

Lecture Notes in Computer Science 6637
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jianliang Xu Ge Yu Shuigeng Zhou
Rainer Unland (Eds.)

Database Systems
forAdancedApplications
16th International Conference, DASFAA 2011
International Workshops: GDB, SIM3, FlashDB,
SNSMW, DaMEN, DQIS
Hong Kong, China, April 22-25, 2011
Proceedings

13

Volume Editors

Jianliang Xu
Hong Kong Baptist University, Department of Computer Science
Kowloon Tong, KLN, Hong Kong, China
E-mail: xujl@comp.hkbu.edu.hk

Ge Yu
Northeastern University, School of Information Science and Engineering
Shenyang, Liaoning 110004, China
E-mail: yuge@ise.neu.edu.cn

Shuigeng Zhou
Fudan University, School of Computer Science
220 Handan Road, Shanghai 200433, China
E-mail: sgzhou@fudan.edu.cn

Rainer Unland
University of Duisburg-Essen
Institute for Computer Science and Business Information Systems (ICB)
Schützenbahn 70, 45117 Essen, Germany

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-20243-8 e-ISBN 978-3-642-20244-5
DOI 10.1007/978-3-642-20244-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011924108

CR Subject Classification (1998): H.3, H.4, I.2, C.2, H.2, H.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

E-mail: rainer.unland@icb.uni-due.de

Preface

Database Systems for Advanced Applications (DASFAA) is an annual interna-
tional database conference, located in the Asia-Pacific region, which showcases
state-of-the-art R&D activities in database systems and their applications. It
provides a forum for technical presentations and discussions among database re-
searchers, developers and users from academia, business and industry. DASFAA
2011, the 16th in the series, was held in Hong Kong during April 22–25, 2011.

Among the proposals submitted in response to the call-for-workshops, we
carefully selected six workshops, each focusing on a specific area that contributes
to the main themes of the DASFAA conference. This volume contains the papers
accepted for these six workshops that were held in conjunction with DASFAA
2011. They are:

– First International Workshop on Graph-Structured Data Bases (GDB 2011)
– First International Workshop on Spatial Information Modeling, Management

and Mining (SIM3 2011)
– International Workshop on Flash-Based Database Systems (FlashDB 2011)
– Second International Workshop on Social Networks and Social Media Mining

on the Web (SNSMW 2011)
– First International Workshop on Data Management for Emerging Network

Infrastructures (DaMEN 2011)
– 4th International Workshop on Data Quality in Integration Systems (DQIS

2011)

We are very grateful to the workshop organizers for their tremendous effort
in soliciting papers, selecting papers by peer review, and preparing attractive
programs. We asked all workshops to follow a rigid paper selection process,
including the procedure to ensure that any Program Committee members were
excluded from the paper review process of any paper they were involved in. A
requirement about the overall paper acceptance rate was also imposed on all the
workshops.

We would like to express our appreciation to Dik Lun Lee, Wang-Chien Lee,
Kamal Karlapalem, Jeffrey Xu Yu, Myoung Ho Kim, Kam-Fai Wong, Samuel
Tam, and many other people for their support in the workshop organization.
Our thanks also go to Rainer Unland and Veronika Muntoni for their hard work
in compiling this proceedings volume.

April 2011 Jianliang Xu
Ge Yu

Shuigeng Zhou

GDB 2011 Workshop Organizers’ Message

Recent applications on graph-structured data, for example, biological and chemi-
cal databases, social networks, business process models, ontologies, the Semantic
Web and XML, have sparked a renewed interest in graph-structured databases.
The database research community has been actively contributing to pressing is-
sues on graph-structured databases including query models and languages, per-
formance optimization, pattern matching and mining, keyword search, query
processing on modern architectures and infrastructure, graph visualization and
user interfaces, among many others.

The First International Workshop on Graph-Structured Data Bases (GDB)
was held on April 22, 2011 at The Chinese University of Hong Kong, in conjunc-
tion with the 16th International Conference on Database Systems for Advanced
Applications (DASFAA 2011). The GDB workshop targets at bringing academic
and industrial researchers together to share their knowledge and opinions on vi-
sions, challenges and solutions for graph-structured databases.

The workshop attracted ten submissions in addition to an invited keynote.
The submissions are highly diversified, coming from China, France, Germany,
Hong Kong, Italy, Singapore, South Korea and Spain. The Program Commit-
tee consisted of 15 members. All submissions were peer reviewed by at least
two Program Committee members for originality, impact and technicalities. The
Program Committee selected five papers to be included in the workshop proceed-
ings (acceptance rate 50%). The accepted papers covered research areas on query
models and languages, graph-structured data mining, performance optimization,
querying in modern architectures, cloud computing and ontologies.

The workshop would not be possible without the help from many people and
organizations. Firstly, we would like to thank the Program Committee members
for evaluating the submissions in a prompt and professional manner. Secondly,
we are thankful to Lei Chen for accepting our invitation to give a keynote talk.
Thirdly, we would like to express our gratitude to the Workshop Co-chairs of
DASFAA 2011 for their help in preparing the workshop. Finally, we thank all
authors and participants of the workshop for their contributions.

We believe that the first GDB workshop provided an exciting platform for
exchanging interesting ideas and insights on novel research problems. We trust
that the workshop will become a traditional annual meeting opportunity for
researchers on graph-structure databases.

April 2011 Sourav S. Bhowmick
Byron Choi
Wei Wang

SIM3 2011 Workshop Organizers’ Message

Nowadays, spatial data exist pervasively in various information systems and ap-
plications. The unprecedented amount of spatial data that has been amassed
and that is being produced in an increasing speed calls for extensive research
on spatial information modeling, management, and mining. The First Interna-
tional Workshop on Spatial Information Modeling, Management and Mining
(SIM3 2011) was a half-day workshop held in conjunction with DASFAA 2011.
The workshop provided a forum for original research contributions and practical
experiences of spatial information modeling, management, and mining.

The workshop received 17 submissions from Asian, North America, and Eu-
rope. Through careful reviewing by the Program Committee, eight full papers
and two short papers were selected for the presentation and inclusion in the
proceedings. We grouped the ten accepted papers into two sessions.

The papers in the first session discussed spatial data compression, storage,
and query. Yu et al. presented a stream compressor GDScomp for GML docu-
ments. Wei proposed a compression algorithm for GML documents that supports
direct querying over the compressed GML documents. Zhu et al. proposed an
approach to store and query GML documents based on model-mapping. Wang
presented a framework and a prototype of GML data management. Li et al.
introduced a multi-layer grid method for skyline queries in distributed environ-
ments. In the second session, five papers covered spatial planning, visualization,
mining, and information systems. Yuan and Schneider presented an interest-
ing approach for route finding in a gridded environment. Tahir et al. presented a
Web-based visualization tool to support map personalization by analyzing users’
mouse movement data. Viswanathan and Schneider carefully reviewed the ex-
isting modeling strategies for spatial data warehouses and SOLAP from concep-
tual, logical, and implementation levels. Jin et al. proposed a method to find
out the optimal parameter value of the bandwidth for clustering with Bayesian
posterior density estimation and MCMC method. Jin presented an extension
to Oracle DBMS to support the development of spatial–temporal information
management.

A successful workshop requires a lot of efforted from many people. First, we
would like to thank the authors for their contributions, and the Program Com-
mittee members for reviewing and selecting papers. In addition, we appreciate
DASFAA 2011 workshop Co-chairs Jianliang Xu, Ge Yu, and Shuigeng Zhou for
the excellent coordination. Finally, we would like to thank the local Organizing
Committee for its wonderful arrangements.

April 2011 Xin Wang
Jihong Guan

FlashDB 2011 Workshop Organizers’ Message

Recently, new storage media such as flash memory have been developed very
quickly, creating big challenges to the architecture of computer systems as well
as the design of system software. In particular, NAND flash in the form of solid
state disks (SSDs) has been an alternative to traditional magnetic disks, both in
the home-user environment and in the enterprise computing environment, due to
its shock-resistance, low power consumption, non-volatile, and high I/O speed.
The special features of flash memory and other new storage media impose new
challenges to traditional data management technologies. As a result, exploiting
the characteristics of flash memory and other new storage media has become an
important topic of database systems research. The data management community
needs to rethink traditional underlying storage architecture, query processing
algorithms, indexing mechanism, buffer management schemes as well as many
traditional issues in magnetic-disk-oriented database systems in order to adapt
to the advances in the underlying storage infrastructure.

The First International Workshop on Flash-Based Database Systems
(FlashDB 2011) was held on April 22, 2011 in Hong Kong in conjunction with
DASFAA 2011. The overall goal of the workshop was to bring together re-
searchers who are interested in optimizing database performance on flash
memory or other new storage media-based infrastructure by designing new data
management techniques and tools.

The workshop attracted 12 submissions from Germany, Poland, France, Ko-
rea and China. All submissions were peer reviewed by at least three Program
Committee members to ensure that high-quality papers were selected. On the
basis of the reviews, the Program Committee selected seven papers for inclu-
sion in the workshop proceedings (acceptance rate 58%). The final program
of the workshop also consisted of four invited talks. One of them was from
IBM Almaden Research, USA, and the other three were from academia, pre-
sented by Theo Haerder (University of Kaiserslautern, Germany), Sang-won Lee
(Sungkyunkwan University, South Korea), and Jianliang Xu (Hong Kong Baptist
University, Hong Kong).

The Program Committee of the workshop consisted of 14 experienced re-
searchers and experts. We would like to thank the valuable contribution of all the
Program Committee members during the peer-review process. Also, we would
like to acknowledge the DASFAA 2011 workshop Chairs for their great support
in ensuring the success of FlashDB 2011, and the support from the Natural
Science Foundation of China (No. 60833005) and Tin Ka Ping Foundation.

April 2011 Xiaofeng Meng
Lihua Yue

Peiquan Jin
Bin Cui

Zhiyong Shan

SNSMW 2011 Workshop Organizers’ Message

The Second International Workshop on Social Networks and Social Media Min-
ing on the Web (SNSMW 2011) was held in Hong Kong, China on 22 April, 2011,
in conjunction with the DASFAA 2011 conference. The aim of the workshop is to
provide a premium forum for researchers and industrial practitioners to dissem-
inate their latest research progress and advances in social networks and social
media mining. The Web has evolved since its birth. Currently, the role of the Web
is not only a medium for information transmission but also a medium for peo-
ple’s collaboration. The Social Web is emerging as an active and non-negligible
research area in Web computing. The topics of interest include computational
models for social media, social network analysis/mining, community detection
and evolution, blog search and retrieval, group interaction, collaboration, and
recommendation, trust and privacy techniques for social media, and so on.

This year’s workshop attracted 20 submissions from China (including Hong
Kong and Taiwan), India, Japan, Korea, Iran, Poland, Greece, Denmark, France
and the USA, which cover a broad range of interesting topics in social Web
computing. All submissions were rigorously peer reviewed by three Program
Committee members. The Program Committee selected 11 papers for inclusion
in the proceeding (acceptance ratio is 55%).

The workshop would not have been successful without the help of many orga-
nizations and individuals. First, we would like to thank the Program Committee
Co-chairs of SNSMW. Guandong Xu coordinated the workshop organizational
affairs and prepared the CFP; Lin Li set up a submission system for the work-
shop. Hong Cheng built the workshop website; Botao Wang helped to form the
Program Committee. We also want to extend our great gratitude to Yanhui Gu,
who helped to manage the review process for the workshop. Second, we would like
to thank the hard work of all Program Committee members for evaluating the
assigned papers in a timely and professional manner. In addition, we appreciate
the guidance and communication of the DASFAA 2011 workshop Committee,
who ensured that the workshop can smoothly. Last but not least, we would like
to thank all the authors who submitted very interesting and impressive papers
from their recent work. We hope we can continue this workshop in the coming
years.

April 2011 Guandong Xu
Lin Li

Hong Cheng
Botao Wang

DaMEN 2011 Workshop Organizers’ Message

The emerging network infrastructures such as P2P, mobile and sensor networks,
and cloud computing were once lab toys. Nonetheless, they show a strong poten-
tial of becoming mainstream in the foreseeable future. While most network-side
issues have been addressed or resolved, the data management issues that arise
from the real deployment of these infrastructures are ever increasing. In par-
ticular, challenges associated with acquiring, storing, processing, and analyzing
large-scale data from these heterogeneous networks call for novel data manage-
ment techniques. The inherently dynamic nature of these networks further poses
new research issues, such as privacy and security. The DaMEN workshop aims
to facilitate the collaboration between researchers in database and networking
areas by presenting cutting-edge research topics and methodologies.

The Program Committee (PC) of the workshop consisted of 18 researchers
and specialists from 16 universities and institutions across China, Japan, Singa-
pore and the USA. In a rigorous review process, each submission was reviewed
by three experts for its technical merit, originality, significance and relevance
to the workshop. Finally, the PC Chairs decided to accept 60% of the submit-
ted papers. The accepted papers span exciting topics from cloud computing to
VANETs, and investigate issues such as storage, search and query processing.

We are very grateful for the efforts of all authors who presented their fron-
tier work in related areas. Finally, we appreciate the impeccable support of all
members of the PC and the external reviewers, who provided excellent feedback
and valuable directions for the authors to improve their work.

Last but not least, the final program of the workshop consisted of an in-
vited keynote talk. The invitation was kindly accepted by Yunhao Liu from the
Hong Kong University of Science and Technology. The title was “GreenOrbs:
Lessons Learned from Extremely Large-Scale Sensor Network Deployment.” We
would also like to thank Aoying Zhou and Yoshiharu Ishikawa for serving as the
workshop General Co-chairs.

April 2011 Haibo Hu
Weining Qian

DQIS 2011 Workshop Organizers’ Message

Integration systems have been the subject of intense research and development
for over three decades. A fundamental aspect of user satisfaction from integra-
tion systems is the quality of data they produce. Industry reports indicate that
expensive data integration initiatives stemming from migrations, mergers, legacy
upgrades etc. succeed in achieving a common technology platform, but are re-
jected by the user communities due to the presence (or revelation) of poor data
quality. Poor data quality is known to compromise the credibility and efficiency
of commercial as well as public endeavors. Several developments from industry
as well as academia have contributed significantly toward addressing the prob-
lem. These typically include analysts and practitioners who have contributed
to the design of strategies and methodologies for data governance; solution ar-
chitects including software vendors who have contributed toward appropriate
system architectures that promote data integration and data experts who have
contributed to data quality problems such as duplicate detection, identification
of outliers, consistency checking and many more through the use of computa-
tional techniques.

The DQIS workshop provided a forum for diverse researchers and made a
consolidated contribution to new and extended methods for addressing the chal-
lenges of data quality in integrating systems. Topics covered by the workshop
include data integration, linkage and fusion; entity resolution, duplicate detec-
tion, and consistency checking; data profiling and measurement; use of data
mining for data quality assessment; methods for data transformation, reconcil-
iation, consolidation; algorithms for data cleansing; data quality and cleansing
in information extraction; dealing with uncertain or noisy data; data lineage
and provenance; etc. Following the success of MCIS 2008 in New Delhi, India,
MCIS 2009 in Brisbane, Australia, and MCIS 2010 in Tsukuba, Japan, the 4th
workshop (renamed DQIS) was held on April 22, 2011 at the Chinese Univer-
sity of Hong Kong in conjunction with the 16th International Conference on
Database Systems for Advanced Applications (DASFAA 2011). This year, the
DQIS workshop attracted eight submissions from Australia, China, Italy, Aus-
tria, and the USA. All submissions were peer reviewed by at least three Program
Committee members to ensure that high-quality papers were selected. On the
basis of technical merit, originality, significance, and relevance to the workshop,
the Program Committee decided on four papers to be included in the workshop
proceedings (acceptance rate 50%). The workshop also invited two papers and
one keynote.

XII DQIS 2011 Workshop Organizers’ Message

The workshop Program Committee consisted of 15 experienced researchers
and experts in the area of data analysis and management. We would like to
acknowledge the valuable contribution of all the Program Committee members
during the peer-review process. Also, we would like to express our gratitude
to the DASFAA 2011 workshop Chairs for their great support in ensuring the
success of DQIS 2011.

April 2011 Xiaochun Yang
Shazia Sadiq

Xiaofang Zhou
Ke Deng

DASFAA 2011 Workshop Organization

Workshop Co-chairs

Jianliang Xu Hong Kong Baptist University, China
Ge Yu Northeastern University, China
Shuigeng Zhou Fudan University, China

Publication Chair

Rainer Unland University of Duisburg-Essen, Germany

First International Workshop on Graph-Structured
Databases (GDB 2011)

Workshop Co-organizers

Sourav S. Bhowmick Nanyang Technological University, Singapore
Byron Choi Hong Kong Baptist University, China
Wei Wang The Univesity of New South Wales, Australia

Program Committee

Yasuhito Asano Kyoto University, Japan
Stephane Bressan National University of Singapore, Singapore
Lei Chen Hong Kong University of Science and Technology,

Hong Kong, SAR China
James Cheng Nanyang Technological University, Singapore
Bingsheng He Nanyang Technological University, Singapore
Yiping Ke The Chinese University of Hong Kong, Hong Kong,

SAR China
Xuemin Lin University of New South Wales, Australia
Chengfei Liu Swinburne University of Technology, Australia
Eric Lo Hong Kong Polytechnic University, Hong Kong,

SAR China
Wilfred Ng Hong Kong University of Science and Technology,

Hong Kong, SAR China
Lu Qin The Chinese University of Hong Kong, Hong Kong,

SAR China

XIV DASFAA 2011 Workshop Organization

Sherif Sakr University of New South Wales, Australia
Nan Tang University of Edinburgh, UK
Jeffrey Xu Yu The Chinese University of Hong Kong, Hong Kong,

SAR China
Shuigeng Zhou Fudan University, China

First International Workshop on Spatial Information
Modeling, Management and Mining (SIM3 2011)

Workshop Co-chairs

Xin Wang University of Calgary, Canada
Jihong Guan Tongji University, China

Program Committee

Lars Bernard Technical University of Dresden, Germany
Michela Bertolotto University College Dublin, Ireland
Elena Camossi JRC, ISPRA, Italy
Han Cao Shannxi Normal University, China
Christophe Claramunt Naval Academy Research Institute, France
Liqiang Geng National Research Council, Canada
Bo Huang The Chinese University of Hong Kong, SAR China
Yan Huang University of North Texas, USA
Yoshiharu Ishikawa Nagoya University, Japan
Bin Jiang University of Gavle, Sweden
Ning Jing National University of Defence Technology, China
Ki-Joune Li Pusan National University, Korea
Songnian Li Ryerson University, Canada
Xiang Li East China Normal University, China
Eleni Mangina University College Dublin, Ireland
Gavin McArdle NCG, Ireland
Zhiyong Peng Wuhan University, China
Wolfgang Reinhardt UniBw München, Germany
Angela Schwering University of Osnabrück, Germany
Wenzhong Shi Hong Kong Polytechnic University, China
Xiaohua Tong Tongji University, China
Monica Wachowicz Wageningen University, The Netherlands
Shuliang Wang Wuhan University, China
Shuigeng Zhou Fudan University, China
Fubao Zhu Fudan University, China

DASFAA 2011 Workshop Organization XV

International Workshop on Flash-Based Database Systems
(FlashDB 2011)

Workshop General Co-chairs

Xiaofeng Meng Renmin University of China, China
Lihua Yue University of Science and Technology of China, China

Program Committee Co-chairs

Peiquan Jin University of Science and Technology of China, China
Bin Cui Peking University, China
Zhiyong Shan Renmin University of China, China

Program Committee

Jianhua Feng Tsinghua University, China
Theo Haerder University of Kaiserslautern, Germany
Bin He IBM Almaden Research, USA
Ioannis Koltsidas IBM Zurich Research Lab, Switzerland
Sang-Won Lee Sungkyunkwan University, South Korea
Qiong Luo Hong Kong University of Science and Technology,

Hong Kong, China
Vijayan Prabhakaran Microsoft Research, USA
Luc Bouganim INRIA, France
Sivan Toledo Tel Aviv University, Israel
Jianliang Xu Hong Kong Baptist University, Hong Kong,

SAR China
Da Zhou China Mobile Research Institute, China

External Reviewers

Guoliang Li Tsinghua University, China
Yanfei Lv Peking University, China

Supported by

National Natural Science Foundation of China
Tin Ka Ping Foundation

XVI DASFAA 2011 Workshop Organization

Second International Workshop on Social Networks and
Social Media Mining on the Web (SNSMW 2011)

Workshop Co-chairs

Guandong Xu Aalborg University, Denmark
Lin Li Wuhan University of Technology, China
Hong Cheng Chinese University of Hong Kong, China
Botao Wang Northeastern University, China

Program Committee

James Bailey University of Melbourne, Australia
Li Chen Hong Kong Baptist University, China
Hong Cheng Chinese University of Hong Kong, SAR China
Peter Dolog Aalborg University, Denmark
Irene Ggarrigos University of Alicante, Spain
Yanan Hao Victoria University, Australia
Yoshinori Hijikata Osaka University, Japan
Hideyuki Kawashima Tsukuba University, Japan
Lin Li Wuhan University of Technology, China
Yuefeng Li Queensland University of Technology, Australia
Wenxin Liang Dalian University of Technology, China
Tieyun Qian Wuhan University, China
Wenyu Qu Dalian Maritime Univeristy, China
Munehiko Sasajima Osaka University, Japan
Xiaohui Tao Queensland University of Technology, Australia
Kenji Tateishi NEC Corporation, Japan
Athina Vakali Aristotle University, Greece
Botao Wang Northeastern University, China
Daling Wang Northeastern University, China
Yitong WANG Fudan University, China
Zongda Wu Wenzhou University, China
Guandong Xu Aalborg University, Denmark
Zhenglu Yang University of Tokyo, Japan
Junjie Yao Peking University, China
Jianwei Zhang Kyoto Sangyo University, Japan
Yu Zong West Anhui University, China

DASFAA 2011 Workshop Organization XVII

First International Workshop on Data Management for
Emerging Network Infrastructures (DaMEN 2011)

Workshop General Co-chairs

Aoying Zhou East China Normal University, China
Yoshiharu Ishikawa Nagoya University, Japan

Program Committee Co-chairs

Haibo Hu Hong Kong Baptist University, Hong Kong,
SAR China

Weining Qian East China Normal University, China

Program Committee

Jidong Chen EMC Research China Lab, China
Yueguo Chen Renmin University of China, China
Reynold C. K. Cheng University of Hong Kong, Hong Kong,

SAR China
Byron Koon-Kau Choi Hong Kong Baptist University, Hong Kong,

SAR China
Chi-Yin Chow City University of Hong Kong, Hong Kong,

SAR China
Haibo Hu Hong Kong Baptist University, Hong Kong,

SAR China
Hideyuki Kawashima University of Tsukuba, Japan
Ken C. K. Lee University of Massachusetts Dartmouth, USA
Weining Qian East China Normal University, China
Lidan Shou Zhejiang University, China
Hongzhi Wang Harbin Institute of Technology, China
Linhao Xu IBM China Research Lab, China
Wenwei Xue Nokia Research, China
Ying Yan Microsoft Search Technology Center, China
Man Lung Yiu Hong Kong Polytechnic University, Hong Kong,

SAR China
Tomoki Yoshihisa Osaka University, Japan
Rong Zhang East China Normal University, China
Baihua Zheng Singapore Management University, Singapore

XVIII DASFAA 2011 Workshop Organization

Fourth International Workshop on Data Quality in
Integration Systems (DQIS 2011)

Workshop Co-organizers

Xiaochun Yang Northeastern University, China
Shazia Sadiq University of Queensland, Australia
Xiaofang Zhou University of Queensland, Australia
Ke Deng University of Queensland, Australia

Program Committee

Lei Chen Hong Kong University of Science and Technology,
SAR China

Jun Gao Peking University, China
Adam Jatowt Kyoto University, Japan
Cheqing Jin East China Normal University, China
Marek Kowalkiewicz SAP Research, Australia
Qing Liu CSIRO, Australia
Chaoyi Pang CSIRO, Australia
Wanita Sherchan CSIRO, Australia
Yanfeng Shu CSIRO, Australia
Laurianne Sitbon Queensland University of Technology, Australia
Bin Wang Northeastern University, China
John (Junhu) Wang Griffith Univeristy, Australia
Kai Xu Middlesex University, UK
Ji Zhang The University of Southern Queensland, Australia
Ying Zhang The University of New South Wales, Australia

Table of Contents

The 1st International Workshop on Graph-structured
Data Bases (GDB 2011)

Invited Talk

Privacy-Preserved Network Data Publishing . 1
Lei Chen

Systems

Towards Efficient Subgraph Search in Cloud Computing
Environments . 2

Yifeng Luo, Jihong Guan, and Shuigeng Zhou

Latency-Optimal Walks in Replicated and Partitioned Graphs 14
Stefan Plantikow and Maik Jorra

Graph-Based Matching of Composite OWL-S Services 28
Alfredo Cuzzocrea, Juri Luca De Coi, Marco Fisichella, and
Dimitrios Skoutas

Theories

Design Non-recursive and Redundant-Free XML Conceptual Schema
with Hypergraph (Extended Abstract) . 40

Joseph Fong, Wai Yin Mok, and Haizhou Li

Classifying Graphs Using Theoretical Metrics: A Study of Feasibility . . . 53
Linhong Zhu, Wee Keong Ng, and Shuguo Han

The First International Workshop on Spatial
Information Modeling, Management and Mining
(SIM3)

Spatial Data Management: Compression, Storage
and Query

A GML Documents Stream Compressor . 65
Yinan Yu, Yuzhen Li, and Shuigeng Zhou

XX Table of Contents

A Query-Friendly Compression for GML Documents 77
Qingting Wei

Storing GML Documents: A Model-Mapping Based Approach 89
Fubao Zhu, Qianqian Guo, and Jinmei Yang

GML Data Management: Framework and Prototype 101
Weili Wang, Fabiao Wang, Zhiping Qian, and Long Zhang

An Efficient Multi-layer Grid Method for Skyline Queries in Distributed
Environments . 112

He Li, Sumin Jang, and Jaesoo Yoo

Spatial Planning, Visualization, Mining and System

3D Indoor Route Planning for Arbitrary-Shape Objects 120
Wenjie Yuan and Markus Schneider

A Web-Based Visualisation Tool for Analysing Mouse Movements to
Support Map Personalisation . 132

Ali Tahir, Gavin McArdle, and Michela Bertolotto

On the Requirements for User-Centric Spatial Data Warehousing and
SOLAP . 144

Ganesh Viswanathan and Markus Schneider

Optimal Bandwidth Selection for Density-Based Clustering 156
Hong Jin, Shuliang Wang, Qian Zhou, and Ying Li

Developing an Oracle-Based Spatio-Temporal Information Management
System . 168

Lei Zhao, Peiquan Jin, Lanlan Zhang, Huaishuai Wang, and
Sheng Lin

The First International Workshop on Flash-Based
Database Systems (FlashDB)

Storage Management for SSD

Invited Talk I

Some Research Directions in FlashDB . 177
Sang-Won Lee

Table of Contents XXI

Regular Papers

Page-Level Log Mapping: From Many-to-Many Mapping to One-to-One
Mapping . 178

Jing Xu, Fang Xie, and Jianhua Feng

A Novel Method to Extend Flash Memory Lifetime in Flash-Based
DBMS . 190

Zhichao Liang, Yulei Fan, and Xiaofeng Meng

Log-Compact R-Tree: An Efficient Spatial Index for SSD 202
Yanfei Lv, Jing Li, Bin Cui, and Xuexuan Chen

An FTL-Agnostic Layer to Improve Random Write on Flash
Memory . 214

Brice Chardin, Olivier Pasteur, and Jean-Marc Petit

Energy Efficiency & Hybrid Storage

Invited Talk II

Energy Efficiency Is Not Enough, Energy Proportionality Is Needed! . . . 226
Theo Härder, Volker Hudlet, Yi Ou, and Daniel Schall

Invited Talk III

Flash-Based Database Systems: Experiences from the FlashDB
Project . 240

Xiaofeng Meng, Lihua Yue, and Jianliang Xu

Regular Papers

Trading Memory for Performance and Energy . 241
Yi Ou and Theo Härder

Design of Embedded Database Based on Hybrid Storage of PRAM and
NAND Flash Memory . 254

Youngwoo Park, Sung Kyu Park, and Kyu Ho Park

Hybrid Storage with Disk Based Write Cache . 264
Puyuan Yang, Peiquan Jin, and Lihua Yue

XXII Table of Contents

The 2nd International Workshop on Social Networks
and Social Media Mining on the Web (SNSMW)

Social Networking and Community Structure

An Analysis of Network Structure and Post Content for Blog Post
Recommendation . 276

Wan-Shiou Yang and Yi-Rong Lin

Extracting Local Community Structure from Local Cores 287
Xianchao Zhang, Liang Wang, Yueting Li, and Wenxin Liang

On Summarizing Graph Homogeneously . 299
Zheng Liu and Jeffrey Xu Yu

Expansion Properties of Large Social Graphs . 311
Fragkiskos D. Malliaros and Vasileios Megalooikonomou

Text Representation Using Dependency Tree Subgraphs for Sentiment
Analysis . 323

Alexander Pak and Patrick Paroubek

A Local Information Passing Clustering Algorithm for Tagging
Systems . 333

Yu Zong, Guandong Xu, Ping Jin, Peter Dolog, and Shan Jiang

Social Media and Data Mining

What’s in a Name: A Study of Names, Gender Inference, and Gender
Behavior in Facebook . 344

Cong Tang, Keith Ross, Nitesh Saxena, and Ruichuan Chen

Realtime Social Sensing of Support Rate for Microblogging 357
Jun Huang and Mizuho Iwaihara

Searching Consultants in Web Forum . 369
Zhao Zhang, Weining Qian, and Aoying Zhou

Comparing Similarity of HTML Structures and Affiliate IDs in Splog
Analysis . 378

Taichi Katayama, Akihito Morijiri, Soichi Ishii, Takehito Utsuro,
Yasuhide Kawada, and Tomohiro Fukuhara

Crowd-Powered TV Viewing Rates: Measuring Relevancy between
Tweets and TV Programs . 390

Shoko Wakamiya, Ryong Lee, and Kazutoshi Sumiya

Table of Contents XXIII

The First International Workshop on Data
Management for Emerging Network Infrastructures
(DaMEN)

Invited Talk

GreenOrbs: Lessons Learned from Extremely Large Scale Sensor
Network Deployment . 402

Yunhao Liu

Query and Stream Processing

Adapting Skyline Computation to the MapReduce Framework:
Algorithms and Experiments . 403

Boliang Zhang, Shuigeng Zhou, and Jihong Guan

Efficient Event Stream Processing: Handling Ambiguous Events and
Patterns with Negation . 415

Murali Mani

Effective Keyword Search for Candidate Fragments of XML
Documents . 427

Yanlong Wen, Haiwei Zhang, Ying Zhang, Lu Zhang, Lei Xu, and
Xiaojie Yuan

Storage and Scheduling

Optimized Data Placement for Column-Oriented Data Store in the
Distributed Environment . 440

Minqi Zhou and Chen Xu

Two-Step Joint Scheduling Scheme for Road Side Units (RSUs)-Based
Vehicular Ad Hoc Networks (VANETs) . 453

G.G.Md. Nawaz Ali, Edward Chan, and Wenzhong Li

A Content-Aware Adaptive Storage Approach for XML in PXRDB 465
Xue Wang, Xiao Zhang, Xiaoyong Du, Shan Wang, and
Kuicheng Liu

Fourth International Workshop on Data Quality in
Integration Systems (DQIS)

Invited Talk

The Flamingo Software Package on Approximate String Queries 477
Chen Li

XXIV Table of Contents

Session I

Invited Paper

A Framework for Data Quality Aware Query Systems 478
Naiem K. Yeganeh and Mohamed A. Sharaf

Regular Papers

SemGen—Towards a Semantic Data Generator for Benchmarking
Duplicate Detectors . 490

Wolfgang Gottesheim, Stefan Mitsch, Werner Retschitzegger,
Wieland Schwinger, and Norbert Baumgartner

Estimating a Transit Passenger Trip Origin-Destination Matrix Using
Automatic Fare Collection System . 502

Daming Li, Yongjie Lin, Xinliang Zhao, Hongjun Song, and Nan Zou

Session II

Invited Paper

An Approach to Assess the Quality of Web Pages in the Deep Web 514
Tiezheng Nie, Ge Yu, Derong Shen, Yue Kou, and Dejun Yue

Regular Papers

Using Machine Learning to Support Resource Quality Assessment:
An Adaptive Attribute-Based Approach for Health Information
Portals . 526

Jue Xie and Frada Burstein

Grid-Based Probabilistic Skyline Retrieval on Distributed Uncertain
Data . 538

Xiaowei Wang and Yan Jia

Author Index . 549

Privacy-Preserved Network Data Publishing

Lei Chen

Hong Kong University of Science and Technology
leichen@cse.ust.hk

Nowadays, more and more people join multiple social networks on the Web,
such as Facebook, Linkedin, and Livespace, to share their own information and
at the same time to monitor or participate in different activities. Meanwhile,
the information stored in the social networks are under high risk of attack by
various malicious users, in other words, peoples privacy could be easily breached
via some domain knowledge. Thus, as a service provider, such as Facebook and
Linkedin, it is essential to protect users privacy and at the same time provide
useful data. Simply removing all identifiable personal information (such as names
and social security number) before releasing the data is insufficient. It is easy
for an attacker to identify the target by performing different structural queries.

In this talk, I will briefly review the current work on protecting the privacy
of published social networks including clustering-based approaches and graph
editing methods. Then, I will present a recent work, called k-automorphism,
to protect against multiple structural attacks, following by a framework which
provides privacy preserving services based on the users personal privacy requests.
In the end, I would like to highlight some future work related to this topic.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Towards Efficient Subgraph Search in Cloud
Computing Environments�

Yifeng Luo1, Jihong Guan2, and Shuigeng Zhou1

1 School of Computer Science, and Shanghai Key Lab of Intelligent Information
Processing, Fudan University, Shanghai, China

{luoyf,sgzhou}@fudan.edu.cn
2 Dept. of Computer Science & Technology, Tongji University, Shanghai, China

jhguan@tongji.edu.cn

Abstract. This paper proposes an efficient approach to subgraph search
over a large graph database under the MapReduce framework. The main
idea is first to build inverted edge indexes for graphs in the database,
and then to retrieve data only related to the query subgraph by using
the built indexes to answer the query. Experimental results show that
the proposed approach has good performance and scalability.

Keywords: Graph database; Subgraph search; Cloud computing;
MapReduce; Inverted index.

1 Introduction

Graph is now an important data structure, which models objects as vertices
and the pairwise relationships between objects as edges. Graph-based model-
ing is employed in more and more applications [1], including pattern recogni-
tion [5–7], social networks, chem-informatics [3], graph-structured XML query
processing [4] and so on. When a database is used to manage the data of objects
that are represented by graphs, this database is referred to as a graph database.
Usually, a graph database falls into two categories [2]: graph-transaction setting
where a graph database consists of a large number of relatively small graphs,
and single-graph setting where a graph database contains only one large graph.

This paper deals with subgraph search in a large graph database containing
many graphs. Subgraph search is one of the fundamental problems in many prac-
tical graph-related applications such as chemical compound search, community
detection in social networks, motif finding in biological networks, and graph-
structured XML query processing. The problem of subgraph search or query can
be described formally as follows: given a graph database D = {g1, g2, · · · , gn}
and a graph query q, to answer the query is to find all graphs that contain q in
D. These resulting graphs are supergraphs of q, and q is one of their subgraphs.
� This work was supported by National Natural Science Foundation of China under

grants No. 60873040 and No. 60873070. Jihong Guan was also supported by the
Shuguang Scholar Program of Shanghai Education Development Foundation under
grant No. 09SG23.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 2–13, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Towards Efficient Subgraph Search in Cloud Computing Environments 3

Efficiently answering subgraph queries in a large graph database is absolutely
not a trivial problem. Obviously, to scan the graph database sequentially and
check whether a graph in the database is a supergraph of the query graph is
prohibitively time-consuming. Existing subgraph search algorithms usually ex-
plore graph indexes to boost the processing of subgraph queries, and various
indexing strategies have been proposed [8–12]. However, existing approaches are
mainly based on centralized computing systems and evaluated on relatively small
databases, each of which contains tens of thousands of small graphs with dozen
of nodes and edges. Due to the combinatory issue, these approaches will face the
scalability problem when dealing with large-scale graph databases, which consist
of tens of millions of relatively large graphs with hundreds of nodes and edges.
What is more, storage also faces challenge as the data amount of the graph
database and its indexes is very huge. So how to scale up subgraph search algo-
rithms to massive graph databases is an urgent and significant research issue, as
the graph data amount is expanding drastically.

Cloud computing [17] is emerging as a new computing paradigm that has
many merits. A cloud usually contains a cluster of nodes, each of which has
computing and storage resources of its own. These resources are shared across
the cluster at the cloud’s disposal. Fault-tolerance is an intrinsic property of
cloud computing. When a job is issued to a cloud, it will automatically split
the relatively large job into small tasks, which will be scheduled to different
nodes for execution. If some nodes on which some tasks are executing fail, these
tasks will be re-assigned to some other running nodes for re-execution. Another
important property of cloud computing is load-balancing. A cloud will monitor
each node in the cluster and ensure that each node will get almost equal number
of tasks to execute. Overall, cloud computing is efficient in handling both CPU
intensive and I/O intensive jobs. Considering that subgraph search is both CPU
intensive and I/O intensive, so implementing subgraph search on cloud comput-
ing platforms to exploit their advantages of scalability and elasticity is a natural
choice.

This paper studies subgraph search on large-scale graph databases in cloud
computing environments. Concretely, we propose and implement an efficient
subgraph search approach under the MapReduce [18] framework that is a typi-
cal cloud-oriented parallel programming model. We also conduct experiments to
validate the proposed approach. The rest of the paper is organized as follows:
Section 2 reviews the related work. Section 3 presents an overview of our sub-
graph search approach. Section 4 introduces the implementation details of our
approach. Section 5 gives the experimental evaluation on the proposed approach.
Section 6 concludes the paper and pinpoints some future works.

2 Related Work

Due to space limit, here we give a brief review on the related work, including
graph indexing/search and MapReduce-based computing.

4 Y. Luo, J. Guan, and S. Zhou

2.1 Graph Search and Indexing

In the past years, graph search has been extensively studied as a centralized
computing issue in database area. For improving processing efficiency, indexes
are widely used. Up to now, various indexing strategies for graph search have
been proposed [8–12]. To reduce space overhead, usually only significant graph
elements are indexed. So this is a feature-filtering based indexing scheme. The
process is like this: indexes are built on the graph database using a set of se-
lected feature F = {f1, f2, · · · , fm}, each feature may be an edge, a node, or a
keyword appearing in the labels of edges and/or nodes. When a query graph q is
issued, the graph database will be checked by the following rule (maybe with a
subsequent verification phase): for each graph g ∈ G, if ∃f ∈ F such that f ⊆ q
and f � g, then q � g, g is filtered out.

Graphgrep [12] builds the indexes by enumerating all paths with length up to
L, of all graphs in the database, and filters graphs by paths when doing search.
Although it is fast to index paths with length limit and the index size can
be kept small, structural information of graphs is lost and the filtering power
of paths is limited, which will lead to a large candidate set and subsequently
high verification cost. [8] uses subgraphs to keep structural information and
to improve filtering power. The feature set consists of discriminative frequent
subgraphs mined from the graph database. Though better filtering power is
achieved, the verification cost is still high. TreePi [13] builds feature set by
mining discriminative frequent subtrees from the graph database, and uses the
subtree feature set to filter database graphs. Still, the filtering power is limited
and verification cost is relatively high. There are other indexing schemes, either
closure-based [11] or coding-based [15, 16]. We will not go into any further detail
about graph indexing, interested readers can refer to [1].

In this paper, we also use indexes to enhance graph search efficiency. We
build indexes directly using graph edges. Considering the elasticity of resources
in cloud platforms, we do not try to filter edges for indexing.

2.2 MapReduce-Based Computing

In this paper, we propose a cloud-based subgraph query approach to decompos-
ing the relatively huge subgraph search job into multiple relatively small tasks,
and then run these small tasks on a Hadoop [22] cluster for parallel execution.
The Hadoop cluster consists of HDFS [23] and MapReduce [18]. HDFS is a scal-
able distributed file system that is capable of storing massive data, and it is the
open-source implementation of Google’s GFS [19]. GFS provides fault tolerance
while running on inexpensive commodity hardware, and is capable of delivering
high aggregate performance to a large number of clients.

MapReduce is a parallel programming model, it has now become a typical
and popular cloud computing framework for data-intensive parallel computa-
tion in shared-nothing clusters. A MapReduce job consists of a Map phase and
a Reduce phase. In Map phase, workers (computing nodes) called Mappers in-
voke user-defined map function(s) to process key/value pairs to generate a set of
intermediate key/value pairs. In Reduce phase, workers called Reducers invoke

Towards Efficient Subgraph Search in Cloud Computing Environments 5

user-defined reduce function(s) to merge all intermediate key/value pairs associ-
ated with the same intermediate key value. A large input file is first partitioned
into several splits, each of which is fed to a Mapper as input. Input splits of
different Mappers can be processed in parallel, the results are forwarded to the
Reducers for merging.

A number of high-level applications have been developed on MapReduce be-
cause of its ease of use for parallel execution. In addition to data management
applications [20, 21], there are also some graph-related works on cloud platforms.
Kang et al. [25] created a software library using Hadoop that performs typical
graph mining tasks in big graphs, including degree distributions and PageRank,
diameter estimation [26], connected components and triangle counting. Recently,
Gu et al. [24] implemented a breath first search (BFS) algorithm in graph analysis
using Sector/Sphere, a MapReduce-like cloud computing programming model.
However, none of them deals with subgraph search in large graph databases.

3 Cloud-Based Subgraph Search: An Overview

In this section, we give an overview of our subgraph search approach implemented
in the MapReduce framework. The main idea is to build inverted edge indexes for
the graphs in the database, and when processing queries, only the data related
to the queries is checked, from which the final results are obtained. Fig. 1 shows
the overview of the cloud-based subgraph search approach.

Our approach consists of two phases: the off-line index building phase and
the online subgraph query processing phase. In the first phase, we build inverted
indexes by two MapReduce jobs: one is responsible for building inverted indexes
for each unique edge in the graph database, the other is responsible for building
indexes over the inverted indexes for each unique edge built in the first phase,
which is to construct the mappings between edges and their offsets in the in-
verted index files. In the second phase, subgraph queries are processed. When a

Graph
Database

First-level
Index

Second-level
Index

Offline Indexing Online Querying

Query Subgraph

MapReduce

MapReduce
MapReduce

Intermediate
Data

MapReduce

Query Results

1A1B

2

3

4

5

Fig. 1. An overview of cloud-based subgraph search

6 Y. Luo, J. Guan, and S. Zhou

subgraph query is issued, two MapReduce jobs are launched. The first MapRe-
duce job is to retrieve the candidate results by using indexing information, the
second MapReduce job is to evaluate the final query results by employing set
intersection operations.

4 Implementation Techniques

In this section we describe the details of the implementation of the cloud-based
subgraph search approach.

4.1 Index Building

Two MapReduce jobs are used to build the indexes over the edge set of the graph
database. The logics of building index are presented in Algorithm 1. The first
MapReduce job takes the graph database file(s) as input and builds inverted
indexes over the edge set, as the first-level index. In the graph database, each
edge of a graph is represented as a GraphNo / EdgeLabel pair where GraphNo
represents the graph containing the indexed edge, EdgeLabel consists of the
labels of the edge’s two end vertices. If a graph consists of ten edges, then ten
GraphNo / EdgeLabel pairs will be stored in the graph database, with identical
GraphNo. The data of graph database is divided into a number of splits, which
are distributed over different nodes of the cloud platform.

Algorithm 1. Offline-Index-Building
INPUT: the graph database D
OUTPUT: the bi-level index

1: First-level Indexing Job
2: Map Task
3: for each graph labeled with Gi in graph database D
4: for each edge labeled with EdgeLabeli
5: output (EdgeLabeli,Gi)
6: Reduce Task
7: for each edge labeled with EdgeLabeli
8: concat all graph labels to generate a GraphSet string GSi: Gi1,Gi2,· · ·,Gin

9: output an entry: (EdgeLabeli,GSi) in a first-level index file tj

10:
11: Second-level Indexing Job
12: Map Task
13: for each entry: (EdgeLabeli,GSi) in file t
14: get file name of t : fileNamei , and offset of this entry in t : offSeti

15: output an entry: (EdgeLabeli,fileNamei ,offSeti) in a second-level index file t′j

The logics in the Map and Reduce functions are very simple. Each record of
the input splits is reversed by the Map function to output a EdgeLabel / GraphNo
pair. A Hash function is used to repartition all outputs of the Mappers, by hash-
ing EdgeLabel of each Mapper output pair. Those pairs with equal hash value
share the same partition. A partition is a part of the input of a Reducer, which
invokes the Reduce function. In the Reduce function, EdgeLabel / GraphNo pairs

Towards Efficient Subgraph Search in Cloud Computing Environments 7

Map Input Map Output/Reduce Input

Reduce Output

Fig. 2. Building the first-level index

with identical EdgeLabel are aggregated together, and the Reduce function gen-
erates an EdgeLabel / GraphSet pair where the GraphSet consists of GraphNos
with similar EdgeLabel. When all Reducers finish execution, the first-level index
is built, and multiple first-level index files are created. Each unique edge of the
graph database appears only once in all these first-level index files. Which of the
first-level index files a certain inverted edge index entry belongs to is determined
by the Hash function. The process of the above MapReduce job is illustrated in
Fig. 2.

When the first MapReduce job finishes, a second MapReduce job is launched
to build the second-level index. The second-level index constructs the mappings
between edges and their offsets in the first-level index files. Each of the first-
level index files is treated as a whole input split for a Mapper of the second
MapReduce job. No Reducers are initiated here. The logic in this Map function
is also simple. When a EdgeLabel / GraphSet pair in any of the first-level index
files is processed by the Map function, the file name and the offset of the current
inverted index entry in the first-level index files are recorded. Then the Map
function outputs an EdgeLabel / 〈FileName, Offset〉 pair, which corresponds to
an entry in the second-level index. The whole process is presented in Fig. 3.

Map Input
Map Output

Fig. 3. Building the second-level index

8 Y. Luo, J. Guan, and S. Zhou

4.2 Subgraph Search

When a query is issued, two MapReduce jobs are initiated to process the sub-
graph query. The logics of executing graph query are presented in Algorithm 2.
The first MapReduce job is used to retrieve the inverted edge index entries whose
corresponding edges are contained in the query graph. The second MapReduce
job performs a series of set intersection operations to generate the final query
results. The query graph is represented as a set of EdgeLabels, each of which
consists of the labels of the two end vertices.

Algorithm 2. Online-Graph-Querying
INPUT: second-level index
PARAMETER: query graph q with l edges
OUTPUT: final query result

1: First-level Index Entry Retrieval Job
2: Map Task
3: for each entry: (EdgeLabeli,fileNamei ,offSeti) in a second-level index file t′j
4: if edge labeled with EdgeLabeli ∈ q
5: fstream in = open(fileNamei)
6: in.seek(offSeti)
7: in.read(EdgeLabeli ,GSi)
8: output an entry: (EdgeLabeli,GSi) in an intermediate file f
9:
10: Graph Set Intersection Job
11: Map Task
12: declare a set variable: lqrk to store the local intersection result
13: for each entry: (EdgeLabelij ,GSij) in file f
14: if j == 1
15: lqrk = GSij

16: else
17: perform lqrk = lqrk intersects with GSij

18: output (null,lqrk) in file f ′

19: Reduce Task
20: declare a set variable: gqr to store the final query result
21: for each entry: (null,lqrki) in file f ′

22: if i == 1
23: gqr = lqrki

24: else
25: perform gqr = gqr intersects with lqrki

26: output (null,gqr)

The first MapReduce job takes as input the second-level index files and the
query graph. Each of the second-level index files is processed by a Mapper as a
whole split. Each Mapper sequentially processes the records in the input splits
assigned to it, and all Mappers do their works in parallel. When an EdgeLabel
/ 〈 FileName, Offset〉 pair is input to a Mapper, the Map function will check
whether the EdgeLabel is contained in the query graph. If the EdgeLabel is
contained in the query graph, the Mapper will open the FileName file and seek
to Offset location, and then read a series of GraphNos from the FileName file.
The outputs of Mappers are EdgeLabel / GraphSet pairs, here EdgeLabels are
query edges. This process is shown in Fig. 4. No Reducer is initiated in this
MapReduce job. The outputs of Mappers are merged into one file for the second
MapReduce job to further process.

Towards Efficient Subgraph Search in Cloud Computing Environments 9

Map Input
First-level Index File

Map Output

Fig. 4. Retrieving the first-level index entries

Map Input

Map Output/
Reduce Input

Reduce Output

Fig. 5. Evaluating graph sets intersection

The second MapReduce job performs a series of set intersection operations to
generate the final query results. Initially, we have tried to do intersection oper-
ations on the graph sets output by the first MapReduce job on the coordinator
of the MapReduce cluster, but we found that it took too long time for the co-
ordinator to finish the intersection operations by itself. So, we finally decided
to start a second MapReduce job to do graph sets intersection operations. The
merged output file of the first MapReduce job is taken as input of the second
MapReduce job. The input file is partitioned into several splits, each of which
is processed by a Mapper. Each Mapper performs intersection operations on the
graph sets contained in its input split. If a Mappers finishes its work, it outputs
its local intersection results to a Reducer to process further. The Reducer per-
forms intersection operations on the intersection results from different Mappers
to generate the final query results. Only one of such Reducer is initiated. The
execution process is illustrated in Fig. 5.

5 Experimental Evaluation

In this section, we present the experimental results of evaluating the efficiency
of the cloud-based subgraph search approach.

10 Y. Luo, J. Guan, and S. Zhou

5.1 Experimental Settings

We deploy a cluster with 10 nodes, each of which is a commodity PC. Each node
has an Intel Duo Core2 2.93GHz CPU, 3GB memory, and Windows XP OS. We
use Hadoop 0.19.2, and compile the source codes under JDK 1.6 in Eclipse 3.3.2.
One of the ten nodes is used as coordinator, and the rest nine nodes are used
as computing and storage nodes. As we have not found any large-scale graph
database suitable for our experiment, we use synthetic datasets to evaluate the
efficiency of the proposed cloud-based subgraph search approach. Experiments
with real-life datasets are left for our future work. The synthetic datasets are
generated according to the Erdos-Renyi random graph model. Three datasets
are generated. Major statistics of the three datasets is presented in Table 1.
Query graphs are randomly generated with 20 edges, 30 edges, 50 edges and 100
edges respectively.

We measure the query time to evaluate the efficiency of the cloud-based sub-
graph search approach. One point is worthy of being mentioned: in a distributed
environment, the performance of a distributed algorithm or system is influenced
by many factors, including network, computing model, resource scheduling, etc.

Table 1. Statistics of synthetic datasets

Statistics DataSet1 DataSet2 DataSet3
#graphs 50,000 70,000 100,000

#vertices per graph 30-40 40-70 50-100
#edges per graph 300-400 600-800 800-1000

5.2 Experimental Results

We first measure the query time for querying four randomly-generated graphs
over the three datasets. The results are presented in Fig. 6, Fig. 7 and Fig. 8.
The results seem not what we have expected. As we initially imagined, if the
number of query edges increases, the query time will increase, since more time
will be spent on checking whether the EdgeLabels of an entry in the second-level
index is contained in the query graph. However, as we can see from these three
figures, the query time sometimes decreases as the number of query edges in-
creases. The reason behind this is that the computing cost spent on checking
is minor, compared with that of data distribution and the subsequent graph
set intersection operations. As for the MapReduce job that performs graph set
intersection operations, the majority of the execution time is spent on the Re-
ducer. The Reducer performs intersection operations on all the outputs of the
preceding Mappers. So the input of Reducer may be relatively of large size, and
thus it takes the Reducer much time to finish the intersection operation on the
graph sets.

When the query graph contains more edges, more Mappers will be initiated
to perform local graph set intersection operations, and each Mapper gets more
graph sets as inputs. So the outputs of the Mappers and thus the input of the
Reducer may become smaller, compared with that of query graphs with fewer

Towards Efficient Subgraph Search in Cloud Computing Environments 11

0

5

10

15

20

25

30

35

40

20 30 50 100

5 MR Nodes

7 MR Nodes

9 MR Nodes

Query Edges

Q
ue

ry
Ti

m
e(

Se
co

nd
)

Fig. 6. Results over Data-
Set1

20

25

30

35

40 5 MR Nodes

7 MR Nodes

9 MR Nodes

e(
Se

co
nd

)
e(

Se
co

nd
)

0

5

10

15

20

20 30 50 100

Q
ue

ry
Ti

m
e

Q
ue

ry
Ti

m
e

Query Edges

Fig. 7. Results over Data-
Set2

20

25

30

35

40 5 MR Nodes

7 MR Nodes

9 MR Nodes

(S
ec

on
d)

0

5

10

15

20 30 50 100

Q
ue

ry
Ti

m
e(

Query Edges

Fig. 8. Results over Data-
Set3

edges. In our experiments, the query edges affect query time little, and the query
time must not decrease as the number of query edges increases. This may be not
a general conclusion. For a general conclusion, more experiments with larger
databases on larger-size clusters are requested, which is also left for our future
work.

We also measure the average query time on each database graph. For DataSet1,
the average query time spent on each database graph is 0.5 ms to 0.7 ms, for
DataSet2, the average query time spent on each database graph is 0.4 ms to 0.5
ms, and for DataSet3, the average query time spent on each database graph is
0.25 ms to 0.4 ms. It seems that the average time spent on a database graph de-
creases as the size of the graph database increases. The reason is that the cost of
network, data distribution and MapReduce job startup is shared by all database
graphs. The more database graphs are, the less the shared cost by each graph is.
This phenomenon validates the scalability of our subgraph searching approach,
that is, our approach can scales up to massive large-scale graph databases.

20

25

30

35

40 DS1

DS2

DS3

m
e(

Se
co

nd
)

0

5

10

15

20

5 7 9

MR Nodes

Q
ue

ry
Ti

Fig. 9. Results for 30-edge
queries

20

25

30

35

40 DS1

DS2

DS3

m
e(

Se
co

nd
)

0

5

10

15

20

5 7 9
MR Nodes

Q
ue

ry
Ti

m

Fig. 10. Results for 50-edge
queries

20

25

30

35

40 DS1

DS2

DS3

m
e(

Se
co

nd
)

0

5

10

15

20

5 7 9

Q
ue

ry
Ti

m

MR Nodes

Fig. 11. Results for 100-
edge queries

We then measure the query time when changing the size (the number of
MapReduce nodes) of the cloud cluster. The experimental results are presented
in Fig. 9, Fig. 10 and Fig. 11. As we can see from these three figures, the query
time of a given database does not follow a monotone trend, as the number of
MapReduce (MR) nodes increases. When the number of MR nodes increase to
seven, the query time turns longer, compared with that of five-node cluster. But
the query time decreases when the number of MR nodes increase to nine. Our
explanation on this phenomenon is as follows:

12 Y. Luo, J. Guan, and S. Zhou

For a small-scale graph database, a centralized system may be adequate to
process the queries efficiently. In such cases, processing queries in a distributed
system must not be advantageous over in a centralized system. For a given graph
database, the query time is not determined only by the number of nodes. Adding
more nodes must not yield more performance gain, because data distribution
and synchronization cost may counteract the benefit of using more nodes. For
all the three synthetic datasets we use, a cluster of five computing and storage
nodes is adequate. When the number of nodes increases to seven, the query
time increases, compared with that of query with a five-node cluster. However,
when nine nodes are employed to execute queries, the query time decreases.
This is because the benefit of using more nodes surpasses the overhead of data
distribution and synchronization as well as the initialization of MapReduce jobs.
It is not difficult to predict that the query time will increase again as the number
of MR nodes continues to increase. So our conclusion from the experimental
results is: it is suitable to employ a large-scale cluster to implement subgraph
query for large-scale databases, and a middle-scale cluster should be employed
for middle-scale graph databases.

6 Conclusion and Future Work

This paper studies subgraph search over large-scale graph databases in cloud
computing environments. A cloud-based subgraph search approach is presented,
which uses a bi-level indexing structure to boost the search efficiency. Inverted
index over edge set of the graph database is built as the first-level index, and
then a second-level index is built to construct the mappings between edges and
offsets of their corresponding inverted index entries in the first-level index files.
Experiments on synthetic datasets show that cloud-based subgraph search is
efficient for large-scale graph databases.

Some optimization and improvements can be done on the proposed approach.
On one hand, merging multiple queries into one can reduce I/Os and aver-
aged startup cost of MapReduce jobs per query, and thus can improve query
throughput. On the other hand, exploring more efficient lookup strategies over
the second-level index will speed up the locating of query edges, as currently the
second-level index is sequentially scanned.

References

1. Aggarwal, C.C., Wang, H. (eds.): Managing and mining graph data. Kluwer Aca-
demic Publishers, Dordrecht (2010)

2. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph. In:
Proceedings of SDM (2004)

3. Willett, P.: Chemical similarity searching. J. Chem. Inf. Comput. Sci. 38, 983–996
(1998)

4. Polyzotis, N., Garofalakis, M.: Statistical Synopses for Graph-Structured XML
Databases. In: Proceedings of SIGMOD (2002)

Towards Efficient Subgraph Search in Cloud Computing Environments 13

5. Beretti, S., Bimbo, A., Vicario, E.: Efficient Matching and Indexing of Graph
Models in Content Based Retrieval. IEEE Trans. on Pattern Analysis and Machine
Intelligence 23, 1089–1105 (2001)

6. Messmer, B., Bunke, H.: A new algorithm for error-tolerant subgraph isomorphism
detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 20, 493–504
(1998)

7. Petrakis, E., Faloutsos, C.: Similarity searching in medical image databases. IEEE
Trans. on Knowledge and Data Engineering 9(3), 435–447 (1997)

8. Yan, X., Yu, P., Han, J.: Graph Indexing Based on Discriminative Frequent Struc-
ture Analysis. ACM Transactions on Database Systems 30(4), 960–993 (2005)

9. Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-index: towards verification-free query
processing on graph databases. In: Proceedings of SIGMOD (2007)

10. Williams, D.W., Huan, J., Wang, W.: Graph Database Indexing Using Structured
Graph Decomposition. In: Proceedings of ICDE (2007)

11. He, H., Singh, A.K.: Closure-Tree.: An Index Structure for Graph Queries. In:
Proceedings of ICDE (2006)

12. Giugno, R., Shasha, D.: Graphgrep: A fast and universal method for querying
graphs. Proceedings of ICPR 2, 112–115 (2002)

13. Zhang, S., Hu, M., Yang, J.: TreePi: A Novel Graph Indexing Method. In:
Proceedings of ICDE, pp. 181–192 (2007)

14. Ferro, A., Giugno, R., Mongiovi, M., et al.: GraphFind: enhancing graph searching
by low support data mining techniques. BMC Bioinformatics 9 (2008)

15. Jiang, H., Wang, H., Yu, P., Zhou, S.: GString: A Novel Approach for Efficient
Search in Graph Databases. In: Proceedings of ICDE (2007)

16. Zou, L., Chen, L., Jeffrey, Y.L.: A novel spectral coding in a large graph database.
In: Proceedings of EDBT (2006)

17. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berke-
ley View of Cloud Computing. Technical Report, UC Berkeley Reliable Adaptive
Distributed Systems Laboratory (February 2009)

18. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large cluster.
In: Proceedings of OSDI, pp. 137–150 (2004)

19. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: Proceedings
of SOSP, pp. 29–43 (2003)

20. Olston, C., Reed, B., Srivastava, U., et al.: Pig latin: a not-so-foreign language for
data processing. In: Proceedings of SIGMOD, pp. 285–296 (2008)

21. Abouzeid, A., Pawlikowski, K.B., Abadi, D.J., et al.: HadoopDB: An Architec-
tural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads.
In: Proceedings of VLDB, pp. 285–296 (2009)

22. http://hadoop.apache.org
23. http://hadoop.apache.org/hdfs/
24. Gu, Y., Lu, L., Grossman, R., Yoo, A.: Processing massive sized graphs using

Sector/Sphere. In: Proceedings of the Workshop on Many-task Computing on Grids
and Supercomputers (MTAGS 2010), co-located with SC 2010, New Orleans, LA
(November 2010)

25. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: A Peta-Scale Graph
Mining System - Implementation and Observations, In: Proceedings of ICDM 2009
(2009)

26. Kang, U., Tsourakakis, C.E., Appel, A., Faloutsos, C., Leskovec, J.: HADI: Fast
diameter estimation and mining in massive graphs with Hadoop, CMU ML Tech
Report CMU-ML-08-117 (2008)

http://hadoop.apache.org
http://hadoop.apache.org/hdfs/

Latency-Optimal Walks in Replicated and
Partitioned Graphs

Stefan Plantikow and Maik Jorra

Zuse Institute Berlin, Takustrasse 7, 14195 Berlin, Germany
{plantikow,jorra}@zib.de

Abstract. Executing walks in partitioned, distributed graphs with min-
imal latency requires reducing the number of network hops taken. This
is especially important for graph databases that specialize on execut-
ing fast graph traversals. We present fast-forward-search, an algorithm
that uses overlapping graph partitionings, i.e. replication, and parallel
speculative execution to minimize the number of required network hops.
We proof optimality of the algorithm, analyze storage, message, and
computational overhead caused by the parallelism of fast-forward, and
introduce escapicity, a metric for replica selection that helps reducing
that parallelism at the price of lost optimality. Experiments for a set of
smaller graphs indicate that fast-forward-search saves between 20−90 %
of network hops depending on graph and replication factor and that es-
capicity outperforms classic measures of network centrality as a metric
for replica selection in our scheme.

1 Introduction

Partitioning graph databases in a way that network traffic is minimized is still
an open problem. For many application domains either the size of graphs or
the number of requests to be handled exceed the capacity of a single machine.
Examples include geo information, social networks, bibliographical relationships,
information systems (linked data), physical networks (transport, electricity), and
biological networks (protein structures) [11].

These applications execute traversal queries [14], i.e. navigate the structure of
the graph. The most basic traversals are walks which visit vertices sequentially
by following edges. Walks are the building blocks of more complex queries and
therefore fast edge traversal is the defining property of a graph database [1]1.

Graphs can be distributed by grouping vertices into partitions and by assign-
ing each partition to a different machine. However, this introduces remote hops
between machines at partition boundaries and thus may cause query processing
to be dominated by network latencies. This can be disruptive for applications
that rely on fast, interactive access to data [6].

1 This separates graph databases from classic RDBMS which require a B-Tree-look-up
for each edge traversal [14].

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 14–27, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Latency-Optimal Walks in Replicated and Partitioned Graphs 15

1.1 Problem

Graphs need to be structured for parallel or distributed processing. Graph par-
titioners [5] commonly reduce inter-partition network traffic by minimizing the
cut-size, i.e. the sum of inter-partition edge weight sums. This aims to avoid
CPU underutilization due to network congestion. Reduced network usage can
be as high as 90 % [2].

However graph partitioners only optimize for the average case. Even when
assuming an optimal partitioning, there always exist queries whose execution
causes many network hops. Therefore using a single partitioning may not suffi-
ciently limit network usage of partitioned graph databases.

To address this, we show how using overlapping graph partitions may reduce
the number of required partition changes for walks in distributed directed read-
only graphs. A first evaluation indicates a reduction of 20− 90 %, depending on
graph, replication factor, and walk length.

We present Fast-Forward-Search (FFS), an algorithm for optimal replica se-
lection for walk queries that is based on parallel speculative execution. We show
optimality of FFS and discuss its storage, computation, and communication
overhead. Additionally, we introduce Escapicity, a replica selection metric that
reduces the message overhead of FFS at the price of giving up optimality.

We conclude with an evaluation of FFS and escapicity for a set of smaller
graphs.

2 Definitions

Let G = (V, E) be a weighted, directed, and connected graph where V is the set
of vertices and E ⊆ V ×V is the set of edges. For a vertex v ∈ V , E→

v is the set
{({v}×V)∩E} of all edges which start at v. We assume that for every edge e ∈ E
there exists a function w(e) : E → �0 that assigns a positive integer weight to
e. We’ll also use source vertex normalized weights wn((v, u)) : E → [0; 1] which
normalizes an edges e = (v, u) weight w(e) against the sum of all weights of its
source vertex’ outgoing edges E→

v , i.e. wn ((v, u)) = w((v,u))
Σe∈E→

v
w(e) .

Π ⊆ 22V

(where 2V is the power set of V) is a possibly non-disjoint parti-
tioning of G iff for each v ∈ V there exists at least one partition π ∈ Π that
contains v. We define Π(v) to be the set of partitions of v ∈ V , i.e. Π(v) is the
set {π ∈ Π | v ∈ π}. For practical reasons, we limit this work to using a fixed
vertex replication factor k and a fixed number of partitions |Π |.

A walk r in G of length |r| is a sequence of vertices v1, v2, . . . , vn with
(vi, vi+1) ∈ E for i = 1, . . . , n. We write r(i) for the ith waypoint of r. In a
random walk, all edges (vi, vi+1) are selected with probability wn((vi, vi+1)). A
partition walk r′ of a fixed walk r and partitioning Π completely maps r to a
sequence of pairs r′(i) from {r(i)} × Π(r(i)). To shorten, we write r′(i)V and
r′(i)Π for the vertex and partition components of r′(i). For each walk r, there
exists at least one partition walk r′ since each vertex is included in at least one
partition by definition.

16 S. Plantikow and M. Jorra

Every partition walk r′ is a walk on GΠ = (VΠ , EΠ), the exploded parti-
tion graph of G where each v ∈ V has been replaced with replicated vertices
{(v, πi) | πi ∈ Π(v)} which represent partition membership of v in Π(v) and
that consists of edges between all (vi, πi) and (vj , πj) for which (vi, vj) ∈ E.

We define the cost c(r′, i) of a partition walk r′ to be the number of partition
changes up to the ith waypoint, i.e. c(r′, i) = |{j < i | r′(j)Π 	= r′(j + 1)Π}| and
thus 0 ≤ c(r′, j) ≤ j. To shorten, we write c(r′, |r′|) as c(r′).

Latency Optimality. A partition walk r′ of a walk r and partitioning Π is
latency optimal up to i if its costs c(r′, i) are minimal, i.e. there exists no other
partition walk r′′ 	= r′ of r and Π with c(r′′, i) < c(r′, i). We write cmin(r) for
the minimal cost of any partition walk of r.

3 Optimal Partition Walks

Using above definitions, we show how an optimal partition walk r′ may be con-
structed for a given walk r over GΠ . We defer showing optimality of the con-
struction until the distributed algorithm has been presented (cf. Sect. 5).

Stay-Local Principle. The key insight is that it is sufficient for finding optimal
walks to prefer partition-local edges over remote ones, taking maximum local
benefit in the process. This may delay jumping to another partition but costs
are not increased as the partition change has to occur at some point anyways
unless the remaining walk may be completed locally.

Construction. The construction extends this stay-local principle with length-
limited lookahead at partition boundaries. At the end of a local walk, the remote
follow-up partition is chosen such that the length of the remaining walk that is
contained locally in that partition is maximized. Formally, we define lw(r, i, πj)
to be the longest local partition walk of r that starts at vertex (r(i), πj) ∈ GΠ

and stays in πj as long as possible. We construct a partition walk r′ in GΠ for
a walk r in G piecewise by sequentially applying one of two possible operations
for a follow-up vertex r(i):
stay-local Given the current partition πi, append lw(r, i, πi) to r′, starting at
r′(i). It may not always be possible to perform this operation (e.g. initially)
leading to:
select-partition Select πj ∈ Π(r(i)) such that

lw(r, i, πj) ≥ max({l|l = |lw(r, i, πx)|, πx ∈ Π(r(i)) \ πj}) (1)

In other words, πj contains the longest local partition walk that is reachable in
step i. As a result of select-partition, (r(i), πj) is chosen as r′(i).

Using these operations, r′ is constructed as follows: Initially, we choose the
start partition πs using select-partition for r(1) and add lw(r, 1, πs) to r′ (stay-
local). If consequently |r| = |r′|, the walk is complete (by definition).

Otherwise, for walks with cmin(r) > 0, there are at least cmin(r) cases in every
partition walk of r where the partition is changed. For such walks, select-partition

and stay-local are executed alternatively until |r′| = |r| and thus r′ is complete.

Latency-Optimal Walks in Replicated and Partitioned Graphs 17

4 Fast-Forward-Search

In this section, we show how the optimal partition walks constructed in the
previous section can be found efficiently in a distributed system. To this end,
we introduce fast-forward-search (FFS), a distributed partition walk routing
algorithm, analyze it’s costs, and discuss a possible way to reduce them.

4.1 System Model

We assume a simplified model of a distributed system that stores a replicated
and partitioned graph. In this system, each partition is stored on a different
physical machine. Machines can communicate with each other via an underlying
network. We assume the existence of a routing layer for entering the graph, i.e.
a way for finding all partitions that contain the start vertex of a walk, and a
routing layer for sending messages to the machine that stores a partition. To
focus on the effects of replication on distributed graphs, we deliberately choose
not to discuss failures and assume that machines (processes, partitions) do not
crash and messages are never lost. We also do not consider updates to the graph.

4.2 Query Model

In this system, we wish to perform some read-only computation (e.g. a fold-left)
by traversing the graph along some walk r. We call such computations queries.
Queries consist of a sequence of query steps. A query step is a serializable function
that takes the current waypoint (vertex), it’s outgoing edges, and optionally
application data as input, and either produces a subsequent-vertex and query
step or a final query result. Query steps are required to be deterministic (i.e.
do not rely on input from the environment). Note that no a priori knowledge of
the complete walk is required. Instead the walk is generated as the computation
proceeds, starting from the initial query step and start vertex.

4.3 Fast-Forward-Search

After these considerations, we are now ready to define FFS. FFS is a latency-
optimal distributed partition walk routing algorithm inspired by the stay-local
and select-partition rules.

Optimal partition walks may trivially be found using global search. For exam-
ple, equation (1) could be computed easily in parallel by broadcasting a follow-
up query step to all vertex replicas of the corresponding follow-up vertex at
a partition boundary. However this apporach would lead to tree-like, excessive
branching since every partition boundary encountered would cause the creation
of k (replication factor) additional messages.

The central idea for avoiding this branching is to ensure that after broadcast-
ing a query step to the k vertex replica partitions, only one of those partition
will perform the next broadcast step and to select that partition such that it
contains a maximum local walk of the remainder of the query.

18 S. Plantikow and M. Jorra

In a distributed system, this requires all involved partitions to reach agree-
ment on selecting this single winner partition. FFS achieves this by using shared
information and speculative execution. More precisely, FFS exploits that each
vertex replica always knows all replicas of its follow-up vertices, i.e. the partitions
they are contained in. Together with knowledge about the partitions currently
searched by FFS, this is sufficient to simulate which other replicas cannot execute
the next step locally. Inversely a partition which cannot continue locally knows
if other partitions can. In this way, partitions execute the query speculatively for
as long as they can. Finally, when none can continue, all remaining partitions
contain a maximum local walk and a follow-up broadcast step cannot be delayed
any longer. In that case, it suffices to uniquely select a single winning partition
deterministically. This winner then continues by executing the broadcast for the
next query step.

Figure 1 shows the pseudo-code that is run in parallel by a set of par-
titions replicas|| that contain replicas of vertex v. If local query execution
returns QueryResult(result), this result is delivered to the application by
π = selUnique(replicas||. Alternatively a follow-up QueryStep with qstepw

and vertex w is returned. If this step can be processed locally, the set of repli-
cas executing in parallel (replicas||) is recomputed as replicas∩w by cutting the
current replicas|| with Π(w), the vertex replicas of w, and the query continues
locally with qstepw. Otherwise the winner partition selUnique(replicas||) broad-
casts qstepw to a set of partitions selPartitionsFrom(Π(w)) ⊆ Π(w) that hold
vertex replicas of w for executing the subsequent query step instead.

1: on msg FastFwd(v, qstepv , replicas|| ⊆ Π(v))
2: � Executed at each partition π ∈ replicas|| in parallel

3: � Run follow-up query step locally
4: next ← qstepv(v, E→

v , payloadπ(v))
5: if next = QueryResult(qresult) then
6: � Deliver result if query has finished
7: if selUnique(replicas||) = π then
8: [deliver qresult]
9: end if

10: else if next = QueryStep(w, qstepw) then
11: � Search for best partition (agreement by mutual simulation)
12: replicas∩w ← replicas|| ∩ Π(w)
13: if w ∈ π then
14: � stay-local
15: msg ← FastFwd(w, qstepw , replicas∩w)
16: [send msg toPartitions {π}]
17: else if replicas∩w = ∅ ∧ selUnique(replicas||) = π then
18: � select-partition i.e. broadcast at boundary of a best partition
19: replicas⊆w ← selPartitionsFrom(Π(w))
20: msg ← FastFwd(w, qstepw , replicas⊆w)
21: [send msg toPartitions replicas⊆w]
22: end if
23: end if
24: end on msg

Fig. 1. Fast-Forward-Search (FFS): Latency optimal execution of walks in distributed,
partitioned graphs using replica selection based on parallel speculative execution

Latency-Optimal Walks in Replicated and Partitioned Graphs 19

4.4 Cost Analysis

We next examine the storage, computational, and message overhead caused by
FFS for a constant message fan-out 1 < f = |selPartitionsFrom(Π(v))| ≤ k.

Storage Costs. To examine the storage requirements, we assume a simple,
adjacency list-like scheme that is roughly following the storage layout of the
neo4j graph database [14]. In this scheme, each of the k · n replicated vertices
stores its id, k−1 partition ids for its replicas, and the id of its first outgoing edge.
Each of the k · m replicated edges stores ids of source and destination vertices,
and its own edge id. Edges are grouped into double-linked lists according to their
source vertex. Therefore they have to store previous and next edge id pointer
for their source vertex’ edge list. External (out-of-partition) edges additionally
store k − 1 extra partition ids for destination vertex replicas.

With this scheme, required storage grows roughly linear with the number
of graph elements for fixed k. The overhead per replica increases linearly with
increased replication degree and is independent from overall graph size. It is
caused by the need to store k − 1 partition pointers in external edges. Although
O(k2) partition ids may need to be stored per unreplicated edge, it turns out
that this does not dominate storage requirements when partition ids are small
compared to node/edge ids and payload. For k ≤ 6, the overhead is ≤ k + 1 for
a graph with 1012 elements and a constant degree in the range 20-110.

Number of Messages. FFS eliminates α · h remote hops from a walk that
requires h hops when no replication is used. We assume that partition selection
sends f messages initially when broadcasting to find a suitable start partition.
Therefore FFS requires f + � (1 − α) h f messages, while unreplicated parti-
tioning needs 1 + h messages for a walk with h hops.

Figure 2 shows the ratio of messages required by FFS to messages required
with plain, disjoint partitioning for f = 1, . . . , 5 and α ∈ {0.1, 0.3, 0.5, 0.7}. For
long enough walks, the overhead converges to a constant factor ≤ f .

number of hops in an unreplicated walk

m
es

sa
ge

 c
os

t f
ac

to
r

of
 r

ep
lic

at
io

n

1

2

3

4

5
1

●●●
●●●

●●

●

●●

●

●
●
●
●●●

20 40 60 80

2

●●●●●●●●●
●●

●●●

●●
●
●●

●
●●●

●
●●

●

●
●

●
●
●
●
●●

●

●

●
●
●
●
●
●●

●●

20 40 60 80

3

●●●●●●●●●

●●●●●●
●●●●

●●

●●●

●
●●

●●
●
●●

●●
●●●●●●●●●

●●●

●

●

●

●
●

●
●
●
●
●
●
●
●
●●

●

●

●

●

●
●
●
●
●
●
●
●●

●●●
●●●

20 40 60 80

4

●●●●●●●●●

●●●●
●●●●●●

●●●●●●●
●●●

●●

●●●

●
●
●

●
●●

●●
●●

●●
●
●●

●
●●

●●●●●●●●●●●
●●●

●

●

●

●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●●

●●●
●●●●

●●●
●●●

20 40 60 80

5
●●●●●●●●●

●●●
●●●●●●

●
●●●●●●

●●●●
●●●●●●●●

●●
●●

●●●

●
●
●

●
●
●

●
●
●●

●●
●
●●

●
●●

●●
●●

●
●●

●
●●●

●
●●●●●●●●●

●●●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●
●
●
●●

●●●●
●●●

●●●
●●●●

●●

20 40 60 80

hops
saved
(%)

● 10
● 30
● 50
● 70

Fig. 2. Ratio of number of messages required by replication to number of messages re-
quired without replication in relation to percentage of hops saved. (Columns =̂ message
fan out)

Computational Cost. Branching out to f destinations at partition bound-
aries causes duplication of work, i.e. the whole query is executed f times in
the worst case. However subqueries that started in parallel will stop as soon as
the f selected partitions start to differ with respect to the walk generated by the

20 S. Plantikow and M. Jorra

query. Therefore subquery duplication may be used as an indicator for partition
overlap and latency gain potential. This is further discussed in sect. 6.

4.5 Lowering the Fan-Out

To reduce the message, and by extension, the computational overhead of FFS, we
need to use small f . This in turn requires finding a suitable metric for selecting
f vertex replicas (selPartitionsFrom in alg. 1).

To give an intuition about the metric we’re looking for, we view a single
partition πi as an edge-weighted flow network, where source vertices of incom-
ing inter-partition edges are replaced with a single source vertex vsource and
destination vertices of outgoing inter-partition edges with a single sink ver-
tex vsink. Resulting identical edges are coalesced and assigned the sum of their
weights.

By viewing partitions as flow networks, it becomes easy to see that the target
vertex replicas that are selected at a partition boundaries by FFS should have
a high distance to the vsink of their respective partition’s flow networks.

There are several well-known metrics for rating vertices in a graph. Classi-
cal centrality metrics [10] give a clue about the position of a node in a net-
work, w.r.t. information propagation from or to the node, like betweenness,
closeness, and flow-betweenness. Other metrics like PageRank [12] rate node
significance by taking the amount and relevance of connected neighbors into
account.

These metrics may be calculated for partition flow networks, but the result
values will only indicate if a vertex is positioned close to the network’s border.
However they do not express if vertices are closer to the source or to the sink.
The only exception to this is flow-betweenness which indicates how easy it is
to reach the partition’s sink with a random walk. In any case, computing these
metrics is costly due to the need to look at the complete flow graph and thus it
might be advisable to try more simple, ad-hoc approaches instead.

Ratio-Metric. Normalized edge weights wn((vi, vj)) express the probability
that an arbitrary random walk that moves across vi will traverse (vi, vj) in the
next step. For an edge that leads to vsink, this translates into the probability
that the partition will be left. This is sufficient to compute the probability that
any edge taken at vi will lead outside the current partition in the next step. This
in turn leads to the simple ratio-metric. Using this metric selPartitionsFrom can
discard vertex replicas with high next-step exit probability.

Escapicity. This ratio-metric can be refined further by recursively considering
the neighborhood of vertices. We call this refined metric escapicity (Fig. 3).
Escapicity is an estimate for the probability that an arbitrary random walk
that starts at a replicated vertex v will exit v’s partition πlocal in i steps, i.e.
escapicity is a measure of v’s closeness to its partition’s sink. The parameter i
determines the radius of the neighborhood of v that is considered in computing
the escapicity and for breaking cycles.

Latency-Optimal Walks in Replicated and Partitioned Graphs 21

1: function Escapicity(v ∈ V, i ≥ 0) � at πlocal
2: � πlocal ⊆ V are the local partition’s vertices
3: if v /∈ πlocal then
4: return 1.0
5: else if outdeg(v) = 0 then
6: return 0.0
7: else if i = 0 then
8: � Per partition constant

9: return 1.0 − |(πlocal×πlocal)∩E|
|(πlocal×V)∩E|

10: else
11: return

∑
(v,u)∈E→

v

wn((v,u))·Escapicity(u,i−1)

12: end if
13: end function

Fig. 3. Escapicity is a measure of escape likelihood (closeness to border) of a replicated
vertex that considers neighbors at a distance of at most i hops

More precisely, escapicity is defined by recursion over the neighbors of v
and decreasing i. External vertices are always scored 1.0. Vertices with an
outdeg(v) = 0 are always scored 0.0 For remaining vertices, for i = 0, an es-
timate of the average escapicity score for any vertex from Vlocal is used. For
i > 0 the edge weighted average of the i − 1 escapicity scores of v’s direct
neighbors is used, i.e. cycles are broken by using a score with lower i (less infor-
mation) when revisiting a vertex.

5 Proof of Optimality

We now proof that partition walks r′ that have been constructed by FFS as
described in Sect. 3 are always minimal in the number of required partition
changes and thus latency optimal, i.e. there exists no r′′ such that c(r′′) < c(r′).
To do this, we compare r′′ and r′ element-wise and show that for all r(x), r′ is
optimal up to x.

Let’s examine a step from r(x − 1) to r(x) in both r′ and r′′. This step may
either be performed locally in the current partition or may require a partition
change. Thus given r′(x− 1)Π = πi and r′′(x− 1)Π = πj we may encounter one
of the following possible steps only:

(1) r′ and r′′ don’t change their partition, i.e.
c(r′, x) = c(r′, x − 1) and c(r′′, x) = c(r′′, x − 1),

(2) r′′ exits πj but r′ can stay in πi and hence
c(r′′, x) = c(r′′, x − 1) + 1 yet c(r′, x) = c(r′, x − 1),

(3) the inverse of (2), r′ exits while r′′ stays and hence
c(r′, x) = c(r′, x − 1) + 1 yet c(r′′, x) = c(r′′, x − 1),

(4) r′ and r′′ both switch and c(r′, x) = c(r′, x− 1) + 1 and c(r′′, x) = c(r′′, x− 1) + 1,
(5) or vx is the last element of the complete walk r.

Using this list of possible steps, we define a final-state-transducer which looks at
local walks of r′ and r′′ at waypoint x. Depending on available knowledge about
the lengths of these walks, the state-transition function δ considers two states:

22 S. Plantikow and M. Jorra

A B

T
(5)/(0,0)(5)/(0,0)

(4)/(1,1)
(1)/(0,0)

(1)/(0,0)
(2)/(0,1)

(3)/(1,0)
(4)/(1,1)

(2)/(0,1)
Σ = (1) − (5)

The view on the current step.
S = {A, B, T}

s0 = A
F = {T}
Γ = {(0, 0), (0, 1), (1, 0), (1, 1)}

ω and δ See text.

Fig. 4. Transducer that iterates over walks and delivers the cost increment for every
step

In state A, it is known that |lw(r′, x, πi)| ≥ |lw(r′′, x, πj)|. By definition of select-

partition this is true after r′ has chosen a new partition and thus makes A the
initial state. In the second state B, no information about the relation of |lw(r′)|
and |lw(r′′)| is available. The result of the output function ω is the cost change
for r′ and r′′ for the step, it is added to the pair (c(r′, x−1), c(r′′, x−1)) yielding
(c(r′, x), c(r′′, x)). The resulting transducer is defined in Fig.4. The transducer
is straightforward but note that in A, step (3) is excluded by the definition of
select-partition, and that in B, (3) leads back to A for the same reason.

For all state changes between A and B at r(x), c(r′, x) ≤ c(r′′, x) is satisfied
and c(r′) can never grow larger than c(r′′). This implies that whenever the final
state T is reached, there is no r′′ with lower cost than r′ and it follows that c(r′)
is minimal. This concludes that the constructed r′ is an optimal partition walk
of r. (Optimality)�

Remark: c(r′, x) ≤ c(r′′, x) indicates that the Stay-Local Principle is sufficient
but not necessary for an optimal walk r′.

6 Evaluation

For the evaluation we conducted experiments in order to address two topics:
First, we wanted to show how much the number of network hops of a random
walk in a distributed, partitioned graph G can be reduced when the walk is
executed in the replicated graph GΠ using FFS.

Second, we lowered the message fan-out f ≤ k of select-partition-steps and with
it the subquery duplication overhead by using various vertex replica selection
metrics and investigated the impact on the fraction α of saved network hops.

Additionally, we examined how all this depends on the replication factor k
and the length of used walks.

6.1 Generating Graph Partitionings

To increase the probability that an edge may be traversed locally, we want to
ensure that the partitions of each replica of each vertex differ. However standard
graph partitioners (like [8]) do not replicate vertices and create no overlapping
partitions.

Latency-Optimal Walks in Replicated and Partitioned Graphs 23

To generate non-disjoint partitionings, we partition a graph multiple (k) times,
using METIS [8] as state-of-the-art graph-partitioner. To ensure that the result-
ing partitionings differ, all edge weights are set to uniform random values in
each iteration. The result partitioning Π is the union of all partitions found in
all iterations. Consequently each vertex will be assigned to a different partition
in each iteration and |Π(v)| = k for all vertices v ∈ V .

6.2 Experimental Setup

An evaluation sequence for a graph consists of k iterations. For every iteration,
we generated a complete but different partitioning with m = 12 partitions.

An experiment, for an evaluation sequence and a set of walks, records the
number of hops needed for every walk in every iteration of GΠ for a set of
partition walk routing algorithms (i.e. FFS, or FFS using some metric). We
used fixed sets of graphs and walks described below.

Graphs. We used the following graphs: scaladocs – the hierarchical link graph
of the HTML documentation of the scala programming language, lattice 2d – a
2D-Lattice where each vertex has 4 edges, kleinberg – a scale free graph generated
with the Kleinberg model, barabasi sfg – another scale free graph that was gen-
erated with the Barabási-Albert model, and random – an Erdős-Rényi random
graph. Characteristic measures of these graphs are given in table 1.

Walk Generation. For each graph, we generated 3000 walks of different length,
starting at 5, followed by all multiples of 10, up to 140. We used the unpartitioned
graph with its initial (random) weights for walk generation. The generation of a
walk starts by selecting a start vertex uniformly at random. The successor vj of
each other vertex vi in the walk is chosen with probability pj = wn ((vi, vj)).

We decided to focus on queries that are mostly cycle free (i.e. contain very
few reuses of the same edge) by trying to avoid picking the same edge twice.
This was achieved by setting the weight of a previously encountered edge to 0.
Under this scheme, repeated vertex visits may cause ∀e ∈ E→

v : w(e) = 0 but
then edges are chosen completely random with probability pj = 1

|E→
v | . Figure 5

shows the average hop-count for the generated walks.

6.3 Experimental Results

Figure 6 depicts the relative impact of FFS on the number of remote hops.
Results show that this impact is highly graph-dependent. However, in all graphs,
20−30 % hops are saved for k ∈ {2, 3} latency-optimal partition routing, i.e every

Table 1. Graphs used in experiments
Indegree Outdegree

Name Vertices Edges Avg.Degree Min. Max. Std.dev. Min. Max. Std.dev.
scaladocs 1548 25697 16.60 0 1528 64.21 0 947 29.79
kleinberg 2304 11520 5.00 4 10 0.98 5 5 0
barabasi sfg 2003 3989 1.99 1 10 1.27 0 13 1.52
lattice 2d 2025 8100 4.00 4 4 0 4 4 0
random 2000 24905 12.45 2 26 3.58 2 27 3.46

24 S. Plantikow and M. Jorra

walk length

re
m

ot
e

ho
ps

20
40
60
80

100

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 60 80 100
120

140

graph

● scaladocs

kleinberg

barabasi_sfg

lattice_2d

random

Fig. 5. Average number of remote hops of generated walks

3rd to 5th hop is eliminated. Three of the analyzed graphs achieve substantially
higher gains from using FFS at k = 3: kleinberg (60%), barabasi sfg (40%), and
the 2D-Lattice (≈ 80%!). Higher savings are achievable by increasing k, however
returns diminish as k increases and choosing k > 4 seems unreasonable when
replicating for performance (latency) only.

For all graphs and k, the gain appears to converge against a constant value
(target gain). Short walks of length < 20 achieve higher gain. This happens be-
cause short walks which have few hops in the unreplicated scenario are converted
into hop-less walks by the used replication scheme. This “short walk bonus” gets
higher for graphs with a larger target gain.

Subquery duplication. To asses the degree of repeated computations, i.e.
subquery duplication d, we measured the actual number of query steps (visits of
replicated vertices). Fig. 7 plots them as factor d of vertex visits at k = 1, i.e.
1 ≤ d ≤ k. In the experiments d always is smaller than k. This is an indicator that
our partitioning scheme based on random weights actually generated differing
partitionings for the walks. Additionally, k−d

k goes up, as k is increased, i.e.
replication reduces relative subquery duplication.

Impact of Metrics. Finally, we analyzed various metrics (Fig. 9) as scores for
selecting only a small number of vertex replicas at partition boundaries in order
to reduce message fan-out and subquery duplication.

Initial attempts with classic centrality measures were not sufficiently success-
ful. Best results were achieved with betweenness and coreness but both did only
work for some graphs. Surprisingly, flow centrality appeared not to be a suitable
predictor, too. This is shown in Fig. 8 exemplarily for the Barabási-Albert graph
with 3 ≤ k ≤ 6, for the other graphs the results are similar.

walk length

re
m

ot
e

ho
ps

 s
av

ed
(%

)

0
20
40
60
80

scaladocs

20 40 60 80 100
120

140

kleinberg

20 40 60 80 100
120

140

barabasi_sfg

20 40 60 80 100
120

140

lattice_2d

20 40 60 80 100
120

140

random

20 40 60 80 100
120

140

replication
degree

1
2
3
4
5
6

Fig. 6. Percentage of hops saved by latency-optimal routing with FFS when k over-
lapping partitionings (graph replicas) are used to execute random walks of varying
length

Latency-Optimal Walks in Replicated and Partitioned Graphs 25

walk length

su
bq

ue
ry

du
pl

ic
at

io
n

fa
ct

or

 1
 2
 3
 4
 5
 6

scaladocs

20 40 60 80 100
120

140

kleinberg

20 40 60 80 100
120

140

barabasi_sfg

20 40 60 80 100
120

140

lattice_2d

20 40 60 80 100
120

140

random

20 40 60 80 100
120

140

replication
degree

1
2
3
4
5
6

Fig. 7. Subquery duplication factor of partition walks, i.e. the number of additional
vertex replicas visited as an effect of speculative execution in relation to walk length,
replication degree, and graph

walk lengthex
tr

a
re

m
ot

e
ho

ps
 p

er
 w

al
k

0
10
20
30
40
50
60

3

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 40 60 80 100
120

140

4

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 40 60 80 100
120

140

5

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 40 60 80 100
120

140

6

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 40 60 80 100
120

140

Fig. 8. Overhead in absolute number of hops against optimal FFS on the example of
Barabási-Albert. Fan-out was restricted to 1 for all metrics.

After initially good results with the ratio-metric we developed escapicity as it’s
generalization. Fig. 9 shows the loss in optimality caused by selected metrics for
all graphs and 3 ≤ k ≤ 6 in terms of required additional hops per walk length.
The two variants of FFS2 always achieve minimal overhead, i.e. are closest to
finding optimal walks.

In general, an increased fan-out predictably boosts each metric but is not
sufficient to heal a bad metric, e.g. for barabasi sfg escapicity with a fan-out of 1
is better than the random metric with a fan-out of 2.

Using the ratio-metric is always worse than using escapicity with i = 1. Using
escapicity with more information by increasing the radius i seems to give slight
gains with the exception of barabasi sfg and scaladocs. More experiments with
higher i and larger partitions are needed to further analyze this.

7 Related Work

Partitioning. Graph partitioning is NP-complete in general, but there exists
a multitude of heuristic partitioning algorithms [5, 15]. Partitioning graphs in
a distributed scenario needs to deal with the lack of a global view. Common
approaches are growth-based [4] or diffusion-based [2] partitioners.

Replication. Overlapping partitions (i.e. replicated vertices) have been used in
VLSI for delay minimization and to optimize chip layout [7,9]. These approaches
are static, limited to current-flow-networks, and do not need to address replica
selection. Pujol et al. [13] use one-hop replication to optimize network usage for
partitioned social graphs. Schism [3] uses graph partitioning and replication of
tuples to distribute relational DBMS’ across different resource nodes. Therefore

26 S. Plantikow and M. Jorra

walk length

ex
tr

a
re

m
ot

e
ho

ps
 r

eq
ui

re
d

pe
r

w
al

k
(b

as
el

in
e

is
 o

pt
im

al
 p

ar
tit

io
n

w
al

k,
 i.

e.
 F

F
S

)

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

0
10
20
30
40

scaladocs

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 40 60 80 100
120

140

kleinberg

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 40 60 80 100
120

140

barabasi_sfg

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 40 60 80 100
120

140

lattice_2d

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 40 60 80 100
120

140

random

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ● ● ● ● ● ● ● ● ● ● ● ● ●

20 40 60 80 100
120

140

3
4

5
6

target
metric

● FFS

FFS1_esc2

FFS1_rnd

FFS2_esc1

FFS2_esc2

FFS2_rnd

fanout

● 1

● 2

Fig. 9. Overhead in absolute number of hops against optimal FFS caused by lowering
the fan-out at partition boundaries and selecting vertex replicas according to some
precomputed metric, measured for various walk lengths, 3 ≤ k ≤ 6 replicas, and graphs.
Target metrics are coded according to the following scheme: FFS<fan-out> <metric>

where metric is rnd (random) or esci (escapicity with i-steps).

Schism generates a graph from SQL traces, partitions the graph and replicates
tuples with the goal to minimize distributed transactions. However the graph
itself isn’t used for query processing, it is transformed to an SQL script and fed
back into the original DBMS.

Replica Selection. In large networks, like the WWW, it is common practice
to replicate objects for the sake of availability, latency and reliability [16]. Repli-
cated objects require a client to be able to select the replica which suits him best.
Since clients are interested in fetching the object, not the environment where it
is located, the selection-metrics are mostly distance or latency based.

8 Conclusion

We introduced fast-forward-search (FFS), a new approach for minimizing the
latency of walks in distributed graphs that rests on finding hop-minimal paths in
multiple, overlapping partitionings by employing parallel speculative execution.
We presented a proof of FFS’s optimality, described how to generate overlapping
partitions with standard graph partitioners by using randomized edge weights
and experimentally measured that FFS may save between 20− 80 % of network
hops depending on graph type and replication factor k.

We showed that the storage, message, and computational costs of our ap-
proach are bounded by the replication factor k and discussed how to reduce
them by lowering the message fan-out. Finally, to select fan-out vertices intelli-
gently, we introduced escapicity, a vertex replica selection metric, and evaluated
experimentally that escapicity has a very low overhead compared to classic mea-
sures of network centrality as a predictor for vertex replica selection.

Latency-Optimal Walks in Replicated and Partitioned Graphs 27

For the future, we intend to repeat the experiments for larger graphs, and look
at the impact of graph size, number of partitions, and alternative replication and
graph partitioning schemes on the performance of FFS.

References

1. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput.
Surv. 40(1) (2008)

2. Averbuch, A., Neumann, M.: Partitioning Graph Databases. Master’s thesis, KTH
Stockholm (2010)

3. Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-driven
approach to database replication and partitioning. Proceedings of the VLDB
Endowment 3(1) (2010)

4. Derbel, B., Mosbah, M., Zemmari, A.: Fast distributed graph partition and
application. In: 20th International Parallel and Distributed Processing Symposium,
IPDPS 2006, p. 10. IEEE, Los Alamitos (2006)

5. Elsner, U.: Static and dynamic graph partitioning: A comparative study of existing
algorithms. Ph.D. thesis, Technische Universität Chemnitz (2002)

6. Hastorun, D., Jampani, M., Kakulapati, G., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store. In:
Proc. SOSP, pp. 205–220 (2007)

7. Hwang, L., El Gamal, A.: Min-cut replication in partitioned networks. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 14(1),
96–106 (2002)

8. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)

9. Kring, C., Newton, A.: A cell-replicating approach to minicut-based circuit
partitioning. In: 1991 IEEE International Conference on Computer-Aided Design,
ICCAD 1991, Digest of Technical Papers, pp. 2–5. IEEE, Los Alamitos (2002)

10. Lehmann, K., Kaufmann, M.: Decentralized algorithms for evaluating centrality in
complex networks, p. 9 (2002)

11. Mart́ınez-Bazan, N., Muntés-Mulero, V., Gómez-Villamor, S., Nin, J., Sánchez-
Mart́ınez, M.A., Larriba-Pey, J.L.: Dex: high-performance exploration on large
graphs for information retrieval. In: Proceedings of the Sixteenth ACM Confer-
ence on Conference on Information and Knowledge Management, CIKM 2007, pp.
573–582. ACM, New York (2007)

12. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web (1999)

13. Pujol, J.M., Siganos, G., Erramilli, V., Rodriguez, P.: Scaling online social networks
without pains. In: 5th International Workshop on Networking Meets Databases,
NetDB 2009, co-located with SOSP (October 2009)

14. Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. Computing Research
Repository (CoRR) abs/1004.1001 (2010)

15. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
16. Vingralek, R., Breitbart, Y., Sayal, M., Scheuermann, P.: Web++: A system for

fast and reliable web service. In: Proceedings of the Annual Conference on USENIX
Annual Technical Conference, p. 13. USENIX Association (1999)

Graph-Based Matching of Composite
OWL-S Services

Alfredo Cuzzocrea1, Juri Luca De Coi2,
Marco Fisichella2, and Dimitrios Skoutas2

1 ICAR-CNR and University of Calabria, Italy
cuzzocrea@si.deis.unical.it

2 Forschungszentrum L3S, Hannover 30167, Germany
{decoi,fisichella,skoutas}@L3S.de

Abstract. Existing techniques for Web service discovery focus mainly
on matching functional parameters of atomic services, such as inputs
and outputs. However, one of the main advantages of Web services is
that they are often composed into more complex processes to achieve a
given goal. Applying such techniques in these cases, ignores the workflow
structure of the composite process, and therefore may produce matches
that are not very accurate. To overcome this limitation, we propose in
this paper a graph-based method for matching composite services, that
are semantically described as OWL-S processes. We propose a graph rep-
resentation of composite OWL-S processes and we introduce a matching
algorithm that performs comparisons not only at the level of individual
components but also at the structural level, taking into consideration the
control flow among the atomic components. We also report our prelimi-
nary results of our experimental evaluation.

1 Introduction

Web services are a key technology for enabling interoperability and software reuse.
Service discovery is the process of matching a service request with a service adver-
tisement, and it is based on comparing their descriptions, such as their input and
output parameters. Service composition deals with composing services to create
complex processes that achieve a desired goal given an initial state. This is an im-
portant feature, since it allows atomic services to be combined in a flexible way to
complete complex tasks. In the Semantic Web, service descriptions are semanti-
cally annotated using concepts from domain ontologies in order to facilitate and
improve the precision of their automatic discovery and composition.

Service composition is a very challenging task, either when performed at de-
sign time or, especially, online. Given also that reusability is a key concern in
service-oriented architectures, this makes the discovery of existing composite ser-
vices an important problem. When an application needs to create a composite
service to fulfill a given goal, it is more effective and efficient to first search a
repository of existing compositions to find similar ones. Then, the best matches
identified can be modified, extended or combined, to produce the desired com-
posite service instead of composing one from scratch. Moreover, when browsing

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 28–39, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Graph-Based Matching of Composite OWL-S Services 29

a repository of composite processes, the user may find some interesting process
and then issue a “more like this” query to retrieve additional results.

In this paper, we focus on composite Semantic Web services described in
OWL-S [3], since OWL-S provides different parts for explicitly describing the
profile and the model of a service. The service profile is mainly aimed at sup-
porting service discovery, and it includes the functional parameters of the service,
which are the ones typically used for the matchmaking between service descrip-
tions. The service model is primarily aimed at the specification of composite
services. In particular, it describes the internal components and the control flow
of the composite process. In a typical service discovery scenario, a query is for-
mulated as the description of a desired service and the result is a ranked list of
advertised services, the description of which matches the request, according to
a matchmaking algorithm that employs one or more matching criteria. Hence,
existing discovery methods do not differentiate between atomic and composite
services. The service profile is also used for the matchmaking of composite ser-
vices, which means that a complex process is treated as a “black box”; its most
integral part, the process model, is not taken into account. This severely reduces
the accuracy of the results, introducing both false positives and false negatives.

To address this problem, we propose a graph-based method for matching
composite services. Matchmaking is performed on the service model rather than
the service profile, which includes the structural part of the composite service.
In OWL-S, composite services can be composed from atomic ones or from other
simpler composite services, allowing several levels of nesting. To specify how
component services are combined together, a set of control constructs is provided,
similar to the typical control structures found in programming languages. These
allow services to be executed sequentially, in parallel, conditionally or in a loop.

The proposed method performs the matching on two levels. It matches both
the atomic services of the composite process, using their service profiles, as well
as the way these services have been composed to create the composite process. To
avoid the details and specificities of the OWL-S process model, the composite
process is first transformed to a graph representation, containing its compo-
nent services and their interactions. Matchmaking is then performed considering
node similarities and finding common (sub)structures between the two graphs
that represent the requested and the available composite process. To increase the
efficiency of the search, a two step approach is followed. Initially, a set of candi-
date graphs is identified considering mappings between pairs of nodes. Then, the
best candidates are selected and their structural similarity to the query graph is
taken into account in order to filter out false positives and determine the final
ranking of the results.

The rest of the paper is structured as follows. The next section describes our
graph-based representation of composite OWL-S processes. Section 3 introduces
the matchmaking algorithm. A preliminary experimental evaluation is presented
in Section 4. Section 5 discusses related work, and Section 6 concludes the paper
with directions for future work.

30 A. Cuzzocrea et al.

2 Graph Representation of OWL-S Processes

The OWL-S description of a Web service comprises three main parts. The Ser-
vice Profile specifies the functional parameters of the service, namely inputs,
outputs, pre-conditions and effects; it may also contain information about the
provider and the category of the service, as well as plain text description. The
Service Model describes the components and the structure of a composite pro-
cess. The Service Grounding specifies the details required by an agent to invoke
the service, such as communication protocol, message formats and port num-
bers. In contrast to typical service discovery approaches that rely on the service
profile for matching atomic services, our matchmaking algorithm utilizes the in-
formation provided by the service model to perform graph-based matchmaking
between complex processes.

In our approach, we represent composite processes as graphs in order to fa-
cilitate their matching. Given a composite OWL-S process P , we describe below
how the corresponding graph representation, denoted as GP , is derived. Let C
be the set of control constructs supported in OWL-S. Each occurrence of a con-
trol construct C ∈ C is represented by a pair of nodes, Cb and Ce, that denote
its begin and its end part, respectively. We denote the sets of such nodes as Cb

and Ce, respectively. These nodes allow us to represent the part of the process
that is enclosed by this control construct and, hence, to represent the nesting of
processes. Moreover, each atomic service s in a composite process is represented
by a graph node s. For the sake of simplicity, we use the same symbol to refer
both to the node and to the service it represents, since the distinction is typi-
cally clear from the context. The set of all the atomic services that are contained
in the composite process P is denoted as SP . Thus, a composite process P is
represented by a graph GP = (V, E), with node set V = Cb ∪ Ce ∪ SP and edge
set E ⊆ (Cb × Cb) ∪ (Cb ×SP) ∪ (SP ×SP) ∪ (SP × Ce) ∪ (Ce × Ce). The edges in
the graph denote the control flow, as it will be explained below. In the following,
we list the control constructs provided by OWL-S.

– Sequence (SQ). It encloses a list of components to be executed in the specified
order.

– AnyOrder (AO). It encloses a bag (according to the OWL-S definition) of
components to be executed sequentially, but without imposing any restric-
tion on the ordering.

Table 1. Construction of the process graph

Control construct Added edges Control construct Added edges

Sequence(s1, s2, . . . sn−1, sn) (SQb, s1), (s1, s2), . . . , AnyOrder(s1, s2, . . . sn−1, sn) (AOb, s1), (s1, s2), . . . ,
. . . , (sn−1, sn), (sn, SQe) . . . , (sn−1, sn), (sn, AOe)

Split(s1, s2, . . . sn) (SPb, s1), (SPb, s2), . . . , (SPb, sn), SplitJoin(s1 , s2, . . . sn) (SJb, s1), (SJb, s2), . . . , (SJb, sn),
(s1, SPe), (s2, SPe), . . . , (sn, SPe) (s1, SJe), (s2, SJe), . . . , (sn, SJe)

Repeat (s) While (cond) (RWb, s), (s, RWe) Repeat (s) Until (cond) (RUb, s), (s, RUe)

Choice(s1, s2, . . . sn) (CHb, s1), (CHb, s2), . . . , (CHb, sn), If (cond) Then (s1) Else (s2) (IFb, s1), (IFb, s2),
(s1, CHe), (s2, CHe), . . . , (sn, CHe) (s1, IFe), (s2, IFe)

Graph-Based Matching of Composite OWL-S Services 31

– Split (SP). It encloses a bag of components to be executed in parallel.
– SplitJoin (SJ). It encloses a bag of components to be executed in parallel.

The difference between SP and SJ is that the latter specifies barrier syn-
chronization, i.e., all the included components need to finish their execution
before the control construct is considered to be finished.

– Choice (CH). It encloses a bag of components, one of which can be chosen
for execution.

– IfThenElse (IF). It encloses two components, one of which is executed based
on whether a specified condition is true or false.

– RepeatWhile (RW). It encloses a component that is executed in a loop, as
long as a specified condition is true.

– RepeatUntil (RU). It encloses a component that is executed in a loop, until
a specified condition becomes true.

Note that we do not include conditions in our graph representation and in our
matching algorithm. This is out of scope of this paper, given that OWL-S does
not dictate any specific language for expressing such logical conditions. A pos-
sible extension to address the issue of conditions is to include them as labels
on the nodes that correspond to control constructs having a condition, or on
the outgoing edges of these nodes. Then, during the matching, an appropriate
reasoner for the language used to express these conditions can be invoked to de-
termine the degree of similarity between the condition in the requested service
and the one in the advertised service, e.g., by inferring whether one condition
implies the other (or its negation).

Table 1 specifies how the graph edges are constructed for each of the OWL-S
control constructs. For simplicity, the table assumes only atomic services as
components inside a control construct. If instead of an atomic service s there
exists a nested composite process P ′ enclosed by a control construct C, then:
(a) an edge (v, Cb) is added instead of each incoming edge (v, s); (b) an edge
(Ce, v) is added instead of each outgoing edge (s, v); (c) the representation of
the subprocess P ′ is computed recursively and added to the graph. Note that for
each new occurrence of a control construct, a new pair of corresponding begin
and end nodes is introduced. Some examples are shown in Figure 1.

3 Matching OWL-S Processes

In this section, we present our matching algorithm for composite OWL-S pro-
cesses. First, we discuss how the degree of match dom is computed between
atomic components and then how the structural similarity is taken into account.

3.1 Matching Atomic Components

Let GR and GP be the graph representations of a requested and a candidate
composite services R and P , respectively. In the following, we show how to
compute the degree of match between two nodes r ∈ V (GR) and s ∈ V (GP).
Recall from Section 2 that each node in the graph corresponds either to an

32 A. Cuzzocrea et al.

atomic service or to the begin or end part of a control construct. We compute
the degree of match only between nodes of the same type, i.e., only for the cases
that: (a) r ∈ SR and s ∈ SP ; or (b) r ∈ Cb and s ∈ Cb; or (c) r ∈ Ce and s ∈ Ce.
For all other combinations, the degree of match is zero.

First, we define the degree of match between nodes that correspond to atomic
services (also denoted by r and s). The degree of match is computed based
on the input and output parameters of these services. For atomic services, an
offer s matches a request r if: (a) the outputs offered by s match the outputs
requested by r, and (b) the inputs provided by r match the inputs required by
s. Consequently, to compute the degree of match for the inputs of r and s, we
find the best match for each input of s and we normalize based on the number
of input parameters of s:

domIN (r, s) =

∑
u∈INs

max
v∈INr

{sim(u, v)}

|INs|
(1)

Similarly, for the outputs of r and s, we find the best match for each output of
r and we normalize based on the number of output parameters of r:

domOUT (r, s) =

∑
u∈OUTr

max
v∈OUTs

{sim(u, v)}

|OUTr|
(2)

In Equations 1 and 2, INp and OUTp denote, respectively, the set of input
and output parameters of an atomic process p. The function sim computes the
similarity between two individual input or output parameters. There are two
basic alternatives for defining this function. The first one is to compare the
corresponding parameter classes u′ and v′ in the ontology O, as defined in the
OWL-S service descriptions. In this case, we compute the similarity based on
the number of common ancestors of these two classes:

sim(u, v) =
|{w ∈ O | u′ � w ∧ v′ � w}|

|{w ∈ O | u′ � w} ∪ {w ∈ O | v′ � w}| (3)

The second alternative is to compare the parameter names using some common
string similarity measure, such as cosine similarity or Jaccard similarity. A hybrid
similarity measure, combining both alternatives, can also be used [11].

The overall degree of match between r and s is then computed by aggregating
the partial degrees of match for the inputs and the outputs, e.g., as the (weighted)
average. This can be extended to include scores derived from additional matching
criteria.

Next, we discuss how to define the similarity between nodes corresponding to
control constructs. As shown by the description of the OWL-S control constructs
in Section 2, some of them have similar functionality, and therefore, replacing
one with another when searching for similar composite processes should incur a
lower penalty. We examine the following cases.

Graph-Based Matching of Composite OWL-S Services 33

Sequence and AnyOrder. Both of these control constructs specify the ex-
ecution of components in sequence; the difference between the two is that the
latter does not specify the exact order but instead it allows any possible ordering
(as long as there are no overlaps in the execution of two different components).
Hence, a node SQ in the graph of the requested process R can be matched with
a node AO in the graph of a candidate process P with a low effect on the simi-
larity of the two processes. This case, however, is not symmetric. If AO appears
in R and SQ in P , then the offered process is more restrictive than the requested
one; hence, the match should be allowed, but with a lower score.

Split and SplitJoin. Both of these control constructs specify the execution
of components in parallel; the difference is that the latter specifies also barrier
synchronization. Hence, it is permitted to match one of them with the other one
with low effect on the similarity of the two processes.

RepeatWhile and RepeatUntil. Both of these control constructs specify
the execution of the enclosed component in a loop; their difference consists in
whether the condition is checked at the beginning or at the end of each iteration.
Therefore, matching these two control constructs should have a low effect on the
process similarity.

Based on these observations, we define the similarity between two nodes de-
noting control constructs as follows:

domC(r, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.9 for the pair (SQ, AO)
0.5 for the pair (AO, SQ)
0.8 for the pairs (SP, SJ), (SJ, SP),

(RW, RU) and (RU, RW)
0 otherwise

(4)

These values hold when both of the nodes correspond either to the begin or to
the end part of a control construct; otherwise, the degree of match is zero.

3.2 Matching Process Structure

To take into account the workflow structure of composite services, we measure
the “overlap” in their graph representations. For this purpose, we compute their
maximum common subgraph. This technique is often used in other applications,
such as searching and mining databases of chemical structures, pattern recogni-
tion or computer vision [2].

Given a graph G = (V, E), a subgraph of G is a graph G′ = (V ′, E′) such that
V ′ ⊆ V and E′ = E ∩ (V ′ × V ′). Moreover, a graph G = (V, E) is isomorphic to
another graph G′ = (V ′, E′) if there exists a bijective function f : V → V ′ such
that for any edge e = (v1, v2) ∈ E there exists an edge e′ = (f(v1), f(v2)) ∈ E′.
Then, the maximum common subgraph MCS of two graphs G1 and G2 is defined
as the largest subgraph of G1 that is isomorphic to a subgraph of G2. Given the
above, we can define the degree of match between a request graph GR and a
candidate graph GP .

34 A. Cuzzocrea et al.

Definition 1. Let G be the maximum common subgraph between a request graph
GR and a candidate graph GP and f be the corresponding bijective function that
maps G to a subgraph of GP . The degree of match between GR and GP is defined as:

domG(GR, GP) =

∑
v∈VG

domV(v, f(v))

|GR|
(5)

where VG denotes the set of nodes of graph G, |GR| is the number of nodes
in the query graph and domV is a function that computes the degree of match
between pairs of graph nodes based on their type, as described in Section 3.1.
Notice that the MCS of two graphs is not necessarily unique; in that case, the
one with the highest degree of match is considered.

A problem that arises from this approach has to do with the computational
complexity, since the maximum common subgraph isomorphism problem is
known to be NP-hard. Therefore, reducing the number of maximum common
subgraphs to be computed becomes a critical issue. We address this problem
based on the following observation. From Equation 5, it can be seen that, in
order for two graphs to have a large degree of match, they should have a large
number of node pairs with high degree of match. Indeed, if there are only a few
nodes in GR that can be mapped with high similarity to nodes of GP , then the
sum in the numerator of Equation 5 can not be large. However, this is a neces-
sary but not sufficient condition, since the sum is computed over the nodes of
the identified maximum common subgraph. Hence, if the two graphs have many
similar nodes but a small maximum common subgraph, then the sum would
be again small. This is desired in order to prevent matches between composite
services that are different from a structural point of view.

To make the search process more efficient, we identify first those candidate
graphs that have nodes that can be mapped with high similarity to the nodes
of the query graph, and we select the top-k′ ones. This provides a list with
candidate matches for the query which contains also false positives due to the
reason explained previously. Then, we apply Equation 5 on this subset in order to
compute the actual degree of match and to obtain the final list of top-k matches,
after filtering out the false positives. The value of k′ has to be larger than k to
account for the presence of false positives, but it can still be significantly smaller
than the total number of candidate graphs to be examined.

To obtain the top-k′ list of candidate graph matches, we apply a process
based on the Hungarian algorithm (also referred to as the Kuhn-Munkres al-
gorithm) [13], which has also been applied in a similar way to provide an ap-
proximation for the graph edit distance [15]. The algorithm can be used to solve
the assignment problem in polynomial time and relies on a square cost matrix
{ci

j}, where each element ci
j represents the cost of assigning the job j to the

worker i. The output of the algorithm is the assignment minimizing the overall
cost. We use this to compute the optimal assignment between the nodes of the
query graph GR and those of the candidate graph GP . Based on the similar-
ity between graph nodes, computed as described in Section 3.1, we construct

Graph-Based Matching of Composite OWL-S Services 35

a |GR| × |GP | cost matrix, where the cost for each pair of nodes is calculated
as cu

v = 1 − domV (u, v). In the general case, the number of nodes of the two
graphs is not the same, which means that not every node of the one graph can
be mapped to a node of the other. To deal with this case, we introduce the
concept of ε-node. The assignment of a node v to an ε-node (resp. of an ε-node
to a node v) denotes that there is no mapping from (resp. to) node v. In other
words, this corresponds to removing (resp. adding) a node in the graph. To make
the cost matrix a square matrix, we introduce ||GR|− |GP || ε-nodes and we add
the corresponding rows or columns in the matrix, as needed. We also set the
cost for an assignment involving ε-nodes to 1. The optimal assignment between
nodes is provided by the output of the algorithm. The overall cost of the as-
signment is computed as the sum of the costs of the pairwise mappings. The
results are sorted in increasing order of cost and the top-k′ ones are selected.
For each one of these results, the degree of match to the query is then computed
according to Equation 5, as explained previously, in order to obtain the final
ranking.

4 Experimental Evaluation

Since existing approaches to service discovery focus on atomic services, we are not
aware of an appropriate benchmark for evaluating the task of composite service
matchmaking. To overcome this limitation, we have conducted experiments on
a synthetically generated dataset of composite OWL-S processes, which were
composed randomly from a set of publicly available real-world atomic OWL-S
services. We describe first our experimental setup and methodology and then we
present our results.

We implemented a synthetic generator for composite OWL-S processes. For
each process, the generator first selects randomly one control construct, and then
chooses how many atomic services or control constructs will be nested in it. This
number is bound by a minimum and maximum value specified in a configuration
file, which also defines the probability for selecting an atomic service or a given
control construct. The number of maximum nested levels for control constructs
is also specified. The atomic OWL-S services are selected from the OWLS-TC
v2 collection1, which is a publicly available collection of OWL-S services used
to evaluate and compare different matchmaking algorithms. It comprises 1007
services from 7 different domains. All these are atomic services, hence we could
not use the provided queries and their corresponding relevance sets to evaluate
our matchmaking algorithm for composite processes. Using the generator, we
created a dataset comprising the graph representations of 100 composite OWL-S
processes and 10 queries.

We have implemented the matchmaking algorithm described in Section 3 in
Java, reusing existing libraries whenever possible. In particular, we used the
OWL-S API2 for parsing the descriptions of OWL-S services in order to match
1 http://projects.semwebcentral.org/projects/owls-tc/
2 http://www.mindswap.org/2004/owl-s/api/

http://projects.semwebcentral.org/projects/owls-tc/
http://www.mindswap.org/2004/owl-s/api/

36 A. Cuzzocrea et al.

their inputs and outputs, the SimPack3 library for the computation of the maxi-
mum common subgraph and a Java implementation of the Hungarian algorithm4.

For each one of the 10 queries, we first ran the matchmaking process based on
the Hungarian algorithm to obtain a candidate list of matches, and we selected
the 20 graphs with the lowest assignment cost. These are graphs that contain
nodes with high similarity to the nodes of the query graph, but do not necessarily
match the structure of the requested process. Then, for each one of these top-20
candidate matches, we computed the degree of match to the query based on the
maximum common subgraph and we retrieved the top-10 results.

We compared the lists of top-10 graphs before (LH) and after performing
the last step (LMCS). Our purpose was to examine how much the former rank-
ing differs from the latter one, i.e., for how many graphs and how much the
ranking changes once the structural similarity between the query and candidate
processes is taken into account. For this purpose, we used Spearman’s footrule
distance [10], a commonly used distance measure for comparing different rank-
ings. In particular, we used the extended version proposed by Fagin et al. [6],
denoted in the following by F ∗, which handles also the case where the compared
rankings do not refer to the same set of items. This measure can be applied to
our case as follows:

F ∗(LH ,LMCS) =

∑
i∈G

|pos(i,LH) − pos(i,LMCS)|

maxF ∗ (6)

where G denotes the set of graphs in the two ranked lists and the function
pos(i,L) returns the position of i in the list L if i ∈ L and |L| + 1 otherwise.
maxF ∗ denotes the maximum possible value that the numerator can take, which
equals to n(n+1), assuming that the lists to be compared consist of n elements.
Higher values of this measure indicate higher difference between the rankings.
For two identical rankings the value is zero, whereas the maximum value 1 is
obtained when the two lists do not have any elements in common.

Fig. 2 shows the Spearman’s distance between the LH and LMCS rankings
for our 10 queries. As shown, in all cases the set of results and/or their ranking
is affected after the structural similarity is taken into account. This is because
some of the initial matches are identified as false positives and they are removed
or ranked lower.

We examine in more detail how the results change for queries 1 and 3, which
are the ones with the lowest and highest Spearman’s distance, respectively. Since
the query graphs are also contained in the dataset, the top-1 result in all cases is
an exact match with the query graph itself. Table 3 shows the graph IDs in the
LH and LMCS rankings for these two queries. Notice, for example, how graph
73, which does not appear in the LH list of query 1, is ranked 4th in the LMCS

for the same query, whereas graph 42, initially at the 5th rank, does not appear

3 http://www.ifi.uzh.ch/ddis/simpack.html
4 http://sites.google.com/site/garybaker/hungarian-algorithm/assignment

http://www.ifi.uzh.ch/ddis/simpack.html
http://sites.google.com/site/garybaker/hungarian-algorithm/assignment

Graph-Based Matching of Composite OWL-S Services 37

Table 2. Spearman’s distance for each
one of the 10 queries

Table 3. Top-10 graphs for queries 1
and 3

Query 1 Query 3
LH LMCS LH LMCS

9 9 27 27
10 62 3 62
62 10 83 73
6 73 71 96
42 6 96 57
22 22 28 99
89 35 95 9
35 46 73 35
30 89 76 53
3 83 53 10

(a) Query graph 1

(b) Rank 2 result in the LH list (c) Rank 2 result in the LMCS list

Fig. 1. A sample of query results

in the final list of the top-10 results. The differences are even more apparent for
the two result lists of query 3.

As an illustrative example, Fig. 1 shows the results at rank 2 returned by
the algorithm taking (Fig. 1c) and not taking (Fig. 1b) structural similarity into
account for query 1 (Fig. 1a). The result returned at rank 2 in the LMCS list is
clearly more similar to the query than the one returned in the LH list. Structural
similarity plays a major role in realizing that (c) is more similar to (a) than (b),
despite the fact that (a) and (b) share a higher number of nodes, and for this
reason result to a lower assignment cost for the Hungarian algorithm.

5 Related Work

Traditional service discovery approaches employ IR-based techniques, such as
keyword search on the textual descriptions of the services or matching of pa-
rameter names using common string similarity measures. A clustering algorithm

38 A. Cuzzocrea et al.

is used in [5] to group parameter names into semantically meaningful concepts,
which are used to identify similar services. An online search engine for Web ser-
vices is seekda5, which crawls and indexes service descriptions from the Web.
Users can search for services using keywords, tag cloud navigation or faceted
browsing, e.g., by country or service provider.

For services on the Semantic Web, logic-based matching is applied to increase
the accuracy of the discovery process [14,12]. A reasoner is used to infer equiv-
alence, subsumption or disjointness between the ontology classes describing the
compared service parameters and the type of match is characterized accord-
ingly as exact, plug-in, subsumes, subsumed-by or disjoint. In [1], the problem of
matching requested and offered parameters in Semantic Web service descriptions
is modeled as the one of matching bipartite graphs. Furthermore, the degree of
match can be computed as a continuous, normalized value in the [0, 1] inter-
val, by defining some similarity measure between classes in the ontology [4,18].
Hybrid solutions have also been proposed for combining IR and logic-based tech-
niques [11,9]. Ranking match results combining multiple matching criteria has
been proposed in [17].

However, all the aforementioned approaches deal with the discovery of atomic
services, ignoring the internal structure and components of a composite process.
Our approach addresses this limitation by proposing a graph-based matchmaking
algorithm for composite services.

Further work has dealt with the problem of workflow discovery. A search en-
gine for workflows has been presented in [16], which allows for keyword queries to
be issued over workflows. A workflow is retrieved if it contains components that
match the keywords in the query. myExperiment6 is another search engine for sci-
entific workflows. Again, search is based on keyword queries or tags. In [7], work-
flow descriptions are augmented with constraints derived from properties about
the workflow components used to process data, as well as the data itself. However,
structural similarity is also not taken into account during matchmaking. Finally,
[8] presents an approach and a tool to discover workflows that employs match-
ing at the workflow structure level. However, they consider generic workflows and
therefore they do not deal with how to match individual components or how to
handle control constructs. To the best of our knowledge, our method is the first
one to address the problem of discovering composite OWL-S services.

6 Conclusions and Future Work

We have proposed a graph-basedmethod for matching composite OWL-S services.
In contrast to existing approaches, which deal with atomic services, we focus on
the internal components and structure of composite services and we perform the
matching based on their process model. We employ a graph representation of com-
posite OWL-S services, where the nodes represent atomic services and OWL-S
control constructs. Based on this, the matching algorithm computes the degree of
5 http://seekda.com/
6 http://www.myexperiment.org/

http://seekda.com/
http://www.myexperiment.org/

Graph-Based Matching of Composite OWL-S Services 39

match between two composite processes based on both node similarity and struc-
tural similarity.

As future work, we plan to conduct a more thorough experimental evaluation,
and to extend our algorithm to consider conditions on graph nodes, as well as
graph indexing to increase search efficiency.

References

1. Bellur, U., Kulkarni, R.: Improved matchmaking algorithm for semantic web
services based on bipartite graph matching. In: ICWS, pp. 86–93 (2007)

2. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. Pattern Recognition Letters 19(3-4), 255–259 (1998)

3. Burstein, M., et al.: OWL-S: Semantic markup for web services. In: W3C Member
Submission (November 2004)

4. Cardoso, J.: Discovering semantic web services with and without a common ontology
commitment. In: IEEE SCW, pp. 183–190 (2006)

5. Dong, X., Halevy, A.Y., Madhavan, J., Nemes, E., Zhang, J.: Similarity search for
web services. In: VLDB, pp. 372–383 (2004)

6. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: SODA, pp. 28–36
(2003)

7. Gil, Y., Kim, J., Puga, G.F., Ratnakar, V., González-Calero, P.A.: Workflow match-
ing using semantic metadata. In: K-CAP, pp. 121–128 (2009)

8. Goderis, A., Li, P., Goble, C.A.: Workflow discovery: the problem, a case study from
e-science and a graph-based solution. In: ICWS, pp. 312–319 (2006)

9. Kaufer, F., Klusch, M.: WSMO-MX: A logic programming based hybrid service
matchmaker. In: ECOWS, pp. 161–170 (2006)

10. Kendall, M., Gibbons, J.D.: Rank Correlation Methods. Edward Arnold, London
(1990)

11. Klusch, M., Fries, B., Sycara, K.P.: Automated semantic web service discovery with
OWLS-MX. In: AAMAS, pp. 915–922 (2006)

12. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web
technology. In: WWW, pp. 331–339 (2003)

13. Munkres, J.: Algorithms for the assignment and transportation problems. Journal
of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)

14. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of web
services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342,
pp. 333–347. Springer, Heidelberg (2002)

15. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vision Comput. 27(7), 950–959 (2009)

16. Shao, Q., Sun, P., Chen, Y.: WISE: A workflow information search engine. In: ICDE,
pp. 1491–1494 (2009)

17. Skoutas, D., Sacharidis, D., Simitsis, A., Sellis, T.: Ranking and clustering web
services using multicriteria dominance relationships. IEEE T. Services Comput-
ing 3(3), 163–177 (2010)

18. Skoutas, D., Simitsis, A., Sellis, T.: A ranking mechanism for semantic web service
discovery. In: IEEE SCW, pp. 41–48 (2007)

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 40–52, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Design Non-recursive and Redundant-Free XML
Conceptual Schema with Hypergraph

(Extended Abstract)

Joseph Fong, Wai Yin Mok, and Haizhou Li

Department of Computer Science, City University of Hong Kong, Hong Kong
csjfong@cityu.edu.hk

Abstract. Data Type Definition(DTD) and XML Schema Definition(XSD) are
the logical schema of an XML model, but there is no standard format for the
conceptual schema of an XML model. Conceptual modeling is a very important
first step for constructing a database application. A conceptual model describes
a system that is being built. Abstract ideas are made concrete as the ideas are
represented in a formal notation. A formal conceptual model has a number of
advantages. First, it helps designers understand and document the application
under construction. Second, it facilitates development of algorithms that derive
the underlying database schemas. In this paper, a real world of interest is de-
scribed in a conceptual-model Hypergraph, which is a generic conceptual mod-
el. It is a Hypergraph because its hyperedges, or simply edges, are not
necessarily binary. Its vertices represent sets of objects and its edges represent
relationships among the vertices. Edges in a Hypergraph can be directed or un-
directed, depending on whether the underlying relationships are functional or
non-functional. As opposed to relational databases, in this paper we are inter-
ested in constructing XML database applications with “good” properties. Two
properties are particularly outstanding. First, the database should not have re-
dundant data because redundant data lead to multiple-update problem once a
single copy is modified. Second, since joins are expensive, the number of gen-
erated scheme trees, which are a generic hierarchical storage structure, should
be as few as possible in order to reduce the number of joins required to answer
a query. Users can draw a Hypergraph as XML conceptual schema with data re-
lationships among elements as a result of specified functional dependency and
multivalued dependency.

Keywords: Hypergraph, XML conceptual schema, XML Schema Definition,
Data Type Definition, Data Modeling Technique .

1 Introduction

Generating schemas for data storage from conceptual models has a long-standing
tradition. Its advantages are clear: (1) understandability, allowing both customer and
developer to communicate effectively about the data concepts to be included and the

 Design Non-recursive and Redundant-Free XML Conceptual Schema 41

constraints to be enforced and (2) formality, allowing algorithmic derivation of sche-
mas with good properties regarding the space needed to store the data and the time
needed to query and update the data.

Following this conceptual-model tradition, we seek for algorithms to derive good
XML schemas when the intended usage is for data storage in native XML databases
[2]. We consider XML data schemas to be “good” when they prevent redundancy and
are stored in as few schemas as possible. Preventing redundancy reduces storage
and allows for simple constraint-satisfying update checks, thus reducing both space
and time. Storing data in as few schemas as possible reduces query processing time
when joins across populated schema instances are necessary.

By using a new definition of Hypergraph acyclicity, we will show that a polynomi-
al-time algorithm exists that guarantees the generation of the fewest number of redun-
dancy-free scheme trees. Further, the algorithm needs neither the URSA nor the
BCNF assumption. Under URSA, there is a unique relationship among any set of
attributes.

We provide a new definition of acyclicity for Hypergraphs that leads to a quadrat-
ic-time algorithm that generates the fewest redundancy-free XML scheme trees from
an acyclic Hypergraph. At the same time, there is no loss of information in the sense
that every relation of any edge and every object of any vertex in the Hypergraph is
accounted for.

This research introduces Hypergraphs, which can be easily integrated into a data-
base design tool. If a Hypergraph is acyclic, the proposed algorithms will be able to
generate the fewest redundancy-free XML scheme trees that collectively cover the
Hypergraph. The resulting XML scheme trees can then be straightforwardly translated
into XML schemas, which define the underlying XML database. Hence, the proposed
algorithms have the potential to be integrated with a commercial computer-aided
XML database design tool.

Technically, a Hypergraph is a set of multisets of vertices where each vertex
represents a set of objects. An edge in an acyclic conceptual-model Hypergraph is a
set rather than a multiset. Figure 1 is an example of a Hypergraph based on the speci-
fied functional dependency and multivalued dependency from the users requirements:

In figure 1, FD (functional dependency) of Club determines Mascot and vice versa,
and MVD (multivalued dependency) of Club determines many Students, and a Club
determines many Activities. A circle means optional dependency. For example, a
Student and a Course may determine a Grade upon successful completion of the
course.

We first present several examples that help clarify our intentions. Example 1 gives
an illustrative acyclic Hypergraph along with some valid instance data. Examples 2
and 3 illustrate poor designs: respectively, a design with data redundancy and a frag-
mented design with more scheme trees than necessary. Example 4 illustrates a good
design, given the constraints of the Hypergraph in Figure 1.

Example 1: Figure 2 shows an acyclic Hypergraph H and a valid population of data
for H. The data for H states that club b1, whose members are students s2 and s3 and
whose mascot is m1, has activities a1 and a2. The data also states that professor p1
teaches courses c1 and c2, but professor p2 does not teach any course. And it states
that student s1 earned an A in both courses c1 and c2, student s2 earned a B in course
c2, but students s3 and s4 are new students who have not yet earned a grade for any
course, although s3, but not s4, has already joined a club.

42 J. Fong, W.Y. Mok, and H. Li

Fig. 1. A Hypergrph with data dependencies

Fig. 2. An acyclic Hypergraph and a valid population of data

Example 2: Figure 3 shows a scheme tree for the Hypergraph H in Figure 2 along
with the result of populating it with the instance data in Figure 2. However, the
scheme tree and its populated instance in Figure 3 are problematic. The FDs Course
→ Professor, Club → Mascot, Mascot → Club and the MVD Club →→ Activity are
constraints implied by the acyclic Hypergraph in Figure 2 that must hold. As a result,
the populated scheme tree in Figure 3 has redundant data. Since course c2 appears
twice and Course → Professor holds, both appearances of c2 must relate to professor
p1. Similarly, since club b1 appears twice and Club → Mascot and Club →→ Activi-
ty hold, b1’s mascot and activities must appear twice, and since mascot m1 appears
twice and Mascot → Club holds, m1’s club b1 must appear twice. In addition, profes-
sor p2, who does not teach any course, cannot even be included in the populated
scheme tree in Figure 3, which results in a loss of data.

Example 3: Figure 4 shows a collection of scheme trees for the Hypergraph H in
Figure 1 along with the results of populating them with the data from Figure 2. While
the scheme trees and their populated instances in Figure 5 do not have redundancy,
they unnecessarily fragment the data. This means we have to combine the data from
two or more populated scheme trees to answer some queries. For example, we have to
combine the data from the first and last populated scheme trees in Figure 4 to find the
students taking courses taught by professor p1.

 Design Non-recursive and Redundant-Free XML Conceptual Schema 43

Fig. 3. An incorrect design that leads to data redundancy

Fig. 4. An incorrect design that leads to fragmentation

Example 4: Figure 5 gives another alternative. It also has no redundancy in its three
populated scheme trees. With the constraints given in the Hypergraph H in Figure 1, it is
impossible to have fewer than three scheme trees and at the same time accommodate all
valid data instances for H and store them without introducing redundancy with respect to
the H-given FDs and MVDs and the H-given optional participation constraints.

Fig. 5. A correct design that avoids data redundancy and fragmentation

44 J. Fong, W.Y. Mok, and H. Li

2 Related Work

By way of comparison with the XML normalization work of others [1, 7, 8, 9, 10, 11,
12], we point out that our approach differs significantly. Not only have these other
researchers defined their FDs, and thus their normal forms, differently, the basis of
our approach is also different from theirs. As opposed to constraints specialized for
XML, which are defined in these papers, we rely on standard FD and Hypergraph-
generated MVD definitions–both of which can be straightforwardly derived from
conceptual-model Hypergraphs. Furthermore, the basis of our approach is conceptual
models, which have not been considered at all in other XML normalization work. We
believe our approach is more common in practice and in line with the tradition fol-
lowed by information system developers, who first create conceptual-model instances
and then generate database storage structures.

In [1], we prove that generating the fewest redundancy-free XML scheme trees
from Hypergraphs is NP-hard. An NP-hard result is clearly undesirable. As a result,
we consider placing restrictions on Hypergraphs that may lead to a polynomial-time
solution. We observe that if the universal-relation-scheme assumption [3] holds for a
Hypergraph H, if H is Graham-reduction acyclic [4], and if each hyperedge in H is in
BCNF [5], then we are able to show in [6] that finding the largest redundancy-free
XML scheme tree can be done in polynomial time. Continuing this work, we will
show that the problem has a quadratic-time solution if the Hypergraph is acyclic—an
O(n^2) solution where n is the number of edges in the Hypergraph. To motivate and
clarify this result, we provide examples and preliminaries about Hypergraphs, Hyper-
graph cycles, scheme trees, and Nested Normal Form. We then present an overview
of our algorithm; and in the future we will prove its complexity properties.

FIXT[15] used a Structural Graph to extract index and sub index information for
efficient XML transformation. Graph is one of the graphical views of the conceptual
schema of the XML model. However, the graph cannot easily be mapped to an XML
document. XTABLES[16] used the DTD Graph that mirrored the structure of DTD.
The graph consisted of elements, attributes, and operators. The function of DTD
Graph is to construct the desired relational schema. Lu et al[14] provided a sufficient
and necessary condition for the consistency between a DTD Schema and an XML
document. A syntactically correct DTD schema might not be consistent with its
corresponding XML document. They also proposed a linear algorithm to check the
consistency of DTDs in terms of the cyclic DTD graphs, since their algorithm is based
on the notion of DTD graphs.

3 Methodology

Two major components of this research are acyclic Hypergraphs and Nested Normal
Form. Acyclic Hypergraphs lead to a quadratic-time, algorithmic solution for generat-
ing the fewest possible redundancy-free XML scheme trees whereas Nested Normal
Form is a necessary and sufficient condition for preventing data redundancy in
scheme trees. Their definitions are presented as follows.

 Design Non-recursive and Redundant-Free XML Conceptual Schema 45

Definition 1. A path in a Hypergraph H is a sequence of the form V1, C1, E1, C2,
V2, . . . , Vi, C2i−1, Ei, C2i, Vi+1, . . . , Vn, C2n−1, En, C2n, Vn+1, where (1) n ≥ 1,
(2) V1, . . . , Vn are vertices of H, (3) E1, . . . , En are edges of H, (4) C1, . . . , C2n
are edge-vertex connections of H, and (5) each Ci in the sequence where i is odd con-
joins its preceding vertex with its succeeding edge and where i is even conjoins its
preceding edge with its succeeding vertex. A path is simple if its vertices are all
distinct.

Definition 2. A cycle in a Hypergraph H is a path in H with V1 = Vn+1, where V1 is
the first vertex of the path and Vn+1 is the last, and with every other vertex, edge, and
edge-vertex connection unique.

Definition 3. A Hypergraph is acyclic if it does not have a cycle.

Example 5: The Hypergraph in Figure 2 is acyclic.
Nested Normal Form (NNF) [13] is a necessary and sufficient condition for remov-

ing data redundancy with respect to MVDs and FDs that hold for scheme trees. Since
one of our goals is to generate redundancy-free scheme trees, they must all be in
NNF. We now proceed to define NNF.

Let T be a scheme tree. Aset(T) denotes the set of attributes of T. Let N be a node
in T. Notationally, Ancestor (N) denotes the union of attributes in all ancestors of N,
including N. Similarly, Descendent(N) denotes the union of attributes in all descen-
dants of N, including N. Each edge (V,W) in T, where V is the parent of W, denotes
an MVD Ancestor (V) →→ Descendent(W). We use MVD(T) to denote the set of all
MVDs represented by the edges in T. By construction, each MVD in MVD(T) is
satisfied in the total non_nesting of any populated instance of T.

Definition 4. Let U be a set of attributes. Let M be a set of MVDs over U and F be a
set of FDs over U. Let T be a scheme tree such that Aset(T) ⊆ U. Let D1 be the set of
MVDs that hold for Aset(T) with respect to M ∪ F, and let D2 be the set of FDs that
hold for Aset(T) with respect to M ∪ F. T is in NNF with respect to M ∪ F if the
following conditions are satisfied.

1. MVD(T) ∪ D2 is equivalent to D1 ∪ D2 on Aset(T).
2. For each nontrivial FD X → A ∈ D2, X → Ancestor (NA) also holds with respect

to M ∪ F, where NA is Stethe node in T that contains A.

When NNF’s Condition 1 is violated, there is a populated scheme tree that has redun-
dancy with respect to an MVD that holds. When NNF’s Condition 2 is violated, there
is a populated scheme tree that has redundancy with respect to an FD that holds.

Example 6: The scheme trees in Figures 4 and 5 are all in NNF whereas the scheme
tree in Figure 3 is not. To see the violations, let T be the scheme tree
S(BM(A)*)*(CGP)* in Figure 3 where S stands for Student, B for Club, and so on.
This means that Aset(T) = SBMACGP and MVD(T) = {S →→ BMA, S →→ CGP,
SBM →→ A}. The MVDs and FDs that hold for T are {B →→ A | M | SCGP, S
→→ BMA | CGP, C →→ P | SGBMA} ∪ {B → M, M → B, SC → G, C → P}.
Because B →→ A does not follow from MVD(T) and the FDs that hold for T, NNF’s
Condition 1 is violated. Consequently, there is a populated instance of T that has

46 J. Fong, W.Y. Mok, and H. Li

redundant data with respect to B →→ A. The populated scheme tree in Figure 3 is
one such instance demonstrating the redundancy caused by B →→ A. In addition, C
→ P is an FD that holds for T but C /→ SCGP. As a result, NNF’s Condition 2 is also
violated, and therefore there is a populated instance of T that has redundant data with
respect to C → P. The populated scheme tree in Figure 3 also demonstrates the re-
dundancy caused by C → P.

Step 1: Create Hypergraph
In this step, we create Hypergraph in Figure 1 according to user requirements in terms
of functional dependencies and multivalued dependency. Many algorithms derive
database schemas from various conceptual models. A common goal of these algo-
rithms is to prevent data redundancy in the generated database schemas, and also to
keep the number of schemas to a minimum. In addition to satisfy academic curiosity,
many of these algorithms are mature enough to be integrated into commercial data-
base design tools. This paper is no different. Beginning with a Hypergraph, which is a
generic conceptual model, we develop algorithmic solutions that are able to generate
the fewest redundancy-free XML scheme trees if the Hypergraph is acyclic. Further,
the proposed algorithms have a quadratic-time complexity. Coupled with our previous
results, this research completes the picture that if the Hypergraph is cyclic, the
problem is NP-hard; and if the Hypergraph is acyclic, then quadratic-time algorithms
exist. Because of its many advantages, the proposed algorithms would be a great ben-
efit to XML database design tools. The following acyclic Hypergraph serves as a
running example:

Fig. 6. A sample acyclic Hypergraph

Step 2: Form equivalence classes
Given an acyclic Hypergraph H, we begin by forming equivalence classes of edges
based on functional equivalence of FDs given in H. We then observe that the set
of vertices in each of the equivalence classes is in 4NF so that they are all redundan-
cy-free with respect to the FDs and MVDs of H. We further observe that each equiva-
lence-class vertex set is a largest possible set of vertices that does not violate 4NF.
The set of vertices in each equivalence class constitutes a “degenerate” scheme tree
(“degenerate” in the sense that it has only a single root node consisting of the vertices
of the edges in the equivalence class). We then observe that an upper bound for the
number of fewest redundancy-free scheme trees that collectively cover H is less than
or equal to the number of equivalence classes of edges of H. This forest
of degenerate scheme trees could be minimal, but normally is not. Our goal is to

 Design Non-recursive and Redundant-Free XML Conceptual Schema 47

combine the equivalence classes of H together into as few scheme trees as possible
while retaining the redundancy-free property. In the same example, table 1 shows its
equivalent classes.

Table 1. The equivalence classes of the Hypergraph in Figure 6

Edge Equivalence Class Equivalence-Class Vertex Set
V5V7 → V6V8 {V5V7 → V6V8} V5V6V7V8

V2 → V1 {V2 → V1} V1V2
V3 → V4 {V3 → V4} V3V4
V12V14 {V12V14} V12V14

V11V12 → V13 {V11V12 → V13} V11V12V13
V9 ↔ V10 {V9 → V8, V9 → V2, V9 ↔

V10, V10 → V3, V10 → V11}
V2V3V8V9V10V11

V16 → V9 {V16 → V9} V9V16
V15V16 {V15V16} V15V16
V16V17 {V16V17} V16V17

Step 3: Generate partial ordering
After generating equivalence classes, we organize these degenerate equivalence-class
scheme trees into a partial ordering ≺EqC where Ci ≺EqC Cj for two distinct equiva-
lence classes Ci and Cj if Ei ∈Ci and Ej ∈Cj such that Ei → Ej. This partial ordering
indicates which equivalence classes can potentially be combined in parent-child
relationships to form larger redundancy-free scheme trees. It is easy to observe that
creating the Hasse diagram for the partial ordering ≺EqC takes at most quadratic-time
in terms of the number of edges in the Hypergraph. In the same example, we generate
partial ordering as shown below:

Example 7: Based on functional equivalence of the FDs in the Hypergraph in Figure
5, Table 1 lists its equivalence classes of edges. The Hasse diagram for the ≺EqC
partial ordering on the equivalence classes is shown in Figure 7.

Fig. 7. The Hasse diagram for the ≺EqC partial ordering for the Hypergraph in Figure 6

48 J. Fong, W.Y. Mok, and H. Li

Step 4: Build Transitional Tree
The next step is to construct transitional trees from the Hasse diagram for the ≺EqC
partial ordering. However, this is more difficult than one might at first think. Several
requirements must be met. (1) Eventually the transitional trees will be transformed
into scheme trees. Hence, we must ensure that the resulting scheme trees are in NNF.
(2) There cannot be any loss of information. This means that every relation of any
edge and every object of any vertex in the given acyclic Hypergraph must be ac-
counted for. (3) The construction process must be done in polynomial-time.

We now give an outline on constructing transitional trees.

(1) Form a set G of maximal equivalence classes with respect to ≺EqC.
(2) Initialize a set F of transitional trees to empty. Then, for each element C of G, if C
has zero non-key connecting vertex, enter C into F. If C has exactly one non-key
connecting vertex V, test if V can become a root node. If yes, enter V into F; other-
wise, enter C into F.
(3) Test if a remaining maximal equivalence class in the Hasse diagram for ≺EqC can
become a child node of a node in a transitional tree in F. If the answer is yes, make it
a child node. Keep testing and adding the remaining maximal equivalence classes to
the transitional trees in F until the answer is no for all remaining maximal equivalence
classes. When an equivalence class is added as a child node to a transitional tree,
remove it from the Hasse diagram.
(4) Go back to (1) until there is no more equivalence class left in the Hasse diagram.
These four steps of (1) (2) (3) and (4) outline a very high-level overview for con-
structing transitional trees. Much detail has been omitted. For example, testing if an
equivalence class can become a child node is fairly complicated and therefore we
cannot present its entirety in this proposal. It suffices, however, to say that we need to
test if every edge in the equivalence class can be joined completely starting with the
designated connecting vertex and every vertex is covered in either the equivalence
class being tested or in some other equivalence classes.

Example 8: Four transitional trees are constructed according to our algorithm and
they are shown in Figure 8. They will be transformed into scheme trees.

Fig. 8. The transitional trees constructed from the Hasse diagram in Figure 7

 Design Non-recursive and Redundant-Free XML Conceptual Schema 49

This step is fairly straightforward. In the same example, it simply turns a
transitional tree into a scheme tree. In the future, we will prove that the resulting
scheme trees are in NNF and thus are redundancy-free, and the number of generated
scheme trees is also minimal.

Fig. 9. The NNF scheme trees transformed from the transitional trees in Figure 8

Ea Ga

X

Fig. 10. Data semantics of XML Conceptual Schema in Hypergraph

50 J. Fong, W.Y. Mok, and H. Li

Example 9: The resulting NNF scheme trees are shown in Figure 9. With the con-
straints given in the Hypergraph H in Figure 6, it is impossible to have fewer than
four redundancy-free scheme trees that collectively cover H.

Step 5: Draw Hypergraph for XML Conceptual Schema
Many researchers have elaborated their views on conceptual schemas of an XML
model such as XML trees[17] and DTD Graphs[16]. Most papers used the XML tree
to show not only elements, but also attributes and data. The advantage is that a reader
can analyze all components of an XML schema in a tree diagram. The disadvantage is
that the tree is not easily generated and cannot represent many data semantics. For
example, the DTD Graph proposed by IBM’s XTABLE[16] is a conceptual schema
for an XML model, but it cannot show data semantics. We propose using Hypergraph
for representing a conceptual schema of an XML model because it can show data
semantics, and it is simple enough for end-user computing. Figure 10 the symbols of a
Hypergraph, with various data semantics such as cardinality, generalization, participa-
tion, aggregation and categorization.

By adding an artifact root element on top of the derived trees in Hypergraph, we
can form a Hypergraph for XML conceptual schema as shown in Figure 11.

V5V6V7

V8

V11

V1V2

V16

V15 V17

V3V4 V12

V5V6V7

V8

V14 V11V13

Root

Fig. 11. The derived Hypergraph for XML conceptual schema

4 Conclusion

A log of work have been proposed for the graphical representation of XML. For ex-
ample, Salim et al[18][19] used UML to represent the expressiveness of XML schema
in XSD. However, their approach is reverse engineering XML logical schema XSD
into XML conceptual schema UML. Their method lacks of designing an XML con-
ceptual schema from the beginning, and then map into an XML logical schema. Fur-
thermore, UML is not in tree structure as XML database. The contribution of this
paper is to introduce Hypergraph in tree structure to design an XML conceptual

 Design Non-recursive and Redundant-Free XML Conceptual Schema 51

schema, which can map into an XML logical schema in XSD or DTD without recur-
sive and redundancy, and above all, with many data semantics. The feature of “ref” in
Hypergraph can be implemented by ID and IDREF in DTD, as shown in the dash
lines in Figure 11, which is much more dynamic than UML. The future research is to
derive all data semantics that are possible under an Hypergraph.

References

[1] Mok, W.Y., Embley, D.W.: Generating compact redundancy-free XML documents from
conceptual-model Hypergraphs. IEEE Transactions on Knowledge and Data Engineer-
ing 18(8), 1082–1096 (2006)

[2] Bourret, R.: XML database products (March 2007),
http://www.rpbourret.com/xml/XMLDatabaseProds.htm

[3] Sagiv, Y.: A characterization of globally consistent databases and their correct access
paths. ACM Transactions on Database Systems 8(2), 266–286 (1983)

[4] Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville
(1983)

[5] Codd, E.F.: Recent investigations in relational data base systems. In: IFIP Congress, pp.
1017–1021 (1974)

[6] Mok, W.Y., Fong, J., Embley, D.W.: Extracting a largest redundancy-free xml storage
structure from an acyclic Hypergraph in polynomial time. Information Systems 35(7),
804–824 (2010)

[7] Chen, Y., Davidson, S.B., Hara, C.S., Zheng, Y.: RRXF: Redundancy reducing XML sto-
rage in relations. In: Proceedings of 29th International Conference on Very Large Data
Bases, Berlin, Germany, September 9-12, pp. 189–200 (2003)

[8] Libkin, L.: Normalization theory for XML. In: Proceedings of the 5th International XML
Database Symposium, Vienna, Austria, September 23-24, pp. 1–13 (2007)

[9] Schewe, K.-D.: Redundancy, dependencies and normal forms for XML databases. In:
Proceedings of the Sixteenth Australasian Database Conference, Newcastle, Australia,
January 31-February 3, pp. 7–16 (2005)

[10] Vincent, M.W., Liu, J., Liu, C.: Strong functional dependencies and their application to
normal forms in XML. ACM Transactions on Database Systems 29(3), 445–462 (2004)

[11] Wang, J., Topor, R.W.: Removing XML data redundancies using functional and equality-
generating dependencies. In: Proceedings of the Sixteenth Australasian Database Confe-
rence, Newcastle, Australia, January 31-February 3, pp. 65–74 (2005)

[12] Yu, C., Jagadish, H.V.: XML schema refinement through redundancy detection and
normalization. The VLDB Journal 17(2), 203–223 (2008)

[13] Mok, W.Y., Ng, Y.-K., Embley, D.W.: A normal form for precisely characterizing redun-
dancy in nested relations. ACM Transactions on Database Systems 21(1), 77–106 (1996)

[14] Lu, S., et al.: On the Consistency of XML DTDs. Data of Knowledge Engineering 52,
231–247 (2005)

[15] Xiao, J., et al.: FIXT: A Flexible Index for XML Transformation. In: Zhou, X., Zhang,
Y., Orlowska, M.E. (eds.) APWeb 2003. LNCS, vol. 2642, pp. 144–149. Springer,
Heidelberg (2003)

[16] Funderburk, J.E., et al.: XTABLES: Bridging Relational Technology and XML. IBM
Systems Journal 41(4), 616–641 (2002)

52 J. Fong, W.Y. Mok, and H. Li

[17] Fong, J., Cheung, S.K., Shiu, H.: The XML Tree Model - Toward an XML Conceptual
Schema Reversed from XML Schema Definition. Data and Knowledge Engineer-
ing 64(3), 624–661 (2008)

[18] Salim, F.D., Price, R., Indrawan, M., Krishnaswamy, S.: Graphical representation of
XML schema. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS,
vol. 3007, pp. 234–245. Springer, Heidelberg (2004)

[19] Salim, F.D., Price, R., Krishnaswamy, S., Indrawan, M.: UML Documentation Support
for XML Schema. In: Proceedings of the 2004 Australian Software Engineering Confe-
rence, p. 211. IEEE Computer Society, Los Alamitos (2004)

Classifying Graphs Using Theoretical Metrics:
A Study of Feasibility

Linhong Zhu1, Wee Keong Ng2, and Shuguo Han1

1 Institute for Infocomm Research, Singapore
{LZHU,SHAN}@i2r.a-star.edu.sg

2 Nanyang Technological University, Singapore
{AWKNG}@ntu.edu.sg

Abstract. Graph classification has become an increasingly important
research topic in recent years due to its wide applications. However, one
interesting problem about how to classify graphs based on the implicit
properties of graphs has not been studied yet. To address it, this paper
first conducts an extensive study on existing graph theoretical metrics
and also propose various novel metrics to discover implicit graph prop-
erties. We then apply feature selection techniques to discover a subset of
discriminative metrics by considering domain knowledge. Two classifiers
are proposed to classify the graphs based on the subset of features. The
feasibility of graph classification based on the proposed graph metrics
and techniques has been experimentally studied.

1 Introduction

The graph representations with a collection of nodes and edges support all as-
pects of the relational data analysis process. For instance, graphs can be used to
represent chemical compound structures, program dependencies, protein-protein
interactions, relationships in online social media and so on. In despite of the
flourish of graph data, there is lack of efficient approaches for various classical
graph theoretical problems. Among those, how to build an efficient automated
graph classification models and identify discriminative graph features that sepa-
rate different graph classes has valuable applications. For example, biologists are
interested in studying whether a set of protein (a subgraph in protein-protein
interaction network) is functional or not [11].

One conventional solution to classify graphs is first to compute the graph sim-
ilarity using various measures such as graph-edit distance [3], maximum common
subgraph [9] and canonical sequence similarity [2], and then decide whether they
belong to the same cluster or not based on a pre-defined similarity threshold.
Another solution is that one finds subgraph patterns as features [11,15,16,23] and
then represents each graph as a feature vector. In this way, the graph classifica-
tion problem is converted into the classification of traditional high dimensional
data points.

We refer the above two approaches as the isomorphism-based approach. They
generally assume a hypothesis to verify the similarity of two graphs: If two

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 53–64, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

54 L. Zhu, W.K. Ng, and S. Han

graphs are similar in size/shape or they share a set of subgraph patterns, then
they belong to the same cluster. As a result, graphs with the same cluster only
differ from each other by a small number of nodes or edges. This hypothesis
guarantees high accuracy for classification tasks for some particular domains,
such as in the chemical data where size/shape differences of chemical component
are small. However, this hypothesis is too restrictive to obtain outputs that are
not similar in structure but highly related to each other, which can advance some
domain analysis to gain significant benefits. As an example, in social network
analysis, one interesting task is to predict a user’s gender by analyzing his/her
connections to others. To address it, one first extracts a subgraph for each user
induced by the user and his/her friends. Then the gender prediction problem
is converted to graph classification problem. In this application, graphs for the
same gender extremely vary in both size and the structure. However, they do
share some implicit graph properties. For example, neighborhood graph of a
female better fits the small-world phenomenon (popularly known as six degrees
of separation [14]) than that of a man.

In lieu of the above issue, this paper studies graph classification problem
according to a more general hypothesis, i.e., if two graphs are similar in a set
of diverse properties, then they belong to the same class. We call it “property-
based graph classification”. More specifically, we define the preliminary concept
of property-based graph classification as follows.

Problem 1. (Property-based Graph Classification) Given a graph G= (V , E)
where V is a (finite) set of vertices and E is a (finite) set of edges, we as-
sume that its properties could be measured by a set of graph theoretical-based
metrics (More details about graph metrics will be given in Section 2.1). Then the
property-based graph classification problem is to induce a mapping f(x): χ →
{-1, 0, 1, . . ., γ}, from giving training samples T={< xi, yi >}L

i=1, where xi ∈ χ
represents properties of a graph G and yi ∈ {-1, 0, 1, . . ., γ} is a class label asso-
ciated with training data, and L is the size of training samples. If yi ∈ {−1, 1},
we denote it as a binary property-based graph classification problem.

The objectives of our work consist of two parts: (1) Investigating a set of graph
theoretical metrics to facilitate graph classification; (2) Proposing an efficient
and effective classification method for the property-based graph classification
problem. The challenge lies not only in enumerating graph metrics, but also in
selecting suitable metrics on the basis of domain knowledge. We address the
challenges as follows:

– We give an extensive survey about the most important and diverse graph
metrics that have been proposed and used in a wide range of studies in
multiple disciplines. We also propose five novel metrics, non-tree density, cut
vertex density, connectivity, vertex compression ratio and edge compression
ratio to further discover implicit properties.

– Based on domain knowledge, we present an objective of feature selection
combining with a greedy algorithm to perform discriminative feature subset
selection.

Classifying Graphs Using Theoretical Metrics: A Study of Feasibility 55

– We explore an application of graph classification using graph metrics. We
design two classifiers based on k-nearest neighbor classifier and reverse k-
nearest neighbors classifier to verify the feasibility of graph classification
using graph theoretical metrics.

The organization of this paper is as follows: In Section 2, we enumerate a num-
ber of graph theoretical metrics and use them to transform graphs into feature
vectors. We discuss how to build up graph classifiers in Section 3. In Section 4,
we perform experiments to verify the feasibility of our approach. Finally, We
review related work in Section 5 and conclude this work in Section 6.

2 Representing Graphs with Theoretical Metrics

2.1 Graph-Theoretical Metrics

In the following definitions of metrics for graph properties, the definitions apply
both to undirected and directed graph unless otherwise specified. In addition,
we also provide the related references if they are not first proposed by this work.

For easy representation, we use G to denote a single graph and G to denote a
set of graphs. We simply use |V | to represent number of nodes and |E| to rep-
resent number of edges. Given two nodes u, v ∈ V , σ(u, v) denotes the distance
(the length of shortest paths) from u to v. We use N(v, G) to denote a set of
neighbors of v in graph G.

Definition 1. (Global Clustering Coefficient [13]) The global clustering coeffi-
cient is defined as: GCC(G)= 3Δ

|(u,v,w):u,v,w∈V,u,v,wis connected| , where Δ is number
of triangles.

Global clustering coefficient is based on triplets of nodes. A triplet is three nodes
that are connected by edges. A triangle consists of three closed triplets, one
centrad on each of the nodes. The global clustering coefficient is 3 × triangles
over the total number of triplets.

Definition 2. (Characteristic Path Length [5]) Characteristic path length is de-
fined as CPL(G) =

∑
u,v σ(u,v)

|V |∗(|V |−1) .

While characteristic path length is a measure of the average distance between
any two nodes in the graph, global efficiency is a measure of the rate at which
nodes can be reached from each other in the graph. It is approximately inversely
related to characteristic path length.

Definition 3. (Global Efficiency [20]) Global efficiency of a graph is defined as

GE(G)=
∑

u,v
1

σ(u,v)

|V |∗(|V |−1) .

Definition 4. (Degree Distribution [8]) The degree distribution of a graph is a
function P : [0, . . ., kmax] → [0, 1], where P (k) is the fraction of the vertices in
G that have degree k for 0< k < kmax, and kmax is the largest degree in G.

56 L. Zhu, W.K. Ng, and S. Han

Definition 5. (Coreness [17]) The k-core of G is the largest subgraph Gk of G
such that every vertex in Gk has at least k neighbors in Gk, i.e., ∀v ∈ V (Gk),
|N(v, Gk)| ≥ k.

Definition 6. (Density) Given a graph G, we define its graph density as:

dg =

⎧⎨
⎩

|E|/|V |(|V | − 1) if G is directed,

2|E|/|V |(|V | − 1) if G is undirected.

In addition, we propose two more density evaluation metrics, non-tree density
and cut vertex density. Non-tree density dnt, is defined as |T |/|E|, where T is
the set of non-tree edges, i.e., remaining edges after removing a spanning tree
of a graph. Cut vertex density dc = |Vc|/|V | (where Vc is the set of cut vertices;
i.e., articulation points) is the proportion of cut vertices.

In the following metrics are restricted to directed graphs only.

Definition 7. (Girth [7]) The girth of a graph is the length of the shortest cycle
(of length >3) in the graph.

Definition 8. (Circumference [7]) The circumference of a graph is the length of
the longest cycle (of length >3) in the graph.

Definition 9. (Connectivity) Connectivity |C| is the number of strongly con-
nected component(s).

Definition 10. (Vertex Compression Ratio) Vertex compression ratio
rv=|V ∗|/|V | (where |V ∗| is number of vertices in condensed graph1) is the pro-
portion of condensed graph vertices.

Definition 11. (Edge Compression Ratio) Similar to Def. 10, edge compression
ratio re=|E∗|/|E| (where |E∗| is number of edges in the condensed graph) is the
proportion of condensed graph edges.

Definition 12. (Acyclicity) de = |Ec|/|E| (Ec is the set of distinct edges that
appear in a cycle) is a measure of the number of edges participating in one or
more cycles. If there is no cycle, then |Ec| = 0.

2.2 Feature Selection and Graph Transformation

A graph can be viewed as a collection of features on the basis of above metrics.
We may simply normalize the values of each features into the range [0, 1] and
transform each graph into a feature vector. In the above setting, we just assume
that each metric is equally important. In reality, however, it can not be true
especially when considering applications in a specific domain. For example, in
1 We say G∗=(V ∗, E∗) is a condensed graph of G if each vertex v∗

i ∈ V ∗ corresponds
to a strongly connected component Ci in G, and each edge (vi, vj) ∈ E∗ if and only
if there is at least one edge u, v ∈ E such that u ∈ Ci and v ∈ Cj .

Classifying Graphs Using Theoretical Metrics: A Study of Feasibility 57

social network analysis, a small-world network is mainly characterized by two
metrics, namely, a shorter characteristic path length and a a higher clustering
coefficient when compared to random graphs. Then a problem comes: given
those aforementioned metrics, how can one select a subset of them to reduce the
computation cost and achieve good classification performance? We refer it as a
discriminative feature selection problem.

In the following, we adopt similar technology from GSSC [12], to formulate the
feature selection as an optimization problem. Next we discuss possible selection
criteria and propose a greedy algorithm to solve the optimization problem. For
simplicity, both term “feature” and “metric” are used to mention any of the
aforementioned metrics. In addition, we use f to denote a single feature and
F to denote a feature set. The numeric value of any feature over a graph G is
denoted as f(G), and the combination of values of a set of features F over a
graph G is denoted as a vector

−−−→
F(G).

Mathematically, discriminative feature selection problem could be formulated
as:

Fd = arg max
T ⊆F

{R(T)} (1)

where R(F) is a measurement of discriminative over a set of features F .
We investigate two principles that optimal features should have: represen-

tativeness and separability. This guides us to design a suitable discriminative
measurement R. Separability means that graphs should be able to be sepa-
rated from each other based on values of features; while representativeness is
important to avoid selecting two highly correlated features. Both separability
and representability are desirable in feature selection. Hence, we define R as a
multi-criteria measurement:

R(F) = ω1ρ(F) − ω2
1
|F|

∑
fi,fj∈F

corr(fi, fj) (2)

where ρ(F) denotes separability ratio of features set F , ω1 and ω2 are smoothing
weights, and corr(fi, fj) denotes correlation of two features fi and fj .

Unfortunately, both separability ratio and feature correlation can be highly
domain-dependant. As an example, we provide one possible design for measure-
ments ρ(F) and corr(fi, fj) based on information of labeled background graphs.
More specifically, let clustering C = {C1, . . . , Cγ} denote the information of la-
beled background graphs, i.e., a cluster Ci ={G1,. . ., Gn} is a set of graphs that
share the same class label yi ∈ {-1, 0, 1, . . .γ}. Then given clustering C, the
separability ratio of a set of features F , is defined as

ρ(F | C) = max
C∈C

⎧⎨
⎩log

∑
Gi∈C ||

−−−−→
F(Gi)||∑

Gj ∈C ||
−−−−→
F(Gj)||

⎫⎬
⎭ (3)

It is clear that the larger the value of ρ(F | C), the better “worst-case” class
separable capability feature set F is.

58 L. Zhu, W.K. Ng, and S. Han

Algorithm 1. Discriminative Feature Selection.
Input: a clustering C of labeled graphs, a feature set F
Output: a subset of features Fd

1: T = ∅, flag=true;
2: while flag

3: fk = arg maxf∈(F\T){R(T ∪ {f} | C) − R(T | C)};
4: if R(T ∪ {fk} | C) − R(T | C) > 0
5: T =T ∪ {fk};
6: else
7: flag=false;
8: return T ;

Similarly, correlation of two features fi and fj given clustering C, is defined
as

corr(fi, fj | C) =
|X − E(X)||Y − E(Y)|

σXσY
(4)

where the values of feature fi and fj over graphs in C are denoted as X and Y
respectively.

With respect to Equ. 1, we propose a greedy algorithm to solve it, as shown
in Algorithm 1, we start with an empty set T = ∅, and in step k, iteratively add
a feature fk such that it maximizes the margin gain

fk = arg max
f∈(F\T)

{R(T ∪ {f} | C) − R(T | C)} (5)

Now given a graph G in a specific domain, we represent it as a feature vector
using discriminative features. We also use the Euclidean distance to measure the

dissimilarity of two graphs: dist(Gi, Gj) =
√
‖
−−−−→
F(Gi) −

−−−−→
F(Gj)‖2.

3 Graph Classification

In the previous section, we have discussed the features used to describe and
represent graphs. In this section, with graph representation using theoretical
metrics, we explore its potential in the domain of graph classification. Once
graphs are converted into feature vector space, one can use traditional classifier
to classify graphs. As a start, we build two classifiers which are similar to distance
weighted knn classifier. Before we present the details of two classifiers, first let
us introduce the notation of “knn” and “rknn”.

For query graph G and the set of background graphs G, the set of k-nearest
neighbors of G is the smallest set knn(G) such that knn(G)⊆ G, |knn(G)| ≥ k,
and ∀Gi ⊆ knn(G), ∀Gj ⊆ (G\knn(G)): dist(G, Gi)<dist(G, Gj). Similarly,
we define the set of reverse k-nearest neighbors (rknn [18]) of a graph G as
rknn(G) = {Gi ⊆ G | G ⊆ knn(Gi)}.

Note that k-nearest neighbors and reverse k-nearest neighbors are related but
not exactly the same concept. We illustrate more using the following examples.

Classifying Graphs Using Theoretical Metrics: A Study of Feasibility 59

G1
G2

G4

G3

G2

G6
G7G5

G4

G3
G1

G9

(a) (b)

Fig. 1. An example of knn and rknn

Algorithm 2. Classifier

Input: a set of tuples T =< y, {
−−−→
F(G)} > and a vector

−→F ′ representing query graph
Output: a class label y′ representing classification of

−→F ′

1: if knn classifier
2: Tnn=knn(

−→F ′, T);
3: else Tnn=rknn(

−→F ′, T);
4: initializing an array “vote” with length equal to number of classes γ;
5: for each tuple t ∈ Tnn

6: vote[t[1]]+= 1

dist(
−→F ′,t[2])+ε

/∗ we use t[1] to denote the first entry of tuple t (i.e., the class label)
and t[2] to denote the second entry of tuple t (i.e., a feature vector) ∗/
7: return y′=arg maxi= 1 to γvote[i]

Example 1. Let us consider an example shown in Figure 1. Figure 1(a) shows
4 graphs G1, G2, . . ., G4, where each graph is assigned with a circle covering its
two nearest neighbors. For example, 2nn(G1)={G2, G3} and both G2 and G3 are
enclosed in a circle with center G1. Note that Gi ∈knn(Gj) does not necessarily
imply Gi ∈rknn(Gj): G1 ∈2nn(G4)={G1, G3}, but G1 	∈R2nn(G4)={G3}. In
addition, for any given query G with k >= 1, knn(G)	= ∅; while the set of
reverse k-nearest neighbors rknn(G) might be empty. As shown in Figure 1(b),
2nn(G9)={G1, G7}, but r2nn(G9)=∅. �
From an abstract point of view, given a query graph, in the knn classifier,
the algorithm finds the k most similar graphs in the training graph set. Then
the weighted-based majority vote by the k most similar graphs, decides the
classification. A rknn classifier is built in a similar way except that the weighted-
based majority vote is done by the reverse k nearest neighbors.

The details are shown in Algorithm 2. The feature vector representation of the
query graph

−→F ′ and sets of training feature vectors from each class y are fed to
the classifier. Next, for

−→F ′, we perform either knn or rknn search to find a set
of closest feature vectors and their class labels in the training set, denoted as Tnn

(lines 1–3). After that, a distance weighted score is calculated for classification
(lines 4–7). In line 6, we use a very small number ε as a smoothing factor to avoid
unbalance when the distance dist(

−→F ′, t[2]) is equal to 0. Note that for rknn

60 L. Zhu, W.K. Ng, and S. Han

Table 1. Statistics of graph data

Class # of graphs # of real graphs average |V | average |E| average dg

dual 139 22 11973 48481 0.138874
interval 84 10 19996 106001 0.009191

hopi 77 8 4886 16575 0.155612

classifier, Tnn may be empty (line 3). In this sense, the classification performance
is the same with a random guess.

4 Experimental Evaluations

4.1 Tasks and Data Sets

We choose an interesting task from the query optimization area to evaluate
our theoretical metric-based method for graph classification. The task is “graph
reachability index selection”, which aims to decide a best index from a set of
candidate reachability index. With the best index, graph reachability query per-
formance could be significantly improved. The problem of “graph reachability
index selection” can be formulated as a graph classification problem, where each
class label is a type of graph reachability indexing. Specifically, one classifies
two directed graphs into a same cluster if they share the same best reachability
index. In our experiments, we choose interval approach [1], hopi [4] and dual
labeling [22] as the set of candidate reachability indexing.

We used both of real data and synthetic data in our experiments. All of the
graphs are directed. For the real data, we used a set of real graphs obtained
from a Web graph repository2 and papers [21,22]. In addition, we generated a
set of synthetic graphs with two different graph generators. The first generator3

controls the graph properties with four input parameters: the maximum fan-
out of a spanning tree, the depth of a spanning tree, the percent of non-tree
edges and number of cycles. The second generator4 generates a scale-free power-
law graph, whose degree distribution follows a power-law function. The total
number of graphs used is 300. For each graph, we manually labeled it with the
best reachability index as follows: we pre-built each index on the graph and
compared the total reachability query time of one million random queries. The
best index is the one such that the total query cost is minimal. The statistics of
graphs we used are summarized in Table 1.

To measure the performance of our framework, we used the prediction accu-
racy A and micro precision P to measure the performance of our framework. The
prediction accuracy A, is defined as A=Ti/n, where Ti is number of samples
with right classification, and n is number of samples in total. The micro precision

2 http://vlado.fmf.uni-lj.si/pub/networks/data/
3 http://www.cais.ntu.edu.sg/~linhong/gen.rar
4 http://www.cais.ntu.edu.sg/~linhong/GTgraph.zip

http://vlado.fmf.uni-lj.si/pub/networks/data/
http://www.cais.ntu.edu.sg/~linhong/gen.rar
http://www.cais.ntu.edu.sg/~linhong/GTgraph.zip

Classifying Graphs Using Theoretical Metrics: A Study of Feasibility 61

Table 2. Running time and memory usage of feature selection

Running time (seconds) Memory usage (MB)
Metric computation Feature selection Metric computation feature selection

50.373 24.035 89.83 3.8

P is defined as
γ∑

i=1
TPi/

γ∑
i=1

(TPi + FPi), where γ is number of class labels, TP

is the true positive, and FP is the false positive.

4.2 Results

Discriminative features. For the specific task of “reachability index selection”,
the set of discriminative features that returned by Algorithm 1 are: 1) Non-
tree density; 2) Degree distribution; 3) Global efficiency; 4) Diameter; 5) Vertex
compression ratio; 6) Coreness; 7) Global clustering coefficient; and 8) Graph
density. Next we report the total running time and memory usage of two stages
in discriminative feature selection: I) computing graph metrics (See Sec 2.1), and
II) discriminative feature selection (See Algorithm 1). The results are shown in
Table 2. It is observed that the memory usage is dominated by Stage I, i.e,
the storage consumption to keep the whole graph in the memory. Interestingly,
running time is also mainly taken up by the first stage. The reason is that we
need to compute 14 metrics for each graph in the first stage and each metric
computation needs to be done at least in linear time to the graph size.

Classification Performance. We randomly chose NT number of test graphs
both from real graphs and synthetic graphs, where NT varies from 20 to 100. In
addition, in average, the first i graphs are more similar to the training graphs
than the fist j graphs (i < j). The total running time and memory usage of knn
and rknn classifiers, are presented in Figure 2. The result shows that though knn
approach is faster than rknn approach, the margin is quite small. Figure 2(b)
reports the memory usage (excluding the memory consumption to keep graphs)
comparison of two approaches. It implies that each approach is comparable to
another in memory consumption.

Figure 3 gives the prediction accuracy and micro-precision when number of
test graphs is varied. Despite knn classifier gets higher accuracy on a small num-
ber of testing graphs that are highly similar to training graphs, in average, rknn
classifier obtains substantial improvement than knn approach in classification
accuracy. The results indicate that knn classifier are more vulnerable to the
quality of training graphs than rknn classifier: when training graphs are no-
ticeably similar to testing graphs, knn classifier could get classification of good
quality; when training graphs are relatively dissimilar to testing graphs, the per-
formance of knn drops off sharply. On another hand, we also observe that the
performance of knn is more stable than that of rknn. The reason is that there
is no guarantee for the existence of rknn search results. Hence, the weighted
major vote on an empty set would trigger a random guess (see Algorithm 2).

62 L. Zhu, W.K. Ng, and S. Han

 0

 2

 4

 6

 8

 10

 12

 14

 20 30 40 50 60 70 80 90 100

Number of testing graphs

Total running time (seconds)

KNN
RKNN

(a) Running time comparison.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 20 30 40 50 60 70 80 90 100

Number of testing graphs

Memory consumption (KB)

KNN
RKNN

(b) Memory usage comparison.

Fig. 2. Performance comparison

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 20 30 40 50 60 70 80 90 100

Number of testing graphs

Classification Accuracy

KNN
RKNN

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20 30 40 50 60 70 80 90 100

Number of testing graphs

Micro-precision

KNN
RKNN

Fig. 3. Prediction accuracy and micro-precision comparison

We attain similar results of micro precision of these two classifiers. Based on
Figure 3, we can draw a conclusion that graph classification using theoretical
metric is feasible since the accuracy of both two classifiers is much higher than
random guess (33.3%).

5 Related Work

Related works about graph classification are mainly in the field of subgraph
pattern selection and graph pseudo-isomorphism testing. If we could have a set
of subgraph patterns, graphs can be represented as feature vectors of patterns
and graph classification problem is converted into traditional data classification
problem. In subgraph pattern selection, the major difficulty of this approach is to
find informative subgraph patterns efficiently. The pioneer work [6] starts to find
frequent subgraph patterns to represent graphs. One drawback of frequent sub-
graph pattern representation is that one can find a tremendously large quantity
of frequent patterns in a large graph, which leads to relatively poor scalability.
Later, Leap [23], gPLS [16], CORK [19], graphSig [15] and GAIA [11] propose to
search directly for discriminative subgraph patterns that can better assist graph
classification. A recent work COM [10] makes use of co-occurrences of subgraph
patterns to improve graph classification performance.

Classifying Graphs Using Theoretical Metrics: A Study of Feasibility 63

Another direction of graph classification relies on pseudo-isomorphism testing
(graph similarity measure). Various degree of matching metrics such as graph-
edit distance [3], maximum common subgraph [9], canonical sequence similar-
ity [2] and so on have been proposed and used to assist graph classification. These
approaches are theoretically sound and can guarantee optimal or near-optimal
solutions in some sense. However, computing graph-edit distance or maximum
common subgraph itself is really time-consuming due to their intractability. Re-
cently, Zeng et al. [24] propose a solution to compute the lower bound and upper
bound of graph-edit distance in polynomial time to facilitate graph similarity
search as well as graph classification.

Unfortunately, the above works are mainly in the area of chemical and biolog-
ical data. In addition, all of them are proposed for the isomorphism-based graph
classification problem. Although the problem of property-based graph classifica-
tion is important in practice for applications in social network analysis, database
design and query optimization, we are not aware of any focused study of this
problem.

6 Conclusions

In this paper, we formalized the problem of property-based graph classification.
Upon this formalization, we studied the feasibility of graph classification using
a number of graph theatrical metrics. We also proposed a greedy algorithm
to select a set of discriminative metrics. Experimental results showed that our
framework works good in terms of both accuracy and micro precision, which
verified the possibility of graph classification using graph metrics.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive
relationships in large data and knowledge bases. In: Proceedings of the 1989 ACM
International Conference on Management of Data, pp. 253–262. ACM, New York
(1989)

2. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the 15th
Annual ACM Symposium on Theory of Computing, pp. 171–183. ACM, New York
(1983)

3. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recognition Letters 18(9), 689–694 (1997)

4. Cheng, J., Yu, J.X., Lin, X., Wang, H., Yu, P.S.: Fast computation of reachability
labeling for large graphs. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes,
F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT
2006. LNCS, vol. 3896, pp. 961–979. Springer, Heidelberg (2006)

5. Coffman, T.R., Marcus, S.E.: Dynamic classification of groups through social
network analysis and hmms. In: IEEE Aerospace Conference, pp. 3197–3205 (2004)

6. Deshpande, M., Kuramochi, M., Wale, N., Karypis, G.: Frequent substructure-
based approaches for classifying chemical compounds. IEEE Transaction on Knowl-
edge and Data Engineering 17(8), 1036–1050 (2005)

64 L. Zhu, W.K. Ng, and S. Han

7. Diestel, R.: Graph Theory, 3rd edn., vol. 173. Springer, Heidelberg (2005)
8. Faloutsos, M., Yang, Q., Siganos, G., Lonardi, S.: Evolution versus intelligent

design: comparing the topology of protein-protein interaction networks to the inter-
net. In: Proceedings of the LSS Computational Systems Bioinformatics Conference,
Stanford, CA, pp. 299–310 (2006)

9. Montes-y-Gómez, M., López-López, A., Gelbukh, A.: Information retrieval with
conceptual graph matching. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA
2000. LNCS, vol. 1873, pp. 312–321. Springer, Heidelberg (2000)

10. Jin, N., Young, C., Wang, W.: Graph classification based on pattern co-occurrence.
In: Proceeding of the 18th ACM Conference on Information and Knowledge
Management, pp. 573–582. ACM, New York (2009)

11. Jin, N., Young, C., Wang, W.: Gaia: graph classification using evolutionary
computation. In: Proceedings of the 2010 International Conference on Manage-
ment of Data, pp. 879–890. ACM, New York (2010)

12. Kong, X., Yu, P.S.: Semi-supervised feature selection for graph classification. In:
Proceedings of the 16th ACM International Conference on Knowledge Discovery
and Data Mining, pp. 793–802. ACM, New York (2010)

13. Luce, R., Perry, A.: A method of matrix analysis of group structure. Psychome-
trika 14(2), 95–116 (1949)

14. Milgram, S.: The Small World Problem. Psychology Today 2, 60–67 (1967)
15. Ranu, S., Singh, A.K.: Graphsig: A scalable approach to mining significant

subgraphs in large graph databases. In: Proceedings of the 2009 IEEE Interna-
tional Conference on Data Engineering, pp. 844–855. IEEE Computer Society,
Washington, DC, USA (2009)

16. Saigo, H., Krämer, N., Tsuda, K.: Partial least squares regression for graph mining.
In: Proceeding of the 14th ACM International Conference on Knowledge Discovery
and Data Mining, pp. 578–586. ACM, New York (2008)

17. Seidman, S.B.: Network structure and minimum degre. Social Networks 5, 269–287
(1983)

18. Tao, Y., Papadias, D., Lian, X.: Reverse knn search in arbitrary dimensionality.
In: Proceedings of the 30th International Conference on Very Large Data Bases,
pp. 744–755. Very Large Data Bases Endowment (2004)

19. Thoma, M., Cheng, H., Gretton, A., Han, J., Peter Kriegel, H., Smola, A., Song,
L., Yu, P.S., Yan, X., Borgwardt, K.: Near-optimal supervised feature selection
among frequent subgraphs. In: SIAM Int’l Conf. on Data Mining (2009)

20. Thomason, B.E., Coffman, T.R., Marcus, S.E.: Sensitivity of social network
analysis metrics to observation noise. In: IEEE Aerospace Conference, pp. 3206–
3216 (2004)

21. University of Michigan: The origin of power-laws in internet topologies revisited.
Web page, http://topology.eecs.umich.edu/data.html

22. Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: Answering graph
reachability queries in constant time. In: Proceedings of the 22nd International
Conference on Data Engineering, p. 75. IEEE Computer Society, Washington, DC,
USA (2006)

23. Yan, X., Cheng, H., Han, J., Yu, P.S.: Mining significant graph patterns by leap
search. In: Proceedings of the 2008 ACM International Conference on Management
of Data, pp. 433–444. ACM, New York (2008)

24. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approx-
imating graph edit distance. Proc. VLDB Endow. 2, 25–36 (2009)

http://topology.eecs.umich.edu/data.html

A GML Documents Stream Compressor�

Yinan Yu1, Yuzhen Li2, and Shuigeng Zhou3

1 Dept. of Computer Science & Technology, Tongji University, China
2 Graduate School of Science and Technology, Chiba University, Japan

3 Shanghai Key Lab of Intelligent Information Processing, Fudan University, China
{yuyinan1986,liyuzhen8}@gmail.com, sgzhou@fudan.edu.cn

Abstract. GML has become the standard format for geographical data
transfer, exchange and storage. Usually, in GML documents there are
many verbose tags and a large amount of coordinate data, which makes
them be of extremely large volume. Thus, it is necessary to compress
these documents to reduce storage and transmission cost. GML data is
often stored and transferred in the form of multiple documents. Although
some GML compressors have been developed recently, all of them can
process only a single GML document at a time. In this paper, we propose
a stream compressor for GML documents, called GDScomp, which can
compress a stream of multiple GML documents effectively. It shares the
structural information among multiple GML documents by a common
dictionary to employ the dynamic compression method and uses the delta
compression method for the coordinate data. Experimental results show
that GDScomp can achieve satisfactory compression performance when
compressing GML documents streams.

Keywords: GML; Documents stream; Common dictionary; Dynamic
compression; Delta compression.

1 Introduction

With the popularity of Geography Information Systems (GISs) and their appli-
cations, many heterogeneous spatial data sources emerge rapidly. To promote the
sharing and inter-operability of different spatial data sources and GIS applica-
tions, the Open Geospatial Consortium (OGC) proposed the Geography Makeup
Language (GML) [1] to offer a general framework for formatting and represent-
ing geographical data. Nowadays, GML has become the de fact standard for
geo-spatial data transfer, exchange and storage.

Although GML is flexible and extensible to use through the Internet, GML
documents usually contain a lot of redundant information (e.g. verbose tags)
and a large amount of coordinate data (representing the spatial objects), which
makes the documents be of very large volume and thus causes much cost for

� This work was supported by National Natural Science Foundation of China un-
der grants No. 60873040 and No. 60873070, and China 863 Program under grant
No. 2009AA01Z135.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 65–76, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

66 Y. Yu, Y. Li, and S. Zhou

transmission and storage. Particularly, for the scenarios of mobile GIS applica-
tions (e.g. GPS and mobile tourism information systems) where the client-end
devices (e.g. iPADs, iPhones and cell phones) have very limited storage space
and communication bandwidth (compared to desk-top devices), reducing the
cost of data transmission and storage is crucial to the success of these applica-
tions. Therefore, it is necessary to develop effective GML compressors to make
GML documents be stored and transferred at acceptably low cost. However, ex-
isting research works on GML have mainly focused on data storage and query
processing [2]. Not enough effort has been made to GML compression, though a
few GML compressors do have been reported in the literature (e.g. GPress [3,4]).

Since GML is a special form of XML and GML documents are essentially text
documents, so technically, GML documents can be compressed by three types of
compression techniques. They are 1) general text compressors such as Gzip [5]
and PPM [6], 2) XML-oriented compressors, representatives including XMill [7],
XGrind [8] and so on, and 3) GML-specific compressors (e.g. GPress [3,4]).
However, all these compressors above do not work with GML streams. There are
also some XML stream compressors like XMLPPM [9], Millau [10] and XSC [11],
but these compressors do not consider the uniqueness of GML documents and
work only in a simple document by document style. Concretely, they can only
treat GML documents as ordinary XML documents while neglecting the unique
features of GML. And when compressing a stream of documents they will not
exploit the common statistic information among these documents, thus they can
not achieve optimal compression performance.

Typically, we argue that an effective GML stream compressor should have the
following features:

– The data to be compressed comes as a stream that can not be kept entirely
in the system during the compression process. At any time, only part (a
window) of the stream is stored in the buffer for processing.

– The compressor will not scan the documents more than one time.
– The transmission speed of data stream may be very fast, so the compres-

sor should work nearly in real time, and the decompression process can go
simultaneously.

– The compressor should fully use the common information among the docu-
ments under compression.

With these features above in mind, in this paper we propose a new GML stream
compressor for multiple documents, which is called GDScomp. It parses the
GML documents into different streams that will be handled with corresponding
methods, then shares the structure information as a common dictionary among
different documents and uses the delta compression for the spatial data. Exper-
imental results show that the new compressor can achieve better compression
performance than some state of the art text, XML and GML compressors.

The rest of this paper is organized as follows. Section 2 surveys the related
work. Section 3 introduces the architecture and technical details of GDScomp.
Section 4 gives the experimental results and Section 5 draws the conclusion and
highlights the future work.

A GML Documents Stream Compressor 67

2 Related Work

In what follows, we will present a brief survey on major related works of XML
(especially XML stream) compression and GML compression.

XMLPPM [9] was proposed by Cheney many years ago, but the principle is
still worth of being paid attention to when compressing XML streams. XMLPPM
uses a multiplexed hierarchical PPM Model called MHM, which is based on
SAX [12] events and does prediction by partial match (PPM) [6]. It predefines
four models based on different contexts (elements, characters, attributes and
miscellaneous symbols) in the documents. So during the paring phase, it can
group the data according to the defined models. These data from the four models
will eventually be combined and compressed by PPM to form the compressed
document. Although it can get a good compression ratio, its compression time
is a little too long due to the time-consuming PPM method.

Millau [10] is another XML stream compressor for efficient encoding and
streaming of XML documents. It uses complicated encoding techniques for XML
compression. It employs Differential DTD Tree (DDT) compression that makes
full use of DTD associated with the document to encode data values and struc-
tural information into two data streams, thus gets a good compression ratio.
Millau also extends its encoding format to adapt it for business applications.

XMill [7] is the first XML conscious compressor and some innovative prin-
ciples introduced by it were followed by other compressors. It separates the
structural information from the text data and compresses them separately. The
text data is grouped by semantics. Finally, all data is compressed by a general
compressor Gzip.

Gpress [3,4] may be the first GML-specific compressor that has good com-
pression performance. It follows the principles of XMill to separate the struc-
tural information from data, and group the data into different containers, and
finally compress them by Gzip. The innovative contribution of GPress is that it
transforms the spatial coordinate strings back to numeric values, which is then
compressed by delta compression. It has better compression ratio than XMill.

All these compressors mentioned above are designed only for working in a
document by document style, no matter whether the documents come in the
form of stream or separately. So when compressing a documents stream, they can
only utilize information of individual documents, which results in non-optimal
compression results. Although dictionary-based compression [13] is a classical
method, in this paper we use dictionary for document streams compression.

3 The GDScomp Method

In this section, we will first introduce the architecture of GDScomp, and then
present the core techniques for implementing GDScomp, including SAX event
handling, dynamic structure compression and delta compression.

68 Y. Yu, Y. Li, and S. Zhou

3.1 GDScomp Architecture

Figure 1 shows the architecture of the GDScomp compressor. When a GML
documents stream comes, GDScomp first parses each document in the stream
sequentially by SAX, then outputs the parsed events to the events handler for
further processing. The events handler will filter the coming information accord-
ing to data semantics into different sub-streams, which will be compressed by
different methods.

Fig. 1. The architecture of GDScomp

The structure sub-stream contains the tags in GML documents. Since simi-
lar tags may appear in the same or different GML documents repeatedly, the
dynamic compression method is used to compress the structural information by
creating a common dictionary to store all tags have appeared. As the stream
goes by, re-appearing tags will be replaced with the corresponding indices in the
dictionary to reduce storage space.

The attribute sub-stream, spatial data sub-stream and text sub-stream (here
“text” indicates the text information except for tag names, attribute values and
spatial coordinates) all contain text content. The attribute sub-stream contains
attribute values. The text sub-stream has text content under different tags except
for the spatial coordinate tags. The spatial data sub-stream holds the coordi-
nate data. It is worthy of being mentioned that the spatial coordinates are used
to represent spatial objects, and for nearby spatial objects, their coordinates
are not much different. So the delta compression technique is adopted to com-
press the coordinate data. That is to store the differences, instead of the original
values. Each file’s (here “file” and “document” are used interchangeably) infor-
mation in the same stream is stored in the file information sub-stream. Thus,
when decompressing the compressed stream, the original file information can be
recovered.

A GML Documents Stream Compressor 69

Fig. 2. GML document samples

The outputs of all sub-streams above are input to a Gzip compressor. Based
on the architecture in Figure 1, GDScomp needs only to store the dictionary,
the reference coordinates of spatial data and file names in the memory.

3.2 Event Handler

Figure 2 shows two samples of GML document. It can be seen that GML doc-
uments are a special type of XML documents. Many similar tags in different
documents, especially when the documents are formatted under the same schema.
Moreover, there are lots of coordinates representing spatial objects where the dif-
ference among the coordinates of adjacent spatial objects is very small.

GDScomp uses SAX to parse every document in the coming stream, and the
result corresponds to a sequence of events. When analyzing each document, if
the current event is a start tag or end tag event, GDScomp forwards it to the
structure sub-stream, which will be compressed by the structure compression
module. If the start tag is a spatial data tag, then GDScomp forwards it to
the spatial data sub-stream that will be compressed by the delta compression
module. If the event is an attribute or a PCDATA, GDScomp will send the data
to the attribute sub-stream or the text sub-stream. If the current event refers to
the end of the current document, GDScomp will push the filename into the file
information sub-stream.

The implementation of the event handler is outlined in Algorithm 1.

3.3 Dynamic Structure Compression

As there are many re-appearing tags in the structure sub-stream, but the num-
bers and probabilities are unknown in advance, so we use the dynamic com-
pression method to compress the structure sub-stream at word level. A dynamic
dictionary is established to store the appeared tags from different documents in
the stream under compression. When “old” tags reappear, just their indices in
the dictionary are used to replace them so as to reduce storage space. Note that
in the dictionary, words instead of characters are indexed.

70 Y. Yu, Y. Li, and S. Zhou

Algorithm 1. Event handler
1: Input: SAX event stream
2: Output: different sub-streams
3: Begin
4: while SAX event stream is not null do
5: if SAX-event is StartElement then
6: name:= GetElementName
7: send name to the structure sub-stream
8: if name is a coordinate element then
9: value := GetTextValue

10: send the value to the spatial data sub-stream
11: end if
12: if the element has an attribute then
13: send the attribute’s value to the attribute sub-stream
14: end if
15: else if SAX-event is EndElement then
16: send its name to the structure sub-stream
17: else if SAX-event is PCDATA then
18: send its value to the text sub-stream
19: else if SAX-event is end-file event then
20: send filename to the file information sub-stream
21: end if
22: end while

Algorithm 2 describes the detailed structure compression process. At first,
the dictionary is initialized to null. The dictionary is organized as a table with
two columns: the first column is the key, and the second column is the value,
which correspond to a tag’s index and name respectively. We do not use schemas
or DTDs because in real applications these schemas or DTDs perhaps are not
available.

Once a new tag (not in the dictionary) emerges while parsing the GML doc-
uments, the new tag is inserted into the dictionary, and its name is output to
the structure sub-stream to help decompression later. Otherwise, if an “old” tag
comes, the tag is put to the work buffer while waiting for its succeeding tag(s).
If the combination of consecutively appearing tags in the buffer does not exist
in the dictionary, their indices of these tags in the buffer are output, and the
new combination of tags is inserted to the dictionary as a new entry, which can
be utilized in the future.

The advantage of this method lies in that tags instead of characters are used
as dictionary entries, so the lengths of words that the entries in the dictionary
represent can be maximized. Creating a dynamic common dictionary in the com-
pression phase, and outputting tags’ names and their corresponding indices in the
dictionary alternately can make the decompression process go simultaneously.

The buffer used to store “old” tags provides the possibility of combining exist-
ing tags to generate new and longer tags. For example, in the left GML document
sample illustrated in Figure 2, there are entries like “< gml : surfaceMember >”

A GML Documents Stream Compressor 71

and “< gml : Polygon >”, which will be inserted into the dictionary. While pro-
cessing the right sample, “< gml : surfaceMember >< gml : Polygon >” will
be treated as a new entry added to the dictionary so that if similar combination
reappears later, we can use this combination’s index to represent it.

Algorithm 2. Dynamic structure compression
1: Input: in-stream — GML structure sub-stream
2: Output: out-stream — compressed GML structure sub-stream
3: Begin
4: Initialize dic, buffer, tag := null
5: while in-stream is not null do
6: while tag:= Readtag() is not null do
7: if dic does not contain tag then
8: if buffer is not empty then
9: add the whole word in the buffer to dic

10: end if
11: output tag.value to out-stream
12: put tag into dic
13: else
14: if dic contains (buffer.concat(tag)) then
15: buffer.append(tag)
16: continue
17: else
18: output the index of the whole word in buffer to out-stream
19: buffer.clear()
20: buffer.append(tag)
21: continue
22: end if
23: end if
24: output the index of each indexed entry in buffer to out-stream
25: buffer.clear()
26: end while
27: end while

We use the dictionary to store common structural information because more
or less, there are similar tags in different GML documents, especially when the
documents use or conform to similar schemas.

3.4 Delta Compression

GMl documents describe spatial objects such as rivers, bridges, and roads in the
real world. These objects are represented by a series of coordinates under some
specific elements like < gml : X > and < gml : Y > in GML version 2.0, or
< gml : pos > and < gml : posList > in GML version 3.0.

72 Y. Yu, Y. Li, and S. Zhou

However, the data arrangements under different tags are quite different. For
example, the data with the tags like < gml : X > and < gml : Y > refers to
the X and Y coordinates of a certain spatial object. The data with the tags like
< gml : posList > or < gml : coordinates > refers to a collection of coordinates
standing for a certain spatial object extending from one point to another point.
The dimension of the coordinates can be seen from the attributes of the current
tag. As shown in Figure 2, each row under the tag < gml : postList > stands
for the coordinates of a 3-dimensional point.

As there are many coordinates under a tag representing the same spatial
object, and the difference between neighboring coordinates is very small. These
coordinates are usually monotonous or piece-wisely monotonous in value, so we
can use the difference (delta) between adjacent coordinates instead of the original
coordinates (except for the starting coordinate that will be used as the reference
coordinates) to represent a series of coordinates. In real applications, even in
the same GML document, the difference between coordinates of different spatial
objects may be still large, so several reference coordinates should be used. In
such a way, the coordinates in GML documents can be transformed to several
reference coordinates and the differences between the other coordinates with
these reference coordinates.

Furthermore, we notice that the significant difference is originated from the
integer part of a coordinate value. As for the decimal part, its length is diverse
and the numbers at different positions are quite different. Based on this observa-
tion, GMScomp stores the delta of the integer parts of two adjacent coordinates
and the original values of the decimal parts. As all data in GML documents
appears as plain text, and the spatial data is usually with so high precision that
usually a string of 8 to 10 digits is needed to represent (each digit needs 1 byte
to store). So the text strings are transformed back to numeric numbers that are
stored by binary format.

The process of delta compression in GDScomp is as follows. It first establishes
an array of 3 elements to store the reference coordinates, each element represents
the value of one dimension. When processing the coordinates of a document in

Fig. 3. Delta compression in GDScomp

A GML Documents Stream Compressor 73

the stream under compression, it stores the coordinates of the first point in
the array, and forwards the original values to the spatial data sub-stream. For
each following point, it will output the differences of its integer part values
with that of the preceding point and the values of its decimal part in binary
format. As the process goes ahead, the difference values may be so large that
overpass the predefined threshold (relying on how many bytes are used to store
the difference values), the reference coordinates will be updated. That is to
update the values in the array. The process above continues till all documents
in the stream are finished. Fig. 3 illustrates the whole process. Here, two cases
are demonstrated: one is that coordinate points with tags like < gml : X |Y |Z >
are processed one by one, another is that a collection of coordinate points with
tags like < gml : pos > and < gml : posList > are processed together.

4 Experimental Evaluation

In this section, we evaluate the compression performances of GDScomp over
three groups of GML documents. All testings are conducted on a PC with a
2.6GHz CPU and 2GB memory. We compare the compression performance of
GDScomp with that of three existing compressors in aspects: compression ratio,
compression time and decompression time.

– CR (compression ratio). we use the following formula to evaluate com-
pression ratio:

CR =
8 ∗ (compressed file size)

(original file size)
bpc (1)

Because all the other three compared compressors can only compress a group
of GML documents one by one, we use the following formula to calculate the
average compression ratio:

averageCR =
8 ∗ (total compressed file size)

(total original file size)
bpc (2)

From the formulas above, we can see that the smaller the CR is, the better
the compressor is.

– Compression time and decompression time: we record the time that a
compressor takes to compress all GML documents in a group and the time
to decompress the compressed documents. The larger the time is, the less
efficient the compressor is.

According to the experimental results of Sheriff [14], we choose two compressors
that have lower CR, XMill and XMLPPM, and one compressor with the smallest
compression time, Gzip, for comparison. Three groups of GML documents are
used for testing: CityGML [15], ALKISATKIS [16] and the third group that is
transformed from Oracle Spatial datasets. Table 1 shows the statistics of the test-
ing documents, including document size, the number of tags in every document,
and the percentages of tags and spatial data contained in every document.

74 Y. Yu, Y. Li, and S. Zhou

Table 1. Statistics of testing GML documents

Datasets File name Size (Kb) #Tags Tags (%) Spatial
data (%)

CityGML

080305SIG3D Breakline Levkreuz.xml 4150 72398 0.646 0.339
080305SIG3D LSENoise Levkreuz.xml 316 3675 0.507 0.407
080305SIG3D RailwayATKIS Levkreuz.xml 224 2334 0.447 0.505
080305SIG3D RoadNoise Levkreuz.xml 2327 41317 0.762 0.105
Berlin Pariser Platz v0.4.0.xml 4178 30796 0.281 0.337
Berlin Pariser Platz v1.0.0.xml 4181 30796 0.281 0.337
CityGML British Ordnance Survey v1.0.0.xml 4219 36163 0.326 0.250

ALKISATKIS 20070227 B0010 doeteberg51.xml 11746 223780 0.585 0.044
E.Ben.2005 1001.0001.xml 6803 122291 0.538 0.085

Oracle spatial

admin3.xml 965 24308 0.455 0.258
admin4.xml 542 13685 0.449 0.263
admin7.xml 2856 71564 0.467 0.246
arc.xml 4514 111923 0.507 0.203
ROAD1.xml 2643 65455 0.451 0.248

Fig. 4. Compression ratio Fig. 5. Compression time

4.1 Compression Ratio

Fig. 4 shows the comparison of compression ratio among GDScomp and the other
three compressors. We can see that GDScomp has the smallest CR. The reason
lies in two aspects: 1) GDScomp utilizes the common structural information of
different GML documents, and 2) GDScomp uses the delta compression method
to compress the spatial data. Though XMill and XMLPPM have good perfor-
mance in compressing general XML files, they perform worse than GDScomp on
GML documents. On one hand, they compress each document separately, so do
not utilize common structural information of different documents in the same
group (stream). On the other hand, the two compressors were developed for gen-
eral XML documents, they do not consider the uniqueness of GML documents.

4.2 Compression Time and Decompression Time

Fig. 5 and 6 illustrate the comparison of compression time and decompression
time among the four compressors, respectively. It is obvious that XMLPPM has
the longest compression and decompression time because it uses PPM as its
backend compressor that predicts the next character by the priori probability,
whose computation process is very complicated by using Markov chains. Gzip

A GML Documents Stream Compressor 75

Fig. 6. Decompression time

has the smallest compression and decompression time because it uses a 32KB
slide window to complete the compression, the switching speed is very fast and
it takes little time in finding the characters ahead.

The reason why XMill is faster than GDScomp is that GDScomp needs to
establish a dictionary, collect structural information in the documents, and find
the indices in the dictionary. Furthermore, the delta compression needs to split
spatial coordinates from the documents and compute the difference of neighbor-
ing coordinates.

5 Conclusion and Future Work

GML has become the de fact standard of geographic data representation and ex-
change, and GML data is usually transferred in the form of streams via network.
However, there are many redundant tags and hyperlinks, spacious data coordi-
nates in GML documents, which makes them be of extremely large volume and
causes lots of cost for transferring and storage.

In this paper, we propose a new stream compressor GDScomp for GML doc-
uments. It explores the common information and unique features of GML docu-
ments to improve compression performance. For this purpose, it uses a dictionary
to store the common structural information of different documents and employs
the delta compression method to deal with spatial data. Experimental results
show that GDScomp can achieve better compression performance than some
state of the art compressors.

Considering that GDScomp groups the information of GML documents into
different sub-streams and compresses these sub-streams separately, thus it can
not directly support queries over the compressed documents. Therefore, in the
future we will try to develop a queriable version of GDScomp.

References

1. Open GIS Consortium. Open GIS Geography Markup Language (GML) Imple-
mentation Specification Version 3.1.0, http://www.opengis.net/gml

2. Corcoles, J., Gonzalez, P.: A specification of a spatial query language over GML.
In: Proceedings of ACM-GIS 2001, pp. 112–117 (2001)

http://www.opengis.net/gml

76 Y. Yu, Y. Li, and S. Zhou

3. Guan, J., Zhou, S.: GPress: Towards Effective GML Documents Compression.
In: Proceedings of the 23rd International Conference on Data Engineering (ICDE
2007), pp. 1473–1474 (2007)

4. Guan, J., Zhou, S., Chen, Y.: An Effective GML Documents Compressor. IEICE
Transactions on Information and Systems E91-D(7), 1982–1990 (2008)

5. Gzip (2000), http://www.gzip.org/
6. Moffat, A.: Implementing the PPM data compression scheme. IEEE Transactions

on Communications 38(11), 1917–1921 (1990)
7. Liefke, H., Suciu, D.: XMill: An efficient compressor for XML data. In: Proceedings

of the 2000 ACM SIGMOD International Conference on Management of Data
(SIGMOD 2000), pp. 153–164 (2000)

8. Tolani, P., Haritsa, J.: XGRIND: A query-friendly XML compressor. In: IEEE Pro-
ceedings of the 18th International Conference on Data Engineering (ICDE 2002),
pp. 225–234 (2002)

9. Cheney, J.: Compressing XML with multiplexed hierarchical PPM models. In:
Proceedings of the IEEE Data Compression Conference (DCC 2001), pp. 163–172
(2001)

10. Girardot, M., Sundaresan, N.: Millau: An encoding format for efficient representa-
tion and exchange of XML over the Web. In: Proceedings of the 9th International
WWW Conference, pp. 747–765 (2000)

11. Gao, J., Yang, D., Tang, S., et al.: XPath Evaluation Oriented XML Data Stream
Compression. Journal of Software 16(2), 123–232 (2005)

12. SAX, http://www.saxproject.org/
13. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory 23(3), 337–343 (1977)
14. Sakr, S.: An Empirical Evaluation of XML Compression Tools. In: Proceedings of

DASFAA Workshops 2009, pp. 49–63 (2009)
15. CityGML (2002), http://www.citygml.org/
16. German Working Committee of the Surveying Authorities. Authoritative Real

Estate Cadastre Information System (ALKIS),
http://www.lv-bw.de/alkis.info/nas-bsp.html

http://www.gzip.org/
http://www.saxproject.org/
http://www.citygml.org/
http://www.lv-bw.de/alkis.info/nas-bsp.html

A Query-Friendly Compression for
GML Documents�

Qingting Wei1,2

1 Dept. of Computer Science and Technology, Tongji University, Shanghai, China
2 School of Software, Nanchang University, Nanchang 330047, China

qtwei@ncu.edu.cn

Abstract. Geography Markup Language (GML) has become a stan-
dard encoding format for exchanging geographic data among hetero-
geneous Geographic Information System (GIS) applications. Whereas,
the iteration of document structure and the textual expression of ge-
ographic data often cause the huge size of GML documents. In this
paper, a query-friendly GML compression method is proposed, where
the GML documents in SAX document parsing are transformed to a
compact representation encompassing an event dictionary, the events hi-
erarchy in balanced parentheses, a binary event wavelet tree and the
document content blocks before compressed using a general compression
utility. The proposed compression method supports direct path queries
and spatial queries over the compressed files without the requirement of
a full decompression. The compression model, the query resolution pro-
cess and the compression algorithm are detailed in this paper, though
the presentation is a preliminary investigation and it remains to carry
out experiments to validate the proposed compression method on real
GML documents.

Keywords: GML; compression; query; model; algorithm.

1 Introduction

Geography Markup Language (GML) has become a standard encoding format
for exchanging geographic data among heterogeneous Geographic Information
System (GIS) applications [1]. Like general XML documents, GML documents
are comprehensible and flexible because they are actually textual data encoding
files consisting of structures (elements and attribute names) and contents (at-
tribute values and text segments). Nevertheless, GML documents are more re-
dundant than general XML documents. On one hand, GML document structures
are extreme regular, iterating their occurrences in a high repeating frequency.
On the other hand, GML document contents contain rich geographic data and

� This work was supported by the National Natural Science Foundation of
China (NSFC) under grant No. 60873040 and China 863 Program under grant
No. 2009AA01Z135.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 77–88, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

78 Q. Wei

there often exist much high-precision geometric coordinates in text format oc-
cupying more storage units than in binary format. As a result, GML documents
are usually of huge sizes and costly in storage and transport.

The problem necessitates the compression of GML documents. Since GML
documents are actually a special kind of XML-grammar text files, the exist-
ing general text compression and XML compression methods are all applicable
to GML compression. However, the popular general text compression meth-
ods [2,3,4,5,6] do not distinguish document structure and document content,
processing all symbols in GML documents equally without exploiting the struc-
ture and data characteristics, so usually perform poor in the compression of
GML documents.

The well-known XML compression methods are conscious of document struc-
ture in compression. According to the ability of supporting query, the XML
compression methods are often classified into two groups: non-queryable and
queryable. The first group archives one or more XML documents into an en-
coding file as small as possible [7,8,9,10,11]. They can achieve a satisfying docu-
ment compression ratio, while do not support direct queries over the compressed
files (i.e., a full decompression is required before executing queries). On the
contrary, the second group aims to support direct queries over the compressed
files [12,13,14,15]. For instance, XGrind [12] employs homomorphic transforma-
tions from original documents to the compressed files, so direct path queries
can be executed by seeking the compressed files for the matched tag sequences.
However the queries based on homomorphic transformations require scanning
the compressed files from the beginning to the end, which costs a long time.
Take another example, XQueC [14] preserves a tree-structured index that sum-
marizes the original document structure in the compressed files to provide a
query support based on tree navigation. However, the tree-like index consumes
much storage space on saving the pointers linking the tree nodes, which worsens
compression ratio. Moreover, the existing queryable XML compression methods
only support path queries (searching for document elements according to their
root-to-node paths in the document tree), without considering spatial queries
(searching for spatial objects according to their geometric shapes, spatial loca-
tions or spatial relationships). Path queries and spatial queries are both impor-
tant in GML-based GIS applications. It is very common to execute a query over
a GML document to find a spatial object with a given name or in a selected
region. Therefore, the existing XML compression methods do not suit queryable
GML compression well.

To the best of our knowledge, there is little work on GML compression in the
literature except for GPress [16,17], GMill [18] and GQComp [19]. GPress [16,17]
is the first proposed GML specific compression method, which exploits the struc-
ture and data characteristics of GML documents to help compression and ap-
plies delta compression to coordinate data the first time. GMill [18] is a GML
compression approach based on on-line semantic clustering, where document
content with similar semantics is assembled into the same cluster and com-
pressed together. GPress and GMill outperform the other compression methods

A Query-Friendly Compression for GML Documents 79

in compression ratio when compressing GML documents, while neither of them
provides a support of direct queries over the compressed files. GQComp [19] is
a query-supported GML compressor, which compresses a GML document via
encoding the document structure as a Feature Structure Tree (FST) and the
result of matching the document structure against the FST, encoding attribute
data and spatial data separately, and constructing spatial index for spatial data.
Although GQComp claims to support attribute query and spatial query over the
compressed files, its compression efficiency is worrying because the procedure of
matching the document structure against the FST is time-consuming when the
document structure is nested deeply.

Thereupon, in this paper, an query-friendly GML compression method GQueC,
which supports both direct path queries and spatial queries over the compressed
files and aims to achieve a tradeoff between compression ratio and compres-
sion efficiency is proposed. The paper details the compression model, the query
resolution process and the compression algorithm of the proposed method.

The rest of this paper is structured as follows. Section 2 provides a background
into the problem. Section 3 describes the compression model, the query resolution
process and the compression algorithms, while section 4 concludes the paper.

2 Background

Geography Markup Language (GML), introduced by Open Geospatial Consor-
tium (OGC), offers a solution to exchange geographic data among heteroge-
neous Geographic Information System (GIS) applications. As an XML-based
geographic modeling language, GML describes geo-spatial objects by collections
of hierarchical features (geographic entities) with a list of properties (e.g., name,
type and value) and geometries composed of basic geometry building blocks (e.g.,
points, lines, curves, surfaces and polygons). Practically, querying GML docu-
ments are equivalent to retrieving features according to the given properties or
geometries. The following subsections show the examples of GML documents
and GML queries.

2.1 An Example of GML Documents

Example 1. Consider the following GML document “topography.xml” which pro-
vides a topographic description of two areas:

<osgb:topographicMember>
<osgb:TopographicArea fid="osgb1000000334340437">
<gml:Polygon>
<gml:outerBoundaryIs>

<gml:LinearRing>
<gml:coordinates>
277792.850,186180.850 277864.200,186139.900
277994.160,185959.510 277822.850,186163.950
277818.700,186167.950 277792.850,186180.850

80 Q. Wei

</gml:coordinates>
</gml:LinearRing>

</gml:outerBoundaryIs>
</gml:Polygon>

</osgb:TopographicArea>
<osgb:TopographicArea fid="osgb1000000334340499">
<gml:Polygon>
<gml:outerBoundaryIs>

<gml:LinearRing>
<gml:coordinates>
277804.500,185706.100 278302.600,185736.600
278244.370,186000.000 277889.150,186167.250
278005.150,185534.780 277804.500,185706.100

</gml:coordinates>
</gml:LinearRing>

</gml:outerBoundaryIs>
</gml:Polygon>

</osgb:TopographicArea>
</osgb:topographicMember>

There are two osgb:TopographicArea elements representing two topographic
area objects. Each osgb:TopographicArea element holds a fid attribute, the
attribute value indicating the area’s identifier, and contains a gml:Polygon
subelement, which describes the area’s shape. Every gml:Polygon element has a
gml:outerBoundaryIs subelement standing for the outer boundary, portrayed
by the subelement gml:LinerRing and the sub-subelement gml:coordinates.
Each gml:coordinates element encloses the text segments of coordinates.

2.2 An Example of GML Queries

There exist two types of queries on GML documents: path queries and spatial
queries. The former involves the properties of geographic objects, while the lat-
ter is related to the geometries of geographic objects. The common operations
(including their names and descriptions) of path queries and spatial queries are
listed as follows:

– Common path query operations
• label(i): return label of node i;
• child(i): return children of node i;
• descendant(i): return descendants of node i;
• parent(i): return parent of node i;
• ancestor(i): return ancestors of node i;
• nextsibling(i): the first child of node i’s parent that occur after node i;
• previoussibling(i): the last child of node i’s parent that occur before

node i.

A Query-Friendly Compression for GML Documents 81

– Common spatial query operations
• isequal(i,j): whether geometry i and geometry j is equal;
• isdisjoint(i,j): whether geometry i and geometry j is disjoint;
• intersects(i,j): whether geometry i intersects geometry j;
• iswithin(i,j): whether geometry i is within geometry j;
• touches(i,j): whether geometry i touches geometry j;
• crosses(i,j): whether geometry i crosses geometry j;
• contains(i,j): whether geometry i contains geometry j;
• overlap(i,j): whether geometry i overlaps geometry j;
• distance(i,j): the shortest distance between geometry i and geometry j.

The operations above are usually stated in a specific GML query languages
[20,21,22]. GQL [22] is a query language specification to support spatial query
over GML documents by extending XQuery [23]. An example of GML query
statements in GQL is as follows:

Example 2. A query on the GML document in Example 1 to retrieve the topo-
graphic areas covering a point (278000,186000) in geometry is written in GQL
as follows:

<AreaCollection>{
for a in document("topography.xml")//osgb:TopographicArea
where iswithin(Point(278000,186000),a/gml:Polygon)=1
return a}

</AreaCollection>

According to this query statement, the second osgb:TopographicArea element
in Example 1 is returned:

<AreaCollection>
<osgb:TopographicArea fid="osgb1000000334340499">
<gml:Polygon>
<gml:outerBoundaryIs>

<gml:LinearRing>
<gml:coordinates>
277804.500,185706.100 278302.600,185736.600
278244.370,186000.000 277889.150,186167.250
278005.150,185534.780 277804.500,185706.100

</gml:coordinates>
</gml:LinearRing>

</gml:outerBoundaryIs>
</gml:Polygon>

</osgb:TopographicArea>
</AreaCollection>

In this query, the operations involved include descendant, label, child and
iswithin. Firstly, the descendant operation is carried out to obtain the descen-
dants of the root. Then the label operation is used to get the descendants’ labels,

82 Q. Wei

which are compared with the restriction condition “osgb:TopographicArea”.
When a node labeled osgb:TopographicArea is matched, the child and la-
bel operations are employed to search for one of that node’s children labeled
gml:Polygon, then the iswithin operation is adopted to test whether the
gml:Polygon node covers a point (278000,186000) in geometry. The matched
osgb:TopographicArea node is returned finally.

3 Query-Friendly GML Compression

To provide a query-friendly compression, GQueC transforms a GML document
under compression into a compact representation before applies the general com-
pression utility. Simple API for XML (SAX) is chosen to be the document parser
because it does not require loading the whole GML document under compression
into the main memory. In a SAX document parsing, GQueC separates the docu-
ment structure from the document content. The document structure is replaced
by a SAX event dictionary, the events hierarchy in balanced parentheses and
a binary event wavelet tree. The document content is grouped by events into
different memory blocks where each coordinate block has a head including the
corners of the geometric bounding box specially. Finally, GQueC forwards this
compact representation of the GML document to the popular general compres-
sor gzip [24] (other general compressors are also applicable here). The following
subsections describe the detail of the compression model, the query resolution
process and the compression algorithm.

3.1 Compression Model

The compressed file produced by GQueC consists of four parts: 1) a SAX event
dictionary, 2) the SAX events hierarchy, 3) a SAX event wavelet tree, and 4)
the document content blocks. These four parts are compressed further using the
general compression utility gzip before written to the output file. Figure 1 shows
the constitution of the compressed file in compressing the GML document in
Example 1.

SAX Event Dictionary. The first part of the compressed file is a SAX event
dictionary. SAX events refer to the events of beginning or ending a document
component in parsing a GML document by the SAX parser. In this paper, the
beginning of an element is called the element start event, represented by the
element names; the beginning of an attribute is called the attribute start event,
denoted by ‘@’ prepending the attribute names; the beginning of an attribute
value or a text segment is called the content start event, marked as ‘#’ prepending
the name of the previous event; and the ending of any document components is
called the end event, symbolized as ‘/’. For instance, for the GML document in
Example 1, the content start event of beginning the value of the attribute “fid”,
is represented by “#@fid”.

GQueC employs a dictionary with a default end event ‘/’ to collect distinct
SAX events. In the document parsing, if an event does not occurr before, then

A Query-Friendly Compression for GML Documents 83

(((()) ((((()))))) ((()) ((((()))))))

0: / 1: osgb:topographicMember
2: osgb:TopographicArea 3: @fid
4: #@fid 5: gml:Polygon
6: gml:outerBoundaryIs 7: gml:LinearRing
8: gml:coordinates 9: #gml:coordinates

SAX event dictionary

SAX event hierarchy

document content blocks

0000001111100000000000111110000000

001100000000011000000000 0001100011

01000000000100000000 0101

SAX event wavelet tree

100000000000000000 00 00 00

001001

0101 00

0101

0000

00000000000000000 0

B1

B2 B3

B4 B5 B6

B8 B9 B10 B11 B12 B13 B14 B15

B16 B17

G(osgb1000000334340437
osgb1000000334340499)

00 00
B18 B19

B7

G(277792.850,186180.850
277864.200,186139.900
277994.160,185959.510
277822.850,186163.950
277818.700,186167.950
277792.850,186180.850

277804.500,185706.100
278302.600,185736.600
278244.370,186000.000
277889.150,186167.250
278005.150,185534.780
277804.500,185706.100)

minX = 277792.850
minY = 185534.780
maxX = 278302.600
maxY = 186180.850

ID = 9, count = 2,
size = G(items).size

ID = 4, count = 2,
size = G(items).size

Fig. 1. The compression model for the GML document in Example 1

that event will be inserted to the dictionary. All dictionary items are ordered
by the turn inserted to the dictionary. As shown in Fig. 1, ten distinct events
are inserted into the dictionary in the SAX parsing of the GML document in
Example 1. The fourth and the ninth event are the content start events, denoted
by “#@fid” and “#gml:coordinates” respectively.

SAX Events Hierarchy. The second part of the compressed file is the SAX
events hierarchy. In this paper, the hierarchy of two start events A and B refers
to the ancestor-descendant relationship between A and B. If B occurs after A
and before the counterpart end event of A, then A is the ancestor of B and B is
the descendant of A.

Balanced parentheses are adopted to indicate whether an event is a start event
or an end event. The open parenthesis ‘(’ symbolizes the start events and the close
parenthesis ‘)’ denotes the end events. Then the hierarchy of an events sequence
can be represented by a sequence of parentheses. For two start events A and B,
their hierarchy depends on the excess of parentheses in scanning the parentheses
sequence from A’s position to B’s position (B is excluded). When an open paren-
thesis is met, 1 is added to the excess; when a close parenthesis is met, 1 is reduced
from the excess. If the excess is a positive integer, then A is B’s ancestor and B is
A’s descendant. Especially, if the excess is equal to 0 then A and B are siblings,
and if the excess is equal to 1 then A is B’s parent and B is A’s child.

84 Q. Wei

Take an example of the document in Example 1, the SAX events in parsing
the GML segments “fid=‘osgb1000000334340437’” include the attribute start
event “@fid”, the content start event “#@fid” and the two end events ‘/’. Their
hierarchy can be represented as a sequence “(())”. Since the excess from the
first parenthesis to the second parenthesis is 1, the corresponding attribute start
event “@fid” is the parent of the content start event “#@fid”.

SAX Event Wavelet Tree. Wavelet tree is a kind of text index for executing
efficient rank and select operations in a sequence S of symbols, which come from
an arbitrary alphabet

∑
of the size n (|

∑
| = n) [25]. Actually a wavelet tree

is a binary tree with �log2 n + 1 levels. Each wavelet tree node has a reference
alphabet

∑′ that is a subset of
∑

(
∑′ =

∑
only in the root node). If a node

with a reference alphabet
∑′ is a interior node, then its left child succeeds to the

first half of
∑′ and its right child succeeds to the second half of

∑′. Moreover
each tree node stores a bitmap for the symbols that comes from the current
reference alphabet and occurs in S, where the symbols from the first half of

∑′

is mapped to the bit ‘0’ while the symbols from the second half of
∑′ is mapped

to the bit ‘1’.
In GQueC, the third part of the compressed file is a SAX event wavelet tree.

Here, the SAX events are regarded as the symbols to be indexed and the event
dictionary is regarded as the alphabet

∑
. As shown in Fig. 1, the alphabet

∑
of the wavelet tree contains ten symbols, i.e., ten distinct SAX events, and has
five levels of nodes. The root node in the 0-th level stores a bitmap B1 for the
sequence of 34 SAX events, where the events from the first half of the event
dictionary is mapped to ‘0’ while the events from the second half of the event
dictionary is mapped to ‘1’. The ten leaf nodes store the bitmaps B16, B17, B9,
B10, B11, B18, B19, B13, B14, B15 corresponding to the subsequences of ten
distinctive SAX events respectively.

Document Content Blocks. The last part of the compressed file is the doc-
ument content blocks. Since the document content parsed in the same kind of
SAX events is usually relevant and composed of similar texts, the compression of
them as a whole requires less storage space to construct the compression model
than the compression of mixing them with other irrelevant texts. Therefore, in
GQueC, different memory blocks of the same size are assigned to the document
content parsed in different kinds of content events. Moreover, the event IDs, the
item count and the total size of the compressed items are recorded in the head
of each block. In addition, for speeding up spatial query, the corners (the values
of minimum X, minimum Y, maximum X and maximum Y) of the box bounding
the block in geometry are saved in the block head when the content block is a
coordinate block associated with the events “#gml:coordinates”, “#gml:pos”,
“#gml:poslist”, “#gml:X” or “#gml:Y”.

As shown in the Fig. 1, the attribute values read in the event “#@fid” and
the text segments read in the event “#gml:coordinates” are placed into two
different memory blocks, the second of which is a coordinate content block.

A Query-Friendly Compression for GML Documents 85

3.2 Query Resolution Process

Based on the compression model described in the previous subsections, GQueC
provides supports of both direct path queries and spatial queries over the com-
pressed GML files via searching the SAX event dictionary, the SAX events hier-
archy in balanced parentheses, the binary wavelet tree and the document content
blocks.

Take an example, the following steps are executed to resolve the query string
“//osgb:TopographicArea/gml:Polygon” in Example 2:

1. Get the identifier of the event “osgb:TopographicArea” in the SAX event
dictionary (here ID=2).

2. Locate the No. n=ID+1 left wavelet tree leaf node Bx (here n=3 and x=9).
3. Get the item count c (here c=2) of Bx.
4. For a integer i from 1 to c do:

(a) Set y = x, j = i.
(b) Locate the parent Bz of By, here z = �y/2�.
(c) Get the position p ≥ 1 of the j-th bit with a value equal to the residue

of y/2 in the bitmap stored in Bz .
(d) Set y = z, j = p and recurse to step (b) unless Bz is the root.
(e) Locate the parenthesis at the position p in the SAX events hierarchy.
(f) Get the next position k (k > p) where the parenthesis is an open paren-

thesis and the excess from the position p to k is equal to 1.
(g) Set p′ = k, m = 1
(h) Locate the wavelet tree node Bm

(i) Get the bit b at the position p′ in the bitmap stored in Bm.
(j) Get the rank r of the bit b compared with all bits of the same value in

Bm.
(k) If b = 0 then m′ = 2 × m, else m′ = 2 × m + 1
(l) Set p′ = r, m = m′ and recurse to step (h) unless m′ is greater than the

total number of the wavelet tree nodes.
(m) Get the order ID′ of Bm in all wavelet tree leaf nodes from left to right.
(n) If ID′=5 (representing the event “gml:Polygon”), then return the as-

sociated element name “<gml:Polygon>” and all descendant events’s
associated document component names.

(o) Recurse to step (f).

3.3 Compression Algorithm

The compression procedure is outlined in Algorithm 1, which accepts as inputs
a GML document (an example is shown in Example 1), and outputs the com-
pressed file (as shown in Fig. 1).

In the parsing of the document, different actions are adopted when different
events occurr. If the current event is a start event that does not occurr before,
the event name will be inserted to the SAX event dictionary according to the
event type. Moreover, the current event ID is recorded into a sequence of integer,
and the events hierarchy is encoded as a sequence of bits ‘0’ (representing open

86 Q. Wei

Algorithm 1. GQueC(G,G′) to execute a query-friendly compression of a GML
document

input : GML document G
output: compressed file G′

Let D be a SAX event dictionary {“/”}, i be the size of D, harray be a bit
array to save sequences of the SAX events hierarchy, e be the current SAX event
occurring in the parsing of D, last be the name of the last event, c be the ID of
the last event, carray be an integer array to save the event ID sequence, j be
the length of carray, block be the content block with a head (ID, count, size)
and a body items, BLOCKCAPACITY be the const memory size allocated to
a block, and root be a wavelet tree where nodes are labeled by a bit string.
i ← 1
j ← 0
while e! = EOF do

if e is an element start event or an attribute start event then
if e is an element start event then last ← nameof(e)
else last ← strcat(“@”,nameof(e))
harray[j] ← 0
if last ∈ D then c ← getEventID(last,D)

else
D ← D ∪ {last}
c ← i
i ← i + 1

else if e is an event of beginning content then
last ← strcat(“#”,last)
harray[j] ← 0
if last ∈ D then

c ← getEventID(last,D)

block ← getBlockbyID(c)
else

D ← D ∪ {last}
c ← i
block ← creatBlockofID(c)
i ← i + 1

if block.size+sizeof(e)> BLOCKCAPACITY then
if last contains “coordinates”, “poslist”, “pos”, “X” or “Y” then

fwrite(G′,block.ID,block.count,sizeof(gzip(block.items)),
minX(block.items),minY(block.items),maxX(block.items),
maxY(block.items),gzip(block.items))

else
fwrite(G′,block.ID,block.count,sizeof(gzip(block.items)),
gzip(block.items))

block.count ← 1
block.items ← {e}

else
block.count ← block.count + 1
block.items ← block.items ∪{e}

else
harray[j] ← 1
c ← 0

carray[j] ← c
j ← j + 1
e ← e.next

TreeLabel(root,carray)
fwrite(G′,gzip(D))

fwrite(G′,gzip(harray))
fwrite(G′,gzip(root))

A Query-Friendly Compression for GML Documents 87

parentheses) or bits ‘1’ (representing close parentheses). In addition, if the cur-
rent event is a content start event, GQueC will search for its associated memory
block or allocate a memory block to it, then stores the content into the block.
When a block is full, the compressor gzip is called to compress the block’s items,
and the output of gzip and the block head (including the event ID, the item
count and the size of the compressed items) are written to the compressed file,
then the block is dumped. Especially, if the block caches the content of coor-
dinates, the corners (the values of minimum X, minimum Y, maximum X and
maximum Y) of the box bounding the block in geometry are compressed as a
part of the block head too.

When the document parsing comes to the end, GQueC generates a labeled
wavelet tree based on the event ID sequence using the TreeLabel algorithm pro-
posed by P. Ferragina [26], then compresses the event dictionary, the wavelet
tree nodes and the bit-encoded events hierarchy sequence using the compressor
gzip and inserts the output of gzip to the compressed file finally.

4 Conclusion

This paper proposes a query-friendly GML compression method, where the com-
pression of a GML document is reduced to the general text compressions of the
SAX event dictionary, the SAX events hierarchy in balanced parentheses, the
SAX event wavelet tree and the document content blocks. The proposed method
supports both direct path queries and spatial queries over the compressed files.
And the paper details the compression model, the query resolution process and
the compression algorithms for explaining the proposed method.

In order to demonstrate the effectiveness and efficiency of the proposed method,
extensive experiments are needed to evaluate the proposed method and to com-
pare it with the existing compression methods. This is the future work.

References

1. Geospatial information – Geography Markup Language (GML). ISO 19136:2007
(2007)

2. Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes.
Proceedings of the IRE 40(9), 1098–1101 (1952)

3. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory IT-23, 337–343 (1977)

4. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression.
Communications of the ACM 30(6), 520–540 (1987)

5. Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications 32(4), 396–402 (1984)

6. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical report SRC-RR-124, Hewlett-Packard Company (1994)

7. Hartmut, L., Suciu, D.: XMill: an efficient compressor for XML data. In: ACM
SIGMOD 2000, pp. 153–164. ACM Press, New York (2000)

88 Q. Wei

8. Girardot, M., Sundaresan, N.: Millau: an encoding format for efficient represen-
tation and exchange of XML over the Web. Computer Networks 33(1-6), 747–765
(2000)

9. Cheney, J.: Compressing XML with multiplexed hierarchical PPM models. In: DCC
2001, pp. 163–172. IEEE Press, New York (2001)

10. League, C., Eng, K.: Type-based compression of XML data. In: DCC 2007, pp.
272–282. IEEE Press, New York (2007)

11. Skibiński, P., Grabowski, S., Swacha, J.: Effective asymmetric XML compression.
Software: Practice and Experience 38(10), 1024–1047 (2008)

12. Tolani, P.M., Haritsa, J.R.: XGrind: a query-friendly XML compressor. In: ICDE
2002, pp. 225–234. IEEE Press, New York (2002)

13. Min, J., Park, M., Chung, C.: XPress: a queriable compression for XML data. In:
ACM SIGMOD 2003, pp. 122–133. IEEE Press, New York (2003)

14. Arion, A., Bonifati, A., Costa, G., D’Aguanno, S., Manolescu, I., Pugliese, A.:
XQueC: Pushing queries to compressed XML data. In: VLDB 2003, pp. 1065–1068
(2003)

15. Lam, W.Y., Ng, W., Wood, P.T., Levene, M.: XCQ: A queriable XML compression
system. Knowledge and Information Systems 10(4), 421–452 (2006)

16. Guan, J., Zhou, S.: GPress: Towards effective GML documents compresssion. In:
ICDE 2007, pp. 1473–1474. IEEE Press, New York (2007)

17. Guan, J., Zhou, S., Chen, Y.: An effective GML documents compressor. IEICE
Transactions on Information and Systems E91-D(7), 1982–1990 (2008)

18. Wei, Q., Guan, J.: A GML Compression Approach Based on On-line Semantic
Clustering. In: Geoinformatics 2010, pp. 1–7. IEEE Press, New York (2010)

19. Dai, Q., Zhang, S., Wang, Z.: GQComp: A Query-Supported Compression
Technique for GML. In: 9th IEEE International Conference on Computer and
Information Technology, pp. 311–317. IEEE Press, New York (2009)

20. Vatsavai, R.R.: GML-QL: A spatial query language specification for GML. Depart-
ment of Computer Science and Engineering, University of Minnesota, http://www.
cobblestoneconcepts.com/ucgis2summer2002/vatsavai/vatsavai.htm

21. Boucelma, O., Colonna, F.M.: GQuery: a query language for GML. In: 24th Urban
Data Management Symposium (2004)

22. Jihong, G.: GQL: Extending XQuery to query GML documents. Geo-spatial
Information Science 9(2), 118–126 (2006)

23. XQuery 1.0: An XML query language, http://www.w3.org/XML/Query/
24. GZip 1.2.4, http://www.gzip.org
25. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.

In: SODA 2003 (2003)
26. Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees.

Information and Computation 207(8), 849–866 (2009)

http://www.cobblestoneconcepts.com/ucgis2summer2002/vatsavai/vatsavai.htm
http://www.cobblestoneconcepts.com/ucgis2summer2002/vatsavai/vatsavai.htm
http://www.w3.org/XML/Query/
http://www.gzip.org

Storing GML Documents: A Model-Mapping
Based Approach�

Fubao Zhu1,2, Qianqian Guo2, and Jinmei Yang2

1 School of Computer Science, Fudan University, Shanghai 200433, China
fbzhu@fudan.edu.cn

2 School of Computer and Communication Engineering,
Zhengzhou University of Light Industry, Zhengzhou 450002, China

Abstract. Geography Markup Language is a de facto standard devel-
oped by OGC to standardize the representation of geographical data in
XML, which makes the exchanging and sharing of geographical infor-
mation easier. With the popularity of GML technology, more and more
geographical data is presented in GML format. This causes the prob-
lem of how to efficiently store GML data to facilitate its management
and retrieval. An approach to store and query GML document based
on model-mapping is proposed in this paper. The proposed approach
mainly focus on non-schema GML documents, but it is also applica-
ble to GML documents with corresponding schemas. A GML document
is first parsed, and a document tree is generated. Then the tree nodes
are analyzed and processed, and the schema mapping is established for
storing GML documents into object-relational database with structural
information preserved. Spatial data analysis and non-spatial data query
are supported on database for document. Experiments show that the
proposed approach is feasible and efficient.

Keywords: Geography Markup Language; Schema; Model-mapping;
Storage; Object-relational Database.

1 Introduction

The Geography Markup Language (GML) is the XML grammar defined by the
Open Geospatial Consortium (OGC) for expressing geographical features. It is
an international standard for data encoding, transmission, storage and release. It
is applied to geographical data sharing, exchanging and integration on Internet.
With the development of GML, the growing ability of GML has solved inconsistent
formats of spatial data providing the data expression including data structure and
semantics. It conforms to the requirements of Web and makes it much easier for
data exchange, integration, and sharing between different systems.
� This work was supported by the National Natural Science Foundation of China

(No. 60873040), China 863 Program (No. 2009AA01Z135), Key Science and Technol-
ogy Project of Education Department of Henan Province (No. 2010B520033),
and Doctoral Research Fund of Zhengzhou University of Light Industry
(No. 2008BSJJ012).

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 89–100, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

90 F. Zhu, Q. Guo, and J. Yang

With the extensive application of GML, a growing number of geographic in-
formation is described by GML format. Like the XML encoding, GML uses text
format to express geographic information. Because text file of GML is quite large,
it is impossible to manage geographical data well with good spatial information
query, spatial data analysis, access and concurrency control, etc. The effective
management of GML data becomes an urgent problem which is aimed to fa-
cilitate analysis of spatial operations and promote the sharing of spatial data
and GIS interoperability. GML document will be stored in the object-relational
database where GML non-spatial attributes act as common fields, spatial at-
tributes act as objects. It is an available solution to manage GML data by
object-relational databases.

GML application schema provides the format specification and semantic con-
straints for the preparation of GML document. The document which has schema
can implement storage through mapping mechanism between GML schema and
database schema. This method is called structure-mapping [1]. However, in many
applications, the schema of GML document is not clear, or even has no schema.
The major problem here is how to store GML document in the database and meet
different query requirements. Such method is called model-mapping [3,4,5,6]. It
does not use any schema of stored documents. Instead, it parses the original
document into a document tree in memory, creating a generic (object) relational
schema to store the document’s structure and data. Therefore we propose a
GML document storage method based on model mapping. GML document is
regarded as a tree composed of the element nodes, attribute nodes and geom-
etry nodes. The process of tree nodes and edges help to store GML document
into the database and to support spatial information analysis and non-spatial
information inquiries.

2 Related Work

At present, a lot of work focused on the XML documents based on model-
mapping and the storage management of database [3,4,5,6]. The work parsed
the XML document into a tree, and processed differently nodes and edges of
document tree.

The method of XParent [6] sumed up the three methods of Edge [3], Monet [4]
and XRel [5]. It divided those into the Edge-Oriented [3,4] method and the
Node-Oriented [5] method. And it also used four tables to represent the data
and structure information in XML document, which included path table, data
path table, element table and data table. It made full use of advantages of Edge,
Monet and XRel, and provided a good query capability.

Córcoles [7] analyzed the performance of storing GML documents of LegoDB
[2], Monet and XParent. And it proved that LegoDB had the optimal perfor-
mance in storage and query, as well as LegoDB was better to support the spatial
information processing. But LegoDB was based on the structure mapping and
it was not suitable for non-schema GML document storage.

Storing GML Documents: A Model-Mapping Based Approach 91

All the above methods [2,3,4,5,6] are designed for XML document storage, and
without considering the spatial data information of GML document, thus they
were not suitable for GML document storage. At present, there is no literature
related to storage management technologies and methods about the non-schema
GML document. Since GML is based on XML, methods of XML storage man-
agement can help a lot on the study of non-schema GML document storage
management. This paper makes full use of these advantages of non-spatial in-
formation storage, and expands its storage capability of spatial information. It
has proposed the model-mapping method which is based on nodes and edges to
store non-schema GML documents.

3 Model-Mapping Storage Method Based on Nodes and
Edges

This section details the architecture of GML document storage and GML doc-
ument data model. According to an illustration of GML document, we describe
the schema mapping method from nodes and edge of GML document tree to
database. The storage time-consuming of different document size and different
data type is presented to validate the proposed storing method.

3.1 GML Document Storing Architecture

The types of data in the GML document are point, line, polygon and so on.
Separating different data effectively and storing data into the database by the
processor is the main issue of the paper. The architecture is shown in Fig. 1.

Path Table

GML

Documents

Object-relational Database

Char

Stream

Parser

Edge Table

Text Table

Geom Table

Data

Loader

Path Handler

Edge

Handler

Text Data

Handler

Geometry Data

Handler

GML

Documents

Fig. 1. Architecture of GML Storage

The path data, edge data, text data and geometry data of the document are
parsed by the character stream parser from the GML document. The data is
processed by the corresponding processor, and then stored in the corresponding
table in object-relational database by the data loader, to realize analysis and
computation of spatial data and query and manipulation of non-spatial data.

92 F. Zhu, Q. Guo, and J. Yang

3.2 GML Document Data Schema

A complete GML document can be viewed as a tree composed of a number of
nodes. Figure 2 shows the structure of document tree of document instance de-
scribed in Prev verse, including root node, element nodes, attribute nodes, text
nodes and geometry nodes. Root node is a virtual node which points to root
element node of GML document. Element node represents element in the GML
document which is named after the label of element and contains more than one
text node and child element node. Text node only contains string information
which represents non-spatial data in GML document and does not contain any
child nodes. Elements in GML document can contain a number of attributes
which are shown as attribute nodes in the document tree. Attribute nodes are
composed by attribute name and attribute values which have no child nodes.
Geometry is a special element node which is used to represent the geometric
information of spatial data in GML document. In Fig. 2, symbols

�
, ©, �, ♦

separately represent the element node, attribute node, text node and geometry
node. Note that in GML document tree, we do not draw a specific spatial in-
formation which is represented in geometry node. When the parser encounters
a geometry node, it will deal with it as an object.

Map

gml:boundedBy gml:FeatureMember

RoadRoad

SimpleProperty GeoProperty

Class Type gml:LineString

gml:Box

id

id

M106

Interstate Multi-Lane

Rd01

StateState

SimpleProperty GeoProperty

Nam

e
Pop gml:Polygon

id

New York 18195566

St01

Element node

Attribute node

Text node

Geometry node

……

1

2

3

4

5 7

6

8

9

10

11

12

13

14

15

16 29

28

17 27 37

3530

3331

32 34

36

SimpleProperty GeoProperty

Class Type gml:LineString

id

Intercity Single-Lane

Rd02

18

19

20

21

22

23

24

25

26

Fig. 2. GML document tree

3.3 Constructing of GML Document Tree

GML document is stored as a text file. We use the follow steps to store the data
and structural information of the document into the database. The first step, it
should parse the GML document. The second step, use the result of parsing to
build the document tree. Next, use IDs to number nodes of different types of
the tree. Last, determine the order of nodes which have the same parent and the
same label in siblings. The algorithm of document tree construction is shown
in Algorithm 1.

Storing GML Documents: A Model-Mapping Based Approach 93

Algorithm 1. Constructing GML document
Result: CreateGMLDocTree(gb)
input : GMLDocument gd
output: GMLDocumentTree gdt
parse GML document gd as DOM tree dt;
get the root node root of DOM tree dt; let nID and ord be id and ordinal of
nodes in dt, respectively
GenerateDocTree (root); // Generate document tree
Procedure GenerateDocTree(node)
if the node type of node is not Geometry then

assign node id nID to node;
//Given node to node numbering
nID=nID+1;
//Calculated number for the next node
let pn be parent node of node;
//Get the parent node
let ord be ordinal of sibling node which has same name;
if pn is not null then

//If the parent node is not null
calculate the ordinal ord of node in its same-tag-sibling
assign ord to node; //computer node’s ordianal value

else
let cns be the child node list of node;//Get the child node
for each cnsi in cns do GenerateDocTree(cnsi);
//Recursively process each child node

end

else
construct Geometry g of node;
//Construct geometry object
calculate nID and ord for g;
//Calculate the number and order for geometry

end

3.4 GML Document Database Model

When GML document has been stored in the database, it should support query-
ing and processing of non-spatial information, and analyzing and calculating of
spatial data. To realize the object, an approach of node and edge based Model-
mapping is proposed in the paper (Node and Edge based Model-mapping, NEM).
NEM defines the label path table, edge table, text table and geometric table in
processing nodes and edges of the document tree. The structure of the four tables
is shown as follows:

LabelPathpathID, pathExpr
EdgedocID, pID, cID
TxtDatadocID, pathID, ordinal, nID, type, value
GeoDatadocID, pathID, ordinal, nID, type, shape

94 F. Zhu, Q. Guo, and J. Yang

Algorithm 2. Storing GML document

Result: StoringGMLDocuments(gdt)
input : GMLDocumentTree gdt
output: four tables
let docID be the maximum document id of current database;
//Get root node
if docID is not null then

//Calculated the number of docID
docID = docID + 1;

else
docID =1;

end
let root be root node of gdt;
//Get the root
let pathID be the maximum path id of current database;
//Get the pathID
if pathID is not null then

//Calculate the number of pathID
pathID = pathID + 1;

else
pathID =1;

end
TraversalNodes(root);
Process TraversalNodes(Node n)
if type of node n is Element then

Let pathExpr be label path from root to current node;
if pathExpr does not exist in table LabelPath then

pathID = pathID + 1; insert pathID and pathExpr into table
LabelPath;

else
endif

end

else
endif

end
let pn be parent node of n;
//Get the parent node
if pn is not null then

///if the parent node is not null
let pID and cID be node id of pn and n, respectively;
insert docIDC, pID and cID into table Edge;

else
endif

end
if type of n is Text or Attribute then

calculate pathID and get ordinal, type and value of node n;
insert the above values into table TxtData;

else

end
if type of n is Geometry then

calculate pathID and get ordinal, type and value of node n; insert the above
values into table into table GeoData;

else
endif

end
let cns be the child node list of n;
for each ni in cns do TraversalNodes (ni);
return LabelPath, Edge, TxtData and GeoData;

Storing GML Documents: A Model-Mapping Based Approach 95

Table 1. LabelPath table

pathID pathExpr
1 /Map
2 /Map/id
3 /Map/boundedBy
4 /Map/boundedBy/gml:Box
5 /Map/FeatureMember
6 /Map/FeatureMember/Road
7 /Map/FeatureMember/Road/id
8 /Map/FeatureMember/Road/SimpleProperty
9 /Map/FeatureMember/Road/SimpleProperty/Class
10 /Map/FeatureMember/Road/SimpleProperty/Type
11 /Map/FeatureMember/Road/GeoProperty
12 /Map/FeatureMember/Road/GeoProperty/gml:LineString
13 /Map/FeatureMember/State
14 /Map/FeatureMember/State/id
15 /Map/FeatureMember/State/SimpleProperty
16 /Map/FeatureMember/State/SimpleProperty/Name
17 /Map/FeatureMember/State/SimpleProperty/Pop
18 /Map/FeatureMember/State/GeoProperty
19 /Map/FeatureMember/State/GeoProperty/gml:Polygon

Table 2. Edge table

docID pID cID docID pID cID
1 1 2 1 17 18
1 1 4 1 17 20
1 1 6 1 17 25
1 2 3 1 18 19
1 4 5 1 20 21
1 6 7 1 20 23
1 6 17 1 23 24
1 6 27 1 25 26
1 7 8 1 27 28
1 7 10 1 27 30
1 7 15 1 27 35
1 8 9 1 28 29
1 10 11 1 30 31
1 10 13 1 30 33
1 11 12 1 31 32
1 13 14 1 33 34
1 15 16 1 35 36

LabelPath table records the label path information of the document tree node,
the pathID is the LablePath table’s ID and the pathExpr is the corresponding
path’s expression. Edge table records the document tree edge, docID, pID and

96 F. Zhu, Q. Guo, and J. Yang

Table 3. TxtData table

docID pathID ordinal nID type value
1 2 1 3 T M16
1 7 1 9 A Rd01
1 9 1 12 T Interstate
1 10 1 14 T Multi-Lane
1 7 2 19 A Rd02
1 9 2 22 T Intercity
1 10 2 24 T Single-Lane
1 14 1 29 A St01
1 16 1 32 T Clark Fork
1 17 1 34 T Columbia

Table 4. GeoData Table

docID pathID ordinal nID type shape
1 4 1 5 Polygon GEOM (Box)
1 12 1 16 Line GEOM (LineString)
1 12 2 26 Line GEOM (LineString)
1 19 1 36 Polygon GEOM (Polygon)

Fig. 3. Model-independent GML data storage time-consuming

cID which separately represent IDs of document identification, parent node and
child node in the document. TxtData table records the information of text node
and attribute node, ordinal represents the order of child nodes which have the
same label path and parent node, nID represents the node’s number, type repre-
sents the node’s type (text node or attribute node), value represents the node’s
value, GeoData table records the information of the geometry node, type rep-
resents the type of the geometry node, shape represents the information of the
geometry node. The algorithm of the data in the document tree stored in the
database is shown in Algorithm 2. When the document tree in Fig. 2 stored in
the database, you can use the node, edge and path information in Table 1 to
Table 4 to describe.

Storing GML Documents: A Model-Mapping Based Approach 97

3.5 The Experimental Analyzing of GML Document Data Storing
Time

We have done the experiments on 24 different GML documents with its size
range from 50KB to 10MB, and figured out the time-consuming of storage. The
GML documents contains 8 places documents of Point Layer, 8 TOP10relay
documents of Line Layer and 8 Data7autodesk documents of Plane Layer. It can
be seen from experiments’ results, shown in Fig. 3, that the proposed storage
method has an obvious advantage on the time-consuming of storage.

4 GML Query Processing

NEM supports non-spatial data query and spatial data analysis and compu-
tation. We use GML-QL [8] to write query language. But GML-QL is just a
query language used on GML document, and cannot be directly executed on the
database, so it must be converted to the corresponding SQL query language. In
the paper, Oracle Spatial is used to store GML documents. In order to deter-
mine the relationship between grandparent and grandchild nodes quickly, we use
a self-defining function UDF PARENT. Querying-transforming is a complex pro-
cess [9], and it is closely related to the data storage schema in database [10,11].
The paper defines four tables, separately storing node paths, parent-child rela-
tionships between nodes, the paths and the values of text nodes and geometry
nodes. The four tables are suitable for the conversion of the XQuery based on
path expression and SQL query extended to the database. Through the multi-
geometry spatial operation and analysis, GML query queries the non-spatial
information which satisfy spatial relations. GML query is shown in the following
part.

FOR $r IN document("Map.xml")//Road,
$s IN document("Map.xml")//State

WHERE Cross($r/GeoProperty/gml:LineString,
$s/GeoProperty/gml:Polygon) == 1

RETURN
<RiverStates>
<Rid>$r/@gml:id</Rid>
<sname>$s/SimpleProperty/Name</sname>

</RiverStates>

The corresponding conversed SQL query is shown as following:

SELECT t1.value, t2.value
FROM TxtData t1, TxtData t2, GeoData t3, GeoData t4,

Path p1, Path p2, Path p3, p4, Edge e1, Edge e2
WHERE p1.pathExpr LIKE ’%/Road/gml:id’
AND p2.pathExpr LIKE ’%/State/SimpleProperty/Name’
AND p3.pathExpr LIKE ’%/Road/GeoProperty/gml:LineString’

98 F. Zhu, Q. Guo, and J. Yang

AND p4.pathExpr LIKE ’%/State/GeoProperty/gml:Polygon’
AND e1.cID = t1.nID AND e2.cID = t2.nID
AND t1.type = ’A’ AND t1.pathID = p1.pathID
AND t2.pathID = p2.pathID
AND t3.type = ’Line’ AND t3.pathID = p3.pathID
AND t4.type = ’Polygon’ AND t4.pathID = p4.pathID
AND SDO_RELATE(t3.shape, t4.shape,
’mask=ANYINTERACT querytype=WINDOW’) = ’TRUE’;

5 Experimental Analysis

GML document contains both non-spatial data and a large number of spatial
data. Parsing the spatial data and storing the data as spatial data type in the
database are key issues of storing GML document [12]. So we use Oracle xml-
parserv2 and sdoutl in Oracle Spatial to realize the storing method proposed in
the paper. The architecture of GML storage is shown in Fig. 4.

GML

Documents Object-relational

database

Query

Converter

GML Query User Interface

Relational

Schema

Generator

GML

Document

Parser
GML QueryQuery result

Data Loader

Data Loader

SQL Query

Fig. 4. The architecture of model-driven GML document storage

Data Loader consists of GML document parser and relational schema genera-
tor. Parser parses the input GML documents, and constructs document tree. At
the same time, DOMParser and JGeometry components are used, DOMParser
parses the document as a DOM tree, and JGeometry constructs the geometry
nodes in DOM tree as a spatial data object which can be stored directly in
database. Relational schema generator traverses the document tree, and sepa-
rately writes the tree nodes, node direct edges, node path information into the
corresponding data table. Query converter converts the input GML query into
the SQL query which can run directly in database.

In the experiment, we compare the information in database and documents
which contains different sizes and different spatial types. Through the analysis
of the data from the instance in ArcView 3.2 and MapInfo 6.0, the analysis of
querying time is shown in Fig. 5 and Fig. 6.

Storing GML Documents: A Model-Mapping Based Approach 99

0

2000

4000

6000

In GML document

In database

Fig. 5. The same query in GML document and database

Fig. 6. Spatial query and non-spatial query in database

6 Conclusion

More and more GML documents are created with the wide application of GML
technology, and it is important to manage these GML documents. An approach
based on node and edge is proposed in the paper in order to store non-schema
GML document into object-relational database and model-mapping storage.
Firstly document parser converts the GML document into the corresponding
document tree, and then constructs schema mapping from GML document to
the object-relational database through analyzing and processing the node path,
node type, and the parent-child relationship between nodes. The structural infor-
mation of the document is stored as well. Spatial data analysis and non-spatial
data query are the supported through join operations between tables.

References

1. Cox, S., Daisey, P., Lake, R., Portele, C., Whiteside, A.: Geography Markup
Language (GML) Implementation Specification, OpenGIS Consortium, version 3.0
(2003)

2. Bohannon, P., Freire, J., Roy, P., Siméon, J.: From XML schema to relations: A
cost-based approach to XML storage. In: Proceedings of ICDE, San Jose, Califor-
nia, USA, pp. 64–75 (2002)

100 F. Zhu, Q. Guo, and J. Yang

3. Florescu, D., Kossmann, D.: A performance evaluation of alternative mapping
schemes for storing xml data in a relational database. Technical Report, No. 3680,
INRIA, France (1999)

4. Schmidt, A., Kersten, M.L., Windhouwer, M., Waas, F.: Efficient relational storage
and retrieval of XML documents. In: Suciu, D., Vossen, G. (eds.) WebDB 2000.
LNCS, vol. 1997, pp. 137–150. Springer, Heidelberg (2001)

5. Yoshikawa, M., Amagasa, T.: XRel: A path-based approach to storage and
retrieval of XML documents using relational databases. ACM Transactions on
Internet Technology 1(1), 110–141 (2001)

6. Jiang, H., Lu, H., Wang, W., Yu, J.X.: Path materialization revisited: An efficient
storage model for XML data. In: Proc. of ADC, Melbourne, Victoria, Australia,
pp. 85–94 (2002)

7. Córcoles, J.E., González, P.: Analysis of different approaches for storing GML
documents. In: Proc. of ACM GIS, McLean, Virginia, USA, pp. 11–16 (2002)

8. Vatsavai, R.R.: GML-QL: A spatial query language specification for GML
(2002), http://www.cobblestoneconcepts.com/ucgis2summer2002/vatsavai/

vatsavai.htm

9. Krishnamurthy, R., Kaushik, R., Naughton, J.: XML-to-SQL query translation
literature: The state of the art and open problems. In: Proc. of XML Database
Symposium, Berlin, Germany, pp. 1–18 (2003)

10. Sun, H., Zhang, S., Zhou, J.: XQuery-to-SQL translating algorithm with little
dependence on schema mapping between XML and RDB. In: Proc. of CSCWD
2004, Xiamen, China, vol. 1, pp. 526–531 (2004)

11. Grinev, M., Pleshachkov, M.: Rewriting-based optimization for XQuery transfor-
mational queries. In: Proc. of IDEAS 2005, pp. 163–174 (2005)

12. Long, W.X., Hu, C.: An Effective Storage Mode for GML Spatial. In: Proc. of
Urban Geotechnical Investigation Surveying, pp. 31–35 (2009)

http://www.cobblestoneconcepts.com/ucgis2summer2002/vatsavai/vatsavai.htm
http://www.cobblestoneconcepts.com/ucgis2summer2002/vatsavai/vatsavai.htm

GML Data Management:
Framework and Prototype

Weili Wang1,2, Fabiao Wang1, Zhiping Qian1, and Long Zhang1

1 Dept. of Computer Science and Technology, Tongji University, Shanghai, China
2 School of Info. Eng., Nanchang University, Nanchang, China

{ken.wlwang,wang.fabiao2010}@gmail.com

Abstract. Geography Markup Language (GML) with the feature of
XML-encoding and full-formed specification has been widely used in var-
ious application systems as internal representation of geo-spatial data
for its efficient interoperability in heterogeneous systems. This arises the
problem of how to effectively manipulate GML data which is different
from pure XML data with both non-spatial information as properties
of geographical features and spatial information as geometry. The GML
researches focus on separate processing technology which cannot provide
a whole geo-spatial data management service for users or developers. In
this paper, we propose a GML data management framework and analyze
how the related technology cooperate to fill the need of geo-spatial data
expressing, processing and exchanging. Storage, query, index and user
interface modules of the framework are presented based on GML/XML
technology. These modules were implemented in the prototype of GML
Data Management System (GDMS).

Keywords: Geo-spatial data, GML, GML data management.

1 Introduction

Geo-spatial data which exists widely in various application systems is textual ex-
pressing of objects in space, especially geographical space, including basic geom-
etry like point, line, polygon and geographical object consisted of basic geometry.
With the amount of geo-spatial data continuing growing, geo-spatial data orga-
nization, query and processing have become the challenge in data management
field and have triggered wide and deep research.

Geography Markup Language (GML) is XML-encoding tag language defined
by Open Geospatial Consortium (OGC)1. As the OGC GML specification was
accepted by a mass of industrial companies and research institutions, GML
gradually acts as de fact standard in spatial data processing and exchanging,
which makes GML data management become mainstream in geo-spatial data
management.

Though GML has similar properties as XML in data structure and model,
the approaches of XML storage, transformation, query and index cannot be
1 http://www.opengeospatial.org

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 101–111, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

102 W. Wang et al.

directly applied to GML for the spatial information existing in GML. GML in-
cludes geometry and properties of geographic features, that combine the spa-
tial and non-spatial parts of GML respectively. Non-spatial part is same as
XML and can be parsed by the XML technology, but spatial part need be
processed by spatial topology technology despite it is expressed as same tag
structure as XML. The key of GML processing is how to integrate XML tech-
nology with spatial technology. The study of GML concentrates on 3 aspects:
storage, parsing and query [1]. Since GML file is textual document, simple files
system and text parsing approaches are applicable in GML processing. GML
can be parsed by the same methods as XML, like DOM2 and SAX3 with the
only difference that spatial data nodes in GML are parsed in whole rather than
decomposed one by one into nodes or elements. Compared with files system,
database is a better alternative mechanism in data storage and has higher per-
formance for its facilities in indexing and querying mass data. GML has dif-
ferent structure from relational model of database, hereby model mapping [2]
and schema mapping [3] are two approaches to convert data model in storing
GML data into database. Different database structures can be used to store
GML data, like native XML database, relational database [4], object-relational
database [2,3] and spatial databases [1,5]. In XML query, many query lan-
guages were proposed, like Lore [6], XQL [7], XML-GL [8], Quit [9], XQuery4

where XQuery defined by W3C has become the standard in XML query. Mon-
etDB/XQuery [10], Saxon [11] and BaseX [12] are well known XQuery imple-
mentation. With spatial operator extension to XQuery, GML query languages
were proposed, and in these languages, GQuery [13] added external spatial op-
erator into XQuery, GQL [14] presented complete data model and definition of
GML query and XML/GML prefilter [15] was proposed in building native GML
processor. These incomplete related approaches in storage, parse and query can-
not be used to provide a whole gml-cored geo-spatial data management service
unless they are integrated in a framework and cooperate in answering users
requests.

In this paper, we propose a GML organization and search framework for
geo-spatial data management. The Framework has three layers, GML storage,
processing and interface for users or applications that need geo-spatial data
manipulation service. In GML storage, data is stored by alternative way of
DB-based and file-based approaches. The model-mapping and schema-mapping
in DB-based storage are provided to support user’s flexible selection for their
application. Besides mapping approaches, two query mechanism are design in
processing layer for different storage strategies, database and files system. The
framework provides two forms of user interface, GUI and API. The prototype
system was implemented based on the proposed framework and can effectively
manipulate GML geo-spatial data.

2 http://www.w3.org/dom
3 http://www.saxproject.org
4 http://www.w3.org/xquery

GML Data Management: Framework and Prototype 103

The rest of this paper is organized as follows. Section 2 analyzes GML data
structure and corresponding GQL query. Section 3 introduces the framework
and its modules where the core module Processing Center is described in detail
in Section 4. Prototype implementation is given in section 5. Finally, Section 6
concludes the paper and highlights future works.

2 GML Structure and Query Language

2.1 GML Structure and Model

GML is XML-encoding tag language defined by OGC to express geographical
information. The latest OGC GML specification5 has 28 kernel schemas, includ-
ing basic GML, geometry, topology, coordinate reference system, etc. GML data
in specific geographical space is described using pre-defined application schema
based on kernel schemas. Fig. 1 shows a GML fragment example about a river
named “Cam” in GML file named “cambridge.xml” and its tree model where the
subtree “LineString” with labeled star is spatial data node. In this example, the
node “River” has two non-spatial text child nodes: “description”, “name” and
one spatial child node “LineString” where “gml” denotes the prefix of namespace
declared with string “http://www.opengis.net/gml”.

River

description name

The river... Cam

LineString

id srsName spatial data...

R1 http://...

@ @

*

...
<River>
<gml:description>The river that runs through Cambridge.</gml:description>
<gml:name>Cam</gml:name>
<gml:LineString gml:id="R1"

srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">
<gml:posList dimension="2">0 50 70 60 100 50 </gml:postList>

</gml:LineString>
</River>
...

Cambridge.xml

Fig. 1. A GML example and its tree model

2.2 GML Query Language

XQuery is W3C standard to query XML data. GML Query Language (GQL) [14]
extends XQuery by adding spatial data model and operators. GQL effectively
support to query non-spatial and spatial information in GML document, that
makes GQL widely accepted in writing standard GML query expression.

GQL supports spatial operators by adding spatial processing functions into
XQuery. The GQL query expression is similar to XQuery expression and fully
supports the XQuery syntax, such as FLWR, namespaces, variate declaration,
etc. We give an example of a simple GQL query expression on GML file “cam-
bridge.xml” in Fig. 1 as below.

5 http://www.opengeospatial.org/standards/gml

104 W. Wang et al.

for $x in doc("cambridge.xml")//Road
let $y := doc("cambridge.xml")//River
where $x/number = 11 and

gmlfn:crosses($x//gml:LineString, $y//gml:LineString) = 1
return
<RoadInfo>
<Name>{$y/gml:name/text()}</Name>
<Length>{gmlfn:length($y//gml:LineString)}</Length>
<Boundary>{gmlfn:boundary($y//gml:LineString)}</Boundary>

</RoadInfo>

The Query is to search the rivers crossing the road No.11 and return their
names, length and boundaries. In the query expression, the functions “crosses”,
“length”, “boundary” with prefix “gmlfn” are predefined spatial process func-
tions described in detail in GQL specification [14].

3 The Framework of GML Data Management

It is essential to integrate various GML technology into a GML-cored geo-spatial
data management system for providing geo-spatial data service. We designed a
framework for GML data management covering modeling, storage, query and
index. Fig. 2 shows the framework we designed which includes four modules:
Data Storage, Processing Center, User Interface, External Tools.

Processing Center

Data Storage

ORDBMS Files System

GML2Relation GQL2SQL GMLIndex GQLProcessor

User Interface External Tools

User GUI API GML
Compressor

GML Schema
Matching

Fig. 2. GML data management framework

Data Storage: we designed two storage strategies for flexibility in the bottom
layer of the framework. The framework uses object-relation database
system (ORDBMS) and files system to store GML data in bottom layer. The
features of ORDBMS can manage GML data efficiently where non-spatial data

GML Data Management: Framework and Prototype 105

is stored as relational model and spatial data as objects. In this approach, GML
data has to be converted from tree model to object-relational model by invoking
GML2Relation in module Processing Center. The second selection that GML
data is stored as text document is easy to implement utilizing files system of
Operating System (OS) to manage original GML files.

Processing Center: the Processing Center is core module in the middle layer
of the framework. It accepts and analyzes the user request from upper layer,
then invokes and executes corresponding submodules to generate and return
the result back to upper layer. The processing center contains four submodules:
GML2Relation, GQL2SQL, GQLProcessor, GMLIndex, that are introduced as
below and described in detail in next section.

– GML2Relation: convert GML data into object-relational model by selecting
one of two approaches: model mapping and schema mapping;

– GQL2SQL: convert GML query expression written by GQL to SQL and
execute the query in database;

– GQLProcessor: execute the GQL query to GML data expressed as text
documents;

– GMLIndex: summary GML data and generate index structure for accelerat-
ing query execution.

User Interface: at the top layer, the framework provides GUI for terminal user
and API for other GML-cored application system. User Interface accepts user
request, then delivers the requests downward into Processing Center.

External Tools: the framework also provides tools in the top layer to user to
conduct their GML data such as: GML Compressor, GML Schema Matching,
etc. The external tools also provides GUI interface and API. The External Tools
module is flexible and open, user can define their own processing tools utilizing
the provided API.

4 The Processing Center

4.1 Storing GML Data in Object-Relational Database

The first step to parse XML-encoding textual GML data is to read the GML
file from OS. IO processing is less efficiency compared with data processing,
and the situation may become worse facing mass data. DBMS can guarantee
the high efficiency in data management, while GML data conversion is needed.
We presented two approaches that convert GML data from nested tags form to
relational model. The two approaches-model mapping and schema mapping-are
used in the framework to convert GML data.

Model mapping is the method that converts GML to a predefined and fix
relational model which is suit for arbitrary GML application schema. XML is
nested tag structure, so XML can be considered as combination of tree structure
and its value, where tree structure is composed of parent tags, child tags and the

106 W. Wang et al.

edges connecting them, and the value is text or attributes in these tags. GML
has the similar form to XML with the difference that GML has spatial value as
geometry node which is described using schema and includes some XML nodes.
We predefined the relational DB schema to store GML data based on above
analysis. The DB schema includes four tables: LabelPath, Edge, TextData and
GeoData, and they are described in detail as below.

– LabelPath (pathID, pathExpr): store all paths that is the element label
sequence from the root to current node with pathId as the key to identify
different path.

– Edge(pID, cID): store the edges connecting parent node and child node where
pID and cID denote the parent node ID and child node ID respectively.

– TxtData(pathID, ordinal, nID, type, value): store non-spatial textual data in
text node and attribute where pathID denotes its label path, ordinal denotes
the order number if there are same label paths, nID is unique global node ID
as the key, type is one of two types: text or attribute denoting the different
places of non-spatial data occurrence, value is the string value.

– GeoData(pathID, ordinal, nID, type, shape): three models above are de-
signed for conventional XML data storage. The spatial value storage of GML
is critical issue of GML management. We designed a similar structure as non-
spatial model for consistency with the difference in type and shape fields.
The type in GeoData is store the type of geometry, such as point, linestring,
polygon. The shape is used to store spatial object converted from textual
GML spatial fragment. The mainstream databases like Oracle, DB2, and
open-source PostgreSQL provide spatial feature or plugin to store spatial
value. So it is not difficult to store spatial information defined as spatial
object in ORDBMS.

The part above the dashed line in Fig. 3 shows the mapping process explained
above.

Model Mapping

GML
Documents

Application
Schema

GML
Kernel Schema

ORDBMS
Schema Mapping

Schema
Parsing

LabelPath
Edge

TextData
GeoData

DB
Schema

DB
Schema

Fig. 3. GML storage: model mapping (above the dashed line) and schema mapping
(below the dashed line)

GML Data Management: Framework and Prototype 107

Schema mapping is another method to convert GML to relational model con-
sidering its application schema. The conversion process is composed of appli-
cation schema parsing, relational model structure generation and GML data
conversion from text to object-relational data. The part below the dashed line
in Fig. 3 shows its process. GML application schema is based on GML kernel
schema for the specific field. The schema parser reads the application schema and
corresponding GML kernel schema to generate relational model as DB schema to
create in ORDBMS, then the GML data is converted to specified data structure
to store in ORDBMS according to the created DB schema.

We designed two mapping methods in framework to fill different needs. The
schema mapping can retain the semantic information of geo-spatial data stored
in GML application schema which is useful in spatial data understanding and
mining, but it is less performance in parsing and process GML data for its com-
plicated and varied relational model compared with model mapping by omitting
semantic information to define a simple and fix relational model.

4.2 GQL Query in Object-Relation Database

GQL is query language executed on GML data text. Though GQL clauses have
the similar semantic meaning as SQL’s, they cannot be directly executed in
DBMS. The other GML query languages that are mainly implemented by adding
spatial operator to XQuery cannot query spatial data stored in DBMS. SQL with
spatial extension can query GML data stored in spatial database, like Post-
greSQL with additional component PostGIS providing spatial features. So it is
essential to convert GQL expression to SQL expression to support mapping from
GML query to DBMS query.

We designed the module that convert the GQL given from user interface to
SQL used in database in bottom layer, and execute the SQL query in ORDBMS
to generate and return result back to user interface. The conversion process
in module GQL2SQL has four steps: 1) parse and partition query expression
into XPath6 expressions, set expressions, condition expression, return expression
corresponding For, Let, Where, Return clauses in original GQL expression; 2)
convert subexpressions into SQL by conversion rules based on specific database
schema; 3) execute each SQL expression; 4) assembly the result from each SQL
expression, and reconstruct the data into xml-encoding GML text. The detail
design and performance analysis will be present on our future paper.

The GQL2SQL module is a preliminary implementation of DB-based GML
data query, and the algorithm we designed just cover the GML data in DBMS
by model mapping for the relational schema gained by schema mapping is varied
and complicated.

4.3 GQL Processor

GQL is based on XQuery, so we design a GQL processor by extending XQuery
processor. MonetDB/XQuery [10], Saxon [11], BaseX [12] are well known
6 http://www.w3.org/TR/xpath

108 W. Wang et al.

implementations of XQuery processors respecting W3C XQuery specification.
Since BaseX is open-source and released under the GPL, we chose BaseX from
three to build GQL processor by adding spatial features of GQL. We extend
the BaseX at two aspects: adding geometry types in type checking and inte-
grating spatial functions in query item processing. We defined a class inherited
from “org.basex.query.item.Item” in BaseX classes package to represent geom-
etry type. The class Item in BaseX is used to express current processing item
in query. In GQL specification, 12 additional types need be defined, including:
Geometry, Coord, Coordinates, Point, LineString, LinearRing, Polygon, Box,
GeometryCollection, MultiPoint, MultiLineString, MultiPolygon. Tag “Coord”
and “Coordinates” aren’t recommended in the latest OGC GML specification
of version 3.2.1 and type “GeometryCollection” is the base type of 3 multiply
geometry types, so “Coord”, “Coordinates”, “GeometryCollection” are omitted
for simplicity. We defined 8 fields in class “Geometry” to distinguish different
virtual types of abstract geometry type.

Spatial operator is implemented using spatial function extended from
“org.basex.query.func.Fun” in BaseX classes Package. The class “Fun” is an
abstract process of function call. We define 3 classes named “FnGEORelation”,
“FnGEOSimple”, “FnGEOAnalysis” representing spatial relation between two
geometric objects, base processing on simple geometric objects (Point, LineString,
LinearRing and Polygon) and spatial analysis respectively. Spatial functions
use new token “gmlfn” as prefix for differentiating from the prefixes existing
in XQuery and BaseX. Functions in 3 classes are showed in Fig. 4, and detail
description about every functions in paper [14].

org.basex.query.func.Fun (BaseX)

FnGEOSimple

gmlfn:x
gmlfn:y
gmlfn:startpoint
gmlfn:endpoint
gmlfn:isclosed
gmlfn:isring
gmlfn:sum-points
gmlfn:point-n
gmlfn:area

gmlfn:centroid

gmlfn:exterior-ring

gmlfn:num-interior-ring

gmlfn:interior-ring-n

FnGEORelation

gmlfn:crosses
gmlfn:disjoint
gmlfn:Intersects
gmlfn:touches
gmlfn:within
gmlfn:contains
gmlfn:overlaps
gmlfn:equals
gmlfn:relate

FnGEOAnalysis

gmlfn:boundary
gmlfn:envelope
gmlfn:buffer
gmlfn:convexhull
gmlfn:intersection
gmlfn:union
gmlfn:difference
gmlfn:symdifference

Fig. 4. Spatial processing functions in GQL processor

GML Data Management: Framework and Prototype 109

4.4 GML Indexing

The problem of parsing GML documents stored as files is low performance fac-
ing mass GML data. Although processing GML data stored in DBMS has high
efficiency utilizing the DMBS features, the conversion is expensive. GML docu-
ments query is included in our framework for another selection to avoiding ex-
pensive conversion processing. The mechanism improving performance of GML
documents query is needed to the problem facing mass GML data.

GML index is the method to accelerate query by directly locating the target
data not need traverse all data. We designed a structure indexing GML document
by extends XML index with additional spatial index. The GML index structure
in our framework is the combination of text index, attribute index, path index
and spatial index. The first 2 indexes are same as XML index where text index
is used to locate text value and attribute index to attribute name and its value.
The path index is similar as XML index with the only difference that the spatial
geometry in GML documents is regard as a whole node rather than decomposing
into their internal coordinate nodes. The text, attribute and path index is easy
implemented with classical B+tree. The last one is specific structure for indexing
geographic information of GML. We constructed the spatial index with R+tree.

The process of construct GML spatial index is to sequentially read the whole
document and extract all geometry elements, and then wrap them as geometry
objects and put into R+tree based on their spatial range. In the process of GQL
query execution, some spatial operators can be accelerated with GML index. We
firstly query in B+tree with text, attribute or specific path and in R+tree with
geometry object or spatial range given by GQL query expression and return the
target sets, then we reconstruct the GML documents with the target sets which
have omitted the useless parts of the original GML document, finally we execute
the GQL query on the reconstructed GML data. The node of the reconstructed
GML is no more than original document, so it can decrease the number of items
need be processed in the process of query evaluation, especially facing mass
GML data.

5 The Prototype

We have implemented prototype system of the framework described above. Post-
greSQL7 is chosen as the ORDBMS to store GML data for the PostgreSQL is
open-source and have spatial plugin PostGIS for geometry object processing.
In GQL Processor, we extended the open-source XQuery implementation Ba-
seX [12] with JTS Topology Suite8 to provide spatial predicates and functions.
The System is coded using Java and built by JavaSE 6.

The prototype is consisted of several views. In storage view, user can choose
the mapping mode, then load the GML documents or its corresponding appli-
cation schema if need when schema mapping is selected. In search view, user
7 http://www.postgresql.org
8 http://www.vividsolutions.com/jts

110 W. Wang et al.

(a) Application Schema Parsing (b) Storage SQL

(c) GQL Processor (d) GML Display

Fig. 5. The prototype: (a) application schema parsing in storage view; (b) SQL in DB
storage view; (c) GQL processor view; (d) GML display view

can query any GML information stored in DB or in documents with GQL ex-
pression. In Display view the geographical information can be returned by query
processing on data storage and displayed in GUI as svg-type geographical graphs
transformed by user interface. The other views provide different functions, such
as database setting, external tools, etc. Fig. 5 shows main views in the imple-
mentation of prototype where Fig. 5(a) is application schema parsing view in
storage module, Fig. 5(b) is SQL generator view in DB storage, Fig 5(c) is GQL
processor view and Fig 5(d) is GML display view.

6 Conclusion and Future Work

GML manipulation become increasingly important for mass using of GML in geo-
spatial data expressing and exchanging. A holistic structure integrating various
GML technologies is need to fill the requirements of effective GML geo-spatial
data management. In this paper, we proposed a GML data management frame-
work include storage, query, index and user interface. The model-mapping and
scheme-mapping in GML storage, conversion from GQL to SQL, GQL processor
on GML documents in GML query and GML index structure based on B+tree

GML Data Management: Framework and Prototype 111

and R+tree were implemented in prototype of proposed framework. How to
efficiently support GML update and construct GML database is the direction of
our future work.

Acknowledgment

This work was supported by China 863 Program under grant No. 2009AA01Z135
and the National Natural Science Foundation of China (NSFC) under grant
No. 60873040.

References

1. Sripada, L.N., Lu, C., Wu, W.: Evaluating GML support for Spatial Databases.
In: COMPASAC, Hong Kong, pp. 74–77 (2004)

2. Zhu, F., Guan, J., Zhou, S.: Storing and Querying GML Documents based on
Model-mapping. Journal of Computer Research and Development 43(suppl.) (2006)

3. Zhu, F., Guan, J., Zhou, J., Zhou, S.: Storing and Querying GML in Object-
relational Databases. In: ACM-GIS, Arlington, pp. 107–114 (2006)

4. Corcoles, J.E., Gonzalez, P.: Analysis of Different Approaches for Storing GML
Documents. In: ACM-GIS, McLean, pp. 11–16 (2002)

5. Li, Y., Li, J., Zhou, S.: GML Storage: A Spatial Database Approach. In: Wang,
S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D.-q., Grandi, F., Mangina,
E.E., Song, I.-Y., Mayr, H.C. (eds.) ER Workshops 2004. LNCS, vol. 3289, pp.
55–66. Springer, Heidelberg (2004)

6. Abiteboul, S., Quass, D., Mchugh, J., et al.: The Lorel Query Language for
Semistructured Data. International Journal on Digital Libraries 1(1), 68–88 (1997)

7. Robie, L.J., Schach, D.: XML Query Language (XQL). In: The Query Languages
Workshop, Boston (1998)

8. Ceri, S., Comai, S., Damiani, E., et al.: XML-GL: A Graphical Language for Query-
ing and Restructuring WWW Data. In: WWW, Toronto, pp. 1171–1188 (1999)

9. Chamberlin, D., Robie, J., Florescu, D.: Quilt: An XML Query Language for
Heterogeneous Data Sources. In: WebDB, Dallas, pp. 1–25 (2000)

10. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:
MonetDB/XQuery: a Fast XQuery Processor Powered by a Relational Engine. In:
SIGMOD, Chicago, pp. 479–490 (2006)

11. SAXONICA XSLT and XQuery Processor, http://saxonica.com
12. BaseX XPath/XQuery processor, http://www.inf.uni-konstanz.de/dbis/basex
13. Boucelma, O., Colonna, F.M.: Querying GML Data with GQuery. Technical report

(2003)
14. Guan, J., Zhu, F., Zhou, J., Niu, L.: GQL: Extending XQuery to Query GML

Documents. Geo-spatial Information 9(2), 118–126 (2006)
15. Huang, C., Chuang, T., Deng, D., Lee, H.: Building GML-native Web-based

Geographic Information Systems. Computers & GeoScineces 35(9), 1802–1816
(2009)

http://saxonica.com
http://www.inf.uni-konstanz.de/dbis/basex

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 112–119, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Efficient Multi-layer Grid Method for
Skyline Queries in Distributed Environments

He Li, Sumin Jang, and Jaesoo Yoo

Department of Information and Communication Engineering,
Chungbuk National University, Cheongju, 361-763, Korea

{lihe,jsm,yjs}@cbnu.ac.kr

Abstract. The skyline query has been received much attention as an important
operator in database systems for multi-preference analysis and decision making.
Most of the previous works have focused on processing skyline queries on cen-
tralized data sets. However, the related data of real applications are practically
scattered at several different servers. The skyline query computation in distrib-
uted environment is needed to gather a large number of data from the connected
servers. The existing methods for a skyline query in distributed environment
have two problems: (i) They have slow processing time for a skyline query.
(ii) Most of the transferred data among servers in the network are unnecessary.
In this paper, we propose a multi-layer grid method for efficiently processing
skyline queries in distributed environments (MGDS). The proposed method
minimizes the unnecessary transferred data using the grid mechanism. Experi-
ments based on various data sets show that our proposed method outperforms
the existing methods.

Keywords: Skyline query, distributed skyline query, grid method, distributed
data.

1 Introduction

In the recent years, the interests on skyline query processing have been significantly
increased since the skyline results can be used in many applications with multi-
dimensional data set. Given a data set D containing objects D={p1, p2 … pn}, the
skyline operator returns all objects pi such that pi is not dominated by another object pj.

Most of the previous skyline literatures [1], [2], [3] have primarily focused on pro-
viding efficient skyline algorithms on centralized data set. In practice, however, the
vast numbers of independent data are often collected from multiple sources that stored
in distributed servers. Figure 1 shows an example of skyline query in distributed envi-
ronment. Assume a set of distributed servers {S1, S2, S3, and QS}. Each server stores
a set of tuples that is a fraction of the entire data set. The skyline query is initiated
by users through query server (QS). The result of the skyline query is evaluated by
gathering all of local data from the connected servers. A real-life example of the sky-
line queries in distributed environments is the online comparative shopping, in which
a user needs to get good bargains from many different shopping sites according to

 An Efficient Multi-layer Grid Method for Skyline Queries in Distributed Environments 113

QS
Skyline
Query

Result

Users

S1

S2

S3

Global Data
Local Data

Server

Query Server

Network

Fig. 1. The skyline queries in distribute environments

multiple criteria like price, quality, guarantee, etc. Such multiple criteria can be cap-
tured by a skyline query. In such cases, directly applying existing techniques would
incur large overhead. Then, a distributed architecture is needed.

A naïve approach to process the distributed skyline queries is to send the skyline
queries to all of the connected servers which in turn process the skyline queries lo-
cally and report the results to QS. The QS merges the received results and evaluates
the global skyline result. This approach needs to transmit and process an excessive
unnecessary data which is local skyline data but not global skyline data. Joao B. et al.
in [4] proposed a grid-based strategy for distributed skyline query processing
(AGiDS), which use a grid-based data structure to capture the data of each server.
Instead of sending the local skyline data, the local cell information which contains
local skyline data are firstly sent to the QS. The dominated local cells at QS are elimi-
nated. Then only the local skyline data within the non-dominated cells are transferred
to the QS. However, if the cells of the local servers transferred to QS are overlapped,
lots of unnecessary data need to be processed.

In this paper, we propose a multiple layer grid method for skyline queries (MGDS)
in the widely distributed environments. The proposed method assumes that each
server shares a common grid structure. The QS first gathers the cell information
which contains local skyline data. If the cell information is overlapped, we propose to
generate a multiple layer grid based on the overlapping cells. The dominated cells of
the multiple layers grid are eliminated. According to the multiple layers grid mecha-
nism, more unnecessary local data are filtered out before transferred to the query
server for processing.

The remainder of the paper is organized as follows. Section 2 surveys the previous
related works. Section 3 presents the details of the proposed method. Section 4 con-
tains an experimental evaluation that demonstrates the superiority of our proposed
MGDS method. Finally, Section 5 concludes this paper.

2 Related Work

In [1], Borzsonyi et al. first introduced the skyline operation in database systems and
proposed two solutions based on Block Nested Loop (BNL) and Divide and Conquer

114 H. Li, S. Jang, and J. Yoo

(D&C). The nearest neighbor (NN) algorithm [2] indexes the data set with an R-tree.
NN utilizes nearest neighbor queries to find the skyline results. In [3], the branch and
bound skyline (BBS) algorithm was proposed. BBS is also based on nearest neighbors
search and outperforms the NN approach. However, all these works assume central-
ized data storage.

Different from the skyline queries in centralized setting, skyline queries processing
in the distributed and decentralized environments have been received considerable
attention recently. Balke et al. [5] addressed skyline operation over multiple distrib-
uted sources, they consider that the underlying relation is vertically partitioned,
i.e. each server keeps only an attribute of the relation. In this work, we focus on hori-
zontal partitioning, where a server has all the attributes, but stores only a subset of all
the tuples. Wang et al. [6] developed a skyline space partitioning (SSP) approach to
compute skyline on a tree-structured p2p platform BATON. For this method, a server
cannot freely decide the tuples in its own storage. Our techniques allow arbitrary
horizontal partitioning. Cui et al. [7] study skyline queries in a distributed environ-
ment. They propose the use of MBRs (Minimum Bounding Regions) to summarize
the data stored at each server. According to the MBRs of all servers, incomparable
groups are assigned. The skyline is computed within each group using specific plans.
In [8], a feedback-based distributed skyline (FDS) algorithm is proposed, which com-
putes skyline in the no particular overlay network with economical bandwidth cost.
The FDS algorithm is bandwidth efficient as the querying computer transmits to each
server the precious information that prevents the delivery of a large number of non-
skyline points. However, it requires several round-trips to compute the skyline, which
incurs high response time. Joao B. et al. in [4] proposed a grid-based strategy for
distributed skyline query processing (AGiDS). The response time of AGiDS is fast as
it adopts the parallel computing over the distributed servers. However, if the cells of
the local servers transferred to QS are overlapped, this method cannot efficiently re-
duce the unnecessary local data that are transferred from local servers for processing
the global skyline.

3 The Proposed Method

3.1 Motivation

As mentioned before, when the cells of local servers transferred to the QS are over-
lapped, the AGiDS method leads to the transmission of unnecessary data. Therefore,
we propose a new multi-layer grid method which processes skyline queries in distrib-
uted environments (MGDS). We assume that each server shares a common grid and
the grid can include the entire data set. Given a set of distributed servers S= {S1, S2,
S3…, Si}. Each server Si stores a set of tuples that is a part of the entire data set and
has the capability of computing the local skyline set based on the stored data points.
The server who produces a skyline query is called query server (QS). Without loss of
generality, we assume that smaller values are preferred in the skyline operator. In
order to evaluate skyline queries efficiently, the proposed MGDS method uses three
kinds of dominance relationships among the cells of grid. We consider that each cell
of a 2-dimensional grid has a lower left corner coordinate value and a top right corner
coordinate value.

 An Efficient Multi-layer Grid Method for Skyline Queries in Distributed Environments 115

Three kinds of dominance relationships among cells of grid

• celli is dominated by cellj, if the lower left corner coordinate of celli is dominated
by the top right corner coordinate of cellj.

• celli is overlapped with cellj, if the lower left corner coordinate of celli equals the
lower left corner coordinate of cellj.

• celli dominates cellj, if the top right corner coordinate of celli dominates the lower
left corner coordinate of cellj.

If celli is dominated by cellj, which means that all the data points of celli is dominated
by any data point of cellj. We define the cells which contain skyline data as region-
skyline, as shown in Figure 2, the shaded area. If the region-skyline overlaps at differ-
ent servers, we define these regions as overlap region-skyline, e.g. the cell A and B of
Figure 2. If the overlap region-skyline contains more data points (rCount) than
the predefined threshold value k (the value of k is defined according to the practical
application), it is defined as hot overlap region-skyline, e.g. the cell B of Figure 2.

3.2 The Processing of MGDS Algorithm

The proposed MGDS method is comprised of three basic stages: planning, analyzing
and execution. At the beginning of the planning stage, a skyline query can be initiated
by a query server (QS). When receive the skyline query, each server Si computes its
local region-skyline by using an existing grid algorithm. The QS contacts all the con-
nected servers and obtains the region-skyline information. In the analyzing phase, the
received cells are analyzed and the global region-skyline is evaluated at QS. If the hot
overlap region-skyline is occurred at the connected servers, it can be handled by cre-
ating an upper layer grid. As shown in Figure 2, if cell B is hot overlap region-skyline
both at server S1 and S2, it is converted to an upper layer grid. The data points of cell
B are managed by the upper layer grid and the local region-skyline of the upper layer
grid is computed. Then, QS requests the local region-skyline of the upper layer grid
and computes the global region-skyline. If the hot overlap region-skyline still exists
on the upper layer grid, more layers grid can be generated. Notice that, though cell A
is a overlap region-skyline both at S1 and S2, it is not converted to a upper layer grid,
this is because there are only a small amount of data in cell A both at S1 and S2, and
processing these data is efficient than processing the upper layer grid. In the execution
stage, only the data points existed in the global region-skyline of each server are re-
quested for the final global skyline computation. Since most of unnecessary local
skyline data points are filtered out, the MGDS method reduces both the communica-
tion and processing cost.

Next, we illustrate the MGDS method by means of an example depicted in Figure
2. Assume that each server has a 2-dimensional data set and the grid consists of 3*3
cells. In the planning stage, the cells A, B, D of S1’s grid and A, B, C of S2’s grid are
evaluated as local region-skyline and sent to the QS. In the analyzing stage, the re-
ceived local region-skylines which dominated at QS are eliminated. Because cell B is
hot overlap region-skyline, it needs to be converted to an upper layer grid, the data
within cell B is managed by the upper layer grid and the local region-skyline B-1,
B-2, B-3, B-4 and B-5 of the upper layer grid is evaluated at S1 and S2 respectively.

116 H. Li, S. Jang, and J. Yoo

Server S1

B B

n+1-Level Grid of cell B

A A C

Server S2

D

n-Level Grid

B-1

B-2

n+1-Level Grid of cell B

Q S

3

1 2

13 2

Query Server

B-3

B-5B-4

Region-Skyline
Overlap Region-Skyline

Hot Overlap
Region-Skyline

(rCount > k)

Region-Skyline of Server S1 Region-Skyline of Server S2

Fig. 2. The processing of the proposed MGDS method

The QS gathers the local region-skyline of the upper layer grid and evaluated the
global region-skyline. As the cells B-3, B-4 and B-5 of S2’s grid are dominated by
the cells B-1 and B-2 of S1’s grid which is not global region-skyline. Therefore, in
this example, the global region-skyline is cells A, D, B-1, B-2 of S1’s grid, and cells
A, C of S2’s grid. In the execution stage, only the local skyline data within cells A,
D, B-1, B-2 of S1’s grid, and cells A, C of S2’s grid are transferred to the QS for final
global skyline computation.

4 Experiment Evaluation

4.1 Experimental Environment

In this section, we study the performance of our proposed method. We present the
experimental results comparing AGiDS method [4] and the naive method with our
proposed MGDS method. We conducted our experiments on a desktop PC running on
Windows XP professional. The PC has an Intel Core2 Duo 2.66GHz CPU and 1GB
memory. All of the experiments were coded in Java. Table 1 shows the parameters for
experiments evaluation.

In this experiment, there are two critical types of data distributions that stress the
effectiveness of skyline methods have been used, the anti-correlated and uniform data
set. The anti-correlated data represent that the data points that have a high value in
one dimension and have a low value in one or all of the other dimensions. And the
uniform data set is the data distributed in the arbitrary work space. All of the experi-
ments are evaluated based on these two synthetic data sets.

4.2 Experimental Results

We consider that all of the distributed servers are connected and each server posses an
equal number of data points, the data points distributed in 30% range of the grid at

 An Efficient Multi-layer Grid Method for Skyline Queries in Distributed Environments 117

each server. In the first experiment, the performance is measured by the amount of
data transmitted over the network. We examine the performance of the methods by
varying the number of data tuples from 10K to 200K at each server and the dimension
of the data is set to 2. Figure 3 shows the results for the amount of transmitted data
with respect to the number of data tuples. The skyline queries in anti-correlated data
set transmit more data than in uniform data set. The reason is that the skyline data of
anti-correlated data set is larger than the uniform data set. The MGDS method outper-
forms the AGiDS method and the naive method since more non-promising data points
are filtered out by the multiple layer grids mechanism.

Figure 4 shows the response times of the three schemes according to the data size.
In this experiment, the dimension of the data is set to 2 and the data size is varied
from 10,000 to 200,000 at each connected server. From the results we can see that, the
response time increases sharply when the data tuples are increased. This is because
the increasing data size needs high processing cost which prolong the processing time.

Table 1. The parameters for experiments evaluation

Parameter Values
The number of dimensions 2~5
The number of servers 10
The amount of data at each server 10K~ 200K
The size of the grid 10*10

 (a) Uniform data set (b) Anti-correlated data set

Fig. 3. Evaluation of the total transferred data for various data size

 (a) Uniform data set (b) Anti-correlated data set

Fig. 4. Evaluation of the response time for various data size

118 H. Li, S. Jang, and J. Yoo

 (a) Uniform data set (b) Anti-correlated data set

Fig. 5. Evaluation of the response time for various data dimensions

The response time of MGDS is better than the response time of naïve and AGIDS for
anti-correlated data and uniform data. This is because less data is processed.

As shown in Figure 5, the response time of the AGiDS method and MGDS method
are compared according to the number of dimensions. In this experiment, the data size
is set to 10,000. We study the results of the different methods with increasing the
dimensions of the data set at each server. The response time of AGiDS increases more
rapidly than the MGDS method when the dimensions increase. The reason is that with
the increase of the dimensions more data points need to be processed.

5 Conclusions

This paper studies skyline queries over the horizontally partitioned data set. As the
relevant data are scattered at several servers, the skyline query in distributed environ-
ment requires gathering a large number of data from the distributed servers that con-
nected by the network. The proposed MGDS method employs a multi-layer grid
mechanism to process the distributed data. It can filter out much of the unnecessary
data which need to be transmitted to the querying server for final skyline result com-
putation. The experimental results have shown that the proposed method is efficient
than the existing methods.

Acknowledgments. This work was supported by the Ministry of Education, Science
and Technology Grant funded by the Korea Government” (The Regional Research
Universities Program/Chungbuk BIT Research-Oriented University Consortium).

References

1. Borzonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: 17th International
Conference on Data Engineering, pp. 421–430. ICDE Press, Heidelberg (2001)

2. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for
skyline queries. In: 28th International Conference on Very Large Data Bases, pp. 181–184
(2002)

3. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: ACM-SIGMOD International Conference on Management of Data, pp.
467–478. ACM Press, San Diego (2003)

 An Efficient Multi-layer Grid Method for Skyline Queries in Distributed Environments 119

4. Rocha-Junior, J.B., Vlachou, A., Doulkeridis, C., Norvag, K.: AGiDS: A Grid-based Strat-
egy for Distributed Skyline Query Processing. In: Data Management in Grid and Peer to
Peer Systems, Second International Conference, Globe 2009, Linz, pp. 12–23 (2009)

5. Balke, W.T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for web information
systems. In: Hwang, J., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis,
M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 256–273. Springer, Heidelberg
(2004)

6. Wang, S., Vu, Q.H., Ooi, B.C., Tung, A.K.H., Xu, L.: Skyframe: A framework for skyline
query processing in peer-to-peer systems. VLDB Journal 18, 345–362 (2009)

7. Cui, B., Lu, H., Xu, Q., Chen, L., Dai, Y., Zhou, Y.: Parallel distributed processing of
constrained skyline queries by filtering. In: 24th International Conference on Data Engineer-
ing, ICDE 2008, Cancun, pp. 546–555 (2008)

8. Zhu, L., Tao, Y., Zhou, S.: Distributed skyline retrieval with low bandwidth consumption.
In: TKDE, pp. 384–400 (2009)

3D Indoor Route Planning for
Arbitrary-Shape Objects

Wenjie Yuan and Markus Schneider	

Department of Computer & Information Science & Engineering
University of Florida

Gainesville, FL 32611, USA
{wyuan,mschneid}@cise.ufl.edu

Abstract. Route planning, which is used to calculate feasible routes
in a given environment, is one of the key issues in navigation systems.
According to different constraints in different given space, various route
planning strategies have been developed in recent years. Current route
planning models for indoor space focus on providing routes for pedes-
trians or fix-sized users, like robots and persons in wheelchairs. None of
the existing model can provide feasible routes for arbitrary-shape users,
which appears to be more and more useful in many situations, like users
driving small indoor autos or moving carts with products. This paper
proposes a two-phase route planning model which can support route
planning for users with arbitrary shapes. In the first phase, the LEGO
model represents the entire space by using different types of cubes. These
cubes are further merged in the second phase to form the maximum
accessible blocks. By computing the maximum accessible widths and
lengths between blocks, a LEGO graph is built to perform route searching
algorithms.

1 Introduction

A navigation system consists of two main parts: localization and route planning.
Localizations refer to the determination of the locations with the aid of some
Equipment. Route planning strategies are used to compute feasible routes be-
tween two specific locations. There are a lot of route planning strategies used in
different route planning models. The most important feature they have to have
is to provide the user a feasible route so that the user can go to the desired place
without colliding with any obstacles in the given space.

The design of route planning strategies depends on multiple constraints in
the given environment. One of the most common constrains is the structure of
the environment. For example, outdoor space has the network structure while
indoor space is based on cells. Therefore, route planning for outdoor space is
different from the one applied to indoor space. The type of users is another vital

� This work was partially supported by the National Science Foundation under grant
number NSF-IIS-0915914.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 120–131, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

3D Indoor Route Planning for Arbitrary-Shape Objects 121

constraint. From one location to another, the routes provided to vehicles and to
pedestrians are may be different. In indoor space, most route planning models
are designed for pedestrians only. They approximate pedestrians into points
without considering their volumes. However, besides pedestrians, there are some
other kinds of users, like persons in wheelchairs, small indoor autos, robots and
carts carrying products. These types of users cannot simply be approximated
into points because their volumes may affect the accessibility in indoor space.
However, to the best of our knowledge, there is no route planning model that
can support users with arbitrary-shapes.

The purpose of this paper is to propose a model that can provide feasible
routes for users with arbitrary shapes in indoor space. Our solution consists in a
two-phase method that includes a representation phase followed by an accessi-
bility checking phase. In the first phase, a LEGO-based representation model is
proposed to efficiently represent the 3D structure as well as all the obstacles in
the indoor space. The entire space is approximated by several LEGO cubes. All
the cubes have the same-sized basal area, and each of them has its own height and
type according to the object it represents. In the second phase, LEGO cubes are
merged into blocks that can be used to evaluate the maximum accessible space
constrained by obstacles. At last, a LEGO graph is built to support shortest
path search algorithms.

The rest of the paper is organized as follows. Section 2 discusses the existing
approaches of indoor navigation models. Section 3 introduces the LEGO repre-
sentation model we used to represent the indoor space. The accessibility checks
for arbitrary-shape objects are discussed in Section 4. In Section 5, a LEGO
graph is introduced to support efficient path searching algorithms. Finally, Sec-
tion 6 draws some conclusions and depicts future work.

2 Related Work

The existing route planning models can be classified into two main categories:
path-based models and grid-based models.

Most of the models designed for pedestrians are path-based models. In these
models, users are approximated by moving points. The earlier models [1,2] use
center points to represent cells and build routes based on the reachability of the
cells. Since they do not consider architectural constrains, the generated routes
are very coarse, and may be circuitous. CoINS model in [3,4] simplify the route
by eliminating some unnecessary nodes and recalculating the segments between
different nodes. Later, models take more architectural constrains into account
(see [5,6,7,8,9]). The model proposed in [5] captures the relationships between
the cells and the exits. After that, it organizes the relationships between cells and
exits in a hierarchical structure according to their reachability. The model intro-
duced in [7] employs some representative points to represent rooms, corridors and
exits. The calculation of the path is processed based on the connections between
these representative nodes. Later, in [8], this model is extended by decompos-
ing cells into several convex regions to provide users better route instructions.

122 W. Yuan and M. Schneider

42 inches42 inches

48 inches
wheelchair

(a) (b)

Fig. 1. Representing space by using cubes (a)

However, since it uses points to represent cells, the generated routes are not
guaranteed to be the shortest paths. The iNav model proposed in [25] considers
the shapes and all the exits of cells and develops a novel strategy to find the
shortest path between two exits. The above mentioned models are all 2D models.
Lee proposes a 3D model in [10,11]. In this model, Poincaré duality combined
with a hierarchical network structure are used to explore the relations between
objects. One drawback of this model is that the 3D information is only used to
distinguish different floors. In each floor, the route planning still focuses on 2D
information. The same problem happens in the models in [12,13]. The model
in [14] is used to generate the evacuation routes. This model takes into account
different features of the interiors, such as the types of the passing (e.g. uni- or
bi-directional) and the types of the boundaries (e.g. persistent boundaries like
walls and virtual boundaries like openings). By using these features, this model
is able to distinguish the accessible parts and non-accessible parts in the indoor
space. The drawback of this model is that it focuses on the surroundings, but
ignores the structure of the floor plane.

The grid-based models are more suitable for fix-size users. They usually de-
compose the space into cells and compute routes by exploring the connectivity
of these cells. Most of the grid-based models [15,16,17] represent the available
space by unified shapes (e.g., rectangles). The union of the generated cells may
not be exactly the available space, especially for the space on the boundaries.
However, since they use simple and unified representative units, they are usu-
ally more efficient for the route planning. The model proposed in [15] is one
of the most popular grid-based models. It represents indoor space by equal-
size cells marked as obstacles and non-obstacles. Available routes are computed
by checking the availability of the movements from cells to their 8 neighbors.
His model also support navigation in 3D space by filling out the indoor space
with the obstacle and non-obstacle cubes (as shown in Figure 1a). The obstacle
cubes are further classified into insurmountable and surmountable ones to facil-
itate the 3D navigation. In [17], topological maps are formed by merging cells
into a hierarchical structure. This model is useful when the number of cells is
large. The model proposed in [18] discussed the accessibility of wheelchairs in
indoor space. It computes the minimum requirements for a wheelchair to make
turns and provide possible routes for them. However, this model is only suitable

3D Indoor Route Planning for Arbitrary-Shape Objects 123

(a) (b) (c)

Fig. 2. A cube in a cell with regular shape (a), cubes in a pyramid shaped cell (b),
and cubes representing stairs (c)

for common sized wheelchairs. The minimum requirements are predetermined,
not dynamically computed according to the size of the objects (as shown in
Figure 1b.

3 The LEGO Model

The indoor environment becomes more and more complicated in recent years.
Therefore, the representation models designed for route planning in indoor space
are required to not only efficiently handle a large number of data, but also
benefit route planning approaches. In [19], we proposed a data model, called
LEGO model, to represent the 3D structure in indoor space and support route
planning.

In the LEGO model, the entire indoor space is represented by several cubes.
These cubes have the same size of the basal area, but their heights and types
may different depending on the objects they represent. Figure 2a and b show two
examples of the cubes in indoor space, and the heights of the cubes in Figure 2b
are different depending on the distances between the floor and the ceiling. In our
model, according to the objects they represent, cubes are classified into three
categories: plane cubes, stair cubes and obstacle cubes.

The cubes used to represent planes in indoor space are called plane cubes.
When a floor and a ceiling are flat, and there is no obstacle between them,
the accessible space between the floor and the ceiling will be represented by a
cube whose height is the distance between the floor and the ceiling (as shown
in Figure 2a). When a floor or a ceiling is not flat, the available space can
be approximated into multiple LEGO cubes with different heights (as shown
in Figure 2b).

The cubes used to represent stairs are called stair cubes. Similar to the ap-
proximation of the sloping planes, a stair is represented by a set of accenting or
descending LEGO cubes (as shown in Figure 2c).

The cubes used to represent obstacles are called obstacle cubes. Obstacles
refer to the objects whose occupied areas are not available for users. They can
be walls, tables, chairs and other objects. If the obstacle is too high to be passed
over, the cubes representing it will reach the ceiling, which means the space from

124 W. Yuan and M. Schneider

(a) (b)

Fig. 3. Examples of merging cubes to generate larger blocks

the floor to the ceiling in this location is unavailable. If the obstacles are so low
that pedestrians can pass over them, they are represented by stair cubes instead.
Some obstacles are lying in the air, and the spaces below them are available for
users. This kind of obstacles will limit the height of the available space below
them. The space from the floor to the ceiling in this area will be represented by
two different LEGO cubes. The bottom one represents the available space and
the upper one represents the obstacle. The top area of the bottom cube will be
the basal area of the upper cube.

4 Checking the Accessibility for Arbitrary-Shape Objects

The goal in our paper is to provide feasible routes for arbitrary-shape users.
The accessibility is affected by multiple facts like the walls, the exits and the
obstacles inside rooms. We will introduce how we check the accessibility of users’
widths, heights and lengths.

4.1 The Maximum Widths

In order to check the accessibility of the widths, we have to find the maximum
available widths in any places. The maximum widths in different places are
restricted by obstacles. For example, Figure 3a is the 2D projection of a cell
represented by LEGO cubes. The white, black and grey cubes represent the
available space, obstacles and stairs respectively. From the figure, we can learn
that the maximum accessible horizontal width in the location of the cube ab and
c is the same. This maximum width can be obtained by merging the plane cubes
in horizontal direction until we meet an obstacle cube. The merging approach is
introduced in [19]. Due to the space limit. The details are not discussed in this
paper. Interested readers are referred to [19].

The result of the merging process is a set of blocks. For each block, there
will be at least one obstacle cube beside each side of its boundary. As shown in
Figure 3b, the rectangle (4,6,18,16) is one generated block. It is the maximum
block in the corresponding location because it is impossible to further extend its
boundary to form a lager rectangle.

3D Indoor Route Planning for Arbitrary-Shape Objects 125

(a) (b) (c)

Fig. 4. Construct connectors according to the relationships between blocks

There are three possible relationships between two blocks: disjoint, adjacent
and overlap. For adjacent and overlap blocks, the maximum accessible widths
between them are determined by their connecting area (called connectors). The
accessible width of a connecting area is different from the accessible width of a
block. The maximum accessible width of a block is determined by two connecting
part (the one entering the block and the one exit the block). For example, in
Figure 4c, although the connector in bold is wider than the minimum width
of the block B (the bottom side of B), if we want to go through block B from
its bottom side, the maximum width will be restricted by the connector on the
bottom side.

4.2 The Maximum Heights

The accessible height is the second condition we have to check. Although the
heights of LEGO cubes can reflect the heights of the available space inside cells,
the accessible height of a cell is actually controlled by the heights of the exits.
Assuming that the default height of one cell is the maximum height among
all its exits, the area higher than the default height can be accessed without
restriction. Therefore, in our merging process, the LEGO cubes higher than the
default height will be merged together. For the LEGO cubes lower than the
default height, only the cubes of the same height can be merged together. This
makes sure that all the cubes in one block either have the same height, or higher
than the default height. For the former case, the height of the cubes is the height
of the block, and for the latter one, the default height becomes the height of the
block. For each pair of adjacent or overlap blocks, the maximum accessible height
is the minimum height of the two blocks.

4.3 The Maximum Lengths

The process of checking accessible lengths is very complicated. Turns, obstacles
and user’s volumes all have impact on the maximum accessible length (examples
are shown in Figure 5a, b and Figure 6a). In our model, we propose an approach
to provide users a feasible way to their destinations. The generated route may
be not optimal, but it is guaranteed to be feasible.

There are several reasons why we cannot provide the optimal ways. First, the
shapes of users may be different. It is hard to check the availability for every

126 W. Yuan and M. Schneider

obstacles obstacles

A

(a) (b) (c) (d)

Fig. 5. Examples showing difficulties to find the optimal routes

part of the object in all places. For example, in Figure 5c, the rectangle cannot
pass though these obstacles. However, in Figure 5d, although object A shares
the same rectangle, it is able to go through the path. Even if we can find a way
to check the accessibility for every part, it is inefficient and unpractical to do
that. Second, in real world scenario, users may prefer comfortable ways rather
than the optimal one. For example, it will not be a realistic route if users have
to make several tries to find the right angle to make a turn. Thus, it is better to
provide a route with enough space.

As we know, users’ movements can be varying. However, if we decompose the
movements into small steps, they can be classified into two main categories: going
straight and making turns. To check the accessibility of the length for a straight
path, we only need to compare the length of the object with the length of the
straight path. However, checking the accessibility for turns is difficult. In our
paper, we will first introduce an approach that can check the accessible lengths
for all general cases in indoor space. Then refine the approach for special cases.

Let’s start from a simple case. Figure 6a shows a typical corridor turn. One
important observation is that if the minimum bounding circle of the object can
be contained in the turning corner (the grey area), this object is able to make the
turn. This corner concept can be applied to our LEGO representation model.
In Section 4.1, we have discussed how to find the maximum accessible widths by
merging cubes into larger blocks. Any two blocks may be disjoint, adjacent or
overlap (as shown in Figure 4). Users may need to make turns only when they
are going from one block to another through the corresponding connector.

The scenario for overlap blocks (as shown in Figure 4c) is similar to the typical
corridor turns. If the minimum bounding circle of the object can be contained in
the overlap area, this object is able to make the turn in this connector. However,
for the corner in the typical corridor turn, the shape and the size is restricted by
the walls, while for the overlapped area of two blocks, its boundary may not be
restricted by obstacles. One possible solution is to extend its boundary to find
the maximum corner areas. As shown in Figure 6c, block A and B are generated
according to the layout of the obstacles. In this scenario, we can extend the
boundary of the overlap area to form a larger accessible space indicated by the
dashed lines in Figure 6c. In fact, this extension process is unnecessary; because
the merging process of the LEGO model guarantees that any block with the
maximum accessible space will be generated. Therefore, any possible overlap

3D Indoor Route Planning for Arbitrary-Shape Objects 127

(a) (b) (c) (d)

A

B

a

b

c
A

B

O A

B
ab

c

A

B

(e) (f) (g) (h)

Fig. 6. Demonstrations of checking accessibility in different scenarios

areas can be captured by our model. For example, the area indicated by the
dashed boundary in Figure 6c is the overlap area of the block C and D. We can
find the maximum alternative corner area of A and B by looking for the largest
corner area that contains the current one.

Figure 4b shows another kind of overlap relationship between two blocks. For
this kind of scenario, according to the locations of other connectors, users may
or may not have to make turns. Taking Figure 6e as an example, A and B are
two adjacent blocks, and c is the connector between A and B. Assuming a and
b are two connectors connecting A and other blocks, if one user goes from a to
c, she can go straight to B. However, if she goes from b to c, then probably she
will need to take a turn. Our approach to handle this scenario is to find the
maximum overlap area for the two blocks. If the minimum bounding circle of
the object can be contained in the maximum overlap area, the object can go
through the two blocks without any problem. For example, in Figure 6e, the
grey part is the overlap area between A and B. According to the locations of the
obstacles, this area can be extended to the area indicated by the dashed lines. In
figure 6f, since the minimum bounding circle of the object O can be contained
in this extended overlap area, O can successfully go from A to B.

The situation of two adjacent blocks shown in Figure 4a is similar to the
overlap blocks in Figure 4b. As shown in Figure 6g, A and B are two adjacent
blocks, and c is the connector between A and B. Assuming a and b are two
connectors connecting A with other blocks, if one user goes from a to c, she can
go straight to B. However, if she goes from b to c, then probably she will need
to take a turn. To simplify the two cases, we have observed that if we extend the
connector c to form a larger block (as shown in Figure 6h), the scenario becomes
the same as the overlap blocks we discussed before. Therefore, we apply the same
strategy to check the accessibility of the adjacent blocks.

128 W. Yuan and M. Schneider

a
b

c

d
o

w

v

(a) (b)

Fig. 7. An example of the refinement for 90◦ corners

This minimum bounding circle approach makes sure that the provided routes
are feasible for users. However, this approach is not precise enough. For some
particular scenarios, we are able to refine the accessibility check.

In indoor space, corridor corners are one of the most common areas where
users may have problems to successfully go through. For the traditional 90◦

corners, we have developed an approach to refine the accessibility checking. As
shown in Figure 7a, the rectangle (a, b, c, d) is the minimum bounding box of
an object (user). The segment (o, a) is parallel to one side of the corner, and
(o, a) has the same width of w. We have noticed that if the length of (o, b) equals
or is less than v, then this rectangle can make the turn. Point b has the same
situation. In Figure 7b, the length of (o, b) equals to v. If the length of (o, a)
equals or is less than w, then this rectangle can make the turn.

Therefore, our approach contains two steps to check the accessibility of a 90◦

corner. First, the minimum bounding rectangle (MBR) of the user is constructed
(e.g. (a, b, c, d) in Figure 7a). Second, assuming the boundary (a, b) and (c, d) are
longer than (a, d) and (b, c), find a point o on the boundary (c, d) so that the
length of (a, o) equals the width of one side of the corner (e.g., w in Figure 7a).
If the length of (b, o) equals or less than the width of the other side of the corner
(e.g., v in Figure 7a), then the user can successfully make the turn.

We can perform the second step in another way that we try to find a point
Q that the length of (b, Q) equals to the width of one side of the corner. If the
length of (a, Q) equals or less than the other side of the corner, the user can
make the turn. Otherwise, this corner is not feasible for her.

5 The LEGO Graph

Most of the existing path searching algorithms (e.g., the shortest path search and
the A* algorithm) are graph-based algorithms. In this section, we will discuss
how to build a graph to support route searching algorithms.

As discussed in previous sections, the indoor space is approximated by LEGO
cubes, which are further merged to form larger blocks. Users can walk blocks
by blocks to reach their targets. The accessible widths, heights and lengths are
restricted by these blocks and the connectors between them. In order to sup-
port the accessibility checks, these information must be stored in the graph.

3D Indoor Route Planning for Arbitrary-Shape Objects 129

1 2

34
5 6

78
9 10

1112

13 14

1516

17 18

19

20 21

22 23

24

25 26

27

a

b

c

d

e
gf h

i k

l m

j

(a)

f

i

c
b

d

a e

h
l

k

g

m

j

N(D,W,H,T)

(L)

(b) (c)

Fig. 8. An example of a floor plane with obstacles and stairs (a), the graph reflecting
the connectivity of the blocks (b), and the corresponding LEGO graph (c)

One solution is to build a graph in which nodes denote blocks and edges repre-
sent connectors. Figure 8b is such a graph consisting all the blocks and connectors
for the scenario shown in Figure 8a. One big problem of this graph is that the
distance of each path is stored in nodes instead of edges. Therefore, it is difficult
to apply the shortest path algorithms.

Actually, the process of walking blocks by blocks is the same as the process
of walking connectors by connectors. A better solution is to build a graph in
which nodes denote all the connectors and edges represent their distances. In
our model, this kind of graph is called LEGO graph. Definition 1 is the formal
definition of the LEGO graph.

Definition 1. A LEGO graph LG = (V, E) is a graph which reflects all possible
paths with different accessible widths, heights and lengths in a given indoor space
scenario. V is a set of connectors with the information of the supportable lengths
< L >. E is a set of implicit paths in the format of < N(D, W, H, T) >, where
N is the name of the edge, D is the distance between two connected nodes, W ,

130 W. Yuan and M. Schneider

and H are the maximum accessible width and heights. T is the type of the edges,
which can be plane, obstacle or stair.

Now, let’s discuss how to determine the values attached to each edge:

– D : The length of an edge in a LEGO graph is the distance between the
center points of the two end nodes.

– W : The accessible width of an edge depends on the maximum widths of the
two end nodes. It will be set to be the minimum width of the two nodes.

– H : As discussed in previous sections, our generated blocks are always rect-
angles, and the connectors are either on the boundary or inside the block.
Thus, the path between two connectors is always inside the corresponding
block. The accessible height of an edge is the height of the block.

– T : Since each edge is inside one block, there is only one type for each edge.
For example, if the cubes in one block are all plane cubes, the path is plane.

– L : The accessible length is maintained in nodes, which is the diameter of the
maximum circle introduced in Section 4.3. The reason why we don’t check
length in edges is because if the minimum bounding circle of the user can
be contained in the extended connecting area, there must be enough space
to fit for the user’s length.

6 Conclusions and Future Work

Providing feasible routes for different kinds of users is an essential requirement for
route planning models. Current existing models either only consider pedestrians’
movements, or assume that users have fixed shapes and sizes. In this paper, we
propose a model to provide feasible routes for arbitrary-shape users. Our model
consists of two phases. In the first phase, we have introduced how to use LEGO
cubes to represent indoor space. These cubes are then merged together to form
larger blocks in the second phase. By checking the adjacent or overlap areas
between different blocks, we have developed a novel approach to evaluate the
accessibility of users in different places. At last, we have shown how to build the
LEGO graph to record all the necessary information so that the feasible routes
can be calculated by the traditional path search algorithms.

As we mentioned in the paper, the route this model can provide may not be
the optimal one. In addition, in order to handle all the scenarios, our approach is
not precise enough. Similar to the refinement we have introduced in this paper,
a lot of refinements can be explored on this model.

References

1. Gilliéron, P.Y., Merminod, B.: Personal Navigation System for Indoor Applications.
In: 11th IAIN World Congress, pp. 21–24 (2003)

2. Urs-Jakob, R.: Wayfinding in Scene Space: Transfers in Public Transport. PhD
thesis, University of Zürich (2007)

3D Indoor Route Planning for Arbitrary-Shape Objects 131

3. Lyardet, F., Grimmer, J., Muhlhauser, M.: CoINS: Context Sensitive Indoor
Navigation System. In: ISM 2006: Eighth IEEE International Symposium on Mul-
timedia, pp. 209–218 (2006)

4. Lyardet, F., Szeto, D.W., Aitenbichler, E.: Context-Aware Indoor Navigation. In:
Aarts, E., Crowley, J.L., de Ruyter, B., Gerhäuser, H., Pflaum, A., Schmidt, J.,
Wichert, R. (eds.) AmI 2008. LNCS, vol. 5355, pp. 290–307. Springer, Heidelberg
(2008)

5. Hu, H., Lee, D.L.: Semantic Location Modeling for Location Navigation in Mobile
Environment. In: Proc. Of the IEEE International Conference on Mobile Data
Management (MDM), pp. 52–61 (2004)

6. Werner, S., Krieg-Brückner, B., Herrmann, T.: Modelling Navigational Knowledge
by Route Graphs. In: Habel, C., Brauer, W., Freksa, C., Wender, K.F. (eds.) Spatial
Cognition 2000. LNCS (LNAI), vol. 1849, pp. 295–316. Springer, Heidelberg (2000)

7. Lorenz, B., Ohlbach, H., Stoffel, E.P.: A Hybrid Spatial Model for Representing
Indoor Environments. In: Carswell, J.D., Tezuka, T. (eds.) W2GIS 2006. LNCS,
vol. 4295, pp. 102–112. Springer, Heidelberg (2006)

8. Stoffel, E.P., Lorenz, B., Ohlbach, H.: Towards a Semantic Spatial Model for Pedes-
trian Indoor Navigation. In: Advances in Conceptual Modeling C Foundations and
Applications, pp. 328–337 (2007)

9. Yuan, W., Schneider, M.: inav: An indoor navigation model supporting length-
dependent optimal routing. In: 13th AGILE Int. Conf. on Geographic Information
Science. Springer, Heidelberg (2010)

10. Lee, J.: A Spatial Access-Oriented Implementation of a 3-D GIS Topological Data
Model for Urban Entities. GeoInformatica 8(3), 237–264 (2004)

11. Lee, J.: A Combinatorial Data Model for Representing Topological Relations
among 3D Geographical Features in Micro-Spatial Environments. International
Journal of Geographic Information Science 19(10), 1039–1056 (2005)

12. Thomas Becker, C.N., Kolbe, T.H.: A Multilayered Space-Event Model for Navi-
gation in Indoor Spaces. In: Advances in 3D Geoinformation Systems, pp. 61–77.
Springer, Heidelberg (2009)

13. Li, Y., He, Z.: 3D Indoor Navigation: a Framework of Combining BIM with 3D
GIS. In: 44th ISOCARP Congress (2008)

14. Meijers, M., Zlatanova, S., Pfeifer, N.: 3D Geo-Information Indoors: Structuring
for Evacuation. In: Proceedings of Next generation 3D City Models, pp. 21–22
(2005)

15. Bandi, S., Thalmann, D.: Space Discretization for Efficient Human Navigation. In:
Proc. Computer Graphics Forum, vol. 17, pp. 195–206 (1998)

16. Thrun, S., Bücken, A.: Integrating Grid-Based and Topological Maps for Mobile
Robot Navigation. In: Proceedings of the AAAI Thirteenth National Conference
on Artificial Intelligence, Portland, Oregon, pp. 944–950 (1996)

17. Bandera, A., Urdiales, C., Sandoval, F.: A Hierarchical Approach to Grid-based and
Topological Maps Integration for Autonomous Indoor Navgation. In: Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
883–888 (2001)

18. Han, C.S., Law, K.H., Jean-claude Latombe, J.C., Kunz, J.C.: A Performance-
Based Approach to Wheelchair Accessible Route Analysis. Advanced Engineering
Informatics 16, 53–71 (2002)

19. Yuan, W., Schneider, M.: Supporting 3d route planning in indoor space based
on the lego representation. In: 2nd ACM SIGSPATIAL Int. Workshop on Indoor
Spatial Awareness (ISA), pp. 16–23. Springer, Heidelberg (2010)

A Web-Based Visualisation Tool for Analysing
Mouse Movements to Support Map

Personalisation

Ali Tahir1, Gavin McArdle2, and Michela Bertolotto3

1,3 School of Computer Science and Informatics,
University College Dublin, Belfield, Dublin 4, Ireland

2 National Centre for Geocomputation,
National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland

{ali.tahir,michela.bertolotto}@ucd.ie, gavin.mcardle@nuim.ie

Abstract. Information overload is a well known issue across many do-
mains. Due to an increase in the quantity of information associated with
geographic data, information overload is now also prevalent in the spa-
tial domain. This makes interacting with maps tedious and difficult, as
extracting relevant information becomes laborious. Map personalisation
offers a solution to this problem. By implicitly monitoring user behaviour
and interaction with maps, common patterns, preferences and interests
can be identified. Using this approach, personalised maps can be gener-
ated which match user preferences and contribute to resolving informa-
tion overload in the spatial domain. Traditionally data mining techniques
are used to identify preferences however, visual analytics has proven use-
ful in detecting interests and patterns not apparent via data mining. This
paper presents a visual analysis tool called VizAnalysisTools, which can
be used by developers and analysts to detect patterns in Web map us-
age among groups of users. The knowledge gained through this visual
analysis can be used to strengthen map personalisation techniques.

Keywords: Web GIS, Geo-Visualisation, Map Personalisation, Geo-
Visual Analysis, Human-Computer Interaction.

1 Introduction

The increasing mobility of individuals, the advances in ubiquitous technologies
and the growing volume of location specific information obtained from sources
such as Global Positioning Systems (GPS) have contributed to the demand for
more sophisticated personalised Web applications. Map personalisation is a re-
cent development which adapts a map to reflect user preferences and interests,
thus alleviating information overload by filtering out irrelevant content. Previ-
ous studies have shown that mouse movements act as an implicit indicator of
user interests with map data [17]. Visualising user interactions provides system
designers with more insight into user behaviour which can be used to fine tune
the personalisation algorithm described in [5]. To achieve this, we have created

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 132–143, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Web-Based Visualisation Tool for Analysing Mouse Movements 133

a Web application using Open Source technologies for visual analysis of mouse
movement data. This framework can easily be extended to analyse other move-
ment datasets which forms an element of the future work.

Our previous work implemented a Web architecture for map personalisation
using Open Source technologies [18]. The benefit of using such an architecture is
that users do not have to install or download additional software. The architec-
ture has now been augmented with a component to analyse mouse movements
through their visualisation on the underlying map data and the production of
summary statistics. This is achieved by implementing different visual and report-
ing techniques such as heat maps, Keyhole Markup Language (KML) overlays
and statistical charts. From a technical point of view, the approach demonstrates
the typical exchange of data using interoperable Web services. The technologies
employed in VizAnalysisTools use Web 2.0, which has emerged as a powerful
extension of the Web and presents interactive information sharing, ensures inter-
operability, focuses on user-centered design, and provides a platform for collabo-
ration over the Web [20]. This improvement in Web technologies, has permitted
many applications to move from stand alone to Web based applications [13]. The
Web tool will assist with analysing mouse movement datasets which reveal how
users perform specific spatial choices and also helps to better understand map
personalisation and user profiling techniques [22].

The remainder of this paper is organised as follows, Section 2 outlines the
related work in the field. Section 3 describes the system and its functionality
by providing some examples of the tool in use. The system architecture and the
associated technologies are discussed in Section 4. Section 5 presents on going
developments and describes the approach for evaluating the techniques, while
some concluding comments are presented in Section 6.

2 Related Work

Mouse analysis is a standard way to interpret mouse movements within the Web
interface. This can reveal user interests in terms of their high or low activity
with different elements of a Web interface. Web applications such as [4] and [19]
use mouse location and pointers on the Web pages to visually determine interest
indicators. These implicit indicators have been widely studied in the Human-
Computer Interaction (HCI) domain. Google Analytics 1 is another example that
supports non-spatial applications and contributes rich insights into the website
traffic and marketing effectiveness by providing a suite of reporting interfaces
for analysis.

Studying user interaction with interactive maps is significant in the geospatial
domain in order to understand user behaviour. Mouse activity acts as an im-
plicit interest indicator in this area. In this regard, mouse movements on spatial
interfaces were employed and explored by [15]. Preliminary work for analysing
mouse movement data in the spatial domain has been performed by [16], who
developed a visualisation tool called Geospatial Interactions Visualizer (GIViz),
1 google.com/analytics

134 A. Tahir, G. McArdle, and M. Bertolotto

that analyses user behavior with geospatial datasets. The GIViz approach to
analyse user interactions with a map was initially based on non-spatial implicit
interest indicators such as bookmarking a Web page, clicking on a hyper link or
saving a file, as discussed by [7].

CommonGIS, is another visualisation tool to analyse different movement
datasets by providing extreme functionality [3]. This system is stable and ma-
ture in terms of providing different visualisation techniques, data transformation
as well as spatial decision support capabilities. Although VizAnalysisTools and
CommonGIS both provide analysis of spatial and spatio-temporal data, there are
key differences in how this is achieved and the level of granularity offered. For
example, VizAnalysisTools is multiplatform, unlike CommonGIS it is not lim-
ited to stand-alone applications where the user has to install the packages before
running the tool or restrained to a Web Applet. Furthermore, while CommonGIS
provides a set of controls for analysing time intervals, it does not consider move-
ment datasets with small time intervals such as mouse movements which are
recorded in milliseconds. However, VizAnalysisTools does not offer the full func-
tionality of CommonGIS because this is not required for our purpose.

As the volume of data is increasing, visualisation techniques are becoming
more powerful and meaningful for analysis and interpretation. [14] presents a
classification of information visualization and visual data mining techniques for
improved analysis. Geovisualisation, software visualization, and visual analytics
have now become specialised fields to deal with information visualisation in their
own domains [6]. These fields introduce new techniques for gaining an insight
and deep understanding of the datasets being studied. For example, heatmaps
have become popular on the Web where the colour intensity shows the amount
of interaction that took place on a particular section of the Web page. One
such system is [23], which describes a tool that increases user awareness by
visualising their own navigation movements within Web pages. HotMap [10] is
another system that generates a heat map which reflects users’ attention to the
map, for example which map tiles they download frequently.

The research presented in this paper provides a Web interface by using open
Web services and standards in order to build a shared and accessible platform.
The approach improves upon existing systems for analysing mouse movements by
incorporating a Web-based dimension and also by providing an increased range
of visual analysis options. The robust and open nature of the tool will permit
it to be extended to incorporate other movement datasets in future experiments
to resolve information overload issues.

3 System Description

VizAnalysisTools is a suite of tools to analyse mouse movements in order to
identify specific usage patterns and behaviours which indicate important user
intentions while highlighting their interests. The Web application performs two
main tasks. Firstly, the interactive Web interface provides analysts with func-
tionality to visualise mouse movements which are shown as an overlay on the

A Web-Based Visualisation Tool for Analysing Mouse Movements 135

Fig. 1. User interaction showing mouse hesitations, map clicks as overlays and pie
charts of map and non map events

base map. Secondly, interactive reporting features are embedded in the Web
interface to examine the trends in the user interactions for detailed analysis.
The key features of VizAnalysisTools are described in detail as follows.

The prototype has been deployed as a Web application which shows details
of a user session. Each user session includes the interaction history of the user.
As seen in Figure 1, the interface is delivered via a Web page which has two
principal components. One component renders overlays of different interactions
with a Web map, while a second component provides a statistical report of user
interaction. Additionally, the interface contains the necessary tools to support
the functionality which it provides. A typical user session is shown in Figure 1
where the Web interface is highlighting mouse hesitations as an overlay, ren-
dered using the KML format. A symbol legend is shown in the panel to the left
of the main map. This legend indicates that the circles shown on the map are
indicative of mouse hesitations. The longer the mouse hesitation, the larger the
circle on the map appears. Map clicks are also shown as a spatial overlay with
corresponding symbols to the left of the dynamic map legend. These user in-
teractions (mouse hesitations and map clicks) clearly show some spatial interest
of the user in question. The reporting interface shows pie charts of both map
and non map events which are generated using the Google Visualisation API.

136 A. Tahir, G. McArdle, and M. Bertolotto

The statistics show the amount of clicks, panning and zooming performed by
the particular user which are useful in understanding the relationship between
different map and non map operations. Bounding boxes also called interaction
windows show user interests in particular areas of the map. When a user pans
or zooms, a new bounding box is generated. For example, if a user zooms in
on the map, that shows they are more interested in that area of the map. As
a result when examining interactions in that area, more weight should be given
to the findings. The concept is shown in Figure 2, where a bounding box is ren-
dered in black as a KML overlay on the base map. The bounding boxes shown
on the map correspond to the number of zooms and pans the user made dur-
ing their interaction in a session. The corresponding reporting interface on the
right shows a statistical analysis of the bounding box usage. This interface con-
sists of bar chart showing map bounds on various scales. The x-axis shows the
number of bounding boxes as the user zooms and pans while the y-axis shows
the map scale. This reporting provides analysts with an overview of the user
interactions that took place on different scales. Any bar in the chart can be
clicked to move to a particular scale on the map as the chart and map are linked
interactively.

Fig. 2. User interaction within bounding box and corresponding bar chart

A Web-Based Visualisation Tool for Analysing Mouse Movements 137

Fig. 3. User interaction heat map with map overlay

A heat map is another visual technique which is generated based on user mouse
interactions and rendered as an overlay on the base map. This visualisation
allows analysts to identify areas of interest and also where most interaction took
place on the map. Figure 3, shows a mouse interaction heat map for a particular
user. The mouse hesitation layer is also shown as an overlay in order to justify
the heat map technique. The heat map has a colour range, as seen in the legend
in Figure 3. In this case, an intense red colour indicates high activity whereas
the blue colour represents low map activity. It can be clearly seen that the
amount of interaction corresponds to the amount of heat generated as a result.
Importantly, an analyst can zoom in and out to see how the relative heat changes
at different map scales for a more detailed insight into certain areas of the map.
Mouse speed is also visualised. When considered together with the trajectory of
the mouse, the acceleration and deceleration of the cursor reveals a change in
user behaviour which may indicate a shift in their intentions over time [16]. This
functionality has been incorporated into the Web tool by categorising the mouse
speed measured in pixels per second (px/sec). Each speed category is assigned
a different colour ranging from a minimum to maximum speed value as shown
in Figure 4. A red colour shows the maximum speed while a blue colour shows
the minimum speed.

138 A. Tahir, G. McArdle, and M. Bertolotto

Fig. 4. Mouse speed and corresponding speed distribution and variation charts

The corresponding reporting interface in Figure 4 shows two speed charts
which gives some information about the generated speed map. Firstly, the speed
distribution shows a column chart which plots the speed range categories against
the number of mouse movements. The trend shows that most of the time mouse
movements were observed in the first speed range (0.0 to 2.0 px/sec). The speed
categories are dynamically generated based on the minimum, average and maxi-
mum speed of a particular user interaction. By visualising the trend of the same
user over multiple sessions, the average mouse speed can highlight the habits of
the users and their level of interactions for example beginner or advanced users.
The second chart shows the speed variation as the user session proceeds. The
x-axis shows the number of mouse movements while the y-axis shows the mouse
speed. This type of chart is useful to see any outliers in the user session and
observing any corresponding changes on the interactive map.

When the features described above are used in conjunction with each other,
this allows the analyst to reveal trends and patterns in the behaviours of users.
Such patterns would be difficult to detect using data mining approaches alone.
It is the domain knowledge of the analysts which adds a useful insight into inter-
preting the interactions which the tool produces. In section 5, further features
to assist the analyst to interpret the visualisation are described.

A Web-Based Visualisation Tool for Analysing Mouse Movements 139

4 System Architecture and Technologies

The system architecture of VizAnalysisTools is an extension of a Web archi-
tecture described in [18], and based on Open Source interoperable technologies.
VizAnalysisTools provides components which utilise the dynamics of interac-
tive JavaScript API’s and the core business logic to perform visual analysis and
geo-computation using a visualisation engine on the server side. The architec-
ture is based on Grails 2, which is an Open Source framework to develop rapid,
dynamic and robust Web applications. The system architecture is shown in Fig-
ure 5 and the core components of the architecture are described below. Web

Visualisation Engine

Tomcat Web Server

VizAnalysisTools- A Tool for Analysis and
Visualisation of Movement Data

User
Interaction

Map
Service

Statistical
Information

Chart
Service

Web
Services

Web Server
Pages (GSP/

HTML)Heat Map API

Application

User
Events
Handler
Service

XML/GML/KML

Fig. 5. System architecture

services have emerged as a framework to exchange information over the Web be-
tween applications using Extensible Markup Language (XML), which is a simple
but an interoperable format. The Web service framework specifications include
communication protocols such as Simple Object Access Protocol (SOAP), ser-
vice descriptions as Web Services Description Language (WSDL), and service
discovery as Universal Description, Discovery and Integration (UDDI) [8]. Viz-
AnalysisTools requests data from the system described in [18], which is an ap-
plication to log and record user interactions. The exchange of information takes
place using SOAP, which returns an XML of events for a particular user ses-
sion. A user session that includes the interaction history is returned as XML
events. This information is passed to the visualisation engine which generates
the map overlays and produces the statistical reports. Once the data is received
in response to the Web service request by the visualisation engine, it starts pro-
cessing this information using an internal KML service. This service parses the
2 grails.org

140 A. Tahir, G. McArdle, and M. Bertolotto

data and generates various KML files describing user interactions. KML 3 is
an OGC standard whose data is mainly composed of geographic visualisations
including annotation of maps and images.

Various technologies are used to process the data in order to generate the
map and statistical visualisations. For example, OpenLayers 4 is an Open Source
JavaScript library for displaying and manipulating spatial data in Web browsers,
without server-side dependencies and used for building rich Web-based geo-
graphic applications. OpenLayers widely supports OGC standards such as Web
Map Service (WMS) and KML which are used in this Web application to ren-
der OpenStreetMap layer and dynamic overlays respectively. The heat map de-
scribed in section 3 is generated using Heat Map, a client side JavaScript library
which works in conjunction with OpenLayers. This API inputs geographical lo-
cations and outputs intensity in different colours. The actual heat map is then
generated as an overlay on the base map to show areas of interests.

GeoExt 5 which also operates with OpenLayers provides a powerful way of de-
veloping highly interactive and dynamic Web GIS applications with the use of
JavaScript. With GeoExt, Ext JS is used to build and design the layout which
consists of a map, dynamic legends, and interactive visual analysis options. The
advantage of using ExtJS dynamic layouts is that more functionality can be em-
bedded irrespective of the space. For this project, GeoExt has been used exten-
sively for rendering the spatial and non-spatial features of the interactive interface.

Prototype 6 is a framework that is used with the JavaScript development in
the Web environment. VizAnalysisTools uses prototype to implement the system
functionality and to generate the interaction maps and reporting interface. The
dynamic reporting interface, provided within the Web interface produces charts
summarising the main interactions. This is achieved using the Google Visualisa-
tion API 7. The API is a JavaScript library that provides interactive reporting
features within a Web application that includes a range of visualisation charts.
This API is used for drawing several interactive charts for different analysis
purposes. Embedding such a reporting facility is a powerful technique within a
Web environment to assist developers to perform analysis while visualising the
interaction map simultaneously.

By adhering to standards and using predominantly Open Source technologies,
the functionality of the system can be easily extended through the addition of
new modules. In the next section, an extension of the framework to include
techniques for summarising the interactions are described.

5 Discussion and On-Going Developments

The functionality to monitor mouse interactions, offered by the VizAnalysis-
Tools, is extremely beneficial for analysts to determine how a single user is
3 opengeospatial.org/standards/kml
4 openlayers.org
5 geoext.org
6 prototypejs.org
7 code.google.com/apis/charttools

A Web-Based Visualisation Tool for Analysing Mouse Movements 141

interacting with spatial data. The examples presented in the paper, assume that
the interactions of an individual user over a single session are visualised. How-
ever, the approach can be made more powerful by visualising interactions over
multiple sessions and furthermore, visualising the interactions of several users.
Such visualisations can identify common trends and salient patterns which would
otherwise be missing. This type of geo-visual analysis can assist developers to
improve interaction paradigms while also augmenting the information required
for personalising the map data and accompanying tools.

While it is feasible to add the additional interactions, from multiple users and
multiple sessions, to the existing visualisation, this would cause cluttering and
occlusion to occur, making any interpretation of the data difficult. To combat
this, it is necessary to assist the analyst to identify patterns and trends within
the data being studied by extending the functionality to include aggregation
and clustering techniques [2], [9]. These methods can be applied to the mouse
trajectory data in order to combine similar trajectories using clustering. This
can be used to create a generalised view which resolves the problem of trajec-
tories obstructing the analyst’s view of nearby trajectories. There are several
approaches for aggregating movement data and measuring the similarity of tra-
jectories. The approaches vary, depending on the analyst’s focus. For example,
trajectories can be aggregated based on their similarity in geographic, temporal
or attribute space. Other approaches focus solely on the origin and destination
of a trajectory [9]. The challenge is to determine appropriate similarity metrics
which accurately group similar mouse trajectories.

The system is currently being expanded to offer support for visualising the
temporal aspects of mouse movement and interaction data. In particular the use
of a space-time cube [12] will enable analysts to clearly see the temporal ordering
and sequence in which mouse events occurred. Space-time cubes are generally
used to show the movements of entities in geographical space, in which the x and
y plane of the cube, represent the spatial components while time is plotted on
the z-axis. This approach can easily be extended for use with mouse trajectory
data and when combined with aggregation techniques, can be effectively used to
visualise interaction tasks where the temporal component is important such as
usability studies.

Evaluating the functionality of VizAnalysisTools is significant both in terms
of performance and usability. Currently, the tool supports analysis of a single
user session but as the user sessions increase, performance issues on the Web
can arise. Techniques have been explored to apply best practice in order to
make systematic approaches to successfully develop and maintain high-quality
Web applications [11]. Evaluation metrics for usability are also being examined
in this regard. [21] have proposed models for quantifying and assessing usability
within the area of HCI. Assessing the benefits which visual analysis of mouse
movements brings to map personalisation can be achieved by comparing this
approach with that of a pure data mining technique similar to that proposed
in [18]. These considerations will be taken into account in order to identify the
strengths and weaknesses in the next steps of the design and development of

142 A. Tahir, G. McArdle, and M. Bertolotto

VizAnalysisTools. While the tool described here represents a specialised case for
visually analysing mouse movements, with slight modification, the tool can be
used for visualising generic trajectory data to increase the benefits of the system.

6 Conclusions

This paper has described a Web-based tool to support map personalisation by
geovisual analysis of mouse movement data. The paper focuses on describing the
features of the tool for analysing the data associated with mouse interactions of
users interacting with a Web-based GIS. The trends, behaviours and usage pat-
terns identified through the geovisual analysis of this interaction data can be
used within map personalisation in order to reduce information overload. The
tool uses Web 2.0 technology to deliver an interactive interface which provides
analysts with functionality to identify patterns in mouse movement data and
discover important areas of the map. Additionally summary reports outline the
key usage statistics for a particular map user. The tool is developed with the
intention to make it dynamically accessible via the Web, making it interoperable
and compliant with existing standards, and to equip it with a range of spatio-
temporal analysis tools as recommended by a recent research study in the field
of visual analytics [1]. Through the addition of aggregation and clustering com-
ponents, the tool can be scaled for analysing the movement data from multiple
entities which will add significantly to the power of this geovisual analysis tool.

Acknowledgements

Research presented in this paper was funded by a Strategic Research Cluster
grant (07/SRC/I1168) by Science Foundation Ireland under the National Devel-
opment Plan. The authors gratefully acknowledge this support.

References

1. Andrienko, G., Andrienko, N., Demsar, U., Dranschc, D., Dykesd, J., Fabrikante,
S., Jernf, M., Kraakg, M., Schumannh, H., Tominskih, C.: Space, Time and Visual
Analytics. International Journal of Geographical Information Science 24(10), 1577–
1600 (2010)

2. Andrienko, G., Andrienko, N., Wrobel, S.: Visual Analytics Tools for Analysis of
Movement Data. ACM SIGKDD Explorations Newsletter 9(2), 38–46 (2007)

3. Andrienko, N., Andrienko, G., Voss, H., Bernardo, F., Hipolito, J., Kretchmer,
U.: Testing the Usability of Interactive Maps in CommonGIS. Cartography and
Geographic Information Science 29(4), 325–343 (2002)

4. Arroyo, E., Selker, T., Wei, W.: Usability Tool for Analysis of Web Designs Using
Mouse Tracks. In: CHI 2006 Extended Abstracts on Human Factors in Computing
Systems, pp. 484–489. ACM, New York (2006)

5. Ballatore, A., McArdle, G., Kelly, C., Bertolotto, M.: RecoMap: An Interactive and
Adaptive Map-based Recommender. In: Proceedings of the 2010 ACM Symposium
on Applied Computing, pp. 887–891. ACM, New York (2010)

A Web-Based Visualisation Tool for Analysing Mouse Movements 143

6. Chen, C.: Information Visualization. Wiley Interdisciplinary Reviews: Computa-
tional Statistics 2(4), 387–403 (2010)

7. Claypool, M., Le, P., Wased, M., Brown, D.: Implicit Interest Indicators. In:
Proceedings of the 6th International Conference on Intelligent User Interfaces, pp.
33–40. ACM, New York (2001)

8. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Un-
raveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing 6(2), 86–93 (2002)

9. Demsar, U., Virrantaus, K.: Space-time Density of Trajectories: Exploring Spatio-
temporal Patterns in Movement Data. International Journal of Geographical
Information Science 24(10), 1527–1542 (2010)

10. Fisher, D.: Hotmap: Looking at Geographic Attention. IEEE Transactions on
Visualization and Computer Graphics 13(6), 1184–1191 (2007)

11. Ginige, A., Murugesan, S.: Web Engineering: An Introduction. IEEE Multime-
dia 8(1), 14–18 (2002)

12. Hagerstrand, T.: What About People in Regional Science? Papers in Regional
Science 24(1), 6–21 (1970)

13. Haklay, M., Singleton, A., Parker, C.: Web Mapping 2.0: The Neogeography of the
Geoweb. Geography Compass 2(6), 2011–2039 (2008)

14. Keim, D.: Information Visualization and Visual Data Mining. IEEE Transactions
on Visualization and Computer Graphics 8(1), 1–8 (2002)

15. Mac Aoidh, E., Bertolotto, M., Wilson, D.: Analysis of Implicit Interest Indicators
for Spatial Data. In: Proceedings of the 15th Annual ACM International Sympo-
sium on Advances in Geographic Information Systems, p. 47. ACM, New York
(2007)

16. Mac Aoidh, E., Bertolotto, M., Wilson, D.: Understanding Geospatial Interests
by Visualizing Map Interaction Behavior. Information Visualization 7(3), 275–286
(2008)

17. Mac Aoidh, E., McArdle, G., Petit, M., Ray, C., Bertolotto, M., Claramunt, C.,
Wilson, D.: Personalization in Adaptive and Interactive GIS. Annals of GIS 15(1),
23–33 (2009)

18. McArdle, G., Ballatore, A., Tahir, A., Bertolotto, M.: An Open-Source Web
Architecture for Adaptive Location Based Services. In: The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Hong
Kong, vol. 38(2), pp. 296–301 (2010)

19. Mueller, F., Lockerd, A.: Cheese: Tracking Mouse Movement Activity on Websites,
A Tool for User Modeling. In: CHI 2001 Extended Abstracts on Human Factors in
Computing Systems, pp. 279–280. ACM, New York (2001)

20. O’reilly, T.: What is Web 2.0. Design Patterns and Business Models
for the Next Generation of Software 1, 17 (2007), available at SSRN:
http://ssrn.com/abstract=1008839

21. Seffah, A., Donyaee, M., Kline, R., Padda, H.: Usability Measurement and Metrics:
A Consolidated Model. Software Quality Journal 14(2), 159–178 (2006)

22. Tahir, A., McArdle, G., Ballatore, A., Bertolotto, M.: Collaborative Filtering- A
Group Profiling Algorithm for Personalisation in a Spatial Recommender System.
In: Proceedings Geoinformatik, Kiel, Germany, pp. 44–50 (2010)

23. Wu, W., Noble, W.: Genomic Data Visualization on the Web. Bioinformatics, 1541
(2004)

On the Requirements for User-Centric Spatial
Data Warehousing and SOLAP

Ganesh Viswanathan and Markus Schneider

Department of Computer & Information Science & Engineering
University of Florida

Gainesville, FL 32611, USA
{gv1,mschneid}@cise.ufl.edu

Abstract. Data warehouses and OLAP systems help to analyze complex
multidimensional data and provide decision support. With the availability
of large amounts of spatial data in recent years, several new models have
been proposed to enable the integration of spatial data in data warehouses
and to help analyze such data. This is often achieved by a combination of
GIS and spatial analysis tools with OLAP and database systems, with the
primary goal of supporting spatial analysis dimensions, spatial measures
and spatial aggregation operations. However, this poses several new chal-
lenges related to spatial data modeling in a multidimensional context, such
as the need for new spatial aggregation operations and ensuring consistent
and valid results. In this paper, we review the existing modeling strategies
for spatial data warehouses and SOLAP in all three levels: conceptual,
logical and implementation. While studying these models, we gather the
most essential requirements for handling spatial data in data warehouses
and use insights from spatial databases to provide a “meta-framework”
for modeling spatial data warehouses. This strategy keeps the user as the
focal point and achieves a clear abstraction of the data for all stakeholders
in the system. Our goal is to make analysis more user-friendly and pave
the way for a clear conceptual model that defines new multidimensional
abstract data types (ADTs) and operations to support spatial data in data
warehouses.

1 Introduction

For more than a decade, data warehouses have been at the forefront of informa-
tion technology applications as a way for organizations to effectively use informa-
tion for business planning and decision making. They contain large repositories
of analytical and subject-oriented data, integrated from several heterogeneous
sources over a historical time-line [1,2]. The technique of performing complex
analysis over the information stored in the data warehouse is popularly called
Online Analytical Processing (OLAP). The large increase in the availability of
spatial data in recent years has lead to increased challenges in storing such in-
formation and analyzing them. Data warehouses provide an effective way to
manage spatial information by providing large-scale storage, multidimensional
data management and OLAP querying capabilities together in one system.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 144–155, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Requirements for User-Centric SDW and SOLAP 145

Spatial data warehouses (SDWs) are large, subject-oriented, repositories of
data integrated from a variety sources of a long timeline with native support
for spatial objects and advanced operations on them. These operations on the
spatial objects can include basic querying operations, such as “find the city
with the largest sales volume for iPads in the state of Florida in 2010,” or map
generalization operations such as “find all states where the top five school districts
out-performed all others (within that state) between 2005 and 2010 in terms of
student grades,” or spatial analysis operations such as convex hull: “find the
smallest convex region containing all the college towns where more than 2500
units of Kinect were sold in 2010”. Many other interesting spatial aggregation
queries are possible when spatial data is fully integrated into data cubes and an
effective approach for multidimensional querying is available on them.

OLAP operations are often categorized as distributive, algebraic and holistic
[3,4], depending on whether the measures of high level cells can be easily com-
puted from their low level counterparts, without accessing base tuples residing at
the finest level. For example, in the classic sales(location,time,product) data, the
total sales of an item at [Florida, 2010] can be calculated by adding up the total
sales of [Florida, January 2010] . . . [Florida, December 2010], without looking
at base data points such as [Florida, 20 March 2010], which means that SUM
is a distributive measure. In comparison, AVG is often cited as an algebraic or
semi-distributive measure, in that AVG can be derived from two distributive
measures: SUM and COUNT, i.e., algebraic measures are functions of distribu-
tive measures. Holistic measures such as standard deviation require data at the
specific requisite level for all computations. Similarly, spatial querying and ag-
gregation operations such as spatial roll-up, drill-down and selection also involve
several levels of data manipulation. For example, consider a drill down operation
from Country (region) to county (maps) to cities (string labels for points). This
complex navigation operator can be very useful in mining several levels of spatial
information such as geo-spatial and video data.

Upon reviewing existing modeling approaches for spatial data warehousing
(Section 2) we found that one of the major shortcomings of existing models is
the heavy focus on direct ad-hoc implementation strategies such as a combina-
tion of OLAP tools or GIS mapping clients with databases to create a pseudo
spatial data warehouse. However, for effective multidimensional data modeling
and analysis what is needed is a refined data warehouse architecture that keeps
the user as the focal point and achieves a clear abstraction of the data for all
stakeholders in the system. Hence our proposal is for a sound conceptual model
built on abstract data types (ADTs) and using the cube metaphor for OLAP
analysis while natively supporting spatial data along the data dimensions and
as measures for aggregation. The user view is created by using a generic tex-
tual analysis language such as an extension of MDX that helps to write SOLAP
queries. Finally, a set of transformation rules from the conceptual model to log-
ical design strategies such as relational OLAP (ROLAP) [2], multidimensional
OLAP (MOLAP) [1] and hybrid OLAP (HOLAP) [5] is also needed to help
complete the design of the spatial data warehouse. Overall, this paper provides

146 G. Viswanathan and M. Schneider

a new insight into the fundamental requirements for designing a user-friendly
spatial data warehouse model by providing an objective analysis of the essential
requirements for it.

The rest of this paper is organized as follows. Section 2 provides a review
of existing literature regarding data warehouse models and OLAP, spatial data
modeling, spatial data warehouse models, and user interface tools used to design
these systems. Section 3 discusses the essential requirements for spatial data
warehouses and OLAP. Section 4 presents our meta-framework as a path for
developing an enhanced conceptual model based on the cube metaphor that is
capable of natively supporting spatial data and aggregations on them. Section 5
concludes the paper and mentions topics for further research.

2 Related Work

In this section, we review existing research on data warehousing and OLAP
tools, spatial data modeling and associated implementation strategies, leading
to the list of essential requirements for spatial data warehousing (in Section 3).
Figure 1 illustrates the various domains that need to be considered for deciding
the architecture of a spatial data warehouse (Section 4). A survey of the state-
of-the-art in each of these domains is the topic of the current section.

Over the past decade several approaches have been proposed for modeling
data warehouses. Now, we present a study of the best available conceptual and
logical models for data warehousing. Existing conceptual modeling approaches
can be broadly classified into Extensions of Entity Relationship (E/R) models
([6,7,8,9,10]), Extensions of Unified Modeling Language (UML) ([11,12,13]) and
Ad-hoc ([14,15,16,17]) design models. Several different logical models have also
been proposed to model multidimensional data in the past few years. The data
cube operator was formally introduced in [4] in an attempt to extend the rela-
tional model to suit multidimensional analysis. A complete survey of the proper-
ties of several earlier logical design models can be found in the works of Blaschka
et.al. [18], Vassiliadis et.al. [19] and Pedersen et.al. [20]. Though many of these
models aid in the relational representation of aggregate data, contributions like
the ALL operator and hierarchies are essential even from a multidimensional
perspective. One of the earliest approaches for multidimensional modeling was
introduced by Kimball in [21]. This dimensional modeling approach proposes an
informal methodology to derive the multidimensional schema and provides a way
to develop a relational implementation in the form of the star schema. Dimen-
sional modeling imposes some rules on the modeling but results in a data model
that has the access methods defined clearly by virtue of the relationships [21,1].
Users are also better able to relate to the “see measure by dimensional value(s)”
paradigm rather than a simple “collection of values”. The approach involves
discovering the data-marts for the data-warehouse space, listing all dimensions
for each data-mart, using an ad-hoc matrix to capture user requirements, and
then designing a fact table with measures added to each grain of detail along the
dimension levels. The model presented by Agrawal et.al. in [22] is a logical data

On the Requirements for User-Centric SDW and SOLAP 147

model for multidimensional databases. The cube is defined as a set of dimensions
(each associated with a domain) and a set of elements (measures). A mapping
is provided between the dimensions and the set of elements. The elements of the
cube can be 0,1 (the Boolean Cube) or a n-tuple of elements. This model does
not require the dimensions to have a ranked, discrete domain. Instead the map-
ping function can be used to provide a symmetric treatment between measures
and dimensions. An algebra is also defined over the model with operations such
as push and pull (to transform a dimension into measure and vice-versa), destroy
dimension, restriction (to constraint member values), and join (to combine two
cubes). Several other operations like cartesian product, natural join, and asso-
ciate are also mentioned. However, this model does not discuss the handling of
explicit multiple hierarchies among dimensions or the problem of imprecision
due to double counting during data aggregation.

Data warehousing
and OLAP models

Spatial data warehousing
(SDW) and SOLAP models

SOLAP tools and
implementations

 SDW
meta-framework

User interfaces/
dashboards

Query languages
e.g. MDX

Graphical tools
Mapping clients

Visual frontends
e.g., JPivot

e.g., OpenLayers,
 Google Maps

Spatial operations
Qualitative

Shape, size and
distance relations

Quantitative

Topological and cardinal-
direction relations

Adhoc aggregationsSpatial data modeling
Open Geo-Spatial
Consortium (OGC)
standards
Abstract data types

single:
 point, line, region (polgon)
composite:
 spatial partitions (maps)

Mondrian OLAP
Oracle BI EE

Fig. 1. An illustration of the various domains considered during the design of the
spatial data warehouse meta-framework

Spatial data warehousing (SDW) has become a topic of growing interest in
recent years. This is primarily due to the explosion in the amount of spatial
information available from various sources such as GPS receivers, communication
media, online social networks and other geo-spatial applications. Consequently
some spatial OLAP tools are now available to help model and analyze such data.

An early approach to spatial online analytical processing (SOLAP) is [23],
which mentions essential SOLAP features classified into three areas of require-
ments. The first is to enable data visualization via cartographic (maps) and
non-cartographic displays (e.g., 2D tables), numeric data representation and
the visualization of context data. Second, data exploration requires multidimen-
sional navigation on both cartographic and non-cartographic displays, filtering

148 G. Viswanathan and M. Schneider

on data dimensions (members) and support for calculated measures. The third
area discussed involves the structure of the data, for example, the support for
spatial and mixed data dimensions, support for storage of geometric data over an
extended time period, etc. The conceptual design models for spatial data ware-
houses are extensions of E/R and UML diagrams or ad-hoc design approaches.
Among extensions of E/R models, [24] presents a clear integration of spatial
data for OLAP by extending the MultiDimER and MADS approaches. Among
other ad-hoc design approaches, [25] presents a formal framework to integrate
spatial and multidimensional databases by using a full containment relationship
between the hierarchy levels. In [26], the formal model from [20] is extended to
support spatially overlapping hierarchies by exploiting the partial containment
relations among data levels, thus leading to a more flexible modeling strategy.
Bimonte et.al. [27,28] present the GeoCube model for spatial datawarehouse
design, based on a formal schema and instance definition for cube elements.
GeoCube also extends conventional SOLAP operations with five new operations
namely, classify, specialize, permute, OLAP-buffer and OLAP-overlay. However,
one of the shortcomings of this approach is the use of n-n mappings between
data-dimensions and facts. Since each cell of the data cube is a unique cate-
sian product of the associated data dimensions, this n-n mapping weakens the
cube structure and makes it difficult to apply constraints and dynamic schema
changes during OLAP operations.

The logical SDW design models aim to provide support for spatial data di-
mensions [29], spatial measures [30,31,32,33] and spatial aggregations [34]. The
concept of spatial measures (with a specific geometric part) is either defined as
references to spatial objects [35,23] or as the results of topological, distance or
metric operations [24,23], or as values associated with a spatial data dimension in
the data cube [31,36]. In addition to supporting spatial objects, most GIS mod-
els use both geometric (e.g., the extent of fire spread is shown as a polygon) and
thematic or descriptive attributes (e.g., state name) to help qualify geometric
data objects [37]. This is a very useful feature for supporting spatial aggregation
operations and map generalizations (such as moving from state level to country
level in the location hierarchy). A discussion of spatial hierarchies and topologi-
cal operators in a conceptual SDW model is presented in [38]. Sekhar et.al. [32]
extend the MapCube operator to support spatial data and aggregations, but the
model is rather constrained and not easily extendable for user-defined queries.

The major implementations of SOLAP tools can be broadly classified as
OLAP dominant, GIS dominant, or integrated OLAP and GIS solutions [33].
OLAP approaches provide means for aggregation of data, while GIS approaches
focus on geometric operations and visual data selections while limiting multi-
dimensional data analysis. Another approach is the integration of OLAP and
GIS systems [31,29,27]. The GeoMondrian [39] project aims to develop an open-
source implementation of a SOLAP analysis server. Currently, it provides a spa-
tially enabled version of the Mondrian OLAP server [40]. However, it is unclear
if GeoMondrian has a clear underlying spatial data model with SOLAP opera-
tors. It seems to be essentially built ad-hoc, by using a combination of the Java

On the Requirements for User-Centric SDW and SOLAP 149

Topology Suite [41] (which provides spatial operations according to OGC stan-
dards) and Mondrian (which provides the OLAP operations on thematic at-
tributes) with PostGIS (which provides the spatial data types). These together
create a functional spatial data analysis toolkit supporting the integration of
spatial data and operations in an OLAP server.

For modeling spatial data there are now several established approaches in the
database community. An introduction to basic spatial data types is given in [42].
The ROSE algebra [43,44] provides a more robust discussion of spatial data types
by introducing types such as point, line and region for simple and complex spatial
objects and describes the associated spatial algebra. Composite spatial objects
(collections of points, lines and regions) are presented as spatial partitions or map
objects. Similarly, the Open GIS Consortium also provides a Reference Model [45]
as a standard for a representing geo-spatial information. Qualitative spatial op-
erations include topological relations [46] such as disjoint, meet, overlap, equal,
inside, contains, covers and coveredBy, and cardinal direction relations. Quan-
titative relations on spatial objects include metric operations based on the size,
shape and metric distances between objects or their components. All these oper-
ations can be used to query and analyze spatial data in the data warehouse.

3 Requirements for User-Centric Spatial OLAP

For a data warehouse model to be effective in modeling, storing and querying
data there are several essential requirements. Blaschka et.al. [18] provide a list
of requirements for multidimensional modeling for OLAP applications. In [20],
Pedersen et.al. present eleven requirements for a multidimensional model, using
a clinical data warehousing application as an example and then present a formal
model that accommodates those requirements. By studying the popular models
for multidimensional data (Section 2) and several new applications, we now
compile a list of basic requirements for an effective user-centric spatial data
warehouse model.

The basic requirements for an effective multidimensional model for data ware-
house design can be summarized as follows:

1) Simple user view : The user view of the data warehouse must be simple
and intuitive, yet capable of capturing the full dimensionality of the data. This
user view should be independent of implementation aspects. Thus, for e.g., the
use of facts and dimension tables (thereby exposing ROLAP implementation)
should be avoided in the user view. Instead an abstract view, like a data cube
with available OLAP querying operations on it would make it easier for users to
navigate across data dimensions and perform analysis.

2) Implementation independent conceptual design: The conceptual model for
the SDW should also be free from implementation aspects (such as star schema
design) to be able effectively model data for the analyst’s needs.

3) Separation of structure and values: There should be an explicit separation
of schema and instances, i.e., structure and values. A formal conceptual data
model should allow for independence between specification and implementation,

150 G. Viswanathan and M. Schneider

and the ability to alter implementations without affecting the user‘s view of the
OLAP system.

4) Explicit hierarchies : Hierarchies (with several levels of member or measure
categories) should be supported explicitly in the data dimensions and facts.

5) Multiple hierarchies: Multiple hierarchies along the data dimensions and
even measure values should be supported.

6) Descriptive attributes : Thematic or descriptive attributes for members and
measures (geometric or otherwise) should be supported for enabling selection,
navigation and aggregation queries over them during analysis.

7) Support for attribute aggregation: The model must provide good support
for aggregation on both geometric and thematic attributes apart from metric
computations.

8) Complex measures: The model should support multiple (composite) and
complex members and measures. Example, a cell in the cube can include several
measures such as sales quantity and profit. Location can be a complex object
such as a polygon representing Italy with the Vatican as a hole object inside it.

9) Handling different levels of granularity: The model should be able to handle
data with multiple levels of granularity (dynamic multi-level hierarchies.)
10) Support for irregular hierarchies: There must be support for non-conformant

(non-onto, non-strict and ragged) hierarchies and generalization/ specialization
(is-a) relationships.
11) User-defined aggregates : User defined aggregation functions should be sup-

ported. These may even include ad-hoc operations such as ratio (metric) and
multi-level buffer (geometric) operations.
12) Handling data imprecision/ summarizability: The model should be able to

handle data imprecision so that double-counting of data is avoided, and non-
additive data are not summarized.
13) Handling uncertainty: The model should also be able to handle the uncer-

tainty in the data using techniques such as data lineage tracking.
14) Handling change over time: The model should be able to handle updates

and deletions over time. Any re-calculations of measure values should be consis-
tent and correct.
15) Multiple facts/ cube schema: The model should allow for multiple facts,

data dimensions and data cubes to be present in the schema.
16) Drill-across capability: The model should support drilling across dimen-

sions, i.e., sharing of dimensions among different fact cubes.
17) Drill-through capability: The model should support drilling through capa-

bility to be able to query the base level (raw) data.
18) Dimensionless aggregation: There should be support for aggregations along

attributes that are not part of the data dimensions or hierarchies themselves,
such as thematic attributes.
19) Measureless aggregation: Aggregation on thematic attributes of facts

(measures) should be supported.
20) Online aggregation: The model should allow for multiple levels of online

aggregation, i.e., dynamic, multi-level query design.

On the Requirements for User-Centric SDW and SOLAP 151

21) Support for spatial hierarchies: The model should support generalization
and specialization hierarchies on spatial objects. This would, for example, enable
roll-up operations from cities to states and country level in the location hierarchy.
The linking of spatial hierarchies to thematic attribute hierarchies should also
be allowed.
22) Support for spatial dimensions: Data dimensions and hierarchies should

natively support spatial data types and operations on them such as roll-up and
drill-down on spatial hierarchies (for example, from state to city level).
23) Support for spatial measures: The data cube should be capable of storing

and managing spatial measures as both simple, complex and a composite (map)
spatial objects.
24) Support for spatial aggregations : The model should explicitly support ag-

gregation operations on the spatial measures and members. For e.g., “a convex
hull on cities having the top-k highest sales of iPads in every state in 2010”.
25) Support for adhoc geo-spatial aggregations : The model should support ad-

hoc, user-defined geo-spatial operations on both spatial measures, members and
their thematic attributes.

4 A Meta-Framework for Spatial Data Warehouse Design

After reviewing the existing data warehouse and SOLAP modeling approaches
and generating the list of essential requirements for an effective spatial data ware-
house model, we now provide a broad insight into how a spatial data warehouse
architecture should be constructed for supporting user-centric OLAP.

For providing user-friendly spatial data analysis it is essential to use an ab-
stract data model to design and construct the data warehouse. This can be
provided by a conceptual design view that fully abstracts over the underlying
implementation details. To allow users to interact with the conceptual cube an
user view (query language or visual map interface) can be used to expose the set
of data types and operations for OLAP analysis. At each level, explicit support
for spatial data must be provided using spatial data types which can be single
objects such as point, line or region, or a combination of these in terms of spatial
partitions or map objects. Figure 2 illustrates such a meta-framework that we
propose for spatial data warehouse design.

The conceptual model should provide built-in support for spatial objects by
using abstract data types (ADTs) or by extending multidimensional data types
such as perspectives (data dimensions) and subjects (facts) to include spatial val-
ues. Later, additive, semi-additive and holistic classes of aggregation operations
can be defined over them [3,4,47]. For example, in Table 1, we show examples
of possible spatial aggregation operators (the second line in each of the three
categories). Such a conceptual design view can be an extension of the BigCube
model [17] which provides ADTs arranged over different levels to create the con-
ceptual cube or one of the other conceptual modeling approaches supporting
spatial data analysis [26,24,34,28].

152 G. Viswanathan and M. Schneider

Design View

Implementation View

Bigcube

Logical Design

Conceptual Design

User View

Textual query language Graphical dashboards

Spatial extensions of MDX or
Oracle SQL

OpenLayers map client,
Google/Bing maps, JPivot

Relational OLAP (ROLAP),
Multi-dimensional OLAP (MOLAP),
Hybrid OLAP (HOLAP)

Multi-dimensional data types supporting spatial data
Aggregation operations supporting spatial data

Transformation Rules

Storage Handling, Query Processing, View Maintenance

Physical
Storage

Spatially-enabled databases
KML, GIS shape-files
HDF5, NetCDF, etc.

Fig. 2. A meta-framework for spatial data warehouse design illustrating the distinct
conceptual and logical design levels and the user view for OLAP analysis

Table 1. Examples of non-spatial and spatial aggregation operators

Type BigCube Aggregation Operator
Additive Sum, Count, Max or Apex, Min or Base, Concatenate,

Convex Hull, Spatial Union, Spatial Intersection

Semi-Additive Average, Variance, Standard Deviation, MaxN, MinN,
Centroid, Center of Gravity, Center of Mass

Non-Additive Median, MostFrequent, Rank, LastNonNullValue, FirstNonNullValue,
Minimum Bounding Box, Nearest Neighbor, Equi-Partition

A set of transformation rules are needed from the conceptual model to the
logical design level. The logical design can be done in one of three ways. Data
warehouse star, snowflake or galaxy schema can be constructed and the corre-
sponding relational tables are stored in a database linked by foreign keys and
other functional dependencies. This is called Relational OLAP or ROLAP. In
multidimensional OLAP design, data cubes can be constructed in memory to
store and operate over the data warehouse. This is very similar to the cube
model used for conceptual design. However though multidimensional querying
is often faster in comparison to relational querying, this approach can lead to
increased memory and storage requirements. A balance between these two ap-
proaches is achieved in Hybrid OLAP by using a combination of relational and
multidimensional design strategies. For example, in-memory multidimensional
arrays can be used for constructing the materialized views that enable faster
query processing on frequently accessed measures and data dimensions, while

On the Requirements for User-Centric SDW and SOLAP 153

base level data (at highest granularity) is still stored in relation datasets. A
drill-through operation can be used to retrieve the raw data when required.

The user view can include generic textual query languages, a visual graphical
dashboard of map clients such as OpenLayers [48], Google or Bing maps or
tabular representations using tools such as JPivot. A combination of these tools
is often required for effective data visualization and user-friendly analysis to
design multiple levels of queries.

This meta-framework can be used to represent the exact semantics of spa-
tial aggregation operations on different view levels. For example, a query such
as “find all adjacent states where more than 5000 iPhone units where sold in
2010” leads to a selection on thematic attributes followed by a test for the meet
topological relation on the spatial partitions to generate the required results.

5 Conclusions and Future Work

In this paper, we present a broad overview of existing conceptual, logical and im-
plementation strategies for spatial data warehouses (SDWs). By studying these
models we arrive at a set of essential requirements for incorporating spatial data
in data warehouses. These are used to propose a “meta-framework” for modeling
spatial data warehouses. This framework consists of a user-friendly conceptual
cube model that abstracts over logical design details such as star or snowflake
schemas and implementation details such as the maintenance of materialized
views. Further, user-friendly views are proposed for the SDW by means of a
generic textual query language like a spatial extension to MDX, and graphi-
cal dashboards or cartographic mapping tools such as JPivot, OpenLayers or
Google map visualizations. Overall, this provides a comprehensive view of the
existing state-of-the-art in spatial data warehouse modeling and lays the foun-
dation for describing the exact semantics of SOLAP operations on data cubes
and to develop a complete spatial data warehousing solution.

References

1. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling, 2nd edn. (2002)

2. Inmon, W.: Building the data warehouse. Wiley, Chichester (2005)
3. Han, J., Kamber, M.: Data mining: concepts and techniques
4. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Aggre-

gation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. In: Int. Conf.
on Data Engineering, p. 152 (1996)

5. Pedersen, T., Jensen, C.: Multidimensional database technology. Computer 34(12),
40–46 (2002)

6. Franconi, E., Kamble, A.: A data warehouse conceptual data model. In: Proc. of
Scientific and Statistical Database Management, pp. 435–436 (2004)

7. Kamble, A.: A conceptual model for multidimensional data. In: 5th Asia-Pacific
Conf. on Conceptual Modelling, vol. 79, pp. 29–38 (2008)

154 G. Viswanathan and M. Schneider

8. Sapia, C., Blaschka, M., Höfling, G., Dinter, B.: Extending the E/R Model for the
Multidimensional Paradigm. In: ER 1998: Workshops on Data Warehousing and
Data Mining, pp. 105–116. Springer, Heidelberg (1999)

9. Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: from
conceptual modeling to logical representation. Data Knowledge Engineering 59(2),
348–377 (2006)

10. Tryfona, N., Busborg, F., Christiansen, J.: starER: A conceptual model for data
warehouse design. In: Proc. of ACM 2nd Int. Workshop on Data Warehousing and
OLAP, pp. 3–8 (1999)

11. Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model
extending UML. Information Systems 31 (2006)

12. Luján-Mora, S., Trujillo, J., Song, I.: A UML profile for multidimensional modeling
in data warehouses. Data Knowledge Engineering 59(3), 725–769 (2006)

13. Prat, N., Akoka, J., Wattiau, I.: A UML-based data warehouse design method.
Decision Support Systems 42(3), 1449–1473 (2006)

14. Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: a Conceptual
Model for Data Warehouses. Int. Journal of Cooperative Information Systems 7,
215–247 (1998)

15. Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual Data Warehouse Design.
In: Workshop on Design and Management of Data Warehouses, pp. 3–9 (2000)

16. Zepeda, L., Celma, M., Zatarain, R.: A Mixed Approach for Data Warehouse
Conceptual Design with MDA. In: Int. Conf. on Computational Science and Its
Applications, pp. 1204–1217 (2008)

17. Viswanathan, G., Schneider, M.: BigCube: A MetaModel for Managing Multidi-
mensional Data. In: Proceedings of the 19th Int. Conf. on Software Engineering
and Data Engineering (SEDE), pp. 237–242 (2010)

18. Blaschka, M., Sapia, C., Höflng, G., Dinter, B.: Finding Your Way through Multi-
dimensional Data Models. In: 9th Int. Workshop on Database and Expert Systems
Applications, p. 198 (1998)

19. Vassiliadis, P., Sellis, T.: A survey of logical models for OLAP databases. SIGMOD
Record 28(4), 64–69 (1999)

20. Pedersen, T., Jensen, C., Dyreson, C.: A foundation for capturing and querying
complex multidimensional data. Information Systems 26(5), 383–423 (2001)

21. Kimball,R.:Adimensionalmodelingmanifesto.DBMSMagazine10(9), 58–70 (1997)
22. Agrawal, R., Gupta, A., Sarawagi, S.: Modeling Multidimensional Databases. In:

Proceedings of the 13th Int. Conf. on Data Engineering, pp. 232–243 (1997)
23. Rivest, S., Bedard, Y., Marchand, P.: Toward better support for spatial deci-

sion making: defining the characteristics of spatial on-line analytical processing
(SOLAP). Geomatica-Ottawa 55(4), 539–555 (2001)

24. Malinowski, E., Zimányi, E.: Representing spatiality in a conceptual multidi-
mensional model. In: Proceedings of the 12th Annual ACM Int. Workshop on
Geographic Information Systems, pp. 12–22. ACM, New York (2004)

25. Ferri,F.,Pourabbas,E.,Rafanelli,M.,Ricci,F.:Extendinggeographicdatabases for a
query language to support queries involving statistical data. In: Int.Conf. onScientific
and Statistical Database Management, pp. 220–230. IEEE, Los Alamitos (2002)

26. Jensen, C., Kligys, A., Pedersen, T., Timko, I.: Multidimensional data modeling for
location-based services. The Int. Journal on Very Large Data Bases (VLDBJ) 13(1),
1–21 (2004)

27. Bimonte, S., Tchounikine, A., Miquel, M.: Geocube, a multidimensional model and
navigation operators handling complex measures: Application in spatial olap. In:
Advances in Information Systems, pp. 100–109 (2006)

On the Requirements for User-Centric SDW and SOLAP 155

28. Bimonte, S., Miquel, M.: When spatial analysis meets olap: Multidimensional
model and operators. IJDWM 6(4), 33–60 (2010)

29. Scotch, M., Parmanto, B.: SOVAT: Spatial OLAP visualization and analysis tool.
In: Proceedings of the 38th Annual Hawaii Int. Conf. on System Sciences (HICSS),
p. 142b. IEEE, Los Alamitos (2005)

30. Han, J., Koperski, K., Stefanovic, N.: GeoMiner: a system prototype for spatial
data mining. In: Proceedings of the 1997 ACM SIGMOD International Conference
on Management of Data, pp. 553–556. ACM, New York (1997)

31. Marchand, P., Brisebois, A., Bédard, Y., Edwards, G.: Implementation and
evaluation of a hypercube-based method for spatiotemporal exploration and anal-
ysis. ISPRS Journal of Photogrammetry and Remote Sensing 59(1-2), 6–20 (2004)

32. Shekhar, S., Lu, C., Tan, X., Chawla, S., Vatsavai, R.: MapCube: A visualization
tool for spatial data warehouses. Geographic Data Mining and Knowledge Discov-
ery, 73 (2001)

33. Rivest, S., Bédard, Y., Proulx, M., Nadeau, M., Hubert, F., Pastor, J.: SOLAP
technology: Merging business intelligence with geospatial technology for interactive
spatio-temporal exploration and analysis of data. ISPRS Journal of Photogram-
metry and Remote Sensing 60(1), 17–33 (2005)

34. Gomez, L., Haesevoets, S., Kuijpers, B., Vaisman, A.: Spatial aggregation: Data
model and implementation. Information Systems 34(6), 551–576 (2009)

35. Stefanovic, N., Han, J., Koperski, K.: Object-based selective materialization for
efficient implementation of spatial data cubes. IEEE Transactions on Knowledge
and Data Engineering 12(6), 938–958 (2002)

36. Han, J., Stefanovic, N., Koperski, K.: Selective materialization: An efficient method
for spatial data cube construction. In: Wu, X., Kotagiri, R., Korb, K.B. (eds.)
PAKDD 1998. LNCS, vol. 1394, pp. 144–158. Springer, Heidelberg (1998)

37. Rigaux, P., Scholl, M., Voisard, A.: Introduction to spatial databases: with appli-
cation to GIS. Morgan Kaufmann, San Francisco (2002)

38. Malinowski, E., Zimányi, E.: Spatial hierarchies and topological relationships in the
spatial multiDimER model. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD
2005. LNCS, vol. 3567, pp. 17–28. Springer, Heidelberg (2005)

39. GeoMondrian Project (December 2010),
http://www.spatialytics.org/projects/geomondrian/

40. Pentaho Analysis Services: Mondrian Project (December 2010),
http://mondrian.pentaho.org/

41. Java Topology Suite (JTS) (December 2010),
http://www.vividsolutions.com/jts/

42. Shekhar, S., Chawla, S.: Spatial databases: a tour. Prentice-Hall, Englewood Cliffs
(2003)

43. Guting, R., Schneider, M.: Realm-based spatial data types: the ROSE algebra. The
VLDB Journal 4(2), 243–286 (1995)

44. Guting, R., De Ridder, T., Schneider, M.: Implementation of the ROSE algebra:
Efficient algorithms for realm-based spatial data types. In: Egenhofer, M.J., Herring,
J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 216–239. Springer, Heidelberg (1995)

45. Open GIS Consortium: Reference Model (December 2010),
http://openlayers.org

46. Schneider, M., Behr, T.: Topological relationships between complex spatial objects.
ACM Transactions on Database Systems (TODS) 31(1), 39–81 (2006)

47. Ruiz, C., Times, V.: A taxonomy of solap operators. In: XXIV Simpósio Brasileiro
de Banco de Dados, Fortaleza, CE (2009)

48. OpenLayers mapping client (December 2010), http://openlayers.org

http://www.spatialytics.org/projects/geomondrian/
http://mondrian.pentaho.org/
http://www.vividsolutions.com/jts/
http://openlayers.org
http://openlayers.org

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 156–167, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Optimal Bandwidth Selection for
Density-Based Clustering

Hong Jin1, Shuliang Wang1,2,*, Qian Zhou2, and Ying Li3

1 State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430079, China
slwang2005@whu.edu.cn

2 International School of Software, Wuhan University, Wuhan 430079, China
3 School of Mathematics and Statistics, Wuhan University, Wuhan 430079, China

Abstract. Cluster analysis has long played an important role in a wide variety
of data applications. When the clusters are irregular or intertwined, density-
based clustering is proved to be much more efficient. The quality of clustering
result depends on an adequate choice of the parameters. However, without
enough domain knowledge the parameter setting is somewhat limited in its
operability. In this paper, a new method is proposed to automatically find out
the optimal parameter value of the bandwidth. It is to infer the most suitable
parameter value by the constructed model on parameter estimation. Based on
the Bayesian Theorem, from which the most probability value for the band-
width can be acquired in accordance with the inherent distribution characteris-
tics of the original data set. Clusters can then be identified by the determined
parameter values. The results of the experiment show that the proposed method
has complementary advantages in the density-based clustering algorithm.

Keywords: Density-based clustering, Bayesian posterior probability estimation,
Optimal bandwidth selection.

1 Introduction

The rapid advance in spatial data acquisition, transmission and storage results in the
growth of vast computerized datasets at unprecedented rates. For numerous data–
based applications, efficient methods of data analysis can make use of the information
implicitly contained in the data [1]. As a primary means of data analysis, cluster
analysis helps to understand the natural grouping and structure in a dataset [2].
The clustering algorithms can be regarded as an approach to get insight into the dis-
tribution of a data set. According to the different criteria of similarity measurement
and clustering evaluation, the commonly used clustering algorithms may be based on
partition, hierarchy, density and grid [3]. The density-based algorithms are to discover
the clusters of arbitrary shape and it is easy to be extended. Each cluster corresponds
to a relatively dense area of data distribution, by looking for low-density regions sepa-
rated by the connectivity of high-density area [4].

* Corresponding author.

 Optimal Bandwidth Selection for Density-Based Clustering 157

Meanwhile, it is not sensitive to the existence noise. However, the quality of
its clustering result mainly depends on the input parameters. DENCLUE is such a
representative.

DENCLUE (DENsity based CLUstEring) is a generic clustering algorithm based
on kernel density estimation. By means of adjusting the bandwidth of the kernel func-
tion, the density-based clustering algorithm is able to efficiently get insight into the
distribution of a data set. Since the effectiveness of kernel density estimation depends
on the selection of bandwidth, the algorithm is supposed to optimize the selection of
the bandwidth in order to improve the accuracy. In this paper a new approach is
proposed to optimize the bandwidth selection by using Bayesian inference. So the
appropriate clustering results can be acquired more quickly in accordance with the
inherent distributed characteristics of the original data set. Theoretical analysis and
experimental results show that the approach has good clustering quality and comput-
ing performance, and the parameter selection is more objective with good robustness.

The rest of the paper is organized as follows. In section 2, the related principles are
introduced such as kernel density estimation and Bayesian inference. And it illustrates
how the parameter estimation model can be constructed with respect to the above
mentioned principles. In section 3, it is the process of the proposed algorithm that
includes its theoretical foundations such as Bayesian posterior density estimation and
MCMC (Markov Chain Monte Carlo) method as well as the rationality of the parame-
ter setting method. In section 4, an experimental evaluation is provided. For the
experiments, analog data is used as the related paper commonly used. The results are
concluded in section 5 along with some issues for future work.

2 Related Principles

Density-based clustering is to model the distribution density of dataset as the sum of
the influences of individual data objects by using the functions under kernel density
estimation [5]. For kernel density estimation, the contribution of each point to the
overall density function is expressed by an influence or kernel function [6]. The over-
all density function is simply the sum of the influence functions associated with each
data point.

2.1 Basic Idea of Density Based Clustering Algorithm

DENCLUE is a clustering algorithm on a group of density distribution functions [7].
Given a space Ω containing dataset D={x1, x2, ……, xn } in d -dimensional space, the
basic idea of the algorithm is followed.

(1) The kernel density estimator of the overall density function
Assume that the probability distribution associated with each observed data point
uniformly distributes in different dimensions. ∀x∈Ω, the probability density can be
estimated as equation (1).

() ∑
=

⎟
⎠
⎞

⎜
⎝
⎛ −

=
n

i

i
d

D

h

xx
K

nh
xf

1

^ 1

(1)

158 H. Jin et al.

Where, K(x) is the kernel function in terms of product kernel that will be explained in
the subsequent part. It generally chooses a symmetric density function that has single
peak at the origin such as square wave function and Gaussian function. Constant h is
called the bandwidth of the kernel function [8]. In accordance with the above hy-
pothesis, the bandwidth value in different dimensions can be viewed as the same.

(2) Center-Defined Cluster
Given a density-attractor x∗, if there exists C⊆D satisfying the condition that ∀x∈C, x
is density attracted by x∗ and f D(x∗) ≥ ξ where ξ is the preset parameter noise thresh-
old, and C is called the cluster centered with x∗.

(3) Arbitrary-Shape Cluster.
An arbitrary-shape cluster for the set of density-attractors X is a subset C⊆D where

① ∀x∈C, ∃ x∗∈X: f D(x∗) ≥ ξ , x is density-attracted to x∗, and
② ∀ xi

∗, xj
∗∈X(i ≠j): ∃ a path P⊂Q from xi

∗ to xj
∗ with ∀y∈P: f D(y) ≥ ξ .

Obviously, there are two important preset parameters in the algorithm such as the
bandwidth and the noise threshold. The bandwidth affects the efficiency of the overall
density function estimator as well as the number of the density-attractors or the clus-
ters. Let hmax represents the maximum of the bandwidth under the condition that
the density function f D(x) has only one density-attractor. While hmin represents the
minimum of the bandwidth under the condition that the density function f D(x) has n
density-attractors. Each value in the interval [hmin, hmax] corresponds to an appropriate
clustering result about the dataset [8]. Consequently, the value of the bandwidth can
be selected from the interval [hmin, hmax] in order to naturally acquire hierarchy cluster-
ing result. Considering the optimal bandwidth, it is acknowledged that the bandwidth
value in the maximal interval I ⊂[hmin, hmax] which keep the number of density-
attractors remain constant corresponds to an appropriate clustering result. When the
bandwidth h is ready, the clustering result can be determined by the noise threshold ξ.

2.2 Parameter Estimation Model

It is important to set the parameter for the density-based clustering algorithm. Here is
the bandwidth to be estimated under Bayesian Theorem. First, the kernel density
estimation is used to equationte the likelihood function. Then, the parameter estima-
tion is modeled by choosing an empirical prior density function, along with MCMC
(Markov Chain Monte Carlo) method to sample the parameter space.

(1) Bayesian Inference
Bayesians views unknown parameter values as random quantities using probability
distributions to represent its uncertainty [9].

Let D represent the observed data and θ represent the model parameters. The joint
probability distribution P(D, θ) over all random quantities is equation (2), in which θ
is able to be multi-dimensional [10].

)()(),(θθθ DPPDP =

(2)

 Optimal Bandwidth Selection for Density-Based Clustering 159

Where we call P(θ) the prior density and P(D|θ) the likelihood function. Once given
the observed data D, the posterior distribution of the parameter θ can be acquired as
equation (3) according to Bayes Theorem.

∫
=

θθθ
θθ

θ
dDPP

DPP
DP

)()(

)()(
)(

(3)

It represents the distribution of θ condition on the observed data D. Since the denomi-
nator of equation (3) is not relevant to θ, it can be simplified as being proportional to
the prior times the likelihood and formalized as equation (4).

);()()()()(DLPDPPDP θθθθθ =∝
 (4)

Seen from equation (4), the posterior is a conditional distribution for the model
parameters given the observed data.

(2) Parameter Space Sampling
By obtaining samples xt(t=0,1,…,n) from the distribution P(x), various features of the
distribution P(x) can be calculated. For a Bayesian, x is comprised of model parame-
ters and P(x) is called a posterior distribution [9]. From equation (3), with MCMC it
has to know the distribution of x up to the constant of the normalization [11]. The
notation t expresses an ordering or sequence to the random variables in MCMC.
When xt are independent, the approximation can be made as accurate as needed by
increasing n. Under the condition that xt are not independent, it doesn’t limit its
usefulness as long as they are sampled from the entire domain of P(x) in correct pro-
portions [12]. By means of constructing a Markov Chain taken P(x) as its stationary
distribution, this can be resolved.

In the MCMC methods, the key is how to construct chains that the stationary distri-
bution is the interested one. In this paper, the random-walk metropolis- hastings sam-
pler are chosen to construct the Markov Chain when generating a sequence samples of
the target distribution referred to as the posterior distribution on the model parameter.

3 Density-Based Clustering Algorithm Using the Optimal
Bandwidth Selection

The effectiveness of the density-based algorithm depends on the subjective preset of
the two parameters bandwidth and noise threshold. The choice of the bandwidth has
significant impact on the estimation result of the overall density function causing
difference with respect to the number and the pattern of the clusters. If the choice of
the bandwidth is closer to the original distribution of the data set, the natural cluster-
ing results and the number of the categories can be acquired. Suitable value of the
noise threshold makes the algorithm focusing on the calculation of high-density area
in order to decrease the computing time.

3.1 The Structure of the Algorithm

Regarding the bandwidth as the parameter to be estimated, the parameter estimation
is modeled by using Bayesian method and MCMC sampling. Such the estimated

160 H. Jin et al.

bandwidth may make the overall density function better fit the inherent distribution of
the original data set. When the data space is multi-dimensional, it is easy to be further
extended [13]. According to the estimated bandwidth, the noise threshold can be
subjectively preset before starting the clustering algorithm. With the estimated band-
width and the existing clustering results, the noise threshold can be further adjusted to
acquire a more accurate clustering pattern. Besides these, during the process of
searching density-attractors, it uses conjugate gradient hill-climbing method instead
of the gradient hill-climbing method to accelerate the convergence speed. The struc-
ture of the proposed approach is as Fig.1 shows.

Fig. 1. Density-based Clustering Algorithm Using the Optimal Bandwidth Selection

3.2 Optimal Bandwidth Selection Model

The key step of the approach is how to select the optimal bandwidth value. In this
section, the modeling process of the parameter estimation is illustrated by Bayesian
Theorem and MCMC method. It first discusses the typically calculated form loga-
rithm of the likelihood function for the parameter to be estimated. Then, with the
assumed parameter prior density function, the Bayesian posterior density function
of the parameter can be constructed. Using the MCMC simulations to sample the
parameter space, the expected value of the parameter can be obtained.

Note that the bandwidth matrix can be restricted to a class of positive definite di-
agonal matrix with the corresponding kernel function known as a product kernel [14].
When choosing a full bandwidth matrix, it is identical to pre-rotating the original data
with an optimal amount and then still using a diagonal bandwidth matrix. Conse-
quently, the general form of kernel density estimator can be transformed to be as
equation (5) shows.

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
Π= ∑

= =
j

ij

j

n

i

d

jH h

Xx
K

hn
xf

11

1
1

^

(5)

In particular, K(⋅)is univariate kernel density function associated with product kernel,
and hj represents the different bandwidth value in each dimension.

 Optimal Bandwidth Selection for Density-Based Clustering 161

According to the above kernel density estimator of f(x), the log pseudo-likelihood
function for the bandwidth matrix H can be got as equation (6).

())(log,...,,
1

^

,21 i

n

i
iHn xfHxxxL ∑

=

=

(6)

Where the leave-one-out estimator is as equation (7):

()∑
≠
= = ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−

=
n

ij
j m

jmi

m

d

m
iiH h

Xx
K

hn
xf

1
1

^

,

1

1

1
)(π

(7)

Regarding the non-zero elements of the bandwidth matrix as parameters, the posterior
density of the parameters based on the log pseudo-likelihood function can be obtained
according to equation (4).

Assume that the prior density of each non-zero component of H is as probability
distribution function (8) shows:

()
21

1

j

j
h

hP
+

∝

(8)

It is proved to be effective that the above priors can put low probability on the region
of the parameter space where the likelihood function is flat [15]. We can get the joint
prior of all elements of H in the product form of these marginal priors. Then, using
Bayes Theorem, the logarithmic posterior of H is as equation (9) shows.

() () ()i

n

i
iH

d

j
j xfhPDHP ∑∑

==

+∝
1

,

^

1

loglog

(9)

In case of a diagonal bandwidth matrix, all elements of H can be sampled through
the Metropolis-Hastings algorithm with the acceptance probability computed through
(9). Meanwhile, the corresponding kernel function known as a product kernel.

4 Case Study

To demonstrate the effectiveness and efficiency of the proposed method, an experi-
ment is performed using synthetic data. In this section, it starts the algorithm described
in section 3 via several bivariate data sets. Given a dataset generated from simulation,
we sample the diagonal bandwidth matrix from its corresponding posterior density
defined in equation (9) using the random-walk metropolis-hastings algorithm.

After the sample paths of H for each dataset are obtained, the posterior mean acts
as an estimation of optimal bandwidth are calculated. With the estimated bandwidth,
the density based clustering algorithm is initialized. And for another parameter the
noise threshold is subjectively set to a certain value which can be adjusted by the
existed clustering result.

4.1 The Procedure of Optimal Bandwidth Selection

Taken two-dimensional dataset as an example, the process of optimal bandwidth
selection can be instantiated as follows. According to the above information, the

162 H. Jin et al.

parameter estimation model by Bayesian method and MCMC sampling can be con-
structed as equation (9). By means of simulation, it provides three data sets that are
commonly used in the relative papers. In the experiment, the three synthetic sample
databases depicted in Fig.2 are used.

Fig. 2. The Original Data Sets

Therefore, the accuracy of the proposed algorithm is evaluated by visual inspec-
tion. Judging from the morphological, for sample dataset 1 there are four ball-shaped
clusters with significantly different sizes. For sample dataset 2 it contains four clusters
of non-convex shape. While in sample dataset 3 it has four clusters of different shape
and size with additional random noise. In order to clearly distinguish the different
clusters in the clustering results, it visualizes each cluster found by different color.

As for each dataset the optimal bandwidth are calculated by the parameter estima-
tion model. With respect to the corresponding data set, the optimal bandwidth can be
acquired by the expected value of the sample points in the generated Markov Chains.

Fig. 3. The Markov chain and Statistic histogram of dataset 1

 Optimal Bandwidth Selection for Density-Based Clustering 163

Fig. 4. The Markov chain and statistic histogram of dataset 2

For dataset 1, the left panel in Fig.3 shows the Markov Chains in two dimensions,
while the right panel represents the Statistic Histogram to the relevant dimension.

On the basis of the calculation result, the optimal bandwidth for data set1 is equal
to 7.9. As shown in Fig.3, it indicates that the bandwidth values approximately the
same in different dimensions. The sample values for the bandwidth in both dimen-
sions centralized in the interval [6, 10, 16]. The corresponding Statistic Histograms
reflect the most likely values for the bandwidth.

Taking the arbitrary shape clustering into consideration, an experiment on dataset 2
is also given. The same as stated above, in Fig.4 the simulated result is shown. It can
be seen that the bandwidth values in different dimensions are fairly close to each other.

In accordance with the calculated result, the optimal bandwidth for data set2 is
equal to 5.4. Seen from the corresponding statistic histogram, the values around 5.5 is
the most frequently values sampled in the parameter space. And the possible values
for the bandwidth in both dimensions distribute in interval [4, 6].

Especially, in the third case a specific realization of data set3 with random noise
is provided. The simulated result is as Fig.5. Obviously, the bandwidth values in
different dimensions exactly not distribute in the approximate interval which is differ
from the above two cases. It just reflects that the overall density function of this data-
set is affected by the random noise.

According to the simulation results, the bandwidth values in different dimension
are respectively equal to 13.2 and 5.8. It demonstrates the inherent distribution of the
original data. Here the related statistic histograms represent the most probability
values of the bandwidth in different dimensions. During the process of clustering
analysis, a discussion on both dimensions will be given.

164 H. Jin et al.

Fig. 5. The Markov chain and statistic histogram of dataset 3

4.2 Clustering Analysis

Density-based clustering algorithm needs two parameters such as the noise threshold
and the bandwidth. Together with the optimal bandwidth acquired by the above simu-
lation, the preset noise threshold value may be used to initialize the density-based
clustering algorithm. Comparing to the selection of bandwidth, the selection of noise
threshold is less important when determining the clustering results.

The calculated bandwidth value for each dataset can be used to start the clustering
process. For data set1, the noise threshold ξ=2 and the optimal bandwidth σ=7.9, the
clustering result of which is in Fig.6. Obviously, the clusters found by this approach

Fig. 6. The clustering result of dataset 1

 Optimal Bandwidth Selection for Density-Based Clustering 165

Fig. 7. The clustering result of dataset 2

Fig. 8. The clustering result of dataset 3

well reflect the distribution of the original data set. Meanwhile, the density function
on the basis of kernel estimator for dataset 1 is also given.

The experiment process on dataset 2 mainly reflects the applicability of arbitrary
shape clusters. According to the above bandwidth value calculated for dataset 2, the
clustering result can be acquired as Fig.7 shows where the preset parameter ξ=2 and
σ=5.6. For visualization, the density function based on kernel estimator is given
simultaneously.

When there is noise, the experiment on data set3 is given. Based on the above
analysis, the bandwidth values in different dimensions are not the same. One is 5.3
and the other is 13.2, which indicates that the distributed characteristic of the original
dataset in two dimensions are heterogeneous. In consistent with the basic idea of
density-based clustering, the bandwidth in two dimensions is regarded as the same.
Therefore, two cases are respectively considered in simulation. Under the parameter
values ξ=2 and σ=13.2, it can be seen that the original dataset is divided into four
clusters as Fig.8 shows. While under the conditions that ξ=2 and σ=5.3, the original
dataset is divided into several clusters affected by the noise which are not given here.
To maintain consistency, the density function of dataset 3 is given too.

166 H. Jin et al.

Generally speaking, the effect and efficiency of density-based clustering algorithm
depends on the carefully selection of the parameter value. The choice of the related
parameters has reliance on domain knowledge or subjectivity. Nevertheless, for the
proposed approach in this paper, one of the important parameters such as the band-
width can be automatically adjusted in accordance with the original dataset.

5 Conclusions

In this paper, a cluster analysis method was proposed on the density-based clustering
algorithm. By means of treating the elements of the bandwidth matrix as parameters
to be estimated, it constructed a parameter estimation model by Bayes Theorem. It
provides MCMC algorithms to sample the parameter space. Numerical simulations
show that the resulting bandwidths are superior and it has no increased difficulty as
the dimension of data increases. Additionally, its main advantage is that the band-
width selected by this parameter estimation model can more accurately reflect the
distribution of the original dataset. Though Denclue is not fundamentally a grid-based
technique, it does employ a grid-based approach to improve efficiency. The length for
the grid-base is amount to the value of the bandwidth. In the further research, the
length of the grid-base can be different in the corresponding dimension on the basis of
the bandwidth matrix. Obviously, under this condition it will be more efficient and
accurate in the clustering result in consistent with the original dataset.

Acknowledgements. This paper is supported by National 973 (2007CB310804),
National Natural Science Fund of China (6074300), Best National Thesis Fund
(2005047), and Natural Science Fund of Hubei Province (CDB132).

References

1. Ankerst, M., Breuing, M.M., Kriegel, H.P.: OPTICS: ordering points to identify the clus-
tering structure. In: Proc. of the 1999 ACM SIGMOD International Conference on Man-
agement of Data, pp. 49–60. ACM Press, New York (1999)

2. Hinneburg, A., Keim, D.A.: An efficient approach to clustering in large multimedia data-
bases with noise. In: Proc of the 4th International Conference on Knowledge Discovery
and Data mining, pp. 58–65. AAAI Press, Menlo Park (1998)

3. George, K., Han, E.H., Kumar, V.: CHAMELEON: a hierarchical clustering algorithm us-
ing dynamic modeling. IEEE Computer 27(3), 329–341 (1999)

4. Ester, M., Kriegel, H.P., Sander, J.: A density-based algorithm for discovering clusters in
large spatial databases with noise. In: Proc.of the 2nd International Conference on Knowl-
edge Discovery and Data Mining, pp. 226–231. AAAI Press, Menlo Park (1996)

5. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education,
London (2006)

6. Gentle, J.E.: Computational Statistics. Springer, New York (2001)
7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San

Francisco (2000)
8. Gan, W.Y., Li, D.Y.: Hierarchical Clustering based on Kernel Density Estimation. Journal

of System Simulation 16(2), 302–309 (2004)

 Optimal Bandwidth Selection for Density-Based Clustering 167

9. Dellaportas, P., Forster, J.J., Ntzourfras, I.: On Bayesian model and variable selection
using MCMC. Statistic and Computing 12(2), 27–36 (2002)

10. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn.
Chapman&Hall, London (2004)

11. Chen, M.H., Shao, Q.M., Ibrahim, J.G.: Monte Carlo Methods in Bayesian Computation.
Springer, New York (2000)

12. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Introducing Markov chain Monte Carlo.
In: Gilks, W.R., Richardson, S., Spiegelhalter, D.T. (eds.) Markov Chain Monte Carlo in
Practice, pp. 1–19. Chapman and Hall, London (1996a)

13. Terrell, G.R., Scott, D.W.: Variable kernel density estimation. Annals of Statistics (20),
1236–1265 (1992)

14. Duong, T., Hazelton, M.L.: Plug-in Bandwidth Selectors for Bivariate Kernel Density
Estimation. Journal of Nonparametric Statistics (15), 17–30 (2003)

15. Scott, D.W.: Multivariate Density Estimation: Theory, Practice, Visualization. Wiley, New
York (1992)

16. Fang, M., Wang, S.L., Jin, H.: Spatial Neighborhood Clustering Based on Data Field. In:
Cao, L., Feng, Y., Zhong, J. (eds.) ADMA 2010, Part I. LNCS, vol. 6440, pp. 262–269.
Springer, Heidelberg (2010)

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 168–176, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Developing an Oracle-Based Spatio-Temporal
Information Management System

Lei Zhao, Peiquan Jin, Lanlan Zhang, Huaishuai Wang, and Sheng Lin

School of Computer Science and Technology,
University of Science and Technology of China, 230027, Hefei, China

jpq@ustc.edu.cn

Abstract. In this paper, we present an extension of Oracle, named STOC (Spatio-
Temporal Object Cartridge), to support spatio-temporal data management in a
practical way. The extension is developed as a PL/SQL package and can be inte-
grated into Oracle to offer spatio-temporal data types as well as spatio-temporal
operations for various applications. Users are allowed to use standard SQL to ac-
cess spatio-temporal data and functions. After an overview of the general features
of STOC, we discuss the architecture and implementation of STOC. And finally,
a case study of STOC is presented, which shows that STOC is effective to repre-
sent and query spatio-temporal data on the basis of Oracle.

1 Introduction

Nowadays, many applications show the demand on moving objects management.
However, traditional database systems, i.e., the relational DBMSs, can not deal with
spatio-temporal data efficiently. Therefore, it has been one of the most important
goals in recent research on spatio-temporal databases to design and implement a prac-
tical spatio-temporal DBMS.

Previous research on spatio-temporal databases were mainly focused on spatio-
temporal semantics[1-2], spatio-temporal data models [3-4], spatio-temporal indexes
[5] and spatio-temporal query processing [6-7], whereas little work has been done in
the implementation of practical spatio-temporal DBMSs owing to the complexity of
spatio-temporal data models and the lack of effective implemental techniques. Al-
though some commercial or open-source DBMSs [8-10] offer support for handling
special data types, it is still not feasible to use them to support spatio-temporal data.
Recently, the object-relational database technology has been paid a lot of attention in
spatio-temporal data model [11] and system implementation, due to its extensibility
on new data types and functions.

In this paper, we present an extension of Oracle, named STOC (Spatio-Temporal
Object Cartridge), to support spatio-temporal data management in a practical way.
The unique features of STOC can be summarized as follows:

(1) It is SQL-compatible and built on a widely-used commercial DBMS (see Sec-
tion 2), namely Oracle. Thus it can be easily used in real spatio-temporal database
applications and provides a practical solution for spatio-temporal data management
under current database architecture.

 Developing an Oracle-Based Spatio-Temporal Information Management System 169

(2) It supports various spatio-temporal data types (see Section 3.1), such as moving
number, moving bool, moving string, moving point, moving line, and moving region.
Combined with the ten types of spatio-temporal operations (See Section 3.2) sup-
ported by those new data types, users can represent many types of spatio-temporal
data involved in different spatio-temporal applications and query different spatio-
temporal scenarios.

(3) It can support real spatio-temporal applications (See Section 4). A case study con-
cerning moving taxi cars shows that the STOC system is able to store spatio-temporal
data captured by GPS and GIS technologies, and also able to represent different types of
spatio-temporal queries.

2 Overview of STOC

STOC (Spatio-Temporal Object Cartridge) is a spatio-temporal cartridge based on
Oracle and Oracle Spatial. The detailed implemental architecture of STOC is shown
in Fig.1. STOC extends spatio-temporal data types and operations using the PL/SQL
scripting language. Once installed, STOC becomes an integral part of Oracle, and no
external modules are necessary. Users can use standard SQL to gain spatio-temporal
support from Oracle. No external work imposes on users.

Fig. 1. The Architecture of STOC

We design the spatio-temporal data type model in STOC in order to represent the
spatio-temporal objects and complex spatio-temporal changes. STOC extends two
categories of new data types into Oracle, namely spatio-temporal data types and tem-
poral data types (as shown in Fig.2). As Oracle has already supported spatial data
management from its eighth version, which is known as Oracle Spatial, we build
STOC on the basis of Oracle Spatial so as to utilize its mature technologies in spatial
data management. The spatio-temporal data types contain moving spatial types and
moving base types. The former refers to moving spatial objects in real world, while
the latter refers to those numeric, Boolean, or string values changing with time.

170 L. Zhao et al.

Fig. 2. The Type System of STOC

3 Implementation of STOC

3.1 Moving Data Types in STOC

3.1.1 Moving Base Types (MBT)
MBT represents the base data types changing with time, including Moving Bool, Mov-
ing String and Moving Number, which are the essentials for describing spatio-
temporal changes.

Moving Bool and Moving String represent the discretely-changing Boolean values
and String values respectively. It consists of a set of period snapshots ordered by
time. A period snapshot is a <value, [from, to)> pair. The value of object is constant at
the period [from, to). We use the VARRAY data type to organize the set of period
snapshots, which is the same as follows.

Moving Number represents the changing numerical values with time. Moving
number is a set of moving number period snapshots ordered by time. Moving number
period snapshot is a quadruple <t_type, num, chR, [from, to)>. The t_type is the
change type of moving number snapshot, when it equals to 0 meaning discrete
change, or equals to 1 meaning continuous change. The num is the value at the begin-
ning of this period. The [from, to) is the valid period about this snapshot. The chR
represent the change rate of value in this period. If the change of moving number is
discrete, chR is always 0.

3.1.2 Moving Spatial Types (MST)
MST represent the spatial data types changing with time, including Moving Point,
Moving Line and Moving Region, which are the cores of moving objects. MST object
is a three-dimension object with spatial space (two-dimension) and temporal space
(one-dimension).

Figure 3 shows the definition for moving point using PL/SQL. The t_type is the
change type of moving point, when it equals to 0 meaning discrete change, or equals
to 1 meaning continuous change. The srid is the coordinate system id for moving
point. STOC supports the coordinate systems for Oracle Spatial, such as NULL (user-
defined coordinate system), 8307 (WGS-84 coordinate system). Those coordinate
systems are described in MDSYS.CS_SRS system table. M_point_units is a set of

 Developing an Oracle-Based Spatio-Temporal Information Management System 171

Fig. 3. Defining Moving Point using PL/SQL

moving point period units ordered by time. Moving point period unit is a quadruple
<point, cRX, cRY, [from, to)>. The point is the start position at the beginning of the
period for the moving point. The cRX and cRY represent the change rates for x-axis
position and y-axis position respectively. The [from, to) is the valid period for this
moving point unit.

Since moving line only supports the discrete change, similar to moving bool and
moving string, moving line is a set of moving line period units ordered by time. Each
moving line period unit indicates the position for moving line and its valid period.

Fig. 4. Data Structure of Moving Region

The data structure of moving region is shown in Fig.4. In this data structure, the
t_type is the change type of moving region; the srid is the coordinate system id; the
m_region_units is a set of moving region period units ordered by time. The moving
region period unit is a six-tuple. The period is the valid period. On the one hand, if
moving region changes discretely, the region stores the location information of mov-
ing region in this period. On the other hand, if the change is continuous, the region
stores the MBR of moving region at the beginning of this period. The cRX1, cRY1,
cRX2, cRY2 represent the bottom-left and top-right points’ change rates for x-axis
position and y-axis position respectively.

3.2 Spatio-Temporal Operations in STOC

STOC provides the following types of spatio-temporal operations to support various
spatio-temporal queries. All the operations are implemented by PL/SQL and as mem-
ber functions of spatio-temporal data types.

172 L. Zhao et al.

Object data management operations: for moving object, add or delete the specific
period unit to manage the data of moving object.

Object attribute operations: get the attributes of moving object. For example, get
the max/min value of moving number; get the change type, coordinate system and
speed for moving point.

Temporal dimension project operations: get the temporal information of moving
object, such as valid periods or start time about moving object.

Value dimension project operations: project the moving object to value dimension
to get the value range of moving object. For moving bool/ moving string/moving
number, return the set of its values. For moving point, if it changes discretely, return
the set of points, if it changes continuously, return the segments of trajectory. For
moving line, return the set of lines. For moving region, if it changes discretely, return
the set of regions, or return the region where the moving MBR passed.

Temporal selection operations: return the value of moving object at specific
instant, period or periods.

Quantification operations: return whether or not the moving bool/moving string
always/sometimes equals to the specific bool/string in valid time.

Moving Boolean operations: return the logical relation between two moving bool
object. It is used to support the complex logical query. For not operation, the result is
false when the moving bool is true in one period and vice versa. For and operation,
the result is false when at least one moving bool is false in one period, or the result is
true when both moving bool objects are true in the same period. For or operation, the
result is true when at least one moving bool is true in one period, or the result is false
when both moving bool objects are false in the same period.

Temporal relation operations: return the temporal relations between each period
unit of moving object and specific instant, period. The temporal relations are defined
in [12].

Object relation operations: return the relations between moving object with mov-
ing object or non-moving object which may change with time. The data type of return
value is moving string. For moving bool/moving string, return equal or not equal.
For moving number, return greater than, less than or equal. For moving spatial type,
return the spatial relations defined in [13].

Distance operations: return the distance between moving object with moving ob-
ject or non-moving object which may change with time. The data type of return value
is moving number.

4 Case Study: A Traffic Information System

To demonstrate the functions of STOC, we use a traffic dataset to study the effective-
ness of STOC. The dataset was also used in BerlinMOD [14].

4.1 Create BerlinMOD Database

The schema for BerlinMOD database is shown in Fig.5. The information about mov-
ing cars is stored in table dataScar. Table QueryPoints /QueryRegions /QueryInstants
/QueryPeriods / QueryLicences record the query conditions for position of point

 Developing an Oracle-Based Spatio-Temporal Information Management System 173

Fig. 5. Database Schema of BerlinMOD

(SDO_GEOMETRY data type), position of region (SDO_GEOMETRY data type),
instant (T_Instant data type), period (T_Period data type), and the license of car (Var-
char2 data type). The id is the prime key for each query table.

4.2 Spatio-Temporal Queries

STOC supports the various kinds of spatio-temporal queries referred by [11, 14].
According to the query conditions and types, those can be divided into six types of
spatio-temporal, which are (1) temporal range query, (2) spatial range query, (3) spa-
tio-temporal range query, (4) spatio-temporal distance query, (5) spatio-temporal
topology query and (6) spatio-temporal aggregate query.

Q1 (Temporal Range Query): Where have the vehicles whose licenses are from
QueryLicences been at each instant in QueryInstants?

SELECT LL.Licence AS Licence, II.Instant AS Instant, C.Trip.at_instant
(II.Instant) AS Pos

FROM dataScar C, QueryLicences LL, QueryInstants II
WHERE C.Licence = LL.Licence AND C.Trip.at_instant (II.Instant) IS NOT

NULL;

Q2 (Spatial Range Query): Which license numbers belong to vehicles that have
passed the points from QueryPoints?

SELECT PP. Pos AS Pos, C.Licence AS Licence
FROM dataScar C, QueryPoints PP
WHERE sdo_geom.relate(C.Trip.get_trajectory), 'ANYINTERACT' ,

PP.Pos,0.005)='TRUE';

Q3 (Spatio-Temporal Range Query): Which vehicles traveled within one of the
regions from QueryRegions during the periods from QueryPeriods.

SELECT RR. Region AS Region, PP. Period AS Period ,C.Licence AS Licence
FROM dataScar C, QueryRegions RR, QueryPeriods PP
WHERE C.Trip.at_period(PP.Period) IS NOT NULL AND sdo_geom.relate

(C.Trip.at_period(PP.Period).get_trajectory()
,'ANYINTERACT',RR.region,0.005)='TRUE';

Q4 (Spatio-Temporal Distance Query): What are the pairs of licence numbers of
“trucks”, that have ever been as close as 10m or less to each other?

SELECT V1.Licence AS Licence1, V2.Licence AS Licence2
FROM dataScar V1, dataScar V2
WHERE V1.Licence < V2.Licence AND V1.Type = 'truck' AND V2.Type =

'truck' AND V1.Trip.distance_m_Point(V2.Trip,0.005).get_min_number()<=10;

174 L. Zhao et al.

Q5 (Spatio-Temporal Topology Query): What are the pairs of licence numbers of
“trucks”, that have meet each other?

SELECT V1.Licence AS Licence1, V2.Licence AS Licence2
FROM dataScar V1, dataScar V2
WHERE V1.Licence < V2.Licence AND V1.Type = 'truck' AND V2.Type =

'truck' AND V1.Trip.relation_m_Point (V2.Trip,0.005).sometimes
(‘EQUAL’)=’TRUE’;

Q6 (Spatio-Temporal Aggregate Query): Which points from QueryPoints have
been visited by a maximum number of different vehicles?

CREATE VIEW visited_car(pp_id ,licence) AS
SELECT PP.ID AS Pos , c.licence
FROM QueryPoints PP, dataScar C
WHERE sdo_geom.relate(C.Trip. get_trajectory(), 'ANYINTERACT',
 PP.Pos,0.05)='TRUE';

CREATE VIEW PosCount AS
SELECT vc.pp_id AS Pos_id , COUNT(*) AS Hits
FROM visited_car vc
GROUP BY vc.pp_id ;

SELECT N.Pos_id, N.Hits
FROM PosCount N
WHERE N.Hits = (SELECT MAX(Hits) FROM PosCount);

5 Related Work

Early work in implementing spatio-temporal database systems employed a layered
approach [16, 17], which aimed at implementing an additional spatio-temporal layer
on top of standard relational DBMS. Since the relational DBMS has little built-in
spatio-temporal support, generated query may become very complex and potentially
difficult to optimize for the underlying representation of spatio-temporal data. The
object-relational approach, which refers to extending an extensible DBMS with spa-
tio-temporal plug-ins, has been the most focused approach in recent years, since this
makes it feasible to implement a spatio-temporal DBMS completely. Now major
database vendors have provided techniques for this extensibility, including Oracle and
IBM. And some extensions have been developed for spatial/temporal/spatio-temporal
data management. The typical examples are Informix Timeseries Datablade [18] and
Informix Geodetic Datablade [19]. The Timeseries Datablade is designed for captur-
ing single attribute that changes over time, in which the temporal data types are very
restricted. The Geodetic DataBlade is a spatio-temporal extension provided by Infor-
mix, but it is only designed for specific GIS applications.

There are also some research prototypes developed by other researchers. SEC-
ONDO [20] realizes the abstract moving object data types and operators defined in
[11] and supports spatio-temporal queries and analysis by employing Berkeley DB as
data storage. Nonetheless, SECONDO is unable to combine with existing DBMSs and
is not compatible with SQL. SpADE [21] is built on MySQL, with the extension of a
moving object module and an index module. However it only supports a limited set of
spatio-temporal queries, namely the range query and the nearest neighbors query.
Hermes [22] is based on the trajectory database of Oracle in support of range query,
nearest neighbors query and similar trajectory query of moving point. But it does

 Developing an Oracle-Based Spatio-Temporal Information Management System 175

not support moving regions and spatio-temporal analysis query. TrajStore [23] only
focused on spatio-temporal range query on massive datasets, thus can not suit for
different spatio-temporal applications.

6 Conclusions

In this paper, we present a spatiotemporal extension of Oracle called STOC, aiming at
providing practical support of spatiotemporal data management for various commer-
cial applications. STOC is developed using the cartridge technology provided by
Oracle, which enables us to add new data types as well as functions and indexing
methods into the kernel of Oracle. The most valued feature of STOC is that it is SQL-
compatible and allows users to develop spatio-temporal applications upon Oracle.

Acknowledgements

This work is supported by the National High Technology Research and Development
Program ("863" Program) of China (No. 2009AA12Z204), the National Science
Foundation of China (no. 60776801), the Open Projects Program of National Labora-
tory of Pattern Recognition (20090029), the Key Laboratory of Advanced Information
Science and Network Technology of Beijing (xdxx1005), and the USTC Youth Inno-
vation Foundation.

References

1. Sistla, P., Wolfson, O., et al.: Modeling and Querying Moving Objects. In: ICDE,
Birmingham, UK (1997)

2. Bohlen, M., Jensen, C., Skjellaug, B.: Spatio-Temporal Database Support for Legacy. In:
1998 ACM Symposium on Applied Computing, Georgia (1998)

3. Erwig, M., Güting, R.H., et al.: Spatio-Temporal Data Types: An Approach to Modeling
and Querying Moving Objects in Databases. GeoInformatica 3(3), 265–291 (1999)

4. Güting, R.H., Bohlen, M.H., et al.: A foundation for representing and quering moving
objects. ACM Transactions Database Systems 25(1), 1–42 (2000)

5. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel Approaches to the Indexing of Moving
Object Trajectories. In: Proceedings of VLDB (2000)

6. Benetis, R., Jensen, C.S., et al.: Nearest neighbor and reverse nearest neighbor queries for
moving objects. In: IDEAS, pp. 44–53 (2002)

7. Lema, J.A.C., Forlizzi, L., et al.: Algorithms for moving objects databases. The Computer
Journal 46(6), 680–712 (2003)

8. Oracle Corp. Oracle Spatial User’s Guide and Reference, http:// www.oracle.com
/technology/products/spatial/spatial_doc_index.html

9. SQL Server Spatial Data, http://www.microsoft.com/sqlserver/
2008/en/us/spatial-data.aspx

10. PostGIS, http://postgis.refractions.net/
11. Forlizzi, L., Güting, R.H., et al.: A Data Model and Data Structures for Moving Objects

Databases. In: SIGMOD, pp. 319–330 (2000)

176 L. Zhao et al.

12. Allen, J.F.: Maintaining knowledge about temporal intervals. Communication of ACM 26,
832–843 (1983)

13. Egenhofer, M., Franzosa, R.: Point-Set Topological Spatial Relations. International Journal
of Geographical Information Systems 5(2), 161–174 (1991)

14. Düntgen, C., Behr, T., Güting, R.H.: BerlinMOD: a benchmark for moving object
databases. VLDB J. 18(6), 1335–1368 (2009)

15. Wolfson, O., Sistla, P., et al.: DOMINO: Databases for Moving Objects Tracking. In:
SIGMOD, Philadelphia, PA, pp. 547–549 (1999)

16. Torp, K., Jensen, C.S., Bohlen, M.H.: Layered Implementation of Temporal DBMSs-
Concepts and Techniques. In: DASFAA, Melbourne, Australia, pp. 371–380 (1997)

17. Torp, K., Jensen, C.S., Snodgrass, R.T.: Stratum Approaches to Temporal DBMS Imple-
mentation. In: IDEAS, Cardiff, Wales, pp. 4–13 (1998)

18. Informix Corp. Informix Timeseries DataBlade Module User’s Guide, Version 3.1 (1997)
19. Informix Corp. Informix Geodetic DataBlade Module User’s Guide, Version 2.1 (1997)
20. Güting, R.H., de Almeida, et al.: Secondo: Anextensible DBMS platform for research

prototyping and teaching. In: ICDE, pp. 1115–1116 (2005)
21. Ooi, B.C., Huang, Z., et al.: Adapting Relational Database Engine to Accommodate

Moving Objects in SpADE. In: ICDE, Istanbul, pp. 1505–1506 (2007)
22. Pelekis, N., Frentzos, E., Giatrakos, N., Theodoridis, Y.: HERMES:Aggregative LBS via a

trajectory DB engine. In: ISIGMOD, pp. 1255–1258 (2008)
23. Cudre-Mauroux, P., Wu, E., Madden, S.: TrajStore: An Adaptive Storage System for Very

Large Trajectory Data Sets. In: ICDE (2010)

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, p. 177, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Some Research Directions in FlashDB*

Sang-Won Lee

School of Information and Communication Engineering,
Sungkyunkwan University,

Chunchun 300, Jangan, Suwon, Korea
wonlee@ece.skku.ac.kr

Abstract. Flash memory based SSDs (flash SSDs) are becoming popular as an
alternative storage to harddisk, and it is not unrealistic to witness in the foresee-
able future that flash SSDs replace harddisks as the main secondary storage in
enterprise databases. In fact, Oracle has already started to use flash SSDs as its
main storage in performing TPC-C benchmark [1]. In this talk, we will outline
some personal research directions in flash memory database (in short, FlashDB)
under way. First of all, we will show the multipurpose uses of the log in flash
memory, which has been mainly regarded as a write performance booster in
flash memory [2][3]. As one of specific examples, we will explain how the con-
cept of log in the in-page logging scheme can be extended to support multiver-
sions and fast recovery in flash memory in a very effective way with a modest
overhead. Second, we are investigating on a hybrid architecture of flash mem-
ory and phase change ram (i.e. PRAM). Although some advocates of non-
volatile memory have predicted that flash memory will give way to non-volatile
memory soon (e.g. by the year 2012), the performance of PRAM is far lagging
behind its promise. For this reason, we believe that they will co-exist, comple-
menting each other, for a while. As a hybrid architecture of flash memory and
PRAM, we suggest to use PRAM as the log area in in-page logging [4], report a
preliminary performance result, and explain its several architectural advantages.
Third, we are exploring how to leverage flash SSDs as cache in memory hierar-
chy. As an alternative design, we suggest FlashCache scheme and report its
preliminary performance result.

Keywords: Flash Memory, SSD, Database.

References

1. Transaction Processing Council, http://www.tpc.org
2. Lee, S.-W., Moon, B.: Transactional In-Page Logging for Multiversion Read Consistency

and Recovery. In: 27th IEEE International Conference on Data Engineering. IEEE Com-
puter Society, Los Alamitos (2011)

3. Ouyangyz, X., Nellansy, D., Wipfely, R., Flynny, D., Panda, D.K.: Beyond Block I/O: Re-
thinking Traditional Storage Primitives. In: 17th IEEE International Symposium on High
Performance Computer Architecture. IEEE Computer Society, Los Alamitos (2011)

4. Lee, S.-W., Moon, B., Park, C., Hwang, J.-Y., Kim, K.: Accelerating In-Page Logging with
Non-Volatile Memory. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering 33(4), 41–47 (2010)

* This research was supported by MKE ITRC, Korea.

Page-Level Log Mapping: From Many-to-Many
Mapping to One-to-One Mapping

Jing Xu, Fang Xie, and Jianhua Feng

Department of Computer Science and Technology, Tsinghua University
{j-xu08,xie-f03}@mails.tsinghua.edu.cn, fengjh@tsinghua.edu.cn

Abstract. Flash memory has been widely used as secondary storage in
many systems, such as mobile devices, portable computers and enterprise
servers. However, due to the unique characteristics of flash memory, the
optimization of flash-based systems for exploiting the superior proper-
ties as well as overcoming the limitations of flash memory becomes an
important and challenging problem. In this paper, we propose page-level
log mapping to address this problem. It adopts backward link technique
to optimize the logical-to-physical page mapping, which can improve the
read and write performance of flash-based systems. It also incorporates
flash-optimized policies for buffer management, free page allocation and
garbage collection. Experimental results show that our approach achieves
high efficiency across a wide range of workloads, flash types and memory
constraints, and significantly outperforms state-of-the-art methods.

1 Introduction

As a non-volatile storage media, flash memory has been increasingly used in
a wide spectrum of systems, including mobile devices, portable computers and
enterprise servers. This mainly owes to the superior properties of flash memory
compared with magnetic disks, such as lower access latency, lower power con-
sumption, higher density, lighter weight and better shock resistance. However,
conventional systems are not likely to yield the potential optimal performance on
flash memory. Because they do not take into account the unique characteristics
of flash memory, such as asymmetric read and write costs. Moreover, traditional
in-place update is prohibitively expensive for flash memory due to the erase-
before-write limitation. Therefore, the optimization of flash-based systems for
exploiting the superior properties as well as overcoming the limitations of flash
memory is a significantly important and challenging problem.

Many recent studies have been focused on improving the write performance
of flash-based systems. One approach is based on out-of-place update, which is
usually provided by a middle layer called Flash Translation Layer (FTL) [1]. This
approach has the disadvantage that updating even a small part of a page will lead
to invaliding the original page and writing a new page entirely. Therefore, it is not
well-suited to the workloads containing a large number of random fine-grained
writes, such as online transaction processing (OLTP) and metadata updates. To
address this problem, log-based approaches [11,13] record the changes made to

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 178–189, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Page-level Log Mapping 179

a page as logs. Multiple updates can be applied at once with a log page write
to reduce the amortized update cost. For a read operation, the original data
page and corresponding logs need to be fetched to re-create the up-to-date page.
There are two methods for the retrieval of logs. One is to store logs in the specific
regions of flash memory. For example, in-page logging (IPL) [11] co-locates a data
page and its logs in the same block, thus the logs can be found by scanning the
in-block log region. Since each read operation will cause a log region scan, the
overhead might out-weight the saving from the reduced update cost. The other
method is to maintain a mapping between pages and their logs. As the logs
belonging to a page may be scattered over several log pages, and a log page may
contain the logs of multiple pages, it is a complicated many-to-many mapping.
To maintain such a mapping could cause large memory overhead.

In this paper, we propose a new approach called page-level log mapping (PLM)
for the optimization of flash-based systems. The key idea is to link each data
page and its logs together with backward links . Essentially, PLM replaces the
complicated many-to-many mapping with a simple one-to-one mapping. The
main contributions of our work are summarized as follows.

– We propose the PLM approach which adopts the backward links technique
to optimize the logical-to-physical page mapping of flash-based systems.

– We develop two implementations of PLM incorporatingflash-optimized strate-
gies for buffer management, free page allocation and garbage collection.

– We conduct extensive experiments for performance evaluation. The results
show that our approach significantly outperforms state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 introduces the design
overview of PLM. In Section 3, we describe the two implementations of PLM.
Section 4 presents performance evaluations. Finally, we survey related work in
Section 5, and summarize this paper in Section 6.

2 Design Overview

2.1 Basic Concepts

To re-create the latest version of a logical page, its related pages, i.e., the original
data page (B-page) and corresponding log pages (L-pages), need to be read. As
discussed in Section 1, existing methods either result in large memory overhead
to maintain the mapping, or expensive I/O cost for log region scan. The essential
issue is that the mapping is a complicated many-to-many mapping, as illustrated
in Figure 1(a). For example, Logical page 1 is mapped to three related pages,
i.e., B-page1, L-page1,2 and L-page1,3, where L-page1,2 (L-page1,3) denotes the
L-page that keeps the logs of Logical Page 1 and 2 (Logical Page 1 and 3).
To address the issue, we propose to link the related pages of a logical page
together with backward links , i.e, newer related pages point to older ones. Only
the mapping between logical pages and their latest related pages, called page-
level log mapping (PLM), needs to be maintained. For example, in Figure 1(b),

180 J. Xu, F. Xie, and J. Feng

Logical
Page 1

Logical
Page 2

Logical
Page 3

B-page1 B-page2 L-page1,2 B-page3 L-page1,3 L-page2,3

Logical Page to Related Pages Mapping
Logical Page 1 => (B-page1, L-page1,2, L-page1,3)
Logical Page 2 => (B-page2, L-page1,2, L-page2,3)
Logical Page 3 => (B-page3, L-page1,3, L-page2,3)

(a) Many-to-many Mapping

Logical
Page 1

Logical
Page 2

Logical
Page 3

B-page1 B-page2 L-page1,2 B-page3 L-page1,3 L-page2,3

Logical Page to the Latest
Related Page Mapping

Logical Page 1 => L-page1,3

Logical Page 2 => L-page2,3

Logical Page 3 => L-page2,3

(b) One-to-one Mapping

Fig. 1. Mappings between logical pages and their related pages

Write Buffer Read Buffer

Buffer Manager

Applications

PLM
Table

Page
Replacement

Manager

Free Page
Allocator

Garbage
Collector

Storage Manager

NAND Flash Memory

Fig. 2. The system architecture of PLM

Logical page 1 is mapped to L-page1,3. Following the backward links started
from L-page1,3, other related pages, i.e., L-page1,2 and B-page1, can be efficiently
retrieved. Since the mapping becomes a simple one-to-one mapping, it can reduce
the memory overhead and avoid expensive log region scan.

2.2 System Architecture

As shown in Figure 2, our optimizations focus on the buffer manager and the
storage manager. Here we briefly describe the main components, and the de-
tails are presented in Section 3. The buffer manager contains two independent
buffers—a read buffer and a write buffer—with different flash-optimized eviction
policies. In storage manager, the PLM table is used to maintain the mapping
between logical pages and their latest related pages. The page replacement man-
ager is incorporated to write the newest version of a logical page as a new B-page
at the optimal time. Thus reading a frequently updated page will not lead to a
large number of L-page accesses. The free page allocator can dynamically adjust

Page-level Log Mapping 181

the layout of B-pages and L-pages by using a free page allocation policy. The
garbage collector is responsible for storage reclamation which involves choosing
appropriate blocks, writing up-to-date pages and erasing these blocks for reuse.

3 The Implementations of the PLM Approach

In this section, we present two implementations of PLM, called block associative
log mapping (BALM) and fully associative log mapping (FALM).

3.1 The Block Associative Log Mapping

To facilitate storage reclamation, block associative log mapping (BALM) co-
locates the B-page and L-pages belonging to a logical page in the same block.
BALM differs from IPL [11] as follows. Firstly, IPL preserves a log region in
each block, while BALM writes pages in a block sequentially1, therefore B-pages
and L-pages are stored in a mixed manner. Secondly, unlike IPL has identical
and static ratio between B-pages and L-pages in each block, BALM dynamically
adjusts the ratio for individual blocks. Thirdly, when no free space is available in
a block for newly generated logs, BALM does not merge the block immediately
as IPL. Instead, it writes the up-to-date page as a new B-page to a different
block. In the following, we describe the details of BALM.

Read Operations: To re-create the up-to-date page, we propose to merge logs
when traversing along the backward links, then apply them to the B-page to-
gether (Algorithm 1). Once part of the page is reconstructed from the logs, it
has already been the newest version. The subsequent (older) logs that update
the same part can be discarded immediately (Algorithm 1 Line 4).

Page Replacement: There are two cases that BALM will replace the related
pages of a logical page with a new B-page. One case called force replacement
occurs when no free pages are available in a block. We implement force replace-
ment in the write operation (Algorithm 2). While the logs of a logical page are
to be flushed out, BALM packs them with the logs of other logical pages in the
same block as an L-page. If the block is not full, BALM writes the L-page to
the first free page in the block. Otherwise, it stores the current version of the
logical page as a new B-page to a different block. The other case is called active
replacement . When the number of L-pages belonging to a logical page exceeds
the pre-specified Max Log Size, BALM writes the latest version of the page as
a new B-page in the same block. For example, as illustrated in Figure 3(a),
Logical Page 3 is mapped to B-Page3 after active replacement. Compared with
Figure 1(b), fewer pages need to be fetched for reading Logical Page 3.

Next, we discuss when is the optimal moment to apply active replacement.
Given a sequence of page accesses, as shown in Figure 3(b). Without loss of
generality, consider Logical Page 1. WP1 denotes the B-page write, EP1 indi-
cates the time when the in-memory copy is evicted from the read buffer, and
1 For MLC flash memory, the pages in a block should be written sequentially in order

to avoid disturbing data on previously-written pages [16].

182 J. Xu, F. Xie, and J. Feng

Input: the logical page address addr
Output: the current version of the logical page P

initialize an empty page LΣ ;1

PR ← read page PLMTable [addr]; // fetch the latest related page2

while PR is not a B-page do3

// merge logs in a non-overwrite manner

merge the logs belonging to addr in PR to LΣ ;4

PR ← read page PR.backwardLink[addr]; // follow the backward link5

P ← apply LΣ to PR; // finally apply the logs to the B-page6

return P ;7

Algorithm 1. The Read Operation

Input: the logical page address addr, the L-page to be written PL

Output: the return code

B ← get the information of the block that PLMTable [addr] belongs to;1

if B is not full then2

write PL to the first free page of B;3

update PLMTable;4

return WRITE ALL;5

PN ← Allocate(); // allocate a new page in another block6

write the current version of logical page addr to PN ; // force replacement7

update PLMTable;8

return WRITE ONE;9

Algorithm 2. The Write Operation

RP1 denotes the read operation. N1 denotes the number of L-pages written be-
tween WP1 and RP1. N2 and N3 are similar to N1. We consider three cases,
no-replacement, replace-after-read and replace-before-evict. The total costs of
these cases are summarized in Table 1, where Cw is B-page write cost, Cu is L-
page write cost, Cr is page read cost. The cost of replace-before-evict is smaller
than replace-after-read, as N2 > N1. The essential reason is replace-before-evict
applies active replacement in a lazy manner. Compared with no-replacement,
replace-before-evict has lower cost when N2 > Cw/Cr. Therefore we propose to
set Max Log Size as Cw/Cr. When a logical page is evicted from the read buffer
and the number of its L-pages is larger than Max Log Size, BALM applies ac-
tive replacement. Since the value of Cw/Cr depends on the I/O characteristics of
flash memory, and the value of Max Log Size directly impacts the ratio between
B-pages and L-pages in each block, by setting Max Log Size as Cw/Cr, BALM
in fact adjusts the ratio according to the I/O characteristics of flash memory.

Free Page Allocation: BALM allocates free pages on demand. For an L-page,
it allocates the next free page if the block is not full. Otherwise, it applies force
replacement. We introduce the concept of force replacement loss which repre-
sents, compared to active replacement, the number of L-pages that have not been

Page-level Log Mapping 183

Logical
Page 1

Logical
Page 2

Logical
Page 3

B-page1 B-page2 L-page1,2 B-page3 L-page1,3 L-page2,3 B-page3

Logical Page to the Latest
Related Page Mapping

Logical Page 1 => L-page1,3

Logical Page 2 => L-page2,3

Logical Page 3 => B-page3

(a) An Example of Active Replacement

Access Trace

N1

N2

N3

WP1 RP1 EP1 RP1

replace-after-read replace-before-evict

(b) Page Accesses

Fig. 3. The active replacement in BALM

Table 1. The total cost of applying active replacement

Case Cost
no-replacement Cw + N3 · Cu + (N1 + 1 + N3 + 1) · Cr

replace-after-read Cw + N3 · Cu + (N1 + 1) · Cr + Cw + (N3 − N1 + 1) · Cr

replace-before-evict Cw + N3 · Cu + (N1 + 1) · Cr + Cw + (N3 − N2 + 1) · Cr

written due to force replacement. Our goal is to find the block with the minimum
force replacement loss. Given a block B, we use EB to evaluate the expectation of
force replacement loss: EB = (Max Log Size·N−

∑
(Max Log Size − Li))/Ne,

where N is the number of pages in a block, Ne is the number of empty pages in
B, and Li is the number of L-pages belonging to a logical page Pi(∀Pi ∈ B). The
block with the minimum EB is chosen for B-page allocation. From the above for-
mula, we can see that it always prefers the block containing more logical pages
and less L-pages. In other words, the block containing pages, which are not up-
dated frequently, is more likely to be selected. It also prefers the block having
more empty pages. Since blocks that are unlikely to become full soon are always
chosen for page allocation, frequent force replacement can be avoided.

Garbage Collection: BALM calls garbage collection when empty pages in each
block are less than a pre-defined threshold and there comes a B-page allocation
request. BALM selects the block containing the fewest valid pages to reclaim
first. The up-to-date pages of the block are re-created, then written to other
blocks. The allocation of these newly generated B-pages follows the free page
allocation policy described above. Finally the PLM table is updated and the
block is erased. Since BALM dispenses these new B-pages to other blocks, it
actually re-balances the distribution of B-pages during garbage collection.

Buffer Management: BALM has two independent buffers—a read buffer used
to keep several logical pages and a write buffer for log write caching. The read
buffer is divided into two regions. The working region contains recently used

184 J. Xu, F. Xie, and J. Feng

1 L-pages 3 L-pages 2 L-pages 3 L-pages 2 L-pages 1 L-pages

P1 P2 P3 P4 P5 P6

Working Region Priority Region

Evicted from the read buffer

Fig. 4. The read buffer

logical pages. The priority region consists of pages which are candidates for
eviction and ordered by the number of L-pages. When a page needs to be evicted
from the read buffer, the least recently used page in the working region is moved
into the priority region, then the page in the priority region that has the least
number of L-pages is selected for eviction. For example, in Figure 4, P3 is added
between P4 and P5, and P6 is evicted. If the evicted page is marked as needing
force replacement or active replacement, it will be written out as a new B-page.
Otherwise, it can be discarded immediately, since all the changes made to it
have been kept in the write buffer. This policy has the advantage that it takes
into account both the hit rate and read cost. The working region works like a
traditional LRU list, so it can generally achieve high hit rate. The priority region
always keeps the pages with more L-pages. As these pages have relatively high
read costs, keeping them in the read buffer can reduce the total read cost.

The write buffer employs an LRU-like eviction strategy. When it becomes
full, the logs of the least recently updated page are written to flash memory.
The main idea here is that the recently updated pages are likely to be updated
again in the near future. Keeping their logs in the buffer is particularly beneficial
for write-coalescing. Thus the logs will not be scattered in many L-pages.

3.2 The Fully Associative Log Mapping

The fully associative log mapping (FALM) is another implementation of PLM.
It stores B-pages and L-pages in different blocks, i.e., data blocks and log blocks.
FALM can store the logs belonging to a logical page in any pages of any log
blocks. We describe the differences between FALM and BALM as follows.

Page Replacement: Since L-pages are not stored with the B-page in the same
block, FALM never triggers force replacement. But it still applies active replace-
ment to improve the overall performance.

Free Page Allocation: FALM allocates data (log) blocks on demand, and
writes pages in each block sequentially. The newly generated B-page (L-page) is
written to the first free page of the data (log) block. When the data (log) block
becomes full, an empty block is allocated as the new data (log) block.

Garbage Collection: FALM calls garbage collection when empty blocks are
less than a pre-specified threshold. For data blocks, it selects the block with the
fewest valid pages. For log blocks, the oldest log block is reclaimed first. After
writing up-to-date pages to new locations, the PLM table is updated and these

Page-level Log Mapping 185

blocks are erased. There is no need to modify the backward links pointing to the
reclaimed blocks, because relying on the updated PLM table we will access the
new B-pages and never traverse along the old backward links.

Buffer Management: FALM employs similar buffer policies as BALM, we
outline the differences here. Firstly, FALM does not consider force replacement
when a logical page is evicted from the read buffer. Secondly, FALM is able to
pack the logs belonging to multiple blocks into an L-page. Recall the log packing
of BALM must be performed in the same block. Therefore, FALM generally
obtains better write performance than BALM.

In summary, the strategies for page replacement and free page allocation
of FALM are simpler than BALM. However, since FALM locates B-pages and
L-pages in different blocks, the system initialization and garbage collection are
more complicated and expensive.

4 Experimental Evaluation

We implemented the proposed PLM approach, i.e., BALM and FALM, the out-
of-place update (OPU) approach and in-page logging (IPL) [11]. OPU is similar
to FTL using page-level mapping [4], but implemented in the buffer and storage
managers to ensure a fair comparison. We employed a trace-driven simulation
environment, and evaluated the total time (including the time taken for garbage
collection) under each workload to measure the performance.

Workloads: A workload consists of a sequence of read and update operations.
We used two real workloads called Index and Dirik. The Index workload was
generated by running a MySQL server under TPC-C benchmark. We only kept
the index accesses, as it represents the access pattern containing a large num-
ber of random fine-grained updates. The Index workload consists of 19.9 million
operations. The Dirik workload was collected from a laptop running real user
applications [5]. It is a read-intensive workload, and the update granularity is
larger than the Index workload. About 262 thousand operations are contained in
this workload. In order to investigate the performance when varying the granu-
larity and percentage of update operations, we also used two synthetic workloads
called Random and Normal. The access pattern of the Random workload was
randomly generated, while the Normal workload follows a normal distribution.
Each of them comprises 4.19 million operations. By default, the average update
size is 512B, and the percentage of update operations is 50%.

Table 2. The characteristics of flash memory

Type Capacity Page Size Block Size Page Read Page Write Block Erase
MLC 284μs 1, 833μs 31, 950μs
SLC1 4GB (4K + 128)B (256 + 8)KB 80μs 200μs 1, 500μs
SLC2 130.9μs 405.9μs 2, 000μs

186 J. Xu, F. Xie, and J. Feng

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 512 1024 1536 2048

T
im

e
(s

)

Update Granularity (bytes)

FALM
BALM
OPU

IPL

(a) The Random Workload

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 512 1024 1536 2048

T
im

e
(s

)

Update Granularity (bytes)

FALM
BALM

OPU
IPL

(b) The Normal Workload

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100

T
im

e
(s

)

Percentage of Update Operations (%)

FALM
BALM
OPU

IPL

(c) The Random Workload

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100

T
im

e
(s

)

Percentage of Update Operations (%)

FALM
BALM

OPU
IPL

(d) The Normal Workload

Fig. 5. The performance when varying update granularity and rate

Setup: Table 2 summarizes the characteristics of flash memory used in our
experiments. Unless stated otherwise, the MLC flash memory was used. We
set the logical page size as 4KB, the same as the physical page size. We gave
128MB and 1.25GB flash memory to each approach under the Index and the
Dirik workload, 4GB under the Random and the Normal workload. By default,
128KB and 10MB RAM was given for in-memory buffer under the Index and the
Dirik workload, 2MB under the Random and the Normal workload. In BALM
and FALM, the ratio between the read and the write buffer size is 7 : 1.

Varying update granularity: First we discuss the impact of update granular-
ity. As shown in Figure 5(a) and Figure 5(b), the performance of IPL decreases
dramatically when increasing the average update size from 1KB to 2KB. The
reason is that larger update granularity causes the in-block log regions of IPL
become full quickly, and leads to frequent merge operations. Since OPU always
rewrites the whole page, increasing update granularity has little impact on its
performance. As for our methods, BALM, unlike IPL, can dynamically adjust
the ratio between B-pages and L-pages in each block, while FALM inherently
triggers no force replacement and can pack logs from multiple blocks. Therefore,
they achieve higher performance than other approaches for different update sizes.

Varying update rate: Figure 5(c) and Figure 5(d) show the performance when
the percentage of update operations is varied from 0% (i.e., read-only) to 100%
(i.e., update-only). Our methods generally outperform other approaches. This is
because, by using the proposed flash-optimized policies, our methods achieve a
better tradeoff between the read and write costs, and can obtain higher overall

Page-level Log Mapping 187

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1024 2048 3072 4096

T
im

e
(s

)

Buffer Size (KB)

FALM
BALM

OPU
IPL

(a) The Index Workload

 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400
 2600

 0 5 10 15 20 25 30 35 40

T
im

e
(s

)

Buffer Size (MB)

FALM
BALM
OPU

IPL

(b) The Dirik Workload

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

MLC SLC1 SLC2

Sc
al

e
to

 O
PU

 T
im

e

Flash Memory Type

FALM
BALM
OPU

IPL

(c) Various Flash Memory

 0

 1

 2

 3

 4

 5

 6

 7

Index Dirik Random Normal

Sc
al

e
to

 F
A

L
M

 T
im

e

Workload

FALM
BALM

OPU
IPL

(d) Different Workloads

Fig. 6. The performance with different buffer sizes, workloads and flash memory

performance for different update rates. In particular, FALM exhibits excellent
performance even under update-intensive workloads. This owes to that FALM
packs the logs belonging to multiple blocks, which usually enables better effect
of log packing and significantly reduces the amortized update cost.

Varying buffer size: We illustrate the performance under different memory
constraints in Figure 6(a) and Figure 6(b). OPU and IPL are generally less effi-
cient than our methods, and the performance gaps become larger when smaller
buffer is used. This trend indicates that our methods could perform well even
with small RAM. The reason is OPU and IPL employ the traditional LRU,
while our methods use buffer management policies optimized for flash memory.
As these policies consider not only the asymmetric costs of page read and write,
but also the different write costs of pages having different numbers of logs, our
methods can take full advantages of available RAM to improve performance.

Various flash memory: We conducted several experiments on different flash
memory (Table 2). As presented in Figure 6(c), all values are scaled to the time
taken by OPU for comparison convenience. It can be seen that our methods
outperform other approaches on all types of flash memory. In particular, com-
pared with the best of other approaches, our methods improve the performance
by about 50% on MLC flash memory, and by 20%-30% on SLC flash memory.
This is due to that our methods adjust the ratio between B-pages and L-pages
based on the I/O characteristics of underlying flash memory, therefore, are able
to adapt to various flash memory.

188 J. Xu, F. Xie, and J. Feng

Different workloads: Here we investigate the performance under different
workloads. As shown in Figure 6(d), for comparison convenience, all values are
scaled to the time taken by FALM. The results demonstrate that our methods
can generally obtain higher performance than other approaches across different
types of workloads. The main reasons are stated as follows. Unlike IPL will suffer
from frequent merge opertions caused by log overflow (note that IPL performs
much worse than other approaches under the Dirik workload), our methods dy-
namically adjust the ratio and distribution of B-pages and L-pages to reduce the
number of page writes and block erasures. Compared with OPU, our methods use
logs to decrease the total amount of data to write. Therefore, under workloads
containing many random fine-grained updates, which OPU is not well-suited to,
our methods still can achieve high efficiency.

5 Related Work

FTL [1] and its varieties [3,4,12,8,6,10] were proposed to improve the write
performance of flash-based systems. The main idea is to maintain a physical-to-
logical address mapping and apply out-of-place update to overcome the erase-
before-write limitation. The work of Lee et al. [11] focused on the design of
flash-based DBMS called IPL, which records changes as logs on the per-page
basis and writes them to in-block log regions. When a log region becomes full,
IPL merges the block by writing up-to-date pages to an empty block. Since all
log regions are static, IPL might suffer from frequent merge operations caused
by log overflow. Na et al. [13] addressed this problem by allocating a log region
dynamically. However, their work concentrated on the implementation of B+-
tree on flash memory. A recently proposed approach is called page-differential
logging (PDL) [9]. When a page write request is issued to flash memory, PDL
compares the original page stored in the flash memory with the page to write.
Then PDL only writes the difference between these two pages. This approach is
implemented in flash memory driver. It might be inefficient to implement PDL
at upper layers of systems as our proposed methods, as each update operation
will lead to a read operation for fetching the original page.

Flash-aware buffer management policy has been extensively studied in many
literatures. Most proposed approaches, such as BPLRU [7], CFLRU [15] and
CFDC [14] take into consideration that flash memory has asymmetric costs of
page read and write. However, they are not best suited to log-based systems
where different pages can have different read costs. To address this problem,
Cesana et al. [2] proposed the Multi-Buffer Manager, which is customized for
databases using log-based approach such as IPL [11]. Multi-Buffer Manager di-
vides the buffer into a set of local buffers, each of which contains pages of the
same cost. By adjusting the maximum size of local buffers, Multi-Buffer Manager
can reduce the total cost of reads and writes in flash memory.

Page-level Log Mapping 189

6 Conclusion

This paper has proposed a new approach called page-level log mapping (PLM)
to optimize flash-based systems. It adopts backward link technique to support
efficient reads and writes, and can yield the optimal overall performance. Two
implementations of PLM were developed, and flash-optimized policies were de-
vised for buffer management, free page allocation and garbage collection. We
have conducted extensive experiments to evaluate the performance. The results
experimentally proved the practicality and efficiency of our proposed approach.

References

1. Intel Corporation. Understanding the Flash Translation Layer (FTL) Specification.
Technical Note (1998)

2. Cesana, U., He, Z.: Multi-buffer manager: Energy-efficient buffer manager for
databases on flash memory. ACM Trans. Embedded Comput. Syst. 9(3) (2010)

3. Choudhuri, S., Givargis, T.: Performance improvement of block based NAND flash
translation layer. In: CODES+ISSS (2007)

4. Gupta, A., Kim, Y., Urgaonkar, B.: DFTL: a flash translation layer employ-
ing demand-based selective caching of page-level address mappings. In: ASPLOS
(2009)

5. Hsu, W., Smith, A.J.: Characteristics of I/O traffic in personal computer and server
workloads. IBM Systems Journal 2(2) (2003)

6. Kang, J.-U., Jo, H., Kim, J., Lee, J.: A superblock-based flash translation layer for
NAND flash memory. In: EMSOFT (2006)

7. Kim, H., Ahn, S.: BPLRU: A buffer management scheme for improving random
writes in flash storage. In: FAST (2008)

8. Kim, J., Kim, J.M., Noh, S., Min, S.L., Cho, Y.: A space-efficient flash translation
layer for compactflash systems. IEEE Transactions on Consumer Electronics 48(2)
(2002)

9. Kim, Y.-R., Whang, K.-Y., Song, I.-Y.: Page-differential logging: an efficient and
DBMS-independent approach for storing data into flash memory. In: SIGMOD
Conference (2010)

10. Lee, S., Shin, D., Kim, Y.-J., Kim, J.: LAST: locality-aware sector translation
for NAND flash memory-based storage systems. Operating Systems Review 42(6)
(2008)

11. Lee, S.-W., Moon, B.: Design of flash-based DBMS: an in-page logging approach.
In: SIGMOD Conference (2007)

12. Lee, S.-W., Park, D.-J., Chung, T.-S., Lee, D.-H., Park, S., Song, H.-J.: A log
buffer-based flash translation layer using fully-associative sector translation. ACM
Trans. Embedded Comput. Syst. 6(3) (2007)

13. Na, G.-J., Lee, S.-W., Moon, B.: Dynamic in-page logging for flash-aware B-tree
index. In: CIKM (2009)

14. Ou, Y., Härder, T., Jin, P.: CFDC: a flash-aware replacement policy for database
buffer management. In: DaMoN (2009)

15. Park, S.-Y., Jung, D., Kang, J.-U., Kim, J., Lee, J.: CFLRU: a replacement
algorithm for flash memory. In: CASES (2006)

16. Peter, D.: Empirical evaluation of NAND flash memory performance. SIGOPS
Oper. Syst. Rev. 44(1) (2010)

A Novel Method to Extend Flash Memory
Lifetime in Flash-Based DBMS�

Zhichao Liang, Yulei Fan, and Xiaofeng Meng

School of Information, Renmin University of China, Beijing, China
{zhichaoliang,fyl815,xfmeng}@ruc.edu.cn

Abstract. Over the past decades, flash memory has been widely used
in hand-held devices, such as PDA, digital camera, cell phone and USB
stick. Moreover, as the capacity increases and the price drops gradually,
flash memory is becoming the promising replacement of hard disk, even
in the enterprise application. As a novel storage medium that is totally
different from magnetic disk, flash memory enjoys faster access speed,
smaller size, lighter weight, less noise and better shock resistance. How-
ever, flash memory suffers from erase-before-write and limited write-erase
cycles on the other side, which means the abuse of write, especially small
and random write, will wear a flash block out quickly. In this paper, we
analyze the free space management in traditional DBMS and point out
its disadvantage when used on flash device. Based on this, we propose a
new solution involving free space management and buffer management,
in which we replace the traditional free space management method em-
ployed in most disk-based DBMS, such as space map or free list, with the
Append Only(AO) to avoid useless search and use a stand-alone write
buffer to reduce the number of small writes to underlying flash device.
Evaluation experiments based on four different trace files show that, in
comparison with the traditional strategy, our solution reduces 74.5% of
page writes in average, and accordingly succeed in extending the lifetime
of flash device.

Keywords: Flash-based DBMS, Free space management, Buffer
management.

1 Introduction

Over the past decades, flash memory has been used in most of the mobile and
embedded systems(e.g.PDA, digital camera, cell phone and USB stick) as a
main storage medium for storing and managing personal and multimedia data.
Moveover, as the development of flash design technology, the capacity of flash
memory increases so fast even beyond the Moore’s law(e.g.8GB in 2004 and
16GB in 2005 for NAND-type flash) while the price drops contiguously. Com-
pared with magnetic disk, flash memory promises faster access speed, higher
� This research was partially supported by the grants from the Natural Science Foun-

dation of China (No.60833005, 61070055); the National High-Tech Research and
Development Plan of China (No.2009AA011904).

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 190–201, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Novel Method to Extend Flash Memory Lifetime in Flash-Based DBMS 191

shock resistance while being much smaller and less power hungry, therefore it
has begun to step into general applications like DBMS and OS running on lap-
tops, desktops, or even servers in large data centers[1].Solid-states drive(SSD),
known as a package consists of flash chips and a flash translation layer(FTL), is
becoming the next generation data storage in place of magnetic disk.

However, flash memory is not almighty God. Because of the erase-before-write,
out-place update and page-write, there are two situations in which flash memory
can’t work gracefully. The first is frequent random write, which will lead to more
erase operations and make flash memory reach its erase-write limit earlier. The
second is frequent small write, which will consume the available pages quickly and
shrink the lifetime of flash memory indirectly. As we all know, general-purpose
workloads like OS or DBMS are more stressful than their counterparts on hand-
held devices, so it will be very challenging when we just drop flash memory in
these workloads. As far as we know, the problem of lifetime is serious.

According to Micro’s data sheet[2], under some particular workloads, a 60GB
SSD only has write-lifetime of 42 TB, which is a reduction in write-lifetime
by a factor of 7. Here we use the word ”write-lifetime”, as its definition in[3],
which means the total number of writes that can be issued to the device over its
lifetime(e.g. an SSD with 80GB of NAND flash with 10,000 erase-cycles per block
owns a maximum write-life time of 800TB). Therefore, concerning the price of
flash memory, the poor lifetime hinders its widespread use in general-purpose
application. In this paper, we mainly focus on how to extend the flash memory
lifetime in DBMS.

It is well known that, in order to maximize storage utilization, traditional disk-
based DBMS adopts free space management to solve the problem of choosing
a disk page to hold a newly allocated data record. As far as we know, the
most commonly used methods to keep track of free space are space map and
free list[4]. The former records the summary information about the amount free
space in each page while the latter maintains a free list, which is a list of pages
that are likely to be able to hold a new record. Although these two strategies
employ different data structures and different algorithms, they provide the same
function: choosing a page with fit free space to satisfy the record write request
and they do play an important role in the storage management. However, we
must be clear that both space map and free list are based on the assumption the
in-place update is supported on the underlying device, but it is impossible on
flash memory. Consequently, when we just simply migrate the traditional DBMS
on the flash memory, we got ourselves in an embarrassment: all the work done in
free space management are in vain cause we can’t overwrite the returned pages
with free space physically. In order to solve this problem, we propose to replace
the complicated methods with Append Only(AO), which allocates new empty
pages for write requests and appends them to the tail of original file. Although
AO avoids the useless searches in space map or free list, it dose no help for
extending the lifetime of flash memory, thus we create a stand-alone write buffer
in main memory to reduce the number of random and small writes. In the write
buffer, we collect all modifications to the data record(e.g. insert, update) and

192 Z. Liang, Y. Fan, and X. Meng

they are not flushed out by the write operation until a buffer page is filled up.
Combined the AO and write buffer, we mitigate the bad effect caused by the
small and random writes and the results of experiment demonstrate our method
reduces 74.5% page write in average and achieves the target of extending the
flash memory lifetime.

The rest of this paper is organized as follows. Section 2 discusses the charac-
teristics of flash memory and their impact on application designing. Section 3
analyzes the methods used in traditional free space management and the prob-
lem when they are used on flash memory. Our method is described in Section
4, including the AO, write buffer and merge operation. Section 5 presents the
results of our experiment evaluation. Section 6 surveys some excellent related
work and Section 7 summarizes all this paper.

2 Characteristics of Flash Memory

There are two types of flash available in the current market: NOR and NAND.
NOR flash is designed as the replacement of EEPROM and is mainly used to
store the programs. NAND flash, however is designed as the mass storage devices
and also is the focus of this paper. Moreover, according to the number of bits
stored on each cell, NAND flash can be categorized into single-level cell(SLC)
and multi-level cell(MLC). As a novel storage medium that is totally different
from magnetic disk, flash has many special characteristics.

– No mechanical latency. As an electronic device, flash memory stores data as
charge trapped on a floating gate between the control gate and the channel
of a CMOS transistor, so it has no mechanical components like magnetic
head in disk. Hence, flash memory has no mechanical latency(seeking time
and rotation time) and enjoys efficient random access.

– Two level hierarchical structure. A flash chip contains a set of blocks and a
block(typically 128KB) consists of many pages. Page(typically 512bytes for
SLC and 2KB for MLC) is the basic unit of data access.

– Asymmetric read, write and erase speed. There are three basic data oper-
ations in flash memory: read, write and erase, which present different op-
eration performance correspondingly. Read and write are page-granularity
operations and erase is a block-granularity one. As shown in Table 1, we can
know that read is the fastest operation, write is much more time-consuming
than read and the erase is the most costly among all the three operations.

– Out place update. For magnetic disk, we can overwrite the contents in the
original address physically when we want to update a data item, which we
describe as in-place update. Unfortunately, it is impossible for flash memory.
Flash memory requires erase operation before overwriting, which means you
have to erase the whole block even if you only want to update a small data
item stored in one of its pages. As we have seen, the erase operation is
very costly, frequent in-place updates will degrade the system performance
significantly. Consequently, flash memory choose to invalidate the original

A Novel Method to Extend Flash Memory Lifetime in Flash-Based DBMS 193

Table 1. Performance:Flash Disk

Page Read(2KB) Page Write(2KB) Block Erase(128KB)
Hard Disk 1 14.1ms 14.1ms N/A
Flash Chip 2 25μs 200μs 1.5ms

page and write all the valid data and the updated data to another new
empty one, which we describe as out-place-update.

– Limited write-erase cycles. Only a finite number of erasures are allowed on
flash memory before the bit error rate of the device becomes unacceptably
high. Typically, SLC flash supports 100K erasures per flash block, and the
MLC flash only supports about 10K erasures because of the higher bit den-
sity. Actually the error rate for MLC deveices increases dramatically with
wear, and its non-zero even for brand-new devices[5]. Hence, as SSD tech-
nology moves towards MLC, we can expect the lifetime problem be more
serious.

Obviously, we have to take all of these characteristic in our consideration when
we design the flash-based system.

3 The Methods Used in Traditional Free Space
Management

As we mentioned above, the most commonly used methods for keeping track of
free space are space maps and free lists. Space maps are usually placed at well
known positions of a file that contains summary information about the amount of
free space in a set of pages. Taking the space maps implemented in PostgreSQL
as an example, we can have a better understanding. As of PostgreSQL 8.4 each
relation has its own, extensible free space map stored in a separate ”fork” of
its relation[7]. In order to keep the map small, PostgreSQL only record the free
space at a granularity of 1/256th of a page, that is to say, it is that the stored
value is the free space divided by pagesize/256(rounding down). To assist in fast
searching, just like the upper structure shown in Fig.1, the map isn’t simply an
array of per-page entries, but has a binary tree structure above these underlying
heap pages. To search for a page with X amount of free space, traverse down
the tree along a path where n≥X, until you hit the bottom. If both children of
a node satisfy the condition, you can pick either one arbitrarily.

Compared with space map, the structure of free list is much easier. The free
list manages all the pages containing free space left for future records or created
from deletion by linking them together as a doubly linked list(the lower structure
in Fig.1). When a new record write request comes, we check the free list first to
see if any page with enough free space available. Any page with new free space
1 Hard Disk: Hitach HDP725025GLA380,250G,7200rpm.
2 Flash Chip: Samsung K9XXG08UXA, 4G Nand Flash.

194 Z. Liang, Y. Fan, and X. Meng

Fig. 1. Space Map and Free List

will be linked to the beginning of the free list and any page will not be delinked
until the free space is used up.

Apparently, both space maps and free lists, to some extent, maximize the
storage utilization in disk-based DBMS. However, they are not suitable for flash
memory. The free space in the pages returned by these methods can’t be utilized
because of the out-place update characteristic. We still have to allocate a new
empty page to accommodate the modified and unmodified data and leave the
original page to be erased, hence all the searches done in space map or free list
are in vain.

4 Our Solution

This section presents our proposed solution. An overview is described in Section
4.1. Section 4.2 and Section 4.3 give this solution in details, including the algo-
rithms and data structures used. Finally, Section 4.4 explains a separate module
to eliminate the side-effect created by this novel solution.

4.1 Overview

Taking the characteristics of flash memory into consideration, we propose to
replace all the stuff in the traditional free space management with Append
Only(AO), namely, we allocate new empty pages as soon as a write request
comes and append them to the tail of original files. In this simple and fast way,
we avoid the useless searching for a page with free space. However, AO does
no help with reducing the frequent random and small writes, hence we propose
to allocate a stand-alone write buffer in main memory to collect the writes and
flush them to flash deveice later. Fig.3 shows the architecture of our solution,
in which we read the data records from the DBMS storage into shared memory
and add the updated or inserted records into write buffer temporarily and finally
flush the pages to DBMS storage following the AO pattern.

Discussion. This method seems to be questioned for a limitation: data con-
sistency loss becomes possible concerning the volatility of main memory, but
it is only ”seems”. For the data consistency loss, we must make it clear before

A Novel Method to Extend Flash Memory Lifetime in Flash-Based DBMS 195

Fig. 2. The Overview of Our Method

our further discussion. Our solution for extending the lifetime of flash memory
has nothing to do with anything about logging and we just focus on how to
handle the data records, so the logging just goes on. Consequently, our solu-
tion would lead to more logging data to read when the system crashes but not
consistency loss.

4.2 Free Space Management

As we pointed out in Section 3, the methods or algorithms expecting to use the
free space in the allocated pages do not work on flash memory, only resulting
in complicated data structures and useless search, hence we propose to use the
simplest and fastest algorithm, Append Only(AO, see Algorithm 1).

Input: WriteRequest(Page P, Relation Rel)
Output: NULL
1: ASSERT(Rel exists);
2: find the file F where the Rel is stored;
3: allocate a page NP and append it to the tail of F ;
4: write the contents of P to NP ;
5: return;

Algorithm 1. Append Only Write

About how to store the relations, different tactics are employed in storage
management, such as storing different relations in separate files in PostgreSQL
and mixing all relations in a single series of files in MySQL. However, we don’t
care here, we just append the pages to the corresponding files. To some extent,
we convert the random write into sequential write in this way, while the latter
enjoys high efficiency.

4.3 Write Buffer

Write buffer is a stand-alone area in main memory. Here we use the adjective
”stand-alone”, which indicates that write buffer will not be affected by the nor-
mal buffer replacement strategy such as RAND, FIFO, LRU and CLOCK. The

196 Z. Liang, Y. Fan, and X. Meng

size of this buffer increases dynamically according to the number of relations
opened. When a new relation is opened or created, we allocate a particular
number of pages in write buffer for it and the number of the allocated pages is a
configuration variable, PagesForRelation. However, in case the write buffer grows
beyond the main memory can afford, the number of distinct relations maintained
is limited by another configuration variable, RelationsForBuffer. When this num-
ber would be exceeded, we discard the least recently used relation. Accordingly,
we can easily control the size of write buffer by setting these two variables.

There are two operations handled by write buffer: insert and update. When
a new record is to be inserted to a relation, we add this record into the pages
that belong to the relation directly. When a record is to be updated, we read
the original record into the shared memory firstly, and then we also add the
updated record, including the modified columns and unmodified columns, into
the corresponding pages. Those pages in write buffer will not be flushed out until
they are filled up or a checkpoint occurs. This method enjoys several advantages.
Firstly, write buffer delays the data commit and reduces the number of small
write. Secondly, write buffer only stores and flushes the inserted and updated
records, so it reduces the amount of data to write and the number of write
operation to execute. Thirdly, write buffer reorganizes the records from different
pages into a single page, so the number of random write declines. And lastly,
concerning the data locality, a record just updated maybe need to be modified
again immediately, thus we can quickly update it if this record is still queuing
and waiting for its write operation in write buffer.

Apparently, write buffer and AO disperse all the records to the entire relation
file and might destroy the data distribution. However, as shown in[8], the cluster-
ing by key values is not that beneficial. Since flash memory enjoys outstanding
random read speed, the non-clustering method outperform its clustering coun-
terpart in most cases, thus it is more important to reduce the number of write
operations than to maintain the data distribution.

4.4 Merge Operation

According to the analysis above, our solution reduces the number of write, but it
abuses the storage space in a different way. Using the traditional method, if we
want to update some records, we just copy all the records from the original page
to main memory, modify the target records, flush all these records to underlying
flash device and the FTL will allocate a new page to accommodate these records,
leaving the original page to be erased. In contrast, since our method only flushes
the updated records out, the other valid records are not moved. Fig.4 demon-
strates the difference. When the update occurs, the traditional method allocates
a new page and leaves the updated page to be erased while our method allo-
cates a new page to collect the updated records and leave the updated page
with obsolete records to be still valid. Obviously, this is a nightmare of storage
utilization, especially for the update-intensive applications, hence we design a
periodical merge operation to eliminate this side effect.

A Novel Method to Extend Flash Memory Lifetime in Flash-Based DBMS 197

Fig. 3. Updates in Traditional and Our Methods

In order to merge the pages with ”holes”, we need to keep track of their usage,
so we introduce Obsolete Address Log(OAL). OAL has the same mechanism with
the normal logging except the stuff it logs. When a record is updated or deleted, a
corresponding OAL log is created. The OAL log has a layout like(PageId, Offset,
Length), which describes the accurate location of the record in the original page
and we flush the logs out with the normal ones. In this way we get all the
information about the storage utilization. When a merge operation is incurred,
we scan the OAL and count the obsolete records in every page, if the number is
over the threshold, we start to merge the page(see Algorithm 2). The OAL will
be destroyed for keeping itself slim and reconstructed for storing the remaining
and incoming OAL logs when the merge is done.

Input: MergeRequest(ObsoleteAddressLogFile L)
Output: NULL
1: ASSERT(L exists);
2: scan the records in L and build a hash index for them with the PageId as the

hash key;
3: for each hash key in the index do
4: count the number of records n in its buckets;
5: if (n > the threshold) then
6: load the page P into main memory;
7: for each record in P do
8: if (this record can not be found in the index) then
9: add this record to the write buffer;

10: else
11: delete the record in the index;
12: end if
13: end for
14: delete P;
15: end if
16: end for
17: delete L;
18: create L;
19: write the remaining records in the index to L;
20: free the index;
21: return;

Algorithm 2. Merge Operation

198 Z. Liang, Y. Fan, and X. Meng

5 Evaluation Experiments

This section presents the experiment environment and the results. Section 5.1
describes the simulator we used in experiments and how the experiments were
performed. The results and some analysis are shown in Section 5.2.

5.1 Experiment Setup

We used a flexible simulator[14] for our experiment. This simulator not only
simulates the behaviors of different kinds of flash memory and different kinds of
FTL algorithms, but also provides functions that measure the number of read,
write and erase. The settings in the experiment are as follows: the size of page
is 2KB, the size of block is 128KB and the FTL uses a very simple page-level
mapping theme. For comparison, we implemented the traditional method and
our method in the simulator. Moreover, we collected four kinds of trace files with
varying ratio of read to write(2/8, 4/6, 6/4 and 8/2 respectively) and each of
these trace files includes 1000,000 I/O requests.

The experiment was performed like this: for both the traditional method and
our method, the simulator accessed the four trace files and processed read/wrie
requests archived in them. The performance was measured by counts of read,
write and the overall latency. Since our methods delay the erase operation intrin-
sically and different FTL algorithms employ different garbage collection strate-
gies, we don’t take the count of erase into consideration to avoid the effect caused
by the underlying FTL. In the simulator, the overall latency is calculated by ap-
plying a weight to each operation: weight of 25 for a read operation, 200 for a
write operation and 1500 for an erase operation.

5.2 Performance Results and Analysis

Fig.4 presents the counts of page write. It is seen that our method enjoys a 74.5%
decrease averagely. Since we only collect the updated records to the write buffer
and flush them to the underlying devices following the AO pattern, we reduce
the number of small writes and maximize the storage utilization effectively. Fig.5
shows the counts of page read. We can see that, compared with the traditional
method, ours has to read more pages to satisfy the read requests. Concerning
we disperse the updated records into the pages different from their original ones,
it is sensible. On average, our method increases 53.5% page read. The results
of overall latency are shown in Fig.6. From the figure we can tell our method
enhances the performance by 67.75% on average, which mainly owe to the decline
of write I/O. Although our method increases the number of read operations,
it dose cut down the number of write operations, and it improves the overall
latency consequently. Accordingly, we can conclude that the traditional method
do better in terms of the number of read operations while our method do better
in terms of the number of write operations. As we have analyzed above, the
frequent small write and random write can be poison for the lifetime of flash
memory. Our method reduces the number of small write and random write with

A Novel Method to Extend Flash Memory Lifetime in Flash-Based DBMS 199

Fig. 4. Write Count for Comparison Fig. 5. Read Count for Comparison

Fig. 6. Overall Latency for Comparison Fig. 7. Tendency of Ratio

AO and write buffer, hence it protects the lifetime of flash memory from being
destroyed by the abuse of write.

In addition, Fig.7 summarizes the tendency of read, write and latency ratio of
our method to traditional method across the four trace files. From that, we can
find that our method achieves its best at the trace file with the ratio 6/4, which
implies that our method doesn’t support ”the more writes the better effective-
ness”. The possible reason is that more writes lead to more merge operations,
which lead to more writes in turn. Moreover, when we want to get all the newest
data records from a specific page, we may need an extra read operation even
only one record is updated in the page, so a high ratio of read to write will not
relax this situation significantly, and that is why the counts of read operations
keep high across the four trace files as shown in Fig.7.

6 Related Work

As a novel storage medium that is totally different from magnetic disk, flash
memory is getting more and more research attention in recent years. We can
simply categorize all the excellent research work into several aspects. Some work
focus on the measurements on flash memory. Bouganim et al.[12] proposed uFlip,
a benchmark for measuring the response time of flash IO patterns, to help the
researchers to fully understand the performance characteristic of flash devices.

200 Z. Liang, Y. Fan, and X. Meng

Chen et al.[13]also conducted intensive experiments and measurements on differ-
ent types of SSDs, including the low, middle and high ends. Some work focus on
how to adjust the traditional methods in DBMS to take fully advantage of the
unique characteristics of flash memory. Chen[9]proposed to use the USB flash
drives for synchronous logging performance. Nath et al.[10]proposed FlashDB,
which uses a novel self-tuning index that dynamically adapts its storage struc-
ture to workload and underlying storage device. Tsirogiannis et al.[11] proposed
the PAX layout and corresponding algorithms for scan and join to improve the
query processing on SSD. Some work focus on how to make full use of different
types of flash devices from the point of hierarchy. Yim[6] designed a novel mem-
ory hierarchy including the volatile RAM, non-volatile RAM and SLC/MLC
flash chips to achieve high-speed I/O. Moreover, some nice work on FTL[15],
[18], [16] also contributed good ideas for the research on flash memoty.

7 Conclusions

The contribution we make in this paper are as follows: First, we analyze the free
space management methods in the traditional DBMS and point out they are
useless in flash-based DBMS, cause we can’t update any data on flash memory
in space. Second, we propose to use Append Only(AO) algorithm served as the
free space management method, avoiding the useless searches in the DBMS pages
and random write pattern. Third, in order to reduce the number of small writes,
we propose to use a stand-alone write buffer. Lastly, we conduct a performance
evaluation of our method based on four different trace files. The results demon-
strate our method reduce 74.5% page write and achieve the target of extending
the flash memory lifetime.

References

1. Caulfield, A.M., Grupp, L.M., Swanson, S.: Gordon: Using Flash Memory to Build
Fast, Power-efficient Clusters for Data-intensive Applications. In: Proceedings of
the 14th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pp. 217–228 (2009)

2. Micron: C200 1.8-Inch SATA NAND Flash SSD, http://download.micron.com/
pdf/datasheets/realssd/realssd_c200_1_8.pdf

3. Soundararajan, G., Prabhakaran, V., Balakrishnan, M., Wobber, T.: Extending
SSD Lifetimes with Disk-Based Write Caches. In: Proceeding of 8th USENIX
Conference on File and Storage Technologies (FAST), pp. 101–114 (2010)

4. McAiliffe, M.L., Carey, M.J., Solomon, M.H.: Towards Effective and Efficient Free
Space Management. In: Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data (SIGMOD), pp. 389–400 (1996)

5. Grupp, L.M., Caulfield, A.M., Coburn, J., Swanson, S., Yaakobi, E., Siegel, P.H.,
Wolf, J.K.: Characterizing Flash Memory: Anomalies, Observations, and Applica-
tions. In: Proceeding of the 42st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 24–33 (2009)

6. Yim, K.S.: A Novel Memory Hierarchy for Flash Memory Based Storage Systems.
Journal of Semiconductor Technology and Science 5(4), 262–269 (2005)

http://download.micron.com/pdf/datasheets/realssd/realssd_c200_1_8.pdf
http://download.micron.com/pdf/datasheets/realssd/realssd_c200_1_8.pdf

A Novel Method to Extend Flash Memory Lifetime in Flash-Based DBMS 201

7. PostgreSQL: Source Code Download, http://www.postgresql.org/ftp/source/
v8.4.3/postgresql-8.4.3.tar.bz2

8. Bae, D.-H., Chang, J.-W., Kim, S.-W.: Clustering and Non-clustering Effects
in Flash Memory Databases. In: Proceeding of 20th International Workshop on
Database and Expert Systems Application (DEXA), pp. 4–8 (2009)

9. Chen, S.: FlashLogging: Exploiting Flash Devices for Synchronous Logging Perfor-
mance. In: Proceedings of the 2009 ACM SIGMOD International Conference on
Management of Data (SIGMOD), pp. 73–86 (2009)

10. Nath, S., Kansal, A.: FlashDB: Dynamic Self-tuning Database for NAND Flash.
In: Proceedings of the 6th International Conference on Information Processing in
Sensor Networks (IPSN), pp. 410–419 (2007)

11. Tsirogiannis, D., Harizopoulos, S., Shah, M.A., Wiener, J.L., Graefe, G.: Query
Processing Techniques for Solid State Drives. In: Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data (SIGMOD), pp.
59–72 (2009)

12. Bouganim, L., Jónsson, B.T., Bonnet, P.: uFLIP: Understanding Flash IO Patterns.
In: Fourth Biennial Conference on Innovative Data Systems Research, CIDR (2009)

13. Chen, F., Koufaty, D.A., Zhang, X.: Understanding intrinsic characteristics and
system implications of flash memory based solid state drives. In: Proceedings of the
11th International Joint Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), pp. 181–192 (2009)

14. Jin, P., Su, X., Li, Z., Yue, L.: A flexible simulation environment for flash-aware
algorithms. In: Proceedings of the 18th ACM Conference on Information and
Knowledge Management (CIKM), pp. 2093–2094 (2009)

15. Chung, T.-S., Park, D.-J., Park, S., Lee, D.-H., Lee, S.-W., Song, H.-J.: System
Software for Flash Memory: A Survey. In: Sha, E., Han, S.-K., Xu, C.-Z., Kim, M.-
H., Yang, L.T., Xiao, B. (eds.) EUC 2006. LNCS, vol. 4096, pp. 394–404. Springer,
Heidelberg (2006)

16. Kim, J., Kim, J.M., Noh, S.H., Min, S.L., Cho, Y.: A Space-Efficient Flash
Translation Layer for Compactflash Systems. IEEE Transactions on Comsumer
Electronics 48(2), 366–375 (2002)

17. Kang, J.-U., Jo, H., Kim, J., Lee, J.: A Superblock-based Flash Translation Layer
for NAND Flash Memory. In: Proceedings of the 6th ACM & IEEE International
Conference on Embedded Software (EMSOFT), pp. 161–170 (2006)

18. Lee, S.-W., Park, D.-J., Chung, T.-S., Lee, D.-H., Park, S., Song, H.-J.: A Log
Buffer-based Flash Translation Layer Using Fully Associative Sector Translation.
IEEE Transactions on Embedded COmputing Systems 6(3) (2007)

http://www.postgresql.org/ftp/source/v8.4.3/postgresql-8.4.3.tar.bz2
http://www.postgresql.org/ftp/source/v8.4.3/postgresql-8.4.3.tar.bz2

Log-Compact R-Tree: An Efficient
Spatial Index for SSD

Yanfei Lv, Jing Li, Bin Cui, and Xuexuan Chen

School of Electronics Engineering and Computer Science, Peking University
Key Lab of High Confidence Software Technologies (Ministry of Education),

Peking University
{lvyf,leaking,bin.cui,xuexuan}@pku.edu.cn

Abstract. R-Tree structure is widely adopted as a general spatial index
with the assumption that the deployed system is equipped with magnetic
hard disk. While the application of SSD becomes more and more pop-
ular, traditional optimization of R-Tree structure on SSD is much less
desirable than that on magnetic hard disk. Existing flash-aware index
approaches employ log mechanism to reduce random writes at a cost of
large amount of read. A novel index named Log Compact R-Tree (LCR-
tree) is proposed in this paper. Distinguished from previous attempts,
compacted log is introduced to combine newly arrival log with origin ones
on the same node, which renders great decrement of random writes with
at most one additional read for each node access. Extensive experiments
illustrate that the proposed LCR-Tree can achieve up to 3 times benefit
against existing approaches.

1 Introduction

Flash memory devices are widely spread in various applications from small em-
bedded device to large data center as an ideal alternative for hard disk. The
ubiquitous use of flash memory benefits from its outstanding characteristics:
high I/O performance, low power consumption and high reliability. Flash mem-
ory based disk, i.e., Solid State Drive SSD, has been applied widely as a sub-
stitute of hard disk. SSD has asymmetric I/O performance: the read speed is
usually much faster than write, especially random write. On the other hand,
the unique characteristics of flash memory based devices also make approaches
designed for hard disk no longer work well for flash memory. Thus, flash-based
algorithms and data structures have become a hot research field in recent years.
As a key component of database system, lots of flash-specific index structures
are introduced.

R-Tree [4] is a general index structure for multi-dimensional data and has
been integrated into many DBMSes such as PostgreSQL [18], MySQL [13]. An
example of R-Tree is given in Figure 1. The updates on tree-based indexes are
often small and scattered over the whole tree structure. Those small sized random
writes severely deteriorate the overall index performance on flash memory. A lot
of methods on B-Tree were proposed to overcome this obstacle [19,1,12]. As a

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 202–213, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Log-Compact R-Tree: An Efficient Spatial Index for SSD 203

A F

 B G

 C

D

 E

P1

P2

P3

P4

P5
P6

I1

I 2

(a)

P1 P2 P3 P 4 P 5 P6

I1

A

B C

F GED

(b)

Fig. 1. An example of R-Tree structure

variant of B-Tree structure, such problem also exists in R-Tree. Nevertheless,
From the I/O aspect, R-tree has its unique features compared with B-Tree,
which render those optimizations unsuitable for the R-Tree.

– Overlapped read. There generally exist overlaps between the Minimum
Bounding Rectangle (MBR) of nodes on the same level. Consequently, search-
ing a node in R-Tree may have to access multiple nodes on the same level,
so the number of page read is likely to exceed the height of R-Tree, where
lies the first significant difference between B-Tree and R-Tree.

– MBR Cascaded update. The update of leaf node may lead to update MBR
of the nodes from the root to this leaf, as the boundary of the parent node
may be enlarged by the insertion. Thus, the update to the higher level node
is much more frequent than that in B-Tree.

Majority of existing works compact the random updates into sequential “log
write” which forms one log chain for each node. The original data will not be
overwritten until the length of log exceeds a certain threshold. The major dis-
advantage of log chain methods is that the number of read operations sharply
increases with the length of log chain. Nowadays, the improvement of both flash
chip and design technology decreases the gap between read and write perfor-
mance of SSD [2]. Consequently, the read also takes a crucial part in the overall
performance especially in R-Tree design. How to diminish random write opera-
tion with small influence on the read performance is the key problem for R-Tree
design on the SSD.

To the best of our knowledge, RFTL proposed by Wu [20] is the only work
on flash-aware R-tree design, which is transferred from a similar method on
B-Tree. It combines the small random updates and stores them as sequential log.
Each node maintains a log list, to facilitate log searching. However, the higher a
node is, the longer the log chain is, because update frequency of higher level is
relatively high in R-Tree. In addition, higher level nodes are read intensive, so
this strategy incurs too much reads. LA-Tree (Lazy-Adaptive) [1], the state-of-
the-art approach on B-tree, adopts layered buffer to batch updates and defers
overwriting leaf nodes. Considering that access to a lower level node must be
preceded by loading buffers of higher level nodes, huge numbers of the updates

204 Y. Lv et al.

in the higher level buffer may be irrelevant to the leaf node we required. Those
extra read operations significantly burden the I/O task of LA-Tree.

In this paper, we propose a novel tree index structure named LCR-Tree (Log
Compacted R-Tree). In the LCR-Tree, a new log to a node is compacted with
its former ones, and the logs for different nodes are compacted into one page if
possible. By doing this, it effectively decreases the number of random write oper-
ations without huge increment of reads, and thus strikes a balance between read
and write performance. The designed LCR-Tree has the following key features.
1) Random writes are compacted into sequential writes. 2) The read operations
are at most twice as much as the original R-Tree. 3) The method is easy to
implement and only requests a little modification on the existing R-Tree.

The rest of this paper is organized as follows: Section 2 introduces background
knowledge about flash memory and related work. In Section 3, a new index LCR-
Tree is presented in detail. Experimental results are reported in Section 4, and
finally we conclude the paper in Section 5.

2 Preliminaries

2.1 Introduction to SSD

There are various kinds of SSDs, and are with significant performance difference
among them. We list some of the I/O bandwidths in Table 1 including sequen-
tial read, random read, sequential write and random write. The bandwidth of
ADATA is tested on a PC with the environment introduced in the experiment
part, while other data are referenced from paper [11].

Table 1. Bandwidths of SSDs with 2KB access unit (MB/sec)

Device Seq Read Rnd Read Seq Write Rnd Write
ADATA 14 8.8 13 0.1
Samsung 8.2 6.5 6 0.1
Mtron 20 17 23 0.3
Intel 36 14 26 2.5

As shown in the table, although the bandwidths vary among different SSDs,
they have stable trend with access patterns for a certain SSD. 1) The sequen-
tial read has the similar speed with sequential write. Furthermore, random read
speed is comparable with sequential access. 2) Random write is one or two mag-
nitude slower than other patterns. Though, in practice, the real workload is often
semi-random, the performance gap still remains several times. Therefore, the key
problem for index structure design in flash-based devices is to prevent random
write at the expense of not many extra read operations.

Log-Compact R-Tree: An Efficient Spatial Index for SSD 205

2.2 Related Work

Flash based database system has become a fruitful research field [7,9,3]. In-page
logging [8] and page-differential logging [6] are two general page deployment
strategies to deal with the random update in database system. In-page logging
stores the data and its log together in a page, but unfortunately it is difficult
for the current SSD to deal with such small-grained update. Page-differential
logging adopts the byte difference between the up to date and original data as
the log. However, there are some troubles when it is adopted in index, e.g., data
deletion in a node may cause a large difference.

A lot of works have been done on flash-aware index design [22,21,10]. μ-Tree [5]
is a novel index structure for one-dimensional data. It integrates the nodes from
the root to leaf into one page to facilitate update. However, it has low scalability
for large amount of data as the node size is too small. Most of the tree structures
adopt the logging technology. There are two types of logging methods: direct log
which associates the log direct with its original data, and layered log which stores
the log to a sub-tree into the root of that sub-tree. Typical direct logging methods
are BFTL [19] and RFTL [20], which integrate small updates on different nodes
together as sequential write and maintain a log address list for each node in the
main memory. The read pressure of these methods is very high. In-page logging
strategy has been applied in B-Tree structure optimization [15] and [14], and they
also have the problem of in-page logging which was discussed previously. FD-Tree
[12] and LA-Tree [1] are two flash-based indexes using Layered log. The log stored
in a node contains all the updates to the sub-tree with the root of that node. The
updates will be flushed to child nodes layer by layer. However, in case of reading
one node, some updates to the sub-tree must also be accessed. If it was applied
on the R-Tree, the extra read operations will further deteriorate the overall per-
formance. Flash DB [16] reduces the overhead of reading a log chain by dynami-
cally switch between Log-Mode and Disk-Mode. This is a combination of the log
method in essence and does not fundamentally solve the problem of log chain.

3 The LCR-Tree

3.1 Overview of LCR-Tree

In this section, we introduce the proposed novel index named Log-Compact R-
Tree (LCR-tree). The key idea underlying is that all previous logs on one node
are merged together to the same page named compact log, which ensures at most
only one additional read on the page when accessed. In addition, the compact
logs for different nodes are merged into one page if possible, which remarkably
decreases the write operations.

In order to simplify the log management and accelerate the log writing, we
organize all the logs into a separate section, a sequentially written area on SSD.
Thus, the overall LCR-Tree contains two components, named Tree part and Log
part respectively. The overview of LCR-Tree is given in Figure 2(b) with R-tree
implementation in Figure 2(a) for comparison.

206 Y. Lv et al.

 R-Tree

WRITE

INSERT, DELETE, SEARCH

ALGORITHM

READ

QUERY

(a) Overall structure of R-Tree

 R-Tree

Compact

Log

INSERT, DELETE, SEARCH

ALGORITHM

Write update as

Compact Log

Flush to R-Tree

when full

QUERY

(b) Overall structure of LCR-Tree

Fig. 2. The LCR-Tree structure compared with R-Tree

It can be observed that the Tree part is an ordinary R-Tree, which stores the
original data of R-Tree. The Log part is employed to store the update on original
R-tree, aiming to reduce the random write operation on the structure. The log
area sequentially records the difference between the current R-tree with its origin
version after each modification. The logs would be merged back to the original
tree when full. In order to facilitate the log finding, we also maintain a mapping
table in the main memory. Once a new update on a node arrives, we also read
the previous log on this node out and merge them together named compact log.
While adding newly compact log, LCR-Tree will try to integrate this log with
previous compact logs on other nodes into one page so that writes on the Log
section are processed in the page unit. The data structure of the Compact Log
are carefully designed, and hence is enabled to store significant modification logs
in a given area, which ultimately decreases the write operations, especially the
random write operations.

Note that, the modifications are stored in Compact Log rather than the origin
R-Tree, we need to check both Compact Log and origin R-Tree to get the up-
to-date R-Tree nodes when dealing with read operations on R-tree. LCR-Tree
does not modify the R-Tree search algorithm except the access to log and can
ensure the final tree is as same as what is supposed to be. The compact log
design ensures that we can easily get the up-to-date R-Tree with at most one
additional read on the Log part for each node.

Another benefit of the separate Log part design is that it can decrease the
coupling between two components as low as possible and guarantee the maximum
reuse of the R-Tree code. Hence, our design has good flexibility and robustness. In
fact, LCR-Tree only modifies the write and read interface of search algorithm,
which renders it easy to implement and can be applied to other variants of

Log-Compact R-Tree: An Efficient Spatial Index for SSD 207

Algorithm 1. ReadNode subroutine
Input: the node address to read denoted as D
Output: the node is returned
Nodeorigin = read original node from R-Tree ;1

Logm = find the related log in main memory;2

Entry = search the log address in the mapping table using D;3

if Entry is not NULL then4

Logf = load the related log on SSD;5

end6

Nodereturn = Apply Logm and Logf to Nodeorigin;7

return Nodereturn;8

R-Tree such as R+-Tree and R∗-Tree conveniently without much modification
to the original source code.

3.2 Design Details of LCR-Tree

In this part we introduce the design details of LCR-Tree. We first present the
data structures of implementation, followed by the key algorithms. The compact
log for one page is a list of cells, each of which stores one update. There are three
types of cells: insert, update and delete, the first two bits of the cell indicate the
type. Following the type is the branch ID to process and the new value. This
structure ensures the maximum log length of one node is limited to one page.
To accelerate the log searching, a mapping table between original node address
and its log address is maintained in main memory. Each entry of the map also
stores the length of log list.

The process of reading a node should also be adjusted to adapt LCR-Tree
data structure. The revised ReadNode function has been listed in the Algorithm
1. Note that the node in R-Tree is probably NULL (line 1), this corresponds to
the case that a node is newly inserted and not merged into R-Tree yet which is
explained in the insert procedure. In this case, the node can be obtained using
logs only. We can observe that the read operation is at most twice as the original
R-Tree. The searching process in LCR-Tree is straightforward with the help of
this ReadNode routine and thus omitted here.

The key technique of LCR-Tree is the insert strategy which is illustrated in
Algorithm 2. With the help of ReadNode procedure, we can locate the node
to insert into and finish the original R-Tree insertion process. The difference is
that we record all the nodes updated and the newly generated nodes, if some
nodes are split, during the insert operation (line 2). For the updated nodes, we
combine the log with their previous ones and record the compacted log together
(lines 3-7). For the new nodes, the trick here is to write the nodes as logs into
the Log section directly (lines 8-11). This is correct because the parent node
has been updated and the log can be obtained in the mapping table between
R-Tree Node and log. In case that the log is full, the log will be merged with
the original R-Tree (lines 12-14), which reclaims the Log part. In the worst case,
the number of writes is the same as the original R-Tree. However, in practice the

208 Y. Lv et al.

Algorithm 2. LCR-Tree Insert
Input: objects in the same node to insert
Output: objects are inserted into LCR-Tree
find the node to insert using the new ReadNode subroutine;1

/* Invoke original R-Tree insert and record the nodes updated

and generated */

< NodeSetu, NodeSetg > = original R-Tree insert algorithm;2

foreach Node in NodeSetu do3

merge the new log with previous one;4

write back to the compact log;5

update mapping table in memory;6

end7

foreach Node in NodeSetg do8

write Node as compact log;9

generate a entry in mapping;10

end11

if the Log part is full then12

mergeLog() ; /* Merge Log part with R-Tree */13

end14

A C A A A C C C

D D E E F F F G

H H H H H

... ...
C
G
E

Log Part

Node Index

(a) Log part before insertion

A C A A A C C C

D D E E F F F G

H H H H H

E1 E2 E3 E4

... ...
C
G
E

Log Part

Node Index

Move logs
to ensure

Page Align

(b) Log part after insertion

Fig. 3. An update example in LCR-Tree

logs of different nodes can be integrated into a page and written back as a batch.
Modifications on the same node only result in one write operation when flushed.
In addition, most of the writes in LCR-Tree are sequential writes. Consequently,
the performance of LCR-Tree is expected to be largely improved.

An example of compact log write for insertion is illustrated in Figure 3. Re-
minding the graph and original R-Tree in Figure 1, an entry named I1 is supposed
to be inserted into node E. The Log part before insertion is shown in Figure 3(a).
Each line in the table represents a page in Log Part while each cell denotes one
update for a certain node. Slashed cell means expired log and blank one stands
for free page. The node index resides in main memory to help log searching. The
Log Part after insertion is given in Figure 3(b). Newly arrival log E3 and E4 is
the update for node E. First they are merged with E1 and E2. The compacted
log is written to a new free page with the node index updated.

Log-Compact R-Tree: An Efficient Spatial Index for SSD 209

When the system crashes because of power failure or run-time error, the map-
ping table in main memory will vaporize. The crash recovery is not considered
in the current version of LCR-Tree. However, it is easy to extend the strategy to
support crash recovery. We can record the page address with its corresponding
log, then after the system reboot, we can reconstruct the R-tree by scanning the
original R-tree and inversely scanning the log part.

4 Experimental Results

We compare our LCR-Tree with standard R-Tree and RFTL [20] in this section
to show the superiority of the proposed index. The program is developed in
Visual Studio 2008 environment using C++. All experiments are performed on a
Windows 7 PC with 2.0 GHz Intel Core CPU and 1 GB of physical memory. The
SSD we used is an ADATA SSD with 30GB capacity which has been introduced
in the second section. We first conduct the experiment on synthetic data sets
and then on real geographic data. Table 2 gives the parameters used in our
experiments. The LogRatio means the percentage of log size to tree size. Unless
stated explicitly, the default parameter values, given in bold, are used.

Table 2. Experimental parameters

Parameter Value
Node Size 1KB, 2KB, 4KB, 8KB

Total Entry Number 10K, 20K, 50K, 100K, 200K
Log Ratio 1% 2%, 4%, 8%, 10%, 20%,50%, 100%

Insert Ratio 0%, 20%, 40%, 60%, 80%, 100%

4.1 Experiments on Synthetic Data Sets

In this part, we generate a set of two-dimensional points uniformly distributed in
the 10000*10000 area and insert them into spatial index. Then different queries
are performed on the indexes to validate the performance of indexes. The exe-
cution time is used as the criterion for all the experiments.

First we tune the log size and node size of LCR-Tree. The result is given in
Figure 4. We observe the index constructing process with 100K entries. The size
of log part ranges from 1% to 100% of the tree part size. The execution time of
constructing R-Tree is illustrated in Figure 4(a). The time first decreases and
then slightly increases with the enlargement of log size. When the log size is small,
more merges between log and original data are performed. Thus, the number of
update operations grow and performance degrades. In addition, a larger log size
causes more read operation and the performance also deteriorates. The optimal
log size is around 20% and taken as the default value.

We also test the run time against various node size, the results are given in
Figure 4(b). The best node size is around 4KB, and the performance degrades
for node size either larger or smaller than 4KB. This is reasonable as SSD has no

210 Y. Lv et al.

Log size/Tree size ratio

1% 2% 4% 8% 10% 20% 50% 100%

T
im

e(
s)

260

280

300

320

340

360

(a) Performance with log size ratio

Node size(KB)

1 2 4 8 16 32

T
im

e(
s)

200

250

300

350

400

450

(b) Run time against node size

Fig. 4. Parameters tuning

Numbers of insert

10K 20K 50K 100K 200K

T
im

e(
s)

0

200

400

600

800

1000

1200

1400

LCR-Tree
RFTL
R-Tree

(a) Run time against number of insertion

The ratio of modification(%)

0 20 40 60 80 100

T
im

e(
s)

0

10

20

30

40

50

60

70

LCR-Tree
RFTL
R-Tree

(b) Run time against insertion ratio

Fig. 5. Evaluation of LCR-Tree on synthetic data sets

advantage at reading small-sized block while large node incurs more cost when
accessing and updating one node. In the other experiments, unless explicitly
denoted, we use 4KB as the default node size.

In this experiment, we evaluate the performance of LCR-Tree by comparing
with RFTL and traditional R-Tree. The log size is fixed to 100 tree nodes size
both for LCR-Tree and RFTL, and we vary the number of entries to be in-
serted into the index. The results are given in Figure 5 (a). With the increment
of entries to be inserted, execution time of all the indexes grows quickly. Our
strategy reduces the execution time by 58% and 46% on average compared with
traditional R-tree and RFTL respectively.

We also generate a workload mixed with insert and search operations which
is performed on an index with 100K entries and record the execution time.
The number of total requests is 10K and insert ratio varies from 0% to 100%.
The results are shown in Figure 5 (b). The execution time of R-Tree rises almost
linearly with the increment of insert ratio, while LCR-Tree has no obvious change
after 40% insert ratio. RFTL has the worst performance when insert ratio is 40%.
The reason is that reading a node is likely to access more paths through the tree

Log-Compact R-Tree: An Efficient Spatial Index for SSD 211

due to the overlapped read characteristic of R-Tree, while most insertions only
need to go through one path. However, reading in RFTL is the costliest among
three indexes, so RFTL exhibits worst performance. When the insert ratio is low,
RFTL has shorter log chain and lower read cost and thus the overall performance
is better. Furthermore, when insert ratio is high, although the log chain is longer,
RFTL has small amount of read operations. Consequently, it takes less execution
time than the case with 40% insert ratio, and performs better than R-tree.

4.2 Experiments on Real Spatial Data Sets

Real data sets are used to evaluate LCR-Tree which is downloaded from R-Tree
Portal web site [17]. The descriptions of these data sets are listed in Table 3.

We perform the tree construction process and record the execution time on
each data set. The environment remains the same as described above. Figure 6
gives the results. As shown in the figure, the execution time of our algorithm

Table 3. Description of real spatial data sets

Name MBR Number Description
CAS 98,451 the streams of California
LAS 131,461 LA streets

LARR 128,971 LA rivers and railways

CAS LAS LARR

T
im

e(
s)

0

200

400

600

800

1000

LCR-Tree
RTFL
R-Tree

(a) Run time comparison

CAS LAS LARR

N
um

be
r

of
 r

ea
d

(1
0

5
)

0

2

4

6

8

10

12

14

16

18
LCR-Tree
RFTL
R-Tree

(b) Read count comparison

CAS LAS LARR

N
um

be
r

of
 w

rit
e

(1
0

4
)

0

10

20

30

40

LCR-Tree
RFTL
R-Tree

(c) Write count comparison

Fig. 6. Evaluation of LCR-Tree on real spatial data sets

212 Y. Lv et al.

is only 50% of R-Tree 65% of RFTL on average, which illustrates the proposed
LCR-Tree is efficient for real data sets. The detailed read and write counts are
given in Figure 6(b) and (c). Both RFTL and LCR-Tree exhibit less writes
but more reads compared with R-Tree, so both of them are trade-offs of I/O
operations. RFTL always has the least number of writes, however, at the cost of
huge increment of reads, which counteracts the effect of decrement of writes and
hence accounts for its poor improvement over R-Tree as shown in experiments.
The proposed LCR-Tree achieves an effective balance between I/O performance
with respect to the characteristics of flash-based devices.

5 Conclusion and Future Work

The ubiquitous use of flash devices poses great challenge to traditional index
structures. In this paper, we have presented a novel flash-aware variant of R-Tree,
named LCR-Tree. The LCR-tree deploys the compact log mechanism to improve
the write performance significantly with only a little increment of read overhead.
The LCR-Tree has good feasibility and is easy to implement. The experimental
study on both synthetic and real data sets shows that the LCR-Tree can achieve
up to 3× gains over the R-Tree and existing flash-based index RFTL.

In ongoing work, we plan to enhance our LCR-Tree to make full use of the
various I/O cost of different brand of SSDs. It is also necessary to adjust the
log merging time automatically according to the evolution of the work load.
Furthermore, it is interesting to combine the adjacent pages as an I/O batch to
further improve the overall performance of LCR-Tree.

Acknowledgement

This research was supported by the grants of Natural Science Foundation of
China (No. 60873063) and MIIT grant 2010ZX01042-001-001-04.

References

1. Agrawal, D., Ganesan, D., Sitaraman, R.K., Diao, Y., Singh, S.: Lazy-Adaptive
Tree. An optimized index structure for flash devices. PVLDB 2(1), 361–372 (2009)

2. Bouganim, L., Jónsson, B.T., Bonnet, P.: uFLIP: Understanding flash io patterns.
In: CIDR (2009)

3. Chen, F., Koufaty, D.A., Zhang, X.: Understanding intrinsic characteristics and
system implications of flash memory based solid state drives. In: SIGMET-
RICS/Performance, pp. 181–192 (2009)

4. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In:
SIGMOD Conference, pp. 47–57 (1984)

5. Kang, D., Jung, D., Kang, J.U., Kim, J.S.: mu-tree: an ordered index structure for
nand flash memory. In: EMSOFT, pp. 144–153 (2007)

6. Kim, Y.R., Whang, K.Y., Song, I.Y.: Page-differential logging: an efficient and
dbms-independent approach for storing data into flash memory. In: SIGMOD
Conference, pp. 363–374 (2010)

Log-Compact R-Tree: An Efficient Spatial Index for SSD 213

7. Koltsidas, I., Viglas, S.: Flashing up the storage layer. PVLDB 1(1), 514–525 (2008)
8. Lee, S.W., Moon, B.: Design of flash-based DBMS: an in-page logging approach.

In: SIGMOD Conference, pp. 55–66 (2007)
9. Lee, S.W., Moon, B., Park, C., Kim, J.M., Kim, S.W.: A case for flash memory

ssd in enterprise database applications. In: SIGMOD Conference, pp. 1075–1086
(2008)

10. Li, X., Zhou, D., Meng, X.: A new dynamic hash index for flash-based storage. In:
WAIM, pp. 93–98 (2008)

11. Li, Y., He, B., Yang, J., Luo, Q., Yi, K.: Tree indexing on solid state drives.
PVLDB 3(1), 1195–1206 (2010)

12. Li, Y., He, B., Luo, Q., Yi, K.: Tree indexing on flash disks. In: ICDE, pp. 1303–
1306 (2009)

13. MySQL: Creating Spatial Indexes, http://dev.mysql.com/doc/refman/5.0/en/
creating-spatial-indexes.html

14. Na, G.J., Lee, S.W., Moon, B.: Dynamic in-page logging for flash-aware b-tree
index. In: CIKM, pp. 1485–1488 (2009)

15. Na, G.J., Moon, B., Lee, S.W.: In-page logging B-tree for flash memory. In: Zhou,
X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS, vol. 5463, pp.
755–758. Springer, Heidelberg (2009)

16. Nath, S., Kansal, A.: FlashDB: dynamic self-tuning database for nand flash. In:
IPSN, pp. 410–419 (2007)

17. Portal, R.T.: Spatial (geographical) Datasets, http://www.rtreeportal.org
18. PostgreSQL: PostgreSQL Index, http://www.postgresql.org/docs/8.1/static/

indexes-types.html

19. Wu, C.-H., Chang, L.-P., Kuo, T.-W.: An efficient B-tree layer for flash-memory
storage systems. In: Chen, J., Hong, S. (eds.) RTCSA 2003. LNCS, vol. 2968, pp.
409–430. Springer, Heidelberg (2004)

20. Wu, C.H., Chang, L.P., Kuo, T.W.: An efficient r-tree implementation over flash-
memory storage systems. In: GIS, pp. 17–24 (2003)

21. Yin, S., Pucheral, P., Meng, X.: Pbfilter: indexing flash-resident data through
partitioned summaries. In: CIKM, pp. 1333–1334 (2008)

22. Zeinalipour-Yazti, D., Lin, S., Kalogeraki, V., Gunopulos, D., Najjar, W.A.: Micro-
Hash: An efficient index structure for flash-based sensor devices. In: FAST (2005)

http://dev.mysql.com/doc/refman/5.0/en/creating-spatial-indexes.html
http://dev.mysql.com/doc/refman/5.0/en/creating-spatial-indexes.html
http://www.rtreeportal.org
http://www.postgresql.org/docs/8.1/static/indexes-types.html
http://www.postgresql.org/docs/8.1/static/indexes-types.html

An FTL-Agnostic Layer to Improve Random
Write on Flash Memory

Brice Chardin1,2, Olivier Pasteur1, and Jean-Marc Petit2

1 EDF R&D, France
2 Université de Lyon, CNRS,

INSA-Lyon, LIRIS, UMR5205, F-69621, France

Abstract. Flash memories are considered a competitive alternative to
rotating disks as non-volatile data storage for database management sys-
tems. However, even if the Flash Translation Layer – or FTL – allows
both technologies to share the same block interface, they have different
preferred access patterns. Database management systems could poten-
tially benefit from flash memories as they provide fast random access
for read operations although random writes are generally not as efficient
as sequential writes. In this paper, we propose a simple data placement
algorithm designed for flash memories, to reorganize inefficient random
writes in a quasi-sequential access pattern. This access pattern is first es-
tablished encouraging for a subset of flash devices by identifying a strong
correlation between spatial locality and write performances, with a dis-
tance being defined to quantify this effect. This design is then validated
by a formalization with a mathematical model, along with experimental
results. With this optimization, random write potentially become as ef-
ficient as sequential write, improving random write speed by up to two
orders of magnitude.

1 Introduction

For the sake of interchangeability, many flash memories include a Flash Transla-
tion Layer – abbreviated as FTL – to comply with the block interface, a rotating
disk legacy. In addition to providing block write and read operations, the FTL
manages flash chips complex writing mechanism. However, this layer is imple-
mented with proprietary and undocumented software, which makes flash devices
appear as “black boxes” from a system’s point of view [3].

Advantageously, this FTL allows a straightforward substitution between both
storage technologies. Yet, most database management systems include rotating
disks-oriented optimizations, which are not relevant for flash memories. Even
if both technologies use the same block interface, they have different preferred
access patterns. Database management systems could potentially benefit from
flash memories as they provide fast random access for read operations. Still, for
FTL-based devices, random writes are generally not as efficient as sequential
writes [5] and most optimization techniques for flash memories relate to this
specific issue.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 214–225, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An FTL-Agnostic Layer to Improve Random Write on Flash Memory 215

In this paper, we identify a strong correlation between write performances
and spatial locality for a subset of FTL-based devices; and define a distance to
quantify this effect. From this property, we propose a simple data placement
algorithm, which trades flash memory space for random write performances. Its
efficiency is validated by a formalization with a mathematical model, along with
experimental results. With this optimization, random write potentially become
as efficient as sequential write, improving random write speed by up to two
orders of magnitude.

The rest of this paper is organized as follow. Section 2 introduces NAND flash
memories and different types of mapping used in the FTL. Section 3 emphasizes
the importance of locality on these devices for write performances and defines
a distance between consecutive writes to quantify this effect. In section 4, we
derive from this property an optimization technique for random writes, using
an indirection layer to minimize this distance, thus avoiding scattered writes.
In section 5, we present an approximate model for this algorithm. The results
of both our experiments and model are reported in section 6. Related works
are described in section 7. Then, section 8 summarizes the contributions of this
paper.

2 NAND Flash Memories

NAND flash memory is a non-volatile storage technology, which allows three low-
level data-access operations: read, write (or program) and erase. Still, erasing is
performed at a different granularity than reading or writing: NAND flash chips
are divided into blocks that can be erased independently, each block containing
a fixed number of pages, each of which being individually accessible for reading
or writing. As overwrites are not allowed, a full block must be erased prior to
writing on one of its already used page. Additionally, pages within a block must
be written sequentially.

To handle this complex writing mechanism, most flash memories include a
Flash Translation Layer (FTL) that redirects writes on available (erased) pages
and stores the associations between the logical sector identifier and its physical
location in an address translation table.

In most cases, this translation operates on a page-level basis or on a block-level
basis [6]. With a page mapping FTL, each logical page has its associated physical
page. After an overwrite, the translation table is updated with the new physical
location and the old physical location is marked as obsolete to be reclaimed by
a garbage collection mechanism. With a block mapping FTL, each logical block
has its associated physical block and an additional logging area, which consists
of log blocks. When a page is overwritten, new data are appended to the last log
block. Garbage collection merges a data block with all its associated log blocks
by copying every valid page on a new (erased) data block and updating the
translation table.

Each mapping granularity has its own drawbacks. Page mapping has a higher
memory overhead because of its larger address translation table, while block

216 B. Chardin, O. Pasteur, and J.-M. Petit

mapping performances are highly dependent on empty blocks availability, to
serve as log blocks.

3 Write Spatial Locality for FTL-Based Devices

As FTL enclosed in flash devices are usually proprietary and undocumented,
studies have been conducted to identify preferred write access patterns for such
devices. In [2], Birrell et al. identify a strong correlation between the average
latency of a write operation and the gap between writes, as long as this gap is
less than the size of two flash blocks. They conclude that write performance varies
with the likelihood that multiple writes will fall into the same flash block, which
is a manifestation of an underlying block or hybrid-mapping FTL. As a result, a
fine-grained mapping is mandatory for high performance flash memories, but we
believe that such a mapping can be efficiently provided by an additional layer,
distinct from the FTL. Indeed, Wang et al. study in [12] the effectiveness of log-
structured file systems for flash-based DBMS, since these file systems tend to
write large data blocs in sequence. Their experiments validate potential benefits
as they achieve up to x6.6 performance improvement.

uFLIP [3] is a component benchmark designed to quantify the behavior of
flash-memories when confronted to defined I/O patterns. Some of these pat-
terns relate to locality and increments between consecutive writes. Their results
confirm that localizing random writes greatly improve efficiency and large incre-
ments lead to performances which could be even worse than random writes.

We propose a similar approach to quantify the effect of spatial locality on FTL-
based devices, by introducing a notion of distance between consecutive writes. In
our experiments, the average write duration for each distance d is evaluated by
skipping |d|−1 sectors between consecutive writes. This metric can be negative to
discriminate between increasing and decreasing address values. From the results
of previous works, we conjecture a usual behavior where, up to a distance dmax,
the average cost of a write operation cost(d) is approximately proportional to d.

To validate this assumption, we measured the effect of distance on a variety
of flash devices. Although individual write durations are erratic, their average
value converge when this access pattern is sustained. Figure 1 shows that our
assumption is verified for a flash-based SSD1 and a USB flash drive2.

Scattered writes (ie. d ≥ dmax) are typically 20 to 100 times slower than se-
quential writes for flash memories with a block-mapping FTL[3]. Consequently,
and because of this proportional performance pattern, reducing the average dis-
tance between consecutive writes can significantly improve efficiency, even if
strict sequential access (d=1) is not achieved. The optimization described in
the following section focuses on this access pattern, skipping as little sectors as
possible.

1 SSD Mtron MSD SATA3035-032, sector size 4 KiB.
2 Flash chip HYNIX HY27UG088G5B with an ALCOR AU6983HL controller, sector

size 4 KiB.

An FTL-Agnostic Layer to Improve Random Write on Flash Memory 217

0

1

2

3

4

5

6

7

8

−400 −300 −200 −100 0 100 200 300 400

av
er
ag
e
du
ra
tio
n
of
w
rit
e
op
er
at
io
ns
(in
m
s)

distance between consecutive writes (in sectors)

0

5

10

15

20

25

30

−60 −40 −20 0 20 40 60

av
er
ag
e
du
ra
tio
n
of
w
rit
e
op
er
at
io
ns
(in
m
s)

distance between consecutive writes (in sectors)

a) SSD b) USB flash drive

Fig. 1. Influence of distance on write duration

4 Gathering Random Writes

Online transaction processing usually have a part of its workload constituted of
small random writes. The optimization described in this section converts these
random writes into sequential writes, while skipping sectors containing valid
data, as this access pattern should increase performances on flash memories.
With this optimization, sectors containing valid data (used sectors) and free
(unused) sectors are mixed on the device. An additional indirection layer is used
to redirect logical writes to unused sectors by minimizing the distance between
consecutive writes.

To allow data retrieval, correspondences between physical and logical loca-
tions are stored in an address translation table, with every logical sector being
associated with a physical sector. Unused physical sectors – not associated with
any logical sectors in the address translation table – do not contain any useful
data, and therefore constitute a pool of free sectors available for writing.

To overwrite a logical sector, data are assigned to a pool sector adjacent to
the previous write. Then the logical-physical association stored in the address
translation table is updated, the previously associated sector therefore being
freed and added to the pool. Figure 2 illustrates how logical writes are assigned
to physical locations, when writing successively on logical sectors 0, 3 and 0.

This optimization does not require garbage collection, as the size of the pool
remains constant: physical sectors containing obsolete data are immediately
added to the pool, and can be overwritten. Yet, as an independent and internal
mechanism, the FTL might still use garbage collection to handle flash erasures.

Any logical access pattern, whether sequential or random, will lead to a quasi-
sequential physical access pattern. Consequently, the average distance (and thus
write efficiency) is determined exclusively by the proportion of pool sectors. As
increasing pool size requires additional non-volatile memory space, this charac-
teristic can be adjusted to obtain an expected efficiency. As a downside, sequen-
tial reads are also transformed into random reads. However, this behavior is not
an issue for flash devices, as random reads are as efficient as sequential reads [3].

218 B. Chardin, O. Pasteur, and J.-M. Petit

0 1 2 3 4

1 20 43

0 1 2 3 4

1 2 0 43

0 1 2 3 4

1 2 0 4 3

0 1 2 3 4

1 20 4 3

n

n

logical sector n

logical-physical association

next write in sequence

free physical sector

physical sector containing
logical sector n data

Fig. 2. Optimization overview

Read operations only induce lookups in the address translation table, which is
a negligible overhead.

To prevent revisiting regions of the memory recently accessed, where pool
sectors should have been exhausted, only positive distances are considered in
this optimization. Additionally, the addressable space is assumed to be circular,
in order to avoid handling edges differently.

The first data structure used by the redirection algorithm is the address trans-
lation table. This table – named T – binds every logical sector to a flash sector. As
this optimization aims at minimizing the average distance between consecutive
writes, the most recently written sector is referred to as f�. A simple version
of the redirection algorithm involves the following operations when writing a
logical sector l:

1: f ← closest pool sector from f�

2: write data on f
3: T (l) ← f {update the translation table}
4: f� ← f {keep the reference of the most recently written sector}

Operation (1) – searching the pool sector closest to the previous write – has to be
implemented carefully with an adequate data structure. In our implementation,
to hasten lookups of this sector, we keep references of every sector in the pool in
an ordered list P , where sectors are arranged by increasing distances from f�.
P (0) is thus the closest free sector from f�, followed by P (1), etc.

Including this ordered list of pool sectors allows efficient retrievals of clos-
est pool sectors. Nevertheless, this list has to be updated with each newly freed
sector, whenever the translation table is altered. With this additional data struc-
ture, writing on a logical sector l implies the following operations:

An FTL-Agnostic Layer to Improve Random Write on Flash Memory 219

1: f ← T (l)
2: write data on P (0)
3: T (l) ← P (0) {update the translation table}
4: remove P (0) from P {update the list of pool sectors}
5: add f in P

Operations (4) and (5) can be done asynchronously (ie. during the subsequent
write in a write-intensive environment) without any consistency issue, as the list
of pool sectors P can be rebuild from the translation table T . Consequently, P
might not be up-to-date for each write request, which results in a slight increase
of the average distance between consecutive writes if the closest pool sector from
f� is not yet referenced in this list. However, this case appears infrequently for
large pools and can be neglected.

5 Model

To estimate write speed improvement provided by this algorithm, we propose
to model its behavior by evaluating the average cost of a write operation. This
model is based on the simplifying assumption that pool sectors are uniformly
distributed within flash sectors. This state is also supposed to be stable with
occurring writes. Additionally, writing cost is expected to be determined exclu-
sively by its physical distance from the previous write.

Under these approximations, the overall speed improvement can be evaluated
given the probability to obtain each possible distance, and their associated costs.
For this model, the following notations are used :

– F is the set of sectors accessible from the device (flash sectors),
– D(a, b) is the distance between two sectors a and b,
– L is the set of logical sectors,
– P is the set of pool sectors; by definition, |P| = |F| − |L|.

Definition 1. Let p(d) be the probability that the sector fi ∈ P which minimizes
D(f�, fi) also verifies D(f�, fi) = d, namely having a distance d between two
consecutive writes.

With the uniform distribution assumption, the probability p(d) to get a distance
d between two consecutive writes can be estimated as the ratio between favorable
and possible distributions:

p(d) =

(|F|−d−1
|P|−1

)
(|F|−1

|P|
) (1)

The cost of a write operation conditioned by its distance from preceding write,
cost(d), can be approximated but also measured from the device, as shown in
Fig. 1. For our evaluations, the latter is believed to be more accurate.

Given these two parameters, p(d) and cost(d), the average cost of a write
operation, named costavg, amounts to:

220 B. Chardin, O. Pasteur, and J.-M. Petit

costavg =
|L|∑

d=1

p(d) × cost(d) (2)

Estimations from this model are reported in Sect. 6, together with experimen-
tal results. In addition to theoretical performance gains, resource usage can be
quantified as this optimization trades server CPU and RAM, as well as flash
memory space for writing speed.

CPU overheads occur when handling the translation table and the list of
pool sectors during a write operation. These overheads relate to the following
operations:

– search for the closest pool sector, which is O(1) when pool sectors references
are stored in an ordered list,

– update the translation table, which is O(1),
– update the list of pool sectors, which is O(log |P|) with optimized data struc-

tures, such as skip-lists.

Updating the list of pool sectors is the only operation with significant CPU
cost. However, as stated in Sect. 4, this update can be asynchronous. For read
operations, looking up correspondences between logical and flash sectors in the
address translation table results in constant CPU overhead, which is negligible
compared to a flash sector read duration.

Server RAM overheads are caused by the translation table and the list of pool
sectors maintained in main memory. These overheads amounts to O(|L|× log |F|)
for the translation table, and O(|P| × log |F|) for the pool. Total RAM overhead
adds up to O(|F| × log |F|).

As pool sectors are stored on the device, and do not hold any useful data,
flash memory space overhead amounts to |P| sectors.

The last significant trade-off involves sequential writes. Since, with this al-
gorithm, performances do not depend on the access pattern, logical sequential
writes have the same performances as logical random writes. Existing attempts
to sequentialize accesses would not bring any additional performance gain and
should be discarded.

6 Results

To validate this optimization together with the model detailed in the previous
section, the data placement algorithm is tested on both devices mentioned in
section 3. These tests consist in evaluating the average cost of logical random
writes for varying sizes of the pool.

Figure 3 shows experimental results and the model expectations for the USB
flash drive. To compare with conventional access patterns, random write and
sequential write iops (respectively 30 and 1060) are also reported on this figure.

To obtain performances equivalent to sequential writes, consequent sacrifices
have to be made in terms of flash memory space. In our experiment, 95% of

An FTL-Agnostic Layer to Improve Random Write on Flash Memory 221

0

200

400

600

800

1000

0 20 40 60 80 100 120 140

lo
gi

ca
lr

an
do

m
w

rit
e

io
ps

pool overhead (%)

Experimental results
Sequential iops

Random iops
Model

Fig. 3. Logical random write performance for 100,000 logical sectors

sequential write efficiency is achieved when the pool is about three times larger
than the logical address space. However, we achieved significant improvements
over random writes with acceptable trade-offs, as we have a ten times improve-
ment with 50% flash memory space overhead.

Contrastingly, writing speed on the SSD is improved with distances below
dmax = 256, instead of dmax = 32 for the USB flash drive. As a result, notable
improvements are achieved on the SSD with relatively lower sacrifices. Experi-
mental results for this device are reported on Fig. 4.

Another noticeable difference was suggested by measurements obtained in
Sect. 3: Fig. 5 focuses on small distance values. Remarkably, a quasi-sequential
access pattern with a distance of 4 sectors between consecutive writes shows
relatively good performances. Highest iops are achieved with a pool size of about
29,000 sectors, which results in an average – but still random – distance of 4. This
property allows optimal performances to be achieved with much less overhead.
Indeed, our optimization reaches 7796 average iops for 4KB logical random writes
at a cost of only 687 KB of RAM, and 14.5% flash overhead for 800 MB of usable
data space. Compared to physical random writes 134 average iops, performances
are improved by ×58.

Determining this optimal pool size is not straightforward, and depends on
the sector size. With 16 KiB sectors, experiments give an optimum distance of
2; and about 1.6 for 32 KiB sectors. A possible explanation for this behavior
is that interleaving favors non-zero sized skips to access multiple internal flash
chips in parallel [13].

Unfortunately, this “peak” behavior might not be representative of flash solid-
state drives. Among the twelve SSD with uFLIP results available, only one
(by the same manufacturer as ours) expose the same characteristic. This sin-
gularity is only a facultative additional benefit as it was not part of our initial

222 B. Chardin, O. Pasteur, and J.-M. Petit

0

1000

2000

3000

4000

5000

6000

7000

0 25 50 75 100

lo
gi

ca
lr

an
do

m
w

rit
e

io
ps

pool overhead (%)

Experimental results
Sequential iops

Random iops
Model

Fig. 4. Logical random write performance for 200,000 logical sectors

0

0.05

0.1

0.15

0.2

0.25

0.3

−10 −5 0 5 10

av
er
ag
e
du
ra
tio
n
of
w
rit
e
op
er
at
io
ns
(in
m
s)

distance between consecutive writes (in sectors)

d
=
1

d
=
4

Fig. 5. Small variations of gaps for quasi-sequential writes

assumptions. Our model might be closer of what we would expect with a regular
SSD, and still shows considerable performances gains, such as a ×40 improve-
ment over random writes with 25% flash memory overhead.

Still, these results reveal some limitations of our model. One of its simplifying
assumptions is that writing cost is determined exclusively by its physical distance
from the previous write, which might not be accurate.

Moreover, experiments outperform our model as memory is accessed in only
one direction – increasing physical addresses – to prevent revisiting regions of
the memory where pool sectors should have been exhausted. This improvement

An FTL-Agnostic Layer to Improve Random Write on Flash Memory 223

over our theoretical uniform distribution reduces the average distance between
consecutive writes.

7 Related Works

Many optimizations have been conceived with flash chips characteristics in mind.
A frequent design avoids in place updates with log-based methods.

The In-Page Logging Approach [8] allocates a portion of each bloc to write
updates of its pages. This optimization improves writing speed, as updates are
written sequentially inside the erase unit, at the expense of more read operations.
Garbage collection consists in merging data pages with their log sectors on a new
empty block.

Page-Differential Logging [7] uses a similar approach, except page differential
are logged. Writing is improved as differentials of multiple pages can be combined
to fit in a single page. Also, differentials are recomputed from the original page
for each overwrite, which implies that reading a logical page involves at most two
physical read (the original page and its last differential). The garbage collection
mechanism is also improved, as merging a page with its current differential is
not required (both can be copied separately).

Log-structured file systems, with a distinction between file systems designed
for raw flash chips (without FTL) – like YAFFS, LogFS, JFFS – and those de-
signed for block devices – like LFS – use methods comparable to the in-page
logging approach, and therefore provide similar benefits and drawbacks. Ad-
ditionally, I/O patterns of log-structured file systems for block devices when
accessing multiple files tend to be of small size and scattered.

Regarding more specific use cases, B-File [10] is an abstraction layer for self-
expiring items on flash memories. Depending on their expiration date, items
are written sequentially in appropriate erase units to avoid copying valid data
on deletion. Another approach defines an Append and Pack Layout [11], which
divide the database in two separate datasets, respectively write-hot and write-
cold. These datasets are written sequentially in multiples of the erase block size,
with space reclamation when the memory is full.

The main differences between these approaches and our optimization are the
necessity of a garbage collection mechanism and decreased read performances as
a logical read rely on multiple physical reads. In contrast with these works, we
optimize data access exclusively over the FTL. As a result, our approach is not
applicable to raw flash chips.

RS-Wrapper [13] is a simple conversion between random writes and sequential
writes for FTL-based devices. When random writes are adequately dense, their
experiments show that reading the missing pages to overwrite sequentially the
entire data range outperforms overwriting exclusively modified pages. However,
reorganizing these random writes in a quasi-sequential access pattern has not
been tested.

FlashLogging [4] is an efficient mechanism for synchronous logging on multiple
low capacity flash devices. While the use case differs from our proposition, this

224 B. Chardin, O. Pasteur, and J.-M. Petit

approach could be used to address the non-volatile issue of our current optimiza-
tion. Indeed, data written to the device are volatile, since the address translation
table is stored in RAM, and is needed to rebuild the database. Logging its modi-
fications on additional flash devices could provide an efficient solution. This issue
could also be managed by writing logical addresses together with data, similarly
to the FTL internal functioning.

On a different but related subject, enterprise class SSD can provide better
random write performance at the cost of additional RAM, processing power and
spare blocks (not accessible from the host) [1,9]. However, these designs focus on
random write and provide invariably good performances for the entire device.
Most database applications mix random and sequential accesses and do not re-
quire such homogeneous random write efficiency. By adding a software layer, our
optimization permit using less expensive personal-class SSD with good, yet spa-
tially limited, random write performances. This is also applicable to removable
flash media, which have lessened hardware capabilities.

8 Conclusion

In this paper, we first introduced a notion of distance, and described its impact on
flash memories write performances. Based on this property, we proposed a data
placement algorithm, which significantly improves random write performances.
Our contributions emphasize the importance of locality for these FTL-based
devices, and we believe quasi-sequential access patterns to be of use for future
data placement optimizations.

Compared to native write operations over the FTL, our optimization benefit
from the host available RAM and processing power to improve random write
efficiency on portions of the device. This method support localized performances
adjustment, while flash memories offer homogeneous behaviors.

For the SSD used in our experiments, we achieved an improvement of up to
×58 at a cost of only 14.5% flash overhead. In this best case scenario, this tech-
nique even caused random write to perform slightly better than sequential write,
by 3.5%. This optimization is, to some extent, also applicable on flash memories
with less capacity, as results with a USB flash drive show a ×10 improvement
with 50% flash overhead. Conjointly, we proposed a model to predict write per-
formances, however, future works are needed to enhance its accuracy and help
tradeoffs adjustments.

Another perspective relate to data volatility, which might be addressed in
future works with solutions proposed in Sect. 7. Still, this optimization is already
applicable for indexation or temporary tables, where volatility is acceptable.

References

1. Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.D., Manasse, M., Panigrahy,
R.: Design Tradeoffs for SSD Performance. In: 2008 USENIX Annual Technical
Conference, pp. 57–70. USENIX Association (2008)

2. Birrell, A., Isard, M., Thacker, C., Wobber, T.: A Design for High-Performance
Flash Disks. SIGOPS Operating Systems Review 41(2), 88–93 (2007)

An FTL-Agnostic Layer to Improve Random Write on Flash Memory 225

3. Bouganim, L., Jónsson, B.T., Bonnet, P.: uFLIP: Understanding Flash IO Patterns.
In: 4th Biennial Conference on Innovative Data Systems Research (2009)

4. Chen, S.: FlashLogging: Exploiting Flash Devices for Synchronous Logging
Performance. In: 35th International Conference on Management of Data, pp. 73–86.
ACM, New York (2009)

5. Gray, J., Fitzgerald, B.: Flash Disk Opportunity for Server Applications.
Queue 6(4), 18–23 (2008)

6. Kim, J., Oh, Y., Kim, E., Choi, J., Lee, D., Noh, S.H.: Disk Schedulers for Solid
State Drives. In: 7th International Conference on Embedded Software, pp. 295–304.
ACM, New York (2009)

7. Kim, Y.R., Whang, K.Y., Song, I.Y.: Page-Differential Logging: An Efficient
and DBMS-independent Approach for Storing Data into Flash Memory. In: 36th
International Conference on Management of Data, pp. 363–374. ACM, New York
(2010)

8. Lee, S.W., Moon, B.: Design of Flash-Based DBMS: An In-Page Logging Approach.
In: 33th International Conference on Management of Data, pp. 55–66. ACM, New
York (2007)

9. Lee, S.W., Moon, B., Park, C.: Advances in Flash Memory SSD Technology for En-
terprise Database Applications. In: 35th International Conference on Management
of Data, pp. 863–870. ACM, New York (2009)

10. Nath, S., Gibbons, P.B.: Online Maintenance of Very Large Random Samples on
Flash Storage. PVLDB 1(1), 970–983 (2008)

11. Stoica, R., Athanassoulis, M., Johnson, R., Ailamaki, A.: Evaluating and Repairing
Write Performance on Flash Devices. In: 5th International Workshop on Data
Management on New Hardware, pp. 9–14. ACM, New York (2009)

12. Wang, Y., Goda, K., Kitsuregawa, M.: Evaluating Non-In-Place Update Techniques
for Flash-Based Transaction Processing Systems. In: Bhowmick, S.S., Küng, J.,
Wagner, R. (eds.) DEXA 2009. LNCS, vol. 5690, pp. 777–791. Springer, Heidelberg
(2009)

13. Zhou, D., Meng, X.: RS-Wrapper: Random Write Optimization for Solid State
Drive. In: 18th Conference on Information and Knowledge Management, pp. 1457–
1460. ACM, New York (2009)

Energy Efficiency Is Not Enough,
Energy Proportionality Is Needed!

Theo Härder, Volker Hudlet, Yi Ou, and Daniel Schall

Databases and Information Systems Group
University of Kaiserslautern, Germany

{haerder,hudlet,ou,schall}@cs.uni-kl.de

Abstract. Due to the energy consumption/resource utilization charac-
teristics of todays centralized DB servers, the fastest configuration is
also the most energy-efficient one. Extensive use of SSDs alone cannot
enable a fundamental change of this overall picture, because the storage-
related energy consumption is typically only a little fraction of the overall
energy budget. Even, when this storage-related share is (almost) com-
pletely reduced by optimized flash-aware buffer management, the saving
effect achieved may be limited by less than ∼10%. Therefore, we have
designed a cluster of wimpy computing nodes called WattDB, where the
individual nodes are dynamically attached and detached to the cluster
on demand – depending on the current workload needs –, thereby aiming
at energy-proportional DB management.

1 Introduction

In recent years, data management on new hardware evolved into an active and
attractive field of research. Among the topics considered for data management
are multi-core processors, vectorized query processing, flash memory, (column-
oriented) main-memory databases, OLAP- or OLTP-specific optimizations, etc.
Most efforts exclusively aim at performance enhancements for specific database
applications – highlighted by the statement “One Size Does Not Fit All!”.
Representative approaches include MonetDB [1], Greenplum [2], VoltDB [3],
SanssouciDB [4], and others.

A few years ago, we started to explore the use of flash memory and the
integration of SSDs (solid state disks) into the DB I/O architecture. Unlike most
other projects, we primarily addressed energy efficiency for all tasks of database
management, but also considered potential performance gains. Our strong hope
was to improve both goals – “Keeping Performance While Saving Energy?” [5],
which was supported by our initial experiments.

The remainder of this paper is organized as follows: Sect. 2 reviews indicative
research results concerning our experiments of exploiting SSDs for DB manage-
ment, whereas our findings concerning flash-aware DB buffers are summarized
in Sect. 3. Sect. 4 highlights the need of energy proportionality. How such a goal
can be approximated in DB applications, is sketched in Sect. 5, where we discuss
design issues for our WattDB system. Concluding remarks and future challenges
are outlined in Sect. 6.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 226–239, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Energy Efficiency Is Not Enough, Energy Proportionality Is Needed! 227

2 Experimental Results and Critical Observations

SSD 	= SSD – this fact was drastically demonstrated in [6]. It is not only true
when using a collection of different device types, but also for instances of the same
device type. Reasons are continuous improvements of the SSD types as well as
refinements of the flash translation layer (FTL) to optimize measures for wear
leveling. All these optimization efforts are proprietary and kept as “business
secrets” of the device manufacturers – resulting in a black-box view of SSD
devices, often exhibiting surprising behavior. Table 1 gives an overview of the
impressive success these efforts gained for almost all characteristics chosen.

Table 1. Storage device characteristics

Device Model IOPS Idle (W) Active (W) EUR/GB
Read Write Read Write

HDD1 WD 7.2K RPM 70 5.3 6.3 0.38
HDD2 WD 10K RPM 210 4.2 5.7 0.77
HDD3 Fujitsu 15K RPM 500 8.4 9.9 0.76
SSD1 SuperTalent 32GB 2,700 50 1.3 1.7 2.0 9.00
SSD2 MTRON MSP 12,000 130 1.2 2.0 2.0 18.00
SSD3 Intel X-25-M G1 35,000 3,300 0.6 1.3 2.4 2.40
SSD4 Intel X-25-M G2 35,000 8,600 0.9 1.2 4.1 2.44
SSD5 Crucial RealSSD 60,000 45,000 0.8 1.1 1.7 2.01

Strong variations at the instance level are caused by the read/write/erase
asymmetry which is amplified by the prevailing conditions or housekeeping tasks
of an individual device, e. g., device “aging”, state-dependent garbage collection,
frequency of erasures as reactions to load patterns, etc.

All these reasons lead to the conclusion that current, state-of-the-art SSDs
cannot be easily integrated and used for database management. In any case,
we have to cope in DB environments with a spectrum of heterogeneous SSDs
with differing and instable access behavior. Furthermore, the data sheets of the
device manufacturers often report performance figures which can never be met
by typical DB workloads. To support our conclusion, we want to repeat here
some indicative, empirical results of previous publications [6,7].

2.1 SSD Performance Measurements

Our initial experiments focused on DB-specific read and write performance of
SSDs, for which the essential characteristics – taken from the data sheets of the
manufacturers – are listed in Table 1. To stress all devices with the same access
patterns, we developed a tool (similar to uFlip and IOmeter1) that allows us to
perform benchmarks on the devices. The tool supports adjustable page sizes and

1 http://uflip.inria.fr/∼uFLIP/, http://www.iometer.org

228 T. Härder et al.

1,000

2,000

3,000

4,000

5,000

6,000

RS RR RSS WS WR WSS

SSD1IOPS

1,000

2,000

3,000

4,000

5,000

6,000

RS RR RSS WS WR WSS

SSD2IOPS

1,000

2,000

3,000

4,000

5,000

6,000

RS RR RSS WS WR WSS

SSD3IOPS

1,000

2,000

3,000

4,000

5,000

6,000

RS RR RSS WS WR WSS

SSD4IOPS

1,000

2,000

3,000

4,000

5,000

6,000

RS RR RSS WS WR WSS

SSD5IOPS

RS Read Sequential
RR Read Random
RSS Read Skip Sequential
WS Write Sequential
WR Write Random
WSS Write Skip Sequential

Legend

Fig. 1. Performance measurements using different SSD types

is able to read and write different access patterns from/to the devices; we used
32KB page sizes in all experiments2.

Our first test pattern is sequentially accessing n pages simulating DB scan
operations. A second pattern is randomly accessing all pages of the test file,
where each page is fetched only once. Finally, the skip-sequential pattern accesses
pages sequentially, but skips randomly over some pages. Hence, we mimic kind
of index scans via (sorted) reference lists. Illustrated in Fig. 1, the results for the
SSDs considered are briefly commented in the following:

– SSD1: Our results clearly show slow performance under all tested patterns
as well as heavily degraded write performance. But, random read is as fast
as sequential read.

– SSD2 shows improved performance to SSD1. Still, random writing is tremen-
dously slower than other access methods.

– SSD3, as the first Intel generation, is really good at sequential reading, while
random reading is comparatively slow. All write patterns are performing
equally well – a significant operational difference w. r. t.SSD1 and SSD2.

– SSD4, as next Intel generation, came with the additional feature TRIM sup-
port3. It reveals improved overall performance for all patterns. Nevertheless,
the disk is showing the same challenges as the first generation.

– While reading on SSD5 is faster than on all other SSDs we tested, random
writing stresses this device remarkably. Although the data sheet promises
60,000 IOPS for random read, we could not get even close to this number (a
fact we experienced in most other tests).

2.2 Result Interpretation

Using these performance results, we examine common assumptions, expert wis-
dom, and rules of thumb regarding SSDs [9] and show that not all of them are
2 According to [8], 32 KB is the preferable page size for SSDs.
3 http://t13.org/Documents/MinutesDefault.aspx?keyword=trim

http://t13.org/Documents/MinutesDefault.aspx?keyword=trim

Energy Efficiency Is Not Enough, Energy Proportionality Is Needed! 229

0

500

1000

1500

2000

2500

1 6 11 16 21 26 31 36 41 46 51

SSD3 random writeIOPS

sec

Fig. 2. IOmeter per sec

0

500

1000

1500

2000

2500

3000

3500

1 6 11 16 21 26 31 36 41 46 51

SSD4 write after TRIMIOPS

sec

Fig. 3. TRIM effects

true. Given that we cannot design a DBMS tailor-made to a single SSD of a
specific type and that varying workloads are present, we may critically observe
the following issues.

Random access. SSDs should not suffer from random access, in fact, they do.
Random access may be substantially slower than sequential access.

Therefore, sequential accesses should still be preferred over random accesses,
although it is not as vital as on hard disks. For hard disks, a rule of thumb
recommends an index-based scan only if the selectivity factor of the predicate
to be evaluated is below ∼1–3%, otherwise a sequential scan of the whole table
is advised. On SSDs, the selectivity factor can be shifted to higher percentages.
Because of the different SSDs’ performance characteristics, it is not possible to
spot a clear break-even point.

Database query optimizers can decide between random and sequential access
based on configurable disk parameters.4 Simple rules of thumb, however, do
not work anymore [10], especially if the performance characteristics fluctuate
over time. Therefore, optimizing algorithms under wrong assumptions or device
models can make overall performance even worse. Furthermore, developers for
flash-aware buffer algorithms have to consider that device-specific tweaks might
be obsolete in no time.

Unstable and fluctuating behavior. Using a tweaked IOmeter version, we
were able to get more detailed performance data from our devices. Fig. 2 visu-
alizes the write performance of SSD3 in pages/second on a per-second basis. As
illustrated, every 4 to 5 seconds, performance is heavily degraded for about 3
seconds. We conclude, the drive is performing internal reorganization like freeing
up flash blocks or searching for another writable block.

While benchmarking SSD4, we had a look at the TRIM command intro-
duced for this model and observed an interesting behavior. Fig. 3 depicts our
write performance measurement right after deleting ∼130 GB of files on the
drive and issuing corresponding TRIM commands to the drive. In this graph,
a heavily degraded performance in the first half of the measurement is evident.
Apparently, the SSD tries to free up flash blocks while we were simultaneously
4 E.g.: http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?

topic=/com.ibm.db2.luw.admin.perf.doc/doc/c0005051.html

230 T. Härder et al.

applying a write load to it. The proprietary FTL mapping particularly con-
cerns device caching, block allocation, and garbage collection. All these mecha-
nisms are software controlled and entirely hidden to the upper software layers.
Hence, optimization decisions in the OS or DBMS may be counterproductive
and sometimes even worsen the time-consuming house-keeping activities. As in-
ferred from Fig. 2, write latency may extremely vary. While less than ∼400 μs
in the best case, we have observed outliers of more than some hundred ms, that
is a device-dependent variance of more than ∼200–500. In contrast, disks with a
device-dependent variance of ∼2–5 exhibit quite stable access behavior and lend
themselves to reliable optimizer decisions.

Another aspect is a kind of heterogeneity among the SSD types present in a
DBMS environment, where several heterogeneous SSDs may coexist in an appli-
cation (or they may be dynamically exchanged). As a consequence, tailor-made
algorithms for specific SSD types, e. g., concerning indexing or buffer manage-
ment, are not very useful. The same arguments apply for specific workload op-
timizations (pure OLTP or OLAP processing, mixed workloads with varying
degrees of reads/writes). A continuous adjustment or exchange of algorithms
affected is not very practical in productive DBMS applications.

Read/write asymmetry. It does not seem to be true in general. SSD1 and
SSD2, for example, do not exhibit degraded performance for (sequential) write,
they are equally fast as sequential read. On all other SSDs, an asymmetry is
measurable, but still not as bad as advertised. Exploited for buffer management,
this observation may make at least some prevalent assumptions obsolete.

Slower when full? As a consequence of the erasures, overwriting some blocks
on a full disk should be much slower than writing to an empty disk. We verified
this assumption by filling all drives with random data and repeating our tests
afterwards. No significant differences were measurable.

Impact of queue depth. To gain more insights, we repeatedly measured various
queue depths. By using a random read pattern, we give the FTLs a fair chance
to optimize the queue. As reported in [6], the only significant improvement was
observed between QD 1 and QD 2. Beyond this point, extending the QD did not
improve data throughput. We did not expect this result, because manufacturers
use even higher queue depths for their performance measurements.

Energy consumption. Fig. 4a shows the absolute power consumption of the
SSDs we tested. For this test, a sequential read pattern is used. Write patterns
might consume even more energy. Obviously, the drives do consume energy when
being idle; therefore, they are not as energy saving as expected. Power consump-
tion ranges from ∼4–6 Watt for consumer disks to ∼9–14 Watt for disks of
enterprise server quality. The SSDs’ power profiles are substantially different to
those of hard disks; their power consumption for idle states and peak loads is con-
siderably lower, for example, up to a factor of ∼15 and ∼8 for SSD3 and HDD3,
respectively (see Table 1). Fig. 4b shows how many pages can be read by each
SSD consuming one Joule of energy. As illustrated, pages/Joule are constantly

Energy Efficiency Is Not Enough, Energy Proportionality Is Needed! 231

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

SSD1 SSD2 SSD3 SSD4 SSD5

Power Consumption

variable part
idle

(a) Active SSDs: power use in Watt

0

2000

4000

6000

8000

10000

12000

14000

SSD1 SSD2 SSD3 SSD4 SSD5

Pages / Joule

(b) Pages read per Joule

Fig. 4. Energy-related SSD measurements

rising, thus newer SSDs are getting more energy efficient. On conventional disks
we measured only ∼600–1,800 pages/Joule. Anyway, a more differentiated com-
parison is cumbersome, because of the different performance characteristics and
their implications on energy efficiency.

The critical question is whether these considerable differences of energy con-
sumption at the device level cause perceptible energy saving at the system level.
For this reason, we compare disk- and SSD-based DBMS buffer management in
the next section.

3 Findings in DBMS Buffer Management

Because of the read/write/erase asymmetry, buffer management tailor-made to
the SSD characteristics is a key issue for flash-aware DBMS optimizations. The
fact “whether a page is read only or modified” is an even more performance-
critical criterion for the replacement decision [11] than in disk-based DBMSs.

3.1 Objectives of Flash-Aware Replacement Algorithms

Even with SSDs, maintaining a high hit ratio – the primary goal of disk-based
buffer algorithms – is still important, because the bandwidth of main memory
is at least an order of magnitude higher than the interface bandwidth of storage
devices. To exploit the SSD characteristics to the extent possible, flash-aware
buffer management should observe the following basic principles [7]:

P1. Minimize the number of physical writes.
P2. Address write patterns to improve the write efficiency.
P3. Keep a relatively high hit ratio.

We have designed the CFDC (Clean-First Dirty-Clustered) algorithm [12] which
perfectly addresses all these key issues. As our competitors, quite a number of
flash-aware replacement algorithms were proposed trying to approximate these
principles more or less successfully. Here, we cross-compare CFDC to the general-
purpose algorithm LRU [11] and the algorithms CFLRU [13], LRU-WSR [14],
and REF [15], which are tailor-made for SSD use.

232 T. Härder et al.

(a) Execution times (ms) (b) Energy consumption (J)

Fig. 5. Performance and energy consumption running the TPC-C trace

Because DBMSs often use heterogeneous storage devices of mixed types, an
important question needs to be answered: how well do these algorithms per-
form on conventional magnetic disks? Furthermore, how much energy is used for
buffer management in either case, i. e., how energy efficient are these algorithms
in differing environments? Here, we want to repeat these answers given in [7],
thereby preparing our arguments for energy-proportional DBMS management.

3.2 Experiments

Our test environment consists of an Intel Core2 Duo processor and 2 GB of
main memory. Both the OS (Ubuntu Linux with kernel version 2.6.31) and the
DB engine are installed on an IDE magnetic disk (system disk). The test data
(as a DB file) resides on a separate magnetic disk/SSD (data disk, denoted
as SATA). The data disks, as listed in Table 1, are chosen to represent low-
end (HDD1/SSD1), middle-class (HDD2/SSD2), and high-end (HDD3/SSD3)
devices. They are connected to the system one at a time.

Using a relational DBMS, we recorded an OLTP trace (a buffer reference
string) of a 20-minutes TPC-C workload with a scaling factor of 50 warehouses.
We ran the trace for each of the five algorithms under identical conditions and
repeated it for each of the devices under test. Using a buffer size of 8000 pages
(64 MB), we minimized the influence of the device caches. But, not the absolute
but the relative differences are most expressive.

The illustration of the recorded execution times and energy consumptions in
Fig. 5 is considered to be indicative for what we can expect as typical behavior
and optimization potential under the various storage device settings. The differ-
ence between the execution times of the algorithms becomes smaller on SSD3
(see Fig. 5) due to two reasons: 1. The I/O cost on SSD3 is much smaller than

Energy Efficiency Is Not Enough, Energy Proportionality Is Needed! 233

on other devices, yielding the buffer layer optimization less significant; 2. This
device has supposedly the largest device cache, since it is the newest product
among the devices tested.

Performance gain and energy saving are impressive, if we compare the results
among devices of the same class. CFDC turns out to be the best performing
algorithm on all devices. Because the time needed to run the trace is – under
continuous and hardly varying utilization of the computer system – proportional
to the energy consumption, CFDC is also the most energy-efficient one. This
observation is in accord with the general thesis [16] that “within a single node
intended for use in scale-out (shared-nothing) architectures, the most energy-
efficient configuration is typically the highest performing one”.

4 Energy-Proportional Computing

The key effect observed in Fig. 5 is further explained by Fig. 6, which contains
a break-down of the average working power of major hardware components of
interest, compared with their idle power values. The figures shown for the con-
figurations HDD3 and SSD3 are indicative for all configurations; they are similar
for the other device types, because IDE and ATX – consuming the lion’s share
of the energy – remain unchanged.

Ideally, the power consumption of a component (and the system) should be
determined by its utilization. However, for both configurations, there is no signif-
icant power variation when the system state changes from idle to working or even
to its full utilization. Furthermore, no clear difference can be observed between
the various algorithms, although they have different complexities and, in fact,
also generate different I/O patterns. This is due to the fact that, independent
of the workload, the processor and the other units of the mainboard consume
most of the power (the ATX part in the figure) and these components are not

(a) HDD3 (b) SSD3

Fig. 6. Break-down of average power (W)

234 T. Härder et al.

100

80

60

40

20

%Power
(Watt)

20 40 60 80 1000

energy-
proportional

hardware
optimization

%

System utilization

power@utilization
observed ideal

software
optimization

behavior

Fig. 7. Power use over system utilization: single computing node

energy-proportional, i. e., their power use is not proportional to the system uti-
lization caused by the workload5.

The break-down of the average working power in Fig. 6 reflects the average
system utilization obtained for individual trace executions. If we evaluate how
energy consumption depends on system utilization, we roughly get for our con-
figuration – with a single computing node – the characteristics sketched in Fig. 7.
Main-memory power usage is more or less independent of system utilization and
increases linearly with the memory size, i. e., the number of RAM modules. In
our case, we only had a single 2GB module. Increasing the main-memory size
by adding more RAM modules would rapidly shift in our scenario the relative
power use close to 100%, even in the idle case.6 As indicated in Fig. 7, the
scope for optimizing the relative energy efficiency by software means is limited
and would almost disappear when a large memory is present. But this scope
could be widened, if hardware optimizations could be invented (e. g., reduction
of RAM’s energy consumption). Using a single computing node, we would never
come close to the ideal characteristics of energy proportionality. Note, we cannot
just switch off RAM chips, especially in the course of DBMS processing, because
they have to keep large portions of DB data close to the processor. Preserving
this reference locality is the key objective of each DBMS buffer.

Google servers mostly reach an average CPU utilization of ∼30%, but often
even less than ∼20% [17]. With our current flash-based optimizations, we do not
obtain any noticeable effect on overall energy saving – except for continuous peak
load situations. Given normal load patterns and arrival times, an average request
is processed more efficiently, i. e., system resources are allocated for shorter in-
tervals, thereby reducing system utilization even further. What kind of system
architecture enables a substantial approximation of ideal energy proportionality?

5 The elapsed time T of the workload almost completely determines its energy con-
sumption E (note, E = P̄ · T , where P̄ is the average power measured).

6 Memory of enterprise server quality consumes ∼10 Watt per 4GB DIMMS [16].

Energy Efficiency Is Not Enough, Energy Proportionality Is Needed! 235

5 Design Considerations of WattDB

Current approaches to data management on new hardware almost exclusively
focus on high performance for continuous peak loads in specific application ar-
eas and – to achieve this goal – primarily rely on extremely large main memo-
ries. But from a “green perspective”, it is unreasonable to build systems, e. g.,
main-memory DBMSs for OLAP applications, which have a much lower average
utilization and a power usage profile as sketched in Fig. 77.

For this reason, we have started the WattDB project, where a cluster of wimpy,
shared-nothing computing nodes replaces the powerful DB server machine. The
cluster core consists of a single node8 and can attach further nodes without in-
terrupting DB processing. In this way, the cluster can scale up to n nodes and is
able to smoothly grow and shrink dynamically – depending on the current work-
load needs. Apparently, due to this dynamic node attaching/detaching, WattDB
as a cluster will stepwise approximate the ideal course of power usage, i. e., its
behavior is becoming energy proportional. Note, the cluster dynamics, i. e., the
time span [18] where low-utilized nodes are disconnected from the cluster and
deactivated or where overload situations are resolved by reactivating switched-off
nodes, is a key question to be answered by the project.

Each of the individual computing nodes must be able to access the entire
database. As a consequence, we need to build an I/O architecture, where – at
each point in time and each cluster configuration – all external storage devices
(SSDs or HDDs) can be dynamically shared by all attached nodes, i. e., the
shared-nothing processing architecture of the cluster has to be supported by a
shared-disk I/O architecture.

As a consequence of dynamic node fluctuation, DB cluster coordination be-
comes a frequent task to optimally support DB processing and maintenance as
well as concurrency control and logging/recovery, etc. Static task assignment to
specific computing nodes creates single points of failures and may quickly lead to
unbalanced system behavior [19]. Therefore, static and physical partitioning of
storage structures and runtime responsibilities is impractical. Hence, new parti-
tioning schemes and procedures based on logical predicates have to be developed.
Instead of allocating physical partitions, flexible physiological DB partitioning
is needed – a new outstanding challenge to make WattDB work.

5.1 Architecture Overview

Our cluster currently consists of ten nodes with identical processors and main
memory. Two nodes are equipped with four hard disks each to serve as DB
storage. All nodes are interconnected by a Gigabit-Ethernet as depicted in Fig. 8.
To minimize the energy footprint of each node, Intel Atom D510 light-weight
CPUs are used. In combination with the installed 2 GB of main memory and
7 Such an extreme main-memory DB server would steadily consume 2.5 KW for each

TB of main memory installed, no matter whether it is idle or working.
8 In this case, all coordination, query processing, and storage-related tasks have to be

performed by this node.

236 T. Härder et al.

HDD HDD

HDD HDD

Node

HDD HDD

HDD HDD

Node

Switch

Switch Switch

Switch

Switch (Backend)

Switch (Frontend)

Node

NodeNode

Node Node

NodeNode

Node

Fig. 8. Physical cluster layout Fig. 9. Photo of the cluster

Table 2. Energy consumption of a single node

off suspend idle 100% CPU
1 disk

100% CPU
2 disks

100% CPU
4 disks

Power Consumption [W] 3 3 29 32 35 41
% of peak 7% 8% 71% 78% 86% 100%

the mainboard, each node consumes less than 30 W in idle mode. The disks
are designed for mobile use, so each disk consumes only 3 W . Our hardware
is Amdahl-balanced, hence, processing power and data throughput are matched
[20]. Still, a single node is not energy proportional as Table 2 shows. When idle,
about 70% of the node’s peak power is consumed (see also Fig. 6). Although the
single nodes are not energy proportional, the desired energy proportionality is
approximated by load-dependent deactivation/reactivation of cluster nodes.

Dynamically powering nodes impacts all layers of database software. As a first
step, we have analyzed the impact of node fluctuations for Storage Mapping,
Query Processing and Cluster Coordination.

5.2 Storage Mapping and Partitioning

Hard disks are one of the reasons, why common servers cannot be energy pro-
portional, as explained in Sect. 2. They continuously consume energy to keep
their platters spinning. Therefore, it would be a great opportunity for saving
power, if unused disks could be switched off. If the related storage capacity is
not needed right now, entire nodes could be powered down. Dynamically par-
titioning data by their access frequencies may gain some improvements [21],
but it is insufficient, because data on cold disks would have high access cost. In-
stead, we propose a mechanism for dynamically consolidating data while keeping
I/O performance agreements. The system’s storage can be scaled from energy
efficiency requirements by consolidating data to as few disks as possible to high-
performance needs by distributing data to more disks for faster parallel access.

Energy Efficiency Is Not Enough, Energy Proportionality Is Needed! 237

Fig. 10 shows examples of partitioning schemes. Table A is separated into two
partitions that reside on a single disk. This is the most energy-efficient storage
solution, because only a single disk needs to be powered. In turn, access per-
formance is limited, as one disk can only achieve a certain number of IOPS. In
contrast, table B is partitioned, too, but the partitions are distributed to sep-
arate disks. Therefore, access to table B is up to two times faster than that to
table A. At the same time, random IOPS should double compared to the first
scheme, but energy consumption doubles as well. Finally, table C shows an even
more distributed case, where data is distributed to four disks. While this raises
the relative energy consumption of the data, access bandwidth and IOPS again
are increased.

In these examples, the storage mapping resulted in a balanced tree of par-
titions. WattDB will support even more flexible partitioning schemes. Hence,
high-traffic areas of a table can be divided into finer grained partitions than
rather cold areas – causing unbalanced partition trees. Management of a parti-
tion subtree, e. g., either table C, partition C.1, or partition C.1.1 in Fig. 10, is
delegated to a single node. By distributing a table to more nodes, the effective
main-memory buffer for this table is increased.

Table A

Partition A.1 Partition A.2

Disk 1

Table C

Partition C.1 Partition C.2

Disk 1 Disk 4

Partition
C.1.1

Partition
C.1.2

Partition
C.2.1

Partition
C.2.2

Disk 3Disk 2

Table B

Partition B.1

Disk 1 Disk 2

Partition B.2

Fig. 10. Storage partitioning schemes

5.3 Query Processing

By providing such an an energy-aware storage layer, query planning needs to
consider the existing data distribution. A resulting query execution plan (QEP)
has to reflect the data partitioning schemes and their assignment to nodes. As
a consequence, subqueries can be formed to access partitions, process data, and
emit intermediate results. Eventually, these results are consumed by a node
which combines them to the final output and delivers it to the client. Fig. 11
sketches an example how this work assignment is achieved for a simple query.
More sophisticated operations like distributed joins can be executed as well.

Our approach is considered fairly scalable, because partition management
including buffering, locking, and recovery, consists of local tasks that scale with
the number of nodes in the cluster. Still, a global transaction manager is needed
to detect deadlocks in transactions spanning multiple nodes.

238 T. Härder et al.

Table A

Partition ... Partition ... Partition ...

Node 1

Table B

Partition ... Partition ...

Node 2

Table C

Partition ... Partition ...

Node 3Master Node

((A)) ((C))
((A x B))

((A x C))

Fig. 11. Node assignment for query processing: an example

5.4 Cluster Coordination

Obviously, a centralized instance, called master, is needed for all coordination
tasks. Cluster clients address a dedicated node as an entry point to submit
their queries. Furthermore, it has to monitor and tune the performance of the
cluster. Moreover, all tasks concerning allocation of new objects, housekeeping
and reorganization on depraved storage structures, repartitioning after workload
shifts, redistribution of responsibilities as an implication of cluster growth or
shrinkage, etc. need centralized control. Therefore, we introduce a master node
that will perform all these tasks. This node will also manage global deadlock
detection and keep track of the energy consumption.

6 Conclusion and Future Work

We have sketched our main results of recent contributions concerning our flash-
related research. At the device level, we have summarized performance behavior
and energy efficiency of a spectrum of different SSD types and have discussed
important consequences for DBMS processing. At the system level, we have com-
pared performance and energy use of a number of flash-aware buffer management
algorithms, when different classes of HDDs and SSDs were used as external stor-
age. We could clearly verify the claim [16] that – within a single shared-nothing
computing node – the most energy-efficient configuration is typically the highest
performing one.

This observation guided our research endeavor towards energy-proportional
computing applied to data management on new hardware to seriously observe
energy saving – not only for peak loads, but also for low-load situations and even
idle times. As a consequence, we designed WattDB, whose core components are
currently implemented. In the future, we want to specialize WattDB towards
differing directions to provide tailor-made support for the application classes
OLTP, OLAP, and MapReduce.

Energy Efficiency Is Not Enough, Energy Proportionality Is Needed! 239

References

1. Boncz, P.A., Manegold, S., Kersten, M.L.: Database Architecture Evolution:
Mammals Flourished long before Dinosaurs became Extinct. PVLDB 2(2), 1648–
1653 (2009)

2. Greenplum. Driving the Future of Data Warehousing and Analytics (2009),
http://www.greenplum.com/

3. VoltDB. Fast, Scalable, Open-Source SQL DBMS with ACID (2010),
http://voltdb.com/

4. Plattner, H.: SanssouciDB: An In-Memory Database for Processing Enterprise
Workloads. In: Proc. BTW. LNI - P, vol. 180, pp. 2–21 (2011)

5. Härder, T., Schmidt, K., Ou, Y., Bächle, S.: Towards Flash Disk Use in Databases -
Keeping Performance While Saving Energy? In: Proc. BTW. LNI - P, vol. 144, pp.
167–186 (2009)

6. Hudlet, V., Schall, D.: SSD!= SSD - An Empirical Study to Identify Common
Properties and Type-specific Behavior. In: Proc. BTW. LNI - P, vol. 180, pp. 430–
441 (2011)

7. Ou, Y., Härder, T., Schall, D.: Performance and Power Evaluation of Flash-Aware
Buffer Algorithms. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA
2010. LNCS, vol. 6261, pp. 183–197. Springer, Heidelberg (2010)

8. Bouganim, L., Jónsson, B.T., Bonnet, P.: uFLIP: Understanding Flash IO Patterns.
In: CIDR (2009)

9. Graefe, G.: The five-minute rule 20 years later (and how flash memory changes the
rules). Commun. ACM 52(7), 48–59 (2009)

10. Schall, D., Hudlet, V., Härder, T.: Enhancing Energy Efficiency of Database
Applications Using SSDs. In: C3S2E, pp. 1–9 (2010)

11. Effelsberg, W., Härder, T.: Principles of Database Buffer Management. ACM
TODS 9(4), 560–595 (1984)

12. Ou, Y., Härder, T., Jin, P.: CFDC: A Flash-Aware Buffer Management Algorithm
for Database Systems. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS
2010. LNCS, vol. 6295, pp. 435–449. Springer, Heidelberg (2010)

13. Park, S., Jung, D., et al.: CFLRU: a Replacement Algorithm for Flash Memory.
In: CASES, pp. 234–241 (2006)

14. Jung, H., Shim, H., et al.: LRU-WSR: Integration of LRU and Writes Sequence
Reordering for Flash Memory. Trans. on Cons. Electr. 54(3), 1215–1223 (2008)

15. Seo, D., Shin, D.: Recently-evicted-first Buffer Replacement Policy for Flash Stor-
age Devices. Trans. on Cons. Electr. 54(3), 1228–1235 (2008)

16. Tsirogiannis, D., Harizopoulos, S., Shah, M.A.: Analyzing the Energy Efficiency of
a Database Server. In: SIGMOD, pp. 231–242 (2010)

17. Barroso, L.A., Hölzle, U.: The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, Synthesis Lectures on Computer Architec-
ture. Morgan & Claypool Publishers (2009)

18. Albers, S.: Energy-efficient Algorithms. Commun. ACM 53(5), 86–96 (2010)
19. Rahm, E.: Evaluation of Closely Coupled Systems for High-Performance Database

Processing. In: ICDCS, pp. 301–310 (1993)
20. Szalay, A.S., Bell, G.C., Huang, H.H., Terzis, A., White, A.: Low-power Amdahl-

balanced Blades for Data-intensive Computing. SIGOPS Oper. Syst. Rev. 44
21. Li, X., Li, Z., Zhou, Y., Adve, S.: Performance-Directed Energy Management for

Main Memory and Disks. Trans. Storage 1, 346–380 (2005)

http://www.greenplum.com/
http://voltdb.com/

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, p. 240, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Flash-Based Database Systems: Experiences from
the FlashDB Project

Xiaofeng Meng1, Lihua Yue2, and Jianliang Xu3

1 Renmin University of China, Beijing, China
2 University of Science and Technology of China, Hefei, China

3 Hong Kong Baptist University, Hong Kong, China

Abstract. The new characteristics of flash memory bring great challenges in
optimizing database performance, by using new querying algorithms, indexes,
buffer management schemes, and new transaction processing protocols. In this
talk, we will first present an overview on the FlashDB project, which was
launched in 2009 and supported by the National Natural Science Foundation of
China (No. 60833005). The project aims at constructing the fundamental theory
and design principles of flash-based database systems including a series of key
problems, such as system architecture, storage management and indexing, query
processing, transaction processing, buffer management, etc. In particular, we
focus on establishing a basis for data management involving flash memory, de-
veloping database management systems for flash-based SSDs, and preparing a
test bed for flash-based database applications. During the past two years, we
have made some achievements in buffer management [1, 2], index structures
[3], storage management [4], and SSD simulation platform [5]. After a brief in-
troduction on the current research results in the project, we will discuss some
experiences and lessons concluded from the study. We will emphasize several
issues that may be open up exciting avenues and influence the direction of the
research within the scope of flash-based database systems.

Keywords: Flash Memory, SSD, Flash-based Database.

References

1. Tang, X., Meng, X.: ACR: An Adaptive Cost-Aware Buffer Replacement Algorithm for
Flash Storage Devices. In: MDM 2010, pp. 33–42 (2010)

2. Li, Z., Jin, P., Su, X., et al.: CCF-LRU: A New Buffer Replacement Algorithm for Flash
Memory. IEEE Trans. on Consumer Electronics 55(3), 1351–1359 (2009)

3. Yin, S., Pucheral, P., Meng, X.: A sequential indexing scheme for flash-based embedded
systems. In: EDBT 2009, pp. 588–599 (2009)

4. Zhou, D., Meng, X.: RS-Wrapper: random write optimization for solid state drive. In: CIKM
2009, pp. 1457–1460 (2009)

5. Jin, P., Su, X., et al.: A flexible simulation environment for flash-aware algorithms. In:
CIKM 2009, demo (2009)

Trading Memory for Performance and Energy

Yi Ou and Theo Härder

University of Kaiserslautern
{ou,haerder}@cs.uni-kl.de

Abstract. Managing extremely large amounts of data with high per-
formance and low power consumption is very difficult. We look at this
urgent problem from an architectural perspective and present our pro-
totype design and implementation of a three-layer database storage sys-
tem, which uses flash-based devices as an intermediate caching layer. The
flash-based layer significantly improves the I/O efficiency of the storage
system. Therefore, we can reduce the use of energy-inefficient RAM-
based memory without compromising the overall system performance.
The efficiency of the three-layer storage system is demonstrated by our
practical experiments using traces from both standard benchmarks and
a real-life application.

1 Introduction

The worldwide data volume is doubling every two years. According to the es-
timation of IDC, currently 45 GB of data in average exists for each person in
the world: that is 281 Billion GB (281 Exabytes) in total. At the same time, IT
enterprises are still hungry for data [1]. To cope with the pace of data explosion,
the number of installed servers and storage systems is rapidly growing, resulting
in a huge amount of energy consumption. One of the greatest challenges for the
information management community is to manage extremely large amounts of
data in an (both performance and energy) efficient way.

Flash memory is a kind of non-volatile storage media, popularly used in mem-
ory cards and USB flash drives. In the desktop PC and server storage markets,
solid-state disks based on flash memory (flash SSDs) are also gaining attention,
due to their increasing storage capacity and decreasing price. In contrast to
traditional hard disk drives (magnetic HDDs), flash SSDs have no mechanical
parts and, therefore, allow much faster random accesses. Because flash memory
is non-volatile, its active power is much lower (compared on a Watt/GB basis)
than that of DRAM, for which a large portion of the active power is consumed
to maintain the state of the chip.

Currently, most of the database storage systems follow a classical two-layer
architecture (2LA) [2], with a RAM-based buffer layer accelerating page requests
to and from the persistence layer based on hard disk drives. With an increas-
ing amount of data accommodated at the persistence layer, the capacity of the
expensive and energy-inefficient RAM-based buffer typically becomes the per-
formance bottleneck.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 241–253, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

242 Y. Ou and T. Härder

Table 1. Price and performance of storage devices

Device Model No. EUR/GB Read (ms) Write (ms)

RAM1 Kingston KVR667D2D8P5/2G 19.00 ∼ 10 ns ∼ 10 ns
RAM2 Kingston KHX1600C9D3B1K2/4GX 19.11 ∼ 10 ns ∼ 10 ns
RAM3 Kingston KVR1333D3D4R9S/4G 24.70 ∼ 10 ns ∼ 10 ns
SSD1 Intel SSDSA2MH160G1GN 2.40 0.029 0.303
SSD2 Intel SSDSA1MH160G2GN 2.44 0.029 0.116
SSD3 Crucial CTFDDAC256MAG-1G1 2.01 0.017 0.022
HDD1 WD WD800AAJS 7200 RPM 0.38 15.000 15.000
HDD2 WD WD1500HLFS 10000 RPM 0.77 4.500 4.500
HDD3 Fujitsu MBA3147RC 15000 RPM 0.76 2.000 2.000

In terms of performance and price and their long-term trend, flash SSDs fit
perfectly into the gap between DRAM and magnetic HDDs. Table 1 lists, for each
storage media type, the prices and performance figures1 of three devices (from
low-end to high-end). These figures strongly suggest a three-layer architecture
(3LA), where flash is used as an intermediate caching layer, while conventional
and inexpensive HDDs are employed at the bottom layer to accommodate our
ever-increasing demand on storage capacity. With such a memory hierarchy, the
capacity of the RAM-based layer could be kept relatively small, because a larger
amount of pages can be cached on the flash media, which is still much faster
than HDDs. To justify the move from 2LA to 3LA, a few questions need to be
answered:

Q1. Will the cost of adding the intermediate layer be justified by performance
improvements?

Q2. Can we achieve the goal of improving performance while saving energy at
the same time?

The major contribution of this paper is giving answers to the questions Q1 and
Q2, which are ignored so far in related works. In addition, we contribute in the
following aspects:

– We advocate 3LA, the three-layer database storage architecture with flash
as the intermediate layer.

– We define the basic interfaces for the three layers and present the prototype
of such a storage system.

– Using buffer traces of standard benchmarks and a real-life workload, we
accomplish an extensive empirical study, comparing the performance and
energy consumption of 2LA and 3LA.

The remainder of this paper is organized as follows: Section 2 discusses related
works. Section 3 presents our design of 3LA and related algorithms. Section 4
1 We used the sales prices of Internet stores as of November 2010. Performance figures

are derived from the device data sheets, for randomly accessing pages of 4 KB.

Trading Memory for Performance and Energy 243

reports our empirical study. The concluding remarks and future works are pre-
sented in Section 5.

2 Related Work

Multi-level caching has been intensively studied in the past. Zhou et al. [3] char-
acterized second-level buffer access patterns and proposed a set of algorithms for
managing the second-level buffer. Those algorithms are not flash-specific, there-
fore, their major performance metric is the hit ratio. One of them is implemented
in our prototype system and included in our experiments.

Koltsidas and Viglas [4] identified three page-flow schemes in a three-level
caching hierarchy and proposed flash-specific cost models for those schemes.
While addressing both theoretical problems and important implementation is-
sues, their focus is the validation of the cost models and the comparison among
those schemes. Energy efficiency and a comparison between 2LA and 3LA are
not covered in their work.

Narayanan et al. [5] addressed both complete replacement of disks by SSDs,
as well as use of SSDs as an intermediate tier between disks and DRAM. They
compare these architectural variants with 2LA using an offline tool, which, given
a block-level trace of a workload, suggests the least-cost storage configuration
that supports the workload’s requirements. They found that replacing disks by
SSDs is not a cost-effective option for any of their workloads, due to the higher
dollar-per-GB cost of flash SSDs.

Although our goal partially overlaps with that of [5], there are several aspects
that distinguish our work fundamentally from theirs: 1. Their traces represent
the workload to the disk layer (block level), while our traces represent the
workload to the buffer manager (buffer traces). 2. Our observations are quite
different from theirs. For example, they found that fewer than 10% of their work-
loads can benefit from an intermediate layer based on flash, while in our exper-
iments, 3LA is superior to 2LA in most configurations. 3. Our observations are
expected to be more accurate, because in their experiments, traces were not exe-
cuted, but just analyzed by the tool, while our traces are actually run in the real
systems.

3 The 3LA Storage System

We consider three layers of software in our storage system, as shown in Figure 1.
The RAM layer Lr manages the buffer pool with |Lr| pages in main memory,
the flash layer Lf manages the flash-based buffer pool with |Lf | pages, and the
disk layer Ld manages the accesses to the magnetic disk or a pool of (possibly
inexpensive and redundant) magnetic disks with a total capacity of |Ld| pages.

Considering the relative price and performance ratios of the three types of
storage media, e. g., those listed in Table 1, we assume that:

244 Y. Ou and T. Härder

|Lr| ≤ |Lf | ≤ |Ld| (1)

Due to these capacity constraints and performance ratios, the hottest pages
should be kept in Lr, and Lf should try to keep the hot pages that can not be
kept in Lr. As a consequence, replacement policies are required in Lr and Lf .

Lr supports a typical buffer pool interface, e. g., that of the classical fix-use-
unfix protocol [6]. Both Lf and Ld provide the interface of reading or writing
a page, identified by its logical page number. Each layer only uses the interface
provided by the layer directly below it, i. e., there is no cross-layer dependency.
In particular, in 3LA, Lr never accesses Ld directly.

However, because Lf and Ld basically have the same interface, Lf can be
implemented as an optional layer. When Lf is not present, Lr directly accesses
Ld. In that case, 3LA degenerates to 2LA. Such a degeneration is practically
used for our experiments in Section 4.

Fig. 1. Inter-layer interfaces in the three-layer architecture

For both architectures, we assume that Lr follows two basic principles: demand
paging and write back. Consequently, we have the following two invariants, which
are independent of the algorithm and implementation of Lf and valid for both
3LA and 2LA:

I1. Lr calls the read(p) function on the layer directly below it, iff page p is not
present in Lr and there is a page request for p to be served by Lr (page fault
in Lr).

I2. Lr calls the write(p) function on the layer directly below it, if page p is to
be evicted from Lr and p is dirty (modified at least once after entering Lr).

Lr and Ld are basically the same as in the classical two-layer disk-based storage
system. For this reason, we only present the replacement algorithms for the
management of Lf in the following: the Local (LOC) algorithm and the Global
(GLB) algorithm.

In both algorithms, a list of cache positions L with |L| = |Lf | is maintained
in an LRU fashion. A cache position identifies a page slot in the flash-based
cache and contains a clean/dirty bit. Furthermore, a directory H is maintained,
mapping currently cached pages to their corresponding cache positions.

Trading Memory for Performance and Energy 245

3.1 The LOC Algorithm

In the LOC algorithm, Lf is managed locally in an LRU fashion, without re-
quiring extra knowledge from Lr. The procedure of reading a page from Lf is
shown in Algorithm 1. One difference to an main-memory LRU cache is that
flushing a page involves first reading the page from flash and then writing it to
the storage. Writing a page p to Lf involves finding its cache position c via H
and storing p at c. If p is not found in Lf , it will be written to Ld immediately.

Because |Lr| ≤ |Lf | and LOC only has local knowledge, it is possible that
some or even all pages in Lr are doubly cached in Lf . However, pages in Lr are
not necessarily all in Lf , due to different page reference behaviors at different
layers. Note, references to Lf are consequences of buffer faults in Lr.

Algorithm 1. LOC read page from Lf

input : read request for page p, storage layer Ld

output : update L and H ; return p with content loaded
cache position c ← lookup p in H ;1

if c ∈ Lf then2

read p from cache position c ;3

move c to MRU position of L ;4

else5

victim cache position v ← LRU position of L ;6

page q ← the page stored at v ;7

if v is dirty then8

read q from cache position v and flush q to Ld ;9

read p from Ld and store p at v ;10

move v to MRU position of L ;11

update H by replacing entry (q, v) with entry (p, v) ;12

return p;13

3.2 The GLB Algorithm

The GLB algorithm is first introduced in [3]. We examine it here in a flash
context. The GLB algorithm follows the exclusive scheme [4], i. e., no page is ever
cached in Lr and Lf at the same time. For better comprehension, we assume
the replacement policy in Lr is also LRU, without loss of generality. Based on
this assumption, we can think of a global logical LRU list Lg, consisting of the
LRU list of Lr at its MRU end, and the LRU list of Lf at its LRU end.

Reading a page p from Lf is requested upon a page fault in Lr (see I1). In
case of a cache hit in Lf , p is moved from Lf to Lr (H and L are updated
accordingly). In case of a cache miss, p is read directly from Ld to Lr, avoiding
doubled caching in Lf . In both cases, a page q is evicted from Lr to Lf . After
being read, p becomes the MRU page in Lr (also in Lg).

To “maintain” the logical list Lg, page q currently evicted from Lr should
become the LRU page in Lf . Therefore, we have to extend the interface of Lf

246 Y. Ou and T. Härder

(as described in Figure 1) by a new function evict called by Lr for passing evicted
clean pages to Lf . Note, a write request is called on Lf , only when the evicted
page is dirty (see I2). The procedure of processing a write or evict request for
page q is the same: flush the page stored at the LRU position v of L if the page
is dirty, move v to the MRU position, store q at v, mark v dirty if q is dirty, and
update H .

3.3 Discussion

Given the same workload, the global cache hit count (total number of buffer
hits in Lr and Lf) of GLB is expected to be higher than that of LOC, because
the effective cache size of the latter is smaller, due to doubled caching in Lr.
However, in GLB, the number of flash writes equals the number of Lr page
evictions. This is OK for a RAM-based second-level buffer, but it is an issue for
flash media both in terms of performance (see Section 4) and lifespan [7].

For both algorithms in our current implementation, the dirty pages in Lf

(whose cache positions are marked dirty) are flushed to Ld when the system is
shutdown, for the sake of consistency. A simple improvement leveraging the non-
volatility of flash can be made here: we can just materialize the content of H at
shutdown and rebuild H at startup2, without flushing the “dirty” pages in Lf .
This technique not only speeds up the shutdown procedure, but also shortens
the warm-up phase of the system, because the hot portion of the pages are likely
already in Lf , ready for immediate access. For the LOC algorithm, pages in Lf

are up-to-date at restart, iff the dirty pages of Lr are flushed before the shutdown
of Lf starts. For the GLB algorithm, page sets Lf and Lr are disjunct, therefore,
pages in Lf are automatically up-to-date at restart.

4 Experiment

To answer the questions Q1 and Q2, we did an extensive empirical study based
on a fair comparison between 2LA and 3LA, using buffer traces recorded under
various workloads. We first present our simulation-based study using TPC-E,
TPC-C, and TPC-H traces, before we discuss the experiment ran on real devices
using the trace from a real-life application. Our study on energy consumption is
based on the following assumption:

A1. The acquisition cost and power consumption of storage media are linear to
their capacity in use.

Assumption A1 might not be valid at fine granularity, however, it is reasonable,
when observed at a coarser granularity. For example, if the power of a 2-GB
DRAM module is 10 W, according to A1, 0.2 GB of DRAM would consume 1
W, which is not valid, because, as long as the module is working, it consumes
10 W, no matter the remaining 1.8 GB are in use or not. But we can safely say
that 2n GB of DRAM based on the same model consume 10n W.
2 The byte size of H is much smaller compared to that of Lr and Lf .

Trading Memory for Performance and Energy 247

All experiments were done using our prototype implementation of the 3LA
storage system, which can also be easily configured to function as a 2LA system,
as described in Section 3. For both architectures, our test program only com-
municates with Lr by sending the logical page requests delivered by the traces
to its buffer manager, which manages the Lr buffer pool using the replacement
policy LRU. All experiments start with cold Lr and Lf buffers. The time used
to flush the dirty pages at shutdown is included in the measurements.

In our experiments, we scaled a parameter b (in number of pages) logarithmi-
cally. For 2LA, b is the size of the buffer layer, i. e., |Lr| = b, while for 3LA, we
set |Lr| and |Lf | as follows:

|Lf | = n × b (2)

and
|Lr| = max(1, �b − |Lf | × (Cf/Cr + Sd/Sp)�) (3)

where Cf/Cr is the dollar-per-GB cost ratio of flash to RAM, Sd is the byte size
of a directory entry of H , and Sp the page size in bytes. The term |Lf | ×Cf/Cr

gives the number of RAM pages that should be reduced to achieve a cost-neutral
investment for |Lf | pages of flash memory. The term |Lf |×Sd/Sp is the number
of RAM pages consumed by the directory H for |Lf | pages of flash. We call
Formula 2 and 3 the equi-cost constraints, because it enforces a fair basis for
the comparison among the 2LA and 3LA configurations, i. e., having the same
acquisition cost.

The parameter n is used to examine the behavior of 3LA when the size of
Lf is scaled. Because the value of |Lr| can not be negative, we have b − |Lf | ×
(Cf/Cr + Sd/Sp) > 0, which resolves to n < 1/(Cf/Cr + Sd/Sp). Together with
the constraint in Formula 1, we have the practical range of n:

1 ≤ n < (Cf/Cr + Sd/Sp)−1 (4)

If we ignore Sd/Sp, which is relatively small, then we obtain 1 ≤ n < Cr/Cf . In
our experiments, the page size Sp is 8192 bytes and the directory entry size Sd

is 4 bytes. We chose the cost ratio Cf/Cr = 0.10, which is very close to the real
price ratios according to Table 1. According to Formula 4, the practical range
of n is approximately [1, 10). Note n does not have to be an integer. For a given
b, the value of n actually controls how much RAM is traded for flash, observing
the equi-cost constraints.

4.1 Simulations

For the simulation-based experiments, the Virtual Execution Time (Tv) is used
as the major performance metrics, defined as:

Tv = Tf + Td (5)

Here, Tf and Td are the simulated device access times elapsed in Lf and in Ld

respectively. Tf is defined as:

248 Y. Ou and T. Härder

Tf = Tfr + Tfw = Nfr × Cfr + Nfw × Cfw (6)

Tfr and Tfw are the accumulated times reading from and writing to the flash
media, Nfr is the number of flash reads, Cfr the average cost of a flash read,
Nfw the number flash writes, and Cfw the average cost of a flash write. The
flash reads and flash writes here refer to the physical reads from and writes to
the flash device. They are not to be confused with the read and write requests
sent to the Lf software. Similarly, Td is defined as:

Td = Tdr + Tdw = Ndr × Cdr + Ndw × Cdw (7)

The definition of Tv only considers the costs of accessing the storage media
and ignores the CPU cost, because all the algorithms involved have a constant
complexity. The inter-layer communication costs are ignored as well, because, the
dominating cost in the system is the cost of page accessing, not page transferring.
In our simulation, we used the average read and write costs close or equal to
those of the middle-class devices in Table 1, i. e., Cfr = 0.030, Cfw = 0.120,
Cdr = 4.5, and Cdr = 4.5 (ms).

Figure 2a illustrates the Tv of running a TPC-E trace3 using 2LA and 3LA.
All 3LA configurations tested significantly outperform the 2LA configuration.
For better clarity of the chart, we only show the curves for n = 2 and n = 8.
For the n = 8 configuration, LOC reduced the virtual execution time by 32% to
35% (for b = 1000 to b = 32000), compared with 2LA.

(a) Tv (in seconds) (b) Device accesses for b = 1000

Fig. 2. TPC-E trace performance

The behavior of 3LA is better explained by Figure 2b, where the numbers
of device accesses4 are compared for b = 1000. For 2LA, there is no flash de-
vice access, while a significant amount of flash device accesses is required for
3 Provided by a leading IT enterprise.
4 In the simulation, no real device access occurs.

Trading Memory for Performance and Energy 249

3LA (Figure 2b). For both GLB and LOC, with n scaled from 2 to 8 (thus an
increasing |Lf | and decreasing |Lr|), the number of flash reads climbs up, indi-
cating a growing number of hits in Lf , and, consequently, the number of disk
reads goes down. The latter is equal to the number of global cache misses (i. e., a
page is neither in Lr nor in Lf). Because of the speed difference of flash to disk,
the flash accesses introduced at Lf are paid off in terms of overall performance
(Figure 2a).

As shown in Figure 2b, the number of flash writes performed by GLB increases
with an increasing |Lf | and a decreasing |Lr|, because it depends on the latter,
as discussed in Section 3.3. In contrast, the increasing |Lf | reduces the number
of flash writes performed by LOC. This is because it reduces the number of Lf

cache misses and each cache miss requires a flash write (line 10 of Algorithm 1).

Table 2. Energy consumption of the TPC-E trace for b = 1000

Alg. n |Lf | |Lr | Pf (mW) Pr (mW) Pf + Pr (mW) Tv (s) E (J)

2LA 0 1000 0.000 4.121 4.121 7059 29.09
GLB 2 2000 799.02 0.014 3.292 3.307 5776 19.10
GLB 4 4000 598.05 0.029 2.464 2.493 5304 13.22
GLB 6 6000 397.07 0.043 1.636 1.679 5061 8.50
GLB 8 8000 196.09 0.057 0.808 0.865 4905 4.24
LOC 2 2000 799.02 0.014 3.292 3.307 6305 20.85
LOC 4 4000 598.05 0.029 2.464 2.493 5372 13.39
LOC 6 6000 397.07 0.043 1.636 1.679 5024 8.44
LOC 8 8000 196.09 0.057 0.808 0.865 4818 4.17

Table 2 compares the energy efficiency of 2LA and 3LA for b = 1000. The |Lf |
and |Lr| values in the 3rd and 4th column are calculated according to Formula 2
and 3. Having these values, we can compute the power value of Lr, based on
assumption A1, as follows:

Pr = |Lr| × Sp × Pu
r (8)

where Pu
r is the unit power of RAM, having the value 0.503×10−9 (W/B) here,

derived from the data sheet of RAM2 in Table 1. The power value of Lf , denoted
as Pf , is calculated in a similar way, with Pu

f = 0.873 × 10−12 (W/B), derived
from the data sheet of SSD2. Having Pr + Pf and the virtual execution times
(Tv), we can then calculate the energy consumption values in the last column.
Note that the buffer layer of 2LA consumed much more energy than those of
3LA (by a factor of six for n = 8). Disk-layer values are not included in the
table, because they are of the same size in both architectures.

The results of running the buffer traces of a TPC-C and a TPC-H workload are
shown in Figure 3 and Figure 4. In general, these results confirm our observation
on the performance advantage of 3LA. For both traces, with b beyond 16000
pages and n = 8, the flash cache of 3LA is large enough to accommodate all

250 Y. Ou and T. Härder

Fig. 3. TPC-C trace performance Fig. 4. TPC-H trace performance

pages of the working sets, which are much smaller than that of the TPC-E trace,
therefore, no performance improvement can be observed when b is increased
to 32000 pages. The TPC-H trace is highly read intensive, with only 256 page
updates out of 6.5 million page requests. That is the reason why the performance
of 3LA improves much faster with the growing buffer sizes under the TPC-H
workload (Figure 4), compared to the TPC-E and TPC-C cases.

4.2 Running a Real-Life Trace on Real Devices

Complementary to our simulation-based study, we also experimented with a
trace from a real-life application on real devices. Our test machine is equipped
with an AMD Athlon Dual Core Processor, 1 GB of main memory, and is running
Linux (kernel version 2.6.24). HDD2 from Table 1 is used as the storage device
in Ld, and SSD2 is used as the flash device in Lf . Both devices are accessed
as raw devices, i. e., no file system or OS caching is involved, and our storage
system has the control over the access to the devices.

The trace used here is a one-hour page reference string of an OLTP production
system of a bank. This trace is well-studied and has been used in [8,9,10,11,12].
It contains 607,390 references to 8-KB pages in a database having a size of 22
GB, addressing 51880 distinct page numbers. About 23% of the requests update
the page referenced.

The measured execution times (wall-clock times) are shown in Figure 5. The
curves have a shape very similar to that of Figure 3, confirming the accuracy
of our simulation. An interesting observation can be made here: for b = 32000,
the execution time in 3LA increases with n, instead of decreasing with it as in
most cases tested. In our case here, the 51880 distinct pages addressed by the
trace can be completely accommodated by Lr and Lf , for n = 2. Therefore, in
such a situation, trading RAM for more flash does not further avoid any access
to the disk layer, but reduces the number of buffer hits in Lr and introduces
higher numbers of flash accesses, as indicated by Figure 6a, where a break-
down of device I/O is presented, with measured values of Tfr, Tfw, Tdr, and
Tdw. Nevertheless, the energy consumption decreases with an increasing n, as

Trading Memory for Performance and Energy 251

Fig. 5. Execution time (seconds) of the bank trace

(a) Device I/O break-down (b) Energy consumption relative to 2LA

Fig. 6. Statistics running the bank trace for b = 32000

shown in Figure 6b, which illustrates the energy consumption figures, obtained
similarly to those of Table 2, in a relative fashion.

A question arises here: how much RAM should be traded for flash? Or, in
our context, what is the break-even point for n? Analytically determining the
optimal value for n is a very difficult problem. However, based on our empirical
research, we know that for workloads having a small working set that can be kept
in the RAM layer, there is no performance benefit of trading RAM for flash, while
for workloads with larger working sets that can not fit into the main memory, a
larger n generally improves performance as well as energy efficiency. Of course,
when n closely approaches Cr/Cf , |Lr| becomes 1 (Formula 3), i. e., the RAM
layer has only one page. Such extreme cases should obviously be avoided in
system design. Together with Formula 4, our observations can be used as rules
of thumb in practical applications.

Based on our experiments discussed so far, we can summarize the character-
istics of GLB and LOC as follows. For small |Lf |, i. e., |Lf | ∼ |Lr|, GLB achieves

252 Y. Ou and T. Härder

higher hit ratios, while for large |Lf |, i. e., |Lf | � |Lr|, LOC is generally better,
because GLB’s advantage in hit ratios becomes insignificant and it is eaten up by
its higher number of flash writes, which is much more expensive than flash reads.
A configuration with |Lf | � |Lr| is closer to our goal of managing extremely
large amounts of data with high performance and low power consumption.

5 Conclusion and Future Work

In this paper, we looked at the problem of using flash as a caching layer between
RAM and HDDs from a new perspective: the amount of expensive and energy-
inefficient RAM can be reduced due to the support of flash. Our empirical study
considered the most important aspects of TCO (Total Cost of Ownership) of a
storage system: the acquisition cost and the operating cost (power cost). Our
study gives positive answers to the questions Q1 and Q2 and reveals that we
can build a 3LA system which is much faster and much more energy efficient
than a 2LA system built with the same acquisition cost, meeting the goals of
performance and energy efficiency, which are often considered conflicting, at the
same time.

In practice, with improved storage system performance, the number of disks,
which is sometimes higher than necessary in favor of disk I/O throughput, can
generally be reduced, resulting in further operational cost savings due to reduced
floor space and cooling requirements.

The performance advantage of 3LA comes from the superior performance/price
ratio of flash devices compared with HDDs5. This ratio will steadily increase in
the next years, while the performance/price ratio of HDDs will remain relatively
stable. As a consequence, the performance advantage of 3LA will be even more
significant in the future.

LOC and GLB served as the baseline algorithms. No flash-specific optimiza-
tions are yet integrated. Techniques such as using different page size at different
layers as those discussed in [4] could further improve the performance of 3LA.
It could also be interesting to examine hybrid configuration of algorithms, e. g.,
frequency-based algorithm at one layer and recency-based algorithm at the other
layer. As future work, we will also look into such optimizations. However, future
improvements expected for performance and energy-efficiency of 3LA do not
conflict with our observations made in this paper.

One of the major differences of a flash-based cache to a RAM-based cache is
non-volatility. We have discussed a technique leveraging this property to shorten
the warm-up phase of the system in Section 3.3, which is not the main focus of
this paper and will be empirically evaluated in the future. The non-volatility of
the flash layer should be further exploited to speed up processing of transactions,
for which durability is required.

5 Similar observations are made in our experiments using the values of HDD3, the
high-end HDD in Table 1.

Trading Memory for Performance and Energy 253

Acknowledgement

We are grateful to IBM (Deutschland and USA) for providing the TPC-E trace
and to anonymous referees for valuable comments. This research is partly sup-
ported by the German Research Foundation and the Carl Zeiss Foundation.

References

1. Spiegel. Google-chef will noch mehr daten (2010),
http://www.spiegel.de/netzwelt/netzpolitik/0,1518,716204,00.html

2. Härder, T.: DBMS architecture - the layer model and its evolution. Datenbank-
Spektrum 13, 45–57 (2005)

3. Zhou, Y., Chen, Z., et al.: Second-level buffer cache management. IEEE Transac-
tions on Parallel and Distributed Systems 15(6), 505–519 (2004)

4. Koltsidas, I., Viglas, S.D.: The case for flash-aware multi-level caching. Technical
Report (2009)

5. Narayanan, D., Thereska, E., et al.: Migrating server storage to SSDs: analysis of
tradeoffs. In: EuroSys, pp. 145–158. ACM, New York (2009)

6. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Francisco (1993)

7. Gal, E., Toledo, S.: Algorithms and data structures for flash memories. ACM Com-
puting Surveys (CSUR) 37(2), 138–163 (2005)

8. O’Neil, E.J., O’Neil, P.E., et al.: The LRU-K page replacement algorithm for
database disk buffering. In: SIGMOD, pp. 297–306 (1993)

9. Johnson, T., Shasha, D., et al.: 2Q: a low overhead high performance buffer
management replacement algorithm. In: VLDB, pp. 439–450 (1994)

10. Megiddo, N., Modha, D.S.: ARC: A self-tuning, low overhead replacement cache.
In: FAST. USENIX (2003)

11. Li, Z., Jin, P., et al.: CCF-LRU: A new buffer replacement algorithm for flash
memory. Trans. on Cons. Electr. 55, 1351–1359 (2009)

12. Ou, Y., Härder, T.: Clean first or dirty first? a cost-aware self-adaptive buffer
replacement policy. In: IDEAS, Montreal, QC, Canada (2010)

http://www.spiegel.de/netzwelt/netzpolitik/0,1518,716204,00.html

Design of Embedded Database Based on Hybrid
Storage of PRAM and NAND Flash Memory

Youngwoo Park, Sung Kyu Park, and Kyu Ho Park

Korea Advanced Institute of Science and Technology (KAIST),
305-701, Guseong-dong, Yuseong-gu, Daejeon, Korea

{ywpark,skpark,kpark}@core.kaist.ac.kr

Abstract. Andorid which is the popular smart phone OS uses a database
system to manage its private data storage. Although the database system
supports a powerful and lighteweight database engine, its performance is
limited by a single storage media, NAND flash memory, and a single file
system, YAFFS2. In this paper, we propose a new embedded database
system based on hybrid storage of PRAM and NAND flash memory. Us-
ing the byte-level and in-place read/write capability of PRAM, we sepa-
rately manage a journaling process of the database system. It increases
the transaction speed and reduces the additional overhead caused by
NAND flash memory. We implement our database system using SQLite
and dual file systems (YAFFS2 and PRAMFS). Consequently, the pro-
posed database system reduces the response time of the database transac-
tion by 45% compared to the conventional database system. In addition,
it mitigates the burden of NAND flash memory management. Moreover,
previous database applications can be executed on the proposed system
without any modification.

Keywords: Database, NAND flash memory, PRAM, SQLite.

1 Introduction

Recently, various non-volatile memories such as NAND flash memory [16] and
PRAM (Phase-change RAM) [17] have been developed very quickly. These non-
volatile memories gain acceptance as an alternative storage media.

NAND flash memories have become increasingly popular for the main data
storage of the embedded system due to its shock-resistance, low power consump-
tion, and high I/O speed. The characteristics of NAND flash memory are very
different from those of traditional magnetic disks. It supports a page-level (512B
or 2KB) read and write operation, but the write speed is much slower than the
read speed. Once a page is written, the page should be erased first in order
to update data on that page. The erase operation performs in terms of block
(32KB or 256KB) and takes much longer than page write time. All pages in a
block should be unnecessarily erased at the same time. As a result, NAND flash
memory cannot be managed by in-place update scheme like a disk. It is very
important to optimize the write and erase count for NAND flash memory based
system.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 254–263, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Design of Embedded Database Based on Hybrid Storage 255

Table 1. Characteristics of NAND Flash Memory and PRAM

PRAM [7] NAND Flash Memory [16]

Volatility Non-volatile Non-volatile

Interface Byte-addreable Page based I/O

Capacity 512Mbit 8 Gbit

Read Time 80ns/Word 60μs/Page+

Write Time 1μs/Word 800μs/Page+

Erase Time N/A 1.5ms/Block∗

Endurance 1M write cycles 5K erase cycles

+Page = 2KB, *Block=128KB.

On the other hand, PRAM has begun to gain acceptance as an alternative
to the embedded storage because of its high density and performance. PRAM
has been developed by key industry manufacturers such as Intel, Samsung, and
IBM. Already, Samsung commercialize 32MB PRAM for mobile devices to re-
place NOR flash memory to store boot-up codes. Unlike NAND flash memory,
PRAM supports byte-level read/write and in-place update. These characteristics
can complement page-level read/write and out-of-place updates of NAND flash
memory in the database system.

Table 1 summarizes the characteristics of NAND flash memory and PRAM.
These special features of new storage media impose new challenges to the tra-
ditional database system. In order to make the database system adapt to those
memories, it is necessary to reconsider the storage architecture and develop new
database management algorithms.

Currently, Android, which is the popular smart phone OS releasd by Google,
uses database to manage its private data storage[18]. Fig. 1 shows the database
system of Android. Android uses SQLite library which is widely used for the
embedded system [12]. Because SQLite is a file based database system and
NAND flash memory is the main storage of smart phone, YAFFS2 [8] is used for
database file management. The database system of Android supports a powerful
and lightweight relational database engine available to all applications. However,
the storage related management is compeletly assigned to the single file system.
It is hard to adopt a new database architecture and develop a specific algorithm
of the database system. The performance of Android’s database system is limited
by YAFFS2 and NAND flash memory.

In this paper, we propose a hybrid storage architecture and transaction method
for the embedded database system. In our hybrid storage architecture, NAND
flash memory is used for the main database storage. At the same time, phase
change random access memory (PRAM) accommodates the temporal database
transaction. Because of byte-level read/write capability, PRAM ensures better

256 Y. Park, S.K. Park, and K.H. Park

Fig. 1. Database system of Google’s Android

performance for small size operations than NAND flash memory. Moreover, it
can reduce many writes of NAND flash memory during transaction and decrease
the database system overhead for storage management.

In our implementation, we modify SQLite database library to exploit PRAM
as an alternative storage. SQLite does make use of temporary files during trans-
actions. We separately store those temporary files to PRAM using a dual file
system approach which is YAFFS2 for NAND flash memory and PRAMFS [9]
for PRAM. The experimental results show that the proposed embedded database
architecture reduces the response time of database transaction by 45% compared
to thr traditional database system which consists of single NAND flash memory.

2 Related Work

Many researchers have developed new algorithms for flash-based DBMS. IPL [3]
presents in-page logging approach in which the change made to a data page in
memory are buffered on the per-page basis instead of writing the page entirely,
thus avoiding high latency of write and erase operations. PDL [4] proposes a
page-differential logging scheme with three design principles which are writing-
difference-only, at-most-one-page writing, and at-most-two-page reading. These
principles can guarantee good performance in both read and write operations and
prolong the lifetime of flash memory by reducing the number of erase operations.

Some approaches have been tried to scale down DBMS. PicoDBMS [1] is
designed for the resource-constrained smartcard. It proposes a new pointer-based
storage model with a unique compact data structure and query execution with no
RAM consumption, thus matching performance with the smartcard application’s
requirements. LGeDBMS [2] is designed for mobile systems. It applies the design
principle of log-structured file system (LFS) [11]. It can reduce the number of
I/Os by writing a log once rather than writing a log for each data change.

However, there is a limitation for designing DBMS only with flash memory.
Although the average size of updates in DBMS is about dozens of bytes, the unit
of the write operation in flash memory is over 2KB or 4KB. Flash memory also

Design of Embedded Database Based on Hybrid Storage 257

has long erase time, about 1.5ms, but small random requests in DBMS make a
large number of erase operations.

Many researches have used non-volatile memories like NOR, FRAM, and
PRAM [17] to handle small-sized data. Using the byte-level read/write capa-
bility of NOR flash memory, HFFS [10] synchronously stores data as a log in
NOR flash memory, thus reducing the write count and providing a long lifespan
of NAND flash memory. FRASH [5] proposes a novel file system for FRAM and
flash memory, thus resolving long mount time issue. PFFS [6] presents a scalable
and efficient flash file system using the combination of flash memory and PRAM.
PFFS separates the metadata from the regular data in a file system and saves
them into PRAM, thus solving the scalability problem and improving write and
garbage collection performance.

We can solve the limitation only with NAND flash memory of the traditional
database system by exploing hybrid storage of NAND flash memory and PRAM
in this paper. It results in reducing the response time of database transactions
and mitigating the burden of NAND flash memory management.

3 Hybrid Storage Architecture

For the embedded database system, we propose a hybrid storage architecture.
Fig. 2 compares the proposed architecture with a conventional architecture. As
shown in Fig. 2(a), the conventional embedded system uses NOR flash memory
as boot-up code storage.

(a) Conventional architecture

(b) Proposed hybrid architecture

Fig. 2. Storage architecture comparison

258 Y. Park, S.K. Park, and K.H. Park

On the other hand, the proposed hybrid architecture employs PRAM as boot-
up code as shown in Fig. 2(b). PRAM supports the byte-level access and XIP
(eXecution In Place). There is no problem to replace NOR flash memory to
PRAM as boot-up code storage. In addition, the remaining space of PRAM is
used as an alternative database storage while NAND flash memory is still main
database storage. Because the size of boot-up codes is very small compared to
commercialized PRAM size, PRAM can be utilized to enhance database perfor-
mance. Using PRAM data storage, we can store a part of data generated during
the database transaction and reduce unnecessary access to NAND flash memory.

4 Transaction on Hybrid Storage

In our hybrid storage architecture, the data storage of PRAM can be used to
optimize several parts of the database system. In this paper, we target to enhance
the transaction process. Fig. 3 shows the process of database transaction based
on hybrid storage of PRAM and NAND flash memory.

The key of transaction process is to store journal for rollback operation. First,
data to be updated are read to a database buffer from NAND flash memory.
Then, these original data are updated in the database buffer. After updating
data, journal data which are updated parts of data are written to PRAM instead
of NAND flash memory. Originally, both data and journal data are written to
NAND flash memory. It makes performance degradation because of two reasons.
The first one is that the unit of write operation is page whose size is over 2KB,

Fig. 3. Transaction Process on hybrid Storage

Design of Embedded Database Based on Hybrid Storage 259

but the size of journal data is small. Another reason is that write operations in
NAND flash memory make additional erase operations due to the characteristic,
called out-of-place update, thus it can increase the operation time. Therefore, we
can improve performance by writing journal data to PRAM. As whole updated
data are written to NAND flash memory, the transaction process is finished.

5 Implementation Issue

We implement our database system using SQLite. SQLite is an in-process li-
brary that implements a self-contained, serverless, zero-configuration, and trans-
actional SQL database engine [12]. It is widely used for the embedded system
because it is very compact library which can be less 300KB with all features
enabled. Currently, Android uses SQLite as its built-in embedded database [13].

If we adopt SQLite library to our hybrid storage architecture, we need a
method to access both PRAM and NAND flash memory. Basically, a database
in SQLite is a single file. SQLite is implemented on the file system. One way
to utilize hybrid storage is to develop a new file system and SQLite transaction
algorithm for hybrid storage. However, it causes modification of all database
applications and subordinates our database system to specific file system.

Fig. 4. Software architecture of proposed database system

Instead of file system modification, we use dual file systems and PRAM storage
for storing temporal rollback information. As shown in Fig. 4, we use two separate
file systems for single database management. YAFFS2, which is used for Googles
Android, is NAND flash memory based file system [8]. PRAM is managed by
PRAMFS [9] that is a simple file system designed for non-volatile memory. These
two file systems are used to store files generated by SQLite database library.

260 Y. Park, S.K. Park, and K.H. Park

YAFFS2 manages main database storage and PRAMFS stores only temporal
file called rollback journal.

Currently, SQLite uses the rollback journal to atomic commit and rollback
capabilities in SQLite. The rollback journal is frequently accessed and updated
because it stores all information needed to restore the database back to its
original state. In addition, the rollback journal is created when a transaction
is first started and is deleted when a transaction commits or rolls back [12]. The
size of rollback journal is small enough to store in small-sized PRAM storage.
Because of non-volatility of PRAM, there is no problem to rollback transaction
after sudden system power-off. Therefore, if the rollback journal is managed by
PRAMFS, we can reduce a lot of data read/write of NAND flash memory during
transaction and increase the database system performance.

Because the rollback journal is originally located in the same directory as the
database file, we simply modify the SQLite library to designate the location of
rollback journal. We never change a programming interface of SQLite. Previous
database applications are compatibly executed on the proposed system. More-
over, there is no file system dependency in the proposed database system. We
can use any two file systems to separate rollback journal from database. Even it
identically works as conventional SQLite when using single file system.

6 Experiment

6.1 Experimental Environment

In order to evaluate our database system, we use an evaluation board shown
in Fig. 5. This evaluation board has a 266MHz ARM processor and 64MB of
SDRAM. It can include most of the storage devices that are currently used for
embedded systems: NOR flash memory, SLC and MLC NAND flash memory,

Fig. 5. The evaluation board for experiment

Design of Embedded Database Based on Hybrid Storage 261

OneNAND, UtRAM, and PRAM. We can organize the proposed hybrid storage
architecture on that board. However, PRAM is not currently available, thus
the performance evaluation was actually carried out with an emulated PRAM
by using UtRAM. We analyze the read/write time of PRAM and emulate that
by power backed UtRAM with software delay [6][15]. Our emulation method is
enough to evaluate our hybrid storage architecture because PRAM read/write
time is deterministic and the data in power backed UtRAM was not volatilized.

6.2 Experimental Result

We implement our database system in a Linux OS with a kernel 2.6.19 version.
Latest version of YAFFS2 and PRAMFS are used for file system of NAND flash
memory and PRAM. We modify SQLite 3.7.3 vesion to select rollback journal
location optionally. The proposed database system is compared to the conven-
tional embedded database system that uses YAFFS2 file system with single
NAND flash storage. To evaluate the performance of database, we use DBT-2
benchmark which is a fair usage implementation of the TPC-C benchmark spec-
ification [14]. Our results are measured by taking the average of consecutive five
tests of DBT-2 benchmark.

Fig. 6. Average response time of DBT-2 benchmark

Fig. 6 summarizes the average response time of TPC-C transaction. The re-
sults show that our proposed database system reduces the response time of all
kinds of TPC-C transactions by 45%. The average NOTPM (New Order Trans-
action Per Minute) value is increased to 0.334 in the proposed database sys-
tem, while the conventional database system shows only 0.172 NOTPM. This is
mainly because the proposed system decreases the overhead of rollback journal.
The proposed storage makes it possible to read/write rollback journal by single
byte. We can reduce rollback journal update latency.

262 Y. Park, S.K. Park, and K.H. Park

Table 2. Comparison of Write and Erase Count in NAND Flash Memory between
Conventional and Proposed Database

Conventional Database with Proposed Database with

Only NAND Flash Memory NAND Flash Memory and PRAM

Avg. Write Count 13020 5178

Avg. Erase Count 77 12

In addition, we can exploit in-place update in the proposed system. Table 2
shows the average write and erase count of NAND flash memory made during
DBT-2 benchmark execution. Because proposed system updates rollback journal
data in PRAM, it reduces many write and erase operations of NAND flash
memory and increases the performance of our database system. Moreover, if
the write and erase count is reduced, the overhead of NAND flash memory
management like garbage collection and wear-leveling may be also decreased
significantly.

7 Conclusion

Because of advance of the non-volatile memory technology, we should redesign
database system. Each non-volatile memory has very different characteristics. It
is important to consider the features of non-volatile memories. In our proposed
design, we developed the hybrid storage architecture to use the advantage of
PRAM and NAND flash memory. We prove that the embedded database system
performance can be increased by simple modification. Our implementation is
compatibly used for previous SQLite application. Our idea is further applicable
to storage architecture using other non-volatile memories.

8 Future Work

As the further work, we’ll separate other temporary files such as master journals,
statement journals, TEMP databases, materializations of views and subqueries,
transient indices, and transient databases used by VACUUM as well as the roll-
back journals for writing to PRAM. We can also exploit PRAM for storing
frequently updated data for reducing write operations in NAND flash memory.
Because PRAM has limited size compared to NAND flash memory, we need
to develop allocation, swapping, and buffering schemes in SQLite layer or file
system layer according to the data size or type.

References

1. Pucheral, P., Bouganim, L., Valdureiz, P., Bobineau, C.: PicoDBMS: Scaling Down
Database Techniques for the Smartcard. In: Proc. the 26th International Confer-
ence on Very Large Data Bases (VLDB 2000), pp. 11–20 (2000)

Design of Embedded Database Based on Hybrid Storage 263

2. Kim, G.-J., Baek, S.-C., Lee, H.-S., Lee, H.-D., Joe, M.J.: LGeDBMS: A Small
DBMS for Embedded System with Flash Memory. In: Proc. the 32nd International
Conference on Very Large Data Bases (VLDB 2006), pp. 1255–1258 (2006)

3. Lee, S.-W., Moon, B.: Design of Flash-Based DBMS: An In-Page Logging
Approach. In: Proc. the 2007 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2007), pp. 55–66 (2007)

4. Kim, Y.-R., Whang, K.-Y., Song, I.-Y.: Page-Differential Logging: An Efficient
and DBMS-independent Approach for Storing Data into Flash Memory. In: Proc.
the 2010 International Conference on Management of Data (SIGMOD 2010), pp.
363–374 (2010)

5. Kim, E.-K., Shin, H., Jeon, B.-G., Han, S., Jung, J., Won, Y.: FRASH: Hierarchical
File System for FRAM and Flash. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA
2007, Part I. LNCS, vol. 4705, pp. 238–251. Springer, Heidelberg (2007)

6. Park, Y., Lim, S.-H., Lee, C., Park, K.H.: PFFS: A Scalable Flash Memory File
System for the Hybrid Architecture of Phase-Change RAM. In: Proc. the 2008
ACM Symposium on Applied Computing (SAC 2008), pp. 1498–1503 (2008)

7. Qureshi, M.K., Karidis, J., Franceschini, M., Srinivasan, V., Lastras, L., Abali, B.:
Enhancing Lifetime and Security of PCM-Based Main Memory with Start-Gap
with Start-Gap Wear Leveling. In: Proc. the 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO 42), pp. 14–23 (2010)

8. Aleph One Ltd., Yet Another Flash File System, YAFFS (2002),
http://www.yaffs.net

9. Protected and Persistent RAM Filesystem, http://pramfs.sourceforge.net
10. Lee, C., Baek, S.H., Park, K.H.: A Hybrid Flash File System Based on NOR and

NAND Flash Memories for Embedded Devices. IEEE Transactions on Comput-
ers 57(7), 1002–1008 (2008)

11. Rosenblum, M., Ousterhout, J.K.: The Design and Implementation of a
Log-Structured File System. In: Proc. the 13th ACM Symposium on Operating
Systems Principles (1992)

12. SQLite, http://www.sqlite.org
13. Wikipedia, SQLite, http://en.wikipedia.org/wiki/SQLite
14. Database Test 2 (DBT − 2TM), http://osdldbt.sourceforge.net
15. K1S5616BCM Data Sheet, http://www.samsung.com
16. K9F2G08U0A Data Sheet, http://www.samsung.com
17. Wikipedia, Phase-change memory,

http://en.wikipedia.org/wiki/Phase-change_memory

18. What is Android?,
http://developer.android.com/guide/basics/what-is-android.html

http://www.yaffs.net
http://pramfs.sourceforge.net
http://www.sqlite.org
http://en.wikipedia.org/wiki/SQLite
http://osdldbt.sourceforge.net
http://www.samsung.com
http://www.samsung.com
http://en.wikipedia.org/wiki/Phase-change_memory
http://developer.android.com/guide/basics/what-is-android.html

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 264–275, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Hybrid Storage with Disk Based Write Cache

Puyuan Yang, Peiquan Jin, and Lihua Yue

School of Computer Science and Technology,
University of Science and Technology of China, 230027, Hefei, China

yangpuy@mail.ustc.edu.cn

Abstract. Recently, flash-memory-based solid state disks (SSDs) have been
considered to be alternatives for traditional magnetic disks. However, it has not
come true so far due to some limitations on SSDs, such as high latency of write
operation and low reliability in case of unbalanced erasure. Therefore, a prac-
tical way is to integrate SSD and magnetic disk and then to obtain a better tra-
deoff between those two storage medium. In this paper, we investigate the
issues of integrating SSD and disk in the storage layer of a database manage-
ment system. In particular, we propose a new approach to using a magnetic disk
as the write cache of an SSD, in which each data page is placed either in disk or
in SSD. To find an optimal page placement scheme, we first propose a page
migration model, which uses two grains, namely page and block (a set of pag-
es), to perform the migration between SSD and disk. Based on this model, we
develop an online approach to determining the optimal places of data pages. We
conduct experiments on tailor-made traces to measure the performance of our
hybrid storage approach. The results show that our approach ensures most read
operations are performed on SSD and most write operations are focused on
disk. Meanwhile, our hybrid approach has less runtime than the single-disk-
based mechanism.

1 Introduction

Flash memory was commonly used in hand-held devices. As the constantly growing
of the capacity of flash memory, flash-memory-based solid state disks (SSDs) are
going to be an alternative of traditional magnetic disks and be used as secondary sto-
rage devices in modern computer systems.

However, SSD exhibits some different characteristics compared to magnetic disks.
Firstly, it has no mechanical latency. Secondly, it has different I/O latencies, i.e., a
read operation usually consumes less time that a write operation does. In particular,
the random write operation in SSD is considered to be even slower than that in mag-
netic disk. This has been one of the major problems that influence the performance of
SSDs.

To improve the I/O performance of SSD, we propose a hybrid storage approach,
which uses both an SSD and a magnetic disk. Moreover, we use the magnetic disk as
a write cache of the SSD, which ensures that all writes are first taken place on the
magnetic disk and thus can avoid the random writes on the SSD. To take advantage of
the high read speed of SSD, we develop an algorithm to migrate read-mostly pages
into SSD, if they are first located in the magnetic disk. Those migrated pages are

 Hybrid Storage with Disk Based Write Cache 265

organized as blocks and all migrations are performed according to a block unit, which
aims at making use of the high sequential-write performance of SSD and also reduc-
ing the erase times of flash memory.

The rest of this paper is organized as follows. Related work is presented in Section
2. The hybrid storage model is discussed in Section 3. In Section 4, we explain the
details of our idea, including the migration algorithm. Experiments are discussed in
Section 5. And finally, we conclude the paper in Section 6.

2 Related Work

2.1 Flash Translation Layer

To overcome the limitations of flash memory, SSD employs a software layer called
flash translation layer (FTL). FTL is placed between the file system and flash chips,
typically stored in a ROM chip, and its main purpose is to provide logical-to-physical
address mapping, error recovery, and wear-leveling. Concretely, FTL maintains a
mapping of the logical page address to enable a new physical page location on flash
memory, and the mapping information is maintained separately in flash memory and
main memory for look-up. Besides, FTL always redirects a page write request to an
empty area which has been erased earlier.

Many different algorithms have been proposed for the FTL [2]. Their mapping
runs at the page level or block level.

Page-mapping FTL deals with the erase-before-write by redirecting a write request
to any empty page in the flash memory, and its mapping table records the valid physi-
cal page locations. So one erasure can serve x write request when a block contains x
pages. However, page-mapping method requires a great number of memories for its
information. In some cases, it may take a long time that scanning the whole flash
memory to reconstruct the mapping information at start-up.

Block-mapping FTL only maps a logical block address to its physical location,
which means that both of the offsets of a page in the physical block and logical block
are totally identical. So the memory requirement is much less than page-mapping
FTL. However, updating a page requires that the new content of the page must be
written to the same offset in another free block and the rest pages of the block have to
be copied to the newly allocated block, which results in that updating a page brings up
a block erasure and x pages writes.

2.2 Log-Block-Based FTL

Some improvement, called hybrid mapping FTL, have been proposed for the prob-
lems of page-mapping FTL and block-mapping FTL. Some representatives of them
are called log-block-based approaches [3,4]. In the log-block FTL, a set of flash
blocks are called log blocks which the write requests are always directed to. The
log-block FTL avoids frequent block erasures by mapping the page addresses in a log
block at the page level which means allowing a page to be in any position in a
log block. The remaining flash blocks are called data blocks which are managed at the
block level, and they generally take up much larger area than log blocks.

There are two kinds of schemes depending on the block association policy: a log
block is allocated for only one data block (BAST)[4] and a log block is allocated for

266 P. Yang, P. Jin, and L. Yue

multiple data blocks(FAST)[5]. For a write request, firstly data updating takes place
in a log block. If there is no free log block available, a log block must be selected as a
victim to be freed, and all the valid pages in both the log block and its corresponding
data block (or blocks) are migrated into data blocks to make a room for on-going
write requests. This step is called block merge.

In the approach of BAST, a log block serves the page writes to only one data
block. When merge operation occurs, there are two situations:

(a) If the victim log block does not contain all valid pages of its data block, each
valid page—either in the log block or in the corresponding data block—is copied to
another empty block. Then the third block become the new data block and the log
block and the old data block are erased for later use as log block or data block, which
brings up two erasures.

(b) When not only the victim log block contains all valid pages of its data block but
also the offsets of pages are same to those of their corresponding pages in the data
block, we just simply mark the victim log block as the new data block and only one
erasure is necessary for the old data block. This operation is called a switch merge.
However, in general BAST shows very low space utilization. Especially for random
write patterns with low locality, it shows poor performance because of frequent block
merges with log block poorly filled with modified pages.

To resolve the problem of BAST, FAST was proposed. It makes a log block serve
write request for multiple data blocks. So it is obvious that the higher space utilization
in the log blocks can be achieved and merge operation frequency can be reduced.
However, a merge operation may bring more erasures. Fox example, if a victim log
block is associated with N data blocks, for each of them, the valid pages are copied to
a free block, and then it is necessary that N erasures for the old data blocks and one
erasure for the log block.

Log-Block-Based FTL can apparently improve the write performance of SSD, and
the write requests is higher locality, the better is the flash write performance, which
suggests that the pages written to SSD being organized in block in buffer can make
benefit for FTL.

2.3 Hybrid Storage Policy

There have been some good ideas about hybrid storage policy based on SSD and
magnetic disk [6, 7]. In article [6], SSD and magnetic disk are regarded at the same
level of the memory hierarchy. Three page placement algorithms are discussed deeply
which define the proper location for a page. For each page, these algorithms record
the total times of the physical read & write and the logical read & write to computer
the migration cost (defined by physical I/O cost of flash and magnetic disk). If the I/O
benefit of the page in the other device is more than that in the current device and the
difference is bigger than migration cost, the page can be migrated to the other device.
By recording and analyzing the history I/O information, these algorithms can properly
distinguish the read-intensive pages and the write-intensive pages. As experiment
shown in article [6], these algorithms are sensitive to the change of the I/O workloads
of the page. Inspired by the discussion of these algorithms, we propose a migration
model at the block level.

 Hybrid Storage with Disk Based Write Cache 267

In article [6], the other main policy is the buffer policy. In buffer, except the main
queue managed by LRU algorithm, four more queues which store the victim page
from the main queue are designed to reduce the total I/O cost: 1) Flash Read Queue
stores the clean pages located in flash, 2) Flash Write Queue stores the dirty pages
located in flash, 3) Magnetic Read Queue stores the clean pages located in magnetic
disk, 4) Magnetic Write Queue stores the dirty pages located in magnetic disk. The
pages accessed in the four queues are put back into main queue. According to the or-
der from lowest I/O cost to highest I/O cost, evict operation firstly select the pages in
FRQ as victim page, then in MRQ if FRQ is empty, then in MWQ if FRQ and MRQ
are empty, then in FWQ if other 3 queues are empty.

SSD and magnetic disk are at the same level, so some page writing certainly take
place in flash, and the buffer replacement policy and migration policy are designed at
the page level. That may bring some random writes to flash which may result in some
non-switch merges as shown in section 2.2. So we propose migrating the data to SSD
in block.

In article [6], it may result in some unfit migration that the migration algorithms
do not consider the write frequency of a page in local-time. For example, a page
located on magnetic disk should be migrated at time t according to the migration algo-
rithm, but from time t there come a series of write requests for the page and the
process the page belongs to becomes cold, which means some physical writes inevita-
bly come out. If the page is migrated to flash, these physical writes take place on the
flash. After all, the migration algorithm in article [6] can agilely get the read/write-
intensive workloads of the pages, but it cannot handle the frequent writes to the pages
in flash in local-time.

3 The Hybrid Storage System Model

The hybrid storage system consists of an SSD and a magnetic disk. It is imaginable
that such a system may consists of two or SSDs or magnetic disks. However, in this
paper we simplify the system model to include only one SSD and one magnetic disk.
We remain the issue how to cope with more SSDs and magnetic disks in the hybrid
system in the future work.

In the hybrid storage system, SSD can be used to improve the total read perfor-
mance, while it has a limited lifetime. On the other hand, magnetic disk has better
performance in terms of random write. Thus the key issue in the hybrid storage sys-
tem is how to make use of the high read speed of SSD and the high random write per-
formance of magnetic disk, in order to improve the overall I/O performance of the
storage system. Meanwhile, we want to avoid the high-cost random writes on SSD
and random read on magnetic disk.

Based on the above consideration, we design different processing strategies to
answer write requests and read requests in the hybrid storage system. As shown in
Fig.1, for read request, SSD and magnetic disk are used at the same level of the
storage hierarchy. To make this model favor for read performance, we propose a mi-
gration algorithm to place the pages with read-intensive workloads in SSD. In Fig.1,
Rf represents the physical read cost of flash memory, and Rm represents the physical
read cost of magnetic disk.

268 P. Yang, P. Jin, and L. Yue

In order to reduce the random writes on SSD, we take the magnetic disk as a write
cache for SSD by placing all the updated pages from SSD at the page level in the
magnetic disk (as shown in Fig.1 (b)). So the page-grained updating only takes place
in the magnetic disk, and then the read-mostly pages in the magnetic disk can be mi-
grated into SSD according to a block unit. The migration algorithm depends on the
accessed history of the pages and blocks located in the magnetic disk. As shown in
Fig.1 (b), our hybrid storage system employs a two-layer storage hierarchy. In Fig.1
(b), Wmp represents the physical write cost to magnetic disk and Wfb represents the
physical write cost to SSD.

(a) read request (b) write request

Fig. 1. Different strategies to process read and write requests

The migration unit in our system is different. When a page from SSD is written to
the magnetic-disk cache, we just use a general buffer replacement algorithm such as
LRU, which does not bring additional system costs. On the other hand, when pages in
magnetic disk are migrated into SSD, we use the block unit, i.e., the pages are orga-
nized into chunks and then written into SSD. This procedure may introduce more sys-
tem costs because of the more calling to the I/O interface. So we need to get a proper
buffer policy to reduce the migration cost.

4 The Migration Algorithm

4.1 Page Placement

We present an algorithm to deciding the optimal placement of data pages. Whenever
the buffer pool is out of space, a page must be selected to be replaced according to our
buffer replacement policy. At that point, if the page is fetched from magnetic disk, our
migration algorithm can decide whether the page should be placed in SSD along with
its corresponding block.

 Hybrid Storage with Disk Based Write Cache 269

The migration approach is designed as an online algorithm. It only keeps track of
the blocks located in magnetic disk and decides when to be migrated. We model the
decision process as a two-state system. All pages always change between the two
states, saying that either a page is on SSD or on the magnetic disk. As shown in Fig.2,
we use different symbols to represent the costs of read and write operation, which are
listed as follows:

 rm: the cost of reading a random page from the magnetic disk.
 Wm: the cost of writing a random page to the magnetic disk.
 rf: the cost of reading a random page from SSD.
 Wfb: the cost of writing a block to SSD.

Fig. 2. The migration model

Note that in our system all write operations on SSD are performed at the block unit,
so the migration cost from one state to the other is equal to Wm or Wfb.

Because the magnetic disk is taken as a write cache for SSD, the migration
algorithm only focuses on migrating the read-mostly pages in the magnetic disk into
SSD. As shown in [7], Read-Threshold Trigger is a good method to get the read-
intensive block, but the difference in our system is that the threshold is decided by the
physical I/O cost which is inspired by article [6]. On the other hand, the interaction
between physical and logical operations is not clear. We need to count the actual I/O
and the logical application-level I/O. In article [6], the hybrid algorithm has the best
result by counting the actual physical I/O and the possible physical I/O computed by
those logical times a probability. We propose a similar algorithm, but the difference in
our system is that we only count the read operations and ignore the write operations.

4.2 Block Level Hybrid Algorithm

To exhibit the excellent read performance of SSD, we need to place the read-intensive
blocks on SSD. We propose a block level hybrid algorithm to count both the physical
and logical operations on data blocks on the magnetic disk. If a page on the magnetic
disk gets a read request, we increase the count of its corresponding block. The basic
idea is that a physical read operation has more impacts than a logical one and they
affect the actual costs.

As shown in Fig.3, we only count the read operations. Line 13, 14 and 15 show
that for a block if the read accounting reaches a threshold, the pages of the block on

270 P. Yang, P. Jin, and L. Yue

magnetic disk can be migrated to SSD. The threshold is decided by the physical write
cost. Wm is the cost of the physical writing a page to magnetic disk and Wfb is the
cost of the physical writing a block to SSD which consist the migration cost, and the
formula in Line 15 Wm x block size presents the cost of those pages moved back to
the magnetic disk later. Line 15 indicates that the migration operation will be carried
out when the benefit of read-after-migration is bigger than the migration cost.

The probability that a logical read operation will be realized as a physical one is
proportional to the accounting of the read operations. Let n is the number of the total
read operations and b is the number of the logical read operations in history. The
probability b/n refers to the possibility that a logical read operation will not affect the
total read cost. So the formula 1 b/n represents the possibility that a logical read
operation will have an impact on the I/O cost.

Fig. 3. The block level hybrid algorithm

In Fig.3, lr counts the logical read operations and pr counts the physical read oper-
ations since the block has at least one page on the magnetic disk. When the page evic-
tion occurs in the buffer, the algorithm determines if the corresponding block of the
victim page should be migrated or not.

4.3 Page Level HSLRU-2 Algorithm

The physical write frequency of a page on magnetic disk is measure by the HSLRU-2
algorithm (see Fig.4). HSLRU-2 is similar to LRU-2. The basic idea is that the time is

 Hybrid Storage with Disk Based Write Cache 271

recorded as dirty-last when it is written to the magnetic disk. As shown in article [8],
there is also a time threshold to measure the frequency. For a page, if the time interval
between the contiguous dirty-last is smaller than a time threshold, the page is in the
sequential physical write state. Upon eviction, a page in the sequential physical write
state cannot be migrated even if its corresponding block has been proved read-
intensive. In other words, it requires that the pages are not in the sequential physical
write state and their corresponding block has been proved read-intensive that the pag-
es can be migrated in block to the SSD.

Fig. 4. The HSLRU-2 Algorithm

The algorithm as shown in Fig.4 measures the physical write frequency of a page
on the magnetic disk. for a page, if the contiguous physical writes to the magnetic
disk are proved sequential, the algorithm uses a parameter dirtyhist(2) to record the
replacement time, or it uses a parameter dirtyhist(1) to record the replacement time.
Besides, it also records the time of each physical write to magnetic disk with a para-
meter dirtylast. So dirtyhist(1) presents the time of the latest un-sequential physical
write while dirtyhist(2) represents the time of the latest sequential one. As shown in
Line 21, it proves the page is currently in the sequential physical write state that dir-
tyhist(2) is bigger, to which the contrary shows the page is not in that state as shown
in Line 24.

In the buffer, the pages which are new on the magnetic disk do not need to be rec-
orded, because those pages are not physically stored on the magnetic disk. The re-
cording starts after their first written to the magnetic disk. The parameter firstinbuf
shows if we should record the frequency of the page or not.

272 P. Yang, P. Jin, and L. Yue

The time interval threshold should be defined by the frequency of the write re-
quests. Similar to [8], for the multiple processes running, there may frequently comes
out some physical write operations which occur to some not hot pages which are al-
ways evicted in buffer. So the time interval threshold is better to be designed at the
average level of the interval of pages’ replacement or it is just decided by the DBA.

In summary, the block level hybrid algorithm keeps track of the information about
blocks while the HSLRU-2 algorithm focuses on the pages information. So we can
handle the hybrid storage problem at two levels.

5 Performance Evaluation

We have implemented our algorithms in Windows XP to evaluate their performance.
Our experiment runs in a simulation environment and uses different types of trace
files. We attach a SATA-interfaced SSD to the test computer as our flash device. To
reduce the cache effects of the file system, we execute the file operations without us-
ing the buffer of the file system.

In order to determine the cost parameter of SSD and magnetic disk, we use IOme-
ter [11] to measure the I/O costs for each device. We record the average latency of an
I/O operation and the IOPS for each device. Table 1 shows the results. The second
column is the measured average times, the third column is IOPS, and the fourth col-
umn is the costs normalized by the flash random read time and IOPS.

Table 1. I/O costs used in the experiment

Operation Latency(ms) IOPS Costs
Flash random read 0.482 2057 1
Flash random write 235.78 4.24 487
Flash block write 40.128 403553.28 86

Magnetic random read 11.0953 90.11 23
Magnetic random write 5.86 170.7 12

Our trace files include six files created according to the method introduced in [13].

The trace files all contain 300000 write and read requests and 10000 different pages.
The features of the trace files are shown in Table 2. The locality means the range of
the access, for example 80%/20% presents that the 80% of the accesses focused on
the 20% of the pages.

Table 2. Trace files used in the experiment

Trace Type Requests Different pages Read/Write ratio Locality
T9182 300000 10000 90%/10% 80%/20%
T5582 300000 10000 50%/50% 80%/20%
T1982 300000 10000 10%/90% 80%/20%
T9155 300000 10000 90%/10% 50%/50%
T5555 300000 10000 50%/50% 50%/50%
T1955 300000 10000 10%/90% 50%/50%

 Hybrid Storage with Disk Based Write Cache 273

In our experiment, we first test the migration result. We use two metrics, namely
Write Hit(WH) and Read Hit(RH), to measure the effectiveness of our algorithm.
Suppose that there are total N1 read operations and N2 write operations in the trace
file, if x read operations are executed on SSD and y write operations are focused on
magnetic disk, we define RH and WH as follows:

1

x
RH

N
=

2

y
WH

N
= (1)

A higher WH value indicates that our algorithm moves more write-intensive pages
into the magnetic disk, which shows that the cost of write operation is reduced
because magnetic disk has better write performance. Similar to WH, a higher RH val-
ue means that our system is able to reduce the additional costs of read operations in-
troduced by magnetic disk. In the experiment, we use the LRU algorithm as the buffer
replacement policy and run the trace files using both an SSD and a magnetic disk as
storage devices. Besides, we set three different initialization states and measure the
migration effectiveness respectively. Those states are labeled as follows:

 HDDP: the pages all on the magnetic disk.
 SSDP: the pages all on the SSD.
 HybridP: half pages on the SSD and the other pages on the magnetic disk.

Table 3 shows the numbers of pages partitioned into SSD and the magnetic disk, un-
der three setups. Table 4 shows the WH and RH values for each initial state.

Table 3. Numbers of pages partitioned into SSD and HDD

Trace
Type

Pages Partitioned on HDD Pages Partitioned on SSD
HDDP SSDP HbridP HDDP SSDP HybridP

T9182 2227 2423 2645 7773 7576 7355
T5582 6065 6442 4332 3935 3558 5668
T1982 7482 6152 6790 2515 3843 3210
T9155 1992 1997 2024 8008 8003 7976
T5555 5367 4844 4365 4633 5156 5635
T1955 7993 8456 8126 2007 1544 1874

Table 4. The WH and RH values for three initial states

Trace
Type

WH(%) RH(%)
HDDP SSDP HbridP HDDP SSDP HbridP

T9182 31.42 29.1 31.1 68.84 71.26 69.31
T5582 66.86 63.68 65.73 32.87 36.14 34.29
T1982 92.50 89.86 91.10 7.68 10.27 8.88
T9155 20.66 18.20 20.45 79.50 82.08 79.66
T5555 50.92 47.26 49.35 49.34 53.03 51.10
T1955 87.66 84.67 86.16 12.27 15.15 13.70

In Table 3, we can find out the number of pages partitioned into the magnetic disk
and that into SSD is very similar to that of read and writes operations in the trace
files, which shows our algorithm can effectively distinguish write-mostly pages from

274 P. Yang, P. Jin, and L. Yue

read-mostly ones. Table 4 shows that in the read-intensive trace file, namely T9182
and T9155, we get much higher RH values, while for T1982 and T1955 we get higher
WH values. This indicates that our approach can effectively place the write-intensive
pages on the magnetic disk and let the read-intensive pages on SSD.

In this paper, our goal is to use the magnetic disk as a write cache to improve the
performance of SSD. So we compare the run time of our system with the SSD-only
system. Besides, we record the time of the migration to compare the benefit and the
additional cost brought by our system. The result is shown in Fig.5.

The line named “Flash” is the run time of different trace files under the SSD-only
storage system. The line named “Hybrid” is the run time for the hybrid storage system
and the line named “Migration” refers to the time cost for migrate operations. We
calculate the runtime for each trace file and get the average value of the execution
time. As shown in Fig.5, our system can reduce the total cost for SSD.

Fig. 5. Comparison of runtime between SSD-only and hybrid storage system

6 Conclusions and Future Work

SSD is regarded as an alternative of traditional magnetic disks. Previous work was
usually based on such assumption that SSD will totally replace magnetic disks in a
couple of years. However, as time passed, the current situation shows that SSD will
not replace magnetic disks, due to some intrinsic limitations of SSD. Therefore, a
practical way is to integrate SSD with magnetic disks and build a hybrid storage sys-
tem. In this paper, we present a hybrid storage model and propose different ways to
deal with read and write requests. In particular, we argue to use the magnetic disk as a
write cache of SSD, in order to reduce the random write costs of SSD. We also

T
im

e
(s)

Trace File

 Hybrid Storage with Disk Based Write Cache 275

develop a migration algorithm and introduce the new block/page-based migration unit
to partition write-mostly pages into magnetic disk while read-mostly pages into SSD.
The experimental results have shown that our policy can effectively partition pages
according to their access pattern and further reduce the total I/O cost of SSD-based
storage system.

In the future, we will investigate the buffer management policy to improve the
migration mechanism and further reduce the I/O cost of the hybrid storage system.
Besides, we shall consider pulling the energy saving impact into the hybrid storage
model. For some high-grade SSD having better performance for random write than
HDD and even better random-write than random read, we will research in the migra-
tion method by some other standard.

Acknowledgement

This paper is supported by the National Science Foundation of China (No. 60833005
and No. 61073039).

References

1. Kaiputer (2008), http://news.mydrivers.com/1/114/114319.htm
2. Chung, T.-S., et al.: System software for flash memory: A survey. In: Sha, E., Han, S.-K.,

Xu, C.-Z., Kim, M.-H., Yang, L.T., Xiao, B. (eds.) EUC 2006. LNCS, vol. 4096, pp. 394–
404. Springer, Heidelberg (2006)

3. Lee, S.-W., Park, D.-J., Chung, T.-S., Lee, D.-H., Park, S., Song, H.-J.: A log buffer-based
flash translation layer using fully-associative sector translation. ACM Trans. on Embedded
Computing Systems 6(3) (July 2007)

4. Kim, J., Kim, J.M., Noh, S.H., Min, S.L., Cho, Y.: A space-efficient flash translation layer
for Compact Flash systems. Trans. on Consumer Electronics 48(2), 366–375 (2002)

5. Lee, S.-W., Choi, W.-K., Park, D.-J.: FAST: An Efficient Flash Translation Layer for
Flash Memory. In: EUC Workshops, pp. 879–887 (2006)

6. Koltsidas, I.: Flashing Up the Storage Layer. In: VLDB 2008. ACM, New York (2008)
7. Soundararajan, G., Prabhakaram, V.: Extending SSD Lifetimes with Disk-Based Write

Caches. In: USENIX Conference on File and Storage Technologies. FAST (2010)
8. Neill, E.O.: The Page Replacement Algorithm For Database Disk Buffering. In: SIGMOD

2000, pp. 297–306. ACM, New York (1993)
9. Park, S.-Y., Jung, D., Kang, J.-U., Kim, J.-S., Lee, J.: CFLRU: A Replacement Algorithm

for Flash Memory. In: CASES 2006, pp. 234–241. ACM, New York (2006)
10. Ou, Y., Harder, T., Jin, P.: CFDC: a flash-aware replacement policy for database buffer

management. In: Science And Technology (DaMoN), pp. 15–20. ACM, New York (2009)
11. Iometer Project, iometer-[user—devel]@lists.sourceforge.net. Iometer Users Guide,

http://www.iometer.org
12. Russinovich, M.: v2.01. DiskMon for Windows (2006),

http://www.microsoft.com/technet/sysinternals/utilities/disk
mon.mspx

13. Yoo, Y., Lee, H., Ryu, Y., et al.: Page Replacement Algorithms for NAND Flash Memory
Storages. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part I. LNCS, vol. 4705,
pp. 201–212. Springer, Heidelberg (2007)

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 276–286, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Analysis of Network Structure and Post Content for
Blog Post Recommendation

Wan-Shiou Yang and Yi-Rong Lin

Department of Information Management, National Changhua University of Education,
No. 1, Jin-De Rd., Changhua 50007, Taiwan
{wsyang,yrlin}@cc.ncue.edu.tw

Abstract. The acceleration of Weblogs has increased the perceived information
overload for bloggers attempting to find interested or relevant information.
Helping bloggers to efficiently locate relevant and high-quality information is
imperative. In this research, we therefore propose four approaches that exploit
the post citation network, blog-based social network, and post content to facili-
tate the automatic construction of an authoritative blog post recommender sys-
tem. The proposed approaches were tested with blog data collected from Baidu
Space, and the experimental results revealed that the proposed approaches
outperform the content-only approach and the explicit citation approach.

Keywords: Weblog, Recommender System, Information Retrieval, Social
Network.

1 Introduction

Over the past few years, the web has experienced an exponential growth in the use of
weblogs or blogs. Weblog is a good paradigm of online social network which consti-
tutes web-based regularly updated journals with reverse chronological sequences of
dated entries, usually with blogrolls on the sidebars, allowing bloggers link to favorite
sites which they are frequently visited [11]. Weblog offers a more open channel of
communication, people in the blogosphere read, commentate, cite, socialize and even
reach out beyond their social networks, make new connections, and form communi-
ties [11]. A blog-based social network thus emerges as a powerful and potentially
services-valued form of communication.

There exists a large number of information in the blogosphere, including text-based
blog entries (articles) and profile, pictures or figures and multimedia resources [3].
The acceleration of blogs thus has increased the perceived information overload for
bloggers attempting to find interested or relevant information [7] [8] [11] [16]. Help-
ing bloggers to efficiently locate relevant and high-quality information is thus impera-
tive and a major focus of the information retrieval and database communities.

The information overload problem can be tackled with by recommender systems
[9] [28]. The content-based approach is often used to build the key components of
systems for recommending information on the Web [9] [10] [17] [22] [16] [25]. This
approach typically employs information retrieval techniques to build personal interest
profiles by analyzing the content of articles browsed by the user, and recommends
articles whose content is highly consistent with the interest profile of a user.

 An Analysis of Network Structure and Post Content 277

The content-based approach is simple. However, it has a fundamental limitation:
Articles are essentially seen as pieces of text. As a result, although articles recom-
mended by the content-based approach are highly consistent with the interest profile
of a user, they are not necessarily authoritative. For example, a set of articles might be
recommended based on articles about financial investment browsed by a user, but the
first 10 hits might be for articles that most people would not consider authoritative.

This research aimed at remedying the above problem of the content-based ap-
proach and proposed approaches that exploit the post citation network, blog-based
social network, and post content to facilitate the automatic construction of an authori-
tative blog post recommender system. Specifically, we combined information re-
trieval techniques with network analysis techniques to find relevant and authoritative
blog posts for making recommendation. The proposed approaches were tested with
blog data collected from Baidu Space, and the experimental results showed that the
proposed approaches outperform the traditional content-only approach and the
explicit citation approach.

This paper is organized as follows. Section 2 reviews related works, and Section 3
describes the proposed approaches. The results of evaluating the proposed approaches
using empirical data are reported in Section 4, and Section 5 concludes with a sum-
mary and a discussion of future research directions.

2 Literature Review

Modern recommendation techniques have their roots in information filtering [9] [28]
and aim to filter out information that is irrelevant and uninteresting to a given user.
Several approaches have been commonly used for recommending information on the
Web. Content-based recommender systems [9] [10] [16] [17] [22] [25] generally
employ information retrieval techniques to build a user’s interest profile by analyzing
the content of items that the user has navigated recently. This approach recommends
items that exhibit a high degree of similarity with the interest profile of the target
user. Collaborative recommender systems [9] [15] [24] recommend items that similar
users have liked. Usage mining has been proposed as an alternative approach for
making recommendation [19] [20] [26], and employs data mining techniques to dis-
cover usage patterns by analyzing the navigational activities of users. Several recent
researches [8] [16] [25] [27] investigated relationships in blog-based social networks
and embedded authority and trust models in the proposed systems for recommending
Weblogs or bloggers. In this research, we focus on the recommendation of blog posts
and combine the analysis of post content and the analysis of network structures for
making recommendation.

A number of ranking strategies have been developed to measure the authoritative-
ness of information on the Web. The two best-known algorithms are HITS [12] and
PageRank [21]. The HITS algorithm deduces the hubs and authorities that exist in a
subgraph of the Web consisting of both the results of a query and the local neighbor-
hood of these results. The PageRank algorithm precomputes a rank vector that pro-
vides a-priori estimates of the importance of all pages on the Web. Several researches
develop measures for ranking Weblogs or bloggers based on PageRank and HITS.
Adar et al. [1] propose the iRank algorithm that acts on implicit link structure to find

278 W.–S. Yang and Y.–R. Lin

those Weblogs that initiate the epidemics, which denote similarity between nodes in
content and out-links. Fujimura et al. [5] propose the EigenRumor algorithm to rank
bloggers and blog posts at the same time by weighting the hub and authority scores of
the bloggers based on eigenvector calculations. Kritikopoulos et al. [13] propose the
BlogRank algorithm by using explicit and implicit hyperlinks that inferred from
common weblog owners, affiliated authors or commentators, to rank weblogs. Cen et
al. [4] analyze people’s reading and commenting behaviors in blogspace and propose
an algorithm for Weblog ranking. In this research, we infer implicit links in the post
citation network and adopt the PageRank strategy to recommend relevant and
high-quality blog posts.

The topic-sensitive Web search introduced by Haveliwala [6] is related to our
method. The method precomputes topical PageRank vectors prior to query time,
which are then combined at query time based on the similarity between topics and the
query. This search method has been extended in various ways, such as by computing
a topical PageRank vector to each Web page using a probabilistic model [23], by
exploring how to personalize PageRank based on features readily available from a
Web page and by integrating textual and linkage information based on the textual
authority of a Web page [2]. In contrast to these methods, our approaches integrate
the textual information from post content and the linkage information from both blog-
based social network and post citation network to compute recommendation scores.

3 Proposed Approaches

The PageRank algorithm [21] models the behavior of a random Web surfer who at
each time step is at a particular Web page and determines which page to visit next as
follows: the probability of the surfer following the hyperlinks on that page is 1–α, and
the probability of the surfer resetting by jumping to a Web page picked at random is
α. If the surfer follows the hyperlink structure, then he or she will follow each outgo-
ing link with equal probability. If the surfer resets, the next Web page is picked uni-
formly at random from all possible pages. Consider the Web as a directed graph,
where nodes represent Web pages and edges between nodes represent hyperlinks
between Web pages. Let W be the set of all available Web pages, N=|W|, Fi be the set
of pages that page i links to, and Bi be the set of pages that link to page i. Then the
probability p(j) that a surfer is on page j is given by

NF

ip
jp

jBi
i

1

||

)(
)1()(⋅+⋅−= ∑

∈

αα (1)

In this research, we adopt the PageRank strategy to analyze the blog post citation
network for recommending relevant and authoritative blog posts. A blog post citation
network G1 can be formalized as a set of nodes V1, each of which represents a
post, and a set of directed edges E1 ⊆ V1

2, each of which represents a citation by that
post to another. The PageRank algorithm, however, can not be directly applied to the
post citation network. First, as noted in researches [1] [4] [5] [13], the number of
citations to a blog post is generally very small. The scores of blog posts calculated by
directly applying PageRank algorithm are too small to permit blog posts to be ranked

 An Analysis of Network Structure and Post Content 279

by importance. Second, the PageRank algorithm will provide an objective global
estimate of the importance of each post. A global ranking of a post does not necessar-
ily reflect the importance of that post to a given individual user. For recommending a
post to a given individual user, the best one(s) should be those that are most relevant
to the interests of the user or of similar users. Therefore, in this paper, we predict how
to tackle the citation sparse problem and how to personalize PageRank based on the
user’s interests so that relevant and high-quality posts can be recommended.

For the citation sparse problem, we propose to infer implicit citation links in this
research. Blogs are locations on the Web where bloggers express opinions or experi-
ences by publishing blog posts. The readers are provided with the ability to read the
ideas or opinions contained in the blog posts, and to submit their own comments in
order to express their agreements or disagreements. Bloggers also frequently provide
blogrolls, which is a list of other bloggers, allowing them to link to favorite sites.
These reading, commenting, and listing interactions are highly informative [1] [5] and
these interaction behaviors can serve as important indications for the purpose of
studying the information propagation [4], and bloggers with frequent interactions are
apt to exhibit similar information interests. Therefore, in this research, we infer
implicit links between posts from the interaction behaviors of bloggers.

Specifically, a blogger interaction network G2 can be formalized as a set of nodes
V2, each of which represents a blogger, and a set of directed edges E2 ⊆ V2

2, where
E2 represents interaction links, each of which represents a link by that blogger to an-
other. The implicit links between blog posts are then inferred as follows. Let Pi be the
set of all available posts of blogger i and Pj be the set of all available posts of blogger
j. If there is an interaction link from blogger i to blogger j in the blogger interaction
network G2, for any pair of posts pi∈ Pi and pj∈ Pj, a link pi → pj is inferred and
added to the post citation network G1 if the content similarity Similarity(pi, pj),
defined later, is larger than a threshold T.

Currently, the implicit links between posts are inferred using the following
approaches:

(1) Listing approach: Listing links between bloggers are used to infer implicit links
between posts.

(2) Commenting approach: Commenting links between bloggers are used to infer
implicit links between posts.

(3) Reading approach: Reading links between bloggers are used to infer implicit
links between posts.

(4) All approach: Listing, commenting, and reading links are all used to infer implicit
links between posts.

Above interaction or citation data can be collected from the services provided in most
blog sites, such as blogroll, comment, and citation, or automated mechanisms pro-
vided in some systems, such as trackbacks (http://www.sixapart.com/pronet/docs/
trackback_spec) and reader recording [4].

For personalizing PageRank, we define a surfing pattern of a person guided by her
interests as

280 W.–S. Yang and Y.–R. Lin

)()()()1()(' jpjipipjp a
Bi

aaa
j

⋅+→⋅⋅−= ∑
∈

αα (2)

where)(jipa → is the probability that the surfer transitions from post i to post j

when she is visiting the post a, and)(' jpa is the probability that post j is selected at

random when performing a random jump given that she is visiting post a. Our method
derives the two distributions into Equations 3 and 4 using content similarity:

∑
∈

=→

Fik

a
kaSimilarity

jaSimilarity
jip

),(

),(
)((3)

∑
∈

=

Wk

a
kaSimilarity

jaSimilarity
jp

),(

),(
)(' (4)

We apply a simple information retrieval method [14] to the blog posts. Information
retrieval is the task of locating specific pieces of information from a text, which yields
useful structured data from unstructured text. Here this specifically involves parsing
the raw posts, removing punctuation and prepositions, and grouping stemming words
into generalized terms. Our work adopts the bag-of-words model and creates a vector
of terms for each post. We use the TF/IDF measure to determine the weight of each
term. TF/IDF comprises two factors: (1) tf (term frequency), which measures how
well that term describes the post contents; and (2) idf (inverse document frequency),
whose reciprocal measures how often a term appears in the entire collection. A term
that appears in many posts of the collection, i.e., with low idf value, is not very useful
for distinguishing posts in the same collection. Thus, the TF/IDF term-weighting
scheme is

ijiji idffw ×= ,, (5)

where
jl

l

ji
ji freq

freq
f

,

,
, max

= (freqi,j is the raw frequency of the ith term on the jth post)

and
i

i n

N
idf log= (N is the total number of posts and ni is the number of posts in

which the ith term appears).
The conversion produces vectors that represent the blog posts. The content similar-

ity Similarity(i, j) of two posts i and j is then defined as the cosine of the angle be-
tween the vectors of i and j:

),(),(jicosjiSimilarity = (6)

For a user’s current interest, for example, given a post a, the top-N posts in the rank
vector of a are recommended. For a user’s long-term interests, the averaged rank
vector of all posts of the user is computed and the top-N posts are recommended.

 An Analysis of Network Structure and Post Content 281

4 Evaluation

We evaluated the proposed approaches using the blog data collected from Baidu
Space (http://hi.baidu.com). The Baidu Space is a Chinese weblog publish platform
with millions of users registered now where users can write the blog, upload photos to
album, and interact with others by related services. A feature of Baidu Space is that
posts in Baidu Space record IDs of newest 8 registered readers. This enables us to trace
the reading records and add reading links to the blogger interaction network1. We first
collected the training data from March 1, 2009 to March 31, 2009. We collected posts
which were published in this period, and identified the authors of these posts. Once the
bloggers were decided, we inferred the interaction links between them. The listing
links were inferred from the blogrolls on the side bar in the blog site of each blogger.
The commenting and reading links were inferred by the records of commenting and
reading behaviors respectively. We then collected the reading records of each blogger
in the training dataset from April 1, 2009 to April 20, 2009. Each blogger thus had a
sequence of reading records, and these sequences were used as testing data. Detailed
statistics of our training and testing datasets are listed in Table 1.

Table 1. Statistics of the training and testing datasets

of posts 1,031,112

of citation links 30,933

of bloggers 67,778

of listing links 1,050,226

of commenting links 115,023

Training dataset

of reading links 1,030,251

Testing dataset # of sequences 16,945

Also, since the posts were in Chinese and a Chinese sentence contains no delimit-

ers, such as a space, to separate words. We used a well-known Chinese word segmen-
tation technique [18] to segment Chinese words. The TF/IDF measure described in
Section 3 was then used to determine the weight of each word. Each post was then
represented as a vector of the top-200 Chinese words.

We measured the performances of the proposed approaches by comparing the rec-
ommended posts and the reading posts of each blogger in the testing dataset. The
precision and recall scheme was adopted as the performance metric for measuring the
quality of recommendations, where precision measures the ratio of the number of
recommended posts accessed by a blogger to the total number of recommended posts,
and recall measures the ratio of the number of recommended posts accessed by a
blogger to the total number of posts accessed by the user. The precision (recall) of a
recommendation approach is the average precision (recall) of all bloggers in the
testing dataset.

1 We may miss some records if a post has more than 8 readers.

282 W.–S. Yang and Y.–R. Lin

We first evaluated the effect of threshold T. Figure 1(a) and 1(b) show the preci-
sions and recalls for the number of thresholds (ranging from 0.1 to 0.5 in increments
of 0.1) for the top-10 recommendations. In this experiment, α was set to 0.15, as sug-
gested in the original PageRank algorithm. The results of this experiment indicate that
the precisions and recalls of the proposed approaches initially increase with the
threshold, reaching the maximum at the threshold of 0.3 or 0.4, and then gradually
decrease as the threshold increases. This is consistent with our expectation that a
smaller threshold (≤0.3) implies a greater diversity of post content and a larger
threshold (≥0.4) results in a less amount of inferred implicit links, and hence affect the
performances of the proposed approaches.

(a)Precision

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.2 0.3 0.4 0.5

Threshold

Listing

Commenting

Reading

All

(b)Recall

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.2 0.3 0.4 0.5

Threshold

Listing

Commenting

Reading

All

Fig. 1. Precisions (a) and recalls (b) of the recommendation approaches for different thresholds

We then compared the performances of the proposed approaches with the content-
only approach and the explicit citation approach. For the content-only approach, we
applied the same information retrieval method to the posts. The top-10 posts were

 An Analysis of Network Structure and Post Content 283

then recommended for a given user. For the explicit citation approach, we didn’t add
implicit links to the post citation network and directly applied the same personalized
PageRank approach to the network. In this experiment, α was set to 0.15 and T was
set to 0.35. Figure 2(a) and 2(b) show the obtained precisions and recalls respectively.

(a)Precision

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Li
sti

ng

Com
men

tin
g

Rea
di
ng All

Con
te
nt-

on
ly

Ex
pli

cit
 ci

tat
ion

(b)Recall

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Li
sti

ng

Com
men

tin
g

Rea
din

g All

Con
te
nt-

on
ly

Ex
pli

cit
 ci

tat
ion

Fig. 2. Comparison of the precisions (a) and recalls (b) of the proposed approaches with the
content-only approach and the explicit citation approach

In Figure 2, it can be seen that the All approach has the highest precision and recall
values, followed by Listing, Reading, and Commenting in order. The result indicates
that the number of inferred implicit links, as listed in Table 2, has significant effect on

284 W.–S. Yang and Y.–R. Lin

the performances of the proposed approaches. Also, the precision and recall values of
all proposed approaches were higher than the content-only approach. This demon-
strates the effectiveness of recommending posts using the post citation network,
which is due to the network structure reflecting the authoritativeness of posts. Finally,
the proposed approaches outperform the explicit citation approach. It is expected
since only 3% (30,933/1,031,112) posts in our training dataset have explicit citations
and hence directly analyzing the structure of the post citation network is not useful.

Table 2. The number of implicit links inferred by proposed approaches

 # of inferred implicit links

All approach 12,373,344

Reading approach 7,424,006

Listing approach 8,661,341

Commenting approach 1,856,002

5 Conclusions

This study developed four approaches for recommending blog posts that make use of
the post citation network, blog-based social network, and post content. An evaluation
of the proposed approaches using the blogging information collected from Baidu
Space revealed that the proposed approaches outperform the content-only approach
and the explicit citation approach.

This work could be extended in several directions. The present study focused on
three kinds of interaction links: listing, commenting, and reading. It would be interest-
ing to extend our work to study more interaction behaviors. Also, the scalability of
our approaches could be improved by using data structures such as those proposed in
the original PageRank algorithm [21] to reduce the work of calculating rank vectors.
Finally, applying our approaches to real applications may further reveal the effective-
ness of the proposed approaches.

References

1. Adar, E., Zhang, L., Adamic, L., Lukose, R.: Implicit Structure and the Dynamics of Blog-
space. In: Workshop on the Weblogging Ecosystem (2004)

2. Aktas, M., Nacar, M., Menczer, F.: Personalizing PageRank Based on Domain Profiles. In:
SIGKDD Workshop on Web Mining and Web Usage Analysis (2004)

3. Cayzer, S.: Semantic Blogging and Decentralized Knowledge Management. Communica-
tion of the ACM 47(12), 47–52 (2004)

4. Cen, S., Han, L., Ma, J.: Ranking Weblogs by Analyzing Reading and Commenting
Activities. In: International Conference on Web Intelligence and Intelligent Agent Tech-
nology (2009)

5. Fujimura, K., Inoue, T., Sugisaki, M.: The EigenRumor Algorithm for Ranking Blogs. In:
Workshop on Weblogging Ecosystem (2005)

 An Analysis of Network Structure and Post Content 285

6. Haveliwala, T.: Topic-sensitive PageRank. In: International Conference on World Wide
Web (2002)

7. Hayes, C., Avesani, P., Veeramachaneni, S.: An Analysis of Bloggers and Topics for a
Blog Recommender System. In: Workshop on Web Mining (2007)

8. Hsu, W.H., King, A., Paradesi, M., Pydimarri, T., Weninger, T.: Collaborative and Struc-
tural Recommendation of Friends Using Weblog-based Social Network Analysis. In:
AAAI Spring Symposium on Computational Approaches to Analyzing Weblogs (2006)

9. Huang, Z., Chung, W., Chen, H.: A Graph Model for E-Commerce Recommender Sys-
tems. Journal of the American Society for Information Science and Technology 55(3),
259–274 (2004)

10. Joachims, T., Freitag, D., Mitchell, T.: WebWatcher: A Tour Guide for the World Wide
Web. In: International Joint conference on Artificial Intelligence (1997)

11. Karger, D.R., Quan, D.: What Would It Mean to Blog on the Semantic Web. Journal of
Web Semantics 3(2), 147–157 (2005)

12. Kleinberg, J.: Authoritative Sources in a Hyperlinked Environment. Journal of the
ACM 46(5), 604–632 (1999)

13. Kritikopoulos, A., Sideri, M., Varlamis, I.: BlogRank: Ranking Weblogs based on Connec-
tivity and Similarity Features. In: Workshop on Advanced Architectures and Algorithms
for Internet Delivery and Applications (2006)

14. Kushmerick, N., Weld, D., Doorenbos, B.: Wrapper Induction for Information Extraction.
In: International Joint Conference on Artificial Intelligence (1997)

15. Lashkari, Y.: The WebHound Personalized Document Filtering System (1995),
http://rg.media.mit.edu/projects/webhound/

16. Li, Y.-M., Chen, C.-W.: A Synthetical Approach for Blog Recommendation Mechanism:
Trust, Social Relation, and Semantic Analysis. In: International Conference on Electronic
Business (2007)

17. Lieberman, H.: Letizia: An Agent That Assists Web Browsing. In: International Joint
Conference on Artificial Intelligence (1995)

18. Ma, W.-Y., Chen, K.-J.: Introduction to CKIP Chinese Word Segmentation System for the
First International Chinese Word Segmentation Bakeoff. In: SIGHAN Workshop on
Chinese Language Processing (2003)

19. Mobasher, B., Dai, H., Nakagawa, M., Luo, T.: Discovery and Evaluation of Aggregate
Usage Profiles for Web Personalization. Data Mining and Knowledge Discovery 6(1), 61–
82 (2002)

20. Nasraoui, O., Petenes, C.: An Intelligent Web Recommendation Engine Based on Fuzzy
Approximate Reasoning. In: IEEE International Conference on Fuzzy Systems (2003)

21. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing
Order to the Web. In: International World Wide Web Conference (1998)

22. Pazzani, M., Billsus, D.: Learning and Revising User Profiles: The Identification of Inter-
esting Web Sites. Machine Learning 27(4), 313–331 (1997)

23. Richardson, M., Domingos, P.: The Intelligent Surfer: Probabilistic Combination of Link
and content Information in PageRank. In: Advances in Neural Information Processing
Systems, vol. 14, pp. 1441–1448 (2002)

24. Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J.: PHOAKS: A System for
Sharing Recommendations. Communications of the ACM 40(3), 59–62 (1997)

25. Tsai, T.-M., Shih, C.-C., Chou, S.-C.: Personalized Blog Recommendation: Using the
Value, Semantic, and Social Model. In: Innovations in Information Technology (2006)

286 W.–S. Yang and Y.–R. Lin

26. Xu, G., Zhang, Y., Zhou, X.: A Latent Usage Approach for clustering Web Transaction
and Building User Profile. In: International Conference on Advanced Data Mining and
Applications (2005)

27. Wang, J., Li, Q., Chen, Y., Lin, X.: Recommendation in Internet Forums and Blogs. In:
Annual Meeting of the Association for Computational Linguistics (2010)

28. Wei, C., Shaw, M.J., Easley, R.F.: A Survey of Recommendation Systems in Electronic
Commerce. In: Rust, R.T., Kannan, P.K. (eds.) E-Service: New Directions in Theory and
Practice. ME Sharpe Publisher (2002)

Extracting Local Community Structure from
Local Cores�

Xianchao Zhang, Liang Wang, Yueting Li, and Wenxin Liang		

School of Software, Dalian University of Technology,
Economy and Technology Development Zone, Dalian 116620, China

xczhang@dlut.edu.cn, L.Wang917@gmail.com, liyueting@mail.dlut.edu.cn,

wxliang@dlut.edu.cn

Abstract. To identify global community structure in networks is a great
challenge that requires complete information of graphs, which is not fea-
sible for some large networks, e.g. the World Wide Web. Recently, local
algorithms have been proposed to extract communities in nearly linear
time, which just require a small part of the graphs. However, their results,
largely depending on the starting vertex, are not stable. In this paper,
we propose a local modularity method for extracting local communities
from local cores instead of random vertices. This approach firstly extracts
a large enough local core with a heuristic strategy. Then, it detects the
corresponding local community by optimizing local modularity, and fi-
nally removes outliers based on introversion. Experiment results indicate
that, compared with previous algorithms, our method can extract stable
meaningful communities with higher quality.

Keywords: Community structure; Local modularity; Local core.

1 Introduction

Community structure is one of the most relevant features of complex networks,
such as social networks [1], the Internet [2], the World Wide Web [3], citation
networks [4], biological networks [5]. In order to analyse the structures of com-
plex networks, we often refer to graph theory, organizing a system as a graph
with n vertices (entities) and m edges (relationships between vertices). With the
growth of interest in the study of networks, especially the Web and online social
networks, great efforts have been made on the area of community detection [6–9].

In general, a community is a tightly-knit sub-graph in a network, in which the
within-group links are stronger or denser than between-group links [1]. Directly
optimizing the density inside or the sparseness outside, a number of algorithms
have been proposed [10–13], which work well in special cases. Similarly, several

� This work was partially supported by NSFC under grant No. 60873180, 61070016,
SRF for ROCS, State Education Ministry, and by the Fundamental Research Funds
(DUT10JR02) for the Central Universities, China.

�� Corresponding author.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 287–298, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

288 X. Zhang et al.

approaches came forth based on the concept of flow [14–16]. Recently, researchers
have been focusing on algorithms based on the modularity metric [17, 6, 18].

However, these techniques require information of the whole graphs, which
might be problematic for large graphs like the World Wide Web, as the constraint
of running time and memory consumption. To overcome the limitation, local
community detecting methods emerged, which just demand a small subset of
vertices instead of the whole graphs, such as algorithms [19–23, 8]. Unfortunately,
for largely depending on the starting vertex, the results of these technologies are
instable. Besides, most of them require several parameters that hard to obtain.
Furthermore, there might be the confusion of outliers.

To address these issues, in this paper, we propose an effective and efficient
three-phase algorithm to extract local community structure. Firstly, we automat-
ically generate a local core, the densest sub-graph within a community. Then,
by maximizing local modularity, all potential members are merged into the com-
munity. Finally, a pruning phase is used, during which outliers are removed from
the community. Compared with previous methods, our approach attains more
stable results by starting from a local core instead of a starting vertex. Besides,
our algorithm can stop automatically with the maximum local modularity. More-
over, outliers are removed in the pruning phase, keeping the density of extracted
community in a high level.

The rest of the paper is organized as follows. In Section 2, the problem of local
community structure detection will be defined and some previous algorithms will
be reviewed. Then we will describe our approach and report experiment results
in Section 3 and Section 4, respectively, followed by conclusions in Section 5.

2 Preliminaries

Here we firstly define the problem of extracting local community structure
in a network, and then review some previous techniques for identifying local
communities.

2.1 Local Community

A network1 is usually represented by a graph G = (VG, EG), where VG is the set
of vertices with size n = |VG|, and EG contains edges of G whose size is m = |EG|.
According to previous research, a local community is a densely-connected sub-
graph that is extracted with local information.

Given a graph G, in order to identify a local community C, we should at least
have complete knowledge about the connectivity of vertices in the community,
i.e. links in C, links outgoing of C, namely, its neighbor set N = {v|(u, v) ∈
EC , u ∈ VC ∧ v /∈ VC}. Vertices like u constitute boundary set B. As shown in
Fig. 1, the portion of graph G have three parts: local community C, boundary
set B and neighbor set N .

1 Here we mainly focus on undirected, unweighted graphs.

Extracting Local Community Structure from Local Cores 289

Fig. 1. Portion graph G for identifying local community C

According to the definition, the purpose of local community detection is to
find dense vertices set of C with a small number of edges between B and N ,
namely, a community dense inside (high internal degree) and sparse outside (low
external degree).

2.2 Previous Algorithms

Typically, local community detecting techniques randomly start from a vertex v,
and gradually merge neighboring vertices one-at-a-time by optimizing a measure
metric. Local community detecting algorithms are also applied to obtain global
community structure of entire graph by iterative running.

The modularity metric has been widely used in global community detection,
and is proved to be a very effective metric. It was firstly applied to find local com-
munities by Clauset [19], who proposed a local modularity metric R to measure the
“sharpness” of the boundary. However, R method lacks a good stopping criteria,
based on predefined parameter k. Similarly, Luo et al. [20] later introduced another
modularity metric M . Instead of focusing on the “sharpness” of the boundary, M
method measures the radio of internal and external edges. M method would drop
community structure when the initial vertex is removed by its pruning strategy.

Approaches based on modularity, R and M , are able to extract more mean-
ingful communities, however, their results usually include many outliers, which
would depress the overall quality of community. In view of this issue, Chen et
al. [23] put forward a two-phase algorithm based on a new metric L who firstly
extracts all possible candidates, and then removes outliers. However, it is too
strict to detect integrated community.

Bagrow [21] brought a “outwardness” metric Ω to measure local community
structure. Ω method also lacks an appropriate stopping criteria. Andersen [12, 8]
advanced a method to find local communities based on bipartite density, which
limits to bipartite networks.

All the referred techniques above infer community structure from a random
initial vertex, whose consequential community is largely affected by the starting
vertex. Therefore, unstable results have always been an intractable issue of these
methods.

290 X. Zhang et al.

3 Our Contribution

To tackle the previous drawbacks, we address a three-phase algorithm that takes
time polynomial in k (the size of extracted community):

1. Instead of a random starting vertex, we firstly automatically extract a local
core as the initial state for local community detection.

2. Starting from the local core, we infer the corresponding community by max-
imizing local modularity metric, using vertex-at-a-time discovery process.
The iterative merging stops when there’s no vertex that increases local mod-
ularity.

3. This step does pruning to remove outliers.

3.1 Extracting Local Core

A local core is a dense sub-graph within a community with high local density,
generated by a vertex and its neighbors. The core, centric of certain communities,
lying in the densest region of the community, is capable of locating the position
of the community by rule and line. Instead of starting from a randomly vertex,
our approach is able to detect much more stable and meaningful community
with initial reliable core.

Given N(v) as the neighbor set of vertex v, local density dv measures the ratio
of the number of edges in N(v) and the number of edges if N(v) is a complete
graph:

dv =
2 ∗ Edges(N(v))
|N(v)|(|N(v)| − 1)

(1)

where Edges(N(v)) denotes the number of edges that connect vertices in N(v).
dv is in the range of [0, 1].

If vertex v has a high value of dv, it is very likely to generate a very dense
sub-graph with its neighbors, e.g., when dv = 1, the sub-graph is a complete
graph. So, if we start finding community from a local core, we have a great
initial state of dense and stable structure, which makes it more likely to find
perfect community structure.

In order to keep local core with higher local density, we should remove neigh-
bors that have little links to it. Presenting the local core of vertex v as Cv, vertex
density d(u, Cv) (u ∈ N(v)) can be defined as:

d(u, Cv) =
Edges(u, N(v))

|N(v)| (2)

where Edges(u, N(v)) is the number of edges that connect u and vertices in
N(v).

Neighbors will be included into Cv if they satisfy:

d(u, Cv) ≥ ε ∗ dv (3)

Extracting Local Community Structure from Local Cores 291

where ε is a balance factor to decide the tightness of Cv. Factor ε can balance
local density and the size of Cv: increasing ε would increase local density and
decrease community size, vice verse. Note that, local core Cv should have at least
3 vertices2.

To extract a local core, we adopt a heuristic approach that checks all vertices
in sequence, descending by dv and edges of v, and finds the vertices set that
satisfy Eq. 3. The pseudocode for extracting local core is given in Algorithm 1.

Algorithm 1. Extracting local core
Input: G: the partial graph
Output: Cv: local core generated by vertex v and its neighbors
1: for each vertex v in G do
2: Calculate dv

3: end for
4: Sort all the vertices descending by dv and edges of v. The sorted graph is G′.
5: for each v ∈ G′ do
6: Set Cv to empty.
7: for each u ∈ N(v) do
8: if u satisfies Eq. 3 then
9: Add u to Cv

10: end if
11: end for
12: if |Cv| > 2 then
13: return local core Cv

14: end if
15: end for

3.2 Merging Vertices

After extracting a local core Cv, we iteratively merge vertices into C by using
vertex-at-a-time discovery process subject to maximize local modularity metric
R [19]:

R =
Edges(B, C)

Edges(B, C) + Edges(B, N)
(4)

The metric R well optimizes the sparseness of the boundary, meanwhile, keeps
dense inside the community.

Initially, we place all vertices in Cv into C, boundary vertices into B and
neighboring vertices into N . Then, during each loop, we merge a neighboring
vertex u in N into C that results the largest positive change of R. That is,
for each u ∈ N , we calculate local modularity R′ if we merge u. For the max-
imum R′

m, if R′
m > R, we merge the corresponding u into C and update B

and N . This merging process continues until R′
m <= R or N is empty (See

Algorithm 2).

2 If there’s only two vertices, there’s just one edge at most, which is far from dense.

292 X. Zhang et al.

Algorithm 2. Merging vertices

Input:
Cv: local core of Step 1 generate by v and its neighbors
G: the partial graph

Output: C: local community after merging phase
1: Set C, B, N to empty
2: for each u ∈ Cv do
3: Add u to C
4: end for
5: Update B and N
6: while N is not empty do
7: for each u ∈ N do
8: Calculate R′ if u is merged into C
9: end for

10: Get the maximum value R′
m and current modularity R

11: if R′
m > R then

12: Merge the corresponding vertex of R′ to C
13: Update R, B and N
14: else
15: Stop merging
16: end if
17: end while
18: return local community C

Algorithm 3. Pruning phase

Input:
C: local community of Step 2
G: the partial graph

Output: C′: the final local community after three phases
1: for each u ∈ B do
2: Calculate ρ(u, C)
3: if ρ(u, C) ≤ C then
4: Remove u from C
5: Update B and N
6: end if
7: end for
8: for each u ∈ C \ B do
9: if deg(u) <= 1 then

10: Remove u from C
11: end if
12: end for
13: return final local community C′

3.3 Pruning Phase

With the procedure of Step 2, community structure C is extracted, mixing with
outliers. However, in this step, we present a pruning phase to remove outliers
weakly connected to C.

In order to remove vertices weakly connected to C, vertex introversion ρ(v, C)
presented in [26] is utilized, measuring the ratio of internal edges to all edges of v:

Extracting Local Community Structure from Local Cores 293

ρ(v, C) =
Edges(v, C)

deg(v)
(5)

where deg(v) is the degree of v. To optimize internal density, we check all vertices
in B and remove those with ρ(v, C) <= 0.5. Meanwhile, outliers with only one
edge can be removed by checking all inner vertices (vertices in C \ B). Details
of this process are shown in Algorithm 3.

4 Experiment Results

Here we adopt three criteria to evaluate the performance of our algorithm by
applying it to three different networks with the ground truth: Zachary’s karate
club network [27], GN network [11], and NCAA football network3 [28]. For all
the experiments, the default value for balance factor ε is 1.

As the community structure of these three networks are known, we can
objectively measure the effectiveness of our algorithm by precision, recall and F-
measure. Given local core Cv, we extract the local community Calg

v and the real
community that v belongs to is denoted as Creal

v . Then three of these metrics
are defined as:

Precisionv =
|Creal

v ∩ Calg
v |

|Calg
v |

(6)

Recallv =
|Creal

v ∩ Calg
v |

|Creal
v | (7)

F − measurev =
2 × Precisionv × Recallv

Precisionv + Recallv
(8)

To better illustrate final results, we compare our algorithm with two previous
modularity algorithms: R method of Clauset [19], M method of Luo et al. [20],
and an algorithm dealing with outliers, L method of Chen et al. [23].

4.1 Zachary’s Karate Club Network

Zachary’s karate club network [27] is one of the classic studies in social network
analysis and has been a benchmark graph for community detection. It shows
social interactions between members of a karate club at an American university.
The club has 34 members and 2 groups (communities). Fig. 2 illustrates the net-
work and its consensus network structure grouped from Zachary’s observations.

Feeding this network into our algorithm and the other three previous algo-
rithms, we extract all the two communities and show average results in Table 1.
Our algorithm run once for a local community, while the results of the other
three algorithms are the average of multi-run from each vertex as starting ver-
tex. As shown in Table 1, our algorithm gets the highest f-measure and a perfect
3 The ground truth of communities (conferences) can be found at

http://espn.go.com/college-football/standings/ /year/2006.

294 X. Zhang et al.

1

2

3

4
5

6

7

8

9

10

11

12

1314

15

16

17

18

19

20

21

22

23

24

2526

27 28

29

30

31

32

33

34

Fig. 2. The network of Zachary’s karate club. Vertices of two communities are shown
in circle of white and blue, respectively.

precision 1, which indicates that our algorithm identifies a better community
structure. R method also gets a high precision, but a low recall, for its stopping
criteria based on predefined community size, which is hard to decide for real
communities. Both precision and recall of M method are lower, causing by its
pruning strategy. The result of L method is even poorer because it’s too strict
to a community view (reviewed in Section 2.2).

Table 1. Our algorithm’s performance on Zachary’s karate club network compared
with R, M , and L methods

Zachary’s karate club network
Algorithms

R method M method L method Our method
Precision 0.9715 0.8929 0.9405 1

Recall 0.5740 0.6250 0.1896 0.7049

F-measure 0.7216 0.7353 0.3156 0.8269

4.2 GN Networks

Synthetic networks have been widely used to test community detecting algo-
rithms. We apply our algorithm to a set of computer-generated random graphs
with ground truth, GN network [11]. Typically, there’re 128 vertices in these
graphs, organized into four equal-sized communities. Each of them has a to-
tal expected degree d = 16, both intra- and inter-community edges included
(d = din + dout). By holding the expected degree constant d = 16, we change
dout to get different graphs with various sharpness of boundaries. Community
structure of these graphs becomes vaguer and vaguer as dout increases, here data
series for dout < 8 are used in our experiments.

As shown in Fig. 3, we generate 500 networks for each dout and present our
average results running once for each network. Selecting each of the 128 vertices
as the starting vertex, we get the average precision, recall and f-measure for the

Extracting Local Community Structure from Local Cores 295

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
out

P
re

ci
si

on

Our method
R method
M method
L method

(a) Precision

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
out

R
ec

al
l

Our method
R method
M method
L method

(b) Recall

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
out

F
−

m
ea

su
re

Our method
R method
M method
L method

(c) F-measure

Fig. 3. (Color online)Our algorithm’s performance on GN networks compared with R,
M , and L methods

other three algorithms for all 500 networks. As shown in Fig. 3(a), our precision is
much better than previous algorithms. Though the recall of M method is a little
higher when dout >= 6 (shown in Fig. 3(b)), our algorithm results the perfect
f-measure. More important, our algorithm identify nearly exact real communities
for all the networks of dout <= 5 that are more approximate to community
structure of real networks, which is an outstanding achievement.

4.3 The NCAA Football Network

The first two experiments indicate that our algorithm with local core runs well in
both synthetic and real networks, however, there is no notion of outliers. We will
apply our algorithm to another network that contains outliers. The network is
the schedule for 787 games of the 2006 National Collegiate Athletic Association
(NCAA) Football Bowl Subdivision (also known as Division 1-A) [28].

In the NCAA network, there’re 115 universities divided into 11 conferences. In
addition, there’re four independent schools, Notre Dame, Navy, Army and Tem-
ple, as well as 61 schools from lower divisions that belong to none of conferences.
Each school in a conference plays more games with those in the same conference,
so a conference is actually a community. We present the network with a graph con-
taining 180 vertices and 787 edges (115 vertices in 11 communities and 65 outliers).

296 X. Zhang et al.

Table 2. Our algorithm’s performance on NCAA football network compared with R,
M , and L methods

2006 NCAA football network Algorithms
R method M method L method Our method

Precision 0.6562 0.5735 0.8031 0.9847

Recall 0.6396 1 0.6257 1

F-measure 0.6478 0.7289 0.7033 0.9923

To extract all communities in the NCAA network, we iteratively run our
local core algorithm until there’s no any more communities. Our algorithm just
need run 11 times for all the 11 communities. For the other three algorithms,
every vertex has been taken as the starting vertex to extracting corresponding
community. Table 2 shows the average precision, recall and f-measure for the
four algorithms. Firstly, the disadvantages of metric R and M as we analyse in
Section 2.2 have been confirmed by the results. Because they both ignore the
confusion of outliers, R and M methods gets a higher recall but a much lower
precision, which leads to an unsatisfactory f-measure. L method successfully
deals with outliers, but it’s too strict to community density that it results lower
recall and can not get a good f-measure, either. Obviously, our algorithm with
local core gets an excellent results, the highest precision 0.9847 and perfect
recall 1, which attains a 0.992 f-measure on average. It proves that our local core
algorithm not only perfectly balances the community density and size, but also
deals with outliers successfully.

5 Conclusions

A number of local algorithms have been advanced to identify a local commu-
nity at a time, which cost less on storage and running time. However, previous
methods start from a random vertex and their results vary significantly with
the choice of starting vertex. What’s more, wrongly recognized outliers would
decrease community density to some extent. In this paper, we propose a three-
phase local modularity approach, extracting local community by starting from a
local core, followed by a pruning phase. Our method can automatically stop and
do not need the predefined threshold. Experiment results show that our method
can extract stable and meaningful community structure with high quality.

As future work, we will focus on the improvement of local core extracting
method, as shown in Algorithm 1. Here we use the fixed balance factor ε, which
actually should be various for each core. In addition, more effective strategy for
outliers detection should be taken into consideration.

Acknowledgements

We’d like to thank Xiaowei Xu for providing the NCAA data and Newman for
the Zachary’s karate club network.

Extracting Local Community Structure from Local Cores 297

References

1. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge (1994)

2. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-Law Relationships of the
Internet Topology. In: Proceedings of Annual Conference of the Special Interest
Group on Data Communication (SIGCOMM 1999), pp. 251–262. ACM, New York
(1999)

3. Albert, R., Jeong, H., Barabsi, A.L.: Diameter of the World-Wide Web.
Nature (401), 130–131 (1999)

4. Hajra, K.B., Sen, P.: Aging in Citation Networks. Physica A, 44–48 (2005)
5. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets

to the Internet and WWW. Oxford University Press, New York (2003)
6. Newman, M.E.J.: Modularity and Community Structure in Networks. Proceedings

of the National Academy of Sciences 103, 8577–8582 (2006)
7. Dourisboure, Y., Geraci, F., Pellegrini, M.: Extraction and Classification of Dense

Communities in the Web. In: Proceedings of the 16th International Conference on
World Wide Web, pp. 461–470. ACM, New York (2007)

8. Andersen, R.: A Local Algorithm for Finding Dense Subgraphs. ACM Transactions
on Algorithms (TALG) 6, 1–12 (2010)

9. Zhang, X., Li, Y., Liang, W.: C&C: An effective algorithm for extracting web
community cores. In: Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q., Sun, L.,
Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 6193, pp. 316–326. Springer, Hei-
delberg (2010)

10. Gibson, D., Kleinberg, J., Raghavan, P.: Inferring Web Communities from Link
Topology. In: Proceedings of the 9th ACM Conference on Hypertext and Hyper-
media: Links, Objects, Time and Space, pp. 225–234. ACM, New York (1998)

11. Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in
Networks. Physical Review E 69, 26113 (2004)

12. Andersen, R., Lang, K.J.: An Algorithm for Improving Graph Partitions. In:
Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 651–660 (2008)

13. Sharan, A., Gupta, S.L.: Identification of Web Communities through Link Based
Approaches. In: International Conference on Information Management and Engi-
neering, pp. 703–708 (2009)

14. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient Identification of Web Communi-
ties. In: Proceedings of the 6th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 150–160 (2000)

15. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self- organization and
Identification of Web Communities. Computer 35, 66–70 (2002)

16. Khandekar, R., Rao, S., Vazirani, U.: Graph Partitioning using Commodity Flows.
Journal of the ACM (JACM) 56, 1–15 (2009)

17. Newman, M.E.J.: Fast Algorithm for Detecting Community Structure in Networks.
Physical Review E 69, 26133 (2004)

18. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast Unfolding of
Communities in Large Networks. Journal of Statistical Mechanics: Theory and
Experiment (2008)

19. Clauset, A.: Finding Local Community Structure in Networks. Physical Review
E 72(2), 26132 (2005)

298 X. Zhang et al.

20. Luo, F., Wang, J.Z., Promislow, E.: Exploring Local Community Structures in
Large Networks. In: Proceedings of the 2006 IEEE/WIC/ACM International Con-
ference on Web Intelligence, pp. 233–239 (2006)

21. Bagrow, J.P.: Evaluating Local Community Methods in Networks. Journal of
Statistical Mechanics: Theory and Experiment 2008, P5001 (2008)

22. Andersen, R.: A Local Algorithm for Finding Dense Subgraphs. In: Proceedings of
the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1003–1009
(2008)

23. Chen, J., Zaizne, O., Goebel, R.: Local Community Identification in Social
Networks. In: International Conference on Advances in Social Network Analysis
and Mining, pp. 237–242. IEEE, Los Alamitos (2009)

24. Muff, S., Rao, F., Caflisch, A.: Local Modularity Measure for Network Clusteriza-
tions. Physical Review E 72(5), 56107 (2005)

25. Hinne, M.: Local Identification of Web Graph Communities. In: Proceedings of
the 1st International Conference on Theory of Information Retrieval, pp. 261–278
(2007)

26. Schaeffer, S.E.: Graph Clustering. Computer Science Review 1(1), 27–64 (2007)
27. Zachary, W.W.: An Information Flow Model for Conflict and Fission in Small

Groups. Journal of Anthropological Research 33(4), 452–473 (1977)
28. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: Scan: A Structural Clustering

Algorithm for Networks. In: KDD, pp. 824–833 (2007)

On Summarizing Graph Homogeneously

Zheng Liu and Jeffrey Xu Yu

The Chinese University of Hong Kong
{zliu,yu}@se.cuhk.edu.hk

Abstract. Graph summarization is to obtain a concise representation
of a large graph, which is suitable for visualization and analysis. The
main idea is to construct a super-graph by grouping similar nodes to-
gether. In this paper, we propose a new information-preserving approach
for graph summarization, which consists of two parts: a super-graph and
a list of probability distribution vectors affiliated to the super-nodes and
super-edges. After a carefully analysis of the approximately homogenous
grouping, we propose a unified model using information theory to re-
lax all conditions and measure the quality of the summarization. We
also develop a new lazy algorithm to compute the exactly homogenous
grouping, as well as two algorithms to compute the approximate group-
ing. We conducted experiments and confirmed that our approaches can
efficiently summarize attributed graphs homogeneously and achieve low
entropy.

1 Introduction

Researchers make great efforts on mining graph data recently, because of its
ability to represent complex relationships among entities in many applicable
areas such as Web, social networks, biological networks, telecommunication, etc.
In general, it is not an easy task for users to explore a large graph globally in
order to find hidden relationships. To solve this problem, graph summarization
techniques [6,9,12] have been recently studied. In brief, summarizing is to obtain
a concise graph representation, GS , of a large graph G, where GS is smaller
than G in size for the visualization or analysis. Although specific summarized
representations can be various to represent GS in different approaches, the main
idea behind is to construct GS as a super-graph with super-nodes and super-
edges. Here, the nodes in G are partitioned into several groups and each group
is represented by a single super-node in GS . Two super-nodes are connected by
a super-edge in GS if there exist connections of nodes from two corresponding
groups in G.

There are two major approaches for super-graph construction. A strict ap-
proach [6] requires that a super-edge exists between two super-nodes in GS only
if every pair of nodes residing in the two corresponding super-nodes is connected
by an edge in G. A relaxed approach [9, 12] allows two super-nodes to be con-
nected with a super-edge in GS if there is at least one connected node pairs in G
among all the node pairs summarized by the two super-nodes. Here, each super-
edge is associated with a participation rate to indicate the percentage of nodes in

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 299–310, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

300 Z. Liu and J.X. Yu

Node Topics
v1 Text Classification, Text Summarization, ...

v2 Pattern Mining, Association Rules, ...

v3 Spectral Clustering, Heterogeneous Graphs, ...

v4 Service Scheduling, Optimization, ...

... ...

v3

v1

v2

v4
... ...

Fig. 1. DBLP Co-author Network

a super-node that have edges connected to the other super-node. For the strict
approach, since only cliques or bipartite cliques can be represented by super-
nodes according to the very rigorous requirement, in most cases, the size of the
summarized graph cannot be small, even when super-nodes are near-cliques [6].
For the relaxed approach, it is difficult to control the summarization quality. In
addition, it requests that the attribute values of nodes in the same group must
be the same, which makes it very difficult to handle a multi-attribute graph, in
particular, when the number of attributes is large. In this paper, we focus on an
information-preserving graph summarization for attribute graphs. An example
is shown in Fig. 1, which is a simple DBLP co-author graph to be summarized.
Inside the dotted area is a graph where a node represents an author and an edge
represents collaboration between two authors. The table associated with shows
the main research areas of each author (node), possibly with other information.

The major contributions of this paper are summarized below. First, we focus
on how to obtain an optimized approximately homogeneous grouping on which
a graph summarization can be constructed by relaxing all three conditions. We
propose a unified model using information theory which unifies both attribute
information and structural information. Second, we propose a new lazy algo-
rithm to compute the exactly homogeneous grouping, and two new approximate
algorithms. Third, we conduct testing using real datasets to confirm the quality
and efficiency of our proposed approaches.

The remainder of this paper is organized as follows. Section 2 starts a care-
ful analysis of the graph summarization problem and Section 3 presents our
concept of approximately homogenous grouping based on information theory.
We introduce the summarization framework in Section 4. Experimental results
are reported in Section 5 and related works are discussed in Section 6. Finally,
Section 7 concludes this paper.

2 Problem Statement

We focus on an attribute graph G(V, E, T), where V and E represent a set of nodes
and a set of edges, respectively. T is a mapping function. Given a set of attributes
(A1, A2, · · · , Ad), for each node vi ∈ V , T (vi) = (a1, a2, · · · , ad) represents the
attribute vector of vi, where ai is a value of Ai. In this work, we concentrate on
categorical attributes. For a categorical attribute Ai with n distinctive values, we
can represent an attribute value using a n-bitmap, where all bits are zero except for
the bit which corresponds to the attribute value. Following the similar definitions

On Summarizing Graph Homogeneously 301

in [9], a node grouping Γ = {V1, V2, · · · , Vk} of a graph G(V, E, T) is to partition
all nodes of G into non-overlapping k groups, where Vi represents a non-empty
subset of nodes V . Given a graph node grouping Γ , the set of neighbor super-
nodes for node vi ∈ G is denoted as NG(vi) = {Γ (vj)|(vi, vj) ∈ E} where Γ (vj)
represents the super-node that uniquely contains vj . For Vj ∈ NG(vi), let |Vj |vi

denote the number of edges from vi to any nodes in Vj . An exactly homogeneous
grouping is defined as follows.

Definition 1. (Exactly Homogeneous Grouping) [9]
Given a graph G = (V, E, T), an exactly homogeneous grouping Γ satisfies the
following conditions: ∀vi, vj ∈ V , if Γ (vi) = Γ (vj), then (1) T (vi) = T (vj), (2)
NG(vi) = NG(vj), and (3) |Vk|vi = |Vk|vj , ∀Vk ∈ (NG(vi) ∪ NG(vj)).

Based on the exactly homogeneous grouping Γ , a graph summarization GS can
be constructed as follows. A super-node Si represents a group Vi, for all groups
in Γ , and all nodes of G summarized by a super-node in GS have the same
attribute values. The super-edges among super-nodes in GS imply that every
node of G summarized by a super-node has the same pattern of connecting nodes
to other nodes summarized by other super-nodes. For example, suppose that Si

has super-edges to Sj , Sk, and Sl. It shows that every node of G summarized by
Si has edges to some nodes of G summarized by Sj , Sk, and Sl. Below, we use
Vi and Si interchangeably.

Exactly homogeneous grouping shows the best summarization of a large graph
G in terms of homogeneity criterion. However, the size of GS based on the
exactly homogeneous grouping is too large as a graph summarization, which
can be almost as large as G. The problem to be studied in this paper is how
to obtain a better small graph summarization GS by relaxing the conditions
given in Definition 1. Tian et al. in [15] relaxed only the condition (2). In other
words, the nodes in the same group must have the same attribute vector, but the
neighbor relationships are allowed to be similar. Apparently, the relaxation has
problems when the number of attributes is large. When the number of attributes
is large, it becomes impossible to find a small number of groupings, say k, such
that all nodes in the same group have the same attributes. Also, it is questionable
if it is sufficient to relax the condition (2) only. In this paper we propose to relax
all the three conditions. Our approximately homogeneous grouping is defined as
follows.

Definition 2. (Approximately Homogeneous Grouping)
Given a graph G = (V, E, T), a number k, a graph node grouping Γ is called
approximately homogeneous grouping, if it satisfies ∀vi, vj ∈ V , if Γ (vi) =
Γ (vj), (1) dist1(T (i),T (j)) ≤ ε1, (2) dist2(NG(vi),NG(vj)) ≤ ε2, and (3)
dist3(|Vk|vi , |Vk|vj) ≤ ε3, ∀Vk ∈ (NG(vi) ∪ NG(vj)). Here, dist1(·), dist2(·),
dist3(·) are three distance functions, and ε1, ε2, and ε3 are three thresholds.

In an approximately homogeneous grouping, nodes in the same group are con-
sidered as homogeneous so long as their attributes and neighbor information are
similar. Apparently, once the distance functions and thresholds are determined,

302 Z. Liu and J.X. Yu

there might be many approximately homogenous groupings which satisfy the
above definition. We focus on finding the best one among all these groupings.
Suppose F (·) is a score function to measure the quality of approximately homoge-
neous groupings. The problem of optimized approximately homogenous grouping
is formally defined as follows.

Definition 3. (Optimized Approximately Homogeneous Grouping)
Given a graph G = (V, E, T), a number k, a graph node grouping Γ is called
Optimized Approximately homogeneous grouping, if F (Γ) is minimum.

The ensuing questions are as follows. What distance and score functions should
we use? How do we adjust the similarity? We will address these issues in the
following sections.

3 An Approximately Homogeneous Grouping Based on
Information Theory

In this paper, we propose an information-preserving criterion, based on informa-
tion theory. We first review some background knowledge, followed by detailed
discussions about how to utilize a unified entropy model to measure the quality
of the three relaxations in Definition 2 and the quality in Definition 3.

Let xi be a boolean random binary variable and p(xi) be its Bernoulli distri-
bution function, p(x) = [p(x1), · · · , p(xd)] is a Bernoulli distribution vector over
d independent boolean random variables x1, · · · , xd [10]. Let bj denote a binary
d-element vector. Given a set of binary vectors D = {b1, · · · ,bn}, under the
assumption of independence, the probability by which they are generated by a
distribution vector is estimated as

P (D|θ) =
∏

bj∈D

d∏
i=1

p(xi = bi
j), (1)

where bi
j is the ith element of the binary vector bj. The best θ, which fits for

the model, is θ̂ = arg maxθ log(P (D|θ)). The well-known solution based on the
maximum likelihood estimation is

p(xi = 1) =

∑n
bj∈D bi

j

|D| . (2)

We use information theory to measure the quality of these distribution vectors.
Recall that in information theory, entropy [3] is a measure of the uncertainty
(randomness) associated with a random variable X , which is defined as H(X) =
−

∑
x∈X p(x) log2 p(x). Consider a random variable xi whose value domain is

{0, 1}, the probabilities of xi equals 0 or 1 is p(xi = 0) or p(xi = 1). The
entropy of an unknown sample of the random variable xi is maximized when
p(xi = 0) = p(xi = 1) = 1/2, which is the situation that it is the most difficult
to predict the value of a unknown sample. When p(xi = 0) 	= p(xi = 1), we

On Summarizing Graph Homogeneously 303

know that the value of the unknown sample is more likely to be either 0 or 1
accordingly, which is quantified in a lower entropy. The entropy is zero when
p(xi = 0) = 1 or p(xi = 1) = 1. For a Bernoulli distribution vector p(x),
assuming the contained random variables are independent to each other, the
total entropy of a Bernoulli distribution vector is

H(p(x)) = −
d∑

i=1

1∑
xi=0

p(xi) log2 p(xi) (3)

If binary vectors within the set D are similar to each other, or homogeneous,
then for each random variable xi, most of its values should be similar, resulting
in a low H(p(x)).

Below, we discuss the three relaxations in Definition 2. Based on these obser-
vations, we can measure the quality of the three relaxations in an unified model
inspired by information theory.

Observation for dist1(·): For each node vi ∈ V , T (vi) = (a1, ..., ad) is the
attribute vector of vi, where ai is the value of attribute Ai. As mentioned, we
represent categorical attribute values using bitmaps, so we also use ai to indicate
the bitmap when there is no confusing. For a certain group of nodes, Vj , in an
approximately homogenous grouping, the attribute information of each node vi ∈
Vj is in form of a binary vector by catenating together these bitmaps, denoted as
a = (a1, ..., ad). If these binary vectors are similar, then the attribute information
of this group is homogenous. Instead of measuring the distances between pairs
of these vectors, a binary Bernoulli distribution vector is learned by Eq. (3)
from these vectors. The more similar these vectors are, the less randomness of
the distribution vector. The randomness is measure by entropy and low entropy
means less randomness.

Observation for dist2(·): Nodes in the same homogeneous group should have
similar neighbors in the super-graph, where dist2(·) is a distance function based
on the neighbor relationship. However, dist3(·) measures difference between two
nodes in the same group in terms of the number of neighbors in their neighbor
groups. Apparently, dist3(·) is a stronger requirement than dist2(·), so we skip
the entropy analysis for dist2(·) and jump to dist3(·) in the following.

Observation for dist3(·): If there is a super-edge between super-nodes Si and
Sj , then nodes in Si should have similar total number of edges to nodes in Sj .
We can keep two histograms for each super-edge (Si, Sj), namely, Si-to-Sj and
Sj-to-Si, to record the number of neighbors in Sj (Si) of nodes in Si (Sj). We
explain it using an example as shown in Fig. 2. There are three groups (super-
nodes) in the grouping: S1, S2, and S3. At the upper left corner in Fig. 2, it shows
how these super-nodes are connected by super-edges. For example, it indicates
that every node in S2 has 10 neighbors in S1 on average. The histogram of S2-
to-S1 is drawn on upper right corner, where The x-axis indicates the number
of neighbors in S1 for a node in S2. The y-axis indicates the number of nodes
in S2 in corresponding to each value on x-axis. Intuitively, a homogenous group
should have a tight spread range on x-axis in the histogram. We use entropy to

304 Z. Liu and J.X. Yu

9 0 0 0
10 1 0 0
12 1 1 1

p(bi=1) 0.6 0.2 0.2
Entropy 1.37

S1

S2

S3

10

5

S2:

8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 101112

Fig. 2. Connection Strength Example

measure how homogeneous inside each group. To do so, we present the histogram
in another way as shown in the bottom right corner. The x-axis still indicates
the number of neighbors in S1 for a node in S2, while the thickness of each bar
indicate the number of nodes in S1 in corresponding to each value on x-axis.
Based on this intuition, we transform each bar in the bottom histogram to a
binary vector of all 1’s. For example, for bar indicating the number of neighbors
is 9, a binary vector of length 9 is constructed. We first catenate 0’s at the end
of each binary vectors to make them of the same length. Then we remove the
common 1’s in the suffix of these two vectors. The remaining binary vectors
are shown in the bottom left table in Fig. 2. Similar to dist1(·), a Bernoulli
distribution vector is learned from these binary vectors. The more similar these
vectors are, the lower entropy of the distribution vector is.

In summary, the homogeneity of a group of nodes can be measured by the con-
cept of entropy of these Bernoulli Vectors. Let e = (Si, Sj) denote a super-edge
between two super-nodes Si and Sj , and let vi denote a node in super-node Si.
The entropy of super-node Si consists of two parts. Recall that a is the catenating
binary vector of bitmaps. The first is the attribute homogeneity H(p(am = 1)),
where am is the mth element in a, and p(am = 1) is the Bernoulli distribution
vector estimated by Eq. (2) based on the vector set of a. Let b denote the binary
vectors for histograms in Fig. 2. The second is the connection strength homo-
geneity H(p(bm

j = 1)), where bm is the mth element in b, and p(bm
j = 1) is

the Bernoulli distribution vector estimated by Eq. (2) for Si to Sj . The total
entropy for Si is given below.

TotalEntropy(Si) =
H(p(am = 1))

|a| +
1

deg(Si)
×

k∑
j=1

H(p(bm
j = 1))
|bj|

(4)

Here, deg(Si) is the degree of super-node Si in the graph summarization GS , and
k is a user-given parameter for controlling the number of groups in the groping Γ .
Now the optimized approximately homogenous grouping is the grouping which
minimizes

∑
Si∈Γ TotalEntropy(Si) of the super-graph. What we study next is

how to find the optimized approximately homogeneous grouping Γ for a given
graph G. Based on Γ , the graph summarization GS can be constructed.

On Summarizing Graph Homogeneously 305

Algorithm 1. Lazy Exactly Homogeneous Grouping
Input: A graph G = (V, E, T)
Output: The exactly homogeneous grouping Γ .
1: Partition the nodes into m initial groups according to distinct attribute vectors a;
2: Construct an n × m node-to-group matrix M ;
3: while True do
4: Sort rows within each group;
5: Let splitflag be a all-zero binary vector of length n;
6: for each column in M do
7: if M(i, j) == 0 and M(i + 1, j) == 1 then
8: splitflag(i) = 1
9: end if

10: end for
11: if splitflag is all zeros then
12: break;
13: end if
14: Split each group according to splitflag;
15: Reconstruct the n × m′ node-to-group matrix M ;
16: end while
17: Output the exact homogeneous grouping Γ .

4 Homogeneous Graph Summarization

Our framework for graph summarization contains two steps: the exact homoge-
neous grouping and the approximate homogeneous grouping.

The Exactly Homogeneous Grouping: Algorithm 1 outlines the procedures
to compute the exactly homogeneous grouping based on Definition 1. Recall
that a is the catenated attribute vector for nodes. Suppose there are m distinct
attribute vectors, then nodes in graph G are partitioned into m groups first
according to the distinct vectors. Then the algorithm constructs an n×m node-
to-group matrix M , where M(i, j) is the number of vi’s neighbors in Sj. One
thing worth noting is that nodes belonging to the same group are stored adja-
cently in M and the order of groups in rows is the same as the order of groups in
columns. At line 6, Algorithm 1 marks the split positions using a binary vector
of length n. After having inspected all the groups, Algorithm 1 reconstructs the
node-to-group matrix M based the split positions marked. The reason we do not
reconstruct M immediately after a split position is that the matrix reconstruc-
tion is costly, and that why we called it lazy exactly homogeneous grouping.

It is obvious that the optimized approximately homogeneous algorithm is
an NP problem and we present two heuristic algorithms, a bottom-up approxi-
mate algorithm and a k-mean approximate algorithm, to solve the approximately
homogeneous grouping problem.

The Approximately Homogeneous Grouping: We obtain an approximately
homogeneous grouping from an exactly homogeneous grouping Γ . We merge
two groups repeatedly in a bottom-up fashion, if the merge can bring minimum
entropy increase. The algorithm is presented in Algorithm 2. Algorithm 2 takes

306 Z. Liu and J.X. Yu

Algorithm 2. The Bottom-Up Approximate Algorithm
Input: The exactly homogeneous grouping Γ = {V1, · · · , Vm}; a number k
Output: The approximately homogeneous grouping ΓA

1: ΓA = Γ ;
2: while |ΓA| > k do
3: for each group pair Vi and Vj in Γ do
4: Γij = ΓA ∪ {Vi ∪ Vj} \ {Vi, Vj};
5: Compute the entropy(Γij) based on Eq. 4;
6: end for
7: Let (Vl, Vm) be the pair of groups with the minimum |entropy(Γij) −

entropy(ΓA)|;
8: ΓA = ΓA ∪ {Vl ∪ Vm} \ {Vl, Vm};
9: end while

10: Output the approximate homogeneous grouping ΓA.

Algorithm 3. The k-Mean Approximate Algorithm
Input: The exactly homogeneous grouping Γ = {V1, · · · , Vm}; a number k
Output: The approximately homogeneous grouping ΓA

1: Random select k the initial groups C1, ..., Ck from Γ ;
2: Evaluate the Bernoulli distribution vectors a and bj for C1, ..., Ck;
3: repeat
4: Evaluate the Bernoulli distribution vectors a and bj for each group Vi ∈ Γ ;
5: Catenate a and bj together for Vi;
6: Assign each group Vi to a new cluster Ci according to the Kullback-Leibler

divergence in Eq. 5;
7: Evaluate the Bernoulli distribution vectors a and bj for C1, ..., Ck;
8: Catenate a and bj together for C1, ..., Ck;
9: until No more changes of the group assignments

10: Output the approximate homogeneous grouping ΓA = {C1, C2, ..., Ck}.

the exact homogeneous grouping Γ as the input. In each iteration from line 2,
the algorithm computes the entropy increase introduced by merging possible
group pairs, and selects the pair with the minimum extra entropy. There is no
need to recompute the total entropy of the whole merged super-graph in order
to obtain the entropy increase, because merging two super-nodes (groups) only
affects the entropy of their neighbor super-nodes in the corresponding graph
summarization GS . So, in line 5, we only calculate the entropy of the pair of
groups to be merged and ones of their neighbor groups. The entropies of other
groups are the same as ones in ΓA.

The k-Mean Approximate Algorithm: In this section, we present a k-mean
based approximate algorithm to find the optimized approximately homogeneous
grouping using the Kullback-Leibler (KL) divergence. The Kullback-Leibler di-
vergence [10] is a measure of the difference between two distribution vectors p
and q, which is defined as below.

On Summarizing Graph Homogeneously 307

KL(p ‖ q) =
d∑

i=1

1∑
xi=0

p(xi)log
p(xi)
q(xi)

(5)

In the view of information theory, KL measures the expected number of extra
bits required to encode samples from p when using a code based on q, rather
than using a code based on p. Suppose the Bernoulli distribution vector for a
certain node group Si is p. For each node in group Si, let q denote the Bernoulli
distribution vector for a node vi ∈ Si. We can prove that

∑
vi∈Si

KL(q(x) ‖ p(x)) = −n(Si) ∗ H(p(x)). (6)

The proof is omitted due to lack of space. So, the optimized approximately
homogenous grouping that minimizes H(p(x)) is the grouping that minimizes
KL(q(x) ‖ p(x)), which leads to the following k-mean approximate algorithm,
as presented in Algorithm 3.

5 Experimental Results

In this section, we report our experimental results on the real datasets from
DBLP Bibliography [1]. We construct a co-author graph with top authors and
their co-author relationships, where the authors are from three research areas of
database (DB), data mining (DM) and information retrieval (IR). Based on the
publication titles of the selected authors, we use a topic modeling approach [4,11]
to extract 100 research topics. Each extracted topic consists of a probability
distribution of keywords which are most representative of the topic. In the ex-
periments, each author is related to several topics whose probabilities are larger
than 5%. By using authors from partial or all areas, we construct four datasets
in our experiments. The basic statistics of the four datasets are presented in
Table 1. There are total 100 topics and each author can belong to up to five
topics. Example of the topics are shown in Table 2, as well as the top keywords
in each topic. Fig. 3 presents the frequency distribution of each topic, which is
the total number of authors belonging to a topic. All the experiments were con-
ducted on a computer running Windows XP with Intel Core-2 Quad processor
and 3GB RAM, but only a single core in the CPU is used for evaluation.

Exactly Homogeneous Grouping: Table 3 presents a comparison between
the number of groups and the nodes in the original graphs. The number of

Table 1. The DBLP Bibliography Datasets

Datasets # of Nodes # of Edges Avg. Degree
D1 DM 1695 2282 1.35
D2 DB 3328 11379 3.42
D3 DB+DM 5023 15262 3.03
D4 D3+IR 6184 18710 3.02

Table 2. The Keywords of The Topics

Topics # Keywords
32 text, classification, vector, categorization
66 mining, patterns, frequent, sequential...
76 service, scheduling, extending, media
80 clustering, matrix, density, spectral

308 Z. Liu and J.X. Yu

0 20 40 60 80 100
0

200

400

600

800

Topics

F
re

qu
en

cy

Fig. 3. Topic Frequency in Dataset DB

Table 3. The DBLP Bibliography Datasets

D1 D2 D3 D4
of Nodes 1695 3328 5023 6184

of Attribute Vectors 1492 2931 4401 5409
of Exact Groups 1604 3219 4829 5912

Fig. 4. Dataset DM

D1 D2 D3 D4
10

−1

10
0

10
1

10
2

10
3

Datasets
R

un
ni

ng
 T

im
e

(s
ec

on
ds

)

Lazy Exact Grouping

Exact Grouping

Fig. 5. Exact Algorithms

distinct attribute vectors and the number of exact groups are quite close to the
number of nodes. Therefore, the exact homogeneous grouping cannot obtain a
graph summary of a reasonable size. Fig. 4 shows the graph structure of the main
connected component generated by exact grouping algorithm on dataset DM. In
Fig. 5, we compare the running time of our lazy exactly homogenous grouping
algorithm with the algorithm, denoted as exact grouping, which reconstructs the
matrix M immediately after discovering a split position. The lazy exact grouping
algorithm is much faster than the exact grouping algorithm that splits groups
immediately.

Approximately Homogeneous Grouping: Due to the high time complexity,
we only apply the bottom-up approximate algorithm on the smallest dataset DM.
Fig. 6 shows the average entropy of the bottom-up approximate algorithm. Since
it works in a bottom-up fashion, we present the average entropy for each possible
group number. As the group number shrinks, the average entropy increases. The
bottom-up approximate algorithm starts from the exact grouping, so the average
entropy at the beginning is 0. Fig. 7 presents the running time of the bottom-
up algorithm. Both the x-axis and y-axis are in log scale. The total running
time is morn than 104 seconds even for the smallest dataset DM. Fig. 8 shows
the average entropy of the output approximately homogenous grouping by the k-
mean approximate algorithm. The maximum average entropy in Fig. 8 is around
1.1 when k equals to 45, which is quite good since the average entropy is the
sum of the average attribute entropy and average neighbor entropy. Note that
the maximum possible entropy of a binary random variable is 1. Fig. 9 and Fig. 8
present the running time and the quality for all the four datasets, respectively, for
the k-mean approximate algorithm. As we can see in Fig. 9, when the number
of desired groups increases, it usually takes longer time to obtain the graph

On Summarizing Graph Homogeneously 309

5 10 20 40 80 160 320 640 1603
−0.1

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

K

E
nt

ro
py

 /
K

Fig. 6. Quality of Bottom-up Algo.

10 160 16035 40 80 320 64020
10

3

10
4

K

T
im

e
(S

ec
on

ds
)

Fig. 7. Timing of Bottom-up Algo.

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

K

E
nt

ro
py

 /
K

D1: DM
D2: DB
D3: DB+DM
D4: DB+DM+IR

Fig. 8. Quality of k-mean Algo.

5 10 15 20 25 30 35 40 45 50
0

100
200
300
400
500
600
700
800
900

1000

K

Ti
m

e
(S

ec
on

ds
)

D1: DM
D2: DB
D3: DB+DM
D4: DB+DM+IR

Fig. 9. Timing of k-mean Algo.

summarization. Since k-mean is a heuristic algorithm, the number of iterations
is not necessary to be dependent on the number of groups. That explains why
sometimes a larger k runs faster than a smaller k. The four datasets are of
different sizes in terms of number of nodes. Fig. 9 shows that the running time is
in proportional to the dataset size. For dataset DM, k-mean algorithm is almost
100x times faster than the bottom-up algorithm.

6 Related Works

The graph summarization [6, 7, 9, 12] mainly contains researches in two aspects.
One of them focuses on visualizing. Recently, Navlakha et al. [6] proposed an
approach to summarize graphs without attributes. Their goal is to obtain a
compact graph representation with smaller size and can be restored to the orig-
inal graph with bounded error. They used a single super-node to represent a
clique or near-clique, with an addition table recording the missing/added edges.
The quality of the summary is its minimum description length. Tian et al. [9]
proposed two graph summarization algorithms by aggregating nodes in graphs.
Their methods deal with graphs which contain only categorical attributes. The
top-down approach first groups together all the node with the same categorical
attributes. Then the groups of nodes are repeatedly split until there are k groups.
The bottom-up approach first groups together all the node with both the same
node attributes and the same edge attributes. Then small groups of nodes are
merged into larger groups until there are k groups left. It seems that their meth-
ods cannot be applied directly on the graph with many attribute, as discussed.

310 Z. Liu and J.X. Yu

Zhang et al. [12] extended Tian’s approach to deal with numerical attributes
by automatically categorizing numerical attribute values in a discovery-driven
manner. They also proposed an interestingness measure to identify the most
interesting resolutions. Graph compression [2,8,5] is another related area, which
focuses on compressing very large graphs in order to store them using smaller
disk spaces without losing the ability to answer link queues.

7 Conclusions

In this paper, we study graph summarization using a new information-preserving
approach. A graph is summarized by partitioning nodes into groups. We analyzed
the approximately grouping criterion and proposed a unified entropy framework
to relax all three conditions and measure the summarization quality. We also
proposed a lazy exact algorithm, as well as two other approximate algorithms
to compute the exactly homogenous grouping and the approximate grouping,
respectively. Experiments demonstrate that our methods can summarize at-
tributed graphs efficiently and homogeneously.

Acknowledgment

The work was supported by grants of the Research Grants Council of the Hong
Kong SAR, China No. 419008 and 419109.

References

1. Dblp bibliography, http://www.informatik.uni-trier.de/~ley/db/index.html
2. Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representations of separable

graphs. In: SODA, pp. 679–688 (2003)
3. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience,

New York (1991)
4. Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR, pp. 50–57 (1999)
5. Maserrat, H., Pei, J.: Neighbor query friendly compression of social networks. In:

KDD, pp. 533–542 (2010)
6. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded

error. In: SIGMOD Conference, pp. 419–432 (2008)
7. Newman, M.E.J.: The structure and function of complex networks. SIAM Re-

view 45, 167–256 (2003)
8. Raghavan, S., Garcia-Molina, H.: Representing web graphs. In: ICDE, pp. 405–416

(2003)
9. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summariza-

tion. In: SIGMOD Conference, pp. 567–580 (2008)
10. Yan, X., Cheng, H., Han, J., Xin, D.: Summarizing itemset patterns: a profile-based

approach. In: KDD, pp. 314–323 (2005)
11. Zhai, C., Velivelli, A., Yu, B.: A cross-collection mixture model for comparative

text mining. In: KDD, pp. 743–748 (2004)
12. Zhang, N., Tian, Y., Patel, J.M.: Discovery-driven graph summarization. In: ICDE,

pp. 880–891 (2010)

http://www.informatik.uni-trier.de/~ley/db/index.html

Expansion Properties of Large Social Graphs

Fragkiskos D. Malliaros1 and Vasileios Megalooikonomou1,2

1 Computer Engineering and Informatics Department
University of Patras, 26500 Rio, Greece

2 Data Engineering Laboratory, Center for Information Science and Technology,
Temple University, 1805 N. Broad St., Philadelphia, PA 19122, USA

{malliaro,vasilis}@ceid.upatras.gr

Abstract. Social network analysis has become an extremely popular
research area, where the main focus is the understanding of networks’
structure. In this paper, we study the expansibility of large social graphs,
a structural property based on the notion of expander graphs (i.e. sparse
graphs with strong connectivity properties). It is widely believed that
social networks have poor expansion properties, due to their community-
based organization. Moreover, this was experimentally confirmed on
small scale networks and it is considered as a global property of social
networks (independent of the graph’s size) in many applications. What
really happens in large scale social graphs? To address this question,
we measure the expansion properties of several large scale social graphs
using the measure of subgraph centrality. Our findings show a clear differ-
ence on the expansibility between small and large scale social networks,
and thus structural differences. Our observations could be utilized in a
range of applications which are based on social graphs’ structure.

Keywords: Social networks, Expansion, Measurement, Graph Mining.

1 Introduction

Recently, there has been a lot of interest in the study of complex network struc-
tures arising in many diverse settings. Characteristic examples are networks from
the domain of sociology (e.g. social networks), technological and information net-
works (e.g. the Internet, the Web, e-mail exchange networks, social interaction
networks over social media applications), biological networks (e.g. protein in-
teractions), collaboration and citation networks (e.g. co-authorship networks),
and many more [20]. The research interest has mainly focused on understanding
the structure, the organization, and the evolution of these networks, and many
interesting results have been produced [2].

A better and deeper understanding of network’s structure could have multiple
benefits in several domains (e.g. better design for graph algorithms and appli-
cations). Towards this direction, in this work we study the expansibility of large
social graphs, a structural property based on concepts from the theory of ex-
pander graphs [10]. Our main goal is to explore the expansion properties of large
scale social networks and compare it with known results from previous studies

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 311–322, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

312 F.D. Malliaros and V. Megalooikonomou

Table 1. Symbols and definitions

Symbol Definition

G Graph representation of datasets
V, E Set of nodes and edges for graph G
|V |, |E| Number of nodes and edges
N(S) Neighborhood nodes of node set S
h(G) Expansion factor of graph G

(or isoperimetric number or Cheeger constant)
A Adjacency matrix of a graph
aij Entry in matrix A
λi i-th largest eigenvalue
uij i-th component of j-th eigenvector
SC(i) Subgraph centrality of node i

on small graphs, in order to extract useful conclusions about social networks’
structure. Table 1 gives a list of used symbols with their definitions.

Expansion and Expander Graphs

Informally, a graph is a good expander if it is simultaneously sparse and highly
connected. More precicely, given a graph G = (V, E), the expansion of any subset
of nodes S ⊂ V with size at most |V |

2 , is defined as the number of its neighbor-
hood nodes (i.e. those nodes who have one endpoint inside S and the other
outside) over the size of the subset S. That is, if N(S) are the neighborhood
nodes of S, the expansion factor of the set S is |N(S)|

|S| . A graph is considered to
have good expansion properties if every such subset of nodes has expansion at
least h(G), i.e. h(G) ≥ |N(S)|

|S| , ∀S ⊂ V and |S| < |V |
2 . In other words, the expan-

sion factor of a graph is defined as the minimum expansion over all subsets [10]:

h(G) = min{
S:|S|≤ |N|

2

} |N(S)|
|S| . (1)

Expansion properties can offer crucial insights into the structure of a graph,
and in particular they can inform us about the presence or not of edges which
can act as bottlenecks inside the network. This practicaly means that measuring
the expansibility of a graph we are able to know to what extent the graph
has a modular structure or not. Large expansion factor implies good expansion
properties, which means that any subset of nodes will have a relatively large
number of edges with one endpoint in this set, and thus poor modularity. In
other words, if we think these subsets as cuts of a graph, good expansibility
require cuts with large size (i.e. large number of edges crossing the cut). On the
other hand, bad expansibility is the opposite behavior. For any subset of nodes
it is impossible to satisfy the constraint for a large neighborhood. Hence, such
kind of graphs can be easily separated into disconnected subgraphs with the
elimination of a small number of edges. It is clear that using notions from the

Expansion Properties of Large Social Graphs 313

field of sociology and social networks, graphs with poor expansibility correspond
to graphs with good community structure.

Contributions and Summary of our Results

In this paper we measure the expansibility of several large social graphs. Based on
the above discussion, we expect that social networks will exhibit bad expansion
properties, because of the fact that they are organized in communities, i.e. groups
of nodes with high density of edges within them, and much lower density between
different groups [21]. This structural property was confirmed experimentally from
previous studies [7] on small social networks, and in several cases is considered
as a global property of social networks, independent of the graph size (e.g., some
generative models for social networks are trying to generate synthetic social
graphs satisfying this bad expansion property). However, does the same result
apply to large scale social networks? In other words, how different is the structure
of social graphs with a large number of nodes and edges, if any, from that of
small graphs?

This is the main question we are trying to answer in this work. We measure
the expansion properties of several social graphs with a large number of nodes
and edges. In order to do this, we consider the fact that graphs with good expan-
sion properties exhibit large spectral gap between the two largest eigenvalues of
the adjacency matrix [10]. Then, utilizing this property together with the mea-
sure of subgraph centralilty [6], [7], we characterize the expansibility of these
social graphs. Our findings suggest that large scale social networks, in contrast
to small ones, show good expansibility. This point is particularly significant since
it can help us towards a better understanding of large social networks’ struc-
ture. Furthermore, these observations can be exploited in several domains such
as structure-based classification schemes for networks, searching in networks [16]
and in applications which may require robustness of the social network over so-
cial media applications.

2 Related Work

In this section we review the related work, which can be placed into three main
categories: graph structure, applications and spectral graph analysis.

Graph Structure. There is a vast literature on methods for understanding
the structure of social networks [21], [11], [18], [15] and generally of complex
networks [20]. The key step for these methods is finding properties and laws
which the graphs obey. Studying static snapsots of graphs has led to the dis-
covery of interesting properties such as the power law degree distribution [9],
the small diameter [1] and the triangle power law [25]. Futhermore, Leskovec
et al. [13], [14] showed that time-evolving graphs have diameter which shrinks
and stabilizes over time and obey the densification power law. For a nice survey
one can consult the recent work of Chakrabarti, Faloutsos, and McGlohon [2].
Estrada [7] studied expansion properties of complex networks and showed that

314 F.D. Malliaros and V. Megalooikonomou

social graphs exhibit poor expansibility. However, in contrast with our work, it
focuses on small scale networks. On the other hand, we explore large scale social
networks and our results suggest a clear difference between their structure (in
terms of expansibility) with that of small social graphs.

Applications. The understanding of a network’s structure can be exploited in
several domains and applications. Generating realistic graphs [2] is such an appli-
cation, where generators should satisfy the observed properties. Other domains
are searching in networks [16], sampling [17] and rumor spreading [4].

Spectral Graph Analysis. Analyzing graphs using spectral techniques (i.e.
the eigenvalues and eigenvectors of a matrix representation of the graph (mainly
adjacency and Laplacian matrices)) has a long history [3]. More recent related
works include spectral algorithms for community detection [23] and spectral
counting of triangles in large graphs [25]. As we will see next in this paper,
the measure which is used for characterizing the expansibility of social graphs
(subgraph centrality) can be computed using the spectrum of the adjacency
matrix of the graph.

3 Measuring Expansion Properties

In this section we present the method we used for measuring the expansion
properties of social networks, to characterize them as networks with “good” or
“bad” expansibility. As we state previously, in order to compute the expansion
factor of a graph (which fully characterizes its expansion properties), we need
to compute the minimum fraction of neighborhood nodes, over the nodes inside
the subset, for all possible subsets of nodes with size at most |V |

2 . Since this is an
NP-hard problem [19], and thus intractable to compute, we need approximation
techiniques for the expansion factor of a graph.

Thanks to a very well known result in the field of spectral graph theory,
the expansion factor can be approximated using the spectrum of the adjacency
matrix A of the graph, and more precicely the difference between the largest and
second largest eigenvalues of A. This difference Δλ = λ1 − λ2 is known as the
spectral gap of matrix A and it is related to the expansion factor h(G) through
the Alon - Milman inequality1,

Δλ

2
≤ h(G) ≤

√
2λ1Δλ. (2)

Large spectral gap implies big expansion factor and thus a graph with good
expansion properties. On the other hand, if λ2 is close enough to λ1, the spectral
gap will be small and the graph will show poor expansibility.

The above discussion suggests a simple way for characterizing the expansion
properties of a graph: compute the spectral gap and if this is large, the graph
should have good expansion properties. However, a crucial question in the above
1 This is also known as Cheeger inequality.

Expansion Properties of Large Social Graphs 315

claim is how large the spectral gap should be for a graph to have good expan-
sibility. As we will see from the experimental study in real-world networks, it is
very difficult to measure the quantity of interest solely from the spectral gap of
the adjacency matrix.

In this paper we measure the expansibility of a graph using the notion of
subgraph centrality [6], employing a solution proposed by Estrada [7]. The reason
for this decision is twofold: first of all, as we will see in the rest of this paper, the
method based on subgraph centrality provides a clear distinction between graphs
with different expansion properties. The second reason is that using this method,
we can easily compare our results with that of [7], trying to find differences
between the structure of large and small scale social graphs.

3.1 Subgraph Centrality

In this section we present the subgraph centrality measure [6] which is the basis
for the estimation of the expansion character of a graph. Like other centrality
measures in the field of graph theory and network analysis (e.g., degree central-
ity, betweenness centrality), subgraph centrality determines the importance of a
node in the graph taking into consideration all the subgraphs in which the node
participates.

More precicely, the subgraph centrality SC(i) of a node i ∈ N is calculated
based on the total number of closed walks in a graph. A closed walk of specific
length � is an alternating sequence of nodes and edges starting and ending with
a node, v1, e1, v2, e2, . . . , e�−1, v�, where ei = (vi, vi+1) ∈ E, ∀i = 1, . . . , � − 1
and v1 = v�. For instance, a closed walk of length three represents a triangle.
The subgraph centrality of a node i is defined as the sum of closed walks with
different lengths, starting and ending at node i. However, all these walks with
different lengths do not contribute equally to the centrality of the node; shorter
walks contribute more (this happens because of the fact that in real-world graphs
small subgraphs tend to be more interesting (e.g., triangles)). Thus, the subgraph
centrality of node i is given by

SC(i) =
∞∑

�=0

A�
ii

�!
, (3)

where the diagonal entry αii of the matrix A� contains the number of walks of
length � that begin and end at the same node i. Using techniques from spectral
graph theory, it can be proved that the subgraph centrality can be obtained
from the spectrum of the adjacency matrix A of the graph. Because of the fact
that (3) counts both even and odd length closed walks and more precicely even
length walks may be trivial (moving forth and back in the graph), we keep only
odd length walks2 [6]:

2 The graphs used in this study are non-bipartite and thus the number of closed walks
of odd length is different from zero.

316 F.D. Malliaros and V. Megalooikonomou

SC(i) =
N∑

j=1

u2
ij sinh(λj). (4)

Now we can write (4) in the form

SC(i) = u2
i1 sinh(λ1) +

N∑
j=2

u2
ij sinh(λj), (5)

where ui1 is the i-th component of the principal eigenvector (eigenvector corre-
sponding to the largest eigenvalue λ1). If the graph has good expansion prop-
erties, which means that λ1 � λ2, then u2

i1 sinh(λ1) �
∑N

j=2 u2
ij sinh(λj) and

relation (5) could be written as

SC(i) ≈ u2
i1 sinh(λ1). (6)

This means that the principal eigenvector ui1 is related to SC(i) as

ui1 ∝ sinh−1/2(λ1) SC(i)1/2. (7)

This relation suggests that if the graph has good expansion properties (big
spectral gap), ui1 will be proportional to SC(i) and a log-log plot of ui1 vs.
SC(i), ∀i ∈ N will show a linear fit with slope 1/2 [7]. Thus, good expansion
implies a power-law relationship between the principal eigenvector and the sub-
graph centrality. On the other hand, graphs with poor expansibility will deviate
from this property. Moreover, this behavior can be summarized in the quantity
ξ(G), which captures exactly the expansion character of a graph [8]:

ξ(G) =

√√√√ 1
|N |

|N |∑
i=1

{
log(ui1) −

(
log A +

1
2

log(SC(i))
)}2

, (8)

where A = sinh−1/2(λ1). This quantity measures the deviation from the “per-
fect” linear correlation (in log scale), which occurs when the spectral gap λ1−λ2
is large (and thus the graph has good expansion properties). This is exactly what
we propose to use in this paper for measuring the expansion properties of real-
world social graphs.

For a better understanding and illustration, we apply this method to two
graphs with known expansion properties. The first one is a random graph with
50 nodes produced by the Erdös-Rényi (ER) random graph model [5] with prob-
ability p = 0.3 (Fig. 1 (a)) and the second one is Newman’s collaboration net-
work between 379 researchers in the area of network science (Fig. 1 (c)) [22].
Random graphs are known to have good expansibility [10], and thus we expect
linear correlation in log-log scales between the principal eigenvector and sub-
graph centrality. On the other hand, Newman’s collaboration network has bad
expansion character because of the fact that nodes form dense modules, with
sparse connections between different modules. Hence, we expect deviation from

Expansion Properties of Large Social Graphs 317

10
3

10
4

10
5

10
−2

10
−1

10
0

Subgraph Centrality

P
rin

ci
pa

l E
ig

en
ve

ct
or

ξ(G) = 8.4086e−05

(a) ER random graph (b) Expansion character

10
−2

10
0

10
2

10
4

10
−8

10
−6

10
−4

10
−2

10
0

Subgraph Centrality

P
rin

ci
pa

l E
ig

en
ve

ct
or

ξ(G) = 2.4921

(c) Network science graph (d) Expansion character

Fig. 1. Two graphs with known expansion properties and the plots of the principal
eigenvector vs. subgraph centrality in log-log scale

this “perfect” linear correlation. Figure 1 (b) and (d) depicts these results. Also,
we can observe that ξ(G) is much smaller for the ER graph compared with the
second one, which agrees with the above discussion.

4 Experimental Results

Equipped with the tools presented in Section 3, we measure the expansion prop-
erties of different real-world social graphs shown in Table 2. All these graphs
represent social networks with a large number of nodes and edges. The selection
of these datasets, except from their large scale, is based on the fact that they
were formed under different “rules” and conditions. On the one hand we have
networks where edge creation is based on mutual knowledge between individuals
(e.g., co-authorship networks). On the other hand, there is a set of social net-
works, some of which are formed over social media applications, that may not
require mutual knowledge (and sometimes confirmation from the other side) for
the interaction (e.g. Youtube). In all cases, we consider the graphs as unweighted
and undirected. Moreover, we extract the largest connected component and use
it as a good representative of the whole graph (this is a standard approach in
such kind of studies).

318 F.D. Malliaros and V. Megalooikonomou

Table 2. Summary of real-world networks used in this study

Network Nodes Edges Description

Epinions [24] 75, 877 405, 739 Who trusts whom network
Email-EUAll [14] 224, 832 340, 795 Email network
Slashdot [15] 77, 360 546, 487 Slashdot social network (Nov. ’08)
Wiki-Vote [12] 7, 066 100, 736 Wikipedia who-votes-on-whom network
Facebook [26] 63, 392 816, 886 Facebook New Orleans social network
Youtube [18] 1, 134, 890 2, 987, 624 Social network from Youtube site
CA-astro-ph [14] 17, 903 197, 031 Co-authorship network in Astro Physics
CA-gr-qc [14] 4, 158 13, 428 Co-author. network in General Relativity
CA-hep-th [14] 8, 638 24, 827 Co-author. network in High Energy Phys.

Figure 2 presents plots of the expansion character of the graphs we exam-
ined, together with the values ξ(G). From a first look, it is clear that almost all
social graphs (except the last two which we will discuss later) exhibit good ex-
pansion properties, showing linear correlation between the principal eigenvector
and subgraph centrality in log-log scales. In all plots we have included a red line
which represents this ideal behavior in case of graphs with big spectral gap and
therefore good expansibility.

The results suggest that social graphs depicted in Fig. 2 (a)-(g), expand very
well allowing the selection of arbitrary subsets of nodes with size at most |V |

2 ,
such that for every set there is a relatively large number of edges with one
endpoint inside the set and the other outside (in other words, every selection
of such a subset creates a cut in the graph with a relative large size). Thus,
a first conclusion is that these social graphs lack of edges which can act as
bottlenecks. Furthermore, this result implies that the nodes inside the networks
we examined are not organized based on a clear modular architecture. More
precicely, a basic characteristic of the networks’ structure is the absence of well
defined clusters which can be easily seperated from the whole graph. In other
words, the networks lack of clusters (communites) with a clear difference between
the number of intra-cluster edges and inter-cluster edges3.

However, in what degree are the above observations expected? Before trying to
answer this question we must repeat that the used datasets correspond to social
networks and on-line social networks from social media applications, with a large
number of nodes and edges. It is known that the organization of social networks is
based on communities (i.e. subgraphs with high intra-community and low inter-
community edges). As a result, we expect that social networks will have poor
expansion character because of the presence of communities. This means that
it is very difficult for all the subsets of nodes to satisfy the constraint for good
expansibility. In [7], the author measured the expansibility of a large number
of real-world social networks, and showed that almost all of them have bad
expansion properties, which is intuitively expected from the above discussion.
3 We must note here that our findings do not imply the absence of communities from

social graphs, but the subgraphs which may correspond to communities cannot be
easily isolated, since they have a relatively large number of extra-community con-
nections.

Expansion Properties of Large Social Graphs 319

(a) Epinions (b) Email-EuAll (c) Slashdot

(d) Wiki-Vote (e) Facebook (f) Youtube

(g) CA-astro-ph (h) CA-gr-qc (i) CA-hep-th

Fig. 2. Expansion properties of large social networks presented in Table 2. All plots
depict the principal eigenvector vs. the subgraph centrality in log-log scale, and the
ξ(G) value for each graph.

However, it is very important to note that the social graphs studied in [7], have
a small number of nodes and edges. Moreover, none of them has arisen from
social media applications and generally online social networking, but almost all
formed by physical interaction between people.

On the other hand, as our results suggest, the expansion character of large
scale social graphs is completely different from that of small scale networks.
Almost all studied social networks exhibit good expansibility, which we consider
that is mainly due to two reasons. The first one, and the most obvious, is the
scale of the network. It seems that, in large scale social graphs it is difficult to
find subsets of nodes which can be easily isolated. For example, consider the co-
authorship networks CA-astro-ph, CA-gr-qc and CA-hep-th. While these
networks are formed in a similar way (collaboration between scientists), the first
one has about 18K nodes and 200K edges, while the other two have much smaller

320 F.D. Malliaros and V. Megalooikonomou

order (number of nodes) and size (number of edges) (4K nodes, 13K edges and
8K nodes, 25K edges respectively). Figures 2 (g), (h) and (i) show the expansion
properties of these graphs. We can observe their different behavior, where the
larger one shows good expansibility with a very small ξ(G) value (1.35× 10−8),
while the other two do not show this property (ξ(G) = 0.53021 and ξ(G) = 1.007
respectively).

The second reason we consider for justifying these findings is that most of
these networks are created over social networking and social media applications.
Thus, because of the fact that the interaction may not require knowledge from
both parts, it is easier to be achieved. Of course, something like that is very
difficult to happen in social networks which require knowledge of the other part
for an interaction.

Application Example. How these findings could be utilized in a real appli-
cation, such as decentralized search in complex networks? This is a common
problem in many applications, where starting from one initial node, we must
locate a target node inside the network, without full knowledge of the global
network structure (topology). Since the computation of the shortest path to the
target node is unable, a strategy is to visit nodes using only local information, in
such a way that every subset of visiting nodes has a large neighborhood and thus
good expansibility (the goal is to reach the target node, minimizing the num-
ber of required steps). Since our findings suggest that large scale social graphs
exhibit good expansion properties, the networks tend to be more searchable,
making the above searching strategy more efficient.

Computational Issues. While subgraph centrality (4) provides a powerfull
tool for measuring the expansion properties of a graph, it requires the compu-
tation of all eigenvalue - eigenvector pairs (λi,ui), ∀i ∈ N , of the adjacency
matrix A. While this may not be a problem for small graphs, it becomes a com-
putational bottleneck for large scale networks. In order to overcome this, we use
the observation of [25], which states that the eigenvalues of real-world graphs
are almost symmetric around zero, meaning that their signs tend to alternate.
Moreover, because of the fact that the sinh(·) function keeps the sign of the
eigenvalues, we can use only the top strongest eigenvalues and their correspond-
ing eigenvectors to achieve an excellent approximation of the subgraph centrality
(in our experiments we keep the first 30 strongest pairs).

5 Conclusions

In this paper we measured the expansion properties of several large scale so-
cial graphs, using the measure of subgraph centrality. Our findings show that,
in contrast to small social networks, large scale social graphs generally exhibit
good expansibility. This is something that has not appreciated previously, and
in many cases social graphs were characterized as graphs with poor expansion
properties, indepedent of their size. Our observations, except for a better un-
derstanding of social networks’ structure, could be possibly utilized in several

Expansion Properties of Large Social Graphs 321

domains and applications such as searching in networks, community discovery
and more generally in applications over social networks where the robustness of
the underlying structure is a crucial factor. In future work, we plan to further
investigate and understand the underlying mechanisms which cause this behav-
ior and how these findings could affect applications which consider the structure
of social networks.

Aknowledgements

We would like to thank Alan Mislove for providing some of the network datasets
used in this study.

References

1. Albert, R., Jeong, H., Barabasi, A.-L.: Diameter of the world wide web. Nature 401,
130–131 (1999)

2. Chakrabarti, D., Faloutsos, C., McGlohon, M.: Graph mining: Laws and generators.
In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data, ch. 3.
Springer, Heidelberg (2010)

3. Chung, F.R.K.: Spectral Graph Theory. CBMS, Regional Conference Series in
Mathematics, vol. 92. AMS, Providence (1997)

4. Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumour spreading and graph conduc-
tance. In: SODA, pp. 1657–1663 (2009)

5. Erdös, P., Renýı, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci. 5, 17–61 (1960)

6. Estrada, E., Rodŕıguez-Velázquez, J.A.: Subgraph centrality in complex networks.
Phys. Rev. E 71 (2005)

7. Estrada, E.: Spectral scaling and good expansion properties in complex networks.
Europhys. Lett. 73(4), 649–655 (2006)

8. Estrada, E.: Network robustness to targeted attacks. The interplay of expansibility
and degree distribution. Eur. Phys. J. B 52, 563–574 (2006)

9. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the In-
ternet topology. In: SIGCOMM, pp. 251–262 (1999)

10. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Amer. Math. Soc. 43 (2006)

11. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social net-
works. In: KDD, pp. 611–617 (2006)

12. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting Positive and Negative
Links in Online Social Networks. In: WWW, pp. 641–650 (2010)

13. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over Time: Densification Laws,
Shrinking Diameters and Possible Explanations. In: KDD, pp. 177–187 (2005)

14. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph Evolution: Densification and
Shrinking Diameters. ACM TKDD 1(1) (2007)

15. Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Community Structure in Large
Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters.
Internet Mathematics 6(1), 29–123 (2009)

16. Maiya, A.S., Berger-Wolf, T.Y.: Expansion and search in networks. In: CIKM, pp.
239–248 (2010)

322 F.D. Malliaros and V. Megalooikonomou

17. Maiya, A.S., Berger-Wolf, T.Y.: Sampling Community Structure. In: WWW, pp.
701–710 (2010)

18. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and Analysis of Online Social Networks. In: IMC, pp. 29–42 (2007)

19. Mohar, B.: Isoperimetric Number of Graphs. J. Comb. Theor. B 47, 274 (1989)
20. Newman, M.E.J.: The structure and function of complex networks. SIAM Re-

view 45, 167–256 (2003)
21. Newman, M.E.J., Park, J.: Why social networks are different from other types of

networks. Phys. Rev. E 68, 036122 (2003)
22. Newman, M.E.J.: Finding community structure in networks using the eigenvector

of matrices. Phys. Rev. E 74 (2006)
23. Newman, M.E.J.: Modularity and community structure in networks.

PNAS 103(23), 8577–8582 (2006)
24. Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic

web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 351–368. Springer, Heidelberg (2003)

25. Tsourakakis, C.E.: Fast Counting of Triangles in Large Real Networks without
Counting: Algorithms and Laws. In: ICDM, pp. 608–617 (2008)

26. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the Evolution of User
Interaction in Facebook. In: WOSN, pp. 37–42 (2009)

Text Representation Using Dependency Tree
Subgraphs for Sentiment Analysis

Alexander Pak and Patrick Paroubek

Université de Paris-Sud, Laboratoire LIMSI-CNRS, Bâtiment 508,
F-91405 Orsay Cedex, France
{alexpak,pap}@limsi.fr

Abstract. A standard approach for supervised sentiment analysis with
n-grams features cannot correctly identify complex sentiment expressions
due to the loss of information when representing a text using the bag-
of-words model. In our research, we propose to use subgraphs from the
dependency tree of a parsed sentence as features for sentiment classi-
fication. We represent a text with a feature vector based on extracted
subgraphs and use state of the art SVM classifier to identify the polar-
ity of the given text. Our experimental evaluations on the movie-review
dataset show that using our proposed features outperforms the standard
bag-of-words and n-gram models. In this paper, we work with English,
however most of our techniques can be easily adapted for other languages.

1 Introduction

Bag-of-words is one of the first model of the text representation which is nowa-
days still often used in sentiment analysis. In this approach, text is usually
represented as a set of unigrams (or bigrams) disregarding their order and rela-
tions within the text. Common machine learning techniques such as Naive Bayes
or SVM are then used to perform the sentiment classification of the given text.
Although the accuracy of such approaches can be quite high, especially when
using advanced feature selection techniques and additional lexicons of opinion-
ated texts. We think that this model should be improved or replaced by the one
that can identify more complex sentiment expressions rather than only simple
ones such as ’good movie’ or ’bad acting’.

One of the problems of bag-of-words representation is the information loss
when representing a text as a collection of unrelated terms. However, these rela-
tions are often very important and may change the degree and the polarity of a
sentiment expressed in the text. We illustrate this problem with a simple exam-
ple. Let’s consider a simple phrase: “This book is bad”. The sentiment of this
phrase is obviously negative and a standard classifier based on unigrams model
will easily classify this sentence correctly provided a good training dataset. Now
let’s make the sentence a little more complex: “This book is not bad”. In this
case, a simple unigram model will probably fail. However, a bigram model will
still work, capturing ’not bad’ as a term with a positive polarity. If we make
the sentence more complex: “This books is surprisingly not that bad”, both

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 323–332, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

324 A. Pak and P. Paroubek

unigram and bigram models will fail. To make them work, a more sophisticated
treatment of negations is needed.

Other than handling negations, n-gram model has problems with capturing
long dependencies. A bigram model will capture “I like” as a positive pattern in a
sentence such as “I like fish”, but not in “I really like fish”. If we would advance
the task and move to a more refined polarity classification, i.e. identifying not
only the polarity of a text (positive or negative), but also the degree of the
polarity (low/high or even more precise), the bag-of-words model cannot provide
us with the sufficient information.

In order to solve the problems of the bag-of-words text representation, we
propose to use parsing dependency tree of a sentence to generate subgraphs that
can be used to represent a text. A dependency tree is a graphical representation
of a sentence where nodes correspond to words of the sentence and edges repre-
sent syntactic relations between them such as ’object’, ’subject’, ’modifier’ etc.
Figure 1 depicts a dependency tree of a sentence “I do not like fish very much”.

Such a representation of the sentence suits very well for sentiment analysis
purposes and even for opinion mining:

I

l ike

n s u b j
f i sh

d o b j

d o

a u x

n o t

n e g

m u c h

a d v m o d

v e r y

a d v m o d

Fig. 1. A dependency tree of a sentence “I do not like fish very much”. Nodes represent
words, edges represent relations between words.

Text Representation Using Dependency Tree Subgraphs 325

I

l ike

n s u b j

I

l ike

n s u b j

f i sh

d o b j

l ike

f i sh

d o b j

m u c h

a d v m o d

m u c h

a d v m o d

Fig. 2. A representation of a sentence “I like fish much” with subgraphs of size 2

– From the given tree, we can easily identify the negation subgraph “not
neg−−→

like”
– We can find intensity markers: “very advmod−−−−−→ much advmod−−−−−→ like”
– Opinion holder: “I

nsubj−−−−→ like” and opinion target: ‘like
dobj−−−→ fish”

In our approach, we use subgraphs of the dependency tree of the sentences to
represent a given text. Similarly to n-grams, we define the size of a subgraph
which is equal to the number of edges it contains. Thus, a subgraphs of size 1
contains 1 edge and 2 nodes, a subgraph of size 2 contains 2 edges and 3 nodes
etc. For example, the sentence “I like fish much” can be represented by subgraphs
of size 2 as depicted on Figure 2.

In the next section, we explain in details how we obtain the dependency tree
and generate subgraph representation of a text. In Section 2.2, we show how we
use this representation to index movie-review dataset and train an SVM classifier
for sentiment polarity classification. We present our experimental evaluation
setup and results in Section 3. We discuss the prior research in Section 4 and
conclude our work in Section 5

2 Our Method
2.1 Subgraph Representation

We use the output of typed dependencies of Stanford Parser [5] to obtain the
dependency tree of a sentence. For the sentence “I do not like fish very much”
it produces a list of dependencies from which we can reconstruct the tree:

nsubj(like-4, I-1)
aux(like-4, do-2)
neg(like-4, not-3)
dobj(like-4, fish-5)
advmod(much-7, very-6)
advmod(like-4, much-7)

326 A. Pak and P. Paroubek

do no t l i ke f i sh
d o b j

I n s u b j

m u c h

a d v m o d

v e r y
a d v m o d

Fig. 3. The dependency tree after combining nodes and pruning edges

However, we would like to obtain a tree where each node has a finite meaning.
In our example, nodes as ’not’ and ’do’ do not have meaning by themselves, and
the node ’like’ contains only a partial meaning (it lacks the negation). Therefore
after we obtain the dependency tree, we combine certain nodes as follows:

– Combine nodes linked with the negation relation (’neg’), such that the edge
“not

neg−−→ like” becomes a single node “not like”
– Combine auxiliary verbs with the main verb (’aux’), such that the edge

“do aux−−→ like” becomes a single node “do like”
– Combine copulae (’cop’)

We also prune the following edges to avoid unnecessary information:

– Determiners, such as “a det−−→ book” becomes “book”
– Possesives, such as “my

poss−−−→ book” becomes “book”
– Noun modifiers, such as “dog nn−−→ food” becomes “food”

Applying the rules above, the resulting tree for our example would look as in
Figure 3.

Finally, the sentence is represented by a set of all possible subgraphs of a size
S, where S is equal to the number of edges of subgraphs. In our experiments,
we used S = 1 and S = 2.

For each subgraph we obtain a permutation of subgraphs containing various
number (from 0 to S − 1) of wildcard nodes. A wildcard node is a node that
can match any word. The only exception is that we do not replace verbs and
adjectives as they usually possess sentiments. For example, the obtained wildcard
subgraphs for “I

nsubj−−−−→ like
dobj−−−→ fish” are depicted in Figure 4.

The reason we have add wildcard subgraphs is similar to [1]. Our intension
is to be able to match constructions such as “I like fish” and “I like books”. In
these two constructions only object is different, while the sentiment expression
is the same. By introducing wildcard graphs along with specific graphs we are
able to capture such phenomena.

2.2 Feature Construction

We represent a given text T as a feature vector T = {w1, w2, · · · , wK}, where
wi is a weight of a subgraph i in text T , K is the number of subgraphs in T .

Text Representation Using Dependency Tree Subgraphs 327

I l ike
n s u b j

I l ike
n s u b j

X like
n s u b j

X

f i sh
d o b j

f i sh
d o b j

d o b j

Fig. 4. Obtained wildcard subgraphs for “I like fish”

Similarly to the previous studies in sentiment classification, we experiment with
the following types of weighting schemes:

1. Binary, represents whether the graph is presented in the text [11], i.e.:

wi = 1 ∀i ∈ T (1)

2. Frequency count:
wi = tfi (2)

where tfi (term frequency) is the number times a subgraph i occurs in T
3. Smoothed delta TFIDF [9]:

wi = tfi · Δidfi (3)

Δidfi = log
N1 · df2 + 0.5
N2 · df1 + 0.5

(4)

where N1 and N2 are total numbers of documents of class 1 and 2, df1 and
df2 are class frequencies of the graph i (i.e. numbers of documents of classes
1 and 2 in which the graph is occured). In our case, classes 1 and 2 are
positive and negative documents.

2.3 Discounting Scheme

The prior research on sentiment analysis showed that review authors tend to
express sentiments in the last part of the text [3]. Therefore we decided to cap-
ture the position of the sentence in which the subgraph occurs in relation to
the whole text. We introduce two strategies on how to add position information
when constructing the feature vector. In the first strategy, we divided text into
quantiles (3, 4 and 5) and treated subgraphs from different quantiles as indepen-
dent features. In the second strategy, we added a discounting scheme for term
frequency counting:

tfi =
∑

∀pi∈T

f(pi) (5)

328 A. Pak and P. Paroubek

where {p} is a set of sentence indices where subgraph i occurs and f is a dis-
counting function. pi is equal to the index of the sentence in which the subgraph
occurs divided by the total number of sentences. Thus if the subgraph occurs in
the first sentence pi = 0, and if it occurs in the last sentence pi = 1.

As for the discount function we have tried the following:

1. Uniform, evenly increases weights of the sentences in the end of the review

f(p) = p (6)

2. Sigmoid, gives more weight to the sentences in the end of the review

f(p) =
1

1 + e−10p+5 (7)

3. Cosine square, gives more weight to the sentences in the beginning and in
the end of the review

f(p) = cos2(πx) (8)

4. Sine square, gives more weight to the sentences in the middle part of the
review

f(p) = sin2(πx) (9)

The graphs of the discount functions are given in Figure 5.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

p

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

1/
1+

ex
p(

−
10

(p
+

1/
2)

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

co
s^

2(
pi

 p
)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p

si
n^

2(
pi

 p
)

Fig. 5. Discount functions (from the left to the right): uniform, sigmoid, cosine square,
sine square

3 Experiments and Results
3.1 Data and Evaluation Setup

We utilized an open source implementation of SVM classifier from the LIBLIN-
EAR package [6]. We set default parameters and linear kernel. To evaluate our
classifier, we used the movie-review dataset which is often used in sentiment
analysis research1 and initially was used in [11]. The dataset contains 2000 writ-
ten movie reviews mined from the IMDb (Internet Movie database) web-site2.
1 http://www.cs.cornell.edu/people/pabo/movie-review-data/otherexperiments.html
2 http://imdb.com

Text Representation Using Dependency Tree Subgraphs 329

X
is terrific

nsubj

well
worksa d v m o d

X
avoidsnsubj

X
is outstanding

nsubj

qui te
wella d v m o d

X
is awful

a d v m o d

X
is terriblensubj

flat
fallsa c o m p

X
is wasteprep_of

r e a s o n
’s

nsubj

Fig. 6. Positive (on the left) and negative (on the right) subgraphs extracted from the
movie-review database

The dataset is evenly split into a positive and a negative set (i.e. 1000 texts in
each set). Each document contains a raw text without any HTML formatting.
We use our subgraph text representation model with the subgraph of size 1 and
also present the results with size 2.

We depict top-5 subgraphs (selected by Δidf score) from positive and negative
set in Figure 6 to give an idea of the extracted features.

We apply 10-fold cross validation and measure the classification average ac-
curacy. This way we can compare our results with [11] that we have chosen as
the baseline. Pang et al. have obtained the best accuracy of 82.7% using SVM
classifier on unigram model with binary features.

3.2 Results

Weighting Scheme. First, we examined which weighting scheme works the best
for our subgraph representation model. We have compared binary, frequency and
delta TFIDF schemes. The results of the evaluation are presented in Table 1

Table 1. Accuracy comparison for binary, frequency and delta TFIDF weighting
schemes

Weighting Scheme Ave. accuracy (%) Δ

Baseline 82.7 -
Binary 81.9 -0.6
Frequency (tf) 80.7 -2
Delta TFIDF 85.1 +2.4

From the presented results, we can observe that the delta TFIDF scheme
yields the highest accuracy of 85.1%. This result outperform the baseline on
2.4%. Binary weighting scheme (81.9%) performs better than frequency counting
(80.7%). Similar results were obtained in previous researches [11][9]. Thus, for
the further experiments we use the delta TFIDF weighting scheme.

330 A. Pak and P. Paroubek

Table 2. Accuracy comparison for different discounting schemes schemes

Discounting Scheme Ave. accuracy (%) Δ

No discounting 85.1 -
Uniform 84.4 -0.6
Sigmoid 84.45 -0.55
Cosine square 82.55 -2.55
Sine square 82.5 -2.6
3 quantiles 83.75 -1.35
4 quantiles 82.65 -2.45
5 quantiles 81.5 -3.6

Discounting scheme. Next, we have examined whether capturing a subgraph
position within the text brings improves the classification results. We have com-
pared uniform, sigmoid, cosine and sine discounting functions as well as the quan-
tile strategy using 3, 4, and 5 quantiles as described in Section refsec:subgraphs.
The evaluation results are presented in Table 2

We have obtained similar results as in Pang et al.[11] and did not confirm the
importance of the last part of the review [3]. Capturing position using quantiles
and discount functions does not improve the classification accuracy. Using sig-
moid function yields the best performance (84.45%) as compare to other schemes
and it is better than the baseline accuracy, while the accuracy is slightly lower
than using no discounting scheme. Perhaps, a more refined way of notion the
subgraphs positions is needed to obtain better results. Our explanation is that
authors use their own style of writing and therefore express their opinions in
different parts of reviews.

We have also tried to index the dataset using subgraphs of size 2. However,
the obtained results were much lower. The best achieved accuracy was 76.5%.

4 Related Work

An early research by Pang et al. [11] using bag-of-words representation of text
with binary features and SVM classifier became a baseline for many other works
in the domain of sentiment classification. The authors improved their system in
[10] using subjectivity detector and minimum cuts technique. Using subjectivity
detector allowed to decrease the noise and focus only on sentences expressing
sentiments. This raised the accuracy from 82.7% to 86.4%. Many further re-
searchers utilized advanced techniques and additional lexicons to augment the
feature space or refine the selected features and thus increasing the classifica-
tion accuracy. Whitelaw et al. [12] used appraisal group features in combination
with bag-of-words model and obtained a higher accuracy of 90.2% on the movie-
review dataset. Aue et al. [2] used SVM with log likelihood feature selection and
obtained an accuracy of 90.2% on the same dataset.

Sentence dependency tree has been widely used in the sentiment analysis
domain. A recent research by Arora et al. [1] noted the problems of the

Text Representation Using Dependency Tree Subgraphs 331

standard bag-of-words text representation. The authors suggested their algo-
rithm to extract subgraph features using genetic programming. However, the
obtained features were not used to replace the standard n-gram model, but
rather as a complementary set of features. Another recent research by Naka-
gawa et al. [8] utilized dependency tree to obtain features that were used to
train a CRF classifier for sentiment polarity detection. In [13], authors use de-
pendency tree to extract feature-opinion pairs, where the first member of the
pair is a feature term (such as movie”) and the second is an opinionated term
(such as “masterpiece”). The dependency tree is used to establish relations be-
tween feature words and opinion keywords. In [4], dependency tree is used to
normalize headlines to grammatically correct form for further sentiment tagging.
In [7], authors use dependency tree to analyze the sentence construct along with
WordNet3 to perform sentence level sentiment classification.

5 Conclusion

With the population of blogs and social networks, opinion mining and senti-
ment analysis became a field of interest for many researches. An early work on
supervised sentiment classification using n-gram model gave promising results
and motivated many researches to use this model. However, bag-of-words text
representation cannot capture complicated sentiment expressions and is hard to
scale for bigger problems, such as identifying the polarity intensity or opinion
holder/target tagging. A new text model is needed to improve the performance
of sentiment analysis and opinion mining systems.

In our research, we develop a new text representation based on sentence pars-
ing dependency tree. We represent a text as a collection of subgraphs, where
nodes are words (or a wildcard) and edges represent relations between them.
Such a representation allows to fill the information loss occurred when repre-
senting a text as a collection of n-grams without relation information.

We have tested our model on the movie-review dataset which was often used
in sentiment analysis community. An SVM classifier with features based on the
extracted subgraphs yields a better performance than traditional system based
on the unigram model. The highest accuracy we obtained is 85.1%. However, we
think it can be improved by using advanced techniques such as feature selection
algorithms or utilizing additional sentiment lexicons.

We have examined different weighting for the feature construction and con-
cluded that the best performance is achieved using subgraphs of size 1 and delta
TFIDF scheme. We have also tried to note the position of the subgraphs within
the given text by utilizing different discount functions and dividing texts into
quantiles. However it did not provide us with any significant results.

In the future work, we plan to further develop our model, to apply it to more
advanced sentiment analysis and opinion mining applications.

3 A large lexical database of English: http://wordnet.princeton.edu/

332 A. Pak and P. Paroubek

References

1. Arora, S., Mayfield, E., Penstein-Rosé, C., Nyberg, E.: Sentiment classification
using automatically extracted subgraph features. In: Proceedings of the NAACL
HLT 2010 Workshop on Computational Approaches to Analysis and Generation of
Emotion in Text, CAAGET 2010, Morristown, NJ, USA, pp. 131–139. Association
for Computational Linguistics (2010)

2. Aue, A., Gamon, M.: Customizing Sentiment Classifiers to New Domains: a Case
Study. In: Proc. International Conference on Recent Advances in NLP (2005)

3. Becker, I., Aharonson, V.: Last but definitely not least: on the role of the last
sentence in automatic polarity-classification. In: Proceedings of the ACL 2010
Conference Short Papers, ACLShort 2010, Morristown, NJ, USA, pp. 331–335.
Association for Computational Linguistics (2010)

4. Chaumartin, F.-R.: Upar7: a knowledge-based system for headline sentiment tag-
ging. In: Proceedings of the 4th International Workshop on Semantic Evaluations,
SemEval 2007, Morristown, NJ, USA, pp. 422–425. Association for Computational
Linguistics (2007)

5. de Marneffe, M.-C., Maccartney, B., Manning, C.D.: Generating Typed Depen-
dency Parses from Phrase Structure Parses. In: LREC (2006)

6. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: A li-
brary for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

7. Meena, A., Prabhakar, T.V.: Sentence level sentiment analysis in the presence of
conjuncts using linguistic analysis. In: Amati, G., Carpineto, C., Romano, G. (eds.)
ECIR 2007. LNCS, vol. 4425, pp. 573–580. Springer, Heidelberg (2007)

8. Nakagawa, T., Inui, K., Kurohashi, S.: Dependency tree-based sentiment classifica-
tion using crfs with hidden variables. In: Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for Com-
putational Linguistics, HLT 2010, Morristown, NJ, USA, pp. 786–794. Association
for Computational Linguistics (2010)

9. Paltoglou, G., Thelwall, M.: A study of information retrieval weighting schemes for
sentiment analysis. In: Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, ACL 2010, Morristown, NJ, USA, pp. 1386–1395.
Association for Computational Linguistics (2010)

10. Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In: Proceedings of the ACL, pp. 271–278
(2004)

11. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using
machine learning techniques. In: Proceedings of the ACL 2002 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2002, Morristown, NJ,
USA, vol. 10, pp. 79–86. Association for Computational Linguistics (2002)

12. Whitelaw, C., Garg, N., Argamon, S.: Using appraisal groups for sentiment analy-
sis. In: Proceedings of the 14th ACM International Conference on Information and
Knowledge Management, CIKM 2005, pp. 625–631. ACM, New York (2005)

13. Zhuang, L., Jing, F., Zhu, X.-Y.: Movie review mining and summarization. In: Pro-
ceedings of the 15th ACM International Conference on Information and Knowledge
Management, CIKM 2006, pp. 43–50. ACM, New York (2006)

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 333–343, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Local Information Passing Clustering Algorithm for
Tagging Systems

Yu Zong1,2, Guandong Xu3, Ping Jin1,*, Peter Dolog3, and Shan Jiang1

1 Department of Information and Engineering, West Anhui University, Luan, China
2 Department of Computer Science and Technology,

University of Science and Technology of China, Hefei, China
3 IWIS-Intelligent Web and Information Systems, Aalborg University,

Computer Science Department Selma Lagerlofs Vej 300 DK-9220 Aalborg, Denmark

Abstract. Under social tagging systems, a typical Web2.0 application, users
label digital data sources by using tags which are freely chosen textual descrip-
tions. Tags are used to index, annotate and retrieve resource as an additional
metadata of resource. Poor retrieval performance remains a major problem of
most social tagging systems resulting from the severe difficulty of ambiguity,
redundancy and less semantic nature of tags. Clustering method is a useful tool to
increase the ability of information retrieval in the aforementioned systems. In this
paper, we propose a novel clustering algorithm named LIPC (Local Information
Passing Clustering algorithm). The main steps of LIPC are: (1) we estimate a
KNN neighbor directed graph G of tags and calculate the kernel density of each
tag in its neighborhood; (2) we generate local information, local coverage and
local kernel of each tag; (3) we pass the local information on G by I and O op-
erators until they are converged and tag priory are generated; (4) we use tag
priory to find out the clusters of tags. Experimental results on two real world
datasets namely MedWorm and MovieLens demonstrate the efficiency and the
superiority of the proposed method.

1 Introduction

With the development of Web2.0 application services, tag-based services, e.g.,
Del.icio.us (http:// del.icio.us), Last.fm (http://www.last.fm), and Flickr (http://
flick.com), have undergone tremendous growth in the past years. Tags are simple,
uncontrolled and ad-hoc labels that are assigned by users to describe or annotate any
kind of resource. The low technical barrier of tag based recommender system and easy
usage of tagging have attracted a large amount of research interest. The
user-contributed tags are not only an effective way to facilitate personal organization
but also provide a possibility for users to search for information or discover new things.

However, the ambiguity, redundancy and less semantic nature are the major prob-
lems suffering all tagging systems. For example, for one same resource, different users
will use their own textual description to annotate, resulting in the tagging behavior

* Corresponding author.

334 Y. Zong et al.

much sparse and less semantic. In order to deal with these difficulties, recently clus-
tering method has been introduced into tag based recommender system to find mean-
ingful information conveyed by tags. As the user tagging behaviors can be modeled as
data record with triple attributes, i.e. user, resource and tag, clustering on tagging data
could be conducted on these three attributes respectively. The efficiency of clustering
of tagging data is the ability of aggregating tags into topic domains. In past years, many
studies have been carried out on tagging clustering. [1,2] demonstrated how tag clusters
serving as coherent topics can aid in the social recommendation of search and naviga-
tion. In [3] topic relevant partitions are created by clustering resources rather than tags.
By clustering resources, it improves recommendations by distinguishing between
alternative meanings of query. While in [4], clusters of resources are shown to improve
recommendation by categorizing the resources into topic domains. A framework named
Semantic Tag Clustering Search which is able to cope with the syntactic and semantic
tag variations is proposed in [5]. P. Lehwark et al. use Emergent-Self-Organizing-Maps
(ESOM) and U-Map techniques to visualize and cluster tagged data and discover
emergent structures in collections of music [6]. State-of-the-art methods suffice for
simple search, but they often fail to handle more complicated or noisy Web page
structures due to a key limitation. Miao et al. propose a new method for record extrac-
tion that captures a list of objects in a more robust way based on a holistic analysis of a
Web page [7]. In [8], a co-clustering approach is employed, that exploits joint groups of
related tags and social data resources, in which both social and semantic aspects of tags
are considered simultaneously.

In the context of conventional tag clustering, the first step is to find out the clustering
structure from tagging data, and then make use this structure for further applications
such as forming recommended information. In this case, the quality of the clustering
result is critical for the recommender system based tag. Most of the researches on
tagging clustering are directly use the traditional clustering algorithms on tag data.
These clustering algorithms often focus on local aspect of tagging data and cannot
capture the global information of tagging. However, various tags used in tagging data
apparently possess different significance in tag groups due to the semantic or domain
topic tendency of tags. The basic idea of this paper is originated from the latent sig-
nificance of each tag in tagging activities to creating tag clusters. Particularly in this
paper, in contrast, we propose a clustering algorithm named Local Information Passing
Clustering algorithm (LIPC). In LIPC, We first estimate a KNN neighbor directed
graph G of tags, the kernel density of each tag in its neighborhood is calculated in the
same time; We then use Local coverage and Local kernel to capture the local infor-
mation of each tag; thirdly, we define two operators, that is, I and O , to pass the local
information on G ; then a tag priory is generated when I and O are converged; at last,
we use the tag priory and their coverage values to find out the clusters of tags. Ex-
perimental results demonstrate the efficiency and the improved outcome of tag clusters
by using the proposed method.

The contributions of our paper are as follows:

─ We address the problem of improving the quality of the group information ab-
stracted from the tags.

 A Local Information Passing Clustering Algorithm for Tagging Systems 335

─ We propose a new tag clustering algorithm named LIPC, and we define two in-
dexes to capture the local information, and two passing operator named I and O
are defined to transit these local information on the graph G and the tag priority
is generated.

─ We empirically investigate the effect of K on the generation of tag’s priority and
clusters.

─ We conduct comprehensive experiments on two real world datasets. The
evaluation results demonstrate the effectiveness of the proposed solutions against
the traditional k-means clustering.

The remainder of this paper is organized as follows. We introduce the preliminaries in
Section 2. The details of Local Information Passing Clustering Algorithm are discussed
in Section 3. Experimental evaluation results are reported in Section 4. Section 5 con-
cludes this paper and outlines the future work.

2 Preliminaries

2.1 Social Tagging System Model

In this paper, our work is to deal with tagging data. A typical social tagging system has
three types of objects, users, tags and resources which are interrelated with one another.
Social tagging data can be viewed as a set of triples [9,10]. Each triple (, ,)u t r repre-
sents a user u annotates a tag t to a resource r . A social tagging system can described
as a four-tuple, where exists a set of users, U ; a set of tags, T ; a set of resources, R ;
and a set of annotations, NA . We denote the data in the social tagging system as D and
define it as , , , ND U T R A=< > . The annotations are represented as a set of triples con-
tains a user, tag and resource defined as: , , : , ,NA u t r u U t T r R⊆< > ∈ ∈ ∈ . Therefore
a social tagging system can be viewed as a tripartite hyper-graph [11] with users, tags
and resources represented as nodes and the annotations represented as hyper-edges
connecting one user, tag and resource.

2.2 Tag Vector and Tag Similarity

X. Li, et al. analyze the bookmark data set and find a phenomenon that the distribution
of URLs, Users and Tags follows power law distribution. This phenomenon indicates
that most URLs are only bookmarked once and most users only bookmark one URL, in
the same way, most tags are only annotated on one URL [12]. Recently, an experiment
on detecting the pair-wise relationship between tags and resources and between tags
and users has shown that only a small part of resources are annotated frequently by
many tags, whereas as a large number of resources are annotated once, and that the
same observation of power law distribution also exists in the relationship between tags
and users. Most of applications on tags are using tags to describe resources or users,
that is, a resource or user is defined as a tags vector. In this model, thus the tag vector is
in a very high dimension due to the free style of tag texts. And most of tags are
redundant and ambiguous, in turn; bring in a difficulty of similarity calculation.
Therefore, tag clustering is able to capture the topic domains of tags, which is expected

336 Y. Zong et al.

to partially handle the above problems. In a tagging system, resources are mostly fixed
and unique. Tag can be described by a set of resources which this tag has been assigned
to it by users. In this way, a tag vector was constructed by using resources as dimensions,
e.g., 1(,...,)i mt r r= . The similarity between any two tags is defined as Definition 1.

Defintion 1. Given two tags 1(,...,)i i imt r r= and 1(,...,)j j jmt r r= , the similarity
(,)i jSim t t is defined as the ratio of co-occurred resource.

| |
(,)

| |
i j

i j
i j

t t
Sim t t

t t

∩
=

∪

 (1)

3 Local Information Passing Clustering Algorithm

In real world, how should we know other peoples whom we didn’t know before? The
recommendations from our friends are commonly used method. In web world, users are
always using tags to appraise a resource and other users can accept the resource ac-
cording to the annotated tags. This behavior of web could be regarded as the copy of
real world, that is, the social network. Similarly, the tags could be regarded as the
recommendation information. If we assume that the most similar K tags are the K
friends of one tag, we can use the behavior of social network recommender system in
the real world to simulate the tag’s recommendation. But these recommendation in-
formation are always locally, so we need to define operators to pass these information
to all the tags. In this section, we first use the KNN neighbor method to find out the K
nearest neighbors of one tag and then construct a KNN directed graph G . Local in-
formation are defined by using the kernel density estimator method. In order to pass
local information, we define two operators I and O to transit the local information to
all the tags and the priority of each tag is generated. The purpose of this paper is to find
the groups with similar tags, so we devise a clustering algorithm based on tag priority to
generate tag clusters.

3.1 KNN Directed Graph and Local Information

According to Definition 1, a similarity matrix S could be constructed from the tagging
data. From S, we can find KNN neighbors of each tag and then a KNN directed graph G
could be created. Graph ,{ }G V E=< > , where V is the tag set and { }E is the directed
edge set between tags, , { }p q E< >∈ denotes that tag q is a KNN neighbor of tag p .

Fig.1 shows an example of a part of graph G . On one hand, the black node is tag p ,
and five heavy dark nodes with black line are the KNN-neighbors of p and there have
arches between p and them. On the other had, p is the KNN-neighbor of each of light
line node and there have arches between these nodes and p . In this way a KNN di-
rected graph G could be constructed and the adjacency matrix A of G is defined as
Definition 2.

 A Local Information Passing Clustering Algorithm for Tagging Systems 337

P

Fig. 1. An example of a part of Graph G

Defintion 2. Given a KNN directed graph G , the adjacency matrix is defined as A ,
where (,) 1A p q = , if the directed arch ,p q< > exists, and (,) 0A p q = , otherwise.

The KNN kernel estimate method [13] has mainly been used in capturing local char-
acter and density distribution. In this paper, we first use it to calculate the KNN kernel
density of each node, and then define two important indexes named Local Coverage
(LC) and Local Kernel (LK) to capture the local information of each node.

Defintion 3. Given a node p G∈ and its KNN neighborhood ()N p , the Local Cover-
age of p is defined by the KNN kernel density of its neighbors:

()

() ()
q N p

LC p f q
∈

=∑ , (2)

where ()f q denotes the KNN kernel density value of node q .

Because ()LC p is defined as the sum of KNN kernel density of p ’s KNN
neighbors, the higher value of ()LC p indicates more nodes with higher KNN kernel
density in its neighborhood, and the probability of it locating in a high density area is
higher.

Defintion 4. Given a node p G∈ and a node set Q which contains p , the Local
Kernel of p is defined as the KNN kernel density of Q :

() ()
q Q

LK p f q
∈

=∑ . (3)

According to Definition 4, we can find that ()LK p is the sum of KNN kernel density of
nodes which directed to p . The higher value of ()LK p indicates more nodes with
higher KNN kernel density connected to p and p has a higher dependability to rep-
resent a local center.

3.2 Local Information Passing Clustering Algorithm

()LC p and ()LK p capture the local information of each node in G . In this section we
define a passing method to pass the local information to all the nodes and generate the
authority and coverage of all the nodes based on ()LC p and ()LK p . We define I and

338 Y. Zong et al.

O operators to transit the local information ()LC p and ()LK p respectively, as shown
in Definition 5.

Defintion 5. Assume vector iLC indicates the local coverage value of all nodes in ith
iteration and vector iLK indicates the local kernel value of all nodes in ith iteration
respectively. The I and O operators are defined as:

1: T
i iI LC A LK −= × , 1: i iO LK A LC −= × . (4)

The function of operator I is to pass the LK information of nodes which are directed
to p , while, the function of operator O is passing the LC information of node p .
After the convergence of operation I and O , we use iLC to define the priority of
each node in G .

Algorithm 1 gives the main steps of LIPC. In step1, we first find the KNN neighbor
of each tag based on the tag similarity defined as Definition 1, and then, the local kernel
density of each tag has been generated by using kernel density estimate operator. Ac-
cording to Definition 2, a KNN directed graph G could be constructed (step 2). For
each node v G∈ , we initialize the value of lc and lk according to Definition 3 and 4.
In this way, the local information of each node has been captured and then we execute
I and O operators to transit this local information on the graph G until these two
operators are converged. We sort the vector iLK to generate the priority of each tag.
The node priority of tag shows the importance of the tag to its cluster. To generate the
clusters: (1) we select a tag, v G∈ , with highest priority as the centre of a cluster, (2)
we use Depth First Search (DFS) method to find the corresponding cluster members
which lc values are smaller than that of v . Steps (1) and (2) are iteratively executed
until all the nodes in G are assigned to its corresponding cluster.

Algorithm 1
Input Tags, K
Output: cluster result, C.
1 generates KNN neighbors of a tag based on definition 1, and calculate
the KNN kernel density of the tag by using kernel density estimate
operator;
2 construct a KNN directed graph G according to definition 2;
3 generate the local information of each node by calculate lc and lk
based on definition 3 and 4 respectively;
4 Iteratively calculate iLC and iLK by using I and O operators
until they are converged;
5 Sorts iLK ;
6 for each no visited node v G
6.1 max()iv LK ;
6.2 (,)vC DFS G v , where vC denotes a cluster with v as centre;

6.3 vC C C ;
7 Return C .

 A Local Information Passing Clustering Algorithm for Tagging Systems 339

Table 1. The example of tag’s priority

Tag Priority

Favorite 2.39
Favorites 2.20

Like 2.02
Preference 1.98

JAVA 2.89
JavaScript 2.84

We run LIPC on Dmoz dataset (http://www.michael-noll.com/

dmoz100k06/) and the priority of some tags are shown in Table 1.
From table1, we can find that the priority of Favorite is higher than Favorites, Like

and Preference. This indicates that Favorite more likely selected as the centre than
others, that is, Favorite could by generally describing other tags. And the same phe-
nomenon shows for JAVA and JavaScript tags.

4 Experimental Evaluations

To evaluate our approach, we conducted extensive experiments. We performed the
experiments using Intel Core 2 Duo CPU (2.4GHz) workstation with a 4G memory,
running windows XP. All the algorithms were written in Matlab 7.0. We conducted
experiments on two real datasets, MedWorm (http://www.medworm.com/) and
MovieLens (http://www.movielens.org/).

4.1 Experimental Datasets

In order to evaluate our approach, we crawled the article repository in MedWorm
system during April 2010 and downloaded the contents into our local experimental
environment. After stemming out the entity attributes from the data, four data files,
namely user, resource, tags and quads, are obtained as the source datasets. The first
three files are recorded the user, tag and document information, whereas the fourth
presents the social annotation activities where for each row, it denotes a user u anno-
tates a resource r by a tag t.

The second dataset is MovieLens which is provided by GroupLens (http://
www. grouplens.org/). It is a movie rating dataset. Users were selected at random for
inclusion. All users selected had rated at least 20 movies. Unlike previous MovieLens
datasets, no demographic information is included. Each user is represented by an id, and
no other information is provided. The data are contained in three files, movies.data,
rating.dat and tags.dat. Also included are scripts for generating subsets of the data to
support five-old cross validation of rating predictions. The statistical results of these two
datasets are listed in Table 2. These two datasets are pre-processed to filter out some
noisy and extremely sparse data subjects to increase the data quality.

340 Y. Zong et al.

Table 2. Statistics of Experimental Datasets

Property MedWorm MovieLens
Number of users 949 4,009
Number of resources 261,501 7,601
Number of tags 13,507 16,529
Total entries 1,571,080 95,580
Average tags per user 132 11
Average tags per resource 5 9

In this paper, we use resources to describe tags, that is, each tag described by a set of
resource which assigned to it by users. In order to reduce the length of tag vector, we
first omit the resources which tags are less than the average tags per resource in table 2.

4.2 Evaluation Measurements

Our aim of the proposed method is to find out the similar tags which assign to different
resources. Here we assume a better tag cluster composed by lots of similar tags and
these tags are dissimilar to tags which belong to other different tag clusters. In par-
ticular, we use Similarity and Dissimilarity to validate our method.

Definition 6. Given tag cluster C , the Similarity is defined as

| |

1

1
(,), ,

| |

C

i j i j kk
Similarity Sim t t t t C

C =
= ∈∑ (5)

Definition 7. Given tag cluster C , the Dissimilarity is defined as

| |

1

1
()

| |

C

k
Dissimilarity Dism k

C =
= ∑ (6)

where
| |

'' 1
() (,), , , '

C

i j i k j kk
Dism k Sim t t t C t C k k

=
= ∈ ∈ ≠∑ .

According to the requirement of clustering, we know that higher Similarity value
and smaller Dissimilarity value indicate better clustering results.

4.3 Experiments and Discussion

Due to the priority of each tag has a close relationship with the kernel density which
depends on the KNN neighbor, there have a relation between the number of K and the
tag’s priority. In order to present this relationship, we manually extract thirty
tags which form two clusters from MedWorm data set. The priority of each tag has
shown in Fig. 2 (the value of priority is multi by 100) with K equal to 4, 8, and 12
respectively.

 A Local Information Passing Clustering Algorithm for Tagging Systems 341

Fig. 2. The relationship between tag’s priority and K

From fig. 2, we can find that the change of K has no influence on the tag’s priority,
as well as the structure of cluster.

Table 3. The comparison of Similarity and Dissimilarity on two datasets

 Similarity Dissimilarity
 MedWorm MovieLens MedWorm MovieLens

K=4 0.973 0.867 0.0245 0.450
K=8 0.974 0.870 0.0240 0.448

K=12 0.970 0.869 0.0246 0.452

As we discussed in the previous sections, tag clustering can make tags be organized
into groups over clusters. That is to say, by clustering, tags can be centralized into
groups. In the following we will conduct the experiments to evaluate the effect on the
tag cluster’s quality. Table 3 gives the comparison result of Similarity and Dissimilarity
on Medworm and MovieLens datasets. From Table 2, we can first find that the cluster
results on two datasets are nearly coincident under different K settings. This phe-
nomenon validates our previous experiment of the relationship between tag’s priority
and K’s setting. As we defined in Definition 6 and 7, the higher Similarity value and
the smaller Dissimilarity value indicates high quality of the tag cluster. On these two
datasets, the Dissimilarity values are all small, and at the same time, the Similarity
values are all high. This phenomenon shows that the quality of tag clusters obtained
from Medworm and MovieLens by using our method are high. Interestingly, the clus-
tering results derived from Medowrm look better than that of Movielens, which might
be due to the tags used in Medowrm dataset is focused on a more specialized medical
domain, while the domain topics span more diversely on movielens dataset. This
finding is also verified by the measures of Dissimilarity.

342 Y. Zong et al.

In order to show the effectiveness of the proposed method, we execute traditional
clustering algorithm K-means and our proposed algorithm LIPC on these two real
world datasets as well. The experimental results are shown in Table 4.

Table 4. The comparison of LIPC and K-means on two datasets

 Similarity Dissimilarity
 MedWorm MovieLens MedWorm MovieLens

K-means 0.873 0.856 0.0645 0.735
LIPC 0.966 0.885 0.0239 0.409

From Table 4, we can find that the quality of clustering results obtained by LIPC is

better than that of K-means. In particularly, in one hand, the Dissimilarity values of
LIPC on two datasets are smaller than that of K-means, and on the other hand, the
Similarity values of LIPC on two datasets are, on the contrary, larger than that of
K-means. This phenomenon indicates that LIPC algorithm has ability of finding better
clustering results than that of K-means.

5 Conclusion

Tag clustering is a useful method to find out interest tag cluster embedded in tag
datasets and it has a potential in improving the effectiveness and accuracy of tag based
recommender system. In this paper, we propose a local information passing clustering
algorithm for tags which is based on calculating the priority of tag. We first use the
KNN neighbor and Kernel density estimate method to find out the local information of
each tag, and then, and define I and O operator to transit the local information over all
the tags and further generate tag priority, at last, we use the tag priority to find the
representative centre of various clusters. Experimental results conducted on two real
world datasets have demonstrated the effectiveness and advantage of the proposed
method in comparison to other traditional clustering approaches.

The future work can be continuing on along the directions of the visualization of tag
clusters and the improvement on recommendation.

References:

[1] Gemmell, J., Shepitsen, A., Mobasher, M., Burke, R.: Personalization in folksonomies
based on tag clustering. In: Proceedings of the 6th Workshop on Intelligent Techniques for
Web Personalization and Recommender Systems (July 2008)

[2] Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in
social tagging systems using hierarchical clustering. In: RecSys 2008: Proceedings of the
2008 ACM Conference on Recommender Systems, pp. 259–266. ACM, New York (2008)

[3] Hayes, C., Avesani, P.: Using tags and clustering to identify topic-relevant blogs. In: In-
ternational Conference on Weblogs and Social Media (March 2007)

 A Local Information Passing Clustering Algorithm for Tagging Systems 343

[4] Chen, H., Dumais, S.: Bringing order to the web: automatically categorizing search results.
In: CHI 2000: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 145–152. ACM, New York (2000)

[5] van Dam, J.W., Vandic, D., Hogenboom, F., et al.: Searching and browsing tag spaces
using the semantic tag clustering search framework. In: IEEE Fourth International Con-
ference on Semantic Computing (2010)

[6] Lehwark, P., Risi, S., Ultsch, A.: Visualization and Clustering of Tagged Music Data, pp.
673–680. GfKl, Berlin (2007)

[7] Miao, G.X., Tatemura, J.C., Hsiung, W.P., et al.: Extracting data records from the web
using tag path clustering. In: Proceedings of the 18th International Conference on World
Wide Web, Spain (April 2009)

[8] Giannakidou, E., Koutsonikola, V., Vakali, A., et al.: Co-clustering tags and social data
sources. In: 9th International Conference on Web-age Information Managemnet, pp.
317–324 (July 2008)

[9] Guan, Z., Bu, J., Mei, Q., et al.: Personalized tag recommendation using graph-based
ranking on multi-type interrelated objects. In: Allan et al. [1], pp. 540–547

[10] Guan, Z., Wang, C., Bu, J., et al.: Document recommendation in social tagging services.
In: Rappa, M., Jones, P., Freire, J., Charkrabarti, S. (eds.) WWW, pp. 391–400. ACM,
New York (2010)

[11] Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Gil, Y.,
Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp.
522–536. Springer, Heidelberg (2005)

[12] Lin, X., Guo, L., Zhao, Y.E.: Tag-based social interest discovery. In: Proceeding of the
17th International World Wide Web Conference (2008)

[13] Liu, H., Lafferty, J., Wasserman, L.: Sparse nonparametric density estimation in high
dimensions using the rodeo. In: 11th International Conference on Artificial Intelligence
and Statistics, AISTATS (2007)

What’s in a Name: A Study of Names, Gender Inference,
and Gender Behavior in Facebook

Cong Tang1, Keith Ross2, Nitesh Saxena2, and Ruichuan Chen3

1 Institute of Software, EECS, Peking University, China
MoE Key Lab of High Confidence Software Technologies (PKU), China

tangcong@infosec.pku.edu.cn
2 CSE, Polytechnic Institute of NYU, Brooklyn, USA

{ross,nsaxena}@poly.edu
3 MPI-SWS, Kaiserslautern, Germany

rchen@mpi-sws.org

Abstract. In this paper, by crawling Facebook public profile pages of a large
and diverse user population in New York City, we create a comprehensive and
contemporary first name list, in which each name is annotated with a popularity
estimate and a gender probability.

First, we use the name list as part of a novel and powerful technique for in-
ferring Facebook users’ gender. Our name-centric approach to gender prediction
partitions the users into two groups, A and B, and is able to accurately predict
genders for users belonging to A. Applying our methodology to NYC users in
Facebook, we are able to achieve an accuracy of 95.2% for group A consisting
of 95.1% of the NYC users. This is a significant improvement over recent results
of gender prediction [14], which achieved a maximum accuracy of 77.2% based
on users’ group affiliations.

Second, having inferred the gender of most users in our Facebook dataset,
we learn several interesting gender characteristics and analyze how males and
females behave in Facebook. We find, for example, that females and males exhibit
contrasting behaviors while hiding their attributes, such as gender, age, and sexual
preference, and that females are more conscious about their online privacy on
Facebook.

1 Introduction

The current Online Social Networks (OSNs) allow users to control and customize what
personal information is available to other users. For example, a Facebook user (Alice)
can configure her account in such a way that her friends can see her photos and interests,
but the general public can see only her name.

However, Alice probably assumes that if she makes available only her name to the
general public, third parties have access only to her name and nothing more. Unfortu-
nately for Alice, third parties, by crawling OSNs and applying statistical and machine
learning techniques, can potentially infer information – such as gender, age, relation-
ship status, and political affiliation – that Alice has not explicitly made public[14]. To
the extent this is possible, third parties not only could use the resulting information for

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 344–356, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

What’s in a Name: A Study of Names, Gender Inference, and Gender Behavior 345

online stalking and targeted advertising, but could also sell it to others with unknown
nefarious intentions. This information may also be useful to Facebook itself, e.g., to
provide a personalized service to its users, and to understand user characteristics and
behaviors.

Prior work has considered this problem in the context of Facebook and other OSNs
[14]. Their approach is based on a general observation that it may be possible to infer
private information about Alice by exploiting information provided by Alice’s friends
or based on Alice’s affiliations with various Facebook groups (public information). For
example, if the majority of Alice’s friends reveal that they are in their twenties and are
Republicans, then it is highly probable that Alice is also in her twenties and is a Repub-
lican. Similarly, if Alice is a member of a girls’ high school, then she is likely a female.
For predicting gender, different inference models based on machine learning techniques
were studied in [14]. However, this work only had limited success at gender prediction,
with a maximum accuracy of 77.2% based on users’ group affiliations. Moreover, and
perhaps more importantly, this method of predicting gender can be circumvented by
hiding group affiliations from public profiles, as also mentioned in [14].

Our approach to gender inference is based on users’ first names. Our observation is
that since name is a fundamental attribute of a Facebook user, which can not possibly
be hidden from general public (and users also do not intent to use fake names, otherwise
it will be hard to locate the user), a name-centric approach to gender inference
would be difficult to evade. To develop such an approach, it is necessary to analyze
users’ names.

Our Contributions: We make three-fold contributions:
• Facebook-Generated Name List: By crawling Facebook public profile pages for 1.67
million users in New York City, we create a comprehensive and contemporary name
list, in which each name is annotated with a popularity estimate and a gender proba-
bility. Note that traditionally it has been laborious, via census or otherwise, to obtain
a contemporary list of people’s names. We study the properties of this annotated name
list. After combining nicknames with their “canonical names,” we find that the resulting
name popularity has a Zipf distribution, and that more than 94% of the names can be
assigned a specific gender with high probability.
• Name-Centric Gender Inference: Our name-centric approach to gender prediction
partitions the users into two groups, A and B, and is able to accurately predict gender
for users belonging to A. Applying our methodology to NYC users in Facebook, we
are able to achieve an accuracy of 95.2% for group A consisting of 95.1% of the NYC
users. This is a significant improvement over recent results of gender prediction in [14],
which achieved a maximum accuracy of 77.2% based on users’ group affiliations.
• Gender Behavior and Characteristics: Having inferred the gender of most users in
our Facebook dataset, we learn several interesting gender characteristics and analyze
how males and females behave in Facebook. We find, for example, that females and
males exhibit contrasting behaviors while hiding their attributes, such as gender, age,
and sexual preference, and that females are more conscious about their online privacy
on Facebook.

346 C. Tang et al.

2 Related Work

We review prior work most closely related to the theme of our paper. Most of the prior
work is concerned with the problem of inference of one or more private attributes,
which is related to our second contribution in this paper. We are not aware of any prior
research that analyzes and builds on users’ names over OSNs (our first contribution).

Zheleva and Getoor [14] proposed techniques to predict the private attributes of users
in four real-world datasets (including Facebook) using general relational classification
and group-based classification. In addition to gender inference (which is the focus of
our work), they also looked at prediction of political views. Their accuracy for gender
inference with their Facebook dataset, however, is only 77.2% based on users’ group
affiliations, and the sample dataset used in their study is quite small (1,598 users in
Facebook). Moreover, their inference methods can be prevented by hiding group affilia-
tions from public profiles, as mentioned in [14]. In contrast, our inference methodology
– based on users’ names – would be difficult to circumvent, and we demonstrate its
validity on a much larger dataset and achieve much better accuracies.

Other papers [8,13,9,7] have also attempted to infer private information inside so-
cial networks. Methods they used are mainly based on link-based traditional Naive
Bayes classifiers. However, none of them used name-list to infer users’ genders, and
we achieve much better accuracies compared to these methods for gender inference.

Jernigan and Mistree [4] demonstrated a method for accurately predicting the sexual
orientation of Facebook users by analyzing friendship associations. In particular, they
have been successful at predicting whether a Facebook user might be homosexual by
correlating similar information provided by user’s friends.

Most recently, Mislove et al. [11] proposed a method of inferring user attributes by
detecting communities in social networks, based on the finding that users with com-
mon attributes form dense communities. However, people with same attributes, such as
gender and birthday, may not form communities, and thus these attributes may not be
accurately predicted using this approach.

3 Crawling and Data Gathering

We develop a multi-threaded crawler that visits Facebook user profile pages and stores
these pages in a file system. In July, 2009 we obtained a list of Facebook IDs of users
in NYC (“New York, NY” network). We were able to do that because at that time,
users, by default, were assigned to geographical networks. For each ID, we visit each
of its friends, then each of its friends’ friends, and so on, until we obtain all NYC users
reachable. Because of size of Facebook’s social network, the crawler was restricted to
profiles only inside NYC. The crawler obtained the profile of pages for 1.67 million
users. At the time of the crawl, there were approximately 2 million NYC users. We
suspect that most of the non-crawled users are bogus users (see below). Therefore, we
crawled nearly all the Facebook users in NYC.

Eliminating Bogus Users: Although many Facebook users have hundreds of friends
and 50% of users visit the site daily (as discussed in [1]), many of the users may be
bogus or dormant: users who signed up, created a few friends, and disappeared quickly.
It may be difficult to predict anything about such users. In order to prevent these bogus

What’s in a Name: A Study of Names, Gender Inference, and Gender Behavior 347

Table 1. Properties of the dataset from NYC before and after elimination of bogus users

Property name Before After

users in NYC 1, 668, 602 1, 282, 563
users who specified gender 864, 543 679, 351
% users who specified gender 51.81 52.97
users who identified as males 456, 591 349, 730
users who identified as females 407, 952 329, 621

users from skewing the results of our study, we remove, from our dataset, the users with
less than 5 friends across Facebook.

The size of our compressed dataset is 1, 282, 563. Out of the 679, 351 users who
specified their genders, the percentage of males is 52.97%. Table 1 shows the properties
of the dataset before and after the elimination of bogus users. In this paper, we do all
processing on the reduced data set after elimination of bogus users.

4 Using Facebook to Generate an Annotated Name List

We demonstrate that the Facebook network can be used to generate an up-to-date list of
first names of the users. In our name list, each first name is annotated with the number
of users having this name, the number of male users who have identified themselves
with this name, and the number of female users who have identified themselves with
this name. To guide the design of our gender inference scheme (as we will discuss
in Section 5), we have carefully studied the properties of this list. Our name list and
its properties are also of independent interest for other applications, including naming
newly born babies and studying naming trends.

We first extract the first names for each of the 1.28 million users and create a crude
annotated name list. Note that a Facebook user can choose to “Display Full Name”
either as “First Last” or “Last First”. We carefully handle this issue. We then process the
crude list to remove entries that are not really names. We remove all one-letter names,
all names without a vowel, and names that have been referenced only once. Notice that,
for the gender inference analysis in Section 7, we still infer the gender of users whose
names have been removed from the list.

After this pre-processing, we obtain a list having 23, 363 names. For each name
in the list, we determine the number of users having this name, the number of times
it is labeled as male, and the number of times it is labeled as female. We provide
this name list online, publicly available at: http://sites.google.com/site/
facebooknamelist/.

4.1 Combining Names with Their Nicknames

As one would expect, we found that many Facebook users identify themselves by using
nicknames as their first names. The nicknames, however, might behave as noisy data
in our analysis. To avoid this, we design a method that combines nicknames with their
“canonical names”.

http://sites.google.com/site/

348 C. Tang et al.

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

N
um

be
r

of
 n

am
e

oc
cu

rr
en

ce

Name rank

Names Only
Names and Nicknames Combined

(a) Distribution of Occurrence of Names

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of name occurrences

C
D

F

(b) CDF of names’ occurrence frequency

Fig. 1. Properties of names

We first create a nickname list which contains 535 nicknames based on resources
available on the Internet (e.g., http://www.yeahbaby.com/, http://www.
moonzstuff.com/articles/nicknames.html). For each nickname, we list
its canonical names. For example, Dave’s canonical name is David, and Stan’s canon-
ical names are Stanford and Stanley. Next, we combine the frequency of occurrence
of each nickname with frequency of occurrence of its respective “canonical names”.
Specifically, if a nickname only has one “canonical name”, we simply add its frequency
of occurrence with the frequency of occurrence of its “canonical name”; if a nickname
has multiple canonical names, we calculate its frequency of occurrence based on the
frequency of occurrence of each of its “canonical names”. For example, let x, y and z
be the frequency of occurrence of Stanford, Stanley and Stan, respectively. When com-
bining Stan with Stanford and Stanley, we redefine x = x+z · x

x+y , and y = y+z · y
x+y .

After combining nicknames with names, we obtain a name list with 22, 878 entries.

4.2 Analysis of Annotated Name List

Our annotated name list is large and comprehensive (reflecting the broad and diverse de-
mographics of NYC); moreover, this name list is annotated with the number of declared
males and females corresponding to each name.

Note that there is a government online service [3] that provides a list of the most
popular names for a particular year of birth in the US. However, our annotated name
list contains information about NYC Facebook users born both in and outside the US.
Moreover, from the public online service, one can only get at most top 1, 000 names
for each year, from which we can obtain a total of 1, 736 male names and 2, 023 female
names. Since our name list consists of 22, 878 entries, it is much larger and more diverse
than the name list we get publicly from [3]. We now study several interesting properties
of this name list.

Popularity of names. Figure 1(a) shows the distribution of names’ occurrence fre-
quency, which roughly follows the power-law distribution with a Zipf parameter α =
1.3. We get a more flat Zipf curve after the name/nickname combination. Interestingly,
after the combination, there is a single most popular name – Michael – which occurs

http://www.yeahbaby.com/
http://www.moonzstuff.com/articles/nicknames.html
http://www.moonzstuff.com/articles/nicknames.html

What’s in a Name: A Study of Names, Gender Inference, and Gender Behavior 349

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fraction of times a name is labelled as male

P
D

F

Fig. 2. PDF of fraction of times a name is labeled as male

more than 20, 000 times in our name list; then, the next 7 most popular names – David,
Elizabeth, Jennifer, Robert, John, Joseph and Daniel – occur more than 10, 000 times
each. Indeed, these popular names are classic and common American names. From Fig-
ure 1(b), we investigate the distribution of names from another perspective. We find that
around 18% of names occur only twice. (Note that, when generating the name list, we
have removed names that are referenced only once.) Moreover, 80% and 90% of names
occur no more than 20 and 50 times, respectively, in our name list.

Gender consistency of names. Due to various reasons, e.g., the cross-gender names
and possible mislabeling, some names may have been labeled as both male and female.
Specifically, for each name in our name list, let Nm be the number of users who indicate
they are male, and Nf be the number of users who indicate they are female. The fraction
of times that a specific name is labeled as male is fm = Nm/(Nm+Nf). From Figure 2,
it is clear that most names are associated with a specific gender; only about 6% of names
are ambiguously labeled (i.e., fm = 0.5). This observation will play a central role in
our gender inference methodology (as we will discuss in Section 5).

The above analysis of our annotated name list provides some useful insights for
gender inference. But a methodology solely based on the name list will clearly have
some difficulties in predicting two types of names: names that have never been labeled
and names that are used for both genders. For these two types of names, we have no
choice but to resort to other inference methods. In particular, we adopt machine learning
techniques (as we will discuss later) to predict these unlabeled and ambiguous names.

5 Design of Gender Predictors

In this section, we propose seven predictors for gender inference. These predictors use
different features and algorithms, and use different methods of gender inference. We
first investigate gender inference using the offline name list and our Facebook generated
name list (as discussed in Section 4).

Besides name list, we take into account additional information, such as users’ lo-
cal and friends information, to improve our prediction. We adopt machine learning
algorithms to classify users based on gender. Finally, we combine our annotated name
list predictor with these classification algorithms.

350 C. Tang et al.

5.1 Offline Name List Predictor (OFL)

We created a first-name list using USA baby name list [3], which consists of 1, 736 male
names and 2, 023 female names. Some names in the list, such as “Chris”, can be both
a male’s as well a female’s name (e.g., Christopher and Christine, respectively). Such
ambiguous names may decrease the gender prediction accuracy, and thus we remove
names that are labeled as both male and female from the list. After that, we obtain
1, 520 male names and 1, 807 female names. We then compare each NYC Facebook
user to the name list: if user’s name can be found in the list, we predict its gender
accordingly; otherwise, we only make a random guess to predict the gender.

5.2 Facebook Generated Name List Predictor (FB)

Our annotated name list (discussed in Section 4) is much larger and more comprehen-
sive than the aforementioned offline name list. We compare the two lists and find many
unpopular first names in our annotated name list that have not been listed in the offline
name list. We use Facebook generated name list to predict user’s gender.

We assign probability to each name in the list based on the fraction of times a specific
name is labeled as male, i.e., fm = Nm/(Nm + Nf). For example, if a name “Tom”
has been labeled 95 times as male and 5 times as female, “Tom” is predicted to be a
male with probability 95%. We randomly guess for names do not appear in the list.

5.3 Local Information Predictor (LCL)

Generally, additional information available from user’s Facebook profiles, such as re-
lationship status and sexual preferences, can be helpful to our prediction methodology.
We select 12 features of a user from his/her profile page, which are six relationship
status (single, in a relationship, engaged, married, it’s complicated, and in a open rela-
tionship), two sexual preference settings (interested in men/women), and four “Looking
for” attributes (looking for friendship, dating, relationship and networking). Each (bi-
nary) feature has a value of 1 if the user corresponds to this feature, and 0 otherwise. For
example if the feature “Relationship status: single” is 1, the user has indicated he/she is
single. We then build our feature vector for a classifier using these twelve features. We
choose training data from the profiles of users who have identified their genders, and
feed the feature vectors to traditional classifiers.

5.4 Friend Information Predictor (FRND)

In this predictor, we take each user’s friends’ information into account. We introduce a
new feature which is the fraction of a user’s male friends. For the friends who have not
specified their gender, we pre-assign genders to them using FB predictor.

5.5 Hybrid Predictors

Name List and Local Information Predictor (FB-LCL). We combine the FB predic-
tor and the LCL predictor to obtain the FB-LCL predictor. This predictor uses a feature
vector for the classifier using the 12 features from the LCL predictor and 2 extra fea-
tures obtained from the Facebook generated name list: number of times the name is
labeled as male, and number of times it is labeled as female.

What’s in a Name: A Study of Names, Gender Inference, and Gender Behavior 351

Name List and Friend Information Predictor (FB-FRND). We combine the two
aforementioned features obtained from the Facebook generated name list and the fea-
ture used in FRND predictor into the feature vector for FB-FRND predictor.

Name List, Local and Friend Information Predictor (FB-LCL-FRND). We com-
bine the FB-LCL predictor and the FRND predictor into a single predictor: FB-LCL-
FRND. This predictor extends the FB-LCL predictor’s feature vector with features used
in the FRND predictor.

6 Evaluation of Gender Predictors

6.1 Experimental Setup

We ran experiments for each of the seven predictors (discussed in Section 5). For the
LCL, FB-LCL, FB-FRND and FB-LCL-FRND predictors, we choose users who have
specified their genders from our data set, generate corresponding feature vectors for
each predictor, then split the feature vectors into test set and training set by randomly
marking each user’s gender as unknown with a given probability. In the following ex-
periments, we use a probability of 50%. We use the Weka toolkit [6] to build classifiers
for all of the above training sets. We explored a variety of classifier types and selected
Multinomial Naive Bayes (MNB) [10] which yielded the best overall performance in
preliminary tests using the training set. In FRND predictor, instead of using MNB clas-
sifier, we use a decision tree based classifier J48 [12].

6.2 Effectiveness of Gender Predictors

We outline our inference results as follows.

– The results show that the OFL predictor achieves an accuracy of 75.5% by using
the offline name list, in which 55.2% of users’ names can be found.

– Our Facebook generated name list significantly improves the inference accuracy to
92.6%, in which 91.7% of users’ names can be found.

– LCL predictor provides a higher accuracy (66.9%) than FRND predictor (60.0%)
in classification based gender inference.

– Introducing users’ local information by using the FB-LCL predictor provides a
small gain, increasing the accuracy to 94.8%.

– Introducing friends’ information by using the FB-FRND predictor also provides a
small gain, increasing the accuracy to 94.1%.

– Friends’ information does not provide any additional gain when using the FB-LCL-
FRND predictor (94.6% accuracy), because there is some noise along with the
friends’ information that decreases the prediction accuracy.

Impact of Features in the LCL predictor. We run experiments to determine the local
features which are most important and useful for gender inference. Specifically, we test
four different feature vectors outlined as follows:

1. Feature Vector 1 is composed of 6 relationship status features of the user whose
gender is to be predicted.

352 C. Tang et al.

2. Feature Vector 2 is composed of 2 sexual preference features.
3. Feature Vector 3 is composed of 4 ‘looking for’ features.
4. Feature Vector 4 is composed of all the 12 features.

From the results we can see that Feature Vector 2 can lead to the highest accuracy
(66.9%) among the first 3 feature vectors (which are 52.8%, 65.2% and 54.2% sequen-
tially). This result is perhaps not surprising because sexual preference is generally more
correlated to gender than relationship status and what people are looking for. This ob-
servation will help us improve our following inferences.

Impact of friends number in the FRND predictor. We try to determine the perfor-
mance of the FRND predictor on users with different number of friends. We generate
four training set containing the users who have no less than 1, 5, 10 and 20 NYC friends,
and then apply the FRND predictor to them. The accuracies are 60.0%, 60.8%, 61.4%,
61.8% sequentially. We can see that increasing the NYC friends number threshold from
1 to 20 provides small gains.

Validating the FB predictor Using Boston Network. We validate our FB predictor
using another network – “Boston, MA” network (Boston). We obtain 156, 940 users
in Boston Facebook, in which there are 53.7% males and 46.3% females. Since in the
Boston database, we only crawled users’ names (At the time of the crawl, Facebook
has removed the feature that publicly accessing profile pages of users in the same net-
work.), so for each user, we apply the FB predictor to predict the gender. The prediction
accuracy is 92.7%. We find that 144, 946 users’ names in Boston can be found in our
Facebook generated name list. These results show that the FB predictor performs well
on and extends to other networks beyond NYC.

7 Inferring Gender for NYC Facebook Users

We first provide the approach to partition the users into two groups, A and B. The users
belonging to Group A are further divided into various subsets, and we are able to apply
different gender predictors to each of these subsets to get better results than using a
single predictor. For users in Group B we have to randomly guess. Finally, we provide
our inference results and ideas to further improve the inference accuracy.

7.1 User Partitioning

Inspired by the analysis of our Facebook generated annotated name list presented in
Section 4.2, we first partition the users into two groups. For the first group A, we are
mostly certain about users’ genders, and for the second group B, we are randomly
guessing. Users belonging to Group B should satisfy all the following conditions:

– Names never appeared in our annotated name list;
– Do not specify their local information;
– Have very few friends in NYC (we will set a friend number threshold later).

What’s in a Name: A Study of Names, Gender Inference, and Gender Behavior 353

Our detailed partitioning method is described as follows. Let U be the set of all users.
Let V be the set of users who have a name in our name list and are not in the ambiguous
gender group, i.e., with an fm > T1 or fm < 1 − T1, where fm is the fraction of times
that a specific name is labeled as male, and the ambiguous threshold T1 is in (0.5, 1].
Let W be the set of users in U who specified their local information. Let X be the users
who have no less than T2 friends in NYC, where T2 is a threshold for number of friends.
So, we divide the users into two groups: Group A consists of the set V ∪ W ∪ X , and
Group B consists of the rest, i.e., U − A.

7.2 Applying Gender Predictors to Group A

We adopt different gender predictors (discussed in Section 5) to various subsets of users
belonging to Group A.

1. For users in V ∩W , since their names can be found in the non-ambiguous group of
our name list, and have specified their local information, we can adopt the FB-LCL
predictor to achieve a high prediction accuracy.

2. For users in V −W , whose names can be found in our name list but have not speci-
fied local information, by using the FB predictor, we will achieve a high prediction
accuracy, if we set an appropriate value for the threshold T1.

3. For users in W − V , it is not effective to use only the name-list based predictors,
since their names either have never been labeled or exist in the ambiguous name
group. We instead employ a local information based predictor – LCL – for users
belonging to the set W − V .

4. For users in set X − V − W , it is not effective to use the name-list based or local
information based predictors. We can, however, predict users’ genders using the
FRND predictor.

7.3 Gender Inference Results

Parameter Selection. In our experiments, we consider two different thresholds: T1 =
0.65 and T1 = 0.8. We place the users from U , who specified their sexual preference
information, in the set W , based on the result in Section 6.2. Then, we choose T2 = 5,
based on the results from Section 6.2. We eventually get a Group A which consists of
96.3% of the users, when T1 = 0.65 and 95.1% of the users when T1 = 0.8.

Table 2. Accuracies of Gender Inference

Group Fraction of Training and test Accuracy Fraction of Training and test Accuracy
Users with dataset size with with Users with dataset size with with
T1 = 0.65 T1 = 0.65 T1 = 0.65 T1 = 0.8 T1 = 0.8 T1 = 0.8

V ∩ W 21.1% 244, 438 97.3% 20.2% 234, 562 98.6%
V − W 68.1% 365, 006 96.8% 65.4% 350, 023 98.5%
W − V 2.69% 30, 195 89.7% 3.54% 40, 073 89.6%

X − V − W 4.4% 39, 712 61.7% 5.94% 54, 693 63.0%
A 96.3% 679,351 94.6% 95.1% 679,351 95.2%

354 C. Tang et al.

We then adopt our gender predictors to those users in Group A. We choose inference
dataset from users who have identified their genders, and split the dataset into training
set and test set by randomly marking each user’s gender as unknown with a probability
50%. We list the size of each inference dataset in Table 2.

Results. Table 2 provides a summary of our inference results. In addition to accuracies,
we also indicate the fractions of the users belonging to various sets, for the two thresh-
old values T1 = 0.65 and T1 = 0.8. We find that for T1 = 0.65, Group A consists of
96.3% of users and has an accuracy of 95.5%. Also, for T1 = 0.8, Group A consists of
95.1% of users and has an accuracy of 95.2%. These results represent a significant im-
provement over recent results of gender prediction of [14], which achieved a maximum
accuracy of 77.2% based on users’ group affiliations. After final inference, the male and
female composition of the NYC Facebook network turns out to be 49.8% and 50.2%,
respectively. This composition is different from the composition prior to our inference,
which is 51.5% males and 48.5% females.

We note that recently Facebook has updated its privacy settings [2]. Under the new
default settings, most personal attributes, such as relationship status, “interested in”,
and “looking for”, are only visible to users’ friends. Though there is now less default
information in Facebook, Our inference method continues to work well. This is because
we can still visit users’ profile pages, and obtain their names and friend lists. Once we
obtain the name and friend list, we can predict users’ genders.

8 Gender Characteristics and Behavior

8.1 Privacy of Attributes

We apply our inference method to each user in Group A (as discussed in previous
section) with parameters T1 = 0.8 and T2 = 5. We compute the percentage of male
and female users who hide several of their attributes. The results are shown in Figure
3. Based on the two-proportions z-tests, we confirm that there is a highly significant
(p < 0.0001) effect of gender on the privacy of each attribute (females showing a
higher tendency to hide their attributes). In other words, a larger fraction of females
hide their attributes such as gender, age, birthday and relationship status, compared to
the male users. Thus, we can conclude that females are more conscious (and intuitively
so) in terms of their online privacy on Facebook than their male counterparts. We also

Table 3. Pairwise correlation coefficients for private attributes

Attribute Pair Males Females Attribute Pair Males Females

Gender, age 0.539 0.523 Age, looking for 0.244 0.252
Gender, birthday 0.731 0.77 Birthday, relationship status 0.486 0.51
Gender, relationship status 0.51 0.5 Birthday, sexual preference 0.407 0.383
Gender, sexual preference 0.433 0.376 Birthday, looking for 0.392 0.432
Gender, looking for 0.437 0.444 Relationship, sexual preference 0.582 0.561
Age, birthday 0.738 0.669 Relationship status, looking for 0.625 0.681
Age, relationship status 0.325 0.311 Sexual preference, looking for 0.579 0.558
Age, sexual preference 0.284 0.265

What’s in a Name: A Study of Names, Gender Inference, and Gender Behavior 355

Fig. 3. Number and Percentage of male/female users who hide attributes

examine possible correlations between the hiding of different attributes. For both males
and females, we calculate the pairwise Pearson’s correlation coefficients, as shown in
Table 3. In Social Sciences, correlation coefficients ranging from -0.3 to -0.1 and 0.1
to 0.3 are generally regarded as small, -0.5 to -0.3 and 0.3 to 0.5 as medium, and co-
efficients larger than 0.5 and smaller than -0.5 as high [5]. From the results in Table 3,
we find that the strongest correlations are between “hiding of gender” and “hiding of
birthday”, and “hiding age” and “hiding birthday”, both for males and females. This is
followed by correlations between “hiding relationship status” and “hiding looking for”,
and “hiding relationship status” and “hiding sexual preference”. “Hiding of relation-
ship status” and “hiding of sexual preference”, and “hiding of gender” and “hiding of
age” are also strongly correlated. These correlations are more or less consistent for both
males and females, and imply that users who hide one attribute is also likely to hide
several of other attributes. Looking further into these correlations, we find two indepen-
dent clusters consisting of private attributes for both genders: (gender, age, birthday)
and (relationship status, sexual preference, looking for).

8.2 Targeted Advertising and Privacy Implications

We provide examples of how third parties could use our results for gender-specific
online stalking and targeted advertising. These third parties can use the resulting gender
information from our gender inference methods combined with users’ attributes, to help
improve the accuracy of targeted advertising.

For example, an online dating company might be very interested in marketing their
services and websites to single males and females who are looking for dating. In NYC
Facebook, we find that there are 35, 076 males and 14, 865 females matching this cri-
teria. A cosmetic company might be interested in marketing there products to young
females, while we find that there are 106, 007 females that are in their 20s in NYC
Facebook. A “gifts for lovers” company might want to know the information of people
that are in a relationship. Our statistics show that there are 46, 522 males and 48, 328
females who specified that they are in a relationship.

There are several other interesting and concerning implications of our results. For
example, there are 752 males and 463 females in NYC Facebook who are married

356 C. Tang et al.

but looking for dating; there are 9, 077 males indicating their sexual preference as men,
however, 18.2% of them are in a relationship, and 5.88% of them are married; similarly,
there are 18, 259 females specifying their sexual preference as women, but 18.3% of
them are in a relationship, and 17.1% of them are married. All these statistics and others
can potentially be used by malicious parties with unknown nefarious intentions.

9 Conclusions

The focus of this paper was on Facebook names, name-centric gender inference and
gender behavior. By crawling Facebook public profile pages for 1.67 million users in
New York City, we create a comprehensive and contemporary name list. We studied the
properties of this annotated name list, and compared it with a popular name list that
has been obtained via offline mechanisms. Based on our name list, we developed a new
and powerful technique for inferring gender for users who do not explicitly specify their
gender. Applying our methodology to NYC users in Facebook, we are able to achieve an
accuracy of 95.2% for group A consisting of 95.1% of the NYC users. Having inferred
the gender of most users in our Facebook dataset, we learn gender characteristics and
analyze how males and females behave in Facebook.

References

1. Facebook statistics,
http://www.facebook.com/press/info.php?statistics

2. Facebook updates privacy settings,
http://blog.facebook.com/blog.php?post=197943902130

3. Popular baby names, http://www.ssa.gov/OACT/babynames/
4. Carter Jernigan, B.F.M.: Gaydar: Facebook friendships expose sexual orientation. First Mon-

day 14(10) (2009)
5. Cohen, J., Cohen, P., West, S., Aiken, L.: Applied multiple regression/correlation analysis

for the behavioral sciences. Erlbaum Hillsdale, NJ (1983)
6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data

mining software: an update. SIGKDD Explor. Newsl. (2009)
7. He, J., Chu, W.W., Liu, Z(V.): Inferring privacy information from social networks. In: Mehro-

tra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang, F.-Y. (eds.) ISI 2006. LNCS,
vol. 3975, pp. 154–165. Springer, Heidelberg (2006)

8. Heatherly, R., Kantarcioglu, M., Thuraisingham, B., Lindamood, J.: Preventing Private In-
formation Inference Attacks on Social Networks. Tech. Rep. UTDCS-03-09, University of
Texas at Dallas (2009)

9. Lindamood, J., Kantarcioglu, M.: Inferring Private Information Using Social Network Data.
Tech. Rep. UTDCS-21-08 (2008)

10. McCallum, A., Nigam, K.: A comparison of event models for naive bayes text classification.
In: AAAI 1998 Workshop on Learning for Text Categorization (1998)

11. Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know: Inferring
user profiles in online social networks. In: WSDM (2010)

12. Quinlan, J.R.: Improved use of continuous attributes in c4.5. Journal of Artificial Intelligence
Research 4, 77–90 (1996)

13. Xu, W., Zhou, X., Li, L.: Inferring Privacy Information via Social Relations. In: 24th ICDE
Workshop, pp. 154–165 (2008)

14. Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social networks with
mixed public and private user profiles. In: WWW (2009)

http://www.facebook.com/press/info.php?statistics
http://blog.facebook.com/blog.php?post=197943902130
http://www.ssa.gov/OACT/babynames/

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 357–368, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Realtime Social Sensing of Support Rate for
Microblogging

Jun Huang and Mizuho Iwaihara

Graduate School of Information, Production and Systems,
Waseda University, Japan

junhuang@akane.waseda.jp, iwaihara@waseda.jp

Abstract. This paper proposes realtime estimation of support rate based on
social sensors. Nowadays, micro blogs like Twitter have gained wide
popularity, especially among the youth for its capability of updating personal
opinions in a realtime manner. Academically, they have received tremendous
attention as well. We argue that realtime events that have great influence on the
attitudes of Twitter users can be detected by strategically monitoring tweets on
certain topics. Building on the collected data, sentiment analysis enables us to
calculate percentage of positive tweets, namely, support rate. In particular,
given Twitter’s realtime nature, the support rate calculation shall also be done
in realtime. Drawing on World Cup 2010, we collect a large amount of tweets
and carry out analysis so as to extract sentiment information of the audience and
go further to show the realtime support rate of the participators.

Keywords: Realtime, event detection, support rate, sentiment classification.

1 Introduction

As a popular micro-blogging service provider, Twitter has grasped tremendous
attention from the public. People can update their status anywhere in the form of
tweet which is a message within 140 characters with the aid of computer or mobile
phones [10]. Therefore, millions of people are benefited from this social network
service that enables them to make new friends and keep connection with their friends,
classmates or colleagues.

Topic of a tweet can be variable. Mostly, tweets help people to express their
opinions of a certain topic, like a new product, a game or presidential campaign. By
extracting the sentiment information of such tweets, support rate for each aspect
(percentage of positive tweets to a certain aspect) of the topic can be calculated. These
sentiment information and support rate are rather important since feedbacks are
aggregated without manual intervention.

Moreover, given Twitter's realtime characteristics, any change of the support rate
affected by the sudden presence of a big event, even the most trivial one, could be
caught immediately, like a goal during a soccer game or a speech given by a president
candidate during election debate.

358 J. Huang and M. Iwaihara

Enormous efforts have been made in the area of sentiment analysis [2, 4].
Traditionally, methods mainly focus on static corpus, like reviews [3], yet not without
flaws. Due to the realtime characteristic of Twitter, the number of tweets centering on
one specific topic could grow at an astonishing pace. So far, the largest number of
tweets per second was 3283 during the game between Japan and Denmark in World
Cup 2010. Lacking the ability of tracking continuous realtime change of the sentiment
information (support rate) for a great deal of tweets is the major disadvantage of
conventional methods [7].

Social sensor is a new concept proposed in recent years, which treats Twitter users
as virtual sensors to detect occurrences of events such as earthquake and typhoon [1].
Although studies on Twitter and Twitter users have been carried out widely [12], such
kind of event detection is under the assumption that the sensors are not independent to
each other [1]. Another limitation of the previous researches is that they can utilize
only tweets having geo information, causing a huge waste of tweets lacking geo
information.

We aim at social sensors for detecting non-geographical events and tracking
continuous realtime change of support rate, which have not been studied extensively.
Contributions of this paper are summarized as follows:

1. Our support rate calculation is based on realtime data collected from Twitter.
It inherits the distinctive feature of realtimeness, which means the support rate
will be updated immediately when a new tweet taking about specific topic
arrives;

2. A realtime event detection mechanism based on social sensors is deployed in
our approach, thus the change of support rate caused by a significant event
can be caught promptly;

3. With the realtime support rate and realtime event detection, prediction for
future support rate will be easier. In our estimation, we achieved an
acceptable accuracy in sentiment classification and the realtime support curve
shows that the support rate clearly reflects of events like a goal in a football
game.

A wide variety of applications can be built based on our realtime support-rate
estimation, for instance, realtime census, better advertizing effects and more precise
marketing with the knowledge on the attitudes of the users and low-cost social
feedbacks without costly surveys.

The rest of the paper is organized as follows: in the next section we give a formal
definition of the problem we address in this paper. Data preparation is described in
Section 3. Section 4 illustrates our approach of extracting sentiment information and
calculating the realtime support rate using machine learning method Support Vector
Machine (SVM) [6, 11]. Experiments and evaluations will be presented in Section 5. The
final section is devoted to discussion on prospective improvements of the present work.

2 Problem Setting

Before giving a formal definition of the problem we address in this paper, we first
present several definitions.

 Realtime Social Sensing of Support Rate for Microblogging 359

Definition 1 (Topics and Aspects). Topics in our research should be sentiment-
oriented, which involves several aspects , , … in the real world or sentiment
concepts.

For example, political candidates in an election, such as the recent election of the
party leader of the ruling party of Japan can be regarded as a proper topic, in which
two candidates Kan Naoto and Ozawa Ichiro are regarded as two opposite aspects.
Take the area of electronic products as another example. For the topic of electronic
book readers, iPad and Kindle can be regarded as two opposite aspects.

Definition 2 (Sentiment Value). Given an aspect a of a specific topic and a tweet
talking about a, the polarity of with respect to a is an integer -1 or 1. Tweet is
said to be positive if the overall sentiment expressed in is positive, with to
denote positive emotions; while is nonpositive if the overall sentiment expressed in

 is neutral or negative, with to denote neutral and negative emotions. Table
1 shows examples of tweets during the game England vs. Germany and the game
England vs. Slovenia in World Cup 2010.

However, our research excludes the usage of irony which in most cases, positives
words are deployed to express negative feelings. Also tweets with mixed polarities are
excluded from our discussion. Only tweets with apparent polarities are used in our
training data, we manually pick them up from the tweets we collected after applying
several simple filters which we will mention in Section 4.1.

Definition 3 (Labeled Tweet/Unlabeled Tweet). Given an aspect a of a specific
topic p, suppose that is a tweet talking about p and is the polarity of with
respect to a. The pair , of and is called a labeled tweet. If is not assigned
to , it is called an unlabeled tweet

Definition 4 (Support Rate). Given an aspect of a topic p, and all the related
labeled tweets , collected in the time period T, we define the support rate of the
aspect during T as the percentage of positive tweets , where # , 1# , 1 # , 1 100% (1)

In this formula, # , 1 represents the number of positive tweets with respect to
aspect during T, while # , 1 denotes the number of nonpositive tweets,
respectively.

Table 1. Example tweets during World Cup 2010

Sentiment Sentiment Value Query word Tweet
Positive 1 England Cummm onnn #ENGLAND do us proud!

http://tweetphoto.com/28693928
Neutral -1 England Watching the US vs Algeria and England

vs Slovenia games with the team
Negative -1 England London bridge has fallin down .. So does

england!!!

360 J. Huang and M. Iwaihara

Based on the definitions above, we now define the problem we try to address in
this paper as follows:

Problem Definition (Realtime Support Rate Calculation). Given tweets collected
continuously with specific topics, the task is to assign a proper sentiment value to
each of the tweets and calculate the support rate of current period. Meanwhile a
realtime event detection mechanism should be built to show the influence to the
support rate of events which have great impacts on people's attitudes towards the
topics.

In order to solve this problem, we propose an approach which aims to achieve two
subtasks: (1) to learn an accurate classifier to do classification and (2) to design an
algorithm for detecting events promptly. In the first subtask, we need to prepare
tweets which already have been manually assigned corresponding sentiment
polarities. The function of extracting features is used as a bridge to make features
transferrable between tweets written in natural language and vectors used in SVM. In
the second subtask, we aim to use social sensors to confirm presence of the predefined
features of the target events and detect occurrences of such events without any
duplication of a single event.

3 Data Preparation

We developed a web Twitter mining tool by using Twitter API [14]. After setting
query words, requests with one query word each will be sent to the server of Twitter,
and then responses with 15 entries in an atom file will be supplied as input to the
analysis program. With the limitation of connections to Twitter, about 2250 latest
tweets talking about a given topic can be collected every hour.

Each entry of a tweet contains 12 attributes among which 3 will be examined: id,
published time, and title.

 Id: This attribute is used for removing duplicates of the tweets.

 Published time: We sorted the tweets according to this attribute to calculate
the support rate with the unit of minute.

 Title: It is not the real title for a tweet, just an attribute which covers all the
textual information posted by Twitter users.

Topics that are chosen should be sentiment-oriented, to which people may have strong
positive or negative feelings. A soccer match would be a good candidate because
there exist multiple possibilities of happenings that may instantly influence the event
and furthermore affect the support rate. For example, a goal, a beautiful shot or an
unexpected winner could largely influence the attitude of the audience. In this paper,
we take soccer games as the target of support rate estimation. The two participators of
a soccer game, namely, two teams will be regarded as two opposite aspects.

There are two important soccer events in 2010, UEFA Champion League Final
2010 in May and World Cup 2010 in June and July in South Africa. We gathered
tweets focusing on these matches. During each match, the names of the two teams are
set as keywords for querying and over 5000 tweets are collected for one match.

 Realtime Social Sensing of Support Rate for Microblogging 361

4 Approach

4.1 Preprocess

Twitter users post their messages via variety of devices, and the language used in a
tweet is usually informal. This results in a high frequency of misspelling and full of
repeated letters to express their emotions. In Table 1, the tweet “Cummm onnn
#ENGLAND do us proud! http://tweetphoto.com/28693928” is a typical example.
“Cummm onnn” should actually be “Come on”. In the tweets we collected, words like
“Goooooooal” or “Yeahhhhhhh” are very common, yet such repeated characters
should be removed. Also, letters “h”, “w” and “l” occurred repeatedly in the tail of a
word need to be removed. After preprocessing there will be no more than two
consecutive occurrence of a letter. Table 2 shows some examples of preprocess.

Table 2. Examples of preprocess

Before After
Cummm onnn Cum onn
Gooooooooal Gooal
Yeahhhhhhh Yeahh

Note that the above preprocessing is language-dependent; we choose English as

our target language, and collect tweets in English. We need to modify the features
depending on the target language, but required linguistic characterization is shallow,
so that the modification should be minor.

Notice that, even after preprocess, there still exists misspellings, and this will cause
a matching problem when we transform a tweet into vectors indicating the presence of
features. In the case that follows, a non-strict matching function is needed, which we
will discuss in the end of Section 4.2. Also, users often include links in their tweets;
such kinds of URLs are often little correlation with sentiments, so we remove these
links to reduce the calculation of feature matching in our approach.

4.2 Classification via Support Vector Machine

Support Vector Machine is a popular classification method. By preparing positive and
nonpositive tweets as training data, it automatically produces a classifier that
classifies tweets into two categories (positive and nonpositive). A particular type of
Support Vector Machine, LibSVM2 [13] is used in our experiments.

Before defining features we designed for classification, we need to explain several
elements which are related with the sentiment values.

Aspects: As defined in Section 3.2, aspects in the topic of a football game are the
names of the two teams. We send the team names to Twitter as query words. The
number of occurrences and the position of the query words have high weight for
deciding sentiment values. It is easy to understand the number of occurrences of

362 J. Huang and M. Iwaihara

a certain aspect has high weight, because the repeated words can be treated as a
symbol that the author is getting excited. The position of the aspect in a tweet is taken
into consideration under the assumption that during an exciting game, people would
not express their opinion in the usual manner, like “I like X’s performance today.”(X
means the query word) Instead of that, users may prefer to use a shorter and more
straightforward sentence to deliver their feelings and in most cases, these sentences
begin with the aspect or have the aspect in the tail. For instance, “Come on! X!”,
“GoGoGo, X” and “X is awesome!”

Supporting Entities: Each aspect may be accompanied by particular types of entities.
By mentioning these entities, people show their sentiment tendency, such as new
coming events and people involved in these events. In the case of a football game, a
goal can be treated as the most obvious event which will arouse people’s desire to
express their support to one of the two teams, and the player who just scores will also
be mentioned in the tweets. This results from the behaviors of the Twitter users when
they get excited for the game, especially, when there is a goal or a beautiful shot. They
will post their feelings to such an event and usually a player related with the event will
be mentioned. There are a large amount of such examples in the tweets we have
collected, like “GOAL! Milito breaks the deadlock! 1-0 to Inter!”, “Blimey, Inter being
outplayed by Bayern, now 0-1 up with a lovely goal from Milito”, where Diego Milito
is a famous forward in Inter. By mentioning his name, the audience show their support
to Inter. Therefore we can assume that occurrences of supporting entities such as
player names have a positive contribution to the support rate of their team.

Table 3. 12 Features used in classification

Feature Value Type
Tweet Length Integer
Number of occurrence of first aspect Integer
Position of first occurrence of first aspect Integer
Position of last occurrence of first aspect Integer
Number of occurrence of second aspect Integer
Position of first occurrence of second aspect Integer
Position of last occurrence of second aspect Integer
Number of occurrence of players of first team Integer
Number of occurrence of players of second team Integer
Occurrence of event symbol Integer
Current scores of first team, if mentioned Integer
Current scores of second team, if mentioned Integer

Utilizing these aspects and supporting entities, we can design the features for a

football game. Table 3 shows twelve features used in our estimation.
Algorithm. 1 describes the process of extracting feature values.

 Realtime Social Sensing of Support Rate for Microblogging 363

Algorithm. 1. Feature Value Extraction Algorithm
1. Obtain a new tweet t discussing the topic;
2. Use regular expression to catch the current scores if mentioned. Else, mark the
corresponding feature values as -1;
3. Split this tweet into a series of tokens w , w , … w , denote n as the length of the tweet;
4. For each w do:

(a) For each aspect a do:
 1) compare w with a using edit distance to check whether there is a match;

2) check whether w contains a;
3) if the results of 1) or 2) is true add 1 to corresponding features and update the feature

stands for the position of the aspect;
(b) For each entity e do:
 1) compare w with e using edit distance to check whether there is a match;

2) check whether w contains e;
3) if the results of 1) or 2) is true add 1 to corresponding features or update the feature

stands for event symbol;
End

Aspects here stand for two team names and supporting entities include the name

list of the players and event symbols like “Goal”. Tokens here can be a single word or
a combination of several words; this depends on how to split the tweets. In our case,
we use a blank character as the separator.

When a comparison is carried out between the current token and the aspect or
supporting entity, because of casual language used in Twitter and frequent
misspelling mentioned before, edit distance between two given phrases should be
calculated. If it is less than one, presence of the current target word can be confirmed.
In the example of Table 2, after preprocess we obtain a token “Gooal”, and a
comparison is carried out between the event symbol “Goal” and “Gooal”. Since the
chance of misspelling occurring in the first and last letter in a word is tiny, a higher
weight is set to these letters while calculating the edit distance. In this case, after we
set higher weight to “G” and “l”, the distance turns out to be zero and the event
symbol is confirmed.

After executing the feature value extraction process, the vector for the input data is
obtained. By applying the classifier to the vector, a sentiment value of 1 or -1 will be
sent to the support rate calculation program as the output.

Notice that the above feature designing is topic-dependent. For other domains,
modification is needed according to the different aspects and supporting entities. The
process of feature designing should obey the principle that features should be easy to
extract to satisfy the need of realtimeness.

4.3 Event Detection

Another target of our approach is to show the reflection of significant events which
may to a large extent change the attitude of audience as mentioned at the beginning of
this section. A proper event detection mechanism can help to confirm the occurrence
of the event without reading original tweets.

A target event to be detected can be characterized by three key features: top event,
supporting entity and numerical indicator. Top events are expressions that directly

364 J. Huang and M. Iwaihara

refer to the event needed to be detected. Supporting entities are the same as those
discussed in Section 4.2. Numerical indicators are such that a change of their
numerical value indicates that a top event has happened.

In our estimation, we choose goals as the target event. We also try to find which
team scores, when and who. In the following, corresponding to the features we
defined above, the top event could be a word like “Goal”, the player who just scores
is a supporting entity and current score report is a perfect candidate of numerical
indicator.

From our observation, a surge of tweets talking about the goal occurs when
someone scores, and active Twitter users will post tweets immediately after they
detect a goal, like the behavior of sensors. To confirm a goal, we must consider the
reliability of multiple sensor values to avoid duplication of the same goal. It is also
possible that we may miss the information of a new goal if it comes with a short
interval from the last one.

To solve these problems, we design the three features as follows:

 Top event: Presence of “Goal” is the most obvious feature of a goal;
 Numerical indicator: A score report, in the forms of “x-x”, “x vs. x” or “x to

x”, caught by regular expression;
 Supporting entity (optional): One or more occurrences of the name of a

player in a tweet co-occurring with the top event (a “Goal” like word occurs).
We can surmise that repeated occurrence of a player name after a goal
indicates that the player did the goal.

Note that the above features are language-dependent; we choose English as our target
language, and collect tweets in English. We need to modify the features depending on
the target language, but required linguistic characterization is shallow, so that the
modification should be minor.

Although by detecting the presence of these features in a tweet a goal can be
confirmed, checking whether the next several tweets also describe the same goal is
necessary to avoid false positives. Dealing with these three feature values obtained
from the tweets, we can maintain a score report of our own and check whether the
current tweet is talking about a new goal. Algorithm. 2 explains details of the goal
detection mechanism:

Algorithm. 2. Goal Detection Algorithm
1. Obtain a new tweet t containing the current query word;
2. If regular expression returns the current scores,
 Compare it with our own score report;
 if one of the two numbers is larger than ours;
 do step 3 and update our score report;
 Else, go back to step 1;
3. Split this tweet into a series of tokens , , … ;
4. For each do:
 (a) Compare with all of player names using edit distance;
 (b) Check whether contains any of the player names;
 (c) If there is a match, add 1 to the occurrence of the current player name;
5. Save all the occurrences of player names find the player with highest
occurrence;
End

 Realtime Social Sensing of Support Rate for Microblogging 365

This algorithm works well with the real data. The regular expression is treated as a
filter that tweets do not contain a score report can skip steps 3 to 5, which speeds up
the overall processing.

5 Experiments and Evaluations

In this section we use tweets collected during World Cup 2010 to conduct our
experiments. Our evaluations mainly focus on the following aspects:

 Accuracy of support rate: Percentage of correctly classified tweets;

 Accuracy of event detection: Percentage of correctly detected goals;

 Feasibility of realtime calculation: Due to the time limitation of World Cup,
we collect tweets first, and carry out off-line analysis. Then we evaluate
whether the computation time is fast enough to deliver results in realtime.

5.1 Training Data

Tweets collected during UEFA Champion League Final are used for training; we use
different games for training and test. We collected 11,250 tweets during the game
between Inter and Bayern1. Two simple filters are applied to reduce tweets to essential
ones so that manual assignment of sentiment values becomes effective:

1. Retweets are removed. Retweeting is the process of making comments on
other tweets. These comments may contain their own sentiment information
which may have conflicts with the original ones. Any tweets with “RT” will be
removed from the training data;

2. Duplicates are removed. As mentioned in Section 3, there can be some
duplicates in the collected tweets. To avoid giving extra weight to a particular
tweet, we need to remove these duplicates. It is time consuming if we compare
all id attributes to remove these repeated tweets. Fortunately, since we send the
queries simultaneously and Twitter only returns the latest tweets, the
comparison could narrow to 2 atom files, 30 tweets.

After applying these filters, we randomly pick up 200 tweets from the rest and
manually label them certain sentiment values. 93 out of 200 tweets are assigned to be
positive.

5.2 Support Rate Results

In the experiments we conduct, we choose to show the results of two dramatic
matches: England (1) vs. Germany (4) 2 and Brazil (1) vs. Netherlands (2) 3. Surge of
the support rate of events like a goal is clearly recognized in these results. Fig.1 and
Fig. 2 show the support rate of England and Brazil respectively:

1 F.C. Internazionale Milano vs Fussball-Club Bayern München, May 23, 2010.
2 http://www.fifa.com/worldcup/matches/round=249717/match=300061501/index.html
3 http://www.fifa.com/worldcup/matches/round=249718/match=300061507/index.html

366 J. Huang and M. Iwaihara

Fig. 1. Realtime support rate of England Fig. 2. Realtime support rate of Brazil

Fig. 3. The play by play record provided by FIFA

The results generated by the classifier trained with SVM are reasonable. In Fig.1,
the support rate of England was relatively lower than Germany when Germany took
one goal lead at the beginning. It experienced fluctuation for a few minutes which
however, was followed by a sudden drop when Podolski made Germany's second goal
at 32’. Yet, a significant rise of England's support rate occurred when they
dramatically scored two goals in just one minute. But the high support rate of almost
70% did not last long as the second goal was disallowed and the following tweets
could not be classified into a positive category since most of them were discussing the
mistake made by the referees.

In Fig.2, as the five championships owner with an early goal in the game, Brazil
received a higher support rate form beginning. After the half time break (45’-60’), the
average support rate was near 65%, and it kept at a high level with little fluctuation.
However, the turning point of this game came at 70’ (55’, if excludes the half time
break), because of a mistake made by the goalkeeper of Brazil, Melo headed the goal
in the direction of their own, Own goal! All the following tweets concentrated on this
dramatic own goal, therefore, the support rate dropped to the bottom.

5.3 Analysis

There are two reasons that we did not show the support rate through the whole game:
(1) We can explain the reflection in a clear way if we pick the period near the
interesting goals, and (2) manual classification of the tweets for the entire game is
costly.

Table 4. Accuracy of the classification

Team #of tweets #of tweets properly classified Accuracy
England 390 267 68.4%
Brazil 330 232 70.3%

X-axis: time (minute)
Y-axis: support rate

X-axis: time (minute)
Y-axis: support rate

 Realtime Social Sensing of Support Rate for Microblogging 367

Table 4 shows the accuracy of the experiments that we manually checked, by
calculating the percentage of the tweets which classified into the correct category.

Although our method is still in an early stage, we obtained an acceptable result of
accuracy around 70%.

5.4 Verifying Realtimeness

In this part, we show a breakdown of execution time to check realtime requirements.
Our cost model consists of two parts: time for feature extraction and time for
classification. With the prepared classifier, time cost for classification is so tiny that
can be ignored. The major time cost is in the process of feature extraction.

Table 5 shows the average, maximum and minimum time in our experiments.

Table 5. Average/max/min classification time

Team #of tweets time cost (ms) Average(ms) Max Min
England 390 3264 8 11 4
Brazil 2730 14753 5 7 3

In the case of Brazil, we use all the tweets collected through the game to check the

performance in the batch job with a large amount of tweets. In both of these two
cases, the time cost for each tweet is less tan 0.01s, a satisfactory result as a realtime
system.

5.5 Results of Event Detection

The results for goal detection is impressive, all 4 goals are correctly detected, which
means the accuracy is 100%, and we find several interesting points:

1. Though the second goal of England scored by Lampard is canceled by the
referee, and most of the tweets were discussing this mistake which means
features defined for a goal were not working on these tweets. We still detect
this goal successfully, because there are several tweets mentioned this goal and
provided the score report of “2-2” which it should be “2-1”. For instance,
“@nmones should of been 2-2 but England had a goal not even!”

2. Brazil’s own goal was scored by Wesley Sneijder (Netherlands). However this
goal was counted to Melo (Brazil) because the number of the occurrence of
Melo was 21, which was much larger than the number of the occurrence of
Sneijder , which was only 5.

6 Conclusion and Future Work

In this paper, we investigated a new social mining method which captures realtime
nature of Twitter. Considering each Twitter user as a sensor, we proposed a new
concept of support rate which was calculated based on sensory observation. Drawing
on a soccer game, we collected a large amount of tweets and classified these tweets

368 J. Huang and M. Iwaihara

into two categories to compute the support rate for the two competitors using SVM.
Also we proposed an event detection mechanism for detecting occurrences of a target
event such as a goal and showed the reflection of the target event to the support rate.
In our experiments, we drew curves of support rate according to the percentage of
positive tweets, and compared it with the timeline of real games. The results were
reasonable; especially a goal was clearly recognized.

Machine learning can help to extract the polarities of tweets with an acceptable
accuracy. Nevertheless since only events like a goal are detected, others such as a
beautiful shot are yet to be explored. In future work, we consider detecting more
varieties of events using social sensors. Also, we plan to expand our approach to more
domains by utilizing different feature settings and supporting entities.

References

1. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake Shakes Twitter Users: Realtime Event
Detection by Social Sensors. In: WWW2010, Raleigh, North Carolina, April 26-30 (2010)

2. Pan, S.J., Ni, X., Sun, J.-T., Yang, Q., Chen, Z.: Cross-Domain Sentiment Classification
via Spectral Feature Alignment. In: WWW 2010, Raleigh, North Carolina, April 26-30
(2010)

3. Dave, K., Lawrence, S., Pennock, D.: Mining the peanut gallery: opinion extraction and
semantic classification of product reviews. In: WWW 2003 (2003)

4. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine
learning techniques. In: EMNLP (2002)

5. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support Vector Learning for
Interdependent and Structured Output Spaces. In: ICML (2004)

6. Klinkenberg, R., Joachims, T.: Detecting Concept Drift with Support Vector Machines. In:
Proceedings of the Seventeenth International Conference on Machine Learning (ICML).
Morgan Kaufmann, San Francisco (2000)

7. Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A Bayesian Approach to Filtering
Junk {E}-Mail. AAAI Technical Report WS-98-05 (1998)

8. Popescu, A.-M., Etzioni, O.: Extracting Product Features and Opinions from Reviews.
In: EMNLP (2005)

9. Campbell, A.T., et al.: Transforming the Social Networking Experience with Sensing
Presence from Mobile Phones. In: Proc. of ACM SenSys 2008, Raleigh, North Carolina,
USA (2008) (Demo abstract)

10. Milstein, S., Chowdhury, A., Hochmuth, G., Lorica, B., Magoulas, R.: Twitter and the
micro-messaging revolution: Communication,connections and immediacy.140 characters
at a time. O’Reilly Media, Sebastopol (2008)

11. Joachims, T.: Text categorization with support vector machines. In: Proc. ECML1998,
pp. 137–142 (1998)

12. Jansen, B., Zhang, M., Sobel, K., Chowdury, A.: Twitter power:tweets as electronic word
of mouth. Journal of the American Society for Information Science and Technology
(2009)

13. http://www.csie.ntu.edu.tw/~cjlin/libsvm/
14. http://apiwiki.twitter.com/Twitter-API-Documentation

Searching Consultants in Web Forum�

Zhao Zhang, Weining Qian, and Aoying Zhou

Institute of Massive Computing,
East China Normal University, Shanghai 200062
{zhzhang,wnqian,ayzhou}@sei.ecnu.edu.cn

Abstract. Web forums attract many users contribute their rich expe-
riences and professional skills in various filed by initial post or reply
post. So, the web forum has been one of the main platforms to exchange
information. Actually, different forum user have different professional
background, a forum user has expertise in some specific areas, which
is possible another forum user lacked. The aim of this paper is to find
knowledgeable forum users for seeker provided query in web forum.

Keywords: Web Forum, Searching Consultants, Ranking Consultants.

1 Introduction

Online forums are one of main platforms to exchange information. More and
more people contribute their experiences in various fields and learn from other’s
experiences. That is there are many people who have expertise in some specific
areas. These experts tend to fall into two groups. One is they are real profes-
sional, for example, their occupation could be doctor or lawyer. Another is they
have rich experiences in a certain field or area, for example, they just finished
decorating their home or they are parents of five children. However, there ex-
ist some freshman in a certain area, for example, young mother or people who
are prepared for decorating their new house. They have no idea about how to
take care a baby or how to decorate their home. They come to online forum to
learn some useful experience. In this paper, we hope to help forum users to find
consultants in some specific fields.

In web forum, web users show their expertise knowledge by two way, answer-
ing other’s question or posting their experience in web forum. The statistics on
consumption web forum showed 71 percents topics is question topics in web fo-
rum. So, we can find the candidate consultants given query based on question
topics, because the candidate consultants could be authors answering the ques-
tion topic with relevance to the query. It’s key challenge that efficiently find and
rank the candidate consultants.

� This work is partially supported by National Science Foundation of China under
grant number 61070051, and National Basic Research (973 program) under grant
number 2010CB731402.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 369–377, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

370 Z. Zhang, W.Qian, and A. Zhou

Some researches have been done on finding and ranking experts in some co-
pora. SmallBlue [5][7] is to locate knowledgeable colleagues, communities, and
knowledge networks in companies. SmallBule find consultants depending mainly
on strong social networks among employees in enterprise. However, there are only
weak social networks in web forum builded by post-reply among authors. Actu-
ally, it’s newbies that need to find consultants of specific area. These newbies did
not post enough messages to build social netwok in web forum. So, we mainly
depend on web forum contents to find consultants in this paper. In reference [11],
authors construct expertise networks and rank the experts by PageRank or hits
algorithm in a java forum. However, this kind approach of expertise networks
is not suitable for web forum, because the expertise networks is weak and not
associative among consultants.

In this paper, we present our work on searching consultant given query q in
consumption web forums. Our achievements are listed as the following: (1)giving
formal definitions for search consultants task in web forum. (2) presenting an effi-
cient rank approach for consultant candidates. (3) The algorithm is implemented
and its effectiveness is tested on a real forum data set.

The rest of this paper is organized as follows. Section 2 presents problem
statement. Section 3 models the approach of finding consultant. Section 5 gives
experiments on a real forum data set. Section 6 introduces related work. Section
7 gives conclusion and on-going work.

2 Problem Statement

There are some knowledgeable authors in some specified areas in web forum, we
call these authors as consultants. In this paper, we want to find these consultants
in certain fields defined by a query.

Table 1 lists the main symbols we use throughout the paper.

Table 1. Main Notations Used in this Paper

Symbols Definition and description
T the set of topics in web forum
A the set of authors in web forum
q the query containing several keywords
ci the forum author

p(ci|q) the probability of ci being a consultant given query q
p(ci, q) the preference of author ci for query q
p(ci|ti) the probability of ci being a consultant given topic ti

s(ti, ci) association score for between topic ti and author ci

Fi the ith being consultant indicator
αi the weight for Fi

Tq topics with relevance to query q
La candidate consultants list given q and topic ti

Searching Consultants in Web Forum 371

2.1 Objects in Web Forum

A web forum can be viewed as the combination of three entities. They are author,
post and topic. Each web forum contains many topics, and each topic contains
several posts published by authors. The meanings of the terms are listed as the
following. Author A registered user who left message. We use set A to denote
all authors on web forum. Post A text which published by a user. Topic A set
of posts under the same topic. We use set T to denote all topics in web forum.

The three objects in web forum are presented in Fig. 1.

Fig. 1. An Example of Web Forum

The relationships between authors and topics are shown in Fig. 2, where the
dashed edge denotes initial post, the real edge denotes reply post.

2.2 Definitions

The definitions finding consultants given query in web forum are listed as the
following.

Definition 1. The query q is comprised by several keywords.
{q|ki

⋃
...

⋃
kj}, where ki is keywords.

Definition 2. Consultants are knowledgeable forum users in specific area iden-
tified by query q in the set of authors A.

{ci|i = 1, ...n, ci ∈ A
∧

p(ci|q) ≥ ε}, where where p(ci|q) = probability of
author ci being an Consultants given query q.

Definition 3. Ranking author ci and cj given the query q.
p(ci|q) ≥ p(cj |q) ⇒ rank(ci, q) ≤ rank(cj , q), where p(ci|q) = probability of

author ci being an Consultants given query q, and rank(ci, q) = position of ci

on the ranked list of consultants given topic q.

372 Z. Zhang, W.Qian, and A. Zhou

a1

a2

a3

t1

t2

t3

t4

t5

Authors Topics

Fig. 2. Relationships between Authors and Topics

Definition 4. Rank list R of consultants.
R = {(ci, ...cj ...ck)|rank(ci, q) ≤ ... ≤ rank(cj , q) ≤ rank(ck, q)}, where

rank(ci, q) = position of ci on the ranked list of Consultants given topic q.

3 Approaches to Find Consultants in Web Forum

3.1 Modeling Consultants Search

We model searching consultants task as follows: what’s the probability of forum
author ci being a consultant given the query q. In other words, we need compute
the probability p(ci|q). We can use equation 1 represents p(ci|q) based on Bayes’
Theorem.

p(ci|q) =
p(q|ci)p(ci)

p(q)
(1)

In equation 1, p(q) is the probability of q. Given the q, p(q) is a constant. p(ci)
is the priori probability of ci being a consultant. We assume p(ci) is uniform.
So, we only need compute p(q|ci) for ranking forum user ci being consultant of
specific area.

We first find topics which is relevant to the query, then find out who is most
strongly associated with the relevant topics. That is represented by equation 2.

p(q|ci) ∝ p(ci, q)
∑
ti∈T

p(ci|ti) (2)

In equation 2, p(ci, q) is preference probability given the query. p(ci, q) = n
m ,

where n denotes the posts of author ci with relevant query q, m denotes posts
of consultant ci. ti is a topic with relevance query q. And p(ci|ti) represents the
probability of ci being a consultant in topic ti.

p(ci|ti) =

∑
ti∈T s(ti, ci)

|T | (3)

Searching Consultants in Web Forum 373

Algorithm 1. Finding Rank list of consultants in web forum
Input: the query q, α1, α2, α3,the set of topics T on web forum
Output: R = {(ci, ...cj ...ck)

Initialize topic list with relevance to query q, Tq ;1

for ti in Tq do2

Append author name to list La except for original post author;3

end4

for ci in La do5

n=the posts of author ci in Tq;6

m=the posts of author ci in T ;7

p(ci, q) = n
m

;8

for ti in Tq do9

if ci in Tq then10

n = the number of question topics containing ci in Tq ;11

m= the number of all topics containing ci in Tq ;12

F1 = n
m

; n=the posts of the author ci in ti ;13

m=all posts in ti;14

F2 = n
m

;15

n=the posts of the author ci containing keywords of query q;16

m=the posts of the author ci in ti;17

F3 = n
m

;18

s(ti, ci) = α1 × F1 + α2 × F2 + α1 × F3;19

end20

p(ci|ti) = p(ci|ti) + s(ti, ci);21

end22

p(q|ci) = p(ci, q) × p(ci|ti);23

end24

Generate rank list R = {(ci, ...cj ...ck) for all authors in topic Tq, where25

p(q|ci) >= ... >= p(q|ci) >= ... >= p(q|ck);
return R = {(ci, ...cj ...ck)}26

Where |T | is the number of topics, and s(ti, ci) is a association score between a
topic ti and a author ci. we use equation 4 to compute this association probabil-
ity. We consider s(ti, ci) can be captured based on heuristic rule. To turn these
associations into probabilities, we divide

∑
ti∈T s(ti, ci) by |T |.

s(ti, ci) =
∑3

i=1 αiFi(ti, ci)∑3
i=1 αi

(4)

Where Fi is a heuristics indicator which a author is consultant. αi is weight
for each indicator Fi. In this paper, we use 3 indicators. F1 measure how much
the author ci subjective know about the query. F2 measure query driven an
author’s passion for the question topic. F3 measure query driven an author’s
knowledge about the query. To turn these associations into probabilities, we
divide

∑3
i=1 αiFi(ti, ci) by

∑3
i=1 αi.

374 Z. Zhang, W.Qian, and A. Zhou

F1: In all topics, ((the number of all topics of ci)-(the number of question
topics of ci with relevance query q)) /(the number of all topics of ci with relevance
query q).

F2: (the posts of the author ci)/(all posts) in each topic with relevance the
query q.

F3: (the posts of the author ci containing keywords of query q)/(the posts of
the author ci) in each topic with relevance the query q.

3.2 Algorithms

After modeling the search consultants, we only need to compute p(q|ci) for rank-
ing author ci given query q. In this section, we give an algorithm to describe
this model in details. We first find topics Tq relevant to the query, that is all
authors in topic Tq are the candidate consultants. We append these candidate
consultants to La except for original post author in this topic. For each author
ci in La, we compute p(q|ci) according to equation 3.

In equation 3, s(ti, ci) represents association score between author ci and ti.
It’s be estimated by consultant indicator Fi and weight αi of Fi. In this paper,
we use three indicators, F1 measure how much the author ci subjective know
about the query. F2 measure query driven an author’s passion for the question
topic. F3 measure query driven an author’s knowledge about the query. The
probability p(ci, q) captures the preference of author ci for query q. Afterward,
we sum up to obtain probability p(q|ci) for every ci in La. Finally, we rank all
ci in La based on probability p(q|ci). The details are algorithm 1.

4 Experiments

In this section, we verify the advantages of the proposed model for ranking
consultants given query on a real-world web forum data set.

4.1 Data Collection
Crawling a Decorating board from a popular web forum (bbs.libaclub.com) in
China from April 6 to June 24 2010, we got 9327 topics including 6057 question
topics, and extracted names of the author who involved in these topics. Details
about the data set is in table 2.

4.2 Experiment Results

In this section, we show our experiment results from two aspects.

(1)Capture Consultants Rank List
we pick six typical queries for testing our algorithm 1 based on decorating home
phases. In algorithm 1, we set α1 = 1, α2 = 1, α3 = 2 based on heuristic method.
We get probability of every candidate consultant given each query. The results
are shown in Fig. 3. We know some authors have high probability of being
consultant from Fig. 3, and we consider these authors are senior consultants we
search for. We think top 15 authors are senior consultants for each query in
Fig. 3.

Searching Consultants in Web Forum 375

Table 2. Dataset

Board Decorating
Topics 9327
Question topics 6057
Authors 10670
Average posts of each author 5120
Time span April 6 to June 24 2010

Fig. 3. Probability an Author being Consultant

Fig. 4. Consultants evolution with time

(2)Find Stable Consultants
The consultants is evolving with time. However, some consultants are stable. We
track the evolution of top 15 consultants given six query for 10 weeks. Fig. 4
shows the stable consultants. In Fig. 4, horizontal axis denotes the author rank
based on the times of this author appear in 10 weeks, vertical axis denotes the
times of this author appear in 10 weeks. We think the authors which the times
appear in 10 weeks is more than 6 are core consultants we seek.

376 Z. Zhang, W.Qian, and A. Zhou

5 Related Work

In the past few years, some research was devoted to finding experts or consul-
tants. SmallBlue[7][8] finds experts in large organizations through data mining,
information retrieval, and artificial intelligence. SmallBlue[7][5] main depend on
social network among company, it focus on “who knows what? ”,“who knows
whom? ”and “who knows what about whom? ”.

EOS[6]is a researcher social network system. It has gathered information
about computer science researchers from the Web and constructed a social net-
work among the researchers through their co-authorship. Neil Rubens et. al.[10]
try to find groups of experts aimed at Collaborative Work.

Jun Zhang et. al.[11] propose an expertise network, and present Hits and
PageRank algorithms to find experts in this expertise network for java forum.

Krisztian Balog[2][1] discuss people search in the enterprise by a generative
probabilistic modeling framework for capturing the expert finding and profiling
tasks in a uniform way.

In References [3][4][9], authors discuss how to identify experts in E-mail
Corpora.

6 Conclusion and Future Work

There are some people who have expertise knowledge of specific area on web
forum. There exists some freshman in some certain fields in web forum, they
hope to get help from those experts. In this paper, we study how to find and
rank consultants given the query q on web forum. The major contributions of
the paper include:

(1)Propose the formal definitions of the consultants given query.
How to judge an author whether is consultant

(2)Give a Model to search and rank consultants of specific area. We
model the procedure of search and rank consultants by Bayes’ theorem, and
present a method to compute association between a topic and an author based
on three heuristic rules.

(3)We implement the algorithm of finding and ranking consultants
in a real forum data. We implement the searching and ranking consultants
algorithm, and its effectiveness is tested on a real forum data set.

Our further research direction is to find more candidate consultants indicators
on web forum, and obtain the weight of each indicator by machine learning.

References

1. Balog, K.: People search in the enterprise. In: Kraaij, W., de Vries, A.P., Clarke,
C.L.A., Fuhr, N., Kando, N. (eds.) SIGIR, p. 916. ACM, New York (2007)

2. Balog, K.: People search in the enterprise. SIGIR Forum 42(2), 103 (2008)
3. Balog, K., de Rijke, M.: Finding experts and their details in e-mail corpora. In:

Carr, L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M. (eds.) WWW, pp.
1035–1036. ACM, New York (2006)

Searching Consultants in Web Forum 377

4. Campbell, C.S., Maglio, P.P., Cozzi, A., Dom, B.: Expertise identification using
email communications. In: CIKM, pp. 528–531. ACM, New York (2003)

5. Ehrlich, K., Lin, C.-Y., Griffiths-Fisher, V.: Searching for experts in the enterprise:
combining text and social network analysis. In: GROUP, pp. 117–126 (2007)

6. Li, J.-Z., Tang, J., Zhang, J., Luo, Q., Liu, Y., Hong, M.: Eos: expertise oriented
search using social networks. In: WWW, pp. 1271–1272 (2007)

7. Lin, C.-Y., Cao, N., Liu, S., Papadimitriou, S., Sun, J., Yan, X.: Smallblue: Social
network analysis for expertise search and collective intelligence. In: ICDE, pp.
1483–1486. IEEE, Los Alamitos (2009)

8. Lin, C.-Y., Ehrlich, K., Griffiths-Fisher, V., Desforges, C.: Smallblue: People mining
for expertise search. IEEE MultiMedia 15(1), 78–84 (2008)

9. Mock, K.J.: An experimental framework for email categorization and management.
In: SIGIR, pp. 392–393 (2001)

10. Rubens, N., Vilenius, M., Okamoto, T., Kaplan, D.: Cafe: Collaboration aimed at
finding experts. I. J. Knowledge and Web Intelligence 1(3/4), 169–186 (2010)

11. Zhang, J., Ackerman, M.S., Adamic, L.A.: Expertise networks in online communi-
ties: structure and algorithms. In: Williamson, C.L., Zurko, M.E., Patel-Schneider,
P.F., Shenoy, P.J. (eds.) WWW, pp. 221–230. ACM, New York (2007)

Comparing Similarity of HTML Structures and
Affiliate IDs in Splog Analysis

Taichi Katayama1, Akihito Morijiri1, Soichi Ishii2,
Takehito Utsuro1, Yasuhide Kawada3, and Tomohiro Fukuhara4

1 University of Tsukuba, Tsukuba, 305-8573, Japan
2 Tokyo Denki University, Tokyo, 101-8457, Japan

3 Navix Co., Ltd., Tokyo, 141-0031, Japan
4 National Institute of Advanced Industrial Science and Technology,

Tokyo 135-0064, Japan

Abstract. Spam blogs or splogs are blogs hosting spam posts, created
using machine generated or hijacked content for the sole purpose of
hosting advertisements or raising the number of in-links of target sites.
Among those splogs, this paper focuses on detecting a group of splogs
which are estimated to be created by an identical spammer. In this pa-
per, we compare two clues: namely, similarity of HTML structures of
splogs and affiliate IDs automatically extracted from splogs. We first
show that the similarity of HTML structures of splogs is quite effective
in splog detection, as well as in identifying spammers. We then show that
the identity of affiliate IDs extracted from splogs can identify spammers
much more directly than similarity of HTML structures, although it is
not easy to achieve high coverage in extracting affiliate IDs. Finally, we
show that the coverage of the intersection of the two clues, similarity of
HTML structures and affiliate IDs, is relatively low, and it is necessary
to apply them in a complementary strategy.

Keywords: spam blog detection, HTML structures, affiliate IDs.

1 Introduction

Weblogs or blogs are considered to be one of personal journals, market or product
commentaries. While traditional search engines continue to discover and index
blogs, the blogosphere has produced custom blog search and analysis engines,
systems that employ specialized information retrieval techniques. With respect
to blog analysis services on the Internet, there are several commercial and non-
commercial services such as Technorati1, BlogPulse [1]2, and kizasi.jp3 . With
respect to multilingual blog services, Globe of Blogs4 provides a retrieval function

1 http://technorati.com/
2 http://www.blogpulse.com/
3 http://kizasi.jp/ (in Japanese).
4 http://www.globeofblogs.com/

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 378–389, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://technorati.com/
http://www.blogpulse.com/
http://kizasi.jp/
http://www.globeofblogs.com/

Similarity of HTML Structures and Affiliate IDs in Splog Analysis 379

of blog articles across languages. Best Blogs in Asia Directory5 also provides a
retrieval function for Asian language blogs.

As with most Internet-enabled applications, the ease of content creation and
distribution makes the blogosphere spam prone [2,3,4]. Spam blogs or splogs are
blogs hosting spam posts, created using machine generated or hijacked content
for the sole purpose of hosting advertisements or boosting the ranking of target
sites. [3] reported that for English blogs, around 88% of all pinging URLs (i.e.,
blog homepages) are splogs, which account for about 75% of all pings. Based
on this estimation, as stated in [5], splogs can cause problems including the
degradation of information retrieval quality and the significant waste of network
and storage resources. Several previous works [3,4] reported important charac-
teristics of splogs. [4] reported characteristics of ping time series, in-degree/out-
degree distributions, and typical words in splogs found in TREC6 Blog06 data
collection. [3] reported the results of analyzing splogs in the BlogPulse data set.
In the context of semi-automatically collecting Web spam pages/hosts includ-
ing splogs, [6] discussed how to collect spammer-targeted keywords to be used
when collecting a large number of Web spam pages/hosts efficiently. [7] ana-
lyzed (Japanese) splogs based on various characteristics of keywords contained
in them.

Along with those analysis on splogs reported in previous works, several splog
detection techniques (e.g., [8,9,5]) have been proposed. [9] studied features for
splog detection such as words, URLs, anchor texts, links, and HTML meta tags
in supervised learning by SVMs. As features of SVMs, [5] studied temporal self
similarities of splogs such as posting times, post contents, and affiliated links.
[8] also studied detecting link spam in splogs by comparing the language models
among the blog post, the comment, and pages linked by the comments.

Unlike those studies in the previous works on splog detection, [10] proposed
to employ the similarity of HTML structures of splogs in splog detection by ma-
chine learning. In measuring the similarity of HTML structures, a list of DOM
(Document Object Model) elements (minimum unit of content) is extracted from
the DOM tree of an HTML document. [10] reported that they manually exam-
ined the HTML documents of splogs estimated to be created by an identical
spammer and found that they tend to have similar DOM trees.

In this paper, following [10], we evaluate the similarity of HTML structures
of splogs proposed in [10] with much larger splog / authentic blog data set.
More specifically, out of 10 major Japanese blog hosts, we focus on the three
blog hosts with the highest splog rates. Then, we apply the similarity of HTML
structures of splogs to randomly selected splogs / authentic blogs, and show
that the measure is quite effective in splog detection as well as in identifying
spammers. Unlike [10], this paper shows that, given a small set of seed splog sites,
we can easily collect splogs which have HTML structures similar to a seed splog
with quite high precision. We next compare the similarity of HTML structures

5 http://directory.bestblogs.asia/
6 http://trec.nist.gov/

http://directory.bestblogs.asia/
http://trec.nist.gov/

380 T. Katayama et al.

Fig. 1. Example of an Affiliate Link Containing an Affiliate ID

of splogs with another clue: affiliate IDs7 automatically extracted from splogs.
We show that the identity of affiliate IDs extracted from splogs can identify
spammers much more directly than similarity of HTML structures, although
it is not easy to achieve high coverage in extracting affiliate IDs. Finally, we
show that the coverage of the intersection of the two clues, similarity of HTML
structures and affiliate IDs, is relatively low, and it is necessary to apply them
in a complementary strategy.

2 Similarity of HTML Structures

Following [10], this section briefly introduces how to measure the similarity of
HTML structures of splogs.

2.1 Extracting DOM Sequences of an HTML Document

First, from an HTML document of a splog / an authentic blog, a sequence of
DOM (Document Object Model) elements is extracted8. In this procedure, as
shown in Figure 2, given an HTML document s, it is first converted into a tree
structure of HTML tags. This tree structure is referred to as the DOM tree
of the HTML document s. Then, following the definitions of HTML elements9,
we extract only a small portion of them including certain block elements. More
specifically, first, we divide the DOM tree into subtrees with BODY tags as well

7 Figure 1 shows an example of an affiliate link. In this link, ad id, item id, and
affiliate id are contained. We extract a value associated with affiliate id.

8 The underlying motivation of measuring differences in HTML layouts for splog de-
tection is somehow similar to that of [11]. However, the evaluation procedure of [11]
is different from ours, in that they artificially created a mixture of Web spam pages
and authentic Web pages, and then apply their similarity measure within the task
of clustering Web spam pages / authentic Web pages. Compared to the similarity
measure of [10], that of [11] is more coarse-grained when incorporating HTML tags
in the similarity.

9 W3C HTML 4.01 Specification (http://www.w3.org/TR/HTML401/).

http://www.w3.org/TR/HTML401/

Similarity of HTML Structures and Affiliate IDs in Splog Analysis 381

Fig. 2. Extracting DOM Sequences of HTML Documents and Measuring the Ratio of
their Differences: An Example

as P tags and DIV tags which indicate block elements10. We remove subtrees
with other tags from the DOM tree. Each of the extracted subtrees can be
considered as minimum unit of content and we refer to it as a DOM element.
Then, the DOM tree is traversed in the breadth-first strategy, and DOM elements
are collected into a sequence dm(s).

Figure 2 shows an example of extracting sequences of DOM elements from
two splog HTML documents “splog 1” and “splog 2”. In this case, from each
of the two HTML documents, two DOM elements with a DIV tag at their root
nodes are extracted. Each of the two DOM elements with a DIV tag is identical
between “splog 1” and “splog 2”. Also, from each of the two HTML documents,
a DOM element with a BODY tag at its root node is extracted. Those two DOM
elements with a BODY tag at their root nodes have their internal nodes different
from each other.

10 Even though HTML elements with SCRIPT tags and STYLE tags are not usually
rendered by visual browsers, we keep subtrees with those tags within block elements,
since their differences should be accounted for in our task of splog detection.

382 T. Katayama et al.

2.2 Ratio of the Differences in DOM Sequences

Next, given two HTML documents s and t, as well as their corresponding DOM
sequences dm(s) and dm(t), respectively, edit distance (dm(s), dm(t)) is mea-
sured through DP (dynamic programming) matching, where the costs of inser-
tion and deletion are defined as 1 and that of substitution is as 2. Then, the ratio
Rdiff(s, t) of the difference of DOM sequences between the HTML documents s
and t is defined as below:

Rdiff(s, t) =
edit distance (dm(s), dm(t))

|dm(s)| + |dm(t)|

In the case of the two splog HTML documents in Figure 2, the two DOM se-
quences differ in one DOM element out of the three and the ratio of their differ-
ence is calculated as 0.33.

Next, we measure the similarity of DOM sequences between an HTML docu-
ment s and a set T of HTML documents. Here, we introduce the notion of the
smallest ratio Rdiff(s, t ∈ T) between s and any member t of T (s �= t) and refer
to it as MinDF(s, T).

MinDF(s, T) = min
t�=s

Rdiff(s, t ∈ T)

3 Automatic Collection of Splogs with High Similarities
of HTML Structures

3.1 Seed Splog Data Set

We first collected 6.2 million blog sites through a system called KANSHIN [12]
for the years 2004 ∼ 2009. Next, we focused on major 10 blog hosts, and 5.2
million blog sites out of the whole 6.2 million. For each of the 10 blog hosts,
we then randomly selected about 400 blog sites and manually annotated splog /
authentic blog distinction to each blog site. For each blog host, Figure 3 shows
the number of the collected blog sites as well as splog rate. In the rest of the
paper, we focus on the three blog hosts with the highest splog rates, i.e., “S”,
“F”, and “C”.

Let the meta-variable H range over the three blog hosts “S”, “F”, and “C”.
For each host H , we denote the set of seed splog sites as SPseed(H), where those
seed splog sites are used for collecting splogs which have high similarities of
HTML structures with at least one of the seed splog sites. The seed splog sites
used in this paper are those random samples collected above, where additional
splogs are further added if the number of splogs is less than 100. The numbers
of seed splog sites are 208 for the host “S”, and 100 for each of “F” and “C”.

3.2 The Procedure

For the three blog hosts, the total number of blog sites is about 1.7 million.
We randomly selected 10% of them, i.e., 170,000 blog sites, out of which about

Similarity of HTML Structures and Affiliate IDs in Splog Analysis 383

Fig. 3. Number of Blog Sites and Splog Rate per Blog Host

130,000 blog sites were accessible on the Web in June 2009. Next, for each blog
host H , we collect all the blog sites b of H from the members of the 130,000 blog
sites, and calculate the value MinDF(b, SPseed(H)). Then, we collect any blog
site b from the 130,000 blog sites, which have the values of MinDF(b, SPseed(H))
as k − 0.05 ≤ MinDF(b, SPseed(H)) ≤ k into the set B(H, k). Similarly, we
can define the splog subset of B(H, k) as SP (H, k) below:

B(H, k) =
{
blog (i.e., splog or authentic blog) site b

∣∣∣ blog host of b is H ,

b �∈ SPseed(H), k − 0.05 ≤ MinDF(b, SPseed(H)) ≤ k
}

SP (H, k) =
{

splog site s
∣∣∣ s ∈ B(H, k)

}

In the case of the much smaller data set examined in [10], splogs created by an
identical spammer tend to have the similarity of HTML structures less than 0.2.
Based on this result, in the following, we examine the blog sites b which have
the values of MinDF(b, SPseed(H)) as lower than 0.3. The numbers of such blog
sites are 7,787 for the blog host “S”, 628 for the blog host “F”, and 7,352 for the
blog host “C”, respectively. For the host “F”, we used all of the 628 blog sites in
further analysis. From those blog sites for the hosts “S” and “C”, we randomly
sampled 1,013 sites and 558 sites respectively for further analysis. We then man-
ually annotated splog / authentic blog distinction to each blog site. Finally, for
each blog host H and for each of the values of k = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
we measure the splog rate and plot them as “Splog rate (similar to seed)” in
Figure 4. In the figure, we also show random splog rates taken from Figure 3
as “Splog rate (random)”, which are measured over the randomly sampled blog
sites, but not over those which have HTML structures similar to each other.

384 T. Katayama et al.

(a) blog host S

(b) blog host F

(c) blog host C

Fig. 4. Splogs Rates for Blog Sites Similar to Seeds and Number of Collected Splogs

Similarity of HTML Structures and Affiliate IDs in Splog Analysis 385

Figure 4 also shows the numbers of the collected splog sites for the blog host
“F”, or the estimated numbers of the collected splog sites for the blog hosts “S”
and “C”.

3.3 Analysis on Splog Rate

The results of analyzing splog rates in Figure 4 can be summarized as below:

1. For all of the three hosts, “Splog rate (similar to seed)” are much higher than
“Splog rate (random)”. This result clearly shows that the proposed method
of collecting blog sites with high HTML similarity successfully collects splogs
which are similar to seed splogs.

2. It is clearly shown that the numbers of splogs automatically collected are
quite large compared to the numbers of seed splogs. After detailed analysis,
we found the followings: For the blog host “S”, we can collect 1,160 splog
sites which are similar to at least one of 50 seed splog sites in the range of
MinDF(s, SPseed(H)) less than 0.15, with splog rate as high as 95%. In the
range of MinDF(s, SPseed(H)) less than 0.3, we can collect 6,824 splog sites
which are similar to at least one of 136 seed splog sites with splog rate as high
as 87%. For the blog host “F”, we can collect 118 splog sites which are similar
to at least one of 21 seed splog sites in the range of MinDF(s, SPseed(H))
less than 0.15, with splog rate as high as 98%. For the blog host “C”, we can
collect 155 splog sites which are similar to at least one of 17 seed splog sites
in the range of MinDF(s, SPseed(H)) less than 0.05, with splog rate as high
as 100%.

4 Splogs and Affiliate IDs

In an HTML page that contains affiliate links or banners, one or more affiliate
codes are embedded. Affiliate codes are described as JavaScript code or a URL.
Various information is embedded in the affiliate code such as advertiser’s ID,
commodity’s ID, affiliator’s ID, and so on. For the former case, some affiliate
service providers (ASPs) provide an affiliate ID in the code. An example is
Google’s AdSense11. In the JavaScript code of the AdSense, there is a unique
ID. We extract this ID as an affiliate ID. For the latter case, some ASPs embed
several IDs in a URL. Figure 1 shows an example of an affiliate link, where we
extract a value associated with affiliate id.

Spammers often create and maintain multiple blog sites in order to obtain a
large quantity of commissions from ASPs. In addition to this, some ASPs allow
a user to create multiple affiliate IDs. Spammers create multiple IDs using this
framework. If we can find an ID as a spam ID, we can exclude all of blog sites
that contain this ID automatically.

Actually, in our results of preliminary examination on affiliate IDs, 95.1%
of affiliate IDs that appear more than 10 blog sites are spam IDs. Thus, in
section 5.2, we extract affiliate IDs which appear in more than 10 blog sites, and
manually classify these IDs into spam and authentic IDs.
11 http://www.google.com/adsense/

http://www.google.com/adsense/

386 T. Katayama et al.

5 Analysis on Identifying Spammers

Based on the results of section 3, this section studies how to identify spammers in
the set of given splogs. We especially compare the similarity of HTML structures
and affiliate IDs. We show that the coverage of their intersection is relatively low,
and it is necessary to apply them in a complementary strategy.

5.1 Identifying Spammers Based on the Similarity of HTML
Structures

First, in the results of collecting splog sites with high similarity of HTML struc-
tures in section 3, we manually examine whether the spammers who create those
splog sites are identical or not. Rough idea of this analysis is shown in Figure 5.
In this analysis, based on the discussion in section 3.3, we decided that we focus
on splog sites which are similar to at least one of the seed splog sites in the range
of MinDF(s, SPseed(H)) less than 0.15. We regard those splog sites as the subset
L in Figure 5. When judging whether two splog sites are actually created by an
identical spammer, we follow the criteria below:

1. There exists on the Web a document which is estimated to be pasted onto
the two splog sites. When pasting a document onto a splog post, usually,
proper nouns are randomly replaced with other proper nouns, or nouns are
randomly replaced with their synonyms using certain dictionaries.

Fig. 5. Rate of Identical Spammer

Similarity of HTML Structures and Affiliate IDs in Splog Analysis 387

2. The two splog sites have similar frame layouts with a Web browser, or have
similar layouts of HTML objects in a frame.

3. The two splog sites share an outlink to an identical URL.

The results are shown in Figure 5, which can be summarized as below:

1. For the blog host “F”, all the collected splog sites can be judged as being
created by spammers, each of who creates one of the seed splog sites.

2. For the blog hosts “S” and “C”, the rate of identifying identical spammer is
relatively low compared to that of the blog host “F”. This is mainly because
certain number of splog sites which contain just a few posts are included in
the set of seed splog sites. Although it is easy to manually judge that such
splog sites with just a few posts were not created by an identical spammer,
their HTML structures tend to be highly similar to each other.

5.2 Comparison of the Similarity of HTML Structures and Affiliate
IDs

Next, we compare the similarity of HTML structures and affiliate IDs with re-
spect to the coverage when identifying spammers. Rough idea of this analysis
is shown in Figure 6, where we focus on a set of splogs created by an identical
spammer.

First, in the results of collecting splog sites with high similarity of HTML
structures in section 3, we automatically extract affiliate IDs and measure the
rate of including affiliate IDs. In this analysis, we focus on splog sites which are
similar to at least one of the seed splog sites in the range of MinDF(s, SPseed(H))
less than 0.15. We regard those splog sites as the subset L in Figure 6. As shown
in the left-bottom in Figure 6, the rates of including affiliate IDs are less than
or around 25%. This is mainly because affiliate IDs of two major ASPs are
encrypted and are hard to automatically extract. Another reason is that certain
splog sites sometimes have only outlinks for SEO (search engine optimization)
purposes, but no affiliate links, and affiliate links are included only in pages
outlinked from splog sites.

Next, in the data set of 130,000 blog sites described in section 3, we extract
affiliate IDs which appear in more than 10 blog sites, and manually classify these
IDs into spam and authentic IDs. For each of the blog hosts “S” and “F”12, we
show the numbers of affiliate IDs and splog sites as shown in the right-bottom
in Figure 6. We regard those splog sites as the subset A in Figure 6. Out of
those splog sites, we then measure the rate of pairs of splog sites which have
the similar HTML structure to each other. In this analysis, we focus on pairs
of splog sites which have the similarity in the range of Rdiff less than 0.15. As
shown in Figure 6, these rates are around 15%.

Based on these results, we can conclude that the coverage of the intersection
of the two clues, similarity of HTML structures and affiliate IDs, is relatively
low, and it is necessary to apply them in a complementary strategy.
12 For the blog host “C”, the number of affiliate IDs which appear in more than 10

blog sites is too small, and we omit it.

388 T. Katayama et al.

Fig. 6. Comparison of the Similarity of HTML Structures and Affiliate IDs

6 Concluding Remarks

This paper focused on a group of splogs which are estimated to be created by an
identical spammer. We compared two clues: namely, similarity of HTML struc-
tures of splogs and affiliate IDs automatically extracted from splogs. We first
showed that the similarity of HTML structures of splogs is quite effective in
splog detection, as well as in identifying spammers. We then showed that the
identity of affiliate IDs extracted from splogs can identify spammers much more
directly than similarity of HTML structures, although it is not easy to achieve
high coverage in extracting affiliate IDs. Finally, we showed that the coverage of
the intersection of the two clues, similarity of HTML structures and affiliate IDs,
is relatively low, and it is necessary to apply them in a complementary strategy.
Although the principle of the techniques employed in this paper is totally lan-
guage independent and they are definitely applicable to splogs in languages other
than Japanese, the applicability of the proposed approach is somehow dependent
on the spammers’ behavior and the way affiliate IDs are embedded in HTML

Similarity of HTML Structures and Affiliate IDs in Splog Analysis 389

pages in each language. Future works include inventing a technique of detecting
splogs which can not be detected either of the two clues, where at present we
are working on applying a machine learning technique [10] with training samples
automatically collected using spam affiliate IDs studied in this paper.

References

1. Glance, N., Hurst, M., Tomokiyo, T.: Blogpulse: Automated trend discovery for
Weblogs. In: Proc. Workshop on the Weblogging Ecosystem: Aggregation, Analysis
and Dynamics (2004)

2. Gyöngyi, Z., Garcia-Molina, H.: Web spam taxonomy. In: Proc. 1st AIRWeb, pp.
39–47 (2005)

3. Kolari, P., Joshi, A., Finin, T.: Characterizing the splogosphere. In: Proc. 3rd
Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics
(2006)

4. Macdonald, C., Ounis, I.: The TREC Blogs06 collection: Creating and analysing
a blog test collection. Technical Report TR-2006-224, University of Glasgow,
Department of Computing Science (2006)

5. Lin, Y.R., Sundaram, H., Chi, Y., Tatemura, J., Tseng, B.L.: Splog detection using
self-similarity analysis on blog temporal dynamics. In: Proc. 3rd AIRWeb, pp. 1–8
(2007)

6. Wang, Y., Ma, M., Niu, Y., Chen, H.: Spam double-funnel: Connecting web spam-
mers with advertisers. In: Proc. 16th WWW, pp. 291–300 (2007)

7. Sato, Y., Utsuro, T., Fukuhara, T., Kawada, Y., Murakami, Y., Nakagawa, H.,
Kando, N.: Analyzing features of Japanese splogs and characteristics of keywords.
In: Proc. 4th AIRWeb, pp. 33–40 (2008)

8. Mishne, G., Carmel, D., Lempel, R.: Blocking blog spam with language model
disagreement. In: Proc. 1st AIRWeb (2005)

9. Kolari, P., Finin, T., Joshi, A.: SVMs for the Blogosphere: Blog identification and
Splog detection. In: Proc. 2006 AAAI Spring Symp. Computational Approaches to
Analyzing Weblogs, pp. 92–99 (2006)

10. Katayama, T., Yoshinaka, T., Utsuro, T., Kawada, Y., Fukuhara, T.: Detecting
splogs using similarities of splog HTML structures. In: Proc. 4th ICUIMC, pp.
256–263 (2010)

11. Urvoy, T., Lavergne, T., Filoche, P.: Tracking Web spam with hidden style
similarity. In: Proc. 2nd AIRWeb, pp. 25–30 (2006)

12. Fukuhara, T., Kimura, A., Arai, Y., Yoshinaka, T., Masuda, H., Utsuro, T., Nak-
agawa, H.: KANSHIN: A cross-lingual concern analysis system using multilingual
blog articles. In: Proc. 1st INGS 2008, pp. 83–90 (2008)

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 390–401, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Crowd-Powered TV Viewing Rates: Measuring
Relevancy between Tweets and TV Programs

Shoko Wakamiya1, Ryong Lee2, and Kazutoshi Sumiya2

1 Graduate School of Human Science and Environment, University of Hyogo, Japan
2 School of Human Science and Environment, University of Hyogo, Japan

nd09a025@stshse.u-hyogo.ac.jp,
{leeryong,sumiya}@shse.u-hyogo.ac.jp

Abstract. Due to the advance of many social networking sites, social analytics
by aggregating and analyzing crowds’ life logs are attracting a great deal of at-
tention. In the meantime, there is an interesting trend that people watching TVs
are also writing Twitter messages pertaining to their opinions. With the utiliza-
tion of bigger and broader crowds over Twitter, surveying massive audiences’
lifestyles will be an important aspect of exploitation of crowd-sourced data. In
this paper, for better TV viewing rates in the light of the evolving TV lifestyles
beyond home environments, we propose a TV rating method by means of
Twitter where we can easily find crowd voices relative to TV watching. In the
experiment, we describe our exploratory survey to exploit a large amount of
Twitter messages to populate TV programs and on-line video sites.

Keywords: TV Viewing Rates, Micro-blogging, Social Network.

1 Introduction

The recent advances in social networking sites such as Facebook1 and Twitter2 en-
courage crowds to share their updates in almost real time across the open space. At
the moment, a new kind of interaction between the TV stations and general audiences
increasingly appears stimulating beneficial interactions between both sides. Gener-
ally, in the side of TV stations, they want to listen to their audiences’ opinions on
their contents. Conversely, audiences would like to often participate in the TV
program expressing their thoughts or feelings directly to the content providers.
Accordingly, in terms of conventional TV viewing surveys, social media must be a
valuable source to gather much bigger and wider audiences rating, with less additional
costs to selected participants who worked for the conventional TV ratings.

In fact, current TV ratings in the USA and Japan are measured mostly based on
Nielsen ratings, which were developed by Nielsen Media Research3 many years ago.
This method measures TV ratings in three different ways: First, “Set Meter,” which

1 Facebook: http://www.facebook.com/
2 Twitter: http://twitter.com/
3 Nielsen Media Research: http://www.nielsen.com/

 Crowd-Powered TV Viewing Rates 391

means an electronic device to monitor what TV programs the selected homes view.
The collected viewing logs are transmitted in the night or in real time to the Nielsen
center or other media research companies to derive a statistical summary. Next, “Peo-
ple Meter,” which is a specially designed remote controller, to recognize the members
of a household who watch the TV programs by selecting one of the identification
buttons on the remote controller, eventually enabling analysts to survey various
demographic groups such as younger vs. older generations. Lastly, “Viewer Diary,”
the oldest way, is based on audiences’ self-recording on paper-based questionnaires
about what they have watched individually. The first two methods, which are most
often employed methods, need to have the specific devices set up on television sets.

Apparently, unlike a few decades ago, we are no more bound to watch TVs at our
homes. We can carry the TVs to any outdoor place through smart phones. Addition-
ally, watching TVs is also not limited to the broadcasting time—rather, video record-
ers or the recently introduced time shift functions in TVs can help us make up for the
missed programs consequently. Furthermore, the concept of TV is now extending its
realm with many online video sites such as YouTube4 and Japan’s NicoNicoDouga5.
The increasing scope of watching programs on the TV makes it much difficult to
assess the ratings through home-centric measurements.

In order to overcome the above problems of conventional TV rating methods, we
focus on a new source by crowds. Obviously, among the numerous postings on to-
day’s social networking sites, there are many useful crowd life logs related to media
consuming. In practice, recent TV programs are adopting Twitter as a backward-
channel to directly obtain audiences’ opinions about on-aired programs. In a sense,
this movement can be seen as a form of interactive TV as shown in Fig. 1. Based
on this conception, we may trace personal media life patterns from these logs and
probably rank TV programs or songs that audiences mostly prefer. For example, in
the case of YouTube, the most popular video sharing website, their pages have a
tweet-writing button to each video viewing page to let people remain or share their
viewing experience.

4 YouTube: http://www.youtube.com/
5 NicoNicoDouga: http://www.nicovideo.jp/

Broadcast stations
(Contents providers)

Audiences
(Crowds)

Acquiring crowds’ opinions and thoughts
Grasping crowds’ TV viewing lifestyle

Twitter
(Microblogging sites)

Posting updates
about TV programs

broadcastBroadcasting to crowds

Broadcast stations
(Contents providers)

Audiences
(Crowds)

Acquiring crowds’ opinions and thoughts
Grasping crowds’ TV viewing lifestyle

Twitter
(Microblogging sites)

Posting updates
about TV programs

broadcastBroadcasting to crowds

Fig. 1. Twitter-based interactive TV

392 S. Wakamiya, R. Lee, and K. Sumiya

In this paper, we present a novel TV rating method by utilizing the audiences’ me-
dia-life logs over microblogging sites. In particular, we focus on Twitter where we
can find many posts about TV viewing with additional tags of where and when audi-
ences enter their logs. However, the site was not designed for this specific goal to
collect the TV-related Twitter messages—so-called tweets—identifying those that are
relevant to TV programs, which are the target of this work. Therefore, we need to
confirm the tweets to a particular region in order to filter out other tweets from re-
gions outside our interest. In particular, we will present a semantic linking between
tweets relevant to TV programs.

The remainder of this paper is organized as follows: Section 2 addresses our initial
motivation and provides a TV rating platform utilizing crowd power via Twitter.
Section 3 describes the detailed methodology for semantic linking from tweets to
relevant programs. Section 4 illustrates our experimental results conducted with a real
dataset of tweets in Japan and actual electronic program list for a month. Section 5
concludes this paper with further work.

2 A Twitter-Based TV Rating Platform

In this section, we first describe our motivation to utilize Twitter as a back-channel
from audiences to broadcast stations realizing the so-called interactive TV. Then, we
introduce a TV rating platform on Twitter and highlight the most critical issue of
constructing semantic links from tweets to relevant TV programs.

2.1 Looking for Audiences on Twitter

Generally, Twitter is a microblogging site targeting for various real life applications.
Thus, in order to use the Twitter platform as a back-channel for TV rating, we should
find out tweets related TV programs. In order to look for those TV-related tweets, we
may use some specialized hashtags which are popularly used on the site as an index to
enable retrieval by other services or users. Generally, Twitter users can simply create
a hashtag by prefixing a word with a hash symbol “#hashtag.” For instance, various
hashtags, such as “#tvasahi,” “#2010wc,” “#worldcup,” “#jfa2010,” and “#wcj,”
“#wc2010” had been used during the 2010 FIFA World Cup. Actually, twtv.jp6 has
already used these tags to collect the messages sent intentionally to the stations.

However, the hashtag-based TV rating method is not sufficient to aggregate large
amounts of public opinions, since hashtags are not always given for all existing TV
programs and it needs an effort to intentionally add specific tags relative to TV sta-
tions or programs in the current situation where users must write hashtags in a tweet
with different devices such as smart phones or PCs during their watching. Further-
more, it is unlikely that all existing broadcast stations have their own Twitter accounts
and hashtags. Therefore, it is important to develop a method to capture much more
TV-related messages. In fact, this requires a kind of semantic linking between the
freely written messages under the length limitation of 140 bytes and the TV programs.
We will present the details of our method to link tweets to the corresponding
programs, if there are any relevancy between them.

6 twtv.jp: http://twtv.jp/

 Crowd-Powered TV Viewing Rates 393

2.2 Twitter-Based TV Rating Platform

In order to develop a TV rating system utilizing crowd life logs about TV viewing on
Twitter, we propose a tweet-based TV rating platform as illustrated in Fig. 2. With
this platform, we support analysts enabling them to easily investigate crowds’ media
consumption. Especially, since we are looking into the TV viewing logs on Twitter,
we need information on on-air programs and on-line video sites to identify what
crowds are looking.

Furthermore, to realize monitoring to local TV ratings, we are dealing with geo-
tagged tweets which have information on when and where a tweet is written. For this,
we developed a tweet aggregation system in our previous work [4] intentionally to
collect such specific type of tweets effectively. For the simplicity, we will not de-
scribe the detail of the system and methodology here. Instead, with a geo-tagged tweet
database collected by the system, we will investigate the TV-relevant ones and utilize
them to populate TV programs.

Specifically, when we identify the most relevant program with a tweet, we ap-
proach two different levels of identification processes. First, as a primitive and essen-
tial step, we look up a prepared hashtag list which includes hashtags and the source
information. However, as aforementioned, hashtag-based linking from tweets to rele-
vant programs will eventually suffer the lack of relevance enough to measure final TV
ratings, because unlike on-line TVs or video sharing sites, on-air TVs required a user
effort to manually write such hashtags into the writing tweets as shown in Fig. 3.
In general, people prefer to write just a title of program or a few keywords represent-
ing program. In other words, we cannot ignore such freely written texts which are
connected to much more hidden TV audiences. Therefore, we further have to seman-
tically examine the relevance between tweets and possibly relevant programs from
those raw texts. As for on-air broadcasting TV programs, we use an Electronic
Program Guide (EPG), which typically provides people with scheduling information
for current and upcoming programs.

Analyst

Specifying a
target period

Acquiring mass
geo-tagged tweets

Acquiring
TV ratings

Media
Relevancy

Engine

Specifying
a target region

Acquiring EPGs

Tweet DB

EPG DB

Tweet monitoring
system

Hashtag DB

Analyst

Specifying a
target period

Acquiring mass
geo-tagged tweets

Acquiring
TV ratings

Media
Relevancy

Engine

Specifying
a target region

Acquiring EPGs

Tweet DB

EPG DB

Tweet monitoring
system

Hashtag DB

Fig. 2. Tweet-based TV rating platform

394 S. Wakamiya, R. Lee, and K. Sumiya

2.3 Related Work

Recently, microblogging services represented by Twitter grow more popular and have
been aggregating lots of researchers’ attentions as a critical research topic in various
fields. As initial work, the usage and role of Twitter in creating a social community on
the basis of its basic functions were examined by Java et al. [6], Zhao et al. [10],
Krishnamurthy et al. [7], and Cha et al. [1]. In these studies, Twitter was investigated
for its social networking role, that is, how it would be used to send massive amounts
of short messages about social activities. Obviously, even major global news channels
refer to Twitter as an important social channel, and many people are aware of its role
as an uncontrolled and uncensored communication channel.

Furthermore, several research studies focused on the role of tweets as a novel media
to represent crowd opinions. O'Connor et al. [8] compared the measures of public opin-
ion from polls with ones from the analysis of tweets. Diakopoulos et al. [2] demon-
strated an analytical methodology including visual representations and metrics that aid
in making sense of the sentiment of social media messages around a televised political
debate. In this paper, by finding tweets relative to TV watching, we estimate the public
TV viewing rates. In addition, as a study focusing on the integration of Twitter and TV
programs as same our approach, Sawai et al. [9] have proposed a method to recom-
mend TV programs based on relations among users over social networking.

3 Semantic Linking from Tweets to Relevant TV Programs

In order to construct semantic linking from user-written tweets to possibly relevant
TV programs, we analyze tweets in two different levels of processing. For this, we

Twitter
(Microblogging sites)

TV program
(On-air)

Video clip
(On-line video sites)

User A’s tweet
posted directly

User A User B

User B’s tweet posted
via online video sites

Posting updates
about the TV program

Viewing
the TV program

Viewing
the video clip

Posting updates
about the video clip

EPG

: tweet

Cumbersome to specify
watching programs

(by specifying hashtags or
direct inputting the titles)

Easy to specify
watching programs

(by clicking a button
to write tweets)

VS.

Twitter
(Microblogging sites)

TV program
(On-air)

Video clip
(On-line video sites)

User A’s tweet
posted directly

User A User B

User B’s tweet posted
via online video sites

Posting updates
about the TV program

Viewing
the TV program

Viewing
the video clip

Posting updates
about the video clip

EPG

: tweet

Cumbersome to specify
watching programs

(by specifying hashtags or
direct inputting the titles)

Easy to specify
watching programs

(by clicking a button
to write tweets)

VS.

Fig. 3. Difference of crowds’ behavior for viewing on-air TV programs and on-line video site

 Crowd-Powered TV Viewing Rates 395

developed a Media Relevance Engine as depicted in Fig. 4. First, for each tweet, it
goes the first relevance assessing by checking included hashtags. In this stage, we use
a list of hashtags, where each one consists of triple attributes of <“hashtag,” “station,”
“program”> as shown in Table 1 (a). However, all these tuples do not need to be
filled, since a hashtag can only refer to a TV station or a program. Additionally, in
case of on-line videos, the “station” attribute will specify the site name. In the next
stage, “term-based identification” step will identify TV-relevant tweets by examining
where each one has some specific strings which can determine a station or a program
uniquely. For instance, a partial string of “http://www.youtube.com/…” will give a
hint that it is a tweet relative to a YouTube video as described in Table 1 (b).

However, after this step, there are still lots of unidentified tweets which are obvi-
ously failed to determine any relevance as a TV-relevant tweet, but they can be if we
look into the content in detail. For this, we present a Semantic Media Linkage Engine
to examine the tweet’s media relevance by content analysis as illustrated in Fig. 4.
In this part, we will find semantic relevance of tweets to on-air programs appeared on
the EPG lists. As for EPGs, the items that were broadcasted during the specified pe-
riod are obtained from the local EPG database, which has also been storing EPG items
from TV Kingdom7 as shown in Table 2. We use these tweets and EPG items as the
datasets of the specified period. Then, we need to compute the relevance between
tweets and EPGs. Basically, for a tweet relative to a TV program, we have to find the
best matching case in the EPGs. Since tweets in this stage, we have to exploit other
information on textual, spatial, or location information of tweets.

Table 1. Example of hashtags and key-terms

http://www.veoh.com/browse/videos

veoh

#veoh

Veoh

http://gyao.yahoo.co.jp/player

@Yahoo_Gyao

#GyaO

Gyao

http://www.dailymotion.com/video

dailymotion

#dailymotion

DailyMotion

http://www.youtube.com/watch

@YouTube

YouTube

#youtube

YouTube

http://www.nicovideo.jp/watch

niconico

#nicovideo

nicovideo

Hashtags, terms, and URLs for Linkage On-line video sites

http://www.veoh.com/browse/videos

veoh

#veoh

Veoh

http://gyao.yahoo.co.jp/player

@Yahoo_Gyao

#GyaO

Gyao

http://www.dailymotion.com/video

dailymotion

#dailymotion

DailyMotion

http://www.youtube.com/watch

@YouTube

YouTube

#youtube

YouTube

http://www.nicovideo.jp/watch

niconico

#nicovideo

nicovideo

Hashtags, terms, and URLs for Linkage On-line video sites

Ryomadennhk#ryomaden

Wife of gegegenhk#gegege

Precure-#precure

Keion!-#keion

-nhk_edu#etv

-tvtokyo#tvtokyo

-tbs#tbs

-nhk#nhk

programstationhashtag

Ryomadennhk#ryomaden

Wife of gegegenhk#gegege

Precure-#precure

Keion!-#keion

-nhk_edu#etv

-tvtokyo#tvtokyo

-tbs#tbs

-nhk#nhk

programstationhashtag

(a) Example of hashtags used for on-air
TV stations or program

(b) Example of hashtags and key-term lists
for on-line video sites

7 TV Kingdom: Japan TV Program Guide, http://tv.so-net.ne.jp/

396 S. Wakamiya, R. Lee, and K. Sumiya

Table 2. Example of local EPG database

talk show /
lifestyle

Try and convince (Tameshite
Gatten)

2:452:00Sep. 1, 2010
ＮＨＫGeneral
Tokyo

CATV Tokyo area J:COM
Tokyo（Suginami）

talk show
Scoop! Contributed video clips
(Tokudane! Toukou DO-ga)

2:001:50Sep. 1, 2010
ＮＨＫGeneral
Tokyo

CATV Tokyo area J:COM
Tokyo（Suginami）

documentaryChase! A to Z 1:501:05Sep. 1, 2010
ＮＨＫGeneral
Tokyo

CATV Tokyo area J:COM
Tokyo（Suginami）

newsNews and weather information0:150:00Sep. 1, 2010
ＮＨＫGeneral
Tokyo

CATV Tokyo area J:COM
Tokyo（Suginami）

endstart
genretitle

time
datestationregion

talk show /
lifestyle

Try and convince (Tameshite
Gatten)

2:452:00Sep. 1, 2010
ＮＨＫGeneral
Tokyo

CATV Tokyo area J:COM
Tokyo（Suginami）

talk show
Scoop! Contributed video clips
(Tokudane! Toukou DO-ga)

2:001:50Sep. 1, 2010
ＮＨＫGeneral
Tokyo

CATV Tokyo area J:COM
Tokyo（Suginami）

documentaryChase! A to Z 1:501:05Sep. 1, 2010
ＮＨＫGeneral
Tokyo

CATV Tokyo area J:COM
Tokyo（Suginami）

newsNews and weather information0:150:00Sep. 1, 2010
ＮＨＫGeneral
Tokyo

CATV Tokyo area J:COM
Tokyo（Suginami）

endstart
genretitle

time
datestationregion

Actually, the other information is all required to assess the relevance in a compre-

hensive way. For instance, will be in hashtags identification, as drawn in Fig. 5,
a user is location in the middle of a city and these are four different broadcast stations
around there. But only three stations tva, tvb, and tvc are accessible from the location of
the user. If a tweet written by this user is matched with some program information
broadcasted from the surrounding four stations, we can think that the user’s message
can be to these programs. However, the station tvd cannot support this assumption,
since it is out of the period. Furthermore, in terms of broadcasting time, it is likely
that the programs broadcasted in the nearly same time range with the written time
would be desirable. Therefore, we need to compute the relevance of tweets to find out
relevant on-air programs in the respects of textual, spatial, and temporal relevance as
follows.

Tweet DB

tweet

EPG DB

keywords set

Relevance calculation
・Textual relevance
・Spatial relevance

・Temporal relevance

Semantic Media Linkage Engine

Morphological
analysis

Candidate EPGs

Inverted
index

Location list of
broadcast stations

Hashtag
identification

Term-based (URL)
identification

tweet

Program titles Regions

Media Relevance Engine

Hashtag DB

Timestamp

Relevant EPG

Tweet DB

tweet

EPG DB

keywords set

Relevance calculation
・Textual relevance
・Spatial relevance

・Temporal relevance

Semantic Media Linkage Engine

Morphological
analysis

Candidate EPGs

Inverted
index

Location list of
broadcast stations

Hashtag
identification

Term-based (URL)
identification

tweet

Program titles Regions

Media Relevance Engine

Hashtag DB

Timestamp

Relevant EPG

Fig. 4. Detecting relevance between a tweet and EPG

 Crowd-Powered TV Viewing Rates 397

• Textual Relevance

In order to find a corresponding EPG item relative to a tweet about a TV program, we
first applied a words-based similarity computation: both sides are textual message. In
the estimation of the correspondence, we compute it with the following formula based
on the Jaccard similarity coefficient [3],

∑×
∩−+

∩
=

).(

)(

1

).()().()(

).()(
_

titleemp

kjiji

ji
j

kdftitleemptwmptitleemptwmp

titleemptwmp
relevancetextual (1)

where twi is a tweet, ej is an EPG item, ej.title is the title in the EPG item, and mp is a
morphological analysis function where the output consists of nouns found in the given
message. df is a function that calculates document frequency. Each tweet should be
compared with all the program titles in the local EPG database. For the rapid search-
ing for seemingly relevant EPGs we use an inverted index [11] to reduce the number
of calculations required for determining relevance between a tweet and program titles
in comparison to directly using the EPG database wherein the total of possible combi-
nations would be enormous. Then, in order to detect relevant EPGs related to titles of
TV programs, we applied the formula (1) in the computation. In the formula, with the
df, we also considered the frequency of keywords of EPGs’ titles. For example, key-
words that are frequently used in EPGs such as “news,” “drama,” and “sports” should
have less weight since these generic terms would retrieve many unrelated EPGs.
• Spatial Relevance

According to EPG items in the local EPG database, the same titles of EPGs are often
found, because some TV programs can be broadcasted repetitively by multiple sta-
tions. In this case, we should identify the station that broadcasted the program at the
time of tweet occurrence. The number of TV programs extracted by the inverted in-
dex usually corresponds with many different local stations. However, a user can exist

TV station tva

TV station tvb

TV station tvc

Broadcasting area of tvb

TV station tvd

Broadcasting area of tva Broadcasting area of tvc

Broadcasting area of tvd

user

①

③

②

Out of time period

High relevancy

④ Out of geographic range

Low relevancy

TV station tva

TV station tvb

TV station tvc

Broadcasting area of tvb

TV station tvd

Broadcasting area of tva Broadcasting area of tvc

Broadcasting area of tvd

user

①

③

②

Out of time period

High relevancy

④ Out of geographic range

Low relevancy

Fig. 5. Computation of semantic linkage by textual, spatial, and temporal relevance

398 S. Wakamiya, R. Lee, and K. Sumiya

at a place in a given moment so that a TV-relevant tweet should be matched to one of
the possible local stations. Therefore, we should consider the physical distance be-
tween the location where a tweet is posted and that of the station that broadcasted the
TV program. Because specific locations of stations are not included in EPG items, we
roughly estimate their locations based on “region” attributes of the EPG items using
Google maps API [5]. For this, we use the stations’ location list that was generated
beforehand. Then, we calculate distances between a location where a tweet was
posted and each station, and the station that has the minimum distance is selected.
• Temporal Relevance

There is also an important consideration regarding the tweet posting time. Usually, we
can think that TV-relevant tweets may be written near the actual on-air time. For
instance, audiences may write a lot of tweets during or just after a popular drama.
Sometimes, before a very popular sports program such as the World Cup, many
tweets may occur far before the actual on-air time. Therefore, as regards the relevance
between tweets and TV programs, the time elapsing between them is also an
important factor.

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

<

+−

<

+−

≤≤

=

timestamptwtimeende

timeendetimestamptw

timestartetimestamptw

.timestamptwe.start_time

timeendetimestamptwtimestarte

etwrelevancetemporal

ij

ji

ji

ij

jij

ji

._. when

)1.0_..log(

_.. when

)1.0log(

... when

 0

),(_

(2)

• Final Rating by the Triple Relevance Measures

Based on the above criteria, we computed the final relevance using the following
formula:

)1),(_()1),(_(

),(_
),(_

+×+
=

jiji

ji
ji etwrelevancetemporaletwrelevancespatial

etwrelevancetextual
etwscorerelevance

 (3)

After computing the relevance scores, we obtain a list of tweet-EPG mapping and
populate TV programs based on the following popularity score. In this formula,
#tweets denotes the number of tweets for a program ej, while #users means the dis-
tinct number of users. In fact, we consider the biases occurring by aggressive users to
write many tweets for a program should be normalized.

userstweetsepopularity j ##)(×= (4)

4 Experiment

4.1 Experimental Dataset

In order to achieve our purpose to rank TV programs by means of Twitter users, we
prepared a dataset for a period between Sept. 1–30, 2010: (1) tweets that occurred in
that period in Japan, and (2) EPGs of all TV stations (except CS satellite broadcast) in

 Crowd-Powered TV Viewing Rates 399

Japan. In that period, we collected 6,276,769 geo-tagged tweets, which were all
mapped onto location points on a map. However, it was still burdensome to use this
tweet dataset in our preliminary test. For the practical findings of TV-relevant tweets,
we empirically chose tweets whose relevance to TV watching was seemingly higher
using the prepared hashtag lists (for on-air TVs and on-line videos) and a set of filter-
ing terms such as “テレビ,” “TV,” “てれび”—Japanese expressions for “television,”
and “視聴,” “番組,” “見てる,” “見ている”—expressions for “watching” or “view-
ing.” By filtering using these terms, we could obtain a reduced tweet dataset (119,575
tweets, about 1.9% of the collected dataset). These potential tweets were written by
33.392 distinct users (on average, 3.58 tweets were made per a user.)

In our experiment, we identified TV-relevant tweets and successively ranked the
TV programs. In addition, we also prepared 838,636 EPGs for the same period. The
TV program list we compiled covers 110 geographic regions in Japan with 188 differ-
ent TV stations. (Here, for nationwide stations such as NHK, which may have many
local stations appearing in the EPGs, we dealt with them all as different channels for
convenience.) On the list, 24,841 distinct TV programs were identified (actually, 188
unique TV stations exist, but with the combinations with different regions—by re-
gion, TV stations—we could virtually determine 875 different channels.) Hence, each
station has 31.9 programs a day (during on air-time) on average.

4.2 Experimental Results

In the first place, we extracted 60,318 tweets by means of hashtag identification.
Among them, we analyzed what TV stations and programs were popularly referred to
by hashtags. For the situations, we could obtain an expected result of shown in
Fig. 6 (a) where NHK station (tagged by #nhk) than a half of the total hashtags about
stations. Likewise, we could find other major TV stations such as Nippon Network
Television Corp. (#ntv), Nippon Network Television Corp. (#tbs), and tv asahi (#tva-
sahi). In addition, for on-air programs detected by hashtags, we could also obtain the
result as shown in Fig. 6 (c), where the most popular programs are ranked; Keion!
(#keion), Wife of Gegege (#gegege), and life history of Ryoma Sakamoto (#ryo-
maden). Furthermore, for online video sites referred to by hasetags and specific
URLs, we found an interesting result; the most popular one was NicoNicoDouga and
YouTube was ranked in the next as shown in Fig. 6 (b).

Lastly, we made a comprehensive ranking for on-air programs and on-line videos
as shown in Table 3. For on-air programs, we investigated them into two types of “on-
air hashtag” identified by hashtags and “on-air”. For online videos, we focused on the
very detailed URL’s which are usually directing a unique video page corresponding to
a program in on-air TVs. In the table, we listed the result in a decreasing order of
popularity scores. As a result, 7 of the top 15 popular programs came from on-line
videos and the others were related to on-air programs. Especially, 3 of the results
were found by the aid of extended searches through our proposed semantic linkage
process. Consequently, we could say the proposed method could support the TV rat-
ings finding out hidden audiences who were not using hashtags.

400 S. Wakamiya, R. Lee, and K. Sumiya

Table 3. Ranking results of Twitter-based TV ratings for on-air TV programs and on-line
videos

153.36 2830on-linehttp://nico.ms/sm12017331

155.90 2831on-linehttp://nico.ms/sm12098837

168.99 2259on-air hashtag#kakumeitv

169.71 3032on-airLeading actor
－

setting beaty salon
－

(comedy)

183.83 3233on-linehttp://nico.ms/sm12052293

203.07 2661on-linehttp://nico.ms/lv25538558

231.06 3739on-linehttp://nico.ms/sm12005146

288.45 4345on-airKeion! "Examination" (Anime)

295.16 4445on-airIf I become a prime minister (talk show)

325.12 27145on-air hashtagprecure (Anime)

409.74 4776on-air hashtag#ryomaden (drama)

422.79 5657on-linehttp://nico.ms/sm11982230

693.09 59138on-air hashtag#gegege (drama)

848.70 70147on-linehttp://nico.ms/lv25848987

4409.49 141978on-air hashtag#keion (anime)

popularity#users#tweetstypeprograms

153.36 2830on-linehttp://nico.ms/sm12017331

155.90 2831on-linehttp://nico.ms/sm12098837

168.99 2259on-air hashtag#kakumeitv

169.71 3032on-airLeading actor
－

setting beaty salon
－

(comedy)

183.83 3233on-linehttp://nico.ms/sm12052293

203.07 2661on-linehttp://nico.ms/lv25538558

231.06 3739on-linehttp://nico.ms/sm12005146

288.45 4345on-airKeion! "Examination" (Anime)

295.16 4445on-airIf I become a prime minister (talk show)

325.12 27145on-air hashtagprecure (Anime)

409.74 4776on-air hashtag#ryomaden (drama)

422.79 5657on-linehttp://nico.ms/sm11982230

693.09 59138on-air hashtag#gegege (drama)

848.70 70147on-linehttp://nico.ms/lv25848987

4409.49 141978on-air hashtag#keion (anime)

popularity#users#tweetstypeprograms

#ryomaden
2.78%

#gegege
5%

#kamen_rider_
tatoba
1.00%

#world business
satellite
1.00%

others
57.73%

#keion
29.96%

#kakumeitv
1.15%

#precure
2.21%

fujitv
4.72%

jsports
1.45%

tvtokyo
6.41%

tvasahi
6.89%

ntv
9.88%

tbs
7.33%

nhk
59.42%

mbs
0.99%

others
2.91%

nicovideo
59.58%

youtube
40.33%

others
0.08%

(a) On-air TV program broadcasting stations (b) On-line video sites

#nhk
59.42%

(c) On-air TV programs

Fig. 6. Ranking result of (a) broadcasting stations (b) on-line video sites (c) on-air TV programs
based on popularity

 Crowd-Powered TV Viewing Rates 401

5 Conclusions

In this paper, we introduced a novel approach to improve TV viewing rates borrowing
crowd-powered media consuming logs via Twitter. Especially, we also provide a
platform looking for audiences of on-air TVs and on-line video sites together. We
furthermore presented the very detailed methods and experimental results based on a
real dataset of tweets and electronic program guide. In the future work, we will ex-
plore much deeper crowds’ media lifestyles and their opinions to media contents to
activate fruitful interactions between TV content providers and audiences by opinion
mining and sentiment analysis for tweets.

Acknowledgments. This research was supported in part by a Grant-in-Aid for Scien-
tific Research (B)(2) 20300039 from the Ministry of Education, Culture, Sports,
Science, and Technology of Japan.

References

1. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring User Influence on
Twitter: The Million Follower Fallacy. In: Proc. of the 4th International AAAI Conference
on Weblogs and Social Media, ICWSM 2010 (2010)

2. Diakopoulos, N.A., Shamma, D.A.: Characterizing debate performance via aggregated
twitter sentiment. In: Proc. of the 28th International Conference on Human Factors in
Computing Systems (CHI 2010), pp. 1195–1198 (2010)

3. French, J.C., Powell, A.L., Schulman, E.: Applications of approximate word matching in
information retrieval. In: Proc. of the 6th International Conference on Information and
Knowledge Management, CIKM 1997 (1997)

4. Fujisaka, T., Lee, R., Sumiya, K.: Monitoring Geo-Social Activities through Micro-
Blogging Sites. In: Proc. of the 1st International Workshop on Social Networks and Social
Media Mining on the Web, SNSMW 2010 (2010)

5. Google maps API, http://code.google.com/intl/ja/apis/maps/
6. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding micro-blogging

usage and communities. In: Zhang, H., Spiliopoulou, M., Mobasher, B., Giles, C.L.,
McCallum, A., Nasraoui, O., Srivastava, J., Yen, J. (eds.) WebKDD 2007. LNCS,
vol. 5439, pp. 56–65. Springer, Heidelberg (2009)

7. Krishnamurthy, B., Gill, P., Arlitt, M.: A few chirps about twitter. In: Proc. of the 1st
Workshop on Online Social Networks (WOSN 2008), pp. 19–24 (2008)

8. O’Connor, B., Balasubramanyan, R., Routedge, B., Smith, N.: From Tweets to Polls: Link-
ing Text Sentiment to Public Opinion Time Series. In: Proc. of the 4th International AAAI
Conference on Weblogs and Social Media, ICWSM 2010 (2010)

9. Sawai, R., Ariyasu, K., Fujisawa, H., Kanatsugu, Y.: TV Program Recommendation
Method Using SNS Based on Collaborative Filtering, IPSJ SIG Technical Reports, Vol.
2010-DBS-151, No. 43 (2010) (in Japanese)

10. Zhao, D., Rosson, M.B.: How and why people Twitter: the role that micro-blogging plays
in informal communication at work. In: Proc. of the ACM 2009 International Conference
on Supporting Group Work (GROUP 2009), pp. 243–252 (2009)

11. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Computing Surveys
(CSUR 2006) 38(2), Article 6 (2006)

GreenOrbs: Lessons Learned from Extremely
Large Scale Sensor Network Deployment

Yunhao Liu

Hong Kong University of Science and Technology
liu@cse.ust.hk

“The world has just ten years to bring greenhouse gas emissions under control
before the damage they cause becomes irreversible.” This is a famous prediction
raised by climate scientists and environmentalists recently. It reflects the increas-
ing attention in the past decade from human beings on global climate change
and environmental pollution. On the other hand, forest, which is regarded as the
earths lung, is a critical component in global carbon cycle. It is able to absorb
10% – 30% of CO2 from industrial emissions. Moreover, it has large capacity
of water conservation, preventing water and soil loss, and hence reducing the
chance of nature disasters like mud-rock flows and floods. Forestry applications
usually require long-term, large-scale, continuous, and synchronized surveillance
of huge measurement areas with diverse creatures and complex terrains. The
state-of-arts forestry techniques, however, support only small-scale, discontinu-
ous, asynchronous, and coarse-grained measurements, which at the same time
incur large amount of cost with respect to human resource and equipments.
WSNs have great potential in resolving the challenges in forestry. Under such
circumstances, GreenOrbs is launched. The information GreenOrbs offers can be
used as evidences, references, and scientific tools for human beings in the battle
against global climate changes and environmental pollution.

The prototype system is deployed in the campus woodland of Zhejiang Forestry
University. The deployment area is around 40,000 square meters. The deploy-
ment started in May 2009 and included 50 nodes. In November 2009 it was
expanded to include 330 nodes. The system scale reaches 400 in April 2010. The
duty cycle of nodes is set at 8%. The network diameter is 12 hops. The sensor
data are published online via the official GreenOrbs website.The Tianmu Moun-
tain deployment includes 200 nodes and has been in continuous operation since
August 2009. The deployment area is around 200,000 square meters. The duty
cycle of nodes is set at 5%. The network diameter is 20 hops.

We learned a lot of lessons during the deployment of GreenOrbs. This exper-
iment results in several publications, including ACM Sensys 2009, 2010, ACM
Sigmetrics 2010, ICNP 2010, INFOCOM 2010, etc. In this keynote, we will focus
on several open issues for extremely large scale deployment of sensor networks
including routing, diagnosis, localization, link quality, and etc.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, p. 402, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Adapting Skyline Computation to the
MapReduce Framework: Algorithms and

Experiments�

Boliang Zhang1, Shuigeng Zhou1, and Jihong Guan2

1 School of Computer Science, and Shanghai Key Lab of Intelligent Information
Processing, Fudan University, Shanghai, China

2 Dept. of Computer Science & Technology, Tongji University, Shanghai, China
{boliangzhang,sgzhou}@fudan.edu.cn, jhguan@tongji.edu.cn

Abstract. This paper addresses the problem of skyline computation
under the MapReduce framework. As a parallel programming model for
data-intensive computing applications, MapReduce runs on a cluster of
commercial PCs with the main idea of task decomposition and result
reduction. Based on different data partitioning strategies, three MapRe-
duce style skyline computation algorithms are developed: MapReduce
based BNL (MR–BNL), MapReduce based SFS (MR–SFS) and MapRe-
duce based Bitmap (MR–Bitmap). Extensive experiments are conducted
to evaluate and compare the three algorithms under different settings of
data distribution, dimensionality, buffer size and cluster size.

Keywords: Cloud computing; MapReduce; Skyline computation.

1 Introduction

Skyline computation, aiming at multi-objective decision originally, has a variety
of applications in database area nowadays. Suppose you go to some seaside city
for a holiday [1], and you need to find a hotel that is both cheap and close to
the beach. Apparently, you can not have it in both ways. In fact, those hotels
that are not worse than others in both ways are acceptable. We call the set
of interesting hotels above the skyline, each of which is a skyline point. Data
visualization is another important application of skyline. For instance, we can
show the landscape outline of Manhattan by computing the set of buildings that
are higher or closer to the river, which constitutes the skyline of Manhattan.
This is just where the name “skyline” comes.

The skyline operator was first proposed by Börzsönyi et al. [1] in 2001. In the
past years, approaches to skyline computation have been published extensively
in major database conferences, including SIGMOD, VLDB and ICDE. Although
� This work was supported by National Natural Science Foundation of China under

grants No. 60873040 and No. 60873070. Jihong Guan was also supported by the
Shuguang Scholar Program of Shanghai Education Development Foundation under
grant No. 09SG23.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 403–414, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

404 B. Zhang, S. Zhou, and J. Guan

skyline computation has been studied well under traditional definition, there are
still some issues worthy of further investigation. To name a few, 1) quality. Usu-
ally, the number of skyline points grows exponentially with data dimensionality,
and it also depends on data distribution. So how to retrieve a small number of
high quality (or most representative) skyline points is absolutely not a trivial
issue. 2) Progressiveness and user preferences. Many skyline applications require
progressive response and to consider users’ specific preferences while deliver-
ing the results. 3) Efficiency. Due to the dimension curse, skyline computation
is very expensive for large-scale and high-dimensional datasets. Thus, how to
speed up skyline computation is still a meaningful research direction.

This paper addresses the efficiency issue of skyline computation from parallel
computation perspective. Concretely, we employ the MapReduce framework [2]
to support skyline computation. MapReduce, as a parallel programming model
developed by Google, runs on a large cluster of commercial PCs to process
large datasets. The MapReduce program will carefully partition the input file,
automatically schedule tasks over the cluster, deal with machine failures and
manage communications between nodes. With its scalability, along with the
reliability provided by GFS (Google File System) [3], we are able to process
large scale of data well.

The combination of skyline computation and the MapReduce framework in
this paper is mainly motivated by the two facts: 1) with the development of
cloud computing, supporting data management and query processing in cloud
platforms is emerging as a new trend of database research and commercializa-
tion, and 2) As a typical parallel programming model, MapReduce is receiving
increasingly recognition in both academia and industry, and more and more ap-
plications are being developed under this framework. As most existing skyline
computation algorithms are devised for centralized or distributed applications,
and the MapReduce framework is a new parallel programming model with unique
features, the combination can not be done well in a simple and straightforward
way. Contributions of this paper include three aspects:

– Adapting skyline computation to the MapReduce framework for improving
efficiency, to the best of our knowledge, is possibly the first of such work.

– Three MapReduce style algorithms for skyline computation are developed
based on different data partitioning strategies.

– Extensive experiments are conducted to evaluate and compare the three al-
gorithms under different settings of data distribution, dimensionality, buffer
size and cluster size.

The rest of this paper is organized as follows. Section 2 describes the basic
information of skyline computation and the MapReduce framework. Section 3
introduces three MapReduce style algorithms for skyline computation in cloud
platforms. Section 4 presents the results of experimental evaluation. Section 5
reviews the related work. Section 6 draws conclusion and highlights future work.

Adapting Skyline Computation to the MapReduce Framework 405

2 Preliminaries

In this section, we present the definition and some basic properties of skyline,
and a brief introduction to the MapReduce framework.

2.1 Skyline: Definition and Properties

Given a d-dimensional dataset S = (S1, S2, . . . , Sd), suppose that there exists an
ordering relation on each dimension, denoted by � and ≺. For arbitrary values
x and y in Si, x � y means that x is not worse than y, and x ≺ y means that x
is better than y.

Definition 1 (Dominate). Given two data points in a d-dimensional dataset,
say p and q, we say p dominates q iff for every i ∈ [1, d] we have pi � qi and
there exists at least one j such that pj ≺ qj.

Definition 2 (Skyline point). Given a data set S, a point p ∈ S, if there
exists no other point q such that q dominates p, we say p is a skyline point in
S. All skyline points in S constitute the skyline of dataset S.

From the definition above, we can easily infer some properties of skyline. If p
dominates q in S, then for any scoring function ϕ : S → R that is monotonically
increasing in all dimensions, we have ϕ(p) > ϕ(q). Furthermore, for every ϕ, if
ϕ(p) reaches the maximum score, then p must be a skyline point. The opposite
also holds.

2.2 The MapReduce Framework

In a MapReduce program, users specify a map function to generate a large
amount of key/value pairs, and a reduce function to collect all intermediate
values associated with the same intermediate key. Fig. 1 shows the workflow of a
MapReduce program. Before the map phase starts, the input file is divided into
logical splits for parallelization. Before the reduce phase, a shuffle procedure is
carried out to release network pressure.

For instance, suppose that we want to count the occurrences of each word in
a document. The map function simply outputs the word associated with 1, and
the reduce function merges the same word and counts its occurrences.

Input1

Input2

Input3

Input4

Input5

Map

Map

Map

Reduce

Reduce Output2

Output1

Fig. 1. The workflow of a MapReduce program

406 B. Zhang, S. Zhou, and J. Guan

3 MapReduce-Based Skyline Computation Algorithms

Since MapReduce is a parallel programming model, the first consideration is
how we partition the computation task. A straightforward way is to divide the
original dataset into several subsets. Both NN [4] and D & C [1] algorithms use
this idea. We call it horizontal partitioning. Another way is to partition data
in a vertical fashion, i.e., each subset representing one single dimension of the
dataset. Balke et al. [5] exploited sorted lists of all dimensions. Bitmap [6] utilizes
this scheme to establish its bitmap structure.

Followed the two data partitioning strategies mentioned above, we design three
algorithms based on three existing centralized approaches. They are MapReduce
based BNL (MR-BNL), MapReduce based SFS (MR-SFS) and MapReduce based
Bitmap (MR-Bitmap). All of them are comprised of two cascading MapReduce
jobs. For convenience, we assume that in a d-dimensional dataset S, the size of S
is N , and there are R distinct values per dimension, denoted as [1, 2, . . . , R].

3.1 MR-BNL

BNL [1] is an iterative algorithm that repeatedly reads a set of data records for
processing. It keeps a window containing incomparable records in main memory
to collect candidate skyline records. When a record p is read, it is compared
with records in the window. According to the value of p, either of the following
situations may happen. Record p is discarded or added into the window, or the
points in the window dominated by p are deleted. With fixed data size N and
dimension d, the runtime of BNL depends on the window size and the ordering
degree of the original data. The window size influences the number of iterations,
which is also a dominant factor since I/O cost far exceeds CPU cost.

Our MapReduce based BNL algorithm (MR-BNL) is a two-stage method. The
first stage is to divide the whole data into small disjoint subsets. For each subset,
we run a BNL procedure to compute the skyline. In the second stage, the local
skylines are merged and filtered, thus the global skyline is obtained.

The NN algorithm [4] divides the global space into 2d subspaces according to
the first nearest neighbor. The D & C algorithm [1] recursively partitions the data
space according to the median of a certain dimension. In MR-BNL, we combine
these ideas together such that the input dataset is divided into 2d subspaces
based on a carefully chosen point. Considering load balance, the median of each
dimension is chosen as the point of division. Thus, each dimension is divided
into two parts: the higher part with larger values in the dimension and the lower
part with smaller values. If we mark the higher as 1 and the lower as 0, then
each subspace can be identified by a d-bit flag. In the merging stage, we exploit
the flags to reduce unnecessary comparisons.

Fig. 2 shows a two-dimensional dataset. The lines x = 0.5 and y = 0.5 divide
the space into four parts, whose flags are 00, 01, 10 and 11, respectively. The
data records in subspace 00 dominate that in subspace 11, while subspace 01
is incomparable with subspace 10. There are total C2

4 = 6 pairs of subspaces,
with 16.67% incomparable pairs. This ratio grows with dimension d, denoted by

Adapting Skyline Computation to the MapReduce Framework 407

γ(d). γ(d) rises to 88.92% when d reaches 10, which is calculated by a simple
program. Since bitwise operation costs only a little, the cost of comparisons in
the merging stage can be approximately reduced by a factor of γ(d).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

D
im

en
si
on

-2

Dimension-1

Region01

Region00

Region11

Region10

Fig. 2. Subspace and dominating relationship

Algorithm 1. MR-BNL
INPUT: the original data set S
OUTPUT: the skyline of data set S

1: Division Job
2: Map Task
3: for each point Pi in dataset S
4: compute Pi’s subspace flag Fi

5: output (Fi,Pi)
6: Reduce Task
7: for each subspace flag Fi

8: compute local Skyline SPk using BNL
9: output (Fi, SPk) in file t

10:
11: Merging Job
12: Map Task
13: for each point Pi in file t
14: output (null, (Fi, Pi))
15: Reduce Task
16: compute global Skyline SPk using BNL with pre-comparison
17: output (SPk, null)

The procedure of MR-BNL is outlined in Algorithm 1. In line 14, the key of
the map output is null so that all records are gathered in one reduce call. The
pre-comparison procedure does judgements in advance by using subspace flags.

The bottleneck lies in the second stage where the merging is done by one
single node. The performance may be significantly degraded in the case that the
size of local skyline produced by the first stage is huge.

408 B. Zhang, S. Zhou, and J. Guan

3.2 MR-SFS

One shortcoming of BNL is that a record, once inserted into the window, might
be discarded later. Therefore, this non-skyline record occupies window space,
which may increase the iteration times. Sort-Filter-Skyline (SFS) [7] was devised
to overcome the drawback. The input data is sorted at first in a topological order
compatible with the skyline criterion. Thus, once a record r is inserted into the
window, no record following it will dominate r and r is a skyline point. Therefore,
at the end of each iteration, we can output all records inside. The iteration times
of SFS is optimal, i.e., 	 N

W
 where N represents the number of data records and
W is the window size in number of records.

We implement the MapReduce based SFS algorithm by doing some modi-
fication over MR-BNL: presorting. However, MapReduce can only sort by the
keys of intermediate key/value pairs. In order to achieve secondary sort for the
values set in the reduce call, we exploit the grouping and comparing features of
MapReduce and the APIs provided by the Hadoop platform [8]. First, we assign
key/value pairs of the same key to one reducer. Second, we put together the
values of the same key. Third, user defined comparators are used to determine
the order of records in the reduce phase.

To implement the three steps above, for any record r, we embed its key and
value together, forming a new Composite. Then, we create two comparators and
one partitioner for the Composite. In step 1, the partitioner partitions Composite
in accordance with its key. In step 2, we use a KeyComparator to compare only
the key of Composite. In step 3, we use a KeyValueComparator to compare
not only the key but also the value of Composite, and yet, the key has the
priority. Algorithm MR-SFS can be easily transformed from MR-BNL according
to the above methods. Due to space limit, here we omit the pseudo-codes of
MR-SFS.

3.3 MR-Bitmap

In Bitmap [6], every point is mapped into a bit vector, and the whole dataset
forms the bitmap structure. The bitmap structure reflects the order of data
records in all dimensions, ignoring their magnitudes. Every comparison in Bitmap
is a lightweight bitwise operation. However, in order to examine a record, we
need to compare it with all the other records. Bitmap supports progressive sky-
line computation since a point can be returned to the user immediately once it
is identified as a member of the skyline. But the spatial cost of Bitmap is quite
large. In particular, let Mi be the number of distinct values in dimension i, the
size of Bitmap structure Sb=N ×

∑d
i=1 Mi (bit). In the extreme case, for each

dimension i, if Mi=N (N is size of data set), then the space cost will be dN2.
If the bitmap structure can not be kept in main memory, the performance will
be terribly degraded due to frequent I/O accesses.

The basic idea of MR-Bitmap keeps in line with that of Bitmap. In the first
job, we build the bitmap structure. In the second job, we examine each point

Adapting Skyline Computation to the MapReduce Framework 409

Algorithm 2. MR-Bitmap
INPUT: the original data set S
OUTPUT: the skyline of data set S

1: Building Job
2: Map Task
3: for each point Pi in data set S
4: for each attribute Aj in Pi

5: output (j, (Aj , Pi’s byte offsets))
6: Reduce Task
7: for each dimension k
8: generate sorted attribute list Lk in descending order
9: for each distinct value v in Lk

10: generate bit-slice and write to HDFS
11:
12: Examining Job
13: Map Task
14: for each point Pi in data set S
15: assign Pi to a reducer Ri

16: Reduce Task
17: for each reducer Ri

18: load bitmap b into memory as much as possible
19: for each point Pi in Ri

20: check Pi using bitmap b

based on the bitmap structure. Algorithm 2 outlines the procedure of the MR-
Bitmap algorithm.

Line 8 ∼ 10 is the procedure of generating bitmap, and each reducer task is
responsible for one dimension. Each distinct value in a dimension will produce a
bit-slice. Line 15 determines how many reducers will be launched for the exam-
ining process. Let Rn be this number. Each reducer needs to read bitmap into
memory. If Rn is too large, loading cost becomes dominant, which may degrade
efficiency. On the contrary, if Rn is too small, the degree of parallelism is too
low. In practice, Rn is set to the number of cluster nodes. In line 20, we use the
same procedure as in [6] to judge whether point Pi is a skyline point.

If the bitmap structure cannot fit into main memory, we adopt cache-like
strategy. When accessing some bit-slices, we check whether it is hit in memory,
if not, we read it from disk. So it is natural to store the bitmap in column
manner.

4 Performance Evaluation

In this section, we will evaluate and compare the proposed algorithms by a
series of experiments with different data distributions, dimensionalities, buffer
sizes and cluster sizes.

410 B. Zhang, S. Zhou, and J. Guan

4.1 Experimental Setting

We set up a cluster of 8 commodity PCs, each of which has an Intel Duo Core
3.00GHz CPU, 4GB memory and Windows XP OS. We use Hadoop 0.20.2, and
compile the source codes under JDK 1.6 in Eclipse 3.3.2.

We use similar datasets as in [1], each of which contains 100000 data records.
The size of the record is fixed to 100 bytes. For each dimension, we generate
integers from 1 to 100. Three data distributions are considered as follows:

– Independent: all dimensions follow uniform distribution, independently
and identically distributed.

– Correlated: points perform well in one dimension are also good in the other
dimensions.

– Anti-related: points perform well in one dimension are bad in one or all of
the other dimensions.

Evaluation Metrics. We evaluate the algorithms by skyline ratio, runtime
and I/O cost in different situations, including data distributions, dimensionality,
distinction, buffer size and cluster size. Followings are the details:

– Skyline ratio: the number of skyline points over the total number of points.
– Distinction: the number of distinct values per dimension.
– Buffer size: a logical concept extended from the window in BNL, which means

how many records can be kept in main memory. For MR-Bitmap, the bitmap
structure can be kept in main memory in general.

– Cluster size: the number of nodes in a cluster, including one master node.

4.2 Experimental Results

Skyline Ratio. First, we vary the dimensionality d from 2 to 10 for three data
distributions, and the results are presented in Fig. 3. We can see that the skyline
ratio of Correlated grows negligible with d. On the contrary, the skyline ratio
of Anti-related grows exponentially with d, reaching 58% when d = 10. As for
Independent, its curve lies between the other two distributions. We then consider
the relation between skyline ratio and data distinction. We vary the number of
distinct values per dimension R from 20 to 20000 in a 5-dimension independent
dataset. The result is shown in Fig. 4. As R increases, skyline ratio also increases.

Runtime and I/O cost. Here we measure the runtimes of three algorithms
for three distributions with d=2, 5, 8 and 10, and the I/O cost of anti-related.
Here I/O cost includes read/write bytes upon both local disk and HDFS. The
buffer size is set to 5 MB and the cluster size is 4. Fig. 5 shows I/O cost of Anti,
while Fig. 6, 7 and 8 show the runtimes of different distributions.

When the bitmap structure can fit into memory, the runtime of MR-Bitmap
is linear with dimensionality and irrelevant to data distribution. The runtime of
MR-Bitmap only depends on the size of bitmap and dimensionality. With respect
to I/O cost, MR-Bitmap outnumbers the others a lot since it needs to write and

Adapting Skyline Computation to the MapReduce Framework 411

23.86%

0.47%

58.54%

0%

10%

20%

30%

40%

50%

60%

2 4 6 8 10

Sk
yl

in
e

ra
tio

Dimensions

indep
corr
anti

Fig. 3. Skyline ratio vs.
dimensionality

50

219

360

575

757

856 879
810

884
962

0

100

200

300

400

500

600

700

800

900

1000

20 200 2000 20000

nu
m

be
r o

f S
ky

lin
e

Range(Log Scale)

indep

Fig. 4. Skyline ratio vs.
data distinction

0

20

40

60

80

100

120

140

160

2 4 6 8 10

I/
O
(M

B)

Dimensions

MR-BNL

MR-SFS

MR-Bitmap

Fig. 5. I/O cost of Anti

30

50

70

90

110

130

150

170

2 4 6 8 10

Ti
m
e(
se
c)

Dimensions

MR-BNL

MR-SFS

MR-Bitmap

Fig. 6. Runtime of Indep

30

40

50

60

70

80

90

100

110

2 4 6 8 10

Ti
m
e(
se
c)

Dimensions

MR-BNL

MR-SFS

MR-Bitmap

Fig. 7. Runtime of Corr

0

50

100

150

200

250

300

350

400

450

500

2 4 6 8 10
Ti
m
e(
se
c)

Dimensions

MR-BNL

MR-SFS

MR-Bitmap

Fig. 8. Runtime of Anti

read bitmap to and from HDFS. The curves of MR-BNL and MR-SFS are very
close. Unfortunately, we do not see the superiority of SFS in performance. On
one hand, the sorting strategy of MR-SFS causes extra I/Os. As we can see
in Fig. 5, I/O cost of MR-SFS outnumbers that of MR-BNL. On the other
hand, the buffer size is half of the total number of records, so the number of
iterations is small. Furthermore, Both MR-BNL and MR-SFS are sensitive to
data distribution. MR-Bitmap performs better when dimensionality is large,
because MR-BNL and MR-SFS concentrate on one node in the second phase,
degenerating to centralized ones.

Effect of Buffer Size. We change the buffer size from 0.1 MB to 10 MB in
a 8-dimensional anti-related dataset under a cluster of 4 nodes. The result is
illustrated in Fig. 9. The runtimes of MR-BNL and MR-SFS drop drastically
when the available buffer size increases from 0.1 MB (1000 records at a time).
When the buffer size reaches 3 MB and larger, the runtime keeps almost constant
since the number of iterations changes little. For MR-Bitmap, we conduct only
two experiments, corresponding to 5% and 10% of bitmap not being loaded into
main memory respectively. The results are disappointedly 958s and 1567s. The
key point lies in that examining records may access HDFS several times randomly
when the bitmap structure can not be totally loaded into main memory.

Effect of Distinction. For an 8-dimension anti-related dataset with a cluster
of 4 nodes, we vary the number of distinct values per dimension R from 10 to

412 B. Zhang, S. Zhou, and J. Guan

50

100

200

400

800

1600

0 2 4 6 8 10

Ti
m
e(
se
c)

Buffer(MB)

MR-BNL

MR-SFS

MR-Bitmap

Fig. 9. Runtime vs. buffer
size

0

50

100

150

200

250

300

350

400

10 100 1000 10000

Ti
m

e(
se

c)

Range(Log scale)

MR-BNL

MR-SFS

MR-Bitmap

Fig. 10. Runtime vs. dis-
tinction

0

100

200

300

400

500

600

700

800

0 5 10

Ti
m
e(
se
c)

Nodes

MR-BNL

MR-SFS

MR-Bitmap

Fig. 11. Runtime vs. cluster
size

10000. We do not test MR-Bitmap when R=10000 since the bitmap is too large.
The results are presented in Fig. 10, MR-Bitmap outperforms MR-BNL and
MR-SFS when R increases from 30 to 1000. When R exceeds 1000, the bitmap
structure is large and MR-Bitmap has the largest I/O cost.

Effect of Cluster Size. At last, we change the nodes in the cluster. Theo-
retically, the runtime of a purely parallel algorithm is in inverse proportion to
the cluster size. In practice, the performance will be negatively impacted by
the cost of scheduling among nodes. In this experiment, we use a 10-dimension
anti-related dataset, with values changing from 1 to 1000 in each dimension.
We expand the size of the cluster from 1 to 8, Fig. 11 shows the results. As
expected, 1) the increase of cluster size improves stably but not linearly the
computation efficiency, 2) MR-Bitmap outperforms MR-BNL and MR-SFS in
efficiency because the former is concurrent in both stages.

5 Related Work

Here we review the related work from two aspects: skyline computation and
MapReduce-based data management and query processing.

5.1 Skyline Computation

Up to now, a number of algorithms for skyline computation have been developed,
such as block-nested-loops (BNL) [1], sort-filter-skyline (SFS) [7], Bitmap [6],
nearest neighbor (NN) [4] and branch and bound skyline (BBS) [9]. It was ad-
mitted that BBS performs best regarding to runtime and space cost when dimen-
sionality is not too large. In addition, there are some works that either expand
the notion of skyline or solve the problem in different application scenarios.

Chan et al. [10] proposed k-dominant skyline and developed efficient ways to
compute it in high-dimensional space. Lin et al. [11] proposed n-of-N skyline
query to support online query on data streams, i.e., to find the skyline of the set
composed of the most recent n elements. In the cases where the datasets are very
large and stored distributedly, it is impossible to handle them in a centralized
fashion. Balke et al. [5] first mined skyline in a distributed environment by

Adapting Skyline Computation to the MapReduce Framework 413

partitioning the data vertically. Wang et al. [12] and Deng et al. [13] proposed
skyline computation under P2P and road networks, respectively. Recently, Zhu
et al. [14] presented an efficient skyline computation algorithm with low network
bandwidth consumption in general distributed environments.

5.2 Data Management and Query Processing under the MapReduce
Framework

Existing MapReduce-like systems, as efficient implementations towards specific
problems, mainly focus on mass data analysis and processing. The data of such
applications often has weak relationships and regular structures, which is bene-
ficial to being processed by highly parallel subtasks. Furthermore, the process-
ing or analysis tasks are not complicated in general. In this aspect, Google’s
Sawzall [15] and Yahoo!’s Pig [16] are two typical systems. And yet, for complex
query processing under MapReduce framework, such as skyline and kNN, few
works have been reported.

Some recent works are also worthy of being mentioned. For sharing input
among a batch of queries, Nykiel et al. [17] proposed the MRshare framework,
which merges several MapReduce jobs into a single one through dynamic pro-
gramming to optimize overall efficiency. Unsatisfied with HadoopDB’s modifi-
cation over Hadoop, Dittrich et al. [18] proposed the Hadoop++, which merely
overrides a few user defined functions (UDFs) to obtain advantages brought
about by index and join techniques in traditional DBMSs. Considering that
MapReduce paradigm does not provide adequate support for iterative programs,
Bu et al. [19] put forward HaLoop, a modified version of Hadoop, which serves
applications with iterative approaches, such as k-means, pagerank and recursive
queries.

6 Conclusion

This paper addresses skyline computation in cloud computing environments.
Based on the MapReduce framework, we have presented three MapReduce style
algorithms for skyline computation: MR-BNL, MR-SFS and MR-Bitmap. To
evaluate these algorithms, we have conducted a series of experiments under
different experimental settings. Experimental results show that MR-BNL and
MR-SFS are good in most cases but still suffer from dimensional curse in par-
allel environments. MR-Bitmap performs well regardless of data distributions,
especially when the bitmap can fit into the memory of a single node.

It is worthy of being mentioned that this work can be expanded in a number
of directions. First, from the perspective of parallel computing, how to extract as
many independent subtasks as possible from the problem is crucial and needs to
be further investigated. This is also true in the problem of this paper. Second, the
progressiveness of Skyline computation should be thought highly of, since users
are very likely to make a decision after receiving only a few recommendations
rather than waiting for the whole results. To shorten response time is not an easy

414 B. Zhang, S. Zhou, and J. Guan

task because the fixed start-up time of a Hadoop job is around 15 seconds. Last
but not the least, to design efficient algorithms in cloud computing environments
by using indices and exploiting features of splitting and sorting, are all promising
research topics.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline operator. In: Proceedings
of ICDE, pp. 421–430 (2001)

2. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large cluster.
In: Proceedings of OSDI, pp. 137–150 (2004)

3. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: Proceedings
of SOSP, pp. 29–43 (2003)

4. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm
for Skyline queries. In: Proceedings of VLDB, pp. 275–286 (2002)

5. Balke, W. T., Güntzer, U., Zheng, J.: Efficient Distributed Skylining for Web Infor-
mation Systems. In: Hwang, J., Christodoulakis, S., Plexousakis, D., Christophides,
V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 256–273.
Springer, Heidelberg (2004)

6. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive Skyline computation. In:
Proceedings of VLDB, pp. 301–310 (2001)

7. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In:
Proceedings of ICDE, pp. 717–719 (2003)

8. White, T.: Hadoop: The Definitive Guild. O’Reilly, Sebastopol (2009)
9. Papadias, D., Tao, Y., Fu, G., et al.: Progressive Skyline Computation in Database

Systems. ACM TODS 30(1), 41–82 (2005)
10. Chan, C., Jagadish, H.V., Tan, K.L., et al.: Finding k-dominant Skylines in high

dimensional space. In: Proceedings of SIGMOD, pp. 503–514 (2006)
11. Lin, X., Yuan, Y., Wang, W., et al.: Stabbing the sky: Efficient Skyline computation

over sliding windows. In: Proceedings of ICDE, pp. 502–513 (2005)
12. Wang, S., Ooi, B.C., Tung, A., et al.: Efficient Skyline query processing on peer-

to-peer networks. In: Proceedings of ICDE, pp. 1126–1135 (2007)
13. Deng, K., Zhou, X., Shen, H.: Multi-source Skyline query processing in road

networks. In: Proceedings of ICDE, pp. 796–805 (2007)
14. Zhu, L., Tao, Y., Zhou, S.: Distributed Skyline Retrieval with Low Bandwidth

Consumption. IEEE Transactions on Data and Knowledge Engineering 21(3), 321–
334 (2009)

15. Pike, R., Dorward, S., Griesemer, R., et al.: Interpreting the data: Parallel analysis
with Sawzall. Journal of Scientific Programming 13(4), 277–298 (2005)

16. Olston, C., Reed, B., Srivastava, U., et al.: Pig latin: a not-so-foreign language for
data processing. In: Proceedings of SIGMOD, pp. 1099–1110 (2008)

17. Nykiel, T., Potamias, M., Mishra, C., et al.: MRShare: Sharing Across Multiple
Queries in MapReduce. In: Proceedings of VLDB, vol. 3(1), pp. 494–505 (2010)

18. Dittrich, J., Quiane-Ruiz, J.-A., Jindal, A., et al.: Hadoop++: Making a Yellow
Elephant Run Like a Cheetah (Without It Even Noticing). In: Proceedings of
VLDB, vol. 3(1), pp. 518–529 (2010)

19. Bu, Y., Howe, B., Balazinska, M.: HaLoop: Efficient Iterative Data Processing on
Large Clusters. In: Proceedings of VLDB, pp. 285–296 (2010)

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 415–426, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Efficient Event Stream Processing: Handling Ambiguous
Events and Patterns with Negation

Murali Mani

University of Michigan, Flint
mmani@umflint.edu

Abstract. Event stream processing, where we detect patterns on incoming event
streams, has tremendous value in early determination of critical conditions,
enabling on-time response for several important applications. Event stream
processing has two significant differences from prior work on XML/relational
stream processing: ambiguous events, where an event can match multiple
query symbols/conditions in the pattern; and negation, used in event stream
processing patterns to specify the non-occurrence of a pattern. In this paper, we
develop a formal framework to define the semantics of event patterns, including
negation, and describe how to construct a deterministic finite state automaton
even in the presence of ambiguous events. Using our framework, we can con-
struct an efficient deterministic finite state automaton for detecting patterns
with any complex nesting of negations over an event stream which may have
ambiguous events. Our preliminary experimental studies illustrate the signifi-
cant benefits of our approach to existing approaches.

Keywords: Event Stream Processing, Finite State Automaton, Regular Expres-
sion, Query Optimization, Relational Algebra.

1 Introduction

Event stream processing, where we match complex patterns against an input event
stream, is critical for several modern-day applications, such as patient health monitor-
ing, fraud detection etc. Database researchers have studied processing of streaming
data in the past, especially in the context of relational stream processing [2] and XML
stream processing [6]. Relational stream processing typically deals with joining mul-
tiple input streams; XML query languages include XPath or XQuery. In event stream
processing, the query is typically specified as a regular expression and we are looking
for events in the input stream that match the specified query [12].

Let us consider a simplified example of event stream processing from stock market
analysis. Consider every event in the event stream to specify a transaction, and has
two attributes: price and volume. An example event stream is given below:

event timestamp=1 price=75 volume=90
event timestamp=2 price=110 volume=130
event timestamp=3 price=120 volume=80
event timestamp=4 price=80 volume=140
event timestamp=5 price=125 volume=120

416 M. Mani

A pattern that the user is interested in could be to determine events with volume > 100
that occur after an event with price > 100. The result of the above query includes
events with timestamps 4 and 5. Event with timestamp 4 has vol > 100, and a prior
event (with timestamp 3) has price > 100. Event with timestamp 5 matches because it
has vol > 100, and a prior event (with timestamp 3) has price > 100.

One aspect of event stream processing that makes it particularly challenging is
what we call as ambiguous events. Consider the above example itself; the pattern
specifies two types of events: events with price > 100 (let us call them events of type
a), and events with volume > 100 (let us call them events of type b). The pattern the
user is looking for is a followed by b (there can be zero or more events between a and
b events). In finite state automata, any input “symbol” will match exactly one of the
symbols in the given alphabet: for instance, if the alphabet is {a, b}, any input symbol
will be either a or b. However, that is not true for event stream processing. See that in
the above example the events with timestamps 2 and 5 match both a and b; we call
such input symbols that match multiple symbols in the pattern as ambiguous events.

Another challenging aspect of event stream processing is the use of negation in
specifying a pattern query. In [12] an example pattern query that is discussed is (shelf,
!counter, exit) that signals potential shoplifting. The above pattern is looking for items
found at a shelf and later at the exit without going through a counter in between. No-
tice the negation specifies that the negated sub-pattern does not occur in between the
two other sub-patterns. Processing such negated patterns efficiently is a significant
challenge in event stream processing. Also existing works such as [12] do not define
the semantics of patterns such as (a, !(!b, c), d) with nested negation.

There is some preliminary work in handling ambiguous events and patterns with
negation in existing works such as SASE [12]. Here, the authors construct non-
deterministic finite state automata for a pattern query; non-deterministic automata can
handle ambiguous events. On the other hand, construction of deterministic finite state
automaton to handle ambiguous events is non-trivial, yet can yield significant perfor-
mance improvement. In SASE, simple negations are handled using joins outside the
automaton: a pattern query is split into multiple positive and negative sub-patterns
and later joined to determine the non-occurrence of the negative sub-patterns. For
example, the pattern (shelf, !counter, exit) is split into a (shelf, exit) pattern, and a
counter pattern. Events that match these patterns are joined to ensure counter did not
occur between shelf and exit patterns. However, it might be more efficient if we could
combine negated patterns and positive patterns into a single automaton.

In our work, we first develop a formal framework that defines the semantics of
patterns, including negation. Using our framework we construct a non-deterministic
finite state automaton for patterns, even with complex nested negation. We then
describe how the non-deterministic automaton can be converted to a deterministic
automaton, even in the presence of ambiguous events.

The contributions of this work include the following

(a) We develop a formal framework that defines the semantics of pattern queries
(regular expressions extended with negation); we construct non-deterministic
automaton for a pattern query, even if it has complex nested negation.

(b) We construct a deterministic automaton from the non-deterministic automa-
ton, even when we have ambiguous events in the input stream.

 Efficient Event Stream Processing: Handling Ambiguous Events and Patterns 417

(c) We describe how an event processing system can utilize our results and
search a richer space of execution plans for determining an efficient execu-
tion plan to be used for pattern matching.

(d) We perform experimental studies where we consider different factors such as
length of the pattern, number of events in the event stream. We note that our
approach has significant performance benefits over alternative approaches.

Outline: The outline for the rest of the paper is as follows. In Section 2, define
our problem and our assumptions. In Section 3, we define the semantics of pattern
queries, and describe how to construct a non-deterministic automaton for a query,
detailing how negation is handled. In Section 4, we describe how to construct a de-
terministic automaton, examining in detail how to handle ambiguous events.
Our experimental results are described in Section 5. Related work is discussed in
Section 6, and conclusions and future work are outlined in Section 7.

2 Background

In this section, we define the event stream processing problem, and our assumptions
in this paper. We assume that the reader is familiar with deterministic finite state
automaton (DFA) and non-deterministic finite state automaton (NFA) [7].

Event Stream: The event stream consists of a time ordered sequence of events. We
assume that the events in the input event stream are time ordered. There has been
some work on handling out-of-order events [8].

Pattern Query: Different languages have been studied for specifying queries over
event streams. In [5], the authors consider event specification in active databases;
query expressions are composed using operators such as and, not, relative. In [12], the
query consists of an EVENT clause specifying a pattern, a WHERE clause specifying
additional predicates, and a WITHIN clause specifying window constraints. In [1], the
authors extend the WHERE clause in [12] to include specification of event selection
strategy such as contiguity, skip till next match, skip till any match. In [4], the authors
use three constructs to specify patterns: FILTER selects events in the input stream that
satisfy specified predicates; NEXT joins two streams to select pairs of events, the
event in the second stream comes after the event in the first stream; FOLD iterates
multiple times over events till a terminating condition is satisfied, and then an aggre-
gation is performed on the set of events involved in the iteration. In [9], the authors
use a SQL-like language with a CLUSTER clause to specify grouping (called equiva-
lence test in [12]), and a SEQUENCE clause to specify a pattern. In [3], the authors
use operators such as SEQUENCE, UNLESS, NOT, CANCEL-WHEN etc.

The pattern language that we use in this paper is similar to one used in SASE [12].
Our pattern query consists of events with predicates combined using regular expres-
sion operators such as , denoting sequence; + denoting choice or union; * denoting
Kleene-*. We also have a negation operator ! denoting the non-occurrence of a
pattern. However, equivalence tests as in SASE and window constraints are not con-
sidered in this work, as that is not our focus in this paper. It is possible to extend our
work to include these features as well. For ease of understanding, while specifying a
pattern, we will often specify only the expression in the EVENT clause in SASE; the

418 M. Mani

predicates corresponding to each symbol are specified only when needed (these predi-
cates are specified in the WHERE clause in SASE).

Let us look at some example pattern queries. A pattern query that we examined in
Section 1 is (a, b). The symbol a corresponds to events with price > 100; b corres-
ponds to events with vol > 100. In SASE, this query would be specified as

EVENT SEQ(event a, event b)
WHERE a.price > 100 AND b.vol > 100

The set of symbols used in the pattern query is said to be the alphabet of the pattern
query. In our above example pattern query, the alphabet = {a, b}. Note that a symbol
in the alphabet is associated with a predicate, which is different from what is typically
studied for regular expression patterns [7]. We can therefore have events in the
input stream that are not in the alphabet of the query; in other words, we can have
an input event that is neither a nor b (an event with price <= 100 and vol <= 100).
Similarly we can have input events that are both a and b (an event with price > 100
and vol > 100). We call the latter as ambiguous events.

To summarize, a pattern query is specified as an expression over symbols using the
regular expression operators: , denoting sequence; + denoting union or choice; * de-
noting Kleene-*; we also have ! denoting negation. The semantics of pattern queries
are discussed in detail in Section 3.

3 Constructing NFA for Pattern Queries with Negation

In this section, we will define semantics of pattern queries, and explain how to con-
struct a non-deterministic finite state automaton (NFA) for any pattern query, even if
it includes negation. Recall from [7] that a NFA is a 5 tuple: , , , , ,
where denotes set of states, denotes the alphabet, ∈ is the start state, ⊆
is the set of final states, and δ: Q denotes the set of transitions,
and denotes the power set of . As the automaton is non-deterministic, we can
transition to multiple states from a state on seeing a symbol.

Consider the pattern: a, that matches all events of type a in the input stream. When
constructing an automaton for any pattern, we need to consider the fact that events
that can appear in the input stream (the input alphabet) are not known during automa-
ton construction; therefore our automaton should handle events that are not of type a
as well. The automaton for the pattern a is shown in Fig. 1 (a); this happens to be a
DFA. An event matches the symbol a if it satisfies the predicate associated with a; an
event matches the symbol !a if it does not satisfy the predicate associated with a.

Now, the patterns can be composed using the same operators as used in regular
expressions [7] : , denoting sequence; + denoting choice or union; and * denoting
Kleene-*. The construction of NFA for these patterns can be done as it is done for
regular expressions [7]. For instance, one NFA for the pattern (a, b*, c + d) is shown
in Fig. 1 (b). Note that this NFA includes ɛ-transitions [7]. Converting this NFA into
a DFA, however, is quite different from how it is typically done [7], because of ambi-
guous events. For instance, suppose the automaton is in state 2, and we get an input
event that satisfies both b and c, (i.e., the event satisfies the predicate associated

 Efficient Event Stream

(a)

Fig. 1. (a) Automaton for the p
the transitions marked !a matc
NFA for the pattern (a, b*, c +

with b and the predicate a
only a single state. We will

In addition to the regular
gation (denoted by !). Cons
a, such that no b event ha
matches events with no prio
not really a sequence opera
(i.e., events of type a such t

First, let us see how to c
cording to our semantics,
input event satisfies p, all
semantics for !p is (Σ* – (p
event. See that (p, _, _*)
matched, and (Σ* – (p, _, _
stream, illustrating the even
pattern !(b, a). Note that th
according to our semantics
matched prior to the event.
been matched prior to the e

Input Event Stream: a
Events that match !b:
Events that match !(b,a):
 ((resp.) below an even

The automaton construction
ton, as in [7]. As !p is eq
(construction of DFA is de
the final and non-final state

Now let us examine a pa
our semantics, this pattern m
been matched prior to the e
pattern (!b, a). See that an
and a. Therefore the sema
events that match !p and the

m Processing: Handling Ambiguous Events and Patterns

(b)

pattern a. The transitions marked a match input events of typ
ch all other input events. 1 is the start state; 2 is the final state
+ d). Note that this is just one of the many possible NFAs.

associated with c), then our DFA should still transition
discuss construction of a DFA in Section 4.

r expression operators, event patterns may also include
sider the pattern (!b, a): this pattern matches events of t
s occurred before the a. There are two points to note
or b event in the event stream; in the pattern (!b, a), the
ator; rather we are looking for a events that also satisfy
that no b has occurred prior in the event stream).
onstruct automaton for !p, where p can be any pattern. A
!p matches all events till p has been satisfied; once
future events in the input do not satisfy !p. Therefore

(p, _, _*)), where _ represents wild card and matches
matches all events that occur after pattern p has b

_*)) is its complement. Below, we give an example ev
nts that match the pattern !b, and the events that match
e first occurrence of b still matches the pattern !b, beca
s, the pattern !b matches events such that b has not b
. Similarly, !(b, a) matches events such that (b, a) has
vent.

a a c d a c b a c b d a c

nt means the event matches (does not match) the pattern)

n for !p requires construction of the complement autom
quivalent to (Σ* – (p, _, _*)), first we construct a D
etailed in Section 4) for (p, _, _*) and then we intercha
es. The automaton for !b is shown in Fig. 2 (a).
attern such as (!p, a), where p can be any pattern. As
matches events that match a, such that the pattern p has
event. The example below illustrates events that match

event matches the pattern (!b, a) if the event matches
antics for (!p, a) is !p a (that is the intersection of
e events that match a).

419

pe a;
. (b)

n to

ne-
type
: !b
 , is
y !b

Ac-
any
the
any

been
vent

the
ause
been

not

)

ma-
DFA
ange

per
not
the

s !b
the

420 M. Mani

(a)

Fig. 2. (a) Automaton (determi
pattern, till an event of type b
stream matches the pattern. (b
is the intersection of the autom
alphabet; for example, the sym

Input Event Stream: a
Events that match !b:
Events that match a:
Events that match !b, a:

The automaton for the patte
automaton for !p (as above
tion automaton of !p and a

NFA intersect (NFA A
/* intersect NFA A1

Let ,

1. Construct alphabe
(.), where
symbol can satisf
compatible;

2. Construct set of sta∈ . Similarly
3. Define set of trans

(∈ and
(.), ∈ , ∈), if we ha

 on seeing to
4. Return the automa

Let us illustrate the abov
b is events with price > 1
shown in Fig. 2 (a); the au
automaton (automaton for t
the alphabet for the interse
{b, !b}, the alphabet for the
tion automaton is {ab, a!b,
(vol > 100). There is a tran
ton for !b and state 1 in the

(b)

inistic) for the pattern !b. All events in the input stream match
b appears in the input stream, after which no event in the in

b) Automaton (deterministic) for the pattern (!b, a). Note that
mata for the patterns !b and a. During intersection, we combine
mbol !ab matches events that do not match a and also match b.

a a c d a c b a c b d a c

ern (!p, a) is constructed as follows. We first construct
), and the automaton for a. We then construct the inters
as given below.

A1, NFA A2)
and A2, and return the intersection automaton. , , , , , , , , . */

et . consisting of all “compatible” alphabet symb∈ , and ∈ . and are compatible if an in
fy both and (e.g., , and ! are

, and ! are compatible and . = !).
ates as in [7]: (,) ∈ , if ∈
y construct set of states , and state .
sitions as follows: there is a transition (,) ∈∈) on seeing input symbol ∈ . (where ∈) to (,) ∈ (where ∈
ave transitions from on seeing to in , and fr
o in .
aton: (, . , , ,

ve algorithm with the example of the pattern (!b, a), wh
00; a is events with vol > 100. The automaton for !b

utomaton for a is as shown in Fig. 1 (a). The intersect
the pattern !b, a) is shown in Fig. 2 (b). Step 1 constru

ection automaton; the alphabet for the automaton for !b
e automaton for a is {a, !a}. The alphabet for the inters
, !ab, !a!b}; a!b represents events with !(price > 100)
sition from state 1 (corresponding to state 1 in the autom
automaton for a) to state 2 (corresponding to state 1 in

h the
nput
this

e the

the
sec-

bols
nput

not

and

 is

and
rom

here
b is
tion
ucts
b is
sec-
and
ma-
the

 Efficient Event Stream

automaton for !b and state
cause there is a transition in
and there is a transition in th
state 2 in the intersection a
the automaton for !b, and st

The complete algorithm

NFA constructNFA (pa
/* Return NFA corres

1. Scan p and modify
2. Use the template g
3. Use the templates

p1+ p2 (denoting u
4. For pattern !p, con
5. For pattern (!p AN

for x, then construc
6. Return the final NF

4 Constructing DFA

In Section 3, we examined
we will consider how to co
the NFA, and also examine

(a)

Fig. 3. (a) NFA for the pattern
we can transition to state 1 and
any state, on seeing an event, t

Consider the example p

price > 100, and b is eve
in Section 3 is shown in Fi
tion 1. The events that matc
how pattern matching can b
from state 1; event with tim
ue to be in state 1. The eve
transition to state 2. The e
(!(vol > 100)); we therefor
matches !a (!(price > 100))

m Processing: Handling Ambiguous Events and Patterns

 2 in the automaton for a) on seeing the symbol a!b,
n the automaton for !b from state 1 to state 1 on seeing
he automaton for a from state 1 to state 2 on seeing a. A

automaton is a final state because state 1 is a final state
tate 2 is a final state in the automaton for a.
for construction of NFA for a pattern query is given bel

attern p)
sponding to the pattern p */

y all (!p, x) with (!p AND x)
given in Fig. 1 (a) to construct NFA for any symbol x

as in [7] to construct NFA for p1, p2 (denoting sequen
union), and p* (denoting Kleene-*)
nstruct the automaton for (Σ* – (p, _, _*))
ND x), if A1 is the automaton for !p and A2 is the automa
ct intersect(A1, A2).
FA obtained for the entire pattern p.

A for Pattern Queries and Ambiguous Events

d how to construct a NFA for a given pattern query. N
onstruct a deterministic finite state automaton (DFA) fr
how the optimizer can choose a good execution plan.

(b)

n (a, b). See that from state 2, on seeing an event that matches
d state 3. (b) DFA for the pattern (a, b) after minimization. F
there is exactly one transition defined.

pattern of (a, b) from Section 1 where a is events w
ents with volume > 100. An NFA obtained as descri
g. 3 (a). Consider the input event stream described in S

ch the pattern are events with timestamp 4 and 5. Let us
be performed using the NFA shown in Fig. 3 (a). We s

mestamp 1 matches !a (!(price > 100)); therefore we con
ent with timestamp 2 matches a (price > 100), therefore
event with timestamp 3 matches a (price > 100), and
re continue to be in state 2. The event with timestam
), and b (vol > 100). We can therefore transition to the

421

be-
g !b,
Also
e in

low

ce),

aton

s

ow,
rom

!ab,
From

with
ibed
Sec-
see

start
ntin-
e we
d !b

mp 4
e set

422 M. Mani

of states {1, 3}; 3 is a final state, hence this event satisfies the pattern. The event with
timestamp 5 matches a (price > 100), and b (vol > 100). From state 1, we transition to
state 2, and from state 3, we transition to state 3. Therefore the set of states after this
event is {2, 3}; 3 is a final state, hence this event satisfies the pattern.

While we can execute the NFA, it would be more efficient to execute a DFA,
which ensures that after any event, the automaton will transition to only one state
(rather than a set of states as in an NFA). We confirm the significant performance
benefits in our experimental study. However, the construction of DFA is especially
hard because of ambiguous events; in the above example, we have an input event that
matches the symbols, !a and b (event with timestamp 4).

For construction of DFA, we first modify the alphabet of the NFA to consist of all
combinations of input symbols; thus we handle ambiguous events. For the NFA in
Fig. 3 (a), the alphabet is modified to have four symbols: ab (events with price > 100
and vol > 100), a!b (price > 100 and !(vol > 100)), !ab (!(price > 100) and vol > 100),
and !a!b (!(price > 100) and !(vol > 100)). The transitions are rewritten based on these
symbols; for instance, the transition from state 1 to state 2 on symbol a is rewritten as
two transitions: from state 1 to state 2 on symbol ab; from state 1 to state 2 on symbol
a!b. After this modification of the alphabet, the construction of DFA is as described in
[7]. Note that the number of states in the DFA is at most (2n - 1), where n is the num-
ber of states in the NFA (just as in [7]); however, the number of alphabet symbols in
the DFA is at most 2m, where m is the number of alphabet symbols in the NFA.

The DFA constructed from the NFA of Fig. 3 (a) is shown in Fig. 3 (b). We have
performed minimization of the automaton (as described in [7]) and also combined
symbols – for instance, if there are two transitions from state 1 to state 2 on symbols
ab and a!b, we replace the two transitions with one transition from state 1 to state 2
on symbol a. Let us examine the execution of this DFA on the input event stream
given above. We start from state 1; the event with timestamp 1 matches !a, hence we
continue to be in state 1; the event with timestamp 2 matches a, hence we transition to
state 2; the event with timestamp 3 matches !b, hence we continue to be in state 2; the
event with timestamp 4 matches b, hence we transition to state 3 (3 is a final state and
this event matches the pattern); the event with timestamp 5 matches b, hence we con-
tinue to be in state 3 (3 is a final state and this event matches the pattern). Note that at
any point of time, the DFA transitions to at most one state.

Choosing a Good Execution Plan: For any query, there are multiple execution plans,
and the optimizer chooses a “good” plan. This decision could be based on heuristics,
on cost-based optimization or any alternative optimization strategy. For XML stream
processing, the choice of plans and cost-based optimization is studied in the Raindrop
project [10]. In SASE [12], the authors consider different optimization strategies. A
pattern query can specify groupings on one or more attribute values, such groupings
are called equivalence tests in [12]. The authors consider partitioning the event stream
into groups based on equivalence tests, consider performing equivalence tests before
or after pattern match, and consider pushing window constraints into pattern match.

In this work, we consider only pattern queries, and ignore other operators, such as
selection, aggregation, join, window operations, transformations etc. Even for simple
pattern queries there are multiple execution plans. Consider the pattern (a, b); in Sec-
tion 3, we constructed NFA for the pattern (a, b), and in Section 4, we constructed
DFA for this pattern. Both of these are valid execution plans. A third execution plan is

 Efficient Event Stream Processing: Handling Ambiguous Events and Patterns 423

that we divide it into two sub-patterns: a sub-pattern returns events that match a, and
b sub-pattern returns events that match b. The events returned from these two sub-
patterns (using automata) can then be joined based on ordering (or timestamps) to find
b events that occur after a events. In [12], pattern (a, !b, c), is executed by splitting it
into two sub-patterns: (a, c) pattern, and b pattern. The results from these two
sub-patterns are joined to check that there are no b events between a and c events. In
Section 3 and in Section 4, we described how to construct a single automaton even for
patterns with negation; this forms another execution plan.

5 Performance Evaluation

We compare different execution plans: using a single DFA/NFA for a pattern; split-
ting a pattern into multiple sub-patterns, finding sub-pattern matches using DFA/NFA
and joining results of different sub-patterns (as in SASE [12]). We study various
query patterns, and various input stream sizes. All experiments are conducted on a
Dell Intel Dual-core 2.2GHZ computer with 4GB RAM running Windows 7.

We implemented the following operators: an input operator for reading events in
the input stream (our input stream is a file) and writing them to a queue; a DFA (and a
NFA) operator for reading events from an input queue, performing pattern match
using a DFA (or a NFA) and writing the output to an output queue; a join operator
which combines events from multiple input queues based on specified predicates and
writes the output to an output queue; and an output operator that reads events from a
queue, and writes them to an output stream (also a file). Our code is written in Java
1.6, where each operator in the query plan forms a separate thread. If the output of an
operator op1 serves as the input of another operator op2, then the output queue of op1
is shared with op2; java monitors ensure correct implementation of queue sharing.

We implemented our own DFA and NFA construction. At run-time the state/(s) to
transition to on seeing an input event is determined by a hash-lookup for both DFA
and NFA. We implemented our own input stream generator; our test input streams are
ordered and consist of only three event types, a, b, c, which are randomly generated
using a uniform distribution. We consider different query patterns, for which we
measure the performance of the different plans for different input sizes, ranging from
200,000 events to 1,000,000 events. In our experiments, we consider only the plan
execution time and we do not measure the time to compile the query into the execu-
tion plan (we do not consider automaton construction time also).

Our first set of experiments considers the effect of the length of the query pattern
without negation, and we compare two different plans: DFA and NFA. SASE [12]
does not split a query pattern if it has no negation; therefore the NFA mimics SASE.
We consider five different query patterns: (a,b), (a, b, c), (a, b, c, a), (a, b, c, a, b), (a,
b, c, a, b, c). The comparison is shown in Fig. 4. See that the performance of DFA
does not depend on the size of the pattern; this is because irrespective of the pattern,
the DFA performs a hash look up to determine the next state for every event, and
checks whether the resulting state is a final state. The performance of the NFA can
vary, because the number of states after every event could be different for different
patterns; therefore the number of hash lookups can vary.

424 M. Mani

Fig. 4. DFA performs significantly better than NFA for different patterns. Also the performance
of the DFA does not depend on the pattern, and depends only on the number of events.

Fig. 5. Plans without joins perform much better than plans with joins. The best performance is
for the plan with a single DFA.

Our next set of experiments compares the performance of using a single automaton

for pattern match against using multiple automata for various sub-patterns and then
joining the results from the sub-patterns (as in SASE [12]). We consider a negated
pattern (a, !b, c), and we compare six execution plans: (1) 3 NFAs corresponding to a,
b and c, and then performing one join (2) 3 DFAs corresponding to a, b and c, and
then performing one join (3) 1 NFA but with 2 dummy operators and a dummy join
operator (4) 1 DFA but with 2 dummy operators and a dummy join operator (5) 1
NFA (6) 1 DFA. Note that the plans for options (3) and (4) have the same number of
threads (six threads) as for options (1) and (2). However, plans (5) and (6) have only
three threads (1 input operator, 1 automaton operator and 1 output operator). Options
(3) and (4) are considered to negate the overhead of number of threads inherent in
splitting a pattern into multiple sub-patterns. The performance of the different plans is
shown in Fig. 5. The plans with joins perform significantly worse than plans without
joins (even if the plans have the same number of threads using dummy operators).

0

500

1000

1500

2000

2500

3000

2 4 6 8 10

tim
e

(m
s)

Number of Events (in 100,000s)

(a,b)-DET

(a,b)-ND

(a,b,c)-DET

(a,b,c)-ND

(a,b,c,a)-DET

(a,b,c,a)-ND

(a,b,c,a,b)-DET

(a,b,c,a,b)-ND

(a,b,c,a,b,c)-DET

0

5000

10000

15000

20000

25000

2 4 6 8 10

tim
e

(m
s)

Number of Events (in 100,000s)

DFA

NFA

DFA+Dummy

NFA+Dummy

3DFAs+Join

3NFAs+Join

 Efficient Event Stream Processing: Handling Ambiguous Events and Patterns 425

6 Related Work

There has been quite a lot of interest in event stream processing in the last several
years. One of the first to study pattern specification for events is [5]; the authors in-
vestigate the context of active databases, and come up with a rich array of operators
for event expressions. Using their operators, shop-lifting query can be specified as
(relative (shelf, !before(counter)) AND exit); this is specified in our language and in
SASE [12] as (shelf, !counter, exit). In [5], the authors also consider construction of
an automaton for a pattern query; however ambiguous events are not considered.
Predicates are considered to a limited extent as join predicates (similar to equivalence
tests in [12]), and are handled by partitioning the input stream into different groups.

In Cayuga [4], the authors identify that the transitions in the automaton should be
defined based on predicates, and construct a NFA that can handle ambiguous events;
however, ambiguous events are not explicitly identified. Negation is also not consi-
dered in Cayuga. Because the transitions in the automaton are based on predicates,
Cayuga also investigates indexing schemes for efficient transition lookup.

In SASE [12], just like in [4], the authors define transitions in the automaton based
on predicates, and construct a NFA. Here also, the authors do not identify the problem
of ambiguous events, which are handled automatically by the NFA. The authors do
define simple negation, but do not consider complex nested negation. A pattern query
is split into multiple negated parts and non-negated parts, and the results of the differ-
ent sub-patterns are joined. In [1], the authors extend [12] with different event selec-
tion strategies, such as contiguity, skip till next match, skip till any match etc.

In [9], the authors consider how to perform efficient pattern match over event
streams by adapting KMP algorithm used for string matching, so that the symbols are
based on predicates; this reduces the amount of backtracking required during pattern
match. The techniques in [9] are orthogonal to our work, and our work can be ex-
tended to incorporate these pattern matching techniques as well. In [11], the authors
study an orthogonal problem of event summarization, using hidden Markov models.

7 Conclusions and Future Work

In this paper, we studied efficient event stream processing. We identified two key
challenges for event stream processing: ambiguous events, where an input event can
match multiple symbols in the pattern, and negation used in pattern queries to specify
non-occurrence of a pattern. We defined the semantics for pattern queries, including
negation. Using our framework, we construct an NFA for pattern queries even with
complex nested negation. This is different from existing work, where only simple
negation is handled by splitting a pattern into multiple sub-patterns for the negated
and the non-negated parts, and then joins are performed to combine the results of the
different sub-patterns. Our approach enables us to construct a single automaton, and
we do not need joins to obtain the results for a pattern query. Also existing work
handle ambiguous events by using NFA; we investigate how to build a DFA that can
handle ambiguous events. Experimental studies demonstrate the significant perfor-
mance gains from our approach.

426 M. Mani

There are still several research directions that we would like to investigate. First is
increasing the expressiveness of our pattern queries by including window constraints,
arbitrary predicates, and aggregation operators. Handling arbitrary predicates will
require us to extend our automaton with buffers, as investigated in SASE and Cayuga;
however, we would like to still use a DFA. Processing multiple pattern queries simul-
taneously over an input stream also appears to be a useful problem to tackle.

Acknowledgements. We would like to acknowledge the significant contributions of
Ms. Vinisha Lokesh, in the formulation of the research problem, and in conducting
experiments. We would also like to acknowledge the members of the database re-
search group at University of Michigan, Flint, for providing feedback on this work.
This work is partially supported by UMFlint RCAC grant.

References

1. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient Pattern Matching over
Event Streams. In: ACM SIGMOD International Conference on Management of Data,
Vancouver, Canada, pp. 147–160 (2008)

2. Babu, S., Widom, J.: Continuous Queries over Data Streams. SIGMOD Record 30(3),
109–120 (2001)

3. Barga, R.S., Goldstein, J., Ali, M., Hong, M.: Consistent Streaming Through Time: A
Vision for Event Stream Processing. In: 3rd Biennial Conference on Innovative Data Sys-
tems Research (CIDR), Asilomar, CA (2007)

4. Demers, A., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.: Cayuga: A
General Purpose Event Monitoring System. In: 3rd Biennial Conference on Innovative
Data Systems Research (CIDR), Asilomar, CA (2007)

5. Gehani, N.H., Jagadish, H.V., Shmueli, O.: Composite Event Specification in Active Da-
tabases: Model & Implementation. In: 18th International Conference on Very Large Data
Bases (VLDB), Vancouver, Canada, pp. 327–338 (1992)

6. Green, T.J., Gupta, A., Miklau, G., Onizuka, M., Suciu, D.: Processing XML Streams with
Deterministic Automata and Stream Indexes. ACM Transactions on Database
Systems 29(4), 752–788 (2004)

7. Hopcroft, J., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Prentice-Hall, Englewood Cliffs (2006)

8. Li, M., Liu, M., Ding, L., Rundensteiner, E., Mani, M.: Event Stream Processing with
Out-of-Order Data Arrival. In: 1st International Workshop on Distributed Event
Processing, Systems and Applications (DEPSA), Toronto, Canada (2007)

9. Sadri, R., Zaniolo, C., Zarkesh, A., Adibi, J.: Expressing and Optimizing Sequence Que-
ries in Database Systems. ACM Transactions on Database Systems 29(2), 282–318 (2004)

10. Su, H., Rundensteiner, E.A., Mani, M.: Automaton In or Out: Run-time Plan Optimization
for XML Stream Processing. In: International Workshop on Scalable Stream Processing
Systems, Nantes, France, pp. 38–47 (2008)

11. Wang, P., Wang, H., Liu, M., Wang, W.: An Algorithmic Approach to Event Summariza-
tion. In: ACM SIGMOD International Conference on Management of Data, Indianapolis,
IN, pp. 183–194 (2010)

12. Wu, E., Diao, Y., Rizvi, S.: High-Performance Complex Event Processing over Streams.
In: ACM SIGMOD International Conference on Management of Data, Chicago, IL, pp.
407–418 (2006)

Effective Keyword Search for Candidate
Fragments of XML Documents

Yanlong Wen, Haiwei Zhang, Ying Zhang, Lu Zhang, Lei Xu, and Xiaojie Yuan

College of Information Technical Science, Nankai University, China
{wenyanlong,zhangying,zhanglu}@dbis.nankai.edu.cn,

{zhhaiwei,lxu,yuanxj}@nankai.edu.cn

Abstract. In this paper, we focus on the problem of effectively and
efficiently answering XML keyword search. We first show the weakness
of existing SLCA (Smallest Lowest Common Ancestor) based solutions,
and then we propose the concept of Candidate Fragment. A Candidate
Fragment is a meaningful sub tree in the XML document tree, which has
the appropriate granularity. To efficiently compute Candidate Fragments
as the answers of XML keyword search, we design Node Match Algorithm
and Path Match algorithm. Finally, we conduct extensive experiments to
show that our approach is both effective and efficient.

1 Introduction

XML has become the de facto standard for data representation and data ex-
change on the internet. With the rapid spread use of XML, it is one of the focus
research problems among database research community and IR research com-
munity that how to effectively and efficiently get meaningful information from
the XML data.

Keyword search is the most popular method to query information on the web
search engines. Users can get their desired information by submitting simple
keywords, and they need not to learn complex query syntax, such as XPath
and XQuery, and understand the behind data schema. Keyword search on XML
documents is different from traditional web information retrieval. The basic idea
of XML keyword search system is to locate the most relevant XML fragments to
answer each keyword query, while search engines usually return the whole web
pages as the results to the user. It is still an open problem that which is the best
semantics unit to answer XML keyword query.

When users submit keywords to search XML documents, they often hope to
get compact and informative fragments which contain enough relevant informa-
tion. So if we can properly partition the XML document tree into some user
concerned, fine-grained, meaningful fragments, we can answer keyword query
effectively and efficiently.

In this paper, we propose a novel method, which is different from SLCA-based
proposals, to answer XML keyword query. We first identify Candidate Nodes
(CANs) according to statistical information of XML documents, then construct
each Candidate Fragment (CAF) from its center Candidate Node, which is the

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 427–439, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

428 Y. Wen et al.

Fig. 1. Sample XML document with region codes and query examples

minimal semantic unit to answer keyword query in our approach. We create ef-
fective inverted index of all Candidate Fragments. When user submits a keyword
query, we use Node Match Algorithm or Path Match Algorithm to return frag-
ments to user. CAF contains more meaningful and fine-grained information than
SLCA, and can solve the problems that may be caused by SLCA semantics.

Our contributions in this paper can be summarized as follows:

– We formally define Candidate Node (CAN) and Candidate Fragment (CAF),
and propose a simple method to partition the XML document into CAFs
without schema supporting.

– We propose Node Match Algorithm and Path Match Algorithm to answer
XML keyword query efficiently.

– We conduct an extensive performance study in real datasets. The results show
that our solution achieves high efficiency and effectiveness, and outperforms
the SLCA proposal in elapsed time as well as query intention prediction.

The rest of this paper is organized as follows: We review the related work about
XML keyword search in Section 2. Section 3 first presents the XML data model,
then formally defines the concepts of CAN and CAF. We design Node Match
algorithm and Path Match algorithm to efficiently answer keyword query in
Section 4. In Section 5, we present our experimental evaluation to show the
effectiveness and efficiency of our method. Finally in section 6, we conclude this
paper and show our future work.

2 Related Work

Currently, most XML keyword search methods are based on the concept of
LCA. [3] employs the ELCA semantics, and designs DIL (Dewey Inverted List)
and RDIL (Ranked Dewey Inverted List) algorithms to efficiently answer XML
keyword queries. [3] ranks results by generalizing the PageRank algorithm of
Google. [1] employs the SLCA semantics, and designs Scan Eager (SE) and

Effective Keyword Search for Candidate Fragments of XML Documents 429

Indexed Lookup Eager (ILE) algorithms, which are two state-of-art algorithms
to compute SLCA. ILE algorithm is an effective algorithm when the keyword
search involves at least one low frequency keyword, while SE algorithm performs
better when the frequencies of keywords in the query do not vary significantly.
It is obvious that LCA is the super set of ELCA, and ELCA is the super set
of SLCA. [4] use the homogenous concept to define Valuable SLCA (VLCA)
semantics which aims to improve the search effectiveness. However, in some
situations, the homogenous concept is not appropriate to filter the LCA nodes,
and can not guarantee the meaningfulness. XSeek[5] uses the inference rules to
identify node type in the XML data tree and generates two types of nodes: return
nodes that can be inferred explicitly by analyzing keyword match patterns, and
return nodes that can be inferred implicitly by considering both keyword match
patterns and the XML data structure. [6-7] designed multi-way based and hash
based algorithms to fasten SLCA computation.

While SLCA semantics or its variants may cause the following problems:

1. SLCA semantics may return non-relevant result.
Example 1. Consider that user submits query Q4 in Fig. 1(b) to search
papers about IR written by Tom. The returned result set by SLCA is
{session(7, 2, 18)}. But as we can see in Fig 1(a), Tom is not an author of
paper(18, 3, 7), so session(7, 2, 18) is a non-relevant result. The same prob-
lem remains when using SLCA to answer query Q5 in Fig. 1(b).

2. SLCA semantics may miss relevant results.
Example 2. User wants to query Jim’s papers about XML and submit
query Q3 in Fig. 1(b). SLCA will return set {paper(8, 3, 7), paper(34, 3, 7)}.
But paper(18, 3, 7) is one of the papers in the session about XML, and it also
meets the query intention. SLCA semantics fails to locate paper(18, 3, 7), and
misses a relevant result.

3. SLCA semantics may not get answers with appropriate granularity.
Example 3. When user submits query Q6 in Fig. 1(b) to search papers about
XML published in SIGMOD proceeding in 2008, SLCA semantics will
return {conf(2, 1, 23)}, whose size is larger than preferred answers and con-
tains much irrelevant information. When user submits query Q2, SLCA se-
mantics will return {session(31, 2, 10)}, meanwhile lose relevant information
about paper’s publication VLDB 2009.

4. SLCA semantics may not answer single keyword query effectively.
Example 4. When user wants to get Jim’s paper by submitting query Q1 in
Fig. 1(b), SLCA will return set {Jim(15, 6, 0), Jim(25, 6, 0), Jim(41, 6, 0)}.
Each result in the result set only has one name of author, which is appar-
ently not a complete answer. Thus SLCA semantics fails to deal with simple
keyword query. The same problem remains when the search keywords occur
in the same node of XML document.

In addition, there are some non-SLCA solutions. Query semantics that simi-
lar to our proposal are Meaningful Information Unit(MIU)[8] and Meaningful
Information Segmentation(MIS)[9].

430 Y. Wen et al.

[8] first partitions XML schema graph into schema Minimal Information Units
(sMIUs) through removing all the edges of high frequency and then removing
all the isolated nodes. Then [8] partition XML data graph into data Minimal
Information Units (dMIUs) according to the acquired sMIUs. MIU semantics
requires the existence of a schema file, causes information loss while removing
isolated nodes, and its size may be too large or too small when the tunable
parameter is not well chosen.

[9] does a width-first traversal of the XML document tree to identify nodes
with the same label, then partition an XML document into a series of meaningful
and self-containing segments, called Minimal Information Segments(MISs), and
return MIS-subtrees which consist of MISs that are logically connected by the
keywords. As the authors have mentioned in [9], in practice the MIS may be
very large and contain non-relevant information.

In this paper, we propose a novel semantics called Candidate Fragment (CAF)
to answer XML keyword queries. CAF semantics uses statistics information of
XML elements, and keeps all information of original document. Thus CAF does
not need XML schema support.

3 Query Semantics

In this section, we first introduce the XML data model, then formally define
the concepts of Candidate Node (CAN) and Candidate Fragment (CAF), and
illustrate how to effectively answer keyword queries with CAFs.

3.1 XML Data Model

In this paper, an XML document is modeled as a labeled, directed tree, a keyword
query is a set of keywords.

Definition 1 (Keyword Query). A keyword query is a set of different key-
words, denoted as Q = {wi|i = 1, . . . , k}, wi is a keyword.

Definition 2 (XML Document Tree). An XML document can be denoted
by T=(V , E, tag(v), pre(v), level(v), size(v), path(v), type(v), atn(v)).

– V is the set of nodes. We assign each node v with an unique region code
(prev, level, size) according to [10]. prev is the id of v when pre-traversing
the document tree, level is the level of node v and size is the number of v’s
descendants.

– E ⊆ V × V . E is the set of containment edges in the document tree.
– tag(v) is a function, returns the label of node v.
– pre(v) is a function, returns the id of v. If r is the root node of the document

tree, then prev(r) = 1.
– level(v) is a function, returns the level of v. If r is the root node of the

document tree, then level(r) = 0.
– size(v) is a function, returns the number of v’s descendants.

Effective Keyword Search for Candidate Fragments of XML Documents 431

– path(v) is a function, returns the id path from root r to node v. If node r is
the root node of the document tree, then path(r) = 1.

– type(v) returns the label path from root r to node v. If node r is the root
node of the document tree, then type(r) = tag(r).

– atn(v) returns the number of different attribute types of node v.

In this paper, we use the following inference rules, which are similar to [5] and
[13], to identify value node, attribute node in XML document. A node represents
a value if it is a leaf node. A node denotes an attribute if it has only one child,
which is a value node. A node denotes a group attribute if all its children denote
attributes with the same type.

Example 5. In Fig. 1(a), XML(10, 5, 0) is a value node, title(9, 1, 1) is an at-
tribute node. For node paper(8, 3, 7), its tag is paper, its id path is 1.2.7.8, its
type is bib.conf.session.paper, and its atn is 2 because its child title(9, 1, 1) is
an attribute node and authors(11, 4, 4) is a group attribute node.

3.2 CAF Semantics

When search XML documents, we prefer fragments with meaningful information
and appropriate granularity. Such fragments could be entities or their complex
descriptions in the real world, and are often described by multiple attributes.
In this paper, we have verified the above observations by analyzing many XML
data sets. We first formally give the concepts of Candidate Node and Candidate
Fragment.

Definition 3 (Candidate Node, CAN). let c be a XML tree node, C =
{v|v ∈ V ∧type(v) = type(c)}, c is a candidate node, iff, avg(atn(v)|v ∈ C) >= α
and avg(size(v)|v ∈ C) >= β. Here, α is the threshold of attribute type number
and β is the threshold of node size.

As we know in the real world, an entity is usually described by two or more
attributes, it means that α >= 2 and β >= 4 in most cases (because 2 attributes
of an entity will be denoted by 2 attribute nodes and 2 value nodes).

Table 1. Internal node types of XML document Tree

type avg(atn) avg(size)
1 bib 0 40
2 bib.conf 2 19
3 big.conf.cname 0 1
4 bib.conf.year 0 1
5 bib.conf.session 1 14
6 bib.conf.session.sname 0 1
7 bib.conf.session.paper 2 7
8 bib.conf.session.paper.title 0 1
9 bib.conf.session.paper.authors 1 4

10 bib.conf.session.paper.authors.author 0 1

432 Y. Wen et al.

Example 6. According to Definition 3, CAN should be chosen from non-leaf
nodes. In Fig. 1(a), there are ten internal node types in the XML document
tree. We show average attribute type number and average size of each type
in Table 1. Then we can identify nodes in the XML document tree with type
bib.conf or bib.conf.session.paper are CANs.

Definition 4 (Candidate Fragment, CAF). A Candidate Fragment is a
compact sub tree in XML tree, contains only one Candidate Node, and repre-
sents a meaningful entity or its complex attribute in the real world.

Given a CAN c, we can get its CAF by the following two steps.

– Step 1: ST (c) is the sub tree rooted with c. CAN c1, c2, . . . , cm are descendant
nodes of c. Node a1, a2, . . . , ak are child nodes of c and ancestor nodes of
c1, c2, . . . , cm. We can get sub tree ST ′(c) by removing the parent-child edges
between c and a1, a2, . . . , ak.

– Step 2: Get CAN c’s id-path path(c) = t1 ·t2 ·. . .·tlevel(c). If there exists CANs
among c’s ancestor nodes, let the lowest CAN’s prev be tp, else let p = 0. The
nodes in the sub path tp+1 · . . . · tlevel(c)−1 construct fragment PF . Connect
PF with ST ′(c) according to their ancestor-descendant relationship, then
we get CAF ST ′′(c).

Example 7. In Fig. 1(a), conf(2, 1, 23) has descendants paper(8, 3, 7) and
paper(18, 3, 7), which are CANs. Node session(7, 2, 18) is the child of
conf(2, 1, 23), and is the parent of paper(8, 3, 7) and paper(18, 3, 7). Remove
the edge between conf(2, 1, 23) and session(7, 2, 18). Path(conf(2, 1, 23)) is 1.2
and there is no CAN among conf(2, 1, 23)’s ancestors. Keep the fragment from
node with prev 1 to conf(2, 1, 23). And then connect it with conf(2, 1, 23)’s
remaining part to form a CAF, which is shown in Fig. 2(a).

Example 8. In Fig. 1(a), the descendants of the paper(8, 3, 7) are not CANs. So
we can ignore step 1 according to Definition 4. Path(paper(8, 3, 7)) is 1.2.7.8,
and its ancestor conf(2, 1, 23) is a CAN. Keep the fragment from node with
prev 7, and then connect it with paper(8, 3, 7) to form a CAF, which is shown
in Fig. 2(b).

Fig. 2. CAF sample

Effective Keyword Search for Candidate Fragments of XML Documents 433

Definition 5 (Fragment ID Path, FIP). Given node c, a1, a2, . . . , ak are
CANs among ancestor nodes of c. Then the Fragment ID Path of c is prev(a1) ·
prev(a2) · . . . · prev(ak) · prev(c).

Example 9. In Fig. 1(a), the FIP of paper(8, 3, 7) is 2.8, and the FIP of
conf(2, 1, 23) is 2.

Definition 6 (Keyword Match Result). Given CAN list CN , Fragment ID
Path list FP and Query Q. When there is only one type among CAN list or user
only decides to search CAFs with all keywords, the keyword match result is M =
{v|v ∈ CN, (∀wi ∈ Q)contains(v, wi)}. Otherwise, the keyword match result is
M = {fp|fp ∈ FP, (∀wi ∈ Q∃v ∈ fp)contains(v, wi)}. Here, contains(v, wi)
denotes that CAF, which center CAN is v, contains word wi.

Example 10. For Query Q={2008,SIGMOD,Jim,XML}, the keyword match
result is M = {2.8, 2.18}, when user allows keyword matches in different
fragments.

Algorithm 1. Node Match Algorithm
Input : Keyword Query Q = {k1, k2, . . . , km} and XML Document T
Output: CAN list R = {r1, r2, . . . , rt}, which matches all keywords

R = Φ;1

for i=1 to m do Si ← GetMatchNode(ki) ;2

Sort(S1, S2, . . . , Sm) ;3

for i=1 to S1.Length do4

found = 1, finish = 0 ;5

for j=2 to m do6

while Sj �= Φ ∧ Sj [1] < S1[i] do RemoveHead(Sj);7

if Sj �= Φ then8

if Sj [1] �= S1[i] then found=0,break;9

else10

found = 0,finish = 1,break;11

if found then R = R ∪ {S1[i]};12

if finish then break;13

4 Query Algorithms

In the pre-processing stage, when parsing an XML document, we compute av-
erage attribute numbers and average size of nodes for different node types. Ac-
cording to Definition 3, we can identify CANs and then form CAFs based on the
two step algorithm. We construct an inverted index for CAFs to fasten keyword
query. Each index item is a pair of keyword and prev. Here, keyword is a query
term and prev is the id of CAN. Match list of each keyword is ordered by id
of CAN.

434 Y. Wen et al.

Algorithm 2. Merge Match Algorithm
Input : CAN List S1, S2

Output: Match result list L = {r1, r2, . . . , rt}
L = Φ;1

while S1 �= Φ ∧ S2 �= Φ do2

if isSamePath(S1[1], S2[1]) then3

RemoveDescendants(S1, S1[1]);4

RemoveDescendants(S2, S2[1]);5

if S1[1] = S2[1] then6

L = L ∪ {S1[1]};7

RemoveHead(S1);8

RemoveHead(S2);9

else10

L = L ∪ {Max(S1[1], S2[1])};11

RemoveHead(SMax);12

else13

if topCN(S1[1]) > topCN(S2[1]) then14

while topCN(S1[1]) > topCN(S2[1]) do RemoveHead(S2);15

else16

while topCN(S2[1]) > topCN(S1[1]) do RemoveHead(S1);17

In this section, we will present Node Match algorithm and Path Match algo-
rithm. When there is only one type of CAN or different keyword is prohibited
by user at different fragments, Node Match algorithm can be used to answer
keyword search. Otherwise, Path Match Algorithm could take place.

4.1 Node Match Algorithm

Algorithm 1 is used to compute all CAFs that contains all keywords. As shown
in algorithm 1, we first initialize the result list to be empty in line 1. In line 2-3,
we scan inverted index to get matched CAN list, and sort nodes in each CAN
list by their ascendant prev order. For each node in S1, which has the minimal
length, we scan other list in line 6-11, remove nodes with smaller id than current
node in S1 in line 7. If each head node has the same prev with the current node
in S1, then add it into result list R in line 12. Then go to next loop.
Example 11. For Q3 = {Jim, XML} in Fig. 1 (b), the match list to Jim is
SJim = {8, 18, 34}, and the match list to XML is SXML = {8, 18, 34}. We will
return list {8, 18, 34} as the result with Algorithm 1.

4.2 Path Match Algorithm

We give the solution to compute all the Fragment ID Path list in Algorithm 3,
which matches all the keywords. Algorithm 2 deals with two keyword match list
S1 and S2, and return list L as the result. Algorithm 3 uses Algorithm 2 to cover
all the keywords, and return Fragment ID Path list as the answer.

Effective Keyword Search for Candidate Fragments of XML Documents 435

Algorithm 3. Path Match Algorithm
Input : Keyword Query Q = {k1, k2, . . . , km} and XML Document T
Output: Fragment ID Path list RP = {fp1, fp2, . . . , fpt}, which matches all

keywords

R = Φ;1

for i=1 to m do Si ← GetMatchNode(ki) ;2

Sort(S1, S2, . . . , Sm) ;3

R = S1;4

for i=2 to m do R = MergeMatch(R,Si);5

RP = Φ;6

for i=1 to R.Length do RP = RP ∪ GetFP (Ri);7

Algorithm 2 solves the two keyword query problem. We first initialize the
prev list L empty in line 1. Then in line 2-17, we traverse the two lists. When
the top elements of the two lists are on the same path of the XML document
tree, we remove their descendant nodes in line 4-5. If the top elements of the
two lists are the same element, we add it to the result list and remove it in line
8-9. Otherwise, we add the max one into the result list and remove it. If the top
elements of the two lists are not on the same path, remove the left one, then go
to next loop.

As shown in Algorithm 3, we first initialize the result list empty in line 1. In
line 2-3, we scan inverted index to get matched CAN list, and sort nodes in each
CAN list by their ascendant prev order. In line 4, We chose node list S1 as the
initial result list, which has the minimal length. Then we use Algorithm 2 to
recursively merger result in line 5. In line 6, we initialize Fragment ID Path list
RP empty. Then we get each Fragment ID Path fp in list R and add it into RP
list in line 7.
Example 12. For Q6 ={SIGMOD, 2008, XML} in Fig. 1(b), the match lists to
Jim, 2008, XML are SSIGMOD = {2}, S2008 = {2}, SXML = {8, 18, 34}. We will
return list {2.8, 2.18} as the result with Algorithm 3.

5 Experimental Evaluation

5.1 Experimental Setup

We use a laptop with Intel dual-core 2.0GHz CPU, 2G memory, 300 GB SATA
hard disk, and Windows XP Professional as the operating system. The compared
algorithm is ILE, which is an effective algorithm to answer SLCA. We implement
our Node Match Algorithm and Path Match Algorithm to answer CAF. All
algorithms are implemented using C sharp programming language.

5.2 Datasets and Keyword Queries

We use DBLP (130MB)[11], SIGMOD Record (500KB)[11] and Product Review
(14MB)[12] datasets in our experiments. The main characteristics of the datasets

436 Y. Wen et al.

Table 2. Statistics of datasets, ATN denotes attribute type number

Dataset Size (KB) Elem. # Depth Avg ATN Avg Size CAF # CAF %
DBLP 130726 3332130 6 0.85 5.14 328858 9.87

SIGMOD Record 468 11526 6 0.73 11.97 1571 13.63
Product Review 15170 427278 9 0.42 13.59 26526 6.21

is shown in Table 2. The 5th column shows average attribute type number of
Element nodes in XML document. The 6th column is the average size of Element
nodes in XML document. Number of CAFs identified by our methods is listed
in the 7th column. And the last column is the ratio of CAF number to Elements
number. From the statistics of each dataset, we can know that entities or their
complex descriptions (denoted by CAFs in our solution) in XML document are
usually a small proportion of the elements.

As we have mentioned in Section 3.2, an entity in the real world is usually
described by at least two different attributes. So in the following experiments,
we assume that each CAN should have at least two kinds of different attributes
and four descendants, i.e., α = 2 and β = 4.

In the following sub sections, we conduct both query effectiveness and query
efficiency experiments to compare CAF semantics with SLCA semantics. In the
experiment, we choose 6 different types of keyword querys to each dataset which
are named QDi to DBLP, QSi to SigmodRecord, and QPi to ProductReview,
the keywords and their frequencies can be found in Table 3.

Table 3. Keyword Queries

Query Keyword (Frequency)
QD1 Jim(872),Gray(680), author(716595)
QD2 Ullman(333), database(8584)
QD3 database(8584), information(20570)
QD4 book(1602), Ullman(333), database(8584)
QD5 Ricardo(417), information(20570), retrieval(4008)
QD6 Modern(192), information(20570), retrieval(4008)
QP1 digital(1377), camera(2175)
QP2 digital(1377), camera(2175), travel(11313)
QP3 sports(1554), outdoors(1660)
QP4 product(1409), name(1419), rating(1339), review(25136)
QP5 product(1409), review(25136)
QP6 product(1409), rating(1339), review(25136), user(28444)
QS1 data(180), base(22)
QS2 article(1505), database(348), title(1504)
QS3 issue(67), volume(67), article(1504), title(1504), author(3737)
QS4 Stephen(7), Database(348)
QS5 article(1505), Jim(28), transaction(30)
QS6 volume(67), 11(32), article(1505)

Effective Keyword Search for Candidate Fragments of XML Documents 437

5.3 Query Effectiveness

The query intention of each keyword query in Table 3 can be found in Table 4,
which is got by a user survey. Table 4 compares the user’s query intention and
suggestions of SLCA semantics and CAF semantics (Path Match Algorithm). As
shown in the results, SLCA returns incomplete results when answering some key-
word queries (e.g., QD1-QD3, QD5, QD6, QP1-QP5, QS1, etc), and returns ir-
relevant results when answering keyword queries like QS3-QS6, etc. It is because
the weakness of SLCA semantics itself, which we have discussed in Section 2.

Table 4. Effectiveness of user intention prediction

Query Intention SLCA result CAF result (Path Match)
QD1 article author article
QD2 book, inproceedings, ar-

ticle
title, book, inproceedings,
article

book, inproceedings, arti-
cle

QD3 phdthesis, book, article,
incollection, inproceed-
ings, proceedings

title, book, article, in-
collection, inproceedings,
proceedings

phdthesis, book, article,
incollection, inproceed-
ings, proceedings

QD4 book book book
QD5 article, book, incollec-

tion
title, article, book, incol-
lection

article, book, incollection

QD6 article, inproceedings,
book

title article, inproceedings,
book

QP1 product product, name, bestuses,
pros, pro, user, weblink

product,
<product,review>

QP2 product product, reviews, review,
bestuses

product

QP3 product product, reviews, review,
bestuses

<product, review>

QP4 product product, name, bestuses,
pros, pro, user, weblink

<product,review>

QP5 product product, review <product, review>

QP6 product product <product, review>

QS1 article title article
QS2 article article article
QS3 article issue <issue, article>
QS4 article article, articles article
QS5 article article, articles article
QS6 article issue <issue, article>

Note CAF semantics answers QP1, QP3-QP6 with <product, review>, and
QS3, QS6 with <issue, article>. It means that CAFs have Ancestor-Descendant
relationship, such answer should also be relevant to the user’s keyword query.
As shown in Table 4, CAF semantics can give the user preferred results in most
of cases.

438 Y. Wen et al.

5.4 Query Efficiency

Fig. 3 shows the running time of ILE, Path Match Algorithm and Node Match Al-
gorithm on different datasets and different queries with various term frequency.
The result shows that our method achieves better performance than ILE algo-
rithm, which is an efficient SLCA computation method.

Fig. 3. Running Time, PMA/NMA denotes Path/Node Math Algorithm

There are two main reasons that our Path/Node Match Algorithm can gain
better performance than SLCA’s ILE solution:

– Our Path/Node Match Algorithm mainly adopts simple list merge strategy,
while as mentioned in [1], ILE needs more computation for LCA solution,
left match, right match, etc.

– SLCA solution needs to scan an inverted list index over all the match nodes in
the XML document, while our CAF solution only scan a smaller proportion,
because we only index keyword and id of CAF instead of the whole XML
document’s nodes.

6 Conclusion

In this paper, we focus on the semantics and search algorithm of XML keyword
search. We analyze the main weakness of SLCA based semantics. Then we pro-
pose the CAF semantics to effectively answer a XML keyword query, and design
node match algorithm and path match algorithm to efficiently return CAFs to
users. Extensive experiments show that our method is significantly better than
the SLCA semantics on both effectiveness and efficiency. In the future, we will
consider IDREF in the XML document to deal with more CAF relation, design
effective ranking model to solve the TOP-K problem, and study how to display
the results to the users friendly.

Effective Keyword Search for Candidate Fragments of XML Documents 439

Acknowledgments. This research is supported by the grant from the China
863 High-Tech Program(No: 2009AA01Z152).

References

1. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest LCAs in XML
databases. In: SIGMOD, pp. 527–538 (2005)

2. Li, Y., Yu, C., Jagadish, H.V.: Enabling schema-free xquery with meaningful query
focus. VLDB J. 17(3), 72–84 (2008)

3. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRank: Ranked keyword
search over xml documents. In: SIGMOD, pp. 16–27 (2003)

4. Li, G., Feng, J., Wang, J., Zhou, L.: Efficient keyword search for valuable LCAs
over XML documents. In: CIKM, pp. 31–40 (2007)

5. Liu, Z., Chen, Y.: Identifying meaningful return information for XML keyword
search. In: SIGMOD, pp. 329–340 (2007)

6. Sun, C., Chan, C.Y., Goenka, A.K.: Multiway SLCA-based keyword search in XML
data. In: WWW, pp. 1043–1052 (2007)

7. Wang, W., Wang, X., Zhou, A.: Hash-search: An efficient SLCA-based keyword
search algorithm on XML documents. In: Zhou, X., Yokota, H., Deng, K., Liu, Q.
(eds.) DASFAA 2009. LNCS, vol. 5463, pp. 496–510. Springer, Heidelberg (2009)

8. Xu, J., Lu, J., Wang, W., Shi, B.: Effective keyword search in XML documents
based on MIU. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006.
LNCS, vol. 3882, pp. 702–716. Springer, Heidelberg (2006)

9. Li, J., Wang, J., Huang, M.: XKMis: Effective and Efficient Keyword Search in
XML Databases. In: IDEAS, pp. 121–130 (2009)

10. Boncz, P., Grust, T., Keulen, M.: Pathfinder: XQuery - the relational way. In:
VLDB, pp. 1322–1325 (2005)

11. http://www.cs.washington.edu/research/xmldatasets/

12. http://wsdb.asu.edu/xsact/ProductReview.xml

13. Bao, Z., Ling, T.W., Chen, B., Lu, J.: Effective XML Keyword Search with
Relevance Oriented Ranking. In: ICDE, pp. 517–528 (2009)

http://www.cs.washington.edu/research/xmldatasets/
http://wsdb.asu.edu/xsact/ProductReview.xml

Optimized Data Placement for Column-Oriented Data
Store in the Distributed Environment

Minqi Zhou and Chen Xu

Massive Computing Institute, East China Normal University
No. 3663 Zhongshan Rd.(North), Shanghai, China, 200062

mqzhou@sei.ecnu.edu.cn, chenxuecnu@gmail.com

Abstract. Column-oriented data storage becomes a buzzword nowadays for its
high efficiency in massive data access, high compression ratio on individual
columns and etc. However, the initial observations turn out to not be trivially true.
The seek time and bandwidth of current hard disk drivers (HDD) become the bot-
tleneck for massive data processing day by day, when comparing to other com-
ponent enhancements of computers during the past four decades. In this paper,
we provide a novel data placement strategy for massive data analysis (i.e., read-
optimized) based on Gray Code, which enhances the ratio of sequential access to
a great extent for diverse query evaluations (e.g., range query, partial match range
query, aggregation query and etc). A centralized/distributed structured index is
employed in the popularly deployed distributed file systems (e.g., GFS), which
achieves the convenient management, efficient accessibility, high extendibility
and etc. Detailed theoretical analysis on index extendibility, sequential access
improvement and storage capacity usage in terms of proposed data placement
strategies are provided as well as specific algorithms. Our extensive experimental
studies confirm the efficiency and effectiveness of our proposed data placement
methods.

1 Introduction

Column-oriented data storage becomes a buzzword nowadays, especially for read-
optimized data management systems. More and more commercial database systems are
deploying column-oriented data store for massive data analysis, such as MonetDB/X100
[1], Vertica [2], and etc. In terms of IDC’s report in 2009, the analytical database market
consists of $7.78 Billion of $20.4 Billion database market [3]. On first blush, it attracts
much attention from both industry and academe, primary for its advantages in selecting
a subset of relevant columns for efficient access, high compression ratio on individual
columns because of the low entropy on a single column and etc.

However, the initial observations turn out to not be trivially true. Our overwhelming
relational database management systems are designed nearly 40 years ago in terms of
the hardware configurations at that time and mainly focus on centralized management.
Nevertheless, the situation has been changed immensely during the past 40 years. Each
hardware component in the computer literature developed in a imbalanced manner, es-
pecially for hard disk drivers. Fig. 1 briefly depicts the performance enhancement for
each component during the past 4 decades. No doubt that both seek time and bandwidth

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 440–452, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Optimized Data Placement for Column-Oriented Data Store 441

Components

Year

Disk CPU Network

Seek Time Bandwidth Capacity Frequency Bandwidth

1970s 50 ms 1 MB/s 20 MB 740 kHz 2.94 Mbit/s

2010s 5 ms 150 MB/s 2 TB 3.8 GHz*8(Cores) 100 Gbit/s

Enhancement 10 Times 150 Times 100000 Times 2500*8(Cores) 34013 Times

Fig. 1. Imbalanced Enhancement in Computer Components

of hard disk drivers development lack much behind (i.e., thousands of times) when
comparing to other components. Obviously, the data access leaning upon current data
storage media becomes the main bottleneck in terms of that of 40 years ago. Parallel
processing is hopeful in alleviating this bottleneck, while not much since it is infeasible
to attach thousands of hard disk drivers to a single process. Years ago, Jim Gray pre-
dicts the commonly used hard disk driver will become the tape (i.e., mainly used for
sequential access) [4]. Therefore, reducing the ratio of random access in the massive
data process is hopefully enhancing the performance dramatically.

For nowadays massive data analysis or processing, data are commonly distributed
across hundreds or thousands of nodes (e.g., Google File System (GFS) [5]). In those
systems, local data processing is mainly advocated (e.g., MapReduce [6]), which alle-
viates the burden of data transfer much. In other words, the cost for data transfer across
nodes is rather high. Herein, the costs for data access, including both local I/O and
network communication, outweigh other costs for massive data analysis. How to re-
duce the local I/O and network communication costs with clever data placement helps
a lot for such kind of massive data analysis. In this paper, we address the problem
of data placement in the scalable distributed parallel processing systems, which in-
creases the ratio of local sequential access and reduces the volumes of data transmis-
sion across nodes. It can be formally defined as follows: Given a scalable distributed
system deployed with popularly used file systems (e.g., GFS, HDFS [7]), the task is to
optimize the multi-dimension relational data placement across nodes in terms of data
access cost. Herein, the data access mainly focus on range selection on (a subset of) the
multi-dimensionality.

To achieve the efficient data access for massive data analysis, we present a novel
method towards data placement in the scalable distributed systems. Generally speak-
ing, the reduction in data access costs mainly focus on the following two perspectives.
Gray Code [8] is deployed to order the multi-dimensional data for local data placement
on individual nodes, which improves the ratio of sequential access for diverse query
evaluations (e.g., exact match query, range query, partial match range query, and etc). A
content-aware bitmap index (encoded under Gray Code) is deployed to affiliate massive
data analysis (e.g., aggregation query), which consequently results in communication
reduction for information exchange. Our main contributions include while not limit to:

– We provide a novel data placement method leaning upon Gray Code encoding
mechanism for massive data volumes across scalable large distributed systems,

442 M. Zhou and C. Xu

which achieves the scalable data storage, extendible index key regeneration, en-
hanced ratio for sequential massive data access, and etc. Armed with the content-
aware index (i.e., bitmap index) which has a centrilized/distributed structure, it
achieves the capability for efficient diverse query processing (e.g., range query,
aggregation query and etc).

– We provide the detailed analysis on the proposed data placement strategy, espe-
cially for sequential massive data access improvement and storage usage efficiency,
as well as instructions on diverse query evaluations.

– We conduct an extensive performance study which shows the effectiveness and
efficiency of our methods for diverse query evaluation in the large scale distributed
systems.

The rest of paper is organized as follows. In section 2, we review the related work. The
formal problem statement is given in section 3. In section 4, we provide the detailed data
placement algorithms, as well as query evaluation in section 5. We conduct extensive
experimental studies in section 6 and conclude our paper in section 7.

2 Related Work

In the distributed system literature, many distributed file systems are designed, imple-
mented, deployed during the past 3 decades, such as Andrew file system (AFS) [9],
Coda file system [10], Network file system [11] and etc. Those distributed file systems
are compact with local Unix file systems by providing a virtual layer which redirects
the request for both local and distributed data access. Years ago, the overwhelming
distributed file system (i.e., GFS [5]) is published by Google with extreme successful
applications and wildly deployed across the world with its cloned open source version
(i.e., HDFS [7]). This distributed file system has a master/slave structure, which simpli-
fies the implementation to a great extend. The master (i.e., Namenode) which manages
the meta data of the massive data stored in the system is the portal responding any clients
issued data access requirements, while the slaves (i.e., Datanodes) physically store data
in the file fashion consisting of blocks across nodes in the distributed systems.

Within a file, two physical models (i.e., row-store, column-store) can be selected
to store relational data tuples which are presented in many logical models (e.g., n-ary
model, binary model [12], hybrid model). N-ary is the most straightforward approach
to express the relational data logically, which is widely used in most of the traditional
relational database systems. It stores data tuples in a wide horizontal table, each column
of which is an attribute of the data tuple. The binary model is called the decomposed
storage model (DSM) and proposed in 1985, which projects the original table into a set
of binary columnar projections. One column is a surrogate which identifies the tuples in
the original table, and the other is one attribute from the original table. What should be
noticed is that the binary model decouples the logical model and physical storage model.
For physical storage of binary model, it is stored in a column-wise fashion (i.e., one
column followed by another). C-store [13] is an extension to the binary model, which
has a similar column-wise physical storage but may have more than two attributes. The
hybrid model combines the n-ary model and the binary model, and widely deployed by
Bigtable [14], HBase [15] and ect.

Optimized Data Placement for Column-Oriented Data Store 443

In this paper, we propose a novel data placement strategies based on the popularly
deployed distributed file system (e.g., GFS, HDFS), which achieves the enhanced se-
quential access efficiency for massive data analysis.

3 Problem Statement

The data model supported in our system is the standard relational logical data model,
which is the same as that used in the C-Store [13]. As for the self-containment of the
paper, we give a brief introduction to this data model. The attributes in tables, denoted
as logical tables (e.g., Ti, 0 < i ≤ nt), in our system can form a unique primary key or
be a foreign key that references to the primary key in another table. The logical table
may be massive in volume, which needs to be partitioned and stored across nodes in the
system. Basically, two types of partitions are applied, i.e., vertical partition and horizon-
tal partition. The vertical partition here means projection, denoted as P i

j , 0 < j < ni,
which is physically stored on the disk. To form a projection, we project the attributes of
the interest from a logical table (called anchored table), retaining any duplicate rows,
and perform the appropriate sequence of value-based foreign-key joins to obtain the
attributes from the non-anchored table(s). Hence, a projection has the same number of
rows as its anchored table. As a projection may still too large in volume for convenient
maintenance, we further horizontally partition the projection P i

j into set of segments,

denoted as Si,j
k , 0 < k < ni,j . Each segment Si,j

k is finally physically stored as a file in
the distributed file system (e.g., GFS, HDFS) with a pre-configured specific number of
sequential blocks. Data tuples within a segmentation are physically stored in a column-
wise fashion, i.e., attributes within the segment are stored one after another sequentially.
As the capacity limitation of the block in HDFS (e.g., 64MB, 128MB), the number of
attributes in one projection is usually constrained to be blew 5 with the goal to enlarge
the number of tuples that can be filled in one block, which may further result in the
enhancement of sequential access on one column (or attribute).

The problem to be solved in this paper is to provide an elegant data placement to
enhance the data access performance. Herein, the data placement includes both index
placement and data tuples placement. Leaning on the proposed data placement, it can
benefit diverse massive data analyses (e.g., aggregation query, approximate aggregation
query) and queries processing (e.g., exact match query, range query, partial match range
query) in a manner of efficient massive data access. As discussed in section 1, the seek
time and bandwidth of current hard disk drivers become the bottleneck of massive data
access. Herein, we mainly focus on the placement which is able to reduce the ratio
of random access and achieve the bandwidth-efficient transmission during the massive
data access.

4 Data Placement

In this section, we present the data placement algorithms in detail including both data
tuples and index placement, which are hopefully in enhancing the performance (e.g.,
data access efficiency, especially for the ratio of sequential access) of diverse query
evaluations (e.g., partial match query, range query, aggregation query and etc), which
will be discussed further in section 5.

444 M. Zhou and C. Xu

Namenode

Pi
j 0000-0111 Pi

j 0101-1101 Pi
j 1111-1001 Pi

j 1000-1000Mata data
S1 S4S3S2

S1

Pi
j 0011-0011Pi

j 0000-0001

Segment split
Pi

j 11011-10000Pi
j 010000-11001

Index key split

Datanodes

S1,2S1,1 S4,1 S4,2

S1

S1S2 S2

S2

S4

S4S4

S1

Head
Key Number

0000

0111

0001

10

2

1

Payload
No. Tuple

1

2

t1

t2

... ...

Fig. 2. The Architecture of the Storage

4.1 An Overview

As presented in section 3, each table Ti is projected into a set of projections, denoted
as P i

j s, in terms of the data organization interests, each of which is further consists of

a set of attributes {Ai,j
k }. Without loss of generality, we provide a detailed overview on

data placement with respect to the projection P i
j , assuming it consists a set of attributes

{Ai,j
k }, where 0 < k < ni,j .
In consistent with the popularly deployed distributed file systems (e.g., HDFS),

our index placement employs a master/slave structure, as shown Fig. 2. The master
(e.g., Namenode) stores the content-aware index generated based on the Gray Code
[8] encoding, and consequently redirects the requests for specific data segment access
(i.e., a centralized search). The slaves (i.e., Datanodes) physically store the partitioned
segments in a distributed manner in terms of the corresponding index sequence. Each
segment has a head/payload structure. For the head, it stores the statistics information
of stored tuples within the segment, while for the payload, it stores the data tuples or-
dered by the corresponding index sequence. Next, we give our detailed data placement
strategies.

4.2 Content-Aware Bitmap Index Key Generation

The index key proposed in the paper has functionalities in two folds, one of which is
to indicate the multi-dimensional content of the data tuple it refers to (i.e., property
of bitmap index), and the other of which is to identify the location of the data tuples
in the corresponding projection. Basically, the index key is constructed based on the
index code of each attribute value in the data tuple. Next, we focus on the index code
generation for each attribute value followed by the index key construction for the tuple.

For each attribute Ai,j
k , no matter numerical or categorical, we equally partition its

normalized domain into a specific number of intervals (e.g., 8,16,32, and etc). After the
partition, each interval is encoded under the Gray Code [8] sequentially. Fig. 3 shows
an example, where the normalized domain (i.e., [0, 1]) of attribute Ai,j

k is partitioned
into 8 equal intervals, each of which is encoded under the Gray Code sequence. Given a
normalized value, vi,j

l,k on the attribute Ai,j
k , it can be indicated by its index code that is

the Gray Code in which interval the value fills, denoted as ici,j
l,k. Take normalized value

Optimized Data Placement for Column-Oriented Data Store 445

000 100101111110010011001

0 0.5 10.25 0.75

vi,
k
j
,1=0.2

Ai,
k
j

vi,
k
j
,2=0.8

Fig. 3. Attribute Domain Partition

vi,j
1,k = 0.2 and vi,j

2,k = 0.8 in Fig. 3 as an example. As fill in the second and the seventh
intervals irrespectively, they can be denoted by Gray Code 001 and 101 according.

With the same index code computation algorithm, each tuple ti,jl in projection P i
j is

able to generate its index code on every attribute Ai,j
k in terms of its individual attribute

value, say ici,j
l,k, where 0 < k < ni,j , and ni,j is the number of attributes in projection

P i
j . After all these index codes have been generated, the index key, denoted as iki,j

l for

tuple ti,jl is generated by concatenating them together in a shuffle-based manner. The
so called shuffle-based concatenation manner is to concatenate one bit of index code of
one attribute followed by one bit of another in a pre-defined concatenation sequence.
Let’s take tuple ti,jl as an example, which has index codes ”011”, ”010” and ”101” on
attributes Ai,j

1 , Ai,j
2 and Ai,j

3 irrespectively. The index key for tuple ti,jl is ”001110101”,
which is concatenated by one bit of index code on attribute Ai,j

1 followed by one bit on
Ai,j

2 as well as one bit on attribute Ai,j
3 after that and so forth.

Theorem 1. The shuffled-based concatenation is a one-one map index key generation
function.

Given by the Theorem 1, the index key has the capability in indicating the content of
the data tuples as its index codes do.

4.3 Index Construction

Armed with the content-aware index key discussed in the section 4.2, data tuples could
be easily accessed. In this subsection, we focus on the index construction for all the
tables stored in the system in a cost-effective manner.

The popular and widely deployed distributed file systems (e.g., HDFS [7], GFS [5])
have a master/slave structure, which hopefully simplifies the implementation of the
file system. At the master side, it stores the meta data (i.e., file name, location, size,
duplications and etc) and at the slave side, it stores the payload data (i.e., the actual data
need to be stored). Based on the master/slave structure of the distributed file system, we
proposed a two level index deployment, one of which is at the projection level and the
other of which is at the segment level.

As discussed in section 3, each projection P i
j is horizontally partitioned into a set

of segments, each of which is stored as a file and allocated a predefined number of
sequential blocks (e.g., 1 block, 2 blocks and etc) in the file system. Relying on the
storage structure of the distributed file systems, the projection level index, which indi-
cates the content of each segment within the projection, can be stored combining with

446 M. Zhou and C. Xu

the file name in the meta data without any additional storage cost. As proposed, data
tuples within the segment (or projection) are stored sequentially in terms of their cor-
responding index keys in the Gray Code order (i.e., the index keys for data tuples in a
segment are bounded within a sequential range). Therefore, using start-end key of the
index key range, we are able to indicate the content of the data tuples stored within
the segment. We use the segment (projection) name combining with the start-end key
as a file name stored in the meta data region, which enables the index capability. As
shown in Fig. 2, the file name of the segment (e.g., S1) are stored as the meta data in the
Namenode, including the projection id (i.e., P i

j) and the start-end key (i.e., 0000-0111)
which indicates the content of the data tuples within the segment.

To release the burden (i.e., storage, access and etc) of the Namenode, we store the
segment level index across all the Datanodes which indicates the statistics information
for data tuples within a segment. Two basic components construct the segment level
index, which are stored in the head of each segment. One is the index key for which
it has corresponding data tuple stored in the segment, and the other is the data tuple
frequency for the corresponding index key in the segment. Basically, the segment level
index has two functionalities, one of which is to indicate the number of the data tuples
having the given index key, and the other of which is to indicate the location of the
first data tuple for each index key in the segment. Take the head of S1 in Fig. 2 as an
example. The second element (i.e., {0001,1}) means there is 1 tuple that has index key
0001 and starts from the 11th tuple in the corresponding segment.

Being a centralized/distributed structure, the two level index structure has many ad-
vantages, 1) it is storage cost-efficient because using the existed meta data to store the
content-aware index keys, 2) it has a concisely centralized structure which simplifies the
location positioning in terms of the content of the index key, 3) it is much more scalable
because the heavy loaded statics information is distributed all over the Datanodes.

4.4 Data Placement

Without loss of generality, the data placement can be presented as the progress of a
tuple ti,jl inserting into projection P i

j , which consists one or more segments and phys-
ically stores in the distributed file systems (e.g., GFS, HDFS, etc). By generating its
corresponding index key first, a data tuple is able to insert into a target segment conse-
quently, which has been assigned and allocated with a specific number of blocks at the
begin of segment creation. Function TupleInsert() in Algorithm 1 shows this in detail,
where issues three levels of tuple insertion (i.e., ProjectInsert(), SegmentInsert()
and BlockInsert()). During SegmentInsert(), it finds the target segment which has
a index range covering the index key of the tuple to be inserted and invokes Function
SegmentCheck(), which checks the segment whether needs to be split or not. The de-
tailed segment split algorithm will be present in section 4.5. During BlockInsert(), it
finds the target block to insert and adjusts the index in the segment level. Finally, the tu-
ple finds the target position in the block to insert, and consequently result in sequentially
stored in terms of tuple index keys in the segment.

The efficiency of the single tuple insertion algorithm proposed above could be en-
hanced, because it needs one random disk access for one tuple to be inserted. Bulk tuple
insertion is also supported in our system, which enhances the disk access efficiency.

Optimized Data Placement for Column-Oriented Data Store 447

Algorithm 1. TUPLEINSERTION

ProjectionInsert(projection p, tuple t)
1: for k from 1 to n do
2: ick=GenerateIndexCode(t.vk) //tuple t contains n attributes, generates each index code
3: end for
4: ik=GenerateIndexKey(ic,k)
5: SegmentInsert(t,ik)

SegmentInsert(tuple t, projection p, key ik)
1: fileName=FindSegment(ik) // segment.start− segment.end covers ik
2: newFileName=SegmentCheck(fileName, ik)
3: BolckInsert(newFileName, t, ik)

BlockInsert(segment fileName, tuple t, key ik)
1: AdjustSegmentLevelIndex(fileName, ik)
2: TupleInsert(t)

SegmentCheck(String fileName, key ik)
1: if Segment(fileName) = full && fileName.start <> fileName.end then
2: BlockSplit(fileName)
3: else if Segment(fileName) = full && fileName.start = fileName.end then
4: IndexKeySplit(fileName)
5: end if
6: return newFileName=FindSegment(ik)

BlockSplit(String fileName)
1: ik′ = GetIndexKey(fileName, segmentLength/2)
2: NewSegment(fileName, fileName.start, ik′)
3: NewSegment(fielName, ik′ + 1, fileName.end)

IndexKeySplitSting fileName

1: newFileName=DoubleIndexRange(fileName)
2: AdjustAllSegmentIndex(newFileName)
3: AdjustIndexkey(fileName)
4: BlockSplit(newFileName)

For bulk insertion, data tuples to be inserted are pre-sorted in the memory on the Daten-
ode which has a segment covering their corresponding index keys, before doing the
block insertion. For example, supposing three tuples ti,j1 , ti,j2 and ti,j3 with their cor-
responding index keys ”0110”, ”1000” and ”0001” irrespectively, the three tuples are
pre-sorted in the memory on a Datanode under the order of ti,j3 , ti,j1 and ti,j2 . By ex-
ceeding the bulk insertion threshold, those pre-sorted tuples will merged into the spe-
cific segment. Merge-sort algorithm is deployed for bulk tuple insertion, where tuples
pre-sorted in the memory and tuples in the segment are separated in two runs in terms
of the index key range. When at the merge phase, the separated two runs are merged
together to form a new segment.

4.5 Segment Split

In this subsection, we describe the segment split algorithm in detail. When the blocks
pre-allocated for a segment are fully stored, the segment will split into two when new

448 M. Zhou and C. Xu

Mata data S1=Pi
j 00-01 S3=Pi

j 10-10S2=Pi
j 11-11

Segment Adjust

Index key split

00 01

S21,=Pi
j 110-110 S2,2=Pi

j 111-111

S1=Pi
j 000-010

000 001 011 010

S3=Pi
j 101-100

101 100

t1 t2Segment
11

t3
t5 t6

t4

10
t8t7 New:t9

110
t3 t5 t6t4

111

t9

t1 t2 t8t7

0 1

0 0.5 1

vi,
1
j
,2=0.2

Ai,
1
j

0 1

0 0.5 1
Ai,

2
j

00 11

0 0.5 1
Ai,

1
j

0 1

0 0.5 1
Ai,

2
j

01 10

vi,
2
j
,2=0.7 t2=01

t2=010vi,
1
j
,2=0.2 vi,

2
j
,2=0.7

Before split

After split

(a) Index Code Split (b) Segment Reorganize

Fig. 4. Index Key Split

tuples need to insert. Generally speaking, there are two stages of segment split, which
are denoted as block split and index key split.

If a segment into which a new data tuple should be inserted in terms of its index key
is already full (blocks full), and its covered index key range has more than one index
keys (i.e., the range can be split into two ranges), the block split issues (i.e., function
SegmentCheck() in Algorithm 1). For block split, it finds the mid index key (e.g.,
ik′ of the data tuple in function BlockSplit()), which is located in the middle of the
segment. Two new segments will be created in terms of the index key (e.g., one for
range [fileName.start, ik′], and the other for [ik′ + 1, f ileName.end]). Data tuples
will move to the corresponding segment sequentially.

If a segment into which a new data tuple should be inserted in terms of its index
key is already full (blocks full), while its covered index key range has only one specific
index key, the index key split takes place. As the range which covers only one index key
can’t be split further, it needs to be doubled first by extending one bit to its right end.
In terms of the index key generation mechanism, we need to repartition the normalized
domain of one selected attribute into a doubled intervals, and consequently result in
the regenerated index keys having one more bit. Fig. 4(a) shows an example. When the
index key split issues, the attribute Ai,j

1 is selected for repartition in terms of the index
key concatenation sequence. The index code on Ai,j

1 for tuple t2 is split from 0 to 00,
and consequently result in its index key split from 01 to 010 as shown in the figure.
Similarly, all the tuples within segment S2 have to regenerate their corresponding index
keys. After the regeneration, the fully stored segment will be split into two, which is the
same as that do in block split. What should be noticed is that the Gray Code based index
key split won’t alter the tuples in which segment they store (e.g., t1, t2 are still stored
in S1 after index key split in Fig. 4(b)), even with similar sequence with the original
segment, because of the existence of Theorem 2.

Theorem 2. (Extendibility) The Gray Code based index key is extendable. Here, ex-
tendibility means the p-bit prefix of the new split (p + 1)-bit index key ((iki,j

l)′) equals
to its p-bit index key (iki,j

l) before split (say prep((ik
i,j
l)′) = iki,j

l), where prep refers
to the p-bit prefix.

Optimized Data Placement for Column-Oriented Data Store 449

Armed with Theorem2, our data placement algorithms achieve the cost-efficient data
insertion, say without any movement for tuples in the all segments which block split are
not issued.

5 Query Processing

In this section, we present the query types supported in our system. Generally speaking,
it supports efficient exact match, partial exact match, range query, partial range query,
approximate aggregation query, aggregation query, projection join and etc.

For the purpose of clear presentation, all the descriptions for diverse query eval-
uations are based on the following projection, each tuple within which contains two
numerical attributes (i.e., A1 and A2) both with continuous domain [0, 10]. The con-
tinuous domains (i.e., [0, 10]) are normalized into [0, 1] for index key generation and
segment storage.

5.1 Multi-dimensional Range Query and Multi-attribute Range Query

The multi-dimensional range query and multi-attribute range query have the similar
definitions with respect to the exact match and partial exact match queries, expect for
the query range. For example, we may have multi-dimensional range query Q1 : 1 ≤
A1 < 5, 6 < A2 ≤ 10 and multi-attribute range query Q2 : 1 ≤ A1 < 5, A2 = any.
Similarly, data tuple will be fetched in terms of the generated index keys. For example,
we have ikQ1 = 01xx and ikQ2 = 0xxx. Post filtering is also needed, but solely on the
border of the query range.

5.2 Aggregation Query and Approximate Aggregation Query

We support all the commonly used aggregation operations (e.g., max, min, average,
sum, count) in our system, while the approximate aggregation query means to get the
approximate results but with high efficiency. Here, the approximate aggregation evalu-
ation is mainly based on our proposed content-aware index. Let’s take the operator sum
as an example. For approximate result, it calculates a set of index keys that need access
first, and consequently fetches the heads of the corresponding segments. In terms of the
index key (i.e., content-aware) and the data tuple frequency, the approximate results can
be derived by doing the multiply operation. Achieving the exact aggregation results, we
have to fetch all the data tuples in the corresponding segments and make summation
tuple by tuple.

Our novel data placement strategies achieve the efficient data access, especially for
the massive data access by reducing the ratio of random access during one access re-
quirement to a great extend.

6 Performance Evaluation

To evaluate the performance of our proposed data placement methods, we implement it
on Hadoop with version 0.19.1, which an open source version from Yahoo!.

450 M. Zhou and C. Xu

(a) Multi-dimensional Query (b) Multi-attribute Query Q1 (c) Multi-attribute Query Q2

Fig. 5. Access Efficiency for Diverse Queries

The Hadoop is running on a cluster consisting of 22 blades, each of which has two
quad-core CPUs, a 4GB memory, one 144GB hard disk driver, and runs RedHat Linux
AS4. TPC-H is the benchmark for data analysis, which is used here for performance
testing. 100 million data tuples are generated and stored in terms of our data placement
strategy in the HDFS. Data access efficiency and approximate data aggregation are ex-
tensively tested in terms of the accessing time and aggregation accuracy irrespectively.

6.1 Evaluation on Access Efficiency

In this subset of experiments, we evaluate the access efficiency for multi-dimensional
range query and multi-attribute range query. 4 bits of index code is generated here for
each attribute. The range queries with range 2%, 5%, 10%,15% and 20% on all at-
tributes (Fig. 5(a)), all attributes except one (Fig. 5(b)), one attribute (Fig. 5(c)) are
issued on projections with 3,4,5,6 attributes irrespectively, where the ranges could arbi-
trary for not constrained attributes. As shown in Fig. 5, the data access time increases
slightly when the access range increases, since many random accesses are reduced.
Moreover, the access time also increases when the number of attributes increases, es-
pecially for the multi-attribute range query, since more tuples will be access if less
constrains on attributes are issued.

6.2 Evaluation on Aggregation Accuracy

Variable numbers of bits for index codes affect the number of tuples having the corre-
sponding index key. That’s to say the more bits used for content indication, the more
precious it is, and result in more accurate approximate aggregation evaluation, as shown
in Fig. 6(a). The query range for aggregation also affects the approximate aggregation
accuracy, since smaller ratio of tuples will be post filtered for larger query ranges. As for
approximate aggregation evaluation, only indexes need to be fetched, and consequently
result in low access time, as shown in Fig. 6(b).

6.3 A Comparison

A access efficiency comparison between Gray Code based data placement and binary
code based is conducted here. For the binary encoding, it the use the same bits for
index codes on each attribute, and concatenate each index code together sequentially.

Optimized Data Placement for Column-Oriented Data Store 451

(a) Approximate Aggregation (b) Access Efficiency Com-
parison

(c) Efficiency Comparison with
Binary Encoding

Fig. 6. Comparisons

As shown in Fig. 6(c), nearly half of the access time can be reduce due to our data place-
ment because of the enhanced ratio on sequential access, especially for lager volumes
data access.

7 Conclusion

In this paper, we present a novel idea for data placement in the distributed environment.
Our method achieves enhanced sequential access ratio and reduced data network trans-
mission for diverse of query evaluations (e.g., exact match, partial exact match, range
query, partial range query, approximate aggregation query, aggregation query, projec-
tion join and etc). Detailed theoretical analysis, together with extensive experiments
prove that our methods are highly efficient and effective in the distributed systems.

Acknowledgement. This work is partially supported by Shanghai International Coop-
eration Fund Project under grant No.09530708400, Shanghai Leading Academic Dis-
cipline Project No. B412, Alibaba Young Scholars Support Program Fund under grant
No. Ali-2010-A-12), National Science Foundation of China under grunt No.61003069,
No.60833003 and No. 60925008, National Hi-Tech 863 program under grant
No.2009AA01Z149.

References

1. Boncz, P., Zukowski, M., Nes, N.: MonetDB/X100: Hyper-pipelining query execution. In:
Proceeding of CIDR 2005 (2005)

2. Vertica, “Vertica” (2008), http://www.vertica.com
3. Olofson, A.W.: IDC Excerpt Worldwide Database Management System 2009-2013 Forecast

and, Vendor Shares. Technical Report 219232E (October 2008)
4. Gray, J.: A Conversation with Jim Gray. ACM Queue 1(4) (2003)
5. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. In: Proceedings of SIGOPS

2003, pp. 29–43 (2003)
6. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In: Pro-

ceedings of OSDI 2004 (2004)
7. Yahoo!, “Hadoop Distributed File System” (2008),

http://hadoop.apache.org/hdfs/

http://www.vertica.com
http://hadoop.apache.org/hdfs/

452 M. Zhou and C. Xu

8. Gray, F.: Pulse code communications. U.S. Patent 2632058 (1953)
9. Howard, J., et al.: An overview of the andrew file system. In: Proceedings of the USENIX

1988, pp. 23–26 (1988)
10. Kistler, J., Satyanarayanan, M.: Disconnected operation in the Coda file system. ACM Trans-

actions on Computer Systems 10(1), 25 (1992)
11. Nelson, M., Welch, B., Ousterhout, J.: Caching in the Sprite network file system. ACM Trans-

actions on Computer Systems 6(1), 134–154 (1988)
12. Copeland, G., Khoshafian, S.: A decomposition storage model. In: Proceedings SIGMOD

1985, pp. 268–279 (1985)
13. Stonebraker, M., Abadi, D., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin,

A., Madden, S., O’Neil, E., et al.: C-store: a column-oriented DBMS. In: Proceedings VLDB
2005, pp. 564–275 (2005)

14. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra, T., Fikes,
A., Gruber, R.: Bigtable: A distributed storage system for structured data. ACM Transactions
on Computer Systems 26(2), 4 (2008)

15. Yahoo!, “HBase” (2008), http://hbase.apache.org/

http://hbase.apache.org/

Two-Step Joint Scheduling Scheme for Road
Side Units (RSUs)-Based Vehicular Ad Hoc

Networks (VANETs)

G.G. Md. Nawaz Ali1, Edward Chan1, and Wenzhong Li2

1 City University of Hong Kong, Kowloon, Hong Kong
2 Nanjing University, Nanjing, China

Abstract. Recently, the use of Road Side Units (RSUs) has been pro-
posed as a mechanism to handle the connectivity issues in VANETs for
data dissemination. In this paper, we provide a model where an RSU
deals with both download and upload queues. In VANETs, since vehi-
cles are highly mobile, if as RSU fails to receive the updated information
from a vehicle, all the subsequent vehicles receive the stale data from
that RSU which substantially decreases the main objective of data dis-
semination. To find an efficient data dissemination procedure in this
circumstances, we propose a second-step scheduling algorithm to form a
two-step joint scheduling algorithm in where as the first-step scheduler
we use existing on-demand real-time algorithm. We study the perfor-
mance of a number of different joint scheduling algorithms by varying
different on-demand scheduling algorithms as first-step scheduler using
simulation experiments with various parameter settings and high work-
load. Finally, we recommend which two-step joint scheduling algorithm
is suitable in this RSU-based VANETs environment.

Keywords: VANETs, Road Side Unit (RSU), on-demand scheduling
algorithm, on-demand broadcast etc.

1 Introduction

Data dissemination in Vehicular Ad Hoc Networks (VANETs) received consid-
erable attention by the researchers from the past decade. In VANETs, as many
vehicles may request the same data item, so broadcasting is a popular approach
for data dissemination. Recently, researchers have proposed the use of Road Side
Units (RSUs) for supporting on-demand data broadcasts, particularly where
strict time constraint is involved.

However, in such a scenario, when many vehicles need to upload and down-
load data in the same RSU, an efficient scheduling strategy is required. Time
constraint is an important issue here, because an RSU’s transmission range is
not large, and failure in reaching the client while the vehicle is in range will
result in wasted transmission; similarly poor scheduling might prevent updates
regarding time-sensitive data that are useful to other vehicles from being up-
loaded in time. For example, if a vehicle has observed a road accident while it

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 453–464, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

454 G.G.M. Nawaz Ali, E. Chan, and W. Li

approaches an RSU, it then can provide this information to that RSU. The RSU
updates its database and provides this updated information to other vehicles,
and upon getting this information these vehicles may change their routes or take
appropriate actions.

A number of researchers have studied scheduling issues recently. Nadeem et
al.[1] use periodic broadcast approach for data dissemination. Yi et al.[5] consider
reliability and fairness of information distribution among Mesh Road Side Units
(MRUs) but their approach does not deal with the strict time constraints of
VANETs data dissemination from RSUs to vehicles. Zhang et al. [2] consider
both upload and download services and try to balance the adaptivity of these
two services according to the fluctuation of workload but they do not maintain
the time constraint and update the database with most updated information.

We study the performance of different scheduling algorithms for both upload
and download requests considering different constraints. In this paper our main
contributions are:

– We propose a second step scheduling algorithm to form a two-step joint
scheduling algorithm for selecting the most appropriate request from the
upload and download queues.

– We apply different on-demand scheduling algorithms as first step scheduling
algorithms with our proposed second-step algorithm to build different two-
step joint scheduling algorithms aiming to find an efficient one.

– After analysis the simulation result and performance comparison, we recom-
mend which two-step joint scheduling algorithm is best suited for getting the
maximum performance in highly mobile and strict time constraint VANETs
environment.

The rest of this paper is organized as follows. Section 2 surveys related work.
Section 3 describes about our system model and preliminaries, section 4 shows
the scheduling schemes with our proposed scheduling algorithm and section 5
describes the simulation model and experimental results. Finally, we conclude
with the a discussion of our results and future work.

2 Related Work

Unlike unicasting, broadcasting maximize the channel bandwidth utilization be-
cause by a single broadcast many outstanding requests can be served. However,
to get the maximum benefit from the broadcast, a suitable scheduling algorithm
is needed. A number of push based model have been proposed by researchers.
Wong and Ammar [6] investigate the First Come First Serve (FCFS) algorithm
in videotex systems. Acharya et al. [7] introduce asymmetric communication
environments where downstream link has greater capacity than downstream
link. Other researchers propose pull based (also known as on-demand) model.
Wong [8] uses the Longest Wait First (LWF) algorithm to find the next item
for scheduling. Aksoy and Franklin [9] propose the R × W algorithm for large

2 Step Scheduling for RSUs in VANETs 455

scale on-demand data broadcast, which incorporate popularity and request ur-
gency for making scheduling decision. For heterogeneous workload Acharya and
Muthukrishnan [10] introduce a new metric called stretch which is the ratio of
response time to the service time and a corresponding algorithm called Longest
Total Stretch First (LTSF). [3] proposes Slack Time Inverse number of Pending
requests (SIN) for time critical on-demand broadcast. Chen et al. [4] introduce
Preemptive Temperature Inverse Slack Time (PTIS) for handling multi-item
data requests.

None of the above work considers the scheduling issue for both upload and
download requests along with client mobility and strict time constraints.

3 Background and Preliminaries

3.1 System Model

In our model we assume that VANETs services are provided to the vehicles at
the hot spot such as gas stations or intersection of the roads where the number
of vehicles is higher. When a vehicle is in the transmission range of an RSU
it can generate either upload or download requests. A download request means
a vehicle wants the latest updated data item from the RSU server and upload
means vehicle wants to upload the updated information of a data item to the
RSU server. An RSU has two queues as shown in Fig. 1, one for upload requests
and the other for handling download requests from the vehicles. A vehicle can
generate request or receive response only until it is within the transmission range
of an RSU.

3.2 Notation and Assumptions

Request: We denote each request i by 10 tuples as follows:
Ri = (NOi, IDi, SIZEi, TY PEi, T

in
i , T out

i , T r
i , T stamp

i , T deadline
i , T serv

i).

NOi: the number of the request;
IDi: the ID of the data item it requests;
SIZEi: the size of the data item;
TY PEi: taking values in { upload, download }, indicating the type of upload-

ing/downloading operations;
T in

i : the time the vehicle enters the communication range of the RSU;
T out

i : the time the vehicle leaves the communication range of the RSU;
T r

i : the time the request is generated;
T stamp

i : the time the updated information is generated by a vehicle;
T deadline

i : the deadline assign by a request, beyond this time the request will
be dropped;

T serv
i : the time for uploading/downloading the data item, it can be evaluated

by SIZEi divided by the available bandwidth;
Assume there are n requests. The set of requests is denoted by REQ =

{R1, R2, · · · , Rn}.

456 G.G.M. Nawaz Ali, E. Chan, and W. Li

Fig. 1. Scheduling in an RSU

Schedule: When a vehicle submits a request, the request needs to be scheduled.
Assume at time t, a set of requests Rt reside in the RSU received queue to be
scheduled. The schedule to the requests should follows the following principles.
First, since each request needs to occupy the communication channel for data
transmission, it should makes sure that the uploading/downloading operation
finishes before the vehicle moves out of the communication range. Second, since
the uploading operation will update data content, if there exist both uploading
and downloading requests to the same data, the uploading request should be
served first to avoid the downloading of a stale data item.

If a request Ri ∈ Rt is scheduled to be served at t, we call Ri is satisfiable if it
meets the following conditions: (1) t ≥ T in

i & t + T serv
i ≤ T out

i ; and (2) there is
no uploading request to data IDi in Rt. If either of them is violated, we called
it unsatisfiable. We use (Ri, t, R

t)∗ to denote its satisfiability.
Due to the broadcast nature of wireless communication, for the downloading

operation, when the data is broadcast, a set of requests waiting for the same
data can be satisfied at the same time. We call such set of requests shareable
requests. If a downloading request Ri ∈ Rt is scheduled at time t, its shareable
requests set is denoted as SA(Ri, t, R

t), which can be defined as:

SA(Ri, t, R
t) = {Rj|∀j �= i, Rj ∈ R & IDj = IDi & (Rj , t, R

t)∗ = satisfiable}

A schedule can be expressed as a sequence of the requests and their scheduling
time. For example, assume the request set R = {R1, R2, R3, R4, R5, R6}. A pos-
sible schedule is S =< R2, t1 > (R3, R5) →< R6, t2 > () →< R1, t3 > (R4),
which indicates R2 is served at t1, R6 is served at t2, R1 is served at t3, and the
items in () are shareable requests being served at the same time.

2 Step Scheduling for RSUs in VANETs 457

Request’s Life Time: A vehicle can generate request only within time range
[T in

i , T out
i − T serv

i], where T serv
i = DataItemSize

ChannelBandwidth .
Assume the radius of the transmission range of an RSU is R meter and aver-

age speed of vehicle within the transmission range of RSU is S meter/sec. So, if
a vehicle reach at the transmission range of an RSU at time t = 0 and generate
the first request at the same time, then the average deadline of the first request
of a vehicle is, AV ERAGE DEADLINE = 2R

S . If we consider the speed vari-
ation factor of a vehicle from the average speed, the compensated deadline is:
DEADLINE = 2R

S ∗uniform(ψmax, ψmin); where ψ is the random number use
for compensate the speed variation.

So, anytime T, the deadline of a request is

DEADLINE =
2R

S
∗ uniform(ψmax, ψmin) − T r

i

where T r
i is request generation time.

Suppose, the request i wants to update the server data item IDi and the
server’s and vehicle’s data item time stamp are IDT stamp

Server , IDT stamp

i respectively.
Then, the update request i will be received by the upload queue if and only if,
IDT stamp

i < IDT stamp

Server , i.e. upload queue will accept those requests only which
have recent information. However, any type request i will be discarded from the
scheduler when Current Clock > T deadline

i .

4 Scheduling Schemes

In a traditional single queue scheduling system, an on-demand scheduling algo-
rithm is used to find the next suitable request for providing service. In sys-
tems with two queues, we have two suitable requests from the two queues,
among which one is to be selected for providing service in the next service cycle.
To find the most two appropriate requests from both queues we use an exist-
ing on-demand scheduling algorithm, we call this step First-step scheduling.
We call the final selection of one request from these two queues Second-step
scheduling.

4.1 First-Step Scheduling

For performing the first-step scheduling we use an on-demand scheduling algo-
rithm to find the best candidate in a queue according to the selecting princi-
ple of the algorithm. For doing this selection procedure, our system calculates
Upload First step value and Download First step value for each upload and
download request respectively according to the principle of the used first-step
scheduling algorithm. From this First step value, our system finds the best can-
didate from each queue.

To find the best performance of the two-step scheduling system, we need
to find a good combination of first-step and second-step scheduling. We adopt
the following on-demand scheduling algorithms as first-step schedulers in our
system with our proposed second-step scheduling algorithm and then proceed to
compare and analyse their performance.

458 G.G.M. Nawaz Ali, E. Chan, and W. Li

1. First Come First Served (FCFS): This base line schedular selects the
request according to the request arrival order. Using FCFS, First step value
of a request i is: First step value i = ATi; where ATi is the arrival time of
request i. Hence, the request Ri ∈ Rt is selected as a best candidate from
a queue at time t using FCFS principle can be defined as: Req(Ri, t, R

t) =
{Rj |∀j �= i, Rj ∈ R & max(AT1, AT2,, ATj)}.

2. Most Request First (MRF): It selects requests according to the popu-
larity of the requested data item. An data item in the database for which
maximum number of requests waiting in the waiting queue will be selected
for service. Once this data item is broadcast all shareable requests waiting
for that data item will be satisfied. Here, First step value of request i is:
First step value i = PopuIDi; where PopuIDi is the current popularity of
the data item requested by request i. So, the request Ri ∈ Rt is selected
as a best candidate from a queue at time t using MRF principle defined
as: Req(Ri, t, R

t) = {Rj|∀j �= i, Rj ∈ R & max(PopuID1, PopuID2,,
PopuIDj)}.

3. Earliest Deadline First (EDF): EDF selects requests according to the
deadline of the requests. When a vehicle generates a request it calculates its
deadline from the request generation time, vehicle speed and the transmission
range of the RSU. As time passes the request’s assigned deadline decreases.
When the deadline reaches 0, the request will be discarded by the RSU. For
EDF, First step value of request i is: First step valuei = Deadlinei; where
Deadlinei is the current deadline of request i. Here, the request Ri ∈ Rt

is selected as a best candidate from a queue at time t: Req(Ri, t, R
t) =

{Rj |∀j �= i, Rj ∈ R & min(Deadline1, Deadline2,, Deadlinej)}.
4. Deadline Size Inverse Number of pending Requests(DSIN): DSIN al-

gorithm incorporates the deadline of the request, size and popularity of the
requested data item. The request which has the tightest deadline and its re-
quested data item has high popularity with small size will be selected from a
queue as the best candidate in the first-step scheduling. Here, First step value
of request i is determined by: First step valuei = DSINvaluei; where
DSINvaluei is the current DSINvalue of request i and

DSIN V alue =
Deadline× Size of the requested data item

Number of pending requests of that data item

The request Ri ∈ Rt selected as the best candidate at time t can be defined
as: Req(Ri, t, R

t)={Rj |∀j �= i, Rj ∈ R & min(DSINvalue1, DSINvalue2,,
DSINvaluej)}.

4.2 Our Proposed Scheduling Algorithm

After first-step scheduling, we get the requests in front of both the upload and
download queues to be the best candidates in the respective queues for being
served. The job of our proposed second-step scheduling algorithm is to find
the final single request from the two queues to be served, as shown in Algo-
rithm 1. The second-step scheduling algorithm compares the two non-empty

2 Step Scheduling for RSUs in VANETs 459

Algorithm 1. Second-step Scheduling Algorithm
Require: UQueue[] and DQueue[] are upload and download queues respectively hav-

ing best selected candidate at the front after first-step scheduling;
Require: UIndex and DIndex are the current maximum queue size of upload and

download queue respectively;
Require: i, j, and SelectedDataItem for keeping track of UQueue and DQueue and

final selected data item respectively;
Require: i := 0, j :=0 and SelectedDataItem := -1
Require: Scheduled := false
1.
2. if UQueue[UIndex] = φ and DQueue[DIndex] = φ then
3. return /*both queues are empty*/
4. end if
5.
6. if UQueue[UIndex] �= φ and DQueue[DIndex] = φ then
7. SelectedDataItem := UQueue[i]; /*Download queue is empty and select the

first request from upload queue*/
8. end if
9.

10. if UQueue[UIndex] = φ and DQueue[DIndex] �= φ then
11. SelectedDataItem := DQueue[j]; /*Upload queue is empty and select the first

request from download queue*/
12. end if
13.
14. if UQueue[UIndex] �= φ and DQueue[DIndex] �= φ then
15. if First step value UQueue[i] ≤ First step value DQueue[j] then
16. SelectedDataItem := UQueue[i]; /*Both queues have requests and select

from upload queue*/
17.
18. else
19. for k = i to UIndex do
20. if UQueue[k] = DQueue[j] then
21. SelectedDataItem := UQueue[k]; /*Both queues have requests and

download requested data item also has upload request*/
22. Scheduled := true;
23. end if
24. end for
25.
26. if Scheduled = false then
27. SelectedDataItem := DQueue[j] /*Both queues have requests and se-

lect from download queue as there is no upload request for the same
data item*/

28. end if
29. end if
30. end if
31.
32. Provide service to SelectedDataItem;

460 G.G.M. Nawaz Ali, E. Chan, and W. Li

queues front requests’ First step value by the line First step value UQueue[i] ≤
First step value DQueue[j] (Line 15, Algorithm 1). If upload queue front re-
quest’s value is less than or equal to download queue front request’s, it selects
the upload queue front request for providing service, but if the upload queue
front request’s value is greater than the download queue, before selecting the
download request to be served it checks the upload queue to see whether there
is any request in the upload queue which requests the same data item that is
requested by that download request to ensure the fresh data to the download
request. If there is no such upload request in the upload queue, it provides the
service to the selected upload request, otherwise download request will get chance
to get service from the RSU. This is the case if we use the first-step scheduling
algorithm like EDF, DSIN etc.(which use minimum First step value to find the
best candidate in a queue). But for first-step scheduling algorithm like MRF,
FCFS etc.(which use maximum First step value to find the best candidate in
a queue), we need to change the condition for comparison between two non-
empty queues front requests’ First step value by First step value UQueue[i] ≥
First step value DQueue[j] (Line 15). This condition will choose the request
which has the greater First step value.

However, for both types first-step scheduling algorithms, if either queue is
empty, it selects the front request from the non-empty queue (Line 6–12).

4.3 Performance Metrics

To find the best combination of first-step and seconds-step scheduler among
different first-step (DSIN, EDF, MRF, FCFS) second-step joint scheduling al-
gorithms, we adopt the following performance metrics.

1. Deadline Miss Rate: It is defined as the percentage of requests missing
the deadline to the total number of requests received by an RSU.

2. Throughput:The number of requests successfully served by a scheduler per
unit time. If a scheduler serves a popular data item, many requests waiting
for that item are satisfied, hence throughput will increase.

3. Average Response Time: This is the average time needed to get the
response from an RSU after a request has been submitted by a vehicle.

Our target is to find an efficient two-step join scheduler which can achieve low
deadline miss rate, low average response time and high throughput.

5 Performance Evaluation

5.1 Experimental Setup

Our simulation environment is similar to Fig. 1. We assume the inter-arrival time
of request is exponentially distributed. Our default request generation interval
(IGTM) is 0.25. In our model, a data item can be requested by more than one
vehicle, and a vehicle can request services until it exceeds the transmission range

2 Step Scheduling for RSUs in VANETs 461

Table 1. Simulation parameters

Parameter Default Range Description

NumVehicle 100 25 - 300 Number of vehicles
IGTM 0.25 0.1 - 1.0 Request generation interval of each vehicle
DBSize 500 – Number of data items in the database
DownItemsize – 10 - 512 K bytes Size of each download data item
UploadItemsize – 5 - 256 K bytes Size of each upload data item
BrodcastBandwidth 100 – Channel broadcast bandwidth K bytes/s
RSU Range 350 m [5] 350 - 400 m RSU communication range
DataItemDistribution RAND INCRT, RAND, DECRT Different kinds of data item size distribution
THETA 0.7 0.0 - 1.0 Zipf distribution parameter
GRate – 0.5 - 1.3 Updated upload requests generation parameter

of an RSU. The request data access pattern is the commonly used Zipf distri-
bution with θ ranging from 0.0 to 1.0. We perform our simulation experiment
using CSIM19, other than the default parameters, we use parameters shown in
the Table 1. We use 3 different kinds of data item distributions: RAND, INCRT
and DECRT [11] for both upload and download data item to analyze their effect
on the performance of our joint scheduling algorithms.

For experimental data generation, we let all the vehicles in the RSU trans-
mission range repeatedly in similar fashion until we get the stable data from the
same parameter settings. For collecting the mean generated data, we use 100
iterations for the same settings with a different seed value every time.

5.2 Effect of Deadline Miss Rate

Fig. 2 shows the deadline miss rate, throughput and average response time of dif-
ferent joint scheduling algorithms with increasing workload (by increasing num-
ber of vehicles with fixed Zipf distribution parameter θ and random data item
size distribution). In Fig. 2(a), deadline miss rate of all the joint scheduling al-
gorithm increases with increasing number of vehicles. However, popularity based
algorithm DSIN Second-step and MRF Second-step keep their deadline miss rate
lower than FCFS Second-step and EDF Second-step. This is because when the
number of vehicles increases with default θ value 0.7, more vehicles requests
sharable requests for the same popular data item, hence by serving one popu-
lar request many outstanding requests being satisfied, resulting in lower dead-
line miss rates than other non-popularity based algorithm. For a non-popularity
based algorithm such as EDF Second-step, when serving a non-popular urgent
request, one or many popular requests may miss their deadline, which leads to
a high deadline miss rate. The results are similar for FCFS Second-step which
always serves first received request irrespective of the request productivity and
deadline.

Fig. 2(b) shows the throughput increases with increasing number of vehicles.
As with skewed Zipf distribution by serving one popular requests a number
of shareable requests satisfied with increasing number of vehicles in the RSU’s
transmission range, throughput increases. Nevertheless, DSIN Second-step and
MRF Second-step can achieve greater throughput than EDF Second-step and

462 G.G.M. Nawaz Ali, E. Chan, and W. Li

Fig. 2. Performance of different first-step and second-step joint scheduling algorithms
for varying number of vehicles:(a)Deadline Miss Rate, (b)Throughput, (c)Average Re-
sponse Time

FCFS Second-step with increasing workload. However, for increasing number of
vehicles, average response time does not change much (Fig. 2(c)) because of
the Zipf skewness factor. But considering request deadline, data item size and
popularity based algorithm DSIN Second-step’s average response time always
lower than all others. In short, DSIN Second-step algorithm performs better in
high workload environment than others.

5.3 Effect of θ

Fig. 3 exhibits the effect of varying the Zipf parameter θ value from 0.0 to 1.0 in
terms of deadline miss rate, throughput and average response time. When θ value
is 0, vehicles requests are randomly distributed, hence popularity does not dom-
inate for requests selection. However, with the increasing of θ values clients re-
quest pattern becomes more skewed, popular data items been requested by many
vehicles’ requests, then by a single broadcast many shareable requests are served.
So, for increased θ value deadline miss rate decreases, throughput increases and
average response time decreases. As both joint scheduler MRF Second-step and
DSIN Second-step algorithm use popularity as requests selection criteria they
get the high benefit for increasing θ. However, DSIN Second-step outperforms
all other joint schedulers considering all performance criteria.

5.4 Effect of Data Item Size Distribution

Fig. 4 depicts the effects of different data item size distribution in the joint
scheduling algorithm in terms of our used performance metrics. Due to space
constraints, we will only show the characteristics of DSIN Second-step and
EDF Second-step schedulers as a representative of popularity based and non-
popularity based algorithm respectively. With skewed θ value for increment
size data item distribution, vehicles most likely request smaller sized popular
data item and for decrement size distribution request bigger size popular data
item. However, for random size distribution there is no such correlation be-
tween data item size and skewness of data access pattern. From Fig. 4(a) we

2 Step Scheduling for RSUs in VANETs 463

Fig. 3. Performance of different first-step and second-step joint scheduling algorithms
for varying θ value: (a)Deadline Miss Rate, (b)Throughput, (c)Average Response Time

see that, DSIN Second-step schedulers has significant influence with data dis-
tribution types. Here, for increment size distribution schedulers distinguishably
outperforms other type distribution in terms of deadline miss rate, throughput
and average response time. However, in Fig. 4(b) for EDF, although there is a
small performance difference for different kind of distribution in terms of dead-
line miss rate and throughput, there is no corresponding difference in average
response time. Hence we can conclude that if vehicles request smaller sized pop-
ular data item DSIN Second-step scheduling algorithm can provide service with
small deadline miss rate and response time with high throughput.

(a) DSIN Second-step (b) EDF Second-step

Fig. 4. Effect of different data item size distributions in joint scheduling algorithms

6 Conclusion and Future Work

To update the RSU’s database with the most updated information is an impor-
tant issue for effective data dissemination in VANETs. In this paper, we propose
a model where a vehicle can issue upload requests for updating the server infor-
mation with its updated data as well as download request for downloading the
server information. To do so, we implement a two-step joint scheduling proce-
dure. In the first-step, we use existing on-demand algorithms to find the most

464 G.G.M. Nawaz Ali, E. Chan, and W. Li

appropriate requests form the each queue, and then in the second-step from these
two queues we find one final request using our proposed second-step scheduling
algorithm. Based on our simulation experiments we conclude that DSIN Second-
step scheduler outperforms other joint schedulers in terms of overall system per-
formance in random data distribution; in addition, DSIN Second-step scheduler
has the best performance for increment size data distribution.

In our future work, we plan to apply our two-step joint scheduling algorithm
to multiple RSUs with co-operative data access for load balancing among them.

References

1. Nadeem, T., Shanakr, P., Iftode, L.: A Comparative Study of Data Dissemination
Models for VANETs. In: Vehicular Ad Hoc Network 2006 (2006)

2. Zhang, Y., Zhao, J., Cao, G.: On Scheduling Vehicle-Roadside Data Access. In:
Vehicular Ad Hoc Network 2007 (2007)

3. Xu, J., Tang, X., Lee, W.: Time-Critical On-Demand Data Broadcast Algo-
rithms, Analysis and Performance Evaluation. IEEE Transactions on Parallel and
Distributed Systems 17(1), 3–14 (2006)

4. Chen, J., Lee, V.C.S., Chan, E.: Scheduling Real-time Multi-item Requests in Wire-
less On-demand Broadcast Networks. In: 4th International Conference of Mobile
Technology, Applications and Systems (2007)

5. Yi, L.Z., Bin, L., Tong, Z., Wei, Y.: On Scheduling of Data Dissemination in
Vehicular Networks with Mesh Backhaul. In: IEEE ICC 2008 (2008)

6. Wong, J.W., Ammar, M.H.: Analysis of Broadcast delivery in Videotex System.
Journal of IEEE Transactions on Computers C-34(9) (1985)

7. Acharya, S., Alonso, R., Franklin, M., Zdonik, S.: Broadcast Disks: Data Manage-
ment for Asymmetric Communication Environments. In: ACM SIGMOD Confer-
ence, CA (1995)

8. Wong, J.W.: Broadcast Delivery. Journal of IEEE 76(12) (1988)
9. Aksoy, D., Franklin, M.: R×W : A Scheduling Approach for Large-Scale On-demand

Data Broadcast. IEEE/ACM Transactions on Networking 7 (1999)
10. Acharya, S., Muthukrishnan, S.: Scheduling On-demand Broadcasts: New Metrics

and Algorithms. In: MOBICOM 1998 (1998)
11. Xu, J., Hu, Q., Lee, W.C., Lee, D.L.: Performance Evaluation of an Optimal

Cache Replacement Policy for Wireless Data Dissemination. IEEE Transactions
on Knowledge and Data Engineering 16(1), 125–139 (2004)

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 465–476, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Content-Aware Adaptive Storage Approach for
XML in PXRDB*

Xue Wang, Xiao Zhang∗∗, Xiaoyong Du, Shan Wang, and Kuicheng Liu

Key Laboratory of Data Engineering and Knowledge Engineering, MOE, China
Renmin University of China

No.37 Zhongguancun Street, Haidian District, Beijing, China
{xuew,zhangxiao,duyong,swang,kcliu}@ruc.edu.cn

Abstract. In many cases, it is pretty difficult to choose an efficient storage
method, such as native, xml-enabled or hybrid, for storing XML documents in a
relational database. We provide multiple storage approaches for XML docu-
ments in our hybrid XML-relational database PXRDB(Pure XML-Relational
DataBase). Further, another problem is how to automatically choose storage
method for a given XML document and whether different documents in same
column can be stored in different formats. In this paper, we provide a con-
tent-aware adaptive storage approach for XML in PXRDB. This novel storage
approach automatically selects one better storage scheme for a specific XML
document from three candidate schemata, i.e., native storage, flat stream and
multi-relations after fast-checking its content. Our approach frees end-users or
administrators from either having no choice or having to specify the specific
storage scheme for large number of XML documents manually. It also allows
different XML documents in same relational column to be stored in different
formats while being accessed indistinctively. By providing unified access inter-
faces, new storage approaches can be easily registered in our system. The
performance evaluation illustrates our approach is feasible and effective.

Keywords: Content-aware, Adaptive, Storage Approach, XML-Relational
Database.

1 Introduction

XML documents are used widely in web context and the volume of XML data keeps
increasing rapidly. It is necessary and of importance to store and access the required
XML data efficiently. In recent years many researches have been carried out on
methods storing XML documents as xml-typed data in relational database so that ap-
plications can fully exploit functionality of RDBMS, such as concurrency control,
recovery, scalability, and benefit from the highly optimized relational query processors.

* Partly supported by National 863 High Tech. Project (No. 2009AA01Z149), the Important

National Science & Technology Specific Projects of China ("HGJ" Projects, Grant
No.2010ZX01042-002-002-03), and National Natural Science Foundation of China (Grant
No.61070054).

∗∗ Corresponding author.

466 X. Wang et al.

In literature and practice, there are three basic approaches to store XML documents
in RDBMS: 1) by storing the primitive XML documents in LOB format, 2) by shred-
ding XML documents into relations and 3) in a native storage format. As for these
methods, the LOB approach is the simplest one but prone to suffering from worse query
performance because of less optimization. The relational way enables that the RDBMS
manipulates the XML data in the same way as the relation. While the reconstruction of
the original XML document is time-consuming and more space may be needed to store
the data because of redundancy. Native storage method easily supports fragment update
and document reconstruction but it has to be built from scratch and is very low efficient
for managing relational data at the same time.

There is no 'one-size-fits-all' solution to determine how to store XML in a RDBMS
so far[11]. The feasible way to address the above problems is to provide multiple
storage models in one system. Accordingly, some factors must be taken into account.
First, the system must be able to determine the storage format automatically and
transparently for users. No matter which formats one document will be stored as,
documents will be queried and updated indistinctively. Second, a storage-independent
XQuery engine should be built and able to choose the best physical optimization
strategies when working with the underlying XML physical model. In hybrid use-cases,
both XQuery and SQL/XML can query XML. Last, the XQuery engine must be able to
provide cross-language optimizations between XQuery and SQL.

Considering the above requirements, in PXRDB, an adaptive and unified storage
approach CASF, standing for Choose Appropriate Storage Format, is designed and
implemented to automatically choose a suitable storage for a given XML document. If
the document is well-structured, it is mapped into relations directly. On the other hand,
if the structure of document is irregular or there are many large texts existed in the
document, either a native storage or LOB method is applied to provide faster query
performance. We also build a storage-independent Query Engine in PXRDB to support
both XQuery and SQL. Additionally, to accelerate query execution, various kinds of
indexes are provided for XML data, too.

The main contributions of this paper are as follows:

 We present an algorithm to score each document for selecting appropriate
storage scheme. This algorithm evaluates the structure of document.
Well-structured documents will get a higher score than the bad-structured.

 We provide a novel adaptive storage approach CASF without manual
intervention. Superior to those storage approaches that require significant
manual work to choose storage scheme, CASF automatically stores an
XML document in an appropriate method based on its content. It allows
documents in same collection, i.e. one relational column, to be stored in
different models, while being queried and updated in the same way.

The rest of this paper is organized as follows. In section 2, we present our adaptive
storage method. Next, in section 3, we denote our storage selector algorithm that stores
XML documents adaptively in PXRDB. In section 4 we conduct several experiments to
evaluate performance of our approach. Then in section 5, we discuss the related work.
Finally, section 6 concludes this paper.

 A Content-Aware Adaptive Storage Approach for XML in PXRDB 467

2 Presentation of Adaptive XML Storage Schema

PXRDB supports multiple storage models. In this section, we will present our adaptive
XML storage approach.

In PXRDB, three basic XML storage methods are provided, they are BLOB, native
format and relational storage approach. An abstract data type, XML-type, is designed to
store XML documents. Its physical storage and index models are use-case driven.
Users do not need to know as which formats their documents will be stored. When an
XML document is inserted, a selector function CASF, which will be discussed in next
subsection, is used to choose an appropriate storage scheme for the document based on
its content. Fig 1 shows the basic infrastructure of storage approach in PXRDB.

In Fig.1, the table with one XML column stores three XML documents in different
formats. One uniform structural index is created on this XML column (collection) to
provide indistinguishable XML data access and storage transparency. Apparently dif-
ferent from those existing storage approaches that require documents in one collection
be stored in same format, our approach allows documents in one collection to be stored
in different models. This approach offers more flexibility and can take more advantages
of different storage methods.

The architecture of Unified XQuery/SQL Engine in PXRDB is shown in Fig. 2.

First, both SQL and XQuery were compiled. Second, queries will be logically opti-
mized. This logical evaluation is independent of physical storage. Third, for a
given storage, the logical plan will be optimized if there are better physical rewritten
strategies. Finally, all generated physical plan will be rewritten by relational optimizer.
Before the stage of physical evaluation, query optimization is physical-independent
as usual.

Fig. 2. System Architecture Fig. 1. Overview of Adaptive Storage
Approach Schema

468 X. Wang et al.

3 Storage Scheme Selector

For general-purpose reason, our storage approach CASF does not require that the input
have schemas or DTDs, and the query workload for the certain XML data can be un-
known to the execution engine.

Given one XML document without query workloads, one of the key techniques is to
choose the appropriate storage approach. In order to introduce our approach more
clearly, we give several definitions at first.

Definition 1[Unit]. A Unit is a subtree rooted at one node called Unit’s root: u(r,S,P,t)
Where r is root of unit, S denotes the children sequence of the unit, P is the path from
document root to r, and t presents tag name of r called tag name of u. NULL is a special
unit. We use sample u to present a unit. Units with same tag name are of same type.

Definition 2[Children Sequence of Unit]. Given a unit u(r,S,P,t), we define the
Children Sequence of the Unit u as a sequence, i.e., S(u)={a1,a2…..an}, where ai
satisfies the following condition: ai.tagname≤ai+1.tagname (according to the dictionary
order) , ai denotes one unit rooted at ai and the parent of ai is r.

Definition 3[Singleton Node]. A Singleton Node is an element appearing in the
document only once.

An XML document can be viewed as a collection that each element of which is a set of
units with same tag name. From our observation, for a well-structured document, each
occurrence of unit with same tag name will have similar structure and path. It will be
easily shredded into a set of similar units that can be stored as records into tables, and
each unit will be constructed as one row. Otherwise, if the document has overall very
large depth or local very large depth frequently appears in the document or elements
with same tag name have very different structure. This document will be stored
natively. In addition, the document will be stored in BLOB format if 100% round trip is
required.

3.1 Storage Scheme Selector Function

An XML document V can be viewed as a collection of which each element is a set of
units with same tag name, that is, V={U1,U2..Um} where Ui={u1,u2….uti} that satisfies
the condition: u1.tagname = u2.tagname = … = uti.tagname}. We use the similarity
function below to evaluate similarity between two units with same tag name:

21

1 2 1 2

1 2

1

max((()), (()))

1

2

([()], [()]) (. , .)
(,)

0 if u or u is NULL

l S u l S u

i i

i

K G S u G S u s u tag u tag
K u u =

+
=
⎧
⎪
⎨
⎪⎩

∑ (1)

Where,

 S(u) denotes the children sequence of u

 l(S(u)) is the length of sequence S(u)
 Gi(S) is the ith nodes of S
 s(u1.tag, u2.tag) is sign function defined as follows:

 A Content-Aware Adaptive Storage Approach for XML in PXRDB 469

1 2

1 2

1 f u .tagname=u .tagname
(.tagname, .tagname)

0

i

else
s u u =

⎧
⎨
⎩

 (2)

Since the size of the input unit is not constant, the similarity score is normalized as
follows:

1 2
1 2

1 2

(,)
'(,)

(()) * (())

K u u
K u u

l S u l S u
=

(3)

The value of K'(u1, u2) ranges from 0 to 1.

Example 1: According to the above equation (1) and (2), the similarity between the two
person units in Fig.5 is computed as follows:

K(person1,person2) =K(name1,name2)+K(email1,email2)+K(link1,link2)+1
=(1+1+1)+1+1+1=6

Let V={U1,U2,…Um} be an XML document, let Ui={C1,C2…Cni} (t1,t2∈Ci ∧
t1.path=t2.path) be a classified result of Ui using path of unit as the decision rule. The
next equation (4) calculates the entropy of Ui as:

1

. (* ln()) / ln(| |)(| | / | |)
jn

j j j j

j

i i iU e P P U P C U
=

= − =∑ (4)

Let V={U1,U2,…Um} be an XML document, R={R1,R2…Rn| Ri∩Rj=NULL∧∪
n

i= 1

iR =

V∧ Ri={Ut1,Ut2…Uti|up∈Uti,uq∈Utj ∧(up,uq always happen together)}}. R is a par-
tition of set V. If two types of Units always appear in document simultaneously, it means
one up(∈Ui) always follows and only follows one uq(∈Uj), the relationship between up
and uq is 1:1. Ui and Uj belong to a same equivalence class. If document V is shredded
into relational tables, each element Ri of R will be mapped into a separate table and if
Ut1∈Ri and Ut2 ∈Rj(Ri≠Rj), then Ut1 and Ut2 will not be mapped into one table. Oth-
erwise there will exist a large number of redundancies because the relationship between
two Units in different equivalence class of R is not 1:1. Here we do not take the Edge
approach[3] into account because such general relational storage approaches have worse
query performance than schema-aware relational approaches and have worse recon-
struction performance than native approaches. If these general relational storage
approaches will be adapted, the score function of the document should be adjusted. We
do not discuss it in more details since it is beyond this paper.

Take all into account, the score of V is computed as follows:

i

| | | |

1 1

singletonNode (* .avgdept)h)(/ / (1 .)) / /()
1

((. (
3

)
V V

i i

i i

U VU V R Vs U eV
= =

+ − + −∑ ∑ ∑ score(V)= (5)

The formula singletonNode (* .avgdept)h)() /V R V− is employed to test in general

whether all elements requested in one XPath query can be stored in a relational table.
Here without query workload, we assume that the average depth of the document can
denote the average length of XPath query. If one table can store more elements in
average, XPath query over relational tables will require less join operations.

470 X. Wang et al.

Let V.avgdepth be the average depth of document V, Ui.similarity is defined as
follows:

e , e is standard Unit of . ((,))/ | |)()p p i ii iU U u Usimilarity K u u U u ∈= ∑ (6)

Where ue is the standard unit of Ui, it will be discussed in next subsection.
The higher the score, the better structured the document.

Example 2: The score of the fraction shown in Fig.5 is computed as follows:

V={persons, names, familys, givens, emails, links}
R={R1(person, person.id, name, family, given, email, link, link. subordinate)}
Average depth of V is 4/3.

score(V) =
6 6

i i i i

i 1 i 1

((.similarity)() / 6+ (1 .e) (6 -0) / (1() / 6 * .)) / 3U U V U V avgdepthU V
= =

∈ − ∈ +∑ ∑

 =(6/6+6/6+6/(4/3))/3=(6/6+6/6+4.5)/3 =2.1

3.2 Implementation of the Selector-CASF

We implement CASF for choosing appropriate storage format for a given XML
document as in Fig. 3. It can identify whether the document is well-structured or not.
Path and structural information of unit occurring in the document are recorded. For next
occurrence of the unit with same tag name, it is compared with standard unit ue, which
is initialized as the first appearance of unit with this tag name, of this type recorded
before to evaluate the similarity between them by using similarity function above.
According to the similarity, procedure extend() (Line 6 in CASF algorithm) will extend
structure of standard unit(ue)so as to counteract effects of appearance orders of units.

Entropy function is used to measure chaos of the document’s structure. The smaller
the document’s entropy is, the better-structured the document is.

More formally, for each unit in the document, we start with the procedure create-
Unit(t)(Line 2) to create a unit with tag name of t, findMatch(D,t.tag)(Line 3) is used
to look up weather there has been a unit set with tag name of t in D. If no such a unit set
in D, a new set will be created and added into the collection D by add()(Line 7). Oth-
erwise, if a unit set with t’s tag name already exists, the similarity between t and ue of
this unit set is computed. At the end of the document, for each Ui∈D={U1,U2,…Un},
we groups units in Ui based on their paths. For each group, entropy value is computed
using Formula 4.

The procedure generateR() (Line 12)shown in Fig. 3 partitions set D into equiva-
lence class that different type of units in same equivalence class has the relationship 1:1
while different type of units in different equivalence class has the relationship 1:n or
n:m. For more details, users can read shared-inlining algorithm presented in [3]. A
threshold is set to limit the score of the document. Document with a score higher than
threshold will be shredded into relations. Otherwise it will be stored as either native or
BLOB formats. We will discuss how to set the threshold and the affection of threshold
on document storage format in section 4.4. The parseandStore()(Line 15) function in
Fig.3 is used to generate native or BLOB storage for the input document. For each
native storage approach having its own implementation of parseandStore(), we will not
provide detail algorithm.

 A Content-Aware Adaptive Storage Approach for XML in PXRDB 471

Fig. 3. Algorithm CASF

Algorithm: CASF
Input: V XML Document
Output: S Native Storage or Relational schemas
D: collection of sets of units
U: set of units. // U.s is similarity of U, U.o presents |U|, U.e denotes entropy of U
1 for end of each element e in V
2 des=createUnit(e); //create a new unit des
3 src= findMatch (D,e.tag);// search set of units with same tag as e.tag in D
4 if src then
5 src.s+=K’(src,des); src.o++;
6 extend(des,src); sequencialInsert(des,parent(des));
7 else add(D,des); // there are no units with same tag name as des, add a new

set(only including one element des) into D
8 if end of Document then
9 for i=1 to |D|
10 compute Ui.s; D.s+= Ui.s;
11 compute Ui.e; D.e+= Ui.e;
12 S=generateR(D); singletonNode=count of singletonNode, avgDepth=

average depth of document
13 score= 1/3*(D.s + D.e + (|D| - singletonNode / |S|) / avgDeph);
14 if score < λ then //λ is the threshold
15 S=parseandStore(V);
16 output(S);
Function: extend(des, src) //extend standard Unit of one Unit type
Input: src unit, des unit
1 for i=1 to |des.S|
2 if pi ∈ des.S and pi ! ∈ src.S then
3 sequencialInsert(pi,src);
4 if pi ∈ des.S and pj ∈ src.S and pi.tag=pj.tag and pi.o>pj.o then
5 pj.o:=pi.o;
Function: sequencialInsert(newChild, parent)//insert a new unit into its parent
Input: newChild unit, parent unit
1 for each ui ∈ parent.S
2 if ui.tag > newChild.tag then
3 insert newChild before ui; newChild.pos=i;
4 else i++;
5 if i = |parent.S| then
6 insert newChild at last position of parent.S;
7 newChild.pos=i;

It is easy to compute the complexity of the algorithm CASF. There are two nested

loops, the outermost loop is processed at most |D| times(D presents collection of units),
and the inner loops are processed at most max(|Ui|)(i=1..|D|) times. Hence, the algo-
rithm has a worst-case runtime of O(max(max(|Ui|)(i=1..|D|)*|D|,n)). In most cases, n is
far larger than |D| and |Ui|, so the upper bound on the temporal complexity is O(n).

472 X. Wang et al.

4 Experiments

In this section, we evaluate the efficiency and accuracy of our adaptive storage
approach. Specifically, we focus on classification error of our storage approach. All
experiments are conducted on a PC running windows XP with 1.86 GHz Intel Core
Duo CPU and 2 GB of main memory.

4.1 Datasets

Document-centric data is more possible to be well-structured. We do not manually add
more tag for these XML documents instead we take data-centric document as
well-structured and regard them suitable for being shredded into relations. Meanwhile
we take text-centric document as irregular-structured and suitable for native or BLOB
format. We collect three types of XML documents, data-centric, text-centric and
benchmark, as our datasets for evaluation to see whether CASF can free user from
manual work of choosing storage formats and automatically make expected choice.
Size of XML documents in these datasets varies from 3KB to 124MB with different
schema characteristics. They are collected from UW XML Repository, IMDB and
Wikipedia respectively. We totally extract 81 text-centric and 109 data-centric docu-
ments. We choose XBench as our benchmark dataset because it can generate both
text-centric(TC) and data-centric(DC) documents and these generated documents have
a relative complex schema as well.

-0.2

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.62 0.64 0.7 0.8 0.9

threshold

cl
as

si
fi

ca
ti

on
 e

rr
or

errors(TC)

errors(DC)

4.2 Accuracy of Choosing Suitable Storage

This subsection is to test the accuracy of our adaptive storage algorithm CASF. We run
CASF first on a training dataset including 10 data-centric documents and 10
text-centric documents to verify the threshold. Then it is tested using the records in
the test dataset comprising 99 data-centric documents and 71 text-centric data.

Fig. 4. Classification Error Percentage

<person id="Big.Boss">
<name><family>Boss</family>
<given>Big</given>
</name>
<email>chief@foo.com</email>
<link
subordinates="five.worker"></link>
</person>
<person id="one.worker">
<name><family>Worker

</family>
<given>One</given>

</name>
 <email>one@foo.com</email>
 <link manager="Big.Boss"></link>
</person>

Fig. 5. An XML Document Fraction

 A Content-Aware Adaptive Storage Approach for XML in PXRDB 473

The statistics of the dataset are shown in Table 1. On average, text-centric documents
have a larger depth value than data-centric documents. Column of different elements in
Table 1 presents numbers of elements with different tag name appearing in the docu-
ment. We can conclude from Table 1 that numbers of different elements in the docu-
ment has no relationship with the document’s type.

Table 1. Statistics of Datasets

 Count of documents Avg(maxDeph) AvgDepth Different
Elements

Data-centric dataset 109 12.24 6.32 270.59
Text-centric dataset 81 28.19718 14.84507 119.69014

Table 2 denotes summary statistics of documents score accepted on training dataset.

Table 2. Summary Statistics of Document Score

 Minimum 25% quantity Median 75% quantity Maximum
TC(10) 0.45132 0.48514 0.51789 0.56504 0.61350

DC(10) 0.56821 0.64620 0.67616 0.75196 2.66667

Seen from table 2, threshold is set to 0.62. Classification accuracy on data-centric
and text-centric documents is 0.9 and 1 respectively. Table 3 illustrates the recognition
rate under threshold 0.62to classify documents in test dataset.

Fig.4 shows classification error rate when document’s score as classification rule.
The Y-axis of Fig.4 stands for percentage of classification error while x-axis is the
threshold. If score of one document is larger than threshold, it will be taken as
data-centric and stored as relational format. Otherwise it will be taken as text-centric
and stored as native or BLOB format. When threshold is set larger than 0.6 in Fig.
4,most text-centric document can be classified correctly that means scores of most
text-centric document are smaller than 0.6. When threshold is set smaller than 0.65,
classification error of data-centric document will decrease until approaching 100%
which means scores of most data-centric documents are higher than 0.65.

Table 3. Confusion Matrix on Test Dataset

 Data-centric=yes Text-centric=yes Total Recognition rate
Data-centric=yes 95 4 111 96.0
Text-centric=yes 4 67 69 94.5

As in Table 3, a classification accuracy of 92.4% is obtained over text-centric

dataset. The reason why it is not very high lies in blurred boundary between
data-centric and text-centric documents. In fact, many documents are not strictly
data-centric or document-centric. We list the statistics information of four of these
so-called “text-centric” documents in Table 4.

474 X. Wang et al.

Table 4. Summary Statistics of 4 “Text-centric” Documents

ID Max depth Average depth Different elements Singleton node Score

D1 21 13 29 11 0.620655
D2 28 13 60 29 0.626105
D3 17 11 39 15 0.630942
D4 12 6 23 11 0.706324

As shown in Table 4, there are few different elements appeared in them, and most of

these elements only occur one time. These four documents are actually between
data-centric and document-centric, vice versa, they are called data-centric while being
classified into the group of text-centric documents.

5 Related Work

Two basic approaches are used to construct the XML storage manager in a DBMS. One
is the extended relational approach and the other is the native approach.

The native approach is deployed in many XML data management systems[20, 15,
16, 21, 7]. Among them, TIMBER and Berkeley DB XML break the XML document
into nodes and store the node information in a B+-tree. Natix partitions XML tree into
subtrees each of which can be stored in a record fitting into one disk page. System
RX[17,18] employs a similar technique to Natix and builds a structure Regions Index to
connect each subtree located in different disk page.

Comparably, relational approaches are storing XML documents in the RDBMS by
either shredding the XML documents into multiple relational tables or storing them in
the LOB column(s)[1,2,8]. The DTD of the XML documents and query of applications
can be used to improve the performance of the XML DBMS. [4, 5] indicate the
shared-inling[6] algorithm outperforms other strategies in query efficiency when DTDs
are available.

In practice, Oracle 11g[11,19] provides multiple XML storage approaches in one
system. Oracle 11g provides relational storage, LOB and Binary-XML storage formats,
but users have to specify storage method for their XML documents themselves and for
one XML column only one storage approach can be deployed i.e. all documents in this
column will be stored in same format. Also, Oracle does not allow schema-oblivious
XML documents to be stored as relational tables. It also provides a physical inde-
pendent XQuery/SQL/XML Engine, which defines and optimizes both XQuery and
SQL/XML into the same logical algebra presentation and does physical optimizations
based on the underlying XML storage, index and view models.

6 Conclusion

This paper presents a content-aware storage approach CASF implemented in our pro-
totype DBMS PXRDB, which can automatically choose appropriate storage schemes
for document. Our solution addresses the following key problems of storing XML data:

 A Content-Aware Adaptive Storage Approach for XML in PXRDB 475

1). Multiple approaches can be applied automatically to the XML documents during
insertion. 2). Different documents in the same column can be stored in different
methods for the certain reasons. 3). Extensibility of the storage manager for XML data
that is a new one can be easily integrated into PXRDB at run time. CASF has linear
temporal complexity O(n) in the worst case, where n is the number of nodes in the input
document.

We have conducted several experiments to evaluate our algorithm. The results show
that CASF can accurately distinguish well-structured documents from those irregular
or bad-structured ones while user's view is kept unified. And the experiments indicate
that CASF outperforms its competitor in some circumstances.

References

1. Rys, M.: XML and Relational Database Management Systems: inside Microsoft SQL Server
2005. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 958–962 (2005)

2. Microsoft. White Paper: What’s New for XML in SQL Server, White Paper (2008)
3. Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., Naughton, J.: Relational

Databases for Querying XML Documents: Limitations and Opportunities. In: VLDB 1999
(1999)

4. Tian, F., DeWitt, D., Chen, J., Zhang, C.: The Design and Performance Evaluation of Al-
ternative XML Storage Strategies. ACM Sigmod Record 31(1) (March 2002)

5. Florescu, D., Kossmann, D.: A Performance Evaluation of Alter native mapping Schemas
for Storing XML Data in a Relational Database. In: Proc. of the VLDB 1999 (1999)

6. Shanmugasundaram, J., Tufte, K., He, G., et al.: Relational Databases for Querying XML
Documents: Limitations and Opportunities. In: VLDB 1999 (1999)

7. Boncz, P.A., Grust, T., Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In: SIGMOD
Conference 2006, pp. 479–490 (2006)

8. Ennser, L., Delporte, C., Oba, M., Sunil, K.: Integrating XML with DB2 XML Extender and
DB2 Text Extender. IBM Redbooks (2001)

9. Profressional XML, Wrox Press (2000)
10. DB2 goes hybrid Integrating native XML and XQuery with relational data and SQL 2006

(2006)
11. Liu, Z.H., Chandrasekar, S., Baby, T., Chang, H.J.: Towards a Physical XML independent

XQuery/SQL/XML Engine. In: Proc. 34th Int. Conf. on Very Large Data Bases, pp.
1356–1367 (2008)

12. Chebotko, A.: Reconstructing XML subtrees from Relational Storage of XML documents.
In: ICDE 2004 (2004)

13. Florescu, D., Kossmann, D.: A Performance Evaluation of Alternative Mapping Schemes
for Storing XML in A Relational Database. Technical Report 3680, INRIA (1999)

14. Kanne, C.-C., Moerkotte, G.: A Linear Time Algorithm for Optimal Tree Sibling Parti-
tioning and Approximation Algorithms in Natix. In: Proc. 32th Int. Conf. on Very Large
Data Bases, (September 2006)

15. Fiebig, T., Helmer, S., Kanne, C.-C., Mildenberger, J., Moerkotte, G., Schiele, R., West-
mann, T.: Anatomy of a Native XML Base Management System. The VLDB Journal 11(4),
292–314 (2002)

16. Kanne, C.-C., Moerkotte, G.: Efficient Storage of XML Data. In: Proc. 16th Int. Conf. on
Data Engineering, pp. 198–209 (2000)

476 X. Wang et al.

17. Beyer, K.S., Cochrane, R., Josifovski, V., Kleewein, J., Lapis, G., Lohman, G.M., Lyle, B.,
Ozcan, F., Pirahesh, H., Seemann, N., Truong, T.C., der Linden, B.V., Vickery, B., Zhang,
C.: System RX: One Part Relational, One Part XML. In: Proc. ACM SIGMOD Int. Conf. on
Management of Data, pp. 347–358 (2005)

18. Funderburk, J.E., Kiernan, G., Shanmugasundaram, J., Shekita, E., Wei, C.: XTABLES:
Bridging relational technology and XML. IBM Systems Journal 41(4), 616–641 (2002)

19. Zhang, N., Agarwal, N., Chandrasekar, S.: Sum Idicula.: Binary XML Storage and Query
Processing in Oracle 11g. In: Proc. 35th Int. Conf. on Very Large Data Bases (June 2009)

20. Jagadish, H.V., Al-Khalifa, S., Chapman, A., Lakshmanan, L.V.S., Nierman, A., Paparizos,
S., Patel, J.M., Srivastava, D., Wiwatwattana, N., Wu, Y., Yu, C.: TIMBER: A Native XML
Database. VLDB Journal 11(1), 274–291 (2002)

21. Meier, W.: eXist: An Open Source Native XML Database, http://exist-db.org

The Flamingo Software Package on
Approximate String Queries�

Chen Li

Department of Computer Science
UC Irvine, CA 92697, USA

chenli@ics.uci.edu

Abstract. An important operation in data cleaning is similarity search
on textual strings. A simple example is “finding actor names similar to
schwarzeneger,” given the fact that few people know the exact spelling
of our former governor in California. It is challenging to support this
operation efficiently on large amounts of data. Despite its importance,
the problem did not receive enough attention in the research community
a decade ago. In this talk, I will give an overview of recent results on this
problem, and describe the development history of the Flamingo pack-
age, an open-source software that supports efficient approximate string
queries. I will also describe my outreach activities to apply our research
results of data cleaning in real applications, which led to a startup called
Bimaple that specializes in powerful instant search on large data sets.

Keywords: Data Cleaning, Flamingo Package, Approximate String
Search.

� This research is partially supported by the US NSF CAREER award IIS-0238586,
the NSF award IIS-0742960, the NSF award IIS-0844574, the NSF award 1030002,
the NSF award 0331707, the National Nature Science of China 60828004, a Google
Research Award, and a gift fund from Microsoft.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, p. 477, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Framework for Data Quality
Aware Query Systems

Naiem K. Yeganeh and Mohamed A. Sharaf

School of Information Technology and Electrical Engineering
The University of Queensland, St Lucia. QLD 4074, Australia,

naiem@itee.uq.edu.au, m.sharaf@uq.edu.au

Abstract. Data Quality (DQ) is increasingly gaining more importance
as organizations as well as individuals are relying on data available from
various data sources. User satisfaction from query result is directly re-
lated to the quality of data returned to user. In this paper we present
a framework for DQ aware query systems focused on three key require-
ments of profiling DQ, capturing user preferences on DQ and processing
data quality aware queries.

1 Introduction

User satisfaction from a query response is a complex problem encompassing
various dimensions including both the efficiency as well as the quality of the
response. Quality in turn includes several dimensions such as completeness, cur-
rency, accuracy, relevance and many more [26].

Consider for example a virtual store that is integrating a comparative price
list for a given product (such as Google products, previously known as froogle)
through a meta search (a search that queries results of other search engines and
selects best possible results amongst them). The search engine obviously does
not read all the millions of results for a search and does not return millions of
records to the user. It normally selects top k results (where k is a constant value)
from each search engine and finally returns top n results after the merge.

In the above scenario, when a user queries for a product, the virtual store
searches through a variety of data sources for that item, ranks them and returns
the results. For example the user may query for “Canon PowerShot”. In turn
the virtual store may query camera vendor sites and return the results. The
value that the user associates with the query result is clearly subjective and
related to the user’s intended requirements which go beyond the entered query
term, namely “Canon PowerShot” (currently returns 91,345 results from Google
products). For example the user may be interested in comparing product prices,
or the user may be interested in information on latest models.

More precisely, suppose that the various data sources can be accessed through
a schema consisting of attributes (“Item Title”, “Item Description”, “Numbers
Available”, “Price”, “Tax”, “User Comments”). A user searching for “Canon
PowerShot” may actually be interested in:

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 478–489, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Framework for Data Quality Aware Query Systems 479

1. Browsing products: such a user may not care about the “Numbers Available”
and “Tax” columns. “Price” is somewhat important to the user although
obsoleteness and inaccuracy in price values can be tolerated. However, con-
sistency of “Item Title” and completeness within the populations of “User
Comments” in the query results, is of highest importance.

2. Comparing prices: where the user is sure about the item to purchase but
is searching for the best price. Obviously “Price” and “Tax” fields have
the greatest importance in this case. They should be current and accurate.
”Numbers Available” is also important although slight inaccuracies in this
column are acceptable as any number more than 1 will be sufficient.

The above examples indicate that getting satisfactory query result is subjected
to three questions: how good is each data source? what does the term “good”
mean to the user? and how to rank the sources? To answer above questions, we
face the following three challenges.

First challenge is to measure the quality of data. In order to estimate the
quality of data we should collect descriptive statistical information about data.
These statistics can in turn be used in query planning, and query optimization.
Descriptiveness of the collected information contributes to the effectiveness of
the system, making predictions on the quality of the source/result-set closer to
reality but it comes with a trade-off with storage. However, in today’s technology,
data storage is rarely a problem, and user satisfaction with the query results can
be deemed more important than storage.

Second challenge is to capture user preferences on DQ. Modelling user prefer-
ences is a challenging problem due to its inherent subjective nature. Additionally,
DQ preferences have a hierarchical nature, since there can be a list of differ-
ent DQ requirements for each attribute in the query. Several models have been
developed to model user preferences by decision making theory and database
communities. Models which have been based on partial orders are shown to be
effective in many cases [21]. Different extensions to the standard SQL have also
been proposed to define a preference language [13].

Third challenge is to develop data quality aware query planning methods
that allow for efficient data source selection in the presence of pre-specified user
preferences over multi-dimensional DQ measures. In particular, techniques for
ranking data sources based on a multi-criteria decision making are needed and
in this paper we discuss examples of such techniques.

In this paper we present a framework for DQ aware query planning in data
integration systems in presence of multiple redundant data sources available for
answering the same query where data sources are selected in the order that
they satisfy user requirements on DQ. We define this framework around the
three challenges mentioned earlier in this section which leads us to three key
requirements: 1) Profiling DQ which is the process of extracting statistics about
the quality of each data source for a given query. 2) Capturing user preferences
on DQ and 3) Planning queries that are extended with DQ preferences.

The rest of this paper is organized as follows: In Section 2, existing literature
related to the three key requirements of the framework is studied. In Section 3,

480 N.K. Yeganeh and M.A. Sharaf

first the architecture and framework elements are defined. Rest of the section is
dedicated to discuss solutions and options for all three challenges. At the end of
each section, relevant future works and open questions are discussed. Finally in
Section 4 we conclude the paper.

2 Existing Literature

Consequences of poor quality of data have been experienced in almost all do-
mains. From the research perspective, data quality has been addressed in dif-
ferent contexts, including statistics, management science, and computer science
[22]. To understand the concept, various research works have defined a number
of quality dimensions [22] [25].

Data quality dimensions characterize data properties e.g. accuracy, currency,
completeness etc. Many dimensions are defined for assessment of quality of data
that give us the means to measure the quality of data. Data Quality dimensions
can be very subjective (e.g. ease of use, expandability, objectivity, etc.).

To address the problems that stem from the various data quality dimensions,
the approaches can be broadly classified into investigative, preventative and cor-
rective. Investigative approaches essentially provide the ability to assess the level
of data quality and is generally provided through data profiling tools. Many so-
phisticated commercial profiling tools exist [6]. There are several interpretations
of dimensions (which may vary for different use cases), e.g. completeness may
represent missing tuples (open world assumption) [1]. Accuracy may represent
the distance from truth in the real world. Such interpretations are difficult if
not impossible to measure through computational means and hence in the sub-
sequent discussion, the interpretation of these dimensions is assumed as a set of
DQ rules.

A variety of solutions have also been proposed for preventative and correc-
tive aspects of data quality management. These solutions can be categorized
into the following broad groups : Semantic integrity constraints [3]. Record link-
age solutions. Record linkage has been addressed through approximate matching
[8], de-duplicating [9] and entity resolution techniques [2]. Data lineage or prove-
nance solutions are classified as annotation and non-annotation based approaches
where back tracing is suggested to address auditory or reliability problems [23].
Data uncertainty and probabilistic databases are another important consider-
ation in data quality [15]. In [12], the issue of data imputation for incomplete
datasets is studied, whereas maximizing data currency has been addressed in [19].

Nevertheless, data quality problems can not be completely corrected and in
presence of errors and further consideration is required to maximise user satis-
faction for the quality of data received.

Profiling Data Quality. Measurements made on a dataset for DQ dimensions
are called DQ metrics and the act of generating DQ metrics for DQ dimensions
is called DQ profiling. Profiling generally consists of collecting descriptive sta-
tistical information about data. These statistics can in turn be used in query

A Framework for Data Quality Aware Query Systems 481

planning, and query optimization. Data quality profile is a form of meta data
which can be made available to the query planning engine to predict and opti-
mize the quality of query results.

Literature reports on some works on DQ profiling. For example in [16] DQ
metrics are assigned to each data source in the form of a vector of DQ metrics
and their values (source level). In [25] a vector of DQ metrics and their val-
ues is attached to the table’s meta data to store additional DQ profiling; e.g.
{(Completeness,0.80),(Accuracy,0.75),. . .} (relation level). In [28] an additional
DQ profile table is attached to the relation’s meta data to store DQ metric
measurements for the relation’s attributes (attribute level). In this paper we
categorize these approaches as source level, relation level, and attribute level
DQ profiling.

We assume that a set of DQ metrics M is standardized between data sources,
however data sources may have different approaches (i.e. different rules) to cal-
culate their DQ metrics (e.g. a UK based data source has a different set of rules
from an Australian based data source for checking accuracy of address). None
of the above profiling techniques is sufficient to estimate the quality of a query
results. In Section 3.1 we discuss this limitation in detail.

User Preferences on Data Quality. The issue of user preferences in database
queries dates back to 1987 [14]. Preference queries in deductive databases are
studied in [7]. In [13] and [4] a logical framework for formulating preferences and
its embedding into relational query languages are proposed.

Several models have been developed to model user preferences by decision
making theory and database communities. Models which have been based on
partial orders are shown to be effective in many cases [21]. Typically models
based on partial order let users define inconsistent preferences. Current studies
on user preferences in database systems assume that existence of inconsistency
is natural (and hard to avoid) for user preferences and a preference model should
be designed to function even when user preferences are inconsistent, hence; they
deliberately opt to ignore it. Nevertheless, all studies do not always agree with
this assumption [10]. Human science and decision making studies show that peo-
ple struggle with an internal consistency check and they will almost always avoid
inconsistent preferences if those individuals are given enough information about
their state in their decision (e.g. visually). In fact, existence of inconsistency in
user preferences dims the information about user preferences captured by the
query. In Section 3.2 we discuss the possibility of proposing suitable languages
and user interfaces to capture user preferences specifically for DQ and avoid
inconsistency when possible.

Query Planning and Data Integration. From a query planning perspective,
a data source is abstracted by the source descriptions. These descriptions specify
the properties of the sources that the system needs to know in order to use their
data. In addition to source schema, the source descriptions might also include
information on the source: response time, coverage, completeness, timeliness,
accuracy, and reliability, etc.

482 N.K. Yeganeh and M.A. Sharaf

Fig. 1. Data Quality Aware Query Answering Architecture

When a user poses a data integration query, the system formulates that query
into sub-queries over the schemas of the data sources whose combination will
form the answer to the original query. For applications with a large number of
sources, typically the number of sub-query plans is very large and plan evaluation
is costly, so executing all sub-query plans is expensive and often infeasible. In
practice, however, only a subset of those sub-queries is actually selected for
execution [5][17][18].

Each executed sub-query is also optimized to produce a physical query execu-
tion plan with minimum cost. This plan specifies exactly the execution order of
operations and the specific algorithm used for every operation (e.g., algorithms
for joins). Existing techniques tend to separate the query selection process into
two separate phases using two alternative approaches: 1) select-then-optimize,
and 2) optimize-then-select. In the first approach, a subset of sub-queries is se-
lected based on coverage, then each selected sub-query is optimized separately
[5][17], whereas in the second approach, each sub-query is optimized first, then
a subset of optimized sub-queries is selected to maximize coverage while min-
imizing cost [18]. However, in both approaches, the selection of query plans is
primarily based on data coverage and/or query planning costs without further
considerations for DQ. To the contrast, in this paper, we describe our approach
for query plan ranking based on DQ that allows for efficient data source selec-
tion in the presence of pre-specified user preferences over multi-dimensional DQ
measures.

3 Framework for DQ Aware Query Systems

Before starting the discussion about the framework for DQ aware query planning
in data integration systems, we assume the following architecture which is an
extension of general data integration architecture with Data quality components.
Figure 1 represents the architecture which consists of: Data sources (S1, S2, . . .),
Data Quality Services (DQS), Data Quality Agents (DQA) and a Data Quality
Aware Mediator (DQM) – meta search engines are a good example of query
mediators.

Data sources should expose their schema to the mediators and also Data Qual-
ity Agents. Data Quality Services are generally containers for DQ metrics and
their definitions. They may be either integrated with data source or separated as

A Framework for Data Quality Aware Query Systems 483

external service. They may also query some master data source for calculating
DQ metrics. Notion of the Data Quality Services is widely used in industrial
products such as IBM Data Quality Stage, recent MS SQL Server Data Quality
Services, etc. Data Quality Agents are services that manage DQ profiles. They
may query relevant data sources and communicate with DQSs regularly to man-
age or generate DQ profiles. Query mediators are the most complex part of the
architecture which orchestrate query planning and data integration for the end
user. Data Quality Aware Mediators host three necessary parts: A service for
parsing the DQ aware query languages, a service for planning the query and
integrating data considering DQ preferences and requirements, and a local DQ
Profile Dictionary which contains DQ profiles for all data sources. This profile
dictionary can help the mediator to optimize its query plan and only query data
sources that serve best for user preferences.

3.1 Data Quality Profiling

Attribute level profile over the whole dataset does not provide enough informa-
tion to predict DQ of the query result set. For example, a dealer of new cars may
also have used cars in its database. Since they are more particular about data
entry of their new cars, DQ of the used car subset of database is much less than
DQ of the new cars subset of DB. The only situation where attribute level metric
value of the whole dataset will be similar to the attribute level metric value of
any subset of the dataset is when distribution of dirty data within data-set is
evenly random. Data quality profile that stores attribute level DQ statistics for
the whole dataset will require very little amount of storage for each data source,
an attribute level DQ profile is shown in Figure 2 (b). The DQ profile in Figure
2 is generated from the data set of Figure 2 (a). It is the result of measuring
completeness of each attribute in the dataset presented in Figure 2 (a). In this
example completeness is considered as number of null values over the number
of records in the data for each attribute. For example the completeness of the
“Image” attribute of the given data set is %50 since there are 3 null values over 6
records. The three columns in the profile table of Figure 2 (b) identify object (an
attribute from the relation) against which the metric Completeness is measured,
and the result of this measurement.

Fig. 2. A traditional data quality profile for a sample dataset

484 N.K. Yeganeh and M.A. Sharaf

Given the DQ profile of Figure 2 (b) as the profile table for data source S1,
a query engine can estimate that the quality of the attribute “Image” resulting
from data source S1 will be about %50 and can use this information to rank
data source S1 based on the projected quality of the result from a given query.
In [28] a service oriented architecture for DQ aware query systems (DQAQS)
is proposed in which a DQ profiling service is deployed for generation of DQ
profiles from data sets, and can utilize the profiling service for quality aware
query results.

Traditional DQ profiles which are similar to the one in Figure 2 (b) are in-
capable of returning reliable estimates for the quality of the result set most of
the times. For example; even though the completeness of the Image attribute
for data source S1 is %50, the completeness of the Image attribute for query
results (with conditions) from this data source can be anything between %0 and
%100: Completeness of the Image attribute for “Cannon” cameras is %50, this
value is %100 for “Sony” cameras, and %0 for “Panasonic” cameras. In reality,
for example a Cannon shop may have records of other brands in their database,
but they are particularly careful about their own items, which means the quality
of Cannon items in database will significantly differ from the overall quality of
the database. In this example, the selection conditions (brand is “Cannon” or
brand is “Sony”) are fundamental parts of the query. However, they have not
been considered in previous work on data quality profiling.

Development of DQ profiling methods to generate a minimal DQ profile such
that quality of any projected subset of the original dataset can be estimated
from it is a challenging problem which we call advanced DQ profiling.

A preliminary consideration towards advanced DQ profiling is introducing an
extension of traditional DQ profiles, referred to as Conditional DQ Profiles, that
are capable of correct estimation of the quality of conjunctive query results.
Conditional DQ profile consists of a set of: Conditions → DQ Measurements,
where Condition refers to a query’s selection condition (like the WHERE clause
in SQL) and DQ measurement infers the quality of the selection query result
(e.g. Brand=Cannon → Completeness=%50). Attribute level DQ profile is a
special case of conditional DQ profile where the condition is empty. In order to
understand conditional DQ profile, we should first define metric function:

Definition 1. Let {a1, . . . , am} be all attributes of the relation R, and metric
m be a set of rules. We define metric function ma(t), t ∈ ζ, ζ ⊆ R as 1, if the
value of attribute a from tuple t, does not violate any rule in m, and 0 otherwise,
where ζ is an arbitrary subset of R

We define the problem of conditional DQ profiling as follows: Given dataset D of
relation R, and attribute a find the minimum set of conditional definition tuples
Condition → Measurement called DQ profile Pr of R such that ma(σΦ(D)) for
an arbitrary selection operation σΦ(D) where Φ is a selection condition consisting
of ∧ and ∨ operators can be predicted.

We assume that any attribute a ∈ R has a limited domain of values. We
define dom(a) as limited domain of the values of the attribute a in addition
to the special value “-” as don’t-care (which can sit instead of any value).

A Framework for Data Quality Aware Query Systems 485

For simplicity, we also assume that conditions within Φ are only consist of equal-
ity comparisons since in a finite domain, range comparisons can be defined as a
set of equality comparisons.

Brute-force search can be used over the complete domain of possible selection
conditions over dataset D to pre-compute the metric function for each possible
condition. Assuming results of the brute-force search and the selection condi-
tion is stored in DQ profile Pr, we can query Pr to exactly predict DQ of the
result set for any given query with any selection condition. For this reason, the
search space not only includes all possible equality comparison for attribute a
(i.e. {Φ = a equals d|d ∈ dom(a)}), but also it includes all possible ∧ combina-
tion of the equality conditions. We observe that ma(σΦ1∨Φ2(D)) can be directly
calculated from ma(σΦ1) and ma(σΦ2), hence, profile data is independent from
the ∨ operator.

The conditional DQ profile can become extremely large. Indeed, the condi-
tional DQ profile may become larger than the original database. Methods to
drastically prune the search space considering trade-offs between the accuracy,
performance, and storage are currently part of our future work.

3.2 Capture User Preference on Data Quality

Preference modelling is in general a difficult problem due to the inherent sub-
jective nature. Typically, preferences are stated in relative terms, e.g. “I like A
better than B”, which can be mapped to strict partial orders [13]. In quality-
aware queries, a mixture of preferences could be defined, e.g. the accuracy of the
price and completeness of the user comments should be maximized.

The notion of Hierarchy in preferences is defined in the literature [4] as prior-
itized composition of preferences. For example; completeness of user comments
may have priority over completeness of prices. We use the term Hierarchy to
define prioritised composition of preferences which can form several levels of pri-
ority i.e. a hierarchy. The hierarchy over the preference relations is quantifiable
such as: a is strongly more important than b, or a is moderately more important
than b. [28] proposes an extension of SQL called DQ aware SQL that utilises the
notion of hierarchical preferences.

Consider the Relation ShopItem(T itle, Price, UserComments) from source
S. Using DQ aware SQL presented in [28] where a specialized HIERARCHY clause
is defined to identify the hierarchy of preferences, following query can be user to
describe user preferences on DQ.

SELECT Title AS t, Price AS p, [User Comments] AS u

FROM ShopItem WHERE ...

HIERARCHY(ShopItem) p OVER (t,u) 7, u OVER (t) 3

HIERARCHY(ShopItem.p) p.Currency OVER (p.Completeness) 3

In the HIERARCHY(a) a.x OVER (a.x’,...) clause, a denotes the object that
the hierarchy is applied for (e.g. ShopItem or column price). a.x denotes the
preferred object, a.x’,... is list of objects on which a.x is preferred and the
number 1..9 denotes the intensity of the importance of the hierarchy. Number 1

486 N.K. Yeganeh and M.A. Sharaf

denotes weak or slight importance and 9 denotes strong importance. In the above
example two hierarchies are defined which indicate that i) for the ShopItem, price
is strongly more important than title, and user comments attributes is slightly
more important that title. ii) For the column price, Currency is slightly more
important than completeness.

Inconsistency Detection in User Preferences. Due to the hierarchical na-
ture of preferences, the uncertainty that happens as a result of inconsistency
in user preferences is noticeable since uncertainties propagate to lower levels
of preference hierarchy, thus eventually compromising query response. Hence,
methods are needed to identify inconsistencies, as well as to notify user about it.
Even though inconsistency in the user preferences could be accepted sometimes,
informing the user of inconsistencies has no negative effects.

A preference query consists of a set of prioritized orders �x,y w where w
is the weight of the priority and x and y are other preferences which can be
recursively prioritized. Inconsistency detection problem can thus be defined as:
Given a prioritized preference �x,y w within the preference query, any other
recursively inferred prioritized preference should be same as �x,y w. Searching
for inconsistent set of pair prioritized preferences is not trivial.

Preferences can be modelled as directed weighted graphs which can then be
efficiently searched for inconsistencies using a heuristic developed in [27]. How-
ever proposition of minimal changes to the query to fix the consistency problem
still need to be addressed. In addition, an interactive graphical user interface for
DQAQS that is able to effectively capture user DQ preferences is developed in
[27]. In next section we leverage the quality aware SQL presented in this section
to rank data sources based user preferences on DQ.

3.3 Query Planning

One major challenge for query planning in data integration systems is selecting
data sources. One method to rank data sources considering the quality of data
sources and user preferences on DQ can be based on a multi-criteria decision
making technique. The general idea of having a hierarchy in decision making
and definition of hierarchy as strict partial orders is widely studied. In [20]
a decision making approach is proposed which is called Analytical Hierarchy
Process (AHP). Processing the problem of source selection for Quality-aware
queries can be delineated as a decision making problem in which a source of
information should be selected based on a hierarchy of user preferences that
defines what a good source is. In our approach, ranking consists of two phases;
i) each DQ metric from the query is assigned a weight which is calculated using
AHP technique and ii) sources are ranked against the metric weights and the
quality aware metadata of the source.

In AHP, decision hierarchy is structured as a tree on objectives from the top
with the goal (query in our case), then the objectives from a higher level per-
spective (attributes), and lower level objectives (DQ metrics) Fig. 3(a) shows a
sample decision tree. This is then followed by a process of prioritization. Prior-
itization involves eliciting judgements in response to question about dominance

A Framework for Data Quality Aware Query Systems 487

Fig. 3. (a)Decision hierarchy and (b)AHP weightings for querying a virtual shop

of one element over another when compared with respect to a property. Priori-
tizations form a set of pair-wise comparison matrices for each level of objective.

Within each objective level (query or attribute) elements of a pair-wise
comparison matrix represent intensity of the priority of each item (e.g. DQ
metrics) over another in a scale of 1 to 9. The Hierarchy clauses can be di-
rectly mapped to pair-wise comparison matrices, thus avoids the tedious task of
eliciting judgements.

For the sample query in Section 3.2 when all required information for AHP
technique (i.e. decision tree and pair-wise comparison matrices) are ready, AHP
technique assigns a weight to each DQ metric for each attribute. Figure 3(a)
shows the AHP decision hierarchy generated for the example query in Sec. 3.2
and Fig. 3(b) shows resulting weights. These weights are representation of user
preferences on DQ and can be used against profiling data of each source for the
metric of the same attribute to rank sources.

Having a fixed weight assigned to each decision criterion, which in our case
is each column and metric, and a fixed respective profiling value for each source
(from quality-aware meta data), sources can be ranked using a number of ranking
methods [16]: Simple Additive Weighting (SAW), Technique for Order Prefer-
ence by Similarity to Ideal Solution (TOPSIS), Elimination et Choice Translating
Reality (ELECTRE) , and Data Envelopment Analysis (DEA). In [16] a com-
parative analysis of the mentioned ranking methods is provided which shows
that the effectiveness of all above methods is not considerably different in re-
gards to the source selection problem. The major difference of these methods is
their computational complexity. Hence, we incorporate the SAW method which
is easy and fast [11].

The SAW method involves three basic steps: Scale the scores to make them
comparable, apply the weighting, and sum up the scores for each source. Data
profiles of the sources, represent each column’s quality metric in a value in [0,1].

dq(Si) :=
∑

wjvij

Where dq(Si) is the final weight of source Si, wj is the weight of (column.metric)
j which has been calculated through the AHP process and vij := σ(a.m)j

is the
profiling value for source i and (column.metric) j. Because

∑m
j=1 wj = 1, the

final scores are in [0,1].
Currently, we are working on DQ aware query planning techniques to han-

dle more complex scenarios like multi-source queries (i.e. joins). Moreover, we

488 N.K. Yeganeh and M.A. Sharaf

believe there is a need to combine the previously mentioned different DQ met-
rics together with Quality of Service (QoS) metrics (e.g., query planning costs,
response time, etc.) into a single overall metric. Such metric will enable com-
paring different execution scenarios (i.e., plans) in terms of both dimensions.
Towards this, we are currently looking at alternative models for capturing user
preferences, such as the economy-based model from the Mariposa DBMS [24]
as well as Quality Contracts [19], together with ranking policies that work in
conjunction with those models.

4 Conclusions

In this paper we proposed a framework for DQ aware query systems. In order to
be able to achieve user satisfaction in relation to the quality of query results, the
proposed framework utilises three elements of: 1) profiling DQ, 2) capturing user
preferences, and 3) query planning. Each framework element holds a number of
challenges. Our goal in this paper was to highlight the importance of DQ aware
query systems and exhibit an overview of challenges that need to be addressed
in order to realize such systems.

Acknowledgement. We would like to acknowledge Dr. Shazia Sadiq who has
been highly involved in different stages of this work, in addition we would like
to thank Prof. Xiaofang Zhou, and Dr. Ke Deng for helpful discussions that
significantly contributed to the development of ideas in this research.

References

[1] Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Tech-
niques (Data-Centric Systems and Applications). Springer-Verlag New York, Inc.,
Secaucus (2006)

[2] Benjelloun, O., Garcia-Molina, H., Su, Q., Widom, J.: Swoosh: A generic approach
to entity resolution. VLDB Journal (2008)

[3] Bohannon, P., Wenfei, F., Geerts, F., Xibei, J., Kementsietsidis, A.: Conditional
functional dependencies for data cleaning. In: ICDE (2007)

[4] Chomicki, J.: Querying with Intrinsic Preferences. In: Jensen, C.S., Jeffery, K.,
Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke, M. (eds.) EDBT 2002.
LNCS, vol. 2287, p. 34. Springer, Heidelberg (2002)

[5] Doan, A., Levy, A.Y.: Efficiently ordering query plans for data integration. In:
ICDE (2002)

[6] Friedman, T., Bitterer, A.: Magic Quadrant for Data Quality Tools. Gartner
Group (2006)

[7] Govindarajan, K., Jayaraman, B., Mantha, S.: Preference Queries in Deductive
Databases. New Generation Computing (2000)

[8] Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Sri-
vastava, D.: Approximate String Joins in a Database (Almost) for Free. In: VLDB
(2001)

[9] Gravano, L., Ipeirotis, P.G., Koudas, N., Srivastava, D.: Text Joins for Data
Cleansing and Integration in an RDBMS. In: ICDE (2003)

A Framework for Data Quality Aware Query Systems 489

[10] Hey, J.D.: Do Rational People Make Mistakes? Foundations of Social Sciences,
Economics and Ethics (1998)

[11] Hwang, C.L., Yoon, K.: Lecture Notes in Economics and Mathematical Systems:
Multiple Attribute Decision Making: Methods and Appllication. Springer, Heidel-
berg (1981)

[12] Khatri, H., Fan, J., Chen, Y., Kambhampati, S.: Qpiad: Query processing over
incomplete autonomous databases. In: ICDE (2007)

[13] Kießling, W.: Foundations of preferences in database systems. In: VLDB (2002)
[14] Lacroix, M., Lavency, P.: Preferences: Putting More Knowledge into Queries. In:

VLDB (1987)
[15] Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.: ProbView: a

flexible probabilistic database system. ACM TODS (1997)
[16] Naumann, F.: Quality-Driven Query Answering for Integrated Information

Systems. LNCS, vol. 2261. Springer, Heidelberg (2002)
[17] Naumann, F., Leser, U., Freytag, J.C.: Quality-driven integration of heterogenous

information systems. In: VLDB (1999)
[18] Nie, Z., Kambhampati, S.: Joint optimization of cost and coverage of query plans

in data integration. In: CIKM (2001)
[19] Qu, H., Labrinidis, A.: Preference-aware query and update scheduling in

web-databases. In: ICDE (2007)
[20] Saaty, T.L.: How to Make a Decision: The Analytic Hierarchy Process. European

Journal of Operational Research (1990)
[21] Saaty, T.L.: Multicriteria Decision Making: The Analytic Hierarchy Process: Plan-

ning, Priority Setting, Resource Allocation. RWS Publications (1996)
[22] Scannapieco, M., Missier, P., Batini, C.: Data quality at a glance. Datenbank-

Spektrum (2005)
[23] Simmhan, Y.L., Plale, B., Gannon, D.: A Survey of Data Provenance in e-Science.

SIGMOD RECORD (2005)
[24] Stonebraker, M., Devine, R., Kornacker, M., Litwin, W., Pfeffer, A., Sah, A.,

Staelin, C.: An economic paradigm for query processing and data migration in
Mariposa. In: Proceedings of the Third International Conference on Parallel and
Distributed Information Systems 1994 (2002)

[25] Wang, R.Y., Storey, V.C., Firth, C.P.: A framework for analysis of data quality
research. IEEE Transactions on Knowledge and Data Engineering(1995)

[26] Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data
consumers. Journal of Management Information Systems (1996)

[27] Yeganeh, N.K., Sadiq, S.: Avoiding Inconsistency in User Preferences for Data
Quality Aware Queries. In: Abramowicz, W., Tolksdorf, R. (eds.) BIS 2010.
LNBIP, vol. 47, pp. 59–70. Springer, Heidelberg (2010)

[28] Yeganeh, N., Sadiq, S., Deng, K., Zhou, X.: Data Quality Aware Queries in
Collaborative Information Systems. In: Li, Q., Feng, L., Pei, J., Wang, S.X., Zhou,
X., Zhu, Q.-M. (eds.) APWeb/WAIM 2009. LNCS, vol. 5446, pp. 39–50. Springer,
Heidelberg (2009)

SemGen—Towards a Semantic Data Generator
for Benchmarking Duplicate Detectors�

Wolfgang Gottesheim1, Stefan Mitsch1, Werner Retschitzegger1,
Wieland Schwinger1, and Norbert Baumgartner2

1 Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
2 team Communication Technology Mgt. Ltd., Goethegasse 3, 1010 Vienna, Austria

Abstract. Benchmarking the quality of duplicate detection methods
requires comprehensive knowledge on duplicate pairs in addition to suf-
ficient size and variability of test data sets. While extending real-world
data sets with artificially created data is promising, current approaches
to such synthetic data generation, however, work solely on a quantitative
level, which entails that duplicate semantics are only implicitly repre-
sented, leading to only insufficiently configurable variability.

In this paper we propose SemGen, a semantics-driven approach to
synthetic data generation. SemGen first diversifies real-world objects on
a qualitative level, before in a second step quantitative values are gener-
ated. To demonstrate the applicability of SemGen, we propose how to
define duplicate semantics for the domain of road traffic management. A
discussion of lessons learned concludes the paper.

1 Introduction

Duplicate detection is an elementary part in data cleansing processes and ad-
dresses the identification of multiple different representations of one and the
same real-world object within a data set [16]. Such cleansing processes are vital
components in information systems that integrate multiple data sources, as it
is the case in systems that support situation awareness. We are currently devel-
oping a framework for realizing ontology-driven situation awareness techniques
[2], including duplicate detection techniques [3], in the sample domain of road
traffic management. Real-world objects are described by object representations
characterized by attributes that specify their spatial and temporal extent, for
example in the form of a region on a highway defined by a start and end point.
From such attributes, qualitative relations between objects can be derived that
characterize various aspects of objects. For example, from a spatial perspective
such aspects could be size, distance, or mereotopology of objects. In situation
awareness, spatio-temporal data on objects is incrementally reported in streams,
describing real-world evolution courses. Within these data, duplicates may oc-
cur in multiple forms (see [15] for a taxonomy on the subject). Most relevant

� This work has been funded by the Austrian Federal Ministry of Transport, Innovation
and Technology (BMVIT) under grant FIT-IT 819577.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 490–501, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

SemGen—Towards a Semantic Data Generator 491

for our domain are those arising from identical attribute values (e. g., two repre-
sentations of the same traffic jam with the same regions), contradictory values
(e. g., two representations of the same traffic jam differ in terms of spatial ex-
tent, which may be caused by measuring or entry errors), or missing values (e. g.,
only the start values of the region of a traffic jam are given). Duplicate detection
is therefore typically performed by computing similarity measures for pairs of
representations on a per-attribute basis, which are aggregated into an overall
duplicate decision [16].
A semantics-driven approach to synthetic data set generation. We have
defined the following three requirements for a test data generator that provides
synthetic data sets for testing duplicate detection methods: (i) Variability within
the generated data set has to be configurable with regard to multiple aspects to
support testing effectiveness. This entails providing accurate numbers on gen-
erated duplicates to allow the computation of measures such as precision and
recall. (ii) Distributions within an aspect in the generated data sets have to be
configurable, enabling testing duplicate detection methods for robustness. (iii)
Different quantitative representations should be realizable so that multiple du-
plicate detection methods can be tested. For instance, in the domain of road
traffic management duplicate detection methods might be required to interpret
regions with their spatial extent specified either in kilometers or with a dis-
tance measures basing on nodes in a graph describing highway exits. Therefore,
quantitative representation for both cases have to be generated.

In this paper we propose SemGen, a semantics-driven approach to synthetic
data generation. It is based on a qualitative definition of duplicate semantics
and requires a set of data with pairs of objects marked as duplicates of each
other—in the following called labelled duplicates—and non-duplicates, which are
both first diversified on a qualitative level according to duplicate semantics of
a domain, before in a second step quantitative values are generated, thereby
enabling the creation of data sets with high variability and in different sizes.
Structure of the paper. In Section 2 we detail on qualitative descriptions
of duplicate semantics, before we describe our approach in Section 3. Section 4
discusses relevant related work on synthetic test data generation, and finally
Section 5 concludes the paper with a discussion of its findings and an outlook
on further work.

2 Qualitative Description of Duplicate Semantics

Describing duplicate semantics using spatio-temporal relations on a qualitative
level has been proposed as a basis for duplicate detection in our previous work
[3]. In the following, we provide an overview on these qualitative descriptions and
show how to use them for controlling variability and distribution in a generated
data set.

Qualitative relations between two objects are expressed by employing rela-
tion calculi, each of them focusing on a certain spatio-temporal aspect, such as
mereotopology [17], orientation [9], or temporality [1]. These calculi are often

492 W. Gottesheim et al.

Fig. 1. Conceptual neighborhood graphs of RCC and Allen’s Temporal Intervals

formalized by means of Conceptual Neighborhood Graphs (CNGs, [10]), which
originate in the field of spatio-temporal reasoning. Sample graphs for the Re-
gion Connection Calculus (RCC, [17]) and Allen’s Temporal Intervals algebra
[1] are shown in Fig. 1. In addition, CNGs define similarity between relations
since, according to [11], relations are “conceptual neighbors if a direct transition
from one relation to the other can occur upon an arbitrarily small change in
the referenced domain” (e. g., ProperPart and PartiallyOverlapping are more
similar to Equals than Disrelated). In each such relation calculus, one can
define an identity relation [3], which states that two objects being in such a re-
lation are most similar according to the particular calculus’ aspect of the world
(e. g., rcc:Equals is the identity relation of RCC, allen:Equals the one of Allen’s
Temporal Intervals). Qualitative relations between objects can be automatically
derived from their quantitative attributes using rule-based relation interpreta-
tions [2] (e. g., two traffic jams are PartiallyOverlapping if their spatial regions
overlap). We exploit these relations for describing in which aspects an object
and its duplicate should be alike or different. While a number of holding identity
relations shows that two objects are duplicates from identical attribute values
with regard to these aspects, duplicates arising from contradictory values, i. e.,
values describing the same real world object in different ways, can be created
by performing qualitative diversification. For example, if two objects are in a
relation allen:Equals, their lifespans are the same, i. e., they “exist” at the same
time. Still, they may differ, for instance, in a mereotopological aspect, described
by the relation rcc:PartiallyOverlapping holding between them. Note that du-
plicates arising from missing values are a special case not reflected on the level
of qualitative relations, because, as at this abstraction level we do not know

SemGen—Towards a Semantic Data Generator 493

which concrete attributes contribute to a relation, no statement can be made on
missing attributes.

For describing duplicate semantics with this definition of CNGs and iden-
tity relations, we introduce the concept of similarity neighborhoods. A similarity
neighborhood is defined by the set of relations reachable within n hops from
the calculus’ identity relation. Let us denote an instance of a particular object
type Oi as a reference object oOi

r , and the similarity neighborhood around oOi
r

as Ncalculus(oOi
r , n). Synthetic objects with relations which are part of the simi-

larity neighborhood (i. e., within n hops from the identity relation) are regarded
as duplicates to the reference object, whereas objects outside the neighborhood
are not labelled as duplicates. In Fig. 1, the similarity neighborhoods for RCC
and Allen’s Temporal Intervals algebra are shown.

By restricting n for each relation calculus to a particular value, we are able
to steer qualitative diversification on a per-calculus basis. In addition, one could
define n over multiple relation calculi, with the similarity of the synthetic object
being defined by different aspects. For this, a generalization of relation neighbor-
hood from one relation calculus to multiple calculi is necessary, which, however,
has already been shown to be straightforward [7] by counting relations in the
involved calculi. Finding an appropriate value for n is challenging and requires
profound knowledge on the domain’s properties. From our experience with du-
plicate detection in road traffic management we argue that, if using the CNGs
of RCC and Allen’s temporal intervals as shown above, n = 2 is a value yielding
reasonable results. Nevertheless, it is desirable to include a larger number of
different calculi, which in turn requires an adapted value for n. Using a total of
n = 2 hops in the CNGs of RCC and Allen’s temporal intervals, three different
neighborhoods are reachable:

Nrcc(oOi
r , 2): {rcc:Disrelated}

Nallen(oOi
r , 2): {allen:OverlapsInverse, allen:DuringInverse}

Nrcc∧allen(oOi
r , 2): {rcc:ProperPart, rcc:ProperPartInverse , rcc:PartiallyOver-

lapping} × {allen:StartsInverse, allen:FinishesInverse}

Table 1 shows sample duplicates with relations holding between them and the
similarity neighborhood they belong to.

Table 1. Sample duplicates with their respective relations

Qualitative Relations Quantitative Values
ID Location Time

begin end begin end

rcc:Equal ∧ allen:Equals: TJ1’ located in
Nrcc∧allen(TJ1, 0) → Duplicates (identical
values)

TJ1
km
6.5

km
8.0

2010-12-01
08:00

2010-12-01
09:00

TJ1’
km
6.5

km
8.0

2010-12-01
08:00

2010-12-01
09:00

rcc:PartiallyOverlapping ∧
allen:FinishesInverse : TJ2’ located in
Nrcc∧allen(TJ2, 2) → Duplicates
(contradictory values)

TJ2
km
7.5

km
11.0

2010-12-01
08:40

2010-12-01
09:00

TJ2’
km
8.0

km
13.5

2010-12-01
08:20

2010-12-01
09:00

(Legend: TJ = Traffic Jam).

494 W. Gottesheim et al.

To correlate quantitative values with their qualitative representations, we in-
troduced rule-based relation interpretations that derive relations from object
attribute values [2]. As a prerequisite, these relation interpretations assume that
attribute values adhere to particular value ranges. These interpretations are
domain-dependent, since the definition of such value ranges differs between do-
mains. Again using road traffic management as a demonstration domain and
representing mereotopological relations in RCC, let us demonstrate this con-
cept. For deriving such mereotopological relations, using a strictly monotonic,
linear space (i. e., road traffic objects, such as traffic jams or roadworks, that
occupy a region on a highway) as value range, we can define regions as intervals,
whereas given, for example, objects anchored in Euclidian space, we can define
a region as a center point with a radius. We can now define the interpretations of
relations in RCC (rcc = {Disrelated, PartiallyOverlapping, ProperPart,
ProperPartInverse, Equals}) as functions frcc : R × R → rcc mapping object
intervals to particular relations (e. g., PartiallyOverlapping may be defined as
o1.start < o2.start ∧ o1.end > o2.start ∧ o1.end < o2.end, as TJ2 in Table 1
shows). For the purpose of data generation, we use the inverse of these functions,
thereby mapping a qualitative relation onto a given value range. For example, for
the above specified function frcc we can use its inverse f−1

rcc : rcc → R×R to map
relations between two objects onto the underlying value range. The generation
of duplicates arising from missing values can be performed here by providing an
inverse function that either maps onto the value range or generates an empty
result, such as f−1

rcc : rcc → R ∨ ∅ × R ∨ ∅.
Having laid the foundation for using qualitative data to describe how objects

are related, the next section presents our approach to synthetic data generation
exploiting the semantics of these relations.

3 Approach

SemGen, our semantics-driven approach to synthetic data generation creates
duplicates by taking existing real-world duplicates as the basis for creating ad-
ditional duplicates that closely resemble real-world characteristics. We control
variability in the synthetic data set by using qualitative descriptions as outlined
in the previous section. We propose a four-step process as depicted in Fig. 2:

1. Relation derivation between labelled duplicate pairs as starting points for the
subsequent diversification steps,

2. Qualitative diversification to change these relations along the configured
aspects,

3. Quantitative diversification to map the meaning of each such relation onto
the attributes it is derived from, thereby finally characterizing synthetic ob-
jects in detail with sample attribute values derived from the attribute values
of the labelled duplicate pair, and finally

4. Export of generated synthetic objects to an output format suiting the dupli-
cate detection method to be evaluated, such as relational data or an ontology.

SemGen—Towards a Semantic Data Generator 495

Fig. 2. Overview of synthetic duplicate generation

Input for this process is a reference data set with pairs of objects labelled as
duplicates as well as distinct objects. In road traffic management, such a data
set contains information on objects in terms of quantitative attributes, such as
spatial extent in kilometers or lifespan given as an interval of timestamps, and
in terms of meta-information, such as the data source an objects originates from
or an object’s type. Common object types are, for example, traffic jams, road
works, or lane closures.

Configuration mechanisms allow SemGen’s user to control various aspects of
the data generation process:

– the size of the generated data set,
– the kinds of relation calculi that are included in the process,
– the distribution of relations within a calculus,
– the distribution of duplicates in the whole data set,
– the distribution of object types in the resulting data set,
– and the ratio of duplicates to non-duplicates per object type.

Given our three causes for duplicates presented above—identical, contradictory,
and missing information—it is obvious that the generation of identical duplicates
is trivial, since the second step of this process can be omitted, therefore no values
other than the original ones can be generated in step 3. Therefore, we focus on
the generation of duplicates arising from contradictory and missing information.

(1) Relation derivation. As a prerequisite for the later process steps the
relations between objects in a reference data set are derived. These relations serve
as starting point for the subsequent qualitative diversification step. Currently,
relation calculi relevant to the generation of spatio-temporal data are supported
(RCC, spatial distance and size calculi [2], and Allen’s Temporal Intervals).

(2) Qualitative diversification with CNGs. On the qualitative level, we
employ the conceptual neighborhood of relations and identity relations intro-
duced in Section 2 to define the concept of similarity neighborhood for steering

496 W. Gottesheim et al.

qualitative diversification. We can now formulate an algorithm for choosing the
relations (of particular aspects) which must hold between a given labelled ref-
erence object and its generated synthetic duplicate object, thereby respecting a
similarity neighborhood constraint n for each relation calculus. Listing 1.1 shows
a pseudocode representation of this algorithm1. In principle, the algorithm iter-
ates over the relevant calculi and changes the relations between labelled reference
objects and their synthetic duplicates in a random fashion, but constrained by
the configured relation distribution. In order to determine the label of the syn-
thetic object, i. e., whether the synthetic object is still a duplicate to its reference
object, the algorithm checks whether or not the relation is within the neighbor-
hood of the labelled reference object. If so, the synthetic object is assigned the
same label as the reference object, otherwise it is not labelled. During this diver-
sification step, the generation of relations that describe a single synthetic object
in a conflicting and, hence, impossible way has to be avoided. An example for
such a conflicting configuration occurs, if the regions of two objects are equal,
while they are at the same time of different size.

Listing 1.1. Algorithm to find relations between a reference object and a synthetic
object.

�������� select_relations(

�� configuration,

�� ref_object,

�� neighborhood_radii<calculus,n>,

��� relations_to_synth,

��� synth_labels)

�	
 neighborhood: set<relations>;

rel: relation;

relations_to_synth: set<relations>;

synthetic_labels: set<label>;

��
 �	�� (calculus �� neighborhood_radii.keys)

neighbor_relations = N(object, neighborhood_radii[calculus]);

��	� rel = random_select(neighbor_relations);

����� configuration.is_relation_acceptable(rel);

�� N.contains(rel) then

// relation is in similarity neighborhood

synth_label.add(get_label(ref_object));

��� ��

relations_to_synth.add(rel);

���

���

(3) Quantitative diversification. In quantitative diversification, concrete val-
ues for object attributes need to be correlated with qualitative relations.
For creating sample attribute values, we use the inverse functions to our re-
lation derivation rules as introduced above. Concrete values for a sample
region for a synthetic object are chosen randomly from applying the mapped
1 Note that, in this paper, the focus is put on showing its functional principle, thus

ignoring possible performance improvements.

SemGen—Towards a Semantic Data Generator 497

Table 2. Exemplary qualitative and quantitative diversification

(a) Qualitative diversification.
RCC

PO EQ PP PPi

n 0 1 1 1

A
ll
e
n
’s

T
e
m

p
o
ra

l
In

te
rv

a
ls FinishesInverse 0 �

DuringInverse 1
OverlapsInverse 1 	1..n

Equals 1
Starts 1

Finishes 2 �1..n

StartsInverse 2
MeetsInverse 2 �1..n

(b) Quantitative diversification.
ID Location Time

begin end begin end

	1 TJ1 km 6.5 km 8.0 08:00 08:50
TJ2 km 7.0 km 7.5 08:40 09:00

	2 TJ1 km 6.5 km 8.0 08:00 08:35
TJ2 km 6.9 km 7.8 08:22 09:00

�1 TJ1 km 6.5 km 8.0 08:30 09:00
TJ2 km 6.5 km 8.0 08:35 09:00

�2 TJ1 km 6.5 km 8.0 08:47 09:00
TJ2 km 6.5 km 8.0 08:20 09:00

�1 TJ1 km 8.0 km 10.0 08:30 09:00
TJ2 km 7.5 km 11.0 08:00 08:30

�2 TJ1 km 8.1 km 9.9 08:45 09:00
TJ2 km 7.5 km 11.0 08:40 08:45

interval to the region of the labelled reference object (e. g., a synthetic dupli-
cate that is ProperPart of a labelled reference object has randomly chosen
interval boundaries that lie within the boundaries of this labelled reference
object). Since the relation calculi used for qualitative diversification are de-
signed for reuse, interdependencies between them are not explicitly modeled.
For example, the relation rcc:Disrelated does not specify in which order and
at which distance objects are placed on the highway, leaving many options for
quantitative diversification in a strictly monotonic, ordinal value space repre-
senting regions on a highway. In case several relation calculi, which describe
the same real-world aspect, steer qualitative diversification, interdependencies
between them put constraints on quantitative diversification. For instance,
consider rcc:Disrelated and spatdist:V eryClose as a result of qualitative
diversification. Then, sample attribute values created during quantitative di-
versification must satisfy both relation interpretations. To generate duplicates
arising from missing values, random null values replacing sample attribute values
can be generated during quantitative diversification to better mimic real-world
data.

Example. To further illustrate the process described above, we will use two
exemplary traffic objects TJ1 and TJ2 as shown in Table 1. As a minimal sample
configuration based on our experience from road traffic management systems, we
choose to use RCC as well as Allen’s Temporal Intervals as relation calculi and
configure a similarity neighborhood constraint of nRCC = 1 and nAllen = 2.
Table 2a shows the resulting similarity neighborhood as a matrix.

In step (1), we derive relations of the configured calculi for our reference data
set consisting, in this case, of two objects TJ1 and TJ2, which results in the
relations {rcc:PartiallyOverlapping ∧ allen:FinishesInverse} holding between
TJ1 and TJ2 (denoted in Table 2a as �). This means that their spatial re-
gions overlap and, while the lifespan of TJ2 begins after the one of TJ1, both
end at the same time. In step (2), these currently holding relations are diver-
sified within the configured relation neighborhoods. This results in 31 possible

498 W. Gottesheim et al.

additional configurations. Finally, in step (3), quantitative representations for
these relations are generated based on the original attribute values, with some
examples (denoted in Tab. 2a as �, �, �) shown in Table 2b. Note that attribute
values affected in this process are highlighted.

4 Related Work

Automated generation of test data sets is an approach followed in a variety
of fields. In the following, we will present domains where data generation ap-
proaches are used in order to show commonalities and differences to using data
generators as a prerequisite for evaluating duplicate detection methods.

For database systems, Weis [19] distinguishes between data generators that
facilitate tasks such as evaluating duplicate detection methods, and those that
support the task of testing and improving the performance of a database sys-
tem. We first cover closely related work from generators that belong to the first
category, before we continue with more widely related approaches that fall into
the second one. Among those, judging from literature the most well known for
generating duplicates in relational data is DBGen, also known as UIS Database
Generator2, which manipulates records consisting of personal information such
as name, address, and social security number by introducing typographical er-
rors or completely changing them in a random fashion [12]. This approach has
been refined in [4] to overcome some original limitations, such as poor variability
in the set of possible values. Since both approaches are using implicit semantics
for domains relying on string-based information, they do not allow to configure
variability with regard to multiple aspects, and also lack support for multiple
quantitative representations. thus suffering from the limitations described such
as the lack of a semantically rich configuration mechanism allowing in-depth
control of the generation process. Another approach from the first category is
proposed in [8], where synthetic test data also containing duplicates is used to
test applications using a relational database. Their goal was to create data sets
that allow to verify the correct function of applications that access the database,
and to that end, a comprehensive data set covering all relevant cases is required,
which also includes the correct handling of duplicates. However, only identical
duplicates are regarded, and furthermore configuration mechanisms as proposed
here are missing. Thus, they are unable to configure variability with regard to
multiple aspects, and do not support more than one quantitative representation.

Other data generators in the database field support the syntactical task of
performance improvements by providing a large data set with known statistical
properties in an efficient and reproducible way. In the last years, numerous ap-
proaches have been presented for generating data, such as [13], which provides
efficient generation of large data sets in parallel and is flexibly configurable,
or [6], which provides a “Data Generation Language” for specifying the gener-
ated data, or [14], using a graph model to control the generation process. But
their goal is to efficiently generate large data sets for performance testing which,
2 http://www.cs.utexas.edu/users/ml/riddle/data.html

SemGen—Towards a Semantic Data Generator 499

therefore, have to be consistent and must not contain duplicates. Thus, using
these generators for generating test data sets for duplicate detection methods is
not feasible. In the area of spatio-temporal databases, frameworks to generate
data on moving objects in a quantitative manner have been proposed [5], [18],
which focus on generating data to represent the evolution of objects in terms of
motion. While they are operating in a similar domain, again the focus is on the
generation of consistent data, not of duplicates with known properties.

In summary, although synthetic data generation is an issue in many domains,
qualitative approaches have not yet been the focus. Besides, many of these quan-
titative approaches are heavily domain-specific, limiting their applicability out-
side their original domain. To date, no data generator for the evaluation of
duplicate detection methods in spatio-temporal data has been proposed.

5 Discussion and Further Work

In this section, we discuss several lessons learned during the ongoing implemen-
tation of the presented approach, which at the same time represent the directions
followed by our further work.

Duplicate variability in real-world data configures qualitative diversi-
fication. By deriving relations between labelled duplicates in a small set of real-
world data, distribution characteristics per relation calculus can be controlled on
a qualitative level (e. g., in RCC, most duplicates may be rcc:PartiallyOver-
lapping, a smaller portion might be rcc:Equals, and some rcc:ProperPart).
Such distribution characteristics can be used for steering qualitative diversifi-
cation (thereby promoting CNGs to Bayesian networks), in order to generate
synthetic test data sets exhibiting near real-world characteristics.

Qualitative diversification should be aware of error models. In our ap-
proach, CNGs steer the qualitative diversification of synthetic duplicates. Al-
though such CNGs can be defined domain-independently, fitting them to the
errors encountered in a particular domain is possible. Depending on real-world
system factors, such as the type of user interface, various errors may occur: for
example, values may be simply outdated (differ from the real value by some
offset), or be entered with transposed digits. In road traffic management, for
example, traffic jams are either detected by sensors, which may fail arbitrarily
(e. g., a large traffic jam may be detected as two smaller, disrelated ones), or
entered by humans, which may enter wrong data. Such errors should be repre-
sented by adapting the respective CNGs and adding or removing edges, so that
errors are in the correct similarity neighborhood.

Characteristics of value ranges bound quantitative diversification.
Value ranges provide a model of the world, and may be instantiated to represent
different real-world spaces. For example, consider our value range for objects on
highways being defined as intervals on a strictly monotonic, linear space. Each
concrete highway is an instance of such a linear space that may differ in length

500 W. Gottesheim et al.

from other instances. For quantitative diversification, we may use these addi-
tional characteristics as constraints, or deliberately ignore them to also create
inconsistent synthetic duplicates.

Generalizing qualitative and quantitative diversification to other
domains. Numerous causes for contradictory values in duplicates are known
in other domains [16], for instance errors in strings and numbers such as ty-
pographical errors and synonyms. Since a representation of these causes as a
CNG is possible, extending SemGen towards domains that rely on string rep-
resentations will begin by defining an appropriate CNG together with relation
derivation functions and their inverse functions.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Baumgartner, N., Gottesheim, W., Mitsch, S., Retschitzegger, W., Schwinger, W.:
BeAware!—situation awareness, the ontology-driven way. International Journal of
Data and Knowledge Engineering 69(11), 1181–1193 (2010)

3. Baumgartner, N., Gottesheim, W., Mitsch, S., Retschitzegger, W., Schwinger, W.:
Towards duplicate detection for situation awareness based on spatio-temporal rela-
tions. In: Proceedings of the 9th International Conference on Ontologies, DataBases
and Applications of Semantics, Crete, Greece (October 2010)

4. Bertolazzi, P., Santisy, L.D., Scannapieco, M.: Automatic record matching in coop-
erative information systems. In: Proceedings of the ICDT 2003 International Work-
shop on Data Quality in Cooperative Information Systems, DQCIS 2003 (2003)

5. Brinkhoff, T.: A framework for generating network-based moving objects. GeoIn-
formatica 6(2), 153–180 (2002)

6. Bruno, N., Chaudhuri, S.: Flexible database generators. In: Proceedings of the 31st
International Conference on Very Large DataBases, pp. 1097–1107 (2005)

7. Bruns, H.T., Egenhofer, M.J.: Similarity of spatial scenes. In: Kraak, M.-J., Mole-
naar, M. (eds.) Proceedings of the 7th International Symposium on Spatial Data
Handling (SDH), Delft, The Netherlands, August 1996, pp. 31–42 (1996)

8. Chays, D., Dan, S., Frankl, P.G., Vokolos, F.I., Weber, E.J.: A framework for
testing database applications. SIGSOFT Software Engineering Notes 25, 147–157
(2000)

9. Dylla, F., Wallgrün, J.O.: On generalizing orientation information in OPRAm. In:
Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, pp.
274–288. Springer, Heidelberg (2007)

10. Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reason-
ing. In: Proceedings of the IMACS International Workshop on Decision Support
Systems and Qualitative Reasoning, Toulouse, France, March 1991, pp. 181–187
(1991)

11. Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelli-
gence 54(1), 199–227 (1992)

12. Hernández, M.A., Stolfo, S.J.: The merge/purge problem for large databases. In:
Proceedings of the 1995 ACM SIGMOD International Conference on Management
of Data, SIGMOD Rec., New York, NY, USA, pp. 127–138 (1995)

SemGen—Towards a Semantic Data Generator 501

13. Hoag, J.E., Thompson, C.W.: A parallel general-purpose synthetic data generator.
SIGMOD Rec. 36, 19–24 (2007)

14. Houkjær, K., Torp, K., Wind, R.: Simple and realistic data generation. In: Proceed-
ings of the 32nd International Conference on Very Large Data Bases, pp. 1243–1246
(2006)

15. Kim, W., Choi, B.-J., Hong, E.-K., Kim, S.-K., Lee, D.: A taxonomy of dirty data.
Data Mining and Knowledge Discovery 7, 81–99 (2003)

16. Naumann, F., Herschel, M.: An Introduction to Duplicate Detection. Morgan &
Claypool (2010)

17. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.
In: Proceedings of the 3rd International Conference on Knowledge Representation
and Reasoning (October 1992)

18. Tzouramanis, T., Vassilakopoulos, M., Manolopoulos, Y.: On the generation of
time-evolving regional data. GeoInformatica 6, 207–231 (2002)

19. Weis, M., Naumann, F., Brosy, F.: A duplicate detection benchmark for xml (and
relational) data. In: SIGMOD 2006 Workshop on Information Quality for Informa-
tion Systems (IQIS), Chicago, IL, USA (June 2006)

Estimating a Transit Passenger Trip
Origin-Destination Matrix Using Automatic

Fare Collection System

Daming Li1, Yongjie Lin2, Xinliang Zhao1, Hongjun Song2, and Nan Zou2

1 School of Business Administration, Northeastern University,
No.3 Wenhua Road, Shenyang, Liaoning, P.R. China

damingl@163.com
2 School of Control Science and Engineering, Shandong University,

Jingshi Road No.17923, Jinan, Shandong, China
yjlin@mail.sdu.edu.cn, nanzou@mail.sdu.edu.cn

Abstract. Automatic fare collection system (AFC) has been widely used
for public transport all over the world. However, in China, the most impor-
tant information, the Origin-Destination (OD) matrix of each bus route,
cannot be directly obtained from AFC since alighting information is not
recorded at each bus stop. This paper presents an OD estimation model,
which applies trajectory search algorithms to track passengers’ daily trip
trajectory using pre-processed smart card data from all the passengers in
one city of China. The results of a rigorous validation with on/off data
from a real bus route reveal that the proposed model is quite effective and
reliable in estimating the OD matrix for identification of the underlying
demand pattern of a transit route. The algorithm is validated using one-
day smart card data in Jinan city. The results have shown that the OD
estimation from the proposed algorithm match more than 75% with the
actual OD pairs. During the peak hours, the matching rate goes up to 85%.
Hence, the proposed algorithm significantly improves the utilization of the
smart card data. It is valuable to evaluate route network and optimize bus
scheduling basing on estimated passenger trip OD matrix.

1 Introduction

Over the past several decades, contending with traffic congestion has emerged as
one of the imperative issues during the process of urbanization in developing coun-
tries such as China. Development of a transit-oriented urban transport system has
been realized by an increasing number of researchers as one of the most effective
strategies for mitigating congestion [1]. In recent years, many big cities in China
are dedicated to proposing policies and measures for developing efficient public
transport systems from both planning and operation perspectives [2]. With the
advance of evolving computer and automation technologies, automatic fare col-
lection system (AFC) has been widely used in improving the efficiency of urban
public transportation system. In 2010, the utilization ratio of smart cards in Jinan
city will reach up to 70%, which could definitely provide reliable data support for
the establishment of advanced public transportation system.

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 502–513, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Estimating a Transit Passenger Trip Origin-Destination Matrix 503

Nowadays, most AFC systems around the world only record passengers’ board-
ing information and alighting data is lost, such as bus route, boarding stop and
boarding time. To ensure AFC systems utilized efficiently, lots of research issues
are proposed, including the stability of data communication, data mining and
OD matrix estimation of each bus route. This study will present a new approach
focused on estimating OD matrix of transit routes while AFC system does not
record passenger alighting data.

In review of the literature, this subject has attracted great attention of re-
searchers in recent years. Barry et al. presented a methodology that estimates
station-to-station origin and destination (O-D) trip tables using MetroCard
information. A set of straightforward algorithms is applied to each set of Metro-
Card trips to infer a destination station for each origin station [3]. Trépanier pre-
sented a model for the estimation of the destination (deboarding) locations. Some
critical issues related to smart card data such as privacy concerns, data struc-
ture, data errors, and missing information are discussed [4]. In 2007, Trépanier
also presented a model to estimate the destination location for each individual
boarding a bus with a smart card. The first application of the model provided
a success rate of 66% for destination estimation, reaching about 80% at peak
hours [5]. Zhao presented two case studies both in the context of the Chicago
Transit Authority [6]. One study proposes an enhanced method of inferring the
rail trip OD matrix from an origin-only AFC system to replace the routine pas-
senger survey. The other study is of rail path choice, which employs the Logit
and Mixed Logit models to examine revealed public transit riders’ travel be-
havior based on the inferred OD matrix and the transit network attributes. In
2007, Zhao further developed an enhanced method for inferring rail passenger
trip origin-destination (OD) matrices from an origin-only AFC system to replace
expensive passenger OD surveys [7]. Cui et al. documented the development of
an algorithm to estimate a Bus Passenger Trip Origin-Destination Matrix based
on ADC system archived data including Automated Fare Collection, Automatic
Passenger Count, and Automatic Vehicle Location data [8]. Farzin outlined the
process used to create an origin-destination matrix in São Paulo, Brazil, with
data available from automated data collection systems [9]. The approach used
in this paper addresses a more complex bus network than has been approached
before. A very recent study by Lin et al. focused on providing an improved ap-
proach for estimating the passenger demand OD matrix for each bus route [10].

Along the line of previous research, this paper presents an enhanced algorithm
to estimate passenger trajectory with various transfer distances within satisfied
computation time. In addition, algorithms are developed to estimate trip demand
matrix of bus stops or traffic zones. Estimated OD matrix represents passenger
trip demand so that it can be applied to evaluate or optimize route network
and bus scheduling. Especially, in China, this information may be obtained by
numerous surveyors and investigators on site, but it would waste much time and
fund. Hence, it is greatly significant to present these algorithms to automatically
estimate passenger demand OD matrix by using AFC system.

504 D. Li et al.

2 Estimating Passenger Trajectory

2.1 Data Analysis

As shown in Table 1, the smart cards in most cities of China mainly record such
information as smart card style, bus route, and boarding time.The card ID in
the first column of Table 1 is exclusively designated. The second column refers
to card style, which includes monthly card (charge fixed fee each month, with no
limit to boarding frequency, time, and route), free card (mainly given to senior
people, soldiers, and other groups entitled special treatment), driver card (the
card for each driver), student card (with 50% off for student users) and common
card (with 10% off for passengers holding smart traffic cards). The third column
refers to the series number of passengers’ boarding routes. The fourth column
refers to series number of boarding stops. The fifth, sixth and seventh columns
refer to the ID of vehicles that passengers take, the boarding time and date
respectively. From this table, it can be seen that this type of smart card only
records boarding data while alighting data missed. Due to equipment error and
drivers’ operation mistakes, the raw data of smart card usually consists of gross
errors and random errors. After analyzing the major problems existing in smart
card data, this paper presents corresponding solutions.

Table 1. Partial passenger boarding information from AFC system

Card ID Card style Route Stop Veh. ID Time Date Fare
-1760518818 Monthly card 115 156 2798 06:27:16 2009-07-07 -
-1760518818 Monthly card 115 3 2346 18:47:21 2009-07-07 -
-1760517522 Common card 115 19 2810 08:34:53 2009-07-07 0.9
-1760517522 Common card 115 151 2808 17:47:31 2009-07-07 0.9
-1760515746 Monthly card 115 133 2794 11:56:22 2009-07-07 -
-1760515746 Monthly card 115 133 2814 18:52:29 2009-07-07 -
-1760515714 Monthly card 115 23 2794 17:32:51 2009-07-07 -
-1760515122 Monthly card 115 151 789 18:01:25 2009-07-07 -
-1760514466 Monthly card 115 12 2814 17:38:18 2009-07-07 -
-1760513522 Monthly card 115 31 2802 07:40:42 2009-07-07 -

1) The lack of information on route, stop, etc. This problem is mainly caused
by the breakdown of smart card or card reader. To solve this problem, two
approaches are normally adopted: recover and remove. If all the information
such as boarding route, stop, vehicle ID and time are missed, this group of
information will be crossed out. On the other hand, if at least two kinds of
the above information are kept, this group of information should be recov-
ered. Recover method is that the missed information is estimated by the use
of historical smart card and part existing data. There are specific solutions
as follows:

Estimating a Transit Passenger Trip Origin-Destination Matrix 505

a) The lack of information on route. China’s public vehicles are allocated
to constant routes. Therefore, the routes are related to vehicle IDs.

b) The lack of information on time and date. The raw data of the same
route is obtained according to time order, so missed time and date can
be estimated through passenger information taking same bus.

c) The lack of information on stop. By comparing to historical information
on route and time, the paper maybe identifies boarding stop that carries
the most identical information.

d) The lack of vehicle information. This paper compares the information
on route, stop and time from smart card data stored in database, and
then selects most similar historical data record to estimate missing
vehicle information.

2) False recording information. It mainly refers to a passenger swipe her or his
card several times at the same time, but it is impossible for a passenger to
take the bus several times at a same time. This problem is mainly caused
by the instability of the card-reading equipment, which generates repeated
information. One of solutions is to keep the first record.

3) Redundant recording information, such as card style, consumption amount,
the balance. This type of information is mainly used to manage finance and
information. It is useless to analyze travel demand. To cut the workload of
data search, this paper omits this type of information.

2.2 Trajectory Search Algorithms

Assumptions
Suppose passenger’s trajectory starts from the origin stop and ends with the
destination of each trip, this paper attempts to estimate passenger’s daily tra-
jectory from boarding information recorded by AFC at each bus stop. To ensure
that the proposed algorithms can be tackled and also realistically reflect the
real-world constraints, this study has employed the following two assumptions
in the model formulation:
1) Passenger’s previous trip destination is nearby the bus stop of next trip origin.
2) Clock of all buses is synchronous.
3) At the end of the day, passengers return to the first boarding stop of the day.

Figure 1 shows a typical passenger’s daily trajectory. Here,“P” stands for one
bus stop. During the entire day, there are 3 bus trips for this passenger, with
b1, b2 and b3 as passenger boarding stops. According to Assumption 1, one can
conclude that each trip destination is located around the origin of the next trip.
For example, if the starting stop of first trip is b1 and the starting stop of the
second trip is b2, the destination of the first trip should be close to b2. The
detailed searching algorithms are described as follows.

Notations
To facilitate the following illustration, all definitions and notations used hereafter
are summarized below.

506 D. Li et al.

Fig. 1. A passenger’s trips distribution

r: The bus route of a city, r = 1, 2, . . . , R,
sr: The stop of the rth bus route, sr = 1, 2, . . . , Sr,
snsr : The name of the srth bus stop from the rth bus route, which is same

for overlapped stops from different routes,
SN = {(snsr)}: The set of bus stops,
xsr : The longitude of the srth bus stop,
ysr : The latitude of the srth bus stop,
p : The serial number of passengers, p = 1, 2, . . . , P ,
orpi : The bus route from which the pth passenger boards his/her ith trip

i = 1, 2, . . . , Ip,
ospi : The bus stop at which the pth passenger boards his/her ith trip,
dspi : The estimated stop at which the pth passenger alights his/her ith trip,
PT = {(ospi , dspi)}: The set of passenger trajectories,
taj = {snsr1 , snsr2 , . . . , snsrk

}: The set of bus stops that belong to the jth
traffic zone,

m(snsa , snsb
): The number of passengers who travel from Stop snsa to snsb

.
It represents trip demand between snsa and snsb

,
m′(taa, tab): The number of passengers who travel from zone taa to zone to

zone tab. It represents trip demand between taa and tab ,
D: The standard maximum transfer distance, which is determined by the

city’s urban economy status, coverage of public transport network and other
related factors

θ: The variation of maximum transfer distance, which is determined by one
passenger’s individual factors, such as age, gender, education, and income level.
Usually, θ complies with normal distribution. The distance between two bus
stops is defined as follows:

d(sa, sb) =
√

(xsa − xsb
)2 + (ysa − ysb

)2 (1)

Estimating a Transit Passenger Trip Origin-Destination Matrix 507

The distance between one stop and one route refers to minimum distance between
the stop and any stop from the route. This distance can be determined by the
following equation.

d(sa, r) = min(
√

(xsa − xsr)2 + (ysa − ysr)2), ∀sr ≤ Sr (2)

With Equation 1, the area of traffic zone can be figured determined. If the
distance between one pair of bus stops does not exceed the scope, these stops
can be treated as in the same traffic zone, i.e.

d(snsi , snsj) ≤ γj , ∀snsi ∈ taj , snsj ∈ taj (3)

γj represents the scope of the traffic zone in Equation 3Furthermore, there does
not exist any bus stop that belongs to two different traffic zones, i.e.

tai ∩ taj ≡ Φ, ∀i �= j (4)

Passenger’s alighting stop is determined by the next boarding route and stop.
If the distance between next boarding stop and current occupied route satisfies
the following condition

d(ospi+1 , orpi) ≤ D + θ (5)

Then, the alighting stop for this trip can be estimated. Moreover, the alighting
stop not only belongs to the orpi route, but also satisfies the following condition

d(sr , sa) ≤ d(sc, sa), ∀sc ≤ Sr (6)

The alighting stop of the current passenger can be estimated with the following
equation.

dspi = sr (7)

In order to calculate all passengers’ trip OD information for one entire city, this
paper applies the following algorithms on smart card data, eliminates data errors
and estimates the missing data. And then, it developed the improved algorithms
with accelerated searching strategies to estimate passengers’ trajectory.

Algorithm
The feasibility of transferring in this paper is determined by the transfer distance,
which varies among passengers. Once the search criteria are met, passenger tra-
jectory and destination of each trip can be estimated. This algorithm analyzes
the data collected by AFC during the whole day. China is a country with dense
population. Particularly in large and medium-sized cities, the number of pas-
sengers’ daily trips is much more than average values worldwide. Taking Jinan
city, the capital of Shandong province, as an example, by 2010, the number of
daily bus passengers in the city is up to 2.5 million and the amount of daily
card-swiping is above 1.5 million. Theoretically, it requires around 2.25 trillion
cycles to estimate the trajectory of all the passengers. Moreover, each loop oper-
ation also includes massive data comparison and matching calculation. It is very
hard to reliably estimate OD matrices for all passengers with traditional algo-
rithm within reasonable time. Therefore, it is necessary to investigate searching

508 D. Li et al.

Algorithm 1.
Input: RP , the set of smart card data from all the passengers in one city;

nsr , the set of bus stop number for one city.
Output: Alighting stop of each passenger’s every trip. Both boarding stops and esti-

mated alighting ones are combined into the set of trip trajectory PT .
1: Descend RP according to card number and corresponding time;
2: for (P = 1, RPp = ∅; p ≤ P ; p + +) do
3: Query orp, osp into RPp from RP limit 50, and descend RPp according to card

number and corresponding time;
4: for (i = 1; i ≤ Ip; i + +) do
5: Let d = 100000, dspi = 0;
6: for (sorpi

= 1; sorpi
≤ Sorpi

; sorpi
= sorpi

+ 1) do
7: if (i = Ip) then
8: {If (d ≤ d(ospi+1 , sorpi

)) d = d(ospi+1 , sorpi
)};

9: else
10: {If (d ≤ d(osp1 , sorpi

)) d = d(osp1 , sorpi
)};

11: end if
12: if (d ≤ D + θ) then
13: dspi = sorpi

; // Estimated alighting stop
14: end if
15: end for
16: end for
17: Delete orp osp from RP in descending order according to card number and

corresponding time, RPp = empty passenger data set;
18: end for

algorithms to efficiently analyze massive amount of data. The search algorithms
developed in this paper are described below.

By using the above algorithm for estimating passengers’ travel trajectory and
searching smart card data, it is possible to reliably estimate all passengers’ daily
trajectories within one specified day.

3 Travel Demand Matrix

Trip demand matrix describes travel demand from each stop to all other stops.
It represents the travel demand of every stop of a route, and supports route net-
work optimization and bus scheduling. Passenger trajectory is the basis of travel
demand matrix about traffic zone or bus stop. Each traffic zone has included differ-
ent bus stops. By using the above algorithm, this paper estimates all passengers’
trajectories of one city, and the trajectories. After the passengers’ trajectories are
obtained, one can then calculate travel demands in different traffic zone or bus
stop. The estimation algorithm developed in this paper is as follows:

With the above algorithm, it is efficient and reliable to estimate passengers’
travel demand matrix. The demand matrix can be used to evaluate or optimize
both bus route network and bus stops, and support advanced bus scheduling
system by providing real-time data on passenger flow.

Estimating a Transit Passenger Trip Origin-Destination Matrix 509

Algorithm 2.
Input: PT , the set of trip trajectory and SN , the set of bus stop name for one city.
Output: M , passengers’ travel demand matrix for each bus stop; its dimension is

equal to sn × sn, while sn represents the number of bus stop name for one city.
1: Descend PT according to boarding stop number and alighting stop;
2: for (a = 1, M =zero matrix, p = 1; p ≤ P ; p + +) do
3: for (i = 1; i ≤ Ip; i + +) do
4: M(snospi

, sndspi
) = M(snospi

, sndspi
) + 1;

5: end for
6: Delete the p passenger’s trajectory orp, osp from PT ;
7: end for

Further, this paper presented a new definition of traffic zones. The number of
passengers for traffic zones represents trip demand. The travel demand matrix in
different traffic zones takes the zone as the starting and end points. This paper
mainly studies stop-determined traffic zone, i.e. traffic zone is the set of stops
with relatively close physical distance. The travel demand matrix of passengers
between any two traffic zones refers to the number of passengers belong to the
two traffic communities. Here is the specific calculation method:

Algorithm 3.
Input:

Passengers’ travel demand matrix M and the set of all traffic zones TA = ta1 ∪
ta2 ∪ · · · ∪ taK ;

Output:
The travel demand Matrix M of the passengers grouped by traffic zones, and its
dimension is equal to K ×K, with K representing the number of different bus stop
name for one city.

1: Let M ′ = zero matrix;
2: for (a = 1; a ≤ sn; a = a + 1) do
3: for (b = 1; b ≤ sn; b = b + 1) do
4: find the cell M ′(tai, taj) where snospi

is found in tai and sndspi
is in taj ;

5: M ′(tai, taj) = M ′(tai, taj) + 1;
6: end for
7: end for

With this algorithm, it is feasible to reliably calculate the travel demand
matrix of all the passengers in any two different traffic zones. The matrix can
be used to evaluate, design or optimize bus route network, bus stops, and traffic
hubs. Furthermore, it is significant to support regional advanced bus scheduling,
improve bus operation efficiency, give a full play to bus carrying capacity, and
mitigate traffic congestion.

4 Case Studies

Taking Jinan as an example, this paper analyzes passengers’ information col-
lected by the automatic fare collection system, and validated the accuracy and

510 D. Li et al.

efficiency of the algorithm. At the end of Year 2010, the total number of bus
route is 186, and the total operation length is 3,383 kilometers. The number of
passengers served is 2.2 million and the number of card swiping is more than
1.5 million.

This paper takes Route 115 of Jinan city as an example to estimate passenger
trajectory and travel demand matrix of every stop by using proposed algorithm
and search strategies. The operation time of the inbound route starts from 5:00
and lasts to 20:30 while the outbound service starts from 6:00 and lasts to 21:10.
This route passes through both the urban and suburb areas of Jinan. The number
of card-swiping activity on this route is about 10,000 times per day. This paper
estimates passengers trajectory and travel demand matrix by using a program
written in C++ programing language and MYSQL database environment based
on the proposed algorithms. With search strategies proposed in this paper, the
computation time is 5 times faster than regular calculation algorithm (on a
personal computer with Intel Pentium Dual E3200 at 2.4 GHz CPU). Therefore,
the calculation time of all the bus routes in the city will be largely reduced.
By analyzing historical data, there are morning peak hours and evening peak
hours that last from 7:00 to 9:00 and from 17:30 to 19:30 respectively. With the
proposed algorithms, the successful rate of daily passenger trajectory estimation
is 70% and the rate in peak hours is over 80%. Some trips cannot be reliably
estimated due to the following reasons:

1) There is only one trip for one passenger in a day, so it is impossible to
estimate the alighting stop;

2) Passengers travel more than once, but the distance between the first alight-
ing stop and the starting point of next stop is too large, so it is not reliable
to estimate the destination of last travel. It can also be explained by mixed
usage of transportation modes (such as taxi, subway, etc.), which breaks the
trip chain of buses.

3) Passengers travel more than once, but they did not return to the starting
point at the last travel. The trajectory cannot be estimated in such case.

In the case study, the paper first analyzes the estimated passenger travel demand
matrix on the basis of bus stops, and studies the passenger demand of both in-
bound and outbound routes respectively, which is shown in Figure 2(a), 2(b),
2(c) and 2(d), which are 3-D graphs, with horizontal axis standing for boarding
stop while the first vertical axis standing for alighting stop and the second ver-
tical axis standing for the number of passengers, i.e. the number of passengers
between the boarding stop and alighting stop. From the figure, it also shows that
the travel demands between some stop pairs are quite huge.

Then, it further analyzes the passenger flow in both the going-to-work peak
hours and off-work peak hours. By comparing travel demand distribution trend of
the going-to-work peak hours and off-work peak hours, the paper has validated
the accuracy of this algorithm. In inbound direction, if the first vertical axis
is summed according to boarding stop of horizontal axis, boarding passenger
travel demand of each stop can be obtained as shown in Figure 3(a). For the
same reason, if the horizontal axis is summed according to alighting stop of first

Estimating a Transit Passenger Trip Origin-Destination Matrix 511

(a) Inbound during morning peak
hours.

(b) Outbound during morning peak
hours.

(c) Inbound during evening peak hours. (d) Outbound during evening peak
hours.

Fig. 2. The number of passengers’ distribution of route 115 in one day

vertical axis, alighting passenger travel demand of each stop can be calculated
as shown in Figure 3(b). Meanwhile, the boarding and alighting travel demand
in outbound can easily figured out as shown in Figure 4(a) and 4(b).

Figure 3 shows the number of passengers in inbound route of each stop and
there are 32 stops, while Figure 4 shows the number of passengers in outbound
route of each stop and there are also 32 stops. The difference between them is
that there is not only different series number for the same stop in inbound and
outbound route, but also the sum of any series number is 33 for the same stop
in both inbound and outbound route.

We can be seen there are a lot of boarding passengers at the 1st−4th, 6th, 11th,
and 14th stops in the inbound while the number of alighting passengers at the
24th and 32nd stops is also quite larger than others. This keeps in touch with re-
ality because these stops are near resident zones, commercial zones, companies,
and schools. In Figure 4, it is off-work peak hours, and the number of passen-
gers at the 1st, 9th, 10th−20th, 26th−27th, 29th−32nd stops are quite larger than

512 D. Li et al.

Fig. 3. The inbound passengers’ distribution during morning peak hours

Fig. 4. The outbound passengers’ distribution during evening peak hours

others, and it is because many workers return to home after work. As some
off-work workers go shopping or dinning after work, the passenger flow is a bit
scattered.

5 Conclusions

Based on the analysis of China’s bus operation management and AFC, this pa-
per summarizes existing algorithms about analyzing smart card and proposes
an algorithm that can estimate passenger trajectory based on variant transfer
distance. The proposed acceleration algorithm improves the searching efficiency
from massive data sets. The developed algorithms can mine smart card data

Estimating a Transit Passenger Trip Origin-Destination Matrix 513

to improve the use of automatic fare collection system. Furthermore, estimated
passenger trajectory and travel demand are validated by numerical tests. The
matrix in this paper is significant in supporting trip demand estimation, bus dis-
patching and route optimization for planners and decision-makers. The searching
strategies are presented to improve the operation efficiency, which provide the
capabilities of estimating OD matrix of each bus routes in large and medium-
sized cities in China and around the world.

Note that this paper has presented preliminary for the proposed model through
a case study. More extensive tests or evaluations will be essential to assess the
effectiveness of the proposed model with more data samples and to account for
additional critical issues such as raw data mining, passengers’ records recovery,
and the calibration of asynchronous clock for each bus.

References

1. Yu, J., Liu, Y., Chang, G.L., Ma, W., Yang, X.: A Cluster-Based Hierarchical
Model for Urban Transit Hub Location Planning: Formulation, Solution, and Case
Study. Transportation Research Record 2112, 8–16 (2009)

2. Yu, J., Liu, Y., Yang, X.: Cluster-based Optimization of Urban Transit Hub
Locations: Methodology and Case Study in China. Transportation Research
Record 2042, 109–116 (2008)

3. Barry, J.J., Newhouser, R., Rahbee, A., Sayeda, S.: Origin and Destination
Estimation in New York City with Automated Fare System Data. Transporta-
tion Research Record: Journal of the Transportation Research Board No. 1817,
183–187 (2002)

4. Trépanier, M., Chapleau, R.: Destination estimation from public transport smart
card data. In: The 12th IFAC symposium on Information Control Problems in
Manufacturing, Saint-Etienne, France (2006)

5. Trépanier, M., Tranchant, N., Chapleau, R.: Individual Trip Destination Estima-
tion in a Transit Smart Card Automated Fare Collection System. Journal of Intel-
ligent Transportation Systems: Technology, Planning and Operations 11(1), 1–14
(2007)

6. Zhao, J.: The Planning and Analysis Implications of Automated Data Collection
Systems: Rail Transit OD Matrix Inference and Path Choice Modeling Examples.
Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA (2004)

7. Zhao, J., Rahbee, A., Wilson, N.: Estimating a Rail Passenger Trip Origin-
Destination Matrix Using Automatic Data Collection Systems. Computer-Aided
Civil and Infrastructure Engineering 22, 376–387 (2007)

8. Cui, A.: Bus Passenger Origin-Destination Matrix Estimation Using Automatic
Data Collection Systems. M.S. Thesis, Massachusetts Institute of Technology, MA
(2006)

9. Farzin, J.: Constructing an Automated Bus Origin-Destination Matrix Using Fare
card and GPS Data in São Paulo, Brazil. Presented at the 87th TRB Annual
Conference, Washington, DC (2008)

10. Lin, Y.J., Jia, L., Zou, N.: Estimating Passenger Origin-Destination Matrix of
Fixed-fare Bus Smart Card Usage Information. Presented at the 17th World
Congress on Intelligent Transportation System, Busan, Korea (2010)

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 514–525, 2011.
© Springer-Verlag Berlin Heidelberg 2011

An Approach to Assess the Quality of Web Pages in the
Deep Web

Tiezheng Nie, Ge Yu, Derong Shen, Yue Kou, and Dejun Yue

College of Information Science and Engineering, Northeastern University,
110819 Shenyang, China

{nietiezheng,yuge,shenderong,kouyue,yuedejun}@ise.neu.edu.cn

Abstract. Web pages contain a large number of structured data, which are use-
ful for many advanced applications. Existing works mainly focused on extract-
ing structured data from web pages by individual wrappers but ignored the
quality for these underlying web pages, which in fact impact the extracting re-
sults seriously. Thus, we define the quality of a web page by the data quality a
wrapper can achieve in extraction. This paper proposes a novel approach to as-
sess the quality of web pages in the deep web. In our approach, we first define
the schema of web data with a hierarchical model. Then web pages are dealt
with as XML documents and parsed into a DOM tree. The data units and attrib-
ute values in the web page are annotated with the schema semantics and the
XPATH of position in the DOM tree. Based on the annotation, we build an as-
sessment model for the quality of web pages with two dimensions: the structure
complexity and the text complexity of node in the DOM tree. The quality is par-
titioned into three quality levels in our model, and the quality of web pages in
the same quality level is compared by the proposed formulas. Moreover, we de-
sign an XQuery-based wrapper to extract the web page and validate our quality
model since most of existing wrappers can not handle the data with hierarchical
structure. The wrapper generates XQuery statements to extract web data with
the annotation information. The experimental results demonstrated our ap-
proach is accurate for assessing the data quality of web pages. It is very helpful
for data quality control in the deep web related applications.

1 Introduction

In the surface web and the deep web [1], there are a large number of structured and
semi-structured data contained by web pages. These data can be used in many ad-
vanced applications and provide high quality data. However, these structured data are
represented in the form of HTML, which is designed for human browsing instead of
data processing. So, using wrapper to extract structured and semi-structured data from
web pages of data sources has become an important work for making full use of web
data. There are many existing works that focus on generating wrappers for extracting
data of the deep web. Early approaches [2, 3, 4] generate wrapper based on manual
techniques, in which programmers find some patterns from Web data pages of sites
by analyzing page code and define rules of extraction in wrapper. Then, some
automatic approaches [5, 6, 7] were proposed for data extraction, which learn patterns

 An Approach to Assess the Quality of Web Pages in the Deep Web 515

from multiple similar pages by parsing Web pages into a tag tree. Moreover, vision-
based approaches [8, 9] that analyze the layout of data pages and use the visual repre-
sentation of pages to extract data were proved effectively too. To extract web data
from a large scale of web pages, most wrappers choose a set of web pages from a data
source as sample pages to train a template, and use the template to extract data from
other web pages in the data source.

In current researches, the quality of web data becomes more important for data se-
lection, customization and integration in advanced applications [19]. However, most
of existing works devote to improving the accuracy of extracting data records from
source web pages, and they ignore the importance of quality assessment for web data
sources. In the practice of extracting the web data, the accuracy of data extraction
depends on not only algorithms used in wrappers but also the quality of source web
pages which is a part of data quality on the web. The quality of source web pages is a
kind of representational data quality in data quality categories proposed in [20] and
indicates the data quality a wrapper can achieve in extraction. In web pages of the
deep web, the data of hidden databases are reorganized by programmers with HTML
to display in browsers. Values of different attributes may be connected in the same
elements, and additional elements might be inserted for highlighting some contents of
search results. So some web data pages have the structures that are difficult to be
accurately analyzed for all wrappers. Therefore, for source web pages, it requires
methodologies to assess their structure quality, which is important for applying web
data in the deep web related applications.

In this paper, we focus on propose a novel approach to assess the quality of web
pages for the extraction of web data. For extract data from a large scale of web pages,
existing wrappers are conditioned to analyze the web pages with a tree structure and
identify values from text content of nodes. Therefore, we assess the quality of web
pages with two dimensions: the structure complexity and the text complexity. Since
web pages can be easily formatted into XML documents, we use the DOM tree of
XML document to represent the structure of a web page. In the DOM tree, values of
attributes of data records are contained by text of nodes. These nodes should regularly
appear in the layout structure of the DOM tree. However, additional elements for
visualization break the regular structure of data records, which is the structure com-
plexity and leads to the mistakes in the data extraction. On the other hand, text of
nodes may contain not only values of a given attribute but semantic tags or values of
other attributes, which is the text complexity of web pages. In this case, wrappers
must design very complex algorithms to align values for the annotation of web data.

In our approach, with features of the structure complexity and the text complexity,
we construct multiple quality levels to describe the quality of web pages. And for a
given web page, we transform it into a DOM tree and extract data with manually
method that is required for amending mistakes. Then we annotate each data values
with the attribute name of predefined schema and the XPATH in the DOM Tree. We
propose the algorithms to extract patterns for locating and aligning data values based
on the information of annotation. Based on patterns, we classify a web page into an
proper quality level. Furthermore, the method that computes scores with patterns is
also proposed for comparing web pages in the same quality level.

Moreover, to verify the validity of the quality assessment, a wrapper is required to
extract data from web pages. Most of existing wrappers are table-oriented and only

516 T. Nie et al.

deal with the relational structured data. They suppose that the data in web pages are
stored in an underlying relational table of databases behind the interfaces. However,
not all of data in the deep web are relational data, and some data may have a hierar-
chical structure in their schema when they are displayed in the result pages. For ex-
ample, the result data of hotel booking include two levels that are hotel and room
types. To address this problem, we develop an XQuery-based wrapper to extract hier-
archical data. XQuery[10] as an XML query language has been well defined by the
W3C organization, XQuery statements can express queries across all data with XML
format. Therefore XQuery can deal with both semi-structured data and structured data
in web pages. In our approach, the construction of XQuery statements is based on the
annotation of web data. Using XQuery also has other advantages: firstly, XQuery is
more easily for human reading and can be re-edited on demand by programmers;
secondly, since XQuery is supported by most database systems, it can improve the
compatibility of the wrapper.

The rest of this paper is organized as follows. Section 2 introduces the related
works of this paper. In section 3, we present the preprocessing on web pages for the
assessment. The methodology of quality assessment for web pages is presented in
Section 4. Section 5 introduces the construction of XQuery-based wrapper. Section 6
shows the experimental results. Section 7 concludes the work of this paper.

2 Related Works

The assessment [22] is one of fundamental issues for the data quality [19]. Some
works [23, 21] have studied this problem in various approaches. However, about how
to assess the quality of web pages for data extraction in the deep web, there is few
works to research this problem to the best knowledge of us. Methods used by search
engines are employed to rank web pages for query results. And methods for web data
mainly focus on the intrinsic data quality and the contextual of data quality web
pages, e.g. the accuracy and completeness of data. But for data extraction, the repre-
sentational quality of web pages is very important and determines the accuracy of
result data. So in this paper, we evaluate web pages in dimensions of the representa-
tional quality.

For the web data, existing works focus on assessing the quality of data with the ex-
traction accuracy of wrappers that has been studied by many researchers. Early wrap-
pers are based on manual techniques, which require human analyzing the feature and
structure of pages. Hammer [11] extracts semi-structured information from Web
pages by a declarative specification. WIEN [12] uses a combination of empirical and
analytical techniques to evaluate the computational tradeoffs among six wrapper
classes, in which both expressiveness and efficiency are considered. In WebOQL[13],
a web page is abstracted into the structure of syntax tree, and then a user generates the
query to locate the position of interested data. XWRAP[14] use a semi-automatic
generation of wrapper programs, which use heuristic rules to find interested data.

Recently, many automatic approaches for generating wrappers have been proposed.
The structure-based approaches parses web pages into a special structured model, and
extract data by analyzing the structure of pages. Most of them use a DOM tree or a
tag tree to find patterns in data extraction. Roadrunner [5] uses multiple pages

 An Approach to Assess the Quality of Web Pages in the Deep Web 517

containing similar data records to find patterns or grammars in DOM trees of pages.
Works with similar method include [6] and [15]. MDR [16] makes use of the HTML
tag tree of the web page to extract data records, but data items does not be aligned and
extracted. DEPTA [17] solved shortcomings of MDR. Another kind of approaches is
based on the visual information of web pages. They use visual features to locate data
regions in web pages. ViPER [18] uses user’s visual perception to identify and rank
potential repetitive patterns. The visual-based approaches have a common characteris-
tic: they identify and extract data only at record level by visual features.

Though the structure-based wrappers do not provide methods to assess the quality
of web pages, the structure patterns of web data they discussed in their algorithms are
very helpful for our approach. In data extraction, wrappers map each identified data
value to a special attribute of data schema, and group data values into a data record
with the patterns they discovered. Existing wrappers have analyzed various layout
structures of data records within the DOM tree of web pages and provided the de-
scription of the patterns extracted from these layout structures. Moreover, in the
alignment [7] for annotating record items, both attribute patterns and the text com-
plexity of node are analyzed. Our XQuery-based wrapper is also partially built based
on these patterns.

3 Preprocessing for the Assessment

To assess the quality of web pages, our approach need firstly annotate data values
with the underlying schema of web data. And the schema of web data influences the
layout structure of data records in the DOM tree of a web page. In this section, we
introduce the schema model of web data and the annotation of data items.

3.1 The Schema Model of Web Data

The schema of data is very important for web data extraction. In the deep web, it is
called the query result schema of web databases. The schema defines the semantics of
data values and the structures of result data. In most existing wrappers, algorithms
regard that web data are stored in the form of relational tables. Therefore, web data
are always modeled with the schema of relational databases, in which the data of a
web page consist of a set of data records. Each record is a tuple in a relational table,
and each data value of record is mapped with an attribute of the relational table of the
schema. However, an obvious problem is that the data in web pages have a hierarchi-
cal structure in its schema. It leads to the difficulty of data extraction and may lead to
mistakes for existing wrappers.

Therefore, we propose a schema model for web data which can handle both rela-
tional data and hierarchical data. In our approach, the data of a web page is regard as a
set of data records which obey the same schema S of entity E in structure and seman-
tics. So in the schema model, we define the schema of web data as S=<NE, A>, where
NE denotes the name of entity E, and A={a1,…,an} is the attributes set of entity E. For
each attribute ai in A, it is defined as ai=<Ni, Ti, Vi>, where Ni denotes the name of
attribute, Vi denotes the value of attribute and Ti denotes the type of attribute ai.

518 T. Nie et al.

There are three types of attributes: (1) the single-value attribute which is like a pair
of key-value; (2) the complex attribute which is a sub entity and consists of multiple
detailed attributes; (3) the collection attribute which consists of multiple instances of
the same sub entity. If Ti is the complex attribute or the collection attribute, we define
it as a sub entity Ei with a sub schema which is denoted as Si = <Ni, Ai> , where Ni is
the name of entity Ei, and Ai={ai1,…,ait} is the set of attributes in sub schema Si. For
the complex attribute Ai, e.g. date with day, month and year, attributes of its sub-entity
can be inserted into attributes of its parent entity E, then A={a1,…, ai1,…,ait ,…,an}.
But for the collection attribute, we must insert a hierarchical level in the structure of
schema.

For an attribute ai.j of sub schema Si, it may be also a collection attribute with the
schema Si.j. This structure of schema can be defined in nested way, which makes our
model effectively represent the schema of web data with hierarchical structure. For
example, a web site of the hotel domain provides the information of booking rooms in
its web pages. The data in web pages contains the information of hotels and the de-
tails of their empty rooms. So the schema of data has a hierarchical structure in 2
levels. The structure of data is expressed with a tree model. An example is shown in
Fig. 1, in which there are three types of nodes: (1) The collection node is mapped to
the collection of an entity in the schema, such as hotels and rooms;(2) The instance
node is mapped to the root node of an instance with the sub schema Si, such as hoteli
and roomi; (3) The attribute node is mapped to data value of an single-value attribute.

Fig. 1. Tree structure of example web data with hierarchical schema

3.2 The Annotation of Web Data

To analyze patterns of web data in web pages, besides defining the schema of the web
data, we should also annotate the web data of web pages with their semantics and
position information in their DOM trees. In the annotation of semantics, we map each
data value of the web page to an attribute ax in the schema S defined for the data. The
name of the attribute expresses the semantics of the data value.

Since web pages are formatted into XML documents and parsed into the DOM tree
structure, we give the definition of data set area, data unit area and attribute value
area in the web pages. Their visualized layouts on web page are shown in Fig. 2.

hotels

hotel1 hotel2

name address rooms name address rooms

room1 room2 room1 room2

type price type price type price type price

Collection node
Instance node
Attribute node

unit area value area

 An Approach to Assess the Quality of Web Pages in the Deep Web 519

Fig. 2. The data set area, data unit area and attribute value area in a web page

Attribute value area is an atomic content which is mapped to an attribute with sin-
gle value in the schema. Each attribute value is contained by text content of a node in
the DOM tree, e.g. value area in Fig.1.

Data unit area is an area of web page which contains a completed instance. A data
unit is an instance of entity defined in the schema S. In the DOM tree of web page,
data unit area is a sub tree that contains all attribute values of an instance, e.g. unit
area in Fig.1. The root node of the sub tree is the Smallest Lowest Common Ancestor
(SLCA) [24]of all attribute nodes for an instance and is mapped to the instance node.

Data set area is the area which contains all data units in web page. The data set
area is also a sub tree of the DOM tree where its root node is the SLCA of all data unit
nodes and is mappd a collection node in the result data.

For each above node, we use an exclusive path to annotate its location in the DOM
tree. The exclusive path is expressed with the path expression of XPATH. In the path
expression, from the root node of document to current node, each node is transferred
into a step of the path. To separate the node with its siblings, we use its order position
as the position predication of the step. Therefore, for a given node of DOM tree, its
location is expressed with the path P as:

P = /T1[p1]/ T2[p2]/....../ Tm[pm]/

Where Ti is the tag of stepj, and pi is the position predicate of node of step. After the
annotation of web data, for each entity E defined in the schema, we match it a set of
data units D= {U1,…,Un} in the web page, and for each attribute in schema, we match
it a set of attribute values located with their path expressions.

4 The Method for Quality Assessment

We will assess the quality of web pages with two quality dimensions: the structure
complexity and the text complexity, which reflect the difficulty of extracting data. In
this section, we will introduce patterns in the structure complexity and the text com-
plexity, and discuss the model for quality level to assess the quality of web pages.

4.1 Analyzing the Structure Complexity

The structure complexity is defined to represent whether data units and attribute value
are regularly distributed in the structure of DOM tree. If the distribution of values has

520 T. Nie et al.

an obvious regularity, it indicates the web page with a low structure complexity, and
wrappers can identify patterns of data units and attributes with high accuracy. Other-
wise, the accuracy of extraction will become low. In annotation, data units and attrib-
utes are located with the path expressions of their nodes. Since nodes of data units or
attributes are distributed in the DOM tree with some specified patterns, we extract
patterns from the path expressions.

For a given sample web page, Du={U1,U2,…,Un} is the collection of data units con-
tained by the page, in which Ui denotes a data unit. The path of Ui is expressed as
Pui=/Ti1[pi1]/ Ti2[pi2]/....../Tim[pim]/. For most of web pages, paths of data units have the
same tag sequence Ti1 Ti2... Tim, but their position sequences pi1pi2…pim are always
different. We extract the path patterns of data unit based on paths Pui of data units. The
path pattern consists of two parts: the common path Puc and the local path Pul. The
common path of data units is the Longest Common Path (LCP) of all Pui, which ex-
actly locates the node of data set area. The algorithm for extracting LCP is the similar
with the SLCA for XML keyword search. In Puc =/T1[p1]/....../Tk[pk]/, k<m, for each
step Ti[pi] of Puc, if there is no node Ti[px]which is a sibling node of /T1[p1]/.../Ti[pi]
with the same tag Ti and has no descendant node whose path is the same with the Puc,
we remove its predicate pi. The local path is used to separate nodes of data units from
their sibling nodes which have the same tag and do not contain any data. For each step
Tj[pj] of local path, we extract the pattern by computing the position region from the
position sequence psj of p1jp2j…pnj. If the nodes of current step have the common par-
ent, we classify psj into following patterns based on the structure as shown in Fig.3:
continuous, noisy continuous, regular interval, and irregular interval.

(a) continuous (b) noisy continuous

parent node

(c) regular interval (d) irregular interval

data unit node noisy node

1 2 3 4 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Fig. 3. The patterns of position sequence

In Fig.3, noisy nodes are sibling nodes of data unit nodes with the same tag Tj. For
the patterns of continuous, noisy continuous, regular interval, they can be easily expressed
with regular expression. We define them as the regular pattern of the structure complexity.
For the irregular interval pattern, we additionally check XML attributes of nodes, since
XML attributes is wildly used to define styles in web pages. If there exists an XML
attribute that just appears in nodes of current step or there is an exclusive value to
separate data nodes with noisy nodes, we can use this XML attribute to identify data
nodes of current step. We define it as the attribute pattern of the structure complexity.
Otherwise, the irregular interval pattern is hard to be expressed and it requires special
operations to identify in wrappers. Therefore, we define it as the irregular pattern of the struc-
ture complexity. In wrappers, these patterns are used to align data records and data items.

For a given attribute Ai, nodes containing its values can be located with the relative
path expression which is relative to the path of data unit. The patterns of a relative
path expression are similar with that of data units. Suppose the relative path of

 An Approach to Assess the Quality of Web Pages in the Deep Web 521

attribute Ai is /TAik+1[pik+1]/…/TAit[pit], in which TAix[pix] is a step of the path. We
classify the patterns of steps in relative path by the same method of data unit.

4.2 Analyzing the Text Complexity

Only using structure information is not enough for extracting the web data since detail
data values are in the text of node. The text complexity reflects the difficulty of ex-
tracting attribute values from the text content of node in the web page.

In web data, many attribute values of data units is not solely contained by a node.
Some noise text or values of other attributes may appear in text of the same node with
the current attribute value. In this case, it is required to align text in nodes to separate
the text of attribute value from other text content. For a given attribute ai,
nai={ nai1,…, nain} is the node set that contain values of ai. Each node naij in nai has a
text content tij. We compute the common substrings on all text tij of ai. Suppose com-
mon strings are {cs1,…,csl}, the text of node is express as tij = tij1 cs1 tij2,…, csl tijl, in
which tij1 is a substring of tij different each other. Except for the attribute value taij, all
other text is regard as noisy text. We also classify the text of attribute node into three
patterns: alone value, regular value, irregular value.

(1) For the attribute with alone value, its values are the only text in nodes of it.
(2) For the attribute with regular value, its values can be extracted by a regular ex-

pression as csktijkcsk+1. For example, many web pages insert the semantic tags to anno-
tate attribute values in the text of node.

(3) For the attribute with irregular value, there is no obviously regular way for ex-
tracting attribute values. It must exploit complex algorithms and mining in more sam-
ple data for the extraction, e.g. the information of reference in papers.

4.3 The Quality Level

In this paper, we propose a model which defines the quality of web pages with three
quality levels: perfect, well and acceptable. There are three quality dimensions in our
model for quality assessment.

The first dimension is structure complexity introduced in section 4.1 which in-
cludes three types of patterns. For the regular pattern and the attribute pattern, wrappers
are easy to identify the nodes containing data.

The second dimension is the text complexity in extracting attribute values from
text content of nodes. We separate it into three types with the complexity of string
patterns: (1) the alone value is the most simple pattern for extracting attribute values;
(2) the regular value requires wrappers to align text of nodes and extract the pattern
for identify attribute values; (3) the irregular value is the most complex condition for
wrapper, which may need to learn rules from large–scale data.

The third dimension is the hierarchical structure of data schema. The more layers
the schema have, the more difficult for wrappers to extract.

The detail of assessment of quality levels is show in Table 1 in which “Y” denotes
available with existing XQuery statements. The web pages in perfect level can be
extracted by most wrappers with high accuracy. Then the web pages in well level
provide high quality data, but require wrappers training the pattern from sample data.
At last, the web pages in acceptable level have irregular patterns on structure or attribute
text, and if it has a hierarchical schema which decreases the accuracy of extraction in most
wrappers, we classify it into acceptable level directly.

522 T. Nie et al.

Table 1. The levels of the quality model

structure complexity text complexity Quality
Levels regular

pattern
Attribute
pattern

irregular
pattern

alone
value

regular
value

irregular
value

Hierarchy of
Schema

perfect Y Y N Y N N 1
well Y Y Y Y Y N 1

acceptable Y Y Y Y Y Y >=1

Furthermore, to compare web pages, we propose a novel method to compute a

quality score for each web page. We consider the irregular structure pattern and ir-
regular value pattern as the main factors that decrease the accuracy of data extraction.
In our model, we build an extraction tree based on the schema tree of web data and
the DOM tree of web page, as shown in Fig.4. To extract an attribute value, there are
at least four phases of paths from the root node to the attribute value in the extraction
tree: LCP, local path, relative path and text pattern. In each of path, if there exists an
irregular pattern, the possibility of mistakes in extracting an attribute value will
increase.

Fig. 4. An example of extraction tree

Therefore, for a given web page, we define the quality for extracting an attribute a
of the schema as Qa=(Nl -Np)/ Nl, where Np is the number of irregular patterns in the
extraction path of attribute a and Nl is the phase number of extraction path. For
example, in Fig.4, there are 6 phases and 2 irregular patterns in extraction path for
values of attribute room, and the quality of extracting attribute room is 0.667. In ex-
traction tree, the irregular patterns in higher level should have more effect than those
in lower level. Therefore, we define the quality score of a web page in formula 1, in
which n is the number of attributes of the schema. The score is used for comparing
the quality of web pages in the same quality level since it considers both irregular
patterns and the structure of data schema.

1 1 1

() /
n n n

i i i
i i i

Score Nl Np Nl
= = =

= −∑ ∑ ∑ (1)

hotels

hotel1

name address rooms

room1

type price

Collection node
Instance node
Attribute node ……

text1

text3

Attribute value

LCP

local path

relative path

text pattern

Irregular pattern

root

 An Approach to Assess the Quality of Web Pages in the Deep Web 523

5 An XQuery-Based Wrapper

To extract web data from web pages and check the validation of our model, we design
an XQuery-based wrapper. In the wrapper, we use XQuery statements to operate
XML documents of web pages. The structure of XQuery is shown as follows:

FOR $dataunit in Path expression
RETURN return expression

The XQuery statement is mainly constructed with the FLWOR expression which is
used to query, filter, and return data in xml documents. In our approach, we use FOR
clause to query the nodes of data units in the DOM tree of web page. To locate node
of data units, we transform patterns of structure into the position predicates of path
expressions. RETURN clause is used to control the output of result data and extract
data values. In RETURN clause, the relative path expression is used to locate nodes
of attributes. Patterns of text content are transformed into functions of XQuery, where
the alone value maps text(), and the regular values can be handled with built-in func-
tions of XQuery, and the irregular values must use user-defined functions. In XQuery,
the format of result data is determined by the return expression. The return expres-
sion can return both XML format and relational data. The structure of return expres-
sion for XML format and the relational data are shown as follows:

<NE >[< Ni >{$unit/Pr(Ai)/textFunc(Ai)}</Ni>][< Nj > [FLWOR(Sj)] </Nj >]</ NE >
({$unit/Pr(A1)/textFunc(A1)}, …, {$unit/ Pr(An)/textFunc(An) })

Where textFunc(Ai) is the function for extracting values of attribute Ai, and FLWOR
(Sj) is a nested FLWOR expression for the sub schema Sj in the schema S.

6 Experimental Results

In experiments, we use the dataset TBDW Ver.1.02[25] and the dataset RBH we
crawled from the deep web. The TBDW consist of 51 different web sites, and for each
web site there are 5 web data pages. The data in TBDW has complex structures, such
as repetitive attributes. The dataset RBH we crawled includes web pages from 60 web
sites which belong to three domains: realty, book and hotel. In our dataset, there are
some web pages containing hierarchical data.

Fig. 5. Experimental results

524 T. Nie et al.

Fig. 6. Experimental results on quality levels

We first evaluate our XQuery-based wrapper according to two metrics, concentrat-
ing on the different granularity in data extraction. The metrics are the unit accuracy
and the attribute accuracy. The unit accuracy shows how well the data units are identi-
fied and extracted. The precision of unit is Pu=(Nui-Nue)/Nui, where Nui is the number
of identified data units and Nue is the number of unit identified with errors. The recall
of unit is Ru=(Nui-Nue)/Nu, which refers to the number of data units in the dataset. The
attribute accuracy shows how well the attributes are extracted. The precision of attrib-
ute is Pa=(Nai-Nae)/Nai, where Nai is the number of identified attributes value in all
data units and Nae is the number of attributes identified with errors. Finally, we com-
pute F-score F = 2PR/(P+R). In our experiments, the golden standard of data is speci-
fied by manually. The experimental result is shown in Fig.5.

For our data quality model, we classify web pages of dataset into the three quality
levels, and we compute the metrics on web pages of each quality level separately. The
experimental results shown in Fig.6, in which TBDW-ratio is the ratio of web pages
of each quality level and TBDW-Fa is the F-score of attribute metrics on each quality
level. It is the same for BRH-ratio and BRH-Fa. We find that, the quality level is
consistent with the accuracy of extraction, that is, with the quality level increasing the
accuracy of extraction is also increasing. This verifies that the data quality model is
correct.

7 Conclusion

In this paper, we proposed an approach to assess the quality of web pages which indi-
cates the data quality a wrapper can achieve in extraction. It is very useful for control-
ling data quality in further applications. In addition, we proposed an XQuery-based
wrapper to extract web data and validate our quality model. The wrapper is very
efficient to extract the web data with hierarchical structure which is hardly handled by
existing approaches. In our future work, we will improve our model for the quality
assessment of web data by considering multiple quality categories.

Acknowledgments. This paper is supported by the National Natural Science Founda-
tion of China (Nos.60973018, 60973021 and 61003060), the 863 High Technology
Foundation of China (No. 2009AA01Z131), and the Fundamental Research Funds for
the Central Universities (No.N090104001).

 An Approach to Assess the Quality of Web Pages in the Deep Web 525

References

1. Bergman, M.: The deep web: surfacing hidden value. The Journal of Electronic Publish-
ing 7(1) (2001)

2. Cohen, W., Hurst, M., Jensen, L.: A flexible learning system for wrapping tables and lists
in HTML documents. In: WWW (2002)

3. Pinto, D., McCallum, A., Wei, X., Bruce, W.: Table extraction using conditional random
fields. In: SIGIR (2003)

4. Wang, Y., Hu, J.: A machine learning based approach for table detection on the Web. In:
WWW (2002)

5. Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: towards automatic data extraction
from large web sites. In: VLDB (2001)

6. Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages. In: SIGMOD
(2003)

7. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: WWW (2005)
8. Liu, W., Meng, X., Meng, W.: Vision-based web data records extraction. In: WebDB

(2006)
9. Cai, D., Yu, S., Wen, J., Ma, W.-Y.: Extracting content structure for web pages based on

visual representation. In: Zhou, X., Zhang, Y., Orlowska, M.E. (eds.) APWeb 2003.
LNCS, vol. 2642, pp. 406–417. Springer, Heidelberg (2003)

10. XQuery 1.0: An XML Query Language, http://www.w3.org/TR/xquery/
11. Hammer, J., Garcia-Molina, H., Cho, J., Aranha, R., Crespo, A.: Extracting semistructured

information from the Web. In: Workshop on the Management of Semistructured Data
(1997)

12. Kushmerick, N.: Wrapper induction: efficiency and expressiveness. Artificial Intelli-
gence 118, 15–68 (2000)

13. Arocena, G.O., Mendelzon, A.O.: WebOQL: restructuring documents, databases, and
webs. In: ICDE (1998)

14. Liu, L., Pu, C., Han, W.: XWRAP: An XML-enabled wrapper construction system for web
information sources. In: ICDE (2000)

15. Wang, J.-Y., Lochovsky, F.: Data extraction and label assignment for Web databases. In:
WWW (2003)

16. Liu, B., Grossman, R., Zhai, Y.: Mining data records from Web pages. In: KDD (2003)
17. Zhao, H., Meng, W., Yu, C.: Automatic extraction of dynamic record sections from search

engine result pages. In: VLDB (2006)
18. Simon, K., Lausen, G.: ViPER: Augmenting automatic information extraction with visual

perceptions. In: CIKM (2005)
19. Gertz, M., Ozsu, T., Saake, G., Sattler, K.: Data Quality on the web. Report (2003)
20. Strong, D., Lee, Y., Wang, R.: Data Quality in Context. CACM 40(5) (1997)
21. Even, A., Shankaranarayanan, G.: Utility-driven assessment of data quality. ACM SIGMIS

Database 38(2), 75–93 (2007)
22. Pipino, L., Lee, Y., Wang, R.: Data quality assessment. CACM 45(4) (2002)
23. Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies for data quality as-

sessment and improvement. ACM Comput. Surv (2009)
24. Xu, Y., Papakonstantinou, Y.: Efficient Keyword Search for Smallest LCAs in XML Da-

tabase. In: SIGMOD (2005)
25. Yamada, Y., Craswell, N., Nakatoh, T., Hirokawa, S.: Testbed for information extraction

from deep web. In: WWW (2004)

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 526–537, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Using Machine Learning to Support Resource Quality
Assessment: An Adaptive Attribute-Based Approach for

Health Information Portals

Jue Xie and Frada Burstein

Center for Organizational and Social Informatics (COSI), Monash University,
900 Dandenong Road, Caulfield East, Australia

{Jue.Xie,Frada.Burstein}@monash.edu

Abstract. Labor-intensity of resource quality assessment is a bottleneck for
content management in metadata-driven health information portals. This re-
search proposes an adaptive attribute-based approach to assist informed judg-
ments when assessing the quality of online information resources. It employs
intelligent learning techniques to predict values of resource quality attributes
based on previous value judgments encoded in resource metadata descriptions.
The proposed approach is implemented as an intelligent quality attribute learn-
ing component of a portal’s content management system. This paper introduces
the required machine learning procedures for the implementation of the compo-
nent. Its prediction performance was evaluated via a series of machine learning
experiments, which demonstrated the feasibility and the potential usefulness of
the proposed approach.

Keywords: Quality Assessment, Machine Learning, Metadata, Health Information
Portals.

1 Introduction

Health information portals act as an effective quality control approach to address both
information overload and information quality concerns of online health information
provision [1]. Online resources accessible via these portals are assessed for their
potential usefulness to information consumers, and described in a way to facilitate
indexing, navigation, filtering, and value-added information provision. This requires
intensive efforts from domain experts, who have expertise in both medical domain
and information management [2]. The need to sustain labor-intensive resource quality
assessment processes has been raised as a key concern by domain experts and portal
developers [3]. Existing works, which develop generic quality assessment frameworks
(e.g. [4-5]) or automatic quality evaluation tools (e.g. [6-7]), do not address the need
of measuring multi-faceted resource quality in the context of information needs and
preferences of health portal users. The emergence of new solutions, such as support-
ing the processes with both a user-sensitive quality assessment framework and intelli-
gent quality evaluation tools, is imperative in order to improve the scalability and
eventually the sustainability of portal content management.

 Using Machine Learning to Support Resource Quality Assessment 527

This paper reports a study that developed and evaluated an adaptive attribute-based
approach to support resource quality assessment for health information portals. A
semi-automated process based on machine learning techniques is proposed in the
context of a metadata-driven health information portal. An adaptive attribute-based
data model for resource quality assessment will be presented in the next section. The
paper then introduces the machine learning procedures implemented in this study to
operationalize the model. Evaluation results of prediction performance of conducted
machine learning experiments are summarized before the conclusion, and finally the
future work is presented.

2 Research Context: The BCKOnline Portal

This study was motivated by and tested in the context of the Breast Cancer Knowledge
Online (BCKOnline) portal (www.bckonline.monash.edu.au). The portal provides the
breast cancer user community with access to online resources, quality-assured against
the portal’s selection criteria [8]. The operation of the portal over eight years has high-
lighted deficiencies with manual processes for content creation and management, in
particular the resource quality assessment processes [3].

The BCKOnline portal is based on a comprehensive metadata schema used to de-
scribe selected resources from a user-centric point of view. The metadata schema
extended the Australian Government Locator Service (AGLS) metadata standard
(www.agls.gov.au) and introduced an innovative Quality element. This element
and its encoding scheme were designed to address portal users’ information quality
concerns. The specific metadata elements of Quality and Audience, enable the user-
sensitive information retrieval and quality reporting in search results [9].

3 An Adaptive Attribute-Based Approach for Resource Quality
Assessment

There is no generic approach to the quality assessment of information on the internet
[3]. In this paper we suggest an approach for resource quality assessment, which was
developed for application in a healthcare domain. Wang et al. [10] propose the use of
an attribute-based approach for data quality management. Their approach defines a
data quality attribute as a collective term that refers to both subjective data quality
dimensions and objective data quality indicators. It is proposed that such an approach
can be utilized to facilitate the automation of resource quality assessment in a portal
context. Adapted from Wang et al.’s [10, p. 354] definitions, this paper introduces the
following terms for the assessment of resource quality:

• Quality indicators provide objective information about the characteristics of a
resource. A quality indicator is objective if it is generated using a well-defined and
widely accepted measure.

• A quality dimension describes a qualitative or subjective single aspect of resource
quality, the value of which is based on the values of underlying quality indicators.

528 J. Xie and F. Burstein

• A quality attribute is a collective term that refers to both quality dimensions and
quality indicators as shown in Fig. 1. A quality attribute can be regarded as the
characteristic of a resource, or a resource attribute.

These terms define a data model to facilitate the resource quality assessment. The
assessment consists of subjective resource quality dimensions that are based on pre-
defined corresponding quality indicators of an online resource. These indicators can
be collected from the resource’s original site, or can be harvested from available
metadata descriptions of the resource. Values of the collective resource quality
attributes can then be derived from these quality indicators enabled by certain techno-
logical means. These quality attributes can assist domain experts to make informed
value judgments on whether or not to include the resource in a portal. This can be
used to facilitate semi-automated quality assessment process since it explicitly defines
the attributes which should be taken into consideration when making a decision on the
quality of the information resource.

3.1 An Attribute-Based Data Model for the Healthcare Domain

In this section, an attribute-based data model is instantiated for the healthcare domain
(see Fig. 1). The model consists of the subjective quality dimensions, corresponding
objective quality indicators, and finally the quality attributes in order to automate the
resource quality assessment with the use of intelligent techniques.

Resource quality in the context of health information portals is defined as the ex-
tent to which information contained in a web-based resource meets a user’s informa-
tion needs and quality perceptions [3]. In this paper, we differentiate resource quality
(RQ) from information quality (IQ). While IQ is considered as a resource attribute,
RQ is regarded as a relationship between a resource and its actual user. This view
requires resource quality to be assessed in a way to reflect user information needs and
preferences. Informed by the literature analysis of user quality perceptions and user
information needs in the healthcare domain [11-12], we define RQ as a composition
of Reliability and Relevancy, as denoted in the following formula:

RQ = Ry (Ac, Cr, Cu) ∪ Re (Up, Ip, Si) (1)

Where: RQ refers to Resource Quality, Ry denotes Reliability, Ac corresponds to
Accuracy, Cr - Credibility, Cu – Currency; whereas Re denotes Relevancy, and Up
relates to User profile, Ip - Information preference, and Si - Subject interest.

In this study, Reliability is defined as the extent to which a resource and its source
are regarded as true, credible, and up-to-date. An initial set of quality dimensions was
selected, including Accuracy, Credibility and Currency, which were perceived as best
describing health information consumers’ quality concerns [3]. Relevancy in this
study is defined as the extent to which a resource is applicable and useful for a user’s
information needs. It needs to be emphasized that in this paper, we only focus on the
measurement of Reliability as a multi-dimensional concept.

Having quality dimensions defined, the next step is to define quality indicators,
which are regarded as evidences contributing to the evaluation of certain quality di-
mensions. In the literature quality indicators have been categorized according to their
use in constructing quality metrics. For instance, quality indicators are classified as
direct quality indicators versus indirect ones [13], or technical quality indicators

 Using Machine Learning to Support Resource Quality Assessment 529

Table 1. Quality dimensions and indicators

Quality
Dimension

Definition (derived from [9, 15]) Quality Indicators References

Accuracy Extent to which information
contained in a resource is
correct, certified as free of error,
or conforms to common
consensus in the field.

Evidence-based, bias or
potential conflicts of interest,
third-party labels or seal of
certification

[6, 16]

Credibility Extent to which information
contained in a resource is highly
regarded in terms of its source or
content.

Author, contributor, editor,
publisher, HON code of
conduct seal, site URL,
Google’s PageRank

[17-21]

Currency Extent to which information
contained in a resource is
representative of up-to-date
practice, views and/or wisdom
on a particular topic.

Date of creation, date of last
update, frequency of update,
maintenance of website

[14, 19, 22]

(automatically measurable or detectable) versus non-technical ones [14]. Table 1
below defines the quality dimensions of Reliability, and the corresponding quality
indicators of each dimension that have been used in previous studies in the literature.

In the context of metadata-driven health information portals, the quality attributes
of a resource are considered as value-added metadata that can be inferred by rule-
based methods [23]. Informed by an analysis of quality indicators and their relation-
ships to existing metadata models for resource description, including Dublin Core
(www.dublincore.org), AGLS and BCKOnline [15], an attribute-based data model
was built to facilitate semi-automated resource quality assessment. An instantiation of
the model is depicted in Fig. 1 below.

Fig. 1. An attribute-based data model for resource quality assessment

4 Machine Learning for Predicting Quality Attributes

This research proposes the use of machine learning (ML) techniques to detect deci-
sion patterns from annotated resources in order to support domain experts making
quality judgments on new resources. ML is a technique for the acquisition of

Quality
Dimensions

Accuracy
Credibility
Currency

(subjective)

Quality Indicators
Title, Identifier, Descrip-
tion, Creator, Publisher,
Contributor, Date, Type,
Source, Rights, Subject,

Audience
(objective)

Quality Attributes
Publisher credentials,

Review process,
Evidence-based,

Attribution, Currency,
Purpose, Balance

(collective)

530 J. Xie and F. Burstein

structural descriptions underlining data that can be used for prediction, explanation
and understanding [24]. The extracted patterns capture the implicit decision structure
and explain learning in an explicit way. Decision-making involving human judgment
such as quality assessment is a suitable application field for ML techniques.

ML techniques are used to learn concepts from instances and their attributes, while
statistical tests are used to validate ML models and to evaluate ML algorithms [24].
Each instance is characterized by the values of attributes that measure different as-
pects of the instance. A suitable ML method needs to be selected to solve the specific
learning problem of this research.

Facilitated by the attribute-based data model defined in the previous section, an in-
telligent component of a portal’s content management system was implemented
to help domain experts assess and describe attributes of quality for a resource. The
component consists of two modules: a quality attribute learner and a quality attribute
predictor. The learner mines domain experts’ decision-making patterns from previous
value judgments that are encoded in resource metadata records. Based on the learned
models, the predictor can suggest values for the quality attributes of new resources,
given the other resource attributes have been annotated beforehand. Such an intelli-
gent component can automatically predict values for describing resource quality
attributes. Being provided with these suggestions, domain experts can assess and
describe resources in a more efficient and consistent manner.

The next section introduces the implementation of a learner component. Open-
sourced WEKA data mining workbench [25] was used to perform ML experiments.
The WEKA workbench provides the implementation of ML algorithms that can be
applied to any given dataset for performing standard data mining tasks, including
classification, regression, clustering, association rule mining and attribute selection. It
also provides a comprehensive toolkit for data pre-processing and visualization.

5 ML Procedures for Intelligent Quality Assessment

This section introduces the ML procedures for the implementation of an intelligent
learning component (the quality attribute learner) that can be used for building classi-
fication models for future prediction of quality attributes. The three steps involve
1) learning schema selection 2) data attributes selection, and 3) data cleaning and
transforming.

5.1 Selection of ML Scheme

According to Witten and Frank [24], there are four basic learning styles: classifica-
tion, association, clustering and numeric predication. The first two styles are consid-
ered as applicable approaches to solving different learning problems of this study.
Classification (also known as supervised learning) can be used to classify a nominal
data attribute while association can be used to discover relationships among a number
of data attributes.

To illustrate the use of ML techniques for assessing resource quality, only the clas-
sification approach was applied, given the attribute was measured in a nominal scale,
hence, it has a limited set of discrete values. Resource metadata records from the
BCKOnline portal, containing descriptions of resource quality attributes assigned by
experts, were used to learn a classification model for each selected quality attribute.

 Using Machine Learning to Support Resource Quality Assessment 531

Also, in order to find a classification learning scheme that yields satisfying prediction
performance, different classification algorithms and data settings were tested via a
series of experiments. The experimental results are presented in section 6.

5.2 Selection of Data Attributes

As mentioned previously, the BCKOnline portal uses a comprehensive metadata
schema for describing external online resources suitable for inclusion in the portal
[15]. The Quality element of the BCKOnline metadata schema is composed of seven
quality attributes, which describe different aspects of quality for a resource. Table 2
below outlines the five selected quality attributes that serve as the concepts for classi-
fication learning and their corresponding classes.

Table 2. Selected BCKOnline quality attributes for classification learning

The ML classification techniques were considered as applicable to build learning
models for five quality attributes, which were labeled as Attribution of sources,
Balance, Publisher credentials, Purpose, and Review process. Constrained by the
available data, the other two quality attributes, which were labeled as Currency and
Evidence-based, were excluded from learning. However, this does not mean that ML
classification is not appropriate for these quality attributes in general. For the Cur-
rency attribute, all existing resources in the BCKOnline metadata repository were
tagged as containing “current” information, which made the classification algorithms
unable to discriminate “non-current” against “current”. On the other hand, the Evi-
dence-based attribute allowed multiple values, which brought more complexity in
generating and evaluating learned classification models. To simplify the issue, this
quality attribute was not selected.

Quality attribute
(concept for learning)

Definition [9] Attribute values
(classes)

Attribution of sources Whether or not the actual
resource has a quality
attribution, which clarifies
the source of the
information.

Yes, No.

Balance What kind of issue is the
actual resource, and is it
noted or not.

Controversial Issue – Noted,
Controversial Issue – Not Noted,
Non-Controversial Issue.

Purpose Describes the purpose this
article was written for.

Commercial, Discussion Forum,
Educational/Informative, Reportage
of Results, Review.

Publisher credentials The authoritativeness and
credibility of the
individual or organization
responsible for the
document.

Cancer Organization, Clinician,
Commercial Body, Consumer Group,
Educational Institution, Government
Organization, Lay Author,
Researcher, Medical Organization.

Review process How the actual resource
was reviewed.

Editorial Board, Peer Review Process,
No Editorial/Peer Review Process.

532 J. Xie and F. Burstein

The five selected quality attributes of the Quality element served as the class labels
in the experiments. Another eight BCKOnline metadata elements were considered as
relevant features for building a classification model for each selected quality attribute.
These metadata elements were Title, Description, Creator, Publisher, Type, Rights,
Subject and Audience [15].

5.3 Data Cleaning and Transforming

In order to improve the reliability of learned models, the data used for machine learn-
ing required cleaning to achieve better accuracy and consistency. The data integrity
problems were due to the interface that the domain experts used not supporting
lookups and validation. If the value of a quality attribute was misspelled or miscapi-
talized, an extra possible but unwanted value would be created for that attribute.
Therefore, before the data was fed into WEKA for learning, the internal data consis-
tency was checked to eliminate inaccurate, inconsistent or missing values.

Moreover, upon examination of the data format of eight selected metadata ele-
ments for ML, three of them were categorical and allowed multiple values, including
Audience, Type and Subject. The other five elements allowed for free text entry, in-
cluding Title, Description, Creator, Publisher and Right. Different methods were used
to transform these two groups of metadata elements to build classifiers for selected
quality attributes. For those categorical elements that allow multiple values, the label
of each category was transformed to a data attribute in a binary format. As a result,
the applicable eight BCKOnline metadata elements were transformed into 34 data
attributes for building classifiers. Later at the time of model building, a WEKA built-
in filter was utilized to tokenize the other five string-type elements to word vectors.
All transformed word vectors were used as part of the data attributes.

6 Evaluation of Prediction Performance

In order to evaluate the feasibility of the adaptive attribute-based resource quality
assessment, a series of ML experiments was conducted. The statistical tests of predic-
tion performance of different classification schemes were conducted by comparing
outputs against expert inputs within the WEKA workbench. The resulting accuracy
rates are presented in the following discussion, indicating how confident the learned
classification models could be to predict new data.

6.1 Statistical Evaluation Method

In order to obtain reliable measurement results of predicting accuracy, the standard
stratified 10-fold cross-validation evaluation method was utilized by all conducted
experiments. According to Witten and Frank [24], when the amount of data for training
and testing is limited, the dataset cannot be assumed to have the normal distribution.
Therefore, the sample used for training or testing might not be representative enough
or on the contrary over-representative. To mitigate any possible bias caused by a
particular sample, the statistical techniques of stratification and cross-validation were
adopted, which randomly divided data into 10 folds that were approximately of
the same size, and then used each data fold in turn for testing and the remainder for

 Using Machine Learning to Support Resource Quality Assessment 533

training. For each experiment, the training and testing process was repeated 10 times
with different random samples, and the overall estimate was averaged on all iterations.

6.2 Datasets for Experiments

All ML experiments conducted by this study used 780 published resources of the
BCKOnline portal. That included 780 metadata records that were manually assigned
by multiple domain experts. The retrieved resource metadata records were
pre-processed and transformed to create datasets that would be suitable for building
classification models. For each of the five selected quality attributes, a dataset was
specifically compiled for training and testing a classifier for the quality attribute. Each
dataset was represented in a flat file, which was a matrix of 780 data instances versus
35 data attributes. These data attributes included the quality attribute itself and the
other 34 data attributes that were transformed from the BCKOnline metadata elements
(see section 5.3). Therefore, the only difference of these datasets was the last data
attribute, which was the quality attribute to be classified.

6.3 Comparison of Prediction Performance

This section presents and summarizes the evaluation results of prediction performance
of different ML schemes for classification. The prediction performance of the classi-
fier learned from a training set was assessed by measuring the success rate on a
testing set [24].

This study compared the prediction performance of the most common learning al-
gorithms in solving the classification problems of quality attributes. These algorithms
included support vector machines, Bayesian networks, decision trees, rules, and lazy
algorithms. Although finding the possibly best classification method was not the aim
of this study, experimenting different classification algorithms helped to measure how
well the concept could be learned and by which means. The WEKA experimenter
provided supports to perform the comparison and generated the t-tests outputs as
shown in Table 3. Numbers in the above table were an average accuracy over 10 runs
with a random 90% train 10% test split +/- the standard deviation. The experiments
used paired t-test with the significance level of 0.05. All schemes were compared to
the scheme in the first column. In this scenario, SMO was selected as the representa-
tive algorithm of the learning method Support Vector Machines (SVMs).

Table 3. T-tests comparison of the most common ML methods for this problem

Dataset SMO NaiveBayes J48 IB1 ZeroR
Attribution
of sources

83.20±3.84 85.38±2.82 83.20±3.70 75.26±3.54 • 61.80±0.35 •

Balance 78.59±4.52 77.69±5.17 72.18±4.95 • 78.33±3.39 65.38±0.00 •
Purpose 89.38±3.47 75.70±2.90 • 85.17±1.98 85.03±2.48 • 84.02±0.98 •
Publisher
credentials

82.26±5.17 75.58±4.32 • 80.47±4.66 78.06±5.01 • 27.46±0.69 •

Review
process

84.61±3.96 71.27±5.02 • 81.28±2.29 81.80±2.34 83.21±0.33

• statistically significant degradation ◦ statistically significant improvement.

534 J. Xie and F. Burstein

A statistically significant improvement means an improvement over SVMs, while a
statistically significant degradation means significantly lower accuracy than SVMs.
As can be seen from the above table, the absence of any "statistical improvement"
dots means that there were no datasets, where a classifier provided a significant im-
provement over SVMs (although for some datasets/classifiers the performance was
neither significantly better nor worse).

The t-tests show that SVMs were the only classifiers that didn’t suffer significantly
degraded accuracy on at least one of the datasets. The performance on these datasets
may be related to the large number of attribute values, which SVMs tend to handle
much better than the other classifiers [26]. The comparison to the ZeroR (zero-
attribute-rule) algorithm is important as it indicates the classification success of the
other algorithms. The algorithm does not count any attribute and simply classifies
everything as belonging to the largest class. On a particular dataset, if no other algo-
rithms is better than ZeroR, this indicates that the dataset is extremely hard to learn
and/or highly imbalanced.

6.4 Predicting Accuracy of SVMs

Table 4 below summarizes the learning results on a dataset of 780 published resources
of the BCKOnline portal by using the SMO classifier of SVMs. The evaluation results
demonstrated that SVMs worked on the learning problem in the way it was designed
and that the quality of machine-generated values was satisfactory.

Table 4. Summary of learning accuracy using an SVM

Dataset
(35 attributes)

Correctly Classified
Instances

Incorrectly
Classified Instances

Attribution of sources 658 (84.36%) 122 (15.64%)
Balance 611 (78.33%) 169 (21.67%)
Purpose 701 (89.87%) 79 (10.13%)
Publisher credentials 568 (72.82%) 212 (27.18%)
Review process 660 (84.62%) 120 (15.38%)

For the dataset of Publisher credentials, reducing the set of attributes to Publisher,

Creator and Rights generated results of much better accuracy for the classification
problem. The correctly classified instances were increased to 640 (82.05%) from
previously 568 (72.82%). Intuitively, this makes sense since other attributes, such as
Title, Description, Subject, Glossary, and Audience etc. are probably not relevant to
determine a publisher’s credentials. The similar cases may be found with the
other quality attributes, where using a subset of data attributes will increase the pre-
dicting accuracy. However, exploring the relationships between data attributes and a
specific quality attribute will be of interest to future work.

Evaluation results in Table 4 also indicate that classifying Purpose achieved
around 90% overall accuracy using an SVM, which was the highest amongst the five.
However, an overall accuracy can sometimes obscure detailed information about the
class. If observing at the confusion matrix and the accuracy detail by class, some
learning problems can be detected. For instance, Table 5 below shows the confusion
matrix of Purpose, which has the overall accuracy broken down to recall and

 Using Machine Learning to Support Resource Quality Assessment 535

precision for each class. For the class of Educational/Informative, both recall and
precision were above 90%. In contrast, recall and precision values for the other
classes were much lower varying between 0% and 80%. These figures imply that the
accuracy drops when the class size gets smaller. As almost all of the training data
belonged to the Educational/Informative class, the classifier favored this value enor-
mously. Problems like this are referred in the ML literature as "imbalanced" that are
known to be notoriously difficult to learn [27].

Table 5. Confusion matrix of Purpose

a b c d e classified as
639 14 1 3 0 | a = Educational/Informative
26 53 0 2 0 | b = Review
12 0 4 0 0 | c = Discussion Forum
14 4 0 5 0 | d = Reportage of Results
3 0 0 0 0 | e = Commercial

Recall
97.26%
65.43%
25.00%
21.74%
0.00%

Precision
92.07%
74.65%
80.00%
50.00%
0.00%

Weighted Average 89.9% 88.4%
Recall = Number of instances accurately classified as the class / Number of all instances of the class.
Precision = Number of instances accurately classified as the class / Number of all instances classified
as the class.

7 Conclusion and Future Work

In this paper, we defined the assessment approach and a set of measures of resource
quality on the basis of user information needs and preferences for the healthcare do-
main. Our research shows how ML techniques could be applied to support resource
quality assessment through the proposed adaptive attribute-based approach. Based on
the results of ML experiments, SVMs were identified as the classification method
suitable for solving the specific learning problems of this study. The achieved predic-
tion performance on a set of online healthcare resources from the BCKOnline portal
ranged from 73% to 90%, which proved the feasibility of using ML techniques to
generate value suggestions for describing resource quality attributes. As the accuracy
of the suggested values is not definitive, the approach can only provide suggestive
guidance to domain experts, who are then responsible for making the final judgments
on resource quality. Preliminary usability test of this component with four domain
experts produced promising results.

In order to achieve higher accuracy or reliability of machine-generated value sug-
gestions, it is necessary to build classification models from incremental data at the
time of prediction. This is due to new resources from websites not previously in-
cluded in the portal, or the available data may be highly imbalanced for classifying
certain quality attribute. Therefore, the classification models for prediction need to be
fine-tuned continuously by incorporating expert decisions made on new resources.

The future work of this research will include several tasks. Based on the described
quality attribute learner, a quality attribute predictor will be implemented as a feature
of the BCKOnline portal’s content management system. As mentioned in the paper,
reducing the attributes set for the quality attribute of Publisher credentials increased
the predicting accuracy. Similar cases may find with the other quality attributes.
The attribute analysis tool provided by WEKA will be used to determine which data

536 J. Xie and F. Burstein

attributes (or metadata elements) are dominant factors in determining the classifica-
tion model for a particular quality attribute. It will also be necessary to explore the
relationship between the metadata elements and the different quality attributes outside
the healthcare domain.

References

1. Benigeri, M., Pluye, P.: Shortcomings of Health Information on the Internet. Health
Promotion International 18, 381–386 (2003)

2. Evans, J., Manaszewicz, R., Xie, J.: The Role of Domain Expertise in Smart, User-
Sensitive, Health Information Portal. In: the 42nd Hawaii International Conference on
System Sciences, HICSS-42 (2009)

3. Xie, J.: Sustaining Quality Assessment Processes in User-Centred Health Information
Portals. In: The 15th Americas Conference on Information Systems, AMCIS 2009 (2009)

4. Stvilia, B., Gasser, L., Twidale, M.B., Smith, L.C.: A Framework for Information Quality
Assessment. Journal of the American Society for Information Science and Technology
(JASIST) 58, 1720–1733 (2007)

5. Wang, R.Y., Strong, D.M.: Beyond Accuracy: What Data Quality Means to Data Consum-
ers. Journal of Management Information Systems 12, 5–33 (1996)

6. Griffiths, K.M., Tang, T.T., Hawking, D., Christensen, H.: Automated Assessment of the
Quality of Depression Websites. Journal of Medical Internet Research 7, e59 (2005)

7. Sessions, V., Valtorta, M.: Towards a Method for Data Accuracy Assessment Utilizing a
Bayesian Network Learning Algorithm. Journal of Data and Information Quality 1, 1–34
(2009)

8. Burstein, F., Fisher, J., McKemmish, S., Manaszewicz, R., Malhotra, P.: User Centred
Quality Health Information Provision: Benefits and Challenges. In: The 38th Annual
Hawaii International Conference on System Sciences, HICSS 2005 (2005)

9. McKemmish, S., Manaszewicz, R., Burstein, F., Fisher, J.: Consumer Empowerment
through Metadata-Based Quality Reporting: The Breast Cancer Knowledge Online Portal.
Journal of the American Society for Information Science and Technology (JASIST) 60,
1792–1807 (2009)

10. Wang, R.Y., Reddy, M.P., Kon, H.B.: Toward Quality Data: An Attribute-Based
Approach. Decision Support Systems 13, 349–372 (1995)

11. Anderson, J., McKemmish, S., Manaszewicz, R.: Quality Criteria Models Used to Evalu-
ate Health Websites. In: The 10th Asia Pacific Special Health and Law Librarians Confer-
ence, pp. 337–354 (2003)

12. Williamson, K., Manaszewicz, R.: Breast Cancer Information Needs and Seeking:
Towards an Intelligent, User Sensitive Portal to Breast Cancer Knowledge Online. The
New Review of Information Behaviour Research 3, 203–219 (2003)

13. Eysenbach, G., Diepgen, T.L.: Towards Quality Management of Medical Information on
the Internet: Evaluation, Labelling, and Filtering of Information. British Medical Journal
(BMJ) 317, 1496–1502 (1998)

14. Wang, Y., Liu, Z.: Automatic Detecting Indicators for Quality of Health Information on
the Web. International Journal of Medical Informatics 76, 575–582 (2007)

 Using Machine Learning to Support Resource Quality Assessment 537

15. McKemmish, S., Manaszewicz, R., Cheah, C.: Bckonline Metadata Schema Version 1.0
(2004),
http://www.sims.monash.edu.au/research/eirg/BCKO_MetadataSch

ema_Version16.doc
16. Griffiths, K.M., Christensen, H.: Website Quality Indicators for Consumers. Journal of

Medical Internet Research 7, e55 (2005)
17. Price, S.L., Hersh, W.R.: Filtering Web Pages for Quality Indicators: An Empirical

Approach to Finding High Quality Consumer Health Information on the World Wide Web.
In: AMIA 1999 Annual Symposium, pp. 911–915 (1999)

18. Katerattanakul, P., Siau, K.: Measuring Information Quality of Web Sites: Development of
an Instrument. In: The 20th International Conference on Information Systems, pp. 279–
285 (1999)

19. Zhu, J., Gauch, S.: Incorporating Quality Metrics in Centralized/Distributed Information
Retrieval on the World Wide Web. In: The 23rd Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pp. 288–295. ACM Press,
New York (2000)

20. Conrad, J.G., Leidner, J.L., Schilder, F.: Professional Credibility: Authority on the Web.
In: The 2nd ACM Workshop on Information Credibility on the Web. ACM, New York
(2008)

21. Freeman, K.S., Spyridakis, J.H.: An Examination of Factors That Affect the Credibility of
Online Health Information. Technical Communication 51, 239–263 (2004)

22. Aladwani, A.M., Palvia, P.C.: Developing and Validating an Instrument for Measuring
User-Perceived Web Quality. Information and Management 39, 467–476 (2002)

23. Hatala, M., Richards, G.: Value-Added Metatagging: Ontology and Rule Based Methods
for Smarter Metadata. In: Rules and Rule Markup Languages for the Semantic Web:
Second International Workshop, pp. 65–80. Springer, Heidelberg (2003)

24. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Technologies.
Elsevier, Amsterdam (2005)

25. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The Weka
Data Mining Software: An Update. SIGKDD Explorations 11, 10–18 (2009)

26. Evangelista, P.F., Embrechts, M.J., Szymanski, B.K.: Taming the Curse of Dimensionality
in Kernels and Novelty Detection. In: Abraham, A., de Baets, B., Köppen, M., Nickolay,
B. (eds.) Applied Soft Computing Technologies: The Challenge of Complexity, pp.
425–438. Springer, Heidelberg (2006)

27. Akbani, R., Kwek, S., Japkowicz, N.: Applying Support Vector Machines to Imbalanced
Datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004.
LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004)

J. Xu et al. (Eds.): DASFAA Workshops 2011, LNCS 6637, pp. 538–547, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Grid-Based Probabilistic Skyline Retrieval on
Distributed Uncertain Data

Xiaowei Wang and Yan Jia

School of Computer, National University of Defense Technology, Hunan
Changsha, 410073, China

gfkdwxw@yahoo.com.cn

Abstract. The skyline queries help users make intelligent decisions over com-
plex data. It has been recently extended to the uncertain databases due to the
existence of uncertainty in many real-world data. In this paper, we tackle the
problem of probabilistic skyline retrieval on physically distributed uncertain data
with low bandwidth consumption. The previous work incurs sharply increased
communication cost when the underlying dataset is anti-correlated, which is the
typical scenario that the skyline is useful. In this paper, we propose a knowledge
sharing approach based on a novel grid-based data summary. By sharing the data
summary that captures the global data distribution, each local site is able to
identify large amounts of unqualified objects early. Extensive experiments on
both efficiency and scalability have demonstrated that our approach outperforms
the competitor.

1 Introduction

Skyline queries help users make intelligent decisions over multiple dimensional data
when different and often conflicting criteria are considered. Specifically, a skyline
query returns objects not dominated by any other objects. An object o is said to
dominate o’, if o is not worse than o’ in every single dimension, and better than o’ in at
least one dimension.

In many real-world applications, massive data is integrated from a large number of
data sources, and assembled at query time. Meanwhile, with large scale emerges data
uncertainty as a factor that can not be ignored. Consider a web-based hotel recom-
mendation system which integrates from multiple data sources, a common feature of
such kind of systems is to allow users to rate the hotels based on their consumer ex-
periences. The favorite rate associated with each hotel can be regarded as the existential
probability because it represents the probability that the hotel occurs exactly as claimed
in the advertisement. The system is supposed to recommend confidential hotels
according to multi-criteria based ranking, such as low price and more bedrooms.
Such kind of problems can be modeled as probabilistic skyline query, that is, the system
returns the hotels which are not dominated by any other hotels on “price” and “bed-
rooms” above a confidence level.

This work concentrates on probabilistic skyline query on distributed uncertain data.
Our goal is retrieving the global probabilistic skyline objects in a communication

 Grid-Based Probabilistic Skyline Retrieval on Distributed Uncertain Data 539

efficient way. The only existing probabilistic skyline algorithm on distributed uncertain
data (named e-DSUD) [1] utilizes a priority-based scheme to compute the global
probabilistic skyline progressively. However, their approach is limited in communica-
tion efficiency because of the lack of global data distribution in local sites. We tackle
this problem by a data summary sharing approach which reduces the communication
cost by pruning unqualified local skyline objects early. In summary, our contributions
are as follows:

• We propose a grid-based data summary which captures the distribution of an un-
certain dataset in a data independent manner. Based on the data summary proposed,
the general framework of our algorithm is proposed to seemly integrate the
knowledge sharing and early pruning process to e-DSUD.

• A big challenge of our algorithm is sharing the data summaries with low commu-
nication cost. We tackle this problem by further optimization which significantly
reduces the information need to be transferred for a data summary.

• We conduct comprehensive experiments on both real and synthetic datasets.
The results have shown that our approach outperforms the existing one in commu-
nication efficiency.

The rest of the paper is organized as follows. In Section 2, we formulate the problem.
Section 3 addresses the framework of our algorithm. Section 4 describes further op-
timizations. Section 5 reviews related works. Section 6 reports the experimental results.
Section 7 concludes the paper.

2 Problem Definition

Given m local sites S = {s1, …, sm}, each holding a local database Di = {ti,1, …, , ii nt },
which is a horizontal partition of a global uncertain database D in a d dimensional data
space U, and a centralized server H which can communicate with any local site via
Internet. We consider the tuple-level uncertainty [2] in this paper because it widely
used in confidence-aware applications, i.e., each object t in D is associated with a
existential probability p(t) and the probabilities of objects are mutually independent.
Without loss of generality, we assume smaller values are preferred in all dimensions.
And we denote t’ dominate t by “ ”.

In the uncertain data context, an object takes a probability to be in the skyline.
Following the definition in [3], the skyline probability of object t in D (denote by psky(t))
equals the probability that t exists and all objects that dominate t do not exist:

' '
() () (1 ('))sky t D t t

p t p t p t∈ ∧= × −∏ (1)

Given a user-defined probability threshold q, we use q-SKY(D) to denote the answer set
of the probabilistic skyline query on the global dataset D. q-SKY(D) is a set of objects in
D each of which takes a skyline probability at least q:

 q-SKY(D) = { t∈D | ()skyp t > q} (2)

540 X. Wang and Y. Jia

In the aforementioned distributed environment, the query delay mainly depends on
the amount of data transferred. Therefore, our goal is retrieving the global probabilistic
skyline q-SKY(D) from the set of distributed database {Di} with low communication
cost.

The recent work [1] is sensitive to the data distribution, and incurs a sharply increase
communication cost when the cardinalities of local skylines is relatively large. A fea-
sible approach is pruning unqualified objects early in the local sites, which calls for
knowledge of global data distribution sharing among local sites. Nevertheless, this is
not trivial as two challenges naturally emerge: (1) A data summary that captures the
probabilistic data distribution of the datasets compactly and data-independently, and
enable early pruning of unqualified skyline candidates in local sites. (2) A mechanism
sharing the data summary across the local sites which introduces minimal additional
communication cost.

3 The Grid-Based Probabilistic Skyline Algorithm

3.1 The Framework

Our framework gracefully integrates three pre-processing steps into [1]. We first pre-
sent the general framework as follows, and then detail each step in the sequel.

The general framework
1. Loading data (in local sites): each local site Si maps local dataset Di to the local

data summary G(Di) and then transfers G(Di) to H.
2. Merge and share (in centralized server): H merges G(Di) into a global data

summary G(D). Then H broadcast G(D) back to every local sites.
3. Local pruning (in local sites): each Si uses G(D) to prune unqualified local skyline

objects.
4. Skyline computation (in local sites and centralized server): compute probabilistic
 skyline using [1] progressively.

3.2 Loading Data

The Grid-based Data Summary. A grid G splits each dimension of the data

spaceU into n consecutive slices. That is, each of the dn cells in G is a d dimensional

hypercube of the same width. A cell c ∈ G is identified by a d dimensional vector c =
< [0]c , … , [1]c d − >. []c i represents its order in G in the ith dimension from the origin
point of U. A cell c is mapped to a one dimensional order c.id to reduce the information
representing c. The one dimensional order is computed by Hilbert curve [4], as it can be
reconstructed back to coordinates of cells and facilitate computation in local pruning in
section 3.4. For sake of brevity, we use ic to denote the cell owns order i, i.e., .ic id = i.

Fig.1 shows an example of cell ordering for a 2 dimensional data space (n = 4). For

example, 7c =<1, 2>, its order is 7. An uncertain data set is encoding by a grid-based
data summary through mapping each object to the corresponding cell.

 Grid-Based Probabilistic Skyline Retrieval on Distributed Uncertain Data 541

Fig. 1. Cell ordering

Mapping a Dataset to a Grid. When mapping iD to ()iG D , each object t in iD is

mapped to a cell c(t). We use c.CS(D) to denote the set of objects in D mapped to cell c.
Each cell c is associated with a cell probability c.cp, which represents the probability
that none of the objects in c.CS(D) exist, i.e.,

. ()
. (1 ())

t c CS D
c cp p t∈= −∏ (3)

After mapping Di to G(Di), the local sites Si send the information of cells of G(Di) to H.
Note that empty cells contribute nothing to data distribution of local database. For cell c
(c.cp < 1), the information need to be transferred is: < c.id, c.cp>.

3.3 Merge and Sharing

In this phase, H merge the received cells to a global data summary G. H first initialize
an empty grid G, i.e., for each c in G c.cp is set to 1. And then, once H receives a cell cL
from a local site, it sets the probability of corresponding cell in H (the cell cH which
fulfills cH.id = cL.id) by the following equation:

. . .H H Lc cp c cp c cp= × (4)

Lemma 1. Let G(D) represents the grid-based data summary of D, G is the data
summary merged as above, then G is the data summary sketching D, i.e., G = G(D).

Proof: We need prove that for any c and 'c in G, if . ' .c id c id= , then . '.c cp c cp= .

By (3) we have '.c cp =
'. ()

(1 ())
t c CS D

p t∈ −∏ , note that D = ii
D∪ , thus '.c cp can be

rewrite to
'. ()

(1 ())
ii t c CS D

p t∈ −∏ ∏ . Then we get .c cp =
'. ()

(1 ())
ii t c CS D

p t∈ −∏ ∏

= '.c p from (4). Thus we obtain G = G(D).

3.4 Local Pruning

After equipped with the global data summary G, the local sites attempt to prune un-
qualified objects utilizing G. We first illustrate the pruning heuristic by the example in
fig.2. Suppose a local site Si holds a grid G received from H. For object t (c(t) = 7c) in

542 X. Wang and Y. Jia

Fig. 2. Upper-bound object t with G

Di, all the objects that dominate t is in the gray region, which covers cell 0c and 3c en-

tirely. From equation (3) we can derive the upper-bound of psky(t) as
p(t) × 0c .cp × 3c .cp. Then t can be safely pruned if the upper-bound is less than q.

In order to prove the above observation theoretically, we first extend the dominate
relationship between objects to cells naturally:

Definition 1. Dominate relationship between cells (“ c ”): , 'c c G∀ ∈ , c c
'c if and

only if c 'c . i.e., i∀ ∈ [1,]d , [] '[]c i c i≤ , and [1,], [] '[]i d c i c i∃ ∈ ≠ .

Definition 2. Strictly dominate relationship between cells (“ s
c ”): , 'c c G∀ ∈ ,

c s
c

'c if and only if c c
'c and [1,], [] '[]i d c i c i∀ ∈ ≠ .

Lemma 2. For an object t in iD , and a grid G for D, ()skyp t is upper-bounded by the

product of p(t) and
()

.s
cc G c c t

c cp∈ ∧∏ .

Proof: For any 't mapped to (')c t , 't dominates t if (')c t strictly dominates c(t).

Thus ''
'' ''

(1 ())
t G t t

p t∈ ∧ −∏ is upper-bounded by
(') ()

(').s
cc t c t

c t cp∏ . From (1) we

have ()skyp t ≤ ()p t ×
()

.s
cc c t

c cp∏ .

4 Further Optimization

Besides the empty cells, there are still large portion of cells that are redundant for
determining the upper bound of skyline probability. We first present the observation by
an example in fig.3. Suppose q equals 0.3, and the cell probability of 0c and 1c is 0.6

and 0.4 respectively, i.e., 0 1. .c cp c cp× = 0.6 × 0.4< q. Then all the cells strictly domi-

nated by both 0c and 1c (8~13c) are not necessary to transferred to H. This is because,

any object that falls into 8~13c will inevitably strictly dominated by 0c and 1c , thus its

 Grid-Based Probabilistic Skyline Retrieval on Distributed Uncertain Data 543

Fig. 3. Redundant cells

skyline probability is always less than q following lemma 2. Then cells in 8~13c will

never contribute to the probabilistic skyline computation and can be safely excluded
from the cells that need to be sent. We can exclude 6c in the same way.

We then formally proof the above heuristic. As depicted by fig.4, we use
DownLeft(c) to denote the set of cells that dominate cell c as well as c itself, i.e.,
DownLeft(c)={ 'c ∈ G(Di) | ' cc c } ∪ {c}, and use DownLeft(c).cp to denote the

product of cell probability of cells in DownLeft(c), i.e., DownLeft(c).cp
=

' ()
'.

c Downleft c
c cp∈∏ . The cells strictly dominated by c are denoted by UpRight(c),

i.e., UpRight(c) = { ''c ∈G(Di) | ''s
cc c } holds. Then we obtain lemma 3:

Fig. 4. Illustration of lemma 3

Lemma 3. For any cell c in ()iG D , ()UpRight c are not necessarily transferred if

().Downleft c cp is less than q.

Proof: From the definition of ()Downleft c and ()UpRight c we can conclude that for any

cell c in ()UpRight c , and any 'c in ()DownLeft c , it always holds that ' s
cc c . If t is

dominated by c in ()UpRight c , then it must be dominated by any cell in ()DownLeft c .

In another word, any object that can be prune by ()UpRight c will always be pruned

by ()Downleft c , thus cells in ()UpRight c are not necessarily transferred.

544 X. Wang and Y. Jia

5 Related Works

The skyline operator is first introduced into the database community by [5]. There has
been considerable works on the distributed skyline query processing. Balke [6] first
investigates the skyline computation under the distributed environments, where data is
vertically scatted in multiple distributed nodes. Several works deal with distributed
skyline retrieval in Peer-to-Peer network where different overlays are considered [7-9].
The recent literature considers distributed skyline retrieval under more general network
architectures [10, 11]. However, the above algorithms can not be extended to uncertain
data because of the semantic gap.

The skyline query was first extended to uncertain data by Pei [3]. ZHANG [12]
studied the probabilistic skyline query in streaming uncertain data. They proposed an
in-memory R-tree based approach to maintain the candidate set efficiently. Yiu [13]
extended R-tree to facilitate the probabilistic skyline computation under the spatial
database context. However, none of the above work considers the distributed prob-
abilistic skyline query under the uncertain context.

More recently, DING [1] has proposed the first probabilistic skyline algorithm on
distributed uncertain data. The communication efficiency of their algorithm stems from
a priority-based scheme, where the central server computes global skyline in the order
of local skyline probabilities. However, the communication cost of their algorithm
highly depends on the data distribution, and increases sharply when the cardinality of
local probabilistic skyline is relatively large.

6 Experimental Evaluations

6.1 Experimental Setup

Both our algorithm (Grid-based Probabilistic Skyline, GBPS) and e-DSUD are im-
plemented in C++ and compiled by VC 2005 on a 3.8GHz Dual Core AMD processor
with 2G RAM running Windows OS. The performance measures are number of bytes
transferred during the query processing. Both real and synthetic datasets are used in our
experiments. The real dataset (available from www.zillow.com) contains information
about real estate all over the United States. We deal with 2 dimensions namely number
of bedrooms and price gap. The price gap of a house is computed as the maximum
house price in the dataset minus the price of the house. Intuitively, the real dataset with
the dimensions (number of bedrooms, price gap) is more likely anti-correlated as a
large room tends to has small price gap. We also generate the synthetic anti-correlated
dataset following [5]. The dimensionality d of synthetic dataset ranges from 2 to 4.
Both of the real and synthetic datasets contain 1 million objects.

We associate uncertainty to the aforementioned datasets by randomly assigning each
object with an occurrence probability following normal distribution with the mean
value μ equals 0.8 and the standard deviationσ equals 0.3. The threshold q is set to 0.3.

In each experiment, the dataset of cardinality n is horizontally split to m partitions
equally, each simulate a local database. The default setting of d and m is 2 and 100
respectively unless otherwise specified.

 Grid-Based Probabilistic Skyline Retrieval on Distributed Uncertain Data 545

6.2 Experimental Results

Optimal value of n. We first study the optimal setting of the number of slides on both
real and synthetic datasets. As depicted by fig.5, the optimal value of n is around 14 and
16 respectively. When n is relatively large, transferring the cells consume too much
additional communication cost. However, when n is relatively small, the pruning power
of the grids will be limited. In the sequel, we set n to 14 for both datasets.

10 12 14 16 18 20
2.8

3

3.2

3.4

3.6

3.8

4
x 10

5

n

C
om

m
u

ni
ca

ti
on

 c
os

t(
b

yt
e

s)

anti-correlated
real

Fig. 5. Optimal value of n

Communication cost vs. number of local sites. Both algorithms incur more com-
munication cost on anti-correlated dataset than on real dataset, since the former
generates much more skyline candidates. GBPS saves average 12.1% and 19.7%
bandwidth against e-DSUD for real dataset(depicted in fig.6 (a)) and anti-correlated
dataset (depicted in fig.6 (b)) respectively, which confirms that GBPS perform
better than e-DSUD for more skewed data. On both datasets, GBPS scales better with
respect to m.

Communication cost vs. dimensionality. We test the scalability of GBPS against
e-DSUD with respect to dimensionality by varying d from 2 to 4 on anti-correlated
dataset. As shown by fig.7, GBPS always incurs lower communication cost than
e-DSUD. Furthermore, the percentage of bandwidth saved by GBPS increases when d
gets larger, which indicates that GBPS has better scalability than e-DSUD with respect
to dimensionality.

1 2 3 4 5 6
2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

m

C
om

m
un

ic
at

on
 c

os
t(

by
te

s)

e-DSUD
GBPS

1 2 3 4 5 6

2

3

4

5

6

7

8

9

10
x 10

5

m

C
om

m
u

ni
ca

ti
on

 c
os

t(
by

te
s)

e-DSUD
GBPS

(a) Real dataset (b) Anti-correlated dataset

Fig. 6. Communication cost vs. Number of local sites

546 X. Wang and Y. Jia

2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

d

C
om

m
un

ic
at

io
n

co
st

(b
yt

e
s)

e-DSUD
GBPS

Fig. 7. Communication cost vs. dimensionality

7 Conclusions

In this paper, we propose a grid-based communication-efficient algorithm of prob-
abilistic skyline on distributed uncertain data. By sharing a grid-based data summary,
our algorithm improves the communication efficiency against existing approach.

As can be expected, grid-based approach performs not well on correlated and in-
dependent datasets. This suggests that, after samples or histograms are used to estimate
the distribution of the underlying data, our approach can be an alternative when the
underlying dataset is more likely anti-correlated, which is deemed as the challenging
problems for skyline computation.

Acknowledgement

This work is supported by the National High-Tech Research and Development
Plan of China under Grant No. 2006AA01Z474, No. 2007AA01Z451, and No.
2007AA010502.

References

1. Ding, X., Jin, H.: Efficient and Progressive Algorithms for Distributed Skyline Queries over
Uncertain Data. In: 30th International Conference on Distributed Computing Systems. IEEE
Computer Society, Genova (2010)

2. Aggarwal, C.C., Yu, P.S.: A Survey of Uncertain Data Algorithms and Applications. IEEE
Transactions on Knowledge and Data Engineering 21(5), 609–623 (2009)

3. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic Skylines on Uncertain Data. In: 33rd
International Conference on Very Large Data Bases. VLDB Endowment, Vienna (2007)

4. Jagadish, H.V.: Linear Clustering of Objects with Multiple Attributes. In: ACM SIGMOD
International Conference on Management of Data. ACM, New Jersey (1990)

5. Borzsony, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: 17th International
Conference on Data Engineering. IEEE Computer Society, Hannover (2001)

6. Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for web information
systems. In: Hwang, J., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis,
M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 256–273. Springer, Heidelberg
(2004)

 Grid-Based Probabilistic Skyline Retrieval on Distributed Uncertain Data 547

7. Wang, S., Ooi, B.C., Tung, A.K.H., Xu, L.: Efficient Skyline Query Processing on
Peer-to-Peer Networks. In: 23rd International Conference on Data Engineering. IEEE
Computer Society, Istanbul (2007)

8. Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D.P., El Abbadi, A.: Parallelizing Sky-
line Queries for Scalable Distribution. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W.,
Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT
2006. LNCS, vol. 3896, pp. 112–130. Springer, Heidelberg (2006)

9. Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: Skypeer: Efficient Subspace
Skyline Computation over Distributed Data. In: 23rd International Conference on Data
Engineering. IEEE Computer Society, Istanbul (2007)

10. Cui, B., Lu, H., Chen, Q.X.L., Dai, Y., Zhou, Y.: Parallel Distributed Processing of
Constrained Skyline Queries by Filtering. In: 24rd International Conference on Data
Engineering. IEEE Computer Society, Cancun (2008)

11. Zhu, L., Tao, Y., Zhou, S.: Distributed Skyline Retrieval with Low Bandwidth Consump-
tion. IEEE Transactions on Knowledge and Data Engineering 21(3), 384–400 (2009)

12. Zhang, W., Lin, X., Zhang, Y., Wang, W., Yu, J.X.: Probabilistic Skyline Operator over
Sliding Windows. In: 25rd International Conference on Data Engineering. IEEE Computer
Society, Shanghai (2009)

13. Yiu, M.L., Mamoulis, N., Dai, X., Tao, Y., Vaitis, M.: Efficient Evaluation of Probabilistic
Advanced Spatial Queries on Existentially Uncertain Data. IEEE Transactions on Knowl-
edge and Data Engineering 21(1), 108–122 (2009)

Author Index

Ali, G.G.Md. Nawaz 453

Baumgartner, Norbert 490
Bertolotto, Michela 132
Burstein, Frada 526

Chan, Edward 453
Chardin, Brice 214
Chen, Lei 1
Chen, Ruichuan 344
Chen, Xuexuan 202
Cui, Bin 202
Cuzzocrea, Alfredo 28

De Coi, Juri Luca 28
Dolog, Peter 333
Du, Xiaoyong 465

Fan, Yulei 190
Feng, Jianhua 178
Fisichella, Marco 28
Fong, Joseph 40
Fukuhara, Tomohiro 378

Gottesheim, Wolfgang 490
Guan, Jihong 2, 403
Guo, Qianqian 89

Han, Shuguo 53
Härder, Theo 226, 241
Huang, Jun 357
Hudlet, Volker 226

Ishii, Soichi 378
Iwaihara, Mizuho 357

Jang, Sumin 112
Jia, Yan 538
Jiang, Shan 333
Jin, Hong 156
Jin, Peiquan 168, 264
Jin, Ping 333
Jorra, Maik 14

Katayama, Taichi 378
Kawada, Yasuhide 378
Kou, Yue 514

Lee, Ryong 390
Lee, Sang-Won 177
Li, Chen 477
Li, Daming 502
Li, Haizhou 40
Li, He 112
Li, Jing 202
Li, Wenzhong 453
Li, Ying 156
Li, Yueting 287
Li, Yuzhen 65
Liang, Wenxin 287
Liang, Zhichao 190
Lin, Sheng 168
Lin, Yi-Rong 276
Lin, Yongjie 502
Liu, Kuicheng 465
Liu, Yunhao 402
Liu, Zheng 299
Luo, Yifeng 2
Lv, Yanfei 202

Malliaros, Fragkiskos D. 311
Mani, Murali 415
McArdle, Gavin 132
Megalooikonomou, Vasileios 311
Meng, Xiaofeng 190, 240
Mitsch, Stefan 490
Mok, Wai Yin 40
Morijiri, Akihito 378

Ng, Wee Keong 53
Nie, Tiezheng 514

Ou, Yi 226, 241

Pak, Alexander 323
Park, Kyu Ho 254
Park, Sung Kyu 254
Park, Youngwoo 254
Paroubek, Patrick 323

550 Author Index

Pasteur, Olivier 214
Petit, Jean-Marc 214
Plantikow, Stefan 14

Qian, Weining 369
Qian, Zhiping 101

Retschitzegger, Werner 490
Ross, Keith 344

Saxena, Nitesh 344
Schall, Daniel 226
Schneider, Markus 120, 144
Schwinger, Wieland 490
Sharaf, Mohamed A. 478
Shen, Derong 514
Skoutas, Dimitrios 28
Song, Hongjun 502
Sumiya, Kazutoshi 390

Tahir, Ali 132
Tang, Cong 344

Utsuro, Takehito 378

Viswanathan, Ganesh 144

Wakamiya, Shoko 390
Wang, Fabiao 101
Wang, Huaishuai 168
Wang, Liang 287
Wang, Shan 465
Wang, Shuliang 156
Wang, Weili 101
Wang, Xiaowei 538
Wang, Xue 465
Wei, Qingting 77
Wen, Yanlong 427

Xie, Fang 178
Xie, Jue 526
Xu, Chen 440
Xu, Guandong 333
Xu, Jianliang 240
Xu, Jing 178
Xu, Lei 427
Xu Yu, Jeffrey 299

Yang, Jinmei 89
Yang, Puyuan 264
Yang, Wan-Shiou 276
Yeganeh, Naiem K. 478
Yoo, Jaesoo 112
Yu, Ge 514
Yu, Yinan 65
Yuan, Wenjie 120
Yuan, Xiaojie 427
Yue, Dejun 514
Yue, Lihua 240, 264

Zhang, Boliang 403
Zhang, Haiwei 427
Zhang, Lanlan 168
Zhang, Long 101
Zhang, Lu 427
Zhang, Xianchao 287
Zhang, Xiao 465
Zhang, Ying 427
Zhang, Zhao 369
Zhao, Lei 168
Zhao, Xinliang 502
Zhou, Aoying 369
Zhou, Minqi 440
Zhou, Qian 156
Zhou, Shuigeng 2, 65, 403
Zhu, Fubao 89
Zhu, Linhong 53
Zong, Yu 333
Zou, Nan 502

	Title
	Preface
	Organization
	Table of Contents
	The 1st International Workshop on Graph-structured Data Bases (GDB 2011)
	Invited Talk
	Privacy-Preserved Network Data Publishing

	Systems
	Towards Efficient Subgraph Search in Cloud Computing Environments
	Introduction
	Related Work
	Graph Search and Indexing
	MapReduce-Based Computing

	Cloud-Based Subgraph Search: An Overview
	Implementation Techniques
	Index Building
	Subgraph Search

	Experimental Evaluation
	Experimental Settings
	Experimental Results

	Conclusion and Future Work
	References

	Latency-Optimal Walks in Replicated and Partitioned Graphs
	Introduction
	Problem

	Definitions
	Optimal Partition Walks
	Fast-Forward-Search
	System Model
	Query Model
	Fast-Forward-Search
	Cost Analysis
	Lowering the Fan-Out

	Proof of Optimality
	Evaluation
	Generating Graph Partitionings
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion
	References

	Graph-Based Matching of Composite OWL-S Services
	Introduction
	Graph Representation of OWL-S Processes
	Matching OWL-S Processes
	Matching Atomic Components
	Matching Process Structure

	Experimental Evaluation
	Related Work
	Conclusions and Future Work
	References

	Theories
	Design Non-recursive and Redundant-Free XML Conceptual Schema with Hypergraph
	Introduction
	Related Work
	Methodology
	Conclusion
	References

	Classifying Graphs Using Theoretical Metrics: A Study of Feasibility
	Introduction
	Representing Graphs with Theoretical Metrics
	Graph-Theoretical Metrics
	Feature Selection and Graph Transformation

	Graph Classification
	Experimental Evaluations
	Tasks and Data Sets
	Results

	Related Work
	Conclusions
	References

	The First International Workshop on Spatial Information Modeling, Management and Mining (SIM3)
	Spatial Data Management: Compression, Storage and Query
	A GML Documents Stream Compressor
	Introduction
	Related Work
	The GDScomp Method
	GDScomp Architecture
	Event Handler
	Dynamic Structure Compression
	Delta Compression

	Experimental Evaluation
	Compression Ratio
	Compression Time and Decompression Time

	Conclusion and Future Work
	References

	A Query-Friendly Compression for GML Documents
	Introduction
	Background
	An Example of GML Documents
	An Example of GML Queries

	Query-Friendly GML Compression
	Compression Model
	SAX Event Dictionary.
	SAX Events Hierarchy.
	SAX Event Wavelet Tree.
	Document Content Blocks.

	Query Resolution Process
	Compression Algorithm

	Conclusion
	References

	Storing GML Documents: A Model-Mapping Based Approach
	Introduction
	Related Work
	Model-Mapping Storage Method Based on Nodes and Edges
	GML Document Storing Architecture
	GML Document Data Schema
	Constructing of GML Document Tree
	GML Document Database Model
	The Experimental Analyzing of GML Document Data Storing Time

	GML Query Processing
	Experimental Analysis
	Conclusion
	References

	GML Data Management: Framework and Prototype
	Introduction
	GML Structure and Query Language
	GML Structure and Model
	GML Query Language

	The Framework of GML Data Management
	The Processing Center
	Storing GML Data in Object-Relational Database
	GQL Query in Object-Relation Database
	GQL Processor
	GML Indexing

	The Prototype
	Conclusion and Future Work
	References

	An Efficient Multi-layer Grid Method for Skyline Queries in Distributed Environments
	Introduction
	Related Work
	The Proposed Method
	Motivation
	The Processing of MGDS Algorithm

	Experiment Evaluation
	Experimental Environment
	Experimental Results

	Conclusions
	References

	Spatial Planning, Visualization, Mining and System
	3D Indoor Route Planning for Arbitrary-Shape Objects
	Introduction
	Related Work
	The LEGO Model
	Checking the Accessibility for Arbitrary-Shape Objects
	The Maximum Widths
	The Maximum Heights
	The Maximum Lengths

	The LEGO Graph
	Conclusions and Future Work
	References

	A Web-Based Visualisation Tool for Analysing Mouse Movements to Support Map Personalisation
	Introduction
	Related Work
	System Description
	System Architecture and Technologies
	Discussion and On-Going Developments
	Conclusions
	References

	On the Requirements for User-Centric Spatial Data Warehousing and SOLAP
	Introduction
	Related Work
	Requirements for User-Centric Spatial OLAP
	A Meta-Framework for Spatial Data Warehouse Design
	Conclusions and Future Work
	References

	Optimal Bandwidth Selection for Density-Based Clustering
	Introduction
	Related Principles
	Basic Idea of Density Based Clustering Algorithm
	Parameter Estimation Model

	Density-Based Clustering Algorithm Using the Optimal Bandwidth Selection
	The Structure of the Algorithm
	Optimal Bandwidth Selection Model

	Case Study
	The Procedure of Optimal Bandwidth Selection
	Clustering Analysis

	Conclusions
	References

	Developing an Oracle-Based Spatio-Temporal Information Management System
	Introduction
	Overview of STOC
	Implementation of STOC
	Moving Data Types in STOC
	Spatio-Temporal Operations in STOC

	Case Study: A Traffic Information System
	Create BerlinMOD Database
	Spatio-Temporal Queries

	Related Work
	Conclusions
	References

	The First International Workshop on Flash-Based Database Systems (FlashDB)
	Storage Management for SSD
	Invited Talk I
	Some Research Directions in FlashDB
	References

	Regular Papers
	Page-Level Log Mapping: From Many-to-Many Mapping to One-to-One Mapping
	Introduction
	Design Overview
	Basic Concepts
	System Architecture

	The Implementations of the PLM Approach
	The Block Associative Log Mapping
	The Fully Associative Log Mapping

	Experimental Evaluation
	Related Work
	Conclusion
	References

	A Novel Method to Extend Flash Memory Lifetime in Flash-Based DBMS
	Introduction
	Characteristics of Flash Memory
	The Methods Used in Traditional Free Space Management
	Our Solution
	Overview
	Free Space Management
	Write Buffer
	Merge Operation

	Evaluation Experiments
	Experiment Setup
	Performance Results and Analysis

	Related Work
	Conclusions
	References

	Log-Compact R-Tree: An Efficient Spatial Index for SSD
	Introduction
	Preliminaries
	Introduction to SSD
	Related Work

	The LCR-Tree
	Overview of LCR-Tree
	Design Details of LCR-Tree

	Experimental Results
	Experiments on Synthetic Data Sets
	Experiments on Real Spatial Data Sets

	Conclusion and Future Work
	References

	An FTL-Agnostic Layer to Improve Random Write on Flash Memory
	Introduction
	NAND Flash Memories
	Write Spatial Locality for FTL-Based Devices
	Gathering Random Writes
	Model
	Results
	Related Works
	Conclusion
	References

	Energy Efficiency & Hybrid Storage
	Invited Talk II
	Energy Efficiency Is Not Enough, Energy Proportionality Is Needed!
	Introduction
	Experimental Results and Critical Observations
	SSD Performance Measurements
	Result Interpretation

	Findings in DBMS Buffer Management
	Objectives of Flash-Aware Replacement Algorithms
	Experiments

	Energy-Proportional Computing
	Design Considerations of WattDB
	Architecture Overview
	Storage Mapping and Partitioning
	Query Processing
	Cluster Coordination

	Conclusion and Future Work
	References

	Invited Talk III
	Flash-Based Database Systems: Experiences from the FlashDB Project
	References

	Regular Papers
	Trading Memory for Performance and Energy
	Introduction
	Related Work
	The 3LA Storage System
	The LOC Algorithm
	The GLB Algorithm
	Discussion

	Experiment
	Simulations
	Running a Real-Life Trace on Real Devices

	Conclusion and Future Work
	References

	Design of Embedded Database Based on Hybrid Storage of PRAM and NAND Flash Memory
	Introduction
	Related Work
	Hybrid Storage Architecture
	Transaction on Hybrid Storage
	Implementation Issue
	Experiment
	Experimental Environment
	Experimental Result

	Conclusion
	Future Work
	References

	Hybrid Storage with Disk Based Write Cache
	Introduction
	Related Work
	Flash Translation Layer
	Log-Block-Based FTL
	Hybrid Storage Policy

	The Hybrid Storage System Model
	The Migration Algorithm
	Page Placement
	Block Level Hybrid Algorithm
	Page Level HSLRU-2 Algorithm

	Performance Evaluation
	Conclusions and Future Work
	References

	The 2nd International Workshop on Social Networks and Social Media Mining on the Web (SNSMW)
	Social Networking and Community Structure
	An Analysis of Network Structure and Post Content for Blog Post Recommendation
	Introduction
	Literature Review
	Proposed Approaches
	Evaluation
	Conclusions
	References

	Extracting Local Community Structure from Local Cores
	Introduction
	Preliminaries
	Local Community
	Previous Algorithms

	Our Contribution
	Extracting Local Core
	Merging Vertices
	Pruning Phase

	Experiment Results
	Zachary's Karate Club Network
	GN Networks
	The NCAA Football Network

	Conclusions
	References

	On Summarizing Graph Homogeneously
	Introduction
	Problem Statement
	An Approximately Homogeneous Grouping Based on Information Theory
	Homogeneous Graph Summarization
	Experimental Results
	Related Works
	Conclusions
	References

	Expansion Properties of Large Social Graphs
	Introduction
	Related Work
	Measuring Expansion Properties
	Subgraph Centrality

	Experimental Results
	Conclusions
	References

	Text Representation Using Dependency Tree Subgraphs for Sentiment Analysis
	Introduction
	Our Method
	Subgraph Representation
	Feature Construction
	Discounting Scheme

	Experiments and Results
	Data and Evaluation Setup
	Results

	Related Work
	Conclusion
	References

	A Local Information Passing Clustering Algorithm for Tagging Systems
	Introduction
	Preliminaries
	Social Tagging System Model
	Tag Vector and Tag Similarity

	Local Information Passing Clustering Algorithm
	KNN Directed Graph and Local Information
	Local Information Passing Clustering Algorithm

	Experimental Evaluations
	Experimental Datasets
	Evaluation Measurements
	Experiments and Discussion

	Conclusion
	References

	Social Media and Data Mining
	What’s in a Name: A Study of Names, Gender Inference, and Gender Behavior in Facebook
	Introduction
	Related Work
	Crawling and Data Gathering
	Using Facebook to Generate an Annotated Name List
	Combining Names with Their Nicknames
	Analysis of Annotated Name List

	Design of Gender Predictors
	Offline Name List Predictor (OFL)
	Facebook Generated Name List Predictor (FB)
	Local Information Predictor (LCL)
	Friend Information Predictor (FRND)
	Hybrid Predictors

	Evaluation of Gender Predictors
	Experimental Setup
	Effectiveness of Gender Predictors

	Inferring Gender for NYC Facebook Users
	User Partitioning
	Applying Gender Predictors to Group A
	Gender Inference Results

	Gender Characteristics and Behavior
	Privacy of Attributes
	Targeted Advertising and Privacy Implications

	Conclusions
	References

	Realtime Social Sensing of Support Rate for Microblogging
	Introduction
	Problem Setting
	Data Preparation
	Approach
	Preprocess
	Classification via Support Vector Machine
	Event Detection

	Experiments and Evaluations
	Training Data
	Support Rate Results
	Analysis
	Verifying Realtimeness
	Results of Event Detection

	Conclusion and Future Work
	References

	Searching Consultants in Web Forum
	Introduction
	Problem Statement
	Objects in Web Forum
	Definitions

	Approaches to Find Consultants in Web Forum
	Modeling Consultants Search
	Algorithms

	Experiments
	Data Collection
	Experiment Results

	Related Work
	Conclusion and Future Work
	References

	Comparing Similarity of HTML Structures and Affiliate IDs in Splog Analysis
	Introduction
	Similarity of HTML Structures
	Extracting DOM Sequences of an HTML Document
	Ratio of the Differences in DOM Sequences

	Automatic Collection of Splogs with High Similarities of HTML Structures
	Seed Splog Data Set
	The Procedure
	Analysis on Splog Rate

	Splogs and Affiliate IDs
	Analysis on Identifying Spammers
	Identifying Spammers Based on the Similarity of HTML Structures
	Comparison of the Similarity of HTML Structures and Affiliate IDs

	Concluding Remarks
	References

	Crowd-Powered TV Viewing Rates: Measuring Relevancy between Tweets and TV Programs
	Introduction
	A Twitter-Based TV Rating Platform
	Looking for Audiences on Twitter
	Twitter-Based TV Rating Platform
	Related Work

	Semantic Linking from Tweets to Relevant TV Programs
	Experiment
	Experimental Dataset
	Experimental Results

	Conclusions
	References

	The First International Workshop on Data Management for Emerging Network Infrastructures (DaMEN)
	Invited Talk
	GreenOrbs: Lessons Learned from Extremely Large Scale Sensor Network Deployment

	Query and Stream Processing
	Adapting Skyline Computation to the MapReduce Framework: Algorithms and Experiments
	Introduction
	Preliminaries
	Skyline: Definition and Properties
	The MapReduce Framework

	MapReduce-Based Skyline Computation Algorithms
	MR-BNL
	MR-SFS
	MR-Bitmap

	Performance Evaluation
	Experimental Setting
	Experimental Results

	Related Work
	Skyline Computation
	Data Management and Query Processing under the MapReduce Framework

	Conclusion
	References

	Efficient Event Stream Processing: Handling Ambiguous Events and Patterns with Negation
	Introduction
	Background
	Constructing NFA for Pattern Queries with Negation
	Constructing DFA for Pattern Queries and Ambiguous Events
	Performance Evaluation
	Related Work
	Conclusions and Future Work
	References

	Effective Keyword Search for Candidate Fragments of XML Documents
	Introduction
	Related Work
	Query Semantics
	XML Data Model
	CAF Semantics

	Query Algorithms
	Node Match Algorithm
	Path Match Algorithm

	Experimental Evaluation
	Experimental Setup
	Datasets and Keyword Queries
	Query Effectiveness
	Query Efficiency

	Conclusion
	References

	Storage and Scheduling
	Optimized Data Placement for Column-Oriented Data Store in the Distributed Environment
	Introduction
	Related Work
	Problem Statement
	Data Placement
	An Overview
	Content-Aware Bitmap Index Key Generation
	Index Construction
	Data Placement
	Segment Split

	Query Processing
	Multi-dimensional Range Query and Multi-attribute Range Query
	Aggregation Query and Approximate Aggregation Query

	Performance Evaluation
	Evaluation on Access Efficiency
	Evaluation on Aggregation Accuracy
	A Comparison

	Conclusion
	References

	Two-Step Joint Scheduling Scheme for Road Side Units (RSUs)-Based Vehicular Ad Hoc Networks (VANETs)
	Introduction
	Related Work
	Background and Preliminaries
	System Model
	Notation and Assumptions

	Scheduling Schemes
	First-Step Scheduling
	Our Proposed Scheduling Algorithm
	Performance Metrics

	Performance Evaluation
	Experimental Setup
	Effect of Deadline Miss Rate
	Effect of
	Effect of Data Item Size Distribution

	Conclusion and Future Work
	References

	A Content-Aware Adaptive Storage Approach for XML in PXRDB
	Introduction
	Presentation of Adaptive XML Storage Schema
	Storage Scheme Selector
	Storage Scheme Selector Function
	Implementation of the Selector-CASF

	Experiments
	Datasets
	Accuracy of Choosing Suitable Storage

	Related Work
	Conclusion
	References

	Fourth International Workshop on Data Quality in Integration Systems (DQIS)
	Invited Talk
	The Flamingo Software Package on Approximate String Queries

	Session I
	Invited Paper
	A Framework for Data Quality Aware Query Systems
	Introduction
	Existing Literature
	Framework for DQ Aware Query Systems
	Data Quality Profiling
	Capture User Preference on Data Quality
	Query Planning

	Conclusions
	References

	Regular Papers
	SemGen—Towards a Semantic Data Generator for Benchmarking Duplicate Detectors
	Introduction
	Qualitative Description of Duplicate Semantics
	Approach
	Related Work
	Discussion and Further Work
	References

	Estimating a Transit Passenger Trip Origin-Destination Matrix Using Automatic Fare Collection System
	Introduction
	Estimating Passenger Trajectory
	Data Analysis
	Trajectory Search Algorithms

	Travel Demand Matrix
	Case Studies
	Conclusions
	References

	Session II
	Invited Paper
	An Approach to Assess the Quality of Web Pages in the Deep Web
	Introduction
	Related Works
	Preprocessing for the Assessment
	The Schema Model of Web Data
	The Annotation of Web Data

	The Method for Quality Assessment
	Analyzing the Structure Complexity
	Analyzing the Text Complexity
	The Quality Level

	An XQuery-Based Wrapper
	Experimental Results
	Conclusion
	References

	Regular Papers
	Using Machine Learning to Support Resource Quality Assessment: An Adaptive Attribute-Based Approach for Health Information Portals
	Introduction
	Research Context: The BCKOnline Portal
	An Adaptive Attribute-Based Approach for Resource Quality Assessment
	An Attribute-Based Data Model for the Healthcare Domain

	Machine Learning for Predicting Quality Attributes
	ML Procedures for Intelligent Quality Assessment
	Selection of ML Scheme
	Selection of Data Attributes
	Data Cleaning and Transforming

	Evaluation of Prediction Performance
	Statistical Evaluation Method
	Datasets for Experiments
	Comparison of Prediction Performance
	Predicting Accuracy of SVMs

	Conclusion and Future Work
	References

	Grid-Based Probabilistic Skyline Retrieval on Distributed Uncertain Data
	Introduction
	Problem Definition
	The Grid-Based Probabilistic Skyline Algorithm
	The Framework
	Loading Data
	Merge and Sharing
	Local Pruning

	Further Optimization
	Related Works
	Experimental Evaluations
	Experimental Setup
	Experimental Results

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

