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Abstract

Modern satellite gravity field recovery missions use accelerometric, intersatellite

tracking or gradiometric observables for deducing gravity field related data. In

this study an alternative observable type for gravity field recovery, the relativistic

frequency shift, is investigated. As Einstein stated in his general theory of relati-

vity, gravity can be considered as attribute of space-time. In this view mass alters

the geometric shape of the metric tensor. Moreover mass, respectively gravity,

has effects on electromagnetic wave propagation [Einstein (Annalen der Physik

35:898–908 1911)]. Although these relativistic effects are quite small and difficult

to measure, with upcoming atomic clocks which have sufficient accuracy and

short-term stability it will be possible to derive meaningful gravity related infor-

mation. Since relativistic effects are used this method is called Post-Newtonian

method. The main target of this paper is to demonstrate the validity of the derived

relativistic equations.

The scientific quality of the relativistic frequency shift observed by means

of highly accurate atomic clocks is investigated. In our basic scenario a low earth

orbit (LEO) sends an electromagnetic wave to a receiver. The reference station

determines the frequency shift of the signal, which is connected to the time dila-

tation between the atomic clock of the satellite and an identical atomic clock

nearby the receiver. A simplified, mathematical model for numerical simulations

of this configuration is presented. The effect of different error sources are investi-

gated by numerical closed-loop simulations. Thus, the performance requirements

of atomic clocks, position and velocity determination and limiting factors for

deducing earth’s gravity field can be derived.

28.1 Introduction

In this study the principle of the Post-Newtonian

method for earth gravity field determination is pre-

sented. The observable for gravity field reconstruction

is the frequency shift of an electromagnetic signal trans-

mitted from a satellite to a receiver station. This fre-

quency shift is caused by relativistic time dilatation
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which is related to the gravity potential. By numerical

simulations the spatial and spectral performance of

a LEO satellite mission equipped with atomic clocks,

which will be available within the next tow decades,

is investigated.

There have been done some studies which are

related to future satellite gravity field missions and

general relativistic effects. There is for example the

Einstein Gravity Explorer mission proposal (Schiller

et al. 2009) in which testing methods of relativistic

effects and physical constants based on atomic clock

measurements are investigated. M€uller et al. (2007)

explored the impact of relativity on various geodetic

topics like the geoid, reference systems, geodynamics,

Global Positioning System (GPS), Satellite Laser

Ranging (SLR), and Very Long Base Interferometry

(VLBI). Gulkett (2003) investigated relativistic effects

on GPS and LEO and showed how to implement

them correctly within a relativistic framework. The

IAU already included relativistic effects for frame

transformations (Soffel et al. 2003).

For being able to realise a satellite mission as

proposed in this paper, atomic clocks with sufficient

quality will be needed. Actual atomic clocks achieve

a short term stability of 10�16 s (between two mea-

surement epochs) on earth (Schiller 2007) and are

expected to achieve 10�18 s within the next 15 years.

According to Cacciapuoti (2006), actual space-borne

atomic clocks achieve an accuracy of 10�15 s. Thus,

a satellite mission with an atomic clock with 10�18 s

stability should be possible within the next 30 years.

In this study, the equations for the Post-Newtonian

method are derived in Chaps. 28.2 and 28.3. In

Chap. 28.4 the simulation setup is described in more

detail. Chapter 28.5 shows the simulation results, a

performance analysis, and the analysis of the spectral

and spatial error behaviour. Finally a conclusion and

outlook is given in Chaps. 28.6 and 28.7.

28.2 Relativistic Time Dilatation

The metric tensor gmn describes the curvature of space-
time. Thus, it can be used for deducing a description of

the relativistic frequency shift. The line element ds can

be described by

ds2 ¼ gmnðxÞdxmdxn (28.1)

Here Einstein’s tensor convention has been

applied (Einstein 1916). Double upper and lower

indices describe a summation. The gradient dxk ¼
½�c � dt dx1 dx2 dx3�T of the scalar vector field

x ¼ ðxkÞ contains position and time information. c is

the speed of light in vacuum, dt the time element

of a chosen time system and dxi describe the three

dimensional coordinate elements. The metric tensor

gmnðxÞ is a function of xk m; n; k ¼ ½0; 1; 2; 3�ð Þ, which
means that the curvature of space-time depends

on time and position.

A solution of Einstein’s field equations delivers the

elements of the metric tensor. A series expansion

representation of the tensor elements is (Soffel et al.

2000)

g00 ¼ �1þ 2 � FðxÞ
c2

� 2 � F2ðxÞ
c4

þ Oðc�5Þ

g0i ¼ � 4 � FiðxÞ
c3

þ Oðc�5Þ

gij ¼ dij 1þ 2 � FðxÞ
c2

� 2 � F2ðxÞ
c4

� �
þ Oðc�6Þ

(28.2)

where FðxÞ is the gravity potential and i; j ¼ ½1; 2; 3�.
The earth’s static gravity field potential is usually

expressed by a spherical harmonic series expansion

(Heiskanen and Moritz 1967):

FEðr; y; lÞ ¼ GM

R
�
X1
l¼0

R

r

� �lþ1

�

Xl

m¼0

ð �Clm cosmlþ �Slm sinmlÞ � �Plmðcos yÞ

(28.3)

Here r, y and l are spherical coordinates, R is the

earth’s reference radius, GM the gravitational constant

times mass of the earth, l and m are the degree and

order of the fully normalized spherical coefficients
�Clm; �Slm, and �Plmðcos yÞ represents the fully norma-

lized Legendre function. Equation (28.3) describes

the functional model for setting up the design matrix

for least squares adjustment in our simulation envi-

ronment. The spherical coefficients �Clm; �Slm are the

system parameters, while the gravity potential F,
which is derived from relativistic frequency shifts

is the observable of our system.
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The local line element dsclock of a clock moving

within a gravity field affects the displayed time dtclock
and frequency uclock of the clock.

dtclock ¼ 1

uclock
¼ dsclock

c
¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gmnðxÞdxmdxn

q
(28.4)

x ¼ ðxkÞ and dxk are related to the coordinates of

the clock. The coordinate elements of a moving clock

can be described by

dxk ¼ ½�c � dt v1dt v2dt v3dt � (28.5)

Here, vi ¼ viðxÞ denotes the velocity of the clock

and is related to its coordinates, too. Merging (28.2),

(28.4) and (28.5) and omitting elements smaller then

c�3 leads to a description of the inherent time of

a moving body:

dt2 ¼ �1þ 2 � FðxÞ
c2

þ v2�ðxÞ
c2

� �
� dt2 (28.6)

v�ðxÞ is the local scalar velocity of the clock. The

asterisk ‘*’ is used for underlining that v is scalar and

preventing to mix it up with the velocities from (28.5).

dt represents a virtual time of an non-moving, gravity-

free (inertial) body located at infinite distance.

28.3 Functional Model

ALEO satellite transmits an electromagnetic signal via

microwave link to a receiver station. This receiver

station could be a geostationary satellite or a reference

station located on earth’s surface. By comparing the

local frequency of the transmitted signal with the local

frequency of the received signal the time dilation bet-

ween receiver and transmitter is defined. By using

(28.6) and again omitting elements smaller then c�3 the

ratio of receiver and transmitter frequency is obtained by

DuRT ¼ uR
uT

¼ dtT
dtR

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ 2�FT

c2 þ v2T�
c2

�1þ 2�FR

c2 þ v2R�
c2

vuut þ Oðc�4Þ (28.7)

The lower indices R and T describe a receiver,

respectively a transmitter related variable. The gravity

potentials are related to the receiver or transmitter

position FR ¼ FðxkRÞ; FT ¼ FðxkTÞ. This equation is

used for synthesizing relativistic frequency shifts in

our simulation environment. Moreover it is the funda-

mental equation for the Post-Newtonian approach.

As the relativistic time dilation, which is not modeled

by the Newtonian framework, is taken into account,

the nomenclature ‘Post-Newtonian’ has bee chosen

to describe this method. The gravity potential FT

deduced from the frequency shift DuRT is the prime

observable for the Post-Newtonian method. A general

description of (28.7) is

DuRT ¼ uR
uT

¼ dtT
dtR

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gmnðxTÞdxmTdxnT
gmnðxRÞdxmRdxnR

s
(28.8)

By combining (28.8) with the description of the

metric tensor elements in (28.2), (28.7) can be achie-

ved. Based on this function the gravity potential FT at

the satellite position can be calculated from a mea-

sured frequency shift DuRT . After some reformulations

a function, which is used in our simulation environ-

ment as functional model for deducing the gravity

potential at transmitter position from the frequency

shift DuRT , is achieved:

FT ¼ Du2RT � OR � v2T�
c2

þ 1

� �
� c

2

2
(28.9)

Here a support variable OR has been introduced.

It contains all position, velocity and gravity potential

information of the receiver station:

OR ¼ �1þ 2 � FR

c2
þ v2R�

c2
:

Equations (28.9) and (28.10) describe two relati-

vistic effects. The first one is time dilatation caused

by relative movement of receiver and transmitter,

the second one time dilatation caused by the gravity

potential difference between transmitter and receiver

location.

The gravity potential FðxÞ is composed of all

occurring gravity potentials. As a first approximation

in our simulations, all non-earth gravity potentials and

tide signals have been neglected. Beside the special

relativistic and general relativistic effects the Doppler

shift is the third large effect which influences the
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frequency observations of the receiver station. As

a satellite in a LEO achieves large velocities, the radial

velocity between receiver and transmitter cause a

Doppler frequency shift which has to be modeled.

The Doppler shift (Doppler 1842) is defined by

uR ¼ uT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� v�TR
cþ v�TR

s
(28.10)

where v�TR is the scalar radial velocity between trans-

mitter and receiver. The Doppler shift is applied to the

measured frequency at the receiver station. It has to

be mentioned that as we are working in a relativistic

framework, the radial velocity has to be derived in a

coordinate system located at the center of the receiver

station.

28.4 Simulation Setup

Figure 28.1 shows the schematic set-up of our simula-

tion software. In a configuration file the orbit proper-

ties, computation switches and observation noise types

are defined. The software computes based on this con-

figuration, the orbit positions and the frequency related

effects by using (28.7) and (28.10). In our simulation

environment (28.9) has been used to calculate the

gravity potential at the satellite position from the

synthesized frequency shifts.

The simulation environment has been designed

to determine the influence of data noise on the repro-

duced gravity field model. Therefore it is possible to

manually add realistic noise on frequency and velocity

measurements. Following effects on the frequency

shift observable have been simulated:

• Special relativistic frequency shift caused by relative

velocity of receiver and transmitter clock (28.7).

• General relativistic frequency shift caused by rela-

tive potential difference at receiver and transmitter

clock positions (28.7).

• Doppler Effect caused by relative radial velocity of

receiver and transmitter clock (28.10).

For every effect a realistic stochastic noise signal

was added on noise-free frequency and velocity mea-

surements. Shin et al. (2008) suppose a coloured noise

for H-maser clocks with increasing amplitudes at low

and high frequencies and linear behaviour in-between.

Figure 28.2 shows the power spectrum density

function of the atomic clock noise with amplitude

10�17 and 10�18 s generated for our simulations

based on this information. For the velocity error,

white noise has been assumed.

In the frame of gravity field adjustment, the sto-

chastic models, which define the metric of the normal

equation system, have been consistently incorporated

by correspondingly designed digital filters applied to

both, the observation time series and the columns of

the design matrix (Schuh, 2001).

A nearly polar (89.5� inclination), circular repeat

orbit with 25 days and 403 cycles at 300 km mean

height with 10 s sampling interval has been chosen for

all simulations.

28.5 Simulation Results

28.5.1 Performance Analysis

The main observable of the Post-Newtonian method is

the frequency shift. Equation (28.7) shows that beside

the atomic clock noise the velocity determination noise

Orbit
Definition

Simulation
Definition

Orbit
Synthesis

Signal
Synthesis

Noise
Definition

Potential
Reconstruction

Gravity Field
Analysis

Gravity Field
Coefficients

equation (28.7), (28.10)

equation (28.9)

equation (28.3)
least squares 
adjustment

Fig. 28.1 Schematic

presentation of the simulation

environment used in this study
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of the transmitter is a stochastic variable, too and is the

second limiting factor for the Post-Newtonian method.

Based on the frequency shift the transmitter poten-

tial can be determined by using (28.10). Thus, first

a noise free data set has been defined, and the calcula-

tion method has been verified by using closed-loop

computations. Next, realistic coloured clock noise

(Fig. 28.2) with amplitudes of 10�16 up to 10�18 s has

been applied to the synthetic observations. Finally,

signals including white velocity noise at amplitudes

of 10�4 to 10�6 m/s have been used instead.

Figure 28.3 shows the degree error median of the

by least squares adjustment reproduced gravity field

coefficients up to d/o (degree and order) 150. It can be

seen that the velocity noise of 10�5 m/s has an effect

on the gravity field reconstruction error which is com-

parable to 10�17 s clock noise, while 10�6 m/s velocity

noise has a similar influence as 10�18 s clock noise.

Moreover it can be seen that future atomic clocks

(Cacciapuoti 2006; Schiller 2007) with an expected

short term stability of 10�18 s clock noise, and position-

ing precision of 10�6 m/s velocity noise it would be

possible to deduce earth’s gravity field up do d/o 120. It

has to be mentioned that following effects, which will

in practice have additional contributions on the total

error budget, have been neglected in our simulations:

Fig. 28.2 Smoothed noise

amplitude spectrum of

coloured clock noise with

amplitude 10�17 s and 10�18 s

Fig. 28.3 Degree error

median plot of simulations

with frequency noise with

10�17 s and 10�18 s amplitude

and velocity noise with 10�5

m/s and 10�6 m/s white noise
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• Tidal and non-tidal temporal variable effects.

• Non-conservative potentials

• Relativistic effects on frame transformations.

• Non-uniformly rotating earth.

• Non-inertial potentials (satellite rotation).

• Receiver position related errors (position, velocity

and the gravity potential at receiver position are

assumed to be error-free).

• Dispersive atmosphere related effects.

However, it can be expected that the error terms

included in this study are the dominant ones.

28.5.2 Spatial and Spectral Error Structure

As the gravity potential at the transmitter position,

which is deduced from frequency measurements, is the

observable for the least squares adjustment, the error

structure of the recovered earth gravity field corresponds

to the error structure of direct potential observations.

Thus, in the case of white noise, the error amplitude

increases with higher degree and order of deduced

spherical coefficients and the slope of the degree error

median is related to the chosen orbit height. Figure 28.4

Fig. 28.4 Geoid height error

of simulation with 10�18

s clock noise applied on

frequency observations. A

homogeneous and isotropic

error structure is provided

Fig. 28.5 Degree error

median plot of Doppler

velocity error with 10�4 m/s

noise simulation. Compared to

the simulations shown in

Fig. 28.3 the influence of

Doppler noise is negligibly

small
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shows the homogeneous and isotropic spatial error

distribution of a simulation configuration with 10�18 s

clock noise. Simulations with white velocity noise

superposed show similar spatial error structures.

28.5.3 Doppler Shift

A simulation setup has been defined, where the

Doppler shift has been applied on synthetic frequency

observations based on noise-free data with which rel-

ativistic influences were modeled before. White noise

with amplitude of 10�4 m/s has been superposed on

the noise-free velocities (28.10).

Figure 28.5 shows that the Doppler shift can be

modeled very well even at high velocity noise ampli-

tudes. Moreover, the influence on the recovered gra-

vity field is negligibly small up to d/o 250. So the

Doppler shift is no limiting factor. The reason for

this is because compared to (28.9), the radial velocity

in (28.10) is not scaled by c2.

28.6 Conclusions

It has been shown that the Post-Newtonian method is

a feasible method for reproducing earth’s gravity field

for lower and medium frequencies, provided that

the technological development of space-borne atomic

clocks proceeds in the future. Additionally it has been

shown that the derived equations are valid within

the defined mission scenario. The two dominant error

contributions of this method are the atomic clock

noise and the satellite velocity error of the precise

orbit determination. The Doppler-effect, which also

influences the frequency measurements, can be mode-

led with sufficient precision, so its error does not leak

into the recovered gravity coefficients. It has to be

mentioned that the simulations done here should be

seen as a concept study and some more realistic simu-

lations will be done to provide more information about

the behaviour of the method.

A velocity determination precision up to 10�6 m/s

and an atomic clock short term stability of 10�18

s is required to resolve the gravity field up to d/o

120. The main advantage of this method is its homo-

geneous and isotropic spatial error structure.

28.7 Outlook

With upcoming atomic clocks below 10�16 s short

term stability and improving positioning and velocity

determination methods, the presented method can be

an additional piece for a global earth gravity field

monitoring framework in a not too far future. Beside

the single-satellite mission presented in this study,

various satellite constellations and formations can

be designed. In what extent satellite formations like

Pendulum, Cartwheel or LISA-like lead to improved

precision still has to be investigated by numerical

simulations. There is no doubt that multi-satellite

missions would underline the possible power of the

Post-Newtonian method.

One, two or three geostationary satellites could be

used as reference stations. Additional rover satellites

could be placed in different orbit types. A dense net-

work of satellites could improve the time resolution,

so the time variable gravity field could be optimally

mapped. These satellites could be equipped with two

or more RF-antennas, so one satellite could establish

a connection to two or more other satellites, which

would further increase the measurement density of the

network.

As the equations used in this study are strongly sim-

plified, the influences of other effects have to be further

investigated. First real orbits and non-conservative

forces have to be modeled. Next, the influence of

satellite rotation has to be investigated. Additional

attitude information from star-tracker measure-

ments and its noise behaviour have to be simulated.

All observations and calculations have to be done in

a relativistic framework. So the influences of frame

transformations in this relativistic framework have to

be investigated.

All other effects listed in Chap. 28.5.1 will be fur-

ther investigated in upcoming simulations. This will

lead to a much more complex mathematical descrip-

tion which will be harder to linearize, but will also be

closer to reality. The main target of upcoming simu-

lations will be to set up a more realistic environment

and to design multi-satellite missions that support the

advantages of the Post-Newtonian method. Moreover

there will be done simulations concerning the time

variable gravity field. It will be investigated how

different mission design affects the quality of the

static and time variable gravity field and if there is
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a possibility to deduce models with higher spatial and

temporal resolution.
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