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Foreword

This volume contains the proceedings of the conference “Complex and Differential
Geometry 20097, held at Leibniz Universitit Hannover from September 14 — 18,
2009. The aim of the conference was to bring specialists from differential geometry
and (complex) algebraic geometry together, to discuss new developments in and
the interaction between these fields. The articles in this book cover a broad range
of subjects from topics in (classical) algebraic geometry and complex geometry,
including (holomorphic) symplectic and Poisson geometry, to differential geometry
(with an emphasis on curvature flows) and topology.

This volume is based on contributions both by conference speakers and by par-
ticipants, including in two cases articles from mathematicians who were unable to
attend the meeting in Hannover.

The book provides a variety of survey articles giving valuable accounts of impor-
tant developments in the areas discussed. A. Beauville and E. Markman write about
holomorphic symplectic manifolds. Whereas Beauville’s contribution concentrates
on open problems, Markman’s article discusses and develops recent work by Ver-
bitsky on the global Torelli theorem for these manifolds. Bauer, Catanese and Pig-
natelli report on new results concerning the classification of surfaces of general type
with vanishing geometric genus. The paper by S. Rollenske provides the reader with
an overview of Dolbeault cohomology of nilmanifolds with left-invariant complex
structure. In his contribution F. Leitner gives an exposition of some aspects of the
theory of conformal holonomy. Kéhler-Einstein manifolds and their classification is
the topic of M. Kiihnel’s survey paper, where he also discusses problems concern-
ing the existence and uniqueness of complete Ricci-flat Kdhler metrics. M. Lénne
discusses braid monodromy of plane curves and explores the new area of knotted
monodromy. Submanifolds in Poisson geometry are the subject of M. Zambon’s
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article, and M. Kure$’ contribution provides a survey of some algebraic and differ-
ential geometric aspects of Weil algebras.

The (classical) theory of special sets of points in projective geometry and Cre-
mona groups are the topic of I. Dolgachev’s contribution, while S. Cynk discusses
the Fulton-Johnson class of complete intersections. T. Peternell’s paper contains
new results concerning generic ampleness of the cotangent bundle of non uni-ruled
projective manifolds. It is shown in G. K. Sankaran’s article that every smooth pro-
jective curve can be embedded into a given toric threefold. J.-M. Hwang and W.-
K. To discuss the Buser-Sarnak invariant and use this to prove results on the projec-
tive normality of abelian varieties. In his contribution N. Mok discusses established
and new results on singularities of holomorphic maps between complex hyperbolic
space forms. In his paper on vector bundles on curves, N. Hitchin studies polyvector
fields on moduli spaces of such bundles.

Flows played an important role in the talks presented at the conference. This
is reflected in a number of papers. T. Behrndt and S. Brendle discuss the general-
ized Lagrangian mean curvature flow in Kéhler manifolds and the Ricci flow re-
spectively. Ricci flows also feature in the article by X. Cao and Z. Zhang, who
prove differential Harnack estimates. Y.-I. Lee finally provides detailed computa-
tions for constructing translating solutions from self-similar solutions for the La-
grangian mean curvature flow.

It is our pleasure to thank all the organizations and people who made this con-
ference a success. We are grateful to Leibniz Universitit Hannover and the DFG
funded Graduiertenkolleg GRK 1463 “Analysis, Geometry and String Theory” for
financial support. The organization of the conference would not have been possible
without X. Bogomolec, S. Heidemann, K. Ludwig and M. Schunert. We are par-
ticularly indebted to N. Behrens, A. Friihbis-Kriiger, S. Géhrs and L. Habermann
for their substantial contribution to both the organization of the conference and the
editing of this volume. Finally, thanks go to R. Timpe, whose TEXnical expertise
was invaluable for producing the final form of these Proceedings.

Hannover, February 2011 Wolfgang Ebeling
Klaus Hulek
Knut Smoczyk
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Surfaces of general type with geometric genus
Zero: a survey
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Abstract In the last years there have been several new constructions of surfaces of
general type with p, = 0, and important progress on their classification. The present
paper presents the status of the art on surfaces of general type with p, = 0, and
gives an updated list of the existing surfaces, in the case where K> = 1,...,7. It also
focuses on certain important aspects of this classification.
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2 Ingrid Bauer, Fabrizio Catanese and Roberto Pignatelli

1 Introduction

It is nowadays well known that minimal surfaces of general type with pg(S) =0
have invariants p,(S) = ¢(S) = 0,1 < K3 <9, hence they yield a finite number of
irreducible components of the moduli space of surfaces of general type.

At first glance this class of surfaces seems rather narrow, but we want to report
on recent results showing how varied and rich is the botany of such surfaces, for
which a complete classification is still out of reach.

These surfaces represent for algebraic geometers an almost prohibitive test case
about the possibility of extending the fine Enriques classification of special surfaces
to surfaces of general type.

On the one hand, they are the surfaces of general type which achieve the minimal
value 1 for the holomorphic Euler-Poincaré characteristic x(S) := pg(S) —¢q(S)+1,
so a naive (and false) guess is that they should be “easier” to understand than
other surfaces with higher invariants; on the other hand, there are pathologies (espe-
cially concerning the pluricanonical systems) or problems (cf. the Bloch conjecture
([Blo75]) asserting that for surfaces with p,4(S) = ¢(S) = 0 the group of zero cy-
cles modulo rational equivalence should be isomorphic to Z), which only occur for
surfaces with p, = 0.

Surfaces with p,(S) = ¢(S) = 0 have a very old history, dating back to 1896
([Enr96], see also [EntMS], I, page 294, and [Cas96]) when Enriques constructed
the so called Enriques surfaces in order to give a counterexample to the conjecture
of Max Noether that any such surface should be rational, immediately followed by
Castelnuovo who constructed a surface with pe(S) = ¢(S) = 0 whose bicanonical
pencil is elliptic.

The first surfaces of general type with p, = g = 0 were constructed in the 1930’
s by Luigi Campedelli and by Lucien Godeaux (cf. [Cam32], [God35]): in their
honour minimal surfaces of general type with KS2 =1 are called numerical Godeaux
surfaces, and those with K§ = 2 are called numerical Campedelli surfaces.

In the 1970’s there was a big revival of interest in the construction of these
surfaces and in a possible attempt to classification.

After rediscoveries of these and other old examples a few new ones were found
through the efforts of several authors, in particular Rebecca Barlow ([Bar85a])
found a simply connected numerical Godeaux surface, which played a decisive role
in the study of the differential topology of algebraic surfaces and 4-manifolds (and
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also in the discovery of Kéhler Einstein metrics of opposite sign on the same mani-
fold, see [CL97]).

A (relatively short) list of the existing examples appeared in the book [BPV84],
(see [BPV84], VII, 11 and references therein, and see also [BHPV04] for an updated
slightly longer list).

There has been recently important progress on the topic, and the goal of the
present paper is to present the status of the art on surfaces of general type with
pe = 0, of course focusing only on certain aspects of the story.

Our article is organized as follows: in the first section we explain the “fine” clas-
sification problem for surfaces of general type with p, = ¢ = 0. Since the solution
to this problem is far from sight we pose some easier problems which could have a
greater chance to be solved in the near future.

Moreover, we try to give an update on the current knowledge concerning sur-
faces with p, = g = 0.

In the second section, we shortly review several reasons why there has been a
lot of attention devoted to surfaces with geometric genus p, equal to zero: Bloch’s
conjecture, the exceptional behaviour of the pluricanonical maps and the interesting
questions whether there are surfaces of general type homeomorphic to Del Pezzo
surfaces. It is not possible that a surface of general type be diffeomorphic to a ratio-
nal surface. This follows from Seiberg-Witten theory which brought a breakthrough
establishing in particular that the Kodaira dimension is a differentiable invariant of
the 4-manifold underlying an algebraic surface.

Since the first step towards a classification is always the construction of as many
examples as possible, we describe in section three various construction methods for
algebraic surfaces, showing how they lead to surfaces of general type with p, = 0.
Essentially, there are two different approaches, one is to take quotients, by a finite
or infinite group, of known (possibly non-compact) surfaces, and the other is in a
certain sense the dual one, namely constructing the surfaces as Galois coverings of
known surfaces.

The first approach (i.e., taking quotients) seems at the moment to be far more
successful concerning the number of examples that have been constructed by this
method. On the other hand, the theory of abelian coverings seems much more use-
ful to study the deformations of the constructed surfaces, i.e., to get hold of the
irreducible, resp. connected components of the corresponding moduli spaces.
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In the last section we review some recent results which have been obtained by
the first two authors, concerning the connected components of the moduli spaces
corresponding to Keum-Naie, respectively primary Burniat surfaces.

2 Notation

For typographical reasons, especially lack of space inside the tables, we shall use
the following non standard notation for a finite cyclic group of order m:

Ly =7 /mZ =T7]m.

Furthermore Qg will denote the quaternion group of order 8§,
Os :={£1,+4i,+j,tk}.

As usual, G, is the symmetric group in n letters, 2, is the alternating subgroup.

D, 4.» is the generalized dihedral group admitting the following presentation:

DP%V = <x7y|xp7yq7xyx_1y_r>a
while D,, = D, ,, _1 is the usual dihedral group of order 2n.

G(n,m) denotes the m-th group of order n in the MAGMA database of small
groups.

Finally, we have semidirect products H x Z,; to specify them, one should indi-
cate the image @ € Aut(H) of the standard generator of Z, in Aut(H). There is no
space in the tables to indicate ¢, hence we explain here which automorphism ¢ will
be in the case of the semidirect products occurring as fundamental groups.

For H = 77 either r is even, and then @ is —Id, or r = 3 and ¢ is the matrix
-1 -1

()
Else H is finite and r = 2; for H = Z%, ¢ is —Id; for H = Z‘z‘, o is
10 10

()=

Concerning the case where the group G is a semidirect product, we simply refer
to [BCGPOS8] for more details.
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Finally, I, is the fundamental group of a compact Riemann surface of genus g.

3 The classification problem and ‘‘simpler’’ sub-problems

The history of surfaces with geometric genus equal to zero starts about 120 years
ago with a question posed by Max Noether.

Assume that S C IP’%’ is a smooth projective surface. Recall that the geometric
genus of S:
pg(S) = hO(Sa 952‘) = dlmHO(S,-Q.Sg)a

and the irregularity of S:
q(S) := h'(S,25) := dimH"(S, Qg),

are birational invariants of S.

Trying to generalize the one dimensional situation, Max Noether asked the fol-
lowing:

Question I Let S be a smooth projective surface with p,(S) = ¢(S) = 0. Does this
imply that S is rational?

The first negative answer to this question is, as we already wrote, due to Enriques
([Enr96], see also [EnrMS], I, page 294) and Castelnuovo, who constructed coun-
terexamples which are surfaces of special type (this means, with Kodaira dimension
< 1. Enriques surfaces have Kodaira dimension equal to 0, Castelnuovo surfaces
have instead Kodaira dimension 1).

After the already mentioned examples by Luigi Campedelli and by Lucien
Godeaux and the new examples found by Pol Burniat ([Bur66]), and by many other
authors, the discovery and understanding of surfaces of general type with p, =0
was considered as a challenging problem (cf. [Dol77]): a complete fine classifica-
tion however soon seemed to be far out of reach.

Maybe this was the motivation for D. Mumford to ask the following provocative

Question 2 (Montreal 1980) Can a computer classify all surfaces of general type
with pg = 0?
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Before we comment more on Mumford’s question, we shall recall some basic facts
concerning surfaces of general type.

Let S be a minimal surface of general type, i.e., S does not contain any rational
curve of self intersection (—1), or equivalently, the canonical divisor Ky of S is nef
and big (Kf > (). Then it is well known that

KE> 1, 2(8):=1—q(S)+ pg(S) > 1.

In particular, p,(S) =0 = ¢(S) = 0. Moreover, we have a coarse moduli space
parametrizing minimal surfaces of general type with fixed y and K?.

Theorem 1 For each pair of natural numbers (x,y) we have the Gieseker moduli
can
(x.y)
faces S of general type with x(S) = x and K§ =y.

space M whose points correspond to the isomorphism classes of minimal sur-

It is a quasi projective scheme which is a coarse moduli space for the canonical

models of minimal surfaces S of general type with x(S) = x and KS2 =y

An upper bound for K§ is given by the famous Bogomolov-Miyaoka-Yau in-
equality:

Theorem 2 ([Miy77b], [Yau77], [Yau78], [Miy82]) Let S be a smooth surface of
general type. Then
K5 <9x(9),

and equality holds if and only if the universal covering of S is the complex ball
By == {(z,w) € C?||z|* +|w|*> < 1}.

As a note for the non experts: Miyaoka proved in the first paper the general in-
equality, which Yau only proved under the assumption of ampleness of the canonical
divisor Ks. But Yau showed that if equality holds, and K is ample, then the univer-
sal cover is the ball; in the second paper Miyaoka showed that if equality holds, then
necessarily Ky is ample.

Remark I Classification of surfaces of general type with p, = 0 means therefore to

cai

“understand” the nine moduli spaces DJT(I ) for 1 <n <9, in particular, the con-

n

N
nected components of each zmig"; ) corresponding to surfaces with p, = 0. Here, un-
derstanding means to describe the connected and irreducible components and their

respective dimensions.

Even if this is the “test-case” with the lowest possible value for the invariant y(S)
for surfaces of general type, still nowadays we are quite far from realistically seeing
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how this goal can be achieved. It is in particular a quite non trivial question, given
two explicit surfaces with the same invariants (y,K?), to decide whether they are in
the same connected component of the moduli space.

An easy observation, which indeed is quite useful, is the following:

Remark 2 Assume that S, S’ are two minimal surfaces of general type which are in
the same connected component of the moduli space. Then S and S are orientedly
diffeomorphic through a diffeomorphism preserving the Chern class of the canon-
ical divisor; whence S and S” are homeomorphic, in particular they have the same
(topological) fundamental group.

Thus the fundamental group 7y is the simplest invariant which distinguishes

connected components of the moduli space Emf?'}')

So, it seems natural to pose the following questions which sound “easier” to
solve than the complete classification of surfaces with geometric genus zero.

Question 3 What are the topological fundamental groups of surfaces of general type
with p, = 0 and K3 = y?

Question 4 Is m(S) =: I' residually finite, i.e., is the natural homomorphism
r—T Zliquf[‘(F /H) from I to its profinite completion I injective?

Remark 3

1) Note that in general fundamental groups of algebraic surfaces are not residu-
ally finite, but all known examples have p, > 0 (cf. [Tol93], [CK92]).

2) There are examples of surfaces S, S’ with non isomorphic topological fun-
damental groups, but whose profinite completions are isomorphic (cf. [Serre64],
[BCGO7]).

Question 5 What are the best possible positive numbers a,b such that

o K:<a = |m(S)| <oo,

o KZ>b = |m(S)|=0o0?

In fact, by Yau’s theorem KZ =9 = |m;(S)| = . Moreover by [BCGP08]
there exists a surface S with Kg = 6 and finite fundamental group, so b > 7. On
the other hand, there are surfaces with K> = 4 and infinite fundamental group (cf.
[Keu88], [Nai99]), whence a < 3.
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Note that all known minimal surfaces of general type S with p, = 0 and K_% =38
are uniformized by the bidisk B; x B.

Question 6 Is the universal covering of § with Kg =8 always B; x B;?

An affirmative answer to the above question would give a negative answer to the
following question of F. Hirzebruch:

Question 7 (F. Hirzebruch) Does there exist a surface of general type homeomor-
phic to P! x P1?
Or homeomorphic to the blow up F; of P in one point ?

In the other direction, for KS2 < 2 it is known that the profinite completion 7 is
finite. There is the following result:

Theorem 3
1) Kg =1 = A 2 Zyfor1 <m<5(cf [Rei78]).
2)K:=2 — |71] <9 (cf. [Rei], [Xia85a]).

The bounds are sharp in both cases, indeed for the case K§ = 1 there are examples
with 7 (S) & Z,, for all 1 <m <5 and there is the following conjecture

Conjecture 1 (M. Reid) Dﬁfi‘"l) has exactly five irreducible components correspond-
ing to each choice ) (S) 2 Z,, forall | <m <5.

This conjecture is known to hold true for m > 3 (cf. [Rei78]).

One can ask similar questions:

Question 8

2) Does K2 =2, p,(S) = 0 imply that |7, (S)| < 9?
3) Does KS2 =3 (and p,(S) = 0) imply that | (S)| < 16?2
3.1 Update on surfaces with p, =0

There has been recently important progress on surfaces of general type with p, =0
and the current situation is as follows:
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K_% = 9: these surfaces have the unit ball in C? as universal cover, and their funda-

mental group is an arithmetic subgroup I" of SU(2,1).

This case seems to be completely classified through exciting new work of Prasad
and Yeung and of Cartright and Steger ([PYO07], [PY09], [CS]) asserting that the
moduli space consists exactly of 100 points, corresponding to 50 pairs of complex
conjugate surfaces (cf. [KKO02]).

K52 = 8: we posed the question whether in this case the universal cover must be the
bidisk in C2.

Assuming this, a complete classification should be possible.

The classification has already been accomplished in [BCGO8] for the reducible
case where there is a finite étale cover which is isomorphic to a product of curves.
In this case there are exactly 18 irreducible connected components of the moduli
space: in fact, 17 such components are listed in [BCGO08], and recently Davide Frap-
porti ([Frap10]), while rerunning the classification program, found one more family
whose existence had been excluded by an incomplete analysis.

There are many examples, due to Kuga and Shavel ([Kug75], [Sha78]) for the
irreducible case, which yield (as in the case KZ = 9) rigid surfaces (by results of Jost
and Yau [JT85]); but a complete classification of this second case is still missing.

The constructions of minimal surfaces of general type with p, = 0 and with
Kg < 7 available in the literature (to the best of the authors’ knowledge, and exclud-
ing the recent results of the authors, which will be described later) are listed in table
1.

We proceed to a description, with the aim of putting the recent developments in
proper perspective.

KS2 =1, i.e., numerical Godeaux surfaces: recall that by conjecture 1 the moduli
space should have exactly five irreducible connected components, distinguished by
the order of the fundamental group, which should be cyclic of order at most 5
([Rei78] settled the case where the order of the first homology group is at least
3; [Bar85a], [Bar84] and [Wer94] were the first to show the occurrence of the two
other groups).

KS2 =2, i.e., numerical Campedelli surfaces: here, it is known that the order of the

algebraic fundamental group is at most 9, and the cases of order 8,9 have been clas-
sified by Mendes Lopes, Pardini and Reid ([MPOS8], [MPRO09], [Rei]), who showed
in particular that the fundamental group equals the algebraic fundamental group and
cannot be the dihedral group D4 of order 8. Naie ([Nai99]) showed that the group
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Table 1 Minimal surfaces of general type with p, = 0 and K? <7 available in the literature

(k2] m 7 H, |References
I Zs Zs Zs  |[God34][Rei78][Miy76]
Z4 Z4 Z4  |[Rei78][OP81][Bar84][Nai94]
? Z3 Z3 [Rei78]
Zs 7 7>  |[Bar84][Ino94][KL10]
? Zs Zo  |[Wer94][Wer97]
{1} {1} {0} |[Bar85a][LP07]
? {1} {0} |[CG94][DW99]
2 Zo Zo Zo  |[MPOS]
Zs Z§ 7% |[Xia85a][MPO8]
Z z; 73 |[Cam32][Rei][Pet76][In094][Nai94]
Zz X Z4 Z2 X Z4 Zz X Z4 [Rei] [Nal94] [KSUSS]
73 Zsg 73 [Rei]
Os 0s 7% |[Rei] [Bea96]
77 77 Z7  |[Rei91]
? Zs Ze  |[NP09]
Zs Zs Zs  |[Cat81][Sup98]
73 72 7% |[Ino94][Keu88]
9 73 73  |[LP09]
Zs 7 Zo  |[KLI10]
? Zs Z>  |[LP09]
{1} {1} {0} |[LPO7]
3 75 % Ly 75 % Za | 73 x Zg |[Nai94] [Keu88] [MP04a]
Q3 X 7 Qs X Zs 73 |[Bur66][Pet77] [Ino94]
Ly L4 Zis  |[CS]
Zy3 Zy3 Zyz  |[CS]
0s Os 73 |ICS]
Dy Dy 7% |ICS]
T X Ly Ty X Ly | 7o X Zy |[CS]
77 Z, Z7  |[CS]
GH &3 Zo  |[CS]
Ze Zs Ze |ICS]
Zz X Zz Zz X Zz Zz X Zz [CS]
Ty Ly Ty [CS]
Z3 Zs Zz |ICS]
T Z L [KL10][CS]
? ? Z>  |[PPS08a]
{1} {1} {0} |[PPS09a][CS]
4 1 =7 —>m —73—1 1 Z3 x Zs |[Nai94][Keu88]
Qs x 73 Qs x 73 7% |[Bur66][Pet77][In094]
2 Z L [Par10]
{1} {1} {0}  |[PPSO09b]
5 0s x 73 03 x 73 75 |[Bur66][Pet77][In09%4]
? ? ? [Ino94]
6 1 =20 —m —73— 1 7 Z8 [Bur66][Pet77][Ino94]
1 =70 —-m =73 —1 # 73 C H, |[Kul04]
? ? ? [In094][MP04b]
[7]1>Ix2">m —>7Z3—1] & | ? [[Ino9%4][MPOla] [BCC10]
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D5 of order 6 cannot occur as the fundamental group of a numerical Campedelli
surface. By the work of Lee and Park ([LP07]), one knows that there exist simply
connected numerical Campedelli surfaces.

Recently, in [BCGPOS], [BP10], the construction of eight families of numerical
Campedelli surfaces with fundamental group Z3z was given. Neves and Papadakis
([NPO9]) constructed a numerical Campedelli surface with algebraic fundamental
group Zg, while Lee and Park ([LP09]) constructed one with algebraic fundamental
group Z,, and one with algebraic fundamental group Z3; was added in the second
version of the same paper. Finally Keum and Lee ([KL10]) constructed examples
with topological fundamental group Z,.

Open conjectures are:

Conjecture 2 Is the fundamental group 7;(S) of a numerical Campedelli surface
finite?

Question 9 Does every group of order < 9 except D4 and D3 occur as topological
fundamental group (not only as algebraic fundamental group)?

The answer to question 9 is completely open for Zs; for Ze,Z, one suspects that
these fundamental groups are realized by the Neves-Papadakis surfaces, respectively
by the Lee-Park surfaces.

Note that the existence of the case where ;(S) = Z7 is shown in the paper
[Rei91] (where the result is not mentioned in the introduction).

K§ = 3: here there were two examples of non trivial fundamental groups, the first

one due to Burniat and Inoue, the second one to Keum and Naie ([Bur66], [Ino94],
[Keu88] [Nai94]).

It is conjectured that for py(S) = 0,K7 = 3 the algebraic fundamental group is
finite, and one can ask as in 1) above whether also 7 (S) is finite. Park, Park and
Shin ([PPS09a]) showed the existence of simply connected surfaces, and of surfaces
with torsion Z, ([PPS08a]). More recently Keum and Lee ([KL10]) constructed an
example with m;(S) = Z,.

Other constructions were given in [Cat98], together with two more examples
with p,(S) = 0,K? = 4,5: these turned out however to be the same as the Burniat
surfaces.

In [BP10], the existence of four new fundamental groups is shown. Then new
fundamental groups were shown to occur by Cartright and Steger, while considering
quotients of a fake projective plane by an automorphism of order 3.
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With this method Cartright and Steger produced also other examples with
Pe(S) =0, Kg = 3, and trivial fundamental group, or with 7 (S) = Z;.

KS2 = 4: there were known up to now three examples of fundamental groups, the
trivial one (Park, Park and Shin, [PPS09b]), a finite one, and an infinite one. In
[BCGPO8], [BP10] the existence of 10 new groups, 6 finite and 4 infinite, is shown:
thus minimal surfaces with K2 = 4, p,(S) = g(S) = 0 realize at least 13 distinct

topological types. Recently, H. Park constructed one more example in [Par10] rais-
ing the number of topological types to 14.

KS2 =5,6,7: there was known up to now only one example of a fundamental group
for KS2 =5,7.

Instead for K§ = 6, there are the Inoue-Burniat surfaces and an example due to
V. Kulikov (cf. [Kul04]), which contains Zg in its torsion group. Like in the case
of primary Burniat surfaces one can see that the fundamental group of the Kulikov
surface fits into an exact sequence

1—>Z6—>7'c1—>Z§—>1.

Kg =5 :1in [BP10] the existence of 7 new groups, four of which finite, is shown:
thus minimal surfaces with K2 = 5, p,(S) = ¢(S) = 0 realize at least 8 distinct
topological types.

K§ = 6 : in [BCGPOS] the existence of 6 new groups, three of which finite,
is shown: thus minimal surfaces with K = 6, p,(S) = ¢(S) = 0 realize at least 7
distinct topological types.

K52 =7 : we shall show elsewhere ([BCC10]) that these surfaces, constructed by
Inoue in [In094], have a fundamental group fitting into an exact sequence

1—>H3XZ4—>7I1—>Z%—>1.

This motivates the following further question (cf. question 5).

Question 10 Is it true that fundamental groups of surfaces of general type with
q = pg = 0 are finite for K§ < 3, and infinite for KS2 >7?
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4 Other reasons why surfaces with p, = 0 have been of interest
in the last 30 years

4.1 Bloch’s conjecture

Another important problem concerning surfaces with p, = 0 is related to the prob-
lem of rational equivalence of O-cycles.

Recall that, for a nonsingular projective variety X, A6 (X) is the group of rational
equivalence classes of zero cycles of degree i.

Conjecture 3 Let S be a smooth surface with p, = 0. Then the kernel 7'(S) of the
natural morphism (the so-called Abel-Jacobi map) A}(S) — Alb(S) is trivial.

By a beautiful result of D. Mumford ([Mum68]), the kernel of the Abel-Jacobi map
is infinite dimensional for surfaces S with p, # 0.

The conjecture has been proven for k(S) < 2 by Bloch, Kas and Liebermann (cf.
[BKL76]). If instead S is of general type, then ¢(S) = 0, whence Bloch’s conjecture
asserts for those surfaces that Ay(S) = Z.

Inspite of the efforts of many authors, there are only few cases of surfaces of gen-
eral type for which Bloch’s conjecture has been verified (cf. e.g. [IM79], [Bar85b],
[Keu88], [Voi92]).

Recently S. Kimura introduced the following notion of finite dimensionality of
motives ([Kim05]).
Definition 1 Let M be a motive.

Then M is evenly finite dimensional if there is a natural number n > 1 such that
AN'M = 0.

M is oddly finite dimensional if there is a natural number n > 1 such that
Sym"M = 0.

And, finally, M is finite dimensional if M = M™ ®M™, where M is evenly finite
dimensional and M~ is oddly finite dimensional.

Using this notation, he proves the following
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Theorem 4

1) The motive of a smooth projective curve is finite dimensional ([Kim05], cor.
4.4.).

2) The product of finite dimensional motives is finite dimensional (loc. cit., cor.
5.11.).

3) Let f: M — N be a surjective morphism of motives, and assume that M is

finite dimensional. Then N is finite dimensional (loc. cit., prop. 6.9.).

4) Let S be a surface with p, = 0 and suppose that the Chow motive of X is finite
dimensional. Then T(S) = 0 (loc.cit., cor. 7.7.).

Using the above results we obtain

Theorem 5 Let S be the minimal model of a product-quotient surface (i.e., bira-
tional to (Cy X C2)/G, where G is a finite group acting effectively on a product of
two compact Riemann surfaces of respective genera g; > 2) with p, = 0.

Then Bloch’s conjecture holds for S, namely, Ay(S) = Z.

Proof Let S be the minimal model of X = (C| X C;)/G. Since X has rational singu-
larities T(X) = T(S).

By thm. 4, 2), 3) we have that the motive of X is finite dimensional, whence, by
4),T(S)=T(X)=0.

Since S is of general type we have also g(S) = 0, hence A)(S) = T(S) = 0.

Corollary 1 All the surfaces in table 2, 3, and all the surfaces in [BC0O4], [BCGO8]
satisfy Bloch’s conjecture.

4.2 Pluricanonical maps
A further motivation for the study of surfaces with p, = 0 comes from the behavior
of the pluricanonical maps of surfaces of general type.
Definition 2 The n-th pluricanonical map
On = Qi S - PPl

is the rational map associated to H(Os(nKs)).
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We recall that for a curve of general type @, is an embedding as soon as n > 3,
and also for n = 2, if the curve is not of genus 2. The situation in dimension 2 is
much more complicated. We recall:

Definition 3 The canonical model of a surface of general type is the normal surface

=

X = Proj(EQH(O5(nKs))),
n=0

the projective spectrum of the (finitely generated) canonical ring.

X is obtained from its minimal model S by contracting all the curves C with
Ks-C =0, 1i.e., all the smooth rational curves with self intersection equal to —2.

The n-th pluricanonical map @, of a surface of general type is the composition
of the projection onto its canonical model X with y, := @), |. So it suffices to study
this last map.

This was done by Bombieri, whose results were later improved by the work of
several authors. We summarize these efforts in the following theorem.

Theorem 6 ([Bom73], [Miy76], [BC78], [Cat77], [ReiderS88], [Fran88], [CCS88],
[CFHR99])

Let X be the canonical model of a surface of general type. Then

i) Quky| is an embedding for alln > 5;
il) Qaky| is an embedding lfK}% >2;
i) @3y | is a morphism sz,z( > 2 and an embedding sz)z( >3;
V) @Quky | is birational for all n > 3 unless
a) either K* = 1, pg=2n=3or4

In this case X is a hypersurface of degree 10 in the weighted projective space
P(1,1,2,5), a finite double cover of the quadric cone Y :=P(1,1,2), @3, |(X)
is birational to Y and isomorphic to an embedding of the surface Fy in P3, while
Puky|(X) is an embedding of Y in P8,

b) Or K? =2, Pg = 3, n= 3 (in this case X is a double cover OfIE"2 branched
on a curve of degree 8, and (PBKx\(X ) is the image of the Veronese embedding
vy: P2 - P9).

V) @pky| is @ morphism lfK)z( >5Sorifpg #0.
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vi)IfK,z( > 10 then Qi is birational if and only if X does not admit a morphism
onto a curve with general fibre of genus 2.

The surfaces with p, = 0 arose as the difficult case for the understanding of
the tricanonical map, because, in the first version of his theorem, Bombieri could
not determine whether the tricanonical and quadricanonical map of the numerical
Godeaux and of the numerical Campedelli surfaces had to be birational. This was
later proved in [Miy76], in [BC78], and in [Cat77].

It was already known to Kodaira that a morphism onto a smooth curve with gen-
eral fibre of genus 2 forces the bicanonical map to factor through the hyperelliptic
involution of the fibres: this is called the standard case for the nonbirationality of
the bicanonical map. Part vi) of Theorem 6 shows that there are finitely many fam-
ilies of surfaces of general type with bicanonical map nonbirational which do not
present the standard case. These interesting families have been classified under the
hypothesis p; > 1 or py = 1, g # 1: see [BCP06] for a more precise account on this
results.

Again, the surfaces with p, = 0 are the most difficult and hence the most in-
teresting, since there are “pathologies” which can happen only for surfaces with
pe=0.

For example, the bicanonical system of a numerical Godeaux surface is a pencil,
and therefore maps the surface onto P!, while [Xia835b] showed that the bicanonical
map of every other surface of general type has a two dimensional image. Moreover,
obviously for a numerical Godeaux surface @)p, | is not a morphism, thus showing
that the condition p, # 0 in the point v) of the Theorem 6 is sharp.

Recently, Pardini and Mendes Lopes (cf. [MP08]) showed that there are more
examples of surfaces whose bicanonical map is not a morphism, constructing two
families of numerical Campedelli surfaces whose bicanonical system has two base
points.

What it is known on the degree of the bicanonical map of surfaces with p, =0
can be summarized in the following

Theorem 7 ([MP07a],[MLPO02], [MP08]) Let S be a surface with p, = q = 0. Then

o ifKI=9=deg@pg, =1,
o ifKi=7,8= deg@pk, =10r2,
o ifK? =5,6=degpg, =1, 20r4,
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o if Kg = 3,4 = deg@pky < 5; if moreover Qg is a morphism, then
deg Ppkg| = 1, 2 or4,

o if K2 =2 (since the image of the bicanonical map is P2, the bicanonical map is
non birational), then deg @y, < 8. In the known examples it has degree 6 (and
the bicanonical system has two base points) or 8 (and the bicanonical system has

no base points).

4.3 Differential topology

The surfaces with p, = 0 are very interesting also from the point of view of dif-
ferential topology, in particular in the simply connected case. We recall Freedman’s
theorem.

Theorem 8 ([Fre82]) Let M be an oriented, closed, simply connected topological
manifold: then M is determined (up to homeomorphism) by its intersection form

q: Hhy(M,Z) x Hy(M,Z) — Z

and by the Kirby-Siebenmann invariant (M) € Z,, which vanishes if and only if
M x [0, 1] admits a differentiable structure.

If M is a complex surface, the Kirby-Siebenmann invariant automatically van-
ishes and therefore the oriented homeomorphism type of M is determined by the
intersection form.

Combining it with a basic result of Serre on indefinite unimodular forms, and
since by [Yau77] the only simply connected compact complex surface whose inter-
section form is definite is P2 one concludes

Corollary 2 The oriented homeomorphism type of any simply connected complex
surface is determined by the rank, the index and the parity of the intersection form.

This gives a rather easy criterion to decide whether two complex surfaces are
orientedly homeomorphic; anyway two orientedly homeomorphic complex surfaces
are not necessarily diffeomorphic.

In fact, Dolgachev surfaces ([Dol77], see also [BHPV04, IX.5]) give examples
of infinitely many surfaces which are all orientedly homeomorphic, but pairwise not
diffeomorphic; these are elliptic surfaces with p, = g = 0.
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As mentioned, every compact complex surface homeomorphic to P? is diffeo-
morphic (in fact, algebraically isomorphic) to P2 (cf. [Yau77]), so one can ask a
similar question (cf. e.g. Hirzebruch’s question 7): if a surface is homeomorphic to
a rational surface, is it also diffeomorphic to it?

Simply connected surfaces of general type with p, = 0 give a negative answer
to this question. Indeed, by Freedman’s theorem each simply connected minimal
surface S of general type with p, = 0 is orientedly homeomorphic to a Del Pezzo
surface of degree Kg Still these surfaces are not diffeomorphic to a Del Pezzo sur-
face because of the following

Theorem 9 ([FQ94]) Let S be a surface of general type. Then S is not diffeomorphic
to a rational surface.

The first simply connected surface of general type with p, = 0 was constructed
by R. Barlow in the 80’s, and more examples have been constructed recently by Y.
Lee, J. Park, H. Park and D. Shin. We summarize their results in the following

Theorem 10 ([Bar85a], [LP07], [PPS09a], [PPS09b]) V1 <y < 4 there are mini-
mal simply connected surfaces of general type with p, = 0 and K?=y.

5 Construction techniques

As already mentioned, a first step towards a classification is the construction of ex-
amples. Here is a short list of different methods for constructing surfaces of general
type with p, = 0.

5.1 Quotients by a finite (resp. : infinite) group

5.1.1 Ball quotients

By the Bogomolov-Miyaoka-Yau theorem, a surface of general type with p, = 0 is
uniformized by the two dimensional complex ball B, if and only if K§ =9. These
surfaces are classically called fake projective planes, since they have the same Betti
numbers as the projective plane P2.
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The first example of a fake projective plane was constructed by Mumford (cf.
[Mum79]), and later very few other examples were given (cf.[IK98], [Keu06]).

Ball quotients S = B, /I", where I' < PSU(2,1) is a discrete, cocompact, tor-
sionfree subgroup are strongly rigid surfaces in view of Mostow’s rigidity theorem
([Mos73]).

In particular the moduli space 9 ¢y consists of a finite number of isolated
points.

The possibility of obtaining a complete list of these fake planes seemed rather
unrealistic until a breakthrough came in 2003: a surprising result by Klingler (cf.
[K1i03]) showed that the cocompact, discrete, torsionfree subgroups I' < PSU (2, 1)
having minimal Betti numbers, i.e., yielding fake planes, are indeed arithmetic.

This allowed a complete classification of these surfaces carried out by Prasad and
Yeung, Steger and Cartright ([PYO07], [PY09]): the moduli space contains exactly
100 points, corresponding to 50 pairs of complex conjugate surfaces.

5.1.2 Product quotient surfaces

In a series of papers the following construction was explored systematically by
the authors with the help of the computer algebra program MAGMA (cf. [BC04],
[BCGO8], [BCGPO8], [BP10]).

Let C, C; be two compact curves of respective genera g1, g» > 2. Assume further
that G is a finite group acting effectively on Cy x C,.

In the case where the action of G is free, the quotient surface is minimal of
general type and is said to be isogenous to a product (see [Cat00]).

If the action is not free we consider the minimal resolution of singularities S" of
the normal surface X := (C; x C2)/G and its minimal model S. The aim is to give a
complete classification of those S obtained as above which are of general type and
have p, = 0.

One observes that, if the tangent action of the stabilizers is contained in SL(2,C),
then X has Rational Double Points as singularities and is the canonical model of a
surface of general type. In this case S’ is minimal.

Recall the definition of an orbifold surface group (here the word ‘surface’ stands
for ‘Riemann surface’):
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Definition 4 An  orbifold surface group of genus g and multiplicities

my,...m, € N> is the group presented as follows:

T(¢;my,...,m,) = (a1,bi,...,ay,by, cy,...c;l

g/
c’lnl,...,c;"’,H[a,-,b,-] “Clt et Cr)e
i=1

The sequence (g';my,...m,) is called the signature of the orbifold surface group.
Moreover, recall the following special case of Riemann’s existence theorem:

Theorem 11 A finite group G acts as a group of automorphisms on a compact Rie-
mann surface C of genus g if and only if there are natural numbers g',my,...,m,,

and an ‘appropriate’ orbifold homomorphism
o: T(g';my,....,m) — G

such that the Riemann - Hurwitz relation holds:

- 1
2¢—2=|G] 2g’—2+2(1—> .
i=1 mi

“Appropriate” means that @ is surjective and moreover that the image 7; € G of
a generator c; has order exactly equal to m; (the order of ¢; in T(g';my,...,m;)).

In the above situation g’ is the genus of C' := C/G. The G-cover C — C’ is
branched in r points py,..., p, with branching indices my,...,m,, respectively.

Denote as before ¢(c;) by % € G the image of ¢; under @: then the set of stabi-
lizers for the action of G on C is the set

XMW,y W) = Useq U;”:ag{'"i} {a¥ia™',...ayia™"'}.

Assume now that there are two epimorphisms
o1 : T(gysmi,...,m) — G,

¢ : T(gh;ny,...,ns) — G,

determined by two Galois covers A;: C; — Cf ,i=1,2.
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We will assume in the following that g(C1), g(Cz2) > 2, and we shall consider the
diagonal action of G on Cy x C».

We shall say in this situation that the action of G on C; x C, is of unmixed type
(indeed, see [Cat00], there is always a subgroup of G of index at most 2 with an
action of unmixed type).

Theorem 12 ([BC04], [BCG05] [BCGP08],[BP10])

1) Surfaces S isogenous to a product with p(S) = q(S) = 0 form 17 irreducible

: can
connected components of the moduli space £m<, 8)-

2) Surfaces with p, = 0, whose canonical model is a singular quotient
X :=(Cy x C2)/G by an unmixed action of G form 27 further irreducible families.

3) Minimal surfaces with pg = 0 which are the minimal resolution of the singu-
larities of X := C| x C2/G such that the action is of unmixed type and X does not
have canonical singularities form exactly further 32 irreducible families.

Moreover, Kg =8 ifand only if S is isogenous to a product.
We summarize the above results in tables 2 and 3.

Remark 4 1) Recall that, if a diagonal action of G on C| x C; is not free, then G has a
finite set of fixed points. The quotient surface X := (C} x C»)/G has a finite number
of singular points. These can be easily found by looking at the given description of
the stabilizers for the action of G on each individual curve.

Assume that x € X is a singular point. Then it is a cyclic quotient singularity of
type %(l,a) with g.c.d(a,n) = 1, i.e., X is, locally around x, biholomorphic to the
quotient of C? by the action of a diagonal linear automorphism with eigenvalues
exp(#2), exp(2Z4). That g.c.d(a,n) = 1 follows since the tangent representation is
faithful on both factors.

2) We denote by Kx the canonical (Weil) divisor on the normal surface cor-

responding to i, (22,), i: X® — X being the inclusion of the smooth locus of X.

‘X0
According to Mumford we have an intersection product with values in Q for Weil

divisors on a normal surface, and in particular we consider the selfintersection of the

canonical divisor,

K= 8(g(C1) — |1();(|8(C2) -1 0, 0

which is not necessarily an integer.

K)Z( is however an integer (equal indeed to Ksz) if X has only RDP’s as singulari-
ties.
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Table 2 Surfaces isogenous to a product and minimal standard isotrivial fibrations with p, = 0,
K*>4

K] singx| 11 | | G IN| Hi(s2) | m(S)
8 0 2,52 | 3* As V| Z3xZyis |1 =T xIh—m —G—1
8 0 53 1233 As 1 72, | > g xITj3 > m —G— 1
8 0 325 | 2° As 1| Z3xZe | > IMgxIls —m — G — 1
8 0 2,4,6 | 2° GyxZy |1| ZAxZ4 | = IhsxIh —m —G— 1
8 0 2242|234 G(32,27) |1|Z3xZuxZg| 1 =I5 xIly —m —G— 1
8 0 53 53 72 2 72 1| =g xIly—m — G—1
8 0 3,42 | 26 B, 1| Z3xZs 1l =3 xI—m —G—1
8 0 2242|2242 G(16,3) V| Z3xZyxZs| 1 - OsxIls—m —G— 1
8 0 234 | 26 Dy X Z 1| Z3x73 1 =g xIk —m —G—1
8 0 2’ 2’ 74 1 73 1 =I5 xIls—m —G—1
8 0 34 34 73 1 73 1=y xIly — 7 —G— 1
8 0 25 | 28 z3 1 z8 1—=ILxIs—m —G—1
8 0 mixed G(256,3678) | 3
8 0 mixed G(256,3679) | 1
8 0 mixed G(64,92) |1
6| 1/22 | 224 |24 ZyxDy |1| Z3xZF | 1—Z*xIL—m—Z3—1
6| 1/22 | 244 (2,46 Zoyx&y |1| Z3xZy 1 =1Ih —m —Zy X Zy — 1
6| 1/22 | 2,52 | 2,3 As 1| Z3xZs VAR VAT
6 | 1/22 [2,4,10)2,4,6] ZyxGs |1| ZoxZy G3x D45
6| 1/22 | 2,7% | 3%4| PSL2,7) |2 7oy Z7 x Ay
6| 1/22 | 2,52 | 324 A 2 Zs Zs x Ay
501/3,2/3[2,4,6 | 243 | Zox Gy |1| Z3xZ 1 =72 —m —Dygs— 1
5 (1/3,2/3| 24,3 | 3,47 ch 1| 7Z3xZs | 72w —Zg— 1
501/3,2/3| 426 | 223 | ZoxGy 1| ZyxZg 1 -7 1 —Zg— 1
5 (1/3,2/3| 2,5,6 | 3,4 Ss 1 Zg Dgs.
5 11/3,2/3] 3,52 | 23,3 As 1| ZyxZiy Zs x Qg
5 (1/3,2/3| 23,3 | 3,42 735 % 63 1| Zox1Zg Ds43
5 (1/3,2/3| 3,52 | 2°,3 As 1| ZoxZiy Zo X Lo
4 1724 25 2’ z3 1| Z3xZ 1 =72 - m — 75— 1
4 1/2% | 22,42 |22 47| Zy x4 1| Z3xZ4 1 =724 - m — 75— 1
4 1724 25 | 234 7o X Dy 1| 7Z3x7Z4 1 =721 — Ty x Ly — 1
4 1/2% | 3,62 |22,32| Z3xG; 1 73 72 x7s
4 1/2* | 3,6 |2,4,5 Gs 1 73 72 X173
4 1724 25 2,46 Zox6, |1 z3 72 X7y
4 1728 | 22,42 (2,46 ZoxGs (1| Z3xZa 72 X7y
4 1724 25 | 3,42 S, 1| Z3xZ4 72 % Ly
4 12% | 234 | 2%4 73 % 7o 1 7 G(32,2)
4 12% | 2,52 |22,3? As 1 Zas Zas
4| 12t | 22322232 Zix2, 1 73 73
4| 2/5% | 23,5 | 325 As 1| Zy,xZg 7y X Lg
4| 2/5% |2,4,5|4%5| Z3«Ds |3 7g 7g
4| 2/5% |2,45|3%5 Ag 1 Zs Zs
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Table 3 Minimal standard isotrivial fibrations with p, = 0, K?<3

(& sigx | 1 | n| ¢ |[Nwms2z)| ne |
3 1/5,4/5 235 | 32,5 As 1| Zo X Zg | Zo % Zg
3 1/5,4/5 | 2,4,5|4%5|ZixDs |3| Zs Zg
3 11/3,1/2%,2/3|22,3,4| 2,4,6| Zo x Gy | 1 | Zo X Zy | 7y x 74y
3 1/5,4/5 | 2,4,5(3%5| As |1]| Zs Zg
2| 1/32,2/3% | 2,6 (22,32 | Z3xZ;5 | 1 7 0s
2 1/2° $ | 8 7z || 73 73
2 1/20 224 | 224 | ZyxDy | 1| ZoxX Ty | Zy X Ly
2| 1/3%,2/3% | 22,32 | 3,42 Sy 1| Zg Zg
2| 1/3%,2/3% | 325 | 335 | Z2xZs (2| Zs Zs
2 1/20 2,52 223 A5 |[1]| Zs Zs
2 1/20 234 12,4,6|Z2xGs | 1| 73 73
2| 1/32,2/3% | 32,5 | 233 As 1 73 z
2 1/2° 2,3,7| 4 |PSL27)|2| Z3 73
2 1/26 2,62 | 223 [63xG3| 1| 73 Z3
2 1/2° 2,6 [2,4,5] &5 1 73 73
2 [1/4,1/2%,3/4|2,4,7| 32,4 |PSLR, ) |2| Z3 73
2 |1/4,1/2%,3/4|2,4,5| 32,4 A 20 Zs 73
2 [1/4,1/2%,3/4|2,4,6 |2,4,5| &5 |2| Zs 73
1[1/3,1/242/3| 22,3 | 3,42 | 64 |1| Z4 Zy
1[1/3,1/2%2/3 2,3,7 | 3,4* |PSLQD| 1| 7 Zy
1 1/3,1/242/3] 2,4,6 | 22,3 | Zox Gy | 1| Zs Zy

3) The resolution of a cyclic quotient singularity of type ,ll(l,a) with
g.c.d(a,n) =1 is well known. These singularities are resolved by the so-called
Hirzebruch-Jung strings. More precisely, let 7: S — X be a minimal resolution of
the singularities and let E = (J/* | E; = 7~ !(x). Then E; is a smooth rational curve
with E? = —b; and E;- E; = 0iif |i — j| > 2, whileE;-E;y = 1 forie€ {1,...,m—1}.

The b;’s are given by the continued fraction

1

n
= b .
P

a
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Since the minimal resolution S’ — X of the singularities of X replaces each sin-
gular point by a tree of smooth rational curves, we have, by van Kampen’s theorem,
that (X) =T (S/) =T (S)

Moreover, we can read off all invariants of ' from the group theoretical data.
For details and explicit formulae we refer to [BP10].

Among others, we also prove the following lemma:

Lemma 5.1 There exist positive numbers D, M, R, B, which depend explicitly (and
only) on the singularities of X such that:

1L x(8)=1= K;=8-B;

2. for the corresponding signatures (0;my,...,m;) and (0;ny,...,ng) of the orb-
ifold surface groups we have r,s < R, Y imj,n; < M;

- Kg+D
3. 16 = 2(=2+X7 (1= 7)) (-2+ X5 (1=5))

Remark 5 The above lemma 5.1 implies that there is an algorithm which computes
all such surfaces " with p, = ¢ = 0 and fixed KSZ,:

a) find all possible configurations (= “baskets”) % of singularities with
B=8-K3;

b) for a fixed basket 4 find all signatures (0;my,...,m,) satisfying 2);

c) for each pair of signatures check all groups G of order given by 3), whether
there are surjective homomorphisms T(0;m;) — G, T(0;n;) — G;

d) check whether the surfaces X = (C; x C;)/G thus obtained have the right sin-
gularities.

Still this is not yet the solution of the problem and there are still several difficult
problems to be overcome:

e We have to check whether the groups of a given order admit certain systems of
generators of prescribed orders, and satisfying moreover certain further condi-
tions (forced by the basket of singularities); we encounter in this way groups of
orders 512, 1024, 1536: there are so many groups of these orders that the above
investigation is not feasible for naive computer calculations. Moreover, we have
to deal with groups of orders > 2000: they are not listed in any database
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e If X is singular, we only get subfamilies, not a whole irreducible component of
the moduli space. There remains the problem of studying the deformations of the
minimal models § obtained with the above construction.

e The algorithm is heavy for K small. In [BP10] we proved and implemented
much stronger results on the singularities of X and on the possible signatures,
which allowed us to obtain a complete list of surfaces with Ks2 > 1.

e We have not yet answered completely the original question. Since, if X does
not have canonical singularities, it may happen that KSZ, < 0 (recall that S’ is the
minimal resolution of singularities of X, which is not necessarily minimal!).

Concerning product quotient surfaces, we have proven (in a much more general
setting, cf. [BCGPO8]) a structure theorem for the fundamental group, which helps
us to explicitly identify the fundamental groups of the surfaces we constructed. In
fact, it is not difficult to obtain a presentation for these fundamental groups, but as
usual having a presentation is not sufficient to determine the group explicitly.

We first need the following

Definition 5 We shall call the fundamental group IT, := 7 (C) of a smooth compact
complex curve of genus g a (genus g) surface group.

Note that we admit also the “degenerate cases” g =0, 1.

Theorem 13 Let Cy,...,C, be compact complex curves of respective genera g; > 2
and let G be a finite group acting faithfully on each C; as a group of biholomorphic
transformations.

Let X = (C1 X ... x Cy)/G, and denote by S a minimal desingularisation of X.
Then the fundamental group m1(X) = w1 (S) has a normal subgroup A of finite
index which is isomorphic to the product of surface groups, i.e., there are natural
numbers hy, ..., hy > 0 such that A = I, X ... x IT,.

Remark 6 In the case of dimension n = 2 there is no loss of generality in assuming
that G acts faithfully on each C; (see [Cat00]). In the general case there will be a
group Gj, quotient of G, acting faithfully on C;, hence the strategy has to be slightly
changed in the general case. The generalization of the above theorem, where the
assumption that G acts faithfully on each factor is removed, has been proven in
[DP10].

We shall now give a short outline of the proof of theorem 13 in the case n = 2
(the case of arbitrary n is exactly the same).
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We have two appropriate orbifold homomorphisms
(U T := T(gll;mlv"‘ amr) -G,

¢ : Ty :=T(gh;ni,...,ns) — G.

We define the fibre product H := H(G; @1, ¢,) as

H:=H(G;01,¢) :={(x,y) € T1 xT2 | @1(x) = ¢2(y) } @)

Then the exact sequence
1 =1y xIly, =Ty xT) -GxG—1, 3)

where I, := m(C;), induces an exact sequence

1 — Iy, x Iy, — H(G; ¢1,¢2) = G= A — 1. (4)

Here Ag C G x G denotes the diagonal subgroup.

Definition 6 Let H be a group. Then its forsion subgroup Tors(H) is the normal
subgroup generated by all elements of finite order in H.

The first observation is that one can calculate our fundamental groups via a sim-
ple algebraic recipe:

m((C1 x (2)/G) = H(G; @1, ¢2)/Tors(H).

The strategy is then the following: using the structure of orbifold surface groups
we construct an exact sequence
1 — E — H/Tors(H) — ¥(H) — 1,
where
i) E is finite,

ii) 'I’(H) is a subgroup of finite index in a product of orbifold surface groups.

Condition ii) implies that ¥ (F) is residually finite and “good” according to the
following



Surfaces of general type with geometric genus zero: a survey 27

Definition 7 (J.-P. Serre) Let G be a group, and let G be its profinite completion.
Then G is said to be good iff the homomorphism of cohomology groups

HY(G,M) — H*(G, M)

is an isomorphism for all £ € N and for all finite G - modules M.

Then we use the following result due to F. Grunewald, A. Jaikin-Zapirain, P.
Zalesski.

Theorem 14 ([GJZ08]) Let G be residually finite and good, and let ¢: H — G be
surjective with finite kernel. Then H is residually finite.

The above theorem implies that H /Tors(H) is residually finite, whence there is
a subgroup I < H/ Tors(H) of finite index such that

rnE={1}.

Now, ¥(I') is a subgroup of ¥ (Ifl) of finite index, whence of finite index in a prod-
uct of orbifold surface groups, and W|I is injective. This easily implies our result.

Remark 7 Note that theorem 13 in fact yields a geometric statement in the case
where the genera of the surface groups are at least 2. Again, for simplicity, we
assume that n = 2, and suppose that 7; (S) has a normal subgroup 4" of finite index
isomorphic to I, x I1,, with g, g’ > 2. Then there is an unramified Galois covering
S of S such that 7 (§) = I, x I1,. This implies (see [Cat00]) that there is a finite
morphism § — C x C', where g(C) = g, g(C') =g

Understanding this morphism can lead to the understanding of the irreducible or
even of the connected component of the moduli space containing the isomorphism
class [S] of S. The method can also work in the case where we only have g, g’ > 1.
We shall explain how this method works in section 6.

We summarize the consequences of theorem 12 in terms of “new” fundamental
groups of surfaces with p, = 0, respectively “new” connected components of their
moduli space.

Theorem 15 There exist eight families of product-quotient surfaces of un-
mixed type yielding numerical Campedelli surfaces (i.e., minimal surfaces with
K% =2,p,(S) = 0) having fundamental group Z./3.
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Our classification also shows the existence of families of product-quotient sur-
faces yielding numerical Campedelli surfaces with fundamental groups Z/5 (but
numerical Campedelli surfaces with fundamental group Z /5 had already been con-
structed in [Cat81]), respectively with fundamental group (Z/2)? (but such funda-
mental group already appeared in [Ino94]), respectively with fundamental groups
(Z./2)%, 05, Z,/8 and Z./2 x 7./ 4.

Theorem 16 There exist six families of product-quotient surfaces yielding mini-
mal surfaces with K§ = 3,pg(S) = 0 realizing four new finite fundamental groups,
Z)2x1Z]6,7/8, 7)6 and Z]2 x Z]4.

Theorem 17 There exist sixteen families of product-quotient surfaces yielding min-
imal surfaces with Kg =4, po(S) = 0. Eight of these families realize 6 new finite
fundamental groups, 7./15, G(32,2), (Z/3)3, Z/2 x Z./6, 7./8, 7./6. Eight of these
families realize 4 new infinite fundamental groups.

Theorem 18 There exist seven families of product-quotient surfaces yielding mini-
mal surfaces with Kg =5, po(S) = 0. Four of these families realize four new finite
fundamental groups, Dgs 1, /5 x Qg, Dg 43, /2 x ZL/10. Three of these families
realize three new infinite fundamental groups.

Theorem 19 There exist eight families of product-quotient surfaces yielding mini-
mal surfaces with K§ =6, po(S) =0 and realizing 6 new fundamental groups, three
of them finite and three of them infinite. In particular, there exist minimal surfaces
of general type with p, = 0, K? = 6 and with finite fundamental group.

5.2 Galois coverings and their deformations

Another standard method for constructing new algebraic surfaces is to consider
abelian Galois-coverings of known surfaces.

We shall in the sequel recall the structure theorem on normal finite Z5-coverings,
r > 1, of smooth algebraic surfaces Y. In fact (cf. [Par91], or [BCO8] for a more
topological approach) this theory holds more generally for any G-covering, with G
a finite abelian group.

Since however we do not want here to dwell too much into the general theory
and, in most of the applications we consider here only the case Z% is used, we restrict
ourselves to this more special situation.
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We shall denote by G := Z} the Galois group and by G* := Hom(G, C*) its dual
group of characters which we identify to G* := Hom(G,Z/2) .

Since Y is smooth any finite abelian covering f: X — Y is flat hence in the
eigensheaves splitting

[Ox=P L =0vd P Ov(-Ly).
X6 x€G\{0}
each rank 1 sheaf ./ is invertible and corresponds to a Cartier divisor —Ly.

For each 0 € G let Rz C X be the divisorial part of the fixed point set of 6. Then
one associates to ¢ a divisor Dy given by f(Rs) = Dy; let x be a section such that
div(xs) = Dg.

Then the algebra structure on f, O is given by the following (symmetric, bilin-
ear) multiplication maps:

Oy(—Ly)® Oy(—Ly) — Oy(—Ly+n),

given by the section xy € H*(Y, Oy (Ly + Ly — Ly+n)), defined by
xx’r’ = I_I Xo-
x(e)=n(0)=1

It is now not difficult in this case to show directly the associativity of the multipli-
cation defined above (cf. [Par0O5] for the general case of an abelian cover).

In particular, the G-covering f: X — Y is embedded in the vector bundle
V= @%eG* LL,, where L, is the geometric line bundle whose sheaf of sections
is Oy(Ly), and is there defined by the equations:

ZxZn = Zx+17 H Xo-
x(e)=n(0)=1

Note the special case where ¥ = 1, when Y + 7 is the trivial character 1, and

z1 = 1. In particular, let x1,..., ¥ be a basis of G* = Zj, and set z; := z,,. Then we
get the following r equations
Ziz = H Xo- &)
xi(o)=1

These equations determine the extension of the function fields, hence one gets
X as the normalization of the Galois covering given by (5). The main point however
is that the previous formulae yield indeed the normalization explicitly under the
conditions summarized in the following
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Proposition 1 A normal finite G = Z-covering of a smooth variety Y is completely
determined by the datum of

1. reduced effective divisors Dg, Vo € G, which have no common components,

2. divisor classes Ly, ...L,, for X1,...Xr a basis of G*, such that we have the fol-
lowing linear equivalence

(#) 2L, = in(o'):l Dg.

Conversely, given the datum of 1) and 2) such that #) holds, we obtain a normal
scheme X with a finite G = Z-covering f: X — Y.

Proof (Idea of the proof.) It suffices to determine the divisor classes L, for the
remaining elements of G*. But since any J is a sum of basis elements, it suffices to
exploit the fact that the linear equivalences

Lysn=Ly+Ly— ), Do
x(o)=n(0)=1
must hold, and apply induction. Since the covering is well defined as the normal-
ization of the Galois cover given by (5), each Ly is well defined. Then the above
formulae determine explicitly the ring structure of f. Oy, hence X. Finally, condi-
tion 1 implies the normality of the cover.

A natural question is of course: when is the scheme X a variety? L.e., X being
normal, when is X connected, or, equivalently, irreducible? The obvious answer is
that X is irreducible if and only if the monodromy homomorphism

u: H(Y\ (UsDs),Z) — G

is surjective.

Remark 8 From the extension of Riemann’s existence theorem due to Grauert and
Remmert ([GR58]) we know that u determines the covering. It is therefore worth-
while to see how u is related to the datum of 1) and 2).

Write for this purpose the branch locus D := Y ; D¢ as a sum of irreducible com-
ponents D;. To each D; corresponds a simple geometric loop ¥; around D;, and we
set 0; := (%). Then we have that Dg := Y . D;. For each character y, yielding
a double covering associated to the composition ) o i, we must find a divisor class
Ly such that 2Ly =}y (5)-1 Do-
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Consider the exact sequence
H> (Y, Z) — H*""*(D,Z) = &ZIDi] — Hi (Y \D,Z) — Hy(Y,Z) — 0

and the similar one with Z replaced by Z;. Denote by A the subgroup image of
@;Z,[D;]. The restriction of 1 to A is completely determined by the knowledge of
the o;’s, and we have

0—A—H(Y\D,Z;) — H|(Y,Z) — 0.

Dualizing, we get

0— H'(Y,Z,) — H' (Y \D,Z;) — Hom(A,Z;) — 0.

The datum of y o u, extending ) o t|4 is then seen to correspond to an
affine space over the vector space H'(Y,Z,): and since H'(Y,Z;) classifies divi-
sor classes of 2-torsion on Y, we infer that the different choices of Ly such that
2Ly =Y 4(0)=1 Do correspond bijectively to all the possible choices for y o .

Applying this to all characters, we find how p determines the building data.

Observe on the other hand that if ¢ is not surjective, then there is a character
vanishing on the image of 1, hence the corresponding double cover is disconnected.

But the above discussion shows that y o u is trivial iff this covering is discon-
nected, if and only if the corresponding element in H' (Y \ D, Z,) is trivial, or, equiv-
alently, iff the divisor class Ly is trivial.

We infer then

Corollary 3 Use the same notation as in prop. 1. Then the scheme X is irreducible
if{o|Ds > 0} generates G.

Or, more generally, if for each character ¥ the class in H' (Y \ D,Z3) corre-
sponding to ¥ o I is nontrivial, or, equivalently, the divisor class Ly is nontrivial.

Proof We have seen that if Ds > D; # 0, then ((y;) = o, whence we infer that y is
surjective.

An important role plays here once more the concept of natural deformations.
This concept was introduced for bidouble covers in [Cat84], definition 2.8, and ex-
tended to the case of abelian covers in [Par91], definition 5.1. The two definitions do
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not exactly coincide, because Pardini takes a much larger parameter space: however,
the deformations appearing with both definitions are the same. To avoid confusion
we call Pardini’s case the case of extended natural deformations.

Definition 8 Let f: X — Y be a finite G = Z covering with Y smooth and X nor-
mal, so that X is embedded in the vector bundle V defined above and is defined by
equations

L = L I[I
x(6)=n(0)=1

Let Y5 4 be a section Y5y € HO(Y, Oy (Ds —Ly)), given Vo € G, x € G*. To such
a collection we associate an extended natural deformation, namely, the subscheme
of V defined by equations

2xin = Zx+m H (Z Yo 0 'ZG) .
0

x2(0)=n(0)=1

We have instead a (restricted) natural deformation if we restrict ourselves to the
0’s such that (o) = 0,and we consider only an equation of the form

Ly2n = Zy+n H ( (Z Vs.0 'Ze> .
0

x2(0)=n(o)=1 0)=0

One can generalize some results, even removing the assumption of smoothness
of Y, if one assumes the G = Z}-covering to be locally simple, i.e., to enjoy the
property that for each point y € Y the ¢’s such that y € D are a linearly indepen-
dent set. This is a good notion since (compare [Cat84], proposition 1.1) if also X is
smooth the covering is indeed locally simple.

One has for instance the following result (see [ManO1], section 3):

Proposition 2 Let f : X — Y be a locally simple G = 7, covering with Y smooth
and X normal. Then we have the exact sequence

By(0)=0(H*(Opy (D — Ly))) — Exty, (2, Ox) — Exty, (f*Qy, O).

In particular, every small deformation of X is a natural deformation if

1. HY(Oy(—Ly)) =0,
2. Exty, (f*Qy,0x) =0.
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If moreover
3.H(0y(Ds—Ly))=0Vo € G,x € G,

every small deformation of X is again a G = 7)-covering.

Proof (Comments on the proof.)

In the above proposition condition 1) ensures that
H®(Oy(Ds —Ly)) — H*(Op,(Ds —Ly))

is surjective.

Condition 2 and the above exact sequence imply then that the natural deforma-
tions are parametrized by a smooth manifold and have surjective Kodaira-Spencer
map, whence they induce all the infinitesimal deformations.

Remark 9 In the following section we shall see examples where surfaces with p, =0
arise as double covers and as bidouble covers. In fact there are many more surfaces
arising this way, see e.g. [Cat98].

6 Keum-Naie surfaces and primary Burniat surfaces

In the nineties J.H. Keum and D. Naie (cf. [Nai94], [Keu88]) constructed a family
of surfaces with K = 4 and p, = 0 as double covers of an Enriques surface with
eight nodes and calculated their fundamental group.

We want here to describe explicitly the moduli space of these surfaces.

The motivation for this investigation arose as follows: consider the following two
cases of table 2 whose fundamental group has the form

74— ;- 73 — 0.

These cases yield 2 families of respective dimensions 2 and 4, which can also
be seen as Zs x Zo, resp. Z3, coverings of P! x P! branched in a divisor of type
(4,4), resp. (5,5), consisting entirely of horizontal and vertical lines. It turns out that
their fundamental groups are isomorphic to the fundamental groups of the surfaces
constructed by Keum-Naie.
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A straightforward computation shows that our family of dimension 4 is equal to
the family constructed by Keum, and that both families are subfamilies of the one
constructed by Naie.

As a matter of fact each surface of our family of Zg - coverings of P! x P! has 4
nodes. These nodes can be smoothened simultaneously in a 5 - dimensional family
of Z3 - Galois coverings of P! x P!

It suffices to take a smoothing of each D;, which before the smoothing consisted
of a vertical plus a horizontal line.The full six dimensional component is obtained
then as the family of natural deformations of these Galois coverings.

It is a standard computation in local deformation theory to show that the six
dimensional family of natural deformations of smooth Zg - Galois coverings of
P! x P! is an irreducible component of the moduli space. We will not give the details
of this calculation, since we get a stronger result by another method.

In fact, the main result of [BC09a] is the following:

Theorem 20 Let S be a smooth complex projective surface which is homotopically
equivalent to a Keum-Naie surface. Then S is a Keum-Naie surface.

The moduli space of Keum-Naie surfaces is irreducible, unirational of dimension

equal to six. Moreover, the local moduli space of a Keum-Naie surface is smooth.

The proof resorts to a slightly different construction of Keum-Naie surfaces. We
study a Z%-action on the product of two elliptic curves Ej x E’. This action has 16
fixed points and the quotient is an 8-nodal Enriques surface. Constructing S as a dou-
ble cover of the Enriques surface is equivalent to constructing an étale Z%—covering
Sof S, whose existence can be inferred from the structure of the fundamental group,
and which is obtained as a double cover of E{ x Ej branched in a Z%—invariant divi-
sor of type (4,4). Because S = §/73.

The structure of this étale Z%—covering S of S is essentially encoded in the fun-
damental group 7 (S), which can be described as an affine group I' C A(2,C). The
key point is that the double cover & : § — E { X E} is the Albanese map of S.

Assume now that S’ is homotopically equivalent to a Keum-Naie surface S. Then
the corresponding étale cover S is homotopically equivalent to S. Since we know
that the degree of the Albanese map of S is equal to two (by construction), we can
conlude the same for the Albanese map of S and this allows to deduce that also S
is a double cover of a product of elliptic curves.
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A calculation of the invariants of a double cover shows that the branch locus is
a Z3-invariant divisor of type (4,4).

We are going to sketch the construction of Keum-Naie surfaces and the proof of
theorem 20 in the sequel. For details we refer to the original article [BC09a].
Let (E,0) be any elliptic curve, with a G = Z3 = {0, g1,82,81 +g> } action given
by
g1(z) =241, &(2)=-=z

Remark 10 Let 1) € E be a2 - torsion point of E. Then the divisor [0] +[n] € Div?(E)
is invariant under G, hence the invertible sheaf &g ([o] + [n]) carries a natural G-
linearization.

In particular, G acts on H(E, 0k (o] +[n])), and for the character eigenspaces, we
have the following:

Lemma 6.2 Let E be as above, then:

H°(E, 0 ([o] +n])) = H*(E, Op ([o] + [n])) " @ H'(E, O ([o] + [n]))

Le., H(E, O (o] + (1))~ = H(E. O (fo) + [n])~* =0.

Remark 6.1 Our notation is self explanatory, e.g.
HY(E,0g([o] + n]))*~ = H°(E,0k(jo] + [n]))¥, where x is the character
of Gwith x(g1) =1, x(g2) = —1.

Let now E! := C/A;, i = 1,2, where A; := Ze; ® Ze!, be two complex elliptic
curves. We consider the affine transformations y;, 1» € A(2,C), defined as follows:

) Zl+%' ) _ [ &
h (Zz) ( -2 ) P <Z2> (Zz-ﬁ-ef) '

and let I < A(2,C) be the affine group generated by i, % and by the translations
/ /
6‘1,6‘1,6‘2,6‘2.

Remark 11 i) I induces a G := Z3-action on E| x E}.

ii) While 71, % have no fixed points on E} x E}, the involution ;7 has 16 fixed
points on E| x Ej. It is easy to see that the quotient ¥ := (E{ X E})/G is an En-
riques surface having 8 nodes, with canonical double cover the Kummer surface
(E{ X E}))] < >.
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We lift the G-action on E x E} to an appropriate ramified double cover S such
that G acts freely on S.

To do this, consider the following geometric line bundle L on E{ x E}, whose
invertible sheaf of sections is given by:

e
2

€2

)@ 030 (loa] + (2],

O <y (L) := p1 O ([o1] + [
where p; : E| X E}, — E/ is the projection to the i-th factor.

By remark 10, the divisor [o;] +[%] € Div*(E}) is invariant under G. Therefore,
we get a natural G-linearization on the two line bundles &g, ([0;] +[%]), whence also
on L.

Any two G-linearizations of L differ by a character y : G — C*. We twist
the above obtained linearization of IL with the character y such that x(y;) = 1,

2(p)=-1
Definition 9 Let

f € H(E{ x B3, pi O, (2lo1] +2[5)) @ p3 Ty (2lo2] +2[2])°

be a G - invariant section of IL%? and denote by w a fibre coordinate of L. Let S be
the double cover of E| x E} branched in f, i.e.,

§={w’=f(z1,22)} CL.

Then S is a G - invariant hypersurface in L, and we have a G - action on S.

We call S := S/G a Keum - Naie surface, if

e G acts freely on S, and

e {f =0} has only non-essential singularities, i.e., S has at most rational double
points.

Remark 12 If
* el * (&)
f e HY(E] x E},pi O (2]o1] ‘*‘2[?]) ® py 0y (2[02] +2[3]))G

is such that {(z1,22) € Ef X E} | f(z1,22) = 0} NFix(y1 + %) = 0, then G acts freely
onS.

Proposition 3 Let S be a Keum - Naie surface. Then S is a minimal surface of gen-
eral type with
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i) K:=4,
ii) pe(S) = 4(8) = 0,
iii)m (S)=T.
1) is obvious, since K§ =16,
ii) is verified via standard arguments of representation theory.
iiii) follows since 7 (S) = m (E| x E}).

Let now S be a smooth complex projective surface with 71 (S) = I'. Recall that
yf =e; for i = 1,2. Therefore I" = (y1,¢}, 7, €5) and we have the exact sequence

1 — 7% = (e1,€],e2,€5) —>F—>Z§ — 1,

where e; — 7.

We set A/ := Ze; ® Ze!, hence m(E| x E;) = A{ & A}. We also have the two
lattices A; 1= Z3 @ Ze;.

Remark 13 1) I' is a group of affine transformations on A G Aj.

2) We have an étale double cover El’ =C/ Ai’ — E; := C/A;, which is the quotient
by a semiperiod of E.

I' has two subgroups of index two:
I = <')/1,€I1,€2,€/2>, I; = <€17e/17')/2,€/2>,

corresponding to two étale covers of S: S; — S, fori =1,2.

Then one can show:
Lemma 6.3 The Albanese variety of S; is E;. In particular, ¢(S1) = q(S2) = 1.

Let § — S be the étale Z3-covering associated to Z* = (e1, e}, ea,¢5) <I". Since
§—S; — S, and S; maps to E; (via the Albanese map), we get a morphism

f:§—>E1 x Ey =C/A; x C/A;.

Then the covering of E; x E; associated to A{ @A) < Ay @A, is E| x Ej, and since
m(S) = A] @ A} we see that f factors through E| x E} and that the Albanese map
of Sis &: S — E| x E}.

The proof of the main result follows then from
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Proposition 4 Let S be a smooth complex projective surface, which is homotopically
equivalent to a Keum - Naie surface. Let § — S be the étale Z%—cover associated to
(e1,€],e2,€5) <Al and let

§—% E xE]

N

Y
be the Stein factorization of the Albanese map of S.
Then @ has degree 2 and Y is a canonical model of S.
More precisely, ¢ is a double cover of E| x E} branched on a divisor of type
(4,4).
The fact that S is homotopically equivalent to a Keum-Naie surface immediately
implies that the degree of ¢ is equal to two.

The second assertion, i.e., that Y has only canonical singularities, follows instead
from standard formulae on double covers (cf. [Hor75]).

The last assertion follows from K7 = 16 and (Z/2Z)*- invariance.

In fact, we conjecture a stronger statement to hold true:
Conjecture 4 Let S be a minimal smooth projective surface such that

i) K3 =4,
i) m () =T

Then S is a Keum-Naie surface.
We can prove

Theorem 21 Let S be a minimal smooth projective surface such that

i) K2 =4,
i) m(S) =T,

iti)there is a deformation of S with ample canonical bundle.
Then S is a Keum-Naie surface.

We recall the following results:
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Theorem 22 (Severi’s conjecture, [Par05]) Let S be a minimal smooth projective
surface of maximal Albanese dimension (i.e., the image of the Albanese map is a
surface), then Ks2 >4x(8).

M. Manetti proved Severi’s inequality under the assumption that K is ample,
but he also gave a description of the limit case K2 = 4x/(S), which will be crucial
for the above theorem 21.

Theorem 23 (M. Manetti, [Man03]) Lez S be a minimal smooth projective surface
of maximal Albanese dimension with Kg ample then KS2 >4x(S), and equality holds
if and only if q(S) = 2, and the Albanese map o : S — Alb(S) is a finite double cover.

Proof (Proof of theorem 21) We know that there is an étale Z%-cover S of § with
Albanese map & : § — E| x E}. Note that KS2 = 4K? = 16. By Severi’s inequality,
it follows that x(S) < 4, but since 1 < x(S) = %x(ﬁ), we have x(S) = 4. Since S
deforms to a surface with Ky ample, we can apply Manetti’s result and obtain that
oS — E| x E} has degree 2, and we conclude as before.

It seems reasonable to conjecture (cf. [Man03]) the following, which would im-
mediately imply our conjecture 4.

Conjecture 5 Let S be a minimal smooth projective surface of maximal Albanese
dimension. Then K2 = 4x(S) if and only if ¢(S) = 2, and the Albanese map has
degree 2.

During the preparation of the article [BC09a] the authors realized that a com-
pletely similar argument applies to primary Burniat surfaces.

We briefly recall the construction of Burniat surfaces: for more details, and
for the proof that Burniat surfaces are exactly certain Inoue surfaces we refer to
[BCO9b].

Burniat surfaces are minimal surfaces of general type with K> = 6,5,4,3,2 and
pg = 0, which were constructed in [Bur66] as singular bidouble covers (Galois cov-
ers with group Z%) of the projective plane branched on 9 lines.

Let Py, P>, P; € P? be three non collinear points (which we assume to be the points
(1:0:0),(0:1:0)and (0:0: 1)) and let’s denote by ¥ := P?(P;, P>, P3) the Del
Pezzo surface of degree 6, blow up of P2 in P;, Py, P;.

Y is ‘the’ smooth Del Pezzo surface of degree 6, and it is the closure of the graph
of the rational map
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£:P? - P x P! x P!
such that
e :y2:y3) = ((2:33), (3 :31), (1 :32))-

One sees immediately that ¥ C P! x P! x P! is the hypersurface of type (1,1,1):

Y ={((x] :x1), (x5 : x2), (x5 : x3)) | xpx003 = Xj x50 )

We denote by L the total transform of a general line in P2, by E; the exceptional
curve lying over P, and by D; ; the unique effective divisor in |L—E; —Ej; |, i.e., the
proper transform of the line y;_; = 0, side of the triangle joining the points P, P, .

Consider on Y, for each i € Z3 = {1,2,3}, the following divisors

Di=Dj1+Di2+Di3+Ei> €|3L-3E;—Eiy1 +Eiys|,

where D; ; € |L—E;|, for j=2,3, Djj# Djy, is the proper transform of an-
other line through P, and D; | € |L— E; — E;1] is as above. Assume also that all the
corresponding lines in IP? are distinct, so that D := ¥, D; is a reduced divisor.

Note that, if we define the divisor .%; := 3L —2E; | — E; .1, then
D; 1 +Djy =6L—4E; | —2E; | =27,

and we can consider (cf. section 4, [Cat84] and [Cat98]) the associated bidouble
cover X' — Y branched on D :=Y; D; (but we take a different ordering of the indices
of the fibre coordinates u;, using the same choice as the one made in [BC09b], except
that X’ was denoted by X).

We recall that this precisely means the following: let D; = div(J;), and let u; be
a fibre coordinate of the geometric line bundle IL; |, whose sheaf of holomorphic
sections is Oy (Lt 1).

Then X C IL; &1L, & 13 is given by the equations:
uiuy = O1u3, M% = 801;
uruz = Souy, uj = 8 8;
usuy = 83uz, uj = 885
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From the birational point of view, as done by Burniat, we are simply adjoining

to the function field of P? two square roots, namely 4/ % and ﬁ—i, where A; is the
cubic polynomial in Clxp,x;,x;] whose zero set has D; — E; as strict transform.

This shows clearly that we have a Galois cover X’ — Y with group Z%.

The equations above give a biregular model X’ which is nonsingular exactly if
the divisor D does not have points of multiplicity 3 (there cannot be points of higher
multiplicities!). These points give then quotient singularities of type %(1, 1), i.e.,
isomorphic to the quotient of C? by the action of Z4 sending (u,v) + (iu,iv) (or,
equivalently, the affine cone over the 4-th Veronese embedding of P!).

Definition 10 A primary Burniat surface is a surface constructed as above, and
which is moreover smooth. It is then a minimal surface S with Kg ample, and with

K2 =6, pg(S) = q(S) = 0.

A secondary Burniat surface is the minimal resolution of a surface X’ con-
structed as above, and which moreover has 1 < m < 2 singular points (necessarily
of the type described above). Its minimal resolution is then a minimal surface S with
Ks nef and big, and with K2 = 6 —m, p,(S) = q(S) = 0.

A tertiary (respectively, quaternary) Burniat surface is the minimal resolution
of a surface X’ constructed as above, and which moreover has m = 3 (respectively
m = 4) singular points (necessarily of the type described above). Its minimal res-
olution is then a minimal surface § with Kg nef and big, but not ample, and with
K§ =6—m, py(S) = q(S) =0.

Remark 14 1) We remark that for K2 = 4 there are two possible types of configu-
rations. The one where there are three collinear points of multiplicity at least 3 for
the plane curve formed by the 9 lines leads to a Burniat surface S which we call of
nodal type, and with Kg not ample, since the inverse image of the line joining the 3
collinear points is a (-2)-curve (a smooth rational curve of self intersection —2).

In the other cases with K52 =4,5,6, Ky is instead ample.

2) In the nodal case, if we blow up the two (1,1, 1) points of D, we obtain a weak
Del Pezzo surface ¥, since it contains a (-2)-curve. Its anticanonical model ¥’ has a
node (an A-singularity, corresponding to the contraction of the (-2)-curve). In the
non nodal case, we obtain a smooth Del Pezzo surface ¥ =Y’ of degree 4.

With similar methods as in [BC09a] (cf. [BC0O9b]) the first two authors proved

Theorem 24 The subset of the Gieseker moduli space corresponding to primary
Burniat surfaces is an irreducible connected component, normal, rational and of
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dimension four. More generally, any surface homotopically equivalent to a primary

Burniat surface is indeed a primary Burniat surface.

Remark 15 The assertion that the moduli space corresponding to primary Burniat

surfaces is rational needs indeed a further argument, which is carried out in [BCO9b].
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Abstract The usual structures of symplectic geometry (symplectic, contact, Pois-
son) make sense for complex manifolds; they turn out to be quite interesting on
projective, or compact Kéhler, manifolds. In these notes we review some of the re-
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1 Introduction

Though symplectic geometry is usually done on real manifolds, the main defini-
tions (symplectic or contact structures, Poisson bracket) make perfect sense in the
holomorphic setting. What is less obvious is that these structures are indeed quite
interesting in this set-up, in particular on global objects — meaning compact, or pro-
jective, manifolds. The study of these objects has been much developed in the last
30 years — an exhaustive survey would require at least a book. The aim of these
notes is much more modest: we would like to give a (very partial) overview of the
subject by presenting some of the open problems which are currently investigated.
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Most of the paper is devoted to holomorphic symplectic (= hyperkidhler) mani-
folds, a subject which has been blossoming in recent years. Two short chapters are
devoted to contact and Poisson structures : in the former we discuss the conjectural
classification of projective contact manifolds, and in the latter an intriguing conjec-
ture of Bondal on the rank of the Poisson tensor.

2 Compact hyperkihler manifolds

2.1 Basic definitions

The interest for holomorphic symplectic manifolds comes from the following result,
stated by Bogomolov in [8] :

Theorem 1 (Decomposition theorem) Let X be a compact, simply-connected
Kdihler manifold with trivial canonical bundle. Then X is a product of manifolds
of the following two types:

e projective manifolds Y of dimension > 3, with H'(Y, Q) = C® Cw, where o is
a generator of Ky;

e compact Kihler manifolds Z with H(Z,Q}) = C[o], where 6 € H*(Z,Q2) is
everywhere non-degenerate.

This theorem has an important interpretation (and a proof) in terms of Rieman-
nian geometry!. By the fundamental theorem of Yau [42], an n-dimensional com-
pact Kéhler manifold X with trivial canonical bundle admits a Kéhler metric with
holonomy group contained in SU(n) (this is equivalent to the vanishing of the Ricci
curvature). By the Berger and de Rham theorems, X is a product of manifolds with
holonomy SU(m) or Sp(r); this corresponds to the first and second case of the de-
composition theorem.

We will call the manifolds of the first type Calabi-Yau manifolds, and those of
the second type hyperkdhler manifolds (they are also known as irreducible holo-
morphic symplectic).

! See [5] for a more detailed exposition.
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2.2 Examples

For Calabi-Yau manifolds we know a huge quantity of examples (in dimension 3,
the number of known families approaches 10 000), but relatively little general the-
ory. In contrast, we have much information on hyperkéhler manifolds, their period
map, their cohomology (see below); what is lacking severely is examples. In fact, at
this time we know two families in each dimension [2], and two isolated families in
dimension 6 and 10 [32], [33] :

a) Let S be a K3 surface. The symmetric product S0 = g" /&, parametrizes
subsets of r points in S, counted with multiplicities; it is smooth on the open subset
sfﬁ consisting of subsets with r distinct points, but singular otherwise. If we re-
place “subset” by (analytic) “subspace”, we obtain a smooth compact manifold, the
Hilbert scheme SM; the natural map Sl — 850 is an isomorphism above Sé’), but it
resolves the singularities of S).

Let @ be a non-zero holomorphic 2-form on S. The form priw + ... + pri®
descends to a non-degenerate 2-form on S((,r); it is easy to check that this 2-form
extends to a symplectic structure on st

b) Let T be a 2-dimensional complex torus. The Hilbert scheme Tl has the
same properties as S/, but it is not simply connected. This is fixed by considering
the composite map & : TV — 70+D) 2, 7 where s(ry,....t,) =t1 + ... +1,;
the fibre K,(T) := 6~ !(0) is a hyperkihler manifold of dimension 2r (“generalized
Kummer manifold”).

¢) Let again S be a K3 surface, and .# the moduli space of stable rank 2 vector
bundles on S, with Chern classes ¢; = 0, ¢o = 4. According to Mukai [30], this
space has a holomorphic symplectic structure. It admits a natural compactification
A, obtained by adding classes of semi-stable torsion free sheaves; it is singular
along the boundary, but O’Grady constructs a desingularization of .# which is a
new hyperkihler manifold, of dimension 10.

d) The analogous construction can be done starting from rank 2 bundles with
c1 =0, ¢p =2 on a 2-dimensional complex torus, and taking again some fibre to
ensure the simple connectedness. The upshot is a new hyperkihler manifold of di-
mension 6.

In the two last examples it would seem simpler to start with a moduli space
. for which the natural compactification .# is smooth; in that case .# is a hy-
perkiihler manifold [30], but it turns out that it is a deformation of S or K.(T)
(Gottsche-Huybrechts, O’Grady, Yoshioka ...). On the other hand, when M s sin-
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gular, it admits a hyperkéhler desingularization only in the two cases considered by
O’Grady [23].

Thus it seems that a new idea is required to answer our first problem:

Question 1 Find new examples of hyperkdihler manifolds.

2.3 The period map

In dimension 2 the only hyperkédhler manifolds are K3 surfaces; we know them
very well thanks to the period map, which associates to a K3 surface S the Hodge
decomposition

Hz(S,(C) _ HZ’O@HI’I 691_10,2 )

This is determined by the position of the line H>? in H?(S,C) : indeed we have
H%2 = H20, and H"! is the orthogonal of H>? @ H%? with respect to the intersec-
tion form. Note that any non-zero element ¢ of H 2,0 (that is, the class of a non-zero
holomorphic 2-form) satisfies 6> = 0 and ¢ - & > 0.

To compare the Hodge structures of different K3 surfaces, we consider marked
surfaces (S, 1), where A is an isometry of H?(S,Z) onto a fixed lattice L, the unique
even unimodular lattice L of signature (3,19). Then the data of the Hodge structure
on H?(S,7) is equivalent to that of the period point (S, 1) := Ac(H*?) € P(L¢).
By the above remark this point lies in the domain  C P(L¢) defined by the condi-
tions x2 = 0, x-& > 0. There is a moduli space . for marked K3 surfaces, which is
a non-Hausdorff complex manifold; the period map o : #; — €21 is holomorphic.
We know a lot about that map, thanks to the work of many people (Piatetski-Shapiro,
Shafarevich, Todorov, Siu, ...):

Theorem 2

1) (“local Torelli”) @ is a local isomorphism.
2) (“global Torelli”) If g2(S,A) = (S, A7), S and S are isomorphic;

3) (“surjectivity”) Every point of Q is the period of some marked K3 surface.

Another way of stating 2) is that S and ' are isomorphic if and only if there
is a Hodge isometry H*(S,7) < H*(S',Z) (that is, an isometry inducing an iso-
morphism of Hodge structures). There is in fact a more precise statement, see e.g.

[1].
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There is a very analogous picture for higher-dimensional hyperkéhler manifolds.
The intersection form is replaced by a canonical quadratic form ¢ : H*(X,Z) — Z,
primitive?, of signature (3,5, — 3) [2]. The easiest way to define it is through the
Fujiki relation

/ a® = fxq(a)" foreach a € H*(X,Z), where dim(X)=2r;
X

this relation determines fx (the Fujiki constant of X) and the form ¢; they depend
only on the topological type of X.

Let X be a hyperkdhler manifold, and L a lattice. A marking of type L of
X is an isometry A : (H*(X,Z),q) < L. The period of (X,A) is the point
Ac(H*0) € P(Lc); as above it belongs to the period domain

Qp:={[x] €P(Lc) | x* =0, x-> 0} .

Again we have a non-Hausdorff complex manifold .7, parametrizing hyper-
kdhler manifolds of a given dimension with a marking of type L; the period map
2 My — Qp is holomorphic. We have:

Theorem 3

1) The period map @ : M1 — £y is a local isomorphism.

2) The restriction of  to any connected component of .#j, is surjective.

1) is proved in [2], and 2) in [17]. What is missing is the analogue of the global
Torelli theorem. It has long been known that it cannot hold in the form given in The-
orem 2; in fact, it follows from the results of [17] that any birational map X -~» X’
induces a Hodge isometry H*(X,Z) —~ H?(X',7). This is not the only obstruc-
tion: Namikawa observed in [31] that if T is a 2-dimensional complex torus, and
T* its dual torus, the Kummer manifolds K,(7') and K»(7T*) (1.2.b) have the same
period (with appropriate markings), but are not bimeromorphic in general. Thus we
can only ask:

Question 2 Let X, X’ be two hyperkéihler manifolds of the same dimension. If there
is a Hodge isometry A : H*(X,Z) <~ H*(X',7), what can we say of X and X'?
Can we conclude that X and X' are isomorphic by imposing that A preserves some

extra structure?

2 This means that the associated bilinear form is integral and not divisible by an integer > 1.
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One can formulate analogous questions for polarized hyperkahler manifolds, re-
quiring that A preserves the polarization classes. Here again Namikawa’s construc-
tion provides a counter-example. Nevertheless the recent work of Markman [27] and
Verbitsky [39] gives a partial answer to question 2 and its “polarized” analogue, in
particular for the case of example 1.2.a); see also the discussion in [15], Question
2.6, and the paper of E. Markman in these Proceedings.

2.4 Cohomology

Let X be a hyperkihler manifold. Since the quadratic form g plays such an important
role, it is natural to expect that it determines most of the cohomology of X. This was
indeed shown by Bogomolov [10] :

Proposition 1 Let X be a hyperkdihler manifold, of dimension 2r, and let 7€ be the
subalgebra of H*(X,C) spanned by H*(X,C).

1) 2 is the quotient of Sym*H? (X, C) by the ideal spanned by the classes o' !
for a € H*(X,C), gc(a) = 0.

2) H*(X,C) = # @ '+, where + is the orthogonal of S with respect to
the cup-product.

Thus the subalgebra 7 is completely determined by the form ¢ and the dimen-
sion of X. In contrast, not much is known about the .#”-module .77 Note that it is
nonzero for the examples @) and ) of 1.2, with the exception of S 2 for a K3 surface
S.

We do not know much about the quadratic form ¢ either. For the two infinite
series of (1.2) we have lattice isomorphisms [2]

HA(S1,2) =H*(S,Z) & (2—2r)  H*K.(T),Z)=HAT,Z) & (—2—2r) ;
The lattices of O’Grady’s two examples are computed in [36]; they are also even.

Question 3 Is the quadratic form q always even? More generally, what are the pos-
sibilities for q? What are the possibilities for the Fujiki index fx (see 1.3)?
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2.5 Boundedness

Having so few examples leads naturally to the following question:

Conjecture 1 There are finitely many hyperkdhler manifolds (up to deformation) in
each dimension.

Note that the same question can be asked for Calabi-Yau manifolds, but there it
seems completely out of reach.

Huybrechts observes that there are finitely many deformation types of hy-
perkihler manifolds X of dimension 2r such that there exists o € H?(X,Z) with
g(a) > 0and [y a* bounded [18]. As a corollary, given a real number M, there are
finitely many deformation types of hyperkdhler manifolds with

fx<M , min{g(a)|acH*X,Z), q(a) >0} <M.

A first approximation to finiteness would be to bound the Betti numbers b; of X,
and in particular b,. Here we have some more information in the case of fourfolds
[16] :

Proposition 2 Let X be a hyperkdhler fourfold. Then either by = 23, or 3 < by < 8.

Note that b; is 23 for § 2 and 7 for K>(T) (1.2). [16] contains some more infor-
mation on the other Betti numbers.

Question 4 Can we exclude some more cases, in particular by = 3? If by = 23, can
we conclude that X is deformation equivalent to S 27

2.6 Lagrangian fibrations

Let (X, 0) be a holomorphic symplectic manifold (not necessarily compact), of di-
mension 2r. A Lagrangian fibration is a proper map h : X — B onto a manifold
B such that the general fibre F of & is Lagrangian, that is, F is connected, of di-
mension r, and o|r = 0. This implies that the smooth fibres of / are complex tori
(Arnold-Liouville theorem).

Suppose B = C7, so that h = (hy,...,h,). The functions h; define what is called
in classical mechanics an algebraically completely integrable hamiltonian system :
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the Poisson brackets {/;,/;} vanish, the hamiltonian vector fields X}, commute with
each other, they are tangent to the fibres of 4 and their restriction to a smooth fibre
is a linear vector field on this complex torus (see for instance [3]).

The analogue of this notion when X is compact (hence hyperkéhler) is a La-
grangian fibration X — P". There are many examples of such fibrations (see a sam-
ple below); moreover they turn out to be the only non-trivial morphisms from a
hyperkéhler manifold to a manifold of smaller dimension :

Theorem 4 Let X be a hyperkdihler manifold, of dimension 2r, B a Kdhler manifold
with 0 < dimB < 2r, and f : X — B a surjective morphism with connected fibres.
Then:

1) f is a Lagrangian fibration;

2) If X is projective, B>~ P".

1) is due to Matsushita (see [29], Prop. 24.8), and 2) to Hwang [20]. It is expected
that 2) holds without the projectivity assumption on X (see the discussion in the
introduction of [20]).

How do we detect the existence of a Lagrangian fibration on a given hyperkiahler
manifold? In dimension 2 there is a simple answer; a Lagrangian fibration on a K3
surface S is an elliptic fibration, and we have :

Proposition 3 a) Let L be a nontrivial nef line bundle on S with L* = 0. There exists
an elliptic fibration f : S — P! such that L = f* Op: (k) for some k > 1.

b) S admits an elliptic fibration if and only if it admits a line bundle L # O with
L*=0.

The proof of a) is straightforward. b) is reduced to a) by proving that some
isometry w of Pic(S) maps L to a nef line bundle; see for instance [1], VIII, Lemma
17.4.

Proposition 3 has a natural (conjectural) generalization to higher-dimensional

hyperkihler manifolds? :

Conjecture 2 a) Let L be a nontrivial nef line bundle on X with q(L) = 0. There
exists a Lagrangian fibration f : X — P" such that L = f* Opr (k) for some k > 1.

3 The conjecture has been known to experts for a long time; see the introduction of [38] for a
discussion of its history.
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b) There exists a hyperkiihler manifold X' bimeromorphic to X and a Lagrangian
fibration X' — P" if and only if X admits a line bundle L # Os with q(L) = 0.

Note that it is not clear whether one of the statements implies the other.

There is some evidence in favor of the conjecture. Let S be a “general” K3 sur-
face of genus g — that is, Pic(S) = Z [L] with L> = 2g — 2. Then Pic(S"")) is a rank 2
lattice with an orthonormal basis (h,e) satisfying g(h) =2g—2, g(e) = —(2r—2)
[2]. Taking r = g we find g(h £ e) = 0. The corresponding Lagrangian fibration is
studied in [3]: S!¢) is birational to the relative compactified Jacobian I8 — L],
whose fibre above a curve C € |L| is the compactified Jacobian J¢C. #¢ is hy-
perkihler by [30], and the fibration #$¢ — |L| is Lagrangian. The rational map
Slel ——5 |L| associates to a general set of g points in S the unique curve of |L| pass-
ing through these points.

More generally, suppose that 2g —2 = (2r — 2)m? for some integer m. Then
q(h+me) =0, and indeed S "l admits a birational model with a Lagrangian fibration.
This fibration has been constructed independently in [28] and [37]; _## is replaced
by a moduli space of twisted sheaves on S.

Another argument in favor of the conjecture has been given by Matsushita [29],
who proved that a) holds “locally”, in the following sense. Let X be a hyperkihler
manifold, with a Lagrangian fibration f : X — P", and let Def(X) be the local de-
formation space of X. Then the Lagrangian fibration deforms along a hypersurface
in Def(X). Thus any small deformation of X such that the cohomology class of
/" Opr(1) remains algebraic carries a Lagrangian fibration.

A related question, which comes from mathematical physics, is :

Question 5 Does every hyperkdhler manifold admit a deformation with a La-
grangian fibration?

If Conjecture 2 holds, the answer is positive if and only if the quadratic form ¢
is indefinite. I do not know any serious argument either in favor or against this.

Question 6 Ler X be a hyperkdihler manifold, and T C X a Lagrangian submanifold
which is a complex torus. Is it the fibre of a Lagrangian fibration X — P"?

(A less optimistic version would ask only for a bimeromorphic Lagrangian fi-
bration.)
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2.7 Projective families

Deformation theory shows that when the K3 surface S varies, the manifolds S [ form
a hypersurface in their deformation space; thus a general deformation of Sl is not
the Hilbert scheme of a K3 — and we do not know how to describe it. This is not
particularly surprising: after all, we do not know either how to describe a general
K3 surface. On the other hand, if we start from the family of polarized K3 surfaces
S of genus g, the projective manifolds Sl are polarized (in various ways)*, and
the same argument tells us that they form again a hypersurface in their (polarized)
deformation space; we should be able to describe a (locally) complete family of
projective hyperkihler manifolds which specializes to S/ in codimension 1.

For r = 2 there are indeed a few cases where we can describe the general defor-
mation of S with an appropriate polarization :
1. The Fano variety of lines contained in a cubic fourfold ([7]; g = 8)
2. The “variety of sums of powers” associated to a cubic fourfold ([21]; g = 8)
3. The double cover of certain sextic hypersurfaces in P ([34]; g = 6)
4. The subspace of the Grassmannian G (6, 10) consisting of 6-planes L such that

0|, =0, where 0 : A3C!0 — C is a sufficiently general 3-form ([12]; g = 12).

Note that K3 surfaces of genus 8 appear in both cases 1) and 2); what happens
is that the corresponding polarizations on S are different [22]°.

Question 7 Describe the general projective deformation of S 2, for S a polarized
K3 surface of genus 1, 2, 3, ... (and for some choice of polarization on S 2); or at
least find more examples of locally complete projective families. Same question with
St for r > 3.

(With the notation of footnote 4, a natural choice of polarization for g > 3 is
h—e.)

A different issue concerns the Chow ring of a projective hyperkihler manifold.
In [6] and [40] the following conjecture is proposed :

4 For S general we have Pic(Sl") = Zh é Ze (1.6); the polarizations on S') are of the form ah — be
with a,b > 0.

5 The Corollary in [22] is slightly misleading: the moduli spaces of polarized hyperkihler mani-
folds of type 1) and of type 2) are disjoint.
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Conjecture 3 Let Dy,...,Dy in Pic(X), and let z € CH(X) be a class which is a
polynomial in Dy, ...,Dy and the Chern classes ¢;(X). If z=0 in H*(X,Z), then
z=0.

This would follow from a much more general (and completely out of reach)
conjecture, for which we refer to the introduction of [6]. Conjecture 3 is proved in
[40] for the Hilbert scheme sl of a K3 surface for n < 8, and for the Fano variety
of lines on a cubic fourfold.

3 Compact Poisson manifolds

Since hyperkéhler manifolds are so rare, it is natural to turn to a more flexible no-
tion. Symplectic geometry provides a natural candidate, Poisson manifolds. Recall
that a (holomorphic) Poisson structure on a complex manifold X is a bivector field
7€ H(X,N°Ty), such that the bracket {f,g} := (7,df Adg) defines a Lie algebra
structure on Ox. A Poisson structure defines a skew-symmetric map 7° : Qb — Ty;
the rank of T at a point x € X is the rank of 7¥(x). It is even (because 7* is skew-
symmetric). The data of a Poisson structure of rank dimX is equivalent to that of a
(holomorphic) symplectic structure. In general, we have a partition

X= Il X, where X;:={xeX|rkt(x)=s}.
§ even

The following conjecture is due to Bondal ([11], see also [35]):

Conjecture 4 If X is Fano and s even, X<, := 11 Xi contains a component of di-
- k<s

mension > s.

This is much larger than one would expect from a naive dimension count. It
implies for instance that a Poisson field which vanishes at some point must vanish
along a curve.

The condition “X Fano” is probably far too strong. In fact an optimistic modifi-
cation would be :

Conjecture 5 If X is non-empty, it contains a component of dimension > s.

Here are some arguments in favor of this conjecture:
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Proposition 4 Let (X, T) be a compact Poisson manifold.
1) Every component of X, has dimension > s.

2) Let r be the generic rank of T (r even); assume that ¢y (X)? # 0 in H1(X,Q}),
where g = dimX — r + 1. Then the degeneracy locus X \ X, of T has a component

of dimension > r —2.

3) Assume that X is a projective threefold. If X is non-empty, it contains a curve.

Sketch of proof:

1) Let Z be a component of X; (with its reduced structure). It is not diffi-
cult to prove that Z is a Poisson subvariety of X (see [35]); this means that at a
smooth point x of Z, the tensor (x) lives in A’T,(Z) C A*T,(X). But this implies
s <dimTy(Z) = dimZ.

2) is proved in [35], §9, under the extra hypothesis dimX = r+ 1. The proof
extends easily to the slightly more general situation considered here.

3) is proved in [14] by a case-by-case analysis (leading to a complete classifica-
tion of those Poisson threefolds for which Xy = @). It would be interesting to have
a more conceptual proof.

The paper [35] contains many interesting results on Poisson manifolds; in par-
ticular, a complete classification of the Poisson structures on P3 for which the zero
locus contains a smooth curve.

4 Compact contact manifolds

Let X be a complex manifold, of odd dimension 2r+ 1. A contact structure on X is a
one-form 6 with values in a line bundle L on X, such that 8 A (d0)" # 0 at each point
of X (though 8 is a twisted 1-form, it is easy to check that 6 A (d6)" makes sense as
a section of Ky ® L'*!; in particular, the condition on 6 implies Ky = L~"~1).

There are only two classes of compact holomorphic contact manifolds known so
far:

a) The projective cotangent bundle P7};, where M is any compact complex man-
ifold;
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b) Let g be a simple complex Lie algebra. The action of the adjoint group on
IP(g) has a unique closed orbit X;: every other orbit contains X, in its closure. Xj is
a contact Fano manifold.

The following conjecture is folklore:
Conjecture 6 Any projective contact manifold is of type a) or b).

Half of this conjecture is now proved, thanks to [24] and [13]: a contact pro-
jective manifold is either Fano with b, = 1, or of type a). It is easily seen that a
homogeneous Fano contact manifold is of type b), so we can rephrase Conjecture 6
as:

Conjecture 7 A contact Fano manifold is homogeneous.

I refer to [4] for some evidence in favor of this conjecture, and to [5] for its
application to differential geometry, more specifically to quaternion-Kdhler mani-
folds. These are Riemannian manifolds with holonomy Sp(1)Sp(r); they are Ein-
stein manifolds, and in particular they have constant scalar curvature. Thanks to
work of Salamon and LeBrun [25, 26], a positive answer to Conjecture 7 would
imply:

Conjecture 8 The only compact quaternion-Kdhler manifolds with positive scalar
curvature are homogeneous.

These positive homogeneous quaternion-Kéhler manifolds have been classified
by Wolf [41] : there is one, My, for each simple complex Lie algebra g.

The link between Conjectures 7 and 8 is provided by the twistor space construc-
tion. To any quaternion-Kihler manifold M is associated a S>-bundle X — M, the
twistor space, which carries a natural complex structure; when M has positive scalar
curvature it turns out that X is a contact Fano manifold — for instance the twistor
space of My is Xg. Conjecture 7 implies that X is isomorphic to X for some simple
Lie algebra g; this in turn implies that M is isometric to My and therefore homoge-
neous.
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Generalized Lagrangian mean curvature flow in
Kahler manifolds that are almost Einstein

Tapio Behrndt

Abstract We introduce the notion of Kéhler manifolds that are almost Einstein and
we define a generalized mean curvature vector field along submanifolds in them.
We prove that Lagrangian submanifolds remain Lagrangian, when deformed in di-
rection of the generalized mean curvature vector field. For a Kidhler manifold that is
almost Einstein, and which in addition has a trivial canonical bundle, we show that
the generalized mean curvature vector field of a Lagrangian submanifold is the dual
vector field associated to the Lagrangian angle.

Keywords Lagrangian mean curvature flow, almost Calabi-Yau manifolds.
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1 Introduction

In a Calabi-Yau manifold with parallel holomorphic volume form €2 there is a dis-
tinguished class of submanifolds called special Lagrangian submanifolds. These are
oriented Lagrangian submanifolds, which are calibrated with respect to Re £2. Spe-
cial Lagrangian submanifolds have received a lot of attention since the work by
Strominger, Yau and Zaslow [14], where mirror symmetry is related to special La-
grangian torus fibrations.
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The notion of special Lagrangian submanifolds can be generalized to the case
when the ambient manifold is almost Calabi-Yau. An almost Calabi-Yau manifold
is a Kdhler manifold together with a non-vanishing, not necessarily parallel, holo-
morphic volume form. A nice property of almost Calabi-Yau manifolds is that they
appear in infinite dimensional families, i.e. the moduli space of almost Calabi-Yau
structures is infinite dimensional, while Calabi-Yau structures only appear in finite
dimensional families due to the theorem of Tian and Todorov [16], [17] and Yau’s
proof of the Calabi conjecture [20]. Choosing a generic almost Calabi-Yau metric
is therefore a much more powerful thing to do than choosing a generic Calabi-Yau
metric and, as in the study of moduli spaces of J-holomorphic curves, this could be
of importance for the study of moduli spaces of special Lagrangian submanifolds as
conjectured by Joyce in [4]. Another nice feature of almost Calabi-Yau manifolds
is that explicit almost Calabi-Yau metrics on compact manifolds are known, while
there are no non-trivial Calabi-Yau metrics on compact manifolds explicitly known.
For instance a quintic in CP* equipped with the restriction of the Fubini-Study met-
ric is an almost Calabi-Yau manifold.

Special Lagrangian submanifolds in (almost) Calabi-Yau manifolds have been
studied extensively by many authors but up to date there is no general method
known how to construct examples of special Lagrangian submanifolds. However,
since special Lagrangian submanifolds are calibrated submanifolds they are vol-
ume minimizing in their homology class and one is tempted to construct special
Lagrangian submanifolds by mean curvature flow of Lagrangian submanifolds. The
existence of the Lagrangian mean curvature flow in Kéhler-Einstein manifolds was
first proved by Smoczyk [11]. Smoczyk shows that the mean curvature flow of a
given compact Lagrangian submanifold remains Lagrangian as long as the flow ex-
ists. Thus the problem is to find conditions such that the Lagrangian mean curvature
flow exists for all time and converges to a special Lagrangian submanifold. One
attempt to this was done by Thomas and Yau [15], where they conjecture that a La-
grangian submanifold satisfying a certain stability condition converges smoothly by
Lagrangian mean curvature flow to a non-singular special Lagrangian submanifold
in the same homology class. In general there are two problems occurring. Firstly one
expects that the evolving Lagrangian submanifold develops a finite time singularity.
There are only a few longtime convergence results known for Lagrangian mean cur-
vature flow, for instance by Smoczyk [10], Smoczyk and Wang [13] and Wang [18].
The second problem which occurs is that there exist Lagrangian submanifolds with-
out regular Lagrangian volume minimizers in their homology classes. Examples of
such Lagrangian submanifolds were found by Wolfson in [19].
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In this paper we introduce the notion of Kihler manifolds that are almost Ein-
stein (in particular, these contain the class of almost Calabi-Yau manifolds), and
we define a generalized mean curvature vector field along submanifolds in them.
We show that Lagrangian submanifolds remain Lagrangian under deformation in
direction of the generalized mean curvature vector field and we obtain a generalized
version of Smoczyk’s result. Therefore we call the deformation of Lagrangian sub-
manifolds in direction of the generalized mean curvature vector field a generalized
Lagrangian mean curvature flow. We show that the generalized Lagrangian mean
curvature flow is the negative gradient flow of the volume functional of some con-
formally rescaled metric. Moreover, if the ambient manifold is almost Calabi-Yau,
then we prove that the one-form associated to the generalized mean curvature vector
field of a Lagrangian submanifold is the differential of the Lagrangian angle. As a
consequence we show that if the initial Lagrangian has zero Maslov class, then the
generalized Lagrangian mean curvature flow can be integrated to a scalar equation.

We remark here that recently, after the first version of the present paper,
Smoczyk and Wang showed that in every almost Kéhler manifold that admits an
Einstein connection there exists a generalized mean curvature vector field with the
property that Lagrangian submanifolds remain Lagrangian under the deformation in
its direction. The generalized Lagrangian mean curvature flow introduced by them
contains ours in Kéhler manifolds that are almost Einstein as an example (see [12]
for more details).

2 Lagrangian mean curvature flow in Kéhler-Einstein manifolds

We first recall the definition of the mean curvature flow. Let M be a Riemannian
manifold and let N be a submanifold of M given by an immersion Fp : N — M.
Throughout this paper the term submanifold will mean an immersed submanifold.
The second fundamental form of N is defined by

H(X7Y) = TyN <?dF0(X)dF0(Y)) , X,Y € F(TN)7

where V denotes the Levi-Civita connection of M and 7y the orthogonal projection
onto the normal bundle VN of N. The mean curvature vector field H € I'(VN) of N
is defined as the trace of the second fundamental form with respect to the induced
Riemannian metric on N.
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Definition 1 A smooth one parameter family {F(.,)},c(0,r)» T > 0, of immersions
of N into M is evolving by mean curvature flow if
JoF
—(x,t) = H(x,t), (x,t) € Nx (0,T
(50 = H(x1), (50) EN X (0,T) "
F(x,0) = Fy(x), x €N.

The mean curvature flow is a quasilinear parabolic system and hence, if N is
compact, short time existence and uniqueness for given initial data is guaranteed by
standard theory of quasilinear parabolic PDEs, see for instance LadyZhenskaja et al.

[6].

From now on and throughout this paper we let (M,J,®,g) denote a com-
pact Kihler manifold of real dimension 2n with complex structure J, Kihler
form @, and Kéhler metric 2. The Kéhler form and Kéhler metric are re-
lated by g(JX,Y) = @(X,Y), for X,Y € I'(TM). The Levi-Civita connec-
tion of g is denoted by V and the Riemann curvature tensor R of g is
R(X,Y)Z=VxVyZ—VyVxZ—Vx y/Z, for X,Y,Z € I'(TM). Moreover the Ricci
tensor Ric of g is Ric(X,Y) = trace R(.,X)Y, for X,Y € I'(TM), and the Ricci form
p, which is a real (1, 1)-form, is defined by p(X,Y) = Ric(JX,Y).

Let L be a compact manifold of real dimension n and Fy : L — M an immersion
of Linto M. The induced Riemannian metric on L is g = F; g, and we set @ = F; @.
Assume now that Fp is a Lagrangian immersion, i.e. ® = 0. We recall some ba-
sic geometric properties of Lagrangian submanifolds. For any normal vector field
§ € (VL) there is a corresponding one form @ on L given by oz = Fy (& 1 @).
The one-form ay = Ff (H 4 w) is called the mean curvature form and it satisfies the
following important relation first proved by Dazord in [1]:

Proposition 1 The mean curvature form oy satisfies

d(XH = FO*[_)

In particular by Cartan’s formula we find
Fy (Zy®)=Fy(d(H.®))+F (H.dd)=Fp.

Hence, if M is Kihler-Einstein, i.e. p = A® for some A € R, then it follows that
the deformation of a Lagrangian submanifold in the direction of the mean curvature
vector field is an infinitesimal symplectic motion. A natural question that arises now
is whether the Lagrangian condition is preserved under the mean curvature flow.
This question was answered positively by Smoczyk in [11]:
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Theorem 1 Let L be a compact n-dimensional manifold and let Fy : L — M be a
Lagrangian immersion into a compact Kdhler-Einstein manifold M. Then the mean
curvature flow admits a unique smooth solution for a short time and this solution
consists of Lagrangian submanifolds.

3 Generalized Lagrangian mean curvature flow in Kihler
manifolds that are almost Einstein

Definition 2 An n-dimensional Kihler manifold (M,J,®, g) is called almost Ein-
stein if
p=Ad+nddy

for some constant A € R and some smooth function y on M.

From now on we additionally assume that our Kéhler manifold (M,J, ®,g) is
almost Einstein. Given an immersion Fy : N — M of a manifold N into M we
define a normal vector field K € I'(VN) along N by

K=H—nm,y (Vy).

We call K the generalized mean curvature vector field of N. Now let L be an n-
dimensional manifold and Fy : L — M a Lagrangian immersion. Then the defor-
mation of L in direction of the generalized mean curvature vector field is an in-
finitesimal symplectic motion. Indeed by Dazord’s result we have

Fy (k@) =doy +nFy (d(dyol))=Fy (p—ndd“y)=AF;® = 0.
Also observe that if M is Kédhler-Einstein, then K is the mean curvature vector field.

In the remainder we study the generalized mean curvature flow

JdF
g(x,t):K(x,t), (X,I)ELX(O,T) )

F(X,O) = FO(x)7 xelL,

for a given Lagrangian immersion Fy : L — M of a compact n-dimensional man-
ifold L into M and {F(.,t)},c[0,r) @ smooth one-parameter family of immersions
of L into M. In order to establish the short time existence and uniqueness of this
flow observe that K as a differential operator differs from H just by lower order
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terms. Hence K and H have the same principal symbol, so short time existence and
uniqueness for (2) follows immediately.

Now let {F(.,7)};c(o,r) be the solution to the generalized mean curvature flow
(2). In the remaining part of this chapter we show that F(.,7) : L — M is La-
grangian for each r € (0,7). As before we denote g = F(.,¢)*g and @ = F(.,1)" ®.
Furthermore V will denote the Levi-Civita connection of g and R the Rieman-
nian curvature tensor of g. Let p € L and choose normal coordinates {x'} on
L around p at time ¢ € (0,7) and coordinates {y*} on M around F(p,r). We
have to introduce some notation. We denote e; = %(.,t) and we define tensors
N and n by N; = N(e;) = myr (Je;) and n;; = n(ej,e;) = g(Ne;,Nej). Moreover
we set hjji = h(ej,ejex) = =8 (Ne,',vejek). Observe that h;j is symmetric in
the last two indices and fully symmetric if F(.,) is Lagrangian. We also denote
Ry ji = R(ek,e,ej,N(e;)). The following formula proved by Smoczyk [11, Lem.
1.4] will be of use later:

Lemma 3.1

Vihiij — Vihiij = Ruji+V jViow + 0" Rig jm + O Ry jim
+" R jiim +N"" @ (Rt jhski — e jhsii) -

We start by computing the evolution equations of g;; and @;; at p € L and time ?.

Lemma 3.2
i) 9= (dog);;
d
ii) Egij = 72n’nn((XH)mhnij +2ndl//(1[,-j).
Proof

d o i&F“&Fﬁ+8F“iaFﬁ
“BYOx 9r oxi | aIxi dx ot

a =
_ o d 0K oFP L o IKP
~ B oxT o9x T ox aw

— o (2K 2PN o (2K OFN _ i)
— O\ o5 an ) O\ ox o ) T K-
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4, _ (2 9F OF\ (9F 0 JF
a7 = 8\ oxi o 9xi ) T8\ ox" 9xl a1
_ (K O, (9K oF
8\ 0x o ) T8\ O 0x

_ 9*F (= J*F
—2g (Ha 8x’8xl> +2ng (Vll/7 TvL ((M&ﬂ))

= —21]’"”(061-1),”}1",']' +2ndl]/(H,]) .
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Using Lemma 3.1 and Lemma 3.2 we can now proceed as in [11] to prove the

following lemma.

Lemma 3.3 Let 0 < T < T, then there exists a constant C > 0 such that for all

t€[0,7]
d
E|a)|2 < Alo]* +ndy (V|o|?*) +Clo|*.

Proof Denote Y = m,;(Vy), so that K = H —nY. Then

d k_jl
ar 0" = —g"g’ Wy, j Wy

dt

mn

d d
= *Z(Dklw’ gmk+2wkl—a)kl

Lt dt
= —20" 0" (20" () shom + 2ndy (L) )

+20" (Vi )1 — Vi (0w )i — n(doy i)
= 40" 0" 0" (o ) shomk — 4n 0 @™ dy (1L,,;)
+20" (Vi(an) — Vi(om)k) —2ne™ (doy )i
= 40" 0™ 0" (o) shimi — 4n o @™ dy (11,
+20M gP1 (Vihypg — Vihypy) — 200" (doy )
= 40" 0™ n* (o) shymi — 4n o @™ dy (11,
+20 g (leqg + V4V p@u + 0y Rigs + 0 Regps + O Ryips
+10" @, * (hykghsip — Pmighsip) ) —2n0M (doy)
= 40" 0" 0" (o) shimk — 4n @ 0" dy (Wp) +20°R, + Al
—|Vol* +20" 'R\ +20" 0 R+ 20" 0 R
+20 "™ @, * (h,, P hyp — by P hyp) — 200 (day ).

For terms of the form o @™ T", we have
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" .
20° wml Alvlm 22 (wsl Z wmiTislm>
s,l

m,i

IN

Z(wsl)z + Z (Z wmlTislm>
s,

sl \om,i

<o +n2 Y (@) (Tsm)? < (1+0%T) o],

s,0,m,i

Since L x [0, 7] is compact we can choose a constant C > 0 such that for all ¢ € [0, 7]

d _
E|(o\2 < Ao +Clof +20"R,/, — 2n0" (day )i
It remains to find an estimate for the last two terms. We have

(ay); = @ (7L (V) ,e)
=3 (?w,](el)) mk g (Vl//,ek) (emer)
= d“y(er) — " dy(er) O,

and hence
(day ) %d‘w() %d"‘l/(ek)
(& lean) + 2 (dyle) o)
:ddcl//(ek,e[)—gmjwmlaak vle))

mj J mj awm mj me
8" 05 dy(e)) — gy (e)) 5 + " dy(e))

Multiplying both sides with —2n®*!, using the Kihler and the almost Einstein con-
dition, and estimating the quadratic terms in @ we get

j d d
—ank’wam<C|w|2—2wk’pk,+zngmfmkldw<ej>< T wmk)

oxk dx!

Using that o is closed we find
; 00, 1 J0) k 8wkl
"l ( ax’;‘ - —ax’;' )dw(ej) =dy <g’"’g’kg” Oy

1,00} 1 )
- —oMmi )

Putting all together yields
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d - -
E|co|2 <Alo* +ndy (Vo) +Clof? +2w"’lePE —20"py.
Now by definition of the tensor N we have N(e,) = J(e,) — ®,"e,, and so
Rirgp = R(er, ex, ¢4, (ep)) — @," Riggm.
Multiplying both sides with 2@w* g”? and estimating the quadratic term in @ gives
Zwkllepg <20"gPMR (e ex,e4,J(e))) +Clo)*.
Using the following well known identity from Kéhler geometry
gqu(elvekveqw](ep)) = P,
we finally obtain
d
E|a)|2 < Alo|* +ndy (V|o|*) +Clo|*.
|

Applying the parabolic maximum principle we conclude that F(.,z) : L — M
is Lagrangian for each 7 € [0,T). This motivates the following definition:

Definition 3 A family of Lagrangian submanifolds satisfying (2) is said to evolve
by generalized Lagrangian mean curvature flow.

And we have proved the following theorem:

Theorem 2 Let L be a compact n-dimensional manifold and Fy : L — M a La-
grangian immersion of L into a compact Kdihler manifold M that is almost Einstein.
Then the generalized Lagrangian mean curvature flow admits a unique smooth so-
lution for a short time and this solution consists of Lagrangian submanifolds.

4 A variational approach to the generalized mean curvature flow

Let . be the infinite dimensional manifold consisting of all compact n-dimensional
submanifolds of M. In this chapter we show that the generalized mean curvature
flow is the gradient flow of a volume functional on .. Let N € .7, then the tangent
space of . at N consists of the normal vector fields along N and for any Riemannian
metric g on M there is a natural L?>-metric on . given by
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42012 = [ 8V, 2)dY,,
forY,Z € I'(VN).
We define two conformally rescaled Riemannian metrics & and § on M by
g=cg and §=er2Vz.

Then we have the following variational characterization of the generalized mean
curvature flow:

Proposition 2 The generalized mean curvature flow is the negative gradient flow of
the volume functional Vol; on ¥ with respect to the L% -metric {(,.) 8.2

Proof Let N € . and let Y be a normal vector field along N. Then the first variation
of the volume functional gives

&wmm:-/gmﬁM%
N

where H is the mean curvature vector field on N with respect to the metric on N
which is induces by g. It is easy to show that

A=eY (H-nmy (Vy)).
Hence

&%@M:—/JQW—MWWWJM%

e( 2n 2n_n

w8V (K, Y)dV,

I
!
3

:—AﬂKJM%:—MJkH

5 The case of almost Calabi-Yau manifolds

We introduce almost Calabi-Yau manifolds and special Lagrangian submanifolds as
defined by Joyce in [3, §8.4].
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Definition 4 An n-dimensional almost Calabi-Yau manifold (M,J, ®, g, ) is an n-
dimensional Kihler manifold (M,J,®,g) together with a non-vanishing holomor-
phic volume form .

Given an n-dimensional almost Calabi-Yau manifold (M,J, ®, g, ) we can de-
fine a smooth function y on M by

" n(n—1) i\ —
eV — = (1) 7 (;) QAND.

Here Q denotes the complex conjugate of Q. Then (M,J,®,5,Q) is Calabi-Yau
if and only if y vanishes identically. Using |Q|; = 23¢"V and the following for-
mula for the Ricci form of a Kdhler manifold with trivial canonical bundle (see for
instance [3, §7.1])

p = dd“log| Q|

we find
p =nddy.

Hence almost Calabi-Yau manifolds are almost Einstein and Theorem 2 holds in
this case. Let g be a conformally rescaled metric on M defined by § = ¢*¥g. One
easily proves that Re Q is a calibrating n-form on (M, §). This leads to the definition
of special Lagrangian submanifolds in almost Calabi-Yau manifolds.

Definition 5 An oriented Lagrangian submanifold L of an almost Calabi-Yau man-
ifold M is called special Lagrangian if it is calibrated with respect to Re Q for
the metric g. More generally, an oriented Lagrangian submanifold L is special La-
grangian with phase 6 € R, if L is calibrated with respect to Re(e~"% Q) for the
metric g.

Besides the fact that one is able to write down explicit examples of almost
Calabi-Yau metrics on compact manifolds there is another reason for studying al-
most Calabi-Yau manifolds. Recall that by the theorem of Tian and Todorov the
moduli space .#Zcy of Calabi-Yau metrics of a compact Calabi-Yau manifold is
of dimension A'"! (M) + 2h"~11(M) + 1, where h'/(M) are the Hodge numbers of
M. In particular .Zcy is finite dimensional. In the study of moduli spaces of J-
holomorphic curves in symplectic manifolds it turns out that for a generic almost
complex structure J the moduli space .#; of embedded J-holomorphic curves is
a smooth manifold, while for a fixed almost complex structure J the space .Z;
can have singularities (see [8] for details). Now the moduli space .#cy of almost
Calabi-Yau structures is of infinite dimension and therefore choosing a generic al-
most Calabi-Yau metric is a more powerful thing to do than choosing a generic
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Calabi-Yau metric. We explain why this is of certain interest. It was proved by
McLean [9] that the moduli space of compact special Lagrangian submanifolds . #;,
in a Calabi-Yau manifold is a smooth manifold of dimension b'(L), the first Betti
number of L. An important question is whether it is possible to compactify .#sz, in
order to count invariants of Calabi-Yau manifolds. One approach to this problem,
due to Joyce, is to study the moduli space of special Lagrangian submanifolds with
conical singularities in almost Calabi-Yau manifolds (see [5] for a survey of his
results). In particular Joyce conjectures that for generic almost Calabi-Yau metrics
the moduli space of special Lagrangian submanifolds with conical singularities is a
smooth finite dimensional manifold.

We come back to the study of the generalized Lagrangian mean curvature flow.
First observe that special Lagrangian submanifolds in an almost Calabi-Yau mani-
fold M are minimal with respect to g. By Proposition 2 the generalized Lagrangian
mean curvature flow decreases volume with respect to g. Therefore the generalized
Lagrangian mean curvature flow is in this sense the right flow to consider. Harvey
and Lawson show in [2] that

FyQ=e"ay,,

for Fy : L — M a Lagrangian immersion. The map 6 : L — S is called the La-
grangian angle of L. From this we obtain an alternative characterization of special
Lagrangian submanifolds.

Proposition 3 An oriented Lagrangian submanifold L is special Lagrangian with
phase 6y if and only if

(cosBp Im Q2 —sin6y Re Q)| = 0.

In particular, an oriented Lagrangian submanifold is special Lagrangian with phase
0o if and only if the Lagrangian angle is constant 6 = 6.

The Lagrangian angle is closely related to the generalized Lagrangian mean cur-
vature flow as proved in the next proposition.

Proposition 4 Let L be a Lagrangian submanifold of M. Then
O = —do.
Proof The decomposition

A'T'M@C= @ APIT*M
ptq=n
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is invariant under the holonomy representation of g. Hence there exists a complex
one form 1 on M satisfying VQ = n ® Q. Moreover, since Q is holomorphic, 7
is in fact a one form of type (1,0). Using 2 A Q = ¢*"¥dV; we find by computing
V (Q A Q) the equality

M+NRQANQ =2ndy Q2 NQ.

Hence 1 = 2ndy and so V.Q = 2nd y @ Q. Following the computation by Thomas
and Yau [15, Lem. 2.1] we obtain

VQ = (id® +ndy +ioy) @ Q2
and establish the equality
oy —ndy =—do.

But ay — nd“y = ak and hence ax = —d6. |

Now let {F(.,7)};c(o.r) be the solution to the generalized mean curvature flow
with initial condition Fy : L — M a Lagrangian immersion. Then we have the fol-
lowing proposition:

Proposition 5 Under the generalized Lagrangian mean curvature flow the La-

grangian angle of L satisfies

d
L 0=A0+ndy(Ve).
7 +ndy(V0)

Proof On the one hand

d . do ' ony 4
Eezewwdvg _ iEe"”’ldeg + ndll/(K)ete+n‘l/dVg + ele‘f’"wad‘/g

and on the other hand, using F(.,7)*Q = ¢/9*"¥dV,, we have

%eieJr”‘”dVg = F(, 1) (ZQ) = F(.,1)" (d(K 2 Q)+ F(.1)" (K 2dQ).

Since Q is holomorphic, dQ = 0. Moreover by Proposition 4 we have K = J(V0)
and hence

F(,0)*(d(K 5 Q)) = iF (.,1)"(d(VO 5 Q)) = id(eTVVe L aV,)
=iV (d(VO S dV,) +ndy A (VO 1dVy))
—e" TV AO A (VO LaVy)
= iV (A +ndy(V0))dV, — O TV|VO|*dV,.
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Comparing imaginary parts yields

%e — A0 +ndy(V6).

We end this paper by showing how the generalized Lagrangian mean curvature
flow in an almost Calabi-Yau manifold can be integrated to a scalar equation. Let
@ be the canonical symplectic structure on the cotangent bundle 7*L of L. Then by
the Lagrangian neighbourhood theorem [7, Thm. 3.33] there exists an immersion
@ : U — V from an open neighbourhood U of the zero section in 7*L onto an
open neighbourhood V' of L in M, such that @ = ®*® and P (x,0) = Fy(x) for
x € L. Tt is not hard to see that all Lagrangian submanifolds in M which are C'-close
to L correspond to graphs in 7*L of closed one-forms on L.

Theorem 3 Let Fy : L — M be a zero Maslov class Lagrangian, i.e. 0 : L — R is
a well defined smooth function on L, let ® be as above, and let {u(.,t)},c(o.1) be a
smooth one-parameter family of smooth functions on L satisfying

%(x,;) =0(x,1), (x,t) € Lx (0,T)

u(x,0)=0,x€L.

Here 6(.,t) denotes the Lagrangian angle of the Lagrangian immersion ® o du(.,t)
of L into M. Choosing T > 0 sufficiently small we can assume that the graph
of du(.,t) lies in U for t € [0,T). Then there exists a family of diffeomorphisms
{o(.1) }iepo,r) of L, such that the immersions {F (.,t) }ic(o.) of L into M defined by

F(x,t) = ®(@(x,1),du(@(x,1),1)), x €L,

evolve by generalized Lagrangian mean curvature flow.

The proof of this theorem can be found in [10] in the case when the ambient
space is C". When the ambient space is a general almost Calabi-Yau manifold the
proof is analogous.
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Einstein metrics and preserved curvature
conditions for the Ricci flow

Simon Brendle

Abstract Let C be a cone in the space of algebraic curvature tensors. Moreover, let
(M, g) be a compact Einstein manifold with the property that the curvature tensor of
(M, g) lies in the interior of the cone C at each point on M. We show that (M, g) has
constant sectional curvature if the cone C satisfies certain structure conditions.

Keywords Ricci flow, Einstein metric.
Mathematics Subject Classification (2010) Primary 53C25. Secondary 53C24,
53C44.

1 Introduction

In this note, we study Riemannian manifolds (M, g) with the property that Ric=p g
for some constant p. A Riemannian manifold with this property is called an Ein-
stein manifold. Einstein manifolds arise naturally as critical points of the normalized
Einstein-Hilbert action, and have been studied intensively (see e.g. [2]). In particu-
lar, it is of interest to classify all Einstein manifolds satisfying a suitable curvature
condition. This problem was studied by M. Berger [1]. In 1974, S. Tachibana [9]
obtained the following important result:
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Theorem 1 (S. Tachibana) Let (M, g) be a compact Einstein manifold. If (M, g) has
positive curvature operator, then (M, g) has constant sectional curvature. Further-
more, if (M,g) has nonnegative curvature operator, then (M, g) is locally symmetric.

In a recent paper [3], we proved a substantial generalization of Tachibana’s theo-
rem. More precisely, it was shown in [3] that the assumption that (M, g) has positive
curvature operator can be replaced by the weaker condition that (M, g) has positive
isotropic curvature:

Theorem 2 Let (M, g) be a compact Einstein manifold of dimensionn > 4. If (M, g)
has positive isotropic curvature, then (M, g) has constant sectional curvature. More-
over, if (M, g) has nonnegative isotropic curvature, then (M, g) is locally symmetric.

The proof of Theorem 2 relies on the maximum principle. One of the key ingre-
dients in the proof is the fact that nonnegative isotropic curvature is preserved by
the Ricci flow (cf. [5]).

In this note, we show that the first statement in Theorem 2 can be viewed as a
special case of a more general principle. To explain this, we fix an integer n > 4. We
shall denote by Cz(IR") the space of algebraic curvature tensors on R”. Furthermore,
for each R € Cp(R"), we define an algebraic curvature tensor Q(R) € Cz(R") by

n n
Q(R)ijkl = Z Rijpg Riipg + 2 Z (Ripkq Rjpig = Ripiq Rjﬁkq)'
p.q=1 p.q=1

The term Q(R) arises naturally in the evolution equation of the curvature tensor
under the Ricci flow (cf. [6]). The ordinary differential equation %R = Q(R) on
Cp(R™) will be referred to as the Hamilton ODE.

We next consider a cone C C Cg(IR") with the following properties:
(i) C is closed, convex, and O(n)-invariant.
(i1) C is invariant under the Hamilton ODE %R =0(R).

(iii) If R € C\ {0}, then the scalar curvature of R is nonnegative and the Ricci
tensor of R is non-zero.

(iv) The curvature tensor /;jx; = 8 6j; — 0y 8j lies in the interior of C.

We now state the main result of this note:

Theorem 3 Let C C Cp(R") be a cone which satisfies the conditions (i)—(iv) above,
and let (M,g) be a compact Einstein manifold of dimension n. Moreover, suppose
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that the curvature tensor of (M,g) lies in the interior of the cone C for all points

p € M. Then (M, g) has constant sectional curvature.
As an example, let us consider the cone
C = {R € Cz(R") : R has nonnegative isotropic curvature}.

For this choice of C, the conditions (i) and (iv) are trivially satisfied. Moreover, it
follows from a result of M. Micallef and M. Wang (see [7], Proposition 2.5) that
C satisfies condition (iii) above. Finally, the cone C also satisfies the condition (ii).
This was proved independently in [5] and [8]. Therefore, Theorem 2 is a subcase of
Theorem 3.

2 Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of Theorem 16 in [3]. Let (M, g)
be a compact Einstein manifold of dimension n with the property that the curvature
tensor of (M, g) lies in the interior of C for all points p € M. If (M, g) is Ricci flat,
then the curvature tensor of (M, g) vanishes identically. Hence, it suffices to con-
sider the case that (M, g) has positive Einstein constant. After rescaling the metric
if necessary, we may assume that Ric = (n— 1) g. As in [3], we define an algebraic
curvature tensor S by

Sijkt = Rijir — € (gik & j1 — &i1 8 jic)» (D

where K is a positive constant. Let k be the largest real number with the property
that § lies in the cone C for all points p € M. Since the curvature tensor R lies in the
interior of the cone C for all points p € M, we conclude that k¥ > 0. On the other
hand, the curvature tensor S has nonnegative scalar curvature. From this, we deduce
that ¥ < 1.

Proposition 1 The tensor S satisfies
AS+QO(S)=2(n—1)S+2(n—1)k(k—1)1,

where liji = ik 8 j1 — &it 8 jk-

Proof The curvature tensor of (M, g) satisfies

AR+Q(R)=2(n—1)R )
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(see [3], Proposition 3). Using (1), we compute
Q(S)ijur = Q(R)iju +2(n—1) K (g 8j1 — & & jx)
— 2K (Ricy gj1 — Ricjy g jx — Ricjx gir + Ricjy gix)-

Since Ric = (n— 1) g, it follows that

08)=0R)+2(n—1)x(xk—2)1 3)
Combining (2) and (3), we obtain

AS+0(S)=2(n—1)R+2(n— 1)k (xk—2)1.

Since R = S+ «I, the assertion follows. ]
In the following, we denote by T5C the tangent cone to C at S.
Proposition 2 Az each point p € M, we have AS € TsC and Q(S) € TsC.

Proof It follows from the definition of x that S lies in the cone C for all points
p € M. Hence, the maximum principle implies that AS € TsC. Moreover, since the
cone C is invariant under the Hamilton ODE, we have Q(S) € TsC. [ |

Proposition 3 Suppose that k < 1. Then S lies in the interior of the cone C for all
points p € M.

Proof Letus fix a point p € M. By Proposition 2, we have AS € TsC and Q(S) € TsC.
Furthermore, we have —S € T5C since C is a cone. Putting these facts together, we
obtain

AS+Q(S)—2(n—1)S e TsC.

Using Proposition 1, we conclude that
2(n— 1)k (xk—1)I € TsC.

Since 0 < k < 1, it follows that —2I € TgC. On the other hand, [ lies in the interior
of the tangent cone 75C. Hence, the sum —2/ 41 = —/I lies in the interior of the
tangent cone TsC. By Proposition 5.4 in [4], there exists a real number € > 0 such
that S — €I € C. Therefore, S lies in the interior of the cone C, as claimed. ]

Proposition 4 The algebraic curvature tensor S defined in (1) vanishes identically.
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Proof By definition of k, there exists a point pg € M such that § € dC at py. Hence,
it follows from Proposition 3 that k¥ = 1. Consequently, the Ricci tensor of S vanishes
identically. Since S € C for all points p € M, we conclude that S vanishes identically.

|

Since S vanishes identically, the manifold (M,g) has constant sectional curva-
ture. This completes the proof of Theorem 3.
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Differential Harnack estimates for parabolic
equations

Xiaodong Cao and Zhou Zhang

Abstract Let (M, g(r)) be a solution to the Ricci flow on a closed Riemannian man-
ifold. In this paper, we prove differential Harnack inequalities for positive solutions
of nonlinear parabolic equations of the type

d
57/ =Af —fInf +Rf.

We also comment on an earlier result of the first author on positive solutions of the
conjugate heat equation under the Ricci flow.

Keywords differential Harnack inequality, nonlinear parabolic equation, Ricci flow,
Ricci soliton.
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1 Introduction

Let (M,g(t)), t € [0,T), be a solution to the Ricci flow on a closed manifold M.
In the first part of this paper, we deal with positive solutions of nonlinear parabolic
equations on M. We establish Li-Yau type differential Harnack inequalities for such
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positive solutions. More precisely, g() evolves under the Ricci flow

9g(t)

o c, ey
where Rc denotes the Ricci curvature of g(r). We first assume that the initial metric
2(0) has nonnegative curvature operator, which implies that for all time ¢ € [0,7),
g(t) has nonnegative curvature operator (for example, in the case that dimension is
4, see [7]). Consider a positive function f(x,7) defined on M x [0,T), which solves

the following nonlinear parabolic equation,

d

S nf-finf RS, @
where the symbol A stands for the Laplacian of the evolving metric g(¢) and R is
the scalar curvature of g(#). For simplicity, we omit g(¢) in the above notations. All

geometry operators are with respect to the evolving metric g(7).

Differential Harnack inequalities were originated by P. Li and S.-T. Yau in [12]
for positive solutions of the heat equation (therefore also known as Li-Yau type Har-
nack estimates). The technique was then brought into the study of geometric evolu-
tion equation by R. Hamilton (for example, see [8]) and has ever since been playing
an important role in the study of geometric flows. Applications include estimates on
the heat kernel; curvature growth control; understanding the ancient solutions for
geometric flows; proving noncollapsing result in the Ricci flow ([17]); etc. See [16]
for a recent survey on this subject by L. Ni.

Using the maximum principle, one can see that the solution for (2) remains pos-
itive along the flow. It exists as long as the solution for (1) exists. The study of the
Ricci flow coupled with a heat-type (or backward heat-type) equation started from
R. Hamilton’s paper [9]. Recently, there has been some interesting study on this
topic. In [17], G. Perelman proved a differential Harnack inequality for the funda-
mental solution of the conjugate heat equation under the Ricci flow. In [2], the first
author proved a differential Harnack inequality for general positive solutions of the
conjugate heat equation, which was also proved independently by S. Kuang and Q.
S.Zhang in [11]. The study has also been pursued in [3, 6, 15, 20]. Various estimates
are obtained recently by M. Bailesteanu, A. Pulemotov and the first author in [1],
and by S. Liu in [13]. For nonlinear parabolic equations under the Ricci flow, local
gradient estimates for positive solutions of equation

%f:Aeraflanrbf,
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where a and b are constants, have been studied by Y. Yang in [19]. For general
evolving metrics a similar estimate has been obtained by A. Chau, L.-F. Tam and
C. Yu in [4], by S.-Y. Hsu in [10], and by J. Sun in [18]. In [14], L. Ma proved a
gradient estimate for the elliptic equation

Af+aflnf+bf =0.

In (2), if one defines
M()C,l) = —1nf(x,t),

then the function u = u(x,) satisfies the following evolution equation

8”_ 2
EfAu—|Vu| —R—u. 3)

The computation from (2) to (3) is standard, which also gives the explicit relation
between these two equations.

Our motivation to study (2) under the Ricci flow comes from the geometric in-
terpretation of (3), which arises from the study of expanding Ricci solitons. Recall
that given a gradient expanding Ricci soliton (M, g) satisfying

1
Rij+ V,-ij = —Zgij,
where w is called soliton potential function, we have
n
R(g)+Agw = e

In sight of this, by taking covariant derivative for the soliton equation and applying
the second Bianchi identity, one can see that

R(g)+ \ng|§ + % = constant.

Also notice that the Ricci soliton potential function w can be differed by a constant
in the above equations. So by choosing this constant properly, we have

w n
R(g)+|Vwl; = 37y

One consequence of the above identities is the following

|ng|§ =Aw— |ng|§, —R(g) —w. 4)
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Recall that the Ricci flow solution for an expanding soliton is g(¢) = ¢(t) - @(¢)*g
(c.f. [5]), where c(t) = 1+ 5 and the family of diffeomorphism ¢(t) satisfies, for

anyx € M, 5
5, (@) () = % (Vew) (0(1) (%))

Thus the corresponding Ricci soliton potential ¢(z)*w satisfies

O 3) = s (Vew)00) (910 ) = [Vle) i)

Along the Ricci flow, (4) becomes

Vo wP = Ap*w— [Vorw]2—R— £
e(r)
Hence the evolution equation for the Ricci soliton potential is
9(1)"w 2 @ w
——— =AQ*w— Vo w|"—R— . 5
The second nonlinear parabolic equation that we investigate in this paper is
du u
— =Au—|Vu* ~R— : 6
ot u=[Vul 1+5 ©

Notice that (3) and (6) are closely related and only differ by their last terms.
Our first result deals with (2) and (3).

Theorem 1 Let (M, g(t)), t € [0,T), be a solution to the Ricci flow on a closed man-
ifold, and suppose that g(0) (and so g(t)) has weakly positive curvature operator.
Let f be a positive solution to the heat equation (2), u = —In f and

2
H:ZAM—|Vu|2—3R—7n. )

Then for all time t € (0,T)
H<

A~

Remark 1 The result can be generalized to the context of M being non-compact. In
order for the same argument to work, we need to assume that the Ricci flow solution
g(t) is complete with the curvature and all the covariant derivatives being uniformly
bounded and the solution u and its derivatives up to the second order are uniformly
bounded (in the space direction) .
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Our next result deals with (6), which is also a natural evolution equation to con-
sider, by the previous motivation.

Theorem 2 Let (M, g(t)), t € [0,T), be a solution to the Ricci flow on a closed man-
ifold, and suppose that g(0) (and so g(t)) has weakly positive curvature operator.
Let u be a smooth solution to (6), and define

2
H=2Au—|Vul? - R—T” )

Then for all time t € (0,T)
H <O0.

Remark 2 1f f is a positive function such that f = ¢™%, then f satisfies the following
evolution equation

flnf

145

of
L Af4Rf—
5 f+Rf
In [2], the first author studied the conjugate heat equation under the Ricci flow.
In particular, the following theorem was proved.

Theorem 3 [2, Theorem 3.6] Let (M, g(t)), t € [0,T], be a solution to the Ricci flow,
and suppose that g(t) has nonnegative scalar curvature. Let  be a positive solution
of the conjugate heat equation

d

Setv=—Inf—Z%In(4drt), t=T —t and

2
P=2Av—|Vv* +R— 7”

Then we have

) , 2 Vv[> R
=P =[P —2VP-Vy—2lu;+ Ry - g,J| —Cpo2iam @)
Moreover, for all time t € [0,T),

P <0.

In the last section, we apply a similar trick as in the proof of Theorem 1 and
obtain a slightly different result, where we no longer need to assume that g(z) has
nonnegative scalar curvature.
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2 Proof of Theorem 1 and Application

The evolution equation of u is very similar to what is considered in [3]. So the
computation for the very general setting there can be applied.

Proof (Theorem 1) In sight of the definition of H from (7) and comparing with [3,
Corollary 2.2], we have
d

5 (Bu) = L(Lu) — A(|Vul*) — AR+ 2R;ju;; — Au,

%|Vu|2 = A(|Vul?) = 2|VVul> =2Vu-V(|Vul*) = 2Vu- VR — 2|Vul*.

In fact, one can directly apply the computation result there with the only modifica-
tion because of the extra terms coming from time derivative %u, which are put at
the end of the right hand side in the above equalities. Then we have

d 2

1 2
EH:AH—ZVH~VM—2|MU—RU—;g,’j|2—;H—;|Vu‘2 (9)

d R
-2 (atR—l— - +2VR~Vu+2R,~ju,-uj> —2Au+2|Vul?,
where the last two terms of the right hand side coming from the extra term —u in
(3). Plugging in —2Au+2|Vu|> = —H + |Vu|*> — 3R — 22, one arrives at

T

0 1 2
(%H:AH_ZVH'VM_ZWU_RU_tgi/|2_<t+1)H (10)

2 2 J R
+ (1_l> |Vu|2—3R—7n— (al‘R+t+2VR-Vu+2Rijuiuj) .

In sight of the definition of H (7), for ¢ small enough, we have H < 0. Since g;; has
weakly positive curvature operator, by the trace Harnack inequality for the Ricci
flow proved by R. Hamilton in [8], we have
d R
ER—&- 7 +2VR-Vu+2R;juju; > 0.
Also we have R > 0. Notice that the term (1 — 2) |Vu|? prevents us from obtaining
an upper bound for H for ¢t > 2.

We can deal with this by the following simple manipulation. To begin with, one
observes that from the definition of H,
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2 n
Vul? =2 (AM—R— ;) ~H-R.

We also have the following equality from definition,

1 n
tr Lt,'j—R,'j—?gij ZAM—R—;.
Now we can continue the computation for the evolution of H as follows,

2] 1 2 2
—H SAH72VH~VM72|M,'J'7RH7 *gij|2* <+1>H|VM|2
ot Tt t t
n 2n
—4R+2<Au—R—;) —H-=

2 2 (2 2
<AH—2VH -Vu— =~ (Au—R—;) - <t+1>H—t|vu|2

n

2
—4R+2(Au—R—?) —H—T”

2 2 2
—AH —2VH -Vu— <t+2>H—tVu2—4R—tn

2 n n\2 n
—Z(A _R_,_,) -
n( " [ 2) T2

2 2 2
gAH—ZVH-Vu—<t+2>H—tVu2—4R—tn—i—;.

The essential step is the second inequality where we make use of the elementary
inequality
1,1 n\2
juij — Rij — ~8ij|” > (AM—R— ;) :

n

Now we can apply maximum principle. The value of H for very small positive ¢
is clearly very negative. So we only need to consider the maximum value point is at
t > 0 for the desired estimate.

For VT < T, assume that the maximum in (0,7p] is taken at 7o > 0. At the
maximum value point, using the nonnegativity of |Vu|? and R, one has

g Zhntno iy S N r(p S
4+ 44, 4 to+1 4 T+1

Soif T <4, 1i.e., for time in [0,4), H < 0. In general, we have

H <

&~
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Theorem 1 is thus proved. [ ]
As a consequence of Theorem 1, we have

Corollary 1 Let (M,g(t)), t €10,T), be a solution to the Ricci flow on a closed man-
ifold, and suppose that g(0) (and so g(t) ) has weakly positive curvature operator.
Let f be a positive solution to the heat equation

d
Ef:Af—flnf-ﬁ-Rf.
Assume that (x1,11) and (x2,12), 0 <t} < tp, are two points in M x (0,T). Let
%) 2
r— inf/ ¢ <|7|2+R+ i ”) dr,
Y Jy t 4
where Y is any space-time path joining (x1,11) and (x2,t2). Then we have

el lnf(xl,tl) < e lnf(X2,l‘2) +

| =

This inequality is in the type of classical Harnack inequalities. The proof is quite
standard by integrating the differential Harnack inequality. We include it here for
completeness.

Proof Pick a space-time curve connecting (x,#) and (x2,%2), y(t) = (x(),z) for

t € [t1,12]. Recall that u(x,7) = —1In f(x,#). Using the evolution equation for u, we
have
d du
—u(x(t),t) = — +Vu-j
=Au—|Vul> ~R—u+Vu-y (11)
[Vul? 7
<Au— "Ry UL
S "5

Now by Theorem 1, we have

1

m\ 1
Au= (H+|Vu|2+3R+tn> <

n 2n
— (=4 |Vul+3R+=).
2(4-|-| ul”+ +t>

So we have the following estimation,

d L[ .» 2n n
— 1)< = R+—+-)—u
Gut0 <5 (1R 245 )

For any space-time curve 7, we arrives at
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d,, e[ 2n n
e u) <= IR
dt(e u) 3 (|}’| +R+—+7

Hence the desired Harnack inequality is proved by integrating ¢t from¢; tof,. W

3 Proof of Theorem 2

In this section we study u satisfying the evolution equation (6) originated from gra-
dient expanding Ricci soliton equation. We investigate the same quantity
2

H=2Au—|Vu>~3R - 7”
as in the last section. The evolution equation of u, is still very similar to what is
considered in [3]. We have slightly different terms coming from time derivative
%u when computing the evolution equation satisfied by H. Comparing with [3,
Corollary 2.2], we proceed as follows.

Proof (Theorem 2) Direct computation gives the following equation. The modifi-
cation from the computation of the reference is minor as illustrated in the proof of

Theorem 1.
d 1 2 2
EH :AH—ZVH-VM—ZWU—RU— ?gij|2 — ;H— ?|Vbt|2 (12)

o R > .
-2 ((%R—‘r ? +2VR-VM+2R,'J'M,'M]'> + t+72 (—2Au+2|Vu| ),

u

4 I

where the last two terms of the right hand side come from the extra term —

(6). Plugging in —2Au+2|Vu|> = —H + |Vu|*> — 3R — 22 one arrives at

T

P 1 2 2 6
—H=AH—2VH-Vu—2u;j—Rij—~gij*— =+ —=)|H-—=R (13
57 u |sz ij tgl/‘ (t+t+2> r+2 (13)
2 2 4n Jd_ R
— 2 ) |Vu]* - ~2( =R+ = +2VR-Vu+2R;juu; | .
+(l—|—2 t) I/t| 210 (8t +t+ u—+ 1]”1”])

By the definition of H, for ¢ small enough, we have H < 0. Since g(¢) has weakly
positive curvature operator, by the trace Harnack inequality for the Ricci flow ([8]),
we have

2] R
ER—&— ? +2VR-VM+2RU’M,'L£]' > 0.
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Notice that now the coefficient for |Vu|? on the right hand side is w%z - = < 0,
and we have R > 0. So one can conclude directly from maximum pr1n01ple that
H<O0. ]

4 A Remark on the Conjugate Heat Equation

In this section we point out a simple observation for [2, Theorem 3.6]. The assump-
tion on scalar curvature is not needed below. We follow the original set-up in [2].

Over a closed manifold M", g(¢) for r € [0,T] is a solution to the Ricci flow (1),
and f(-,1) is a positive solution of the conjugate heat equation

g—f —Af+Rf, (14)

where A and R are Laplacian and scalar curvature with respect to the evolving metric

g(t). Notice that [y, f(-,#)dLLy is a constant along the flow.

nlog 47177)

Setv=—logf— , where T =T —t and define

2
Pi= 2Av—|Vv|2+Rf7n.

Now we can prove the following result which is closely related to [2, Theorem 3.6].

Theorem 4 Let (M, g (t)), t € [0,T], be a solution to the Ricci flow on a closed man-
ifold. f is a positive solution to the conjugate heat equation (14), and v is defined as
above. Then we have

max (2Av —|Vv|® +R)

increases along the Ricci flow.

Proof The exact computation in [2, Theorem 3.6] gives

JoP
ot

Applying the elementary inequality

1 2.2 2
=AP—2VP-Vy—2|V?v+Rc— —g|*—=P—Z|Vv[>* - ZR.
T T T T

1 1 2
|V2v+Re— —g|* > — Av+R-Z ,
T T

S

and noticing that
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P+|Vv*+R=2 (Av+R— %) ,

we arrive at
oP 1 2
= <AP—2VP-Vyv— —(P+|Vv|* +R)*> - Z(P+|Vv[* +R)
ot 2n T

1 ) 2m\?> 2n
— AP—2VP-Vv— — P+ |V +R+ = | +2.
2n T T

Thus if one defines ’
P:=P+ 7" = 2Av— Vv 4R,

we have _

JdP ~ ~
— < AP—-2VP-Vv.
at

Hence maxy;(2Av — |Vv|? +R) decreases as T increases, which means that it in-
creases as ¢ increases. This concludes the proof. [ ]

Remark 3 Notice that we do not need to introduce 7 in Theorem 4, but we keep the
notation here so it is easy to be compared with [2, Theorem 3.6].

Remark 4 Theorem 4 and [2, Theorem 3.6] estimate quantities differ by 27" Here
we do not need to assume nonnegative scalar curvature as in [2, Theorem 3.6].
Moreover, one can also prove this result for complete non-compact manifolds with
proper boundness assumption.
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Abstract In this paper we study the behaviour of the degree of the Fulton—Johnson
class of a complete intersection under a blow—up with a smooth center under the
assumption that the strict transform is again a complete intersection. Our formula is
a generalization of the genus formula for singular curves in smooth surfaces.
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1 Introduction

LetY =Y, N---NY, be a complete intersection in a smooth algebraic n—fold X. If Y
is smooth then the topological Euler characteristic of Y is uniquely determined by
its cohomology class [Y] and can be computed using the adjunction formula

e(Y) =deg — - (T /Z (=D e(x) ]t )%t
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IfY is singular the situation becomes much more complicated, the above formula
does not hold anymore. In fact the topological Euler characteristic is not determined
by the cohomological classes [Y;]. The number

n—r
&(Y) :/Z Y (—nle)m)att et
X i=0  aeZ’
|ot|=n—i—r

can be considered as the “expected Euler characteristic” of Y and is equal to
the degree of the Fulton—Johnson class M (see [10, Examp. 4.2.6] or [11]). The
actual Euler characteristic e(Y) equals the degree of the Schwartz-MacPherson
class ¢>M. The difference (up to a sign convention) of these two numbers
is called the Milnor number and is equal to the degree of the Milnor class
M (Y) = (=1)4mY (F(y) — SM(Y)). The notion of the Milnor number goes back
to Milnor’s work ([15]) where the formula for the Milnor number of isolated hyper-
surface singularities was given. Milnor number and Milnor class were studied by
many authors (see f.i. [1, 3, 4, 16, 18]).

The aim of this paper is to give a method for computing the difference between
the degree of the Fulton—Johnson class &(Y) and the Euler characteristic e(Y) of
a non-singular model ¥ of ¥. We shall consider a non—singular model satisfying
the following property: there is a sequence of blowing-ups with smooth centers
0 : X — X such that ¥ C X is the strict transform of ¥ and moreover it is the
intersection of strict transforms ¥; of ¥; (then ¥ is also a complete intersection).

We shall study separately every blow—up. If 6 : X — X is a blow—up of a
smooth (irreducible) subvariety C C X, then from the formula for Chern classes of
a blow—up ([10, Thm. 15.4]) it follows (Prop. 1) that &(¥) —&(Y) is a polynomial in
c(A¢ix); ¢(C), [Yi]NC, multcY; (and the polynomial depends only on dimX, dim¥
and dimC).

We do not write explicit formulae for &¥) — &(Y) for arbitrary values of
dimX, dimY and dimC. The reason is that the general formula is very complicated
even for small values of dimX, dimY and dimC. We shall show instead that for
explicit values of dimX, dimY, dimC the formula for &¥) —&(Y) can be written
down explicitly. It is quite easy to compute those formulae with a computer.

Our method is based on expression of the top Fulton—-Johnson class in terms
of cohomologies of certain sheaves of differential forms on X with poles at a snc
divisor supported on the sum of hypersurfaces intersecting at Y. This allows us to
consider a smooth ambient space and then study the behavior of those sheaves under
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blow—up at a smooth subvariety. We used a similar method to study the Hodge
numbers of certain hypersurfaces (cf. [5, 6, 8, 19])

Under the additional assumption that the projectivized normal cone P(Ji/c|y) to
Y in C is a complete intersection of the normal cones P(4¢yy,) to ¥; in C we can in a
similar manner compute its Euler characteristic e(P(./¢|y)) and so also e(¥) —e(Y).
In this case we can compute not only the Euler characteristic of a smooth model of
Y but also of Y itself. If we can find a stratification of C such that over every stratum
the Euler characteristic of the fiber of the projection P(.4¢|y) — C'is constant, then
the computation of e(P(.4¢)y)) is reduced to computation of Euler characteristics
of subvarieties of P*~dimc=1,

In fact we study the homological Euler characteristic x(Qé), so using similar
methods we can compute other invariants of ¥ like f.i. arithmetic genus, signature
or more generally the y,—genus.

2 Blow—up of the Fulton-Johnson class

Let X be a complete smooth algebraic manifold (over C) of dimension n and let
Yi,...,Y, C X be reduced divisors such that Y =Y, N---NY, is a complete inter-
section (i.e. Y is reduced and dimY = n — r). Consider ¢ : X — X a blow—up of
a smooth subvariety C C X of dimension d, let E be the exceptional divisor of ©.
Denote by Y; := o*Y; — m;E the strict transform of ¥; by o, where m; = multcY;.
Assume that ¥ = ¥;N---NY, is also a complete intersection.

Proposition 1 For any natural numbers n,r,d there exists a polynomial W, .4 with
integer coefficients s.t.

&(F) —&(Y) = /CWW (c(Ae),c(C), MINC, ..., [N Comy, ... omy)
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Proof We have
&(r)—e(y) =

= [T L 0famnrtm)e
5 i=0  aeZr
|a|=n—i-r

YT oo e -
X i:0|a\of?; N

Z/‘Cir Y (D) @) 5
- \i=0 «aeZ"
X |at|=n—i—r

n—r

—0'*<Z Z (_l)laCi(X)[Yl]al+l...[Yr]a’Jrl))
el

By [10, Thm. 15.4]
¢(X) — 6"e(X) = i[p*e(C) - ],

where p : E = P(4¢x) — C is the natural projection (and the restriction of o),
i: E — X is the inclusion and

o=
) k=0

(§ = c1(Ok(1)) is the generator of the cohomology ring of P(E)), substituting the
above and ¥; = 6*Y; — m;E into (1) and using the properties of the cohomology ring

n—d n—d
: Y pfena (M) —(1=8) Y (1+ g)kP*Cndk(«/ch)l 7

H*(P(E)) we get the required assertion.
Remark 1 The same result holds in fact for the total class ¢ (V) — o*c™ (Y).

Remark 2 The polynomial W, .4 is isobaric of degree d in c¢(A¢(x), ¢(C), [V;]NC
and of degree less than or equal to n in my,...,m,.

3 Differential forms

The computations in the proof of Proposition 1 use calculations in the cohomology
ring H*(P*(E)), and so they are not suitable for deriving explicit formulae. In this
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section we shall use another approach. The Euler characteristic of a smooth com-
plete variety Y can be expressed in terms of sheaves of differential forms on ¥

e(V) =) (~1)'x(2).

i
This formula follows either from the Hodge decomposition or
caimy (Y) =Y (—1)'ch(Qy)
i
and the Hirzebruch—Riemann—Roch theorem ([13, Thm. 21.1.1]).

If Y is a smooth hypersurface in a smooth projective variety X then for any p > 1
we have the following exact sequences ([9, Prop. 2. 3])

0— _Q)l; — _Q;;(]OgY) — Q{,’_l —0

0— Qf(log¥)(~¥) — Qf — Qf —0,

where QF(logY) is the (locally free) sheaf of differential forms with loga-
rithmic poles along ¥ and QF(logY)(—Y) = Qf(logY) ® Ox(—Y). The map
QP (logY) — Q" is given by the Poincare residue, Q2 — QF is the restric-
tion whereas Qf — Q¥ (logY) and Q% (logY)(—Y) — QF are inclusions.

Playing with the above exact sequences we get

and more generally, for any locally free sheaf .% on X and any p =0,...,n—1

1@ e #) = Y (17 [t (a0 7)~2(@f “(~(a+ D)0 7))

IfY =Y, N---NY, is a transversal intersection of smooth divisors then we can
inductively get a representation of e(Y) as a linear combination (with integer coef-
ficients) of ¥ (Q¥ (—(¢:1Y1+ - +q,Y)))).

Observe that all the summands in the above formula make sense for any divi-
sors Y1,...,Y,, not necessarily smooth. If Y is an arbitrary complete intersection the
above formula gives the degree of the Fulton-Johnson class &(¥). Our goal is to
compute &(¥) —&(Y), in order to do this we have to study

Qg (~( @i+ +a,7) = (Qx(— (@Y1 +-- +4:1)))),
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so it is enough to compute for an effective line bundle . on X and non—negative
integers m, p the numbers

Dy(Z.m):=x(QF0c" L™ @ Oy(mE)) - x(QF 0. 27).

Let k = n—d be the codimension of C in X. Denote by 4" := ¢y the normal
bundle of Cin ¥, by .4 its dual and by S/.#" the [—th symmetric power of .4". We
have the following obvious relations

Proposition 2

0.0% = Ox,

R'0.03 =0 fori>0,

O3 (E)QE = Og(—1).

o.(Op(l) =SV, forl1>0,
o.(Ok(l)) =0, Sforl <0,
Ric.(0g()) =0, fori#0,k—1,
R-1o, (0 (1) =0, Sforl > —k,
R o, (Op() =Sk @ NC N, for 1 < —k.

Moreover the following “relative Euler sequence”

0—QF . — 0" (N N") @ Op(—p) — QF L —0
is exact.
From the above Proposition and the projection formula we get the following

Corollary 1 RiG*Qg/C(l) = 0 unless

(i)i=pandl =0,
(ii)i=0andl > p+1,
(iii)i=k—1andl < —k.



Euler characteristic of a complete intersection 105
Moreover
R"o*.Qg/C ~ O,
0— G*.Qg/c(l) — NV RSP —
— NI VestPH Y SV — 0,

0—>Rk*]c7*.Qg/C(l) _)/\Pe/y\/@)spflfke/’/\/@/\kj N

— NPTV @SPTIR I VN —
SRy Ny — 0.

Proposition 3 For a non—negative integer m we have
1. G*ﬁg(mE) ~ Oy,
m—k «
2. R16,03(mE) = @ SI(AN )N\ A,
j=0
3. RiO'*ﬁX(mE) =0, fori#£0,k—1.

Proof The case m = 0 is obvious. The general case follows by induction from the
previous Proposition and the direct image functor applied to the exact sequence

0— Ogx((m—1)E) — Oy (mE) — Op(—m) — 0.

We shall compute D, (.Z,m) using the Leray spectral sequence, so we need to study
the direct images RiG*Q)’;, for which the description of 6*Q¥ is crucial. If o is a
blow—up of a point then

and so we have for p =0, 1
o Ox = O%
0—c'Q) —>.Q}( _“Qé/c —0.
The latter follows easily from the following exact sequences
0— Q)%(logE)(—E) — Q)l( — QL —0
0— .Q}((logE)(—E) —0"Q} — "Rl —0

0—>G*Qé—>ﬂé—>ﬂé/c—>0
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For higher values of p the formulae become much more complicated. For p = 2 we
have

0 — QZ(logE)(—2E) — Q%(—E) — Q}(1) —0
0— QI (—E) — QF(logE)(—E) — 24(1) — 0
00— Q)%(logE)(—E) — .Q}% — .Q% —0
2

E/
with quotient isomorphic to é /c® G*Qé. Consequently we can write the following

The kernel of the map Qé — Qp - contains G*Qg, which is a proper submodule

relation in the Grothendieck Ky group

[Q3] = (23 (10gE)(—2E)] + [QF o (1)] + [07Q¢(1)] + [ (1) © 6° 2] +
+ 2(Q2)c(1) + 2(0* (1) + 2 (RF )0) + 1 (07 Q) + X (2 0 © 67 Q)

In a similar way the kernel of the map G*Q% — Q)%(logE)(—ZE) contains
0*QL(1) ® 6* Q2 with quotient isomorphic to .Qé/c(l) ® 0o QLo o*QE(1).

Putting the above formulae together we get
(93] = [0° Q%] = [25,c(D] + [QF )] + [2z/c (D] + [R5 ,c® 0" RL. (2)

The above formula can be also easily verified in local coordinates, if we denote by
XlyeesXis Ykt1,- - -, ¥n local coordinates in X such that xj,...,x; is a local equation
of C and consider the affine chart on X in which the blow—up o is given by

O (X1,X2, oo Xk Vit 1o e+ - Vn) > (X1, X100, 0 XXk, Vit 1y -+ -3 Vn) -

Now, 6*Q2 is a locally free module generated (locally) by xjdx; A dx;(i > 1),
xdxi Adx (i < j), dxi Ady;,xidx; Ady;(i > 1), dy; Ady;(i < j). So the quotient
Q% / G*Q)% (which is supported on E) is a locally free sheaf generated (locally) by
restrictions to E of dx; Adx;(i > 1), dx; Ndx (i < j), dx; Ndx;j(i < j) twisted by the
conormal bundle of E, dx; Ady;(i > 1). Although we can recognise the above forms
as generators of the vector bundles on the right-hand side of the above formula, we
cannot write the quotient as the direct sum because in general Q }5 does not split as
the direct sum of .Q(lj and Q é Jc Consequently we have to write the formula in the
Grothendieck K|, group.
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In the same way we can prove the following formula for any p > 0:

Proposition 4

HM»

_ s
(2] = [o" 2] + Z Qf el © 0" QE™ 1 + ];Z, Fic) @0 Q™.

Using the above Proposition we can easily get formulae for D,(.Z,0). We shall
write down only formulae for p < 2, as for bigger values of p they become more
complicated.

Theorem 5 Let m > 0 be a positive integer.

(1) Do(£,0) =0,
(2) Di(£,0) = —x (£ @ Oc),

(L7200 if k=2
(3) D2(Z,0) =
(LR + (L' Oc) if k>2
m—k
(4) Do(L,m) = (1) Y x(Z 'S/ NN,
j=0

(5) Dy (L m) = (—1)! l"ikx(ggeag' SN NN+

Jj=0
m—k+1
+ Y xVeL oSN AN) —y( LT s N N)
j=0
m—k )
(6) Dy (L m) = (— Y x( @tz oSN N )+
j=0
m—k+1
+ Y xVeolesr oSN )+
Jj=0
m—k+2
+ Y NV eL oS oN )+
Jj=0

+x (LS Ek N QNN = (N ST o NV @027
—x($_1®5m_k</V®/\k</V®Qé)}

Proof We shall give proofs of the most complicated assertions (3) and (6), proofs
of other assertions are similar (but much simpler). Tensoring the equality (2) with
the line bundle 6*.Z ! ® 05 (mE) we get
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[0*(Q} @27 ® Ox(mE)] = [Q2® 0" L~ ® Ogy (mE)] +
‘HQé/c(l —-m)Rc* L+ [.Qé/c(—m) ®o*Z 1+
+HQf (1 =m) @ 0L +[Q o (-m) @ 6% (Q¢ @ 271)].

Compute the Euler characteristic, apply the direct image functor and use Corol-
lary 1. Observe, that we have to consider separately the cases m = 0 and m = 1,
because then we have to compute R' 6, Q 11: e and RZG*.QI% Jc The assertion follows
by simple computations.

Remark 3 The numbers on the righthand sides of the formulae in the above Theorem
represent the holomorphic Euler characteristics of certain locally free sheaves on
C. They can be computed using the Hirzebruch-Riemann—Roch Theorem, so the
numbers can be expressed (for fixed m) in terms of the Chern classes of the center
of the blowing—up C, the normal bundle /¢y and the restriction to C of the line
bundle ..

Example 1 If C is a point then the holomorphic Euler characteristic of any locally
free sheaf on C equals its rank, the sheaf .Qg of p—forms (p > 0) on C is a zero—sheaf.
Simple computations yields

czam=1p(7)
Di(Zm) = (=1)""! Mmkﬂ) B (’Z—_llﬂ
Do(Zm) = (=)' {@ <m:2> " ('Z_ll) "(le)]

Example 2If C is a curve then the holomorphic Euler characteristic of
any locally free sheaf .# on C equals by the Riemann-Roch theorem
deg(c1(#))+r(1 —g), where r is the rank of .%, g is the genus of C. Moreover
we have ¢ (7 @ F) = rank.Z - ¢ (T ) +rankT - ¢;(F), rankS/ A = (/’;2) and
a(SIH) = ()er( ).

If X is a threefold (i.e. the codimension k of the curve C in X is 2) simple com-
putations give
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Do(Zom) = g (= m)(e1(£) -C)+ ¢ £ m)er (N +
+ 3 Emei(€),

DI(Z,m) = 3(3m —m+2)(e1(2) )+ 5 (-~ —m)er(H) +
+ %(—mz —m—2)e1(C)

Similarly if k = 3 (i.e. C is a curve in a fourfold X') then

Do(Z,m) = ( m 4 3m® —2m)(c1(L)-C) +
—&-i(m —2m3—m2+2m)cl(./1/)+112(

D(Z,m) = %(—2m3+3m2—4m+3)(cl(.$) -C)+

m®> —3m? 4 2m)c (C),

(m* —m® +2m* —2m)c; (N) + é(m3 +2m—3)c;(C)
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Already for the case of C being a surface the formulae become very complicated and
it is very difficult to write them down directly. On the other hand for m big they are
integer valued polynomials in m, the Riemann—Roch theorem allows to represent
them as polynomials in Chern roots of 4", ¢ and O (Y) so we can use computers

to find D,,(.Z,m) for a few values of m and, then interpolate this to get the formula

for arbitrary m.

Example 3 Using this approach we computed with a computer that for dim(C) =

dim(X) =4

4 1.3

Do(.i”,m):(ﬁm nmn _24”1 "'12 )62(*/’/)+

—ﬁm3+ 112 )Cl (C)er ()

Di(ZL,m) = (tm* = Lim’ + 3m* + tm) ca(N) +

5 1 1.2 1 1
3’ — fym—13) €2(C) + (—gm* + ym— 75

2 m +24 )cz(C)Jr(*ﬂm Jrﬂm)c%(C)Jr
£m2—|—4m)cl(.,€”)C+( m —gm)cl(.,iﬂ)cl(
%mz—zm) c1(L)e (C)—l—(—ﬁm +ﬂm2)c

)

+Im—) e (L)C+ Gm’ + tm) ) (L)er (N ) +
i+ 5) e (L)er(C) + (—gm* — 3m®) cf () +
3

2,
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4 Euler characteristic computation

Using the results from previous sections we can write down the formula for the num-
ber &(¥) —&(Y). The actual formula depends on the dimensions of X, ¥ and C. Let us
first consider the case of a hypersurface (i.e. r = 1). We have e(Y) = ¥;(—1)'x(Q}),
moreover by Serre duality y(Q}) = (—1)""'x(Qy~') for any smooth variety of
dimension n — 1.

4.1 Hypersurface

Theorem 6 IfY is a surface in a threefold X and m is the multiplicity of Y along C
then

—m?> +2m? if dimC =0

(V) —&(Y) = { (3m2 —2m— 1)YC+ (—m® + Dey(AN)+  if dimC =1
+(=m? +m)c; (C)

Proof Since Y is a surface we have
&(Y) = 2(6x) — 1(Ox (—Y)) = 2(Ox (=27)) — 2(24) + 1(Q4(~1))
and consequently
&(V)—&(Y) = x(Oc) — Do(L,m) — Do(L %, 2m) + Dy (L, m),
where & = Ox (Y).
Theorem 7 IfY is a threefold in a fourfold X then
m* —3m® 4+ 2m* +2m if dimC =0

(—m3 +2m*)c1(C) + (—m* +-m3+ if dimC =1
+m? —m)cy (AN) + (4m> — 6m*> +2)YC
?)

(=m* +m? +2m?) co(N )+ if dimC =2
+ (m? —m) c2(C) + (6m*> —3m — 1) Y>C+

+ (—4m? +2m) Yo (A) + (=3m* +2m+1) Yei (C)+

+ (m* = m?) 3 (A) + (m* —m) ¢ (C)ey (A)
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Proof AsY is a threefold
&(Y) =22(0x) —22(Ox (~2Y)) = 2x(2x) +2x(Qx (-Y))

and
&(V)—&(Y) =2x(0c) —2Do(L%?,2m) + 2D\ (L ,m).

Remark 4 In case we are interested in computing the Euler number of Y itself (not
of a smooth model of it), we have to subtract from &(¥) — &(Y) the difference
e(Y) —e(Y) (for every blow—up o). But outside the exceptional divisor E = Exc(o)
the mapping o is an isomorphism, so

e(Y)—e(Y)=e(YNE)—e(C).

The exceptional divisor is a projective bundle over C, hence a smooth manifold of
dimension n — 1 and ¥ N E is a hypersurface in E. Iterating the above we are able
to compute ¥ NE and hence e(Y). Moreover studying a resolution of ¥ NE we