer feedforward neural network. All connec-
tions among units were usually built at random. 

The main idea behind the perceptron was to simulate a process of pattern rec-
ognition. At that time when the perceptron concept was suggested, classification 
was considered only as a binary problem (a two-class classification problem), and 
the perceptron was primarily used as a binary classifier. Thus, each neuron (each 

A-unit) performed only input/output mappings ( )1 2 2,..., : n
nf x x E E→  (or 

( )1 2 2,..., : n
nf x x K K→  depending on which Boolean alphabet was used). 

Later it was suggested to 
consider a more general 
case when neuron (percep-
tron) inputs are real num-
bers from some bounded set 
T ⊂ R  (often the case of 

[ ]0,1T =  is considered). 

Thus, if , 1,...,ix T i n∈ =  

a mapping performed by the 
neuron becomes 

( )1 2,..., : n
nf x x T E→ . 

One of the main achieve-
ments of the perceptron era 
was the error-correction 
learning concept first sug-
gested by F. Rosenblatt in 
[10] and then developed 

and deeply presented in his monograph [11]. Since in the perceptron all its A-units 
learn separately and independently, we may consider the error-correction learning 
rule with regard to a single neuron. We will derive the error-correction learning 

 

Fig. 1.6 The Perceptron 
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rule in the same way as it was done by its inventor. We have to mention that this 
learning rule will be very important for us when we will consider its generaliza-
tion for complex-valued neurons and neural networks. 

Let us consider the threshold neuron with activation function (1.1). Suppose a 

neuron has to learn some input/output mapping ( )1 2 2,..., : n
nf x x E E→ . This 

input/output mapping could represent, for example, some binary classification 
problem. Thus, there are two classes of objects described by n-dimensional real-
valued vectors. The purpose of the learning process in this case is to train a neuron 
to classify patterns labeling them as belonging to the first or the second class. Let 

2id E∈  be the desired output for the ith learning sample. This means that the in-

put/output mapping has to map a vector ( )1,..., nx x  to some desired output d. 

Suppose we have N learning samples that form a learning set 

( )1 ,..., , 1,...,i i
n ix x d i N→ = . Let us have some weighting vector 

( )0 1, ,..., nW w w w=  (the weights can be generated, for example, by a random 

number generator). Let y be the actual output of the neuron 

( )0 1 1sgn ... n ny w w x w x= + + +  and it does not coincide with the desired  

output d. This forms the error 

d yδ = − . (1.5) 

Evidently, the goal of the learning process should be the elimination or minimiza-
tion of this error through the adjustment of the weights by adding to them the  
adjustment term wΔ  

, 0,1,...,i i iw w w i n= + Δ = . (1.6) 

We expect that once the weights will be adjusted, our neuron should produce the 
desired output 

( )0 1 1sgn ... n nd w w x w x= + + + . (1.7) 

Taking into account (1.5) and (1.6), (1.7) can be transformed as follows 

( ) ( ) ( )( )0 0 1 1 1sgn ... .n n n

d y

w w w w x w w x

δ= + =

+ Δ + + Δ + + + Δ
 (1.8) 

Then we obtain from (1.8) the following 

( ) ( )( )0 1 1 0 1 1sgn ... ... .n n n n

y

w w x w x w w x w x

δ + =

+ + + + Δ + Δ + + Δ
 (1.9) 

Since the neuron’s output is binary and it can be equal only to 1 or -1, according to 
(1.5) we have the following two cases for the error  
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2, if 1, 1

2,if  1, 1.

d y

d y
δ

= = −⎧
= ⎨− = − =⎩

 (1.10) 

Let us consider the first case from (1.10), 1, 1, 2d y δ= = − = . Substituting 

these values to (1.9), we obtain the following 

( ) ( )( )0 1 1 0 1 1

2 1 1

sgn ... ... .n n n n

y

w w x w x w w x w x

δ + = − = =

+ + + + Δ + Δ + + Δ
 (1.11) 

It follows from the last equation that 

( ) ( )0 1 1 0 1 10 ... ...n n n nw w x w x w w x w x≤ + + + + Δ + Δ + + Δ ,  

and (since 0 1 1 0n nw w x w x+ + <  because 1y = − ) 

( )0 1 1

0 1 1 0 1 1

0 ... ,

... ...

n n

n n n n

w w x w x

w w x w x w w x w x

< Δ + Δ + + Δ

+ + + ≤ Δ + Δ + + Δ
. (1.12) 

Let us set  

0 ; , 1,...,i iw w x i nαδ αδΔ = Δ = = , (1.13) 

where 0α >  is some constant, which is called a learning rate. Then  

0 1 1

1 1

...

... ( 1).
n n

n n

w w x w x

x x x x nαδ αδ αδ αδ
Δ + Δ + + Δ =

+ + + = +
 (1.14) 

It is important to mention that 
2 1; 1,...,i i ix x x i n= = =  in (14) because since we 

consider the threshold neuron with binary inputs, { }2 1, 1ix E∈ = − . We will see 

later that it is more difficult to use (1.13) if the neuron inputs are not binary. We 
also will see later that this difficulty does not exist for the error-correction learning 
rule for the multi-valued neuron, which will be considered in Section 3.3. 

Since 0, 2 0α δ> = > , then ( 1) 0nαδ + >  and the 1st inequality from 

(1.12) holds. However, it is always possible to find a learning rate 0α >  such 
that the 2nd inequality from (1.12) also holds. This means that for the first case in 
(1.10) the learning rule based on (1.6) and (1.13) guarantees that (1.11) is true and 
the neuron produces the correct result after the weights are adjusted. 

Let us consider the second case in (1.10). 1, 1, 2d y δ= − = = − . Substituting 

these values to (1.9), we obtain the following 

( ) ( )( )0 1 1 0 1 1

2 1 1

sgn ... ... .n n n n

y

w w x w x w w x w x

δ + = − + = − =

+ + + + Δ + Δ + + Δ
 (1.15) 
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It follows from the last equation that 

( ) ( )0 1 1 0 1 1... ... 0n n n nw w x w x w w x w x+ + + + Δ + Δ + + Δ < ,  

and (since 0 1 1 0n nw w x w x+ + ≥  because 1y = ) 

( )0 1 1

0 1 1 0 1 1

... 0,

... ... .

n n

n n n n

w w x w x

w w x w x w w x w x

Δ + Δ + + Δ <

+ + + ≤ Δ + Δ + + Δ
 (1.16) 

Let us again use (1.6) and (1.13) to adjust the weights. We again obtain (1.14). 
Since 0, 2 0α δ> = − < , then ( 1) 0nαδ + <  and the 1st inequality from 

(1.16) holds. However, it is always possible to find such learning rate 0α >  that 
the 2nd inequality from (1.16) also holds. This means that for the second case in 
(1.10) the learning rule based on (1.6) and (1.13) guarantees that (1.15) is true and 
the neuron produces the correct result after the weights are adjusted. Since for 
both cases in (1.10) the learning rule based on (1.6) and (1.13) works, then this 
rule always leads to the desired neuron output after the weights are corrected. We 
can merge (1.6) and (1.13) into 

0 0 ;

, 1,..., ,i i i

w w

w w x i n

αδ
αδ

= +
= + =

 (1.17) 

where δ  is the error calculated according to (1.5) and 0α >  is a learning rate. 
Equations (1.17) present the error-correction learning rule. After the weights are 
corrected according to (1.17), we obtain for the updated weighted sum the follow-
ing expression 

0 1 1

0 1 1 1 1

0 1 1

...

( ) ( ) ... ( )

... ( 1) ( 1).

n n

n n

n n

z

z w w x w x

w w x x w x x

w w x w x n z n

αδ αδ αδ
αδ αδ

= + + + =
+ + + + + + =

+ + + + + = + +
 

(1.18) 

Since as we saw, δ  in (1.18) has a sign, which is always opposite to the one of 

z , then it is always possible to choose 0α >  such that sgn( ) sgn( )z z= − . If 

, 1,...,ix T i n∈ = , where T ⊂ R  and ( )1 2,..., : n
nf x x T E→ , then instead 

of (1.18) we obtain 

( )

( )

0 1 1

0 1 1 1 1

2 2
0 1 1 1

2 2
1

...

( ) ( ) ... ( )

... 1 ...

1 ... .

n n

n n

n n n

z

n

z w w x w x

w w x x w x x

w w x w x x x

z x x

αδ αδ αδ

αδ

αδ

= + + + =
+ + + + + + =

+ + + + + + + =

+ + + +

 (1.19) 
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Like in (1.18), δ  in (1.19) has a sign, which is always opposite to the one of .z  

Since 0α >  and 
2 2
11 ... 0nx x+ + + > , it is again possible to choose α  such 

that (1.19) holds. However, it is necessary to be more careful choosing α  here 
than for the binary input case. While in (1.18) α does not depend on the inputs, in 
(1.19) it does. We will consider later, In Section 3.3, the error-correction learning 
rule for the multi-valued neuron and we will see that this problem exists there nei-
ther for the discrete multiple-valued inputs/output nor for the continuous ones.  

1.2.3   Learning Algorithm 

Definition 1.2. A learning algorithm is the iterative process of the adjustments of 
the weights using a learning rule. Suppose we need to learn some learning set con-

taining N learning samples ( )1 ,..., , 1,...,i i
n ix x d i N→ = . One iteration of the 

learning process consists of the consecutive checking for all learning samples 
whether (1.2) holds for the current learning sample. If so, the next learning sample 
should be checked. If not, the weights should be adjusted according to a learning 
rule. The initial weights can be chosen randomly. This process should continue ei-
ther until (1.2) holds for all the learning samples or until some additional criterion 
is satisfied.  

When the learning process is successfully finished, we say that it has converged 
or converged to a weighting vector. Thus, convergence of the learning process 
means its successful completion. No-convergence means that the corresponding 
input/output mapping cannot be learned. 

A learning iteration (learning epoch) is a pass over all the learning samples 

( )1 ,..., , 1,...,i i
n ix x d i N→ = . 

If the learning process continues until (1.2) holds for all the learning samples, 
we say that the learning process converges with the zero error. If errors for some 
learning samples are acceptable, as it was mentioned, some additional criterion for 
stopping the learning process should be used. The most popular additional crite-
rion is the mean square error/root mean square error criterion. In this case, the 
learning process continues until either of this errors drops below some pre-

determined acceptable threshold value. This works as follows. Let , 1,...,i i Nδ =  

be the error for the ith learning sample. Then the mean square error (MSE) over all 
learning samples is  

2

1

1 N

i
i

MSE
N

δ
=

= ∑ , (1.20) 

and the root mean square error (RMSE) is 

2

1

1 N

i
i

RMSE MSE
N

δ
=

= = ∑ . (1.21) 
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If either of (1.20) or (1.21) is used, then a learning iteration starts from computa-
tion of MSE (RMSE). The learning process should continue until MSE (RMSE) 
drops below some pre-determined reasonable threshold value.  

Another approach to the learning is the error minimization. In this case, the 
learning algorithm is considered as an optimization problem and it is reduced to  
the minimization of the error functional. The error is considered as the function of 
the weights. But in fact, the error is a composite function  

( ) ( )( ) ( ) ( )0 1 1 ... n nW z d z d w w x w xδ δ ϕ ϕ= = − = − + + + ,  

where ( )zϕ  is the activation function. Actually, this approach is the most popu-

lar, but since minimization of the error functional using optimization methods  
requires differentiability of an activation function, it cannot be applied to the 

threshold neuron whose activation function ( )sgn z  is not differentiable. It is 

widely used for sigmoidal neurons and neural networks based on them. We will 
observe them in Section 1.3. 

Now we have to discuss the convergence of the learning algorithm for a single 
threshold neuron based on the error-correction rule (1.17). The first proof of the 
perceptron convergence theorem was given by F. Rosenblatt in [10]. It is impor-
tant to mention that F. Rosenblatt considered only binary inputs. In its most com-
prehensive form, this convergence theorem states that if the given input/output 
mapping can be learned and learning samples appear in an arbitrary order, but 
with a condition that each of them is repeated in the learning sequence within 
some finite time interval, then the learning process converges starting from an  
arbitrary weighting vector after a finite number of iterations.  

This theorem, however, did not clarify the question which input/output map-
pings can be learned using the perceptron and which cannot. 

A more general case of this theorem was considered by A. Novikoff in [12]. He 
introduced a notion of a linearly separable set. The learning set 

( )1 ,..., , 1,..., ; , 1,..., ; 1,...,i i i
n i jx x d i N x T j n i N→ = ∈ ⊂ = =R  is called 

linearly separable if there exist a positive constant s and a weighting vector W 
such that the following condition holds 

( )0 1 1 ... , 1,...,i n nd w w x w x s i N+ + + > = .  

This means that the weighted sum multiplied by the desired output must be greater 
than some positive constant for all the learning samples. Novikoff’s convergence 
theorem states that the learning algorithm converges after a finite number of it-
erations if the learning set is linearly separable. The idea behind the Novikoff’s 
proof is to show that the assumption that the learning process does not converge 
after a finite number of iterations contradicts to the linear separability of the learn-
ing set. Novikoff showed that the amount of changes to the initial weighting vec-

tor is bounded by ( )2
2 /M s , where M is the maximum norm of an input vector. 
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Since the norm is always a finite non-negative real number, the number of itera-
tions in the learning algorithm is also finite.  

We will see later that this approach used by Novikoff to prove the convergence of 
the error-correction learning algorithm for the threshold neuron also works to prove 
the convergence of the learning algorithm for the multi-valued neuron (Section 3.3) 
and a multilayer neural network based on multi-valued neurons (Chapter 4). 

1.2.4   Examples of Application of the Learning Algorithm Based 
on the Error-Correction Rule 

Let us consider how learning rule (1.17) can be used to train the threshold neuron 
using the learning algorithm, which was just defined. 
 

Example 1.2. Let us consider again the OR problem ( )1 2 1 2,  or f x x x x=   

(Table 1.1, Fig. 1.4a), which we have already considered above. Our learning set 
contains four learning samples (see Table 1.1). Let us start the learning process 
from the weighting vector (1,1,1)W = . 

 
Iteration 1. 

1) Inputs (1, 1). The weighted sum is equal to 311111 =⋅+⋅+=z ; 

( ) sgn( ) sgn(3) 1z zϕ = = = . Since (1,1) 1f = , no further correction of the 

weights is needed. 
2) Inputs (1, -1). The weighted sum is equal to 1)1(1111 =−⋅+⋅+=z ; 

( ) sgn( ) sgn(1) 1z zϕ = = = . Since (1, 1) 1f − = − , we have to correct the 

weights. According to (1.5) 211 −=−−=δ . Let 1=α  in (1.17). Then we 
have to correct the weights according to (1.17): 

0 1 21 2 1;  1 ( 2) 1 1;  1 ( 2) ( 1) 3w w w= − = − = + − ⋅ = − = + − ⋅ − = . 

Thus, )3,1,1(
~ −−=W . 

The weighted sum after the correction is equal to 
5)1(31)1(1 −=−⋅+⋅−+−=z ; ( ) sgn( ) sgn( 5) 1z zϕ = = − = − . Since 

(1, 1) 1f − = − , no further correction of the weights is needed. 

3) Inputs (-1, 1). The weighted sum is equal to 
313)1()1(1 =⋅+−⋅−+−=z ; ( ) sgn( ) sgn(3) 1z zϕ = = = . Since 

( 1,1) 1f − = − , we have to correct the weights. According to (17) 

211 −=−−=δ . Let 1=α  in (1.17). Then we have to correct the weights ac-
cording to (1.17): 
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0 1 21 2 3;  1 ( 2) ( 1) 1;  3 ( 2) 1 1w w w= − − = − = − + − ⋅ − = = + − ⋅ = .  

Thus, )1,1,3(
~ −=W .  

The weighted sum after the correction is equal to 
311)1(13 −=⋅+−⋅+−=z ; ( ) sgn( ) sgn( 3) 1z zϕ = = − = − . Since 

( 1,1) 1f − = − , no further correction of the weights is needed. 

4) Inputs (-1, -1). The weighted sum is equal to 
5)1(1)1(13 −=−⋅+−⋅+−=z ; ( ) sgn( ) sgn( 5) 1z zϕ = = − = − . Since 

( 1, 1) 1f − − = − , no further correction of the weights is needed. 

 
Iteration 2. 

1) Inputs (1, 1). The weighted sum is equal to 111113 −=⋅+⋅+−=z ; 
( ) sgn( ) sgn( 1) 1z zϕ = = − = − . Since (1,1) 1f = , we have to correct the 

weights. According to (1.17) 2)1(1 =−−=δ . Let 1=α  in (1.17). Then we 

have to correct the weights according to (1.17): 

0 1 23 2 1;  1 2 1 3;  1 2 1 3w w w= − + = − = + ⋅ = = + ⋅ = .  

Thus, )3,3,1(
~ −=W . 

The weighted sum after the correction is equal to 513131 =⋅+⋅+−=z ; 
( ) sgn( ) sgn(5) 1z zϕ = = = . Since (1,1) 1f = , no further correction of the 

weights is needed. 
2) Inputs (1, -1). The weighted sum is equal to 

1)1(3131 −=−⋅+⋅+−=z ; ( ) sgn( ) sgn( 1) 1z zϕ = = − = − . Since 

(1, 1) 1f − = − , no further correction of the weights is needed. 

3) Inputs (-1, 1). The weighted sum is equal to 
113)1(31 −=⋅+−⋅+−=z ; ( ) sgn( ) sgn( 1) 1z zϕ = = − = − . Since 

( 1,1) 1f − = − , no further correction of the weights is needed. 

4) Inputs (-1, -1). The weighted sum is equal to 
7)1(3)1(31 −=−⋅+−⋅+−=z ; ( ) sgn( ) sgn( 7) 1z zϕ = = − = − . Since 

( 1, 1) 1f − − = − , no further correction of the weights is needed. 

This means that the iterative process converged after two iterations, there are 
no errors for all the samples from the learning set, and this learning set presented 

by the OR function ( )1 2 1 2,  or f x x x x=  of the two variables is learned. There-

fore, the OR function can be implemented with the threshold neuron using the 

weighting vector )3,3,1(
~ −=W  obtained as the result of the learning process. 
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Table 1.4 Learning process for the function 1 2 1 2( , ) &f x x x x=  

 
Example 1.3. Let us learn the function 1 2 1 2( , ) &f x x x x=  ( x  means the ne-

gation of the Boolean variable x, in the alphabet  
{1, -1} x x= − ) using the threshold neuron.  
Table 1.4 shows the function values and the entire 
learning set containing four input vectors and four 
values of the function, respectively. We start the 
learning process from the same weighting vector 

(1,1,1)W =  as in Example 1.2. We hope that so detailed explanations as were 

1x  2x  0 1 1 2 2z w w x w x= + +  sgn( )z  1 2 1 2( , ) &f x x x x=  δ 
( )1,1,1W =  

Iteration 1 
1 1 311111 =⋅+⋅+=z  1 1 0 

1 -1 1)1(1111 =−⋅+⋅+=z  1 -1 -2 

0 1 21 2 1;  1 ( 2) 1 1;  1 ( 2) ( 1) 3w w w= − = − = + − ⋅ = − = + − ⋅ − =
( )1, 1,3W = − −  

-1 1 313)1()1(1 =⋅+−⋅−+−=z 1 1 0 
-1 -1 3)1(3)1()1(1 −=−⋅+−⋅−+−=z -1 1 2 

0 1 21 2 1;  1 2 ( 1) 3;  1 2 ( 1) 3w w w= − + = = − + ⋅ − = − = − + ⋅ − = −

)3,3,1(
~ −−=W  

Iteration 2 
1 1 51)3(1)3(1 −=⋅−+⋅−+=z -1 1 2 

0 1 21 2 3;  3 2 1 1;  3 2 1 1w w w= + = = − + ⋅ = − = − + ⋅ = −
 

)1,1,3(
~ −−=W  

1 -1 3)1()1(1)1(3 =−⋅−+⋅−+=z 1 -1 -2 

0 1 23 2 1;  1 ( 2) 1 3;  1 ( 2) ( 1) 3w w w= − = = − + − ⋅ = − = − + − ⋅ − =
)3,3,1(

~ −=W  

-1 1 713)1()3(1 =⋅+−⋅−+=z  1 1 0 
-1 -1 1)1(3)1()3(1 =−⋅+−⋅−+=z 1 1 0 
Iteration 3 
1 1 1131)3(1 =⋅+⋅−+=z  1 1 0 

1 -1 1 ( 3) 1 3 ( 1) 5z = + − ⋅ + ⋅ − = − -1 -1 0 
-1 1 713)1()3(1 =⋅+−⋅−+=z  1 1 0 
-1 -1 1)1(3)1()3(1 =−⋅+−⋅−+=z 1 1 0 

# 1x  2x  21 & xx  

1) 1 1 1 
2) 1 -1 -1 
3) -1 1 1 
4) -1 -1 1 
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given in Example 1.2 will not be needed now. Thus, the iterative process has con-
verged after three iterations, there are no errors for all the elements from the learn-
ing set, and our input/output mapping described by the Boolean function 

1 2 1 2( , ) &f x x x x=  is implemented on the threshold neuron using the weight-

ing vector )3,3,1(
~ −=W  obtained as the result of the learning process. 

1.2.5   Limitation of the Perceptron. Minsky’s and Papert’s Work 

In 1969, M. Minsky and S. Papert published their famous book [13] in which they 
proved that the perceptron cannot learn non-linearly separable input/output map-
pings. Particularly, they showed that, for example the XOR problem is unsolvable 
using the perceptron. Probably from that time the XOR problem is a favorite prob-
lem, which is used to demonstrate why we need multilayer neural networks - to 
learn such problems as XOR. This resulted in a significant decline in interest to 
neurons and neural networks in 1970s.  

We will show later that this problem is the simplest possible problem, which 
can be solved by a single multi-valued neuron with a periodic activation function 
(Section 1.4 and Chapter 5). 

Thus, a principal limitation of the perceptron is its impossibility to learn non-
linearly separable input/output mappings. This limitation causes significant lack 
of the functionality and reduces a potential area of applications because the most 
of real-world pattern recognition and classification problems are non-linearly 
separable. 

The next significant limitation of the perceptron is its binary output. Thus, the 
perceptron can be used neither for solving multi-class classification problems 
(where the number of classes to be classified is greater than two) nor problems 
with a continuous output. 

In this book, starting from Section 1.4 and thereafter we will show how these 
limitations can easily be overcome with complex-valued neurons. Non-linearly 
separable binary problems and multiple-valued problems (including the nonline-
arly-separable ones) can be learned using a single multi-valued neuron. 

But first, to conclude our observation of neurons and neural networks, let us 
consider the most popular topologies of neural networks, which were proposed in 
1980s and which are now successfully used in complex-valued neural networks. 
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1.3   Neural Networks: Popular Topologies 

1.3.1   XOR Problem: Solution Using a Feedforward Neural  
Network 

As we have seen, the perceptron cannot learn non-linearly separable problems  
(input/output mappings). In the third part of his book [11], F. Rosenblatt proposed 
an idea of multilayer perceptron containing more than one layer of A-units (see 
Fig. 1.6). He projected that this neural network will be more functional and will be 
able to learn non-linearly separable problems. However, no learning algorithm for 
this network was proposed that time. In [13], M. Minsky and S. Papert presented 
their skeptical view on the “multilayer perceptron”. They did not hope that it will 
be more efficient than the classical single layer perceptron, probably because there 
was still no learning algorithm for a multilayer neural network. 

However, the existence of non-linearly separable problems was a great stimulus 
to develop new solutions. We will see starting from Section 1.4 how easily many 
of them can be solved using the multi-valued neuron. But first let us again take a 
historical view. A two-layer neural network containing three neurons in total, 
which can solve the XOR problem, is described, for example, in [2], where the 
paper [14] is cited as a source of this solution. We are not sure that this solution 
was presented for the first time definitely in [14]; most probably it was known ear-
lier. It is quite difficult to discover today who found this solution first. Neverthe-
less, let us consider it here. 

To solve the XOR problem within a "threshold basis" (using the threshold 
neuron), it is necessary to build a network from threshold neurons. Let us consider 
a network from three neurons (see Fig. 1.7a). This network contains the input 

layer, which distributes the input signals 1x  and 2x , one hidden layer containing 

Neurons 1 and 2 and one output layer containing a single Neuron 3. This is the 
simplest possible non-trivial multilayer feedforward neural network (MLF). It is 
the simplest possible network because it contains a minimum amount of layers and 
neurons to be non-trivial (two layers including one hidden layer and one output 
layer, two neurons in the hidden layer, and one neuron in the output layer). A net-
work is trivial if it contains just a single hidden neuron and a single output neuron. 
This network is called feedforward because there are no feedback connections 
there, all signals are transmitted through the network in a strictly feedforward 
manner. 

Let us remind that the function XOR may be presented in the full disjunctive 
normal form as follows: 

1 2 1 2 1 2 1 1 2 2 1 2( , ) ( , )x x x x x x f x x f x x⊕ = ∨ = ∨ , 

where 2 1 2 1 2( , )f x x x x=  is that function whose learning and implementation us-

ing the threshold neuron was considered in Example 1.3. Let us also remind that 
learning and implementation of the OR function, which connects functions 
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),( 211 xxf  and ),( 212 xxf  was considered in Example 1.2. Notice that func-

tion 1 1 2 1 2( , )f x x x x=  may be obtained by changing the order of variables in 

function 2 1 2 1 2( , )f x x x x= . It was shown in [6] that if some Boolean function is 

threshold, than any function obtained from the first one by the permutation of its 
variables is also threshold and its weighting vector can be obtained by the permu-
tation of the weights in the weighting vector of the first function corresponding to 
the permutation of the variables. 

 

  

(a) a two layer neural network with two in-
puts, with one hidden layer containing two 
neurons, and the output layer containing a 
single neuron 

(b) a two layer neural network with two inputs, 
with one hidden layer containing two neurons, 
and the output layer containing a single neuron. 
The weights that solve the XOR problem are 
assigned to the neurons 

Fig. 1.7 Simple neural networks 

 

The weight 0w  remains unchanged. Therefore a weighting vector 
1f

W  for 

1 1 2 1 2( , )f x x x x=  may be obtained from the one for 2 1 2 1 2( , )f x x x x=  by reor-

dering the weights 1w  and 2w . Since, as we found in Example 1.3 for function 

2 1 2 1 2( , )f x x x x= , 
2

(1, 3,3)fW = − , the weighting vector 
1

(1,3, 3)fW = −  im-

plements function 2 1 2 1 2( , )f x x x x=  using a single threshold neuron. It is easy to 

check that this weighting vector gives a correct realization of the function. 

This means that if Neuron 1 implements function 1 1 2( , )f x x , Neuron 2 im-

plements function ),( 212 xxf , and Neuron 3 implements the OR function, then 

the network presented in Fig. 1.7b implements the XOR function. Let us consider 

how it works. Thus, Neuron 1 operates with the weighting vector (1,3, 3)W = − , 

Neuron 2 operates with the weighting vector (1, 3,3)W = − , and Neuron 3 oper-

ates with the weighting vector )3,3,1(
~ −=W  (see Fig. 1.7b). The network works 

in the following way. There are no neurons in the input layer. It just distributes the 
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input signals among the hidden layer neurons. The input signals 1x  and x 2  are 

accepted in parallel from the input layer by both neurons from the hidden layer 
(N1 and N2). Their outputs are coming to the corresponding inputs of the single 
neuron in output layer (N3). The output of this neuron is the output of the entire 
network. The results are summarized in Table 1.5 (z is the weighted sum of the 
inputs). For all three neurons their weighted sums and outputs are shown. To be 
convinced that the network implements definitely the XOR function, its actual 
values are shown in the last column of Table 1.5. 

 
Table 1.5 Implementation of the XOR function using a neural network presented in Fig. 1.7b 

Inputs 
Neuron 1 Neuron 2 Neuron 3

1 2 xor x x
 

(1,3, 3)W
 

(1, 3,3)W
 

)3,3,1(~W
 

1x
 

x 2
 

Z 
sgn( )z  

output 
Z 

sgn( )z  

output 
Z 

sgn( )z  

output 

1 1 1 1 1 1 5 1 1 
1 -1 7 1 -5 -1 -1 -1 -1 
-1 1 -5 -1 7 1 -1 -1 -1 
-1 -1 1 1 1 1 5 1 1  

1.3.2   Popular Real-Valued Activation Functions 

As we see, a multilayer feedforward neural network (MLF) has a higher function-
ality compared to the perceptron. It can implement non-linearly separable in-
put/output mappings, while the perceptron cannot. Considering in the previous 
section how MLF may solve the XOR problem, we have not passed this problem 
through a learning algorithm; we just have synthesized the solution. However, the 
most wonderful property of MLF is its learning algorithm. MLF was first pro-
posed in [15] by D.E. Rumelhart, G.E. Hilton, and R.J. Williams. They also de-
scribed in the same paper the backpropagation learning algorithm. It is important 
to mention that a seminal idea behind the error backpropagation and its use to train 
a feedforward neural network belongs to Paul Werbos. He developed these ideas 
in his Harvard Ph. D. dissertation in 1974 and later he included it as a part in his 
book [16] (Chapters 1-6). 

It is also important to mention that starting from mid 1980s, especially from the 
moment when D. Rumelhart and his co-authors introduced MLF, threshold neu-
rons as basic neurons for building neural networks have moved to the background. 
It became much more interesting to learn and implement using  
neural networks continuous and multi-valued input/output mappings described by 

functions ( )1,..., : ,n
nf x x T T T→ ⊂ R , which was impossible using a hard-

limited threshold activation function sgn( )z .  
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Fig. 1.8 Logistic function Fig. 1.9 tanh function 

 

Typically, there have been considered [0,1]T =  or [ 1,1]T = − . Respec-

tively, new activation functions became very popular from mid 1980s. The most 
popular of them is a sigmoid activation function. It has two forms – the logistic 
function and the hyperbolic tangent function. Logistic function is as follows  

1
( )

1 z
z

e αϕ −=
+

, (1.22) 

 

(see Fig. 1.8), where α is a slope parameter. The curve in Fig. 1.8 got its name 
“sigmoid” from Pierre François Verhulst (in 1844 or 1845) who studied the popu-
lation growth described by (1.22). Evidently, the range of function (1.22) is 

] [0,1 , the function approaches 0 when z → −∞  and approaches 1 when 

z → ∞  (actually, the logistic function approaches its bounds with significantly 
smaller values of its argument as it is seen from Fig. 1.8). To obtain a sigmoid 

curve with the range ] [1,1− , the hyperbolic tangent function 
 

sinh
tanh

cosh

z z

z z

z e e
z

z e e

α α

α α
αα
α

−

−

−= =
+

, (1.23) 

 
should be used. The shape of function (1.23) is identical to the one of function 
(1.22) (see Fig. 1.9) with only distinction that the tanh function cross not the line 
y=0.5, but the horizontal axis at the origin and it is bounded from the bottom by 
the line y= -1. α in (1.23) is again a slope parameter and its role is identical to the 

one in (1.22). It is clear that if α → ∞  in (1.23), then tanh zα  approaches 

sgn( )z  (compare Fig. 1.2 and Fig. 1.9). 
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Why definitely sigmoid activation functions (1.22) and (1.23) became so popu-
lar? There are at least two reasons. The first reason is that on the one hand, they 
easily limit the range of the neuron output, but on the other hand, they drastically 
increase the neuron’s functionality making it possible to learn continuous and 
multiple-valued discrete input/output mappings. Secondly, they are increasing (we 
will see a little bit later that this is important to develop a computational model for 
approximation, which follows from the Kolmogorov’s theorem [17]). Their spe-
cific nonlinearity can be used for approximation of other highly nonlinear func-
tions. Finally, they are differentiable (which is important for the learning  
purposes; as it is well known and as we will see, the differentiability is critical for 
that backpropagation learning technique developed in [15, 16]. We will also see 
later (Chapter 4) that it will not be needed for the backpropagation learning algo-
rithm for a feedforward network based on multi-valued neurons).  

Another popular type of an activation function, which is used in real-valued 
neurons and neural networks, is radial basis function (RBF) first introduced by 
M.J.D. Powell [18] in 1985. RBF is a real-valued function whose value depends 

only on the distance from the origin ( )( )z zϕ ϕ=  or on the distance from 

some pre-determined other point c, called a center, so that 

( ) ( ),z c z cϕ ϕ= − , where  is the norm in the corresponding space. There 

are different functions that satisfy this property. Perhaps, the most popular of 
them, which is used in neural networks and machine learning is the Gaussian RBF 

2

( )
r

r e αϕ
⎛ ⎞−⎜ ⎟
⎝ ⎠=  [2, 5], where r z c= −  (c is the corresponding center), 0α >  is 

a parameter.  

1.3.3   Multilayer Feedforward Neural Network (MLF) and Its 
Backpropagation Learning 

Let us consider in more detail a network with perhaps the most popular topology, 
namely a multilayer feedforward neural network (MLF), also widely referred to as 
a multilayer perceptron (MLP) [15, 2]. We will also consider the basic principles 
of the backpropagation learning algorithm for this network. 

Typically, an MLF consists of a set of sensory units (source nodes – analogues 
of S-units in the perceptron) that constitute the input layer (which distributes input 
signals among the first hidden layer neurons), one or more hidden layers of  
neurons, and an output layer of neurons. We have already considered a simple ex-
ample of such a network, which solves the XOR problem. The input signals  
progresses through the network in a forward direction, on a layer-by-layer basis. 
An important property of MLF is its full connection architecture: the outputs of all 
neurons in a specified layer are connected to the corresponding inputs of all neu-
rons of the following layer (for example, the output of a neuron ij (the ith neuron 
from the jth layer) is connected to the ith input of all neurons from the j+1st layer).  
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Fig. 1.10 3-5-6-3 MLF – Multilayer Feedforward Neural Network. It has 3 inputs, the 1st 
hidden layer containing 5 neurons, the 2nd hidden layer containing 6 neurons and the output 
layer containing 3 neurons 

This means a full connection between consecutive layers (see Fig. 1.10). To spec-

ify a network topology, the notation 1 ... ...i s on n n n n− − − − − −  is used. Here 

n is the number of network inputs, , 1,...,in i s=  is the number of neurons in the 

ith hidden layer, s is the number of hidden layers, and on  is the number of neu-

rons in the output layer. 
This architecture is the result of a "universal approximator" computing model 

based on the famous Kolmogorov's Theorem [17]. This theorem states the follow-

ing. There exist fixed (universal) increasing continuous functions ( )ijh x  on 

[ ]0,1I =  such that each continuous function of n variables ( )1,..., nf x x  on 

nI  can be written in the form 

( ) ( )
2 1

1
1 1

,...,
n n

n j i i
j i

f x x g h x
+

= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑ , (1.24) 

where , 1,...,jg j n=  are some properly chosen continuous functions of one 

variable. 
This result states that any multivariate continuous function can be represented 

by the superposition of a small number of univariate continuous functions. It is 
clear that in terms of feedforward neural networks equation (1.24) describes a 
three layer feedforward neural network whose first two layers contain n and 2n+1  
 



28 1   Why We Need Complex-Valued Neural Networks?
 

neurons, respectively, and implement functions , 1,...,ih i n=  and 

, 1,..., 2 1jg j n= + , respectively. The output layer of this network contains a 

single neuron with the linear activation function (its output is equal to the 
weighted sum; according to (1.20) all weights of the output neuron are equal to 1 

except 0 0w = , there are no weighting coefficients in a front of 

, 1,..., 2 1jg j n= + ). It is well known that a multilayer feedforward neural net-

work is a universal approximator (for the first time this was clearly proven in [19] 
and [20]). 

However, the Kolmogorov’s Theorem, being very important, is a typical “exis-
tence theorem”. It justifies only the existence of the solution. It does not show a 

mechanism for finding functions , 1,...,ih i n=  and , 1,..., 2 1jg j n= + . To 

approach that solution, which exists according to the Kolmogorov’s Theorem, a 

feedforward neural network has to learn that function ( )1,..., nf x x , which we 

want to approximate. To implement the learning process, the backpropagation 
learning algorithm was suggested. A problem, which is necessary to solve, imple-
menting the learning process for a feedforward neural network, is finding the hid-
den neurons errors. While the exact errors of output neurons can be easily calcu-
lated as the differences between the desired and actual outputs, for all the hidden 
neurons their desired outputs are unknown and therefore there is no straightfor-
ward way to calculate their errors. But without the errors it is not possible to adjust 
the weights. 

The basic idea behind a backpropagation learning algorithm is sequential 
propagation of the errors of the neurons from the output layer through all the lay-
ers from the "right hand" side to the "left hand" side up to the first hidden layer 
(see Fig. 1.10), in order to calculate the errors of all other neurons. The heuristic 
idea is to share the errors of output neurons, which can be calculated because their 
desired outputs are known (unlike the ones of the hidden neurons), with all the 
hidden neurons. 

Basically, the entire learning process consists of two passes through all the dif-
ferent layers of the network: a forward pass and a backward pass. In the forward 
pass, the inputs are propagated from the input layer of the network to the first hid-
den layer and then, layer by layer, output signals from the hidden neurons are 
propagated to the corresponding inputs of the following layer neurons. Finally, a 
set of outputs is produced as the actual response of the network. Evidently, during 
the forward pass the synaptic weights of the network are all fixed. During the 
backward pass first the errors of all the neurons are calculated and then the 
weights of all the neurons are all adjusted in accordance with the learning rule. 
One complete iteration (epoch) of the learning process consists of a forward pass 
and a backward pass. 

Although the error backpropagation algorithm for MLF is well known, we 
would like to include its derivation here. In our opinion, this is important for the 
following two reasons. The first reason is to simplify perception of this book for 
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those readers (first of all for students) who are not the experts in neural networks 
and just make their first steps in this area. The second and even more important 
reason is to compare this derivation and the backpropagation learning algorithm 
for MLF with the ones for a complex-valued multilayer feedforward neural net-
work based on multi-valued neurons, which will be considered in Chapter 4. This 
comparison will be very important for understanding of significant advantages of 
complex-valued neural networks. 

In the derivation of the MLF backpropagation learning algorithm we mostly 
will follow here [2] and [5]. 

It is important to mention that the backpropagation learning algorithm is based 
on the generalization of the error-correction learning rule for the case of MLF. 
Specifically, the actual response of the network is subtracted from a desired re-
sponse to produce an error signal. This error signal is then propagated backward 
through the network, against the direction of synaptic connections – hence the 
name "backpropagation". The weights are adjusted so as to make the actual output 
of the network move closer to the desired output. A common property of a major 
part of real-valued feedforward neural networks is the use of sigmoid activation 
functions for its neurons. Let us use namely logistic function (1.22).  

Let us consider a multilayer neural network with traditional feedforward archi-
tecture (see Fig. 1.10), when the outputs of neurons of the input and hidden layers 
are connected to the corresponding inputs of the neurons from the following layer. 
Let us suppose that the network contains one input layer, m-1 hidden layers and 
one output layer. We will use here the following notations. 

Let 

kmD  - be a desired output of the kth neuron from the output (mth ) layer  

kmY  - be the actual output of the kth neuron from the output (mth) layer. 

Then a global error of the network related to the kth neuron of the output (mth) 
layer can be calculated as follows: 

*
km km kmD Yδ = −  - error for the kth neuron from output (mth) layer. (1.25) 

*
kmδ  denotes here and further a global error of the network. We have to distin-

guish it from the local errors kmδ  of the particular output neurons because each 

output neuron contributes to the global error equally with the hidden neurons. 
The learning algorithm for the classical MLF is derived from the considera-

tion that the global error of the network in terms of the mean square error (MSE) 
must be minimized. The functional of the error may be defined as follows: 

1

1 N

s
s

Ε E
N =

= ∑ , (1.26) 

where E denotes MSE, N is the total number of samples (patterns) in the learning 

set and sE  denotes the square error of the network for the sth pattern; 
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( ) ( )22 * , 1,...,s s s sE D Y s Nδ= − = =  for a single output neuron and 

( ) ( )2 2*

1 1

1 1
; 1,...,

m m

s s s

N N

s k k k
k km m

E D Y s N
N N

δ
= =

= − = =∑ ∑  for mN  output neu-

rons. For simplicity, but without loss of generality, we can consider minimization 
of a square error (SE) function instead of minimization the MSE function (1.26). 

The square error is defined as follows: 

* 2

1

1
( )

2

mN

km
k

E δ
=

= ∑ , (1.27) 

where mN  indicates the number of output neurons, 

* , 1,...,
s skm k kD Y s Nδ = − = , (1.28) 

m is the output layer index, and the factor 
2

1
 is used so as to simplify subsequent 

derivations resulting from the minimization of E . The error function (1.27) is a 
function of the weights. Indeed, it strictly depends on all the network weights. It is 
a principal assumption that the error depends not only on the weights of the neu-
rons at the output layer, but on all neurons of the network. 

Thus, a problem of learning can be reduced to finding a global minimum of 
(1.27) as a function of weights. In these terms, this is the optimization problem. 

The backpropagation is used to calculate the gradient of the error of the net-
work with respect to the network's modifiable weights. This gradient is then used 
in a gradient descent algorithm to find such weights that minimize the error. Thus, 
the minimization of the error function (1.27) (as well, as (1.26) ) is reduced to the 
search for those weights for all the neurons that ensure a minimal error. 

To ensure movement to the global minimum on each iteration, the correction of 
the weights of all the neurons has to be organized in such a way that each weight 

iw  has to be corrected by an amount iwΔ , which must be proportional to the  

partial derivative 
iw

E

∂
∂

 of the error function E(W) with respect to the weights [2].  

For the next analysis, the following notation will be used. Let 
kj
iw denote the 

weight corresponding to the ith input of the kth neuron at the jth layer. Further-

more let kjz , kjy  and ( )kj kj kjY y z=  represent the weighted sum (of the input 

signals), the activation function value, and the output value of the kth neuron at the 

jth layer, respectively. Let jN  be the number of neurons in the jth layer (notice 

that this means that neurons of the j+1st layer have exactly jN  inputs.) Finally, 
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recall that 1,..., nx x  denote the inputs to the network (and as such, also the inputs 

to the neurons of the first layer.) 

Then, taking into account that ( ) ( )( )( )E W E y z W=  and applying the 

chain rule for the differentiation, we obtain for the kth neuron at the output (mth) 
layer 

  1

( ) ( )
,    0,1,..., ,km km

mkm km
i km km i

y zE W E W
i N

w y z w −
∂ ∂∂ ∂= =

∂ ∂ ∂ ∂
 

where 

( )

2 2

2 *

1

( ) 1 1
( ) ( )

2 2

1 1
( ) ( ) ;

2 s s

km km
k kkm km km

N

km km km km km km km
skm km km

E W

y y y

D Y
y y y N

δ δ

δ δ δ δ δ

∗ ∗

∗ ∗ ∗ ∗

=

∂ ∂ ∂⎛ ⎞= = =⎜ ⎟∂ ∂ ∂⎝ ⎠
∂ ∂ ∂= = = − = −

∂ ∂ ∂

∑ ∑

∑
 

( ),km
km km

km

y
y z

z

∂ ′=
∂

 

and 

( )
1 10 1 1, 1 , 1 , 1

1

... ,

0,  1,  ...,  .

m m

km km kmkm
m N N m i mkm km

i i

m

z
w w Y w Y Y

w w

i N

− −− − −

−

∂ ∂= + + + =
∂ ∂
=

 

Then we obtain the following: 

( ) , 1 1

( ) ( )
,    0,  1,  ...,  ;km km

km km km i m mkm km
i km km i

y zE W E W
y z Y i N

w y z w
δ ∗

− −
∂ ∂∂ ∂ ′= = − =

∂ ∂ ∂ ∂
 

where 0, 1 1mY − ≡ . Finally, we obtain now the following 

( )
( )

, 1 11,...,( )

0,

km km km i m mkm
i km

i km km km

y z Y i NE W
w

w y z i

βδ
β

βδ

∗
− −

∗

′⎧ =∂ ⎪Δ = − = ⎨∂ ′ =⎪⎩
 (1.29) 

where 0β >  is a learning rate. 

The part of the rate of change of the square error E(W) with respect to the  
input weight of a neuron, which is independent of the value of the corresponding 
input signal to that neuron, is called the local error (or simply the error) of that 
neuron. Accordingly, the local error of the kth neuron of the output layer, denoted 

by kmδ , is given by 
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( ) ; 1,...,km km km km my z k Nδ δ ∗′= ⋅ = . (1.30) 

It is important that we differ local errors of output neurons presented by (1.30) from 
the global errors of the network presented by (1.28) and taken from the same neu-
rons. Respectively, taking into account (1.30), we can transform (1.29) as follows: 

, 1 11,...,( )

0,
km km i m m
i km

i km

Y i NE W
w

w i

βδβ
βδ

− −⎧ =∂Δ = − = ⎨∂ =⎩
 (1.31) 

Let us now find the hidden neurons errors. To find them, we have to backpropa-
gate the output neurons errors (1.30) to the hidden layers. To propagate the output 
neurons errors to the neurons of all hidden layers, a sequential error backpropaga-
tion through the network from the mth layer to the m-1st one, from the m-1st one to 
the m-2nd one, ..., from the 3rd one to the 2nd one, and from the 2nd one to the 1st 
one has to be done. When the error is propagated from the layer j+1 to the layer j, 
the local error of each neuron of the j+1st layer is multiplied by the weight of the 
path connecting the corresponding input of this neuron at the j+1st layer with the 

corresponding output of the neuron at the jth layer. For example, the error , 1i jδ +  

of the ith neuron at the j+1st layer is propagated to the kth neuron at the jth layer, 

multiplying , 1i jδ +  with , 1i j
kw + , namely the weight corresponding to the kth input 

of the ith neuron at the j+1st layer. This analysis leads to the following expression 
for the error of the kth neuron from the jth layer: 

( )
1

, 1
, 1

1

; 1,...,
jN

i j
kj kj kj i j k j

k

y z w k Nδ δ
+

+
+

=

′= =∑ .  (1.32) 

It should be mentioned that equations (1.29)-(1.32) are obtained for the general 
case, without the connection with some specific activation function. Since we 
agreed above that we use a logistic function (1.22) in our MLF, a derivative of this 
function is the following (let us take for simplicity, but without loss of generality, 

1α =  in (1.22)): 

( )

( )

1 21
( ) ( ) (1 ) (1 ) ( )

1

( ) ( ) 1 ( )
(1 )(1 ) (1 )

z z z
z

z z

z z z

y z z e e e
e

e e
y z y z y z

e e e

ϕ − − − − −
−

− −

− − −

′ ′⎛ ⎞′ ′= = = + = − + ⋅ − =⎜ ⎟+⎝ ⎠

= = = −
+ + +
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Thus ( )( ) ( ) ( ) 1 ( )y z z y z y zϕ′ ′= = −  and substituting this to (1.32) we obtain 

the equation for the error of the MLF hidden neurons (the kth neuron from the jth 
layer) with the logistic activation function: 

( ) ( )
1

, 1
, 1

1

1 ( ) ; 1,...,
jN

i j
kj kj kj kj kj i j k j

i

y z y z w k Nδ δ
+

+
+

=

= ⋅ − =∑ .  (1.33) 

Once all the errors are known, (1.30) determine the output neurons errors and 
(1.33) determine the hidden neurons errors, and all the weights can be easily ad-
justed by adding the adjusting term wΔ  to the corresponding weight. For the out-
put neurons this term was already derived and it is shown in (1.31). For all the 
hidden neurons it can be derived in the same way and it is equal for the first hid-
den layer neurons to  

1 1
1

1

, 1,...,( )

0,
k k i
i k

i k

x i nE W
w

w i

βδ
β

βδ
⎧ =∂Δ = − = ⎨∂ =⎩

 (1.34) 

where 1,..., nx x  are the network inputs, n is the number of them, and β is a learn-

ing rate. For the rest of hidden neurons 

, 1 1,   1,...,( )
, 0,

2,..., 1.

kj i j mkj
i kj

kji

Y i NE W
w

iw

j m

βδ
β

βδ
− −=⎧∂Δ = − = ⎨ =∂ ⎩

= −
 (1.35) 

All the network weights can now be adjusted taking into account (1.31), (1.34) 

and (1.35) as follows (we consider 0N n=  - the number of “neurons” in the first 

layer is equal to the number of network inputs, there are m-1 hidden layers in the 
network and the mth layer is the output one). Thus, for the kth neuron in the jth 
layer we have 

1; 0,..., ; 1,..., ; 1,...,kj kj kj
i i i j jw w w i N k N j m−= + Δ = = = .  (1.36) 

Thus, the derivation and description of the MLF learning algorithm with the  
error backpropagation is completed. In practice, the learning process should  
continue either until MSE or RMSE drops below some reasonable pre-defined 
minimum or until some pre-determined number of learning iterations is exceeded. 

It is important to mention that this learning algorithm was really revolutionary. 
It opened absolutely new opportunities for using neural networks for solving clas-
sification and prediction problems that are described by non-linearly separable 
discrete and continuous functions. 

However, we have to point out some specific limitations and disadvantages of 
this algorithm.  
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1) The backpropagation learning algorithm for MLF is developed as a method 
of solving the optimization problem. Its target is to find a global minimum of the 
error function. As all other such optimization methods, it suffers from a “local 
minima” phenomenon (see Fig. 1.11). 

 

Fig. 1.11 A “local minima” phenomenon. The learning process may get stuck in a local 
minimum area. To reach a global minimum, it is necessary to jump over a local minimum 
using a proper learning rate. 

The error function may have many local minima points. A gradient descent 
method, which is used in the MLF backpropagation learning algorithm, may lead 
the learning process to the closest local minimum where the learning process may 
get stuck. This is a serious problem and it has no regular solution. The only 
method of how to jump over a local minimum is to “play” with the learning rate β 
in (1.31), (1.34), and (1.35) increasing a step of learning. There are many recom-
mendations on how to do that; however all of them are not universal and cannot 
guarantee that a global minimum of the error function will be reached.  

2) Since the MLF backpropagation learning is reduced to solving the optimiza-
tion problem, an activation function, which is used in MLF neurons, must be dif-
ferentiable. This is a limitation, because, for example, discrete-valued activation 
functions cannot be used with this learning algorithm at all, since they are not dif-
ferentiable. This complicates using MLF as a multi-class classifier and typically it 
is used just for two-class classification. In this case, the right “half” of the sigmoid 
activation function is truncated to “1” and the left half to “-1” or 0. For example, 
for functions (1.22) and (1.23) this means, respectively,  
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3) Sigmoid functions (1.22) and (1.23) are nonlinear, but their flexibility for 
approximation of highly nonlinear functions with multiple irregular jumps is lim-
ited. Hence, if we need to learn highly nonlinear functions, it is often necessary to 
extend a network by more hidden neurons. 

4) Extension of a network leads to complications during the learning process. 
The more hidden neurons are in the network, the more is level of heuristics in the 
backpropagation algorithm. Indeed, the hidden neurons desired outputs and the 
exact errors are never known. The hidden layer errors can be calculated only on 
the base of the backpropagation learning algorithm, which is based on the heuris-
tic assumption on the dependence of the error of each neuron on the errors of 
those neurons to which this neuron is connected. Increasing of the total number of 
weights in the network leads to complications in solving the optimization problem 
of the error functional minimization. 

These remarks are important for us. When we will consider a backpropagation 
learning algorithm for the complex-valued multilayer feedforward neural network 
based on multi-valued neurons (Chapter 4), we will see that this network and its 
learning algorithm do not suffer from the mentioned disadvantages and limitations. 

1.3.4   Hopfield Neural Network 

In 1982, John Hopfield proposed a fully connected recurrent neural network with 
feedback links [21]. The Hopfield Neural Network is a multiple-loop feedback 
neural network, which can be used first of all as an associative memory. All the 
neurons in this network are connected to all other neurons except to themselves 
that is there are no self-feedbacks in the network (see Fig. 1.12). Thus, the Hop-
field network is a fully connected neural network. Initially, J. Hopfield proposed 
to use the binary threshold neurons with activation function (1.1) as the basic ones 
in this network. 

The weight ijw  corresponds to the synaptic connection of the ith neuron and 

the jth neuron. It is important that in the Hopfield network, for the ith and jth neu-

rons ij jiw w= . Since there is no self-connection, 0iiw = . The network works 

cyclically updating the states of the neurons. The output of the jth neuron at cycle 
1t +  is 

( ) ( )01 j
j ij i

i j

s t w w s tϕ
≠

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
∑ . (1.37) 
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a) The Hopfield neural network with 8 neurons b) The Hopfield neural network with 4  
neurons4 

Fig. 1.12 Hopfield Neural Network 

 
A main idea behind the Hopfield net is to use it as the associative memory (con-

tent-addressable memory). Initially this idea was suggested by Teuvo Kohonen in 
[22], but D. Hopfield comprehensively developed it in his seminal work [21], 
which was a great stimulus for the further development of neural networks after a 
“skeptical period” in 1970s caused by the M. Minsky’s and S. Papert’s analysis of 
limited capabilities of the perceptron [13]. The associative memory may learn pat-
terns (for, example, if we want to store n x m images in the associative memory, 
we should take the n x m Hopfield network whose each neuron learns the intensity 
values in the corresponding pixels; in this case, there is a one-to-one correspon-
dence between a set of pixels and a set of neurons). The Hebbian learning rule 
(1.3) or (1.4) can be effectively used for learning. After the learning process is 
completed, the associative memory may retrieve those patterns, which were 
learned, even from their fragments or from distorted (noisy or corrupted) patterns. 
The retrieval process is iterative and recurrent as it is seen from (1.37) (t is the 
number of cycle-iteration). D. Hopfield showed in [21] that this retrieval process 
always converges. A set of states of all the neurons on the tth cycle is called a 
state of the network. The network state on tth cycle is the network input for the 
t+1st cycle. The network is characterized by its energy corresponding to the cur-
rent state. The energy is determined [21] as 

( ) ( ) ( )0

1

2
i

t ij i j i
i j i

E w s t s t w s t= − +∑∑ ∑ . (1.38) 

Updating its states during the retrieval process, the network converges to the local 
minimum of the energy function (1.38), which is a stable state of the network. 
                                                           
4 This picture is taken from Wikipedia, the free encyclopedia, 

http://en.wikipedia.org/wiki/File:Hopfield-net.png  
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Once the network reaches its stable state, the retrieval process should be stopped. 
In practical implementation, the retrieval process should continue either until 
some pre-determined minimum of the energy function (1.38) is reached or until 
MSE or RMSE between the states on cycle t and t+1 drop below some pre-
determined minimum. 

In [23], D. Hopfield generalized all principles that he developed in [21] for  
a binary network with threshold neurons for a network with neurons with a  
continuous monotonic increasing and bounded activation function (for example, a 
sigmoid function) and with continuous states. 

It is important to mention that the Hopfield neural network not only is the first 
comprehensively developed recurrent neural network. It also stimulated active re-
search in areas of neural networks and dynamical systems in general. It is also 
worth to mention that the Hopfield network with continuous real-valued neurons 
suffers from disadvantages and limitations similar to the ones for MLF. For exam-
ple, it is difficult to use such a network to store gray-scale images with 256 or 
more gray levels because local minima of the energy function are all located  
close to the corners of a unitary hypercube. Thus, a stable state of the network 
tends to a binary state. In Chapter 6, we will observe complex-valued associative 
memories based on networks with multi-valued neurons that do not suffer from 
these disadvantages. 

1.3.5   Cellular Neural Network 

The Hopfield neural network as we have seen is a fully connected network. The 
MLF is a network with full feedforward connections among adjacent layers  
neurons. We have also seen that the Hopfield network is a recurrent network. It 
updates its states iteratively until a stable state is reached. In 1988, Leon Chua and 
Lin Yang proposed another recurrent network with local connections [24] where 
each neuron is connected just with neurons from its closest neighborhood. They 
called it the cellular neural network (CNN). One of the initial ideas behind this 
network topology was to use it for image processing purposes. Since the correla-
tion and respectively a mutual dependence between image pixels in any local  
n x m window is high, the idea was to create a recurrent neural network containing 
the same amount of neurons as the amount of pixels in an image to be processed. 
Local connections between the neurons could be used for implementation of vari-
ous spatial domain filters, edge detectors, etc.  

For example, CNN with 3x3 local connections is shown in Fig. 1.13. This net-
work contains N M×  neurons and it is very suitable for processing N M×  im-
ages. The output of each neuron is connected to the corresponding inputs of 8 neu-
rons closest to the given neuron (all neurons from a 3x3 neighborhood of a given 
neuron) and only to them, while outputs of these 8 adjacent neurons are connected 
to the corresponding inputs of a given neuron and there are only inputs of a given 
neuron. Unlike the Hopfield net, CNN allows a feedback connection, so each neu-
ron may have one input receiving a signal from its own output. CNN is a recurrent 
network. Like the Hopfield network, it updates its states iteratively until a stable  
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state is reached. CNN can be a 
binary network with the thresh-
old neurons, but it can be based 
also on neurons with other acti-
vation functions, which makes it 
possible to implement different 
linear (using a piecewise linear 
activation function) and nonlin-
ear (using nonlinear activation 
functions) filters. 

Unlike it is in the Hopfield 
network, weights in CNN are not 
symmetric. Each neuron is in-
dexed by two indexes-
coordinates. The weight corre-
sponding to the ith input of the 

kjth neuron is denoted 
kj
iw . As we told, the network works cyclically updating the 

states of the neurons. The output of the kjth neuron at cycle 1t +  is 

( ) ( )01 ;

2 2, 2 2,

kj kj
kj i rp

i

s t w w s t

k d r k d j d p j d

ϕ ⎛ ⎞+ = +⎜ ⎟
⎝ ⎠

− + ≤ ≤ + − − + ≤ ≤ + −

∑
 (1.39) 

where φ is an activation function and d is the closest neighborhood size (for ex-

ample, for a 3x3 local window 3d = ). In the CNN community, a very popular 
topic is mutual influence of a given neuron and those neurons connected to it. This 
is important for investigation of the stability of the network. In the context of this 
book, it will be enough for us to consider just equation (1.39), which determines 
the output of each neuron. The most interesting for us will be CNN based on 
multi-valued neurons, which can be successfully used as an associative memory 
(see Chapter 6, Section 6.3), significantly increasing the CNN functionality. 

1.4   Introduction to Complex-Valued Neurons and Neural  
Networks 

1.4   Introduction to Complex-Valued Ne urons and Neura l Networ ks 

1.4.1   Why We Need Them? 

We have already mentioned that complex numbers are absolutely natural, as 
well as real numbers. From this point of view, complex-valued neurons are  
natural too. 
 
 

 

Fig. 1.13 Cellular Neural Network with 3x3 local 
connections 
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But additionally there are at least three very significant reasons for using com-
plex-valued neurons and neural networks. These reasons are:  

1) Unlike a single real-valued neuron, a single complex-valued neuron may 
learn non-linearly separable problems (a great variety of them) in that initial n-
dimensional space where they are defined, without any nonlinear projection to a 
higher dimensional space (very popular kernel-based techniques, and the most 
popular and powerful of them – the support vector machines (SVM)5 proposed by 
Vladimir Vapnik [25, 26] are based on this approach). Thus, a complex-valued 
neuron is much more functional than a real-valued one. 

2) Many real-world problems, especially in signal processing, can be described 
properly only in the frequency domain where complex numbers are as natural as 
integer numbers in counting. In the frequency domain, it is essential to treat the 
amplitude and phase properly. But there is no way to have deal with the phase 
phenomenon without complex numbers. If we want to analyze any process, in 
which phase is involved, we should definitely use complex numbers and tools that 
are suitable for working with them. If we treate the phase as just real numbers be-

longing to the interval [ [0,2π  or [ [,π π− , then we make a great mistake, be-

cause in this way the physical nature of the phase is completely eliminated. 
3) Since the functionality of a single complex-valued neuron is higher than the 

one of a single real-valued neuron, the functionality of complex-valued neural 
networks is also higher than the functionality of their real-valued counterparts. A 
smaller complex-valued neural network can learn faster and generalize better than 
a real-valued neural network. This is true for feedforward complex-valued net-
works and for Hopfield-like complex-valued networks. More functional neurons 
connected into a network ensure that this network also is more functional than its 
real-valued counterpart. We will see below (Chapter 4) that, for example, a feed-
forward multilayer neural network with multi-valued neurons (MLMVN) com-
pletely outperforms MLF. Even smaller MLMVN learns faster and generalizes 
better than larger MLF. Moreover, there are many problems, which MLF is not 
able to solve successfully, while MLMVN can. We will also see that a Hopfield-
like neural network with multi-valued neurons can store much more patterns and 
has better retrieval rate as an associative memory, than a classical Hopfield net-
work (Chapter 6, Section 6.3). Moreover, we will also see that just partially con-
nected neural network with multi-valued neurons can also be used as a very pow-
erful associative memory.  

However, it is important for better understanding of the foregoing Chapters, to 
consider right now the first two of three mentioned reasons in more detail. 

                                                           
5 While we presented in detail the most important classical neural network techniques, we 

do not present here in detail the SVM essentials. We believe that the interested reader can 
easily find many sources where SVM are described in detail. This book is devoted to 
complex-valued neural networks, but at least so far no complex-valued SVM were con-
sidered. However, we will compare a number of CVNN techniques presented in this book 
with SVM in terms of number of parameters they employ and generalization capability. 
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1.4.2   Higher Functionality 

We have briefly observed what a neuron is, and what a neural network is. We have 
also observed not all, but the most important turning-points in real-valued  
artificial neurons and neural networks. We have mentioned several times that real-
valued neurons and real-valued neural networks have some specific limitations. 
May be the most important of these limitations is impossibility of a single real-
valued neuron to learn non-linearly separable input/output mappings in that initial 
linear n-dimensional space where the corresponding input/output mapping is  
defined. The classical example of such a problem, which cannot be learned by a 
single real-valued neuron due to its non-linear separability, is XOR as we have 
seen.  
 
Table 1.6 Threshold neuron implements ( )1 2 1 2,  xor f x x x x=  function with the weighting 

vector (0, 1, 1, 2) in 3-dimensional space 1 2 1 2( , , )x x x x  

1x  2x  1 2x x  0 1 1 2 2 3 1 2z w w x w x w x x= + + + sgn( )z ( )1 2 1 2,  xor f x x x x=  

1 1 1 4 1 1 
1 -1 -1 -2 -1 -1 
-1 1 -1 -2 -1 -1 
-1 -1 1 0 1 -1 

 
The reader may notice that the XOR problem can be learned using a single real-

valued threshold neuron if the initial 2-dimensional space 
2
2E  where it is defined, 

will be nonlinearly extended to the 3-dimensional space by adding to the two inputs 

1x  and 2x  a nonlinear (quadratic) third input 1 2x x , which is determined by the 

product of the two initial inputs [27]. Indeed, let us consider the space 

( )1 2 1 2, ,x x x x , which is obtained from 
2
2E  by adding a quadratic term and, for ex-

ample, the weighting vector ( )0,1,1, 2W = 6. This solution is shown in Table 1.6.  
Actually, this solution confirms the Cover's theorem [28] on the separability of 

patterns, which states that a pattern classification problem is more likely to be line-
arly separable in a high dimensional feature space when nonlinearly projected into 
a high dimensional space. In fact, all kernel-based machine learning techniques in-
cluding SVM are based on this approach. If some problem is non-linearly separable 
in that initial n-dimensional space where it is defined (for example, some classifica-
tion problem described by some n features), it can be projected nonlinearly into a 
higher dimensional space where it becomes linearly separable. We have to under-
stand that any feedforward neural network is also doing the same. It extends the  

                                                           
6 We could also use here the weighting vector ( )0,0,0,1W = . 
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initial space (if it contains more neurons in any hidden layer than network inputs) 
or at least transforms it nonlinearly into another space. When we considered in Sec-
tion 1.3 solution of the XOR problem using MLF (see Fig. 1.7 and Table 1.5) con-
taining three neurons and two layers, we nonlinearly projected initial space 

( )1 2,x x  into another (functional) space ( ) ( )( )1 1 2 2,f x f x  using the first layer 

neurons where the problem becames linearly separable using the third (output) neu-
ron. This transformation is in fact nonlinear because it is implemented through a 
nonlinear activation function of neurons. 

Nevertheless, is it possible to learn non-linearly separable problems using a 
single neuron without the extension or transformation of the initial space? The an-
swer is “Yes!” It is just necessary to move to the complex domain!  

In all neurons and neural networks that we have considered so far weights and 
inputs are real and weighted sums are real, respectively. Let us consider now 
complex-valued weights. Thus, weights can be arbitrary complex numbers. Inputs 
and outputs will still be real. Moreover, lest us consider even a narrow case of bi-
nary inputs and outputs. So, our input/output mapping is described by the function 

( )1 2 2,..., : n
nf x x E E→ , which is a Boolean function. However, since our 

weights are complex ( , 0,1,...,iw i n∈ =C ) and inputs are real 

{ }2 1, 1ix E∈ = − , a weighted sum is definitely complex 

0 1 1 ... n nw w x w x z+ + + = ∈C . This means, that an activation function must be 

a function from C  to 2E . Let us define the following activation function 

( ) 1,  if 0 arg / 2  or arg 3 / 2

1,  if / 2 arg  or 3 / 2 arg 2 ,

z z
z

z z

π π π
ϕ

π π π π
≤ < ≤ <⎧

= ⎨− ≤ < ≤ <⎩
 (1.40) 

where arg z  is the argument of the complex number z in the range [ [0,2π . Evi-

dently ( )zϕ  maps C  to 2E , so ( ) 2:z Eϕ →C . Activation function (1.40)  

divides the complex plane into 4 sectors (see Fig. 1.14) that coincide with the 
quarters of the complex plane formed by its separation with real and imaginary 

axes. Depending on arg z , ( )zϕ  is equal to 

1 in the 0th and the 2nd sectors (the 1st and  
the 3rd quarters) and to -1 in the 1st and the 3rd 
sectors (the 2nd and the 4th quarters).  

Let us return to the most popular classical 
example of non-linearly separable problem – 
XOR. Let us show that a single neuron  
with the activation function (1.40) can easily 
implement the non-linearly separable XOR 
function without any extension of the original  
 

 

Fig. 1.14 Activation function (1.40) 
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Table 1.7 A complex-valued neuron with the activation function (1.40) implements the 

( )1 2 1 2,  xor f x x x x=  function with the weighting vector (0, i, 1) in the original  

2-dimensional space 

1x  2x  0 1 1 2 2z w w x w x= + +
 

arg( )z  ( )zϕ
 ( )1 2 1 2,  xor f x x x x=  

1 1 1i +  / 4π  1 1 

1 -1 1i −  3 / 4π  -1 -1 

-1 1 1i− +  5 / 4π  -1 -1 

-1 -1 1i− −  7 / 4π  1 -1 

 

2-dimensional space. Let us take the weighting vector ( )0, ,1W i=  (i is an 

imaginary unity). The results are shown in Table 1.7. 
These results shows that the XOR problem, which was for many years, on the 

one hand, a stumbling block in neurons theory [13] and, on the other hand, was a 
main argument for necessity of neural networks due to a limited functionality of a 
single neuron, can in fact be easily solved using a single neuron! But what is the 
most important – this is a single neuron with the complex-valued weights! This 
solution was for the first time shown by the author of this book in 1985 [29] and 
then it was deeply theoretically justified by him in [30]. 

The ability of a single neuron with complex-valued weights to solve non-linearly 
separable problems like XOR clearly shows that a single complex-valued neuron 
has a higher functionality than a single real-valued neuron. This is a crucial point! 

We will show later (Chapter 5) why those problems that are non-linearly separa-

ble in the space nR  (or its subspace) can be linearly separable in the space nC  or 
its subspace. We will see there that problems like XOR and Parity n (n-input XOR 
or mod 2 sum of n variables) are likely the simplest non-linearly separable prob-
lems that can be learned by a single complex-valued neuron. We will also show 
that activation function (1.40) is a particular case of the 2-valued periodic activa-
tion function, which determines a universal binary neuron (UBN), which in turn is 
a particular case of the multi-valued neuron with a periodic activation function. 

1.4.3   Importance of Phase and Its Proper Treatment 

We have already mentioned that there are many engineering problems in the mod-
ern world where complex-valued signals and functions of complex variables are 
involved and where they are unavoidable. Thus, to employ neural networks for 
their analysis the use of complex-valued neural networks is natural.  

However, even in the analysis of real-valued signals (for example, images or 
audio signals) one of the most efficient approaches is the frequency domain analy-
sis, which immediately involves complex numbers. In fact, analyzing signal prop-
erties in the frequency domain, we see that each signal is characterized by magni-
tude and phase that carry different information about the signal. A fundamental 
result showing the crucial importance of phase and its proper treatment was  
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presented in 1981 by Alan Oppenheim and Jae Lim [31]. They have considered, 
particularly, the importance of phase in images. They have shown that the infor-
mation about all the edges, shapes, and, respectively, about all the objects located 
in an image, is completely contained in phase. Magnitude contains just the infor-
mation about the contrast, about contribution of certain frequencies in the forma-
tion of an image, about the noisy component in the image, but not about what is 
located there. Thus, phase is much more informative and important for image un-
derstanding and interpretation and for image recognition, respectively. 

 

 
These properties can be easily confirmed by the experiments that are illustrated in 
Fig. 1.15. Let us take two well known test images7 “Lena” (Fig. 1.15a) and  
                                                           
7 These test images have been downloaded from the University of Sothern California test 

image database “The USC-SIPI Image Database”, http://sipi.usc.edu/database/ 

  
(a) Original image “Lena” (b) Original image “Airplane” 

  
(c) Image obtained by taking the inverse Fourier 
transform from the synthesized spectrum (mag-
nitude of the “Airplane” original spectrum and 
phase of the “Lena” original spectrum)  

(d) Image obtained by taking the inverse Fou-
rier transform from the synthesized spectrum 
(magnitude of the “Lena” original spectrum 
and phase of the “Airplane” original spectrum) 

Fig. 1.15 The importance of phase 
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“Airplane” (Fig. 1.15b). Let us take their Fourier transform and then swap magni-
tudes and phases of their Fourier spectra. 

Thus, we synthesize one spectrum from magnitude of the “Airplane” spectrum 
and phase of the “Lena” spectrum and another one from phase of the “Airplane” 
spectrum and magnitude of “Lena” spectrum. Let us now take the inverse Fourier 
transform from both synthesized spectra. The results are shown in Fig. 1.15c and 
Fig. 1.15d, respectively. It is very clearly visible that definitely those images were 
restored whose phases were used in the corresponding synthesized spectra. In  
Fig. 1.15c we see just the “Lena” image, while in Fig. 1.15d we see just the “Air-
plane” image. There is no single trace of those images whose magnitudes were 
used in the synthesized Fourier spectra from which images in Fig. 1.15c and  
Fig. 1.15d have been obtained. 

Another interesting experiment is illustrated in Fig. 1.16. We took the Fourier 
spectra of the same original images “Lena” (Fig. 1.15a) and “Airplane” (Fig. 1.15b). 
Then magnitudes in both spectra were replaced by the constant 1, while phases were 
preserved. Thus, magnitudes became “unitary”. Then we took the inverse Fourier 
transform from these modified spectra with “unitary” magnitude. The results are 
shown in Fig. 1.16a (“Lena”) and Fig. 1.16b (“Airplane”). It is clearly seen that all 
edges, shapes, and even the smallest details from the original images are preserved. 
Since images in Fig. 1.16 were obtained just from phase (magnitude was eliminated 
by setting all its values to 1), this confirms that all information about the edges, 
shapes, objects and their orientation is contained only in phase. 

 

These wonderful properties of phase are determined by its physical nature. The 
Fourier transform express any signal in terms of the sum of its projections onto a 
set of basic functions that represent those electromagnetic waves, which form this 

  
a) Image obtained by taking the inverse 
Fourier transform from the synthesized spec-
trum (“unitary” magnitude (constant 1) and 
phase of the “Lena” original spectrum)  

b) Image obtained by taking the inverse  
Fourier transform from the synthesized spec-
trum (“unitary” magnitude (constant 1) and 
phase of the “Airplane” original spectrum) 

Fig. 1.16 The importance of phase  
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signal. Hence, the Fourier transform is the decomposition of a signal by these ba-
sic functions that are defined as  

( ) ( )2 cos 2 sin 2i ute ut i utπ π π= + , (1.41) 

or in the discrete case 

2 2 2
cos sin ; , 0,1,..., 1i uke uk i uk u k n

n n
π π π⎛ ⎞ ⎛ ⎞= + = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (1.42) 

where u is the corresponding frequency. The Fourier spectrum of the continuous 

signal ( )f t  is 

( ) ( ) ( ) ( )2 i ui utF u f t e F u e ϕπ−= =∫ , (1.43) 

where ( )F u  is magnitude and ( )uϕ  is phase. For the discrete signal 

( ) , 0,1,..., 1f k k n= − , equation (1.43) is transformed as follows 

( ) ( ) ( ) ( )
1

2

0

; 0,1,..., 1
n

i ui uk

k

F u f k e F e u nϕπ ω
−

−

=

= = = −∑ , (1.44) 

where each ( ) ( ) , 0,1,..., 1i uF u e u nϕ = −  is referred to as a spectral coefficient 

or a decomposition coefficient. ( )F u  is the absolute value (magnitude) of the 

uth spectral coefficient and ( ) ( )argu F uϕ =  is the argument (phase) of this 

spectral coefficient. To reconstruct a signal from (1.43), we have to perform the 
inverse Fourier transform  

( ) ( ) 21

2
i utf t F e πω

π
= ∫ . (1.45) 

To reconstruct a signal from (1.44) in the discrete case, we have to perform the in-
verse Fourier transform – to find a sum of basic functions (waves) (1.42) with the 
coefficients (1.44): 

( ) ( )
1

2

0

1
; 0,1,..., 1

n
i uk

u

f k F e k n
n

πω
−

=

= = −∑ . (1.46) 

In (1.41) and (1.42) that are the basic functions of the Fourier transform, the elec-
tromagnetic waves corresponding to all frequencies have a zero phase shift. Let us 
set 2 uπ ω=  in (1.41). Then the corresponding basic function of the Fourier 

transform is ( ) ( )cos siniute ut i ut= + . Respectively, (1.45) can be written as 

follows 
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( ) ( )1

2
i tf t F e ωω

π
= ∫ . (1.47) 

 

Let us take a look at Fig. 1.17a. It shows a sinusoidal wave ( )sin 2 utπ  for 

1u = . According to (1.46) and (1.47), after this sinusoidal wave is multiplied with 

the Fourier spectral coefficient ( )F u , its absolute value (magnitude) is equal  

 

 

                                                           
8 To create these pictures, we used a wonderful tool located at 

http://www.ugrad.math.ubc.ca/coursedoc/math100/notes/trig/phase.html  
(this is a site of University of British Columbia, Canada) 

  
a) Electromagnetic wave ( )sin 1 t⋅ ;  

phase shift φ=0; magnitude A=1 

b) Electromagnetic wave ( )2sin 1 t⋅ ;  

phase shift φ=0; magnitude A=2 

  

c) Electromagnetic wave ( )( )sin 1 2t⋅ + ;  

phase shift φ=2; magnitude A=1 

d)  Electromagnetic wave ( )( )2sin 1 2t⋅ + ;  

phase shift φ=2; magnitude A=2 

Fig. 1.17 A role of phase and magnitude in the Fourier transform. Phase in a Fourier trans-
form coefficient shows the phase shift for the electromagnetic wave with the frequency  
corresponding to the given Fourier transform coefficient. The phase shift is a carrier of  
information about a signal concentrated in the wave with the corresponding frequency. 
Magnitude  in a Fourier transform coefficient just shows the intensity (the “weight”) of the 
wave corresponding  to the given frequency in the formation of a signal8 
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to ( ) ( )cos sini tA e A t i tω ω ω= +  where ( )A F u= . Fig. 1.17b shows a 

sinusoidal wave ( )sin 2A utπ  for 1u =  and ( ) 2A F u= = . The phase shift 

of these both electromagnetic waves is equal to 0. Thus, if a sinusoidal wave has a 

basic form ( )sinA tω ϕ+ , then waves in Fig. 1.17a and Fig. 1.17b have 0ϕ = . 

It follows from (1.47) that ( ) ( ) ( )( )( )arg2 i t F ui utF u e F u e
ωπ +=  because the ar-

gument of the product of two complex numbers is equal to the sum of multipliers’ 
arguments, while the magnitude of the product is equal to the product of magni-

tudes (take into account that 2 1i ute π = ). Fig. 1.17c and Fig. 1.17d show sinusoi-

dal waves ( )sinA tω ϕ+  with the phase shift 2ϕ = . These waves could be ob-

tained by multiplication of the “standard” wave ( )sin tω  by such ( )F u  that 

( )arg 2F u = . For the sinusoidal wave in Fig. 1.17c, ( ) 1A F u= = , while 

for the one in Fig. 1.17d, ( ) 2A F u= = . Hence, the sinusoidal waves in  

Fig. 1.17a, b have the same phase shifts and different magnitudes, and the sinusoi-
dal waves in Fig. 1.17c, d have the same phase shifts and different magnitudes. 

As we see, the phase shift is nothing else than phase of the Fourier transform 
coefficient corresponding to a wave with the certain frequency. This shift deter-
mines the contribution of this wave to the shape of a signal after its reconstruction 

from the Fourier 
transform while 
magnitude plays only 
subsidiary role. 

Hopefully, it is 
clear now why all 
shapes and even all 
details of images in 
Fig. 1.16 were suc-
cessfully recon-
structed from the Fou-
rier transform whose 
magnitude was com-
pletely eliminated and 
replaced by the con-
stant 1. It is also clear 
now how images in 
Fig. 1.15 were recon-

structed just from the original phases of their Fourier spectra, while their magnitudes 
were swapped.  

 

Fig. 1.18 Importance of proper treatment of phase as an angle 
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This means that phase is a very important carrier of information about those ob-
jects that are presented by a signal. This information can be used, for example, for 
solving image recognition problems (we will consider this later, in Chapter 6). 
However, first of all it is absolutely important to treat properly phase and that in-
formation, which is concentrated in phase. We have to treat the phase φ only as an 

angular value determining the complex number ie ϕ  located on the unit circle. Any 
attempt to work with phases as with formal real numbers  

located either in interval [ [0,2π  or [ [,π π−  without taking into account that 

they are angles that are in turn arguments of complex numbers, completely elimi-
nates a physical nature of phase. If we do not treat phases properly (as arguments of 
complex numbers), then the information, which is contained in phase, is completely 
distorted.  

For example, if we do not care of the nature of phase, we may treat numbers 
0.001ϕ = and 2 0.001 6.282ψ π= − =  as such located in the opposite ends 

of the interval [ [0,2π . In this case, their formal difference is 6.282-0.001=6.281. 

But in fact, these numbers determine angles that are very close to each other, and 
the difference between them is just 0.002 radian. Respectively, these two phases 

determine two points on the unit circle ie ϕ  and ie ψ  that are located very close to 
each other (see Fig. 1.18).  

Thus, to treat phases properly, they have to be considered only as arguments of 
complex numbers. To work only with that information concentrated in phase, it is 
enough to consider phases as arguments determining complex numbers located on 
the unit circle. In this case, we do not care of magnitude (like in the example pre-
sented in Fig. 1.16). We will see below (Chapter 2) that this is definitely the case of 
a multi-valued neuron whose inputs and output are always located on the unit circle. 

Hence, to analyze phase and the information contained in phase, using neural 
networks, it is absolutely important to use complex-valued neurons. 

1.4.4   Complex-Valued Neural Networks: Brief Historical  
Observation and State of the Art 

Before we will move to the detailed consideration of multi-valued neurons, neural 
networks based on them, their learning algorithms and their applications, let us 
present a brief historical overview of complex-valued neural networks and state of 
the art in this area. 

The first historically known complex-valued activation function was suggested 
in 1971 by Naum Aizenberg and his co-authors Yuriy Ivaskiv and Dmitriy 
Pospelov in [32]. Thus, complex-valued neural networks start their history form 
this seminal paper. A main idea behind this paper was to develop a model of mul-
tiple-valued threshold logic, to be able to learn and implement multiple-valued 
functions using a neural element similarly to learning and implementation of Boo-
lean threshold functions using a neuron with the threshold activation function. 
Moreover, according to this new model, Boolean threshold logic should be just a 
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particular case of multiple-valued threshold logic. We will consider this model in 
detail in Chapter 2. Now we just want to outline a basic approach.  

As we have already seen, in neural networks the two-valued alphabet 

{ }2 1, 1E = −  is usually used instead of the traditional Boolean alphabet 

{ }2 0,1K = . This can easily be explained by two factors. First of all, unlike in 2K , 

in 2E  values of two-valued logic are normalized, their absolute value is equal to 1. 

Secondly, we have seen that, for example, in the error-correction learning rule 

(1.17), 2ix E∈  is a very important multiplicative term participating in the adjust-

ment of the weight , 1,...,iw i n= . If it was possible that 0ix = , then the error-

correction learning rule (1.17) could not be derived in that form, in which it exists. 
In the classical multiple-valued (k-valued) logic, the truth values are tradition-

ally encoded by integers from the alphabet { }0,1,..., 1K k= − . They are not 

normalized. If we want to have them normalized, evidently, this problem can be 
solved neither within the set of integer numbers nor the set of real numbers for 

2k > . However, Naum Aizenberg suggested a wonderful idea to jump to the 
field of complex numbers and to encode the values of k-valued logic by the kth 
roots of unity (see Fig. 1.19). Since there are exactly k kth roots of unity, it is  
always possible and very easy to build a one-to-one correspondence between  

the set { }0,1,..., 1K k= −  and the set { }2 11, , ,..., k
k k k kE ε ε ε −= , where 

2 /i k
k e πε =  is the primitive kth 

root of unity (i is an imaginary 
unity). We will consider later in de-
tail, (Chapter 2, Section 2.1) a 
mathematical background behind 
this idea. Unlike in the set K, in the 

set kE  the values of k-valued logic 

are normalized – their absolute val-
ues are equal to 1. Particularly, for 

two-valued logic, { }2 1, 1E = − , 

which corresponds to { }2 0,1K = , 

and we obtain a well known model 
of Boolean logic in the alphabet 

{ }2 1, 1E = − . 

Thus, in multiple-valued logic 
over the field of complex numbers, 
a multiple-valued (k-valued) func-

tion of n variables becomes ( )1,..., : n
n k kf x x E E→ . Naum Aizenberg and his 

co-authors suggested in [32] the following activation function, which they called 

 

Fig. 1.19 Model of k-valued logic over the 
field of complex numbers. Values of k-valued 
logic are encoded by the kth roots of unity 
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Naum Nisonovich Aizenberg (1928-2002) 

Seminal ideas in the area of complex-valued neural networks and in multi-valued neu-
rons were proposed and developed by Professor Naum N. Aizenberg. He was born in 
Kiev (Ukraine, that time USSR). From 1953 to 1998 he was with Uzhgorod National 
University (USSR until 1991 and then Ukraine) where he has started as a part time 
teaching assistant and then became a Professor. For a number of years he was a Chair 
of the Department of Cybernetics. His first love in research was Algebra, which 
formed a solid background for his further work in Computer Science and Engineering. 
His main result in Algebra is solution of the problem of computation of the wreath 
products of the finite groups. In early 1970s he developed a theory of multiple-valued 
threshold logic over the field of complex numbers, which became a background for 
complex-valued neural networks. He also developed an algebraic theory of signal 
processing in an arbitrary basis. His important accomplishment is also a theory of 
prime tests, which found many applications in Pattern Recognition. His 11 Ph.D. stu-
dents got their Ph.D. degrees under his supervision. He retired in 1998 after he got a 
damaging heart attack. The same year he moved from Ukraine to Israel. Even being 
seriously ill, he continued his research as far as possible, collaborating with other col-
leagues. His last paper has been published right after he passed in 2002…  

 

CSIGN9 (keeping in mind that this is a specific generalization of the sgn function 
for the multiple-valued case) 

 

( ) ( )CSIGN , 2 / arg 2 1 /j
kz j k z j kε π π= ≤ < +  (1.48) 

 

Function (1.48) divides complex plane into k equal sectors (see Fig. 1.19). We will 
consider it and its properties in detail in Chapter 2. Now we can say that it follows 
form (1.48) that if the complex number z is located in the sector j, then 

                                                           
9 In the later work, where the multi-valued neuron was introduced, N. Aizenberg himself sug-

gested to use another notation for the function CSIGN. Since in terms of logic this function 
is multiple-valued predicate, he suggested to use just a letter P (“Predicate”) for its notation 
considering that the initial CSIGN was not successful, because in fact a complex number 
does not have a sign. We will use the notation P throughout the book except this section. 
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( )CSIGN j
kz ε= . Then a notion of multiple-valued threshold function was  

introduced in [32]. A function ( )1,..., : n
n k kf x x E E→  is called a multiple-

valued threshold function if there exist such n+1 complex numbers (weights) 

0 1, ,..., nw w w  that for all ( )1,..., nx x  from the domain of the function f  

 

( ) ( )0 1 1 1CSIGN ... ,...,n n nw w x w x f x x+ + + = . (1.49) 

Paper [32] was then followed by two papers [33, 34] by N. Aizenberg and co-
authors where a multi-valued threshold element was introduced as a processing 
element implementing (1.49) and, respectively, implementing a multiple-valued 
threshold function. A learning algorithm for this element was also introduced in 
[34]. By the way, papers [33, 34] originally published only in Russian (as well as 
[32]) are available now in English [35, 36] (the English version of the journal Cy-
bernetics and Systems Analysis (previously Cybernetics) is published by Springer 
from late 1990s, and all the earlier journal issues are translated into English too 
and they are available online from the Springer website10). Papers [32-35] were 
followed in 1977 by the monograph [37] (also published only in Russian) by  
N. Aizenberg and Yu. Ivaskiv. In [37], all theoretical aspects of multiple-valued 
threshold logic over the field of complex numbers, multi-valued threshold ele-
ments, and their learning were comprehensively observed. It is important to men-
tion that a word “neuron” was not used in those publications, but it is absolutely 
clear that a multi-valued threshold element is nothing else than the discrete multi-
valued neuron formally named a neuron in 1992 [38] by N. Aizenberg and the  
author of this book. 

It is difficult to overestimate the importance of the seminal publications [32-34, 
37]. For the first time, a neural element introduced there, could learn multiple-

valued input/output mappings 
n
k kE E→  and 

n
kO E→  (O is a set of points on 

the unit circle). This means that it was possible to use it for solving, for example, 
multi-class classification problems where the number of classes is greater than 2. 
Unfortunately, published only in Russian, these important results were unavailable 
to the international research community for many years. In 1988 (17 years later (!) 
after paper [32] was published) A. Noest even “re-invented” activation function 
(1.48) calling a neuron with this activation function a “phasor neuron” [39]. But in 
fact, this activation function was proposed in 1971 and we believe that A. Noest 
simply was not familiar with [32].  

Since Chapters 2-6 of this book are completely devoted to multi-valued neurons 
and neural networks based on them, we will observe all publications devoted to 
MVN and MVN-based neural networks later as the corresponding topics will be 
deeply considered. However, we would like to observe briefly now other impor-
tant works on complex-valued neural networks, not related to MVN. 

                                                           
10 http://www.springer.com/mathematics/applications/journal/10559 
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Starting from early 1990s complex-valued neural networks became a very  
rapidly developing area. In 1991 and 1992, independently on each other, H. Leung 
and S. Haykin [40], and G. Georgiou and C. Koutsougeras [41], respectively, gen-
eralized the MLF backpropagation learning algorithms for the complex-valued 
case. They considered complex weights and complex-valued generalization of the 
sigmoid activation function and showed that complex backpropagation algorithm 
converges better than the real one. 

Important contributions to CVNN are done by Akira Hirose He is the author of 
the fundamental monograph [42] with a detailed observation of the state of the art 
in the field, and the editor of the book [43] with a great collection of papers de-
voted to different aspects of complex-valued neural networks. He also was one of 
the first authors who considered a concept of fully-complex neural networks [44] 
and continuous complex-valued backpropagation [45]. 

Other interesting contributions to CVNN are done by Tohru Nitta. He has ed-
ited a recently published book on CVNN [46]. He also developed the original  
approach to complex backpropagation [47], and he is probably the first author 
who considered a quaternion neuron [48]. 

Very interesting results on application of complex-valued neural networks in 
nonlinear filtering are obtained by Danilo Mandic and under his supervision. Just 
a few of his and his co-authors important contributions are recently published fun-
damental monograph [49] and papers on different aspects of filtering [50] and 
prediction [51]. 

Important contributions to learning algorithms for complex-valued neural net-
works are done by Simone Fiori. We should mention here among others his gener-
alization of Hebbian Learning for complex-valued neurons [52, 53] and original 
optimization method, which could be used for learning in complex-valued neural 
networks [54]. 

We should also mention recently published works by Md. F. Amin and his co-
authors [55, 56] on solving classification problems using complex-valued neural 
networks. 

It is also important to mention here interesting works by Sven Buchholz and his 
co-authors on neural computations in Clifford algebras where complex-valued and 
quaternion neurons are involved [57]. They also recently developed a concept of 
quaternionic feedforward neural networks [57, 58]. 

1.5   Concluding Remarks to Chapter 1 

In this introductory Chapter, we have briefly considered a history of artificial neu-
rons and neural networks. We have observed such turning-point classical solutions 
and concepts as the McCulloch-Pitts neuron, Hebbian learning, the Rosenblatt’s 
perceptron, error-correction learning, a multilayer feedforward neural network, 
backpropagation learning, and linear separability/non-linear separability. We have 
paid a special attention to those specific limitations that characterize real-valued 
neural networks. This is first of all impossibility of a single real-valued neuron to 
learn non-linearly separable problems. This is also strict dependence of the back-
propagation learning algorithm on the differentiability of an activation function. 
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This is also absence of some regular approach to representation of multiple-valued 
discrete input/output mappings. 

We have shown that moving to the complex domain it is possible to overcome 
at least some of these disadvantages. For example, we have shown how a classical 
non-linearly separable problem XOR can be easily solved using a single complex-
valued neuron without the extension of that 2-dimensional space where it is  
defined. We have also shown that complex-valued neurons can be extremely  
important for a proper treatment of phase, which in fact contains much more sig-
nificant information about the objects presented by the corresponding signals.  

We briefly presented the first historically known complex-valued activation 
function, which makes it possible to represent multiple-valued discrete  
input/output mappings. 

We have also observed recent contributions in complex-valued neural networks. 
We have mentioned here just recent and perhaps the most cited works. Neverthe-
less, it follows from this observation that complex-valued neural networks have  
become increasingly popular. The reader may find many other papers devoted to 
different aspects of CVNN. Just, for example, take a look at [43, 46] where very 
good collections of papers are presented. There were also many interesting presen-
tations in a number of special sessions on complex-valued neural networks organ-
ized just during last several years (IJCNN-2006, ICANN-2007, IJCNN-2008, 
IJCNN-2009, and IJCNN-2010). As the reader may see, there are different specific 
types of complex-valued neurons and complex-valued activation functions. Their 
common great advantage is that using complex-valued inputs/outputs, weights and 
activation functions, it is possible to improve the functionality of a single neuron 
and of a neural network, to improve their performance, and to reduce the training 
time (we will see later, for example, how simpler and more efficient is learning of 
MVN and MVN-based neural networks). 

We hope that the reader is well prepared now to move to the main part of this 
book where we will present in detail the multi-valued neuron, its learning, and 
neural networks based on multi-valued neurons. We will also consider a number 
of examples and applications that will show great advantages of the multi-valued 
neuron with complex-valued weights and complex-valued activation function over 
its real-valued counterparts. 
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