
N. Bessis, F. Xhafa (Eds.): Next Generation Data Technologies for CCI, SCI 352, pp. 195–224.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Chapter 8
Self-Organized Load Balancing through
Swarm Intelligence

Vesna Šešum-Čavić and Eva Kühn*

Abstract. The load balancing problem is ubiquitous in information technologies.
New technologies develop rapidly and their complexity becomes a critical issue.
One proven way to deal with increased complexity is to employ a self-organizing
approach. There are many different approaches that treat the load balancing prob-
lem but most of them are problem specific oriented and it is therefore difficult to
compare them. We constructed and implemented a generic architectural pattern,
called SILBA, which stands for “self-initiative load balancing agents”. It allows
for the exchanging of different algorithms (both intelligent and unintelligent ones)
through plugging. In addition, different algorithms can be tested in combination at
different levels. The goal is to ease the selection of the best algorithm(s) for a cer-
tain problem scenario. SILBA is problem and domain independent, and can be
composed towards arbitrary network topologies. The underlying technologies en-
compass a black-board based communication mechanism, autonomous agents and
decentralized control. In this chapter, we present the complete SILBA architecture
by putting the accent on using SILBA at different levels, e.g., for load balancing
between agents on one single node, on nodes in one subnet, and between different
subnets. Different types of algorithms are employed at different levels. Although
SILBA possesses self-organizing properties by itself, a significant contribution to
self-organization is given by the application of swarm based algorithms, especially
bee algorithms that are modified, adapted and applied for the first time in solving
the load balancing problem. Benchmarks are carried out with different algorithms
and in combination with different levels, and prove the feasibility of swarm intel-
ligence approaches, especially of bee intelligence.

1 Introduction

The IT-industry continuously faces a rapid increase in the complexity of software
systems. New requirements, a large number of interacting components with

Vesna Šešum-Čavić · Eva Kühn
Technical University Vienna, Institute of Computer Languages,
Argentinierstrasse 8, 1040 Wien, Austria
{vesna,eva}@complang.tuwien.ac.at

196 V. Šešum-Čavić and E. Kühn

internal states defined by many thousands of parameters, applications that rely on
other unreliable systems, and many components tied together are only a few rea-
sons that impose the necessity of finding new approaches for software systems.
Main factors that determine software complexity are:

• Huge amounts of distributed components that interplay in a global solution,
• Problem size like number of computers, clients, requests, size of queries etc.,
• Heterogeneity,
• Autonomy of organizations, and
• Dynamic changes in the environment.

Distributed software systems are forced to integrate other software systems and
components that are often not reliable, exhibit bad performance, and are some-
times unavailable. These challenges are so fundamental that, the usually taken ap-
proach to control distributed components across enterprise boundaries through one
central and predefined coordinator software, reaches its technical and conceptual
limits. The huge number of unpredictable dependencies on participating compo-
nents cannot be coped with any more in the traditional way, namely through one
central coordinator that implements the entire business logic and that possesses the
complete picture of the distributed environment and all possible exceptions. A
very useful concept in the adaptation of complex systems is self-organization.
Certainly, self-organizing systems will not be able to adapt to all possible events,
but they have proven to pose a good perspective to deal with complexity through
self-organization, self-repairing, self-configuring, self-grouping, self-learning,
self-adaptation, etc.

In this chapter, we consider the problem of load balancing (LB) in the light of
the above mentioned challenges of today’s systems. LB can be described as find-
ing the best possible workload (re)distribution and addresses ways to transfer ex-
cessive load from busy (overloaded) nodes to idle (under-loaded) nodes. Dynamic
LB should improve the performance of the overall distributed system and achieve
the highest level of productivity.

1.1 Related Approaches

There are many different approaches that cope with LB. The first group consists of
different conventional approaches without using any kind of intelligence, e.g.:
Sender Initiated Negotiation and Receiver Initiated Negotiation [33], Gradient
Model [22], Random Algorithm [38], and Diffusion Algorithm [7]. In Sender
algorithm, LB is initiated by the over-loaded node. This algorithm has a good per-
formance for low to moderate load levels while in Receiver algorithm, LB is initi-
ated by the under-loaded node and this algorithm has a good performance for
moderate to heavy load levels. Also the combination of these two algorithms

8 Self-Organized Load Balancing Through Swarm Intelligence 197

(Symmetric) is possible. The Gradient Model is based on dynamically initiated LB
requests by the under-loaded node. The result of these requests is a system wide
gradient surface. Overloaded nodes respond to requests by migrating unevaluated
tasks down the gradient surface towards under-loaded nodes. In Random Algo-
rithm each node checks the local workload during a fixed time period. When a
node becomes over-loaded after a time period, it sends the newly arrived task to a
randomly chosen node without taking in consideration whether the target node is
over-loaded or not. Only the local information is used to make the decision. The
principle of diffusion algorithms is keeping the process iterate until the load
difference between any two processors is smaller than a specified value. The sec-
ond group includes theoretical improvements of LB algorithms using different
mathematical tools and estimations [2] without focusing on implementation and
benchmarks. The third group contains approaches that use intelligent algorithms
like evolutionary approaches [5], and ant colony optimization approaches [12].
Evolutionary approaches use the adjustment of some parameters specific for evo-
lutionary algorithms to achieve the goal of LB. Ant colony optimization is used in
[12] for a graph theoretic problem formulated from the task of computing load
balanced clusters in ad hoc network. The intelligent algorithms from the last group
showed promising results. However, they still need improvement concerning
experience in the tuning of algorithms, the quality of solution they provide,
scalability, the provisioning of a general model, and flexibility. In [21], non-
pheromone-based (bee intelligence) versus pheromone-based algorithms are com-
pared. Their conclusion is that the former are significantly more efficient in
finding and collecting food.

These approaches mainly try to improve only one of the components of the
whole LB infrastructure, namely the LB algorithm itself. A comprehensive classi-
fication of different LB approaches is given in [19], where we refer to the problem
as the lack of a general framework, autonomy, self-* properties, and arbitrary con-
figurations, and introduced a LB pattern, i.e. a software building block that ab-
stracts the LB problem and that can be re-used in many different situations by
simply configuring it termed SILBA (self-initiative load balancing agents) that
addresses the following issues:

General Framework: Existing LB approaches are very problem specific. As there
is no “one-fits-all” solution, in order to find the best solution for a problem, a gen-
eral framework is needed that allows for testing and tuning of different LB algo-
rithms for a given problem and environment. The SILBA architectural pattern is
agile [24] and supports an easy and dynamic exchange of pluggable algorithms as
well as combinations of different algorithms with the goal to ease the selection of
the best algorithm for a certain problem scenario under certain conditions. Note
that a framework itself doesn't solve the LB problem but serves as necessary
basement for testing LB algorithms.

198 V. Šešum-Čavić and E. Kühn

Autonomy and Self-* Properties: Increased complexity of software systems, diver-
sity of requirements, and dynamically changing configurations imply a necessity
to find new solutions that are e.g. based on self-organization, autonomic comput-
ing and autonomous (mobile) agents. Intelligent algorithms require autonomous
agents which are advantageous in situations that are characterized by high dynam-
ics, not-foreseeable events, and heterogeneity.

Arbitrary Configurations: LB can be required to manage the load among local
core processors on one node, as well as in a network (intranet, internet, cloud). A
general LB framework must be able to cope with all these demands at the same
time and offer means to abstract hardware and network heterogeneities.

Our research focuses on a new conception of a self-organizing coordination in-
frastructure that suggests a combination of coordination spaces, self-organization,
adaptive algorithms, and multi-agent technologies1. Each of these technologies has
some form of self-organization in its incentive. In this chapter, after explaining the
SILBA pattern in its basic form that supports LB between nodes in one subnet and
briefly describing the obtained results, as a further step, SILBA is extended:

1. to support load balancing on several levels, i.e. not only between agents of the
same node, but also between agents of different nodes and possible in different
subnets and

2. to allow for combinations of different algorithms on different levels (e.g.,
swarm intelligence on each level, or swarm intelligence combined with unintel-
ligent algorithms).

Our contributions are summarized in the following points where (1.) concerns our
previous work on basic SILBA, and (2.)-(5.) concern extended SILBA:

1. Implementation of different algorithms, fine tuning of parameters and compari-
son of unintelligent versus intelligent algorithms, by plugging them into the
SILBA pattern and benchmarking them: For the intelligent algorithms, we: a)
adapted and implemented two ant algorithms, b) adapted and for the first time
implemented the concepts of bee intelligence to the LB problem. The novelty
includes the mapping and implementation of bee intelligence for the LB prob-
lem to improve the quality of the solution and scalability.

2. Realization of LB by extending it to several levels.
3. Construction of different combinations of algorithms for LB.
4. Investigation which combination of algorithms fits best for a particular network

topology, and which topologies profit the most from the application of swarm
intelligence.

5. Achievement of self-organization through different methods (like swarm intel-
ligence, autonomous agents) in combination.

1 It is assumed that a reader is familiar with the basic concepts of multi-agent technologies (see,

for example [34], for an overview).

8 Self-Organized Load Balancing Through Swarm Intelligence 199

2 SILBA Framework

The SILBA framework is based on multi-agents technology and space-based com-
puting. Space-based computing (SBC) is a powerful concept for the coordination of
autonomous processes, an easy to use solution that handles the complexity of the
interplay of autonomous components in a heterogeneous environment through a
high abstraction of the underlying hardware and operating system software [20].
The processes communicate and coordinate themselves by simply reading and
writing distributed data structures in a shared space. Although SBC is mainly a
data-driven coordination model, it can be adapted and used according to control-
driven coordination models. A space offers many advantages: a high level
abstraction for developers that allows for hiding complexity, reliable
communication, transactions, asynchrony, near-time event notification, scalability
and availability [20].

SILBA uses a space-based architecture, called XVSM (extensible virtual shared
memory) [16]. It generalizes Linda tuple based communication [11] as well as
several extensions to it like reactions [30], programmable behaviour [3], and fur-
ther coordination laws like priority and user defined match makers [29]. Compa-
rable to Linda, a container represents a shared data space that can be accessed by
the operations read, take, and write. Beyond that it can be addressed via an URL,
can reference other containers, and is extensible through aspects [15], i.e., code
fragments that react to certain events and serve to build higher level behaviour and
interfaces on top of a container thus forming more complex coordination data
structures. This asynchronous and blackboard based communication model is ad-
vantageous to for collaboration of autonomous (multi)agents as it avoids coupling
through direct interactions [13] between the agents, especially when mobile agents
are assumed [3], [29].

2.1 Basic SILBA

Basic SILBA supports the exchange of algorithms (both unintelligent and intelli-
gent ones) as a test bed to ease the evaluation of the best algorithm for a certain
problem scenario under certain conditions. It is based on decentralized control.
Self-organization is achieved by using a blackboard based style of collaboration to
build up a shared view on the current state. The SILBA pattern is domain inde-
pendent and can be used at different levels:

• Local node level: allocating load to several core processors of one computer –
the determining factor for load distribution is the balanced utilization of all
cores.

• Network level: distributing load among different nodes. This includes load bal-
ancing within and between different subnets. One must take into consideration

200 V. Šešum-Čavić and E. Kühn

the time needed for transferring data from a busy node to an idle node and esti-
mate the priority of transferring, especially when the transfer itself requires more
time to complete than the load assignment.

The basic components of SILBA are clients, autonomous agents, tasks and policies.
Clients request tasks to be executed, i.e. load originates from clients. Different
types of autonomous agents operate in a peer-to-peer manner and decide on their
own when to pick up or push back work, assuming that the amount of work is
changing dynamically. A task can be described as a tuple of the form “(priority,
job, description, properties, timeout, answer space)", denoting the priority of a task
in absolute terms, the job in a standard format like XML or WSDL, an optional
(semantic) description, properties (e.g., whether task's execution mode is "at-most-
once" or “best-effort"), a timeout, and a URL of an Internet addressable resource
where to write the result of the execution back, that we term answer space to make
the protocol stateless and to support not always connected networks. SILBA puts
emphasis on two main policies termed transfer policy and location policy. The
transfer policy determines whether and in which form a resource participates in
load distribution and in that sense determines the classification of resources [33]
into the following categories: under-loaded (UL), ok-loaded (OK) and overloaded
(OL). The transfer policy is executed by a worker agent autonomously. A worker
agent may reject a task it has started and re-schedule it. The location policy deter-
mines a suitable partner of a particular resource for LB [33]. The SILBA pattern is
composed of three sub-patterns [19]:

The local node pattern is responsible for the execution of requests by local
worker agents actively competing for work. The basic components of this pattern
are: clients, worker agents, load space, and answer space. Load space is a place
where new requests are put by clients and information about all worker agents’
registrations and the current load status (UL, OK, OL) of a node are maintained.
Requests are accessible in either the order they arrived, or by means of other crite-
ria like their priority, the required worker role, or their expiration date. Answer
spaces are places where the answers computed by worker agents are put directly
(not routed) and where they can be picked up by the corresponding clients.

The allocation pattern redirects load between load spaces of different local
nodes. The basic components of the allocation pattern are: load space, allocation
agents, policies, and allocation space. There are three kinds of allocation agents:
arbiter agents, IN agents, and OUT agents. Arbiter agents query the load of the
load space and decide about re-distribution of work. They publish this information
to the routing space in form of routing requests. Both IN and OUT agents read
routing information from the allocation space and pull respectively push work
from/to another node in a network to which the current node has a connection. The

8 Self-Organized Load Balancing Through Swarm Intelligence 201

IN and OUT allocation agents assume that the information about the (best) partner
to/from which to distribute load can be queried from the allocation space. The al-
location space holds information about partner nodes as computed by the location
policy. This information is queried by the allocation agents and can be either stati-
cally configured or dynamically computed by routing agents.

The routing pattern executes the location policy according to a particular LB
algorithm. The basic components of the routing pattern are: allocation space,
routing agents, and routing space. Routing agents perform the location policy by
implementing a certain LB algorithm and by communicating with other routing
agents of the same type forming a dynamically structured overlay network. The
collaboration between routing agents of different nodes is carried out via the cor-
responding routing spaces of this type. Each kind of routing agents has its own
routing space where specific information, required by the applied algorithm, is
stored and retrieved (e.g. pheromones for ants, or duration of waggle dance for
bees). Eventually, the information about the best or suitable partner nodes is stored
in the allocation space where a corresponding IN or OUT allocation agent grabs
this information and distributes the load between the local node and its partner
node.

The above described patterns can be composed towards more complex patterns
by “hooking” them via shared spaces. They must agree on the format of entries
stored in these spaces, and on the interaction patterns on these. With SILBA
patterns, bi-directional control flows are possible and arbitrary logical network
configurations can be easily and dynamically be constructed. Example in Fig. 1
shows four subnets A-D that have different relationships to each other. Nested
subnets are allowed and two (or more) subnets might overlap, i.e. have in their in-
tersection 0, 1 or more nodes. Therefore, nodes can belong to one or more subnets,
e.g., nodes N1 and N2 are part of one subnet each, whereas N3 belongs to two
subnets.

Fig. 1 Topology example.

202 V. Šešum-Čavić and E. Kühn

The XVSM shared data space, which has already been successfully applied in
several agents based projects [17], [18] serves as the coordination middleware for
SILBA. Shared data structures maintain collaboration information and other LB
relevant parameters to tune the algorithms. This indirect communication allows
for a high autonomy of agents. Concurrent agents either retrieve, or subscribe to
this information being notified in near-time about changes, or modify it. Clients
continuously put tasks to any node in the distributed network.

2.2 Extended SILBA

SILBA is designed so that it can be extended towards the remote load balancing as
sketched in the following. The main point is that the routing sub-patterns for dif-
ferent levels of load balancing are the same and simply composed towards the
desired topology by “connecting” them via shared spaces; all sub-patterns can be
parameterized by different algorithms. Each level can apply a different algorithm
and load balancing in the entire network occurs through the combination of all al-
gorithms. Fig. 2 represents the realization of nodes N1, N2 and N3 from Fig. 2.
Boxes represent processes (clients or agents), and circles represent shared spaces.
For simplicity, the three roles of arbiter, IN and OUT agent are represented by one
box in the allocation pattern. Sub-patterns are edged with dotted lines. A composi-
tion occurs where sub-patterns overlap, in that they jointly access a shared space.
SILBA can be composed to support an arbitrary amount of subnets.

LB within a subnet. In this case, the behaviour of the routing agent must be im-
plemented. E.g., in Fig. 2, node N3 belongs to two different subnets. In one sub-
net, routing agents are of type 1 (e.g. implementing ants based LB algorithm) and
in the other one they are of type 2 (e.g. implementing bee based LB algorithm). In
order to collaborate with nodes from both subnets, N3 must possess both types of
routing agents including both kinds of routing spaces that hold the information
specific for each respective LB algorithm. The collaboration between different
types of routing agents at N3 goes through its allocation space. It holds the infor-
mation about partner nodes as computed by the continuously applied location pol-
icy. The IN and OUT allocation agents assume that the information about
best/suitable partners to/from which to distribute load can be queried any time
from the allocation space.

LB between subnets. This level of LB requires a further extended behaviour of
routing agents for inter-subnet routing. Note that spaces are represented by XVSM
containers that are referenced by URLs. For inter-subnet routing, each routing
space is published under a public name using the JXTA based peer-to-peer lookup
layer2 of XVSM so that the routing agents can retrieve the foreign routing spaces
in the network. This way, routing within a subnet uses the same pattern as routing
between one or more subnets.

2 http://www.sun.com/software/jxta

8 Self-Organized Load Balancing Through Swarm Intelligence 203

Fig. 2 N1, N2, N3 implementation.

3 Swarm Based Algorithms

The main obstacle in solving the combinatorial optimization problems is that they
cannot be solved (optimally) within the polynomial bounded computational time.
Therefore, in order to solve large instances, the approximate algorithms (heuristics)
have to be used. These algorithms obtain near-optimal solutions in a relatively short
time [37]. A set of algorithmic concepts, that can be used to define heuristic
methods applicable to a wide set of different problems, was emerged. This new
class of algorithms, the so-called metaheuristics, increases the ability of finding
very high quality solutions to hard combinatorial optimization problems in a
reasonable time [37]. Generally, swarm intelligence describes the collective
behavior of fully decentralized, self-organized systems from nature. Particularly
successful metaheuristics are inspired by swarm intelligence [10]. This concept
belongs to the area of artificial intelligence. Swarm intelligence algorithms refer to
a specific set of metaheuristics, adaptive algorithms. Adaptive algorithms usually
manipulate with a population of items. Each item is evaluated by means of a figure

204 V. Šešum-Čavić and E. Kühn

of merit and its adequacy for the solution. The evaluation is done by using the so-
called fitness function. When searching for the adequate solution, exploration and
exploitation of a search space are mixed. The exploration investigates unknown ar-
eas of the search space, whereas exploitation makes use of accumulated knowledge.
A good trade-off between these two contradictory requirements leads to finding a
global optimum.

In this section, two types of swarm intelligent algorithms are presented. Bee al-
gorithms are adopted for the LB problem and implemented to this problem for the
first time [31]. Although ant algorithms have been applied previously to LB [12],
we adapted and implemented them in order for comparison with non-pheromone
based swarm intelligence (bees).

Different dynamic processes characterize the LB scenario. Nodes join and leave
dynamically, information about load changes permanently, and tasks are dynami-
cally added and continuously processed. A structured peer-to-peer (P2P) network
[1] has an overlay topology that is controlled. There is a simple mapping of con-
tent to location, and therefore it scales well. On the other side, the support of dy-
namics is not so good. Queries can only be simple key/value mappings, i.e., exact
match queries instead of more complex queries. For these reasons, they are not
suitable for the LB problem. In an unstructured P2P network, a placement of in-
formation can be done independently of an overlay topology, but the content must
be localized explicitly, e.g., through brute force mechanisms or flooding. It is very
well suitable for dynamic populations, and complex queries are possible. There-
fore, an unstructured P2P network fits better to our problem. The negative point is
that it does not scale so well, which is the starting point for improvements. In or-
der to point out the arguments for the potential of using bees for the LB problem,
we give a short comparison of Gnutella and swarm-based systems:

Gnutella [1] operates on an unintelligent query flooding based protocol to find
a particular node. For communication between peers ping (discover hosts), pong
(reply to ping), query (search request), and query hit (reply to query) messages are
used. It needs many concurrent agents for one (exhaustive) search, as for each
branch, a new agent is required.

Bees search the network and build up routes as overlays. If a bee finds the re-
quired information, it directly flies back to its hive and informs the “starting
place” of the search directly in a P2P way. Bounding the number of bees is possi-
ble, which is an indication that bees can scale better than Gnutella. However, in
the first iteration step, there is no guarantee of finding a solution, but one will find
a solution in upcoming iterations through learning. Knowledge distribution takes
place in the own hive. Bees of different hives do not communicate with each
other.

Ants leave information (pheromones) at all nodes on their backward trips. Their
forward trip is comparable to the bees’ forward movement (navigation), but their
backward trip is different as ants do not directly contact the “starting place” in a
P2P way but must go the entire way back.

8 Self-Organized Load Balancing Through Swarm Intelligence 205

3.1 Bee Algorithm

3.1.1 Bee Behaviour in Nature

A bee colony consists of bees with different roles: foragers, followers, and receiv-
ers. This natural intelligence performs self-organization through two main strate-
gies: navigation and recruitment. Navigation means searching for nectar in an
unknown landscape. A forager scouts for a flower with good nectar, returns to the
hive, unloads nectar, and performs a recruitment strategy, meaning that it commu-
nicates the knowledge about the visited flowers to other bees. The best known way
of bee communication is the so-called waggle dance which is the main part of the
recruitment strategy. Using this “dance language”, a bee informs its hive mates
about direction, distance and quality of the food found. A follower randomly
chooses to follow a forager and visits the flower that has been “advertised” with-
out own searching. A forager can choose to become a follower in the next step of
navigation, and vice versa. A receiver always stays in the hive and processes the
nectar. Autonomy, distributed functioning, and self-organization characterize the
biological bee behaviour [4].

Bee-inspired algorithms have been applied to several computer science prob-
lems like travelling salesman [36], scheduling jobs [6], [28], routing and wave-
length assignment in all-optical networks [23], training neural networks for pattern
recognition [27], and computer vision and image analysis [26]. Although some of
these applications deal with some kind of job scheduling, they differ from
our general and domain independent approach as they use a simplified version of a
scheduling problem by including the limitations given in advance, e.g., a single
machine supplies jobs, and each job needs only one operation to be executed.

3.1.2 Algorithm

In [31], the principals for usage of bee intelligence for LB are proposed. Software
agents represent bees at the particular nodes. A node contains exactly one hive and
one flower with many nectar units. A task relates to one nectar unit. A hive has a
finite number of receiver bees and outgoing (forager and follower) bees. Initially,
all outgoing bees are foragers. Foragers scout for a location policy partner node of
their node to pull/push nectar from/to it, and recruit followers. The goal is to find
the best location policy partner node by taking the best path which is defined to be
the shortest one. A suitability function δ (see below) defines the best location pol-
icy partner. A navigation strategy determines which node will be visited next and
is realized by a state transitions rule [36]:

∑
∈

⋅

⋅
=

)(

]1[)]([

]1[)]([
)(

tAj ij
ij

ij
ij

ij

i

dt

dt
tP

βα

βα

ρ

ρ (1)

206 V. Šešum-Čavić and E. Kühn

where ρij(t) is the arc fitness from node i to node j at time t, dij is the heuristic dis-
tance between i and j, α is a binary variable that turns on/off the arc fitness influ-
ence, and β is the parameter that controls the significance of a heuristic distance.
In the calculation of the arc fitness values, we differentiate:

(1) Forager: A bee behaves in accordance with the state transition rule and ρij =
1/k, where k is the number of neighbouring nodes of node i. A forager can decide
to become a follower in the next cycle of navigation.
(2) Follower: Before leaving the hive, bee observes dances performed by other
bees and randomly chooses to follow one of the information offered through these
dances. This information contains the set of guidance moves that describes the
tour from the hive to the destination previously explored by one of its hive mates.
This is the so-called preferred path [36]. When a bee is at node i at time t, two
sets of next visiting nodes can be derived: the set of allowed next nodes, Ai(t) and
the set of favoured next nodes, Fi (t). Ai(t) contains the set of neighbouring nodes
of node i, whereas Fi (t) contains a single node which is favoured to reach from
node i as recommended by the preferred path. The arc fitness is defined in

10),()(
)()()(

)()(1
)(

)(≤≤∈∀
⎪⎩

⎪
⎨
⎧

∉
∩−

∩⋅−
∈

= λλ
λ

ρ tAj
tFjif

tFtAtA

tFtA
tFjif

t i
i

iii

ii

i

ij

 (2)

where S is the sign of the cardinality (i.e., the number of elements) of some set S.

So,)()(tFtA ii ∩ can be either 0 or 1, as Ai(t) and Fi (t) may have either none ele-

ment or only one element in their intersection.
A recruitment strategy communicates obtained knowledge about path and qual-

ity of solution to bees. From this we can derive a fitness function for bee i,

δ
i

i H
f

1= (3)

where Hi is the number of hops on the tour, and δ is the suitability function. The
colony’s fitness function fcolony is the average of all fitness functions (for n bees)

∑ =
= n

i icolony f
n

f
1

1 (4)

If bee i finds a highly suitable partner node, then its fitness function, fi obtains a
good value. After a trip, an outgoing bee determines how “good it was” by com-
paring its result fi with fcolony, and based on that decides its next role [25].

Pseudocode1: Bee Colony Optimization (BCO) metaheuristic [36].

procedure BCO_MetaHeuristic
 while(not_termination)
 ObserveWaggleDance()
 ConstructSolution()
 PerformWagledance()
 end while
end procedure

8 Self-Organized Load Balancing Through Swarm Intelligence 207

Each node can start the location policy. If the node is UL, its bee searches for a
suitable task belonging to some OL node and carries the information about how
complex the task the node can accept. If the node is OL, its bee searches for a UL
node that can accept one or more tasks from this OL node. It carries the informa-
tion about the complexity of tasks this OL node offers and compares it with the
available resource of the current UL node that it is visiting. Therefore, the com-
plexity of the task and the available resources at a node must be compared. For
this purpose, we need the following definitions: task complexity c, host load hl
and host speed hs [8]. hs is relative in a heterogeneous environment, hl represents
the fraction of the machine that is not available to the application, and c is the time
necessary for a machine with hs = 1 to complete a task when hl = 0. We calculate
the argument x = (c/hs)/(1 – hl) of suitability function δ and define it as δ = δ(x)
(cf. Table 2). If x = 1, then the situation is ideal. The main intention is to find a
good location policy partner. For example, when a UL node with high resource
capacities is taking work from an OL node, a partner node offering tasks with
small complexity is not a good partner as other nodes could perform these small
tasks as well. Taking them would mean wasting available resources. A detailed
description about bee algorithm for LB can be found in [31].

3.1.3 Implementation Parameters

In our implementation, we introduced one parameter, the so-called search mode
that is configurable and determines which nodes in the network (according to their
load status) will trigger a load balancing algorithm.

Table 1 Search Modes.

SM1 the algorithm is triggered from UL nodes, OK nodes (in a situation when it's likely that the
node will become OL, but is not yet heavily loaded) and consequently OL nodes

SM2 the algorithm is triggered from UL nodes

SM3 the algorithm is triggered from OK nodes (in a situation when it's likely that the node will
become OL, but is not yet heavily loaded) and consequently OL nodes; the computation of
x argument for δ(x) suitability is slightly changed3

SM4 the algorithm is triggered from OL nodes

SM5 the algorithm is triggered from UL and OL nodes

SM6 the algorithm is triggered from OK nodes (in a situation when it's likely that the node will
become OL, but is not yet heavily loaded) and consequently OL nodes.

3 If a node is in OK state, the algorithm is triggered, and searching for a suitable node among the

neighbor nodes is started (afterwards, this information about the most suitable node is stored
locally). As soon as the node gets OL, the tasks get re-routed to this target node. To achieve
this à priori searching for a suitable node (when the information about a task is still unavail-
able, i.e., the task complexity c is yet unknown), we compute argument x only on the basis of
host speed and host load parameters.

208 V. Šešum-Čavić and E. Kühn

For suitability function δ, we implemented the following functions:

Table 2 Suitability Functions.

SF0 one linear function: if (x = 1.0) δ(x) = n, else δ(x) = 5x (if the number of nodes ≤ n)

SF1 an exponential function: δ(x) = 10x

SF2 a polynomial function: δ(x) = 10x3

SF3 another linear function: if (x < 1.0) δ(x) = 4nx, else δ(x) = 5n (if the number of nodes
∈[5n-4,5n])

The fitness function f is computed from the suitability function of the found
node and the number of hops to this node using the following combinations:

Table 3 Fitness Functions.

FF0 f(x) = δ(x) / number_of_hops

FF1 f(x) = δ(x) • (quality_of_links / number_of_hops)

FF2 f(x) = δ(x) / sqrt(number_of_hops)

FF3 similar to FF0, only the local node is excluded from the comparison and the rest of
neighbouring nodes are taken in consideration.

3.2 Ant Algorithms

The basic requirements - to find the best location policy partner node by taking the
best path - are the same as in the bee case. The best location policy partner is de-
fined by the maximum amount of pheromones left on the path. The Ant Colony
Optimization metaheuristic (ACO) has been inspired by the real ant colonies. The
ants’ behaviour is characterized by indirect communication between individuals in
a colony via pheromone. A software agent plays the role of an ant. The natural
pheromone is stigmergic information that serves as the communication among the
agents. Ants make pure local decisions and work in a fully distributed way. In
ACO, ants construct solutions by moving from the origin to the destination, step
by step, according to a stochastic decision policy. After that, the aim of the
pheromone update is to increase the pheromone values associated with good solu-
tions (deposit pheromones) and decrease those associated with bad ones [10].

Pseudocode2: Ant Colony Optimization (ACO) metaheuristic [10].

procedure ACO_MetaHeuristic
 while(not_termination)
 ConstructSolutions()
 pheromoneUpdate()
 daemonActions()
 end while

 end procedure

8 Self-Organized Load Balancing Through Swarm Intelligence 209

The most popular variations and extensions of ACO algorithms are: Elitist AS,
Rank-Based AS, MinMax Ant System (MMAS), and Ant Colony System. AntNet
[9] is a network routing algorithm based on ACO. It is an algorithm for adaptive
routing in IP networks, highly adaptive to network and traffic changes, robust to
agent failures and provides multipath routing. AntNet algorithm supports adding
and removing network components.

The following is a brief “tutorial” about ant algorithms [10], needed for expla-
nation of results and clarification of benchmarks parameters: MinMax [10] is an
improvement of the initial Ant System algorithm. In each Ant System algorithm,
there are two phases: ants’ tour (solution) construction and pheromone update. In
the 1st phase, m artificial ants concurrently build their solutions starting from ran-
domly chosen nodes and choosing the next node to be visited on their trips by ap-
plying a random proportional rule:

 [] []
[] []∑ ∈

=
k
iNl ilil

ijijk
ijp βα

βα

ητ
ητ , if k

iNj ∈ (5)

where ijτ is a pheromone trail on (i,j)-arc, ijij d/1=η is a heuristic value (available
à priori), α and β are two parameters that determine the influence of the phero-
mone trail and the heuristic information, and k

iN is the set of cities that ant k has
not visited yet. In the 2nd phase, the pheromone trails are updated. The pheromone
value on all arcs is decreased by a constant factor:

ijij τρτ)1(−← (6)

where 0 < ρ ≤ 1 is the pheromone evaporation rate. After evaporation, the addi-
tional amount of pheromones is deposited on the arcs that have being crossed in
the ants’ constructions of solutions:

 ∑
=

Δ+←
m

k

k
ijijij

1

τττ (7)

where k
ijτΔ is the amount of pheromones ant k deposits on arcs it has visited.

In the MinMax algorithm, the following modifications are done [10]:

• Best tours found are strongly exploited.
• Possible range of pheromone trail values are limited to the interval [τmin,τmax].
• Pheromone trails are initialized to the upper pheromone trail limit.
• Pheromone trails are reinitialized each time the system approaches any kind of

stagnation.

So, the 1st phase is the same as in the initial Ant System algorithm, but the 2nd
phase is modified – the update of pheromone trails is implemented as follows:

 best
ijijij τττ Δ+← (8)

where best
ijτΔ = 1/Cbest and Cbest can be either the length of the iteration’s best tour

or the length of the best tour so far.

210 V. Šešum-Čavić and E. Kühn

AntNet algorithm [9] is similar to all Ant Algorithms, i.e., has two phases: solu-
tion construction and data structures update. The necessary data structures used in
this algorithm are: an artificial pheromone matrix τi and a statistical model Mi of
the traffic situation over the network. Both matrices are associated with each node
i of the network. Two sets of artificial ants exist: forward ants and backward ants.
Generally, ants have the same structure, but their actions differ:

• Forward ant, Fs→d, travels from the source node s to a destination node d.
• Backward ant, Bs→d, travels back to the source node s using the same path as

Fs→d but in the opposite direction; it uses the information collected by Fs→d in
order to update routing tables of the visited nodes.

In the 1st phase, each Fs→d starts its travel from the source node s and chooses its
destination d according to this probabilistic rule:

∑

=

=
n

i
si

sd
sd

f

f
p

1

 (9)

where fsd is some measure of data flow. The ant constructs the path on this way:

a) An ant that is currently at node i chooses the next node j to be visited by apply-
ing the following probabilistic rule:

)1(1 −+

+
=

i

ijijd
ijd N

P
α

αητ
 (10)

where τijd is an element of the pheromone matrix τi that indicates the learned
desirability for an ant in node i with destination d to move to node j,

iN is a

number of neighbours of node i, ηij is a heuristic value that takes into account
the state of the jth link queue of the current node i:

∑

=

−=
iN

l
il

ij
ij

q

q

1

1η (11)

The parameter α from Eq.(10) weighs the importance of the heuristic values
with respect to the pheromone values stored in the pheromone matrix.

b) When Fs→d comes to destination node d, it generates Bs→d, transfers to it all of
its memory and is deleted.

c) Bs→d travels back to the source node s using the same path as Fs→d but in the
opposite direction. It uses the information collected by Fs→d in order to update
the routing tables of the visited nodes.

The 2nd phase considers updating matrices τi and Mi. In the pheromone matrix τi,
values that suggest choosing neighbour f when destination is d, are incremented:

)1(ifdifdifd r τττ −⋅+← (12)

The other pheromone values are decremented:

ijdijdijd r τττ ⋅−← j∈Ni, ; j≠f (13)

8 Self-Organized Load Balancing Through Swarm Intelligence 211

There are several ways to determine and assign r values: from the simplest way of
setting r = constant to a more complex way that defines r as a function of the ant’s
trip time and the parameters of the statistical model Mi.

Remodelling of these ant algorithms for a location policy comprises the follow-
ing changes. What does “Construct Solution” mean in our case? The ant made a
path and found the data on that path. We are not only interested in the best path,
but also in the quality of the data found. Therefore, DepositPheromone procedure
is changed as follows. If an ant on its trip:

1. Found exact data, it deposits pheromone;
2. Found acceptable data with the accuracy/error rate < ε, (ε is a parameter given

in advance related to the definition of δ), it deposits less amount of pheromone,
3. Did not find data, then skips depositing pheromones on its trip (i.e., the values

on arcs it traversed will be the same as the values on the rest of unvisited arcs
in the network).

A different amount of pheromones is deposited according to the quality of the so-
lution found. The suitability function δ = δ (x) describes how good (acceptable)
the found solution is, δ ∈ [0,1]. In case of changing the type of δ, its value can be
scaled into the same segment [0,1]. DepositPheromone procedure is changed:

1. For MinMax algorithm: Δτ =1/MCbest where M=1/δ;
2. For AntNet algorithm: τ := r⋅(1-τ)⋅δ.

4 Benchmarks

This section describes the benchmarks performed in the SILBA framework. As
a detailed explanation of the basic SILBA benchmarks can be seen in [32],
emphasis is put on more sophisticated benchmarks in the extended SILBA. There-
fore, the basic SILBA benchmarks, i.e., their conclusion are mentioned briefly
here.

4.1 Basic SILBA Benchmarks

The tests are constructed on the basis of the following criterions [32]:

• Find out the best combination of parameter settings for each intelligent algo-
rithm: Bee Algorithm, MinMax and AntNet Ant Algorithms,

• Compare these optimally tuned swarm based algorithms with several well-
known algorithms: Round Robin, Sender, Adapted Genetic Algorithm (GA).

The benchmarks demonstrate: the agility of the SILBA pattern by showing that al-
gorithms can be easily exchanged, and the promising approach of bee algorithms.

212 V. Šešum-Čavić and E. Kühn

The load is generated by one single client. For performing test examples, an arbi-
trary topology is used in which a full connection between all nodes is not required.
All benchmarks are carried out on a cluster of 4 machines, and on the Amazon
EC2 Cloud. As the figure of merit, the absolute execution time and scalability of
the solutions are used. The values of the suitability function help to discern the
usefulness of intelligent algorithms and emphasize the correctness of properly
chosen partner nodes, i.e., the methodology to determine the best partner node.
This function reflects how a good solution is chosen and the degree of self-
organization of the used swarms. The average x value is 1, meaning the best node
is always chosen.

In the basic SILBA, the best combination of feasible parameters for each algo-
rithm is identified and, under these conditions, the advantages of using bee swarm
intelligence in the context of load balancing are presented. The obtained results
show that the bee algorithm behaves well, does not impose an additional complex-
ity and outperforms all other test candidates [32].

4.2 Extended SILBA Benchmarks

As the extended SILBA supports the multi-level LB strategy, the goal was to ex-
change the algorithms on each level. In the considered case, there are 2 levels on
which LB is realized concurrently: between several subnets and inside each sub-
net. Also, the success of a particular combination depends on a network topology.
The tests are performed on the basis of the following criterions:

• Find the best combination of algorithms for each of the well-known topologies
(chain, full, ring, star) used in these benchmarks.

• Compare and analyze the best obtained combinations.
• After obtaining the best combinations, perform the benchmarks on different

network (and subnets) dimensions and evaluate the scalability issue.

The benchmarks demonstrate: 1) the flexibility of the SILBA pattern by showing
that the LB problem could be easily treated in more complex network structures
with several subnets, 2) detection of those topologies which profit most of swarm
intelligent algorithms (particularly bee algorithms).

4.2.1 Test Examples and Test Environment

Test examples are constructed taking into account the following issues: the combi-
nation of algorithms, the different number of subnets and the number of nodes per
subnets, the increased number of clients per each subnet, different topologies:

Combinations (36) of all algorithms on two levels (6 algorithms on 2 levels):
Level 1 denotes the used algorithm inside a subnet, whereas level 2 denotes the
used algorithm between subnets; the values of the respective parameters are de-
scribed in Table 4 and reused from basic SILBA.

8 Self-Organized Load Balancing Through Swarm Intelligence 213

Table 4 Combinations of algorithms.

 level1

level2

Bee Alg. MinMax AntNet adaptedGA Sender Round Robin

Bee Alg. 1 2 3 4 5 6

MinMax 7 8 9 10 11 12

AntNet 13 14 15 16 17 18

adaptedGA 19 20 21 22 23 24

Sender 25 26 27 28 29 30

Round Robin 31 32 33 34 35 36

Different number of subnets and number of nodes per subnets:

Table 5 Distribution of nodes in subnets.

total number of nodes number of subnets number of nodes in each subnet

 16 4 4

 16 8 2

 32 4 8

 32 8 4

Increased number of clients per each subnet:
In the basic SILBA, only one client is responsible for putting the tasks into the
network. This leads to a light to moderate loaded network. In extended SILBA, the
number of clients is drastically increased, i.e., for a subnet of n nodes, the assigned
number of clients is n/2. The number of clients per subnet is increased until the
subnet becomes fully loaded. Each client supplies the same number of tasks. Cli-
ents are symmetrically positioned in order to have fairly loaded subnet. The same
parameter is used for all test runs.

Different topologies:
The well-known topologies, ring, star, full, chain, are chosen in order to define
which combination of algorithms fits the best to a particular topology. Fig. 3 de-
picts one example of each topology. Subnets can be with intersections and without
intersections, but in both cases at least one node from each subnet must possess
two types of routing agents in order to allow for the realization of different types
of load balancing algorithms (inside a subnet, between subnets).

Two different test environments are used: a cluster of 4 machines, and the Ama-
zon EC2 Cloud4. Each machine of the cluster had the following characteristics:

4 http://aws.amazon.com/ec2/

214 V. Šešum-Čavić and E. Kühn

2*Quad AMD 2,0GHz with 16 GB RAM. We simulated a network with 16 (vir-
tual) nodes. Each test run began with a “cold start" and all nodes were being UL.
On Amazon Cloud, we used standard instances of 1.7 GB of memory, 1 EC2
Compute Unit (1 virtual core with 1 EC2 Compute Unit), 160 GB of local instance
storage, and the 32-bit platform.

Fig. 3 Topology examples.

4.2.2 Raw Result Data

The next figures (Fig. 4 – Fig. 7) show all combinations of algorithms on different
topologies, searching for the best combination in each topology. The presented re-
sults demonstrate a 4*4 structure, i.e., 4 subnets and 4 nodes in each subnet. In
each subnet, each client supplies 200 tasks, giving a total of 1600 tasks.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

AntN
et/

Ant
Net

AntN
et

/B
ee

Alg.

AntN
et

/G
A

AntN
et

/M
inM

ax

AntN
et

/R
ou

ndR
ob

in

Ant
Net

/S
en

de
r

Bee
Alg.

/A
nt

Net

Bee
Alg.

/B
ee

Alg.

Bee
Alg.

/G
A

Bee
Alg.

/M
inM

ax

Bee
Alg.

/R
ou

nd
Rob

in

Bee
Alg.

/S
en

der

GA/A
ntN

et

GA/B
ee

Alg.

GA/G
A

GA/M
inM

ax

GA/R
ou

ndR
ob

in

GA/S
en

de
r

MinM
ax

/A
nt

Net

M
inM

ax
/B

ee
Alg.

MinM
ax

/G
A

M
inM

ax
/M

inM
ax

M
inM

ax
/R

ou
nd

Rob
in

MinM
ax

/S
en

der

Roun
dR

ob
in/

AntN
et

Roun
dR

ob
in/

Bee
Alg.

Roun
dR

ob
in/

GA

Roun
dR

ob
int

/M
in

Max

Roun
dR

ob
in/

Roun
dR

ob
in

Roun
dR

ob
in/

Sen
de

r

Sen
de

r/A
ntN

et

Sen
de

r/B
eeA

lg.

Sen
de

r/G
A

Sen
de

r/M
in

Max

Sen
de

r/R
ou

nd
Robin

Sen
de

r/S
end

er

combination of algorithms

ti
m

e
in

 m
s

Fig. 4 Combination of algorithms in chain topology.

8 Self-Organized Load Balancing Through Swarm Intelligence 215

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Ant
Net

/A
nt

Net

Ant
Net

/B
ee

Alg.

Ant
Net

/G
A

Ant
Net

/M
inM

ax

Ant
Net

/R
ou

ndR
ob

in

Ant
Net

/S
en

de
r

Bee
Alg.

/A
nt

Net

Bee
Alg.

/B
ee

Alg.

Bee
Alg.

/G
A

Bee
Alg.

/M
inM

ax

Bee
Alg.

/R
ou

nd
Rob

in

Bee
Alg.

/S
en

der

GA/A
nt

Net

GA/B
ee

Alg.

GA/G
A

GA/M
inM

ax

GA/R
ou

ndR
ob

in

GA/S
en

de
r

M
inM

ax
/A

nt
Net

M
inM

ax
/B

ee
Alg.

M
inM

ax
/G

A

M
inM

ax
/M

inM
ax

M
inM

ax
/R

ou
nd

Rob
in

M
inM

ax
/S

en
der

Roun
dR

ob
in/

Ant
Net

Roun
dR

ob
in/

Bee
Alg.

Roun
dR

ob
in/

GA

Roun
dR

ob
int

/M
in

Max

Roun
dR

ob
in/

Roun
dR

ob
in

Roun
dR

ob
in/

Sen
de

r

Sen
de

r/A
ntN

et

Sen
de

r/B
eeA

lg.

Sen
de

r/G
A

Sen
de

r/M
in

Max

Sen
de

r/R
ou

nd
Robin

Sen
de

r/S
end

er

combination of algorithms

ti
m

e
in

 m
s

Fig. 5 Combination of algorithms in full topology.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Ant
Net

/A
nt

Net

Ant
Net

/B
ee

Alg.

Ant
Net

/G
A

Ant
Net

/M
inM

ax

Ant
Net/

Rou
ndR

ob
in

Ant
Net

/S
en

de
r

Bee
Alg.

/A
nt

Net

Bee
Alg.

/B
ee

Alg.

Bee
Alg.

/G
A

Bee
Alg.

/M
inM

ax

Bee
Alg.

/R
ou

nd
Rob

in

Bee
Alg.

/S
en

der

GA/A
nt

Net

GA/B
ee

Alg.

GA/G
A

GA/M
inM

ax

GA/R
ou

ndR
ob

in

GA/S
en

de
r

M
inM

ax
/A

nt
Net

M
inM

ax
/B

ee
Alg.

M
inM

ax
/G

A

M
inM

ax
/M

inM
ax

M
inM

ax
/R

ou
nd

Rob
in

M
inM

ax
/S

en
der

Roun
dR

ob
in/

Ant
Net

Roun
dR

ob
in/

Bee
Alg.

Roun
dR

ob
in/

GA

Roun
dR

ob
int

/M
in

Max

Roun
dR

ob
in/

Roun
dR

ob
in

Roun
dR

ob
in/

Sen
de

r

Sen
de

r/A
ntN

et

Sen
de

r/B
eeA

lg.

Sen
de

r/G
A

Sen
de

r/M
in

Max

Sen
de

r/R
ou

nd
Robin

Sen
de

r/S
end

er

combination of algorithms

ti
m

e
in

 m
s

Fig. 6 Combination of algorithms in ring topology.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

AntN
et

/A
ntN

et

Ant
Net/B

ee
Alg

.

AntN
et

/G
A

Ant
Net/M

inM
ax

Ant
Net/R

ou
ndR

obin

AntN
et

/S
en

de
r

BeeA
lg./A

ntN
et

BeeA
lg
./B

eeA
lg.

BeeAlg./G
A

Bee
Alg.

/M
inMax

Bee
Alg./R

oun
dR

ob
in

BeeA
lg./S

end
er

GA/A
nt

Net

GA/B
ee

Alg.

GA/G
A

GA/M
in
Max

GA/R
oun

dR
ob

in

GA/S
en

de
r

M
inM

ax
/A

ntN
et

M
in
Max/

BeeA
lg.

M
inMax/G

A

M
inM

ax
/M

inMax

M
inM

ax/R
ou

nd
Rob

in

M
inM

ax/S
end

er

Roun
dR

ob
in/A

ntN
et

Rou
nd

Rob
in/

Bee
Alg

.

Rou
nd

R
ob

in/
GA

Rou
nd

Rob
in
t/M

inM
ax

Roun
dR

ob
in/R

ou
ndR

obin

Roun
dR

ob
in/S

en
der

Sen
de

r/A
nt

Net

Send
er

/B
eeA

lg.

Sen
de

r/G
A

Send
er

/M
inMax

Sen
der

/R
oun

dR
ob

in

Sen
de

r/S
end

er

combination of algorithms

ti
m

e
in

 m
s

Fig. 7 Combination of algorithms in star topology.

216 V. Šešum-Čavić and E. Kühn

On the basis of the results obtained (Fig. 4 – Fig. 7), the overall comparison is

done (Table 6). Many appearances of the same topology in Table 6 denote that the
respective combinations are equally good (e.g., both combinations Bee
Alg./Sender and MinMax/MinMax are equally good in a chain topology).

As can be noticed, in each topology (except star) the best combination is made
by one intelligent and one unintelligent algorithm. Although these combinations
are not real hybrid algorithms (each pure algorithm works either inside a subnet or
between subnets), the overall load distribution in the entire network is realized
through their synergy. Intelligent algorithms find good starting solutions (quality
and fastness), while unintelligent algorithms improve these solutions (fastness).

Table 6 Overall comparison of the best results in all topologies.

topology combination of algor. time (ms)

chain BeeAlg./Sender 88000

chain MinMax/MinMax 88000

full RoundRobin/BeeAlg. 76000

ring BeeAlg./Sender 93000

ring MinMax/RoundRobin 93000

star BeeAlg./BeeAlg. 346000

star GA/AntNet 346000

The results from Table6 are graphically presented in Fig.8.

0

50000

100000

150000

200000

250000

300000

350000

400000

chain full ring star

topology

ti
m

e
in

 m
s

Fig. 8 Results of the best combinations for each topology.

After obtaining the best combination for each topology, the benchmarks with
the best combinations are performed on larger network dimensions. Table7 sum-
marizes these results and shows that the results are stable as the same combina-
tion(s) of algorithms are obtained as the best ones for each of different dimensions
(4*4, 8*2, 4*8, 8*4).

8 Self-Organized Load Balancing Through Swarm Intelligence 217

Table 7 Results (time in ms) of the best combinations in different network dimensions.

total number
of nodes

number of
subnets

number of nodes
in each subnet

chain full ring star

16 4 4 88000 76000 93000 346000

 8 2 374000 384000 359000 365000

32 4 8 420000 556000 582000 388000

 8 4 406000 455000 484000 356000

Extended SILBA offers better and more powerful solutions than basic SILBA.
The situations that can benefit from extended SILBA are the following:

1. Subnets are physically required.
2. Extremely large networks with a high number of nodes where building subnets

and applying the extended SILBA strategy helps transferring the load between
very distant nodes. Load need not be transferred via a number of hops from one
node to another one, but can be transferred by using a shortcut, “jumping” from
the original node’s subnet to the distant destination node’s subnet.

4.2.3 Overall Evaluation

The absolute execution time is used as metric for the benchmarks. According to
the obtained results (see section 4.2.2.), the behaviour of a particular combination
of algorithms depends on a topology. The questions to be analyzed are:

1. How much is the best combination (in each topology) better than “extreme”
combinations: the worst one and the combination of the second best one?

2. What is the “behaviour” of the other combinations, i.e., how much do they de-
viate from the best solution? What is the “collective behaviour” of algorithm
combinations and the used SILBA pattern in each topology?

For chain topology, the best result is obtained by both BeeAlgorithm/Sender and
MinMax/ MinMax. They are equally good, and 5.4% better than the combination
in the second place, GA/Bee Algorithm, 78% better than the worst combination,
and 56% better than the average of all combinations. The additional measure-
ments, the interval of variation and the root mean square deviation (RMSD) are in-
troduced in order to examine the behaviour of the other combinations, i.e., how
much they deviate from the best solution. The interval of variation is defined as
the difference between the maximum value of the used metric (time) and its
minimum value: tmax – tmax and is equal to 320000ms. The used RMSD is a quanti-
tative measure (a decimal number) that tells how many good combinations in a
particular topology exist, i.e., how far from the best solution the data points (the
rest of the combinations) tend to be (smaller RMSD means more good combina-
tions). For chain topology, the value of RMSD is 172121.

218 V. Šešum-Čavić and E. Kühn

The combination RoundRobin/BeeAlgorithm shows the best results in the full
topology. This combination is 1.3% better than the combination in the second
place, RoundRobin/AntNet, 80.9% better than the worst combination, and 74.9%
better that the average of all combinations. The interval of variation, tmax – tmax, is
322000ms and the RMSD is 248227.7.

Both BeeAlgorithm/Sender and MinMax /RoundRobin are equally good in the
ring topology. They are 1.4% better than the combination in the second place,
MinMax/RoundRobin, 60.7% better than the worst combination, and 24.3% better
that the average of all combinations. The interval of variation, tmax – tmax, is
535000ms and the RMSD is 216194.9.

For the star topology, the combinations BeeAlgorithm/BeeAlgorithm and
GA/AntNet are the best with the same resulting value. They are 6.1% better than
the combination in the second place, AntNet/MinMax, 77.4% better than the worst
combination, and 50.1% better that the average of all combinations. The interval
of variation, tmax – tmax, is 319000ms and the RMSD is 153859.9.

From these results we can conclude that bee algorithms play an important role
in almost every topology. The best obtained results in each topology are based on
bee algorithms used either inside or between subnets, or in both. Also, the rest of
intelligent algorithms give good results in all topologies. The exception is the full
topology where the best results are obtained when round robin algorithm is used
inside subnets and combined with all others algorithms (except the combination
Round Robin/Round Robin).

The RMSD shows that the greatest deviation is reached in full topology, i.e.,
the majority of the other combinations differentiate a lot (they are worse in a
significant extent) comparing to the best obtained combination. The smallest de-
viation is in star topology, so the combinations behave evenly in this topology. If
we analyze how good response will be obtained by plugging any (random) combi-
nation of algorithms into SILBA, the equally good results are obtained in star to-
pology. So, SILBA is very stabile (without peaks in results) in star topology. At
the other side, Fig.8 shows that the results of the individual combinations of the
SILBA pattern are successful for chain, full and ring topologies, whereas the re-
sults obtained for star topology are not so good.

In the next table, the behaviour of the swarm intelligence algorithms’ combina-
tions is extracted as these algorithms are promising ones and not exploited so
much. Table8 shows how much they deviate from the best solution in each of the
used topologies. For example, the set of all combinations that use bee algorithms
inside subnets is denoted in the table as “bee/others”. According to these results,
all the combinations from this set deviate slightly from the best combination in the
chain topology (that are BeeAlgorithm/Sender and MinMax/MinMax), whereas
the combinations from this set deviate more from the best combination in star to-
pology, although the best combination is BeeAlgorithm/BeeAlgorithm.

8 Self-Organized Load Balancing Through Swarm Intelligence 219

Table 8 Deviation swarm based algorithms’ combinations from the best solution.

 chain full ring star

RMSD (Bee/Others) 35171.0 755211.9 25337.7 141470.8

RMSD (Others/Bee) 417868.4 600503.1 387401.6 537938.7

RMSD(AntNet/Others) 44899.9 659335.3 25869.2 35787.1

RMSD(Others/AntNet) 404891.3 608559.9 372385.6 541636.4

RMSD(MinMax/Others) 249164.6 686738.7 58813.3 21725.6

RMSD(Others/MinMax) 450334.3 603189.0 371052.6 526899.4

Additionally, scalability is analyzed. Here, we focus on the issue of load scal-
ability. A very general definition of scalability is taken into account [14], [35].
According to [14], a general family of metrics can be based on the following
definition:

),,(

),,(

111

222

CQoSF

CQoSF

λ
λψ =

(14)

where F evaluates the performance, λ evaluates the rate of providing services to
users, QoS is a set of parameters which evaluate the quality of the service seen by
users, and C reflects the cost. Further, [14] establishes the scaling strategy by
means of a scaling factor k and a set of scaling variables which are functions of k.
They express the strategy as a scaling path in a space in which they are the coordi-
nates. Fig.9 shows how ψ(k) behaves in different situations:

Fig. 9 Scaling behavior [14].

We specialize it to a simplified version of interest to our problem in terms of
load, resources and performance measure. This restricted aspect of scalability can
be quantitatively described on the basis of the computational resources available
(R), load of the system (L) and some performance measure (P). Then scalability
can be quantified by means of a “scalability ratio” rscal for a given constant k

Scale factor k

Scalability ψ(k)

1

superscalable

positive scalability

perfect scalability

threshold case

unscalable

220 V. Šešum-Čavić and E. Kühn

),(

),(

kRkLP

RLP
rscal = (15)

Usually, performance P is the function of load L and resources R. A certain aspect
of scalability is described by the answer to the question of how P is affected when
more resources (larger R) have to compensate for more load (larger L). A constant
remaining value of P when simultaneously increasing L and R by the same factor
leads to the “ideal” scalability ratio of 1. In our test examples, this interpretation of
load scalability is applied. We analyze the increasing of load with the increasing
of the resources. By comparing results (Table 12), it is easy to see that the best
chosen combinations based on bee algorithm scale well [14]. Load and resources
are increased twice for consecutive test runs.

Scalability in basic SILBA
For example in the cluster environment, load and resources are increased twice for
consecutive test runs, i.e., they are increased by 2n compared with the starting test
run (4 nodes, 50 tasks). The values of rscal are 2.9, 3.0, 3.4, 3.2 (rounded to one
decimal) for consecutive bee test runs, i.e., 2.9, 9.1, 31.0, 100.8 compared with the
starting test run (4 nodes, 50 tasks). These values converge to positive scalability.
Such behaviour is even better in a more real environment, i.e., on the Cloud. Al-
most the similar situation occurs with AntNet algorithm.

Scalability in extended SILBA
For chain topology: a) If the number of subnets is increased and the number of
nodes inside a subnet is the same, i.e., 4*4, 8*4, rscal is 4.6 (rounded to one deci-
mal), that leads to positive scalability. b) If the number of nodes in a subnet is
increased and the number of subnets is the same, i.e., 4*4, 4*8, rscal is 4.8; 8*2,
8*4, rscal is 1.1, that converges to perfect scalability.

For full topology: a) If the number of subnets is increased and the number of
nodes inside a subnet is the same, i.e., 4*4, 8*4, rscal is 5.98; that leads to positive
scalability. b) If the number of nodes in a subnet is increased and the number of
subnets is the same, i.e., 4*4, 4*8, rscal is 7.3; 8*2, 8*4, rscal is 1.8; that leads to
positive scalability.

For ring topology: a) If the number of subnets is increased and the number of
nodes inside a subnet is the same, i.e., 4*4, 8*4, rscal is 5.2; that leads to positive
scalability. b) If the number of nodes in a subnet is increased and the number of
subnets is the same, i.e., 4*4, 4*8, rscal is 6.2; 8*2, 8*4, rscal is 1.3; that converges
to perfect scalability.

For star topology: a) If the number of subnets is increased and the number of
nodes inside a subnet is the same, i.e., 4*4, 8*4, rscal is approximately 1; that leads
to perfect scalability. b) If the number of nodes in a subnet is increased and the
number of subnets is the same, i.e., 4*4, 4*8, rscal is approximately 1; 8*2, 8*4,
rscal is approximately 1; that leads to perfect scalability.

8 Self-Organized Load Balancing Through Swarm Intelligence 221

5 Conclusion

In this chapter, the problem of dynamic load balancing is investigated and treated.
First, the generic load balancing architectural pattern SILBA is introduced and
shortly explained. It allows the plugging and easy exchanging of a variety of algo-
rithms. First, SILBA is developed in its basic form, which refers to load balancing
within one network. Later, SILBA is extended in a way that load balancing can be
done through different levels (between nodes in one network, between subnets in
one network, between several networks) and this can be done concurrently. Dif-
ferent load balancing algorithms can be plugged into SILBA.

In the basic SILBA, the advantages of using bee swarm intelligence in the con-
text of load balancing are presented. Besides bee swarm intelligence, two further
intelligent algorithms are adapted based on MinMax and AntNet ant algorithms.
For these algorithms, the best combination of feasible parameters is identified, and
they are compared with three well-known algorithms: Round Robin, Sender, and
Adapted Genetic Algorithm. The load is generated by one single client, and as a
performance parameter the absolute execution time is used. Under these condi-
tions, the obtained results show that the bee algorithm outperforms all other test
candidates. All benchmarks are carried out on a cluster of 4 machines, and on the
Amazon EC2 Cloud.

The extended SILBA shows the advantages of using bee swarm intelligence in
the combination with the other algorithms (both intelligent and unintelligent) for
load balancing in more complex network structures that consist of different sub-
nets which might overlap or be nested: investigating different network topologies,
the combinations that are based on swarm algorithms show the best results in the
chain, ring and full topologies. The best combinations in all topologies are based
on bee algorithms. The load is generated by many clients, positioned symmetri-
cally in subnets. The benchmarks are also carried out on a cluster of 4 machines,
and on the Amazon EC2 Cloud. The performance measure is the absolute execu-
tion time, expressed in milliseconds. The best obtained combinations scale well in
all investigated topologies.

Future work will concern the following issues:

• Except execution time and scalability, different metrics will be used for the
evaluation of results and analysis: communication delay, utilization, stability,
fairness across multi-user workloads, robustness in the face of node failure,
adaptability in the face of different workloads, etc. Also, it will be investigated
under which circumstances, each metric is most appropriate.

• Benchmarking of very large instances and specific examples of the state of the
art in the real world.

• Investigation of the impact of load injection in different places in the network.
• Although enlarging their parameter space is the part of the future work, the

other way of investigation will play a role, i.e., a shrinking of the parameter
space, with more samples and more determinism so that the nature of swarm in-
telligent algorithms (especially bee intelligence) can be better understood.

222 V. Šešum-Čavić and E. Kühn

• Developing of a recommendation system for a given problem, e.g., the deter-
mination of the best topology, algorithm combinations, and parameters tuning
for a particular problem.

• Application of the results to distribute load in collaborative security scenarios
like distributed spam analysis and intrusion detection.

Acknowledgments. The work is partially funded by the Austrian Government under the
program FIT-IT (Forschung, Innovation und Technologie für Informationstechnologien),
project 825750 Secure Space - A Secure Space for Collaborative Security Services. We
would also like to thank Deguang Sea and Fabian Fischer for implementation and bench-
marking of SILBA.

References

[1] Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribu-
tion technologies. ACM Computing Surveys 36(4), 335–371 (2004)

[2] Bronevich, A.G., Meyer, W.: Load balancing algorithms based on gradient methods
and their analysis through algebraic graph theory. Journal of Parallel and Distributed
Computing 68(2), 209–220 (2008)

[3] Cabri, G., Leonardi, L., Zambonelli, F.: Mars: A programmable coordination archi-
tecture for mobile agents. IEEE Internet Computing 4(4), 26–35 (2000)

[4] Camazine, S., Sneyd, J.: A model of collective nectar source selection by honey bees:
Self-organization through simple rules. Journal of Theoretical Biology 149, 547–571
(1991)

[5] Chen, J.C., Liao, G.X., Hsie, J.S., Liao, C.H.: A study of the contribution made by
evolutionary learning on dynamic load-balancing problems in distributed computing
systems. Expert Systems with Applications 34(1), 357–365 (2008)

[6] Chong, C.S., Sivakumar, A.I., Low, M.Y., Gay, K.L.: A bee colony optimization al-
gorithm to job shop scheduling. In: Proceedings of the Thirty-Eight Conference on
Winter Simulation, pp. 1954–1961 (2006)

[7] Cortes, A., Ripolli, A., Cedo, F., Senar, M.A., Luque, E.: An asynchronous and itera-
tive load balancing algorithm for discrete load model. Journal of Parallel and Distrib-
uted Computing 62(12), 1729–1746 (2002)

[8] Da Silva, D.P., Cirne, W., Brasileiro, F.V.: Trading Cycles for Information: Using
Replication to Schedule Bag-of-Tasks, pp. 169–180. Applications on Computational
Grids, Proceeding of European Conference on Parallel Processing (2003)

[9] Di Caro, G., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Communica-
tions Networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)

[10] Dorigo, M., Stuetzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2005)
[11] Gelernter, D., Carriero, N.: Coordination languages and their significance. ACM

Communication 35(2), 97–107 (1992)
[12] Ho, C., Ewe, H.: Ant colony optimization approaches for the dynamic load-balanced

clustering problem in ad hoc networks. In: Proceeding of Swarm Intelligence Sympo-
sium, IEEE/SIS 2007, pp. 76–83 (2007)

[13] Janssens, N., Steegmans, E., Holvoet, T., Verbaeten, P.: An agent design method
promoting separation between computation and coordination. In: Proceedings of the
2004 ACM Symposium on Applied Computing, SAC 2004, pp. 456–461 (2004)

8 Self-Organized Load Balancing Through Swarm Intelligence 223

[14] Jogalekar, P., Woodside, C.M.: Evaluating the Scalability of Distributed Systems.
IEEE Transanctions on Parallel and Distributed Systems 11(6), 589–603 (2000)

[15] Kühn, E., Mordinyi, R., Schreiber, C.: An extensible space-based coordination ap-
proach for modelling complex patterns in large systems. In: Proceedings of the Third
International Symposium on Leveraging Applications of Formal Methods, pp. 634–
648 (2008)

[16] Kühn, E., Riemer, J., Lechner, L.: Integration of XVSM spaces with the Web to meet
the challenging interaction demands in pervasive scenarios. Ubiquitous Computing
and Communication Journal - Special issue of Coordination in Pervasive Environ-
ments 3 (2008)

[17] Kühn, E., Mordinyi, R., Keszthelyi, L., Schreiber, C.: Introducing the Concept of
Customizable Structured Spaces for Agent Coordination in the Production Automa-
tion Domain. In: Proceedings of the Eighth International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2009, pp. 625–632 (2009)

[18] Kühn, E., Mordinyi, R., Lang, M., Selimovic, A.: Towards Zero-delay Recovery of
Agents in Production Automation Systems. In: Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent
Agent Technology, vol. 2, pp. 307–310 (2009)

[19] Kühn, E., Sesum-Cavic, V.: A space-based generic pattern for self-initiative load bal-
ancing agents. In: Aldewereld, H., Dignum, V., Picard, G. (eds.) ESAW 2009. LNCS
(LNAI), vol. 5881, pp. 17–32. Springer, Heidelberg (2009)

[20] Kühn, E.: Virtual Shared Memory for Distributed Architectures. Nova Science Pub-
lishers (2001)

[21] Lemmens, N., De Jong, S., Tuyls, K., Nowé, A.: Bee behaviour in multi-agent sys-
tems. In: Tuyls, K., Nowe, A., Guessoum, Z., Kudenko, D. (eds.) ALAMAS 2005,
ALAMAS 2006, and ALAMAS 2007. LNCS (LNAI), vol. 4865, pp. 145–156.
Springer, Heidelberg (2008)

[22] Lin, F.C., Keller, R.M.: The gradient model load balancing method. IEEE Transac-
tions On Software Engineering 13(1), 32–38 (1987)

[23] Markovic, G., Teodorovic, D., Acimovic-Raspopovic, V.: Routing and wavelength
assignment in all-optical networks based on the bee colony optimization. AI Commu-
nications 20(4), 273–285 (2007)

[24] Mordinyi, R., Kühn, E., Schatten, A.: Towards an Architectural Framework for Agile
Software Development. In: Proceedings of the Seventeenth International Conference
and Workshops on the Engineering of Computer-Based Systems, pp. 276–280 (2010)

[25] Nakrani, S., Tovey, C.: On honey bees and dynamic server allocation in the Internet
hosting centers. Adaptive Behaviour 12(3-4), 223–240 (2004)

[26] Olague, G., Puente, C.: The Honeybee Search Algorithm for Three-Dimensional Re-
construction. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler,
R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Ta-
kagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 427–437. Springer, Hei-
delberg (2006)

[27] Pham, D.T., Soroka, A.J., Ghanbarzadeh, A., Koç, E., Otri, S., Packianather, M.: Op-
timising neural networks for identification of wood defects using the Bees Algorithm.
In: Proceedings of the IEEE International Conference on Industrial Informatics, pp.
1346–1351 (2006)

[28] Pham, D.T., Koç, E., Lee, J.Y., Phrueksanant, J.: Using the Bees Algorithm to sched-
ule jobs for a machine. In: Proceedings of the Eighth International Conference on La-
ser Metrology, pp. 430–439 (2007)

224 V. Šešum-Čavić and E. Kühn

[29] Picco, G.P., Balzarotti, D., Costa, P.: Lights: a lightweight, customizable tuple space
supporting context-aware applications. In: Proceedings of the ACM Symposium on
Applied Computing, SAC 2005, pp. 413–419 (2005)

[30] Picco, G.P., Murphy, A.L., Roman, G.C.: Lime: Linda meets mobility. In: Proceed-
ings of the IEEE International Conference on Software Engineering, pp. 368–377
(1999)

[31] Šešum-Čavić, V., Kühn, E.: Instantiation of a generic model for load balancing with
intelligent algorithms. In: Hummel, K.A., Sterbenz, J.P.G. (eds.) IWSOS 2008.
LNCS, vol. 5343, pp. 311–317. Springer, Heidelberg (2008)

[32] Šešum-Čavić, V., Kühn, E.: Comparing configurable parameters of Swarm Intelli-
gence Algorithms for Dynamic Load Balancing. In: Proceedings of the Fourth IEEE
International Conference on Self-Adaptive and Self-Organizing Systems, Workshop
Self-Adaptive Network, SASO/SAN, pp. 255–256 (2010)

[33] Shivaratri, N.G., Krueger, P.: Adaptive Location Policies for Global Scheduling.
IEEE Transactions on Software Engineering 20, 432–444 (1994)

[34] Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic,
and Logical Foundations. Cambridge University Press, Cambridge (2009)

[35] Van Steen, M., Van der Zijden, S., Sips, H.J.: Software Engineering for Scalable Dis-
tributed Applications. In: Proceedings of the Twenty-Second International Computer
Software and Applications Conference, COMPSAC, pp. 285–293 (1998)

[36] Wong, L.P., Low, M.Y., Chong, C.S.: A Bee Colony Optimization for Traveling
Salesman Problem. In: Proceedings of the Second Asia International Conference on
Modelling & Simulation, AMS, pp. 818–823. IEEE, Los Alamitos (2008)

[37] Yang, X.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2008)
[38] Zhou, S.: A trace-driven simulation study of dynamic load balancing. IEEE Transac-

tions on Software Engineering 14(9), 1327–1341 (1988)

Glossary

FF fitness function
GA genetic algorithm
LB load balancing
LP location policy
MINMAX min-max ant system algorithm
OK ok-loaded
OL overloaded
SF suitability function
SILBA self initiative load balancing agents
SM search mode
TP transfer policy
UL under-loaded
XVSM extensible virtual shared memory

	Self-Organized Load Balancing through Swarm Intelligence
	Introduction
	Related Approaches

	SILBA Framework
	Basic SILBA
	Extended SILBA

	Swarm Based Algorithms
	Bee Algorithm
	Ant Algorithms

	Benchmarks
	Basic SILBA Benchmarks
	Extended SILBA Benchmarks

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

