

Kurosh Madani,António Dourado Correia,Agostinho Rosa,

and Joaquim Filipe (Eds.)

Computational Intelligence

Studies in Computational Intelligence, Volume 343

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage:
springer.com

Vol. 320. xxx

Vol. 321. Dimitri Plemenos and Georgios Miaoulis (Eds.)
Intelligent Computer Graphics 2010
ISBN 978-3-642-15689-2

Vol. 322. Bruno Baruque and Emilio Corchado (Eds.)
Fusion Methods for Unsupervised Learning Ensembles, 2010
ISBN 978-3-642-16204-6

Vol. 323. Yingxu Wang, Du Zhang, and Witold Kinsner (Eds.)
Advances in Cognitive Informatics, 2010
ISBN 978-3-642-16082-0

Vol. 324. Alessandro Soro, Vargiu Eloisa, Giuliano Armano,
and Gavino Paddeu (Eds.)
Information Retrieval and Mining in Distributed
Environments, 2010
ISBN 978-3-642-16088-2

Vol. 325. Quan Bai and Naoki Fukuta (Eds.)
Advances in Practical Multi-Agent Systems, 2010
ISBN 978-3-642-16097-4

Vol. 326. Sheryl Brahnam and Lakhmi C. Jain (Eds.)
Advanced Computational Intelligence Paradigms in
Healthcare 5, 2010
ISBN 978-3-642-16094-3

Vol. 327. Slawomir Wiak and
Ewa Napieralska-Juszczak (Eds.)
Computational Methods for the Innovative Design of
Electrical Devices, 2010
ISBN 978-3-642-16224-4

Vol. 328. Raoul Huys and Viktor K. Jirsa (Eds.)
Nonlinear Dynamics in Human Behavior, 2010
ISBN 978-3-642-16261-9

Vol. 329. Santi Caballé, Fatos Xhafa, and Ajith Abraham
(Eds.)
Intelligent Networking, Collaborative Systems and
Applications, 2010
ISBN 978-3-642-16792-8

Vol. 330. Steffen Rendle
Context-Aware Ranking with Factorization Models, 2010
ISBN 978-3-642-16897-0

Vol. 331. Athena Vakali and Lakhmi C. Jain (Eds.)
New Directions in Web Data Management 1, 2011
ISBN 978-3-642-17550-3

Vol. 332. Jianguo Zhang, Ling Shao, Lei Zhang, and
Graeme A. Jones (Eds.)
Intelligent Video Event Analysis and Understanding, 2011
ISBN 978-3-642-17553-4

Vol. 333. Fedja Hadzic, Henry Tan, and Tharam S. Dillon
Mining of Data with Complex Structures, 2011
ISBN 978-3-642-17556-5

Vol. 334. Álvaro Herrero and Emilio Corchado (Eds.)
Mobile Hybrid Intrusion Detection, 2011
ISBN 978-3-642-18298-3

Vol. 335. Radomir S. Stankovic and Radomir S. Stankovic
From Boolean Logic to Switching Circuits and Automata,
2011
ISBN 978-3-642-11681-0

Vol. 336. Paolo Remagnino, Dorothy N. Monekosso, and
Lakhmi C. Jain (Eds.)
Innovations in Defence Support Systems – 3, 2011
ISBN 978-3-642-18277-8

Vol. 337. Sheryl Brahnam and Lakhmi C. Jain (Eds.)
Advanced Computational Intelligence Paradigms in
Healthcare 6, 2011
ISBN 978-3-642-17823-8

Vol. 338. Lakhmi C. Jain, Eugene V. Aidman, and
Canicious Abeynayake (Eds.)
Innovations in Defence Support Systems – 2, 2011
ISBN 978-3-642-17763-7

Vol. 339. Halina Kwasnicka, Lakhmi C. Jain (Eds.)
Innovations in Intelligent Image Analysis, 2010
ISBN 978-3-642-17933-4

Vol. 340. Heinrich Hussmann, Gerrit Meixner, and
Detlef Zuehlke (Eds.)
Model-Driven Development of Advanced User Interfaces,
2011
ISBN 978-3-642-14561-2

Vol. 341. Stéphane Doncieux, Nicolas Bredeche, and
Jean-Baptiste Mouret(Eds.)
New Horizons in Evolutionary Robotics, 2011
ISBN 978-3-642-18271-6

Vol. 342. Federico Montesino Pouzols, Diego R. Lopez, and
Angel Barriga Barros
Mining and Control of Network Traffic by Computational
Intelligence, 2011
ISBN 978-3-642-18083-5

Vol. 343. Kurosh Madani, António Dourado Correia,
Agostinho Rosa, and Joaquim Filipe (Eds.)
Computational Intelligence, 2011
ISBN 978-3-642-20205-6

Kurosh Madani, António Dourado Correia,
Agostinho Rosa, and Joaquim Filipe (Eds.)

Computational Intelligence

123

Prof. Kurosh Madani
University PARIS-EST Creteil (UPEC)
Images, Signals and Intelligence Systems
Laboratory
LISSI EA 3956
Paris 12
France
E-mail: madani@univ-paris12.fr

Prof.António Dourado Correia
University of Coimbra
Departamento de Engenharia Informatica
Polo II - Pinhal de Marrocos
3030 Coimbra
Portugal
E-mail: dourado@eden.dei.uc.pt

Prof.Agostinho Rosa
Instituto Superior Tecnico IST
Systems and Robotics Institute
Evolutionary Systems and Biomedical
Engineering Lab
Av. Rovisco Pais
1049-001 Lisboa
Portugal
E-mail: acrosa@laseeb.org

Prof. Joaquim Filipe
Polytechnic Institute of Setúbal / INSTICC
2910-595 Setubal
Portugal
E-mail: jfilipe@insticc.org

ISBN 978-3-642-20205-6 e-ISBN 978-3-642-20206-3

DOI 10.1007/978-3-642-20206-3

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2011925687

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9, 1965, in its current version, and permission
for use must always be obtained from Springer. Violations are liable to prosecution under the
German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

If “Artificial Intelligence” (AI), defined by John McCarthy (who coined the term in
1956) as “the science and engineering of making intelligent machines”, is considered
since five decades as being a key branch of Computer Science, “Computational
Intelligence” (CI) appears today as an outstanding offshoot of this key branch. As an
alternative to symbolic AI, the CI rather relies on the combination of heuristic
algorithms with formal optimization techniques such as in neural networks, fuzzy
systems, evolutionary computation, and their synergic combinations, embracing as
well techniques which deal with Swarm Intelligence, Fractals (and Chaos Theory),
Artificial Immune Systems, Digital Signal Processing such as Wavelets, etc..
Associated with soft computing, connectionist systems and cybernetics, CI combines
elements of learning, adaptation, evolution and fuzziness (using Fuzzy Logic) to
create approaches (paradigms, architectures, programs, etc.) that are capable of
adapting to changing complex dynamic systems, , i.e., are to some extend intelligent.
The CI field has shown a promising potential for technology and industrial world,
providing a deep challenging lifting for many of the most difficult industrial and
technological computational problems.

The present book includes extended and revised versions of a set of selected papers
from the First International Joint Conference on Computational Intelligence (IJCCI
2009), held in Funchal - Madeira, Portugal, from 5 to 7 October, 2009.

Spotting that the field of CI, as most of highly technical and specialized research
domains, is deeply divided into subfields that often fail to communicate, the purpose
of IJCCI is to bring together researchers, engineers and practitioners in computational
technologies, especially those related to the areas of fuzzy computation, evolutionary
computation and neural computation. IJCCI is composed of three co-located
Conferences, each one specialized in at least one of the aforementioned main
knowledge areas. Namely:

- International Conference on Fuzzy Computation
- International Conference on Evolutionary Computation
- International Conference on Neural Computation~

The three Conferences aim to provide a major forum for scientists, engineers and
practitioners interested in the study, analysis, design, modelling and implementation
of systems using CI, both theoretically and in a broad range of application fields.

The International Conference on Fuzzy Computation (ICFC) encompasses the
theory and application of fuzzy sets and fuzzy logic to the solution of information
processing and systems-analysis problems. Bolstered by information technology
developments, the extraordinary growth of Fuzzy Computation in recent years has led

VI Preface

to major applications in fields ranging from medical diagnosis and automated learning
to image understanding and systems control.

Evolutionary Computation, considered a subfield of computational intelligence
focused on combinatorial optimization problems, is associated with systems that use
computational models of evolutionary processes as the key elements in design and
implementation, i.e. computational techniques which are inspired to some degree on
the evolution of biological life in the natural world. A number of evolutionary
computational models have been proposed, including evolutionary algorithms, genetic
algorithms, the evolution strategy, evolutionary programming, and artificial life.

Neural Computation and artificial neural networks have seen an explosion of interest
over the last decades, and are being successfully applied across an extraordinary range
of problem domains, in areas as diverse as finance, medicine, engineering, geology and
physics, in problems of prediction, classification and control. Several promising
architectures, learning strategies and algorithms have been introduced in this highly
dynamic field in the last couple of decades.

IJCCI has received 231 paper submissions from more than 35 countries in all
continents. 21 papers were published and presented as full papers, i.e. completed
work, 35 papers reflecting work-in-progress or position papers were accepted for
short presentation, and another 29 contributions were accepted for poster presentation.
These numbers, leading to a “full-paper” acceptance ratio of 9% and a total oral paper
presentations acceptance ratio of 24%, show the intention of preserving a high quality
forum for the next editions of this conference. This book includes revised and
extended versions of a strict selection of the best presented papers.

Furthermore, IJCCI 2009 included 5 plenary keynote lectures given by Janusz
Kacprzyk, Jouko Lampinen, Leonid Perlovsky, Qiang Shen and Edward Tsang. We
would like to express our appreciation to all of them and in particular to those who
took the time to contribute with a paper to this book.

On behalf of the Conference Organizing Committee, we would like to thank all
participants. First of all the authors, whose quality work is the essence of the
conference and the members of the Program Committee, who helped us with their
valuable expertise and diligence in reviewing the papers. As we all know, producing a
post-conference book, within the high technical level exigency, requires the effort of
many individuals. We wish to thank also all the members of our Organizing
Committee, whose work and commitment were invaluable.

September 2010 Kurosh Madani
António Dourado

Agostinho Rosa
Joaquim Filipe

Conference Committee

Conference Co-chairs

Joaquim Filipe Polytechnic Institute of Setúbal /
INSTICC, Portugal

Janusz Kacprzyk Systems Research Institute / Polish
Academy of Sciences, Poland

Program Co-chairs

António Dourado University of Coimbra, Portugal (ICFC)
Kurosh Madani The University of Paris XII, France

(ICNC)
Agostinho Rosa IST, Technical University of Lisbon,

Portugal (ICEC)

Organizing Committee

Patrícia Alves INSTICC, Portugal
Sérgio Brissos INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
Vera Coelho INSTICC, Portugal
Andreia Costa INSTICC, Portugal
Bruno Encarnação INSTICC, Portugal
Carla Mota INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

ICFC Program Committee

Shigeo Abe, Japan
Sansanee Auephanwiriyakul, Thailand
Ulrich Bodenhofer, Austria
France Cheong, Australia
Francisco Chiclana, UK

Martine De Cock, Belgium
Bijan Davvaz, Iran, Islamic Republic of
Ioan Despi, Australia
Scott Dick, Canada
Gary Feng, Hong Kong

VIII Conference Committee

Alexander Gegov, UK
Janos Grantner, USA
Chang-Wook Han, Korea, Republic of
Chih Cheng Hung, USA
Lazaros S. Iliadis, Greece
Hisao Ishibuchi, Japan
Frank Klawonn, Germany
Donald H. Kraft, USA
Qilian Liang, USA
Luis Martinez Lopez, Spain
Francesco Masulli, Italy
Hiroshi Nakajima, Japan
Yusuke Nojima, Japan
Sanja Petrovic, UK
Valentina Plekhanova, UK
Roseli A. Francelin Romero, Brazil

Leszek Rutkowski, Poland
Alireza Sadeghian, Canada
Huseyin Seker, UK
Qiang Shen, UK
João Miguel da Costa Sousa, Portugal
Umberto Straccia, Italy
Ly-Fie Sugianto, Australia
Dat Tran, Australia
Eiji Uchino, Japan
Christian Wagner, UK
Chung-Hsing Yeh, Australia
Hao Ying, USA
Tina Yu, Canada
Xiao-Jun Zeng, UK
Huiyu Zhou, UK

ICFC Auxiliary Reviewers

Timur Fayruzov, Belgium Noboru Takagi, Japan

ICEC Program Committee

Lee Altenberg, USA
Martyn Amos, UK
Dirk Arnold, Canada
B. V. Babu, India
Ruibin Bai, China
Pedro Ballester, UK
Mark Bishop, UK
Lam T. Bui, Australia
Angelo Cangelosi, UK
Iacopo Carreras, Italy
Rachel Cavill, UK
Pei-Chann Chang, Taiwan
Ying-ping Chen, Taiwan
Hui Cheng, UK
Tsung-Che Chiang, Taiwan
Raymond Chiong, Malaysia
Dominique Chu, UK
Leandro dos Santos Coelho, Brazil
Bernabé Dorronsoro Díaz, Luxembourg
Jan Drugowitsch, USA
Peter Duerr, Switzerland

Marc Ebner, Germany
Andries Engelbrecht, South Africa
Daryl Essam, Australia
Stefka Fidanova, Bulgaria
Marcus Gallagher, Australia
Ozlem Garibay, USA
Evert Haasdijk, The Netherlands
Jin-Kao Hao, France
J. Ignacio Hidalgo, Spain
Jeffrey Horn, USA
Xiao-Bing Hu, UK
De-Shuang Huang, China
Seiya Imoto, Japan
Winfried Just, USA
R. Krishna Murthy Karuturi, Singapore
Marta Kasprzak, Poland
Andy Keane, UK
Ed Keedwell, UK
Ziad Kobti, Canada
Mario Köppen, Japan
Oliver Kramer, Germany

 Conference Committee IX

Jiri Kubalik, Czech Republic
Antonio J. Fernández Leiva, Spain
Daniele Loiacono, Italy
Manuel Lozano, Spain
Francisco Luna, Spain
Wenjian Luo, China
Evelyne Lutton, France
Rainer Malaka, Germany
Euan William McGookin, UK
Bob McKay, Korea, Republic of
Barry McMullin, Ireland
Jörn Mehnen, UK
Luiza de Macedo Mourelle, Brazil
Nysret Musliu, Austria

Schütze Oliver, Mexico
Gary Parker, USA
Shahryar Rahnamayan, Canada
Mateen Rizki, USA
Ralf Salomon, Germany
Siddhartha Shakya, UK
Konstantinos Sirlantzis, UK
P. N. Suganthan, Singapore
Jonathan Thompson, UK
Peter Tino, UK
Peter Whigham, New Zealand
Shiu Yin Yuen, China
Mengjie Zhang, New Zealand

ICEC Auxiliary Reviewer

Colin Johnson, UK

ICNC Program Committee

Waleed Abdulla, New Zealand
Shigeo Abe, Japan
Sabri Arik, Turkey
Amir Atiya, Egypt
Antonio Padua Braga, Brazil
Ivo Bukovsky, Czech Republic
Katherine Cameron, UK
Jinde Cao, China
Zheru Chi, Hong Kong
Seungjin Choi, Korea, Republic of
Chien-Hsing Chou, Taiwan
Netta Cohen, UK
José Alfredo Ferreira Costa, Brazil
Barbara Hammer, Germany
Tom Heskes, The Netherlands
Chris Hinde, UK
Akira Hirose, Japan
Tingwen Huang, Qatar
Christel Kemke, Canada
DaeEun Kim, Korea, Republic of
Edmund Lai, New Zealand
H. K. Lam, UK

Sin Wee Lee, UK
Xiaoli Li, China
Honghai Liu, UK
Bao-Liang Lu, China
Jinwen Ma, China
Kurosh Madani, France
Maciej Mazurowski, USA
Ali Minai, USA
Seiichi Ozawa, Japan
Danil Prokhorov, USA
Gerald Schaefer, UK
Jiri Sima, Czech Republic
Humberto Sossa, Mexico
Mu-Chun Su, Taiwan
Shun-Feng Su, Taiwan
Shiliang Sun, China
Johan Suykens, Belgium
Norikazu Takahashi, Japan
Ah Hwee Tan, Singapore
Brijesh Verma, Australia
Hua-Liang Wei, UK
Yingjie Yang, UK

X Conference Committee

ICNC Auxiliary Reviewers

Cyril Brom, Czech Republic
Qiaona Chen, China
Ya Gao, China
Rongqing Huang, China

You Ji, China
Petr Savicky, Czech Republic
Roman Vaculin, Czech Republic
Qingjiu Zhang, China

Invited Speakers

Janusz Kacprzyk Systems Research Institute / Polish
Academy of Sciences, Poland

Jouko Lampinen Helsinki University of Technology,
Finland

Leonid Perlovsky Harvard University, USA
Qiang Shen Aberystwyth University, UK
Edward Tsang University of Essex, UK

Contents

Invited Papers

Mechanisms of the Brain and Cultures . 3
Leonid Perlovsky

A Framework for Intelligent Analysis of Intelligence
Data . 23
Qiang Shen, Changjing Shang

Part I: Fuzzy Computation

Symbolic Knowledge Extraction from Trained Neural
Networks Governed by �Lukasiewicz Logics . 45
Carlos Leandro, Hélder Pita, Lúıs Monteiro

Wireless Signal and Information Tracking Using Fuzzy
Logic . 59
Eddie C.L. Chan, George Baciu, S.C. Mak

Redefinition of Mutual Information in the Fuzzy Sets
Framework for Computational Genomics . 73
Silvana Badaloni, Marco Falda, Paolo Massignan, Francesco Sambo

Exact Membership Functions for the Fuzzy Weighted
Average . 85
Pim van den Broek, Joost Noppen

XII Contents

Part II: Evolutionary Computation

Knowledge-Based Constrained Function Optimization Using
Cultural Algorithms with an Enhanced Social Influence
Metaphor . 103
Mostafa Ali, Robert Reynolds, Rose Ali, Ayad Salhieh

Reconstructing Dynamic Target Functions by Means of
Genetic Programming Using Variable Population Size 121
Leonardo Vanneschi, Giuseppe Cuccu

Interactive Evolution for Designing Motion Variants 135
Jonathan Eisenmann, Matthew Lewis, Bryan Cline

Dual Phase Evolution as a Framework for Understanding
Complex Adaptive Systems . 151
Greg Paperin, Suzanne Sadedin

Ant Colonies to Assign Terminals to Concentrators 165
Eugénia Moreira Bernardino, Anabela Moreira Bernardino,
Juan Manuel Sánchez-Pérez, Juan Antonio Gómez-Pulido,
Miguel Angel Vega-Rodŕıguez

A Statistical Study of the Effects of Neighborhood Topologies
in Particle Swarm Optimization . 179
Gregorio Toscano-Pulido, Angelina Jane Reyes-Medina,
José Gabriel Ramı́rez-Torres

Part III: Neural Computation

Genetic Algorithms Applied to Spectral Index Extraction 195
Diego Ordóñez, Carlos Dafonte, Minia Manteiga, Bernardino Arcay

Algorithms of Image Restoration in Self-organizing Maps
Grounded on Learning with Neighboring Inputs 209
Michiharu Maeda

On the Projection of k-Valued Non-linearly Separable
Problems into m-Valued Linearly Separable Problems 223
Igor Aizenberg

Dual Adaptive Neurocontrol of Mobile Robots Using the
Unscented Transform: Monte Carlo and Experimental
Validation . 237
Marvin K. Bugeja, Simon G. Fabri

Contents XIII

Multimodal System Based on Self-organizing Maps 251
Magnus Johnsson, Christian Balkenius, Germund Hesslow

Hydraulic Head Interpolation in an Aquifer Unit Using
ANFIS and Ordinary Kriging . 265
Bedri Kurtulus, Nicolas Flipo, Patrick Goblet, Guillaume Vilain,
Julien Tournebize, Gaëlle Tallec

Predicting NN5 Time Series with Neurosolver 277
Andrzej Bieszczad

Author Index . 289

Invited Papers

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 3–22.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Mechanisms of the Brain and Cultures

Leonid Perlovsky

Harvard University, SEAS, Cambridge and the AF Research Laboratory
Sensors Directorate, Hanscom AFB, U.S.A.

leonid@seas.harvard.edu

Abstract. Mathematical and neural mechanisms of concepts, emotions,
instincts, imaginations, intuitions are described. The paper reviews past
mathematical difficulties of modeling the mind and a new mathematical theory
of dynamic logic (DL) and neural modeling fields (NMF), which overcome
these difficulties. DL evolves fuzzy logic into crisp one. Orders of magnitude
improvement is achieved in recognition, fusion, predictions. NMF-DL is
extended to a hierarchical mind system, to language and interaction of language
and cognition. It follows that language, symbolic abilities, and higher cognitive
functions could only evolve jointly. Models of neural mechanisms are
developed for the mind hierarchy; they explain roles of the beautiful, music,
sublime in the mind, cognition, and evolution of languages and cultures. DL is
related to the knowledge instinct, a mechanism that drives the mind to
understand the world. This instinct is more important than sex or food. Two
mechanisms of the knowledge instinct, differentiation and synthesis, determine
evolution of consciousness and cultures, and explain three types of cultural
evolutions. The knowledge-acquiring cultures lead to science and technology,
but doubt their values; traditional cultures invest limited amount of knowledge
with strong emotions, values are certain but knowledge stagnates; multi-cultural
societies combine knowledge and values. Different languages lead to different
emotionalities and different evolutionary paths of cultures. Differences in
emotional mechanisms of languages lead to different paths of cultural evolution
and affect cultures no less than lexical contents.

Keywords: Language, Cognition, Emotions, Knowledge instinct, Dynamic
logic, Mind, Hierarchy, Evolution of cultures.

1 Mechanisms of Language: Recent Development

Scientific approaches to the brain mechanisms of language were initiated in the 1950s
by Chomsky (1965). He identified problems about language that science had to
resolve, which seemed mysterious. “Poverty of stimulus” addressed the fact that the
tremendous amount of knowledge needed to speak and understand language is learned
by every child even without special education. Chomsky emphasized that surrounding
languages do not carry enough information for a child to learn language from
experience, unless specific language learning mechanisms are inborn in the human
mind. This approach to language based on innate mechanisms, is called nativism.

4 L. Perlovsky

Many linguists disagreed with separation between language and cognition in
Chomsky’s theories. Cognitive linguistics emerged in the 1970s to unify language and
cognition, and explain creation of meanings. This direction emphasized that the
knowledge of language is no different from the rest of cognition, and based on
conceptual mechanisms. It is embodied and situated in the environment [38], [13],
[18], [19], [101]. Cognitive linguistics as well as nativism has not led to a
computational linguistic theory explaining how languages are learned and meanings
are created. Mathematical approaches to Chomskyan and cognitive linguistics are
dominated by logic, which as we discuss later is inadequate.

Evolutionary linguistics emphasized joint evolution of language and meanings.
Language mechanisms are shaped by transfer from generation to generation. [35],
[12]. Mathematical models in evolutionary linguistics emphasized simulation of
societies of communicating agents. This approach demonstrated emergence of a
compositional language [5].

2 Mechanisms of Perception and Cognition

Consider a seemingly simple experiment of object perception. Close eyes and imagine
an object in front of you. The imagined image is vague, not as crisp and clear as with
opened eyes. As we open eyes, the object becomes crisp and clear. It seems to occur
momentarily, but actually it takes 1/5th of a second. This is a very long time for
neural brain mechanisms – hundreds of thousands of neural operations. Let us also
note: with opened eyes we are not conscious about initially vague imagination, we are
not conscious about the entire 1/5th of a second, we are conscious only about the end
of this process: crisp, clear object in front of our eyes. The explanation of this
experiment has become simple after many years of research that have found out what
goes on in the brain during these 1/5th of a second. Below we summarize brain
mechanisms necessary for understanding this experiment.

2.1 Instincts, Emotions, Concepts

To understand this experiment we need to consider mechanisms of concepts, instincts,
and emotions identified during recent decades. Concepts or mental representations are
like internal models of objects and situations, stored in memory, during visual
perception of an object, a concept-model of the object stored in memory projects an
image (top-down signals) onto the visual cortex, which is matched there to an image
projected from retina (bottom-up signals, [28]).

The concepts mechanism evolved for instinct satisfaction. We use the word instinct
to denote a simple inborn, non-adaptive mechanism described in [29]. Instinct is a
mechanism of internal “sensor,” which measures vital body parameters, such as blood
pressure, and indicate to the brain when these parameters are out of safe range (for
more details see [26], [30]. We have dozens of such sensors, measuring sugar level in
blood, body temperature, pressure at various parts, etc.

According to the instinctual-emotional theory [29], communicating satisfaction or
dissatisfaction of instinctual needs from instinctual parts of the brain to decision
making parts of the brain is performed by emotional neural signals. The word emotion

 Mechanisms of the Brain and Cultures 5

refers to several neural mechanisms in the brain [6], [37], in this paper ‘emotions’
always refer to the mechanism connecting conceptual and instinctual brain regions.

Projection of top-down signals from a model to the visual cortex “primes” visual
neurons, or makes them more receptive to matching bottom-up signals. This
projection produces imagination that we perceive with closed eyes, as in the closed-
opened eye experiment. Conscious perception occurs after top-down and bottom-up
signals match [8]. This process of matching presented difficulties to mathematical
modeling, as discussed below.

2.2 Combinatorial Complexity and Logic

Computer mechanisms of perception still cannot compete with those of kids and
animals. Most algorithms and neural networks suggested since the 1950s for
modeling perception and cognition, as discussed in [54], [57], [62]), faced difficulty
of combinatorial complexity (CC). These CC difficulties are related to Gödelian
limitations of logic [27], they are manifestations of logic incompleteness in finite
systems [57]. Even approaches designed specifically to overcome logic limitations,
such as fuzzy logic and neural networks, encountered logical steps in their operations
and faced CC [62].

A mathematical theory of dynamic logic (DL) was proposed to overcome these
difficulties [89], [49], [50], [51], [57], [62], [63], [68], [69], [74], [43]. Here we
describe it conceptually. Whereas logic operates with static statements (e.g. “this is a
chair,” or “if A then B”), dynamic logic is a process from vague to crisp, from vague
statements, decisions, plans, to crisp ones.

DL models the opened-closed eye experiment: initial states of models are vague.
This experiment was recently performed with much more details using brain imaging
[2]. It demonstrated that the image generated by top-down signals (imagination) is
vague-fuzzy, similar to imagination in the closed-opened-eye experiment. Conscious
perception of an object occurs when vague projections become crisp in the process of
matching the crisp and clear image from the retina, and an object is consciously
recognized, the entire process lasts about 160 ms.

Mechanisms of DL are necessary for perception, otherwise an organism will not be
able to perceive the surroundings and will not be able to survive. The instinctual
mechanism drives top-down signals to fit bottom-up signals. This mechanism is
called the need for knowledge [7] or the knowledge instinct KI, [89], [52], [62], [78].
As discussed in [41] biologists considered similar mechanisms since the 1950s,
without a mathematical formulation, however, its fundamental role in cognition was
difficult to discern. Emotional signals of satisfaction or dissatisfaction of the KI we
feel as harmony or disharmony between our knowledge-models and the world. At
lower layers of the mind hierarchy, such as everyday object perception, these
emotions are usually below the level of consciousness, at higher layers of abstract and
general concepts this feeling of harmony or disharmony could be strong, as discussed
in [63] it is a foundation of our higher mental abilities. A mathematical theory of KI is
described in [62], [70].

6 L. Perlovsky

2.3 Perception Example

A neurally inspired system implementing DL is described in [89], [57], [62], it is
called Neural Modeling Fields (NMF). Figure 1 illustrates NMF-DL using an
example described in [62]. It demonstrates that the described theory can find patterns
below clutter at about 100 times better in terms of signal-to-clutter ratio, than
previous state-of-the-art algorithms. Fig. 1b illustrates signal under clutter as available
for processing. Figs. 1c through h illustrate DL process from vague-to-crisp, which
finds uncertain signals under clutter without combinatorial complexity.

A B C D

FE HG

Fig. 1. Finding ‘smile’ and ‘frown’ patterns in noise, an example of dynamic logic operation:
(a) true ‘smile’ and ‘frown’ patterns are shown without noise, (b) actual image available for
recognition (signal is below noise, signal-to-noise ratio is between ½ and ¼), (c) an initial
fuzzy blob-model, the fuzziness corresponds to uncertainty of knowledge, (d) through (h) show
improved models at various iteration stages (total of 22 iterations). Between stages (d) and (e)
the algorithm tried to fit the data with more than one model and decided, that it needs three
blob-models to ‘understand’ the content of the data. There are several types of models: one
uniform model describing noise (it is not shown) and a variable number of blob-models and
parabolic models, which number, location, and curvature are estimated from the data. Until
about stage (g) the algorithm ‘thought’ in terms of simple blob models, at (g) and beyond, the
algorithm decided that it needs more complex parabolic models to describe the data. Iterations
stopped at (h), when similarity (2) stopped increasing. This example is discussed in more
details in [42].

2.4 Classical Engineering Applications of NMF-DL

This ability of dynamic logic to extract signals from strong noise and clutter was used
in many applications [77]. NMF-DL algorithms improved performance over prior
algorithms in several classical engineering applications by 10,000% or better. These
include clustering, [89], [57]. For example when clustering with Gaussian Mixture
Models (GMM), DL results in the maximum likelihood model estimation achieving
information-theoretic performance limits, Cramer-Rao Bounds (CRB), [48]. Another

 Mechanisms of the Brain and Cultures 7

classical application is tracking. From the NMF-DL point of view, the difference
between tracking and clustering is in the models. Whereas in clustering the models
are points in multidimensional feature spaces, in NMF-DL tracking models describe
tracks in 2 or 3 dimensional geometric coordinate spaces. This view on tracking as
clustering has been revolutionary, when first published in 1991 (see references in
[54], [57], [93], [92], [94]. It led to breakthrough improvements for tracking in clutter,
to maximum likelihood tracking in strong clutter achieving information-theoretic
performance limits of CRB. Also DL enabled derivation of CRB for tracking in
clutter. All of these have been previously considered impossible (see references in
[51], [53], [57], [55], [17]. Algorithms in this area have been continuously improving
since the WWII, nevertheless, popular algorithms for tracking in clutter grossly
under-perform information-theoretic bounds [99], [97]. NMF-DL tracker improved
performance of tracking algorithms by 10,000% [81]. When tracking in clutter,
tracking (estimating track parameters) and association (deciding which data points
belong to which track, or to clutter) have to be performed jointly, so called “track-
before-detect,” This problem is often considered NP-complete and therefore
unsolvable.

Important classical engineering area is fusion of signals from multiple sensors,
platforms, or data bases. In dense (or strong) clutter, detecting relevant signals or
information may not be possible in a single sensor image, or in a single data base. The
problem is similar to tracking, detection, tracking, and fusion have to be performed
concurrently, sometimes it is called “fuse-before-track” or “fuse-before-detect,” these
problems are usually considered unsolvable because of CC. Similar situation exists in
data mining, when mining multiple data bases, how would the algorithm know that a
word or phrase in one data base is related to a telephone call in another data base,
unless say, a keyword allows the algorithm to connect the relevant pieces of
information. For fusion, the NMF-DL equations in the previous sections require no
modifications, the data have now an additional index, indicating a sensor (or data
source) and correspondingly the models have to be developed for each sensor. Data
and models may include geometric measurements and classification features as well,
the latter case is called feature-added fusion. In [16] NMF-DL has been applied to a
complicated case of feature-added fusion using sensors on three platforms, the S/C
ratio was inadequate to detect objects in a single frame, or even to track and detect
using a single sensor, joint fusion, tracking, and detection of that complexity were
considered previously unsolvable.

Extracting cognitive events from EEG signals could be utilized to allow
quadriplegics to move a computer cursor or steer their wheelchairs with their
thoughts, or those playing computer games could control actions on the screen with
their thoughts. Complexity of these problems is due to uncertain character of patterns
corresponding to cognitive events and high noise and clutter in EEG signals.
Detecting these signals and estimating their parameters is discussed in [39]. Other
engineering problems solved using DL, which were not solvable previously are
described in [87], [84], [49], [50], [79], [80], [90], [91], [92], [94], [15], [85], [86].

Learning context and situations has been an unsolved problem for decades. It is a
next step beyond pattern recognition both in complexity and in generality. The
complexity of learning situations is due to the fact that situations are sets of objects
among a huge number of objects that are not relevant to this situation, no to any other

8 L. Perlovsky

meaningful situations, and sorting through subsets of large sets encounters
combinatorial complexity. Learning contexts and situations is a step toward abstract
cognition beyond recognition of objects and patterns. Solving this problem required
defining vagueness of contexts and situations, this vagueness is not limited to fuzzy
representations of objects as in Fig.1, but also requires vagueness of context and
situation contents, achieved by probabilistic models, in which contexts and situations
are defined by probabilistic associations of objects and contexts [36].

3 Language and Cognition

A fundamental step both toward understanding brain mechanisms and developing
future man-machine cooperative engineering systems is modeling mechanisms of
language, cognition, and their interaction. All linguistic theories, as reviewed at the
beginning of the paper, are formulated as logical systems, and face combinatorial
complexity. This is the reason why computers do not understand human language,
why Google, Yahoo, and other search engines, while being immensely useful, cause
so much frustrations to their users. Extension of DL to language promises to remedy
the situation [60], [64], [67], [72], [20], [21], [22], [23], [24], [36], [82], [100].

Learning phrase-models composed of words, or composition of larger chunks of
text from smaller chunks of texts is similar to learning cognitive models of higher
layers, say images composed of objects [36], [82]. This procedure provides a
mathematical foundation for perceptual symbol systems described in [3], [83]. In
particular, DL models the mathematical procedure for Barsalou “simulators” which
support abilities for abstract concepts, propositions, and productivity.

Productivity describes the ability of the human mind to use finite means (words,
concepts) to produce virtually infinite (combinatorially large) number of more
complex structures, abstract concepts, phrases, texts. In linguistics, productivity has
been associated with recursion [10], [95], [3], [33], while non-combinatorial
mathematical procedures for acquisition-learning of this ability have not been
previously demonstrated. This problem has been mathematically solved in [36], [82],
[83], where a mathematical procedure for non-combinatorial learning is developed,
which results in combinatorially powerful productivity. Recursion is implemented
through the hierarchy.

Interaction between cognition and learning has been full with puzzles. Do we use
phrases to label situations that we already have understood, or the other way around,
do we just talk without understanding beyond words? It is obvious that different
people have different cognitive and linguistic abilities and may tend to different poles
in cognitive-language continuum, while most people are somewhere in the middle in
using cognition to help with language, and vice versa. What are the neural
mechanisms that enable this flexibility? How do we learn which words and objects
come together among nearly infinite number of incorrect associations? Why kids
learn language by 5 or 7, but do not think like adults? Why there are no animals with
human level cognition without language and vice versa?

Little is known about neural mechanisms integrating language and cognition and
no mathematical models have been ever proposed, which avoid combinatorial
complexity. Here we propose a computational model that potentially can answer the

 Mechanisms of the Brain and Cultures 9

above questions, and that is computationally tractable, it does not lead to
combinatorial complexity. It is experimentally testable. Also it implies a relatively
simple neural mechanism, which is also supported by the mechanism of mirror
neurons [1], and explains why human language and human cognition are inextricably
linked. It suggests that human language and cognition have evolved jointly.

3.1 Dual Model

According to [60], [62], [64], [72] integration of language and cognition is
accomplished by a dual model. Every model in the human mind is not separately
cognitive or linguistic, and still cognitive and linguistic contents are separate to a
significant extent. Every concept-model has two parts, linguistic and cognitive.

In a newborn mind both types of models are vague empty placeholders for future
cognitive and language contents. The neural connections between the two types of
models are inborn, the mind never has to learn which word goes with which object.
As models acquire specific contents in the process of learning, linguistic and
cognitive contents are always staying properly connected.

During the first year, infants learn some objects and situations in the surrounding
world: cognitive parts of some models at the layer of objects become less vague and
acquire a degree of specificity. Language models at the layer of objects and above
remain vague. After one year of age, language model learning speeds up, language
models become less vague and more specific much faster than the corresponding
cognitive models. This is especially true about contents of abstract models, which
cannot be directly perceived by the senses, such as “law,” “state,” “rationality.” This
is the neural mechanism by which kids by the age of five can talk about most of
contents of the surrounding culture but cannot function like adults: language models
are acquired ready-made from the surrounding language, but cognitive models remain
vague and gradually acquire concrete contents throughout life. This is the neural
mechanism colloquially called “acquiring experience.” Language can be learned fast
because language models exist “ready-made” in the surrounding language at all levels
of the mind hierarchy. Cognition, consisting in mental representations of sets of
objects, experiences, etc., on the opposite, requires experience with real world.

Human learning of cognitive models continues through the lifetime and is guided
by language models. The knowledge instinct drives the human mind to develop more
specific and concrete cognitive models by accumulating experience throughout life in
correspondence with language models.

3.2 Experimental Evidence

As mentioned, experimental evidence for the dual model is almost nil. The first
experimental indication has appeared in [25]. Those researchers demonstrated that
categorical perception of color in prelinguistic infants is based in the right brain
hemisphere. As language is acquired and access to lexical color codes becomes more
automatic, categorical perception of color moves to the left hemisphere (between two
and five years) and adult’s categorical perception of color is based in the left
hemisphere (where language mechanisms are located).

10 L. Perlovsky

These experiments have provided evidence for neural connections between
perception and language, a foundation of the dual model. Possibly it confirms another
aspect of the dual model: the crisp and conscious language part of the model hides
from our consciousness vaguer cognitive part of the model. This is similar to what we
observed in the closed-opened eye experiment: with opened eyes we are not
conscious about vague imaginations-priming signals.

So, we can answer some of the questions posed at the beginning of the section.
Language and cognition are separate and closely related mechanisms of the mind.
They evolve jointly in ontological development and learning, and possibly these
abilities evolved jointly in evolution—this we address in more details in the next
section. This joint evolution of dual models from vague to more crisp content resolves
the puzzle of associationism: there is no need to learn correct associations among
combinatorially large number of possible associations, words and objects are
associated all the time while their concrete contents emerge in the mind.

3.3 Dual Hierarchy

In the mind hierarchy contents of lower layers are perceptual elements, objects, higher
up are relationships among objects, situations, more and more abstract and general
model-concepts..., and near the top are the most general concepts of the purpose and
meaning of life [56], [58], [62],[63], [76], [41]. The dual model implies two parallel
heterarchies of language and cognition, as illustrated in Fig. 2. Deacon (1997)
suggested that the hierarchy sets the human mind apart from the animal world. The
mathematical reasons why the hierarchy can only exist as a joint dual hierarchy of
language and cognition is as follows. Only at the lower layers in the hierarchy
cognitive models can be learned by direct perception of the world. Learning is
grounded.

Learning is grounded in “real” objects. At higher levels, however, learning of
cognitive models has no ground. In artificial intelligence it was long recognized that
learning without grounding could easily go wrong, learned or invented models may
correspond to nothing real or useful [44]. Thus, the mechanism of the dual model sets
the human mind apart from the rest of animal world.

To connect the two hierarchies, the KI has to be differentiated, each word has to be
emotionally connected to the corresponding concept. Unemotional language creates
no motivation to develop the corresponding cognitive concept.

3.4 Emotionality of Language and Meanings

What is a source of emotionality in languages? Language and voice started separating
from ancient emotional centers possibly millions of years ago. Nevertheless, emotions
are present in language. Most of these emotions originate in cortex and are
controllable aesthetic emotions. Their role in satisfying the knowledge instinct is
considered in the next section. Emotional centers in cortex are neurally connected to
old emotional limbic centers, so both influences are present. Emotionality of
languages is carried in language sounds, what linguists call prosody or melody of
speech. This ability of human voice to affect us emotionally is most pronounced in
songs. Songs and music, however, is a separate topic, not addressed in this paper.

 Mechanisms of the Brain and Cultures 11

situations

objects

sensor signals

from the world

abstract ideas

THOUGHTS

phrases

words

abstract

words/phrases

LANGUAGE

situations

objects

sensor signals

from the world

abstract ideas

THOUGHTS

situations

objects

sensor signals

from the world

abstract ideas

THOUGHTS

SURROUNDING

LANGUAGE

words for
objects

phrases for
situations

language
sounds

language
descriptions
of abstract
thoughts

Fig. 2. Hierarchical integrated language-cognition NMF system. “Heterarchy” refers to cross-
layer connections, not shown, and to the consequence that the hierarchical structure is not
logically strict as may appear from the figure. At each layer in a hierarchy there are integrated
language and cognition models (thick arrow). Similarities are integrated as products of
language and cognition similarities. Initial models are fuzzy placeholders, so integration of
language and cognition is sub-conscious. Association variables depend on both language and
cognitive models and signals. Therefore language model learning helps learning cognitive
models.

“The right level” of emotionality is crucial for developing cognitive parts of
models. If language parts of models are highly emotional, any deliberate discourse is
impossible and there will be no room for language and cognitive development (as
among primates). If language parts of models are non-emotional at all, there would be
no motivational force to engage into conversations, to develop language models, and
motivation for developing higher cognitive models will be reduced. Lower cognitive
models, say for object perception will be developed, first, because they are imperative
for survival, and second, because they can be developed independently from
language, based on direct sensory perceptions, like in animals. But models of
situations and higher cognition are developed based on language models [60], [62],
[64], [66], [72]. As discussed later, this requires emotional connections between
cognitive and language models.

Primordial fused language-cognition-emotional models have differentiated long
ago, involuntary connections between voice-emotion-cognition dissolved with

12 L. Perlovsky

emergence of language. They were replaced with habitual connections. Sounds of all
languages have changed, nevertheless, if sounds of a language changes slowly,
connections between sounds and meanings persists, it follows that emotion-meaning
connections persist. This persistence is a foundation of meanings, because meanings
imply motivations. If sounds of language changes too fast, cognitive models are
severed from motivations, and meanings disappear. If sound changes too slowly, it
nails meanings emotionally to old ways, and culture stagnates.

Therefore the next step toward understanding cultural evolution is to identify
mechanisms determining changes of language sound. Changes in language sounds are
controlled by grammar. In inflectional languages, affixes and endings are fused with
sounds of word roots. Pronunciation-sounds of affixes are controlled by few rules,
which persist over thousands of words. These few rules are manifest in every phrase.
Therefore every child learns to pronounce them correctly. Positions of vocal tract and
mouth muscles for pronunciation of affixes are fixed throughout population and are
conserved throughout generations. Correspondingly, pronunciation of whole words
cannot vary too much, and language sound changes slowly. Inflections therefore play
a role of “tail that wags the dog,” they anchor language sounds and preserve
meanings. This, I think, Humboldt (1836/1967) meant by “firmness” of inflectional
languages. When inflections disappear, this anchor is no more, nothing prevents
sound of language to become fluid and change with every generation.

This has happened with English language after transition from Middle English to
Modern English [40], most of inflections have disappeared and sound of the language
started changing within each generation, this process continues today. English evolved
into a powerful tool of cognition unencumbered by excessive emotionality, English
language spread democracy and technology around the world. This was made possible by
conceptual differentiation empowered by language, which overtook emotional synthesis.
But the loss of synthesis has also lead to ambiguity of meanings and values. Current
English language cultures face internal crises, uncertainty about meanings and purposes.
Many people cannot coupe with diversity of life. Future research in psycholinguistics,
anthropology, history, historical and comparative linguistics, and cultural studies will
examine interactions between languages and cultures. Experimental evidence suggests
emotional differences among languages consistent with our hypothesis [31], [32].

Neural mechanisms of grammar, language sound, related emotions-motivations,
and meanings hold a key to connecting neural mechanisms in the individual brains to
evolution of cultures. Studying them experimentally is a challenge for future research.
It is not even so much a challenge, because experimental methodologies are at hand,
they just should be applied to these issues. Following sections develop mathematical
models based on existing evidence that can guide this future research.

4 Cultural Dynamics

Mathematical models of the mind mechanisms corresponding to the discussions in
previous sections determine evolution of cultures. These models are based on the
available experimental evidence and theoretical development by many authors
summarized in [47], [49], [52], [54], [57], [59], [62], [63], [64], [65], [66], [71], [73],
[88] and it corresponds to experimental data [31], [2].

 Mechanisms of the Brain and Cultures 13

The hierarchical dynamics of KI manifests as differentiation and synthesis.
Differentiation drives creation of concrete, specific concepts (top-down evolution of
the hierarchy). Synthesis drives creation of general concept-models, unifying
differentiated signals (bottom-up evolution).

They are in complex relationships, at once symbiotic and antagonistic [65], [73],
[75]. Synthesis creates emotional value of knowledge, it unifies language and
cognition, creates conditions for differentiation, it leads to spiritual inspiration, to
active creative behavior leading to fast differentiation, to creation of knowledge, to
science and technology. At the same time, a “too high” level of synthesis, high
emotional values of concepts stifles differentiation, as in traditional consciousness.

Synthesis, S, might lead to growth of general concept-models, and to growth of the
hierarchy. This is counterbalanced by differentiation, the number of concepts grows,
leading to “precise knowledge about nothing.” In the knowledge-acquiring regime,
growth of synthesis is limited psychologically, emotions of KI satisfaction, when
“spread” over large number of concepts would not sustain growth in the concept
number, D. This is well known in many engineering problems, when too many
models are used. Thus, whereas emotional synthesis creates a condition for
differentiation (high emotional value of knowledge, efficient dual model connecting
language and cognition), conceptual differentiation undermines synthesis (value of
knowledge, S, and its diversity, D, fall). This interaction can be modeled by the
following equations:

dD/dt=aDG(S), G(S)=(S - S0) exp(-(S-S0)/ S1),
dS/dt = -b D + d H,

H(t) = H0 + e*t.

Here, t is time, D is a number of concepts (differentiation), S models synthesis,
emotional satisfaction of the knowledge instinct, H is a number of hierarchical levels,
a, b, d, e, S0 and S1 are constants. Differentiation, D, grows proportionally to already
existing number of concepts, as long as this growth is supported by synthesis, while
synthesis is maintained at a “moderate” level, S0 < S < S1. “Too high” level of
synthesis, S > S1, stifles differentiation by creating too high emotional value of
concepts. Synthesis, S, grows in the hierarchy, along with a number of hierarchical
levels, H. By creating emotional values of knowledge, it sustains differentiation,
however, differentiation, by spreading emotions among a large number of concepts
destroys synthesis. Hierarchical dynamics H we consider over a period of slow
growth of the hierarchy H. At moderate values of synthesis, solving eqs.(2) yields a
solution in Fig. 3. The number of concepts grows until certain level, when it results in
reduction of synthesis, then the number of models falls. As a number of models falls,
synthesis grows, and the growth in models resumes. The process continues with
slowly growing, oscillating number of models (knowledge-accumulating
consciousness).

Another solution corresponds to initially high level of synthesis, Fig. 4. Synthesis
continues growing whereas differentiation levels off. This leads to a more and more
stable society with high synthesis, in which high emotional values are attached to
every concept, however, differentiation stagnates.

These two solutions can be compared to Humboldt’s (1836/1967) characterization
of languages and cultures. He contrasted inert objectified “outer form” of words vs.

14 L. Perlovsky

M D

 S

D

S
H

Fig. 3. Evolution of culture at moderate values of synthesis oscillates: periods of flourishing
and knowledge accumulation alternate with collapse and loss of knowledge (a = 10, b = 1, d =
10, e = 0.1, S0=2, S1=10, and initial values D(t=0) = 10, S(t=0) = 3, H0 = 1, parameter and
time units are arbitrary). In long time the number of models slowly accumulates, this
corresponds to slowly growing hierarchy.

Fig. 4. Evolution of highly stable, stagnating society with growing synthesis. High emotional
values are attached to every concept, while knowledge accumulation stops (D(t=0)= 3, H0 =
10, S(t=0) = 50, S0 = 1, S1 = 10, a = 10, b = 1, d = 10, e=1).

 Mechanisms of the Brain and Cultures 15

subjective, culturally conditioned, and creative “inner form.” Humboldt’s suggestion
continues to stir linguists’ interest today, yet seem mysterious and not understood
scientifically.

The above analysis suggests the following interpretation of Humboldt’s intuitions
in terms of neural mechanisms. His “inner form” corresponds to the integrated,
moderately emotional neural dual model [60], [64], [66], [72], [73]. Contents of
cognitive models are being developed guided by language models, which accumulate
cultural wisdom. “Outer form” of language corresponds to inefficient state of neural
dual model, in which language models do not guide differentiation of the cognitive
ones. This might be due to either too strong or too weak involvement of emotions. If
emotional involvement in cognition or language is too weak, learning does not take
place because motivation disappears. If emotional involvement is too strong, learning
does not take place because old knowledge is perceived as too valuable, and no
change is possible. The first case might be characteristic of low-inflected languages,
when sound of language changes “too fast,” and emotional links between sound and
meanings are severed. The second case might be characteristic of “too strongly”
inflected languages, in which sound changes “too slowly” and emotions are connected
to meanings “too strongly,” this could be a case of Fig. 4. A brief look at cultures and
languages certainly points to many examples of this case: highly inflected languages
and correspondingly “traditional” stagnating cultures.

Much of contemporary world is “too flat” for a single language and culture,
existing without outside influences. When two cultures interact and exchange
differentiation and synthesis, eventually both cultures stabilize each other, both
benefited from fast growth and reduced instabilities [67], [73].

5 Future Research

The dual model implies a relatively minimal neural change from the animal to the
human mind, which have been prepared by the mechanism of mirror neurons. DL
resolves a long-standing mystery of how human language, thinking, and culture could
have evolved in a seemingly single big step, too large for an evolutionary mutation,
too fast and involving too many advances in language, thinking, and culture,
happening almost momentarily around 50,000 years ago [14], [45]. DL along with the
dual model explains how changes, which seem to involve improbable steps according
to logical intuition, actually occur through continuous dynamics. The proposed theory
provides a mathematical basis for concurrent emergence of hierarchical human
language and cognition. The dual model is supported by experimental evidence [31],
[25], and future experiments can test it directly. Next theoretical steps would further
develop this theory in multi-agent simulations, leading to more specific and
experimentally testable predictions in language and cultural evolution.

Classic ideas of frames and schemas were demonstrated to face combinatorial
complexity, and this is the fundamental reason for their failures despite decades of
development. The proposed theory produces conceptual relations, binding, and
recursion through the mechanisms of the hierarchy, in addition it explains how
language acquires meanings in connecting with cognition due to the mechanism of the

16 L. Perlovsky

dual model. These predictions are experimentally testable and several groups of
psychologists and neuroscientists are working in these directions.

This chapter also challenges the idea of arbitrariness of vocalization. It is
suggested that a significant degree of arbitrariness in current languages is a distal
result of millennia of language evolution in presence of the dual model. Instead of
assuming arbitrariness as fundamental, future research should concentrate on its
emergence from primordial fusion of sound and emotion. We assume that origins of
language are contemporaneous with origins of music, primordial undifferentiated
vocalizations split in two: first, more semantic and less emotional mechanisms of
language, and second, less semantic and more emotional mechanisms of music [70].
Whereas language differentiates consciousness, music unifies conscious and
unconscious into a whole self. It is my hope that a wide field of experimental research
directions opened by this discussion will be explored (several experimental programs
have already started).

Connections between the neural mechanisms, language, emotions, and cultural
evolution proposed in this paper are but a first step requiring much experimental
evidence and theoretical development. Influence of languages on cultures, the
Bhartrihari-Humboldt-Nietzsche-Sapir-Whorf hypothesis [4], [34], [46], [96], [102]
formalized by the discussed mechanisms adds a novel aspect to this old idea,
emotional contents of languages could be more important in influence on cultures
than their conceptual contents.

Neural mechanisms proposed in this paper and models inspired by these
mechanisms, although simple, nevertheless result in concrete predictions relating
language grammars and types of cultures. These predictions can be verified in
psycholinguistic laboratories, eq. (2) coefficients can be measured using existing
methods.

Future mathematical-theoretical research should address development of multi-
agent simulations, connecting neural and cultural mechanisms of emotions and
cognition and their evolution mediated by language. The KI theory should be
developed toward theoretical understanding of its differentiated forms explaining
multiplicity of aesthetic emotions in language prosody and music [61], [64], [71],
[73], [75]. This theoretical development should go along with experimental research
clarifying neural mechanisms of KI [41] and the dual language-cognitive model, [72].

Recent experimental results on neural interaction between language and cognition
[25], [98] support the mechanism of the dual model, they should be expanded to
interaction of language with emotional-motivational, voicing, behavioral, and cognitive
systems.

Prehistoric anthropology should evaluate the proposed hypothesis that the
primordial fused system of conceptual cognition, emotional evaluation, voicing,
motivation, and behavior differentiated at different prehistoric time periods—are there
data to support this hypothesis, can various stages of prehistoric cultures be associated
with various neural differentiation stages? Can different humanoid lineages be
associated with different stages of neural system differentiation. What stage of neural
differentiation corresponds to Mithen’s hypothesis about singing Neanderthals [45]?
Psychological social and anthropologic research should go in parallel documenting
various cultural evolutionary paths and correlations between cognitive and emotional
contents of historical and contemporary cultures and languages.

 Mechanisms of the Brain and Cultures 17

Proposed correlation between grammar and emotionality of languages can be
verified in direct experimental measurements using skin conductance and fMRI
neuro-imaging. Emotional version of Sapir-Whorf hypothesis should be evaluated in
parallel psychological and anthropological research. More research is needed to
document cultures stagnating due to “too” emotional languages, as well as crises of
lost values due to “low” emotionality of language in English-speaking countries.

Acknowledgements. I am thankful to M. Alexander, M. Bar, R. Brockett, M.
Cabanac, R. Deming, F. Fontanari, R. Ilin, F. Lin, J. Gleason, R. Kozma, D. Levine,
A. Ovsich, and B. Weijers, and to AFOSR PMs Drs. J. Sjogren, D. Cochran, and J.
Zhang for partial support of this research.

References

1. Arbib, M.A.: From monkey-like action recognition to human language: An evolutionary
framework for neurolinguistics. Behavioral and Brain Sciences 28, 105–167 (2005)

2. Bar, M., Kassam, K.S., Ghuman, A.S., Boshyan, J., Schmid, A.M., Dale, A.M.,
Hämäläinen, M.S., Marinkovic, K., Schacter, D.L., Rosen, B.R., Halgren, E.: Top-down
facilitation of visual recognition. Proceedings of the National Academy of Sciences
USA, 103, 449–454 (2006)

3. Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22, 577–660
(1999)

4. Bhartrihari (IVCE/1971). The Vâkyapadîya, Critical texts of Cantos I and II with English
Translation. Trans. K. Pillai. Delhi: Motilal Banarsidass

5. Brighton, H., Smith, K., Kirby, S.: Language as an evolutionary system. Phys. Life
Rev. 2(3), 177–226 (2005)

6. Cabanac, M.: What is emotion? Behav. Proc., 60, 69–84 (2002), doi:10.1016/S0376-
6357(02)00078-5

7. Cacioppo, J.T., Petty, R.E.: The need for cognition. Journal of Personality and Social
Psychology 42, 116–131 (1982)

8. Carpenter, G.A., Grossberg, S.: A massively parallel architecture for a self-organizing
neural pattern recognition machine. Computer Vision, Graphics, and Image
Processing 37, 54–115 (1987)

9. Chomsky, N.: Aspects of the theory of syntax. MIT Press, Cambridge (1965)
10. Chomsky, N.: The minimalist program. MIT Press, Cambridge (1995)
11. Christiansen, M.H., Chater, N.: Language as shaped by the brain. Behavioral and Brain

Sciences 31(5), 489–509 (2008)
12. Christiansen, M.H., Kirby, S.: Language evolution. Oxford Univ. Press, New York (2003)
13. Croft, W., Cruse, D.A.: Cognitive linguistics. Cambridge University Press, Cambridge

(2004)
14. Deacon, T.W.: The symbolic species: the co-evolution of language and the brain. Norton,

New York (1997)
15. Deming, R., Perlovsky, L.I.: A Mathematical Theory for Learning, and its Application to

Time-varying Computed Tomography. New Math. and Natural Computation 1(1),
147–171 (2005)

18 L. Perlovsky

16. Deming, R.W., Perlovsky, L.I.: Concurrent multi-target localization, data association, and
navigation for a swarm of flying sensors. Information Fusion 8, 316–330 (2007)

17. Deming, R., Schindler, J., Perlovsky, L.: Multitarget/Multisensor Tracking using only
Range and Doppler Measurements. IEEE Transactions on Aerospace and Electronic
Systems 45(2), 593–611 (2009)

18. Evans, V., Green, M.: Cognitive linguistics: an introduction. Edinburgh University Press,
Edinburgh (2006)

19. Fauconnier, G., Turner, M.: The origin of language as a product of the evolution of
modern cognition. In: Laks, B., et al. (eds.) Origin and Evolution of Languages:
Approaches, Models, Paradigms, Equinox, London (2008)

20. Fontanari, J.F., Perlovsky, L.I.: Solvable null model for the distribution of word
frequencies. Physical Review E 70, 042901 (2004)

21. Fontanari, J.F., Perlovsky, L.I.: Evolving Compositionality in Evolutionary Language
Games. IEEE Transactions on Evolutionary Computations 11(6), 758–769 (2007),
doi:10.1109/TEVC.2007.892763

22. Fontanari, J.F., Perlovsky, L.I.: A game theoretical approach to the evolution of structured
communication codes. Theory in Biosciences 127(3), 205–214 (2008a)

23. Fontanari, J.F., Perlovsky, L.I.: How language can help discrimination in the Neural
Modeling Fields framework. Neural Networks 21(2-3), 250–256 (2008b)

24. Fontanari, F.J., Tikhanoff, V., Cangelosi, A., Ilin, R., Perlovsky, L.I.: Cross-situational
learning of object–word mapping using Neural Modeling Fields. Neural Networks
22(5-6), 579–585 (2009)

25. Franklin, A., Drivonikou, G.V., Bevis, L., Davie, I.R.L., Kay, P., Regier, T.: Categorical
perception of color is lateralized to the right hemisphere in infants, but to the left
hemisphere in adults. PNAS 105(9), 3221–3225 (2008)

26. Gnadt, W., Grossberg, S.: SOVEREIGN: An autonomous neural system for incrementally
learning planned action sequences to navigate towards a rewarded goal. Neural
Networks 21, 699–758 (2008)

27. Gödel, K.: Collected works. In: Feferman, S., Dawson Jr., J.W., Kleene, S.C. (eds.)
Publications 1929-1936, vol. I. Oxford Univ. Press, New York (1931/1994)

28. Grossberg, S.: Neural Networks and Natural Intelligence. MIT Press, Cambridge (1988)
29. Grossberg, S., Levine, D.S.: Neural dynamics of attentionally modulated Pavlovian

conditioning: blocking, inter-stimulus interval, and secondary reinforcement.
Psychobiology 15(3), 195–240 (1987)

30. Grossberg, S., Seidman, D.: Neural dynamics of autistic behaviors: Cognitive, emotional,
and timing substrates. Psychological Review 113, 483–525 (2006)

31. Guttfreund, D.G.: Effects of language usage on the emotional experience of Spanish-
English and English-Spanish bilinguals. J. Consult Clin. Psychol. 58, 604–607 (1990)

32. Harris, C.L., Ayçiçegi, A., Gleason, J.B.: Taboo words and reprimands elicit greater
autonomic reactivity in a first language than in a second language. Applied
Psycholinguistics 24, 561–579 (2003)

33. Hauser, M.D., Chomsky, N., Fitch, W.T.: The faculty of language: what is it, who has it,
and how did it evolve? Science 298, 1569–1579 (2002)

34. von Humboldt, W.: Über die Verschiedenheit des menschlichen Sprachbaues und ihren
Einfluss auf die geistige Entwickelung des Menschengeschlechts. In: Dummler, F.,
Lehmann, W.P. (eds.) A Reader in Nineteenth Century Historical Indo-European
Linguistics. Indiana University Press, Bloomington (1967)

 Mechanisms of the Brain and Cultures 19

35. Hurford, J.: The evolution of human communication and language. In: D’Ettorre, P.,
Hughes, D. (eds.) Sociobiology of communication: an interdisciplinary perspective,
pp. 249–264. Oxford University Press, New York (2008)

36. Ilin, R., Perlovsky, L.I.: Cognitively Inspired Neural Network for Recognition of
Situations. International Journal of Natural Computing Research 1(1), 36–55 (2010)

37. Juslin, P.N., Västfjäll, D.: Emotional responses to music: The Need to consider underlying
mechanisms. Behavioral and Brain Sciences 31, 559–575 (2008)

38. Kay, P.: An informal sketch of a formal architecture for construction grammar.
Grammars 5, 1–19 (2002)

39. Kozma, R., Puljic, M., Perlovsky, L.: Modeling goal-oriented decision making through
cognitive phase transitions. New Mathematics and Natural Computation 5(1), 143–157
(2009)

40. Lerer, S.: Inventing English. Columbia University Press, Chichester (2007)
41. Levine, D.S., Perlovsky, L.I.: Neuroscientific insights on Biblical myths: Simplifying

heuristics versus careful thinking: Scientific analysis of millennial spiritual issues. Zygon,
Journal of Science and Religion 43(4), 797–821 (2008)

42. Linnehan, R., Mutz, C., Perlovsky, L.I., Weijers, B., Schindler, J., Brockett, R.: Detection
of patterns below clutter in images. In: Int. Conf. Integration of Knowledge Intensive
Multi-Agent Systems, Cambridge, MA (2003)

43. Mayorga, R., Perlovsky, L.I. (eds.): Sapient Systems. Springer, London (2008)
44. Meystel, A.M., Albus, J.S.: Intelligent systems: Architecture, Design, and Control. Wiley,

New York (2001)
45. Mithen, S.: A creative explosion? Theory of mind, language, and the disembodied mind

of the Upper Paleolithic. In: Mithen, Steven (eds.) Creativity in Human Evolution and
Prehistory, pp. 165–191. Routledge, London (1998)

46. Nietzsche, F.: Untimely Meditations. Tr. Hollingdale. Cambridge Univ. Press, Cambridge
(1876/1983)

47. Perlovsky, L.I.: Multiple Sensor Fusion and Neural Networks. In: DARPA Neural
Network Study. MIT/Lincoln Laboratory, Lexington (1987)

48. Perlovsky, L.I.: Cramer-Rao Bounds for the Estimation of Normal Mixtures. Pattern
Recognition Letters 10, 141–148 (1989)

49. Perlovsky, L.I.: Computational Concepts in Classification: Neural Networks, Statistical
Pattern Recognition, and Model Based Vision. Journal of Mathematical Imaging and
Vision 4(1), 81–110 (1994a)

50. Perlovsky, L.I.: A Model Based Neural Network for Transient Signal Processing. Neural
Networks 7(3), 565–572 (1994b)

51. Perlovsky, L.I.: Cramer-Rao Bound for Tracking in Clutter and Tracking Multiple
Objects. Pattern Recognition Letters 18(3), 283–288 (1997)

52. Perlovsky, L.I.: Physical Concepts of Intellect. Proceedings of Russian Academy of
Sciences 354(3), 320–323 (1997)

53. Perlovsky, L.I.: Cramer-Rao Bound for Tracking in Clutter and Tracking Multiple
Objects. Pattern Recognition Letters 18(3), 283–288 (1997)

54. Perlovsky, L.I.: Conundrum of Combinatorial Complexity. IEEE Trans. PAMI 20(6),
666–670 (1998)

55. Perlovsky, L.I.: Cramer-Rao Bound for Tracking in Clutter. In: Streit, R.L. (ed.)
Probabilistic Multi-Hypothesis Tracking, pp. 77–84. NUWC Press, Newport (1998)

56. Perlovsky, L.I.: Beauty and mathematical Intellect. Zvezda (9), 190–201 (2000) (Russian)
57. Perlovsky, L.I.: Neural Networks and Intellect: using model based concepts. Oxford

University Press, New York (2001)

20 L. Perlovsky

58. Perlovsky, L.I.: Aesthetics and mathematical theories of intellect. Iskusstvoznanie 2(02),
558–594 (2002) (Russian)

59. Perlovsky, L.I.: Statistical Limitations on Molecular Evolution. Journal of Biomolecular
Structure & Dynamics 19(6), 1031–1043 (2002)

60. Perlovsky, L.I.: Integrating language and cognition. IEEE Connections 2(2), 8–12 (2004)
61. Perlovsky, L.I.: Evolving agents: Communication and cognition. In: Gorodetsky, V.,

Liu, J., Skormin, V.A. (eds.) AIS-ADM 2005. LNCS (LNAI), vol. 3505, pp. 37–49.
Springer, Heidelberg (2005)

62. Perlovsky, L.I.: Toward physics of the mind: concepts, emotions, consciousness, and
symbols. Physics of Life Reviews 3, 23–55 (2006a)

63. Perlovsky, L.I.: Fuzzy Dynamic Logic. New Math. and Natural Computation 2(1), 43–55
(2006b)

64. Perlovsky, L. I.: Music–the first principles. Musical Theater (2006c),
http://www.ceo.spb.ru/libretto/kon_lan/ogl.shtml

65. Perlovsky, L.I.: Evolution of languages, consciousness, and cultures. IEEE Computational
Intelligence Magazine 2(3), 25–39 (2007a)

66. Perlovsky, L.I.: Modeling Field Theory of Higher Cognitive Functions. In: Loula, A.,
Gudwin, R., Queiroz, J. (eds.) Artificial Cognition Systems, pp. 64–105. Idea Group,
Hershey (2007b)

67. Perlovsky, L.I.: Symbols: Integrated Cognition and Language. In: Gudwin, R., Queiroz, J.
(eds.) Semiotics and Intelligent Systems Development, pp. 121–151. Idea Group, Hershey
(2007c)

68. Perlovsky, L.I.: Neural Networks, Fuzzy Models and Dynamic Logic. In: Köhler, R.,
Mehler, A. (eds.) Aspects of Automatic Text Analysis (Festschrift in Honor of Burghard
Rieger), pp. 363–386. Springer, Germany (2007d)

69. Perlovsky, L.I.: Neural Dynamic Logic of Consciousness: the Knowledge Instinct. In:
Perlovsky, L.I., Kozma, R. (eds.) Neurodynamics of Higher-Level Cognition and
Consciousness. Springer, Heidelberg (2007e)

70. Perlovsky, L.I.: Sapience, Consciousness, and the Knowledge Instinct (Prolegomena to a
Physical Theory). In: Mayorga, R., Perlovsky, L.I. (eds.) Sapient Systems. Springer,
London (2008a)

71. Perlovsky, L.I.: Music and consciousness, Leonardo. Journal of Arts, Sciences and
Technology 41(4), 420–421 (2008b)

72. Perlovsky, L.I.: Language and Cognition. Neural Networks 22(3), 247–257 (2009a),
doi:10.1016/j.neunet.2009.03.007

73. Perlovsky, L.I.: Language and Emotions: Emotional Sapir-Whorf Hypothesis. Neural
Networks 22(5-6), 518–526 (2009b), doi:10.1016/j.neunet.2009.06.034

74. Perlovsky, L.I.: ‘Vague-to-Crisp’ Neural Mechanism of Perception. IEEE Trans. Neural
Networks 20(8), 1363–1367 (2009c)

75. Perlovsky, L.I.: Musical emotions: Functions, origin, evolution. Physics of Life
Reviews 7(1), 2–27 (2010a), doi:10.1016/j.plrev.2009.11.001

76. Perlovsky, L.I.: Intersections of Mathematical, Cognitive, and Aesthetic Theories of
Mind. Psychology of Aesthetics, Creativity, and the Arts 4(1), 11–17 (2010b),
doi:10.1037/a0018147

77. Perlovsky, L.I.: Neural Mechanisms of the Mind, Aristotle, Zadeh, & fMRI. IEEE Trans.
Neural Networks 21(5), 718–733 (2010c)

78. Perlovsky, L.I.: The Mind is not a Kludge. Skeptic 15(3), 51–55 (2010d)
79. Perlovsky, L.I., Coons, R.P., Streit, R.L., Luginbuhl, T.E., Greineder, S.: Application of

MLANS to Signal Classification. Journal of Underwater Acoustics 44(2), 783–809 (1994)

 Mechanisms of the Brain and Cultures 21

80. Perlovsky, L.I., Chernick, J.A., Schoendorf, W.H.: Multi-Sensor ATR and Identification
Friend or Foe Using MLANS. Neural Networks 8(7/8), 1185–1200 (1995)

81. Perlovsky, L.I., Deming, R.W.: Neural Networks for Improved Tracking. IEEE Trans.
Neural Networks 18(6), 1854–1857 (2007)

82. Perlovsky, L.I., Ilin, R.: Neurally and Mathematically Motivated Architecture for
Language and Thought. Special Issue Brain and Language Architectures: Where We are
Now? The Open Neuroimaging Journal 4, 70–80 (2010),
http://www.bentham.org/open/tonij/

83. Perlovsky, L.I., Ilin, R.: Computational Foundations for Perceptual Symbol System. In:
WCCI 2010, Barcelona (2010) (submitted for journal publication)

84. Perlovsky, L.I., Jaskolski, J.V.: Maximum Likelihood Adaptive Neural Controller. Neural
Networks 7(4), 671–680 (1994)

85. Perlovsky, L.I., Kozma, R. (eds.): Neurodynamics of Higher-Level Cognition and
Consciousness. Springer, Heidelberg (2007a)

86. Perlovsky, L., Kozma, R.: Editorial - Neurodynamics of Cognition and Consciousness. In:
Perlovsky, L., Kozma, R. (eds.) Neurodynamics of Cognition and Consciousness.
Springer, Heidelberg (2007b)

87. Perlovsky, L.I., Marzetta, T.L.: Estimating a Covariance Matrix from Incomplete
Independent Realizations of a Random Vector. IEEE Trans. on SP 40(8), 2097–2100
(1992)

88. Perlovsky, L.I., Mayorga, R.: Preface. In: Mayorga, R., Perlovsky, L.I. (eds.) Sapient
Systems. Springer, London (2008)

89. Perlovsky, L.I., McManus, M.M.: Maximum Likelihood Neural Networks for Sensor
Fusion and Adaptive Classification. Neural Networks 4(1), 89–102 (1991)

90. Perlovsky, L.I., Plum, C.P., Franchi, P.R., Tichovolsky, E.J., Choi, D.S., Weijers, B.:
Einsteinian Neural Network for Spectrum Estimation. Neural Networks 10(9), 1541–1546
(1997a)

91. Perlovsky, L.I., Schoendorf, W.H., Burdick, B.J., Tye, D.M.: Model-Based Neural
Network for Target Detection in SAR Images. IEEE Trans. on Image Processing 6(1),
203–216 (1997b)

92. Perlovsky, L.I., Schoendorf, W.H., Garvin, L.C., Chang, W.: Development of Concurrent
Classification and Tracking for Active Sonar. Journal of Underwater Acoustics 47(2),
375–388 (1997c)

93. Perlovsky, L.I., Schoendorf, W.H., Tye, D.M., Chang, W.: Concurrent Classification and
Tracking Using Maximum Likelihood Adaptive Neural System. Journal of Underwater
Acoustics 45(2), 399–414 (1995)

94. Perlovsky, L.I., Webb, V.H., Bradley, S.R., Hansen, C.A.: Improved ROTHR Detection
and Tracking Using MLANS. AGU Radio Science 33(4), 1034–1044 (1998)

95. Pinker, S.: The language instinct: How the mind creates language. William Morrow, New
York (1994)

96. Sapir, E.: Culture, Language and Personality: Selected Essays by Edward Sapir.
University of California Press, Berkeley (1985)

97. Sebe, I.O., You, S., Neumann, U.: Globally optimum multiple object tracking. In: Masten,
M.K., Stockum, L.A. (eds.) Proceedings of SPIE, Acquisition, Tracking, and Pointing
XIX, vol. 5810, pp. 82–93 (2005)

98. Simmons, W.K., Stephan, B.H., Carla, L.H., Xiaoping, P.H., Barsalou, L.W.: fMRI
evidence for word association and situated simulation in conceptual processing. Journal of
Physiology - Paris 102, 106–119 (2008)

22 L. Perlovsky

99. Singer, R.A., Sea, R.G., Housewright, R.B.: Derivation and evaluation of improved
tracking filters for use in dense multitarget environments. IEEE Transactions on
Information Theory 20, 423–432 (1974)

100. Tikhanoff, V., Fontanari, J.F., Cangelosi, A., Perlovsky, L.I.: Language and cognition
integration through modeling field theory: Category formation for symbol grounding. In:
Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131,
pp. 376–385. Springer, Heidelberg (2006)

101. Ungerer, F., Schmid, H.-J.: An introduction to cognitive linguistics. Pearson, New York
(2006)

102. Whorf, B.L.: Language, Thought, and Reality. MIT Press, Cambridge (1956)

A Framework for Intelligent Analysis of
Intelligence Data�

Qiang Shen and Changjing Shang

Dept. of Computer Science, Aberystwyth University, Wales, U.K.
{qqs,cns}@aber.ac.uk

Abstract. Intelligent data analysis plays an important role in many application
domains. In particular, for detection and prevention of serious crime, including
terrorist activity, automated modelling and analysis of intelligence data is of great
practical significance. Such an intelligent analysis system will provide useful de-
cision support for intelligence analysts, offering an effective means in the assess-
ment of possible scenarios given observations which may be imprecise and/or
uncertain. Intelligent analysis of intelligence data will therefore help to facili-
tate rapid response in devising and deploying preventive measures. This paper
presents an initial approach to the development of a general framework that in-
tegrates key component systems for intelligent data analysis, with an application
focus on intelligence data. It describes the functionalities of the important com-
ponent systems and introduces example techniques that are useful to implement
such systems. The paper also discusses major challenges and opportunities for
further relevant research.

1 Introduction

Effective automated analysis of data has found successful real-world applications
in many areas, ranging from science discovery [28] and knowledge enrichment [5],
through plant monitoring [48] and crime investigation [1], to medical diagnosis [43]
and systems biology [33]. Many approaches to intelligent data analysis have been de-
veloped. One typical aim of these approaches is to assist in solving complex real-world
problems which involves timely and intelligent decision-making processes, through
analysis of a large volume of available information. This is particularly the case in
the domain of intelligence data analysis. For example, in the wake of terrorist atrocities
such as September 11, 2001, and July 7, 2005, intelligence analysts have commented
that the failure in the detection of terrorist activity is not necessarily due to lack of data,
but to difficulty in relating and interpreting the available intelligence on time [49].

In analysis of intelligence data, it is often observed that most criminal and terrorist or-
ganisations form flexible networks of loosely related individuals and sub-organisations.
These networks are often embedded within legitimate society and remain secrete. Yet,

� This work was partly supported by UK EPSRC grants GR/S63267/01-02, GR/S98603/01 and
EP/D057086/1, and partly by a UK Royal Academy of Engineering/Daphne Jackson Research
Fellowship. The authors are grateful to all members of the project teams for their contributions,
but will take full responsibility for the views expressed here.

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 23–41.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

24 Q. Shen and C. Shang

organised crime and terrorist activity does leave a trail of information, such as captured
communications and forensic evidence, which can be collected by police and security
agents. Based on partial information gathered, which may be imprecise and/or uncer-
tain, experienced intelligence analysts can suggest plausible scenarios that may explain
the observations. This, in turn, may help to identify potential criminals who may pose
a threat. However, the amount of intelligence data possibly relevant may well be over-
whelming for human examination, especially with limited time and resources. Auto-
mated modelling and analysis through hypothetical (re-)construction of the activities
that may have led to the intelligence data obtained, therefore, presents an important and
challenging research topic for crime prevention and detection.

Many existing intelligent systems have been developed to enhance efforts for crime
reduction. However, their effectiveness is often crucially dependent upon the experience
of the intelligence analysts since any potential threat is identified ultimately only by the
analysts. This vulnerability can be addressed by a data analysis tool which automati-
cally generates plausible scenarios when given a limited amount of real or hypothesised
information, and which offers the user with the means to assess the properties of such
scenarios. This paper, based on the original proposals presented in [46], introduces a
general framework for the development of such systems. This is in order to assist (but
not to replace) intelligence analysts in identifying plausible scenarios of criminal or ter-
rorist activity in presence of obtained intelligence data, and in assessing the reliability,
risk and urgency of generated hypotheses. In particular, the paper describes the func-
tionalities of the key component systems that may be jointly utilised to construct an
integrated intelligent analysis tool. It also introduces example techniques that are useful
to implement such component systems.

The rest of this paper is organised as follows. The next section presents the frame-
work and outlines the essential components of such a data analysis system. Then,
Section 3 shows particular instantiations of the techniques useful to implement the key
components of this framework. Essential ideas are illustrated with some simple exam-
ples. Section 4 summarises the paper and points out important further research.

2 Intelligent Data Analysis Framework

Conventional approaches to building intelligent tools, such as rule-based and case-based
systems, have found successful applications in the area of intelligence data analysis.
However, their scope is restricted to either the situations foreseen or those resulting from
previously encountered cases. Yet, serious crime like organised terrorist activity tends
to be unique. Thus, the nature of intelligence data in such problem domains requires the
intelligent analysis system to be robust, capable of working with variations of data.

Having taken notice of this, the present work employs a model-based approach to
intelligent data analysis [49]. That is, the knowledge base of such a system consists of
generic and reusable component parts of plausible scenarios or hypotheses, called model
or scenario fragments (interchangeably). Such fragments include: types of (human and
material) resources required for certain classes of crime activity, ways in which such
resources may be organised, and forms of evidence that may be obtained (and hence
acquired from intelligence databases) given partial observed or hypothesised scenarios.

A Framework for Intelligent Analysis of Intelligence Data 25

Fig. 1. Framework of Intelligent Systems for Intelligence Data Analysis

Figure 1 shows the general framework of the approach taken in this research. Based
on gathered intelligence data, the scenario generation mechanism instantiates and re-
trieves any relevant model fragments from a library of generic scenario fragments, and
combines such fragments to form plausible explanations for the data. Such a model-
based approach fits well the task of coping with a wide variety of likely scenarios that
may each explain the observations. A description of the key functionalities of an intel-
ligent analysis system that follows this approach is given below.

2.1 Flexible Composition Modelling

As indicated above, the central task for automated intelligence data analysis is to estab-
lish an inference mechanism that can instantiate and then dynamically compose generic
model fragments into scenario descriptions, which may explain the available data. This
requires the automatic construction of computational models that are both adequate and
efficient for the task. This in turn, demands the underlying modelling tool to be able
to automatically construct many variations of a given type of scenario from a relatively
small knowledge base. A compositional modelling approach [26] is devised for this pur-
pose, by combining reusable model fragments on the fly, in order to ensure robustness
and to deal with changing requirements.

Essentially, a compositional modeller stores hypothetical scenarios in a hypergraph
or scenario space, representing states and events within different scenarios as nodes
and the (causal) relations between such nodes as directed hyperarcs. A significantly
extended version [51] of the assumption-based truth maintenance system (ATMS) [13]
is exploited to maintain the scenario space and to enable retrieval of partial scenarios
and other useful information (e.g. potential evidence to help validate a scenario) from
it efficiently.

Existing compositional modelling work assumes that the model fragments within the
knowledge base are expressed by precise and crisp information. It is therefore restrictive

26 Q. Shen and C. Shang

in real-world applications. In order to cope with intelligence data, consideration must
be given to inexact knowledge and data captured in a variety of forms. Conceptually,
inexact information may be classified into the following three general categories at
least [16]:

1. Imprecision: It arises due to lack of sharp distinctions or boundaries between pieces
of information (e.g. Bob is tall not medium). Often, a vague proposition can be
modelled by a fuzzy set [61] which identifies a soft constraint on a set of elements.
Instead of using a crisp partition, an element of a fuzzy set is allowed to satisfy the
soft constraint to a certain degree.

2. Uncertainty: It depicts the reliability or confidential weight associated with a given
piece of information (be it data or knowledge). Due to the involvement of uncer-
tainty, it is difficult to tell the exact truth of a given statement. In the literature,
two types of uncertainty are often referred to: randomness and fuzziness. Probabil-
ity theory is typically employed to model randomness, while the possibility theory
[59] is well established to deal with fuzziness (where a fuzzy set membership func-
tion is interpreted as a possibility distribution).

3. Both vagueness and uncertainty: That is, information of type 1 and that of type
2 coexist (e.g. The amount of collected fiber is a lot, with a certainty degree of
very likely).

Much work has been developed to support reasoning with inexact knowledge and data
(e.g. [29]). The general trend of the existing techniques is to integrate the underlying
distinct pieces of inexact information into a global measure. However, in performing
such integration, the underlying semantics associated with different information com-
ponents may be destroyed. It is of great interest and potentially beneficial to establish
a new mechanism which will maintain the associated semantics when reasoning with
inexact knowledge and data. This work follows the recent development in fuzzy com-
positional modelling [16] in an attempt to instantiate and compose model fragments
into consistent scenario descriptions when given a mixture of the aforementioned types
of information.

The compositional modelling approach developed in this research differs from those
in the literature in two distinct ways:

1. Suitability for intelligence data analysis. Fuzzy compositional modelling provides
a more flexible knowledge representation formalism. Approximate and vague in-
formation may be abstractly specified in the knowledge base, e.g. a chemical being
“highly explosive”. Due to the involvement of such information, a precise and cer-
tain match between the available observations and the model fragments cannot be
expected in general. In these cases, the boolean retrieval approach used in exist-
ing compositional modelling work usually fails to return any fragments since they
only partially match the available information. A fuzzy mechanism is able to re-
trieve fragments which involve no exact match but which are likely to be relevant
to the collected data. This allows the generation of scenarios from a wide range
of data sources, including factual data, collected intelligence, and hypothesised but
unsubstantiated information. This entails matching specific data (e.g. the names of

A Framework for Intelligent Analysis of Intelligence Data 27

discovered chemicals) with broader (and possibly subjective) knowledge and other
imprecise information contents.

2. Ability to speculate about plausible relations between different cases. Often, intel-
ligence data refers to individuals and objects whose identity is only partially speci-
fied. For example, when a person is observed on a CCTV camera, some identifying
information can be collected, but this may be insufficient for an exact identification.
When a person with similar features has been identified elsewhere, it is important
that any relation between both sightings is explored. Ideas originally developed in
the area of link-based similarity analysis [9,32] are adapted [7] for: (a) identifying
similar individuals and objects in a space of plausible scenarios, and (b) supporting
the generation of hypothetically combined scenarios to explore the implications of
possible matches.

2.2 Intelligence Data Modelling and Analysis

Intelligent analysis of intelligence data in general and that of potential serious criminal
activity (especially terrorist activity) in particular, is a non-trivial task. It is not known
in advance what aspects of such activity may be observed, and how they will be in-
terconnected. Thus, conventional approaches to intelligent data analysis, which aim to
identify pre-specified patterns of data, are difficult to adapt to this domain.

Although general and potentially suitable, the model-based approach adopted here
may lead to systems that generate a large number of plausible scenarios for a given
problem. It is therefore necessary for such a system to incorporate a means to sort
the plausible scenarios, so that the generated information remains manageable within
a certain time frame. For this purpose, generated scenarios are presented to human
analysts with measurements of their reliability, risk, and urgency. The reliability of a
scenario estimates the likelihood of its occurrence. The risk posed by a scenario reflects
the number of potential casualties and/or the degree of possible economic cost of failure
to prevent such activity. A scenario’s urgency corresponds to the time in which the
suspect terrorist activity may be carried out.

Each of the aforementioned ranking features may be assessed by a numeric metric.
However, intelligence data and hypotheses are normally too vague to produce precise
estimates that are also accurate. Therefore, this work devises a novel fuzzy mechanism
to provide an appropriate method of assessing and presenting the reliability, risk and
urgency of generated scenarios [50]. The framework also covers additional tools such
as a facility to propose additional information sources (by exploring additional, real or
hypothesised, evidence that may be generated in a given scenario).

Figure 2 shows an implementation specification of the general framework given in
Fig. 1. Technical modules include the following, with each associated with an introduc-
tory reference:

– Fuzzy Feature Selection carries out semantics-preserving dimensionality reduction
(over nominal and real-valued data) [23].

– Fuzzy Learning provides a knowledge modelling mechanism to generalise data
with uncertain and vague information into mode fragments [37].

– Fuzzy Iterative Inference offers a combination of abductive and deductive infer-
ences, capable of reasoning with uncertain assumptions [15].

28 Q. Shen and C. Shang

Fig. 2. A Specific Implementation of the Framework

– Flexible CSP (constraint satisfaction problem-solver) deals with uncertain and im-
precise constraint satisfaction, subject to preference and priority [38].

– Fuzzy Interpolation enables approximate inference over sparse knowledge base
[19].

– Flexible ATMS is an extended truth-maintenance system that keeps track of uncer-
tain assumption-based deduction [51].

– Flexible Coreference Resolution implements a link-based identity resolution ap-
proach, working with real, nominal, and order-of-magnitude valued attributes [7].

– Fuzzy Aggregation performs information aggregation by combining uncertain at-
tributes as well as their values [6].

– Fuzzy Evidence Evaluation performs evidence assessment, including discovery of
misleading information, and generates evidence-gathering proposal [27].

– Fuzzy Risk Assessment computes potential loss-oriented risk evaluation through
fuzzy random process modelling [50].

This research focusses on the use of structured knowledge for modelling and analysis
of intelligence data which may contain factual evidence and assumed information. Such
data may be imprecise and uncertain, involving vague or even ill-defined concepts. For
simplicity, it is assumed that the data is presented in a pre-specified form, e.g. in terms
of properties of suspects, types of incident and classes of evidence. This implies that
for real application, a preprocessing stage of raw information is generally required to
ensure the uniform representation of the data.

Recent advances in semantic web research [3,45] provide useful techniques for pre-
processing raw data to reveal the content of source information. The simplest whilst
very effective way is to inflate each datum structure with dummy entries for any addi-
tional feature that is used in other data. Use of such techniques will help to automate

A Framework for Intelligent Analysis of Intelligence Data 29

the preprocessing of raw information and to harmonise data representation. Whilst de-
tails of such preliminary data handling methods are beyond scope of this work, an in-
vestigation of how model fragments may be learned from data that is typically high-
dimensional is obviously essential.

Systems built following the approach outlined in Fig. 2 can help to improve the like-
lihood of discovering any potential threat posed by criminal or terrorist organisations.
In particular, the use of an automated intelligent data analysis system, whose reasoning
is logical and readily interpretable by human analysts, can be very helpful in support-
ing human analysts when working under time constraints. For instance, this may aid
in avoiding premature commitment to certain seemingly more likely but unreal sce-
narios, minimising the risk of producing incorrect interpretations of intelligence data.
This may be of particular interest to support staff investigating cases with unfamiliar
evidence. In addition, the resulting approach may be adapted to build systems that fa-
cilitate training of new intelligence analysts. This is possible because the underlying
inference mechanism and the knowledge base built for intelligence data analysis can be
used to artificially synthesise various scenarios (of whatever likelihood), and to system-
atically examine the implications of acquiring different types of observation.

The next section describes representative techniques that can be utilised to imple-
ment a number of important component systems contained within the specification of
the framework (shown in Fig. 2).

3 Component Techniques

As a knowledge-based approach to building systems for intelligent data analysis, any
actual implementation of the framework proposed above will require a knowledge base
to begin with. The first part of this section will then introduce a number of recent ad-
vances in developing data-driven learning techniques that are suitable to derive such
required knowledge from potentially very complex data. The second part will describe
one of the key techniques that support scenario composition, especially for situations
where limited domain knowledge is available. The third and final part of the section will
demonstrate how risks of generated scenarios may be estimated such that preferential
treatments to the likely events can be made. Figure 3 outlines a simplified version of the
framework which may be implemented using the techniques described here.

All of these approaches have been developed using computational intelligence tech-
niques in general and fuzzy systems methods in particular. Introduction to these tech-
niques will be explained at conceptual level with illustrative examples. Mathematical
and computational details are omitted, but readers may find them from the relevant
references.

3.1 Fuzzy Learning and Feature Selection

In general, an initial knowledge base of generic scenario fragments is built partly by
generalising historical intelligence data through computer-based induction, but partly
through manual analysis of past terrorist or criminal activity. This work focusses on
the automated induction of model fragments. As indicated previously, in a real world

30 Q. Shen and C. Shang

Fig. 3. Focussed Implementation

setting, data may come from multiple sources and hence, may require a substantial
amount of preprocessing in order to achieve semantic interpretability. However, this
consideration is beyond the scope of this paper. Any data given for learning is assumed
to have been presented in a homogeneous format.

Fuzzy Descriptive Learning. Many real-world problems require the development and
application of algorithms that automatically generate human interpretable knowledge
from historical data. Such a task is clearly not just for learning model fragments.

Most of the methods for fuzzy rule induction from data have followed the so-called
precise approach. Interpretability is often sacrificed, in exchange for a perceived in-
crease in precision. In many cases, the definitions of the fuzzy sets that are intended
to capture certain vague concepts are allowed to be modified such that they fit the data
better. This modification comes at the cost of ruining the original meaning of the fuzzy
sets and the loss of transparency of the resulting model. In other cases, the algorithms
themselves generate the fuzzy sets, and present them to the user. The user must then
interpret these sets and the rules which employ them (e.g. a rule like: If volume is
Tri(32.41, 38.12, 49.18), then chance is Tri(0.22, 0.45, 0.78)). Furthermore, in some
extreme cases, each rule may have its own fuzzy set definition for every condition,
thereby generating many different sets in a modest rule base. The greatest disadvantage
of the precise approach is that the resulting sets and rules are difficult to match with
human interpretation of the relevant concepts.

As an alternative to the precise approach, there exist proposals that follow the de-
scriptive (or linguistic) approach. In such work no changes are made to human defined
fuzzy sets. The rules must use the (fuzzy) words provided by the user without modify-
ing them in any way. One of the main difficulties with this type of approach is that the
possible rules available are predetermined, equivalently speaking. This is because the

A Framework for Intelligent Analysis of Intelligence Data 31

Fig. 4. Two-Step Learning of Descriptive Models

fuzzy sets can not be modified, and only a small number of them are typically available.
Although there can be many of these rules they are not very flexible and in many cases
they may not necessarily fit the data well (e.g. a rule like: If volume is Moderate, then
chance is High). In order to address this problem, or at least partially, linguistic hedges
(aka. fuzzy quantifiers) can be employed.

The concept of hedges has been proposed quite early on in fuzzy systems research
[60]. A linguistic hedge produces a new fuzzy set by changing the original fuzzy set, in a
fixed and interpretable manner. The interpretation of the resultant set emanates from the
original fuzzy set and a specific transformation that the hedge implies. In so doing, the
original fuzzy sets are not changed, but the hedged fuzzy sets provide modifiable means
of modelling a given problem and therefore, more freedom in representing knowledge
in the domain.

This research adopts the original work of [37] which champions this approach. As
shown in Fig. 4, this technique produces descriptive fuzzy system models with a two-step
mechanism. The first is to use a precise method to create accurate rules and the second to
convert the resulting precise rules to descriptive ones. The conversion is, in general, one-
to-many. It is implemented by using a heuristic algorithm that derives potentially useful
translations and then, by employing evolutionary computation to perform a fine tuning
of these translations. Both steps are computationally efficient. The resultant descriptive
model (e.g. a rule like: If volume is Fairly Moderate, then chance is Very High) is ready
to be directly applied for inference; no precise rules are needed in runtime.

Note that Fig. 4 shows the learning of a “model” in a general sense. Such a model
may be a set of conventional production fuzzy if-then rules, or one or more generic
model fragments which involve not only standard conditions but also assumptions or
hypotheses that must be made in order to draw conclusions.

32 Q. Shen and C. Shang

Fig. 5. Feature Selection Process

Fuzzy-rough Feature Selection. Feature selection [23,34] addresses the problem of
selecting those characteristic descriptors of a domain that are most informative.
Figure 5 shows the basic procedures involved in a feature selection process. It is a prob-
lem encountered in many areas of computational intelligence. Unlike other
dimensionality-reduction methods, feature selectors preserve the original meaning of
the features after reduction. This has been applied to perform tasks that involve datasets
containing huge numbers of features (in the order of tens of thousands) which, for some
learning algorithms, may be otherwise impossible to process further.

There are often many features involved in intelligence data, and combinatorially
large numbers of feature combinations, to select from. It might be expected that the
inclusion of an increasing number of features would increase the likelihood of includ-
ing enough information to distinguish between classes. Unfortunately, this is not nec-
essarily true if the size of the training dataset does not also increase rapidly with each
additional feature included. A high-dimensional dataset increases the chances that a
learning algorithm will find spurious patterns that are not valid in general. More fea-
tures may introduce more measurement noise and, hence, reduce model accuracy [21].

There have been significant advances in developing methodologies that are capable
of minimising feature subsets in an imprecise and uncertain environment. Sophisticated
approaches exist which attempt to identify or approximate the absolute smallest subsets
of features. However, in general, searching for all minimal feature subsets is an NP-
complete problem. In practice, it may suffice to generate only one such subset or even
a superset of some of such subsets (if it is too time consuming to compute a global
minimal).

A resounding amount of recent research utilises fuzzy and rough sets (e.g.
[35,36,48,54]), following the seminal work of [11,47]. The success of rough set

A Framework for Intelligent Analysis of Intelligence Data 33

theory [42] is due in part to the following two aspects: (a) only the facts hidden in
data are analyzed, and (b) no additional information about the data is required, such
as thresholds or expert knowledge on a particular domain. However, it handles only
one type of imperfection found in data, it is complementary to other mathematical con-
cepts for this purpose, e.g. fuzzy set theory. In fact, the rough and fuzzy fields may be
considered analogous in the sense that both can tolerate inconsistency and uncertainty
[25]. The difference rests in the type of uncertainty and their approach to it; fuzzy
sets are concerned with vagueness, and rough sets are concerned with indiscernibility.
Therefore, it is desirable to extend and hybridise the underlying concepts to deal with
additional aspects of data imperfection [14].

A particular representative of such work is fuzzy-rough feature selection [22,24]. It
provides a means by which discrete or real-valued noisy data (or a mixture of both) can
be effectively reduced without the need for user-supplied information. Importantly, this
technique can be applied to data with continuous or nominal decision attributes, and as
such is suitable for the nature of intelligence data. A particular implementation is done
via hill-climbing search, as shown in Algorithm 1. What is returned by this algorithm is
the subset of features selected from the full set of original features without altering the
meaning and value of such selected features.

Algorithm 1: The Fuzzy-Rough Feature Selection (FRFS) Algorithm
FRFS(C,D): C – the set of all conditional features; D – the set of decision features.

(1) R ← {}, γbest = 0
(2) do
(3) T ← R, γprev ← γbest

(4) foreach a ∈ (C − R)
(5) if γR∪{a}(D) > γT (D)
(6) T ← R ∪ {a}, γbest ← γT D
(7) R ← T
(8) until γbest == γprev

(9) return R

This algorithm employs the fuzzy-rough dependency function, which is derived from
the notion of fuzzy lower approximation, to choose those attributes that add to the cur-
rent candidate feature subset in a best-first fashion. The algorithm terminates when the
addition of any remaining attribute does not result in an increase in the dependency.
As such, all features selected are individually significant, although significance embed-
ded in any correlated features may not be necessarily captured. This implies that the
feature subsets returned may not be globally minimal. Yet, this general problem is due
to the use of greedy hill-climbing search, not because of the utilisation of fuzzy-rough
dependency measure.

3.2 Fuzzy Interpolation and Extrapolation

In conventional approaches to compositional modelling, the completeness of a sce-
nario space depends upon two factors: (a) the knowledge base must cover all essential

34 Q. Shen and C. Shang

Fig. 6. Need for Fuzzy Interpolation

scenario fragments relevant to the data, and (b) the inference mechanism must be able
to synthesise and store all combinations of instances of such fragments that constitute
a consistent scenario. However, in the real-world, especially for the problem domain
concerned here, it is difficult, if not impossible, to obtain a complete library of model
fragments. Figure 6 shows an example, where the following two simplified model frag-
ments (i.e. two simple if-then rules in this case) are given:

Rulei: If frequency is None then attack is No
Rulej: If frequency is Often then attack is Yes

Then, with an observation that states “frequency is Few”, no answer can be found to the
question of ”Will there be an attack”? A popular tool to deal with this type of problem is
fuzzy interpretative reasoning [2,53]. In this work, the transformation-based approach
[19,20] is employed to support model composition, when given an initial sparse knowl-
edge base.

The need for a fuzzy approach to interpolation is due to the fact that the precision
degree of the available intelligence data can be variable. Finding a match between the
given data and the (already sparse) knowledge base cannot in general be achieved pre-
cisely. The potential sources of variability in precision include vaguely defined concepts
(e.g. materials that constitute a “high explosive”, certain organisations that are deemed
“extremist”), quantities (e.g. a “substantial” amount of explosives, “many” people) and
specifications of importance and certainty (e.g. in order to deploy a radiological dis-
persal device, the perpetrator “must” have access to “radioactive material and “should”
have an ideological or financial incentive). Therefore, the approach adopted must be
able to describe and reason with knowledge and data at varying degrees of precision.
Fuzzy interpolation works well in this regard.

A Framework for Intelligent Analysis of Intelligence Data 35

Fig. 7. Transformation-Based Fuzzy Interpolation

Figure 7 illustrates the basic procedure of fuzzy interpolation. It works through a
two-step process: (a) computationally constructing a new inference rule (or model frag-
ment in the present context) via manipulating two given adjacent rules (or related frag-
ments), and (b) using scale and move transformations to convert the intermediate infer-
ence results into the final derived conclusions.

Although the illustrative example only involves interpolation with two rules which
are each of one conditional feature, the underlying approach is more general, covering
extrapolation as well as interpolation with multiple rules involving conditional features.
Work has also been done in automated correction of errors incurred during the interpo-
lation/extrapolation process due to inaccurate data [58].

3.3 Fuzzy Risk Assessment

Serious crime may cause considerable loss of life and damage to property. For example,
the terrorist attack on the World Trade Center on September 11, 2001 claimed around
3000 lives [4] and caused an estimated “$120 billion of damage” [55]. Rapid and ac-
curate estimation of the risk of any such potential crime will help to provide a useful
means for the establishment of appropriate risk management and loss mitigation strate-
gies. It is therefore crucial to develop reliable methods for risk assessment of serious
crime events using available intelligence data.

In developing intelligent systems for intelligence data modelling and analysis, there
is often a trade-off that must be considered. That is, between the completeness of the
scenario space generated and the potential efficiency in subsequent examination of the
resultant space. On the one hand, it is important not to miss any potentially significant
scenarios that may explain the observed data. On the other hand, too many unsorted
and especially, spurious scenarios produced may confuse human analysts. Thus, it is
desirable to be able to filter the created scenario space with respect to certain objective

36 Q. Shen and C. Shang

measures of the quality of the generated scenario descriptions. Fortunately, as indicated
previously, preferences over different hypothetical scenarios can be determined on the
basis of reliability, risk and urgency of each scenario.

The reliability of a generated scenario may be affected by several distinct factors:
the given intelligence data (e.g. the reliability of an informant), the inferences made
to abduce plausible scenarios (e.g. the probability that a given money transfer is part
of an illegitimate transaction), and the default assumptions adopted (e.g. the likelihood
that a person seen on CCTV footage is identified positively). The urgency of a sce-
nario is inversely proportional to the expected time to completion of a particular terror-
ist/criminal activity. Therefore, an assessment of urgency requires a (partial) scenario
to be described using the scenario’s possible consequences and information on addi-
tional actions required to achieve completion. The risk posed by a particular scenario is
determined by its potential consequences (e.g. damage to people and property). Whilst
these are very different aspects that may be used to differentiate and prioritise scenarios
composed by the compositional modeller, the underlying approaches to assess them are
very similar. Thus, in this paper, only the scenario risk aspect is discussed.

Various approaches have been proposed for risk assessment of crime. In [56], crime
risk involves three components (in terms of terrorism): threat to a target, target vul-
nerability, and the consequence should the target be successfully attacked (from the
terrorist’s viewpoint). It is abstractly defined as the product of these three factors (all of
which are regarded as random variables). Statistical methods are employed to estimate
their probability distributions and expected values. An alternative approach is given in
[12], which uses possibility theory to address the general issue of uncertainty. In par-
ticular, concepts such as attack, success, and consequence are characterized as discrete
fuzzy sets and crime risk is then defined as the convolution of them. The risk of seri-
ous crime may also be viewed as an “extreme value event” as in [39]. Thus, it can be
measured by using extreme value statistics. In addition, loss analysis caused by serious
crime may be carried out with methods drawn from fields such as game theory, social
psychology, and network analysis [57]. Clearly, the models of crime risk vary from one
approach to another, depending on a variety of issues, including: type of crime, scale
of crime, and the uncertainty of crime. Of course, risk analysis and assessment is not
limited to the area of crime detection and prevention. It is a general problem that needs
to be addressed in many different domains [8,10,18].

Estimating the risk of a serious crime event requires consideration of a large amount
of uncertainty due to both randomness and fuzziness that are inherent in the intelligence
data (and knowledge also). In this work, the occurrence of crime activity is considered
as a random event, while the loss incurred by the crime is considered as a fuzzy value.
The proposed approach adopts fuzzy random theory [30,31,40] to cope with the chal-
lenge of assessing crime risk and to support loss analysis. In particular, risk is estimated
as the mean chance of a fuzzy random event [17,52] over a pre-defined confidence level,
for an individual type of loss. In implementation, loss caused by an event is modelled
by a function mapping from a boolean sample space of {Success, Failure} onto a set
of nonnegative fuzzy variables. Here, success or failure is judged from the criminal’s
viewpoint, of course, in terms of whether they have carried out a certain activity or
not.

A Framework for Intelligent Analysis of Intelligence Data 37

Fig. 8. Risk Assessment

Risks estimated over different types of loss (e.g. range of geometric destruction
and number of casualties) can be aggregated. Also, assessments obtained using dif-
ferent criteria (e.g. resource and urgency) may be integrated to form an overall
situation risk. To generalise this approach further, order-of-magnitude representation
[41,44] may be introduced to describe various cost estimations. Figure 8 shows such an
example.

Incidentally, expert intelligence analysts have commented that the estimation in this
figure matches the real dataset used in the corresponding set of terrorist attacks. How-
ever, they also commented that in general, it is not necessarily always the case that
failure in carrying out a certain terrorist attack (or the successful prevention of possi-
ble terrorist attack from the counter-terrorism perspective) would incur lower cost to
the public. The ability of an intelligence data analysis tool to correctly capture such
cases clearly deserves more through investigation in future. A possible approach to ad-
dressing this issue is to utilise the measures of risk, urgency and reliability as flexible
constraints imposed over the planning process of police resource deployment. This will
help to minimise the cost of successful surveillance, for example. Techniques reported
in [38] may be used to automate such planning.

38 Q. Shen and C. Shang

4 Conclusions

This paper has presented an initial framework upon which to develop intelligent systems
for modelling and analysis of intelligence data. It has proposed methods which can aid
intelligence analysts in considering as widely as possible the range of emerging scenar-
ios that may reflect serious criminal activities. The resulting approach has the ability to
link seemingly distinct and unrelated intelligence data, associating and prioritising such
data with logically inferred and justified hypotheses.

In short, this work has demonstrated that computational intelligence in general, and
fuzzy systems in particular can provide useful means to capture, learn and reason from
intelligence data under uncertainty. This research has reflected the fact that fuzzy tech-
niques can be very successful for:

– Fragment induction
– Feature selection
– Data interpolation
– Model composition
– Constraint satisfaction
– Truth maintenance
– Co-reference resolution
– Information aggregation
– Risk assessment

Whilst this research is very promising, important work remains. In addition to what has
been mentioned in the paper, the following lists a number of further issues (amongst
possibly many others) that are worthy of investigation and/or development in order to
reinforce the potential of this initial investigation:

– Learning hierarchical model fragments
– Hierarchical and ensemble feature selection
– Unification of scenario generation algorithms
– Dynamic coreference resolution and information fusion
– Evidence-driven risk-guided scenario generation
– Discovery of rare and misleading cases
– Meta-feature learning and selection for scenario synthesis

Such further studies may also bring up fresh challenges to computational intelligence
research and hence new technologies for building intelligent data analysis systems. It
will help to consolidate and broaden the application scope of the proposed framework.
In particular, the framework may be adapted to tackle problems such as: investigator
training, policy formulation, multi-modal profiling, and to address issues in domains
such as academic performance evaluation and financial situation forecasting.

A Framework for Intelligent Analysis of Intelligence Data 39

References

1. Aitken, C., Shen, Q., Jensen, R., Hayes, B.: The evaluation of evidence for exponentially
distributed data. Computational Statistics and Data Analysis 51, 5682–5693 (2007)

2. Baranyi, P., Koczy, L., Gedeon, T.: A generalized concept for in fuzzy rule interpolation.
IEEE Transactions on Fuzzy Systems 12(6), 820–837 (2004)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American, 34–43 (May
2001)

4. CNN: A Day of Terror (September 11, 2001),
http://www.cnn.com/2003/US/03/10/sprj.80.2001.terror/
index.html

5. Berthold, M., Hand, D.: Intelligent Data Analysis: An Introduction, 2nd edn. Springer,
Heidelberg (2007)

6. Boongoen, T., Shen, Q.: Nearest-neighbor guided evaluation of data reliability and its
applications. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics
(to appear)

7. Boongoen, T., Shen, Q., Price, P.: Disclosing false identity through hybrid link analysis.
Artificial Intelligence and Law 18(1), 77–102 (2010)

8. Buyukozkan, G., Ruan, D.: Choquet integral based aggregation approach to software devel-
opment risk assessment. Information Sciences 180, 441–451 (2010)

9. Calado, P., Cristo, M., Goncalves, M., de Moura, E., Ribeiro-Neto, E., Ziviani, N.: Link based
similarity measures for the classification of web documents. Journal of American Society fo
Information Science and Technology 57(2), 208–221 (2006)

10. Chen, S., Huang, Y.: Relative risk aversion and wealth dynamics. Information Sciences 177,
1222–1229 (2007)

11. Chouchoulas, A., Shen, Q.: Rough set-aided keyword reduction for text categorisation. Ap-
plied Artificial Intelligence 15(9), 843–873 (2001)

12. Darby J.: Estimating terrorist risk with possibility theory (2004),
http://www.doe.gov/bridge

13. de Kleer, J.: An assumption-based TMS. Artificial Intelligence 28(2), 127–162 (1986)
14. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of Gen-

eral Systems 17, 191–209 (1990)
15. Fu, X., Boongoen, T., Shen, Q.: Evidence directed generation of plausible crime scenarios

with identity resolution. Applied Artificial Intelligence 24(4), 253–276 (2010)
16. Fu, X., Shen, Q.: Fuzzy compositional modeling. IEEE Transactions on Fuzzy Sys-

tems 18(4), 823–840 (2010)
17. Halliwell, J., Shen, Q.: Linguistic probabilities: theory and application. Soft Comput-

ing 13(2), 169–183 (2009)
18. Huang, C., Inoue, H.: Soft risk maps of natural disasters and their applications to decision-

making. Information Sciences 177, 1583–1592 (2007)
19. Huang, Z., Shen, Q.: Fuzzy interpolative and extrapolative reasoning: a practical approach.

IEEE Transactions on Fuzzy Systems 16(1), 13–28 (2008)
20. Huang, Z., Shen, Q.: Fuzzy interpolative reasoning via scale and move transformation. IEEE

Transactions on Fuzzy Systems 14(2), 340–359 (2006)
21. Jensen, R., Shen, Q.: Are more features better? IEEE Transactions on Fuzzy Systems 17(6),

1456–1458 (2009)
22. Jensen, R., Shen, Q.: New approaches to fuzzy-rough feature selection. IEEE Transactions

on Fuzzy Systems 17(4), 824–838 (2009)
23. Jensen, R., Shen, Q.: Computational Intelligence and Feature Selection: Rough and Fuzzy

Approaches. IEEE and Wiley (2008)

http://www.cnn.com/2003/US/03/10/sprj.80.2001.terror/index.html
http://www.cnn.com/2003/US/03/10/sprj.80.2001.terror/index.html
http://www.doe.gov/bridge

40 Q. Shen and C. Shang

24. Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection. IEEE Transactions on
Fuzzy Systems 15(1), 73–89 (2007)

25. Jensen, R., Shen, Q.: Semantics-preserving dimensionality reduction: Rough and fuzzy-
rough approaches. IEEE Transactions on Knowledge and Data Engineering 16(12),
1457–1471 (2004)

26. Keppens, J., Shen, Q.: On compositional modelling. Knowledge Engineering Review 16(2),
157–200 (2001)

27. Keppens, J., Shen, Q., Price, C.: Compositional Bayesian modelling for computation of evi-
dence collection strategies. Applied Intelligence (to appear)

28. King, R., Rowland, J., Oliver, S., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham,
M., Pir, P., Soldatova, L., Sparkes, A., Whelan, K.E., Clare, A.: The automation of science.
Science 324(5923), 85–89 (2009)

29. Koyuncu, M., Yazici, A.: A fuzzy knowledge-based system for intelligent retrieval. IEEE
Transactions on Fuzzy Systems 13(3), 317–330 (2005)

30. Kwakernaak, H.: Fuzzy random variables – I. Information Sciences 15, 1–29 (1978)
31. Kwakernaak, H.: Fuzzy random variables – II. Information Sciences 17, 253–278 (1979)
32. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of

American Society for Information Science and Technology 58(7), 1019–1031 (2007)
33. Kriete, A., Eils, R.: Computational Systems Biology. Elsevier, Amsterdam (2005)
34. Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Springer,

Heidelberg (1998)
35. Mac Parthalain, N., Shen, Q.: Exploring the boundary region of tolerance rough sets for

feature selection. Pattern Recognition 42(5), 655–667 (2009)
36. Mac Parthalain, N., Shen, Q., Jensen, R.: A distance measure approach to exploring the

rough set boundary region for attribute reduction. IEEE Transactions on Knowledge and
Data Engineering (to appear)

37. Marı́n-Blázquez, J., Shen, Q.: From approximative to descriptive fuzzy classifiers. IEEE
Transactions on Fuzzy Systems 10(4), 484–497 (2002)

38. Miguel, I., Shen, Q.: Fuzzy rrDFCSP and planning. Artificial Intelligence 148(1-2), 11–52
(2003)

39. Mohtadi, H.: Assessing the risk of terrorism using extreme value statistics. In: Proceedings
of the Institute of Food Technologists First Annual Conference on Food Protection and De-
fencse (2005)

40. Puri, M., Ralescu, D.: Fuzzy random variables. Journal of Mathematical Analysis and Ap-
plications 114, 409–422 (1986)

41. Parsons, S.: Qualitative probability and order of magnitude reasoning. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 11(3), 373–390 (2003)

42. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic
Publishers, Dordrecht (1991)

43. Perner, P.: Intelligent data analysis in medicine: Recent advances. Artificial Intelligence in
Medicine 37(1), 1–5 (2006)

44. Raiman, O.: Order-of-magnitude reasoning. Artificial Intelligence 51, 11–38 (1991)
45. Shadbolt, N., Hall, W., Berners-Lee, T.: The semantic web revisited. IEEE Intelligent Sys-

tems 21(3), 96–101 (2006)
46. Shen, Q.: Intelligent systems for decision support. In: Proceedings of International Joint Con-

ference on Computational Intelligence, pp. 25–36 (2009)
47. Shen, Q., Chouchoulas, A.: A rough-fuzzy approach for generating classification rules. Pat-

tern Recognition 35(11), 2425–2438 (2002)
48. Shen, Q., Jensen, R.: Selecting informative features with fuzzy-rough sets and its application

for complex systems monitoring. Pattern Recognition 37(7), 1351–1363 (2004)

A Framework for Intelligent Analysis of Intelligence Data 41

49. Shen, Q., Keppens, J., Aitken, C., Schafer, B., Lee, M.: A scenario driven decision support
system for serious crime investigation. Law, Probability and Risk 5(2), 87–117 (2006)

50. Shen, Q., Zhao, R.: Risk assessment of serious crime with fuzzy random theory. Information
Sciences (to appear)

51. Shen, Q., Zhao, R.: A credibilistic approach to assumption-based truth maintenance. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans (to appear)

52. Shen, Q., Zhao, R., Tang, W.: Modelling random fuzzy renewal reward processes. IEEE
Transactions on Fuzzy Systems 16(5), 1379–1385 (2008)

53. Tikk, D., Baranyi, P.: Comprehensive analysis of a new fuzzy rule interpolation method.
IEEE Transactions on Fuzzy Systems 8(3), 281–296 (2000)

54. Tsang, E., Chen, D., Yeung, D., Wang, X., Lee, J.: Attributes reduction using fuzzy rough
sets. IEEE Transactions on Fuzzy Systems 16(5), 1130–1141 (2008)

55. Wesbury B.: The Economic Cost of Terrorism,
http://usinfo.state.gov/topical/econ/mlc/02091004.htm

56. Willis H., Morral A., Kelly T., Medby J.: Estimating terrorism risk, RAND Corporation,
Report from Center for Terrorism Risk Management Policy (2005),
http://www.rand.org

57. Woo, G.: Terrorism risk. In: Voeller, J. (ed.) Handbook of Science and Technology for Home-
land Security. Wiley, Chichester (2007)

58. Yang, L., Shen, Q.: Adaptive fuzzy interpolation. IEEE Transactions on Fuzzy Systems
(to appear)

59. Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 100, 9–34
(1999)

60. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning
I. Information Sciences 8, 199–249 (1975)

61. Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

http://usinfo.state.gov/topical/econ/mlc/02091004.htm
http://www.rand.org

Part I
Fuzzy Computation

Symbolic Knowledge Extraction from Trained Neural
Networks Governed by Łukasiewicz Logics�

Carlos Leandro1, Hélder Pita2, and Luı́s Monteiro3

1 Área Cientifica da Matemática, Instituto Superior de Engenharia de Lisboa
Instituto Politécnico de Lisboa, Portugal

2 Departamento de Engenharia Electrónica Telecomunicaçes e de Computadores
Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Portugal

3 Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, Portugal

Abstract. This work describes a methodology to extract symbolic rules from
trained neural networks. In our approach, patterns on the network are codified
using formulas on a Łukasiewicz logic. For this we take advantage of the fact that
every connective in this multi-valued logic can be evaluated by a neuron in an
artificial network having, by activation function the identity truncated to zero and
one. This fact simplifies symbolic rule extraction and allows the easy injection
of formulas into a network architecture. We trained this type of neural network
using a back-propagation algorithm based on Levenderg-Marquardt algorithm,
where in each learning iteration, we restricted the knowledge dissemination in
the network structure. This makes the descriptive power of produced neural net-
works similar to the descriptive power of Łukasiewicz logic language, minimiz-
ing the information loss on the translation between connectionist and symbolic
structures. To avoid redundance on the generated network, the method simplifies
them in a pruning phase, using the ”Optimal Brain Surgeon” algorithm. We tested
this method on the task of finding the formula used on the generation of a given
truth table. For real data tests, we selected the Mushrooms data set, available on
the UCI Machine Learning Repository.

1 Introduction

There are essentially two representation paradigms, symbolic-based descriptions and
connectionist, usually taken very differently. On the one hand, symbolic-based de-
scriptions are based on a language specified through a grammar that has fairly clear
semantics. On the other hand, the usual way to see information presented using a con-
nectionist description is its codification on a neural network. Artificial neural networks
(NNs), in principle, combine–among other things–the ability to learn with robustness or
insensitivity to perturbations of input data.

It is natural to seek a synergy integrating the white-box character of symbolic based
representation and the learning power of artificial neuronal networks. Such neuro-sym-
bolic models are currently a very active area of research. In the context of classic logic,

� We gratefully acknowledge the support of the Instituto Superior de Engenharia de Lisboa
and the Área Cientifica da Matemática. This paper benefited from the valuable comments of
ICFC2009 conference referees.

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 45–58.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

46 C. Leandro et al.

see [1] for the extraction of logic programs from trained networks. For the extraction
of modal and temporal logic programs, see [2]. In [3] we can find processes to gener-
ate connectionist representations of multi-valued logic programs and for Łukasiewicz
logic programs (ŁL) [4]. Our approach to neuro-symbolic models and knowledge ex-
traction is based on a comprehensive language for humans, representable directly in
an NN topology and able to be used, like knowledge-based networks [5] [6], to gen-
erate the initial network architecture from crude symbolic domain knowledge. In the
other direction, neural language can be translated into its symbolic language, as pre-
sented in [7] [8]. However this process has been used to identify the most significant
determinants of decision or classification. This is a hard problem since often an arti-
ficial NN with good generalization does not necessarily imply involvement of hidden
units with distinct meaning. Hence, any individual unit cannot essentially be associated
with a single concept or feature of the problem domain. This is the archetype of con-
nectionist approaches, where all information is stored in a distributed manner among
the processing units and their associated connectivity. However, in this work we used
a propositional language wherein formulas are interpreted as NNs. For this task we
selected the propositional language of ŁL. This type of multi-valued logic has a very
useful property motivated by the ”linearity” of logic connectives. Every logic connec-
tive can be defined by a neuron in an artificial network having, by activation function,
the identity truncated to zero and one [9]. This allows the direct codification of formu-
las in the network architecture and simplifies the extraction of rules. Multilayer feed-
forward NN, having this type of activation function, can be trained efficiently using the
Levenderg-Marquardt algorithm [10], and the generated network can be simplified us-
ing the ”Optimal Brain Surgeon” algorithm proposed by B. Hassibi, D. G. Stork, and
G. J. Stork [11]. This strategy has good performance when applied to the reconstruc-
tion of formulas from truth tables. If the truth table is generated using a formula from
the Łukasiewicz propositional logic language, the optimum solution is defined using
only units directly translated into formulas. The process is stable for the introduction of
Gaussian noise into the input data. This motivates its application to extract comprehen-
sible symbolic rules from real data. However, often a model with good generalization
can be described using a configuration of neural units without exact symbolic presenta-
tion. We describe, in the following, a simple rule to generate symbolic approximation
for un-representable configurations.

2 Preliminaries

We begin by presenting the basic notions we need from the subjects of many-valued
logics and by showing how formulas in a propositional language can be injected into
and extracted from a feed-forward NN.

2.1 Łukasiewicz Logics

Classical propositional logic is one of the earliest formal systems of logic. The algebraic
semantics of this logic are given by Boolean algebra. Both the logic and the algebraic
semantics have been generalized in many directions [12]. The generalization of Boolean

Symbolic Knowledge Extraction from Trained Neural Networks 47

algebra can be based on the relationship between conjunction and implication given by
(x∧ y) ≤ z ⇔ x ≤ (y → z). These equivalences, called residuation equivalences, imply
the properties of logic operators in Boolean algebras.

In applications of fuzzy logic, the properties of the Boolean conjunction are too rigid;
hence it is extended with a new binary connective, ⊗, which is usually called fusion,
and the residuation equivalence (x⊗ y) ≤ z ⇔ x ≤ (y ⇒ z) defines implication. These
two operators induce a structure of residuated poset on a partially ordered set of truth
values P[12]. This structure has been used in the definition of many types of logics. If
P has more than two values, the associated logics are called many-valued logics.

We focused our attention on many-valued logics having a subset of interval P = [0,1]
as set of truth values. In this type of logic, the fusion operator, ⊗, is known as a t-norm.
In [13], it is described as a binary operator defined in [0,1] commutative and associative,
non-decreasing in both arguments, 1⊗x = x and 0⊗x = 0. An example of a continuous
t-norm is x⊗ y = max(0,x + y−1), named as the Łukasiewicz t-norm and used on the
definition of Łukasiewicz logic (ŁL)[14].

2.2 Processing Units

As mentioned in [15] a deep investigation of the relationships between logics and NNs
is lacking. In this work we present a methodology using NNs to learn formulas from
data, based on the fact [9] that it is possible to represent an NN as a combination of
propositions of ŁL, and vice versa [15] when the NN have as activation function, ψ, the
identity truncated to zero and one, ψ(x) = min(1,max(x,0)).

Sentences in ŁL are, as usual, built from a (countable) set of propositional variables,
a conjunction ⊗ (the fusion operator), an implication ⇒, and the truth constant 0. Fur-
ther connectives are defined as ¬ϕ1 is ϕ1 ⇒ 0, 1 is 0 ⇒ 0 and ϕ1 ⊕ϕ2 is ¬ϕ1 ⇒ ϕ2.

The language for ŁL can be defined by the set of all multi-layer NNs, with one
output neuron, wherein neurons assume one of the labeled configurations presented
below[15].

x

1
��� −1
�������	⊗

y 1

���

x

−1
��� 1
�������	⇒

y 1

���

x

1
��� 0
�������	⊕

y 1

���

x

0
��� 1
�������	1

y 0

���

x

0
��� 0
�������	0

y 0

���

1
x

−1
�������	¬

0
x

1
�������	=

Interpreting each component as a neural unit, each NN can be seen as an interpre-
tation for a formula. A neuron what has bias b and two inputs x1 and x2, having
weights w1 and w2, is interpreted as a function z = min(1,max(0,w1x+w2y+b). These
functions are generically denoted, in the following, by ψb(w1x1,w2x2). In this con-
text a network is the functional interpretation for a sentence when relation, defined by
network execution, corresponds to the proposition truth table. The use of NNs as the
interpretation of formulas simplifies the transformation between string-based represen-
tations and the network representation [16]. For instance, the semantic for sentence
ϕ = (x⊗y ⇒ z)⊕ (z ⇒ w) can be described using the network below, coded by the pre-
sented set of matrices. From these matrices we must note that the partial interpretation
of each unit is a simple exercise of pattern checking, using Table 1, and is described by
matrices lines.

48 C. Leandro et al.

x

1
��

�
−1
�������	⊗ −1

���
�

1

y

1 ���
�������	=

1
�������	⇒

1
���

�
0

z

−1
��

�

1 ����

1

0

0

�������	⊕

�������	⇒ 1
�������	=

1 				

w

1

x y z w b’s partial interpretation
i1
i2
i3

⎡
⎣ 1 1 0 0

0 0 1 0
0 0 −1 1

⎤
⎦

⎡
⎣ −1

0
1

⎤
⎦ x⊗ y

z
z ⇒ w

i1 i2 i3
j1
j2

[−1 1 0
0 0 1

] [
1
0

]
i1 ⇒ i2
i3

j1 j2[
1 1

] [
0

]
j1 ⊕ j2

INTERPRETATION:
j1 ⊕ j2 = (i1 ⇒ i2)⊕ (i3) = ((x⊗ y) ⇒ z)⊕ (z ⇒ w)

In this sense, this NN can be seen as an interpretation for sentence ϕ; it defines fϕ, the
proposition truth table. This relationship is presented in string-base notation by writing:
fϕ(x,y,z,w) = ψ0(ψ0(ψ1(−z,w)),ψ1(ψ0(z),−ψ−1(x,y))).

However, truth table fϕ is a continuous structure for our computational goal, so it
must be discretized, ensuring sufficient information to describe the original formula.
A truth table fϕ for formula ϕ, in ŁL, is a map fϕ : [0,1]m → [0,1], where m is the
number of propositional variables used in ϕ. For each integer n > 0, let Sn be the set

{0, 1
n , . . . , n−1

n ,1}. Each n > 0, defines a sub-table for fϕ defined by f (n)
ϕ : (Sn)m → [0,1],

given by f (n)
ϕ (v̄) = fϕ(v̄), and called the ϕ (n+1)-valued truth sub-table.

2.3 Similarity between a Configuration and a Formula

We called a Castro neural network (CNN) to an NN having as activation function
ψ(x) = min(1,max(0,x)), where its weights are -1, 0 or 1 and having by bias an in-
teger. A CNN is called representable if it is codified as a binary NN, i.e., a CNN where
each neuron has one or two inputs. A network is called un-representable if it is impossi-
ble to be codify using a binary CNN. Note that a binary CNN can be translated directly
into ŁL language, using the correspondences described in Table 1; in this sense, we
called them Łukasiewicz neural network (ŁNN). Below we present a functional inter-
pretation for formulas defined using a neuron with two inputs. These interpretations are
classified as disjunctive interpretations or conjunctive interpretations. Below we present
the possible configurations of neurons with two inputs.

Disjunctive interpretations Conjunctive interpretations

ψ0(x1 ,x2) = fx1⊕x2 , ψ1 (−x1 ,x2) = f¬x1⊕x2 ψ−1 (x1 ,x2) = fx1⊗x2 , ψ0(−x1 ,x2) = f¬x1⊗x2
ψ1(x1 ,−x2) = fx1⊕¬x2 , ψ2 (−x1 ,−x2) = f¬x1⊕¬x2 ψ0 (x1 ,−x2) = fx1⊗¬x2 , ψ1(−x1 ,−x2) = f¬x1⊗¬x2

The other possible configurations are equivalent to one of these, or are constant and can
also be seen as representable configurations; for instance, ψb(x1,x2) = 0, if b <−1, and
ψb(−x1,−x2) = 1, if b > 1.

In this sense, every representable network can be codified by an NN, where the neural
units satisfy one of the above patterns. Below we can also see examples of representable
configurations for a neuron with three inputs. In the table we present how they can be
codified, using representable NNs having units with two inputs and the corresponding
interpreting formula in the string-based notation.

Symbolic Knowledge Extraction from Trained Neural Networks 49

Table 1. Possible configurations for a neuron in a Łukasiewicz neural network and its
interpretation

Formula: Configuration: Formula: Configuration: Formula: Configuration: Formula: Configuration:

¬x⊕ y x

−1
��� 1
�������	ϕ

y

1 ���

x⊗¬y x

1
��� 0
�������	ϕ

y

−1 ���

x⊕ y x

1
��� 0
�������	ϕ

y

1 ���

¬x⊗¬y x

−1
��� 1
�������	ϕ

y

−1 ���

x⊕¬y x

1
��� 1
�������	ϕ

y

−1 ���

x⊗ y x

1
��� −1
�������	ϕ

y

1 ���

¬x⊗ y x

−1
��� 0
�������	ϕ

y

1 ���

¬x⊕¬y x

−1
��� 2
�������	ϕ

y

−1 ���

Conjunctive configurations

ψ−2(x1 ,x2,x3) = ψ−1(x1 ,ψ−1(x2 ,x3)) = fx1⊗x2⊗x3
ψ−1 (x1 ,x2,−x3) = ψ−1 (x1 ,ψ0(x2 ,−x3)) = fx1⊗x2⊗¬x3

ψ0(x1 ,−x2,−x3) = ψ−1 (x1 ,ψ1(−x2 ,−x3)) = fx1⊗¬x2⊗¬x3
ψ1(−x1 ,−x2 ,−x3) = ψ0 (−x1 ,ψ1(−x2 ,−x3)) = f¬x1⊗¬x2⊗¬x3

Disjunctive interpretations

ψ0 (x1 ,x2 ,x3) = ψ0(x1 ,ψ0(x2 ,x3)) = fx1⊕x2⊕x3
ψ1 (x1 ,x2,−x3) = ψ0(x1 ,ψ1(x2 ,−x3)) = fx1⊕x2⊕¬x3

ψ2 (x1 ,−x2 ,−x3) = ψ0 (x1 ,ψ2(−x2 ,−x3)) = fx1⊕¬x2⊕¬x3
ψ3(−x1 ,−x2 ,−x3) = ψ1 (−x1 ,ψ2(−x2 ,−x3)) = f¬x1⊕¬x2⊕¬x3

Constant configurations like ψb(x1,x2,x3) = 0, if b < −2, and ψb(−x1,−x2,−x3) =
1, if b > 3, are also representable. However, there are examples of un-representable
networks with three inputs like the configuration ψ0(−x1,x2,x3). Naturally, a neu-
ron configuration–when representable–can by codified by different structures using an
ŁNN. In particularly, we have the following:

Proposition 1. If the neuron configuration α = ψb(x1,x2, . . . ,xn−1,xn) is representable,
but not constant, it can be codified in an ŁNN with the structure:
α = ψb1(x1,ψb2(x2, . . . ,ψbn−1(xn−1,xn) . . .)), where b1,b2, ...,bn−1 are integers, and
b = b1 + b2 + ...+ bn−1.

Since the n-nary operator ψb is commutative, variables x1,x2, . . . ,xn−1,xn could
interchange its position in function α = ψb(x1,x2, . . . ,xn−1,xn) without changing the
operator output. By this we mean that, for a three input configuration when we permu-
tate variables, we generate equivalent configurations: ψb(x1,x2,x3) = ψb(x2,x3,x1) =
ψb(x3,x2,x1) = When these are representable, they can be codified in a string-based
notation using logic connectives. But these different configurations generat equivalente
formulas only if these formulas are disjunctive or conjunctive formulas, since these are
the only formulas invariant to the variable, or its negation, position change. A disjunc-
tive formula is a formula written using only disjunctions and negations. Similarly, a
conjunctive formula is a formula written using only conjunctions or negations.

Proposition 2. If α = ψb(x1,x2, . . . ,xn−1,xn) is representable, it is the interpretation of
a disjunctive formula or a conjunctive formula.

This leaves us with the task of classifying a neuron configuration according to its sym-
bolic representation. For that, we established a relationship using the configuration bias
and the number of negative and positive weights.

50 C. Leandro et al.

Proposition 3. [17] In a neuron configuration α = ψb(−x1,−x2, . . . ,−xn,xn+1, . . . ,xm)
with m = n + p inputs and where n and p are, respectively, the number of negative and
the number of positive weights, on the neuron configuration:

1. If b = −p + 1, the neuron is called a conjunction and it is an interpretation for
formula ¬x1 ⊗ . . .⊗¬xn ⊗ xn+1 ⊗ . . .⊗ xm.

2. When b = n the neuron is called a disjunction, and it is an interpretation for formula
¬x1 ⊕ . . .⊕¬xn ⊕ xn+1 ⊕ . . .⊕ xm.

From the structure associated with this type of formula, we proposed the following
structural characterization for representable neurons:

Proposition 4. Every conjunctive or disjunctive α = ψb(x1,x2, . . . ,xn−1,xn), can be
codified by an ŁNN

β = ψb1(x1,ψb2(x2, . . . ,ψbn−1(xn−1,xn) . . .)), (1)

where b = b1 + b2 + · · ·+ bn−1 and b1 ≤ b2 ≤ ·· · ≤ bn−1.

This property can be translated in the following neuron rewriting rule,
linking

w1
��

��
b

.

.

.

�������	ψ
R ��

wn ����

w1
��

��
b0

.

.

.

�������	ψ

1��
��

b1
wn−1

�������	ψ
wn ������

equivalent networks, when the values b0 and b1 satisfy b = b0 +b1 and b1 ≤ b0, and are
such that neither of the involved neurons has a constant output. This rewriting rule can
be used to join equivalent configurations like the following:

x −1��� 2
y

1
�������	ϕ

R ��

z

−1 ���

w

1
�����

x −1��� 2
y

1
�������	ϕ

1��
�

0

R ��

z

−1 ���
�������	ϕ

w

1 �����

x −1��� 2
z

−1
�������	ϕ

1��
�

0

y
1

������ϕ

1
��

�
0

w
1

�������	ϕ

Note that a representable CNN can be transformed by the application of rule R in a set of
equivalent ŁNNs with the simplest neuron configuration. Then we have the following:

Proposition 5. Un-representable neuron configurations are those transformed by rule
R in at least two non-equivalent NNs.

For instance, the un-representable configuration ψ0(−x1,x2,x3), is transformed by rule
R in three non-equivalent configurations: ψ0(x3,ψ0(−x1,x2)) = fx3⊕(¬x1⊗x2),
ψ−1(x3,ψ1(−x,x2)) = fx3⊗(¬x1⊗x2) and ψ0(−x1,ψ0(x2,x3)) = f¬x1⊗(x2⊕x3). The rep-
resentable configuration ψ2(−x1,−x2,x3) is transformed by rule R on only two dis-
tinct but equivalent configurations: ψ0(x3,ψ2(−x1,−x2)) = fx3⊕¬(x1⊗x2) and ψ1(−x2,
ψ1(−x1,x3)) = f¬x2⊕(¬x1⊕x3).

Symbolic Knowledge Extraction from Trained Neural Networks 51

For the extraction of knowledge from trained NNs, we translate neuron configura-
tions in propositional connectives to form formulas. However, not all neuron config-
urations can be translated into formulas, but they can be approximated by them. To
quantify the approximation quality, we defined the notion of interpretation λ-similar to
a formula. Two neuron configurations, α = ψb(x1,x2, . . . ,xn) and β = ψb′(y1,y2, . . . ,yn),
are called λ-similar, in a (m+ 1)-valued ŁL, if

λ = e−∑x̄∈T
|α(x̄)−β(x̄)|

�T . (2)

In this case we write α ∼λ β. If α is un-representable and β is representable, the second
configuration is called a representable approximation to the first.

On the 2-valued ŁL (the Boolean logic case), we have for the un-representable con-
figuration α = ψ0(−x1,x2,x3): ψ0(−x1,x2,x3) ∼0.883 ψ0(x3,ψ0(−x1,x2)), ψ0(−x1,x2,
x3)∼0.883 ψ−1(x3,ψ1(−x1,x2)), and ψ0(−x1,x2,x3) ∼0.883 ψ0(−x1,ψ0(x2,x3)). In this
case, the truth sub-tables of, formulas α1 = x3 ⊕ (¬x1 ⊗ x2), α1 = x3 ⊗ (¬x1 ⊗ x2) and
α1 = ¬x1 ⊗ (x2 ⊕ x3) are both λ-similar to ψ0(−x1,x2,x3), where λ = 0.883, since they
differ in one position on 8 possible positions. The quality of these approximations was
checked by analyzing the similarity level on other finite ŁLs. In every selected logic for-
mula α1,α2 and α3 had the same similarity level when compared to α: in the 3-valued
logic, we have λ = 0.8779; in the 10-valued logic, λ = 0.8798; in 30-valued logic,
λ = 0.8814; and in a 50-valued logic, λ = 0.8818. The level of similarity increases with
the increase in the number of truth values.

For a more complex configuration like α = ψ0(−x1,x2,−x3,x4,−x5), we can derive
the following configurations, using rule R: β1=ψ0(−x5,ψ0(x4,ψ0(−x3,ψ0(x2,−x1)))),
β2=ψ−1(x4,ψ−1(x2,ψ0(−x5,ψ0(−x3,−x1)))), β3 = ψ−1(x4,ψ0(−x5,ψ0(x2,ψ1(−x3,
−x1)))), β4 = ψ−1(x4,ψ0(x2,ψ0(−x5,ψ1(−x3,−x1)))). Since these configurations are
not equivalents, we concluded that α is un-representable. In this case we can see a
change in the similarity level between α and each βi when the number of truth valued is
changed: 2-valued logic α ∼0.8556 β1, α ∼0.9103 β2, α ∼0.5189 β3 and α ∼0.5880 β4; 5-
valued logic α∼0.8940 β1, α∼0.9315 β2, α∼0.4579 β3 and α ∼0.6326 β4; 10-valued logic
α ∼0.9085 β1, α ∼0.9399 β2, α ∼0.4418 β3 and α ∼0.4991 β4. From observed similarity we
selected β2 as the best approximation to α. Note that its quality, as an approximation,
improves when we increase the logics number of truth values.

In this sense, rule R can be used for configuration classification and configuration
approximation. From an un-representable configuration, α, we can generate a finite
set S(α), using rule R a, with representable networks similar to α. Given an (n + 1)-
valued logic, from that set of formulas we can select, as an approximation to α the for-
mula having the interpretation more similar to α. This identification of un-representable
configuration, with representable approximations, is used to transform networks with
un-representable neurons into representable structures. The stress associated with this
transformation characterizes the translation accuracy. Using the linearity of this type of
function we have the following:

Proposition 6. If β is the representable formula, generated by R, more similar to α in
a (n+1)-valued ŁL then it is also the best approximation to α in an (m+1)-valued ŁL,
when m > n.

In practice we used 3-valued ŁL for the formula selection.

52 C. Leandro et al.

2.4 Neural Network Crystallization

Weights in CNNs assume the values -1 or 1. However, the usual learning algorithms pro-
cess NNs weights, presupposing the continuity of the weights domain. Naturally, every
NN with weights in [−1,1] can be seen as an approximation to CNNs. The process of
identifying an NN with weighs in [−1,1] as a CNN is called crystallization and essen-
tially consists of rounding each neural weight wi to the nearest integer, less than or equal
to wi, denoted by wi�. In this sense the crystallization process can be seen as a pruning
on the network structure, where links between neurons with weights near 0 are removed
and weights near -1 or 1 are consolidated. However, this process is very ”crispy”, pro-
ducing great losses of information. We need a smooth procedure to crystallize a net-
work, in each learning iteration, to avoid the drastic reduction in learning performance.
In each iteration we restricted the NN representation bias, making the network repre-
sentation bias converge to a structure similar to a CNN. For that, we defined by rep-
resentation error for a network N with weights w1, . . . ,wn, Δ(N) = ∑n

i=1(wi −wi�).
When N is a CNN we have Δ(N) = 0. Our smooth crystallization process results from
the iteration of the following function:

ϒn(w) = sign(w).((cos(1−abs(w)−abs(w)�).π
2
)n + abs(w)�), (3)

where sign(w) is the sign of w and abs(w) its absolute value. Denoting by ϒn(N) the
function has by input and output an NN, where the weights on the output network result
in applying ϒn to all the input network weights and neurons biases. Each interactive
application of ϒn produces a network progressively more similar to a CNN. Since, for
every network N and n > 0, Δ(N) ≥ Δ(ϒn(N)), we have the following:

Proposition 7. Given a NNs N with weights in the interval [0,1]. For every n > 0 the
function ϒn(N) has, by fixed points, a CNNs.

The convergence speed depends on parameter n. For our applications, we selected
n = 2, based on the learning efficiency of a set of test formulas. Greater values for n
impose stronger restrictions to learning.

3 Learning Propositions

We began the study of knowledge extraction using a CNN by reverse engineering a truth
table. By this we mean that, for a given truth table on an (n + 1)-valued ŁL, generated
using a formula in the ŁL language, we will try to find its interpretation in the form of
an ŁNN, and from it rediscover the original formula. For that we trained a feed-forward
NN using a truth table. Our methodology trains progressively more complex networks
until a crystallized network with good performance has been found. We use Algorithm
1 for the truth table reverse-engineering task.

Given part of a truth table we tried to find an ŁNN that codifies the data. For this we
generated NNs with a fixed number of hidden layers (our implementation uses 3 hidden
layers). When the process detects bad learning performances, it aborts the training, gen-
erating a new network with random heights. After a fixed number of tries, the network

Symbolic Knowledge Extraction from Trained Neural Networks 53

topology is changed. The number of tries for each topology depends on the number of
network inputs. After trying to configure a set of networks for a given complexity with
bad learning performance, the system tries to apply the selected back-propagation algo-
rithm to a more complex set of networks. In the following we present a short description
for the selected learning algorithm. If the continuous optimization process converges,
i.e. if the system finds a network codifying the data, the network is crystallized. When
the errors associated with this process increase, the system returns to the learning phase
and tries to configure a new network. When the process converges and the resulting
network can be codified as a crisp ŁNN, the system prunes the network. The goal of
this phase is network simplification. For this, we selected the Optimal Brain Surgeon
algorithm proposed by G. J. Wolf, B. Hassibi and D. G. Stork in [11].

Algorithm 1. Reverse-engineering Algorithm.

1: Given a (n+1)-valued truth sub-table for a ŁL proposition.
2: Define an inicial network complexity.
3: Generate an inicial NN.
4: Apply (the selected) Backpropagation algorithm using the data set.
5: if the generated network has bad performance, then
6: If need, increase network complexity.
7: Try a new network. Go to 3.
8: end if
9: Do neural network crystallization using the crisp process.

10: if crystalized network performs badly, then
11: Try a new network. Go to 3.
12: end if
13: Refine the crystalized network.

3.1 Training

Many efforts have been made to speed up the back-propagation algorithm. The Le-
venderg-Marquardt algorithm (LM) [18] ensued from the development of error back-
propagation algorithm-dependent methods. It gives a good exchange between the speed
of the Newton algorithm and the stability of the steepest descent method [19].

The basic LM algorithm adjusts the weights, on iteration k + 1, using the update
rule, wk+1 = wk − [JT

k Jk + µ.diag(JT
k Jk)]−1JT

k ek, where Jk is the Jacobian matrix that
contains first derivatives of the network errors ek with respect to the weights wk and µ is
the learning rate. We changed the LM algorithm by applying a soft crystallization step
after each LM update rule:

wk+1 = ϒ2(wk − [JT
k Jk + µ.diag(JT

k Jk)]−1JT
k ek). (4)

This drastically improves the convergence to CNNs. In our methodology regularization
is made using three different strategies: (1) using soft crystallization, where knowl-
edge dissemination is restricted on the network, information is concentrated on some
weights; (2) using crisp crystallization where only the heavier weights survive; (3) prun-
ing the resulting crystallized network.

54 C. Leandro et al.

The regularization technique (3), avoids redundancies in the sense that the same
or redundant information can be codified at different locations. We minimized this by
selecting weights to eliminate. For this task, we used ”Optimal Brain Surgeon”(OBS)
method proposed by B. Hassibi, D. G. Stork, and G. J. Stork in [11], which uses the
criterion of minimal increase in training error. It uses information from all second-order
derivatives of the error function to perform network pruning. Our method is in no way
optimal; it is just a heuristic, but it works well for learning CNNs.

4 Reverse-Engineering

Given an ŁNN it can be translated in the form of a string base formula if every neuron is
representable. Proposition 3 defines a tool to translate from the connectionist represen-
tation to a symbolic representation. It is remarkable that, when the truth table sample
used in the learning was generated by a formula, the Reverse Engineering algorithm
converges to a representable ŁNN equivalent to the original formula, when evaluated
on the cases used in the truth table sample.

When we generate a truth table in the 4-valued ŁL, using formula (x4 ⊗ x5 ⇒ x6)⊗
(x1⊗x5 ⇒ x2)⊗(x1⊗x2 ⇒ x3)⊗(x6 ⇒ x4), it has 4096 cases, and the result of applying
the algorithm is the 100% accurate NN A presented in figure 1. Using local interpre-
tation, we may reconstruct the formula: j1 = ¬i1 ⊗¬i2 ⊗¬i3 ⊗ i4 = ¬(¬x4 ⊗ x6)⊗
¬(x4 ⊗ x5 ⊗¬x6)⊗¬(x1 ⊗ x2 ⊗¬x3)⊗ (¬x1 ⊕ x2 ⊕¬x5) = (x4 ⊕¬x6)⊗ (¬x4 ⊕¬x5 ⊕
x6)⊗ (¬x1 ⊕¬x2 ⊕ x3)⊗ (¬x1 ⊕ x2 ⊕¬x5) = (x6 ⇒ x4)⊗ (x4 ⊗ x5 ⇒ x6)⊗ (x1 ⊗ x2 ⇒
x3)⊗ (x1 ⊗ x5 ⇒ x2)

Note, however, that the restriction imposed in our implementation of 3 hidden lay-
ers, wherein the last hidden layer has only one neuron, restricts the complexity of re-
constructed formula. For instance, in order for ((x4 ⊗ x5 ⇒ x6)⊕ (x1 ⊗ x5 ⇒ x2))⊗
(x1 ⊗ x2 ⇒ x3)⊗ (x6 ⇒ x4) to be codified in a 3-hidden-layer network, the last layer
needs two neurons, one to codify the disjunction and the other to codify the conjunc-
tions. When the algorithm was applied to the truth table generated in the 4-valued ŁL by
using a stopping criterion of a mean square error less than 0.0007, it produced the repre-
sentable NN B presented in figure 1. By this we may conclude that original formula can
be approximated, or is λ-similar with λ = 0.998 to j1 = (x6 ⇒ x4)⊗ ((x1 ⊗ x4 ⊗ x5) ⇒
(x2 ⊕ x6))⊗ (x1 ⊗ x2 ⇒ x3). Note that j1 is 0.998-similar to the original formula in the
4-valued ŁL, but it is equivalent to the original in the 2-valued ŁL, i.e., in Boolean logic.

The fixed number of layers also imposes restrictions on the reconstruction of the
formula. A truth table generated by (((i1 ⊗ i2)⊕ (i2 ⊗ i3))⊗ ((i3 ⊗ i4)⊕ (i4 ⊗ i5)))⊕
(i5 ⊗ i6) requires at least 4 hidden layers, to be reconstructed; this is the number of
levels required by the associated parsing tree.

Table below presents the mean CPU times needed to find a configuration with a
mean square error of less than 0.002. The mean time is computed using 6 trials on a
5-valued truth ŁL for each formula. We implemented the algorithm using the MatLab
NN package and executed it in an AMD Athlon 64 X2 Dual-Core Processor TK-53 at
1.70 GHz on a Windows Vista system with 959MB of memory. In this table the last
two formula were approximated, since we restricted the structure for NNs to 3 hidden
layers, for others each extraction process made equivalent reconstructions.

Symbolic Knowledge Extraction from Trained Neural Networks 55

Formula Mean Stdev Cases
i1 ⊗ i3 ⇒ i6 7.68 6.27 125

i4 ⇒ i6 ⊗ i6 ⇒ i2 25.53 11.14 125
((i1 ⇒ i4)⊕ (i6 ⇒ i2))⊗ (i6 ⇒ i1) 43.27 14.25 625

(i4 ⊗ i5 ⇒ i6)⊗ (i1 ⊗ i5 ⇒ i2) 51.67 483.85 3125
((i4 ⊗ i5 ⇒ i6)⊕ (i1 ⊗ i5 ⇒ i2))⊗ (i1 ⊗ i3 ⇒ i2) 268.31 190.99 15625

((i4 ⊗ i5 ⇒ i6)⊕ (i1 ⊗ i5 ⇒ i2))⊗ (i1 ⊗ i3 ⇒ i2)⊗ (i6 ⇒ i4) 410.47 235.52 15625

⎡
⎢⎢⎣

0 0 0 −1 0 1
0 0 0 1 1 −1
1 1 −1 0 0 0
−1 1 0 0 −1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0
−1
−1
2

⎤
⎥⎥⎦

¬x4 ⊗ x6
x4 ⊗ x5 ⊗¬x6
x1 ⊗ x2 ⊗¬x3
¬x1 ⊕ x2 ⊕¬x5[−1 −1 −1 1

] [
0

] ¬i1 ⊗¬i2 ⊗¬i3 ⊗ i4[
1

] [
0

]
j1

⎡
⎣ 0 0 0 1 0 −1

1 −1 0 1 1 −1
1 1 −1 0 0 0

⎤
⎦

⎡
⎣ 1
−2
−1

⎤
⎦ x4 ⊕¬x6

x1 ⊗¬x2 ⊗ x4 ⊗ x5 ⊗¬x6
x1 ⊗ x2 ⊗¬x3[

1 −1 −1
] [

0
]

i1 ⊗¬i2 ⊗¬i3[
1

] [
0

]
j1

Fig. 1. NN A and NN B

5 Real Data

Extracting symbolic rules from a real data set can be a very different task than reverse-
engineering the rule used on the generation of an artificial data set because, in the re-
verse engineering task, we know the existence of a perfect description. In particular, we
know the appropriate logic language to describe it, and we have no noise. The process
of symbolic extraction from the real data set is made by establishing a stopping crite-
rion and having a language bias defined by the extraction methodology. The expressive
power of this language characterizes the learning algorithm plasticity. Very expressive
languages produce good fitness to data, but usually bad generalization; and the extracted
sentences usually are difficult to understand by human experts.

The described extraction process, when applied to real data, expresses the informa-
tion using CNNs. This naturally means that the process searches for simple and under-
standable models for the data, able to be codified directly or approximated using ŁL
language. The process gives preference to the simplest models and subjects them to a
strong pruning criteria. With this strategy we avoid overfitting. The process, however,
can be prohibitive to train complex models that have a great number of links. To avoid
this, rule extraction must be preceded by a phase of attribute selection.

5.1 Mushrooms

Mushroom is a data set available in the UCI Machine Learning Repository. This
data set includes descriptions of hypothetical samples corresponding to 23 species of
gilled mushrooms in the Agaricus and Lepiota Family. Each species is identified as
definitely edible, definitely poisonous, or of unknown edibility and not recommended.
This latter class was combined with the poisonous one. We will try to find a rule, for
determining the edibility of a mushroom, using the data set as a truth table. The data set
has 8124 instances, defined using 22 nominally valued attributes presented in the table
below. It has missing attribute values, 2480, all for attribute #11. In the data set 4208
instances (51.8%) are classified as edible, and 3916 (48.2%) are classified as poisonous.

56 C. Leandro et al.

N. Attribute Values
0 classes edible=e, poisonous=p
1 cap.shape bell=b, conical=c, convex=x, flat=f, knobbed=k,

sunken=s
2 cap.surface fibrous=f, grooves=g, scaly=y, smooth=s
3 cap.color brown=n, buff=b, cinnamon=c, gray=g, green=r,

pink=p, purple=u, red=e, white=w, yellow=y
4 bruises? bruises=t, no=f
5 odor almond=a, anise=l, creosote=c, fishy=y, foul=f,

musty=m, none=n, pungent=p, spicy=s
6 gill.attachment attached=a, descending=d, free=f, notched=n
7 gill.spacing close=c, crowded=w, distant=d
8 gill.size broad=b, narrow=n
9 gill.color black=k, brown=n, buff=b, chocolate=h, gray=g,

green=r, orange=o, pink=p, purple=u, red=e, white=w,
yellow=y

10 stalk.shape enlarging=e, tapering=t
11 stalk.root bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z,

rooted=r, missing=?

N. Attribute Values
12 stalk.surface.above.ring ibrous=f, scaly=y, silky=k, smooth=s
13 stalk.surface.below.ring ibrous=f, scaly=y, silky=k, smooth=s
14 stalk.color.above.ring brown=n, buff=b, cinnamon=c, gray=g, orange=o,

pink=p,red=e,white=w,yellow=y
15 stalk.color.below.ring brown=n, buff=b, cinnamon=c, gray=g, orange=o,

pink=p, red=e, white=w, yellow=y
16 veil.type partial=p, universal=u
17 veil.color brown=n, orange=o, white=w, yellow=y
18 ring.number none=n, one=o, two=t
19 ring.type cobwebby=c, evanescent=e, flaring=f, large=l, none=n,

pendant=p, sheathing=s, zone=z
20 spore.print.color black=k, brown=n, buff=b, chocolate=h, green=r,

orange=o, purple=u, white=w, yellow=y
21 population abundant=a, clustered=c, numerous=n, scattered=s,

several=v, solitary=y
22 habitat grasses=g, leaves=l, meadows=m, paths=p, urban=u,

waste=w, woods=d

A1 : bruises? = t

1

������������������
A2 : odor ∈ {a, l,n}

1

����������������
1A3 : stalk.sur f ace.above.ring = k −1

������������
A4 : ring.type = e

−1

������ϕ

A5 : spore.print .color = r

−1 ��������������

A6 : population = c

−1
����������������

A7 : habitat ∈ {g,m,u,d, p, l}

−1

�����������������

A8 : habitat = w

1

�������������������

[
0 1 0 0 −1 0 1
0 1 0 1 0 0 −1

] [−1
−1

]
A2⊗¬A5⊗A7
A2⊗A4⊗¬A7[

1 1
] [

0
]

i1 ⊕ i2

Fig. 2. NN A and NN B

We used an unsupervised filter that converted all nominal attributes into binary nu-
meric attributes. An attribute with k values was transformed into k binary attributes.
This produced a data set containing 111 binary attributes. After the binarization we
used the described method to select relevant attributes for mushroom classification
by fixing a weak stopping criterion. As a result, the method produced a model with
100% accuracy, depending on 23 binary attributes defined by values of: odor, gill.size,
stalk.surface.above.ring, ring.type, and spore.print.color.

We used the values assumed by these attributes to produce a new data set. After
3 tries we selected the NN A presented in figure 2. This model has an accuracy of
100%. From it, and since attribute values in A2 and A3, as well as the values in A7
and A8 are auto-exclusive, we used propositions A1, A2, A3, A4, A5, A6 and A7 to
define a new data set. When we applied our ”reverse engineering” algorithm to this
data set, having as stopping criterion a mean square error (mse) less than 0.003, the
method produced the NN B presented in figure 2. This model codifies the proposition,
(A2⊗¬A5⊗A7)⊕ (A2⊗A4⊗¬A7) and misses the classification of 48 cases. It has
99.41% accuracy and can be interpreted as the rule for editable mushrooms given by:
”A mushroom is edible if its odor=almond.OR.anise.OR.none and spore.print.color=
black.AND.habitat=NOT.waste or ring.type=evanescent.AND.habitat=NOT.waste.”

A more precise model can be produced, by restricting the stopping criteria. How-
ever, doing so in general, produces more complex propositions that are more diffi-
cult to understand. For instance, with a stopping criterion mse < 0.002, the systems

Symbolic Knowledge Extraction from Trained Neural Networks 57

⎡
⎢⎢⎣

0 0 0 −1 0 0 1
1 1 0 −1 0 0 0
0 0 0 0 0 0 1
0 1 0 0 −1 −1 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
−1
0
−1

⎤
⎥⎥⎦

¬A4⊕A7
A1⊗A2⊗¬A4
A7
A2⊗¬A5⊗¬A6⊗A7[−1 0 1 0

1 −1 0 −1

] [
1
0

] ¬i1 ⊕ i3
i1 ⊗¬i2 ⊗¬i4[

1 −1
] [

0
]

j1 ⊗¬ j2

⎡
⎣ −1 1 −1 1 0 −1 0

0 0 0 1 1 0 −1
1 1 0 0 0 0 −1

⎤
⎦

⎡
⎣ 0

1
0

⎤
⎦ i1 un-representable

A4⊗A5⊗¬A7
i3 un-representable[

1 −1 1
] [

0
]

j1un-representable

Fig. 3. NN A and NN B

generated the NN A presented in figure 3. It misses 32 cases, has an accuracy of 99.2%,
and is easy to convert into a proposition. NN A can be used to interprete the following
formula: j1 ⊗¬ j2 = ((A4⊗¬A7)⊕ A7)⊗ ((A4⊗¬A7)⊕ (A1⊗ A2⊗¬A4)⊕ (A2⊗
¬A5⊗¬A6⊗A7))).

Sometimes the algorithm converged to un-representable configurations like the NN
B presented in figure 3, with 100% accuracy. The frequency of this type of configura-
tions increases with the increase of required accuracy.

Using rule R and selecting the best approximation to each un-representable formula
evaluated in the data set, we have: i1 ∼0.9297 ((¬A1⊗A4)⊕A2)⊗¬A3⊗¬A6, i3 ∼1.0

(A1⊕¬A7)⊗A2 and j1 ∼0.9951 (i1 ⊗¬i2)⊕ i3.
The extracted formula, α = (((((¬A1 ⊗ A4)⊕ A2)⊗¬A3 ⊗¬A6)⊗¬(A4⊗ A5⊗

¬A7))⊕ ((A1⊕¬A7)⊗A2) is λ-similar, with λ = 0.9951 to the original NN. Formula
α misses the classification for 40 cases. Note that the symbolic model is stable, and the
bad performance of the i1 representation does not affect the model.

6 Conclusions and Future Work

This methodology of codifying and extracting symbolic knowledge from an NN is
very simple and efficient for the extraction of comprehensible rules from small data
sets. It is, moreover, very sensible to attribute relevance. From a theoretical point of
view, it is particularly interesting that restricting the values assumed by neuron weights
restricts the information propagation in the network, thus allowing the emergence of
patterns in the neuronal network structure. For the case of linear neuronal networks,
having by activation function the identity truncate to 0 and 1, these structures are char-
acterized by the occurrence of patterns in the neuron configuration, directly presentable
as formulas in ŁL. Generated fuzzy rules might do a good approximation of the data,
but often are not interpretable. In our point of view, the interpretability of such symbolic
rules is strictly related to the type of fuzzy logic associated to the problem. When we
applied our method to the extraction of rules from truth tables, generated on Product
logic or on Gödel logic, this rules were very difficult to interpret. For the extraction of
knowledge from this type of fuzzy logics an extraction process that is governed by the
appropriated logic must be developed.

We are applying this methodology in fuzzy regression tree generation and to active
data mining. We used CNN for finding splitting formulas in the regression algorithm
pruning phase and on the generation of database queries used for model revision.

58 C. Leandro et al.

References

1. Hitzler, P., Hölldobler, S., Seda, A.K.: Logic programs and connectionist networks. Journal
of Applied Logic 2, 245–272 (2004)

2. d’Avila Garcez, A.S.: Advances in neural-symbolic learning systems: Modal and temporal
reasoning. In: Hammer, B., Hitzler, P. (eds.) Perspectives of Neural-Symbolic Integration.
SCI, vol. 77. Springer, Heidelberg (2007)

3. Komendantskaya, E., Lane, M., Seda, A.K.: Connectionistic representation of multi-valued
logic programs. In: Hammer, B., Hitzler, P. (eds.) Perspectives of Neural-Symbolic Integra-
tion. SCI, vol. 77. Springer, Heidelberg (2007)

4. Eklund, P., Klawonn, F.: Neural fuzzy logic programming. IEEE Translations on Neural Net-
works 3(5) (1992)

5. Fu, L.M.: Knowledge-based connectionism from revising domain theories. IEEE Trans. Syst.
Man. Cybern. 23, 173–182 (1993)

6. Towell, G.G., Shavlik, J.W.: Knowledge-based artificial neural networks. Artif. Intell., 70,
119–165 (1994)

7. Gallant, S.I.: Neural Network Learning and Expert Systems. MIT Press, Cambridge (1994)
8. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural networks.

Mach. Learn. 13, 71–101 (1993)
9. Castro, J., Trillas, E.: The logic of neural networks. Mathware and Soft Computing 5, 23–27

(1998)
10. Hagan, M.T., Menhaj, M.: Training feedforward networks with marquardt algorithm. IEEE

Transaction on Neural Networks 5(6), 989–993 (1999)
11. Hassibi, B., Stork, D.G., Wolf, G.J.: Optimal brain surgeon and general network pruning. In:

IEEE International Conference on Neural Network, vol. 4(5), pp. 740–747 (1993)
12. Jipsen, P.: An overview of generalised basic logic algebra. Neural Network World 13(5),

491–500 (2003)
13. Gerla, B.: Functional representation of many-valued logics based on continuous t-norms.

PhD thesis, University of Milano (2000)
14. Hájek, P.: Fuzzy logic from the logical point of view. In: Bartosek, M., Staudek, J.,

Wiedermann, J. (eds.) SOFSEM 1995. LNCS, vol. 1012. Springer, Heidelberg (1995)
15. Amato, P., Nola, A.D., Gerla, B.: Neural networks and rational łukasiewicz logic. IEEE

Transaction on Neural Networks 5(6), 506–510 (2002)
16. Mundici, D.: A constructive proof of macnaughton’s theorem in intinite-valued logics. Jour-

nal of Symbolic Logic 59, 596–602 (1994)
17. Dubois, D., Prade, H.: Fundamentals of fuzzy sets. Kluwer, Dordrecht (2000)
18. Charalambous, C.: Conjugate gradient algorithm for efficient training of artificial neural net-

works. IEEE Proceedings 139(3), 301–310 (1992)
19. Battiti, R.: Frist- and second-order methods for learning between steepest descent and new-

ton’s method. Neural Computation 4(2), 141–166 (1992)

Wireless Signal and Information Tracking
Using Fuzzy Logic

Eddie C.L. Chan, George Baciu, and S.C. Mak

Department of Computing, The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

{csclchan,csgeorge,csscmak}@comp.polyu.edu.hk
http://www.comp.polyu.edu.hk/lab/WINS

Abstract. Over the last decade, many commercial and government organizations
as well as university campuses have deployed WLANs such as IEEE 802.11b.
This has fostered a growing interest in location-based services and applications.
Fuzzy logic can be applied to evaluate the behaviour of Wireless Local Area
Networks (WLAN) received signal strength (RSS) and as well as to retrieve
the location-aware information according to the preference of user. The behav-
ior study of WLAN signal strength is a pivotal part of WLAN tracking analy-
sis. Previous analytical model has not been addressed effectively for analyzing
how the WLAN infrastructure affected the accuracy of tracking. In this paper, we
first propose a novel fuzzy spatio-temporal topographic model. We applied the
Nelder-Mead (NM) method to simplify our previous work on fuzzy color map
into a topographic (line-based) map. Secondly, we propose a location-aware in-
formation retrieval application that travelers access the application with Apple’s
iPhones which also identify the user current location. We demonstrate our idea
with 17,000 restaurants in Hong Kong and make use of fuzzy logic to return the
favorable dinning place search result according to the user’s preference. Our re-
sult shows that the new analytical model can provide a detail and quantitative
strong representation of WLAN RSS.

Keywords: Wireless tracking, Topographic mapping, Fuzzy logic, Wi-Fi signal
strength, iPhone.

1 Introduction

Wireless Local Area Networks (WLAN) tracking analysis is a crucial part for deploying
the efficient indoor positioning system. The analytical models can be used to visualize
the distribution of signal and help to improve the design of positioning systems, for
example by eliminating installation of WLAN access points (APs) and shortening the
sampling time of WLAN received signal strength (RSS) in location estimation. Recent
research on WLAN RSS analytical model [1] and [2] are based on the accuracy of posi-
tioning systems and proximity graphs, such as Voronoi diagram, clustering graph. They
assume the distribution of the RSS is in Gaussian and pair wise. Some research works
[2], [3], and [4] ignores the radio signal properties. Such assumptions may ignore or
distort the real behavior of RSS and provides inadequate and inaccurate RSS analysis.

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 59–72.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

60 E.C.L. Chan, G. Baciu, and S.C. Mak

The fuzzy visualization map concepts widely applied in other fields, such as tempera-
ture, rainfall and atmosphere. Topographic mapping has been also highly recognized as
a comprehensive method to visualize geographical information, such as the reflectance
of slope and terrain. NM method also is used in many other fields such as data mining
[5] and antenna optimization [6]. Fuzzy, topographic and NM modelling could well be
applied to modelling in WLAN RSS analytical model.

In this paper, we first propose a novel analytical model that provides a visualization
of the RSS distribution. We make use of the Nelder-Mead (NM) method to simplify our
pervious works on the multi-layer fuzzy color model [7] to topographic (line-based)
model. We develop a topographic model as analytical tools for evaluating and visu-
alizing where the RSS is denser and clustering different RSS in different topographic
level.

Secondly, we propose a location-aware information retrieval system that travelers
access the system with Apple’s iPhones. We apply fuzzy logic to search for the din-
ning place according to the preference of the user. We also extend iPhone’s positioning
features into indoor environment with our previous work of Wi-Fi positioning [7],[8].
Our system could be used in the entire area of Hong Kong city (1,104 km2) with more
than 17,000 restaurants. The restaurant information includes types of food, price, name,
latitude, longitude of the restaurant and ratings from users. The entire set of database
is retrieved and updated from [9]. Figure 1 shows the interface of our location-aware
Application using Apple’s iPhone.

The proposed analytical model offers two benefits. First, it serves as a quicker refer-
ence and efficient analysis tool. Second, it can provide a detail and quantitative strong
representation of WLAN RSS. The iPhone application offers four benefits. First, our
iPhone application provides a hybrid, accurate and effective positioning across indoors
and outdoors. Second, it provides more flexibility to the user and provide recommen-
dations of the restaurant according to the distance, user’s preferred price and food type.
Third, the database is remotely connected from [9] which user can rate, access and
update the restaurant information through internet. Finally, it is user-friendly with full
mobility.

The rest of this paper is organized as follows: Section 2 presents the topographic
model design. Section 3 describes the iPhone application implementation. Section 4
describes the fuzzy membership function of distance and price. Section 5 presents the
experimental setup of large scale site RSS surveying in 9.34 hectare campus area over
2,000 access points. Section 6 discusses the analysis result of obstacles, human bodies
and WLAN APs location. Finally, Section 7 offers our conclusion and future work.

2 Topographic Model Design

The basic idea of topographic model is to plot a curve connecting minimum points
where the function has a same particular RSS value. The sets of APs are known as to-
pographic line nodes. Topographic line nodes are the APs residing on the topographic
lines around contour region. In this section, we introduce the major operations of topo-
graphic model including propagation-based algorithm, fuzzy membership function in
our previous work [7], topographic line node measurement, Nelder-Mead method and
topographic model generation.

Wireless Signal and Information Tracking Using Fuzzy Logic 61

Fig. 1. Proposed Location-aware Application using Apple’s iPhone

2.1 Propagation-Based Algorithm

The propagation-based algorithm [10] which is used to calculate the RSS as follows:

ri(di,k) = r0(d0) − 10α log10(di,k) − wallLoss (1)

where D = {d1...dn|di ∈ �n} is a set of locations, R = {r1...rn|ri ∈ �n} is a set of
sampling LF vector respect to known di, α is the path loss exponent (clutter density fac-
tor) and wallLoss is the sum of the losses introduced by each wall on the line segment
drawn at Euclidean distance di,k.

2.2 Fuzzy Membership Function

In this subsection, our fuzzy membership function has been published in [7] and we
will make use of it. Nonetheless, for completeness in the following we briefly describe.

Using fuzzy logic, the proposed model offers an enhanced LF hyperbolic solution
that maps the RSS from a 0 to 1 fuzzy membership function. Instead of using a numeric
value, the fuzzy logic determines the RSS as ”strong”, ”normal” and ”weak”.

62 E.C.L. Chan, G. Baciu, and S.C. Mak

Fig. 2. Fuzzy membership graph for RSS

The normalization distribution is used to represent the fuzzy membership functions.

P (x) =
1

σ
√

2π
e

(α−μ)2

2σ2 (2)

where p(x) is the probability function, x is the normalized RSS, σ is the standard de-
viation of normalized signal normalized strength in a region, μ is the mean of signal
strength in a region. The WLAN network is fully covered for the whole campus.

The membership function of term set, μ (RSSDensity)= {Red, Green, Blue}. Red
means the signal strength density is high, green means the signal strength is medium
and blue means the signal strength density is low. The fuzzy set interval of blue is [0,
0.5], [0, 1] is green and [0.5, 1] is red.

For the blue region, we substitute σ = 0.5, μ = 0.

μBlue(0 < x < 0.5) =
2√
2π

e−2x2
(3)

For the green region, we substitute σ = 0.5, μ = 0.5.

μGreen(0 < x < 1) =
2√
2π

e−2(x− 1
2)2 (4)

For the red region, we substitute σ = 0.5, μ = 1.

μRed(0.5 < x < 1) =
2√
2π

e−2(x−1)2 (5)

Figure 2 shows the fuzzy membership function. X-axis represents the normalized signal
strength from 0 to 1 (from -93dBm to -15dBm). The width of membership function de-
pends on the standard deviation of the RSS. The overlap area will be indicated by mixed
colors. We can use different colored regions to represent the WLAN RSS distribution.
Conceptually we define a spatio-temporal region as follows:

Assume that B is a finite set of RSS vector belonging to a particular color region,
where B = {b1...bn|bi ∈ �n}, i.e., bi ∈ S, ∀S ∈ R, and ∀S ∈ [l, u], where l is the

Wireless Signal and Information Tracking Using Fuzzy Logic 63

lower bound of fuzzy interval and u is a upper bound of fuzzy interval. To analyze the
distribution surfaces S, there always exists a spatio-temporal mapping, q : B → S.

q(x) =
∫

S

h(x)b(S)dS, (6)

where h(x) is the characteristic function of S, i.e.,

h(x) =
{

1, x ∈ S
0, x /∈ S

(7)

and b(S) is a weight function that specifies a prior on the distribution of surfaces S. We
can explicitly define b(S) by (1). By (3), (4), (5), (6), and (7), the RSS distribution can
be illustrated.

2.3 Topographic Node

Each topographic node consists of three components and can be expressed as <
l, d, g >, in which l represents topographic level, d represents the locations of Wi-Fi
received signal, g represents the gradient direction of the RSS distribution. The spa-
tial data value distribution mapped into the (x, y, l) space, where the co-ordinate (x, y)
represents the location and l = f(x, y) describes a function mapping from (x, y) co-
ordinates to level l. The gradient vector g denotes the direction of RSS where to degrade
in the space. The gradient vector can be calculated by:

g = −f ′(x, y) =
(

Δf

Δx
,
Δf

Δy

)T

(8)

S =
B − W

2
(9)

2.4 Nelder-Mead Method

The Nelder-Mead (NM) method is a commonly used nonlinear optimization algorithm
for finding a local minimum of a function of several variables has been devised by
Nelder and Mead [11]. It is a numerical method for minimizing an objective function
in a many-dimensional space. Instead of using (1) and (2), we estimate the location by
NM method.

First, we collect the location fingerprint, r with an unknown location (x, y). We
define f(n) = |n − r|, where n is any location fingerprint. Second, we select three
location fingerprints (LFs) to be three vertices of a triangle.

We initialize a triangle BGW and function f is to be minimized. Vertices B, G, and
W , where f(B) is the smallest value (best vertex), f(G) is the medium value (good
vertex), and f(W) is a largest value (worst vertex). There are 4 cases when using NM
method. They are reflection, expansion, contraction and shrink. We recursively use NM
method until finding the point which is the local minimum (nearest) in B, G, W that
they are the same value.

64 E.C.L. Chan, G. Baciu, and S.C. Mak

d

d

B

W

R

M

G
d

d

B

W

R

M

G

d

E

Fig. 3. Reflection Using the Point R Fig. 4. Expansion Using the Point E

C1

C2

B

W

R

M

G

B

W

S

M

G

Fig. 5. Contraction Using the Point C Fig. 6. Shrink toward B

The midpoint of the good side is

M =
B + G

2
(10)

Reflection using the Point R. The function decreases as we move along the side of
the triangle from W to B, and it decreases as we move along the side from W to G.
Hence it is feasible that function f takes on smaller values at points that lie away from
W on the opposite side of the line between B and G. We choose the point R that is
obtained by ”reflecting” the triangle through the side BG. To determine R, we first find
the midpoint M of the side BG. Then draw the line segment from W to M and call its
length d. This last segment is extended a distance d through M to locate the point R
(See Figure 3). The vector formula for R is

R = M + (M − W) = 2M − W (11)

Expansion Using the Point E. If the function value at R is smaller than the function
value at W , then we have moved in the correct direction toward the minimum. Perhaps
the minimum is just a bit farther than the point R. So we extend the line segment through
M and R to the point E. This forms an expanded triangle BGE. The point E is found
by moving an additional distance d along the line joining M and R (See Figure 4). If
the function value at E is less than the function value at R, then we have found a better
vertex than R. The vector formula for E is

Wireless Signal and Information Tracking Using Fuzzy Logic 65

Table 1. Nelder-Mead Method Procedure

IF f(R)<f(G), THEN Perform Case (i) {either reflect or extend}
ELSE Perform Case (ii) {either contract or shrink}

BEGIN {Case(i)} BEGIN {Case(ii).}
IF f(B)<f(R) THEN IF f(R)<f(W) THEN

replace W with R replace W with R
ELSE ENDIF

compute E and f(E)
IF f(E)<f(B) THEN compute C = (W + M)/2

replace W with E or C = (M + R)/2 and f (C)
ELSE IF f(C)<f(W) THEN

replace W with R replace W with C
ENDIF ELSE

ENDIF compute S and f(S)
END {Case (i)} replace G with M

ENDIF
END {Case (ii)}

E = R + (R − M) = 2R − M (12)

Contraction using the Point C. If the function values at R and W are the same, an-
other point must be tested. Perhaps the function is smaller at M , but we cannot replace
W with M because we must have a triangle. Consider the two midpoints C1 and C2 of
the line segments WM and MR, respectively (see Figure 5). The point with the smaller
function value is called C, and the new triangle is BGC. Note. The choice between C1

and C2 might seem inappropriate for the two-dimensional case, but it is important in
higher dimensions.

C1 =
M − W

2
(13)

C2 = R − M − W

2
(14)

Shrink toward B. If the function value at C is not less than the value at W , the points
G and W must be shrunk toward B (see Figure 6). The point G is replaced with M ,
and W is replaced with S, which is the midpoint of the line segment joining B with W .

2.5 Topographic Model Generation

We generate topographic model based on our previous work [7] and NM algorithm. We
apply NM method to a many-dimensional RSS distribution space problem to simplify
the fuzzy color map down to a contour (line-based) map.

First, we select three LFs to be three vertices of a triangle: B, G and W , where B is
a location with high RSS (best vertex), G is a location with medium RSS

66 E.C.L. Chan, G. Baciu, and S.C. Mak

30oE 60oE30oW60oW 0o

30oN

60oN

30oN

60oN

Global Positioning System

Differential GPS

Wireless Network

Access
 Point

Access
 Point

Access
 Point

User Location
Internet

Database
Server

ID: 001
Restaurant ...
Address ...
Price
Coorindate

ID: 002
Restaurant ...
Address ...
Price......
Coorindate...

Apple’s iPhone
Interface

- Alarm Function

- Searching Function

- Zooming Function

Positioning Layer User Input Layer Back-end Retrieval Layer

0
FarNormalNear

1 5

1

0.5 4
1

0
ExtravanganceExpensiveEconomicalCheap

100 500200

Fuzzy Membership Function ID: 003
Restaurant ...
Address ...
Price
Coorindate

Fig. 7. System overview of location-aware information retrieval system using Apple’s iPhone

(good vertex), and W is a location with the low RSS (worst vertex). The location vec-
tor of RSS at xk,yk use in function, N(x, y). We use (1) to define N(x, y). There are 4
cases when using NM method. They are reflection, expansion, contraction and shrink.
We recursively use NM method until finding the point which is the local minimum in
B, G and W that they are the same value. Table 1 summarizes the procedure.

A contour function is then used to plot a curve connecting minimum points where
the function has a same particular value. We normalize the minimum value between 0
and 1, and the contour line is 0.1 in each level.

3 iPhone Application Implementation

In this section, we introduce how our location-aware information application to be im-
plemented. Figure 7 describes the system overview. There are three main layers in our
application.

The first layer is the positioning layer. We use hybrid positioning technology to locate
the user. iPhone 3GS has already included the features of DGPS. We further extend
the positioning functions into indoors by Wi-Fi positioning techniques. In most of the
cases, when the user stays in outdoor environment, DGPS would be used to estimate
the user’s location. When the iPhone cannot receive satellite signal or received satellite
signal is very week, the proposed system will automatically turn to Wi-Fi positioning.
The second layer is the user input layer which reads users’ query, displays the restaurant
information and identify the location in the Google map. We implement our system
using iPhone as front-end user interface. iPhone is a touch device that it can easily
control the zooming function of the map. We also implement alarm functions to remind
and provide suitable choices of restaurants according to users’ preference. The third
layer is the back-end retrieval layer. This layer includes a location-aware database server

Wireless Signal and Information Tracking Using Fuzzy Logic 67

0
FarNormalNear

1 5

1

0.5 4

Fig. 8. Fuzzy membership graph for distance

0

1

ExtravagantExpensiveNormalCheap
100 500200

Fig. 9. Fuzzy membership graph for price

which stores the name, address, price, type and global co-ordinate of 17,000 restaurants.
The database is updated and connected from [9].

4 Fuzzy Modeling for Distance and Price

Usually, human is sensible to some abstract concepts, such as far away, near, cheap
or expensive. In this section, we make use of fuzzy logic to represent the dis-
tance and price. Fuzzy membership functions are used to represent the distance be-
tween the restaurant and the user location. The membership function of term set is
μ(Distance) = {Near, Normal, Far}. Figure 8 shows the fuzzy membership graph
which X-axis represents the distance in kilometers and Y-axis represents the fuzzy
membership from 0 to 1.

Similarly, fuzzy membership functions could be used to represent the price.
μ(Price) = {Cheap, Normal, Expensive, Extravagant} is the membership func-
tion of term set. Figure 9 shows the fuzzy membership graph which X-axis represents
the price in Hong Kong dollars and Y-axis represents the fuzzy membership from 0 to
1. The trapezoid function is used to represent the fuzzy membership functions of the
distance and the price.

5 Experimental Setup

In this section, we describe experiment setup in 9.34 hectare campus area. We use the
same setting as used in [12], [13], [1], [14], [10], [15] and [16]. RSS site survey mea-
surement will be in The Hong Kong Polytechnic University (PolyU) campus. The ap-
proximate total area of the campus is 9.34 hectare. A standard laptop computer equipped

68 E.C.L. Chan, G. Baciu, and S.C. Mak

Fig. 10. The site plan for PolyU Campus with 27 buildings

with an Intel WLAN card and client manager software was used to measure samples of
RSS from access points (APs) of PolyU campus.

There are basically 26 buildings from Core A to Core Z and 7 extra buildings with
WLAN access. Each core building is covered by at least 13 APs. The received signal
sensitivity of the WLAN card also limits the range of the RSS to be between -93 dBm
and -15 dBm. Nevertheless, the highest typical value of the RSS is approximately -30
dBm at one meter from any AP. The sampling schedule is to collect the RSS data every
5 seconds. The vector of RSS data at each location forms the location fingerprint with
around 20 RSS elements in the vector. Total 27 locations of measurement are chosen
in the campus. Figure 10 show the 27 locations site plan. The radio channels used for
each AP are channel 1, 6, and 11 respectively. The sampling will be taken with two
periods of time, (7:30am-9:30am (leisure) and 4:30pm - 6:30pm (busy)). From [1], the
presence or absence of people in the building significantly affects the RSS values. The
duration of sampling was 2 weeks with total 12 days (from Mon to Sat). In mean while,
temperature, weather, sampling time and humidity were recorded. The total number of
RSS samples would be 12 days X 4 directions X 27 buildings X 20 APs X 2 times =
51,840.

6 Discussion and Analysis

In this section, we discuss the effect of the presence of human and LOS factor in our
topographic model. There are three RSS features to be analyzed, LOS, the presence of
human and RSS variation.

Wireless Signal and Information Tracking Using Fuzzy Logic 69

Fig. 11. Fuzzy RSS Distribution with the campus floor plan

Fig. 12. Topographic RSS Distribution with the campus floor plan

6.1 Effect of LOS on RSS

Figure 11 and 12 show the effect of LOS in two major clusters of RSS. The two major
centers of high intensity locate at F core and S core.

The distance between F core to S core buildings is around 600m apart. The RSS
should be covered evenly. Moreover, between M core (Lee Ka Shing Tower) to R core
buildings (Shirley Chan Tower), the RSS distribution is relatively low. The heights of

70 E.C.L. Chan, G. Baciu, and S.C. Mak

X (meter)

Y
 (

m
et

er
)

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) In the leisure morning period

X (meter)

Y
 (

m
et

er
)

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) In the busy evening period

Fig. 13. RSS Distribution in Fuzzy Analytical Model

1.01e−007 1.01e−007

1.01e−007

1.01e−007

0.1

0.1

0.1

0.1

0.1
0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.
4 0.4

0.
4

0.4

0.4

0.4

0.4
0.4

0.4

0.
5

0.5

0.5

0.5

0.5

0.5 0.5

0.5

0.5

0.6

0.6

0.6

0.6

0.
6

0.6

0.6
0.6

0.6

0.
7

0.7

0.7

0.7

0.7

0.7
0.7

0.7

0.7

0.7

0.7

0.7

0.
8 0.8

0.8

0.
8

0.8

0.8

0.
8

0.8

0.8
0.8

0.8

0.9 0.9

0.9

0.9

X (meter)

Y
 (

m
et

er
)

50 100 150 200 250 300 350 400 450 500

300

250

200

150

100

50

(a) In the leisure morning period

1.01e−007

1.01e−007

1.01e−007

1.01e−007

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.3
0.3

0.3

0.3

0.3

0.3

0.3

0.3

0.4

0.4

0.4

0.4

0.4

0.4
0.4

0.
4

0.5

0.5

0.5

0.50.5

0.5

0.5

0.5

0.
5

0.6 0.6

0.6
0.6

0.6

0.
6

0.6

0.6

0.6

0.6

0.
7

0.7

0.7

0.7

0.7

0.7

0.7
0.7

0.7

0.
7

0.
8 0.8

0.8

0.
8

0.8

0.8

0.
80.8

0.
8

0.8

0.8

0.8

0.8

0.
9

0.9

0.9
0.9

0.9

X (meter)

Y
 (

m
et

er
)

50 100 150 200 250 300 350 400 450 500

300

250

200

150

100

50

(b) In the busy evening period

Fig. 14. RSS Distribution in Topographic Model

two buildings in M core and R core are around 80m and 70m respectively. The distance
between M to R core is around 200m apart.

As we can see the topographic map in Figure 14(a) and 14(b), the slope of contour
line from M core to R core is steep in the edge area, it means that the RSS is weaken
quickly in the middle from M core to R core due to NLOS effects. For LOS conditions,
RSS should fit into log-normal distribution. A multi-story building in a campus area
will experience lower signal strengths within tall buildings due to the absence of LOS
propagation.

6.2 Behavior Study on the Human’s Presence

As the previous section mention, we collected the RSS data in 2 periods, one is in
the morning leisure period (7.30am-9.30am) and the other is in the busy evening pe-
riod (4:30pm - 6.30pm). We would like to observe the difference between two periods.
Figure 13 and 14 show the difference RSS pattern which the RSS collect in the two
different time slot. We can see that there is significant change of the RSS value. Figure
14(a) shows the topographic region in 0.9 level is larger than Figure 14(b). We can ob-
serve the slope on Figure 14(b) degrades larger than Figure 14(a). As a result, it verifies
the effect of the user’s presence can affect the mean of the RSS value.

Wireless Signal and Information Tracking Using Fuzzy Logic 71

7 Conclusions

In this paper, we propose NM optimized topographic model for RSS distribution. The
new model provides quicker references and efficient analysis tool for improving the
design of WLAN infrastructure to achieve localization accuracy. In our university site
experiment, we provide a spatial analytical model for WLAN tracking in a campus. The
fuzzy topographic RSS analytical map provides easier understanding of WLAN RSS
pattern in a region. The usage of model can improve the efficiency usage of WLAN
infrastructure substantially.

In the future, wireless communications and mobility service provision will be char-
acterized by global mobile access (terminal and personal mobility), a high quality of
service with full coverage, and intelligible and simple access to multimedia services for
voice and video via one user single terminal. In this paper, we propose a location-aware
information retrieval system. The system helps the user to find suitable dinning place
and provides accurate and robust positioning. We could further extend our applications
into other domains, such as hotel reservation, movie booking and shopping in fashion
store.

References

1. Kaemarungsi, K., Krishnamurthy, P.: Modeling of indoor positioning systems based on lo-
cation fingerprinting. In: INFOCOM. Twenty-third Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 2 (2004)

2. Swangmuang, N., Krishnamurthy, P.: Location Fingerprint Analyses Toward Efficient Indoor
Positioning. In: Sixth Annual IEEE International Conference on Pervasive Computing and
Communications, pp. 101–109 (2008)

3. Kjaergaard, M.B., Munk, C.V.: Hyperbolic Location Fingerprinting- A Calibration-Free So-
lution for Handling Differences in Signal Strength. In: Sixth Annual IEEE International Con-
ference on Pervasive Computing and Communications, pp. 110–116 (2008)

4. Fang, S., Lin, T., Lin, P.: Location Fingerprinting In A Decorrelated Space. IEEE Transac-
tions on Knowledge and Data Engineering 20(5), 685–691 (2008)

5. Satapathy, S., Murthy, J., Reddy, P., Katari, V., Malireddi, S., Kollisetty, V.: An Efficient
Hybrid Algorithm for Data Clustering Using Improved Genetic Algorithm and Nelder Mead
Simplex Search. In: International Conference on Computational Intelligence and Multimedia
Applications, vol. 1 (2007)

6. Kolundzija, B., Olcan, D.: Antenna optimization using combination of random and Nelder-
Mead simplex algorithms. In: Antennas and Propagation Society International Symposium,
vol. 1. IEEE, Los Alamitos (2003)

7. Chan, C., Baciu, G., Mak, S.: Wireless Tracking Analysis in Location Fingerprint. In: 4th
IEEE Wireless and Mobile Computing, Networking and Communications, IEEE WiMOB,
pp. 214–220 (2008)

8. Chan, C.L., Baciu, G., Mak, S.: Using Wi-Fi Signal Strength to Localize in Wireless Sensor
Networks. In: IEEE International Conference on Communications and Mobile Computing,
CMC, pp. 538–542 (2009)

9. http://www.openrice.com.hk
10. Kaemarungsi, K., Krishnamurthy, P.: Properties of indoor received signal strength for WLAN

location fingerprinting. In: The First Annual International Conference on Mobile and Ubiq-
uitous Systems: Networking and Services, MOBIQUITOUS, pp. 14–23 (2004)

http://www.openrice.com.hk

72 E.C.L. Chan, G. Baciu, and S.C. Mak

11. Mathews, J., Fink, K.: Numerical Methods Using MATLAB. Simon & Schuster, New York
(1998)

12. Taheri, A., Singh, A., Emmanuel, A.: Location fingerprinting on infrastructure 802.11 wire-
less local area networks (WLANs) using Locus. In: Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks, pp. 676–683 (2004)

13. Kwon, J., Dundar, B., Varaiya, P.: Hybrid algorithm for indoor positioning using wireless
LAN. In: IEEE 60th Vehicular Technology Conference on VTC2004-Fall, vol. 7 (2004)

14. Jan, R., Lee, Y.: An indoor geolocation system for wireless LANs. In: Proceedings of Inter-
national Conference on Parallel Processing Workshops, pp. 29–34 (2003)

15. Wong, W., Ng, J., Yeung, W.: Wireless LAN positioning with mobile devices in a library
environment. In: 25th IEEE International Conference on Distributed Computing Systems
Workshops, pp. 633–636 (2005)

16. Bahl, P., Padmanabhan, V., Balachandran, A.: A Software System for Locating Mobile Users:
Design, Evaluation, and Lessons. Online document, Microsoft Research (February 2000)

Redefinition of Mutual Information in the Fuzzy Sets
Framework for Computational Genomics

Silvana Badaloni, Marco Falda, Paolo Massignan, and Francesco Sambo

Dept. of Information Engineering, University of Padova
Via Gradenigo 6/A - 35131 Padova, Italy

{name.surname}@unipd.it, massignan@tele2.it

Abstract. Mutual Information is a measure of correlation between two discrete
random variables: the aim of this work is to provide a new definition of Mutual
Information using concepts from Fuzzy Sets theory, to extend it to continuous
variables. With this approach, we extended the model on which the well known
REVEAL algorithm for Reverse Engineering of gene regulatory networks is based
and we designed a new flexible version of it, called FuzzyReveal, able to avoid
the loss of information caused by the binarization of the continuous biological
variables.The predictive power of our new version of the algorithm is promising,
being both significantly higher than the one of REVEAL and comparable with a
state-of-the-art algorithm on a set of simulated problems.

1 Introduction

One of the main goals of studies on Genomics is to understand the mechanism of ge-
netic regulation, which can be modelled as a gene regulatory network, a graph in which
nodes represent genes or proteins and two or more nodes are connected if a regulatory
relation exists between them. A widely used approach for inferring regulatory rela-
tions is based on the analysis of the Shannon Entropy and on the Mutual information
of gene expression signals. This mechanism constitutes the basis of REVEAL [1], a
well-known Reverse Engineering algorithm. This approach exploits a boolean model
to represent gene regulatory networks in which each gene is modelled with a boolean
variable True/False; its main aim is to gather boolean relations between time series of
quantized gene expression values. However, the Boolean model on which the classical
REVEAL algorithm is based is limited: a large amount of information is lost, when a
real signal is approximated with just the two symbols 0 and 1.

In order to represent a real signal in a symbolic qualitative way, fuzzy methodologies
can provide the basis for a more flexible model. In the present paper we will provide
a new definition of Mutual Information in the fuzzy framework that will be used to
extend in a fuzzy direction the REVEAL algorithm. In [2] the relationship between the
notions of probability and fuzziness is deeply studied: in particular, an interpretation of
fuzzy set theory in terms of conditional events and coherent conditional probabilities
is proposed. We will apply this theory to re-define Mutual Information, which will
be used in the core of the REVEAL algorithm: the modified algorithm will be called
FuzzyReveal.

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 73–83.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

74 S. Badaloni et al.

The paper is organized as follows: in Section 2 the concept of classical Mutual Infor-
mation is recalled and the REVEAL algorithm described, in Section 3 first Conditional
Probability is defined in terms of membership functions, then Mutual Information is
rewritten in the new setting and the classical REVEAL algorithm updated accordingly.
Section 4 reports an example of application.

2 Mutual Information and the REVEAL Algorithm

Given a discrete random variable x, taking values in the set X , its Shannon Entropy [3]
is defined as

H(x) = −
∑
x̄∈X

p(x̄) log p(x̄),

where p(x̄) is the probability mass function p(x̄) = Pr(x = x̄), x̄ ∈ X . The joint
entropy of a pair of variables x, y, taking values in the sets X, Y respectively, is

H(x, y) = −
∑

x̄∈X,ȳ∈Y

p(x̄, ȳ) log p(x̄, ȳ)

while the conditional entropy of x given y is defined as

H(x|y) = H(x, y) − H(x).

The Mutual Information of x, y is defined as MI(x, y) = H(x) − H(x|y) and can be
explicitly expressed as

MI(x, y) =
∑

x̄∈X,ȳ∈Y

p(x̄, ȳ) log
p(x̄, ȳ)

p(x̄)p(ȳ)
≥ 0 (1)

When the two variables are independent, the joint probability distribution factorizes and
the MI vanishes:

p(x̄, ȳ) = p(x̄)p(ȳ) ⇒ MI(x, y) = 0.

Mutual Information is therefore a measure of dependence between two discrete random
variables and is used by the REVEAL algorithm [1] to infer causal relations between
genes: for each gene in the genome, a time series of its rate of expression (called gene
profile) is gathered from multiple DNA-microarray experiments; an example is depicted
in Figure 1, with time samples on the x-axis and intensity of gene expression on the y-
axis.

To apply REVEAL algorithm, gene profiles are then quantized in two levels, 0 (un-
derexpressed) and 1 (overexpressed), and Mutual Information is computed between all
possible pairs of genes. In the specific case probabilities are computed as the frequen-
cies of the symbols 0 or 1 within a given sequence; since the sum of the probabilities
being 0 or 1 must be equal to unity, p(1) = 1 − p(0) and the formula for the entropy
becomes:

H(x) = −p(0) · log(p(0)) − (1 − p(0)) · log(1 − p(0))

The joint probability is computed as a the probability of co-occurrence of two
symbols.

Redefinition of Mutual Information in the Fuzzy Sets Framework 75

Fig. 1. Example of time series representing the expression of a gene

Example 1. Consider two random variables x and y, representing the quantization of
two time series in two levels, 0 and 1; for each variable, consider two sequences of 10
symbols: x′ = {0, 1, 1, 1, 1, 1, 1, 0, 0, 0} and y′ = {0, 0, 0, 1, 1, 0, 0, 1, 1, 1}. Then for
variable x we obtain

p(0) = 0.4 and p(1) = 0.6 = 1 − p(0)

that means 40 % of zeros and 60% of ones respectively. As for joint probabilities, in
one case out of 10 ∃i : x′

i = 0 ∧ y′
i = 0, therefore

p(0, 0) = 0.1

The remaining combinations of symbols are p(0, 1) = 0.3, p(1, 0) = 0.4 and p(1, 1) =
0.2.

The algorithm infers causal relations between pairs whose MI is above a given thresh-
old.

3 Fuzzy Extension of the REVEAL Algorithm

The classical REVEAL Algorithm is based on a Boolean model, therefore it has to
approximate a real signal with just two symbols 0 and 1; it is clear that in this way
much information is lost.

Using the Fuzzy Sets framework it is possible to obtain a more flexible and expres-
sive model.

3.1 Membership Functions and Conditional Probability

In this paper the point of view of Coletti and Scozzafava [4,5] has been adopted.
Let x be a random quantity with range X , the family {x = x̄, x̄ ∈ X} is obviously

a partition of the sample space Ω [6]; let then ϕ be any property related to the random
quantity x: notice that a property, even if expressed by a proposition, does not single out
an event, since the latter needs to be expressed by a non-ambiguous statement that can
be either true or false. For this reason the event referred by a property will be indicated
with Eϕ, meaning “You claim Eϕ” (in the sense of De Finetti [6]).

76 S. Badaloni et al.

Coletti and Scozzafava state that a membership function can be defined as a Con-
ditional Subjective Probability between two events Eϕ and x = x̄, meaning that “You
believe that Eϕ holds given x = x̄”.

μEϕ(x̄) = P (Eϕ|x = x̄)

The membership degree μEϕ(x̄) is just the opinion of a real (or fictitious) person, for
instance, a “randomly” chosen one, which is uncertain about it, whereas the truth-value
of that event x = x̄ is well determined in itself. Notice that conditional probability
between events Eϕ and x = x̄ can be directly introduced rather than being defined as
the ratio of the unconditional probabilities P (Eϕ ∧ x̄) and P (x = x̄). From the same
paper we report also the following example.

Example 2. Is Mary young? It is natural to think that You have some information about
possible values of Mary’s age, which allows You to refer to a suitable membership
function of the fuzzy subset of “young people” (or, equivalently, of “young ages”). For
example, for You the membership function may be put equal to 1 for values of the age
less than 25, while it is put equal to 0 for values greater than 40; then it is taken as
decreasing from 1 to 0 in the interval from 25 to 40. This choice of the membership
function implies that, for You, women whose age is less than 25 are “young”, while
those with an age greater than 40 are not. The real problem is that You are uncertain on
being or not “young” those women having an age between 25 and 40: the interest is in
fact directed toward conditional events such as Eyoung|x = x̄, with

Eyoung = {You claim that Mary is young}

{x = x̄} = {the age of Mary is x̄}
where x̄ ranges over the interval [25, 40]. It follows that You may assign a subjective
probability P (Eyoung|x = x̄) equal to 0.2 without any need to assign a degree of belief
of 0.8 to the event Eyoung under the assumption x �= x̄ (i.e., the age of Mary is not x̄),
since an additivity rule with respect to the conditioning events does not hold.

3.2 Fuzzy Mutual Information

The objective is to apply Coletti and Scozzafava theory to temporal gene profiles, there-
fore we introduce a set of properties Φ which describe qualitative aspects of the profiles,
such as their “height” (high, low) or their “growth” (increasing, decreasing). Notice that
the formula for Fuzzy Mutual Information that will be obtained is independent of the
specific set chosen.

Exploiting the disintegration formula, the probability P̃ of a single event for a prop-
erty ϕ ∈ Φ can be written as

P̃ (Eϕ∈Φ) =
∑
x̄∈X

P (Eϕ|x = x̄) · P (x = x̄)

=
∑
x̄∈X

μEϕ(x̄) · P (x = x̄)

Redefinition of Mutual Information in the Fuzzy Sets Framework 77

Since the Mutual Information relates two events (in our case relates two gene profiles)
let, without loss of generalization, be Φ = {π, ρ}. In the following we will write Eϕ as
x = ϕ.

The conjunctive probability for x = π ∧ y = ρ is now required. According to [2,5]
there is not an unique definition for the conditional probability P (x = π ∧ y = ρ|x =
x̄ ∧ y = ȳ), called in the following p, for brevity. The probability p can assume any
value such that

max{μEπ(x̄) + μEρ(ȳ) − 1, 0} ≤ p ≤ min{μEπ(x̄), μEρ(ȳ)}

since it satisfies the coherence hypotheses [2]. Notice that the bounds for p are indeed
T-Norms between the membership functions μEπ(x̄) and μEρ(ȳ): p may in fact range
between the Lukasievicz T-Norm and the minimum; in this work we show the results
for the minimum, but good performance was achieved with many other values, such as
product, Lukasievicz or the average between Lukasievicz and minimum. The probabil-
ity that x = π ∧ y = ρ can be defined, again in virtue of the disintegration property,
as

P̃ (x = π, y = ρ) =

=
∑
x̄∈X

∑
ȳ∈Y

P (x = π ∧ y = ρ|x = x̄ ∧ y = ȳ)

· P (x = x̄ ∧ y = ȳ)

=
∑
x̄∈X

∑
ȳ∈Y

p · P (x = x̄, y = ȳ)

The Fuzzy Mutual Information function can now be defined in a similar way w.r.t.
the one defined in the Probabilistic setting (Formula 1) by replacing the probability
distributions P with distributions P̃ defined according to Coletti-Scozzafava’s theory.

Definition 1. Given two events x and y and a set of symbols Φ their Fuzzy Mutual
Information is defined as

M̃I(x, y) =∑
ϕ∈Φ

∑
ϕ′∈Φ

P̃ (x = ϕ, y = ϕ′) · log
P̃ (x = ϕ, y = ϕ′)

P̃ (x = ϕ) · P̃ (y = ϕ′)

This definition will be used to extend the classical REVEAL algorithm.

3.3 The Algorithm

The structure of the FuzzyReveal algorithm is similar to the classic REVEAL, but the
extended definition of Fuzzy Mutual Information is used; its pseudo-code is reported
in listing Algorithm 1.

78 S. Badaloni et al.

Algorithm 1. Fuzzy Reveal

Input: G = {x1, . . . , xG} a set of profile sequences, Φ the set of symbols, N the
number of pairs to return

Output: the first N top-rated pairs
begin

foreach ḡ in G do
foreach ϕ in Φ do

� compute the membership function of the profile x = ḡ w.r.t. the
property ϕ

end
end
Rank ← ∅
foreach x, y in G : x �= y do

foreach π, ρ in Φ do
� compute P̃ (x = π, y = ρ)

� compute M̃I(x, x) and M̃I(x, y)

� compute rxy = M̃I(x, y)/M̃I(y, x)
end
Rank ← Rank ∪ rij

end
� sort the pairs 〈x, y〉 according to Rank
return the first N pairs

end

The parameter N can be set hypothesizing a scale-free topology for the underly-
ing network: scale-free networks are sparse, with a number of edges that usually lies
between V and 2V , where V is the number of nodes [7].

4 Example of Application

The properties that have been considered to evaluate the proposed Fuzzy Mutual Infor-
mation are:

– the value of the profile x at a given point x̄ (high or low);
– the growth behavior of the profile x (increasing or decreasing).

For each of these four events a membership function has been provided.

Definition 2. the set Φ′ is the set of qualitative aspects {”high”, ”low”, ”increasing”,
”decreasing”}.

The membership functions for these qualitative aspects have been defined as

μhigh(x) =
x

MAX

μlow(x) = 1 − μhigh(x)

Redefinition of Mutual Information in the Fuzzy Sets Framework 79

(a) definitions for “increasing” and “decreasing”.

(b) definitions for “high” and “low”.

Fig. 2. Membership functions describing the growth behavior of a profile and its expression

μincreasing(x) =

⎧⎪⎨
⎪⎩

1 if x > S1

x+S0
S1+S0

if − S0 ≤ x ≤ S1

0 otherwise

μdecreasing(x) =

⎧⎪⎨
⎪⎩

1 if x < −S1

x−S0
S1+S0

if − S1 ≤ x ≤ S0

0 otherwise

where MAX is the maximum among all samples; S1, S2 are thresholds that shape the
trapezoids (Figure 2), and they are applied to the angular coefficients of the series.

With this approach, a set of numerical values that represent the time series can be quan-
tified using fuzzy levels, as in Figure 3.

Algorithm 1 has been evaluated using the Precision and Recall measures, defined as

Precision =
TP

TP + FP

Recall =
TP

TP + FN

80 S. Badaloni et al.

Fig. 3. Fuzzy values for two time series points

where TP represents the number of relations among genes that have been correctly
identified by the algorithm (true positives), FP are the relations found by the algorithm
but not representing real relations among genes (false positives), and finally FN are the
real relations that the algorithm has not been able to find (false negatives).

To evaluate and compare the performance of different reverse-engineering ap-
proaches, transcriptional networks whose interactions are perfectly known should be
used; since at present no biological network is known with sufficient precision to serve
as a standard, quantitative assessment of reverse engineering algorithms can be accom-
plished using synthetic networks [8] or simulation studies [9,10].

To show the application of the new definition of Mutual Information we have gen-
erated two datasets for 12 genes and 50 time-points using an ad hoc simulator [11]. In
Figure 4 the results are shown, together with the performances of a “state-of-the-art”
algorithm (Aracne, [12]) and the classical version of REVEAL. It is possible to notice
that there is a statistically significant improvement w.r.t. the classical algorithm1; this
is mainly due to the fact that the classical REVEAL is based on Boolean networks,
and so it uses just two values to represent gene expressions, while our approach allows
describing time series intensity in a much better way and computing better similarity
measures, since a whole range of values from 0 to 1 is used.

The comparison with Aracne is acceptable, since no statistically significant differ-
ence is observed in Precision and Recall.

5 Related Works

Soft computing tools, such as fuzzy sets, evolutionary strategies and neurocomputing,
have been found to be helpful in providing low cost, acceptable solutions in the presence
of various types of uncertainties when analysing gene regulatory networks data [13].

1 Exact Wilcoxon two-sample tests, p-value < 0.05.

Redefinition of Mutual Information in the Fuzzy Sets Framework 81

Fig. 4. Precision and recall measures of FuzzyReveal, Aracne and Classical Reveal algorithms

In [14], Mutual Information is computed between quantized profiles of gene expres-
sion, which are assigned to a fuzzy set of clusters: each profile can belong to different
clusters, with different degrees of preference. More recently, Mutual Information ex-
tended using Fuzzy Sets and Rough Sets has been exploited to develop a new concept
of equivalence partition matrix that allows for efficiently approximate the true marginal
and joint distributions of continuous features from high dimensional microarray gene
expression data [15].

Fuzzy rough sets and fuzzy Mutual Information have also been used in [16] for
feature reduction, when selecting potential cancer genes from DNA-microarray experi-
ments: given a subset of features, new features are added to the subset if their addition
significantly increases the Mutual Information.

A Fuzzy Mutual Information measure is proposed in [17], where the authors follow
the approach pioneered by De Luca and Termini; according to De Luca and Termini [18]
an entropy function must satisfy four characteristic axioms, and in this way a Mutual
Information function can be built. This is similar to what is done by Shannon using
Probability theory instead of Fuzzy sets theory.

Other approaches to extend the REVEAL algorithm are present in the literature: [19]
avoids the computation of Mutual Information, shifting the paradigm to the domain
of consistent pairs, i.e. pairs 〈regulators, regulated gene〉 for which the same dis-
crete value appears in the regulated gene every time the same combination of values
appears in the set of regulators. In [20] this approach is further brought, defining a fit-
ness function for putative causal relations, which allows the algorithm to rank pairs
〈regulators, regulated gene〉 in terms of distance from a consistent pair; the algo-
rithm chooses, for each gene, the pair 〈regulators, regulated gene〉 closer to a con-
sistent pair. The fitness function is specifically designed to tolerate quantization noise
and variable regulatory delays.

82 S. Badaloni et al.

6 Conclusions

In this paper we have considered the problem of Reverse Engineering and we have
applied Coletti and Scozzafava results in order to replace expression profiles with qual-
itative descriptions. These descriptions are defined on a set of qualitative properties, and
can assume different membership degrees w.r.t. a given property. Since the qualitative
description comes from a random variable whose domain is finite, all classical results of
Information Theory can be applied. We have extended the classical Mutual Information
in a fuzzy direction and we have included it in the REVEAL algorithm thus obtaining
the FuzzyReveal algorithm.

As for future directions, the application of this approach to real Genomics data will
be the next step of the research. This will allow to have a better evaluation of perfor-
mances with respect to both current biomedical experiments and noise typical of these
data sets. A further possible improvement of this study could be the integration of a
learning module for the automatic definition of the membership functions that describe
the properties of the profiles.

References

1. Liang, S., Fuhrman, S., Somogyi, R.: Reveal: a general reverse engineering algorithm
for inference of genetic network architectures. In: Pacific Symposium on Biocomputing,
pp. 18–29 (1998)

2. Coletti, G., Scozzafava, R.: Conditional probability, fuzzy sets, and possibility: a unifying
view. Fuzzy Sets and Systems 144, 227–249 (2004)

3. Shannon, C.E.: A mathematical theory of communication. The Bell Systems Technical Jour-
nal 27, 379–423 (1948)

4. Coletti, G., Scozzafava, R.: Probabilistic Logic in a Coherent Setting. Kluwer Academic
Publishers, Dordrecht (2002)

5. Coletti, G., Scozzafava, R.: Conditional probability and fuzzy information. Computational
Statistics & Data Analysis 51, 115–132 (2006)

6. de Finetti, B.: Teoria della Probabilità, Einaudi, Torino (1970)
7. Reka, A., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern

Physics 74, 47–97 (2002)
8. Grilly, C., Stricker, J., Pang, W.L., et al.: A synthetic gene network for tuning protein degra-

dation in saccharomyces cerevisiae. Mol. Syst. Biol. 3, 127 (2007)
9. Smith, V.A., Jarvis, E.D., Hartemink, A.J.: Evaluating functional network inference using

simulations of complex biological systems. Bioinformatics 18, 216–224 (2002)
10. Mendes, P., Sha, W., Ye, K.: Artificial gene networks for objective comparison of analysis

algorithms. Bioinformatics 19, 122–129 (2003)
11. Di Camillo, B., Toffolo, G., Cobelli, C.: A gene network simulator to assess reverse engi-

neering algorithms. Ann. N Y Acad. Sci. 1158, 125–142 (2009)
12. Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R.,

Califano, A.: Aracne: an algorithm for the reconstruction of gene regulatory networks in a
mammalian cellular context. BMC Bioinformatics 7 (2006)

13. Mitra, S., Hayashi, T.: Bioinformatics with soft computing. IEEE Transactions on Systems,
Man, and Cybernetics 36, 616–635 (2006)

14. Zhou, X., Wang, X., Dougherty, E.R., Russ, D., de Suh, E.: Gene clustering based on clus-
terwide mutual information. Journal of Computational Biology 11, 147–161 (2004)

Redefinition of Mutual Information in the Fuzzy Sets Framework 83

15. Maji, P., Pal, K.S.: Fuzzy-rough sets for information measures and selection of relevant genes
from microarray data. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cyber-
netics (2010) (retrieved on April 2010) (to appear)

16. Xu, F., Miao, D., Wei, L.: Fuzzy-rough attribute reduction via mutual information with an
application to cancer classification. Computers and Mathematics with Applications (2008)

17. Ding, S.F., Xia, S.X., Jin, F.X., Shi, Z.Z.: Novel fuzzy information proximity measures. Jour-
nal of Information Science 33, 678–685 (2007)

18. De Luca, A., Termini, S.: A definition of a non-probabilistic entropy in the setting of fuzzy
sets theory. Information and Control 20, 301–312 (1972)

19. Nam, D., Seo, S., Kim, S.: An efficient top-down search algorithm for learning boolean
networks of gene expression. Machine Learning 65, 229–245 (2006)

20. Sambo, F., Di Camillo, B., Falda, M., Toffolo, G., Badaloni, S.: CNET: an algorithm for the
inference of gene regulatory interactions from gene expression time series. In: Proceedings
of the 14th Workshop on Intelligent Data Analysis in Medicine and Pharmacology IDAMAP
2009, Verona, Italy, pp. 23–28 (2009)

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 85–99.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Exact Membership Functions for the
Fuzzy Weighted Average

Pim van den Broek1 and Joost Noppen2

1 Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

pimvdb@ewi.utwente.nl
2 Computing Department,University of Lancaster, Infolab21 Southdrive

Lancaster, LA1 4WA, U.K.
j.noppen@comp.lancs.ac.uk

Abstract. The problem of computing the fuzzy weighted average, where both
attributes and weights are fuzzy numbers, is well studied in the literature.
Generally, the approach is to apply Zadeh's extension principle to compute α-
cuts of the fuzzy weighted average from the α-cuts of the attributes and weights
for fixed values of α∈[0..1]; this means that all values of the membership
functions of the fuzzy weighted average are computed separately. In this paper,
we generalise this approach in such a way that α is considered to be a
parameter; this enables us to compute exact analytical membership functions
for the fuzzy weighted average in case the attributes and weights are triangular
or trapeizoidal fuzzy numbers. To illustrate the power of our algorithms, they
are applied to the examples from the literature, providing exact membership
functions in each case.

Keywords: Fuzzy weighted average, Membership functions.

1 Introduction

In multiple criteria decision making problems, values of decision variables are
weighted averages of criteria ratings. Often the rating criteria and their corresponding
importance weights are vague, and are therefore represented by fuzzy numbers. Then
the values of the decision variables which are determined by them are fuzzy numbers
as well; they are fuzzy weighted averages of the criteria ratings.

The standard approach to the calculation of fuzzy weighted averages [1-11] is to
apply the extension principle to the following weighted average function:

wa(x1, ..,xn,w1,..,wn) = ∑∑
==

n

1i
i

n

1i
ii w)w*(x (1)

Here x1,..,xn are real numbers, called attributes, and w1,..,wn are non–negative real
numbers, called weights.

Let A1,..,An and W1,..,Wn be triangular or trapezoidal fuzzy numbers. Their α-cuts,
denoted by [A1]

α,.., [An]
α, [W1]

α,.., [Wn]
α, are closed intervals; the elements of

86 P. van den Broek and J. Noppen

[W1]
α,.., [Wn]

α are non-negative. The α-cut of the fuzzy weighted average of attributes
A1,..,An with weights W1,..,Wn is given by the set

{wa(x1,..,xn,w1,..,wn) | x1∈[A1]
α,..,xn∈[An]

α,w1∈[W1]
α,..,wn∈[Wn]

α} (2)

This set is a closed interval and is computed by computing its extremal values.
Algorithms for computing these extremal values, for fixed value of α, are given in the
literature. In this paper we will give an algorithm to solve this problem analytically,
i.e. we will show how to compute analytical expressions for the extremal values of eq.
(2). Also an algorithm for the computation of the inverses of these expressions is
given; this enables us to calculate analytically the exact membership functions of the
fuzzy weighted average.

In Section 2 we will present an algorithm for the computation of the extremal
values of eq. (2) for a fixed value of α, which is based on previous algorithms. This
algorithm has an intuitive geometrical interpretation, and therefore it can be easily
understood. In Section 3 this algorithm is generalised to give analytical solutions, for
triangular or trapeizoidal weights and attributes, and it is shown how these solutions
can be reversed to give exact membership functions of the fuzzy weighted average. In
Section 4, the power of the algorithm is demonstrated by applying it to examples from
the literature, giving exact membership functions of the fuzzy weighted average in all
cases.

2 Computation of α-Cuts of the Fuzzy Weighted Average

Let us start with the computation of the minimal value of the set of eq. (2). It is shown
by Dong and Wong [3] and by Liou and Wang [10] that the minimum of eq. (2) is
among the elements where xi is equal to min[Ai]

α and wi equals either min[Wi]
α or

max[Wi]
α. So the problem can be reformulated as the problem of finding the minimal

element of the finite set

{∑
=

n

1i

(min[Ai]α * wi) ∑
=

n

1i

wi |w1∈{min[W1]α , max[W1]α},..,wn∈ {min[Wn]α ,max[Wn]α}} (3)

Let Q be the set of all 2n mappings from the set {1,2,..,n} to the set {+,–}. These
mappings can be seen as states. A state is a partition of the attributes in attributes with
maximal weight and attributes with minimal weight. The set of eq. (3) can be denoted
as

{∑
=

n

1i

(min[Ai]
α*Wi

α(q)) ∑
=

n

1i

Wi
α(q)|q∈Q} (4)

where Wi
α(q) stands for max[Wi]

α if q(i) = + and for min[Wi]
α if q(i) = –.

We define the mapping FWA from states to the real numbers by

FWA(q) =∑
=

n

1i

(min[Ai]
α *Wi

α(q)) ∑
=

n

1i

Wi
α(q) (5) (5)

 Exact Membership Functions for the Fuzzy Weighted Average 87

Now the problem has become the problem of finding the state q for which FWA(q) is
minimal. The first step of the algorithm consists of sorting the set {min[Ai]

α
|1<=i<=n}. From now on we assume this set is sorted. As a consequence, min[A1]

α <=
FWA(q) <= min[An]

α for all q∈Q. Now let us consider what happens when q changes
such that, for some i with 1<=i<=n, q(i) changes from – into +. This change means
that the weight of min[Ai]

α increases, whereas the other weights remain the same. As
a consequence, FWA(q) will change in such a way that it moves towards min[Ai]

α :
the absolute value of FWA(q) – min[Ai]

α decreases, but the sign of FWA(q) –
min[Ai]

α remains the same.
Let qmin be the state for which FWA takes its minimal value. Then qmin(i) = + if

min[Ai]
α < FWA(qmin) and qmin(i) = – if min[Ai]

α > FWA(qmin). We know that qmin(1)
= + and qmin (n) = –. Our algorithm to obtain qmin is as follows. Let qi be the element
of Q defined by qi(j) = + for 1<=j<i and qi(j) = – for i<=j<=n. Then qmin = qi for some
i with 2<=i<=n. To determine qmin, start with state q2. Let us consider a situation with
n=6, which is depicted as follows:

•------ •------- •------ ∇------- •------ •------- •
1+ 2- 3- Fwa 4- 5- 6-

Here the first line shows the real axis with min[Ai]
α for i=1..6, and the fuzzy

weighted average (Fwa) in the present state q2. The second line shows the indices i,
and whether the corresponding weights are maximal (+) or minimal (-) in the present
state. We have to change the state in such a way that Fwa becomes as small as
possible. Changing the state means changing the weights from maximal to minimal or
vice versa. Changing weights 1,4,5, or 6 would increase Fwa. Changing weights 2 or
3 decreases Fwa. Suppose we change weight 3. The value of Fwa decreases, but
remains greater than min[A3]

α. Next we change weight 2. The value of Fwa is further
decreased, and can become less than min[A3]

α.In this case Fwa would decrease even
further by restoring the original weight 3. This situation would have been avoided if
we had first changed weight 2. If this causes Fwa to become less than min[A3]

α, the
minimum is reached in state q3. Otherwise, weight 3 is changed as well, and the
minimum is reached in state q4. So it is important that the weight changes are
performed from left to right. In Liou & Wang [10] that weight is changed first that
causes Fwa to decrease most, which is incorrect.

Let us now return to the general case. The initial state is q2. Compare FWA(q2)
with min[A2]

α. If FWA(q2) <= min[A2]
α then qmin = q2, else continue with q3. If

FWA(q3) <= min[A3]
α then qmin = q3, else continue with q4, et cetera. This iteration

will terminate, since FWA(qn) <= min[An]
α. So, the algorithm to compute the

minimum of FWA(q) for q∈Q is

sort { min[Ai]
α | 1<=i<=n};

i = 2;
while (FWA(qi) > min[Ai]

α) i = i+1;
return FWA(qi);

The computation of the maximal value of the set of eq. (2) is quite similar. We now
assume that the set {max[Ai]

α |1<=i<=n} is sorted. Note that this ordering may be
different from the one above. In the definition of FWA (eq. (5)) we replace min[Ai]

α

88 P. van den Broek and J. Noppen

by max[Ai]
α. Let qmax be the value of q for which FWA(q) is maximal. Then

qmax(i) = – if max[Ai]
α < FWA(qmax) and qmax(i) = + if max[Ai]

α > FWA(qmax). In
particular, qmax(1) = – and qmax(n) = +. Let qi be the element of Q defined by qi(j) = –
for 1<=j<=i and qi(j) = + for i<j<=n. Then qmax = qi for some i with 1<=i<=n–1. To
determine qmax, start with q(n–1). Compare FWA(q(n–1)) with max[A(n-1)]

α. If FWA(q(n–

1)) >= max[A(n-1)]
α then qmax = q(n–1), else continue with q(n–2), et cetera. So, the

algorithm to compute the maximum of FWA(q) for q∈Q is

sort { max[Ai]
α |1<=i<=n};

i = n–1;
while (FWA(qi) < max[Ai]

α) i = i–1;
return FWA(qi);

Let us illustrate the algorithm with a small example, with n=6.

i [Ai]
α [Wi]

α FWA(qi) i [Ai]
α [Wi]

α FWA(qi)

1 [1,4] [1,3] 1 [1,4] [1,3] 109/16
2 [2,6] [1,3] 23/8 2 [4,5] [1,3] 99/14
3 [3,7] [1,3] 27/10 3 [2,6] [1,3] 87/12
4 [4,5] [1,3] 33/12 4 [3,7] [1,3] 73/10
5 [5,8] [1,3] 41/14 5 [5,8] [1,3] 57/8
6 [6,9] [1,3] 51/16 6 [6,9] [1,3]

In the left-hand table the α-cuts [Ai]
α and [Wi]

α for some fixed α are shown in the
second and the third column, sorted according to min[Ai]

α. The fourth column shows
the values of FWA(qi). The minimum is seen to be 27/10, being the first value from
above in the fourth column which is not greater than the corresponding value for
min[Ai]

α (in the second column). In the right-hand table the α-cuts [Ai]
α are sorted

according to max[Ai]
α. The fourth column shows the values of FWA(qi). The

maximum is seen to be 73/10, being the first value from below in the fourth column
which is not less than the corresponding value for max[Ai]

α.
The extremal values obtained above could also have been found by taking the

smallest resp. highest values in the fourth columns of the tables; this is indeed the
approach of Chiao [2]. So apparently we did not gain anything, except some
geometrical insight, as explained above. However, as it will turn out in the next
section, for obtaining an analytical solution it is crucial not to compare values of the
fourth column (FWA(qi) or FWA(qi)) among each other, but instead compare
elements of the fourth column with elements in the second column ([Ai]

α).
The computational complexity of our algorithm is O(n*ln(n)), due to the first step,

the sorting of the elements. The second phase, whose computational complexity is
O(n), could be optimized by replacing the linear search by binary search, resulting in
computational complexity O(ln(n)), as in Lee & Park [8]; the overall computational
complexity would remain O(n*ln(n)), however. Guu [6] has given an algorithm with
computational complexity O(n), in which the sorting of the elements is avoided. We
have tried to keep our algorithm as simple as possible, in order to be able to
generalize it to obtain an analytical solution.

 Exact Membership Functions for the Fuzzy Weighted Average 89

3 Analytical Solution for the Fuzzy Weighted Average

In this section we will show that the algorithm given in the previous section can be
generalized to obtain an analytical solution for the membership function of the fuzzy
weighted average. There have been two previous attempts to obtain an analytical
solution. Dong and Wong [3] obtained an analytical solution for two small examples.
A general method was not given, however. Their approach was to consider the partial
derivatives with respect to wi of eq. (1) in order to obtain the extremal values of this
equation. Kao and Liu [7] followed the same approach, and applied it to the same two
examples, but also failed to provide a general solution. Our approach is different. We
will generalize the algorithm of the previous section, by considering α to be a
parameter which ranges over the interval [0,1], instead of being some fixed value.
Then, taking the values of the fuzzy weights and fuzzy attributes to be triangular and
trapezoidal fuzzy numbers, the extremal values of their α-cuts are linear functions of α.

A trapezoidal fuzzy number will be denoted as a 4–tuple (a,b,c,d) where a,b,c and d
are real numbers with a<=b<=c<=d. The trapezoidal number (a,b,c,d) has membership
function μ, given by

μ(x) = 0, if x<=a
μ(x) = (x – a)/(b – a), if a<x<b
μ(x) = 1, if b<=x<=c
μ(x) = (d – x)/(d – c), if c<x<d
μ(x) = 0, if x>=d

(6)

The restriction of μ to [a,b] and [c,d] will be referred to as the left-hand side resp. the
right-hand side of the trapezoidal number. A triangular fuzzy number is a trapezoidal
number of the form (a,b,b,c), and will be denoted by the 3–tuple (a,b,c).

Let the fuzzy weights be given by Wi = (wi,xi,yi,zi) and the fuzzy attributes by Ai =
(ai,bi,ci,di). Then we have, for 0<=α<=1:

min[Ai]
α = ai + α (bi – ai)

max[Ai]
α = di – α (di – ci)

min[Wi]
α = wi + α (xi – wi)

max[Wi]
α = zi – α (zi – yi)

(7)

Our first aim is to find a function of α which is the minimum of the set of eq. (4) for
all α in the interval [0,1]. The first step of the algorithm consists of sorting the set of
left-hand sides of the attributes {min[Ai]

α |1<=i<=n}. However, this sorting is the
same for each α only if these left-hand sides do not intersect. So, we compute all the
values of α for which two left-hand sides intersect. Note that coinciding left-hand
sides present no problem; therefore they are considered not to intersect each other.
Since each left-hand side is a linear function of α (eq. 6a), each pair of left-hand sides
can intersect for at most one value of α with 0<=α<=1. So, there can be at most n(n–
1)/2 such intersections. In practice, however, it turns out that there are only few
intersections, if any at all. The values of α where the intersections occur partition the
interval [0,1] in at most n(n–1)/2+1 subintervals.

On each of these subintervals the left-hand sides of the Ai do not intersect and the
set {min[Ai]

α |1<=i<=n} can be sorted independent of α. We will consider each of
these subintervals separately. So, in this step the problem has been reduced to the

90 P. van den Broek and J. Noppen

problem of finding the minimum of the set of eq. (4) for all α in some subinterval
[min,max] of [0,1] where the ordering of the set {min[Ai]

α |1<=i<=n} is independent
of α.

The next step of the algorithm is to compare FWA(q2) with min[A2]
α. For values of

α for which FWA(q2) <= min[A2]
α the minimum is FWA(q2), for the other values of α

the computation will continue with q3. This is done by determining the values of α
with 0<=α<=1 for which FWA(q2) = min[A2]

α. From the definition of FWA (eq. (5))
it follows that this equation can be written as:

∑
=

n

1i

(min[Ai]
α

* Wi
α(q2)) = min[A2]

α
* ∑

=

n

1 i

Wi
α(q2) (8)

From the eq. (7) we find that both sides of this equation are second order polynomials
in α. Therefore, solving eq. (8) is trivial, and there are at most two solutions. Those
solutions partition the interval [min,max] in at most three subintervals. On each of
these subintervals the result of the comparison FWA(q2) <= min[A2]

α
 is independent

of α. On intervals where FWA(q2) <= min[A2]
α, the analytical solution is obtained,

which is equal to FWA(q2). On intervals where FWA(q2) >= min[A2]
α, the

computation continues in state q3. Iteration of this process leads to the analytical
solution of the minimum of the set of eq. (4) for all α in the interval [min,max]. This
solution generally consists of separate solutions for a finite number of subintervals of
[min,max]. Repeating this procedure for each of the intervals which were determined
in the first step of the algorithm gives the analytical solution of the minimum of the
set of eq. (4) for all α in the interval [0,1].

The algorithm can be summarized as follows:

Calculate the intersections of the left-hand sides of the
attributes;
Partition [0,1] into subintervals according to these
intersections;
For each subinterval [min,max]
 Adapt the numbering such that { min[Ai]

α |1<=i<=n} is
sorted;
 Exact solution on [min,max] is Proc ([min,max], 2);

where Proc is defined by

Proc (interval, i) ==
Partition the interval into subintervals according to
solutions of FWA(qi) = min[Ai]

α ;
On subintervals where FWA(qi) <= min[Ai]

α the exact
solution is FWA(qi);
On subintervals where FWA(qi) >= min[Ai]

α the exact
solution is Proc (subinterval, i+1);

Note that the key element in this algorithm is the comparison of FWA(qi) with
min[Ai]

α, which leads to a second order polynomial equation to be solved. An
algorithm which compares values of FWA(qi) for different values of i, would have led
to a third order polynomial equation, which is much more difficult to solve.

 Exact Membership Functions for the Fuzzy Weighted Average 91

The algorithm to calculate a function of α which is the maximum of the set of
eq. (4) for all α in the interval [0,1] is quite similar. It can be summarized as follows:

Calculate the intersections of the right-hand sides of the
attributes;
Partition [0,1] into subintervals according to these
intersections;
For each subinterval [min,max]
 Adapt the numbering such that { max[Ai]

α |1<=i<=n} is
sorted;
 Exact solution on [min,max] is Proc ([min,max], n-1);

where Proc is defined by

Proc (interval, i) ==
Partition the interval into subintervals according to
solutions of FWA(qi) = min[Ai]

α ;
On subintervals where FWA(qi) <= min[Ai]

α the exact
solution is FWA(qi);
On subintervals where FWA(qi) >= min[Ai]

α the exact
solution is Proc (subinterval, i–1);

The second aim in this section is to show that the exact solutions for the minimum
and maximum values of the α-cuts of the fuzzy weighted average can be inverted to
give the exact membership function of the fuzzy weighted average. First we will show
how to invert the exact solution for the minimum values. In the preceding step of the
algorithm, the interval [0,1] has been partioned in a finite number of subintervals, and
on each subinterval [min,max] the exact solution is given by FWA(q) for some q∈Q.
When the eqs. (7a-7b) are substituted in eq. (5), we find that FWA(q) is a function f
of α which takes the form

f(α) = (aα2+bα+c)/(dα+e) (9)

where a,b,c,d,and e are real numbers. The inverse of f is the exact left-hand side of the
membership function of the fuzzy weighted average on the interval [f(min), f(max)];
it can be computed by solving α from the equation x = f(α), which can be written as

aα2 + (b – dx)α + c – ex = 0 (10)

Let us first consider the case where a ≠ 0. Here the solution of eq. (10) is given by

μ(x)= (dx–b± ex) 4a(c b) (dx 2 −−−)/(2a) (11)

where the ambiguity in the sign can be solved with the conditions

μ(f(min)) = min

μ(f(max)) = max
(12)

Next consider the case where a = 0 and dc ≠ eb. Here the eq. (10) is solved by

μ(x) = (ex – c)/(b – dx) (13)

92 P. van den Broek and J. Noppen

on the interval

[(b*min + c)/(d*min + e), (b*max + c)/(d*max + e)] (14)

Finally consider the case where a = 0 and dc = eb. In this case (bα + c)/(dα + e) is
independent of α, so the inverse does not exist. Then the membership function is non–
continuous in x = c/e. This occurs for instance when all attributes and weights are
crisp numbers (i.e. of the form (a,a,a)), leading to a crisp weighted average, whose
membership function is not continuous.

This shows that in each case the exact solution for the minimum values of the α-
cuts of the fuzzy weighted average can be inverted, giving the exact solution the left-
hand side of the membership function of the fuzzy weighted average. The
computation of the exact solution of the right-hand side of the membership function is
similar.

4 Examples

In this section we will apply our algorithms to derive exact membership functions to
the examples of fuzzy weighted averages which have appeared in the literature. In
each case, the fuzzy attributes and fuzzy weights are listed, as well as their α-cuts.
This listing, and the assignment of indices from 1 to n, is such that the left-hand sides
of the fuzzy attributes are properly ordered on the leftmost subinterval of [0,1]. In
most of the cases this is the proper ordering on [0,1], both for the left-hand sides and
for the right-hand sides of the fuzzy attributes. On subintervals where the ordering is
different, this is clearly indicated. Renumbering fuzzy attributes and fuzzy weights
has not been given explicitely, however, so the reader should be aware of the fact that
the indices in eq. (5) are with respect to the proper ordering, and not necessarily with
respect to the listed ordering.

We have avoided the rounding of real numbers as much as seems reasonable. So,
quotients and square roots have not been evaluated to decimal form, except where
expressions would otherwise become too unwieldy. To discriminate between decimal
notations which are exact and those which are approximations, the latter are followed
by an asterisk (*).

Example 1

For this example exact membership functions have been derived by Dong and Wong
[3] and by Kao and Liu [7]. There are 2 attributes and 2 weights; all of these are
triangular fuzzy numbers.

A1 = (0,1,2) [A1]
α = [α, 2–α] W1 = (0,0.3,0.9) [W1]

α = [0.3α, 0.9–0.6α]
A2 = (2,3,4) [A2]

α = [2+α, 4–α] W2 = (0.4,0.7,1) [W2]
α = [0.4+0.3α, 1–0.3α]

Since there are only two attributes, and there are no intersections, the calculation is
trivial: the minimum of the α-cuts of the fuzzy weighted average is FWA(q2) =
(– 0.3α2 + 1.9α + 0.8)/(–0.3α + 1.3) and the maximum is FWA(q1) = –1.6α + 4.

 Exact Membership Functions for the Fuzzy Weighted Average 93

This leads to the following membership function for the fuzzy weighted average:

μ(x) = 0 if x <= 8/13 or x >= 4

μ(x) = x/2 + 19/6 – (5/3) 4.57 0.42x 0.09x 2 +− if 8/13 <= x <= 12/5

μ(x) = –5x/8 + 5/2 if 12/5 <= x <= 4

Example 2

For this example exact membership functions have been derived by Dong and Wong
[3] and by Kao and Liu [7]. The example is also treated by Guh, Hon and Lee [4], by
Guh, Hon, Wang and Lee [5] and by Liou and Wang [10]. There are 3 attributes and 3
weights; all of these are triangular fuzzy numbers.

A1 = (0,1,2) [A1]
α = [α, 2–α] W1 = (0,0.3,0.9) [W1]

α = [0.3α, 0.9–0.6α]
A2 = (2,3,4) [A2]

α = [2+α, 4–α] W2 = (0.4,0.7,1) [W2]
α = [0.4+0.3α, 1–0.3α]

A3 = (4,5,6) [A3]
α = [4+α, 6–α] W3 = (0.6,0.8,1) [W2]

α = [0.6+0.2α, 1–0.2α]

First, we calculate the minimum of the α-cuts of the fuzzy weighted average.
FWA(q2) = (–0.1α2 + 3.3α + 3.2)/(– 0.1α + 1.9). FWA(q2) <= 2+α for 0<=α<=3/8, so
FWA(q2) is the minimum for 0<=α<=3/8. FWA(q2) >= 2+α for 3/8<=α<=1. For
3/8<=α<=1 the minimum is FWA(q3) = (– 0.7α2 + 2.7α + 4.4)/(– 0.7α + 2.5).

Next we calculate the maximum of the α-cuts of the fuzzy weighted average.
FWA(q2) = (–0.4α2 – 0.8α + 7.6)/(0.4α + 1.4). FWA(q2) >= 4–α for 0<=α<=1, so
FWA(q2) is the maximum for 0<=α<=1.

This leads to the following membership function for the fuzzy weighted average:

μ(x) = 0 if x <= 32/19 or x >= 38/7
μ(x) = x/2 + 16.5 – 5 12.17 0.1x 0.01x2 +− if 32/19 <= x <= 19/8

μ(x) = x/2 + 27/14 – (5/7) 19.61 3.22x 0.49x2 +− if 19/8 <= x <= 32/9

μ(x) = –x/2 – 1 + (5/4) 12.8 1.6x 0.16x2 +− if 32/9 <= x <= 38/7

Example 3

This example is treated by Guh, Hon, Wang and Lee [5]. There are 4 attributes and 4
weights; all of these are triangular fuzzy numbers.

A1 = (0,1,2) [A1]
α = [α,2–α] W1 = (0,0.3,0.9) [W1]

α = [0.3α,0.9–0.6α]
A2 = (2,3,4) [A2]

α = [2+α, 4–α] W2 = (0.4,0.7,1) [W2]
α = [0.4+0.3α, 1–0.3α]

A3 = (4,5,6) [A3]
α = [4+α, 6–α] W3 = (0.6,0.8,1) [W3]

α = [0.6+0.2α, 1–0.2α]
A4 = (5,6,7) [A4]

α = [5+α, 7–α] W4 = (0.5,0.8,1) [W4]
α = [0.5+0.3α, 1–0.2α]

First, we calculate the minimum of the α-cuts of the fuzzy weighted average.
FWA(q2) = (0.2α2 + 5.3α + 5.7)/(0.2α + 2.4). FWA(q2) <= 2+α for 0<=α<=1.
FWA(q3) = (–0.4α2 + 4.7α + 6.9)/(–0.4α + 3). FWA(q3) >= 4+α for 0<= α<=1, so
FWA(q3) is the minimum for 0<= α<=1.

Next, we calculate the maximum of the α-cuts of the fuzzy weighted average.
FWA(q3) = (–0.6α2 – 0.4α + 12.2)/(0.6α + 2). FWA(q3) >= 6–α for 0<=α<=0.1, so
FWA(q3) is the maximum for 0<=α<=0.1. FWA(q3) <= 6–α for 0.1<=α<=1.

94 P. van den Broek and J. Noppen

FWA(q2) = (–0.2α2 – 3.2α + 14.6)/(0.2α + 2.4). FWA(q2) >= 4–α for 0.1<=α<=1, so
FWA(q2) is the maximum for 0.1<=α<=1.

This leads to the following membership function for the fuzzy weighted average:

μ(x) = 0 if x <= 23/10 or x >= 61/10
μ(x) = x/2 + 47/8 – (5/4) 33.13 1.04x 0.16x2 +− if 23/10 <= x <= 112/26

μ(x) = – x/2 – 8 + (5/2) 21.92 0.64x 0.04x2 +− if 112/26 <= x <= 59/10

μ(x) = –x/2 – 1/3 + (5/6) 29.44 4.32x 0.36x2 +− if 59/10 <= x <= 61/10

Example 4

This example is treated by Lee and Park [8]. There are 5 attributes and 5 weights; all
of these are triangular fuzzy numbers.

A1 = (1,2,3) [A1]
α = [1+α, 3–α] W1 = (1,2,5) [W1]

α = [1+α, 5–3α]
A2 = (2,5,7) [A2]

α = [2+3α, 7–2α] W2 = (2,2.5,3) [W2]
α = [2+α/2, 3–α/2]

A3 = (6,8,9) [A3]
α = [6+2α, 9–α] W3 = (4,7,9) [W3]

α = [4+3α, 9–2α]
A4 = (7,9,10) [A4]

α = [7+2α, 10–α] W4 = (3,4,7) [W4]
α = [3+α, 7–3α]

A5 = (10,11,12) [A5]
α = [10+α, 12–α] W5 = (2,3,4) [W5]

α = [2+α, 4–α]

First, we calculate the minimum of the α-cuts of the fuzzy weighted average.
FWA(q2) = (7.5α2 + 60α + 74)/(2.5α + 16). FWA(q2) >= 2+3α for 0<=α<=1. FWA(q3)
= (4.5α2 + 61α + 76)/(1.5α + 17). FWA(q3) <= 6+2α for 0<=α<=1, so FWA(q3) is the
minimum for 0<=α<=1.

Next, we calculate the maximum of the α-cuts of the fuzzy weighted average.
FWA(q4) = (–5α2 + 15.5α + 131)/(4.5α + 14). FWA(q4) <= 10–α for 0<=α<=1.
FWA(q3) = (–α2 – 28.5α + 171)/(0.5α + 18). FWA(q3) >= 9–α for 0 <= α <= 9 3 –15,

so FWA(q3) is the maximum for 0<=α <= 9 3 –15. FWA(q3) <= 9–α for 9 3 –
15<=α<=1. FWA(q2) = (4α2 – 78.5α + 216)/(–4.5α + 23). FWA(q2) >= 7–2α for
9 3 –15<=α<=1, so FWA(q2) is the maximum for 9 3 –15 <= α <= 1.

These results are in accordance with the results by Lee and Park in [7] for α=0 and
α=1. However, their claim that the fuzzy weighted average is a fuzzy triangular
number is incorrect. Instead, the membership function of the fuzzy weighted average
is calculated to be:

μ(x) = 0 if x <= 76/17 or x >= 19/2
μ(x) = x/6 – 61/9 + (1/9) 2353 123x 2.25x2 ++ if 76/17 <= x <= 283/37

μ(x) = –9x/16 + 157/16 –(1/8) 2706.25 338.5x 20.25x2 +− if 283/37 <= x <= 24–9 3

μ(x) = –x/4 – 57/4 + (1/2) 1496.25 43.5x 0.25x2 +− if 24–9 3 <= x <= 19/2

Example 5

This example is treated by Kao and Liu [7]. There are 3 attributes and 3 weights; the
weights are are triangular fuzzy numbers and the attributes are trapeizoidal fuzzy
numbers.

 Exact Membership Functions for the Fuzzy Weighted Average 95

A1 = (–2,1,2,3) [A1]
α = [–2+3α, 3–α] W1 = (0,0.3,0.9) [W1]

α = [0.3α, 0.9–0.6α]
A2 = (1,2,3,5) [A2]

α = [1+α, 5–2α] W2 = (0.4,0.7,1) [W2]
α = [0.4+0.3α, 1–0.3α]

A3 = (2,3,6,7) [A3]
α = [2+α, 7–α] W3 = (0.6,0.8,1) [W3]

α = [0.6+0.2α, 1–0.2α]

First, we calculate the minimum of the α-cuts of the fuzzy weighted average.
FWA(q2) = (–1.3α2 + 5.6α – 0.2)/(–0.1α + 1.9). FWA(q2) <= 1+α for 0 <= α <= (19 –

109)/12, so FWA(q2) is the minimum for 0 <= α <= (19 – 109)/12. FWA(q2) >=

1+α for (19 – 109)/12 <= α <= 1, so for (19 – 109)/12 < =α < =1 the minimum is
FWA(q3) = (–1.9α2 + 5.6α + 0.4)/(– 0.7α + 2.5).

Next we calculate the maximum of the α-cuts of the fuzzy weighted average.
FWA(q3) = (–0.7α2 – 0.8α + 9)/(0.4α + 1.4). FWA(q3) >= 5–2α for 0<= <=1, so
FWA(q3) is the maximum for 0<=α<=1.

This leads to the following membership function for the fuzzy weighted average:

μ(x) = 0 if x <= –2/19 or x >= 45/7
μ(x) = x/26 + 28/13 – (5/13) 30.32 8.76x 0.01x2 +− if –2/19 <= x <= (31– 109)/12

μ(x) = 7x/38 + 28/19 – (5/19) 34.4 11.16x 0.49x2 +− if (31 – 109)/12 <= x <= 41/18
μ(x) = 1 if 41/18 <=x <= 75/18
μ(x) = –2x/7 – 4/7 + (5/7) 25.84 3.28x 0.16x2 +− if 75/18 <= x <= 45/7

Example 6

This example is treated by Chiao[2]. There are 8 attributes and weights; all of these
are fuzzy triangular numbers.

A1 = (0,0.1,0.53) [A1]

α = [0.1α, 0.53–0.43α] W1 = (0.55,0.66,0.67) [W1]
α

= [0.55+0.11α, 0.67–0.01α]

A2 = (3.78,6.12,8.63) [A2]
α = [3.78+2.34α, 8.63–2.51α] W2 = (0.52,0.80,0.85) [W2]

α

= [0.52+0.28α, 0.85–0.05α]

A3 = (4.56,5.85,7.17) [A3]
α = [4.56+1.29α, 7.17–1.32α] W3 = (0.62,0.75,0.8) [W3]

α

= [0.62+0.13α, 0.8–0.05 α]

A4 = (5.08,6.11,7.88) [A4]
α = [5.08+1.03α, 7.88–1.77α] W4 = (0,0.07,0.1) [W4]

α

= [0.07α, 0.1–0.03α]

A5 = (5.51,7.22,9.59) [A5]
α = [5.51+1.71α, 9.59–2.37α] W5 = (0.09,0.38,0.46) [W5]

α

= [0.09+0.29α, 0.46–0.08α]

A6 = (7.14,7.21,7.27) [A6]
α = [7.14+0.07α,7.27–0.06α] W6 = (0.44,0.63,0.91) [W6]

α

= [0.44+0.19α,0.91–0.28α]

A7 = (8.14,9.85,10) [A7]
α = [8.14+1.71α, 10–0.15α] W7 = (0.59,0.61,0.85) [W7]

α

= [0.59+0.02α, 0.85–0.24α]

A8 = (8.67,9.26,10) [A8]
α = [8.67+0.59α, 10–0.74α] W8 = (0.03,0.18,0.29) [W8]

α

= [0.03+0.15α, 0.29–0.11α]

96 P. van den Broek and J. Noppen

First, we calculate the minimum of the α-cuts of the fuzzy weighted average. There
are 4 intersections of left-hand sides: A2 and A3 intersect at 78/105, A2 and A4
intersect at 130/131, A5 and A6 intersect at 163/164 and A7 and A8 intersect at 53/112.
This means that we have to deal with subintervals [0,53/112], [53/112,78/105],
[78/105,130/131], [130/131,163/164] and [163/164,1] separately.

Subinterval [0, 53/112]: Ordering [A1,A2,A3,A4,A5,A6,A7,A8].
FWA(q2) = (1.5259α2 + 9.7195α + 13.493)/(1.12α + 2.96).
FWA(q2) >= 3.78 + 2.34α for 0 <= α <= 53/112.
FWA(q3) = (0.7537α2 + 9.2443α + 14.7404)/(0.79α + 3.29).
FWA(q3) <= 4.56+1.29α for 0 <= α <= 0.19463*.
FWA(q3) is the minimum for 0 <= α<= 0.19463*.
FWA(q3) >= 4.56+1.29α for 0.19463* <= α <= 53/112.
FWA(q4) = (0.5215α2 + 8.6557α + 15.5612)/(0.61α + 3.47).
FWA(q4) <= 5.08 + 1.03α for 0.19463* <= α <= 53/112.
FWA(q4) is the minimum for 0.19463* <= α <= 53/112.

Subinterval [53/112,78/105]: Ordering [A1,A2,A3,A4,A5,A6,A8,A7].
FWA(q2) = (1.5259α2 + 9.7195α + 13.493)/(1.12α + 2.96).
FWA(q2) >= 3.78+2.34α for 53/112<=α<=78/105.
FWA(q3) = (0.7537α2 + 9.2443α + 14.7404)/(0.79α + 3.29).
FWA(q3) >= 4.56+1.29α for 53/112 <= α <= 78/105.
FWA(q4) = (0.5215α2 + 8.6557α + 15.5612)/(0.61α + 3.47).
FWA(q4) <= 5.08+1.03α for 53/112 <= α <= 78/105.
FWA(q4) is the minimum for 53/112 <= α <= 78/105.

Subinterval [78/105, 130/131]: Ordering [A1,A3,A2,A4,A5,A6,A8,A7].
FWA(q2) = (1.5259α2 + 9.7195α + 13.493)/(1.12α + 2.96).
FWA(q2) >= 4.56 + 1.29α for 78/105 <= α <= 130/131.
FWA(q3) = (1.2937α2 + 9.1309α + 14.3138)/(0.94α + 3.14).
FWA(q3) <= 3.78+2.34α for 0.93436* <= α <= 130/131.
FWA(q3) is the minimum for 0.93436* <= α <= 130/131.
FWA(q3) >= 3.78+2.34α for 78/105 <= α <= 0.93436*.
FWA(q4) = (0.5215α2 + 8.6557α + 15.5612)/(0.61α + 3.47).
FWA(q4) <=5.08 + 1.03α for 78/105 <= α <= 0.93436*
FWA(q4) is the minimum for 78/105 <= α <= 0.93436*.

Subinterval [130/131, 163/164]: Ordering [A1,A3,A4,A2,A5,A6,A8,A7].
FWA(q2) = (1.5259α2 + 9.7195α + 13.493)/(1.12α + 2.96).
FWA(q2) >= 4.56 + 1.29α for 130/131 <= α <= 163/164.
FWA(q3) = (1.2937α2 + 9.1309α + 14.3138)/(0.94α + 3.14).
FWA(q3) <= 3.78+2.34α for 130/131 <= α <= 163/164.
FWA(q3) is the minimum for 130/131 <= α <= 163/164.

Subinterval [163/164, 1]: Ordering [A1,A3,A4,A2,A6,A5,A8,A7].
FWA(q2) = (1.5259α2 + 9.7195α + 13.493)/(1.12α + 2.96).
FWA(q2) >= 4.56 + 1.29α for 163/164 <= α <= 1.
FWA(q3) = (1.2937α2 + 9.1309α + 14.3138)/(0.94α + 3.14).
FWA(q3) <= 3.78 + 2.34α for 163/164<=α<=1.
FWA(q3) is the minimum for 163/164 <= α <=1.

 Exact Membership Functions for the Fuzzy Weighted Average 97

Putting the pieces together, we have found that the minimum is

(0.7537α2 + 9.2443α + 14.7404)/(0.79α + 3.29). if 0 <= α <= 0.19463*.
(0.5215α2 + 8.6557α + 15.5612)/(0.61α + 3.47). if 0.19463* <= α <= 0.93436*.
(1.2937α2 + 9.1309α + 14.3138)/(0.94α + 3.14). if 0.93436* <= α <= 1

Next we calculate the maximum of the α-cuts of the fuzzy weighted average. There
are 2 intersections of right-hand sides: A2 and A6 intersect at 136/245 and A4 and A6
intersect at 61/171..

Subinterval [0,61/171]: Ordering [A1,A3,A6,A4,A2,A5,A8,A7].
FWA(q7) = (–1.8193α2 + 4.4713α + 22.0864)/(0.98α + 3.1).
FWA(q7) <= 10 – 0.74α for 0 <= α<= 61/171.
FWA(q6) = (–1.6269α2 + 1.6789α + 24.6864)/(0.72α + 3.36).
FWA(q6) <= 9.59 – 2.37α for 0 <= α <= 61/171.
FWA(q5) = (–0.75α2 – 2.7463α + 28.2347)/(0.35α + 3.73).
FWA(q5) <= 8.63 – 2.51α for 0 <= α <= 61/171.
FWA(q4) = (0.0783α2 – 6.4225α + 31.0826)/(0.02α + 4.06).
FWA(q4) <= 7.88–1.77α for 0 <= α <=61/171.
FWA(q3) = (0.2553α2 – 7.3875α + 31.8706)/(–0.08α + 4.16).
FWA(q3) >= 7.27 – 0.06α for 0 <= α <= 0.25062*.
FWA(q3) is the maximum for 0 <= α <= 0.25062*.
FWA(q3) <= 7.27 – 0.06α for 0.25062* <= α <= 61/171.
FWA(q2) = (0.2835α2 – 10.8326α + 35.2875)/(–0.55α + 4.63).
FWA(q2)>= 7.17–1.32α for 0.25062* <= α <= 61/171.
FWA(q2) is the maximum for 0.25062* <= α <= 61/171.

Subinterval [61/171,136/245]: Ordering [A1,A3,A4,A6,A2,A5,A8,A7].
FWA(q7) = (–1.8193α2 + 4.4713α + 22.0864)/(0.98α + 3.1).
FWA(q7) <= 10 – 0.74α for 61/171 <= α <= 136/245.
FWA(q6) = (–1.6269α2 + 1.6789α + 24.6864)/(0.72α + 3.36).
FWA(q6) <= 9.59–2.37α for 61/171 <= α <= 136/245.
FWA(q5) = (–0.75α2 – 2.7463α + 28.2347)/(0.35α + 3.73).
FWA(q5) <= 8.63 – 2.51α for 61/171 <= α <= 136/245.
FWA(q4) = (0.0783α2 – 6.4225α + 31.0826)/(0.02α + 4.06).
FWA(q4) <= 7.27 – 0.06α for 61/171 <= α <= 136/245.
FWA(q3) = (0.1065α2 – 9.8676α + 34.4995)/(–0.45α + 4.53).
FWA(q3) <= 7.88 – 1.77α for 61/171 <= α <= 136/245.
FWA(q2) = (0.2835α2 – 10.8326α + 35.2875)/(–0.55α + 4.63).
FWA(q2) >= 7.17–1.32α for 61/171 <= α <= 136/245.
FWA(q2) is the maximum for 61/171 <= α <= 136/245.

Subinterval [136/245,1]: Ordering [A1,A3,A4,A2,A6,A5,A8,A7].
FWA(q7) = (–1.8193α2 + 4.4713α + 22.0864)/(0.98α + 3.1).
FWA(q7) <= 10 – 0.74α for 136/245 <= α <= 1.
FWA(q6) = (–1.6269α2 + 1.6789α + 24.6864)/(0.72α + 3.36).
FWA(q6) <= 9.59 – 2.37α for 136/245 <= α <=1.
FWA(q5) = (–0.75α2 – 2.7463α + 28.2347)/(0.35α + 3.73).
FWA(q5) <= 7.27 – 0.06α for 136/245 <= α <= 1.

98 P. van den Broek and J. Noppen

FWA(q4) = (–0.7218α2 – 6.1914α + 31.6516)/(–0.12α + 4.2).
FWA(q4) <= 8.63 – 2.51α for 136/245 <= α <= 1.
FWA(q3) = (0.1065α2 – 9.8676α + 34.4995)/(–0.45α + 4.53).
FWA(q3) <= 7.88 – 1.77α for 136/245 <= α <= 1.
FWA(q2) = (0.2835α2 – 10.8326α + 35.2875)/(–0.55α + 4.63).
FWA(q2) >=7.17 – 1.32α for 136/245 <= α <= 1.
FWA(q2) is the maximum for 136/245 <= α <= 1.

Putting the pieces together, we have found that the maximum is

(0.2553α2 – 7.3875α + 31.8706)/(–0.08α + 4.16) if 0<=α<=0.25062*,
(0.2835α2 – 10.8326α + 35.2875)/(–0.55α + 4.63) if 0.25062*<=α<=1.

This leads to the following membership function for the fuzzy weighted average:

μ(x) = 0 if x <= 4.480*

μ(x) = 0.524*x – 6.133* + 0.663* **2 41.018 x 4.687 0.6241x +− if 4.480* <= x
<= 4.811*

μ(x) = 0.585*x – 8.299* + 0.959* ** 2 42.460 x 3.322 0.3721x +− if 4.811* <= x <=
5.966*

μ(x) = 0.363*x – 3.529* + 0.386* **2 9.302 x 0.917 x0.8836 +− if 5.966* <=x
<= 6.063*

μ(x) = –0.970*x + 19.105* – 1.764* **2 77.329 x 6.665 x0.3025 +− if 6.063* <=
x <= 7.255*

μ(x) = –0.157*x + 14.468* – 1.958* **2 22.029 x 3.066 x0.0064 ++ if 7.255* <=
x <= 7.661*

μ(x) = 0 if x >= 7.661*

5 Conclusions

A lot of research effort has been invested into the development of algorithms for the
calculation of fuzzy weighted averages. Where the computational complexity of the
algorithms improved in the course of the time, leading to the linear algorithm of Guu
[6], the approach has always been to compute the α-cuts of the fuzzy weighted
average for fixed value of α. As a consequence, one can only compute a finite number
of values of the membership function of the fuzzy weighted average. In this paper we
have presented an algorithm for the computation of the membership function of the
fuzzy weighted average analytically, for triangular or trapeizoidal weights and
attributes. Our approach has been to generalise a simple, but not optimally efficient,
single-α algorithm. Using our algorithm, one no longer needs to approximate the
membership function from a finite number of values. The feasibility of our algorithm
has been demonstrated by the explicit calculation of the exact membership functions
of the fuzzy weighted averages of examples from the literature.

 Exact Membership Functions for the Fuzzy Weighted Average 99

References

1. Chang, P.-T., Hung, K.-C., Lin, K.-P., Chang, C.-H.: A Comparison of Discrete
Algorithms for Fuzzy Weighted Average. IEEE Transactions on Fuzzy Systems 14,
663–675 (2006)

2. Chiao, K.–P.: Direct Fuzzy Weighted Average Algorithm for Fuzzy Multiple Attributes
Decision Making. Tamsui Oxford Journal of Mathematical Sciences 16, 311–327 (2000)

3. Dong, W.M., Wong, F.S.: Fuzzy Weighted Averages and Implementation of the Extension
Principle. Fuzzy Sets and Systems 21, 183–199 (1987)

4. Guh, Y.–Y., Hon, C.–C., Lee, E.S.: Fuzzy Weighted Average: The Linear Programming
Approach via Charnes and Cooper’s Rule. Fuzzy Sets and Systems 117, 15–160 (2001)

5. Guh, Y.–Y., Hon, C.–C., Wang, K.–M., Lee, E.S.: Fuzzy Weighted Average: A Max–Min
Paired Elimination Method. Computers Math. Applic. 32, 115–123 (1996)

6. Guu, S.–M.: Fuzzy Weighted Average Revisited. Fuzzy Sets and Systems 126, 411–414
(2002)

7. Kao, C., Liu, S.–L.: Fractional Approach to Fuzzy Weighted Average. Fuzzy Sets and
Systems 120, 435–444 (2001)

8. Lee, D.H., Park, D.: An Efficient Algorithm for Fuzzy Weighted Average. Fuzzy Sets and
Systems 87, 39–45 (1997)

9. Liou, Y.–C., Guu, S.–M.: Linear–time Algorithm for the Fuzzy Weighted Average
Method. Journal of the Chinese Institute of Industrial Engineers 19, 7–12 (2002)

10. Liou, T.–S., Wang, M.–J.: Fuzzy Weighted Average: An Improved Algorithm. Fuzzy Sets
and Systems 49, 307–315 (1992)

11. Broek, P.M., van den Noppen, J.A.R.: Fuzzy Weighted Average: Alternative Approach. In:
25th International Conference of the North American Fuzzy Information Processing
Society (NAFIPS 2006). IEEE Computer Society Press, Los Alamitos (2006)

Part II

Evolutionary Computation

K. Madani et al. (Ed.): Computational Intelligence, SCI 343, pp. 103–119.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Knowledge-Based Constrained Function Optimization
Using Cultural Algorithms with an Enhanced Social

Influence Metaphor

Mostafa Ali1, Robert Reynolds2, Rose Ali3, and Ayad Salhieh1

1 Computer Information Technology, Jordan University of Science & Technology
22110, Irbid, Jordan

2 Computer Science Department, Wayne State University, Detroit,
48202, Michigan, U.S.A.

3 Computer Design, Yarmouk University, 21163, Irbid, Jordan
{mzali,salhieh}@just.edu.jo, Reynolds@cs.wayne.edu

rosa@yu.edu.jo

Abstract. In this research we present a new framework based on Cultural
Algorithms using an enhanced social fabric influence function to solve
nonlinearly constrained global optimization problems. We identify how
knowledge sources used by Cultural Algorithms are combined to direct the
decisions of the individual agents during the problem solving process using an
influence function family based upon a Social Fabric metaphor. Guided
interactions between the population swarms and these knowledge sources
produced emergent phases of problem solving. This implies that the social
interaction of individuals coupled with their interaction with a culture within
which they are embedded provides a powerful vehicle for the solution of these
problems. Results demonstrate that this approach can successfully extract
interesting emergent patterns in the Belief space and improve the search
efficiency by avoiding local Optima, and converge to an approximate global
minimizer asymptotically. Different parameter combinations can affect the rate
of solution.

Keywords: Constrained global optimization, Cultural algorithms, Cultural
swarms, Knowledge swarms, Social evolution.

1 Introduction

The Cultural Algorithm (CA) is a class of computational models derived from
observing the cultural evolution process in nature. It is a dual inheritance system that
characterizes evolution in human culture at both the macro-evolutionary level, which
takes place within the Belief space, and at the micro-evolutionary level, which occurs
at the population space. Knowledge produced in the population space at the micro-
evolutionary level is selectively accepted or passed to the Belief space and used to
adjust the symbolic structures there. This knowledge can then be used to influence the
changes made by the population in the next generation. The basic Cultural Algorithms
framework is illustrated in Figure 1.

104 M. Ali et al.

Fig. 1. The framework of cultural algorithm

Previous work by Reynolds [1] identified five basic categories of knowledge that
were useful in decision making. They were normative knowledge (ranges of
acceptable behaviors), situational knowledge (exemplars of successful and
unsuccessful solutions), domain knowledge (knowledge of domain objects, their
relationships, and interactions), history knowledge (temporal patterns of behavior),
and topographical knowledge (spatial patterns of behavior). This set of categories is
viewed as being complete for a given domain in the sense that all available
knowledge can be expressed in terms of one of these classifications.

Reynolds [1] looked at the roles and contribution of these five generic knowledge
classes (normative, topographical, domain, situational, and history knowledge) to the
optimization problem-solving process using Evolutionary Programming (EP) as the
population model. They observed the emergence of certain problem solving phases in
terms of the relative performance of different knowledge sources over time. They
labeled these phases as coarse grained, fine grained, and backtracking phases. Each
phase is characterized by the dominance of a suite or subset of the knowledge sources
that are most successful in generating new solutions in that phase. In fact, the
dominant subset of knowledge sources is often applied in a specific sequence within
each phase. It appears that one knowledge source produces new solutions that are
consequently exploited in by another knowledge source. Transitions between phases
occur when the solutions produced by one phase can be better exploited by
knowledge sources associated with the next phase. These phases emerged in static,
dynamic, and deceptive problem environments.

The coarse grained phase often dominates at the beginning of the search process or
when the problem solving landscape changes dynamically, and a search for a new
solution must begin anew. In the coarse grained phase topographical knowledge
dominates, producing the best new solution over 50% of the time. Situational
knowledge is the second most successful, producing the best new solution over 25%
of the time. In the fine-grained phase situational knowledge is the most successful at
generating the best new individual, while Normative and Domain knowledge are a
distant second best. In the backtracking phase all of the knowledge sources are
equally successful at generating new solution. Static problems are the exception, in
which cases the history component has little effect. Likewise, in non-deceptive
environments backtracking occurred less frequently than the other two phases.

 Knowledge-Based Constrained Function Optimization Using Cultural Algorithms 105

Cultural Algorithms can provide a flexible framework in which to study the
emergence of complexity in a multi-agent system (MAS) [2]. In this scenario the
Cultural Algorithms framework has been embedded within the recursive porous agent
simulation tool (Repast) [3], producing a toolkit that is called Cultural Algorithms
Toolkit (CAT). This tool is used to view the power Cultural Algorithms in solving
many Engineering problems and other type of problems [4].

While many successful real-world applications of Cultural Algorithms have been
produced, we are interested in studying the fundamental computational processes
involved the use of Cultural Systems as problem solvers. In previous work the
influence of the knowledge sources have been on individuals in the population only.
The goal of this paper is to examine how Cultural Algorithms solve nonlinearly
constrained global optimization problems. In our investigation here, we employ a set
of standard test problems with differentiable objective functions [reference]. These
test problems are considered diverse enough to cover many kinds of difficulties that
constrained global optimization faces. Agents then interact socially via the various
knowledge sources to find the optimum after weaving the social fabric to motivate
interaction. We then investigate the emergence of social patterns in both the
population space and the Belief space when the problem is successfully solved.

In this new approach, the Social Fabric influence function is the key to finding the
optimal for a certain minimization problem. The agents are connected through a
topology that determines connectivity type between agents, through which the fabric
is weaved after the initial signal is sent from the Knowledge Sources.

2 Cultural Algorithms

The basic pseudocode of Cultural Algorithm is given as follow:

Begin
 t = 0;
 initialize Bt, Pt
 repeat
 evaluate Pt

 update(Bt, accept(Pt))
 generate(Pt, influence(Bt))
 t = t + 1;
 select Pt from Pt- 1

 until (termination condition achieved)
End

Here Pt represents the Population component at time t, and Bt for the Belief Space
at time t. The algorithm begins by initializing both the Population and the Belief
Space. Then it enters the evolution loop until the termination condition is satisfied.

At the end of each generation, individuals in the Population Space are first
evaluated with a performance function obj(). An acceptance function, accept() is then
used to determine which individuals will be allowed to update the Belief Space.
Experiences of those chosen elite individuals are then added to the contents of the
Belief Space via function update(). Next, knowledge from the Belief space is allowed

106 M. Ali et al.

to influence the selection of individuals for the next generation of the population
through the influence() function. The two feedback paths of information, one through
the accept() and influence() functions, and the other through individual experience
and the obj() function create a system of dual inheritance of both population and
Belief.

The CA repeats this process for each generation until the pre-specified termination
condition is met. In this way, the population component and the Belief space interact
with and support each other, in a manner analogous to the evolution of human culture.

2.1 Knowledge Sources

Five basic categories of cultural knowledge have been identified: Normative
Knowledge (NN), Situational Knowledge (SN), Domain Knowledge (DN), History
Knowledge (HN), and Topographical Knowledge (TN).

Normative Knowledge is a set of promising variable ranges that provide standards
for individual behaviors and guidelines within which individual adjustments can be
made [5]. Normative Knowledge leads individuals to “jump into the good range” if
they are not already there.

Situational Knowledge provides a set of exemplary cases that are useful for the
interpretation of specific individual experience. Situational Knowledge leads
individuals to “move toward the exemplars”.

Topographical Knowledge was originally proposed to reason about region-based
functional landscape patterns [6]. The whole landscape is divided into cells according
to spatial characteristics and each cell keeps track of the best individual in its region.
Topographical Knowledge guides individuals to emulate the cell-best (similar to local
optima).

Domain Knowledge uses knowledge about the problem domain to guide search.
For example, in a functional landscape composed of cones, knowledge about cone
shape and the related parameters will be useful in reasoning about them during the
search process.

Historical or Temporal Knowledge monitors the search process and records
important events in the search. These important events may be either a significant
move in the search space or a detection of landscape change. Individuals guided by
the History Knowledge can consult those recorded events for guidance in predicting a
move direction or shift of system resources.

The five categories of knowledge that have been identified in CA systems were
added at different times to achieve different problem-solving capabilities [1] [5] [6].
Reynolds has suggested that this set of knowledge sources is complete in that any
cultural knowledge can be expressed as some combination of the five. When woven
together, they show interesting collective behaviors regarding different roles in the
search process which we call Cultural Swarm.

These five knowledge sources are used with only minor modifications from the
Cones-World problem. This rather seamless transition was another interesting and
rather unexpected event. It suggests to us that these five knowledge sources provide
sufficient coverage to deal with broad classes of problems.

 Knowledge-Based Constrained Function Optimization Using Cultural Algorithms 107

2.2 Communication Protocols

The acceptance function selects the individual experiences that will be used to update
the Belief space at each generation. Here, the acceptance function will take the
experiences of the top individuals in the population and use that information to update
all of the knowledge structures.

Individuals are updated using the same framework as in [7]. The key here is that
the knowledge sources communicate with each other through the update process. That
is, if one knowledge source produces a new high performing individual, that
individual can be used to potentially adjust each of the other knowledge sources. This
allows other sources to exploit this new knowledge.

The acceptance function determines which individuals and their behaviors can
impact the Belief space knowledge. It is often determined as a percentage of the
number of current individuals ranging between 1% and 100% of the population size,
based upon selected parameters such as performance. For example, we can select the
best performers (e.g. top 10%), worst performers (e.g. bottom 10%), or any
combinations.

Also, a modified dynamic acceptance function can be used by changing the
number of accepted individuals over time, using the following function

⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎥

⎢⎣
⎢+=)

%
(%

k

p
ptopaccept (1)

where p represents the percentage of the population space that will affect the Belief
space; k is the number of time steps or generations in the current environment, and is
reset to one with every environmental change.

The idea is illustrated in Figure 2, where the number of accepted individuals is
doubled when k equals 1 in the above function. As the k increase the number of
accepted individuals decreases. For example, if p in the acceptance function above is
set to 20%, the number of the accepted individuals in the first generation (where k
equals 1) will be 40% of the population space. In the second generation (when k
equals 2), the number of accepted individuals is 30% of the population space.

The choice of influence function has a great impact on the problem solving
process. Some influence functions are more successful than others, as measured by
the success of the agents that each has influenced in the past. Early influence
functions randomly applied the five knowledge sources to individuals in the
population in order to guide their problem solving process. However, it was felt that
some systematic application of the knowledge sources would be beneficial to the
problem solving process.

Fig. 2. Changing acceptance function

108 M. Ali et al.

The influence function determines how the knowledge sources can influence the
population. Here, when an individual is to be modified, the social fabric influence
function interferes at the end of each generation and is weaved starting from the initial
signal sent to the individuals, and ends up with the bidding procedure that happens
between the individuals based on the constructed topology of interaction. Thus, as the
population moves through the search landscape some knowledge sources may become
more successful and others less successful.

2.3 The Cultural Algorithms Toolkit

Cultural Algorithms [8] can provide a flexible framework in which to study the
emergence of complexity in a multi-agent system (MAS) [3]. In this scenario the
Cultural Algorithms framework has been embedded within the recursive porous agent
simulation tool (Repast) [3], producing a toolkit that is called Cultural Algorithms
Toolkit (CAT) [4].

Fig. 3. The basic organization of the implementation of the CAT system in the Repast
Integrated development Environment

This software tool is used to investigate the ability of Cultural Algorithms to solve
many Engineering design problems among others [9]. Figure 3 gives the software
architecture of how CAT is implemented in the basic Repast Integrated Development
Environment.

3 Related Work

Several researchers have used different types of Algorithms for solving constrained
optimization problems. A quick overview is as follows:

Coello and Mezura [10] implemented a version of the Niched-Pareto Genetic
Algorithm (NPGA) [11] to handle constraints in single-objective optimization
problems. The NPGA is a multiobjective optimization approach in which individuals
are selected through a tournament based on Pareto dominance. However, unlike the
first NPGA, Coello and Mezura’s approach does not require niches (or fitness sharing
[10]) to maintain diversity in the population. The NPGA is shown to be a more

 Knowledge-Based Constrained Function Optimization Using Cultural Algorithms 109

efficient technique than traditional multi-objective optimization algorithms, because it
only uses a sample of the population to estimate Pareto dominance.

Deb [12] proposed a Genetic Adaptive Search (GeneAS) to solve engineering
optimization problems. He uses both, binary and real encodings for each solution.
This approach was tested on three engineering problems [12], emphasizing problems
that have discrete and continuous variables. The obvious drawback of the approach is
the need of implementing combined operators for the special encoding adopted which
can be complex.

Mezura-Montes [10] presented an enhanced Evolutionary Algorithm that doesn’t
require the definition of extra parameters other than those used by the Evolutionary
strategy. The implemented mechanism allows the algorithm to maintain diversity
during the process. Reynolds [14] implemented an algorithm that uses the Marginal
Value Theorem (MVT) to influence the individuals in the population and drive the
process of obtaining better solutions. The algorithm was a more efficient one than the
one presented in [1] [2].

4 The Social Fabric Influence Function

In this section we present the concept and mechanism through which the social fabric
influence function can be used to direct the decisions of the individual agents in
problem solving.

4.1 Concept

Knowledge sources are allowed to influence individuals through a network. From a
theoretical perspective we view individuals in the real world as participating in a
variety of different networks. Several layers of such networks can be supported within
a population. The interplay of these various network computations is designated as the
“social fabric”. This notion of social fabric has appeared metaphorically in various
ways within Computer Science. For example, IBM among others developed tools to
reinforce the “social fabric” whereby designers and programmers interact to solve
complex problems [17].

We adapt the Brock-Durlauf model of interactive discrete choice [18] to arbitrary

interaction topologies represented by an arbitrary adjacency matrix г: All individuals
face the binary choice set S = {-1, 1}: Let agent i choose ωi, ωi Є S, so as to maximize
her utility, which depends on the actions of her neighbors: Ui = U(ω , ω),

where ω denotes the vector of dimension di containing as elements the decisions
made by each of agent i's neighbors, j . The I-vector of all agents' decisions, ω= (ω , … ,ω); is also known as a configuration, and ω is known as agent i's
environment. We assume that an agent's utility function Ui is additively separable in a
private utility component, which without loss of generality (due to the binary nature
of the decision) may be written as hωi, h > 0; in a social interactions component,
which is written in terms of quadratic interactions between her own decision and of

the expectation of the decisions of her neighbors, ω , ω | | ∑ ω ; and

a random utility component, ω ; which is observable only by the individual i.

110 M. Ali et al.

The social fabric is viewed as a computational tool that influences the action and
interaction of the various knowledge sources. Informally, we have N networks and M
individuals. An individual can be associated with one or more networks. For a given
network only certain information is allowed to flow along that network between
nodes. Each network can be viewed as being produced by a single thread that links up
the participating nodes.

4.2 Weaving the Social Fabric into the CAT System

The networks that comprise the social fabric can emanate from either the Belief Space
or from individuals in a network within the Population Space. In terms of the
population, the network could reflect a kinship network or an economic network for
example. In terms of the Belief Space, the network could be the Internet, or a local
area network, or some other network directly accessible to the knowledge sources. It
may be that the Knowledge Sources know something about the networks that they can
access but are not sure how those networks are linked up to the low level social
networks of the population. In other words, they may be aware of the outer layer of
the social fabric, but can only infer about what is in the interior lining.

From the standpoint of the Knowledge Sources they can seed or influence a subset
of individuals in the population, and that subset may have population level effects but
the knowledge sources can only guess what they might be. The key is to “seed” a
subset of the population so that they can affect other networks within a population.

As a simple example configuration in CAT we can simply specify just one
network, one that is accessible to the Knowledge Sources in the Belief Space. What

Fig. 4. Embedded the Social Fabric component in the Cultural Algorithms Toolkit with
activated dynamics in the environment

 Knowledge-Based Constrained Function Optimization Using Cultural Algorithms 111

we wish to investigate is whether just having access to the Social Fabric is sufficient
for the Knowledge Sources to improve the performance of the influence function as
opposed to not having a network to distribute their influence at all.

The process is illustrated in figure 4 where each individual first will be influenced
by one knowledge source (as a special case) that will represent the initial signal to be
passed to other individuals. The signal is passed to adjacent individuals in the
topology based on the network connectivity. The individual is represented as a node
in the landscape, where the number of connections or hops over which it can transmit
this information to its neighbors corresponds to its influence. The maximum number
of hops can be either 0 or d meaning either no connections or d connections at a time.
The simplest case is configured by assuming that each individual is connected to a
fixed number of other individuals using a constant topology. The topologies that we
used here were taken from work in Particle Swarm Optimization where the impact of
various topologies on the communication of local information among particles has
been studied.

Several frequently used topologies taken from the Particle Swarm Optimization
literature are supported in CAT. For example, the lBest model is the simplest form of
a local topology is known as the ring model. The lBest ring model connects each
individual to only two other individuals in the landscape and is shown in figure 5(a).
Another frequently used topology is the gBest topology. In this topology each
individual in the network is connected to all the individuals in the network as shown
in figure 5(b). The advantage of the lBest model may lie in its lower convergence rate
relative to the gBest model which may reduce the change of premature convergence to
a false peak.

Another topology supported in CAT is the square topology in which each
individual has four connections in addition to other individuals in the population.

(a) (b)

Fig. 5. Topologies used in the Social Fabric model for connection between individuals. (a)
lBest ring topology. (b) gBest topology.

At each time step, every individual is influenced by one of the knowledge sources.
In this simplest version, Knowledge Sources (KS) do not know anything about the
network and the selected individuals’ position in it. The individual then transmits the
name of the influencing Knowledge Source to its neighbors through as many hops as
specified. Next, each node counts up the number of Knowledge Source bids that it
collects. The Knowledge Source that has the most votes is the winner and will direct

112 M. Ali et al.

the individual for that time step. This can be viewed as a weighted majority vote
situation. This approach was used in Reynolds early Cultural Algorithms [19].

In case of a tie in the voting process, there are several tie breaking rules
implemented in CAT. They include, select the “most frequently used KS, “the least
frequently used Knowledge Source”, and “the Knowledge Source that selected the
individual this time”, among others.

5 Experimental Framework and Results Analysis

In this section the results of application of the new social influence function, the
Social Fabric, to different problems with varying complexity in terms of dimensions,
and nonlinear constraints. Results are compared with other well-known algorithms
from literature.

5.1 Experimental Framework

The number of individuals is fixed to 100. If a tie is found the resolution approach
used is to use the Knowledge Source that directly affected the individual at that step.

The algorithm will be tested on a set of standard test problems G1-G13 [18] [20]
[21] [22] except G2, since the objective function of problem G2 is not differentiable.
These test problems are considered diverse enough to cover many kinds of difficulties
that constrained global optimization faces [18] [23] [24], and have been used to test
performances of algorithms for constrained global optimization.

The algorithm was used to solve each problem 30 times with 100 individual agents
in the population space. The number of generations is set to a maximum of 15000
generations which is for problems G1 and G13. We experimented with different kinds
of topologies through which we found that the best was the lBest topology.

Throughout the next subsection, we will use problem G4 to illustrate in detail how
Cultural Algorithms solve such constrained optimization problems efficiently.

5.2 Analysis of Results

The approach used by Reynolds in [14] did not assume that there is any kind of
connection between the individuals in the population space. Knowledge sources will
pass their signals to the individuals at each time step. Our approach uses different
topologies to pass abstract information obtained from the Knowledge Sources and
then weave the social fabric to allow the individuals to pass the received info through
the assumed used topology. The amount of interaction appears to affect the way the
system solves the presented problem of a certain complexity. Not only the individual
follows the successful Knowledge Source but also tries to adapt through neighbors in
the built network to find a better value in the landscape.

To understand how the technique works, we will discuss the details of a drill-down
through problem G4, which has 5 dimensions and nonlinear complex constraints, and
is stated as follows:

 Knowledge-Based Constrained Function Optimization Using Cultural Algorithms 113

min = 5.3578547 32 + 0.8356891 3 5 + 37.293239 1 − 40792.141
 s.t.

Where

The bounds:

 U = (102, 45, 45, 45, 45) and L = (78, 33, 27, 27, 27).

Global minimum:

 = (78, 33, 29.995256025682, 45, 36.775812905788), = −30665.539.

The population swarm plots in Figures 6-a and 6-b show the population (individuals)
moving within the problem’s constructed landscape using the lBest topology used by
our Social Fabric (SF) approach. Each individual is shape coded to reflect the
knowledge source that has influences it in that generation. The best individual of a
generation is stressed using an ‘X’. Since the results of the dimensions of problems can
be explained similarly we discuss only dimensions x1 and x2. Figure 7 shows a sample
of the constructed Social Fabric-lBest topology for problem G4.

Figures 6-a and 6-b show the initial generation and generation 119 when running
the system using the Social Fabric-lBest to illustrate how the different knowledge
sources work under the influence of the social fabric technique to control individuals.
The Topographic Knowledge followers draw the fine-tuning knowledge followers:
Situational, Normative, and most of the Domain Knowledge followers. By generation
119 most of the individuals are swarming around the best. Topographic knowledge
individuals are still exploring the space hoping to find a better solution to report it
later to the fine-tuning knowledge followers.

The power behind the algorithm lies in using the bounding boxes that the system
calculates at each time step for each of the Knowledge Sources as illustrated in figure 8.
A bounding box represents the standard deviation of each “dot” produced during that
generation for the mutation process. It is considered to be the focus of the generation
process by each knowledge source. The main idea is how these bounding boxes of the
Knowledge Sources interact (overlap area), and how focused these bounding boxes are
at each time step. The branching phase of the algorithmic process is shown in Figures 8-
a and 8-b, where initially the bounding boxes associated with the Topographic and

1 = − 92 ≤ 0,2 = − ≤ 0,3 = − 110 ≤ 04 = − + 90 ≤ 0,5 = − 25 ≤ 0,6 = − + 20 ≤ 0,
= 85.334407 + 0.0056858 + 0.0006262 − 0.0022053 , = 80.51249 + 0.0071317 + 0.0029955 + 0.0021813 , = 9.300961 + 0.0047026 + 0.0012547 + 0.0019085 .

114 M. Ali et al.

Fig. 6. Population swarm o
generation 1. (b) Plotted at gen

(a)

(b)

of dimension x1+x2 using the lBest topology. (a) Plotted
neration 119.

d at

 Knowledge-Based Constr

Fig. 7. A sample Socia

Fig. 8. Knowledge Swarm Plo
generation 119.

rained Function Optimization Using Cultural Algorithms

al Fabric swarm plot for problem G4 using lBest topology

(a)

(b)

ot of dimension x1+x2. (a) Plotted at generation 1. (b) Plotte

115

ed at

116 M. Ali et al.

Normative Knowledge Sour
place with time and the b
separated from those for the
have surrounded the optima
are effectively channeling ne

Tab

Table 1 shows the best k
report in Table 1 the best an
test problem. To understan
value, and the standard dev
runs are given. Moreover,
before we stop each run, us
columns two of Table 1 for
statistical comparison betw
from literature. When plo
different shapes to indicate
that time step.

rces cover most of the space. The exploitation process ta
bounding boxes for the fine-grained search process h
e coarse-grained phase (focused search vs. wider search)
al value for this pair of dimensions. These bounding bo
ew individuals into this area as can be seen in figure 8-b.

le 1. Tests results for problems G1-G13

known objective function value in the second column.
nd the worst optimal values obtained from 30 runs for e
nd quality of the obtained solutions, the average optim
viation of the obtained objective function values for all
, the success rate, the maximum number of generati
ed to obtain these results in 30 runs, are reported in the
r each problem respectively. The results in table 2 sho

ween our new approach and some other known approac
otting the population swarms, individuals are plotted

which knowledge source is in control of that individua

akes
have
and

oxes

We
each
mal
l 30
ions
last
w a

ches
d in
al at

 Knowledge-Based Constr

Table 2. Co

6 Conclusions

The Cultural Algorithm
evolutionary algorithmic
behaviors. Just as cultural e
CA provides an additional
paper we have introduced
Algorithms framework. Th
swarms that are used to
problems. The Social Fabr
their influence through a so

We applied this appro
optimization problems. It

rained Function Optimization Using Cultural Algorithms

omparison of test results for problems G1-G13

(CA) is a stochastic optimization method that u
mechanisms to model cultural evolution and so

evolution contributes to the adaptability of human soci
degree of adaptability to evolutionary computation. In
the social fabric influence (SFI) function in the Cultu

his influence function produces population and knowle
o optimally solve nonlinearly constrained optimizat
ric metaphor allows the knowledge sources to distrib

ocial network.
oach to a set of well-known nonlinearly constrai

turns out that the topology employed, frequency

117

uses
cial
ety,
this
ural
dge
tion
bute

ined
 of

118 M. Ali et al.

distribution of influence, and the conflict resolution mechanisms selected play an
important role in how efficiently the system produces knowledge and population
swarms for a given problem.

In future work we will investigate the construction of hierarchically structured
social fabrics for use within the solution of a suite of problem presented to the system
in a simultaneous fashion.

References

1. Reynolds, R., Saleem, S.: The Impact of Environmental Dynamics on Cultural Emergence.
In: Festschrift, in Honor of John Holland, pp. 1–10. Oxford University Press, Oxford
(2003)

2. Reynolds, R.: A Metrics-Based System to Monitor the Stepwise Refinement of Program
Modules. In: Fourth Conference on Intelligent Systems and Machines, April 29-30,
Oakland University (1986)

3. North, M., Collier, N., Vos, J.: Experiences Creating Three Implementations of the Repast
Agent Modelling Toolkit. ACM Transactions on Modelling and Computer
Simulation 16(1), 1–25 (2006)

4. Reynolds, R., Ali, M.: Exploring knowledge and population swarms via an agent-based
Cultural Algorithms Simulation Toolkit (CAT). In: IEEE Congress on Evolutionary
Computation CEC 2007, September 25-28, pp. 2711–2718 (2007)

5. Chung, C., Reynolds, G.R.: CAEP: An Evolution-based Tool for Real-Valued Function
Optimization using Cultural Algorithms. International Journal on Artificial Intelligence
Tools 7(3), 239–291 (1998)

6. Jin, X., Reynolds, G.R.: Using Knowledge-Based Evolutionary Computation to Solve
Nonlinear Constraint Optimization Problems: a Cultural Algorithm Approach. In:
Proceeding of the 1999 Congress on Evolutionary Computation, pp. 1672–1678. IEEE
Press, Washington DC (1999)

7. Rychtyckyj, N., Ostrowski, D., Schleis, G., Reynolds, G.R.: Using Cultural Algorithms in
Industry. In: Proceedings of IEEE Swarm Intelligence Symposium. IEEE Press,
Indianapolis (2003)

8. Reynolds, R.G.: An Introduction to Cultural Algorithms. In: Proceedings of the 3rd
Annual Conference on Evolutionary Programming, pp. 131–139. World Scientific
Publishing, Singapore (1994)

9. Reynolds, R.G., Ali, M.Z.: Embedding a Social Fabric Component into Cultural
Algorithms Toolkit for an Enhanced Knowledge-Driven Engineering Optimization.
International Journal of Intelligent Computing and Cybernetics 1(4), 563–597 (2008)

10. Coello, C., Mezura-Montes, E.: Handling Constraints in Genetic Algorithms Using
Dominance-Based Tournaments. In: Parmee, I. (ed.) Proceedings of the Fifth International
Conference on Adaptive Computing Design and Manufacture (ACDM 2002), University
of Exeter, Devon, UK, vol. 5, pp. 273–284. Springer, Heidelberg (2002)

11. Horn, J., Nafpliotis, N., Goldberg, D.: A Niched Pareto Genetic Algorithm for
Multiobjective Optimization. In: Proceedings of the First IEEE Conference on Evolutionary
Computation, WCCI, vol. 1, pp. 82–87. IEEE Service Center, Piscataway (1994)

12. Deb, K., Goldberg, D.: An Investigation of Niche and Species Formation in Genetic
Function Optimization. In: Schaffer, J.D. (ed.) Proceedings of the Third International
Conference on Genetic Algorithms, pp. 42–50. Morgan Kaufmann Publishers, San Mateo
(1989)

 Knowledge-Based Constrained Function Optimization Using Cultural Algorithms 119

13. Deb, K., Goyal, M.: A Combined Genetic Adaptive Search GeneAS for Engineering
Design. Computer Science and Informatics 26(4), 30–45 (1996)

14. Reynolds, R., Peng, B.: Cultural algorithms: computational modeling of how cultures learn
to solve problems: an engineering example. Cybernetics and Systems 36(8), 753–771
(2005)

15. Coello, C.: Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied
Mechanics and Engineering 191, 1245–1287 (2002)

16. Coelho, L., Souza, R., Mariani, V.: Improved differential evolution approach based on
cultural algorithm and diversity measure applied to solve economic load dispatch
problems. Mathematics and Computers in Simulation 79(10) (2009)

17. Cheng, L., Patterson, J., Rohall, S., Hupfer, S., Ross, S.: Weaving a Social Fabric into
Existing Software. In: AOSD 2005: Fourth International Conference on Aspect-Oriented
Software Development, Chicago, IL, RC23485 (2005)

18. Brock, W.A., Durlauf, S.N.: Discrete Choice with Social Interactions. Review of
Economic Studies 68(2), 235–260 (2001)

19. Reynolds, R.G.: On Modeling the Evolution of Hunter-Gatherer Decision-Making
Systems. Geographical Analysis 10(1), 31–46 (1978)

20. Hedar, A., Fukushima, M.: Derivative-free filter simulated annealing method for
constrained continuous global optimization. Journal of Global Optimization 35, 521–549
(2006)

21. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Springer,
Heidelberg (1981)

22. Koziel, S., Michalewicz, Z.: Evolutionary algorithms, homomorphous mappings, and
constrained parameter optimization. Evolutionary Computation 7(1), 19–44 (1999)

23. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter
optimization problems. Evolutionary Computation 4(1), 1–32 (1996)

24. Wenxing, Z., Ali, M.: Solving nonlinearly constrained global optimization problem via an
auxiliary function method. Journal of Computational and Applied Mathematics (2009)

Reconstructing Dynamic Target Functions by Means of
Genetic Programming Using Variable Population Size

Leonardo Vanneschi1 and Giuseppe Cuccu2

1 Dipartimento di Informatica, Sistemistica e Comunicazione (D.I.S.Co.)
University of Milano-Bicocca, Milan, Italy

2 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Lugano, Switzerland

Abstract. Dynamic environments are becoming more and more popular in many
applicative domains. A large amount of literature has appeared to date deal-
ing with the problem of tracking the extrema of dynamically changing target
functions, but relatively few material has been produced on the problem of re-
constructing the shape, or more generally finding the equation, of dynamically
changing target functions. Nevertheless, in many applicative domains, reaching
this goal would have an extremely important impact. It is the case, for instance,
of complex systems modelling, like for instance biological systems or systems of
biochemical reactions, where one is generally interested in understanding what’s
going on in the system over time, rather than following the extrema of some tar-
get functions. Last but not least, we also believe that being able to reach this
goal would help researchers to have a useful insight on the reasons that cause the
change in the system over time, or at least the pattern of this modification. This
paper is intended as a first preliminary step in the attempt to fill this gap. We show
that genetic programming with variable population size is able to adapt to the en-
vironment modifications much faster (i.e. using a noteworthy smaller amount of
computational effort) than standard genetic programming using fixed population
size. The suitability of this model is tested on a set of benchmarks based on some
well known symbolic regression problems.

1 Introduction

Many real-world problems are anchored in dynamic environments, where some element
of the problem domain, typically the target, changes with time. For this reason, develop-
ing solid evolutionary algorithms (EAs) to reliably solve these problems is an important
task. The application of evolutionary computation (EC) to dynamic environments cre-
ates challenges different to those encountered in static environments. Foremost among
these, are issues of premature convergence, and the evolution of overfit solutions. In the
last few years, many contributions have appeared which studied dynamic optimization
environments and developped new evolutionary frameworks for solving them. Some of
those contributions are discussed in Section 2. Nonetheless, the majority of those ap-
proaches are based on Genetic Algorithms (GAs) [17] or Particle Swarm Optimization
(PSO) [8] and the problem objective is to find the extrema (maxima or minima) of a
target function that changes with time. On the other hand, very few contributions have

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 121–134.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

122 L. Vanneschi and G. Cuccu

appeared to date that study the ability of Genetic Programming (GP) [22] to reconstruct
target functions on dynamic optimization environments.

In this paper we hypothesize that variable size population GP is a promising method
for dynamic optimization problems. This idea is not new in evolutionary computation;
for instance, it has been applied to PSO in [13]. However, it has never been applied to
GP before. We propose a variable size population GP model called DynPopGP. It is
inspired by the one presented in [28]. Simply speaking, it works by shrinking the popu-
lation when fitness is improving and increasing its size, by adding new genetic material,
when the evolution stagnates. Our hypothesis is that when the target function changes,
evolution of the current population should stagnate. (because it has been evolved to
approximate the previous target function). Thus the evolution should benefit from the
creation of new genetic material, that should give the necessary amount of diversity to
start the optimization of a new target function.

Simply speaking, the motivation for this hypothesis is the following: assume the op-
timization environment we want to study is characterized by a dynamic target function
that, at different time intervals can assume the value of one of the functions belong-
ing to a given set { f1, f2, ..., fn}. Let f1 be the target function at time interval 1. Sup-
pose GP is executed for some generations using f1 as target function. It is likely that
the GP popultion will loose diversity (see for instance [7]) and individuals will tend
to specialize for approximating f1. Assume now that the target function changes and
becomes f2. According on how different f2 is from f1, the GP population may have
problems in re-adapting for the optimization of f2. We hypothesize that in many cases
re-initializing the population with random individuals would be a better strategy than
trying to optimize f2 with a population specialized for f1. But of course the population
can be re-initialized only if we assume that we know the instant when the target func-
tion changes from f1 to f2, which is clearly not acceptable in practice. For this reason,
we develop a variable size GP framework that should adapt the population size with the
following principle: we decrease the population size when the algorithm is progressing
(i.e. fitness is improving) and we increase it, adding new individuals, when fitness does
not improve anymore. In this way, when the target function changes from f1 to f2, we
count on having a small population composed by individuals specialized for f1. This
population will be then filled with random individuals, thus tending towards a situation
that approximates a re-initialization of the population. This re-initialization would be
automatic and the proposed framework does not assume any knowledge of the instants
when the target function changes.

We test our hypothesis on a set of symbolic regression dynamic test functions, dis-
cussed in Section 4.

This paper is structured as follows: in Section 2 we discuss previous contributions
in dynamic optimization. In Section 3 we discuss the reasons why it is not suitable to
directly apply the GP model presented in [28] to dynamic optimization and we present
DynPopGP that extends it. Section 4 contains a description of the test problems and
presents the experimental setting used in this paper. In Section 5 we show the obtained
experimental results. Finally, Section 6 concludes the paper and suggests directions for
future research.

Reconstructing Dynamic Target Functions by Means of Genetic Programming 123

2 Dynamic Optimization, Previous and Related Work

Most research on EC focuses on optimization of static, non-changing, problems. Many
real-world optimization problems, however, are actually dynamic, and optimization
methods capable of continuously adapting the solution to a changing environment are
needed. The main problem with standard EAs used for dynamic optimization problems
appears to be that EAs eventually converge to an optimum and thereby loose their di-
versity necessary for efficiently exploring the search space and consequently also their
ability to adapt to a change in the environment when such a change occurs.

Over the past few years, a number of authors have addressed the problem of EAs
premature loss of diversity in dynamic environments in many different ways. Surveys
of these studies can be found for instance in [2,3,4,5]. Interestingly, in [3] Branke
proposes a classification of these approaches into four broad categories: (1) Approaches
that run EAs in a standard fashion, but, as a change in the environment is detected, take
actions to increase diversity and thus facilitate the shift to the new optimum [9,30].
(2) Approcahes that reinject diversity in the population at all the time, hoping that this
can allow the EA to adapt to changes more easily [19,23]. (3) Approaches that supply
EA with memory, able to recall useful information from past generations, which seems
especially useful when the target repeatedly returns to previous locations [18,24,10].
(4) Approaches that split the EA population in multiple subpopulations, some to track
known local optima, some to search for new optima [6,29].

Contributions that belong to category (1) are for instance [9], where an hypermuta-
tion operator is defined to drastically increase diversity for some number of generations
and a variant thereof, called variable local search presented in [30]. Contributions that
belong to category (2) include [19], where the concept of random immigrants (ran-
domly generated individuals that enter the population at each generation) is introduced
and [23], where a new approach called termodynamical GA is presented. Contributions
that use memory-based approaches (category (3)) include, for instance, studies on mul-
tipolidy, like, among many others [18,24], other redundant representation schemes like
the one presented in [10], or the work of Branke [2]. Contributions that belong to cat-
egory (4) are for instance [6], where so called self-organizing-scouts are introduced,
or [29], where a new model of multi-population GA, called forking GA, is presented.
More recent contributions include [31] where, based on the concept of problem dif-
ficulty, a new dynamic environment generator using a decomposable trap function is
proposed; [20], where a coevolutionary agent-based model is used; [26] where the use
of mutation for diversity maintenance is investigated and [11], where the use of artifi-
cial immune networks for multimodal function optimization on dynamic environments
is studied.

All the above quoted contributions treat the problem of tracking the extrema in a dy-
namic environment, where the target function changes with time and concern GAs, PSO
or other EAs variants. Very few contributions have appeared to date dealing with the
(more complex) problem of approximating/reconstructing target functions that change
with time by means of GP. Noteworthy recent exceptions are: [12], where financial time
series (index closing price data) are reconstructed by means of Grammatical Evolution,
and [27] where an approach for incorporating learning probabilistic context-sensitive
grammar in GP is employed for the evolution and adaptation of locomotion gaits of a

124 L. Vanneschi and G. Cuccu

simulated snake-like robot. Nevertheless, both these approaches use Grammar-Based
GP and employ it for very particular and complex applications.

The goal of this paper is different: first of all, we want to study standard tree-based
GP [22], and one variant thereof using variable size populations; secondly, we want
to present and employ (here for the first time) more simple, and thus easier to study,
test problems. The proposed GP framework is presented in Section 3 and the used test
functions in Section 4.

3 Variable Size Population GP

In 2003, an idea for counteracting the negative effects of bloat [1,25] and of premature
convergence [7] on GP was presented. It consisted in reducing the size of populations
at a linear rate [16,15]. This was achieved by removing a fixed number of individuals
at each generation. This technique was called plague and it has been shown to have
some positive effects on GP systems. That idea started from the observation of a gen-
eral behavior of GP over a wide set of problems: normally fitness improves quickly at
the beginning of GP runs and, after a number of generations, improvements are more
difficult to obtain. In this second phase, plagues allow to save computational effort, that
would be wasted otherwise, since it does not bring appreciable advantages.

On the other hand, it is clear that even if a considerable amount of computational
effort is saved, the blind deletion of individuals at each generation probably cannot lead
to the discovery of better individuals than the ones found by the standard GP process.
Furthermore, steadily decreasing populations produce a progressive loss of diversity,
especially at the genotypic level. For this reason, in [28], an extension of the plague
technique aimed at varying the population size in an intelligent way during the execu-
tion of each GP run, was presented. In that model, adds and suppressions of individuals
are operated dynamically on the basis of the behavior of the GP system: population
size is decreased while the algorithm is progressing (i.e. fitness is improving) and it
is increased when the algorithm reaches the stagnation phase. In this way, when the
algorithm is progressing, as much computational effort as possible is saved and this
previously saved effort is spent only when it is really useful, i.e. when the algorithm is
stagnating and new genetic material is needed. In [28] the decision whether to shrink
or inflate the population was taken on the basis of the relationship between the best
fitness value in the population at the current generation g (b fg) and the one at the pre-
vious generation (b fg−1). This value was stored in a variable the authors called pivot.
Two versions of pivot are presented in [28]: in the first one pivot= Δg−1/Δg and in the
second one pivot= Δg−1 −Δg, where Δg = b fg−1 − b fg. The GP model using the first
version of pivot was called DIV, while the one using the second version was called SUP
in [28].

In Section 3.1 we discuss the reasons why DIV and SUP are not suitable to solve
dynamic optimization problems and in Section 3.2 we present our new variable size
population GP model, called DynPopGP, that extends DIV and SUP.

3.1 DIV and SUP in Dynamic Environments

Both the DIV and SUP methods introduced in [28] have the following characteristics:

Reconstructing Dynamic Target Functions by Means of Genetic Programming 125

(i) The decision on whether to shrink or inflate the population is taken only on the
basis of the relationship between the best fitness values at the current generation
and at the previous one. This decision does not depend on how good those fitness
values are. In other words, this decision is the same independently from the fact
that GP has found good solutions or bad ones.

(ii) The quantity of individuals that have to be added to or suppressed from the popula-
tion depends on the current population size (in both DIV and SUP when individuals
have to be suppressed, 1% of the population is suppressed and when they need to
be added, a number of individuals equal to the 0.2% of the population is added).
Thus, additions and suppressions are more violent when the population is large.

A consequence of point (i) is that, when applied to dynamic optimization, DIV and
SUP behave exactly the same in case the algorithm stagnates on a particular target func-
tion (but the target function remains the same) and in case the target function changes.
However, when the target function changes, and in particular if the new target function
is “different enough” from the old one, we expect a more violent worsening in fitness
than when the algorithm stagnates on a fixed target function. In particular, if we use an
elitist algorithm (i.e. we copy the best, or a pool of good individuals, unchanged in the
next population at each generation), the best fitness in the population cannot worsen if
the target function stays the same. It can only worsen if the target function has changed
(because the best individual at the previous generation may change its fitness). The al-
gorithm we propose (DynPopGP) behaves in two different ways in these two different
situations.

A consequence of point (ii) is that, when the target function changes, the population
size may grow indefinitely. In fact, suppose DIV or SUP are optimizing a given target
function and are in a stagnation phase. Then, the population keeps growing. Now, as-
sume the target function changes. The population will continue growing up until the
new genetic material necessary to optimize the new target function has been created.
DynPopGP solves this problem by defining a new function to quantify the amount of
individuals that have to be added or deleted from a population.

For these reasons, we do not consider the DIV and SUP models any longer in this
paper. A detailed experimentation showing the practical advantages of DynPopGP com-
pared to DIV and SUP is definitely needed in the future.

3.2 New Variable Size Population Model

The DynPopGP algorithm we propose can be summarized by the pseudo-code in
Figure 1, where we consider minimization problems (i.e. small fitness values are bet-
ter than large ones)1. This algorithm uses a number of parameters (trg fit, old got trg,
new got trg, stand by size) and functions (update pop size, Δpop) that we describe
below. Empirical values for these parameters, coming from a set of preliminary ex-
periments, have been used in this work. More detailed sensitivity analysis on these
parameters definitely deserves to be conducted in the future.

1 The authors are aware that in case of minimization problems the term fitness is rather incorrect.
Nevertheless, they keep using it for simplicity.

126 L. Vanneschi and G. Cuccu

begin
Generate a population of N random individuals;
best = best individual in the population;
old got trg = false;
for g := 1 to maxgen do

new got trg = (fitness(best) ≤ trg fit);
if (not new got trg)

then
elitism (i.e. copy of the best);
selection;
reproduction / crossover;
mutation;
best = best individual in the new population;
new got trg = (fitness(best) ≤ trg fit);
if (old got trg)

then
// The old best had reached the target, while the new best has not reached it:
// the target function has surely changed. Set the population size to the initial size
update pop size(N - current pop size);

else
// Neither the new best, nor the old best have reached the target: update the
// population size using the Δpop function
update pop size(Δpop());

endif
else

if (not old got trg)
then

// The new best has reached the target, while the old best had not reached it.
// This means that the target has been found now. I have to spend as few
// computational effort as possible until the target function changes (or the process.
// terminates). I set the population size to a prefixed “stand-by” value

update pop size(stand by size - current pop size);
endif

endif
old got trg = new got trg;

endfor
end

Fig. 1. Pseudo-code for the DynPopGP algorithm

trg fit represents a fitness value (target) that approximates the optimum. In this work,
we have used a value equal to 0.01.

old got trg (respectively new got trg) is a boolean variable whose value is true if the
best fitness in the population at the previous (respectively current) generation is better
than or equal to the target and false otherwise.

stand by size is a small value of the population size that is used when the optimum of
a target function has been approximated in a satisfaisable way, and we have to wait for
the target function to change. In this case, the population has to be as small as possible,
so that we can save computational effort. In our work, we wanted to set this value as a

Reconstructing Dynamic Target Functions by Means of Genetic Programming 127

function of the initial population size. We have chosen a value of stand by size equal to
the initial population size divided by 4 because, by means of a set of experiments, we
have seen that this value represents a good compromise between saving computational
effort (population shrinking) and keeping some good genetic material in the population.

update pop size(x) is a function that adds |x| individuals to the population if x is
positive and suppresses |x| individuals from the population if x is negative. When |x|
individuals have to be suppressed, the population is sorted. The 2 · x worst (in terms of
fitness) individuals in the population are considered and, among these individuals, the
x largest ones (in terms of number of tree nodes) are suppressed (as it happened for the
DIV and SUP algorithms). When |x| individuals have to be added, they are randomly
generated with the same initialization method that is used at the beginning of the GP
run (ramped half-and-half in this work).

Δpop() is a function that returns the number of individuals that have to be to be added
or suppressed from the population when neither the old best fitness value nor the new
one approximate the optimal fitness value in a satisfaisable way. We want Δpop() to
be a function of the current best fitness in the population and the current population
size, which are the two basic principles that were not taken into account by the DIV
and SUP algorithms. For doing this, we define two new functions: best fit contribution
and pop size contribution and we multiply their returned values. We want the result
of this multiplication to be immediately interpretable by a human, so we impose that
the results of best fit contribution and pop size contribution belong to the range [1,10].
In this way, their product belongs to the range [1,100] and it can be interpreted, for
instance, as a percentage (which represents the respective contributions given by the
best fitness value and the population size). The Δpop() function performs the following
calculation:

Δpop() = pivot · strength ·best fit contribution() ·
pop size contribution()

where:
pivot is a variable whose value is −1 if the best fitness in the population at the

current generation is better then the one at the previous generation and +1 otherwise (in
practice, the value of pivot determines if individuals have to be added or suppressed).

strength is a variable that determines how strong populations inflate and deflate
have to be at each step, and it is used to rescale the value of best fit contribution() ·
pop size contribution(). In this work, we use a value equal to 0.3. In this way, the maxi-
mum number of individuals that can be added to or suppressed from the population is 30
(given that the maximum possible value of best fit contribution() · pop size contribu-
tion() is 100). In fact, experimental evidence confirms that adding more than 30 in-
dividuals at a time to the population eccessively increments the computational effort
without a corresponding gain in the quality of the generated solutions.

The best fit contribution() function determines the contribution given to the Δpop()
by the best fitness value reached. As we have said above, we want this function to
return a value in the range [1,10]. Furthermore, we want it to return 10 (maximum con-
tribution to the Δpop()) when the best fitness in the population is bad (fitness above a
certain threshold, 60 in this work) and to return the minimum value when the best fit-
ness in the population approximates the optimum in a satisfaisable way. The easier way

128 L. Vanneschi and G. Cuccu

best fit contribution() ::
if (fitness(best) ≤ trg fit) then return min coeff;
elsif (fitness(best) ≥ max fit) then return max coeff;

else return max coeff −min coeff · fitness(best)−trg fit
max fit−trg fit +min coeff

endif

Fig. 2. Pseudo-code for the best fit contribution function

to obtain this, is to define the best fit contribution() as a linear function, for instance
a straight line, that intersects the points (trg fit,min coeff) and (max fit,max coeff)
where min coeff is equal to 1, max coeff is equal to 10 and max fit is equal to 60. So,
the best fit contribution() function is defined by the pseudo-code in Figure 2.

Finally, the pop size contribution() function determines the contribution to the
Δpop() given by the current population size. Analogously to the best fit contribution,
we have used a linear function that returns the maximum possible value (10 in this
work) when the current population size is minimal (i.e. it is equal to stand by size, that
has been set to the initial population size divided by 4 in this work) and the minimum
possible value (0 in this work) when the current population size is maximal (i.e. smaller
or equal to stand by size).

4 Test Problems and Experimental Setting

Some benchmark problems have been defined for testing the performances of optimiza-
tion methods in dynamic environments. In particular, Branke [4,5] defines and uses
moving peaks types of functions. In these benchmarks, hand-tailored fitness landscapes
are defined and the positions of the extrema and their basins of attraction are modified
with time. Similar problems are also used, for instance, in [20,26,11].

However, this type of benchmark is not suitable for the present study. In fact, in
this work, we want to study the ability of GP to reconstruct dynamic target functions
and not follow moving extrema. With this goal in mind, it would make no sense to use
moving peaks benchmarks as the ones presented in [4,5], given that, in those kinds of
benchmark, extrema are moved by changing some additive or multiplicative constants
to a (otherwise not changing) target function. If one uses GP with linear scaling (intro-
duced in [21]), the moving peaks problem reduces to a static GP problem, given that
linear scaling allows to reconstruct the shape of the target functions, offering a method
to automatically determine additive and multiplicative constants.

For this reason, in this paper we define a new set of benchmark problems that can be
used to test GP ability to reconstruct target functions in dynamic environments. These
benchmarks are symbolic regression problems inspired by [21]. In particular, maintain-
ing the same terminology as in [21], we have considered test functions F12, F13, F14,
F15 and F16 (presented in [21] at page 9) and we have used them to build dynamic
test problems in which the importance of the modification of the target function can be
tuned. Even though presented in [21], we also report here the equations for these func-
tions: F12(x,y) = xy + sin((x− 1)(y− 1)), F13(x,y) = x4 − x3 + y2/2− y, F14(x,y) =
6 sin(x) cos(y), F15(x,y) = 8/(2 + x2 + y2) and F16(x,y) = x3/5− y3/2− y− x.

Reconstructing Dynamic Target Functions by Means of Genetic Programming 129

begin
Define a set of test functions F = { f1, f2, ..., fn}
for g := 1 to maxgen do

For each fitness case (x,y), the target value is:
n

∑
i=1

fi(x,y);

if (g mod period = 0) then ∀1 ≤ i ≤ n : fi := succ(fi) endif
endfor

end

Fig. 3. Pseudo-code for target calculation in benchmark problems BENCH1, BENCH2 and
BENCH3 The difference between these benchmark is in the size of set F : n = 2 for BENCH1;
n = 3 for BENCH2 and n = 4 for BENCH3

As in [21], for all these functions the fitness cases are created by generating 20 ran-
dom values (with uniform distribution) for x and y in the range [−3,3].

We are aware that these test functions are bi-dimensional and thus do not repre-
sent real-life applications (typically characterized by many features and thus multi-
dimensional), nevertheless, as reported in [21] at page 8: “The aim of this set of exper-
iments is to demonstrate the practical implications of the use of the [method] studied
here. Being of low dimensionality does not make the problems easy however. Many of
the problems above mix trigonometry with polynomials, or make the problems in other
ways highly non-linear”.

Using these test functions, we have built three benchmarks for dynamic optimization
that we have called BENCH1, BENCH2 and BENCH3. The target function at each
generation is calculated by the algorithm in Figure 3, where given a test function Fi,
with 12 ≤ i ≤ 15 succ(Fi) = Fi+1 and succ(F16) = F12. The difference between these
benchmaks is in the cardinality of the set of functions F used for calculating the target:
for BENCH1, F contains two functions. These functions are F12 and F13 at generation
1. The target value is calculated performing the sum of these two functions for each
couple of points (x,y). At each period generations, one of the two functions changes
(i.e. it is deleted from set F and replaced by another function), while the other stays the
same, in a cyclic way so that all the test functions are used.

BENCH2 is like BENCH1, except that F contains 3 functions, that are F12, F13 and
F14 at generation 1 and at each period generations, one of them changes, while the other
two stay the same.

BENCH3 is similar, except that F contains 4 functions, that are F12, F13, F14 and F15

at generation 1 and at each period generations, one of them changes, while the other
three stay the same.

In this way, BENCH1 has the more violent target modifications at each period gen-
erations, BENCH3 has the less violent modifications, while BENCH2 is in an interme-
diary situation.

In this work, we have used a value of period equal to 20. The other parameters used
are as follows: population size of 200 individuals; function set equal to {+,−,∗,/}
(exactly the same method as in [21] has been used to avoid divisions with denomina-
tor equal to zero and thus to ensure operators closure); terminal set composed by two
floating point variables and four ephemeal random constants; maximum tree depth for

130 L. Vanneschi and G. Cuccu

(a) (b) (c)

Fig. 4. Average best fitness against generations for stdGP and DynPopGP. (a): BENCH1; (b):
BENCH2; (c): BENCH3.

initialization equal to 6; maximum tree depth for crossover and mutation equal to 17;
tournament size equal to 10; standard subtree crossover [22] applied with probabil-
ity 0.9; standard subtree mutation [22] applied with probability 0.1; maximum number
of generations equal to 100 (in this way, given that period= 20, the process stops when
the target function returns the same as at generation 1); generational GP with elitism
(i.e. copy of the best individual unchanged in the next population at each generation).
Fitness is the root mean squared error (RMSE) between outputs and targets. All the
results reported in the next section have been obtained by performing 100 independent
runs of each GP model (standard GP and DynPopGP) for each banchmark. With stan-
dard GP we indicate the canonic (fixed size population) GP process [22].

5 Experimental Results

In Figure 4 we report average best fitness values over 100 independent runs against gen-
erations for standard GP (stdGP) and DynPopGP for BENCH1 (Figure 4(a)), BENCH2
(Figure 4(b)) and BENCH3 (Figure 4(c)). This figure clearly shows that the two GP
models find solutions of similar qualities at corresponding generations for all the three
studied benchmarks (standard deviation error bars, not shown here for simplicity, con-
firm that the differences between the curves in Figure 4 are not statistically relevant).
Seen from this perspective, the two GP models might seem equivalent. However, as
reported for instance in [14], comparing the performances of two GP models against
generations may lead to wrong conclusions, given that GP individuals have a variable
size and thus evaluating a generation for the two models may request a very different
amount of computational resources.

For this reason, in Figure 5 we report the values of the computational effort against
generations (values averaged over the same 100 runs as in Figure 4). We have consid-
ered exactly the same definition of computational effort as in [14], i.e. the computational
effort at a given generation g (Eg) is given by: Eg = PEg + PEg−1 + ... + PE1, where
the partial effort at generation g (PEg) is defined as the sum of the numbers of nodes
of all the individuals in the population at generation g. Given that fitness calculation is
often the most computationally expensive part of an EA and that in GP this calculation
largely depends on the size of the individuals in the population, this measure clearly
gives an idea of the computational complexity of executing a GP model (as claimed

Reconstructing Dynamic Target Functions by Means of Genetic Programming 131

(a) (b) (c)

Fig. 5. Computational effort against generations for stdGP and DynPopGP. (a): BENCH1; (b):
BENCH2; (c): BENCH3.

(a) (b) (c)

Fig. 6. Average best fitness against computational effort for stdGP and DynPopGP. (a): BENCH1;
(b): BENCH2; (c): BENCH3.

(a) (b) (c)

Fig. 7. Population size against generations for stdGP and DynPopGP. (a): BENCH1; (b):
BENCH2; (c): BENCH3.

in [14]). Figure 5 shows that the effort spent by DynPopGP is smaller than the one
spent by stdGP for all the three studied benchmarks. Standard deviations reported in
figure as error bars seem to hint that these results are statistically significant.

Authors of [14] report results of the average best fitness against computational effort.
We do the same in Figure 6, where it is clear that DynPopGP finds solutions of similar
quality with a smaller computational effort than stdGP.

In Figure 7 we report the average population size at each generation (calculated us-
ing the same 100 runs as in the previous figures). We can see that the population size

132 L. Vanneschi and G. Cuccu

of DynPopGP is always smaller than the one of stdGP for all the three studied bench-
marks. Nonetheless, we can notice that the population size of DynPopGP, tends to grow
at each period generations (generation number multiple of 20), because of the modifica-
tion in the target function. In some cases this growth begins slightly before the end of a
period, probably because the particular target function had already been optimized and
the stagnation phase was beginning. Another interesting thing to remark is that, after a
first phase of population shrinking, which is common in the three benchmarks, the popu-
lation growth is stronger for BENCH1 (which has the more violent target modifications)
than for BENCH3 (which has the less violent target modifications), while the behav-
ior of BENCH2 is intermediary. Furthermore, it is possible to see that for BENCH1
the population size continues to grow until the end of the run, while for BENCH2 and
BENCH3 there is a new phase in which the population starts shrinking once again (at
about generation 80 for BENCH2 and generation 60 for BENCH3).

6 Conclusions

This paper investigates the usefulness of variable size population Genetic Programming
(GP) on dynamic problems. The idea is not new in Evolutionary Computation [13], but,
to the best of our knowledge, it had never been extended to GP before. In particular,
we believe that a model inspired by the one presented in [28] should be suitable for this
kind of problems.

Contributions of this paper are: first of all, we have motivated the fact that the GP
model presented in [28], taken as it is, is not suitable for dynamic optimization prob-
lems. Successively, we have presented a GP model that extends the one introduced
in [28] and that we candidate for suitably solving dynamic optimizaton problems. We
have called that model DynPopGP. We have also defined a new set of benchmarks to
test GP models for dynamic optimization, based on some symbolic regression prob-
lems used in [21]. Finally, we have experimentally shown that DynPopGP allows GP to
save computational effort compared to standard GP, while finding solutions of the same
accuracy, at least for the studied benchmarks.

This work is clearly a first and preliminary step in this research track. The usefulness
of GP (and in particular GP with variable size population) for dynamic optimization
deserves further investigation. In particular, GP models have to be tested on hard real-
life applications, typically characterized by a large number features and few samples
and the issue of generalization to out-of-sample data deserves to be investigated.

References

1. Banzhaf, W., Langdon, W.B.: Some considerations on the reason of bloat. Genetic Program-
ming and Evolvable Machines 3, 81–91 (2002)

2. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Congress on Evolutionary Computation CEC 1999, vol. 3, pp. 1875–1882. IEEE,
Los Alamitos (1999)

3. Branke, J.: Evolutionary approaches to dynamic environments - updated survey. In: GECCO
Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, pp. 27–30
(2001)

Reconstructing Dynamic Target Functions by Means of Genetic Programming 133

4. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer, Dordrecht (2001)
5. Branke, J.: Evolutionary approaches to dynamic optimization problems – introduction and

recent trends. In: Branke, J. (ed.) GECCO Workshop on Evolutionary Algorithms for Dy-
namic Optimization Problems, pp. 2–4 (2003)

6. Branke, J., Kauler, T., Schmidt, C., Schmeck, H.: A multi-population approach to dynamic
optimization problems. In: Adaptive Computing in Design and Manufacturing, pp. 299–308.
Springer, Heidelberg (2000)

7. Burke, E., Gustafson, S., Kendall, G., Krasnogor, N.: Advanced population diversity mea-
sures in genetic programming. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 341–350.
Springer, Heidelberg (2002)

8. Clerc, M.: Particle Swarm Optimization. ISTE (2006)
9. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator in ge-

netic algorithms having continuous, time-dependent nonstationary environments. Technical
Report ADA229159, Naval Research Lab, Washington DC (1990)

10. Dasgupta, D., Mcgregor, D.R.: Nonstationary function optimization using the structured ge-
netic algorithm. In: Parallel Problem Solving From Nature, pp. 145–154. Elsevier, Amster-
dam (1992)

11. de França, F.O., Von Zuben, F.J., de Castro, L.N.: An artificial immune network for multi-
modal function optimization on dynamic environments. In: GECCO 2005: Proceedings of
the 2005 Conference on Genetic and Evolutionary Computation, pp. 289–296. ACM, New
York (2005)

12. Dempsey, I.: Grammatical Evolution in Dynamic Environments. PhD thesis, University Col-
lege Dublin, Ireland (2007)

13. Fernandes, C., Ramos, V., Rosa, A.C.: Varying the population size of artificial foraging
swarms on time varying landscapes. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.)
ICANN 2005. LNCS, vol. 3696, pp. 311–316. Springer, Heidelberg (2005)

14. Fernández, F., Tomassini, M., Vanneschi, L.: An empirical study of multipopulation genetic
programming. Genetic Programming and Evolvable Machines 4(1), 21–52 (2003)

15. Fernández, F., Tomassini, M., Vanneschi, L.: Saving computational effort in genetic pro-
gramming by means of plagues. In: Congress on Evolutionary Computation (CEC 2003),
Canberra, Australia, pp. 2042–2049. IEEE Press, Piscataway (2003)

16. Fernández, F., Vanneschi, L., Tomassini, M.: The effect of plagues in genetic program-
ming: A study of variable size populations. In: Ryan, C., et al. (eds.) EuroGP 2003. LNCS,
vol. 2610, pp. 317–326. Springer, Heidelberg (2003)

17. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading (1989)

18. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algorithms
with dominance and diploidy. In: ICGA, pp. 59–68 (1987)

19. Grefenstette, J.J.: Genetic algorithms for changing environments. In: Parallel Problem Solv-
ing from Nature, vol. 2, pp. 137–144 (1992)

20. Huang, C.-F., Rocha, L.M.: Tracking extrema in dynamic environments using a coevolution-
ary agent-based model of genotype edition. In: GECCO 2005: Proceedings of the 2005 Con-
ference on Genetic and Evolutionary Computation, pp. 545–552. ACM, New York (2005)

21. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In:
Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003.
LNCS, vol. 2610, pp. 71–83. Springer, Heidelberg (2003)

22. Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)

134 L. Vanneschi and G. Cuccu

23. Mori, N., Kita, H., Nishikawa, Y.: Adaptation to a changing environment by means of the
feedback thermodynamical genetic algorithm. In: Eiben, A.E., Bäck, T., Schoenauer, M.,
Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 513–522. Springer, Heidelberg
(1998)

24. Ng, K.P., Wong, K.C.: A new diploid scheme and dominance change mechanism for non-
stationary function optimization. In: Proceedings of the 6th International Conference on Ge-
netic Algorithms, pp. 159–166. Morgan Kaufmann Publishers Inc., San Francisco (1995)

25. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming (2008), Pub-
lished via, http://lulu.com, http://www.gp-field-guide.org.uk (With
contributions by J. R. Koza)

26. Rand, W., Riolo, R.: The problem with a self-adaptative mutation rate in some environments:
a case study using the shaky ladder hyperplane-defined functions. In: GECCO 2005: Pro-
ceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1493–1500.
ACM, New York (2005)

27. Tanev, I.: Genetic programming incorporating biased mutation for evolution and adaptation
of snakebot. Genetic Programming and Evolvable Machines 8(1), 39–59 (2007)

28. Tomassini, M., Vanneschi, L., Cuendet, J., Fernández, F.: A new technique for dynamic size
populations in genetic programming. In: Proceedings of the 2004 IEEE Congress on Evolu-
tionary Computation (CEC 2004), Portland, Oregon, USA, pp. 486–493. IEEE Press, Piscat-
away (2004)

29. Tsutsui, S., Fujimoto, Y., Ghosh, A.: Forking genetic algorithms: Gas with search space
division schemes. Evol. Comput. 5(1), 61–80 (1997)

30. Vavak, F., Jukes, K., Fogarty, T.C.: Learning the local search range for genetic optimisation in
nonstationary environments. In: IEEE Intl. Conf. on Evolutionary Computation ICEC 1997,
pp. 355–360. IEEE Publishing, Los Alamitos (1997)

31. Yang, S.: Constructing dynamic test environments for genetic algorithms based on problem
difficulty. In: Congress on Evolutionary Computation, CEC 2004, vol. 2, pp. 1262–1269.
IEEE, Piscataway (2004)

http://lulu.com
http://www.gp-field-guide.org.uk

Interactive Evolution for Designing
Motion Variants

Jonathan Eisenmann1, Matthew Lewis2, and Bryan Cline1

1 Computer Science & Engineering, The Ohio State University
2015 Neil Ave, Columbus, OH, U.S.A.

2 Advanced Computing Center for the Arts & Design, The Ohio State University
1224 Kinnear Rd, Columbus, OH, U.S.A.

Abstract. We present an intuitive method for novice users to interactively de-
sign custom populations of stylized, heterogeneous motion, from one input mo-
tion. The user sets up lattice deformers which are used by a genetic algorithm
to manipulate the animation channels of the input motion and create new motion
variants. Our interactive evolutionary design environment allows the user to tra-
verse the available space of possibilities, presents the user with populations of
motion, and gradually converges to a satisfactory set of solutions. Each gener-
ated motion can undergo a filtering process subject to user-specified, high-level
metrics to produce a result crafted to fit the designer’s interest. We demonstrate
application to both character animation and particle systems.

Keywords: Evolutionary design, Animation, Interaction techniques, Crowds,
Particle systems.

1 Introduction

The human visual system possesses acute pattern recognition abilities which can ex-
pose unnatural qualities in synthetic crowd animation if insufficient motion variation is
present. Often times, crowd animations will also need to display particular meaningful
expressive qualities in order to set the mood for a scene. The motions of crowd agents
must not only be diverse and expressive, but they also often need to appear visually
coherent. Therefore a certain amount of similarity between some of the individuals in a
crowd is desirable.

A common method for achieving variation within a crowd consists of providing
agents with a broad library of motions to choose from, using behavioral rules and blend-
ing between the motions as the agents transition from one action to another. Behavioral
selection of motion clips from a library should achieve good results if the library is large
enough to provide satisfactory variation. However, this method is not always feasible
for a small studio without access to an extensive library of motion clips or for a crowd
animation with novel motion that cannot be motion captured. Furthermore, it does not
provide an easy way to tune the crowd motion to fit a particular style.

We have developed an interactive evolutionary design system that will help designers
create a diverse set of crowd motions that belong to a few families of expressive motion
and can be tailored to fit the designer’s preferences. Our system generates a range of

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 135–149.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

136 J. Eisenmann, M. Lewis, and B. Cline

motion variants using a single input motion. The input can be in the form of keyframe
animation sequences and motion capture data should work as well. Therefore our method
can not only be easily used to amplify a small database of motion clips for crowd ani-
mation but also as an aid in the ideation process in motion development for a character.

The system alters the input animation via user-defined free form deformations which
reshape the animation channels specifying the motion. Attributes that control defor-
mations act as genes within our design environment’s genetic algorithm. The resulting
population of motions can then be filtered using several techniques described in this
paper that enforce a set of constraints. Physical constraints can be utilized to define the
physical properties of each motion. The designer views these filtered motions at each
generation to interactively determine the fitness of the crowd members. Through contin-
ued interaction, the designer can guide the population to one or more areas of the space
of solutions which portray an interesting and desirable set of emotions or expressions.
Interesting motions can be saved in a library for use later in the design process or as
part of the final set of motions.

Our system also has the benefit of providing the designer with not just static samples
from a space of possibilities, but also a neighborhood of similarity around each motion
that can be used to tweak a single motion if desired. This flexibility is an improvement
over a static library of motion capture clips in the same way that images produced by
a procedural shader are more flexible than a set of scanned images. Motions generated
by the system can be used to inspire animators with new movement ideas or stored in a
database for generating crowd animation.

In the interest of generalization in the area of time-varying designs, we have extended
our system to design particle system motion as well. We have shown that the same set of
techniques that allows users to design character motion variants also works with particle
systems. Thus the system could be used to explore variants on a particular special effect
as well as for designing a set of particle systems, such as a group of clouds, that move
in similar, stylized ways.

2 Related Work

Our approach draws from previous work in areas ranging from genetic algorithms to
motion variation techniques and from crowd design methods to particle system evolution.

2.1 Evolutionary Design

Evolutionary design makes use of either genetic programming or genetic algorithms to
search a space of possible designs in a given model and provide a solution that satisfies
a particular fitness function. Sims paved the way for the use of evolutionary design in
animation with a novel system for creature modeling and control [1]. Gritz and Hahn
introduced a genetic programming method for evolving optimal motion for simple ar-
ticulated figure motion [2]. Both of these methods used offline calculations to produce
the resulting animations.

Interactive evolutionary design, unlike many genetic algorithm applications, lets the
user interactively determine the fitness of the evolved solutions. Sims applied this tech-
nique to a wide array of application areas, including procedural models and textures [3].

Interactive Evolution for Designing Motion Variants 137

In the application area of character animation Lim and Thalmann presented an intuitive
interface for searching through a design space by selecting one from a pair of options
in “tournament” style [4]. The same authors also presented a method for interactively
evolving single walk cycle animations, using a genetic algorithm to scale and offset
joint angle trajectories [5]. Ventrella introduced a physically-based animation and crea-
ture design system that allows users to interactively determine fitness of individuals
explicitly by altering fitness functions as well as implicitly by selecting individuals of
high fitness. His motion model consisted of single DOF joints activated by parame-
terized sinusoidal functions for the sake of fast interactivity [6]. We extend his novel
work in this area by introducing a flexible framework for generating motion which al-
lows for a wide range of expressive motion. Marks et al. describe a novel interface for
parameter-setting problems with emphasis on dispersion and arrangement for optimal
visual browsing of the search space [7]. For a more complete overview of this area of
research, we refer the reader to Lewis who has provided an extensive survey covering a
wide array of techniques and applications for evolutionary design [8].

2.2 Motion Variation

There are a wide variety of ways to generate motion variation. Amaya et al. use signal
processing techniques to embed varying emotions into a neutral motion clip [9]. Sung
proposes a method for synthesizing motion clips for crowd animation using motion
graphs [10]. Chi et al. introduce a system for modifying human motion using a Laban
inspired effort and shape parameterization [11]. Neff and Fiume introduce a method
that uses both low-level and composite properties to edit character motion iteratively
and interactively [12]. Wang et al. present a motion signal filter method for making a
motion more animated or cartoon-like [13]. Gleicher has provided an extensive survey
of constraint-based motion editing techniques with particular attention paid to “per-
frame inverse kinematics plus filtering” techniques [14].

2.3 Crowd Design

Crowd design has typically centered on the problems of navigation and behavioral pat-
terns. For example, Kwon et al. present a graph-based approach for intelligently de-
forming group motion trajectories [15]. In addition, Treuille et al. introduce a particle-
based solution for crowd navigation without the use of agent-based dynamics [16]. Li
and Wang have used interactive evolutionary design to tune the parameters in a vir-
tual force based system [17]. Sung et al. presented an efficient statistics-based scalable
model for goal-directed crowd behavior that can satisfy duration, orientation, position,
and pose constraints for individuals in the crowd [18]. Musse and Thalmann created
a real-time interactive system with three methods for editing crowd behaviors [19].
Similarly, the crowd simulation middleware in use today focuses mainly on navigation
and behavioral rules while relying on extensive motion libraries to provide variation of
motion [20]. Time warping and blending between actions selected by behavior models
are a popular means of generating motion variation in crowds.

Our method seeks to complement prior work in this area by addressing the need
that crowd designers may have to craft the expressive motion of crowd members. We

138 J. Eisenmann, M. Lewis, and B. Cline

Fig. 1. Interactive evolutionary design interface - the phenotypes are arranged in a grid for easy
viewing and selection with the mouse

choose to focus exclusively on generating the variety of expressive motion portrayed by
the crowd. We encourage use of our system in conjunction with the existing methods
for navigation and behavior.

2.4 Particle System Design

Evolutionary techniques have been applied to the creation of particle systems, start-
ing with the paper by Sims which used CA lookup tables as the genotype represen-
tation [21]. Hastings et al. describe a system for the interactive evolution of particle
systems using artificial neural networks as the base representation for each particle sys-
tem [22,23].

3 Interactive Evolutionary Design

There are often two types of designers involved in evolutionary design: the meta-
designer and the designer. The meta-designer defines the search space by creating the
original prototype to be altered by the genetic algorithm. In our case this is a motion clip
with parameterized deformers applied to it. The meta-designer also defines which at-
tributes are adjustable and gives ranges to these attribute values. There must be enough
meaningful attributes to provide a sufficiently rich search space for the algorithm to tra-
verse. The designer who directs the evolution process will be able to explore solutions
that exist in the space defined by the meta-designer.

Interactive Evolution for Designing Motion Variants 139

Understanding the mechanics of the genetic algorithm supporting the search pro-
cess can yield faster convergence rates. For example, more experienced designers who
understand the inner workings of the reproduction algorithm may choose an individ-
ual based on a specific trait that they recognize as connected with a gene value that is
desirable and important, even though a global perceptual evaluation may not have com-
pelled the designer to choose that individual due to the influence of other undesirable
genes. In subsequent generations that specific trait will likely show up again, perhaps
accompanied by different, more desirable traits, yielding a higher fitness population
more quickly.

The technique described in this paper assumes that a parametric model with a rich
search space has already been designed. Problems in the field of parametric model-
ing are both challenging and interesting, but they are beyond the scope of this paper.
Furthermore, the solutions to parametric modelling problems are typically domain spe-
cific. Bezirtzis, et al. have given attention to some of the general concerns of parametric
search space design in their industrial design case study [24] with emphasis on the fact
that the design of a parametric space is an iterative process that can only be verified
empirically. In general, the areas of high fitness in a parametric search space for inter-
active evolutionary design should be much larger than those in typical non-interactive
evolutionary design applications. This is due to the small number of individuals that
can be viewed in one population by the human visual system and the low number of
generations required for convergence in a reasonable interactive environment. Also,
discontinuities or sharp features in the search space should be avoided as much as pos-
sible. Otherwise, the designer will find that slight changes in gene values can result in
dramatically different phenotypic expression.

Our evolutionary design method takes advantage of the extraordinary perceptual
abilities of the human visual system by showing the designer entire generations of mo-
tion all at once (See figure 1). This data presentation style, called “small multiples”
by Tufte [25], not only provides a better visual comparison of the crowd motions but
also gives the designer a better idea of the cumulative crowd motion during the design
process than if the designer had to evolve and evaluate motions individually.

In our system the list of attributes belonging to the parametric model corresponds
to a genotype which is represented by a fixed-length array of floating point numbers
(gene values). The phenotype in our system is the motion produced when these gene
values are mapped to the model’s parameters. The designer chooses a set of parents
that will participate in the reproduction process for the next generation. Our genetic
algorithm chooses two distinct, random parents from this set each time it produces
a new offspring. It copies the genes from one parent and then switches to copying
the other parent’s genes with a user-defined crossover probability. The genes are then
mutated given a user-defined probability by adding a random value between -1 and 1
scaled by a user-defined mutation amount.

There are many variants on reproduction algorithms for genetic search, and we are
not bound to this particular algorithm. However, the ability to let the user choose more
than just two parents for the next generation provides a very nice property for the evo-
lutionary design of crowd motions: The designer is able to simultaneously engineer
distinct subspaces of motion for an entire crowd. Alternately, the designer can save

140 J. Eisenmann, M. Lewis, and B. Cline

interesting motions from exploration of one area of the search space into a motion li-
brary and can reintroduce these motions later, when exploring other areas of the search
space. Phenotypes can be saved to the library as hardware rendered videos of the ac-
tual animation or of a revolving view of the phenotypic form at a particular frame. In
addition, we encourage designers to explore different areas of the space by using a func-
tionality in our interface that allows designers to backstep to previous generations and
explore characteristics found in previously ignored parts of the population.

It is important to note that our system cannot provide enough variation from one
input motion to create all the types of action that might be required in a crowd scene.
For example, it cannot turn a walking motion into a sitting motion or vice versa. In-
stead it provides varieties of walking motions that can be placed in a motion clip library
along with varieties of sitting motions that were generated from a separate input mo-
tion. Also, an animator cannot design just any particular preconceived motion using our
system. It will only be possible to generate motions that exist in the available search
space created by the meta-designer. Furthermore, if an animation designer has a spe-
cific visual expressive quality in mind, it can often be animated more quickly using
conventional methods. This system is more useful for discovering novel motions and
expressive qualities during exploration of the search space. Interactive evolutionary de-
sign has typically been aimed at aiding designers in the ideation phase of development
of a character or idea, and the same applies here. Our system can be used to craft a
novel motion for an individual character or a set of characters, but it may also serve as
inspiration in the planning stages of new character motion development.

4 Motion Generation

Our method requires interaction from the designer at each iteration of the algorithm
(see figure 2). We begin by preparing the input motion for modification by the genetic
algorithm which, at the discretion of the designer, sends the resulting motion through a
number of constraint-based filters and a dispersion algorithm.

4.1 Input

The underlying representation of our motion evolution system consists of the set of
animation channels taken from the input motion clip. We do not use a simplified motion
model based on sinusoidal signals or any other similar technique. Therefore our system
is not limited to cyclical motions, but can be used to generate variants on any type of
motion that can be keyframed. Each animation channel is converted to piecewise Bezier
spline geometry based on the data frames and their tangents. The meta-designer sets up
deformers [26] to alter these splines and also defines which attributes of the deformers
can be changed by gene values from the genetic algorithm. The splines are then altered
by these deformers during the evolutionary design process. Once the spline geometry
has been changed, the information is then transferred back to the animation channels of
the individual being evolved. The resulting motion is displayed to the designer. We set
the system up this way so that any 2D deformation that does not violate the one-to-one
correspondence of the function represented by the animation channels may be applied,

Interactive Evolution for Designing Motion Variants 141

Fig. 2. Pipeline Overview

giving the meta-designer complete flexibility in creating and controlling the space of
possible motions.

See figure 3 for an example of how lattice deformers can be applied to an animation
channel. The first curve (3a) and accompanying animation sketch represent the origi-
nal motion. Notice the lattice is in its initial, undeformed state. The second curve (3b)
demonstrates the effect of translating and scaling the inner lattice points along the X-
axis. The original curve and lattice are shown in the background for comparison. The
resulting animation shows a faster backward swing of the forearm and a slower forward
swing. The third curve (3c) demonstrates the subtle results of reducing the rotation val-
ues during the middle section of the animation sequence. The fourth curve (3d) shows
the effect of increasing the rotation values at the beginning and end of the arm swing.
The same lattice defomer and animation channel technique transfers quite well to par-
ticle systems where certain qualities, such as position, color, force, mass, and velocity
can be keyframed over time. Particle system characteristics that are not keyframed can
also be evolved by simply allowing the genetic algorithm to alter the constants that
control those traits.

Ideally, the parametric models produced via the application of lattice deformers will
provide a wide range of variation with few problems. However, some parameters may
fight each other and occasionally lead to unrealistic or undesirable results. We address
this by adding a layer of filters to the pipeline that automatically detect problematic

142 J. Eisenmann, M. Lewis, and B. Cline

Fig. 3. A variety of motions achieved using free form deformations on the rotation channels for
the arm. Only the elbow joint values are represented by the graphs, but, in the interest of maintain-
ing proper timing, the same deformations are being applied to the shoulder joint in the animation
sequence to the right. The X-axis of each lattice controls the passage of time (labeled in frames),
and the Y-axis values control the rotation angle of the joint at any point in time.

results above a tolerance threshold and generate individuals to replace these unaccept-
able phenotypes. Though it would be ideal to correct these phenotypes, we choose to
replace them in the interest of faster interactivity. This will be discussed further below.
These filters, though general in some regards, should specifically apply to the type of
motion being generated. In the case of crowd character motion, any number of high-
level qualities of locomotive animation can be addressed here, but we choose to focus
on two particular properties of motion where we have observed the abuses of large
variation: balance and self-collision.

4.2 Balance

In order to measure the level of balance in individual phenotypes and decide if they are
acceptable we have adopted the zero moment point (ZMP) algorithm of Tak et al. ZMP
in dynamic motion analysis is similar to the center of gravity in the static case. It is
defined as the point on the ground plane under a character where there is zero moment.
In other words, if this point were modeled as a joint between the character and the
ground, there would be no actuation at this joint. As a character moves, the ZMP will
create a trajectory over the ground plane.

Interactive Evolution for Designing Motion Variants 143

Our balance filter ensures that the ZMP is always within the character’s support area.
The support area is the convex hull of the contact area between the feet and the floor.
This definition encapsulates both the single and double stance phases of bipedal motion
and allows for seamless calculation between the two phases. In some cases, the designer
may want the motion of individuals in the crowd to appear exaggerated or cartoon-like.
In a case such as this, a precise balance constraint might cause more harm than good.
Therefore we have implemented the filter in such a way that the designer has control
over the allowable balance error. We define balance error as the distance from the ZMP
to the closest point on the support area, and we sum this error over the entire motion
sequence.

F∑
i=1

‖ZMPi − closestPoint(ZMPi, K · SAi)‖ (1)

F is the number of frames in the animation, ZMP contains the zero moment point tra-
jectory over all the frames, and SA contains the support area hull over all the frames.
We also allow the user to enforce a lesser or greater degree of balance on the entire
sequence by adding a custom support area scale factor K. The value of K can be ad-
justed through the system’s interface thus allowing the user to shrink the support area
to constrain the ZMP error more towards the center of support if more stable motion is
required.

4.3 Self-collision

Since the variation of arbitrary animation channel attributes may introduce self-colli-
sions, we have developed a set of tests to filter out these self-colliding motions. We
employ a simple bounding box method, testing for overlap of world-aligned bounding
boxes and then calculate the volume of object aligned bounding boxes if two links are
found to be intersecting. We then sum the volumes of all the intersections.

F∑
i =1

L∑
j =1

L∑
k =j+1

{volume(Oj ∩ Ok) | Aj,k = 0, Wj ∩ Wk �= ∅} (2)

F is the number of frames in the animation, L is the number of links or bones in the
character, O contains the object-aligned bounding boxes of the links, W contains the
world-aligned bounding boxes, and A is an adjacency matrix which describes the spa-
tial adjacency of the links. By summing the total volume we avoid over-penalizing
quick, grazing collisions while still penalizing quick, high-volume collisions as well
as slow, grazing collisions. We ignore collisions that are design artifacts of the given
model’s geometry as well as collisions between adjacent links. Since we do not test at
the polygon-polygon level for intersection in order to reduce running time, this filter
only serves as a heuristic and not an exact measure of self-collision. Nevertheless, in
practice, it gives a good indication of the level of self-collision for a given phenotype,
especially since we want to keep computation to a minimum in the interest of higher
levels of interaction.

144 J. Eisenmann, M. Lewis, and B. Cline

4.4 Replacement Method

It would be preferable to fix unacceptable phenotypes and bring them back into the
allowable space of motion defined by our balance and self-collision constraints. In
fact, the method of Tak et al. optimally transforms unbalanced motions into balanced
ones [27]. There are also methods for correcting self-colliding animation via inverse
kinematics optimization [28]. However, we do not attempt to fix unacceptable mo-
tions because this would require an optimization process. Optimization would introduce
longer wait times between generations, reducing the interactivity of our evolutionary de-
sign environment. Instead, we generate a new individual motion to replace the old one
and resubmit it to the filters for evaluation. We are able to proceed in this way because
our space of possible motions was created from a balanced original motion that was
free from self-collisions and so the rich search space of variants will provide a viable,
balanced replacement motion within a few iterations. Furthermore, the reproduction
process uses the user-selected motions as input for any newly generated replacement
motion so the offspring will most likely have similar balance and self-collision error
to the parents’ errors. Even so, generating replacement individuals with our reproduc-
tion algorithm may not always result in an acceptable individual, especially if the user’s
constraints are too restrictive or if the search space is not rich enough. If this occurs, we
let the replacement process run for a user-defined maximum number of iterations and
then force it to move on, replacing the unbalanced individual with the most balanced
option found so far.

4.5 Diversity

Although duplicate motions in a crowd are harder to spot than duplicate appearances,
they can be spotted just as easily whether or not each character has a different appear-
ance. Moreover, varied motion between two visually equivalent individuals can help to
obscure the fact that they have a similar appearance [29]. It follows that diversity of
motion provides desirable qualities for crowd animation. Genetic algorithms by their
very nature seek convergence to a specific area of the search space. Because we want to
design coherent sets of motion and because proximity in the search space corresponds
to phenotypic similarity in our system, this convergence is beneficial. However, it can
also be problematic since we want to find a diverse group of motions. We do not want
the algorithm to converge so far that the resulting population becomes homogenous.

The designer in the interactive evolutionary design paradigm exercises ultimate con-
trol over how far the population converges. As mentioned earlier, if the designer chooses
a variety of individuals as parents in one generation, the chances of diversity in the next
generation are greater. However, in order to help the designer encourage diversity in
the population and to ensure sufficient sampling of the local search space surrounding
the designer’s regions of interest, we run the evolution dispersion algorithm introduced
by Marks et al. [7] at each generation. This algorithm alters the genes of individuals
in a way that will discourage similarity between phenotypes. We measure the pheno-
typic difference between two individuals by comparing their point clouds. Our method
is somewhat similar to the technique used by Kovar, et al. in their paper on motion

Interactive Evolution for Designing Motion Variants 145

graphs [30]. The point cloud for a character consists of the positions of a subset of
the character’s vertices over time. We consider the distance between point clouds to
be the sum of the root mean squared error between all the corresponding vertices of
two point clouds. We allow the designer to specify which parts of the model to choose
vertices from when making this comparison. The designer can also specify the level of
dispersion required at each generation.

Since this metric is based on point clouds, it transfers quite naturally to particle
systems. The application of this metric is straightforward in the case of spatial qualities,
and can be easily extended to include other qualities by increasing the dimensionality
of the point cloud space.

4.6 Using the Filters

Because the motion filters require extra computation, using them will inevitably result
in longer wait times between generations. The balance and self-collision filters are most
useful during the first couple generations of the design process when the algorithm is
sampling a wide area of the search space. These filters make the designer’s job easier
by avoiding the areas of the search space where two or more parameters fight each
other and produce unwanted motion artifacts. As the design process progresses and
the algorithm begins to converge, these filters should be turned off to speed up the
interactivity of the system. In contrast, the diversity filter should only be used near the
end of the design process when the algorithm is sampling a smaller area of the search
space. In the case of particle system evolution, one would only want to use the diversity
filter, as zero moment point and self-collision do not apply to massless particles. Using
the above filters in this way will maximize the fitness of the options presented to the
designer throughout the process in a way that is customizable to fit the designer’s needs.

5 Results

We implemented our interactive evolutionary design motion generation method in a
layer of MEL and Python code over Autodesk’s Maya environment. We chose to use
Maya because it is flexible enough to apply evolutionary design not only to animation,
but also to modeling, texturing, and special effects domains. We also chose this software
environment because most of the designers at our research facility are familiar with its
interface, and we would like them to be able to create and evolve designs from their
own parametric models.

Table 1. Average time (sec) and average number of rejected phenotypes while producing a gen-
eration of size 25

Filter None Balance Collide Disperse
Time 10.0 76.0 47.8 28.0
Reject - 1.5 3.5 2

146 J. Eisenmann, M. Lewis, and B. Cline

Fig. 4. A variety of sixteen motions evolved from a single walk cycle motion clip

Our hardware consists of an Intel Xeon 2.66 GHz cpu with 4 GB of RAM and an
Nvidia Quadro FX 5600 graphics card. Performance metrics of our current implemen-
tation under varying conditions can be seen in Table 1. Each filter was set up with a
maximum of 2 replacements per individual except for the dispersion filter which had a
maximum of two replacements per population.The number of replacements required at
each generation depends on the richness of the search space as well as on the designer’s
selections and the constraint thresholds set by the designer. The time required to replace
an individual that does not meet the constraints is approximately equal to the time re-
quired to generate the original individual. The running time is dependent on the size of
the population so smaller populations will take less time per individual.

For these tests, we created a parametric walk cycle model with lattice deformers on
14 different animation channels. Note, however, that any type of deformer available in
Maya may be utilized. The deformers’ transformations were controlled by 14 floating
point numbers from the fixed-length array that formed the genotype of each individual.
Although the size of the population is adjustable by the user, we generally use popula-
tions of size 25 because larger populations are harder for the human visual system to
fully and easily comprehend.

Figure 4 shows a sampling of the variety of motions that can be produced from a
single parameterized walk cycle. These motions are shown in an animation sketchbook
style where every fourth frame is drawn to show the change in form over time. We
are displaying the motions in animation sketchbook style only for the purposes of the
paper. In our evolutionary design interface, the motions are displayed as time-varying
animation.

Figure 5 shows a variety of particle systems in a sample initial population. In this
case, the particles leave trails of spawned particles behind them so you can visualize
the movement of the system even in a static image.

Interactive Evolution for Designing Motion Variants 147

Fig. 5. A variety of sixteen particle systems evolved from a input system

We have conducted a user study to determine if our software truly provides an in-
tuitive way for designers to create varieties of motion. In this study we asked three
graduate students from the department of design who were already familiar with the
Maya software environment to participate. After a brief 10-15 minute tutorial on how
to use the system, each designer explored the space of options provided by the deform-
ers in our parametric model of a walk cycle motion and decided on a style of motion
to interactively develop. The entire process, including the tutorial, search space explo-
ration, and motion design took anywhere from an hour and a half to two hours for each
designer. The designers all felt that the system was easy to learn and enjoyed experienc-
ing the interactive evolutionary design process. They agreed that the motions produced
would make for interesting, varied background crowd character motions or as a fertile
starting point for the development of a character motion with an individualized style.
However, they said that the motion produced would need to be refined with a high-
level of control over specific keyframes if it were to be used for foreground or hero
characters. The populations they created (See the animations on the project web site
at http://accad.osu.edu/Projects/Evo/) including a set of energetic dancers, a group of
feminine characters, and a mob of zombies demonstrate the wide variety of motions
that are acheivable from just one input motion.

6 Future Work

There are many more ways to filter the individual motions that could prove to be help-
ful to the crowd designer. A few such filters that could be useful include: joint torque
analysis based on limits from a comfort model [31], various methods of psychological
analysis (aggressiveness, energy level, coordination, etc.), Laban movement analysis
(effort and shape), as well as gender or age analysis. The balance and self-collision fil-
tering could be run in parallel on subsets of the population using multi-core processors
to speed up computation times and enhance the interactivity of the system.

148 J. Eisenmann, M. Lewis, and B. Cline

7 Conclusions

Our method presents a novel approach to evolving families of expressive motion, mak-
ing it easier for a crowd designer to quickly and intuitively find a satisfying combina-
tion of motion variations for a specific application. This method could prove especially
useful to those who do not have access to motion capture facilities or cannot afford
to spend time capturing a wide range of motion clips. Our interaction model allows
the user to view and make decisions about entire generations at once, and our repro-
duction algorithm allows for evolution of multiple (even mutually exclusive) styles of
motion simultaneously. Our use of user-defined constraints plus the designer’s selec-
tions as the determination of fitness exemplifies a hybrid system that seeks to maximize
the designer’s time and attention in the evaluation of populations by filtering out the
individuals who do not meet the given criteria.

References

1. Sims, K.: Evolving 3d morphology and behavior by competition. Artificial Life 1(4),
353–372 (1994)

2. Gritz, L., Hahn, J.K.: Genetic programming for articulated figure motion. Journal of Visual-
ization and Computer Animation 6, 129–142 (1995)

3. Sims, K.: Interactive evolution of equations for procedural models. The Visual Com-
puter 9(8), 466–476 (1993)

4. Lim, I.S., Thalmann, D.: Tournament selection for browsing temporal signals. In: Proceed-
ings of Symposium on Applied Computing 2000, pp. 570–573. ACM, New York (2000)

5. Lim, I.S., Thalmann, D.: Pro-actively interactive evolution for computer animation. In: Pro-
ceedings of Computer Animation and Simulation 1999, pp. 45–52 (1999)

6. Ventrella, J.: Disney meets darwin-the evolution of funny animated figures. Computer Ani-
mation (1995)

7. Marks, J., et al.: Design galleries: a general approach to setting parameters for com-
puter graphics and animation. In: Proceedings of SIGGRAPH 1997, pp. 389–400. ACM
Press/Addison-Wesley Publishing Co., New York (1997)

8. Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art
of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 3–37. Springer,
Heidelberg (2007)

9. Amaya, K., Bruderlin, A., Calvert, T.: Emotion from motion. In: Graphics Interface 1996,
pp. 222–229 (1996)

10. Sung, M.: Continuous motion graph for crowd simulation. In: Hui, K.-c., Pan, Z.,
Chung, R.C.-k., Wang, C.C.L., Jin, X., Göbel, S., Li, E.C.-L. (eds.) EDUTAINMENT 2007.
LNCS, vol. 4469, pp. 202–213. Springer, Heidelberg (2007)

11. Chi, D., Costa, M., Zhao, L., Badler, N.: The emote model for effort and shape. In: Proceed-
ings of SIGGRAPH 2000, pp. 173–182. ACM Press/Addison-Wesley Publishing Co., New
York (2000)

12. Neff, M., Fiume, E.: Aer: aesthetic exploration and refinement for expressive character ani-
mation. In: Proceedings of SCA 2005, pp. 161–170. ACM Press, New York (2005)

13. Wang, J., Drucker, S.M., Agrawala, M., Cohen, M.F.: The cartoon animation filter. ACM
Transactions on Graphics 25(3), 1169–1173 (2006)

14. Gleicher, M.: Comparing constraint-based motion editing methods. Graphical Models 63(2),
107–134 (2001)

Interactive Evolution for Designing Motion Variants 149

15. Kwon, T., Lee, K.H., Lee, J., Takahashi, S.: Group motion editing. In: Proceedings of SIG-
GRAPH 2008, pp. 1–8. ACM, New York (2008)

16. Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. ACM Transactions on Graph-
ics 25(3), 1160–1168 (2006)

17. Li, T.Y., Wang, C.C.: An evolutionary approach to crowd simulation. Autonomous Robots
and Agents, 119–126 (2007)

18. Sung, M., Kovar, L., Gleicher, M.: Fast and accurate goal-directed motion synthesis for
crowds. In: Proceedings of Symposium on Computer Animation 2005, pp. 291–300. ACM
Press, New York (2005)

19. Musse, S.R., Thalmann, D.: Hierarchical model for real time simulation of virtual human
crowds. IEEE Transactions on Visualization and Computer Graphics 7(2), 152–164 (2001)

20. Massive Software: Massive prime (2009), www.massivesoftware.com/prime
21. Sims, K.: Artificial evolution for computer graphics. In: Proceedings of SIGGRAPH 1991,

vol. 25, pp. 319–328. ACM Press, New York (1991)
22. Hastings, E.J., Guha, R.K., Stanley, K.O.: Neat particles: Design, representation, and anima-

tion of particle system effects. In: IEEE CIG 2007 (2007)
23. Hastings, E.J., Guha, R.K., Stanley, K.O.: Interactive evolution of particle systems for com-

puter graphics and animation. Trans. Evol. Comp. 13(2), 418–432 (2009)
24. Bezirtzis, B.G., Lewis, M., Christeson, C.: Interactive evolution for industrial design. In:

C&C 2007:Proceedings of the 6th ACM SIGCHI Conference on Creativity & Cognition,
pp. 183–192. ACM, New York (2007)

25. Tufte, E.R.: Envisioning Information. Graphics Press (May 1990)
26. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Proceed-

ings of SIGGRAPH 1986, vol. 20(4), pp. 151–160 (1986)
27. Tak, S., Song, O.Y., Ko, H.S.: Spacetime sweeping: An interactive dynamic constraints

solver. In: Proceedings of Computer Animation 2002, pp. 261–271. IEEE Computer Society,
Washington, DC (2002)

28. Müller, A.: Collision avoiding continuation method for the inverse kinematics of redundant
manipulators. In: Proceedings of Robotics and Automation 2004, vol. 2, pp. 1593–1598
(2004)

29. Mcdonnell, R., Larkin, M., Dobbyn, S., Collins, S., O’Sullivan, C.: Clone attack! perception
of crowd variety. In: Proceedings of SIGGRAPH 2008, vol. 27, pp. 1–8. ACM Press, New
York (2008)

30. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: Proceedings of SIGGRAPH 2002,
vol. 21, pp. 473–482. ACM Press, New York (2002)

31. Ko, H., Badler, N.I.: Animating human locomotion with inverse dynamics. IEEE Computer
Graphics and Applications 16(2), 50–59 (1996)

www.massivesoftware.com/prime

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 151–164.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Dual Phase Evolution as a Framework for
Understanding Complex Adaptive Systems

Greg Paperin and Suzanne Sadedin

Clayton School of Information Technology, Monash University, Vic. 3800, Australia
greg@paperin.org, suzanne.sadedin@gmail.com

Abstract. Evidence from several fields suggests that dual phase evolution
(DPE) may contribute to distinctive features associated with complex adaptive
systems. Here, we review empirical and theoretical evidence for DPE in natural
systems and discuss the relationship of DPE to self-organised criticality and
adaptive cycles. We describe a general model for DPE in networks, and present
preliminary data illustrating the emergence of phase changes.

Keywords: Dual phase evolution, Networks, Connectivity, Phase changes,
Self-organised criticality, Adaptive cycle.

1 Introduction

Complex adaptive systems share several interesting properties such as self-
organisation, far-from-equilibrium dynamics, perpetual novelty and sustained
diversity. While many advances have been made in understanding specific complex
adaptive systems (CAS), a unifying theory of their underlying mechanisms remains
elusive. Several conceptual frameworks have been proposed to describe the properties
of CAS. These include the concepts of self-organised criticality (SOC) [1, 2] and the
adaptive cycle [3]. While these frameworks clearly capture some of the dynamics
seen in CAS, other properties remain neglected and the causal processes have not
been clearly defined.

Past research shows that CAS can be described in terms of networks of interacting
components [4] and that structural properties of these underlying networks may
explain many of the processes observed in CAS. Based on this realisation, the notion
of Dual Phase Evolution (DPE) was proposed [5, 6]. DPE explains CAS properties
such as perpetual novelty and diversity, modularity, and complexity on all scales as
consequences of recurring phase transitions in connectivity and interaction patterns of
underlying networks. DPE processes are observed across a wide range of CAS of
various orders of magnitude: from species evolution and ecosystem development, to
socio-economic systems, to artificial adaptive and optimisation systems.

Here, we review some of the empirical evidence for DPE and contrast it with
established frameworks for understanding CAS dynamics, in particular SOC and the
adaptive cycle. We highlight the key differences between these frameworks and DPE
and discuss how some processes may be explained in terms of these different
frameworks. This presents a step towards developing a holistic understanding of CAS

152 G. Paperin and S. Sadedin

dynamics based on underlying network properties. To support our arguments we
briefly describe a simulation model of energy flow through a network of interacting
components. Several real world CAS can be mapped to this network model. While a
thorough analysis of the model dynamics is on-going, the results indicate that DPE
processes emerge in the model under a wide range of parameters.

2 Dual Phase Evolution

2.1 Examples

Evidence from several fields suggests that phase changes in landscape connectivity
form a powerful agent of evolutionary change and innovation. Disasters often mediate
long-term changes in the composition of ecological communities, with established
species forming an impenetrable barrier to invasion by novel species until massive
population destruction clears the landscape. Palynological data show that changes in
species composition in North American forests are consistently associated with major
wildfires [7]. At larger geological timescales, many recent adaptive radiation events
are associated with transitions between glacial and interglacial periods that lead to
drastic changes in habitat connectivity for a wide variety of species [8]. Climate-
change mediated variations in sea level can cause populations living at specific depths
to become fragmented or connected, while temperature and rainfall variation alters
the connectivity of lakes and waterways and their ecological communities [9]. For
example, diverse new species of cichlids emerged in African rift lakes after the last
Ice Age isolated local fish populations. Genetic suture zones (areas where locally
differentiated populations meet) in many European and North American species
including trees, insects, birds and mammals can be traced to population expansion
from refugia that were isolated during glacial periods [10, 11]. Repeatedly-isolated
refugia are associated with speciation events; for example, a meta-analysis of
mitochondrial DNA studies in 63 bird species, showed that many adaptive radiations
initiated in the Pliocene were completed when glaciers fragmented populations in the
Pleistocene [12]. On the mountainous island of Sulawesi, adjacent-living similar
species of grasshoppers, macaques, pond-skaters, cicadas, bees, butterflies and beetles
are thought to have arisen during periods of habitat fragmentation caused by climate
change [13].

At even larger scales, state transitions may be seen in evolutionary dynamics after
environmental change. Eldredge and Gould [14] documented evidence for punctuated
equilibria in the fossil record, arguing that biological history is dominated by long
periods of stasis with occasional bursts of innovation after mass extinction. These
bursts of innovation, according to Gould [15], are triggered by the removal of
ecological specialists, opening up niches for exploitation by the widespread
generalists which preferentially survive mass extinction. These generalists then
undergo adaptive radiation. In this sense, evolution alternates between long, slow
periods of general stability dominated by species selection (stability phase) and brief
periods of rapid microevolution where novel adaptations arise (variation phase).
There are several possible explanations for punctuated equilibrium [16]. However, the
strong geological association between disasters (such as asteroid strikes, vulcanism

 DPE as a Framework for Understanding Complex Adaptive Systems 153

and climate change), mass extinction and subsequent radiation events suggest that
these external drivers are crucial in that they force the switch from stability to
variation phases by altering the connectivity of food webs and landscapes.

Simulation experiments further support this argument. For instance, Paperin et al.
present a model [17] in which organisms normally exist within a connected landscape
in which selection maintains them in a stable state. Intermittent disturbances (such as
fires, commentary impacts) flip the system into a disconnected phase, in which
populations become fragmented, freeing up areas of empty space in which selection
pressure lessens and genetic variation predominates. The simulation results show that
DPE-like connectivity phase changes can facilitate the appearance of complex
diversity in a landscape ecosystem.

Dual phase processes also occur in non-living natural complex systems. For
instance, Perkins [18] describes in an overview article how various kinds of landscape
patterns may have been formed by repeated phase changes in several interacting
geomorphic processes. A well studied example of such landscapes – the geometric
shapes of stones occurring in many polar and high alpine environments – has been
investigated by Kesser and Werner [19] who demonstrated that such patterns may
emerge through freeze-thaw cycles that drive an interaction between two feedback
processes. In the first process, ice forms in freezing soil, segregating stones and soil
by shifting soil toward soil-rich areas and stones toward stone-rich areas. In the
second process, stones are transported along the borders of stone-rich domains, which
are squeezed and shaped under the pressure of expanding freezing soil. The authors
provide a numerical simulation model [19] that can reproduce the patterns found in
natural landscapes of this kind [18].

Connectivity phase changes are also the driving force in many artificial CAS.
Phase transitions of interaction networks have been implicitly present in many
traditional optimisation algorithms in the form of mediation between local and global
search. For instance, in simulated annealing [20, 21] the temperature schedule is used
to arbitrate between local and global search steps. Similar ideas have been employed
to improve performance in a variety of optimisation techniques that are prone to being
caught in undesirable local optima when applied to non-smooth search spaces. This
includes, for instance, the back propagation learning algorithm for artificial neural
networks. [e.g. 22], the Particle Swarm Optimisation algorithm [e.g. 23, 24], Genetic
Programming [e.g. 25] and Support Vector Machines [e.g. 26, 27]. In the above
algorithms the connectivity of the transportation network along which the search
proceeds is changed from well connected (global search, exploration) to poorly
connected or disconnected (local search, exploitation).

In these artificial optimisation systems, phase transitions occur only once or a few
times in one direction. However, natural DPE processes are typified by repeated
connectivity phase transitions in both directions. Arguably, optimisation algorithms
supplemented with simulated annealing style techniques may be improved by
incorporating repeated connectivity phase transitions in both directions. An instance
of this approach is a modification of the Cellular Genetic Algorithm [28, 29]. Kirley
et al. [30, 31] modified this algorithm to supplement it with insights from population
dynamics and landscape ecology. The evolving population was placed in a 2-
dimensional cellular automation grid that is subjected to intermittent “disasters” that
eliminate all solutions in one part of the grid. As a result, the population becomes

154 G. Paperin and S. Sadedin

fragmented and the gene flow between the sub-populations is diminished or
interrupted. This allows the sub-populations to diverge and slows down convergence.
Recombination of diverged sub-populations while re-populating areas freed by
disasters often leads to discovery of new and fitter solutions. The Cellular Genetic
Algorithm modified in this way outperforms the standard Cellular Genetic Algorithm
on a number of hard test problems [30, 31].

It should be noted that in this case, the DPE phase transition occurs repeatedly in
both directions. Two important interaction networks can be identified within the
cellular grid. Firstly, there is the connectivity network between the populated grid
cells. The connectivity of this network plays a role in determining the amount of gene
(information) flow between different cells. Thus, connectivity in this network
influences whether the population evolves as a whole or as divergent sub-populations.
The second network is the connectivity network of free grid cells. These cells can be
populated by newcomers without substantial competition. During phases where this
network is well connected the algorithm has the opportunity to experiment with
candidate solutions that may be less fit than some other part of the grid population,
but that have potential to evolve towards a different, possibly better local optimum.

2.2 The DPE Framework

A common thread in all of the above examples is that complex properties of systems
are mediated by qualitative changes in the connectivity structure of the underlying
networks. The connectivity structure can be classified into two main states or phases:
“connected” and “disconnected”. The “connected” phase is typified by high edge
density and short paths lengths. In this phase interactions can therefore occur between
most of the network components. In the “disconnected” phase edge density is low,
paths lengths are long, and the network typically consists of several disconnected
components. Interactions in the disconnected phase typically occur locally or only
within strongly connected components.

Since networks are inherent in the structure and behaviour of all complex systems
[4], a connectivity avalanche [32] underlies many kinds of critical phase changes [33].
Therefore all such systems can switch between the two above phases. Systems in the
disconnected phase tend to be balanced. They may exhibit strong local variability, but
typically little large-scale variation. Global responses to external stimuli are
constrained, as perturbations cannot propagate far. Systems in the connected phase, in
contrast, exhibit less local variability, but significant variation on all scales in the
sense that responses to external stimuli are generally hard to predict. The rich
connectivity allows perturbations to propagate far, affecting many system parts [17].

DPE occurs when an evolving system repeatedly switches between these two
phases (Fig. 1). Crucial for understanding many DPE systems is the mechanism
responsible for these repeated phase transitions. There is much evidence that CAS
generally self-organise towards a stable, balanced state. Stabilising forces include
lower order dynamics, such as feedback loops, and higher order dynamics, such as
selection (in a general sense) [34]. Analytical [35, 36] and computational [34] models
show that lower-order local dynamics can stabilise systems over a large range of
external forcing, and that higher order local dynamics (evolutionary dynamics) can
greatly increase the stabilising effect. The adaptive forces that underlie global stability

 DPE as a Framework for Understanding Complex Adaptive Systems 155

Poorly Connected Phase

- Low connectivity
- Predominantly local interactions
- High local variation
- Low global variability
- Selection is local

(directional effects)

Perturbation or Forcing

- modifies components
- modifies connectivity patterns

Well Connected Phase

- High connectivity
- Predominantly global interactions
- Little local variation
- High global variability
- Selection is global

(stabilising effects)

Evolution towards stability

- selection
- feedback loops
- self-organisation

Fig. 1. The mechanism of Dual Phase Evolution. Systems flip between poorly connected and
well connected phases. Perturbations or slow forcing – arising externally or internally - disrupt
systems causing connectivity phase transitions in underlying networks. Internal pressures
restore old and create new interactions.

of CAS also inhibit novelty and change. In particular, selection acting on system
components at various scales, as well as on topology and interactions, may drive a
system as a whole to a local optimum state, halting innovation [37]. Two mechanisms
work against such long-term stasis.

One mechanism is co-evolution – a process here system components continuously
adapt to each another in a feedback loop, thus providing some on-going innovation.
However, co-evolution is not likely to account for the novelty observed in many CAS.
For instance, current models suggest [38] that selection, not variation, drives
biological speciation and that co-evolutionary feedback is likely to rapidly (on
geological timescales) lead to stable local optima.

A second mechanism that may underlie continual novelty in CAS is disturbance.
As discussed in section 2.1, evolutionary innovations often coincide with external
perturbations. External disturbances may affect both system components and
interaction networks, thus moving systems away from local optima. Densely
connected interaction networks, while providing many stabilising interactions, also
facilitate disturbance propagation. The complexity of dense interaction networks
makes large-scale responses to disturbances essentially unpredictable.

156 G. Paperin and S. Sadedin

Once away from a local optimum, systems enter a variation phase. Chance
variation of local components may provide better adaptation to local constraints;
selection facilitates proliferation of such changes within networks. Selection then
amplifies variations and eliminates destabilising interactions, reducing connectivity,
and components and their interactions self-organise towards new local optima.

Over time, surviving system components develop new interactions, increasing the
connectivity of interaction networks that survived previous disturbances. Eventually,
the system enters a new balance phase.

While some parts of a system may be completely or partly reorganised during a
variation phase following a particular disturbance, others remain stable. These stable
parts may form new interactions and assume new roles, acting as functional
components during a variation phase. A simulation by Paperin et al. [39]
demonstrated that DPE can result in modular networks. We conjecture that this
mechanism may also contribute to emergence of hierarchical organisation in CAS.

2.3 DPE and Self-organised Criticality

DPE can be linked to several other key concepts in CAS theory. One such concept is
Self-Organised Criticality (SOC) [1, 2]. Under SOC, CAS self-organise to a critical
state where system behaviour emerges from propagation of stimuli via local
component interactions. SOC suggests that CAS evolve towards the “edge-of-chaos”
[40, 41], a transition state between the stasis of equilibrium systems and the
unpredictability of chaotic systems.

Sizes of stimuli propagation avalanches in SOC systems follow a power
distribution, leading some researchers to argue that power-distributed data imply
SOC. Models [1] suggest ways in which certain natural systems may exhibit SOC
dynamics. However, the general applicability of SOC remains doubtful. Other
processes also lead to power-law distributed data. For example, it has been proposed
[42] that the biosphere self-organises to a critical state, potentially explaining
punctuated equilibria [14]. However, [43] demonstrates a non-critical extinction
model that yields a power-law with an exponent closer [34] to the empirical
punctuated equilibria data. SOC also appears to require fine-tuning of an order
parameter [44, 45], and the applicability of SOC to non-conservative systems [44,
46] remains unclear.

To describe DPE using the SOC-vocabulary: CAS develop to a balance-state,
where they are stabilised by internal forces (e.g. selection, negative feedback
mechanisms). External disturbances repeatedly push a system across the critical
region, to a chaotic state (in the sense that systems responses to stimuli are
unpredictable), from which the system returns to a new balance-state, accumulating
order and complexity on the way (Fig. 2).

Often, SOC is used to express that a system has self-organised to a specific state,
without describing the underlying processes. The DPE framework attempts to define
the internal forces responsible for system states. In this sense some systems may self-
organise to a critical state through DPE. For instance, scale-free networks [47] are
traditionally associated with SOC because their node degrees follow a power
distribution. Traditionally, scale-free topologies were thought to arise through
preferential node attachment during network growth [47]. However, scale-free

 DPE as a Framework for Understanding Complex Adaptive Systems 157

Fig. 2. Self-Organised Criticality vs. Dual Phase Evolution. SOC-theory suggests that CAS
self-organise to a critical transition state between the general stasis of equilibrium systems and
the random behaviour of chaotic systems (left). According to DPE, CAS are repeatedly pushed
from a balance-phase (high connectivity) to a variation-phase (low connectivity) by external
stimuli (right). The X-axis on this metaphoric illustration represents the degree of predictability
of system’s responses to stimuli.

topologies can arise through DPE in networks of constant size [39]. Networks
developed this way may underlie some systems with apparent SOC dynamics.

2.4 DPE and the Adaptive Cycle

An influential concept in CAS theory is the adaptive cycle (AC) (see Gunderson and
Holling [3]). The AC extends the idea of ecological succession [48], and is
predominantly applied to ecological and socio-ecological systems, especially with
reference to ecosystem management and resilience. The AC identifies 4 phases in
ecological succession:

• a growth and exploitation phase (designated r), in which new or freed-up areas
and niches are rapidly populated by opportunistic organisms;

• a conservation phase (K) signified by competition, selection and resource
accumulation;

• a collapse or release phase (Ω), in which accumulated resources are
catastrophically released, often mediated by disturbances;

• a reorganisation phase (α) in which the remains of an Ω-collapse are reorganised
and restructured.

The AC concept attributes typical CAS properties to each phase. Resilience against
external forcing is expected to be high during r and α phases but low during K, while
resource availability is high during α and K phases, but low during r and Ω.
Connectedness of control variables is maximal near the end of a K-phase. The AC
provides a descriptive formalism for self-organisation in ecosystems. DPE theory
distils concepts of the AC that are applicable to a wider range of CAS and provides a
causal model based in network theory.

predictability chaos

perturbation

stabilisation

predictability chaos

the edge
of chaos

158 G. Paperin and S. Sadedin

The balance phase in DPE loosely corresponds to the r-K transition in AC. This
phase is signified by stabilising selection, increasing connectivity, and growing
potential for disturbance propagation. The variation phase in DPE loosely corresponds
to the Ω-α-r transition in AC. This is a phase of innovation and re-organisation of
underlying networks.

Notably, connectedness in AC refers to the richness of interactions of control
variables. In fact, there may be several interaction networks with different
connectivity regimes within a system at any one time. For example, species in food
webs and populations in landscapes form interaction networks that act simultaneously
on the same groups but may have very different topologies. The structural properties
of the interaction network of control variables may thus be different from the
interaction network of components where disturbances propagate; a comprehensive
CAS theory must account for this fact.

3 A DPE Simulation Model

To further investigate the DPE process and the role of disturbances and connectivity
in CAS we created an abstract model of resource flow through a network. We briefly
discuss the model and some preliminary results here. The main objective of this paper
is to review the empirical evidence for DPE and to discuss its relationship to other
CAS theories. The space limit does not permit us to examine the model in greater
detail and more detailed results will be published elsewhere (paper in preparation).

The model consists of a number of nodes connected via directed edges. Energy
flows along edges and nodes require energy to sustain themselves. All nodes in the
system are designated “component nodes”, except for one, designated the “source”.
The source node does not require energy, instead it produces a constant amount of
energy at each iteration. Energy flows along downstream connections attached to a
node. Each model iteration consists of three stages: energy propagation, node
maintenance and structural modification.

Energy Propagation. At the start of each iteration each component node c passes a
proportion of its stored energy fc along its downstream connections. Total energy
propagated downstream by c is dc = fc × (1 - rc), where the retention factor
0 ≤ rc < 0 is a random number drawn when c is created. The remaining energy (fc –
dc) is retained by the node. If c has no outgoing links, all of fc is retained. Nodes at the
end of downstream edges of c compete for the energy propagated by c. Competition
for resources in real systems requires energy. This is modelled by a competition cost

factor kc = 1 / (1 + e2 × (lc - ic)), where lc is the number of downstream edges from c,
and ic > 0 is a random number drawn when c is created, it is the maximum value of lc
such that most energy is not wasted by competition expenses. Each of the lc
downstream edges receives an equal amount of (dc × kc / lc) units of energy from c.
Any energy conversion in nature comes with a loss. To model this, every edge g has a
flow efficiency value wg associated with it, such that the amount of energy actually
arriving at node cq from node cp is uq,p = (dc × kc / lc) – wg(p,q), where g(p, q) is the
edge from cp to cq and wg(p,q) is a random number drawn when g is created.

 DPE as a Framework for Understanding Complex Adaptive Systems 159

Node Maintenance. After all nodes have propagated energy downstream, the total
available energy fc at each component node c is equal to the amount of energy
retained by c during the propagation stage plus the sum of the incoming energy from
all upstream edges. Every c has an associated maintenance cost mc > 0 selected
randomly when c is created. To maintain its existence, every c expends mc energy
units per iteration. If mc > fc, then c dies and is removed from the system along with
all connected up- and down-stream edges. The source node never dies. If c
accumulates a large amount of energy, it reproduces. This happens by creating a
duplicate copy h of c. The offspring h receives the same number of edges as c. Each
of these edges may be connected either to the respective partner of c, or to any other
random node with equal probability, thus modelling random mutation. The
reproduction process consumes an amount of energy significantly larger than mc and
remaining energy is divided evenly between c and h.

Structural Modification. Every iteration, a new component or a new edge is
introduced into the network with a small probability. When a new component cn is
introduced, for every existing node p, an edge g(p, n) is added with a small
probability. New edges connect two randomly selected existing nodes. Similarly,
nodes and edges are removed from the network with a small probability at each
iteration simulating external disturbances.

The presented model captures major features of resource flow dynamics in several
real-world CAS. For instance, the energy flow through food webs in ecosystems
follows patterns very similar to those described here. Resource flow between primary
and intermediate producers, and end-consumers in economies follows a similar
pattern. Thus, the results obtained form our abstract model allow conclusions about a
variety of CAS.

3.1 Results

Model dynamics explored under a range of parameter values coincide with the
behaviour expected under the DPE framework. A detailed discussion is beyond the
scope of this paper, but we briefly overview some of the results here. Some indicators
of network dynamics are the number C of component nodes, the total amount E of
energy stored by all component nodes in the system, and the network edge density D.
The maximum node age A is an indicator on internal stability of the system.

In the absence of external disturbances (probability of random node and edge
removal is zero), C and E are lower on average compared to cases with disturbances.
This initially surprising result can be explained by the DPE process. In the absence of
disturbances unfavourable configurations can only be removed through node
starvation. In the presence of disasters that propagate through the system by cutting
off nodes and reducing connectivity, the remaining network sub-structures exhibit
more efficient and robust connectivity patterns. Additionally, newly created nodes can
better compete with established nodes that stored significant amounts of energy when
all nodes can equally be affected by disturbances. This increases potential for
innovation and for discovery of even more stable configurations.

Another consistently emerging pattern is that low values of D strongly correlate
with high values of C and E: a small number of connections is enough to efficiently

160 G. Paperin and S. Sadedin

Fig. 3. A typical simulation run. Shown are (from top to bottom): edge density D, total stored
energy E, number of component nodes C, oldest node age A. Mean node age (not shown)
strongly correlates with A. The x-axes represent iterations. The vertical dashed lines are a
visual aid to stress apparent phase changes.

 DPE as a Framework for Understanding Complex Adaptive Systems 161

distribute the energy across the components and additional edges lead to excessive
energy expenditure due to unnecessary competition and flow friction along the edges
(Fig. 3).

In a typical run A is normally low (< 1000), indicating internal instability. Over
time, robust network configurations are discovered, signified by a growing value of A
(>> 1000). Edge density in these stable configurations grows, making them less
efficient and more susceptible to catastrophic change caused by structural
modifications. Eventually, E reaches a very low value and the stable configurations
collapse leading to the next variation phase (Fig. 3). This behaviour is in line with the
predictions of DPE. However, in most of our experiments the variation phase was
significantly longer than the DPE framework predicts. This observation may be
explained by the absence of higher order stabilising control mechanisms such as
selection between network configurations. Further experiments will test this
conjecture.

4 Conclusions

Previous work has suggested that many interesting properties of CAS may be
explained in terms of a network theoretical framework termed Dual Phase Evolution.
According to DPE, networks underlying complex systems adapt and self-organise by
alternately switching between two phases: a phase of high connectivity dominated by
global component interactions and a phase of low connectivity dominated by local
interactions.

We have presented evidence here that DPE may provide a causal explanation for
known CAS properties that are typically expressed through other descriptive
formalisms. The empirical data reviewed here imply that in many CAS, phase
changes in network connectivity mediate dramatically different evolutionary
conditions, contributing to their distinctive properties of self-organisation, perpetual
novelty and evolution of modularity. Our simulation results indicate that DPE-like
phase changes arise in a simple abstract model of resource flow in a network that is
representative of a variety of systems. This work provides a step towards an integral
understanding of CAS and suggests that more advances can be made by further
empirical and theoretical studies of Dual Phase Evolution.

References

1. Bak, P.: How Nature Works: The Science of Self-Organized Criticality. Springer,
Heidelberg (1999); Reprint edition

2. Bak, P., Tang, C., Weisenfeld, K.: Self-Organized Criticality. Physical Review A 38,
364–374 (1988)

3. Gunderson, L.H., Holling, C.S.: Panarchy: understanding transformations in human and
natural systems. Island Press (2002)

4. Green, D.G.: Emergent Behaviour in Biological Systems. In: Green, D.G., Bossomaier,
T.R.J. (eds.) Complex Systems: From Biology to Computation, pp. 24–33. IOS Press,
Amsterdam (1993)

162 G. Paperin and S. Sadedin

5. Green, D.G., Leishman, T.G., Sadedin, S.: Dual Phase Evolution: a mechanism for self-
organization in complex systems. International Journal Complex Systems (2006)

6. Green, D.G., Newth, D., Kirley, M.G.: Connectivity and catastrophe - towards a general
theory of evolution. In: Bedau, M., McCaskill, J.S., Packard, N.H., Rasmussen, S.,
McCaskill, J., Packard, N. (eds.) 7th International Conference on the Synthesis and
Simulation of Living Systems, ALife VII (2000)

7. Green, D.: Fire and stability in the postglacial forests of southwest Nova Scotia. Journal of
Biogeography, 29–40 (1982)

8. Willis, K., Bennett, K., Walker, D.: The evolutionary legacy of the Ice Ages–Introduction.
Phil. Trans. R. Soc. Lond. B 359, 157–158 (2004)

9. Roshier, D., Robertson, A., Kingsford, R., Green, D.: Continental-scale interactions with
temporary resources explain the paradox of large populations of desert waterbirds in
Australia. Landscape Ecology 16, 547–556 (2001)

10. Swenson, N., Howard, D.: Clustering of contact zones, hybrid zones, and phylogeographic
breaks in North America. The American Naturalist 166, 581–591 (2005)

11. Hewitt, G.: Genetic consequences of climatic oscillations in the Quaternary. Philosophical
Transactions of the Royal Society of London. Series B, Biological Sciences 359, 183–195
(2004)

12. Avise, J., Walker, D.: Pleistocene phylogeographic effects on avian populations and the
speciation process. Proceedings of the Royal Society B: Biological Sciences 265, 457–463
(1998)

13. Butlin, R., Walton, C., Monk, K., Bridle, J.: Biogeography of Sulawesi grasshoppers,
genus Chitaura, using DNA sequence data. Biogeography and geological evolution of
Southeast Asia, 355–359 (1998)

14. Eldredge, N., Gould, S.J.: Punctuated Equilibria: An Alternative to Phyletic Gradualism.
Freeman Cooper, San Francisco (1972)

15. Gould, S.: The structure of evolutionary theory. Belknap Press (2002)
16. Gould, S., Eldredge, N.: Punctuated equilibrium comes of age. Shaking the Tree: Readings

from Nature in the History of Life 17 (2000)
17. Paperin, G., Green, D., Sadedin, S., Leishman, T.G.: A Dual Phase Evolution Model of

Adaptive Radiation in Landscapes. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL
2007. LNCS (LNAI), vol. 4828, pp. 131–143. Springer, Heidelberg (2007)

18. Perkins, S.: Patterns from nowhere: Natural forces bring order to untouched ground.
Science News 163, 314–316 (2003)

19. Kessler, M.A., Werner, B.T.: Self-organization of sorted patterned ground. Science 299,
380–383 (2003)

20. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

21. Cerný, V.: Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. Journal of Optimization Theory and Applications 45, 41–51 (1985)

22. Ramamoorthy, C.V., Shekhar, S.: Stochastic backpropagation: a learning algorithm for
generalizationproblems. In: 13th Annual International Computer Software and
Applications Conference 1989 (COMPSAC 1989), Orlando, FL, USA, pp. 664–671 (1989)

23. Wang, X.H., Li, J.J.: Hybrid particle swarm optimization with simulated annealing. In:
2004 International Conference on Machine Learning and Cybernetics, vol. 4,
pp. 2402–2405 (2004)

 DPE as a Framework for Understanding Complex Adaptive Systems 163

24. Liua, B., Wanga, L., Jina, Y.-H., Tangb, F., Huanga, D.-X.: Improved particle swarm
optimization combined with chaos. Chaos, Solitons & Fractals 25, 1261–1271 (2005)

25. Cordon, O., Moya, F., Zarco, C.: A new evolutionary algorithm combining simulated
annealing and genetic programming for relevance feedback in fuzzy information retrieval
systems. Soft Computing 6, 308–319 (2002)

26. Lin, S.W., Lee, Z.J., Chen, S.C., Tseng, T.Y.: Parameter determination of support vector
machine and feature selection using simulated annealing approach. Applied Soft
Computing Journal 8, 1505–1512 (2008)

27. Sun, F., Sun, M.: Transductive Support Vector Machines Using Simulated Annealing. In:
Hao, Y., Liu, J., Wang, Y.-P., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.)
CIS 2005. LNCS (LNAI), vol. 3801, pp. 536–543. Springer, Heidelberg (2005)

28. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms, vol. 42. Springer, Heidelberg
(2008)

29. Whitley, L.D.: Cellular Genetic Algorithms. In: 5th International Conference on Genetic
Algorithms. Morgan Kaufmann, San Francisco (1993)

30. Kirley, M.G.: A Cellular Genetic Algorithm with Disturbances: Optimisation Using
Dynamic Spatial Interactions. Journal of Heuristics 8, 321–242 (2002)

31. Kirley, M., Li, X., Green, D.G.: Investigation of a cellular genetic algorithm that mimics
landscape ecology. In: McKay, B., Yao, X., Newton, C.S., Kim, J.-H., Furuhashi, T. (eds.)
SEAL 1998. LNCS (LNAI), vol. 1585, pp. 90–97. Springer, Heidelberg (1999)

32. Erdös, P., Rényi, A.: On the Evolution of Random Graphs. Matematikai Kutató
Intézetének Közleményei 5, 17–61 (1960)

33. Green, D.G.: Self-Organization in complex systems. In: Bossomaier, T.R.J., Green, D.G.
(eds.) Complex Systems, pp. 7–41. Cambridge University Press, Cambridge (2000)

34. Lenton, T.M., Van Oijen, M.: Gaia as a Complex Adaptive System. Philosophical
Transactions of the Royal Society: Biological Sciences 357, 683–695 (2002)

35. Watson, A.J., Lovelock, J.E.: Biological homeostasis of the global environment: the
parable of Daisyworld. Tellus B 35, 284–289 (1983)

36. Weber, S.L.: On Homeostasis in Daisyworld. Climatic Change 48, 465–485 (2001)
37. Holland, J.H.: Hidden Order: How Adaptation Builds Complexity. Perseus Books (1995)
38. Gavrilets, S.: Fitness Landscapes and the Origin of Species. Princeton University Press,

Princeton (2004)
39. Paperin, G., Green, D.G., Leishman, T.G.: Dual Phase Evolution and Self-organisation in

Networks. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A.,
Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008.
LNCS, vol. 5361, pp. 575–584. Springer, Heidelberg (2008)

40. Langton, C.G.: Computation at the edge of chaos: Phase transitions and emergent
computation. Physica D: Nonlinear Phenomena 42, 13–37 (1990)

41. Langton, C.G.: Life at the Edge of Chaos. In: Langton, C.G., Taylor, C., Farmer, J.D.,
Rasmussen, S. (eds.) 2nd International Conference on the Synthesis and Simulation of
Living Systems (ALife II). Addison-Wesley, Reading (1991)

42. Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of
evolution. Physical Review Letters 71, 4083–4086 (1993)

43. Newman, M.E.J.: A model of mass extinction. Journal of Theoretical Biology 189,
235–252 (1997)

44. de Carvalho, J.X., Prado, C.P.C.: Self-Organized Criticality in the Olami-Feder-
Christensen Model. Physical Review Letters 84, 4006 (2000)

164 G. Paperin and S. Sadedin

45. Sornette, D., Johansen, A., Dornic, I.: Mapping Self-Organized Criticality onto Criticality.
Journal de Physique I 5, 325–335 (1995)

46. Kinouchi, O., Prado, C.P.C.: Robustness of scale invariance in models with self-organized
criticality. Physical Review E 59, 4964–4969 (1999)

47. Albert, R., Barabási, A.L.: Topology of Evolving Networks: Local Events and
Universality. Physical Review Letters 85, 5234–5237 (2000)

48. Gleason, H.A.: Further views on the succession-concept. Ecology 8, 299–326 (1927)

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 165–178.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Ant Colonies to Assign Terminals to Concentrators

Eugénia Moreira Bernardino1, Anabela Moreira Bernardino1,

Juan Manuel Sánchez-Pérez2, Juan Antonio Gómez-Pulido2,
and Miguel Angel Vega-Rodríguez2

1 Research Center for Informatics and Communications,
Department of Computer Science School of Technology and Management,

Polytechnic Institute of Leiria, 2411 Leiria, Portugal
{eugenia.bernardino,anabela.bernardino}@ipleiria.pt

2 Department of Technologies of Computers and Communications,
Polytechnic School University of Extremadura, 10071 Cáceres, Spain

{sanperez,jangomez,mavega}@unex.es

Abstract. The last few years have seen a significant growth in communication
networks. This has resulted in a large variety of new optimisation problems,
most of them in the field of combinatorial optimisation. We address here the
Terminal Assignment problem. The main objective is to minimise the cost links
to form a network by connecting a collection of terminals to a collection of
concentrators. In this paper we consider artificial Ant Colonies to assign
terminals to concentrators. The algorithms use an improvement method to
locate the global minimum. An Ant Colony algorithm is a swam-based
optimisation algorithm that mimics the natural behaviour of ants. We show that
artificial Ant Colonies are able to achieve feasible solutions to Terminal
Assignment instances, improving the results obtained by previous approaches.

Keywords: Communication Networks, Optimisation Algorithms, Bees
Algorithm, Terminal Assignment Problem.

1 Introduction

Terminal assignment (TA) is an important issue in telecommunication networks
optimisation. The target of the TA problem implies fixing the minimum cost links to
form a network between a specified set of terminals and concentrators [1, 2, 3]. Our
purpose is to connect terminals to concentrators under three constraints:

1. each terminal is assigned to one (and only one) concentrator;

2. the total number of terminals assigned to any concentrator does not overload that
concentrator, i.e. is within the concentrators capacity and;

3. balanced distribution of terminals among concentrators.

Under these constraints, an assignment with the lowest possible cost is sought.
The TA problem is a NP-complete combinatorial optimisation problem [1]. It

means that the time required to solve the problem increases very quickly as the size of
the problem grows. The intractability of this problem is a motivation for the pursuits

166 E.M. Bernardino et al.

of a metaheuristic that produces approximate, rather than exact, solutions. In [4, 5, 6]
it was proposed the use of an Ant Colony Optimisation (ACO) algorithm as a new
metaheuristic in order to solve combinatorial optimisation problems.

An ACO algorithm is essentially a Swarm Intelligence (SI) algorithm which
simulates the natural behaviour of ants, including mechanisms of cooperation and
adaptation. This new metaheuristic has been shown to be both robust and versatile.
The ACO algorithm has been successfully applied to a range of different
combinatorial optimisation problems [7].

An ACO algorithm is initialised with a population of individuals (i.e., potential
solutions). These individuals are then manipulated over many iteration steps by
mimicking the social behaviour of ants, in an effort to find the optimal solution in the
problem solution space. A potential solution “walks” through the search space by
modifying itself according to its past experience and its relationship with other
individuals in the population and the environment [6].

This paper is a continuation of an earlier paper, which considered the use of a
Hybrid ACO (HACO) algorithm to solve the TA problem [8]. Currently, we consider
two New HACO (NHACO) algorithms based on the algorithm proposed by
Bernardino et al. [8], but with some important modifications in the improvement
method. The HACO uses pheromone trail information to perform modifications on
TA solutions, unlike more traditional ant systems that use pheromone trail
information to construct complete solutions. The HACO also uses a diversification
mechanism that periodically reinitialises all the pheromone trails.

Embedded in the first NHACO algorithm we use a Local Search (LS) algorithm
(NHACO-LS), which is used to improve the quality of the solutions. This LS method
is similar to the LS used in HACO but we made some important improvements to
reduce the computational time.

In the second NHACO algorithm we use a Tabu Search (TS) algorithm proposed
by Bernardino et al. [9] (HACO-TS). The TS algorithm is a mathematical
optimisation method, which belongs to the class of LS techniques.

We compare the performance of HACO-LS and HACO-TS with seven algorithms:
classical Genetic Algorithm (GA), Tabu Search (TS) algorithm, Hybrid Genetic
Algorithm (HGA), Genetic Algorithm with Multiple Operators (GAMO), Hybrid
Differential Evolution (HDE) algorithm, Local Search Genetic Algorithm (LSGA)
and Hybrid Ant Colony (HACO) algorithm, used in literature.

This paper is structured as follows. In Section 2 we describe the TA problem; in
Section 3 we describe the implemented NHACO algorithms; in Section 4 we present
the studied examples; in Section 5 we discuss the computational results obtained and
in Section 6 we report about the conclusions.

2 Terminal Assignment Problem

The TA problem involves the determination of which terminals will be serviced by
each concentrator [1]. In the TA problem a communication network will connect N
terminals with M concentrators. No terminal's demand exceeds the capacity of any
concentrator. The TA Problem can be described as follows:

 Ant Colonies to Assign Terminals to Concentrators 167

1. a set N of n distinct terminals;
2. a set M of m distinct concentrators;

3. a vector C, with the capacity required for each concentrator (each concentrator is
limited in the amount of traffic that it can accommodate);

4. a vector T, with the capacity required for each terminal (the capacity requirement
of each terminal is known and may vary from one terminal to another). The
capacities are positive integers and Ti is smaller or equal to min (Ci…Cm);

5. a matrix CP, with the location (x,y) of each concentrator (the concentrators sites
have fixed and known locations). The M concentrators are placed on the Euclidean
grid;

6. a matrix CT, with the location (x,y) of each terminal (the terminals sites have
fixed and known locations). The N terminals are placed on the Euclidean grid.

The first objective is to assign each terminal to one node of the set of concentrators, in
a way that no concentrator oversteps its capacity. The second objective is to minimise
the distances between concentrators and terminals assigned to them. Finally, the third
objective is to ensure a balanced distribution of terminals among concentrators (see
Section 3.3).

Fig. 1 illustrates an assignment to a problem with N=10 terminal sites and M=3
concentrator sites. The figure shows the coordinates for the concentrators, terminal
sites and also their capacities.

Fig. 1. TA Problem – example

In this work, the solutions are represented using integer vectors. We use the
terminal-based representation (see Fig. 2). Each position in the vector corresponds to
a terminal. The value carried by the position i of the vector specifies the concentrator
to which the terminal i is to be assigned.

Fig. 2. Terminal Based Representation

168 E.M. Bernardino et al.

3 Ant Colonies

SI is an artificial intelligence technique involving the study of collective behaviour in
decentralised systems [10]. Four widely known approaches are Ant Colonies, Particle
Swarm Optimisation (PSO), Artificial Bee Colony (ABC) and Bees Algorithm. All
these approaches can be used in real-world optimisation problems.

ACO algorithm is a SI algorithm that mimics the natural behaviour of ants [4].
ACO is a population-based optimisation method for solving hard combinatorial
optimisation problems. ACO is based on the indirect communication of ants,
mediated by pheromone trails. In a natural ant colony, ants indirectly communicate
with each other by depositing pheromone trails on the ground and thereby influencing
the decision processes of other ants. This simple form of communication between
individual ants gives rise to complex behaviours and capabilities of the colony as a
whole.

The first algorithm which can be classified within this framework was presented by
Dorigo, Maniezzo and Colorni [5, 6], and Dorigo [4] and, since then, many diverse
variants of the basic principle have been reported in literature.

The real ants behaviour is transposed into an algorithm by making an analogy
between:

1. real ants search - set of feasible solutions to the problem;

2. amount of food in a source - fitness function;

3. pheromone trail - adaptive memory.

In real ant colony, while walking from food sources to the nest or from the nest to
food sources, each ant deposits a pheromone on the ground. All ants can smell the
pheromone while they walk. Therefore, more pheromone on the path will increase the
probability of all ants to follow. In short, the best paths will receive a greater deposit
of pheromones.

The pheromone trails in ACO serve as a distributed, numerical information which
the ants use to probabilistically construct solutions to the problem being solved and
which the ants adapt during the algorithm execution to reflect their search experience.

The essential trait of ACO algorithms is the combination of a priori information
about the structure of a promising solution with a posterior information about the
structure of previously obtained good solutions.

Any high performing metaheuristic algorithm has to achieve an appropriate
balance between the exploitation of the search experience gathered so far and the
exploration of unvisited or relatively unexplored search space regions. In ACO there
are several ways of achieving such a balance, typically through the management of
the pheromone trails. In fact, the pheromone trails induce a probability distribution
over the search space and determine which parts of the search space are effectively
sampled. The management of pheromone trails is the most important component of an
ant system. Exploration is a stochastic process in which the choice of the component
used to construct a solution to the problem is made in a probabilistic way.
Exploitation chooses the component that maximises a blend of pheromone trail values
and partial objective function evaluations.

 Ant Colonies to Assign Terminals to Concentrators 169

The standard ACO algorithm uses pheromones trail information to construct
complete solutions. Gambardella et al. [11] in their paper present a Hybrid Ant
Colony System coupled with a local search (HAS_QAP), applied to the quadratic
assignment problem (QAP). HAS-QAP uses pheromone trail information to perform
modifications on QAP solutions. The HACO algorithm proposed by Bernardino et al.
[8] also uses pheromone trail information to perform modifications on TA solutions,
unlike traditional ant systems that use pheromone trail information to construct
complete solutions.

In this paper we explore one of the most successful emerging ideas combining LS
and TS with a population-based algorithm. HACO uses a modified ACO to explore
several regions of the search space and simultaneously integrates a mechanism
(improvement method) to intensify the search around some selected regions.
NHACO-LS uses the same LS used by HACO but with some important
improvements and NHACO-TS uses a TS algorithm to improve the solutions quality.

For the TA, the set of pheromone trails is maintained in a matrix P of size N*M,
where the entry Pij measures the desirability of assigning terminal i to concentrator j.

The simplest way to exploit the ants search experience is to make the pheromone
update a function of the solution quality achieved by each particular ant. In HACO
only the best solution found during the search contributes to pheromone trail updating
[11]. This makes the search more aggressive and requires less time to reach good
solutions. Moreover, this has been strengthened by an intensification mechanism. The
intensification mechanics is used to explore neighbourhood more completely.

The algorithm also uses a diversification mechanism after a pre-defined number of
S iterations without improving the best solution found so far. Gambardella et al. [11]
have shown that pheromone trail reinitialisation, when combined with appropriate
choices for the pheromone trail update can be very useful to refocus the search on a
different search space region and avoid the early convergence of the algorithm.

The main steps of the HACO algorithm are given below:

Initialise Parameters
Initialise Solutions (ants)
Evaluate Solutions
Apply Improvement Method
Evaluate Solutions
Initialise Pheromone Trails
WHILE TerminationCriterion()
 FOR each Solution in Population
 Modify Solution using Pheromone Trails
 Apply Improvement Method
 Apply Intensification Mechanism
 Update Pheromone Trails
 Apply Diversification Mechanism

NHACO-LS and NHACO-TS use the same algorithm model.
The next subsections describe each step of the algorithm in detail.

170 E.M. Bernardino et al.

3.1 Initialisation of Parameters

The following parameters must be defined by the user: (1) NA = number of ants; (2)
MI = maximum number of iterations; (3) Q = value used to initialise the pheromone
trails; (4) q = probability exploration/exploitation; (5) x1 = pheromone evaporation
rate; (6) x2 = pheromone influence rate; (7) NM = number of modifications and (8) S
= number of iterations (used to apply diversification mechanism).

3.2 Initialisation of Solutions

The initial solutions can be created randomly or in a deterministic form. The
deterministic form is based in the Greedy algorithm proposed by Abuali et al. [1].
This algorithm assigns terminals to the closest feasible concentrator.

3.3 Evaluation of Solutions

The fitness function is responsible for performing this evaluation and it returns a
positive number (fitness value) that reflects how good the solution is. The fitness
function is based on: (1) the total number of terminals connected to each concentrator
(the purpose is to guarantee a balanced distribution of terminals among
concentrators); (2) the distance between the concentrators and the terminals assigned
to them (the purpose is to minimise the distances between concentrators and terminals
assigned to them); (3) the penalisation if a solution is not feasible (the purpose is to
penalise the solutions when the total capacity of one or more concentrators is
overloaded). The final purpose is to minimise the fitness function.

Fitness function:

(){

{ ()

[] []() [] []()22
)(,

0
500

1

0

)(1
0

1
10

1*20

1

0
)(,

1

0

..)(..)(

*1,0

*9,0

ytCTytcCPxtCTxtcCPdist

onPenalizati

totalbal

onPenalizati

dist

balfitness

tct

Feasibleif

N

t

ctcif
c

M

N
roundtotalif

total
M

N
roundabs

c

N

t
tct

M

c
c

c

c

−+−=

=

=
⎪⎩

⎪
⎨
⎧

=

+

+=

∑

∑

∑

−

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟
⎠
⎞

⎜
⎝
⎛=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟

⎠
⎞

⎜
⎝
⎛

−

=

−

=

c(t)= concentrator of terminal t t = terminal c = concentrator
M = number of concentrators N = number of terminals

(1)

(2)

(3)

 Ant Colonies to Assign Terminals to Concentrators 171

3.4 Improvement Method

An improvement method is applied to each solution in the initial set of solutions in
order to reduce its cost, if possible. After solutions modification, the improvement
method is also applied to improve the solutions quality.

In NHACO_LS we use the LS method proposed by Bernardino et al. [8]. The LS
algorithm consists on applying a partial neighbourhood examination.

The most common and simplest way to generate a neighbour is to swap two
terminals in the permutation. The size of the neighbourhood is N*(N-1)/2 in this
case, which would be large for large-scale problems. This would waste a lot of
computing time. Other way to generate a neighbour is to assign one terminal to other
concentrator. The size of the neighbourhood is N*(M-1), which is also large for large-
scale problems. In our implementation we generate a neighbour by swapping two
terminals between two concentrators - c1 and c2 (randomly chosen). The algorithm
searches for a better solution in the initial set of neighbours. If the best neighbour
improves the actual solution, then the LS algorithm replaces the actual solution with the
best neighbour. Otherwise, the algorithm creates another set of neighbours. In this case,
one neighbour results on assigning one terminal of c1 to c2 or c2 to c1. The
neighbourhood size is N(c1)*N(c2) or N(c1)*N(c2) + N(c1)+N(c2).

The LS algorithm consists on the following steps:

c1 = random (number of concentrators)
c2 = random (number of concentrators)
NN = neighbours of ACTUAL-SOL (one neighbour results of
 interchange one terminal of c1 or c2 with one terminal
 of c2 or c1)
SOLUTION = FindBest (NN)
IF fitness (ACTUAL-SOL) < fitness(SOLUTION)
 NN = neighbours of ACTUAL-SOL (one neighbour results of

 assign one terminal of c1 to c2 or c2 to c1)
 SOLUTION = FindBest (NN)
 IF fitness (SOLUTION < fitness(ACTUAL-SOL)
 ACTUAL-SOL = SOLUTION
ELSE
 ACTUAL-SOL = SOLUTION

The evaluation process is the most time-consuming step of the LS algorithm,
which is usually the case in many real-life problems. Our LS procedure has some
important improvements compared to the LS proposed by Bernardino et al. [8]. After
creating a neighbour, the algorithm does not perform a full examination to calculate
the new fitness value; it only updates the fitness value based on the modifications
made to create the neighbour. The running time is considerably reduced.

In NHACO-TS a TS algorithm is applied to improve the solutions quality. The basic
concept of TS was described by Glover [12]. The TS algorithm allows the search to
explore solutions that decrease the objective function value only in those cases where
these solutions are not forbidden. This is usually obtained by keeping track of the
action used to transform one solution into the next. When an action is performed it is
considered tabu for the next K iterations, where K is the tabu status length. A solution is
forbidden if it is obtained by applying a tabu action to the current solution [13].

172 E.M. Bernardino et al.

In our implementation, the TS only exploits a part of the neighbourhood. TS uses
the same LS method described above to improve the solutions quality

The two concentrators (c1 and c2) which terminals are exchanged are classified as
tabu attributes. A candidate can be chosen as a new current solution if the
concentrators which terminals are exchanged are not the same as those in the tabu list.
Normally in TS algorithm if a neighbour is the best solution found so far it could be
selected as a move, even when it is tabu. In our implementation we don’t explore
neighbours when the two concentrators chosen are in the tabu list. In aspiration, just
the best neighbour not tabu with a fitness value lower than the best is selected.

The TS ends when a maximum number of iterations is reached. Based on
preliminary observations, we consider 5 iterations. With a higher value of iterations,
the algorithm slows down. We also observed that a high number of iterations do not
produce significant better results.

For the tabu list we consider N/20 elements. In the tests carried out with TS, it was
verified that the number of elements in the tabu list does not have a significant
influence on the efficiency and quality of the search. However, if the number of
elements is high, the search space will be small, which may lead to a premature
convergence of the algorithm. On the other hand, if the number of elements is small,
the search space will be large, which may take a long time to obtain a good solution.

3.5 Pheromone Trails Initialisation

All pheromone trails Pij are set to the same value P0=1/(Q*f(X*)) [11]. X* is the
best solution found so far and Q a parameter.

3.6 Modification of Solutions

It consists in repeating NM modifications. The modification is done assigning a terminal
t to a concentrator c. First a terminal t is randomly chosen (between 1 and N) and then
a concentrator c is chosen. A random number x is generated between 0 and 1. If x is
smaller than q (parameter), the best concentrator c is chosen in a way that Ptc is
maximum. This policy consists in exploiting the pheromone trail. If x is higher than q,
the concentrator c is chosen with a probability proportional to the values contained in
the pheromone trail. This is the mechanism to explore the solution space.

3.7 Intensification Mechanism

The intensification mechanism allows to explore the neighbourhood more completely
and allows returning to previous best solutions. If the intensification is active and the
solution X in the beginning of the iteration is better, the ant comes back to the initial
solution X. The intensification is activated when the best solution found so far X* has
been improved and remains active while at least one ant succeeds on improving its
solution during the iteration.

3.8 Pheromone Trails Update

To speed-up the convergence, the pheromone trails are updated by taking into account
only the best solution found so far [11]. The pheromone trails are updating by setting:

 Ant Colonies to Assign Terminals to Concentrators 173

Pij=(1-x1)*Pij, where 0<x1<1 is a parameter that controls the evaporation of
the pheromone trail.
PiXi* = PiXi* + x2/fitness(X

*), where 0<x2<1 is a parameter that
controls the influence of the best solution X* in the pheromone trail.

3.9 Diversification Mechanism

This mechanism restarts the pheromone trails and creates new solutions for each ant.
For the following iteration, we kept the best solution found so far X*.

3.10 Termination Criterion

The algorithm stops when a maximum number of iterations (MI) is reached.
More information about ACO can be found in ACO Website [7].

4 Studied Examples

In order to test the performance of our approach, we use a collection of TA instances
of different sizes. We took 9 instances from literature [9].

Table 1 presents the 9 problems that we have used to test our algorithms. The first
column represents the number of the problem (Problem) and the remaining columns
show the number of terminals (N), the number of concentrators (M), the sum of the
terminal’s capacities (Total T), and the sum of the concentrator’s capacities
(Total C).

Table 1. TA Instances

Problem N M Total T Total C
1 10 3 35 39
2 20 6 55 81
3 30 10 89 124
4 40 13 147 169
5 50 16 161 207
6 50 16 173 208
7 70 21 220 271
8 100 30 329 517
9 100 30 362 518

5 Results

Bernardino et al. [8] studied the influence of the HACO parameters over the 9
instances of the TA problem. The best results obtained with HACO use NM between
N/20 and N/3, x1>0.4 and x2>0.4, Q=100, S between N*2 and N*4, q>0.4
and NA={30,40} (see [8]). These parameters were experimentally found to be good
and robust for the instances tested.

174 E.M. Bernardino et al.

The number of ants NA has a significant influence on the execution time. Small
populations are very desirable for reducing the required computational resources. The
HACO algorithm has a good performance using initially a small population.

The number of modifications NM also has a significant influence on the execution
time. In case of a high NM the resulting permutation tends to be too close to the best
solution used to perform global pheromone trail updating, which makes it more
difficult to generate new improving solutions. On the contrary, a small NM did not
allow the system to escape from local minima, because after the improvement phase,
the resulting solution was, in most cases, the same as the starting permutation.

To compare our results, we consider the results produced with the classical Genetic
algorithm, Tabu Search algorithm, Hybrid Genetic algorithm, Genetic algorithm with
multiple operators, Hybrid Differential Evolution algorithm, Local Search Genetic
algorithm and Hybrid Ant Colony Optimisation algorithm.

The GA was first applied to TA by Abuali et al. [1]. In recent years, different GA
algorithms have been applied to this problem [1, 2, 3, 9, 14, 17, 18]. The GA is
widely used in literature to make comparisons with other algorithms. The adopted
classical GA uses “one point” method for recombination, “change order” method for
mutation and “tournament” method for selection. In “change order”, two genes are
randomly selected and exchanged.

In this paper, we only compare our algorithms with the algorithms proposed by
Bernardino et al. [8, 9, 15, 17, 18], because they (1) used the same test instances; (2)
adopted the same fitness function; (3) implemented the algorithms using the same
language (C++) and; (4) adopted the same representation (terminal-based).

Table 2 and Table 3 present the best-obtained results with classical GA, TS, HGA,
GAMO, HDE, LSGA, HACO, NHACO-LS and NHACO-TS. In both tables, the first
column represents the number of the problem (P) and the remaining columns show the
results obtained (BestF – Best fitness, Ts – Run Times) by the mentioned algorithms.

The algorithms have been executed using a processor Intel Core Duo T2300.
The initial solutions were created using the Greedy algorithm.
The Ts (Run Time) corresponds to the execution time that each algorithm needs to

obtain the best feasible solution.
The values presented in tables 2 and 3 have been computed based on 100 different

executions for each test instance.

Table 2. Results

P GA TS HGA GAMO HDE LSGA

 BestF Ts BestF Ts BestF Ts BestF Ts BestF Ts BestF Ts
1 65,63 <1s 65,63 <1s 65,63 <1s 65,63 <1s 65,63 <1s 65,63 <1s
2 134,65 <1s 134,65 <1s 134.65 <1s 134,65 <1s 134.65 <1s 134,65 <1s
3 284,07 <1s 270,26 <1s 270,26 <5s 270,26 1s 270,26 1s 270,26 <1s
4 286,89 <1s 286,89 <1s 286,89 <5s 286,89 1s 286,89 1s 286,89 <1s
5 335,09 <1s 335,09 <1s 335.09 <5s 335,09 1s 335,09 1s 335,09 <1s
6 371,48 1s 371,12 <1s 371,12 58s 371,12 1s 371,12 1s 371,12 1s
7 401,45 2s 401,49 1s 401,21 118s 401,21 2s 401,21 2s 401,21 1s
8 563,75 4s 563,34 1s 563,19 274s 563,19 8s 563,19 8s 563,19 7s
9 703,78 5s 642,86 2s 642,83 456s 642,83 8s 642,83 8s 642,83 7s

 Ant Colonies to Assign Terminals to Concentrators 175

Table 3. Results – HACO, NHACO-LS and NHACO-TS

P HACO NHACO-LS NHACO-TS
 BestF Ts BestF Ts BestF Ts

1 65,63 <1s 65,63 <1s 65,63 <1s
2 134.65 <1s 134.65 <1s 134.65 <1s
3 270,26 <1s 270,26 <1s 270,26 <1s
4 286,89 <1s 286,89 <1s 286,89 <1s
5 335,09 2s 335,09 <1s 335,09 <1s
6 371,12 3s 371,12 1s 371,12 <1s
7 401,21 4s 401,21 1s 401,21 1s
8 563,19 14s 563,19 7s 563,19 7s
9 642,83 25s 642,83 7s 642,83 7s

Tables 4 and 5 present the average fitnesses and standard deviations. The first

column represents the number of the problem (Prob) and the remaining columns
show the results obtained (AvgF – Average Fitness, Std – Standard Deviation) by
the 10 algorithms.

To compute the results in tables 4 and 5 we use 300 iterations/generations for
instances 1-4, 500 for the instance 5, 1000 for the instance 6, 1500 for the instance
7 and 2000 for instances 8-9.

The suggestions from literature helped us to guide our choice of parameter values
for TS [9], HGA [9], GAMO [18], HDE [15], LSGA [17] and HACO [8].

For the TS, we consider a number of elements in the tabu list between 5 and 20.
The parameters of HGA, GAMO and LSGA algorithms are set to crossover
probability between 0.3 and 0.4, selection operator=“tournament”, mutation
probability between 0.6 and 0.8, crossover operator=“exchange terminals of two
concentrators” and mutation operator= “multiple”.

The parameters of the HDE algorithm are set to crossover probability between 0.3
and 0.4, factor F between 1.6 and 1.9 and strategy=“Best1Exp”.

The parameters of the HACO and NHACO algorithms are set to NA=30, S between
150 and 300, Q=100, q=0.9, x1=x2=0.8 and NM between 2 and 10.

The GA, HGA, GAMO, HDE and LSGA were applied to populations of 200
individuals.

The values presented in tables 4 and 5 have been computed based on 50 different
executions (50 best executions out of 100 executions) for each test instance.

All algorithms reach feasible solutions for all test instances. The NHACO-LS and
NHACO-TS algorithms can reach the best-known solutions for all instances. HDE,
HGA, GAMO and HACO can also find the best–known solutions, but in a higher
execution time. LSGA can reach the best-known solutions in a similar execution time.
The TS algorithm is the fastest algorithm and can find good solutions in a reasonable
running time. Comparing with HACO, NHACO algorithms are faster.

Since we are not trying to dynamically assign terminals to concentrators the
running time isn’t a significant parameter to determine the quality of the algorithms.

176 E.M. Bernardino et al.

Table 4. Results – average fitnesses and standard deviations.

Prob GA TS HGA GAMO HDE LSGA
 AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std AvgF Std

1 65.63 0,00 65,63 0,00 65.63 0,00 65.63 0,00 65,63 0,00 65,63 0,00
2 134.65 0,00 134,65 0,00 134.65 0,00 134.65 0,00 134,65 0,00 134,65 0,00
3 283,13 5,62 270,48 0,15 270,52 0,24 270,52 0,23 270,35 0,06 270,32 0,06
4 295,08 1,42 287,93 0,75 287,26 0,48 287,18 0,42 286,97 0,09 286,90 0,02
5 350,69 2,67 336,00 0,66 335,75 0,60 336,00 0,67 335,42 0,16 335,34 0,25
6 388,21 1,80 372,35 0,51 371,95 0,33 371,95 0,30 371,60 0,17 371,57 0,22
7 441,56 3,51 403,29 0,76 402,36 0,43 402,42 0,49 401,58 0,12 401,87 0,24
8 623,16 2,86 564,34 0,59 564,03 0,41 564,14 0,36 564,03 0,21 563,59 0,24
9 784,68 2,91 644,04 0,53 643,88 0,45 643,98 0,53 646,65 0,61 643,83 0,41

Table 5. Average fitnesses and standard deviations – HACO, NHACO-LS and NHACO-TS

P HACO NHACO-LS NHACO-TS
 AvgF Std AvgF Std AvgF Std

1 65,63 0,00 65,63 0,00 65.63 0,00
2 134,65 0,00 134,65 0,00 134.65 0,00
3 270,32 0,06 270,32 0,06 270,26 0,00
4 286,91 0,04 286,91 0,04 286,89 0,00
5 335,11 0,03 335,11 0,03 335,09 0,00
6 371,55 0,17 371,55 0,17 371,24 0,09
7 401,61 0,15 401,61 0,15 401,34 0,12
8 563,55 0,16 563,55 0,16 563,35 0,07
9 643,67 0,38 643,67 0,38 643,23 0,11

The differences in terms of execution time are not significant. To establish which is
the best algorithm we must observe the average quality of the produced solutions and
the standard deviations.

As it can be seen in table 5, for larger instances the standard deviations and the
average fitnesses for ACO algorithms are smaller. It means that the ACO algorithms
are slightly more robust than GA, TS, HGA, GAMO, LSGA and HDE.

In NHACO-LS we only improve the source code to reduce the computational time.
For that reason the average fitnesses and the standard deviations for HACO and
NHACO-LS are exactly the same. The NHACO-TS presents a better average fitness
and a smaller standard deviation for larger instances. All the statistics obtained show
that the performance of NHACO-TS is superior in comparison with the algorithms
studied.

6 Conclusions

In this paper we present artificial Ant Colonies to assign terminals to concentrators.
The performance of the two proposed algorithms are compared with seven algorithms
from literature, namely GA, TS, HGA, GAMO, LSGA, HDE and HACO. Ant

 Ant Colonies to Assign Terminals to Concentrators 177

Colonies are swarm optimisation techniques, capable of performing simultaneous
local and global search.

In comparison to other algorithms, artificial Ant Colonies achieve better results for
the Terminal Assignment problem. The computational results show that artificial Ant
Colonies had a stronger performance, improving the results obtained by previous
approaches. Moreover, in terms of standard deviation, Ant Colonies also proved to be
more stable and robust than the other algorithms.

Simulation results show that the proposed algorithms can produce satisfactory
results regarding the solution quality and execution time for the Terminal Assignment
problem.

For future work we propose the implementation of other Swarm Intelligence
algorithms and the use of parallel algorithms to speed up the optimisation process.

References

1. Abuali, F., Schoenefeld, D., Wainwright, R.: Terminal assignment in a Communications
Network Using Genetic Algorithms. In: Proc. of the 22nd Annual ACM Computer Science
Conference, pp. 74–81. ACM Press, New York (1994)

2. Khuri, S., Chiu, T.: Heuristic Algorithms for the Terminal Assignment Problem. In: Proc.
of the ACM Symposium on Applied Computing, pp. 247–251. ACM Press, New York
(1997)

3. Salcedo-Sanz, S., Yao, X.: A hybrid Hopfield network-genetic algorithm approach for the
terminal assignment problem. IEEE Transaction On Systems, Man and Cybernetics,
2343–2353 (2004)

4. Dorigo, M.: Ottimizzazione, apprendimento automatico, ed algoritmi basati su metafora
naturale (Optimisation, learning and natural algorithms). Doctoral dissertation,
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy (1991)

5. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical
Report 91-016, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
(1991)

6. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics 26, 29–41
(1996)

7. Ant Colony Optimization HomePage,
http://iridia.ulb.ac.be/dorigo/ACO/ACO.html

8. Bernardino, E., Bernardino, A., Sánchez-Pérez, J., Vega-Rodríguez, M., Gómez-Pulido, J.:
A Hybrid Ant Colony Optimization Algorithm for Solving the Terminal Assignment
Problem. In: International Conference on Evolutionary Computation (2009)

9. Bernardino, E., Bernardino, A., Sánchez-Pérez, J., Vega-Rodríguez, M., Gómez-Pulido, J.:
Tabu Search vs Hybrid Genetic Algorithm to solve the terminal assignment problem. In:
IADIS International Conference Applied Computing, pp. 404–409. IADIS Press (2008)

10. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm intelligence. Morgan Kaufmann, San
Francisco (2001)

11. Gambardella, L.M., Taillard, E.D., Dorigo, M.: Ant colonies for the quadratic assignment
problem. Journal of the Operational Research Society 50(2), 167–176 (1999)

12. Glover, F.: Future paths for Integer Programming and Links to Artificial Intelligence.
Computers and Operations Research 13(5), 533–549 (1986)

178 E.M. Bernardino et al.

13. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)
14. Yao, X., Wang, F., Padmanabhan, K., Salcedo-Sanz, S.: Hybrid evolutionary approaches

to terminal assignment in communications networks. In: Recent Advances in Memetic
Algorithms and related search technologies, vol. 166, pp. 129–159. Springer, Berlin (2005)

15. Bernardino, E., Bernardino, A., Sánchez-Pérez, J., Vega-Rodríguez, M., Gómez-Pulido, J.:
A Hybrid Differential Evolution Algorithm for solving the Terminal assignment problem.
In: International Symposium on Distributed Computing and Artificial Intelligence 2009,
pp. 178–185. Springer, Heidelberg (2009)

16. Xu, Y., Salcedo-Sanz, S., Yao, X.: Non-standard cost terminal assignment problems using
tabu search approach. In: IEEE Conference in Evolutionary Computation, vol. 2,
pp. 2302–2306 (2004)

17. Bernardino, E., Bernardino, A., Sánchez-Pérez, J., Vega-Rodríguez, M., Gómez-Pulido, J.:
Solving the Terminal Assignment Problem Using a Local Search Genetic Algorithm. In:
International Symposium on Distributed Computing and Artificial Intelligence,
pp. 225–234. Springer, Heidelberg (2008)

18. Bernardino, E., Bernardino, A., Sánchez-Pérez, J., Vega-Rodríguez, M., Gómez-Pulido, J.:
A Genetic Algorithm with Multiple Operators for Solving the Terminal Assignment
Problem. In: Nguyen, N.T., Katarzyniak, R. (eds.) New Challenges in Applied Intelligence
Technologies, pp. 279–288. Springer, Heidelberg (2008)

A Statistical Study of the Effects of Neighborhood
Topologies in Particle Swarm Optimization

Gregorio Toscano-Pulido, Angelina Jane Reyes-Medina,
and José Gabriel Ramı́rez-Torres

CINVESTAV-Tamaulipas, Information Technology Laboratory. Scientific and Technological
Park TECNOTAM – Km. 5.5 carretera Cd. Victoria-Soto La Marina Cd. Victoria

Tamaulipas, 87130, Mexico
{gtoscano,areyes,grtorres}@tamps.cinvestav.mx

http://www.tamps.cinvestav.mx/

Abstract. The behavior of modern meta-heuristics is directed by both, the varia-
tion operators, and the values selected for the parameters of the approach. Particle
swarm optimization (PSO) is a meta-heuristic which has been found to be very
successful in a wide variety of optimization tasks. In PSO, a swarm of particles
fly through hyper-dimensional search space being attracted by both, their personal
best position and the best position found so far within a neighborhood.

In this paper, we perform a statistical study in order to analyze whether the
neighborhood topology promotes a convergence acceleration in four PSO-based
algorithms: the basic PSO, the Bare-bones PSO, an extension of BBPSO and the
Bare-bones Differential Evolution. Our results indicate that the convergence rate
of a PSO-based approach has a strongly dependence of the topology used. We also
found that the topology most widely used is not necessarily the best topology for
every PSO-based algorithm.

Keywords: Neighborhood topologies, Particle swarm optimization, Statistical
test.

1 Introduction

Meta-heuristics have been proved to be very useful for solving optimization problems.
The convergence velocity and the accuracy of these approaches for a given problem are
usually directed by both: the variation operators and the values selected for the parame-
ters of the algorithm (parameter setting). Therefore, researchers and other practitioners
usually adopt values taken from the specialized literature which have been proved to
work well on a wide range of problems. Nevertheless, these values may change de-
pending on the problem at hand. Hence, the parameter setting plays a key role on the
performance of any meta-heuristic. Tuning well these parameters is a hard problem,
since they can usually take several values, and therefore, the number of possible com-
binations can be increased exponentially.

Kennedy & Eberhart [7] proposed an approach called “particle swarm optimization”
(PSO) which was inspired on the choreography of a bird flock. The approach can be
seen as a distributed behavioral algorithm that performs (in its more general version)

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 179–192.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

180 G. Toscano-Pulido, A.J. Reyes-Medina, and J.G. Ramı́rez-Torres

multidimensional search. In the simulation, the behavior of each individual is affected
by either, the best local or the best global individual.

Several PSO proposals have been developed in order to improve the performance of
the original algorithm [4,7,8]. Such approaches have shown that the convergence be-
havior of PSO is strongly dependent on the values of the inertia weight, the cognitive
coefficient and the social coefficient [1,12]. Other proposals have sought to eliminate
the dependence of such parameters in order to avoid the parameter setting problem.
Investigations within the particle swarm paradigm have found that the particles’ in-
terconnection topology interact directly with the function being optimized [3]. These
studies have shown theoretically that the neighborhood topology affects (significantly)
the performance of a particle swarm and that the effect depends on the function. Thus,
some types of interconnection topologies can work well for some functions, while the
same topologies can present problems with other test functions [3]. Despite the key role
that the topology plays in PSO, it has been barely studied.

In this paper, we analyze whether the type of communication employed to intercon-
nect the swarm accelerates or affects the algorithm convergence. In order to perform
a wide study, we have selected six different neighborhood topologies: ring, fully con-
nected, mesh, toroidal, tree and star; and a clustering algorithm: hierarchical. Such ap-
proaches were incorporated into four PSO versions: the basic PSO algorithm, the Bare-
bones PSO (BBPSO) an extension of BBPSO called BBPSO(EXP) and the Bare-bones
Differential Evolution (BBPSODE).

The remainder of the paper is organized as follows: Section 2 provides an overview
of PSO and its variants used in this paper. Neighborhood topologies and clustering algo-
rithms are presented in Section 3. Section 4 presents the description of our experiment
and discusses the results obtained. Finally, Section 5 shows the concluding remarks and
future work.

2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a stochastic, population-based optimization al-
gorithm proposed by Kennedy and Eberhart in 1995 [5] which simulates the social
behavior of bird flocks or school fish. In PSO, a swarm of particles fly through hyper-
dimensional search space being attracted by both, their personal best position and the
best position found so far within a neighborhood. Each particle can be a solution to
the optimization problem. The position of each particle is updated using equations (1)
and (2), and the position of the best particle in its neighborhood is determined by the
communication topology used [6,3].

xij(t + 1) = xij(t) + vij(t + 1), (1)

vij(t + 1) = wvij(t) + c1r1j(t)(yij(t) − xij(t))
+ c2r2j(t)(ŷij(t) − xij(t)), (2)

for i = 1, · · · , s and j = 1, · · · , n

A Statistical Study of the Effects of Neighborhood Topologies in PSO 181

where w is the inertia weight [9], s is the total number of particles in the swarm, n
is the dimension of the problem (i.e., the number of parameters of the function being
optimized), c1 and c2 are the acceleration coefficients, r1j , r2j ∼ U(0, 1), xi(t) is the
position of particle i at time step t, vi(t) is the velocity of particle i at time step t, yi(t)
is the personal best position of particle i at time step t, and ŷi is the neighborhood best
position of particle i at time step t.

Empirical and theoretical studies have shown that the convergence behavior of PSO
is strongly dependent on the values of the inertia weight and the acceleration coeffi-
cients [13,1]. Wrong choices of such parameters may produce divergent or cyclic par-
ticle’s trajectories. Several recommendations for values of such parameters have been
suggested in the specialized literature [11], although these values are not universally
applicable to every kind of problem.

A large number of PSO variations have been developed, mainly to improve the accu-
racy of solutions, diversity, convergence or to eliminate the parameters dependency [7].
Van den Bergh and Engelbrecht [13] and Clerc y Kennedy [1] proved that each particle
converges to a weighted average of its personal best and neighborhood best position,
that is,

lim
t→+∞xij(t) =

c1yij + c2ŷij

c1 + c2
(3)

This theoretically derived behavior provides support for the Bare-bones PSO (BBPSO).
BBPSO was proposed by Kennedy in 2003 [4]. The BBPSO replaces the equation (1)
and (2) by equation (4),

xij(t + 1) = N
(yij(t) + ŷj(t)

2
, |yij(t) − ŷj(t)|

)
(4)

Particle positions are therefore randomly selected from N which is a Gaussian distribu-
tion with: mean, equal to the average weighted of its personal best and the global best
positions (i.e., the swarm attractor) and; deviation yij(t) − ŷj(t) which approximate
zero as t increases.

Kennedy also proposed an alternative version of the BBPSO (EXP). He replaced
equations (1) and (2) by equation (5),

xij(t + 1) =

⎧⎨⎩N
(yij(t)+ŷj(t)

2
, |yij(t) − ŷj(t)|

)
if U(0, 1)
> 0.5

yij(t) otherwise
(5)

Based on the above equation, there is a 50% chance that the j the dimension of the
particle dimension changes to the corresponding personal best position. This version of
PSO biases towards exploiting personal best positions.

Differential Evolution (DE) [10] has been successfully applied to solve complex op-
timization problems. Its velocity of convergence and accuracy are mainly due to its
mutation step size and its selection procedure since the first does not favored any pre-
viously defined distribution and the latter behaves like a hill-climber algorithm. Both
characteristics make DE an ideal meta-heuristic to be hibridized with. Omran et al., [8]
combined BBPSO and DE algorithms. The resulting algorithm was called Barebones
Differential Evolution (BBPSODE). Unlike other PSO approaches, BBPSODE is prac-
tically independent of the communication topology.

182 G. Toscano-Pulido, A.J. Reyes-Medina, and J.G. Ramı́rez-Torres

In BBPSODE, each particle updates its position using equation (6).

xij(t) =
{

pij(t) + r2j × (xi1j(t) − xi2j(t)) if U(0, 1) > pr

yi3j(t) in other case
(6)

where:
pij(t) = r1j(t)yij(t) + (1 − r1j(t))ŷij(t) (7)

con i1, i2, i3 ∼ U(1, . . . , s), i1 �= i2 �= i, r1j , r2j ∼ U(0, 1) y pr is the recombination
probability.

3 PSO: Neighborhood Topologies

In PSO, each particle inside of the swarm belongs to a specific communication neigh-
borhood. Therefore, it was natural that several studies were performed in order to deter-
mine whether the neighborhood topology could affect the convergence [3,6,2]. These
studies relied on theoretical proposals and implementations of neighborhood topolo-
gies commonly used by PSO. In such studies, some neighborhood topologies have per-
formed better than others [3]. However, only a few topologies and problems were tested
at a time. Therefore, our hypothesis to perform this study was that the topology used
in a particle swarm might affect the rate and degree to which the swarm is attracted
towards a particular region.

Since this paper analyzes the ring, fully connected, mesh, toroidal, tree, star topolo-
gies shown in Figure 1 and the hierarchical clustering algorithm, we described them
below:

(a) Ring (b) Fully con-
nected

(c) Mesh (d) Star (e) Toroidal (f) Tree

Fig. 1. Neighborhood topologies used in this study

– Ring topology: This topology is also known as the lbest version in PSO (see Figure
1(a)). In this topology each particle is affected by the best performance of its k
immediate neighbors in the topological population. In one common lbest case, k =
2, the individual is affected by only its immediately adjacent neighbors.

In the ring topology, the neighbors are closely connected and thus, they react
when one particle has a raise in its fitness, this reaction dilutes proportionally with
respect to the distance. Thus, it is possible that one segment of the population might
converge on a local optimum, while another segment of the population might con-
verge to a different point or remain searching. However, the optima will eventually
pull the swarm.

A Statistical Study of the Effects of Neighborhood Topologies in PSO 183

– Fully connected topology: Fully connected topology is also known as the full topol-
ogy or the PSO gbest version (see Figure 1(b)). All nodes in this topology are
directly connected among each other. In PSO this topology is also known as the
PSO’s gbest version, in which all particles in the entire swarm direct their flight to-
ward the best particle found in the whole population (i.e., every particle is attracted
to the best solution found by any member of the swarm). That is,

ŷi(t) ∈ {y0(t),y1(t), . . . ,ys(t)} = min{f(y0(t)), f(y1(t)),

. . . , f(ys(t))}, (8)

Kennedy et al. suggested [7,6] that populations which use the gbest strategy tend to
converge faster to an optima than those which use the lbest strategy, but also, they
are more susceptible to converge to a local optima. However, the gbest topology is
the most used by far.

– Star topology: In star topology, the information passes through only one individ-
ual (see Figure 1(d)). One central node influences and it is influenced by all other
members of the population.

In this article, the central particle of the star topology is selected randomly. In
each time step t, all particles of the entire swarm directs their flight toward one
particle (the central particle), and the central particle directs its flight toward the
best particle of the neighborhood. The star topology, effectively isolates indivi-
duals from each other, since information has to be communicated through the cen-
tral node. This central node compares the performance of every individual in the
population and adjusts its own trajectory toward the best of them. Thus the central
individual serves as a kind of buffer or filter, slowing the speed of transmission of
good solutions through the population. The buffering effect of the central particle
should prevent premature convergence on local optima; this is a way to preserve di-
versity of potential problem solutions, though, it was expected that it might destroy
the population’s collaboration ability.

– Mesh topology: In this type of topology (see Figure 1(c)), one node is connected
to several nodes, commonly each node is connected to four neighbors (in this case,
we connect each node to the ones which are in the north, south, east and west of
the particle’s location).

In the mesh topology, the particles in the corners are connected with its two
adjacent neighbors. The particles on the mesh’s boundaries will have tree adjacent
neighbors and the particles on the mesh’s center will have four adjacent neighbors.
Thus, there exists overlapping neighbors in each particle, allowing redundancy in
the search process. The particles will be assigned to each node of the mesh from
left to right and top-down. The mesh remains the same form in a single execution.

– Tree topology: It is also known as a hierarchical topology (see Figure 1(f)). This
topology has a central root node (the top level of the hierarchy) which is connected
to one or more individuals that are one level lower in the hierarchy (i.e., the second
level), while each of the second level individuals that are connected to the top level
central root individual will also have one or more individuals which are one level
lower in the hierarchy (i.e., the third level) connected to it (the hierarchy of the tree
is symmetrical).

184 G. Toscano-Pulido, A.J. Reyes-Medina, and J.G. Ramı́rez-Torres

The tree topology is constructed as a binary tree (using the particle’s index as
nodes), the root node is selected randomly among swarm and the remaining particles
are distributed in the tree branches. The nodes (particles) in the tree must be, as
possible, balanced in the tree branches. The root node searches for the best fitness
obtained by their children (i.e., the second level) to redirected its flight. The second
level nodes search for the best fitness found by both, children and parent, and so on.

– Toroidal topology: This topology is similar to the mesh topology, except that all
particles in the swarm have four adjacent neighbors. As it is shown in Figure 1(e),
the toroidal topology connects every corner particle with its symmetrical neigh-
bor. The same occurs with the toroid boundaries. The assignment from particles to
nodes will be similar to the mesh topology assignment.

– Clustering algorithms: Clustering is defined by the average number of neighbors
that any two connected nodes have in common [3]. In PSO, the particles naturally
cluster in more than one region of the search space usually indicate the presence
of local optima. It seems reasonable to investigate whether information about the
distribution of particles in the search space could be exploited to improve particle
trajectories [7].

We have implemented the hierarchical clustering algorithm:
Hierarchical clustering considers the distance between one cluster and another

cluster to be equal to the shortest distance from any member of one cluster to any
member of the other cluster. If the data consists of similarities, then hierarchical
clustering considers the similarity between one cluster and another cluster to be
equal to the greatest similarity from any member of one cluster to any member of
the other cluster.

4 Description of Our Experiment

We will compare the performance of the basic PSO, BBPSO, BBPSO (EXP), and BBP-
SODE algorithms discussed in Section 2. We have implemented: ring, full, star, mesh,
toroidal and tree neighborhood topologies and the hierarchical clustering algorithm on
each PSO algorithm. It is important to note that the present study focused on several
swarm topologies, where connections were undirected, unweighted, and they do not
vary over the course of a trial. The neighborhood topologies were constructed based on
the index of each particle, then each particle has a unique identifier in the entire popula-
tion. We also decided to study how a clustering algorithm can improve the performance
of PSO. When the clustering algorithm were used, we use the euclidean distance as a
measure and the connections were updated dynamically on each iteration of the trail.

For the basic PSO algorithm, we used w = 0.72 and c1 = c2 = 1.49. These values
have been shown to provide good results [1,12,13].

For all the algorithms used in this section, the swarm size was s = 50. 200 itera-
tions were perform by each algorithm (28 algorithms, since there were implemented 6
topologies + 1 clustering technique in 4 PSO variants). The resulting approaches were
executed 30 independent runs. These values were used as defaults for all experiments
which use static control parameters. Also, the distribution of the particles were 10 × 5
when the mesh and toroidal topologies were used. For the hierarchical clustering algo-
rithm, 4 groups were asked for.

A Statistical Study of the Effects of Neighborhood Topologies in PSO 185

4.1 Test Functions

Nine test functions were selected from the specialized literature. Such test functions are
described below:

A. Sphere function, defined as: f(x) =
∑Nd

i=1 x2
i ,

where x∗ = 0 and f(x∗) = 0 for −100 ≤ xi ≤ 100
B. Schwefel’s problem, defined as: f(x) =

∑Nd
i=1 |xi| +∏Nd

i=1 |xi|,
where x∗ = 0 and f(x∗) = 0 for −10 ≤ xi ≤ 10

C. Step function, defined as: f(x) =
∑Nd

i=1(�xi + 0.5�)2,
where x∗ = 0 and f(x∗) = 0 for −100 ≤ xi ≤ 100

D. Rosenbrock function, defined as: f(x) =
∑Nd−1

i=1 (100(xi − x2
i−1)

2 + (xi−1 − 1)2),
where x∗ = (1, 1, . . . , 1) and f(x∗) = 0 for −30 ≤ xi ≤ 30

E. Rotated hyper-ellipsoid function, defined as: f(x) =
∑Nd

i=1(
∑i

j=1 xj)
2,

where x∗ = 0 and f(x∗) = 0 for −100 ≤ xi ≤ 100
F. Generalized Schwefel Problem 2.26, defined as: f(x) = −∑Nd

i=1(xi sin(
√|xi|)),

where x∗ = (420.9687, . . . , 420.9687) and f(x∗) = −4426.407721 for −500 ≤ xi ≤
500

G. Rastrigin function, defined as: f(x) = −∑Nd
i=1(x

2
i − 10cos(2πxi) + 10),

where x∗ = 0 and f(x∗) = 0 for −5.12 ≤ xi ≤ 5.12
H. Ackley’s function, defined as:

f(x) = −20exp
(
− 0.2

√
1
30

∑Nd
i=1 x2

i

)
− exp

(
1
30

∑Nd
i=1 cos(2πxi)

)
+ 20 + e,

where x∗ = 0 and f(x∗) = 0 for −32 ≤ xi ≤ 32

I. Griewank function, defined as: f(x) = 1
4000

∑Nd
i=1 x2

i −∏Nd
i=1 cos

(
xi√

i

)
+ 1,

where x∗ = 0 and f(x∗) = 0 for −600 ≤ xi ≤ 600

4.2 Discussion of Results

Since there are 28 algorithms and 9 test functions, then, it would be difficult to show
numerical results. In order to present such results in a friendly-comparison way, we
decided to present them as box-plot graphics. In Figures 3 and 2 are shown such results.

From these graphics, it is easy to see that BBPSODE presented the best behavior
among the four algorithms, since it behaved similarly with all the topologies tried and
it presented in 7 out of 9 test functions good results. However, when optimizing the
rotated hyper-ellipsoid (see Figure 3(e)) and the generalized Schwefel problem (see
Figure 2(a)), its behavior was not as good as the basic PSO.

Unlike BBPSODE, BBPSO (EXP) presented its best behavior with the fully con-
nected and star topologies. Therefore, we can say that this approach has a highly de-
pendence of the interconnection topology.

BBPSO behaved well, only second behind BBPSODE. The fully connected and star
(see Figures 3(b) and 3(c)) were its best topologies.

Although basic PSO was not the best approach, we can obtain important observations
from this study:

1. Despite the fully connected (gbest) is the most popular topology, it produced the
worst behavior in this study. Similar results were obtained when star topology was
used.

2. Mesh and toroidal topologies were the topologies which produced the best results
with basic PSO.

186 G. Toscano-Pulido, A.J. Reyes-Medina, and J.G. Ramı́rez-Torres

From our results, we can conclude that the topology plays a key role in PSO-based
approaches.

4.3 Statistical Analysis

Although box-plot graphics allow us to visualize graphically the effect of the topolo-
gies in the performance of PSO algorithms and through them we can visually conclude
which topology-algorithm performed better, it is important to conduct a statistical test
that allows us to make more objective conclusions.

−40
000

−30
000

−20
000

−10
000

f(t)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Ring Mesh Toroidal Full Star Tree Hierarchical

(a) Generalized Schwefel test function

0
50

100
150

200
250

f(t)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Ring Mesh Toroidal Full Star Tree Hierarchical

(b) Rastrigin test function

0
5

10
15

f(t)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Ring Mesh Toroidal Full Star Tree Hierarchical

(c) Ackley test function

0
50

100
150

f(t)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Ring Mesh Toroidal Full Star Tree Hierarchical

(d) Griewank test function

Fig. 2. Box-plots produced from the results of 30 independent runs: 1) PSO, 2) BBPSO, 3)
BBPSO (EXP) and 4) BBPSODE

A Statistical Study of the Effects of Neighborhood Topologies in PSO 187

0
500

0
100

00
150

00

f(t)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Ring Mesh Toroidal Full Star Tree Hierarchical

(a) Sphere test function

0
20

40
60

80

f(t)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Ring Mesh Toroidal Full Star Tree Hierarchical

(b) Schwefel test function

0
500

0
100

00
150

00

f(t)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Ring Mesh Toroidal Full Star Tree Hierarchical

(c) Step test function

0e+
00

2e+
07

4e+
07

6e+
07

8e+
07

f(t)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Ring Mesh Toroidal Full Star Tree Hierarchical

(d) Rosenbrock

0
200

00
400

00
600

00
800

00

f(t)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Ring Mesh Toroidal Full Star Tree Hierarchical

(e) Rotated hyper-ellipsoid function

Fig. 3. Box-plots produced from the results of 30 independent runs: 1) PSO, 2) BBPSO, 3)
BBPSO (EXP) and 4) BBPSODE

188 G. Toscano-Pulido, A.J. Reyes-Medina, and J.G. Ramı́rez-Torres

In this way, it is possible to carry out a statistical analysis of the results through the t
test in order to establish if: the average difference between two topologies is significant
or not.

Since in this paper, we want to know if: the interconnection topology affects the per-
formance of a PSO algorithm, then, from results previously described, it is clear that
there is a difference in the performance of PSO when using topologies with different
interconnection topology. But, we want to know whether this difference is statistically
significant. Therefore, our null hypothesis is formulated as follows:

h0: There is not any meaningful difference in the average response when using two
different topologies.

h1: There is a significant difference in the average response.

In order to apply the t test, we had to normalize the data, such that, we could compare
two samples from different topologies. After that, we use the F statistical test in order
to analyze the samples’ variance. Finally, we applied the t test.

The results from this analysis are summarized in Tables 1 , 2, 3 and 4 for PSO,
BBPSO, BBPSO (EXP) and BBPSODE, respectively.

In order to identify the topologies which produced the best results, follow the steps
shown below:

– First, select the column which present the minimum average (since the functions
in this paper are minimization problems) value in the headings of the table, right
below the name name.

– Then, in such column, go down to a level below the main diagonal and cross the
line to the right, all those topologies that had significance in their averages (those
boxes that have the symbol

√
) will be the best performers topologies (since there

is not any statistical difference among them).

4.4 Statistical Analysis: Discussion of Results

With the procedure described above, it is easy to identify the following conclusions:

– For the basic PSO approach (shown in the Table 1): the topology which perform
better was the ring topology.

– For the BBPSO algorithm (shown in the Table 2): the topologies which showed
better results were: star, fully connected and hierarchical clustering.

– For the BBPSO (EXP) algorithm (shown in the Table 3): the topologies that showed
better results were: fully connected, star and the hierarchical clustering.

– For the BBPSODE algorithm (shown in the Table 4): it is difficult to determine the
topology with best performance since all had significance in their averages, but it
is possible to determine the topology which produced the worst results if we apply
the above procedure with a slight modification: choose those topologies that did not
present significance in averages (the boxes which have a × sign). On this basis, the
worst behaved topologies were: mesh and tree.

A Statistical Study of the Effects of Neighborhood Topologies in PSO 189

Table 1. Statistical Analysis of Topologies in PSO Approach

Topology Mesh Toroidal Full Star Tree Hierarchical
0.1702423 0.1597458 0.332506 0.3703755 0.2439002 0.3715466

Ring t0 = 3.6542 t0 = 4.5191 t0 = −7.4339 t0 = −9.8472 t0 = −1.5859 t0 = −9.8867

0.22063 p = 0.00027 p = 6.95−06 p = 2.097e−13 p < 2.2e−16 p = 0.1131 p < 2.2e−16

VD x VD x VI x VI x VD
√

VI x
Mesh t0 = 0.9296 t0 = −12.358 t0 = −15.0359 t0 = −5.8029 t0 = −15.0495

0.170242 p = 0.3528 p < 2.2e−16 p < 2.2e−16 p = 8.488e−09 p < 2.2e−16

VI
√

VI x VI x VI x VI x
Toroidal t0 = −13.500 t0 = −16.2249 t0 = −6.815 t0 = −16.2308

0.159745 p < 2.2e−16 p < 2.2e−16 p = 1.540e−11 p < 2.2e−16

VI x VI x VI x VI x
Full t0 = −2.5921 t0 = 6.3067 t0 = −2.6614

0.332506 p = 0.009663 p = 4.101−10 p = 0.007894
VI

√
VI x VI

√
Star t0 = 8.8953 t0 =-0.079

0.370375 p < 2.2e−16 p = 0.937
VI x VI

√
Tree t0 = −8.9389

0.2439 p < 2.2e−16

VI x

Table 2. Statistical Analysis of Topologies in BBPSO Approach

Topology Mesh Toroidal Full Star Tree Hierarchical
0.3184229 0.2891353 0.1127955 0.1200146 0.503757 0.1265078

Ring t0 = 16.0759 t0 = 18.2095 t0 = 29.166 t0 = 28.6558 t0 = 5.0141 t0 = 28.1309

0.5946722 p < 2.2e−16 p < 2.2e−16 p < 2.2e−16 p < 2.2e−16 p = 7.176e−07 p < 2.2e−16

VI x VD x VD x VD x VI x VD x
Mesh t0 = 1.8167 t0 = 12.9702 t0 = 12.4802 t0 = −10.5752 t0 = 12.0102

0.3184229 p = 0.0698 p < 2.2e−16 p < 2.2e−16 p < 2.2e−16 p < 2.2e−16

VI
√

VI x VI x VI x VI x
Toroidal t0 = 11.4404 t0 = 10.9399 t0 = −12.5302 t0 = 10.4631
2891353 p < 2.2e−16 p < 2.2e−16 p < 2.2e−16 p < 2.2e−16

VI x VI x VI x VI x
Full t0 = −0.4756 t0 = −23.1659 t0 = −0.8983

0.11279955 p = 0.6346 p < 2.2e−16 p = 0.3694
VI

√
VI x VI

√
Star t0 = −22.6826 t0 = −0.4241

0.1200146 p < 2.2e−16 p = 0.6717
VI x VI

√
Tree t0 = 22.1982

0.503757 p < 2.2e−16

VD x

190 G. Toscano-Pulido, A.J. Reyes-Medina, and J.G. Ramı́rez-Torres

Table 3. Statistical Analysis of Topologies in BBPSO (EXP)

Topology Mesh Toroidal Full Star Tree Hierarchical
0.4199163 0.3833513 0.1480655 0.1425615 0.5565467 0.1861203

Ring t0 = 12.11 t0 = 14.3236 t0 = 29.698 t0 = 30.0215 t0 = 3.5531 t0 = 25.6694

0.6176645 p < 2.2e−16 p < 2.2e−16 p < 2.2e−16 p < 2.2e−16 p = 0.0004131 p < 2.2e−16

VI x VI x VI x VI x VI x VI x
Mesh t0 = 2.1991 t0 = 16.8955 t0 = 17.224 t0 = −7.8267 t0 = 13.6939

0.4199163 p = 0.02828 p < 2.2e−16 p < 2.2e−16 p = 1.46e−08 p < 2.2e−16

VI
√

VI x VI x VI x VI x
Toroidal t0 = 14.5962 t0 = 14.9259 t0 = −9.9059 t0 = 11.5334

0.3833513 p < 2.2e−16 p < 2.2e−16 p < 2.2e−16 p < 2.2e−16

VI x VI x VI x VI x
Full t0 = 0.3533 t0 = −24.0646 t0 = −2.2953

0.1480655 p = 0.724 p < 2.2e−16 p = 0.02209
VI

√
VI x VI

√
Star t0 = −24.3716 t0 = −2.6253

0.1425615 p < 2.2e−16 p = 0.008894
VI x VI

√
Tree t0 = 20.6841

0.5565467 p < 2.2e−16

VI x

Table 4. Statistical Analysis of Topologies in BBPSODE

Topology Mesh Toroidal Full Star Tree Hierarchical
0.2352985 0.215506 0.2069735 0.1998743 0.2411042 0.2226245

Ring t0 = −1.4338 t0 = −0.3306 t0 = 0.1682 t0 = 0.6051 t0 = −1.7791 t0 = −0.7375
0.2098741 p = 0.1522 p = 0.741 p = 0.8665 p = 0.5454 p = 0.07576 p = 0.4611

VI
√

VI
√

VI
√

VI
√

VI
√

VI
√

Mesh t0 = 1.0896 t0 = 1.5425 t0 = 2.0024 t0 = −0.3112 t0 = 0.5886
0.2352985 p = 0.2764 p = 0.1235 p = 0.04574 p = 0.7557 p = 0.4913

VI
√

VI
√

VD x VI
√

VI
√

Toroidal t0 = 0.4824 t0 = 0.92 t0 = −1.4228 t0 = −0.4015
0.2155060 p = 0.6297 p = 0.358 p = 0.1553 p = 0.6882

VI
√

VI
√

VI
√

VI
√

Full t0 = 0.4127 t0 = −1.8764 t0 = 0. − 8727
0.2069735 p = 0.68 p = 0.06113 p = 0.3832

VI
√

VI
√

VI
√

Star t0 = −2.3544 t0 = −1.3192
0.1998743 p = 0.0189 p = 0.1877

VI
√

VI
√

Tree t0 = 1.0136
0.2411042 p = 0.3112

VI
√

A Statistical Study of the Effects of Neighborhood Topologies in PSO 191

5 Conclusions and Future Work

In this paper, we implemented six different neighborhood topologies: ring, fully con-
nected, mesh, toroidal, tree and star; and the hierarchical clustering algorithm in four
PSO-based algorithms. Results indicate that the topology used affects the algorithm’s
performance. However, since some results were neither clear nor conclusive, then, we
decided to use a statistical test.

Our main conclusions are the following:

– The use of toroidal topology promotes better convergence rates in the basic PSO
algorithm.

– The use of the fully connected, star and hierarchical clustering approaches promote
better convergence rates in the BBPSO and BBPSO (EXP) algorithms.

– Most of the topologies used performed similar for BBPSODE. Despite BBPSODE
presented a similar performance when using the topologies tried when optimizing
the nine test functions. However, it is clear that this approach did not perform well
in generalized schwefel and rotated hyper-ellipsoid test functions.

– The topology most widely used (fully connected topology) did not produce good
results in basic PSO whilst presented a good performance in BBPSO.

– Ring topology (which it is another topology widely used) presented a good conver-
gence rate.

– The good selection of a topology can increase the performance of a PSO-based
algorithm.

Some possible paths to extend this work are the following:

– Experiment with other PSO-based proposals and differential evolution algorithms.
– To include the parameter’s values w, c1 and c2 in a similar study, in order to identify

the relation among parameters (including the topology).

Acknowledgements. The first author gratefully acknowledges support from CONA-
CyT through project 105060. The second author acknowledges support from CONA-
CyT through a scholarship to pursue graduate studies at the Information Technology
Laboratory at CINVESTAV-IPN. Also, this research was partially funded by project
number 51623 from “Fondo Mixto Conacyt-Gobierno del Estado de Tamaulipas”.

References

1. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a mul-
tidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73
(2002)

2. Jian, W., Xue, Y., Qian, J.: Improved particle swarm optimization algoritnms study based
on the neighborhoods topologies. In: The 30th Annual Conference of the IEEE Industrial
Electronics Society, IECON 2004, Busan, Korea, November 2004, vol. 3, pp. 2192–2196
(2004)

192 G. Toscano-Pulido, A.J. Reyes-Medina, and J.G. Ramı́rez-Torres

3. Kennedy, J.: Small worlds and mega-mind: Effects of neighborhood topology on particle
swarm performance. In: Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 1999, Washington, DC, USA, vol. 3, pp. 1931–1938 (1999)

4. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the IEEE Swarm Intelligence
Symposium, SIS 2003, April 2003, pp. 80–87. IEEE Press, Piscataway (2003)

5. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)

6. Kennedy, J., Mendes, R.: Population structure and particle performance. In: Proceedings of
the IEEE Congress on Evolutionary Computation, CEC 2002, pp. 1671–1676. IEEE Com-
puter Society, Washington, DC, USA (2002)

7. Kennedy, J., Eberhart, R.C. (eds.): Swarm Intelligence. Morgan Kaufmann, San Francisco
(2001)

8. Omran, M., Engelbrecht, A., Salman, A.: Bare bones differential evolution. European Journal
of Operational Research 196(1), 128–139 (2008)

9. Shi, Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE
Congress on Evolutionary Computation, Anchorage, AK, USA, May 1998, pp. 69–73 (1998)

10. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global
optimization over continuous spaces. Technical report, International Computer Science In-
stitute (1995)

11. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global
optimization over continuous spaces. Journal of Global Optimization 11(4), 359–431 (1997)

12. van den Bergh, F.: An Analysis of Particle Swarm Optimizers. PhD thesis, Department of
Computer Science, University of Pretoria, Pretoria, South Africa (November 2002)

13. van den Bergh, F., Engelbrecht, A.: A study of particle swarm optimization particle trajecto-
ries. Information sciences 176(8), 937–971 (2006)

Part III

Neural Computation

Genetic Algorithms Applied to Spectral Index
Extraction

Diego Ordóñez1,�, Carlos Dafonte1, Minia Manteiga2, and Bernardino Arcay1

1 Information and Communications Technologies Department, Faculty of Computer Science
University of La Coruña, 15071, A Coruña, Spain
{dordonez,dafonte,cibarcay}@udc.es

2 Department of Navigation and Earth Sciences, University of A Coruña,
15011 A Coruña, Spain
manteiga@udc.es

Abstract. Within the scope of computational astropysics, this work presents an
experimental study on the application of genetic algorithms to the automated ex-
traction of relevant information from stellar spectra. The input data are a dataset
obtained through the collaboration of our research group with the Gaia project
of the European Space Agency. The results show that predictions based on spec-
tral indices, which in turn were extracted by means of genetic algorithms, have
accuracy levels that are very similar to those obtained through wavelength infor-
mation. Working with a reduced dataset also implies the reduction of complexity
and increased performance.

Keywords: Genetic algorithm, Artificial neural network, Connectionist systems,
FFT, Wavelet transform, GAIA mission, Stellar spectra, Stellar parameters.

1 Introduction

In the course of the last two decades, Observational Astrophysics has witnessed an au-
thentic revolution in the capacities of telescopes and associated instruments as well as in
the automation processes of data acquisition, processing, and archiving. Both the most
recent earth telescope projects (e.g. the Great Canary Telescope at El observatorio del
Roque de los Muchachos at La Palma, Spain), and the existing spatial telescopes (IUE,
Hubble telescope, etc) include the creation of extensive databases, whose exploitation
inevitably requires the use of automatic techniques for processing, classification, and
parameterization.

The techniques that are used in Computational Astrophysics for this automatic pro-
cessing of astronomic data (spectra, images, and fotometric data) are mainly twofold:
statistical techniques (Minimal Distance Methods, Cluster Analysis), and techniques
based on Artificial Intelligence Methods ([1], [2]), in particular Artificial Neural Net-
works (ANNs). A large number of publications are available in this field, such as those
mentioned in this recent article by Allende ([3]), Bailer-Jones ([4], [5], [6]) or Gulati
([7]). In general terms, their purpose consists in identifying the astronomic source type

� Spanish MEC project ESP2006-13855-CO2-02.

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 195–207.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

196 D. Ordóñez et al.

(star, galaxy, quasar, asteroid, etc), and, if the data set is uniform, as is the case with
stars, characterize its members by parameterizing their main properties.

Our research group is a member of GAIA’s scientific team, which was created to
prepare the optimal algorithms that will allows us to carry out classification and param-
eterization tasks. The main objective is to determine the stellar atmospheric parameters,
particularly effective temperatures, superficial gravities, metallicities, possible abun-
dances of alpha elements, and individual abundances of certain chemical elements. The
manipulation, analysis, and classification of all the information concerning the visible
celestial bodies up to magnitudes 17 − 18 is undoubtedly a challenge for both Astro-
physicists and Computer and Artificial Intelligence Scientists.

In astronomy, great research efforts have been made in the development of automatic
methods for prediction and classification. However, poor attention was paid to problem
of selecting the most reliable features as inputs for those systems. This work tries to
determine which is the most useful set of spectral features to be used as input of a
learning algorithm. Our final goal is the prediction of the stellar atmospheric parameters
(Teff, log g, [Fe/H] and [α/Fe]).

Genetic algorithms have been used in combination with artificial neural networks,
with great success in many cases ([8], [9], [10]). In this study we combined both tech-
niques in order to achieve an efficient solution to the problem of spectra parameter-
ization. In contrast to the previously mentioned studies (the optimization of network
parameters), the genetic algorithm in question was used to optimise input to the net-
work (the selection of relevant characteristics of the input data). This work presents our
first results on the automatic parameterization of atmospheric stellar parameters (RVS
spectral region) using ANNs trained with synthetic stellar spectra and input optimized
with genetic algorithms.

2 Signal Processing Techniques

The automatic techniques for classifying and parameterizing spectra are normally used
in combination with some means of processing the signal prior to analysis. This pro-
cess may have different goals: from reducing the dimensionality of the original signal
(number of points), to a transformation required to explain certain features that were
concealed in its original format.

The first transformation applied in this study is the discrete Wavelet transform. An
efficient way of applying this transformation using filters was developed in 1988 by
Mallat [11]. This filtering algorithm produces a fast Wavelet transform. We will refer to
this process as a multilevel analysis, which in this case we will apply to spectra. In the
wavelet analysis reference is made to approximations (low frequency components) and
details (high frequency components). The concept of multilevel analysis refers to the
repeated application of the filtering process to each of the successive approximations
obtained in the signal, achieving a new level after each of these stages (Figure 1).

The experiment considers a total of three filtering levels, as shown in Figure 1. Three
levels were chosen because as we descend to each level, the number of points for ap-
proximations and details is reduced by roughly half, and the approximations for lower
levels signify very few points. In this Figure we may also see that by applying the

Genetic Algorithms Applied to Spectral Index Extraction 197

Fig. 1. Discrete Wavelet Transform. Multilevel decomposition

approximation and detail for a level, it is possible to obtain the approximation of the
previous level by applying the inverse wavelet transform. This means that in order to
carry out the experiment it is not necessary to consider all of the signals from the tree
decomposition provided by the transform. Instead, we take the approximation from the
lowest level and all of the details. By adding the number of points from all of these
signals, we obtain a similar value to the number of points from the original signal.

Another of the pre-processing techniques frequently used for transforming stellar
spectra is Principal Component Analysis, or PCA. The advantage of using this tech-
nique is that it reduces the dimensionality of the input data by eliminating variables with
little information. It is used to determine the number of explanatory underlying factors
of a series of data that explain its variability. Previous studies ([7]) have obtained worse
results in analysing stellar spectra by applying PCA than by applying methods based on
Wavelets ([12]).

PCA is an input-oriented analysis, meaning that it does not take into account the re-
sults we wish to obtain from the input (specific parameter). It also requires the involve-
ment of an expert to decide how much typical deviation of the input data is represented
in the selected variables once processing has been carried out. We aimed to predict four
parameters based on a spectrum (temperature, gravity, metallicity and abundance of
light elements), in the hope that the relevant points from the spectrum to ensure correct
parameterization are different, depending on the case. For this reason we had to find a
method that made it possible to reduce the dimensionality of the signal oriented to the
parameter we wished to predict. The technique we chose in order to achieve these ob-
jectives was to use genetic algorithms. This technique will provide us with a selection
of the relevant and specific points of the signal for each of the parameters we aim to
obtain.

Also, considering the good results obtained based on the wavelet analysis applied
to spectra [12], instead of applying the genetic algorithm technique directly on the sig-
nal, we have applied it to the result of applying the wavelet transform as previously
described.

3 Data Description

For our tests the Gaia RVS Spectralib was used, a library of stellar spectra compiled by
A. Recio-Blanco and P. de Laverny fron Niza Observatory, and B. Plez from Mont-
pellier University. A technical note is available describing the models used for the

198 D. Ordóñez et al.

Table 1. Parameters and value ranges

Parameter Min Max

Teff 4500 7750
Logg -0.5 5
[Fe/H] -5 1
[α/Fe] -0.2 0.4

atmospheres from which the synthetic spectra were calculated and which parameters
were used ([13]). The library has a total of 9048 samples, the initial wavelength is
847.58 nm and the final 873.59 nm, the resolution is 0.0268 nm and the final number of
points per signal is 971.

When the GAIA satellite becomes operative, the RVS instrument will inevitably in-
clude noise from various sources (sensitivity of the detectors, background noise near
the source, instrumental noise, etc). We have therefore considered the possibility of
working with synthetic spectra that are modified by various noise levels according to
a simple model of noise, white noise, and various SNR values: 5, 10, 25, 50, 75, 100,
150, 200 and ∞.

The dataset represents the total number of examples that will be used to carry out the
first stage of the experiment (comparison of results according to input domains). This
set was arbitrarily divided into two subsets, in a proportion of 70%-30%; the first subset
will be used to train the algorithms, the second for testing.

The above data were obtained through the participation of our research team in the
GAIA project. The GAIA consortium has divided the tasks among several coordination
units (CUs). Our research team belongs to CU8, the unit in charge of classification
tasks, which means that we shall focus on classification through the parameterization of
spectra from individual stars. Our input information consists of calibrated photometry,
spectroscopy and astrometry, data gathered by the satellite and used to estimate the
main astrophysical parameters of the stars: Teff, logg, [Fe/H], and [α/Fe].

4 Material and Methods

We aim to use the genetic algorithm as a selector for the characteristics of the signal
(the spectrum) that contain relevant information in order to be able to predict a specific
parameter. The genetic algorithm is coded using a chain of ones and zeros (binary al-
phabet) in which each gene (bit) represents one of the variables (points) from the input
signal. In our case, this input signal will be the result of the wavelet transform described
in section 2.

In order to represent the points of the signal that are selected by a specific individual,
we use the genetic information of the chromosome as if it were a mask which, when
applied to the input signal, will give us as a result the concatenation of the points for
the inputs that are indicated in the mask with a 1. Those that contain a 0 will simply be
rejected.

Genetic Algorithms Applied to Spectral Index Extraction 199

In order to carry out the tests with the genetic algorithms and neural networks, we
used a rack containing 6 servers equipped with two Intel Xeon QuadCore processors
and 16GB of RAM. For the automatic creation, training, evaluation and storage of the
networks, we used the XOANE neural network tool ([14]), and in the case of the genetic
algorithms we have developed software based on the Biojava library ([15]), open code
software with a GNU licence. The Biojava library provides us with a framework for
the implementation of the genetic algorithms, although the functions that comprise the
behaviour of the algorithm were implemented by our research group. These functions
are cross-over, mutation, selection and evaluation of individuals (fitness).

4.1 Genetic Algorithm Configuration

The configuration of the genetic algorithm comprises the specification of the strategies
for selection, mutation, crosses and evaluation, as well as the specific parameters that
govern their behaviour.

We applied a simple cross-over strategy in several points to be configured (in this
study we tested configurations from one to three points), alternating the segments of
information into which each of the parents is divided. The objective was to form two
new individuals with the different segments that resulted from the selection of the cross-
over points (justification explaining why we used this cross-over strategy).

Due to the high dimensionality of the individuals (having as many bits of information
as the signal), if we consider all of the individuals in the population as candidates to be
mutated, however low the probability of mutation, all of the individuals will be mutated
at some stage. Also, if the probability is very low, only a few bits will be mutated, and
the change will not be noticeable in the individual’s fitness value. For this reason we
reached a compromise by dealing with two probabilities for mutation: one that allows us
to select the individuals from a population who will be mutated (mutation candidates),
and another that allows us to determine if a gene is mutated or not at the moment of
applying the operator. In this way, only a small number of individuals will be altered,
and only a small (although potentially significant) portion of the information from the
candidates to be mutated will be modified.

With regard to the selection function, we used the classic roulette algorithm, com-
bined with an elitist strategy: determining the percentage of the best individuals that
will form a part of the next generation. The usual selection operator is applied to the
rest using the roulette method. We used this same strategy to determine the selection of
the chromosomes for the population that will serve as a father, in order to combine their
genetic information in the crosses.

The specific values of the parameters for applying the strategies described are shown
in table 2. We carried out numerous trials with different parameter values. Those shown
provide good results (see section 6), investing reasonable computation times. With re-
gard to this aspect, we have two parameters that determine the total time invested in the
execution of the genetic algorithm, which are the number of generations and the num-
ber of network training steps; this function represents practically all of the algorithm’s
workload.

The fitness function is a particular type of objective function that quantifies the good-
ness of a solution to a problem (chromosome) in a genetic algorithm, so that in this way

200 D. Ordóñez et al.

Table 2. Parameters and value ranges

Parameter Value

Number of cross-overs 3
Mutation probability (one gene) 0.1
Mutation probability (individual) 0.3
Number of generations 100
Training steps 100
Elitist selection proportion 15%
Symbol probability 50,00%
Parental selection proportion 100,00%
Number of threads per node 8

each chromosome can be compared with the other components of the population. A
fitness function is better the closer one comes to the intended objective. In our case, the
objective was to discover the most relevant points from a spectrum in order to then train
a neural network as optimally as possible. For this reason, the fitness function is based
precisely on a network, and the fitness value is the mean of the total number of errors
as an absolute value for the total number of selected tests (30%, see section 3).

Training a neural network to the point of achieving the optimum configuration of
weights in which the network is considered to have been generalised is always a costly
task, and as a result so is the process of computing the fitness function. In order to obtain
results within a reasonable timescale, experience has shown us that after 100 training
stages the network weights will provide us with a reliable orientation if the training
maintains a constant trend towards the convergence minimum without any major fluc-
tuations. For this reason the fitness value we have considered is the one obtained after
completing this number of iterations. If we consider a larger number of iterations, we
would expect to obtain a better result from the genetic algorithm, although we would
have to accept the additional computing time involved.

Figure 2 shows the main stages of the genetic algorithm. We began by generating an
initial population of 100 individuals or chromosomes, generating the population ran-
domly using the mechanisms provided by the tool. Remember that we used a binary
alphabet, with a symbol probability that was equal for all of the symbols, as shown in
table 2. As a result, at first the number of points is reduced to half, leading to an ac-
celerated training time and test time. We then carried out the initial evaluation of the
individuals from the population, before iterating to obtain the successive populations.
The next step formed a part of the iterative section: for the population resulting from
the previous iteration, the chromosomes were selected that would form a part of the
following population. As explained in this section, we applied the cross and mutation
operators and evaluated the new individuals that were obtained, repeating the process
until reaching the maximum number of generations.

4.2 Fitness Function and Artificial Neural Networks

Figure 3 shows a breakdown of the tasks carried out in the fitness function. This function
began with the mask resulting from the genetic information of the individual we wished

Genetic Algorithms Applied to Spectral Index Extraction 201

Fig. 2. Flow of the genetic algorithm

to evaluate, applying the transformed data (see section 4), and obtaining the training
and test groups. The mask also provides us with information on the number of points
that will comprise the input. Taking this number of points, and as the network will
predict a single parameter, we then created a neural network. The architecture of the
neural network is a feedforward with a single hidden layer, and the number of process
elements from each layer depends on the inputs that the mask selects, as follows:

1. The number of process elements in the input that are equal to the number of points
selected by the mask in the input signal.

2. For the hidden layer, we calculated the number of process elements as the minimum
between 200 and the number of inputs divided by two. The number 200 was ob-
tained based on experiments with the complete signal, with no more being required
in order to obtain the generalisation point.

3. Number of outputs equal to a process element (a parameter to be predicted).

With regard to training, the online version of the error retropropagation algorithm was
chosen. This training algorithm was chosen as a result of its proven use when applied
to data of this kind derived from stellar spectra ([4], [16], [5]). In order to apply the
algorithm a low learning rate was chosen (0.2), and 100 stages. The reason for the low
learning rate is that we had a large number of patterns and the training process is carried
out online, and so if we had used a high rate this would have led to excessive fluctuation
of the weights.

202 D. Ordóñez et al.

Fig. 3. Evaluation process of the fitness function

Once the network was created and as we already had the training and test groups, we
then tested the network for the 100 stages described above (Section 4.1). Once training
was completed we obtained the results for the tests as a whole, calculated the mean
errors for the test as an absolute value, and established the inverse of this amount as
the fitness value. It is important to take into account the fact that in this case, the fitness
value is the inverse of the mean error so that the highest values signify better individuals.

5 Parallel Fitness Function

In the description of the input data (Section 3) we emphasised the large amount of data
available and its dimensionality. The function that calculates the fitness of each of the
individuals in the genetic algorithm is based on the training of the neural networks.
Against this framework and considering the nature of the information being processed,
the training of a network becomes a highly costly task in terms of time and computing
resources. The sequential processing of the fitness functions on a computer is not viable
in order to obtain results within a reasonable period of time. In this study we looked for
a way of carrying out evaluations of the fitness functions for the new individuals in a
parallel way, attempting to take full advantages of the computing power of the machines
that were available (see section 4).

The parallel calculations in this case were based on the hardware features of the
computers, each of which have two Quad Core processors. This characteristic makes
it possible to launch concurrent threads that calculate the fitness function separately
and independently from each other. Each of these threads is executed independently,
although controlled centrally using a software module that acts as a pool. When the
genetic algorithm decides to evaluate an individual, it sends the task to the pool, and
if there are execution threads available it launches the fitness task. If at the moment
of launching the fitness function the pool does not have any free threads, it queues the
task until one is available. In this way, and in an ideal situation (not taking into account

Genetic Algorithms Applied to Spectral Index Extraction 203

Fig. 4. Message sequence to invoke the evaluation of a chromosom

other bottlenecks in the application such as access to the shared memory bus), and
considering the time dedicated to other times as minimal (crosses, mutations, selected
etc.), we would divide the time required to pass from one generation to another by the
number of threads available, and therefore also the total time spent on computing for
the complete algorithm.

The way of interacting with the thread pool is as shown in Figure 4: fitnessGaia is
the fitness function which in turn represents an execution thread. The genetic algorithm
orders the execution of fitness through the threadExecutor object which plans the ex-
ecution of the concurrent threads, queuing their execution if there are no free threads.
In this Figure, after the loop zone, we can see that the genetic algorithm waits for the
execution of all of the fitness functions to end before carrying out more tasks. It does
so because the fitness value is necessary for the selection operator, which is the next
operation to be carried out.

6 Results

After applying the genetic algorithm, the mask is obtained that will select the relevant
information from the transformed signal, the result of applying the signal processing
described in Section 2. The resulting series of data will provide us with the necessary
data for the training and testing of a neural network, which this time we carry out in
full (with 5000 training steps). As reference data for the training process we selected
two sub-groups: clean spectra and SNR200, to which we applied the mask and network
training. After training the networks we applied the mask to the reference group for
the rest of the pattern collections, i.e. all of the noise levels considered, selecting the
test patterns and calculating the results, as shown in tables 3 and 4. As may be seen,
based on the results, executing the genetic algorithm with a certain degree of noise in
the spectra makes it possible to obtain slightly better results in comparison to the same
experiment carried out executing the genetic algorithm with clean spectra.

204 D. Ordóñez et al.

Table 3. Mean errors when selecting the points with the mask that results from applying genetic
algorithms to clean spectra

Teff logg [Fe/H] [α/Fe]
SNR∞ 91.3775 0.1614 0.110966 0.0640266
SNR200 116.185 0.209743 0.13699 0.0852009
SNR75 160.716 0.286768 0.202252 0.11027
SNR10 485.427 0.999177 0.590903 0.219483

Table 4. Mean errors when selecting the points with the mask that results from applying genetic
algorithms to spectra with SNR200

Teff logg [Fe/H] [α/Fe]
SNR∞ 73.8318 0.16255 0.113446 0.0604846
SNR200 101.58 0.211558 0.143434 0.0797694
SNR75 142.944 0.294903 0.200731 0.111127
SNR10 437.162 0.944661 0.590903 0.221791

Table 5. Typical deviation (σ) of the errors for all the parameters for the clean test spectra and
SNR 75 case

Teff logg [Fe/H] [α/Fe]
SNR∞ 93 0.172 0.120 0.0.074
SNR75 167 0.28 0.226 0.136

As the noise level increases, the results deteriorate. Despite this, they are especially
relevant in the presence of noise, as we can compare them with the study [12] in which
a comparison is made of different signal processing techniques applied to spectra. The
advantage of this perspective is the reduction of the number of points in the signal and
processing elements required to achieve a network that generalises and provides us with
results with acceptable margins of error.

Another of the added advantages of this perspective for processing the information
is that most of the errors are concentrated around zero, as may be seen in Figures 5
and 6, where there are also other examples with a higher error, but which represent less
than 5% of the total. These Figures refer to the errors for the best case (clean spec-
tra) and the effective temperature parameter. The concentration of the errors into small
margins means that the algorithm is more robust, because in most of the cases we are
sure of having good precision with a small margin of error. Table 5 shows additional
information on this feature, showing the standard deviation of the errors. Each of the
quantities shown should be studied within its context, as an error of one unit in tem-
perature (degrees Kelvin) does not mean the same as an error in one unit in the case of
gravity. These results may be considered with the study of Gulati and Ramı́rez [17] that
analyses stellar spectra using genetic algorithms.

Figure 6 shows additional information, emphasising the fact that independently from
the range of values of the parameter, the errors are highly concentrated around the
correct value, and the fact that carrying out the analysis on a cold star (4000K) or a

Genetic Algorithms Applied to Spectral Index Extraction 205

−400 −300 −200 −100 0 100 200 300 400
0

50

100

150

200

250

300

350

400

450

Fig. 5. Error dispersion for temperature

4500 5000 5500 6000 6500 7000 7500 8000
4000

4500

5000

5500

6000

6500

7000

7500

8000

Fig. 6. Error dispersion for temperature per parameter value

−5 −4 −3 −2 −1 0 1
−5

−4

−3

−2

−1

0

1

Fig. 7. Error dispersion for metallicity per parameter value

hot star (7750K) does not significantly influence the margins of error. This does not
occur with all of the parameters; in the case of metallicity the opposite occurs for stars
with low metallicity; the prediction is less reliable for stars with a high concentration
of metallic elements, as may be seen in Figure 7. For the rest of the parameters the

206 D. Ordóñez et al.

situation is similar to that of the effective temperature. As regards the dispersions with
the presence of noise in the spectra, as would be expected the error is more distributed
and flattened in the histogram shown in the Figure 5.

7 Conclusions

This work has demonstrated how genetic algorithms can be applied to the field of compu-
tational astrophysics. Genetic algorithms have proven to be a useful technique in a great
many fields, including stellar spectra processing [17]. We used genetic algorithms and
an artificial intelligence technique such as neural networks to process an input signal (the
stellar spectrum) and select its relevant information for each parameter. Herein lies the
fundamental difference with a statistical algorithm such as Principal Component Anal-
ysis, in which the relevant information is selected according to its variability without
taking into account what it will be used for. It should also be noticed that we previously
processed the signal based on discrete wavelet analysis, as described in Section 2.

The application of the genetic algorithm technique is mainly aimed at reducing the
dimensionality of the signal, so that it may then reduce the time required to parameterise
the spectra, obtaining the result from the neural network more quickly (due to the lesser
complexity of the network in terms of processing elements). This aspect is of particular
relevance in the GAIA mission, as already mentioned in section 1, as the aim is to
classify millions of objects. Also, when carrying out training, the algorithm converges
earlier as it only uses the information that is relevant in order to study the specific
parameter it is dealing with.

Reviewing the results we found a robust approach to the parameterization of spectra,
less demanding with regard to computing time. The combination of techniques allow us
to use the advantages of both techniques: genetic algorithms (dimensionality reduction
and information selection based on the parameter to predict) and neural networks (noise
tolerance, good error rates and low error dispersion).

References

1. Rodrı́guez, A., Arcay, B., Manteiga, M., Carricajo, I.: An automated knowledge-based anal-
ysis and classification of stellar spectra using fuzzy reasoning. Expert Systems with Appli-
cations 27(2), 237–244 (2004)

2. Dafonte, C., Rodrı́guez, A., Arcay, B., Carricajo, I., Manteiga, M.: A comparative study
of KBS, ANN and statistical clustering techniques for unattended stellar classification. In:
Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 566–577. Springer,
Heidelberg (2005)

3. Von Hippel, T., Allende, C., Sneden, C.: Automated stellar spectral classification and pa-
rameterization for the masses. In: The Garrison Festschrift Conference Proceedings (June
2002)

4. Bailer-Jones, C.A.L.: A method for exploiting domain information in astrophysical parame-
ter estimation. In: Astronomical Data Analysis Software and Systems XVII. ASP Conference
Series, vol. 30 (2008)

5. Bailer-Jones, C.A.L.: Stellar parameters from very low resolution spectra and medium band
filters. Astronomy and Astrophysics 357, 197–205 (2000)

Genetic Algorithms Applied to Spectral Index Extraction 207

6. Fiorentin, P.R., Bailer-Jones, C.A.L., Lee, Y.S., Beers, T.C., Sivarani, T., Wilhelm, R., Al-
lende, C., Norris, J.E.: Estimation of stellar atmospheric parameters from sdss/segue spectra.
Astronomy and Astrophysics 467, 1373–1387 (2007)

7. Harrinder, P., Gulati, R.K., Gupta, R.: Stellar spectral classification using principal compo-
nent analysis and artificial neural networks. MNRAS 295, 312–318 (1998)

8. Hu, Y.-C.: Nonadditive grey single-layer perceptron with choquet integral for pattern classi-
fication problems using genetic algorithms. Neurocomputing 72, 331–340 (2008)

9. Rooij, A., Jain, L., Johnson, R.: Neural Network Training Using Genetic Algorithms. World
Scientific Pub. Co Inc., Singapore (1996)

10. Kinnebrock, W.: Accelerating the standard backpropagation method using a genetic ap-
proach. Neurocomputing 91(3), 731–735 (1994)

11. Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation.
Proc. IEEE Trans. on Pattern Anal. and Math. intel. 11(7), 674–693 (1989)

12. Ordóñez, D., Dafonte, C., Manteiga, M., Arcay, B.: Parameterization of rvs synthetic stellar
spectra for the esa gaia mission: Study of the optimal domain for ann training. Expert Systems
With Applications 37(2), 1719–1727 (2009)

13. Recio-Blanco, A., de Laverny, P., Plez, B.: Rvs-arb-001. European Space Agency technique
note (2005)

14. Ordóñez, D., Dafonte, C., Arcay, B., Manteiga, M.: A canonical integrator environment for
the development of connectionist systems. Dynamics of continuous, Discrete and Impulsive
Systems 14, 580–585 (2007)

15. Down, T., Pocock, M.: The biojava project
16. Kaempf, T.A., Willemsen, P.G., Bailer-Jones, C.A.L., de Boer, K.S.: Parameterisation of

rvs spectra with artificial neural networks first steps. In: 10th RVS Workshop, Cambridge
(September 2005)

17. Gulati, R.K., Ramirez, F., Fuentes, O.: Prediction of stellar atmospheric parameters using
instance-based machine learning and genetic algorithms. Experimental Astronomy 12(3),
163–178 (2001)

Algorithms of Image Restoration in Self-organizing
Maps Grounded on Learning with Neighboring Inputs

Michiharu Maeda

Department of Computer Science and Engineering, Faculty of Information Engineering
Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka, Japan

maeda@fit.ac.jp

Abstract. Algorithms of image restoration in self-organizing maps are described
grounded on learning with neighboring inputs. Novel approaches are presented
that neighboring pixels as well as a notice pixel are prepared as an input and an
original image is inferred according to an algorithm of self-organizing maps. The
algorithm creates a map containing one unit for each pixel. Utilizing pixel val-
ues as input, image inference is conducted by self-organizing maps. An updating
function with threshold based on the difference between input value and inferred
value is introduced, so as not to respond to noisy input sensitively. The infer-
ence of an original image proceeds appropriately since any pixel is influenced
by neighboring pixels corresponding to the neighboring setting. Experimental re-
sults are presented in order to show that our approaches are effective in quality
for image restoration.

Keywords: Self-organizing maps, Image restoration, Degraded image, Neigh-
boring inputs, Algorithm.

1 Introduction

Self-organizing neural networks realize the network utilizing the mechanism of the lat-
eral inhibition among neurons with the local and topological ordering. The neighboring
neurons would always respond for neighboring inputs [1,2]. For the localized inputs ob-
viously, the outputs react locally. Huge amounts of information are locally represented
and their expressions form a configuration with topological ordering. As an application
of self-organizing neural networks, there are the combinatorial optimization problem,
pattern recognition, vector quantization, and clustering [3]. These are useful when there
exists redundancy among input data. If there is no redundancy, it is difficult to find
specific patterns or features in the data. Although a number of self-organizing models
exist, they differ with respect to the field of application. For self-organizing neural net-
works, the ordering and the convergence of weight vectors have been mainly argued
[4]. The former is a topic on the formation of topology preserving map, and outputs are
constructed in proportion to input characteristics [5,6]. For instance, there is the trav-
eling salesman problem as an application of feature maps, which is possible to obtain
fine results by adopting the elastic-ring method with many weights compared to inputs
[7,8]. The latter is an issue on the approximation of pattern vectors, and the model ex-
presses enormous information of inputs to a few weights. It is especially an important

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 209–221.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

210 M. Maeda

Input Layer Competitive Layer

i

Input vector

x1

x2

x3

xn

win

wi3

wi2

wi1

Fig. 1. Structure for self-organizing maps

problem for the convergence of weight vectors, and asymptotic distributions and quan-
titative properties for weight vectors have been mainly discussed when self-organizing
neural networks are applied to vector quantization [9,10,11,12]. For image restoration,
the smoothing methods, such as the moving average filter and the median filter, have
been well known as a plain and useful approach [13]. From the standpoint of distinct
ground, the inference of original image has been conducted by the model of Markov
random field formulated statistically, based on the concept that any pixel is affected by
neighboring pixels [14,15]. However their algorithm require a large number of iterations
since they employ the stochastic model for statistical physics.

Algorithms of image restoration in self-organizing maps grounded on learning with
neighboring inputs are described in this study. Novel approaches are presented that
neighboring pixels as well as a notice pixel are prepared as an input and an original
image is inferred according to an algorithm of self-organizing maps. Our model forms
a map in which one element corresponds to each pixel. Image inference is conducted
by self-organizing maps using pixel values as input. A renewal function with thresh-
old is introduced in proportion to the difference between input value and inferred value.
Based on this function, our approach does not respond to input including noise oversen-
sitively. As any pixel is influenced by neighboring pixels corresponding to neighboring
setting, the inference of an original image is appropriately promoted. Experimental re-
sults are presented in order to show that our approaches are effective in quality for image
restoration.

Algorithms of Image Restoration in Self-organizing Maps 211

2 Self-organizing Maps

Self-organizing maps realize the network with the local and topological ordering by
utilizing the mechanism of the lateral inhibition among neurons. Neighboring neurons
usually respond to the neighboring inputs. Huge amounts of information are locally rep-
resented and their expressions form a configuration with the topological ordering. For
self-organizing maps, Kohonen’s algorithm exists and is known as a popular and utility
learning. In this algorithm, the updating of weights is modified to involve neighboring
relations in the output array. The algorithm is applied to the structure as shown in Fig.
1. In the vector space Rn, an input x, which is generated on the probability density
function p(x) is defined. The input x has the components x1 to xn. An output unit yi

is generally arranged in an array of one- or two-dimensional maps, and is completely
connected to inputs via wij .

Let x(t) be an input vector at step t and let wi(0) be weight vectors at initial values
in Rn space. For given input vector x(t), we calculate the distance between x(t) and
wi(t), and select the weight vector as winner c minimizing the distance. The process is
written as follows:

c = arg min
i
{‖x− wi‖}, (1)

where arg(·) gives the index c of the winner.
With the use of the winner c, the weight vector wi(t) is updated as follows:

Δwi =
{

α(t) (x − wi) (i ∈ Nc(t)),
0 (otherwise),

(2)

where α(t) is the learning rate and is a decreasing function of time (0 < α(t) < 1).
Nc(t) has a set of indexes of topological neighborhoods for winner c at step t.

3 Image Restoration

When self-organizing maps are adapted to the traveling salesman problem, many
weights are used in comparison with inputs. By disposing an array of one-dimensional
map for output units, fine solutions on the basis of the position of weights after learning
have been obtained approximately. In the meantime, when self-organizing maps are ap-
plied to vector quantization, a few weights are utilized in comparison with inputs for the
purpose of representing huge amounts of information, and a number of discussions have
been made on asymptotic distributions and quantitative properties for weight vectors.

In this section, a learning algorithm of self-organizing maps for image restoration is
presented with the same number of both inputs and weights in order to infer an original
image from a degraded image provided beforehand [16,17]. The purpose is to infer
the original image from the degraded image containing random-valued impulse noise.
Here, input χ as the degraded image and weight ri as the inferred image are defined. A
map forms that one element reacts for each pixel, and image inference is executed by
self-organizing maps using pixel values as input.

212 M. Maeda

Degraded Image Inferred Image

χ r
c

Fig. 2. Correspondence between degraded image and inferred image

To begin with, the value of ri is randomly distributed near the central value of gray
scale as initial value. Next, degraded image with l × m size is given. Input χ as pixel
value is arbitrarily selected in the degraded image, and let rc be a winner weight of
the inferred image corresponding to χ. As shown in Fig. 2, both the positions χ and rc

agree under the degraded image and the inferred image. Therefore, inferred image ri is
updated as follows:

Δri =
{

α(t)Θ (χ − ri) (i ∈ Nc(t)),
0 (otherwise), (3)

where Θ(a) is a function in which the value changes with threshold θ(t) presented as
follows:

Θ(a) =
{

a (|a| ≤ θ(t)),
0 (otherwise). (4)

θ(t) is the difference between input χ and inferred image ri in time t and the decreasing
function of time, as θ(t) = θ0 − �θ0t/Tmax�, where Tmax is a maximum iteration and
θ0 is an initial threshold determined by trial and error as shown in numerical experi-
ments. In the case of learning according to self-organizing maps, weights tend to react
sensitively for noisy inputs. In order to avoid the tendency, Eq. (3) is adopted, instead of
Eq. (2). By applying the function, neighboring pixels which obviously differ from the
input value would be disregarded in learning. Using the functions, weights are updated
until the termination condition is met. Image inference is appropriately promoted as
given in the next section.

Algorithms of Image Restoration in Self-organizing Maps 213

N c(t)1

N c(t)2

N c(t)3

Fig. 3. Distribution of topological neighborhoods

Figure 3 shows an example of the arrangement of topological neighborhoods. The
circle signifies the weight and the line which connects the circles denotes the topological
neighborhood. In this figure, the black circle expresses the weight of winner c. As the set
of topological neighborhoods changes Nc(t1), Nc(t2), and Nc(t3) when the time varies
t1, t2, and t3, respectively, it is shown that the number of topological neighborhoods
decreases with time. By obtaining information of the neighboring pixels, it is possible
to complement lost information about pixels based on the updating function.

Image restoration by self-organizing maps (IRS) algorithm is presented as follows.

[IRS algorithm]

Step 1 Initialization:
Give initial weights {r1(0), r2(0), · · ·, rlm(0)} and maximum iteration Tmax.
t ← 0.

Step 2 Learning:
(2.1) Choose input χ at random among {χ1, χ2, · · ·, χlm}.
(2.2) Select rc corresponding to input χ.
(2.3) Update rc and its neighborhoods according to Eq. (3).
(2.4) t ← t + 1.

Step 3 Condition:
If t = Tmax, then terminate, otherwise go to Step 2.

214 M. Maeda

Table 1. Variant models

Model Input
I Average of five pixels
II Average of nine pixels
III Median of five pixels
IV Median of nine pixels

(a) Five pixels (b) Nine pixels

Fig. 4. Five pixels and nine pixels used in models I, II, III, and IV

In this study, a peak signal to noise ratio (PSNR) P is used as the quality measure
after learning for image restoration. PSNR P is presented as follows [18]:

P = 10 log10(σ/E) [dB] (5)

where σ and E are the square of gray-scale length, i.e., σ = (Q− 1)2 as a gray scale Q
and mean square error between the original image and the inferred image respectively.

In conventional approach, one pixel of the degraded image is given as an input. In
this section, novel approaches are presented that a value of calculation for neighboring
pixels as well as a notice pixel is prepared as an input, and the degraded image is re-
stored according to self-organizing maps. For updating, we use the following equation.

Δri =
{

α(t)Θ (γ(χ) − ri) (i ∈ Nc(t)),
0 (otherwise), (6)

where γ(χ) is a function influenced by neighboring pixels.
With respect to γ(χ), four models are considered as the yielded input. Table 1 sum-

marizes models I, II, III, and IV according to the standards of average of five pixels,
average of nine pixels, median of five pixels, and median of nine pixels as the input,
respectively.

In models I and III, five pixels are prepared as the input as shown in Fig. 4 (a).
Models II and IV have nine pixels as the input (See Fig. 4 (b)). For models I and II, the
input is an average of the notice pixel and the neighboring pixels. For models III and IV,
the input is a median of the notice pixel and the neighboring pixels. According to four
models, the inputs are changed for image restoration. By altering the inputs like these,
the restored images which differ in quality for the image processing are constructed as
shown in the next section.

Algorithms of Image Restoration in Self-organizing Maps 215

Table 2. PSNR for results of MAF, MF, IRS, model I, model II, model III, and model IV. (Unit:
dB).

MAF MF IRS Model I Model II Model III Model IV
Image i 22.23 29.70 30.77 24.81 24.03 31.04 31.00

Image ii 21.65 28.36 28.08 23.92 23.29 29.42 29.40

4 Numerical Experiments

In the numerical experiments, image restoration is performed to infer the original image
from a degraded image with the size 512 × 512 and gray scale 256. The degraded
image contains 30% noise in comparison with the original image, namely, random-
valued impulse noise, as shown in Fig. 5 (a). That is to say, the noise is included 30%
pixels which are randomly chosen among the 512 × 512 pixels, and chosen pixels are
given values from 0 to 255 at random. Initial weights are randomly distributed near the
central value of gray scale Q. Parameters are chosen as follows: l = 512, m = 512,
Q = 256, Tmax = 100 · lm, N(t) = N0 −�N0t/Tmax�, θ(t) = θ0 −�θ0t/Tmax�, and
α(t) = 0.01(1.0− t/Tmax).

For image restoration, Fig. 5 (b), (c), (d), (e), and (f) show results of conventional
model (IRS), model I, model II, model III, and model IV, respectively. The initial neigh-
borhood and the initial threshold are N0 = 3 and θ0 = 95 for IRS, N0 = 6 and θ0 = 69
for model I, N0 = 7 and θ0 = 73 for model II, N0 = 3 and θ0 = 96 for model III,
and N0 = 2 and θ0 = 98 for model IV, respectively. According to the technique given
in this study, the degraded image is restorable. Models III and IV are better than the
existing approaches.

Figure 6 shows the effect of the initial threshold θ0 on accuracy in PSNR P for each
of initial neighborhood N0 = 1, 2, 3, 4, 5 for models III and IV. In this case, P yields
the maximum when N0 = 3 and θ0 = 96 for model III and when N0 = 2 and θ0 = 98
for model IV. Figure 5 (e) and (f) were restored by these values.

As an example of another image, Fig. 7 (a) shows the degraded image. As well
as the above-mentioned image, the degraded image contains 30% noise compared to
the original image. The condition of the computation is equal to that of the earlier
description. According to the present algorithm, results of IRS, model I, model II, model
III, and model IV are shown in Fig. 7 (b), (c), (d), (e), and (f), respectively. The initial
neighborhood and the initial threshold are N0 = 3 and θ0 = 118 for IRS, N0 = 7 and
θ0 = 86 for model I, N0 = 7 and θ0 = 85 for model II, N0 = 2 and θ0 = 119 for
model III, and N0 = 2 and θ0 = 121 for model IV, respectively. It is proven that the
degraded image can be also restored in this case. Models III and IV are also greater than
the existing approaches.

Figure 8 presents the effect of the initial threshold θ0 on accuracy in PSNR P for
each of initial neighborhood N0 = 1, 2, 3, 4, 5 for models III and IV. In this case, P
yields the maximum when N0 = 2 and θ0 = 119 for model III and when N0 = 2 and
θ0 = 121 for model IV. Figure 7 (e) and (f) were restored by these values.

Table 2 summarizes PSNR for results of models I, II, III, and IV compared to the
moving average filter (MAF), the median filter (MF), and conventional model (IRS).

216 M. Maeda

(a) Degraded image i (b) IRS

(c) Model I (d) Model II

(e) Model III (f) Model IV

Fig. 5. Degraded image i with 512 × 512 size and 256 gray-scale, and results of IRS, model I,
model II, model III, and model IV

Algorithms of Image Restoration in Self-organizing Maps 217

 26

 27

 28

 29

 30

 31

 32

 80 90 100 110 120 130 140

P
 (

P
S

N
R

)
[d

B
]

θ0 (Initial threshold)

 N0 = 5
 N0 = 4
 N0 = 3
 N0 = 2
 N0 = 1

(a) Model III

 26

 27

 28

 29

 30

 31

 32

 80 90 100 110 120 130 140

P
 (

P
S

N
R

)
[d

B
]

θ0 (Initial threshold)

 N0 = 5
 N0 = 4
 N0 = 3
 N0 = 2
 N0 = 1

(b) Model IV

Fig. 6. PSNR and initial threshold for image i

218 M. Maeda

(a) Degraded image ii (b) IRS

(c) Model I (d) Model II

(e) Model III (f) Model IV

Fig. 7. Degraded image ii with 512 × 512 size and 256 gray-scale, and results of IRS, model I,
model II, model III, and model IV

Algorithms of Image Restoration in Self-organizing Maps 219

 23

 24

 25

 26

 27

 28

 29

 30

 31

 90 100 110 120 130 140 150

P
 (

P
S

N
R

)
[d

B
]

θ0 (Initial threshold)

 N0 = 5
 N0 = 4
 N0 = 3
 N0 = 2
 N0 = 1

(a) Model III

 23

 24

 25

 26

 27

 28

 29

 30

 31

 90 100 110 120 130 140 150

P
 (

P
S

N
R

)
[d

B
]

θ0 (Initial threshold)

 N0 = 5
 N0 = 4
 N0 = 3
 N0 = 2
 N0 = 1

(b) Model IV

Fig. 8. PSNR and initial threshold for image ii

220 M. Maeda

The size of the filter mask in the smoothing methods (MAF and MF) is 3 × 3. It is
proven that models III and IV excel MAF, MF, IRS, model I, and model II for both
images i and ii.

For models III and IV, learning proceeds by receiving input features since neighbor-
ing pixels as well as a notice pixel are utilized. In the computational effect, the process-
ing of model III is faster than that of model IV because the object pixels of computation
are four and nine for model III and model IV, respectively.

5 Conclusions

In this study, algorithms of image restoration in self-organizing maps grounded on
learning with neighboring inputs have been described and their validity has been shown
through numerical experiments. Novel approaches were presented that neighboring pix-
els as well as a notice pixel are prepared as an input, and a degraded image was re-
stored according to an algorithm of self-organizing maps. Our model formed a map
in which one element corresponds to each pixel. Image inference was conducted by
self-organizing maps using pixel values as input. A renewal function with threshold
was introduced in proportion to the difference between input value and inferred value.
Based on this function, our approach did not respond to input including noise oversensi-
tively. As any pixel was influenced by neighboring pixels corresponding to neighboring
setting, the inference of an original image was appropriately promoted. Finally, for the
future works, we will study more effective techniques of our algorithms.

References

1. Grossberg, S.: Adaptive Pattern Classification and Universal Recoding: I. Parallel Develop-
ment and Coding of Neural Feature Detectors. Biol. Cybern. 23, 121–134 (1976)

2. Willshaw, D.J., Malsburg, C.: How Patterned Neural Connections Can Be Set up by Self-
Organization. Proc. R. Soc. Lond. B 194, 431–445 (1976)

3. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation.
Addison-Wesley, Reading (1991)

4. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)
5. Villmann, T., Herrmann, M., Martinetz, T.M.: Topology Preservation in Self-Organizing Fea-

ture Maps: Exact Definition and Measurement. IEEE Trans. Neural Networks 8, 256–266
(1997)

6. Maeda, M., Miyajima, H., Shigei, N.: Parallel Learning Model and Topological Measurement
for Self-Organizing Maps. Journal of Advanced Computational Intelligence and Intelligent
Informatics 11, 327–334 (2007)

7. Durbin, R., Willshaw, D.: An Analogue Approach to the Traveling Salesman Problem Using
an Elastic Net Method. Nature 326, 689–691 (1987)

8. Angéniol, B., Vaubois, G., Texier, J.-Y.: Self-Organizing Feature Maps and the Traveling
Salesman Problem. Neural Networks 1, 289–293 (1988)

9. Ritter, H., Schulten, K.: On the Stationary State of Kohonen’s Self-Organizing Sensory Map-
ping. Biol. Cybern. 54, 99–106 (1986)

10. Ritter, H., Schulten, K.: Convergence Properties of Kohonen’s Topology Conserving Maps,
Fluctuations, Stability, and Dimension Selection. Biol. Cybern. 60, 59–71 (1988)

Algorithms of Image Restoration in Self-organizing Maps 221

11. Maeda, M., Miyajima, H.: Competitive Learning Methods with Refractory and Creative Ap-
proaches. IEICE Trans. Fundamentals E82–A, 1825–1833 (1999)

12. Maeda, M., Shigei, N., Miyajima, H.: Adaptive Vector Quantization with Creation and Re-
duction Grounded in the Equinumber Principle. Journal of Advanced Computational Intelli-
gence and Intelligent Informatics 9, 599–606 (2005)

13. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, Englewood Cliffs
(2002)

14. Geman, S., Geman, D.: Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images. IEEE Trans. Pattern Anal. Mach. Intel. 6, 721–741 (1984)

15. Maeda, M., Miyajima, H.: State Sharing Methods in Statistical Fluctuation for Image
Restoration. IEICE Trans. Fundamentals E87-A, 2347–2354 (2004)

16. Maeda, M.: A Relaxation Algorithm Influenced by Self-Organizing Maps. In: Kaynak, O.,
Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714,
pp. 546–553. Springer, Heidelberg (2003)

17. Maeda, M., Shigei, N., Miyajima, H.: Learning Model in Relaxation Algorithm Influenced
by Self-Organizing Maps for Image Restoration. IEE J. Trans. Electrical and Electronic En-
gineering 3, 404–412 (2008)

18. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer Academic
Publishers, Dordrecht (1992)

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 223–235.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

On the Projection of k-Valued Non-linearly Separable
Problems into m-Valued Linearly Separable Problems

Igor Aizenberg

Department of Computer Science, Texas A&M University-Texarkana
P.O. Box 5518, Texarkana, TX 75505-5518, U.S.A.

igor.aizenberg@tamut.edu

Abstract. In this paper, we observe a new approach to learn non-linearly
separable problems using a single multi-valued neuron. It is shown that a k-
valued problem, which is non-linearly separable in the n-dimensional space can
be projected into an m-valued (where m=kl) linearly separable problem in the
same space. This projection can be utilized through a periodic activation
function for the multi-valued neuron. Then the initial problem can be learned by
a single multi-valued neuron using its learning algorithm. This approach is
illustrated by the examples of such problems as XOR, Parity n, mod k addition
of n variables and some benchmarks using a single multi-valued neuron.

Keywords: Complex-valued neural networks, Multi-valued neuron, Derivative-
free learning, XOR, Parity n, Mod k addition.

1 Introduction

It is commonly known that a linearly separable (threshold) Boolean function and a
linearly separable function whose range is Boolean can be learned by a single neuron
that is by the classical perceptron – a neuron with a threshold activation function 1]. It
is also known that a linearly separable (threshold) multiple-valued function can also
be learned by a single neuron – the multi-valued neuron 2].

However, it is commonly known that, for example, almost all real world
classification problems are non-linearly separable, that is they are described by non-
linearly separable (non-threshold) functions. Suppose we have to solve some n-
dimansional k-class classification peoblem and this problem is described by some
non-threshold function, which is either a discrete function of k-valued logic or a
function with a descete k-valued range. The commonly used approach for solving
such a problem is its consideration in the larger dimensional space. Actually, one of
the ways to utilize this approach is a feedforward neural network, where hidden
neurons form a new space, and a problem becomes linearly separable and solvable 1].
Another popular approach for solving this problem is the support vector machine
(SVM) introduced in 3], where a larger dimensional space is formed using the support
vectors and a problem becomes linearly separable and solvable in this new space.

In this paper, we will consider how the same problem can be approached from a
different side. Suppose we have some n-dimansional k-valued non-linearly separable

224 I. Aizenberg

problem. This means that this problem is described by some non-threshold k-valued
function of n variables. We will discover here how this non-threshold k-valued
function of n variables can be projected into an m-valued partually defined threshold
function of the same n variables (where m k>). This means that our n-dimansional
k-valued non-linearly separable problem will become an n-dimansional m-valued
linearly separable problem and therefore it will be possible to learn it using a single
multi-valued neuron. Thus, we will reach a linear separation without extension of that
initial n-dimansional space where our problem is defined.

A main tool, which will be used here to reach the declared goals, is the multi-
valued neuron (MVN). The MVN was introduced in 4]. This neuron is based on the
concept of multiple-valued logic over the field of complex numbers. This concept was
introduced in 5], then presented in detail in 6], and further developed in 7]. The
continuous MVN was introduced in 8] and then developed in 9]. A single MVN has
significantly higher functionality than a single sigmoidal neuron. Another advantage
of the MVN is its learning algorithm, which is derivative-free. The MVN’s
input/output mapping is always described by some threshold function of k-valued
logic.

Another important tool, which will be used in this paper is the universal binary
neuron (UBN). It was introduced in 10], then its theory was presented in detail in 2],
and its modified learning algorithm is considered in 11]. The UBN is a Boolean
neuron, its inputs and output are binary, thus it implements those input/output
mappings, which are described by Boolean functions. The most important advantage
of the UBN over traditional neurons is its ability to learn non-linearly separable
Boolean functions. This is possible because the UBN employs complex-valued
weights and the original activation function.

In this paper, we use the idea, which is behind the UBN activation function, to
modify the MVN activation function. This idea is the periodicity of an activation
function. A periodic activation function, which is used in the UBN makes it possible
to project the Boolean (2-valued) logic into an m-valued logic, where 2m > . This
makes it possible to project any non-linearly separable Boolean function of n
variables into a partially defined (only on Boolean inputs) linearly-separable function
of the same n variables. This approach can be generalized for non-linearly separable
functions of k-valued logic for 2k > , and such functions can be projected into

partially defined functions of m-valued logic, where m k> . This paper extends the
author’s recent work 12], where some preliminary results were reported.

2 Multi-Valued Neuron (MVN)

2.1 Discrete and Continuous MVN

The discrete MVN was proposed in 4]. It is based on the principles of multiple-valued
threshold logic over the field of complex numbers. The discrete MVN performs a
mapping between n inputs and a single output. This mapping is described by a

multiple-valued (k-valued) threshold function of n variables 1()nf x , ..., x . It is

important to specify that we consider here multiple-valued logic over the field of

 On the Projection of k-Valued Non-linearly Separable Problems 225

complex numbers 2], 6]. While in traditional multiple-valued logic its values are

encoded by the integers from the set { }0,1,..., 1K k= − , in the one over the field of

complex numbers they are encoded by the kth roots of unity

{ }0 2 1, , ,..., k
kE ε ε ε ε −= , where 2j i j / ke πε = , 0 ..., 1j , k -= , (i is an imaginary

unity). A k-valued threshold function describing the MVN input/output mapping, can
be represented using n+ 1 complex-valued weight as follows

1 0 1 1() ()n n nf x , ..., x P w w x ... w x= + + + , (1)

where nx ..., ,x1 are the variables (neuron inputs) and n , ...,w,ww 10 are the

weights. The values of the function and of the neuron inputs are the kth roots of unity:
2j i j / ke πε = , {0 1,..., 1}j , k -∈ , i is an imaginary unity. P is the activation function

2
() if 2 arg 2 (1) ,

i j / k
P z = e , j / k z j + / k

π π π≤ < (2)

where j=0, 1, ..., k-1 are values of k-valued logic, nn xw...xwwz +++= 110 is the

weighted sum, arg z is the argument of the complex number z. It is important to
mention that function (2), which was introduced in 5], is historically the first known
complex-valued activation function. Function (2) divides a complex plane into k equal
sectors and maps the whole complex plane into a set of kth roots of unity (see Fig. 1).

This approach was later generalized for the continuous case. The continuous MVN
has been proposed in 8] and then developed in 9]. The continuous case corresponds to
k → ∞ in (2). If the number of sectors k → ∞ (see Fig. 1), then the angular size of

Fig. 1. Geometrical interpretation of the
discrete MVN activation function.

Fig. 2. Geometrical interpretation of the
continuous MVN activation function.

()() exp 2 /P z j i kπ= ⋅

i

0

1

k-2 Z

J-1

J J+1

k-1

226 I. Aizenberg

a sector tends to 0. Hence, an activation function in this case becomes simply a

projection of the weighted sum 0 1 1 n nz w w x ... w x= + + + onto the unit circle:

, (3)

where z is the weighted sum, Arg z is a main value of its argument (phase) and |z| is
the absolute value of the complex number z.

Activation function (3) is illustrated in Fig. 2. It maps the whole complex plane
into the unit circle. Evidently, a hybrid MVN (with continuous inputs/discrete output,
discrete inputs/continuous output, hybrid inputs and discrete or continuous output)
can also be easily considered.

2.2 MVN Learning

MVN learning algorithm is identical for both discrete and continuous neurons. The
most important property of MVN learning is that it is derivative-free. There are two
MVN learning algorithms. One of them, which was proposed in 2], is computationally
more efficient. It is based on the error-correction learning rule. If T is the desired
neuron’s output and Y is the actual one, then T Yδ = − is the error (see Fig. 3) that
determines that adjustment of the weights, which is performed as follows:

()1 1
r

r r

C
W W X

n
δ+ = +

+
, (4)

or, as it was suggested in 9], as follows

()1
1

r
r r

r

C
W W X

n z
δ+ = +

+
, (5)

Fig. 3. Geometrical interpretation of the MVN
learning rule

Fig. 4. Geometrical interpretation of the UBN
activation function

() exp((arg)) / | |

iArg z
P z i z e z z= = =

i

Y T δ

 On the Projection of k-Valued Non-linearly Separable Problems 227

where X is the vector of inputs with the components complex-conjugated, n is the
number of neuron inputs, δ is the neuron’s error, r is the number of the learning

iteration, rW is the current weighting vector (to be corrected), 1rW + is the following

weighting vector (after correction), Cr is the constant part of the learning rate (it may

always be equal to 1), and rz is the absolute value of the weighted sum obtained on

the rth iteration. A factor 1 / rz in (5) is a variable part of the learning rate. The use of

it can be important for learning highly nonlinear input/output mappings.

3 Universal Binary Neuron

The UBN was introduced in 10]. It is presented in detail in 2], and its modified
learning algorithm was recently considered in 11]. A key idea behind the UBN is the
use of complex-valued weights and an original activation function for learning non-
linearly separable Boolean functions.

If k=2 in (2) then the complex domain is divided into two parts (the top semiplane
(“1”) and the bottom semiplane (“-1”)):

() 1, 0 arg()

1, arg() 2 .

z
P z

z

π
π π

≤ <⎧
= ⎨− ≤ <⎩

However, this activation function does not increase the neuron’s functionality:
although the weights are complex, the neuron still can only learn linearly separable
Boolean functions [2]. It was suggested in 11] to use the following periodic activation
function

() (1) if 2 arg() 2 (1) ; 2 ,j
BP z = , j / m z j + / m m = l, lπ π− ≤ < ∈N (6)

where l is some positive integer, j is a non-negative integer mj <0 ≤ . Activation

function (6) is illustrated in Fig. 4. It separates the complex plane into 2m l= equal
sectors and determines the neuron’s output by the alternating periodic sequence of 1, -
1, 1, -1,…1, -1 depending on the parity of the sector’s number.

Activation function (6) determines the most important advantage of the UBN. It is
its ability to learn non-linearly separable Boolean functions.

For example, the favorite non-linearly separable problems of the research
community - XOR and Parity n become linearly separable and can be learned by a
single UBN with activation function (6). Table 1 shows how the XOR problem can be
solved using a single UBN with the activation function (6) (2, 4l m= =).

The UBN learning algorithm is presented in detail in 11]. It is based on the same
learning rules (4) and (5) as the MVN learning algorithm. The choice of the desired
output is based on the closeness of the current weighted sum to the right or left
adjacent sector.

228 I. Aizenberg

Table 1. Solving the XOR problem using a single UBN with the weighting vector (0, i, 1)

1x 2x 22110 xwxwwz ++=)(zPB
XOR=

1 2
mod2

x x= ⊕

1) 1 1 1 + i 1 1
2) 1 -1 -1 + i -1 -1
3) -1 1 1 - i -1 -1
4) -1 -1 -1 - i 1 1

Let us analyze activation function (6). It is a periodic function with the period 2.
Comparing this function with (2), we may conclude that (6) projects the Boolean
logic into an m-valued logic. Activation function (6) may also be written in the
following form:

() mod 2 if 2 arg 2 (1) ,

0,1,..., 1; 2 , 2.
BP z = j , j / m z j+ / m

j m m l l

π π≤ <
= − = ≥

 (7)

It was distinguished in 11] that if some non-threshold Boolean function can be learned
using a single UBN with activation function (6) and its weighting vector

()0 1, ,..., nw w w results from the learning process, then there exists a partially defined

(on the Boolean variables) m-valued threshold function, which can be implemented
by a single MVN with the same weighting vector. This means that a non-threshold
Boolean function, which cannot be learned using a traditional perceptron, can be
projected to a partially defined m-valued threshold function, which can be learned
using a single MVN. Let us consider how the same approach can be used to learn
using a single neuron not only non-linearly separable Boolean functions, but also non-
linearly separable multiple-valued functions.

4 A Periodic Activation Function for the MVN

Let { }2 11, , ,..., k
k k k kE ε ε ε −= (where 2 /i k

k e πε = is the primitive kth root of unity)

be the set of the kth roots of unity. Let O be the continuous set of the points located on

the unit circle. Let { }0,1,..., 1K k= − be the set of the values of k-valued logic. Let

)(1 nx ..., ,xf be a function and either : n
kf E K→ or : nf O K→ . Hence, the

range of f is discrete, while its domain is either discrete or continuous. In general, its
domain may be even hybrid. If some function

1(), , , , , 1,...,n i j j j jf y , ..., y y a b a b j n⎡ ⎤∈ ∈ =⎣ ⎦ R is defined on the bounded

subdomain n nD ⊂ R (: nf D K→), then it can be easily transformed to

: nf O K→ by a simple linear transformation applied to each variable:

 On the Projection of k-Valued Non-linearly Separable Problems 229

and then , 1,2,...,ji

jx e O j n
ϕ= ∈ = is the

complex number located on the unit circle. Hence, we obtain the function

1() : n
nf x , ..., x O K→ .

If this function)(1 nx ..., ,xf is not a k-valued threshold function, it cannot be

learned by a single MVN with activation function (2).
Let us project the k-valued function)(1 nx ..., ,xf into an m-valued logic, where

m kl= , l is integer and 2l ≥ . To do this, let us define the following new discrete
activation function for the MVN:

() mod if 2 arg 2 (1) ,

0,1,..., 1; , 2.
lP z = j k, j / m z j+ / m

j m m kl l

π π≤ <
= − = ≥

 (8)

This definition is illustrated in Fig. 5. Activation function (8) separates the complex

plane onto m equal sectors and t K∀ ∈ there are exactly l sectors, where (8) equals

to t.

Fig. 5. Geometrical interpretation of the l-repeated multiple discrete-valued MVN activation
function (7)

This means that activation function (8) establishes mappings from kE into

{ }2 11, , ,..., k
m m m mE ε ε ε −= and from K into { }0,1,..., 1, , 1,..., 1M k k k m= − + − ,

respectively. Since m kl= then each element from M and mE has exactly l

prototypes in K and kE , respectively. In turn, this means that the MVN’s output,

, 0, 2 ,

1,..., ;0 2 ,

j j
j j j j

j j

y a
y a b

b a
j n

230 I. Aizenberg

depending on which one of the m sectors (whose ordinal numbers are determined by
the elements of the set M) the weighted sum is located in, is equal to

0 1 1

0,1,..., 1,0,1,..., 1,...,0,1,..., 1.
l

lk m

k k k
−

=

− − −14243 14243 14243
14444444244444443

(9)

Hence the MVN’s activation function in this case becomes k-periodic.

Activation function (8) projects a k-valued function)(1 nx ..., ,xf into m-valued

logic. This projection becomes very attractive, if)(1 nx ..., ,xf , being a non-threshold

function in k-valued logic, becomes a partially defined threshold function in m-valued

logic. The latter means that)(1 nx ..., ,xf can be learned it using a single MVN. It

will be shown below that this is definitely the case.
It is important to mention that if 1l = in (8) then m=k and activation function (8)

coincides with activation function (2) accurate within the interpretation of the
neuron’s output (if the weighted sum is located in the jth sector then according to (2)

the neuron’s output is equal to
2 /ij k j

ke Eπ ε= ∈ , which is the jth kth root of unity,

while in (8) it is equal to j K∈). Evidently, the multiple-valued activation function

(8) is a generalization of the binary activation function (7) for the multiple-valued
case.

5 Learning Algorithm for the MVN with a Periodic Activation
Function

To make the approach proposed in Section 3 active, it is necessary to develop an
efficient learning algorithm for the MVN with activation function (8). Such an
algorithm will be presented here.

As it was mentioned above (Section 2), one of the MVN learning algorithms is
based on either of error-correction learning rules (4) or (5). Let us adapt this algorithm
to activation function (8).

Let)(1 nx ..., ,xf be a function of k-valued logic and : n
kf E K→ or : nf O K→ .

Let this function be non-threshold and therefore it is not possible to learn it using a single
MVN with activation function (2). Let us try to learn it in m-valued logic using a single
MVN with activation function (8). Thus, the expected result of this learning process is the

representation of)(1 nx ..., ,xf according to (1), where the activation function lP

determined by (8) substitutes for the activation function P determined by (2).
This learning process may be based on either of the same learning rules (4) or (5),

but applied to)(1 nx ..., ,xf as to the m-valued function. To use these learning rules, it

is necessary to determine a desired output. Unlike the case of the MVN with
activation function (2), a desired output in terms of m-valued logic cannot be
determined unambiguously for the MVN with activation function (8). According to

 On the Projection of k-Valued Non-linearly Separable Problems 231

(8), there are exactly l sectors on the complex plane out of m, where this activation

function equals to the given desired output t K∈ . Therefore, there are exactly l out
of mth roots of unity that can be used as the desired outputs in (4) or (5). Which one of
them should we choose? We suggest using the same approach that was used in the
error-correction learning algorithm for the UBN 2], 11]. UBN’s activation function (6)
determines an alterning sequence with respect to sectors on the complex plane.
Hence, if the actual output of the UBN is not correct, in order to make the correction,
we can “move” the weighted sum into either of the sectors adjacent to the one where
the current weighted sum is located. It was suggested to always move it to the sector,
which is closest to the current weighted sum (in terms of the angular distance). The
convergence of this learning algorithm was proven in 2].

Let us use the same approach here. Activation function (8) determines k-periodic
sequence (9) with respect to sectors on the complex plane. Suppose that the current
MVN’s output is not correct and the current weighted sum is located in the sector

{ }0,1,..., 1s M m∈ = − . Since 2l ≥ in (8), there are l sectors on the complex

plane, where function (8) takes the correct value. Two of these l sectors are the
closest ones to sector s (from right and left sides, respectively). From these two
sectors, we choose sector q whose border is closest to the current weighted sum z.
Then either of learning rules (4) or (5) can be applied. Hence, the learning algorithm
for the MVN with activation function (8) can be described as follows. Let us have N

learning samples for the function)(1 nx ..., ,xf to be learned and { }1,...,j N∈ be the

number of the current learning sample (initially, 1j =). One iteration of the learning

process consists of the following steps:

1) Set r=1, j=1, and Learning=“False”.
2) Check (1) with the activation function (8) for the learning sample j.

3) If (1) holds then set 1j j= + , otherwise set Learning=’True’ and go to Step 5.

4) If j N≤ then go to Step 2, otherwise go to Step 9.

5) Let z be the current value of the weighted sum and () ,sP z s Mε= ∈ , ()P z

is the activation function (2), where m is substituted for k. Hence the MVN’s actual
output is () modlP z s k= . Find 1q M∈ , which determines the closest sector to the

sth one, where the output is correct, from the right, and find 2q M∈ , which

determines the closest sector to the sth one, where the output is correct, from the left
(this means that

1 modq k d= and
2 modq k d=).

6) ()() ()()1 2(1)2 / 2 /If arg arg mod 2 arg arg mod 2i q m iq mz e e zπ ππ π+− ≤ − then

1q q= else 2q q= .

7) Apply the learning rule (4) or (5) to adjust the weights.

8) Set 1j j= + and return to Step 4.

232 I. Aizenberg

9) If Learning=‘False’ then go to Step 10, otherwise set r=r+1, j=1, Learning=’False’
and go to Step 2.
10) End.

Since according to this learning algorithm the learning of a k-valued function is
reduced to the learning of a partially defined m-valued function, the convergence of
the learning algorithm may be proven in the similar manner as the convergence of the
learning algorithm based on rule (4) and of the UBN learning algorithm were proven
in 2].

6 Simulation Results

To confirm the efficiency of the proposed activation function and learning algorithm,
they were checked for the following three problems using a software simulator
written in Borland Delphi 5.0 running on a PC with the Intel® Core™2 Duo CPU.

6.1 Wisconsin Breast Cancer (Diagnostic)

This famous benchmark database was downloaded from the UC Irvine Machine
Learning Repository 13]. It contains 569 samples that are described by 30 real-valued
features. There are two classes (“malignant” and “benign”) to which these samples
belong.

A single MVN with activation function (2) with 2k = fails to learn the entire data
set because it is non-linearly separable. However, a single MVN with activation
function (8) with 2, 2, 4k l m= = = learns the problem with no errors. Ten runs of

the learning process started from different random weights resulted in convergence
after 649-1300 iterations, which took a few seconds.

We have also tested the ability of a single MVN to solve classification problem.
10-fold cross validation was used as it is recommended in 13]. Every time the data set
was divided into a learning set (400 samples) and a testing set (169) samples. After
the learning set was learned completely with no errors, the classification of the testing
set samples was performed. A classification rate of 96.5%-97.5% was achieved. This
is comparative to the best known result (97.5%) 13]. However, it is important to note
that our method solves the problem using just a single neuron, while in the previous
works either different networks or linear programming methods were used.

6.2 Sonar

This famous benchmark database was also downloaded from the UC Irvine Machine
Learning Repository 13]. It contains 208 samples that are described by 60 real-valued
features. There are two classes (“mine” and “rock”) to which these samples belong.

A single MVN with activation function (2) with 2k = fails to learn the entire
data set even after 1,000,000 iterations. However, the single MVN with activation
function (8) with 2, 2, 4k l m= = = learns the problem with no errors. Ten runs of

the learning process started from different random weights resulted in convergence
after 65-180 iterations, which took a few seconds.

 On the Projection of k-Valued Non-linearly Separable Problems 233

We have also tested the ability of a single MVN to solve the classification
problem. This set is initially divided by its creators into learning (104 samples) and
testing (104 samples) subsets. After the learning set was learned completely with no
errors, the classification of the testing set samples was performed. The classification
rate of 88.1%-91.5% was achieved. This is comparative to the best known results
reported in 14] – 94% (Fuzzy Kernel Perceptron), 89.5% (SVM), and in 9] - 88%-
93% (MLMVN). However, here the problem was solved using just a single neuron,
while in the previous works different neural and kernel-based networks were used.

6.3 k-Valued Non-threshold Function

Let us consider the following fully defined function of 3 variables of 4-valued logic

() ()1 2 3 1 2 3, , mod 4f x x x x x x= + + (see the first four columns of Table 2). This

function, which is the analogue of parity 3 function in the Boolean logic, is non-
threshold in 4-valued logic and cannot be learned using a single MVN with activation
function (2) with 4k = . However, this function can be learned by a single MVN with
activation function (8) with 4, 8, 32k l m= = = (see columns 5-6 of Table 2). The

learning process converges after 584-43875 iterations (ten independent runs).
It is interesting that every time the learning process has converged to different

weighting vectors, but to the same type of a resulting monotonic m-valued function
(see the 5th column of the Table 2). This confirms that the learning of a non-threshold
k-valued function may be reduced to the learning of a partially defined m-valued
threshold function.

7 Conclusions

We have considered in this paper the original approach for projecting a k-valued non-
linearly separable function of n variables to a partially defined m-valued threshold
function of n variables. This makes it possible to learn such no-linearly separable
multiple-valued functions using a single multi-valued neuron like it is possible to
learn non-linearly separable Boolean functions using a single universal binary neuron.
This means that non-linearly separable classification problems, which have been
considered unsolvable using a single neuron, can now be learned using a single multi-
valued neuron. The projection of a non-linearly separable problem to a linearly
separable problem described in the paper is reached by using a new periodic
activation function for the multi-valued neuron and by employing a modified learning
algorithm for this neuron.

Acknowledgements. This work is supported by the National Science Foundation
under Grant 0925080.

234 I. Aizenberg

Table 2. Non-threshold function of 3 variables of 4-valued logic and the results of its learning

4-valued

,

0 0 0 0 8 0
0 0 1 1 9 1
0 0 2 2 10 2
0 0 3 3 11 3
0 1 0 1 9 1
0 1 1 2 10 2
0 1 2 3 11 3
0 1 3 0 12 0
0 2 0 2 10 2
0 2 1 3 11 3
0 2 2 0 12 0
0 2 3 1 13 1
0 3 0 3 11 3
0 3 1 0 12 0
0 3 2 1 13 1
0 3 3 2 14 2
1 0 0 1 9 1
1 0 1 2 10 2
1 0 2 3 11 3
1 0 3 0 12 0
1 1 0 2 10 2
1 1 1 3 11 3
1 1 2 0 12 0
1 1 3 1 13 1
1 2 0 3 11 3
1 2 1 0 12 0
1 2 2 1 13 1
1 2 3 2 14 2
1 3 0 0 12 0
1 3 1 1 13 1
1 3 2 2 14 2
1 3 3 3 15 3
2 0 0 2 10 2
2 0 1 3 11 3
2 0 2 0 12 0
2 0 3 1 13 1
2 1 0 3 11 3
2 1 1 0 12 0
2 1 2 1 13 1
2 1 3 2 14 2
2 2 0 0 12 0
2 2 1 1 13 1
2 2 2 2 14 2
2 2 3 3 15 3
2 3 0 1 13 1
2 3 1 2 14 2
2 3 2 3 15 3
2 3 3 0 16 0
3 0 0 3 11 3
3 0 1 0 12 0
3 0 2 1 13 1
3 0 3 2 14 2
3 1 0 0 12 0
3 1 1 1 13 1
3 1 2 2 14 2
3 1 3 3 15 3
3 2 0 1 13 1
3 2 1 2 14 2
3 2 2 3 15 3
3 2 3 0 16 0
3 3 0 2 14 2
3 3 1 3 15 3
3 3 2 0 16 0
3 3 3 1 17 1

1x 2x 3x ()1 2 3, ,f x x x j M∈
{ }0,1, ...,31M = mod 4

lP

j

=
=

 On the Projection of k-Valued Non-linearly Separable Problems 235

References

1. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice Hall, New Jersey
(2009)

2. Aizenberg, I., Aizenberg, N., Vandewalle, J.: Multi-valued and universal binary neurons:
theory, learning, applications. Kluwer Academic Publishers, Boston (2000)

3. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
4. Aizenberg, N.N., Aizenberg, I.N.: CNN Based on Multi-Valued Neuron as a Model of

Associative Memory for Gray-Scale Images. In: The Second IEEE Int. Workshop on
Cellular Neural Networks and their Applications, pp. 36–41. Technical University Munich,
Germany (1992)

5. Aizenberg, N.N., Ivaskiv, Y.L., Pospelov, D.A.: About one generalization of the threshold
function Doklady Akademii Nauk SSSR (The Reports of the Academy of Sciences of the
USSR), 196(6) 1287–1290 (1971) (in Russian)

6. Aizenberg, N.N., Ivaskiv, Y.L.: Multiple-Valued Threshold Logic. Naukova Dumka
Publisher House, Kiev (1977) (in Russian)

7. Aizenberg, I., Aizenberg, N., Vandewalle, J.: Multi-valued and universal binary neurons:
theory, learning, applications. Kluwer Academic Publishers, Boston (2000)

8. Aizenberg, I., Moraga, C., Paliy, D.: A Feedforward Neural Network based on Multi-
Valued Neurons. In: Reusch, B. (ed.) Computational Intelligence, Theory and
Applications. Advances in Soft Computing. AISC, vol. XIV, pp. 599–612. Springer,
Heidelberg (2005)

9. Aizenberg, I., Moraga, C.: Multilayer Feedforward Neural Network Based on Multi-
Valued Neurons (MLMVN) and a Backpropagation Learning Algorithm. Soft
Computing 11(2), 169–183 (2007)

10. Aizenberg, I.N.: A Universal Logic Element over the Complex Field. Kibernetika
(Cybernetics and Systems Analysis) 27(3), 116–121 (in Russian) ; English version is
available from Springer 27(3), 467–473 (1991)

11. Aizenberg, I.: Solving the XOR and Parity n Problems Using a Single Universal Binary
Neuron. Soft Computing 12(3), 215–222 (2008)

12. Aizenberg, I.: A Multi-Valued Neuron with a Periodic Activation Function. In:
International Joint Conference on Computational Intelligence, Funchal-Madeira, Portugal,
October 5-7, pp. 347–354 (2009)

13. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California,
Irvine (2007), http://www.ics.uci.edu/~mlearn/MLRepository.html

14. Chen, J.-H., Chen, C.-S.: Fuzzy Kernel Perceptron. IEEE Transactions on Neural
Networks 13, 1364–1373 (2002)

Dual Adaptive Neurocontrol of Mobile Robots
Using the Unscented Transform: Monte Carlo and

Experimental Validation

Marvin K. Bugeja� and Simon G. Fabri

Department of Systems and Control Engineering
University of Malta, Msida MSD2080, Malta
{mkbuge,sgfabr}@eng.um.edu.mt

Abstract. In contrast to most adaptive schemes, dual adaptive controllers do not
rely on the heuristic certainty equivalence assumption, but aim to strike a bal-
ance between estimation and control at all times. Yet, few such controllers have
ever been implemented and tested in practice, especially within the context of
intelligent control, and to the best of our knowledge none on mobile robots. With
the help of Mont Carlo simulation and real-life experiments, this article presents
and validates a novel dual adaptive neurocontroller based on the unscented trans-
form, for the dynamic control of nonholonomic wheeled mobile robots. The robot
nonlinear dynamic functions are unknown to the controller and a multilayer per-
ceptron neural network, trained via an unscented Kalman predictor, is used for
their approximation in real-time. Moreover, the proposed novel dual adaptive
control law employs the unscented transform to improve further the system’s per-
formance.

Keywords: Dual adaptive control, Neural networks, Unscented Kalman filter,
Unscented transform, Mobile robots.

1 Introduction

Many works on the control of nonholonomic wheeled mobile robots (WMRs) com-
pletely ignore the robot dynamics and rely on the assumption that the control inputs
instantaneously establish the desired wheel velocities [1,2]. Others, that explicitly ac-
count for the robot dynamics due to its mass, friction and inertia, show that dynamic
control leads to an improvement in tracking performance [3,4]. However, as argued in
[3], perfect knowledge of the robot dynamics is unavailable in practice. In addition,
these parameters can also vary over time due to loading, wear and ground conditions.
These issues inspired the development of several robust and adaptive WMR controllers
over the last decade. These include: pre-trained artificial neural network (ANN) based
controllers and robust sliding-mode methods [4], parametric adaptive schemes [5], and
functional adaptive controllers [6].

However, all these adaptive controllers rely on the heuristic certainty equivalence
(HCE) assumption. This means that the estimated parameters/functions are used by the

� This work was supported by National RTDI under Grant 2004 RTDI-2004-026.

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 237–250.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

238 M.K. Bugeja and S.G. Fabri

controller as if they were the true values, thereby ignoring completely the inherent un-
certainty in the estimations. When the uncertainty is large, for instance during startup or
when the dynamic parameters/functions vary, HCE control often leads to large tracking
errors and excessive control actions, which can excite unmodelled dynamics or even
lead to instability [7]. In contrast, the so-called dual adaptive controllers based on the
dual control principle introduced by A. Fel’dbaum in the early 1960s [8], do not rely
on the HCE assumption but account for the estimates’ uncertainty in the control de-
sign. Specifically, a dual adaptive control law is designed with two aims in mind: (i) to
ensure that the output tracks the reference signal with due consideration given to the
estimates’ uncertainty; (ii) to excite the plant input sufficiently so as to accelerate the
estimation process, thereby reducing quickly the uncertainty in future estimates. These
two features are known as caution and probing respectively [7,9].

Of the few dual adaptive controllers proposed, only our work presented in [10] fo-
cuses on the dynamic control of WMRs. However, the multilayer perceptron (MLP)
dual adaptive scheme employed in this work, not only uses the extended Kalman fil-
ter (EKF) (which inherently involves a first-order Taylor approximation) as a neuro-
estimator, but the control law itself is based on another first-order approximation of the
measurement model. In contrast, the novelty of the control scheme presented in this
article comprises: the use of a specifically devised form of the unscented Kalman filter
(UKF) [11,12] as a recursive weight tuning algorithm instead of the EKF; and more im-
portantly the development of a novel dual adaptive control law based on the unscented
transform (UT) [11], instead of the first-order Taylor approximation. Together, these
novel developments lead to a significant improvement in performance over the EKF-
based scheme in [10]. To the best of our knowledge, this is the first time that the UT is
being used in the context of dual adaptive control. Moreover, one should note that very
few adaptive controllers have ever been implemented and tested on a physical WMR,
amongst which one finds [13,5]. However, none of these address fully the uncertainty
in the WMR dynamic functions nor take a dual adaptive control approach.

The rest of the article is organized as follows. Section 2 presents the mathematical
model of the WMR. In Section 3 we present the novel UT-based dual adaptive dynamic
control scheme. Simulation results, including those from a Monte Carlo comparative
analysis, and experimental results are then presented in Section 4, which is followed by
a brief conclusion in Section 5.

2 WMR Mathematical Model

Figure 1 depicts the differentially driven wheeled mobile robot considered in this ar-
ticle. The passive (caster) wheels are ignored, and the notation included in the fig-
ure is adopted throughout the article. The robot coordinate vector is denoted by q =
[x y φ θr θl]

T , where (x, y) is the Cartesian coordinate of Po, φ is the robot’s ori-
entation with reference to the x-axis, and θr, θl are the angular displacements of the
right and left motorized wheels respectively. The pose of the robot refers to the vector
p = [x y φ].

Dual Adaptive UT-Based Neurocontrol of Mobile Robots 239

x

y

r

b

d
φ

Motorized wheels

Centre of
mass Pc

Geometric
centre Po

Caster wheels

Po midpoint on the driving axle
Pc centre of mass of platform (no wheels)
d distance from Po to Pc

b distance from each wheel to Po

r radius of each wheel
mc mass of the platform
mw mass of each wheel
Ic angular mass of the platform about Pc

Iw angular mass of each wheel about axle
Im angular mass of each wheel about diameter

Fig. 1. Differentially driven wheeled mobile robot

2.1 Kinematics

Assuming that the wheels roll without slipping, the kinematic model of this WMR,
detailed in [10], is given by:

q̇ =

⎡⎢⎢⎢⎢⎢⎢⎣

r
2 cosφ r

2 cosφ
r
2 sinφ r

2 sin φ
r
2b − r

2b

1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎦ν, (1)

where the wheel velocity vector ν � [νr νl]
T =

[
θ̇r θ̇l

]T

.

2.2 Dynamics

The WMR dynamic model, also detailed in [10], is given by:

M̄ν̇ + V̄ (ν) + F̄ (ν) = τ , (2)

where:

M̄ =

[
r2

4b2 (mb2 + I) + Iw
r2

4b2 (mb2 − I)
r2

4b2 (mb2 − I) r2

4b2 (mb2 + I) + Iw

]
, V̄ (ν) =

mcdr3

4b2

[
νrνl − ν2

l

νrνl − ν2
r

]
,

m = mc + 2mw, I = (Ic + mcd
2) + 2(Im + mwb2), F̄ (ν) is a vector of wheel

velocity-dependent frictional terms, and τ = [τr τl]
T with τr and τl being the torques

applied to the right and left motorized wheels respectively.
To account for the fact that the controller is finally implemented on a digital com-

puter, the continuous-time dynamics (2) are discretized through a first-order forward
Euler approximation with a sampling interval of T seconds, resulting in

νk − νk−1 = fk−1 + Gk−1τk−1, (3)

240 M.K. Bugeja and S.G. Fabri

where subscript k denotes that the corresponding variable is evaluated at kT seconds,
and vector fk−1 and matrix Gk−1, which together encapsulate the WMR nonlinear
dynamics, are given by

fk−1 = −TM̄−1
k−1

(
V̄k−1 + F̄k−1

)
,

Gk−1 = TM̄−1
k−1.

(4)

The following conditions are assumed to hold:

Assumption 1. The control input vector τ remains constant over a sampling interval
of T seconds (zero-order hold).

Assumption 2. The sampling interval T is chosen low enough for the Euler approxi-
mation error to be negligible.

3 Control Design

The trajectory tracking task of a nonholonomic WMR is chosen as a test problem in this
article. Nevertheless, the applicability of the dual-adaptive controller proposed in this
section is much wider, and the resulting algorithm can be easily adapted for other tasks.
In trajectory tracking the robot is required to track a non-stationary kinematically iden-
tical virtual vehicle, in both pose and velocity at all times, by minimizing the tracking
error vector ek defined in [1] as

ek =

⎡⎢⎣ cosφk sin φk 0
− sinφk cosφk 0

0 0 1

⎤⎥⎦ (prk − pk) , (5)

where prk = [xrk yrk φrk]T denotes the virtual vehicle pose vector. Consequently,
the trajectory tracking control task is to make ek converge to zero so that pk converges
to prk.

3.1 Kinematic Control

To address the trajectory tracking problem we employ a discrete-time version of the
well-established kinematic control law originally proposed in [1], given by

νck =

[
1
r

b
r

1
r − b

r

] [
vrk cos e3k + k1e1k

ωrk + k2vrke2k + k3vrk sin e3k

]
,

where νck is the wheel velocity-command vector computed by the kinematic controller,
k1, k2, and k3 are positive design parameters, vrk and ωrk are the translational and an-
gular virtual vehicle velocities respectively (assumed to be continuous functions, at least
know one sampling interval ahead), and e1k, e2k, e3k are the elements of ek in (5).

If one assumes perfect velocity tracking (i.e. νk = νck ∀ k), hence ignoring the
WMR dynamics expressed in (2), then this kinematic control law alone solves the tra-
jectory tracking problem. However, as pointed out earlier, mere kinematic control rarely
suffices and often leads to degradation in control performance [3].

Dual Adaptive UT-Based Neurocontrol of Mobile Robots 241

3.2 UT-Based Dual Adaptive Control

If the nonlinear dynamic functions fk and Gk are assumed to be perfectly known, a non-
adaptive computed-torque control law, like the one detailed in [10], solves the dynamic
control problem (i.e. assuring that νk tracks νck reliably). However, it is an undeniable
fact that in practice the robot dynamics; dependent on mass, inertia, friction and possi-
bly several unmodelled phenomena; are typically unknown and may even change over
time. In addition perfect sensor measurements are never available.

To address these complex issues of uncertainty, we propose a novel dual adaptive
controller employing a MLP ANN trained online via an UKF algorithm in prediction
mode. In contrast to the hitherto proposed innovation-based suboptimal dual adaptive
laws [9,10], the control law we propose here employs the UT to approximate better the
mean and covariance terms arising in the chosen cost function. Hence, the envisaged
improvement is not solely due to the superior stochastic estimator employed to train
the ANN (the UKF instead of the EKF), but also due to the dual adaptive law itself, as
clarified further in the following treatment.

Neuro-Stochastic Estimator. To deal with the uncertainty and/or time-varying nature
of the dynamic functions fk and Gk, we opt to assume that they are completely un-
known to the controller and employ a stochastically trained ANN algorithm for their
approximation in real-time.

A sigmoidal MLP ANN with one hidden layer, depicted in Figure 2, is used to ap-
proximate the nonlinear vector-valued function fk−1. Its output is given by

f̃k−1 =

[
φT (xk−1, âk)ŵ1k

φT (xk−1, âk)ŵ2k

]
, (6)

in the light of the following statements:

Definition 1. xk−1 = [νk−1 1] denotes the ANN input. The augmented constant
serves as a bias input.

Definition 2. φ(·, ·) is the vector of sigmoidal activation functions, whose ith element is
given by φi = 1/

(
1 + exp

(−ŝT
i x
))

, where ŝi is ith vector element in the group vector

â; i.e. â =
[
ŝT
1 · · · ŝT

L

]T
where L denotes the number of neurons. The time index

has been dropped for clarity, and throughout the article theˆnotation indicates that the
operand is undergoing estimation.

Definition 3. ŵik represents the synaptic weight estimate vector of the connection be-
tween the neuron hidden layer and the ith output element of the ANN.

Assumption 3. The input vector xk−1 is contained within a known, arbitrarily large
compact set χ ⊂ R2.

Moreover, it is known that Gk−1 is a state-independent matrix with unknown elements
(refer to (4)). Hence, its estimation does not require the use of an ANN. In addition it is
a symmetric matrix, a property which is exploited to construct its estimate as follows

G̃k−1 =

[
ĝ1k−1 ĝ2k−1

ĝ2k−1 ĝ1k−1

]
, (7)

242 M.K. Bugeja and S.G. Fabri

f̃k−1
xk−1

+

+

⎡⎣ ŵ1k

ŵ2k

⎤⎦φ1 (s1k)

φ2 (s2k)

φL (sLk)

Fig. 2. Sigmoidal Multilayer Perceptron neural network

where ĝ1k−1 and ĝ2k−1 represent the estimates of the unknown elements in Gk−1.
We opt to formulate the ANN weight-tuning task as a stochastic nonlinear estimation

problem. The following preliminaries are required.

Definition 4. The unknown parameters are grouped in a single vector

ẑk =
[
r̂T

k ĝT
k

]T
, where r̂k =

[
ŵ1

T
k ŵ2

T
k âT

k

]T

and ĝk =
[
ĝ1k−1 ĝ2k−1

]T
.

Definition 5. The measured output in the dynamic model (3) is denoted by
yk = νk − νk−1.

Assumption 4. By the Universal Approximation Theorem of ANN, inside the compact
set χ, the ANN approximation error is negligibly small when the estimate r̂k is equal
to some unknown optimal vector denoted by r∗

k. The ∗ notation denotes optimality.

In view of the stochastic adaptive approach taken in this work, the unknown opti-
mal parameter vector z∗

k is treated as a random variable, with the initial condition
p(z∗

0) ∼ N (ẑ0, P0), where the covariance P0 reflects the confidence in the initial
guess ẑ0. Moreover, z∗

k is characterized as a stationary process corrupted by an artificial
process noise ρk, which aids convergence and tracking during estimation. In addition,
observation uncertainty is catered for by augmenting a random measurement noise εk

to yk.
By (6), (7), all previous definitions and assumptions, it follows that the model in (3)

can be represented in the following stochastic state-space form

z∗
k+1 = z∗

k + ρk

yk = h (xk−1, τk−1, z
∗
k) + εk,

(8)

where the vector-valued function h (xk−1, τk−1, z
∗
k) is nonlinear in the unknown opti-

mal parameter vector z∗
k , and is given by

h (xk−1, τk−1, z
∗
k) = f̃(xk−1, r

∗
k) + G̃(g∗

k)τk−1. (9)

It is evident, from (9), that the use of the MLP ANN, which brings about certain prac-
tical advantages over other types of ANNs such as the Gaussian Radial Basis function
(GaRBF) network as argued in [10], results in a nonlinear measurement equation in the

Dual Adaptive UT-Based Neurocontrol of Mobile Robots 243

stochastic state-space model (8) formulated for estimation. To address this issue, in a
stochastic framework one has to employ a nonlinear recursive estimator. Convention-
ally, the EKF is used for this purpose [9,14,10]. However as shown in [11,12], the UKF
can be a better alternative for stochastic nonlinear estimation. Its benefits over the EKF
include, a derivative-free algorithm and superior accuracy in its approximations. For
this reason, we opt to employ the UKF in predictive mode for the real-time estimation
of z∗

k+1 as follows.

Definition 6. The information state denoted by Ik, consists of all measurements up to
instant k and all the previous inputs.

Assumption 5. εk and ρk are both zero-mean white Gaussian processes with covari-
ances Rε and Qρ respectively. Moreover, εk, ρk and z∗

0 are mutually independent ∀k.

Lemma 1. In the light of (8), Definition 6, and Assumption 5, it follows that p(z∗
k+1|Ik)

≈ N (ẑk+1, Pk+1), where ẑk+1 and Pk+1 are computed at each control step according
to Algorithm 1. Consequently, ẑk+1 is considered to be the estimate of z∗

k+1 conditioned
on Ik, and Pk+1 can be viewed as a measure of this estimate’s uncertainty.

Proof. The UKF algorithm in prediction mode, devised specifically for the purpose of
this scheme, is effectively the standard UKF algorithm as presented in [12] for parameter
estimation, with the difference that the measurement-update step precedes that for time-
update. In addition, the time-update step is advanced by one sample to obtain ẑk+1|k
at instant k. Hence, the proof of Lemma 1 follows directly that of the UKF (additive
noise version) when applied to the nonlinear stochastic state-space model in (8). ��
Lemma 2. On the basis of Lemma 1, it follows that p(yk+1|Ik) is approximately Gaus-
sian with mean ŷk+1 and covariance Pyyk+1 given by:

ŷk+1 = f̂k + Ĝkτk, (10)

where, f̂k =
2N∑
i=0

WmiFi,k+1|k, Ĝk = G̃ (ĝk+1) (11)

and Pyyk+1 =
2N∑
i=0

Wci

[
Df i + DGiτk

] [
Df i + DGiτk

]T + Rε (12)

where, Df i = Fi,k+1|k − f̂k , DGi = Gi,k+1|k − Ĝk.

Proof. The equation of f̂k in (11) is derived by applying the UT to estimate the mean of

p
(
f̃(xk, r∗

k+1)|Ik
)

. The equation of Ĝk in (11) is derived by employing the standard

result in linear probability theory, namely p(Ax) = Ax̄. This can be done since G̃k is
linear in the unknown parameters. To derive the equation of Pyyk+1 in (12) one needs
to advance (14) by one sampling instant, and substitute for Yi,k+1|k and ŷk+1, using
the relations leading to (13) in the same algorithm. ��

244 M.K. Bugeja and S.G. Fabri

Algorithm 1. The UKF parameter-prediction algorithm

Given the previous prediction
(
ẑk|k−1, Pk|k−1

)
, denoted in short-form by (ẑk, Pk), the

following UKF algorithm (prediction mode) generates the new prediction (ẑk+1, Pk+1):

1) Sigma-points sampling and propagation:

Zk|k−1 =
[
ẑk ẑk +

(
γ
√

Pk

)
ẑk −

(
γ
√

Pk

)]
Fk|k−1 = f̃ (xk−1,Rk|k−1), Gk|k−1 = G̃(Gk|k−1)

Yk|k−1 = Fk|k−1 + Gk|k−1τk−1

ŷk =

2N∑
i=0

WmiYi,k|k−1 (13)

2) Measurement update and estimate prediction:

Pyyk =

2N∑
i=0

Wci

[
Yi,k|k−1 − ŷk

] [
Yi,k|k−1 − ŷk

]T
+ Rε (14)

Pzy k =
2N∑
i=0

Wci

[Zi,k|k−1 − ẑk

] [
Yi,k|k−1 − ŷk

]T
Kk = Pzy kPyy k

−1, ik = yk − ŷk

ẑk+1 = ẑk + Kkik

Pk+1 = Pk − KkPyykKT
k + Qρ

where: ZT =
[RT GT

]T
, γ =

√
N + λ , N is the length of ẑk, the scaling pa-

rameter λ = α2 (N + κ) − N , constant α determines the spread of the sigma-points, con-
stant κ is a secondary scaling parameter, the UT weights are given by: Wm0 = λ

N+λ
,

Wc0 = Wm0 + 1 − α2 + β, and Wmi = Wci = 1
2(N+λ)

(i = 1, . . . , 2N), and β includes
prior knowledge of the estimate’s distribution. Moreover, in the UKF framework the linear alge-
bra operation of adding a column vector to a matrix is defined as the addition of the vector to
each column of the matrix. For further details, including guidelines for selecting the UKF scaling
parameters, one is referred to [12].

UT-based Dual Adaptive Control Law. Algorithm 1 in the light of Lemma 1, consti-
tutes the weight adaptation law for the novel UT-based MLP dual adaptive scheme. In
addition, Lemma 2 provides a real-time update of the density p(yk+1|Ik). This infor-
mation is crucial in dual control since unlike HCE schemes, dual adaptive controllers
do not ignore the uncertainty of the estimates, but employ it in the development of the
control law itself, as follows.

The explicit-type suboptimal innovation-based performance index, adopted from [9],
and modified to fit the multiple-input-multiple-output (MIMO) nonlinear scenario at
hand is given by

Jinn = E
{(

yk+1 − ydk+1

)T
Q1

(
yk+1 − ydk+1

)
+
(
τT

k Q2τk

)
+
(
iT
k+1Q3ik+1

) ∣∣∣Ik
}

,
(15)

Dual Adaptive UT-Based Neurocontrol of Mobile Robots 245

where E
{·|Ik

}
is the mathematical expectation conditioned on Ik, and the following

definitions apply:

Definition 7. ydk+1 = νck+1 −νk is the reference vector of yk+1. To obtain νck+1 at
instant k we advance the kinematic control law by one sampling interval as explained
in [10].

Definition 8. Design parameter matrices Q1, Q2 and Q3 are diagonal and ∈ R
2×2.

Additionally: Q1 is positive definite, Q2 is positive semi-definite, and element-wise
−Q1 ≤ Q3 ≤ 0.

Remark 1. The design parameter Q1 is introduced to penalize tracking errors, Q2 in-
duces a penalty on large control inputs, and Q3 affects the innovation vector so as to
induce the dual adaptive feature characterizing this stochastic control law.

Theorem 1. The control law minimizing performance index Jinn in (15), subject to the
WMR dynamic model in (3), all previous definitions, assumptions, lemmas and remarks,
is given by

τk =
(
ĜT

k Q1Ĝk + Q2 + NGGk+1

)−1 (
ĜT

k Q1

(
ydk+1 − f̂k

)− nGf k+1

)
, (16)

where, NGGk+1 =
2N∑
i=0

WciDG
T
i Q4DGi, nGf k+1 =

2N∑
i=0

WciDG
T
i Q4Df i and

Q4 = Q1 + Q3.

Proof. Given the approximate Gaussian distribution of p(yk+1|Ik) specified in Lemma
2, and standard results from linear algebra involving matrices, it follows that within this
scheme, (15) can be rewritten as

Jinn =
(
ŷk+1 − ydk+1

)T
Q1

(
ŷk+1 − ydk+1

)
+ τT

k Q2τk + tr
(
Q4Pyyk+1

)
.

By substituting for ŷk+1 and Pyyk+1 in the above equation, using the relations in (10)
and (12) respectively, it is possible to factorize Jinn completely in terms of τk. The
resulting quadratic expression is differentiated with respect to τk and then equated to
zero in order to determine its stationary point. This leads to (16). The resulting Hessian

matrix is given by 2
(
ĜT

k Q1Ĝk + Q2 + NGGk+1

)
, which by Definition 8 and the

definition of NGGk+1 in (16), is clearly positive definite. This means that the UT-
based dual adaptive control law stated in Theorem 1 minimizes (15) uniquely, and the
inverse term in (16) exists without exceptions. ��
Remark 2. Q3 which appears in the control law (16) via Q4 acts as a weighting factor,
where at one extreme, with Q3 = −Q1, the controller completely ignores the esti-
mates’ uncertainty, resulting in HCE control, and at the other extreme, with Q3 = 0, it
gives maximum attention to uncertainty, which leads to cautious control. For interme-
diate settings of Q3, the controller strikes a compromise and operates in dual adaptive
mode. It is well known that HCE control leads to large tracking errors and excessive
control actions when the estimates’ uncertainty is relatively high. On the other hand,
cautious control is notorious for sluggish response and control turn-off [9]. Conse-
quently, dual control exhibits superior performance by striking a balance between the
two extremes.

246 M.K. Bugeja and S.G. Fabri

4 Simulation and Experimental Results

In contrast to the case of deterministic controllers, to prove strict convergence for a dual
adaptive nonlinear control law, which is inherently stochastic, is still considered to be an
open problem within the research community. Hence in practice, as argued in [15], the
performance of dual adaptive controllers is typically verified by computer simulations
and less frequently by real-life experiments. In this regard, this section reports a number
of simulation results, including those from a Monte Carlo comparative analysis, as well
as several experimental results obtained from vigourous real-life tests on a physical
mobile robot.

4.1 Simulation Results

The WMR in Figure 1 was simulated using the continuous-time model given by (1) and
(2). To render the simulations more realistic, a number of parameters in the dynamic
model of the robot, namely: d, mc, Ic and F̄ (ν); were programmed to vary randomly
about a set of nominal values from one simulation trial to another. These variations ad-
here to the physics of realistic arbitrarily generated scenarios, comprising various load
configurations and frictional conditions. The nominal values for these parameters are:
d = 10cm, mc = 32kg, Ic = 0.84kgm2 and F̄ (ν) = Fcν, where Fc is a diagonal ma-
trix of viscous friction coefficients with nominal diagonal values [0.3, 0.3]. The other
parameters in the WMR model were set to: b = 22.95cm, r = 6.25cm, mw = 1kg,
Iw = 0.002kgm2 and Im = 0.005kgm2. The control sampling interval T was set to
50ms, and a zero-mean Gaussian velocity measurement noise with covariance 0.0001I,
where I denotes the identity matrix, was included.

Each simulation trial consists of eight consecutive controller simulations. The first
six of these correspond to the three modes of operation; i.e. HCE (Q3 = −Q1), cau-
tious (Q3 = 0) and dual (Q3 = −0.8Q1); for each of the two adaptive schemes being
compared, i.e. the UT-based and the EKF-based dual adaptive controllers proposed in
this article and in [10] respectively. The remaining two trials correspond to: (1) a nom-
inally tuned nonadaptive (NT-NA) dynamic controller, which is effectively a nonadap-
tive computed-torque controller, as presented in [10], that uses the nominal values of the
varying dynamic parameters as if they were the true ones. One should note that this is
the best a nonadaptive controller can do when the exact robot parameters are uncertain
(very realistic); (2) a nonadaptive computed-torque controller which is perfectly tuned
(PT-NA) to the exact values of the varying dynamic parameters. The latter is not real-
istic, and is used solely for the purpose of relative comparisons. In contrast, the HCE,
cautious and dual adaptive controllers assume no preliminary information about the
robot whatsoever, since closed-loop control is activated immediately with the initial pa-
rameter estimate vector ẑ0 selected at random from a zero-mean, Gaussian distribution
with variance 0.0025.

For the sake of fair comparison the same: measurement noise sequence, reference
trajectory, initial conditions, initial filter covariance matrix P0 = 0.1I, artificial pro-
cess noise covariance Qρ = 10−6I, tracking error penalty Q1 = I , and control input
penalty Q2 = 0; are used for each of the eight controllers. The measurement noise
sequence is randomly generated afresh for each trial. In addition, the sigmoidal MLP

Dual Adaptive UT-Based Neurocontrol of Mobile Robots 247

0 5 10 15 20
0

10

20

30

40

50

time (s)

|u
|(

N
m

)

0 20 40 60
0

0.05

0.1

0.15

0.2

time (s)

|p
r

−
p
|

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

time (s)

|p
r

−
p
|

−2 0 2
−3

−2

−1

0

1

2

3

x (m)

y
(m

)

t = 60s

(d)(c)

(a) (b)

t = 0s

CAUTIOUS

HCE

DUAL

EKF dual adaptive scheme

UT-based dual adaptive scheme

HCE

CAUTIOUS
& DUAL

The HCE shoots up to 140Nm

Fig. 3. (a): reference (×) and actual (©) trajectories (UT-based dual); (b): control input (UT-
based 3 modes); (c): transient tracking error (UT-based 3 modes); (d): transient tracking error
(UT-based dual vs EKF-based dual)

ANNs used in each of the two adaptive schemes are structured with five neurons in
the hidden layer, i.e. L = 5 ⇒ N = 27. In the UT-based scheme, the UKF scaling
parameters were set to: α = 1, κ = 0 and β = 2.

Single Trial Results. A number of simulation results, typifying the performance of the
three control modes of the proposed scheme are presented in Figure 3. Plot (a) depicts
the WMR tracking a demanding reference trajectory, with a non-zero initial tracking er-
ror, controlled by the proposed UT-based adaptive controller in dual mode. It shows the
excellent tracking performance of this controller, even when the trajectory reaches high
speeds of around 1m/s. Plots (b) to (d) correspond to another simulation trial; purposely
initiated with zero error conditions, so that any initial transient errors can be fully at-
tributed to the convergence of the estimator. Plot (b) compares the Euclidian norm of
the control input vector, for the three modes of the UT-based controller, during the first
20s. The very high transient control inputs of the HCE controller reflect the aggressive
and incautious nature of this mode, which ignores completely the high uncertainty in
the initial estimates. Plot (c) compares the Euclidian norm of the pose error vector, for
the three modes of the UT-based controller, during the first 20s. This plot shows clearly
how the HCE mode typically leads to high initial transient errors, while the dual mode
exhibits the best transient performance. This is in accordance with Remark 2. Plot (d)
compares the UT-based and the EKF-based controller (both in dual mode). This plot
indicates that the former has better transient performance, while in steady-state the two
controllers lead to the same negligible error.

248 M.K. Bugeja and S.G. Fabri

Monte Carlo Comparative Results. A Monte Carlo simulation involving 100 simula-
tion trials was performed. Each of the eight controller simulations in a trial corresponds
to a trajectory time horizon of one minute in real time under the simulation conditions
specified earlier, and with zero error initial conditions. After each controller simulation

the following cost function C =
kfinal∑
k=0

|prk − pk| is computed. This serves as a mea-

sure of the tracking performance of each of the eight controllers operating under the
same conditions, where lower values of C are naturally preferred. The eight cost distri-
butions are depicted in the boxplot of Figure 4, and their respective mean and variance
are tabulated and ranked in the same figure. These results indicate clearly that in gen-

EKF (HCE) EKF (CAU) EKF (DUA) UT (HCE) UT (CAU) UT (DUA) NT−NA PT−NA
0

200

400

600

800

1000

1200

1400

C
O

S
T

HCE: HCE MODE
CAU: CAUTIOUS MODE
DUA: DUAL MODE
NT-NA: NOMINALLY TUNED NON-ADAPTIVE
PT-NA: PERFECTLY TUNED NON-ADAPTIVE

Controller Mean Var. Rank

EKF-HCE 192 40225 6

EKF-CAU 67 3847 4

EKF-DUA 61 731 3

UT-HCE 140 32813 5

UT-CAU 48 30 2

UT-DUA 47 26 1

NT-NA 372 59614 7

PT-NA 39 5 -na-

Fig. 4. Monte Carlo simulation result: cost distributions (100runs)

eral the UT-based dual adaptive controller brings about a significant improvement in
tracking performance, not only over the non-adaptive controller which assumes nomi-
nal values for the robot dynamic parameters, but also over the EKF-based dual adaptive
controller presented in [10]. Moreover, it is just as evident that within each of the two
schemes, the dual control mode is even better than the cautious mode, as anticipated in
Remark 2.

It is also not surprising that the performance of the HCE modes is characterized by
a high cost variance and several extreme outliers. This is the result of the complete lack
of caution in the presence of high initial uncertainty, leading to high transient errors. An
important observation is that each mode in the UT-based scheme is superior to the corre-
sponding mode in the EKF-based scheme. We associate this to the better estimations of
the UKF over the EKF in the ANN training algorithm, and to the better (second-order)
approximations of the UT-based control law as opposed to the first-order approximation
of the EKF-based control law.

4.2 Experimental Results

The UT-based dual adaptive controller proposed in this article was also implemented
successfully on Neurobot [6], the WMR designed and built by the authors for the pur-
pose of this research. A number of experimental results validating the proposed scheme

Dual Adaptive UT-Based Neurocontrol of Mobile Robots 249

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.2

0

0.2
(a)

x (m)

y
(m

)

0 5 10 15 20 25 30 35 40 45
0

50

100
(c)

φ
r
−

φ
(d

eg
)

0 5 10 15 20 25 30 35 40 45

−5

0

5

(d)

ν
r

&
ν

l
(r

a
d
/
s)

0 5 10 15 20 25 30 35 40 45
−20

0

20
(e)

time (s)

τ
r

&
τ
l
(N

m
)

19 20 21 22 23 24 25
0

20

40
(g)

x
y

e
r
r

(m
m

)

19 20 21 22 23 24 25
−2

0
2
4
6

(h)

φ
r
−

φ
(d

eg
)

19 20 21 22 23 24 25
0

10

20
(i)

ν
e
r
r

(r
a
d
/
s)

19 20 21 22 23 24 25
0

10

20
(j)

time (s)

|τ
|(

N
m

)

2.6 2.8 3 3.2 3.4 3.6
−5

0

5
(f)

x (m)

y
(m

m
)

0 5 10 15 20 25 30 35 40 45
0

0.1
0.2
0.3

(b)

x
y

e
r
r

(m
)

HCE
CAUTIOUS

HCE CAUTIOUS

DUAL

HCE
CAUTIOUS

DUAL

HCE

HCE

CAUTIOUS

CAUTIOUS

DUAL

DUAL

DUAL

Fig. 5. (a): reference (×) & actual (©) trajectories; (b): position error; (c): orientation error;
(d): wheel velocities & their references; (e): wheel torques; (f) to (j): HCE, cautious & dual
comparative results

and confirming the simulation results in this section are provided in Figure 5. Plots (a)
to (e) correspond to a challenging trajectory tracking experiment that tests the overall
performance of the UT-based dual adaptive controller in a real-life application. From
these results one should particularly note that: 1) Neurobot swiftly adapts to its own dy-
namics and simultaneously converges smoothly to the reference trajectory ((a) to (c)),
2) the actual and reference angular wheel velocities in (d) are practically superimposed
and, 3) the wheel torques in (e) remain well bounded. Plots (f) to (j) correspond to a line
trajectory test, with an artificially generated disturbance in the estimator which serves
to compare the dual mode of the controller with its HCE and cautious counterparts.
Specifically, at t = 20s, ẑk+1 is instantaneously set to some arbitrary value, hence
erasing all the knowledge acquired up to this point in time by the ANN estimator. In
this manner one can objectively compare the transient performance of the three control
modes when faced with extremely high uncertainty in the robot dynamics. The results
in Plots (f) to (j) clearly indicate that the dual controller exhibits the best transient per-
formance, strongly confirming the arguments in Remark 2 and our simulation results.

5 Conclusions

The main contribution of the work reported in this article lies in the use of the UT to
improve on the EKF-based dual adaptive dynamic WMR controller recently proposed

250 M.K. Bugeja and S.G. Fabri

in [10]. Specifically, the proposed UT-based dual adaptive scheme uses the UKF as a
recursive ANN weight-tuning algorithm, and in addition features a novel dual adaptive
law that employs the UT to better approximate the statistics of parameter distributions
undergoing nonlinear transformations. The presented simulation and experimental re-
sults show clearly that the novel UT-based dual adaptive controller brings about signifi-
cant improvements in performance, not only over the EKF-based dual adaptive scheme,
but also over all other nondual and nonadaptive controllers tested in this work.

References

1. Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for
an autonomous mobile robot. In: Proc. IEEE Int. Conference of Robotics and Automation,
Cincinnati, OH, pp. 384–389 (May 1990)

2. Canudas de Wit, C., Khennoul, H., Samson, C., Sordalen, O.J.: Nonlinear control design for
mobile robots. In: Zheng, Y.F. (ed.) Recent Trends in Mobile Robots. Robotics and Auto-
mated Systems, pp. 121–156. World Scientific, Singapore (1993)

3. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot: Backstepping kinematics
into dynamics. In: Proc. IEEE 34th Conference on Decision and Control (CDC 1995), New
Orleans, LA, pp. 3805–3810 (December1995)

4. Corradini, M.L., Orlando, G.: Robust tracking control of mobile robots in the presence of
uncertainties in the dynamic model. Journal of Robotic Systems 18(6), 317–323 (2001)

5. Wang, T.Y., Tsai, C.C.: Adaptive trajectory tracking control of a wheeled mobile robot via
Lyapunov techniques. In: Proc. 30th Annual Conference of the IEEE Industrial Electronics
Society, Busan, Korea, pp. 389–394 (November 2004)

6. Bugeja, M.K., Fabri, S.G.: Multilayer perceptron adaptive dynamic control of mobile robots:
experimental validation. In: Bruyninckx, H., Kulich, L.P. (eds.) EuroSSC 2008, Springer
Tracts in Advanced Robotics (STAR). pp. 165–174. Springer, Heidelberg (2008)

7. Åström, K.J., Wittenmark, B.: Adaptive Control, 2nd edn. Addison-Wesley, Reading (1995)
8. Fel’dbaum, A.A.: Optimal Control Systems. Academic Press, New York (1965)
9. Fabri, S.G., Kadirkamanathan, V.: Functional Adaptive Control: An Intelligent Systems Ap-

proach. Springer, London (2001)
10. Bugeja, M.K., Fabri, S.G.: Dual adaptive dynamic control of mobile robots using neural

networks. IEEE Trans. Syst., Man, Cybern. B 39(1), 129–141 (2009)
11. Julier, S.J., Uhlmann, J.K.: A new extention of the Kalman filter to nonlinear systems. In:

Proc. of AeroSense: The 11th Int. Symp. on Aerospace/Defence Sensing, Simulation and
Controls (1997)

12. Wan, E.A., van der Merwe, R.: The unscented Kalman filter. In: Haykin, S. (ed.) Kalman
Filtering and Neural Networks. Adaptive and Learning Systems for Signal Processing, Com-
munications, and Control, pp. 221–280. John Wiley & Sons, Inc., Chichester (2001)

13. D’Amico, A., Ippoliti, G., Longhi, S.: A radial basis function networks apporach for the
tracking problem of mobile robots. In: Proc. IEEE/ASME Int. Conference on Advanced In-
telligent Mechatronics, Como, Italy, pp. 498–503 (2001)

14. Puskorius, G.V., Feldkamp, L.A.: Parameter-based Kalman filter training: Theory and imple-
mentation. In: Haykin, S. (ed.) Kalman Filtering and Neural Networks. Adaptive and Learn-
ing Systems for Signal Processing, Communications, and Control, pp. 23–67. John Wiley &
Sons, Inc., Chichester (2001)

15. Filatov, N.M., Unbehauen, H.: Adaptive Dual Control: Theory and Applications. Springer,
London (2004)

Multimodal System Based on Self-organizing Maps

Magnus Johnsson1, Christian Balkenius1, and Germund Hesslow2

1 Lund University Cognitive Science, Kungshuset, Lundagård, 222 22 Lund, Sweden
{magnus.johnsson,christian.balkenius}@lucs.lu.se

2 Department of Experimental Medical Science, Lund, BMC F10, 221 84 Lund, Sweden
germund.hesslow@med.lu.se

http://www.lucs.lu.se
http://www.mphy.lu.se/avd/nf/hesslow/index.html

Abstract. We present experiments with a multimodal system based on a
novel variant of the Self-Organizing Map (SOM) called the Associative Self-
Organizing Map (A-SOM). The A-SOM is similar to the SOM and develops a
representation of its input space, but also learns to associate its activity with ad-
ditional inputs, e.g. the activities of one or several external SOMs. This enables
the modelling of expectations in one sensory modality due to the activity elicited
in another modality. The paper presents the A-SOM algorithm generalized to an
arbitrary number of (possibly delayed) associated activities together with simula-
tion results with a multimodal sensory system and its extension to a system that
also includes an action network. The simulation results were very encouraging
and confirmed: The ability of the A-SOM to learn to associate the representations
of its input space with the representations of the input spaces developed in two
connected SOMs; The ability of the extended system to elicit proper activity in
the action network; The simulations demonstrated good generalization ability.

Keywords: Self-Organizing Map, Neural network, Associative Self-Organizing
Map, A-SOM, SOM, ANN, Expectations, Simulation hypothesis, Cognitive mod-
elling, Cross-modal activation.

1 Introduction

A dramatic illustration of the interaction of different modalities can be seen in the
McGurk-MacDonald effect. If you hear a person making the sound /ba/ but the sound is
superimposed on a video recording on which you do not see the lips closing, you may
hear the sound /da/ instead [11]. The neural mechanisms underlying such interaction
between different sensory modalities are not known but recent evidence suggests that
different primary sensory cortical areas can influence each other. Another familiar ex-
ample is that the sensory information gained when the texture of an object is felt in the
pocket can invoke visual images/expectations of the object.

An efficient multimodal perceptual system should be able to associate different modal-
ities with each other in this way. This provides an ability to activate the subsystem for a
modality even when its sensory input is limited or nonexistent as long as there are activi-
ties in subsystems for other modalities, which the subsystem has learned to associate with

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 251–263.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

252 M. Johnsson, C. Balkenius, and G. Hesslow

certain patterns of activity, which usually comes together with the patterns of activity in
the other subsystems.

This paper explores a novel variant of the Self-Organizing Map (SOM) [9] called
the Associative Self-Organizing Map (A-SOM). The A-SOM differs from earlier at-
tempts to build associate maps such as the Adaptive Resonance Associative Map [13]
and Fusion ART [12] in that all layers (or individual networks) share the same structure
and uses topologically arranged representations. Unlike ARTMAP, the A-SOM also al-
lows associations to be formed in both directions [4]. The A-SOM is an extension to the
SOM, which learns to associate its activity with the activities of other SOMs. Previously
versions of the A-SOM has been restricted to association with only one SOM [6]. This
work was done in the context of haptic perception where a bio-inspired self-organizing
texture and hardness perception system automatically learned to associate the repre-
sentations of two submodalities (A-SOMs) with each other. The system employed a
microphone based texture sensor and a hardness sensor that measured the compression
of the explored material while applying a constant pressure. It successfully found asso-
ciated representations of the texture and hardness submodalities when trained and tested
with multiple samples gained from the exploration of a set of 4 soft and 4 hard objects
of different materials with varying surface textures. However the version of the A-SOM
used in this context was only able to associate with one SOM and its generalization
ability was not explored at all.

The A-SOM explored in this paper has been generalized to enable association with
an arbitrary number of SOMs. We have used the A-SOM in a multimodal system con-
sisting of an A-SOM together with two ordninary SOMs. We tested the system with
training and test sets constructed by selecting uniformly distributed random points from
a subset of the plane, while employing Voronoi tessellations of this plane as well as of
the grid of neurons constituting the A-SOM to determine its performance. We have also
tested to add an action network (adapted by the delta rule) to the system, thus obtaining
an architecture able to simulate both perceptions and actions. This implies an architec-
ture which can elicit reasonable activity both in its perceptual networks (the A-SOM
and the two SOMs) and in its action network. The implementation was done in C++
using the neural modelling framework Ikaros [1].

2 Associative Self-organizing Map

The Associative Self-Organizing Map (A-SOM), Fig. 1, can be considered as a SOM
which learns to associate its activity with (possibly delayed) additional inputs, e.g. the
activities of a number of external SOMs. It consists of an I × J grid of neurons with
a fixed number of neurons and a fixed topology. Each neuron nij is associated with
r + 1 weight vectors wa

ij ∈ Rn and w1
ij ∈ Rm1 , w2

ij ∈ Rm2 , . . . , wr
ij ∈ Rmr . All

the elements of all the weight vectors are initialized by real numbers randomly selected
from a uniform distribution between 0 and 1, after which all the weight vectors are
normalized, i.e. turned into unit vectors.

At time t each neuron nij receives r + 1 input vectors xa(t) ∈ Rn and x1(t− d1) ∈
Rm1 , x2(t − d2) ∈ Rm2 , . . . , xr(t − dr) ∈ Rmr where dp is the time delay for input
vector xp, p = 1, 2, . . . , r.

Multimodal System Based on Self-organizing Maps 253

Fig. 1. The connectivity of the A-SOM neural network. During training each neuron in an A-SOM
receives two kinds of input. One kind of input is the main (bottom-up) input, which corresponds
to the input an ordinary SOM receives. The other kind of input is the activity of each neuron in
one or more associated ancillary SOMs. In the fully trained A-SOM, activity can be triggered by
either main input or by activity in one or several of the ancillary SOMs, or both.

The main net input sij is calculated using the standard cosine metric

sij(t) =
xa(t) · wa

ij(t)
||xa(t)||||wa

ij(t)||
, (1)

The activity in the neuron nij is given by

yij(t) =
[
ya

ij(t) + y1
ij(t) + y2

ij(t) + . . . + yr
ij(t)

]
/(r + 1) (2)

where the main activity ya
ij is calculated by using the softmax function [3]

ya
ij(t) =

(sij(t))
m

maxuv (suv(t))m (3)

where u and v ranges over the rows and the columns of the neural network and m is the
softmax exponent.

The ancillary activity yp
ij(t), p = 1, 2, . . . , r is calculated by again using the

standard cosine metric

yp
ij(t) =

xp(t − dp) · wp
ij(t)

||xp(t − dp)||||wp
ij(t)||

. (4)

The neuron c associated with the weight vector wa
c (t) most similar to the input vector

xa(t), i.e. the neuron with the strongest main activation, is selected:

c = arg maxc{|xa(t) · wa
c (t)|} (5)

The weights wa
ijk are adapted by

wa
ijk(t + 1) = wa

ijk(t) + α(t)Gijc(t)
[
xa

k(t) − wa
ijk(t)

]
(6)

254 M. Johnsson, C. Balkenius, and G. Hesslow

where 0 ≤ α(t) ≤ 1 is the adaptation strength with α(t) → 0 when t → ∞. The

neighbourhood function Gijc(t) = e
− ||rc−rij ||

2σ2(t) , where rc ∈ R2 and rij ∈ R2 are
location vectors of neurons c and nij , is a Gaussian function decreasing with time.

The weights wp
ijl, p = 1, 2, . . . , r, are adapted by

wp
ijl(t + 1) = wp

ijl(t) + βxp
l (t − dp)

[
ya

ij(t) − yp
ij(t)

]
(7)

where β is the constant adaptation strength.
All weights wa

ijk(t) and wp
ijl(t) are normalized after each adaptation.

3 Experiments and Results

3.1 Associating the A-SOM with Two Ancillary SOMs

We have evaluated the A-SOM by setting up a system consisting of one A-SOM and
two connected SOMs (Fig. 2). To this end a set containing 10 training samples were
constructed. This was done by randomly generating 10 points with a uniform distribu-
tion from a subset s of the plane s = {(x, y) ∈ R2; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} (Fig. 3,
left). The selected points were then mapped to a subset of R3 by adding a third constant
element of 0.5, yielding a training set of three-dimensional vectors. The reason for this
was that a Voronoi tessellation of the plane was calculated from the generated points to
later aid in the determination of were new points in the plane were expected to invoke
activity in the A-SOM. To make this Voronoi tessellation, which is based on a Euclidian
metric, useful for this purpose with the A-SOM, which uses a metric based on dot prod-
uct, the set of points in the plane has to be mapped so that the corresponding position
vectors after normalization are unique. One way to accomplish such a mapping is by
adding a constant element to each vector. The result of this is that each vector will have
a unique angle in R3. We chose the value 0.5 for the constant elements to maximize the
variance of the angles in R3.

The A-SOM was connected to two SOMs (using the same kind of activation as the
main activation in the A-SOM, i.e. dot product with softmax activation) called SOM
1 and SOM 2, and thus also receive their respective activities as associative input, see
Fig. 2. The A-SOM, SOM 1 and SOM 2 were then simultaneously fed with samples
from the training set, during a training phase consisting of 20000 iterations. The two
SOMs and the A-SOM could as well be fed by samples from three different sets, al-
ways receiving the same combinations of samples from the three sets (otherwise the
system could not learn to associate them). This could be seen as a way of simulating
simultaneous input from three different sensory modalities when an animal or a robot
explores a particular object. Each of the three representations, the A-SOM and the two
SOMs, consists of 15× 15 neurons. The softmax exponent for each of them were set to
1000. Their learning rate α(0) was initialized to 0.1 with a learning rate decay of 0.9999
(i.e. multiplication of the learning rate with 0.9999 in each iteration), which means the
minimum learning rate, set to 0.01, will be reached at the end of the 20000 training
iterations. The neighbourhood radius, i.e. σ of the neighbourhood function Gijc(t) in
eq. (6), was initialized to 15 for all three representations and shrunk to 1 during the

Multimodal System Based on Self-organizing Maps 255

Fig. 2. Schematic depiction over the connections between the two SOMs and the A-SOM in the
architecture of the test system used for this paper. The test system consist of three subsystems,
which develop representations of sample sets from three input spaces (for simplicity we use the
same input set for all three representations in the study for this paper). One of the representations
(the A-SOM) also learns to associate its activity with the simultaneous activities of the two SOMs.
This means proper activity can be invoked in the A-SOM of the fully trained system even if it
does not receive any ordinary input. This is similar to cross-modal activation in humans, e.g. a
tactile perception of an object can invoke an internal visual imagination of the same object.

20000 training iterations by using a neighbourhood decay of 0.9998 (i.e. multiplication
of the neighbourhood radius with 0.9998 in each iteration). All three representations
used plane topology when calculating the neighbourhood. The β for the associative
weights in the A-SOM was set to 0.35.

After training the system was evaluated by feeding it with samples from the training
set again to one, two or all three representations in all possible combinations. When
a representation did not receive any input it was fed with null vectors instead (thus
simulating the input of no signal from sensors of the modality of that representation).
The centers of activity in the A-SOM as well as in the two SOMs were recorded for all
these tests.

The result was evaluated by using the training set on the fully trained system. First
we recorded the centers of activation in the A-SOM when fed by main input from the
training set only (i.e. the two SOMs were fed with null vectors) and the centers of
activation in the two SOMs. Then we calculated Voronoi tessellations for the centers
of activation in all three representations (Fig. 4, uppermost row) to see if they could
separate the samples and in particular if the A-SOM could separate the samples when
fed by the activity of one or both of the SOMs only. If the center of activation for a
particular sample in the training set were located in the correct Voronoi cell, this is
considered as a successful recognition of the sample, because this means the center of
activation is closer to the center of activation of the same object than to the center of
activation of any other sample in the training set when the A-SOM is fed by main input
only like an ordinary SOM. By comparing the Voronoi tessellations of the A-SOM and
the two SOMs (Fig. 4) and the Voronoi tessellation of the plane for the training set
(Fig. 3) we can see that the ordering of the Voronoi cells for the training set are to a
large extent preserved for the Voronoi cells for the centers of activation in the A-SOM
and the two SOMs. In Fig. 4 we can also see that all, i.e. 100% of the training samples
are recognized in the A-SOM as long as at least one of the three representations received
input.

256 M. Johnsson, C. Balkenius, and G. Hesslow

Fig. 3. Left: The Voronoi tessellation of the points used when constructing the training set used for
the A-SOM and the two SOMs. This set was constructed by randomly generating 10 points from
a subset of R2 according to a uniform distribution. To make this Voronoi tessellation, which is
based on a Euclidian metric, valid as a measure of proximity the training set had to be transformed
by addition of a constant element to each sample vector. This is because the A-SOM using a dot
product based metric and normalizing its input would consider all position vectors of a particular
angle equal. By adding a constant element each point in the plane becomes a position vector
in R3 with a unique angle. Right: The same Voronoi tesselation but with the points used in the
generalization test depicted. Also this set was mapped to a new set in R3 by addition of a third
constant element to each sample vector, and for the same reason as for the samples in the training
set.

3.2 Generalization

To test if the system was able to generalize to a new set of samples, which it had not
been trained with, we constructed a new set of 10 samples with the same method as for
the training set. This generalization test set was used as input to the two SOMs and the
A-SOM, i.e. each of these representations received the same sample simultaneously (or
a null vector).

The generalization ability of the system was evaluated by feeding it with samples
from the generalization set to one, two or all three representations in all possible com-
binations. When a representation did not receive any input it was fed with null vectors
instead. The centers of activity in the A-SOM as well as in the two SOMs were recorded
for all these tests.

The result was evaluated by now using the generalization set on the fully trained
system. We recorded the centers of activation in the A-SOM when each of the SOMs
were the only recipient of input, when both SOMs received input, when each of the
SOMs and the A-SOM received input, when all three representations received input,
and when only the A-SOM received input. As before a representation which did not
receive input received null vectors (signifying the lack of sensory registration for that
modality). We then looked at in which Voronoi cell the centre of activation was located
in the A-SOM and in the SOMs for each sample of the generalization set. When a
generalization sample belongs to the Voronoi cell for sample k, k = 1, 2, . . . , 10 of the
training set (see Fig. 3) and its activation in the A-SOM or one of the SOMs is located
in the Voronoi cell for the centre of activation for the same training sample (see Fig. 4),

Multimodal System Based on Self-organizing Maps 257

Fig. 4. The center of activation for different constellations of input to the fully trained system
in the A-SOM and in the two SOMs. The centers of activation for the training samples and the
generalization samples are denoted by numbers with normal and italic typefaces respectively.
Upper row left: The A-SOM when only main input to the A-SOM is received. The Voronoi
tessellation for these centers of activation has also been drawn. This is also true for the other
images in this figure depicting activations in the A-SOM. Upper row middle: The SOM1 with
the Voronoi tesselation for the training set drawn. Upper row right: The SOM2 with the Voronoi
tesselation for the training set drawn. Middle row left: The A-SOM receiving main input and the
activity of SOM1. Middle row middle: The A-SOM when receiving main input and the activity
of SOM2. Middle row right: The A-SOM when receiving main input and the activities of SOM1
and SOM2. Lower row left: The A-SOM when receiving the activity of SOM1 only. Lower row
middle: The A-SOM when receiving the activity of SOM2 only. Lower row right: The A-SOM
receiving the activities of SOM1 and SOM2.

then we consider the centre of activation for the generalization sample to be properly
located and we consider it to be successfully generalized.

Leftmost in the upper row of Fig. 4 we can see that the centers of activation for all
the generalization samples besides sample 8 is within the correct Voronoi cell in the

258 M. Johnsson, C. Balkenius, and G. Hesslow

A-SOM when it receives main input only. However that sample 8 is outside, and barely
so, the correct Voronoi cell is probably not an indication that it is incorrect because
the A-SOM consists of 225 neurons and is not a continuous surface but a discretized
representation.

In the middle of the upper row of Fig. 4 we can see that all centers of activation for
the generalization samples are correctly located in SOM1 besides 1 and 6 which are
on the border to the correct Voronoi cell (but this should probably not be considered
an indication of incorrectness for the same reason as mentioned above), and 2 which is
located close to the correct Voronoi cell.

Rightmost of the upper row of Fig. 4 we can see that all centers of activation for the
generalization samples are correctly located in SOM2 besides 2, which is located close
to the correct Voronoi cell.

Leftmost in the middle row of Fig. 4 we can see that the centers of activation for all
the generalization samples besides sample 8 (which should probably not be considered
an indication of incorrectness for the same reason as mentioned above) is within the
correct Voronoi cell in the A-SOM when it receives main input as well as the activity
of SOM1 as input.

In the middle of the middle row of Fig. 4 we can see that the centers of activation for
all the generalization samples besides sample 8 (which should probably not be consid-
ered an indication of incorrectness for the same reason as mentioned above) is within
the correct Voronoi cell in the A-SOM when it receives main input as well as the activity
of SOM2 as input.

Rightmost of the middle row of Fig. 4 we can see that the centers of activation for all
the generalization samples besides sample 8 (which should probably not be considered
an indication of incorrectness for the same reason as mentioned above) is within the
correct Voronoi cell in the A-SOM when it receives main input as well as the activities
of both SOM1 and SOM2 as input.

Leftmost of the lower row of Fig. 4 we can see that the centers of activation for all the
generalization samples besides sample 2 and 10, i.e. 80%, is within the correct Voronoi
cell in the A-SOM when it receives the activity of SOM1 as its only input.

In the middle of the lower row of Fig. 4 we can see that the centers of activation for
all the generalization samples besides sample 2, i.e. 90%, is within the correct Voronoi
cell in the A-SOM when it receives the activity of SOM2 as its only input.

Rightmost of the lower row of Fig. 4 we can see that the centers of activation for all the
generalization samples besides sample 2 and 10, i.e. 80%, is within the correct Voronoi
cell in the A-SOM when it receives the activities of SOM1 and SOM2 as its only input.

In Fig. 5 we can see a graphical representation of the activity in the two SOMs as
well as total, main and ancillary activities of the A-SOM while receiving a sample from
the generalization set. The lighter an area is in this depiction, the higher the activity is
in that area.

3.3 Adding an Action Network

We have tested to add an action network to the system to get an architecture which
can elicit reasonable activity both in its perceptual networks (the A-SOM and the two
SOMs) and in its action network. This was done by fully connecting the A-SOM to

Multimodal System Based on Self-organizing Maps 259

Fig. 5. Activations at a moment in the simulation. The lighter an area is in this depiction, the
higher the activity is in that area. Upper row left: The activity in SOM1. Upper row right: The
activity in SOM2. Lower row left: The total activity in the A-SOM. Lower row, the second image
from the left: The main activity in the A-SOM. Lower row, the third image from the left: The
ancillary activity in the A-SOM due to the activity in SOM1. Lower row right: The ancillary
activity in the A-SOM due to the activity in SOM2.

an action network with feed-forward connections, i.e. the action network received the
activity of the A-SOM as input. This extended architecture is depicted in Fig 6. It con-
sists of a sensory part (the A-SOM and the two SOMs) and an action part (the action
network).

The action network consists of an I × J grid of a fixed number of neurons that are
adapted by the delta rule to get an activity that converges to the provided desired output.

Each neuron nij is associated with a weight vector wij ∈ Rn. All the elements of
the weight vector are initialized by real numbers randomly selected from a uniform
distribution between 0 and 1, after which the weight vector is normalized, i.e. turned
into unit vectors.

At time t each neuron nij receives an input vector x(t) ∈ Rn.
The activity yij in the neuron nij is calculated using the standard cosine metric

yij(t) =
x(t) · wij(t)

||x(t)||||wij(t)|| , (8)

During the learning phase the weights wijl, are adapted by

wijl(t + 1) = wijl(t) + βxl(t) [yij(t) − dij(t)] (9)

where β is the adaptation strength and dij(t) is the desired activity for the neuron nij .
The sensory part of the extended system is equivalent to the original system and all

settings of this part were equal to the settings of the original system. The learning rate
β for the neurons in the action layer was set to 0.35.

260 M. Johnsson, C. Balkenius, and G. Hesslow

 Action
Network

Fig. 6. Schematic depiction over the connections between the two SOMs, the A-SOM and the
action network in the extended system

We have trained the extended architecture by using the same 10 training samples
as before for both the SOMs and the A-SOM. Since the action network employs su-
pervised learning (thus learning a desired activity associated with the input from the
A-SOM) each training sample was associated with a desired activity provided to the
action network during the training phase. The set of desired activities D consisted of
10-dimensional vectors, where one element in each was set to 1 and the other elements
were set to 0, i.e. D = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}.

The extended system was trained during 20000 iterations. After training the system
was evaluated by (as in the case with the original system) feeding it with samples from the
training set again to one, two or all three representations in the sensory part (the A-SOM
and the SOMs) in all possible combinations. When a representation did not receive any
input it was (as in the case with the original system) fed with null vectors instead (thus
simulating the input of no signal from sensors of the modality of that representation).

The result was evaluated by using the training set on the fully trained system while
recording whether the activity in the action network corresponded to the desired activity
it was trained on or not. It turned out that in all 6 combinations of input (i.e. input to
both SOMs and the A-SOM, one of the SOMs and the A-SOM, one SOM only, the A-
SOM only) the activity elicited in the action network was 100% correct for all samples
in the training set.

4 Discussion

We have presented and experimented with a novel variant of the Self-Organizing Map
(SOM) called the Associative Self-Organizing Map (A-SOM), which develops a rep-
resentation of its input space but also learns to associate its activity with an arbitrary
number of additional inputs, e.g. the activities of other SOMs.

In our experiments we connected an A-SOM to two ancillary SOMs (thus getting a
multimodal sensory system) and all these were trained and tested with a set of random
samples of points from a subset of the plane. We also tested the generalization ability
of the system by another set of random points generated from the same subset of the
plane. In addition we also tested to add an action network to the system, thus obtaining
an architecture able to simulate both perceptions and actions.

Multimodal System Based on Self-organizing Maps 261

The ability of the A-SOM proved to be good, with 100% accuracy with the training
set and about 80-90% accuracy in the generalization tests, depending on which con-
stellation of inputs which was provided to the system. It was also observed that the
generalization in the ordinary SOMs was not perfect. If this had been perfect the gen-
eralization ability would probably have been even better. This is probably a matter of
optimizing the parameter settings.

The ability of the extended system to elicit proper activity in its action network
proved to very good, with 100% correct in all 6 combinations of input.

In these experiments we connected an A-SOM with two SOMs, but we can see no
reasons to why it should not be possible to connect an arbitrary number of A-SOMs
to each other. Johnsson and Balkenius successfully connected two A-SOMs with each
other in the context of a hardness/texture sensing system [6]. In the present study we
used the same training set and the same generalization set as input for the A-SOM and
for each of the two SOMs. This was for simplicity reasons and in particular because it
made it easier to present the results and to relate the organizations of the SOMs and the
A-SOM to each other.

It is interesting to speculate, and later test, whether there are any restrictions on the
sets that are used as input to the different SOMs and A-SOMs in this kind of system. A
reasonable guess would be that to learn to associate the activity arising from the training
sets impose no restrictions on the training sets, but when it comes to generalization there
would probably be one restriction. The restriction is that there should probably need to
exist a topological function between the different input spaces so that the sequences
of input samples from the different input spaces will invoke traces of activities over
time in their respective SOM or A-SOM that in principle would be possible to map
on each other by using only translations, rotations, stretching and twisting. Otherwise
the generalization would be mixed up at least partially. The same would be true if the
parameter setting implies the development of fragmentized representations.

Our system can be seen as a model of a neural system with two monomodal represen-
tations (the two SOMs) and one multimodal representation (the A-SOM) constituting
a neural area that merges three sensory modalities into one representation, and (in the
case of the extended system) one motor area.

The A-SOM actually develops several representations, namely one representation
for its main input (the main activity) and one representation for each of the ancillary
SOMs it is connected to (the ancillary activities), and one representation which merges
these individual representations (the total activity). One could speculate whether some-
thing similar could be found in cortex, perhaps these different representations could
correspond to different cortical layers.

Interaction between sensory modalities may be important for perceptual simulation.
An idea that has been gaining popularity in cognitive science in recent years is that
higher organisms are capable of simulating perception. In essence, this means that the
perceptual processes normally elicited by some ancillary input can be mimicked by the
brain [5]. There is now a large body of evidence supporting this contention. For instance,
several neuroimaging experiments have demonstrated that activity in visual cortex when
a subject imagines a visual stimulus resembles the activity elicited by a corresponding

262 M. Johnsson, C. Balkenius, and G. Hesslow

ancillary stimulus (for a review of this evidence see e.g. [10]; for a somewhat different
interpretation, see [2].

A critical question here is how simulated perceptual activity might be elicited. One
possibility is that signals arising in the frontal lobe in anticipation of consequences of
incipient actions are sent back to sensory areas [5]. Another possibility is that percep-
tual activity in one sensory area can influence activity in another. The A-SOM provides
a mechanism whereby sensory activity in an artificial system might be elicited or mod-
ulated by activity in a different sensory modality.

It should be noted that the model presented here is consistent with different views
of how the sensory system is organized. The traditional view of sensory information
processing has been that of a hierarchically organized system. Unimodal neurons in
primary sensory cortex send signals to higher association areas where information from
different modalities are eventually merged. The model presented in this paper is con-
sistent with such a view. The A-SOM in fig. 2 could be seen as being a step higher in
the sensory hierarchy than SOM-1 and SOM-2 and could project to other A-SOMs fur-
ther up the hierarchy. However, recent neuroscientific evidence suggests that different
primary sensory cortical areas can influence each other more directly. For instance, in
a recent fMRI study [8] recently showed that visual stimuli can influence activity in
primary auditory cortex. The associative SOM can serve as a model of such an organi-
zation as well. As an illustration, SOM-1 and A-SOM in fig. 2 could be located in an
analog of a primary sensory cortical area, say an auditory area, and be influenced by
signals from SOM-2, which could be located in a different, say visual, area.

The A-SOM can also be turned into a memory of perceptual sequences [7]. This can
be done by connecting the total activity of the A-SOM back to itself as an ancillary in-
put with a time delay. This works because then the ancillary weights will have learned
to elicit activity based on the previous activity in the A-SOM. This could be useful for a
robot to be able to continue even though its sensory input is interrupted. If that happens
it can continue anyway by anticipating the sequence of perceptions likely to follow.
We have done preliminary experiments with A-SOMs feeding their total activities back
to themselves as time delayed ancillary input. In this way we have shown that a sys-
tem of two A-SOMs (one with recurrent connections) was able to produce appropriate
sequences of activity in both A-SOMs even when receiving no more input.

In the future we intend to test the A-SOM with several sets of recurrent ancillary
input connections with different time delays, which might improve the capacity for re-
membering perceptual sequences. We will also try to extend and develop the presented
ideas about the inclusion of action/motor neural networks in the system. In this way we
hope to be able to explore the neuroscientific simulation hypothesis [5].

References

1. Balkenius, C., Morén, J., Johansson, B., Johnsson, M.: Ikaros: Building cognitive models for
robots. In: Hülse, M., Hild, M. (eds.) Workshop on current software frameworks in cognitive
robotics integrating different computational paradigms (in conjunction with IROS 2008),
Nice, France, pp. 47–54 (2008)

2. Bartolomeo, P.: The relationship between visual perception and visual mental imagery: a
reappraisal of the neuropsychological evidence. Cortex 38, 357–378 (2002)

Multimodal System Based on Self-organizing Maps 263

3. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford
(1995)

4. Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy
ARTMAP: A neural network architecture for incremental supervised learning of analog mul-
tidimensional maps. IEEE Transactions on Neural Networks 3, 698–713 (1992)

5. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends Cogn.
Sci. 6, 242–247 (2002)

6. Johnsson, M., Balkenius, C.: Associating SOM representations of haptic submodalities.
In: Ramamoorthy, S., Hayes, G.M. (eds.) Towards Autonomous Robotic Systems 2008,
pp. 124–129 (2008)

7. Johnsson, M., Balkenius, C., Hesslow, G.: Neural network architecture for crossmodal ac-
tivation and perceptual sequences. In: Papers from the AAAI Fall Symposium Biologically
Inspired Cognitive Architectures 2009, pp. 85–86 (2009)

8. Kayser, C., Petkov, C.I., Augath, M., Logothetis, N.K.: Functional imaging reveals visual
modification of specific fields in auditory cortex. J. Neurosci. 27, 1824–1835 (2007)

9. Kohonen, T.: Self-Organization and Associative Memory. Springer, Heidelberg (1988)
10. Kosslyn, S.M., Ganis, G., Thompson, W.L.: Neural foundations of imagery. Nature Rev.

Neurosci. 2, 635–642 (2001)
11. McGurk, H., MacDonald, J.: Hearing lips and seeing voices. Nature 264, 746–748 (1976)
12. Nguyen, L.D., Woon, K.Y., Tan, A.H.: A self-organizing neural model for multimedia in-

formation fusion. In: International Conference on Information Fusion 2008, pp. 1738–1744
(2008)

13. Tan, A.H.: Adaptive resonance associative map. Neural Networks 8, 437–446 (1995)

Hydraulic Head Interpolation in an Aquifer Unit Using
ANFIS and Ordinary Kriging

Bedri Kurtulus1, Nicolas Flipo2, Patrick Goblet2, Guillaume Vilain3,
Julien Tournebize4, and Gaëlle Tallec4

1 Muğla University, Geological Engineering Department, 48000 Kotekli Muğla, Turkey
bkurtulus@mu.edu.tr

http://geoe.mu.edu.tr
2 MINES ParisTech, Geosciences Department

35 rue Saint-Honoré,77305 Fontainebleau, France
Nicolas.Flipo@mines-paristech.fr

http://www.geosciences.mines-paristech.fr/
3 CNRS/UPMC, UMR Sisyphe 7619, BP 105, Tour 55-56, 4 place Jussieu, 75252 Paris, France

4 Cemagref, UR Hydrosystems and Bioprocesses, P.B. 44, 92163 Antony Cedex, France

Abstract. In this study, Ordinary Kriging (OK), and Adaptive Neuro Fuzzy based
Inference System (ANFIS) are evaluated for assessing hydraulic head distribution
in an aquifer unit covering 40 km2. Cartesian coordinates of the samples were
used as inputs of ANFIS. Calibrated models are used to interpolate the hydraulic
head distribution on a 50 m square - grid. Both simulations have realistic pattern
(R2 > 0.97) even if OK performs slightly better than ANFIS at sampling location.
The two methods capture different patterns. The Comparison of the two distri-
butions allow for identifying area of estimate uncertainty, what can be used to
improve the sampling network.

1 Introduction

A hydrosystem is defined as a ”part of space [where atmosphere overlap soil surface
and subsurface] through which water flows. Physical and biogeochemical phenomena
occur in all hydrosystem because of reactions due to water moving through a me-
dia” [1]. Many earth scientists (hydrologists, geologists, biogeochemists,) do interest
in understanding the behaviour of such a complex system. Usually they first do ex-
periments/observations in the field at specific locations and then try to distribute these
observations/measurements in space and time using modelling techniques which are
based on abstractions.

In this paper our focus is to distribute punctual hydraulic head measurements on a
grid that covers a part of an experimental basin. One technique often used in earth sci-
ences and especially in hydrogeology is kriging [2,3,4,5,6,7,8,9,10,11,12]. For a few
years hydrologists started to use fuzzy logic and Adaptive neuro-fuzzy inference sys-
tem (ANFIS) to estimate groundwater parameters [13], to predict reservoir level [14,15],
river discharge [16,17,18,19,20,21,22,23] and karstic spring discharge [24], for ground-
water management [25,26,27], and for assessing pollutant fluxes at the basin scale
[28,29]. ANFIS was also used to model the hydrological cycle [30]. Nevertheless only

K. Madani et al. (Eds.): Computational Intelligence, SCI 343, pp. 265–276.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

266 B. Kurtulus et al.

0 2 41 Km

Legend

Geology

C, Colluvions

Fz, Alluvium

LP, Silt

LPg1b, Silt

Lprm, Silt and clay

Rm, Clay

Lpg2, Silt and sand

g2, Stampian sand

g1b, Rupelian limestone

g1a, Priabonian mudstone

e7b, Bartonian marl

e7a, Bartonian limestone

e6b, Bartonian limestone and marl

Orgeval watershed

Avenelles watershed

stream network

Piezometers

Training

Validation

Test

Fig. 1. Geological Map of the Orgeval watershed, location of wells and springs divided into train-
ing, validation and testing sets

few studies report the use of ANFIS to interpolate hydraulic head distribution in aquifers
[31,7,32]. The goal of this work is to compare ordinary kriging (OK) and ANFIS in their
ability to assess a hydraulic head distribution in a complex aquifer system.

2 Experimental Site

With an area of 104 km2, the Orgeval experimental basin (Fig. 1) is located 70 km east
from Paris [33,34]. Agriculture takes place on 80 % of its surface while the remaining 20
% are forested. The average annual air temperature is 9.7 oC. The annual mean rainfall
is 706 mm, and the annual mean potential evaporation is 592 mm. The hydrological
behaviour of the Orgeval basin is influenced by the aquifer system, which is composed
of two main geological formations: the Oligocene (see Rupelian limestone, Fig. 1) and
the Eocene (from Priabonian to Ypresian claystones, Fig. 1). These two aquifer units
are separated by a clayey aquitard. Most of the basin is covered with table-land loess
about 2-5m in thickness. These unconsolidated deposits are essentially composed of
sand and loam lenses of low permeability but they seem to be more or less connected
to the Rupelian limestone.

The basin is relatively flat with slopes increasing near the small valley at the river
mouth (80 % of the territory spans between 130 and 190 m above mean sea level). In
this work we will focus on hydraulic head distribution in the eastern part of the basin
covering the Avenelles watershed (Fig. 1).

Hydraulic Head interpolation 267

3 Data

The dataset is composed of three different types of data (Fig. 1). The first one consists
of three piezometers which are permanently sampled. The second one consists of water
levels measured in wells. The 41 wells were sampled on april 16, 2009 during a snapshot
campaign. Our goal was to determine the hydraulic head distribution of the subsurface
aquifer unit - silt connected to the rupelian limestone. Due to the complex geometry of
the aquifer system at the outlet of the Avenelles basin and in the south-eastern part of
the area of interest (Fig. 1), we needed to complete the piezometers and wells dataset in
this part of the domain of interest. To do so we used a 100 × 100 m DEM of the top of
the Priabonian mudstone. The elevation of the limit between Priabonian mudstone and
rupelian limestone was then implemented inside the dataset as springs that are observed
on the field. Finally the overall dataset is composed of 68 hydraulic heads.

4 Interpolation Methods

Ordinary Kriging. Geostatistics aims at providing quantitative descriptions of natural
variables distributed in space and time [35]. Initially developed to address ore reserve
evaluation issues in mining [36], it is now commonly applied to environmental sciences
such as hydrogeology, air, water and soil pollution [37]. Geostatistics is used to char-
acterize the spatial structure of the variable of interest by means of a consistent proba-
bilistic model. This spatial structure is characterized by the variogram, which describes
how the variability between sampled concentrations increases with the distance between
the samples. A variogram model is fitted to the experimental variogram for subsequent
analysis. The interpolation technique, known as kriging, provides the ”best”, unbiased,
linear estimate of a regionalized variable at unsampled locations, where ”best” is de-
fined in a least squares sense, as it aims to minimize the variance of estimation error
[35]. As for the classical interpolations, the estimation by kriging of the concentration
at any target cell is obtained by a linear combination of the available sample concen-
trations. The kriging differentiates only by the way of choosing the coefficients of this
linear combination. Those coefficients are called kriging weights and depend on:

– the distances between the data and the target (like other classical interpolators),
– the distances between the original data themselves (data clustering),
– the spatial structure of the variable.

Exploratory data analysis, variogram fitting and kriging were performed using the Isatis
software [38]. The basic tool used for kriging is the semi-variogram γ (eq. 1), defined
as half the expectancy of deviation between values of samples separated by a distance
h. In this case it quantifies the spatial variability of the variable Z(x):

γ(h) =
1
2
E
[
(Z(x) − Z(x + h))2

]
(1)

where E[V] defines the mathematical average of the coordinates of the vector V . Let
say, Z∗(x) is the kriged value at location x, Z(xi) is the known value at location xi, λi

is the weight associated with the data, μ is the Lagrange multiplier, and γ(xi, xj) is the

268 B. Kurtulus et al.

value of variogram corresponding to a vector with origin in xi and extremity in xj . The
general equation of kriging estimator is:

Z∗(x) =
n∑

i=1

λiZ(xi) (2)

In order to achieve unbiased estimations in kriging and to minimize the variance of
estimates the following set of equations is solved simultaneously [39]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

N∑
i=1

λi = 1

N∑
j=1

λjγ(xi, xj) − μ = γ(xi, x) i = 1, . . .N

4.1 ANFIS

Theoretical Reminders. ANFIS [18,40,41,42,43,44,23] is a modelling technique which
assumes that input and output data are ill-defined with uncertainty that can not be ex-
actly assess with probability theory based on a two-valued logic. It uses fuzzy set theory,
where a fuzzy set is a set of elements with an imprecise (vague) boundary [43,45]. A
fuzzy set does not have a crisp boundary. That is, the transition from “belonging to the
set” to “not belonging to the set” is gradual and is characterized by membership func-
tions. A fuzzy set A(x) is then represented by a pair of two things - the first one is
the constituent elements x and their associated membership values μA(x) (that is their
degree of belongingness):

A(x) = {(x, μA(x)) , x ∈ X} (3)

Where X is the Universal set consisting of all possible elements. The membership func-
tion μA ranges between 0 and 1. If the value of the membership function is restricted to
either 0 and 1, the fuzzy set is then reduced to classical crisp set with a known boundary.
As stated by Jang [41], the fuzziness does not come from the randomness of the con-
stituent members of the sets, but from the uncertain and imprecise nature of the abstract
thoughts and concepts.

In ANFIS the relationship between input and output are expressed in the form of If-
Then rules. ANFIS used for the present work is based on Sugeno fuzzy model [44] which
formalizes a systematic approach to generate fuzzy rules from an input-output dataset.
A typical fuzzy rule in a Sugeno fuzzy model has the format: If x ∈ A and y ∈ B
then z = f(x, y), where A and B are fuzzy sets in the antecedent and f(x, y) is a crisp
function in the consequent. Usually f is a polynomial function.

The architecture of the ANFIS is composed of five layers (Fig. 2). Each layer has
a specific function. The first layer generates membership grades from linguistic la-
bels translated in mathematical functions. It means that it defines the parameter of the

Hydraulic Head interpolation 269

Fig. 2. ANFIS architecture for two inputs x, y. Layer 1: generates membership grades. Layer 2:
Fuzzy rules. Layer 3: calculates weights of rules named firing strengths. Layer 4: product of
the normalized firing strengths. Layer 5: fuzzy results transformed into a traditional output by
summation.

membership functions. For instance, let consider a first-order Sugeno fuzzy inference
system which contains two rules:

Rule 1: If X ∈ A1 and Y ∈ B1 then f1 = p1x + q1y + r1;
Rule 2: If X ∈ A2 and Y ∈ B2 then f2 = p2x + q2y + r2;

p1, q1,r1, p2, q2,r2 are defined in the first layer of the ANFIS (Fig. 2).
Each node i of layer 2 calculates the firing strength wi of the ith rule via multiplica-

tion wi = μAi(x)μBi (y).
Node i in the layer 3 calculates the ratio of the ith rule’s firing strength divided by

the total amount of all firing strengths: wi = wi∑
j wj

.

Node i in the layer 4 calculates the contribution (weight) of the ith rule toward the
overall output via multiplication:Wi = wifi.

Finally layer 5 is made on a single node that computes the overall output as the
summation of the contribution from each rule: f(x, y) =

∑
i Wi =

∑
i wifi

ANFIS uses a hybrid learning algorithm that combines the back-propagation gradi-
ent descent and least squares methods to create a fuzzy inference system whose mem-
bership functions are iteratively adjusted according to a given set of input and output
data [40]. For each iteration, the back propagation method involves minimization of an
objective function using the steepest gradient descent approach in which the network
weights and biases are adjusted by moving a small step in the direction of negative
gradient. The iterations are repeated until a convergence criteria or a specified number
of iterations is achieved. It has the advantage of allowing the extraction of fuzzy rules
from numerical data and adaptively constructs a rule base.

Implementation of ANFIS. The neuro fuzzy model was developed using the ANFIS

procedures of MATLAB [46]. In this study, a code is written in Matlab 7.0 for ANFIS

using appropriate functions to calculate the best performance of the methods.
ANFIS is run on the same dataset as presented in section 3 Fig. 1. The dataset is

divided in three subsets: a training one, a validation one and a test one.

270 B. Kurtulus et al.

Before using the model to interpolate unknown outputs (hydraulics head), its actual
predictive performance must be tested by comparing outputs estimated by the calibrated
models with known outputs. At each phase (training, validation), the ANFIS perfor-
mance is measured by the determination of the coefficient of goodness-of-fit R2, and
the root mean square error (RMSE).

RMSE =
√

E [(Z∗(x) − Z(x))2] (4)

where E, Z∗ and Z are previously defined (section 4).
Input data are XY coordinates of piezometers. Hydraulic head is the ANFIS output.
Input data are pre-processed to obtain input vectors for which coordinates are in the

same range of variations. It is recommended to normalize the data between slightly
offset values such as 0.1 and 0.9. In this work the preprocessing is done with a linear
transformation. Let call X the input vector with n coordinates ranging from Xmin to
Xmax. Each coordinate (j) of the transformed variable Y is calculcated following the
equation:

yi =
1

Xmax − Xmin
(0.8Xi + 0.1Xmax − 0.9Xmin) (5)

The selection of appropriate input parameters is a complex task. The first step is to
determine the number of training and validation data. This selection is done iteratively
to obtain the most similar training, validation and test sets [47] in terms of high and low
values as well as concerning the statistical distribution:

– The area of interest is divided in four squares of equal size;
– If a square contains four points then two are selected for the training subset, one for

the validation subset and one for the test subset. Else the square is divided in four
squares of equal size and so on.

Finally the dataset was split into three subsets: 60 % of the data were assigned to the
training set and the remaining to the validation and test set (20 % each). Early stopping
criteria provided by the validation datasets are used to prevent overtraining. Generalized
bell curves were used as membership functions (eq. 6):

f(x, a, b, c) =
1

1 +
∣∣x−c

a

∣∣2b
(6)

5 Interpolation of Hydraulic Head: Results and Discussion

For each method (ANFIS and OK), the hydraulic head distribution was calculated on a
100 m square grid.

5.1 Ordinary Kriging

First of all the variographic clouds and the associated experimental variograms were
calculated with different ranges (50 m, 100 m, 200 m and 1 km). They all reveal a clear
linear structure (See Fig. 3 for a 250m range).

The fitted variogram is linear with a slope of 0.071 m (Fig. 3). The fitted variogram
was then used to krige the hydraulic head at each center of the 100 m scare grid.

Hydraulic Head interpolation 271

1500

1000

500

0
0 1000 2000 3000 4000

Distance [m]

V
a
ri
a
n
c
e

[m
]

2

Fig. 3. Variogram cloud (green crosses), experimental variogram (yellow line) and modeled vari-
ogram (red line)

Fig. 4. Membership functions (after 44 iterations)

5.2 ANFIS

The best calibrated ANFIS model is obtained after 44 iterations. It contains 5 member-
ship functions and 6 rules. Figure 4 shows the membership functions at the end of the
learning phase.

5.3 Comparison of the Interpolation Methods

Table 1 shows statistics of both series (observed and predicted hydraulics head). The
minimum, maximum, average and standard deviation values are of the same magnitude
for simulations (whatever the techniques) and for the observed values. Even if the two
methods match properly the data (Fig. 5) with R2 of 0.97 for ANFIS and 0.99 for OK,
the comparison of performances (Table 2) indicates a slight advantage for OK. Indeed
RMSE for ANFIS and OK are 3.3 m and 0.8 m, respectively.

After being compared with observations at each sample location, each method is
used to interpolate the dataset at each cell center of a 100×100 m grid (Fig. 5). The

272 B. Kurtulus et al.

Table 1. Observed and simulated data statistics. SD: standard deviation.

Observed ANFIS OK

Values at sampling points
Mean [m] 139.49 139.47 139.33
Min [m] 102 107.73 102.42
Max [m] 179.85 181.03 179.47
SD [m] 20.05 19.91 19.90

All Grid
Mean [m] - 101.78 102.42
Min [m] - 193.65 181.05
Max [m] - 143.83 141.89
SD [m] - 20.54 18.14

Table 2. Statistics of errors for ANFIS and OK

ANFIS OK

RMSE[m] 139.49 139.47
ME [m] 102 107.73
MAE [m] 179.85 181.03
R2 [m] 20.05 19.91

Fig. 5. Observed vs. simulated hydraulics heads

Average values of the whole set is 102.4 m for ANFIS whereas OK calculates an average
of 101.8 m (Table 1). The standard deviation of the ANFIS interpolation increases (19.9
to 20.5 m) whereas the one of OK decreases (19.9 to 18.1 m).

Both simulations have realistic pattern except few details as local minima and max-
ima. ANFIS calculates a drainage pattern which looks less realistic than the OK one
from a hydrogeological point of view. Even if OK performs slightly better than ANFIS,
the latter seems to be a valuable way of interpolating hydraulic head distribution but not
a more efficient method than OK as stated by Kholghi & Hosseini [31].

On the one hand, the fact that ANFIS under or overestimates few observed values
in a larger proportion than OK (Fig. 5) may be due to the input variables (X and Y

Hydraulic Head interpolation 273

Fig. 6. (a) ANFIS interpolation and (b) OK interpolation

coordinates) of the ANFIS. Indeed these inputs do not have any physical meaning con-
sidering the hydraulic head distribution, which is partly driven by the river network. For
further work one should test the euclidian distance to the river associated to only one
coordinate (either X or Y) as input variables, or the use of a third input variable as the
soil elevation for instance.

On the other hand, the less sampling points, the more sensitive is OK to the variogram
that depends on the number of sampling points. In the Avenelles basin there are only
68 sampling points. The fitted variogram might entail uncertainty that leads to biased
results [9]. Kriging might also be improved using a secondary variable as an external
drift [5,48].

Nevertheless, the comparison of hydraulic head distributions calculated by OK and
ANFIS (Fig. 6a & 6b) indicates that the two techniques capture the phenomenon in two
different ways. At this point, one can use the estimation of the two hydraulic head dis-
tribution to improve measurement network based on discrepancies between each others
(Fig. 7). The discrepancy map indicates in black and deep blue the area where sampling
should be achieved in order to increase the dataset and then understand which method
do perform best for the Orgeval aquifer unit.

274 B. Kurtulus et al.

Fig. 7. Difference between hydraulic head distribution estimated with OK and ANFIS

6 Conclusions

The aim of this work was to interpolate hydraulic head distribution from punctual mea-
surements at a basin scale in order to quantify groundwater resources based on a snapshot
campaign. It was shown that OK slightly outperforms ANFIS and that the two methods can
be improved. Even if both methods interpolate punctual hydraulic head measurements
in two different patterns especially far from the sampling points where uncertainty is the
highest, the difference between the two interpolated hydraulic head distribution can be
used to identify new sampling locations and then improve the sampling network.

Acknowledgements. This work was funded by the ANR Carnot MINES “Neuro
N’Eaudyssée”, the Federation Ile-de-France for Research on the Environment (FIRE
FR3020 CNRS & UPMC), the PIREN Seine research program, and TÜBITAK. It is also
a contribution to the GIS Oracle that maintains the experimental basin of the Orgeval.
We kindly thank the BRGM for providing the DEM of the top of the aquifer system.

References

1. Dacharry, M.: Encyclopedie. AXIS (1993)
2. Abedini, M., Nasseri, M., Ansari, A.: Cluster-based ordinary kriging of piezometric head in

west texas/new mexico - testing of hypothesis. J. of Hydrology 351(3-4), 360–367 (2008)
3. Brochu, Y., Marcotte, D.: A simple approach to account for radial flow and boundary condi-

tions when kriging hydraulic head fields for confined aquifers. Mathematical Geology 35(2),
111–139 (2003)

4. Buchanan, S., Triantafilis, J.: Mapping water table depth using geophysical and environmen-
tal variables. Ground Water 47(1), 80–96 (2009)

Hydraulic Head interpolation 275

5. Desbarats, A.J., Logan, C.E., Hinton, M.J., Sharpe, D.R.: On the kriging of water table
elevations using collateral information from a digital elevation model. Journal of Hydrol-
ogy 255(1-4), 25–38 (2002)

6. Flipo, N., Jeannée, N., Poulin, M., Even, S., Ledoux, E.: Assessment of nitrate pollution
in the Grand Morin aquifers (France): combined use of geostatistics and physically-based
modeling. Environ. Pollut. 146(1), 241–256 (2007)

7. Kurtulus, B., Flipo, N., Vilain, G., Tournebize, J., Tallec, G., Goblet, P.: Comparison of AN-
FIS and ordinary kriging to assess hydraulic head distribution: the Orgeval case study. In:
Proceedings of ICNC, Madeira, October 5-7 (2009)

8. Lyon, S., Seibert, J., Lembo, A., Walter, M., Steenhuis, T.: Geostatistical investigation into
the temporal evolution of spatial structure in a shallow water table. Hydrol. Earth Syst.
Sci. 10(1), 113–125 (2006)

9. Pardo-Igúzquiza, E., Chica-Olmo, M., Garcia-Soldado, M., Luque-Espinar, J.A.: Using
semivariogram parameter uncertainty in hydrogeological applications. Ground Water 47(1),
25–34 (2009)

10. Renard, F., Jeannee, N.: Estimating transmissivity fields and their influence on flow and trans-
port: The case of champagne mounts. Water Resources Research 44, 1–12 (2008)

11. Sun, Y., Kang, S., Li, F., Zhang, L.: Comparison of interpolation methods for depth to
groundwater and its temporal and spatial variations in the minqin oasis of northwest china.
Environmental Modelling & Software 24(10), 1163–1170 (2009)

12. Theodossiou, N., Latinopoulos, P.: Evaluation and optimisation of groundwater observa-
tion networks using the kriging methodology. Environmental Modelling & Software 21(7),
991–1000 (2006)

13. Ayvaz, M.T., Karahan, H., Aral, M.M.: Aquifer parameter and zone structure estimation
using kernel-based fuzzy c-means clustering and genetic algorithm. J. of Hydrology 343,
240–253 (2007)

14. Chang, Y., Chang, L.C., Chang, F.J.: Intelligent control for modeling of real-time reservoir
operation, part II: artificial neural network with operating rule curves. Hydrological Pro-
cesses 19, 1431–1444 (2005)

15. Chang, F.J., Chang, Y.T.: Adaptive neuro-fuzzy inference system for prediction of water level
in reservoir. Advances in Wat. Res. 29, 1–10 (2006)

16. Chidthong, Y., Tanaka, H., Supharatid, S.: Developing a hybrid multi-model for peak flood
forecasting. Hydrological Processes 23, 1725–1738 (2009)

17. El-Shafie, A., Taha, M.R., Noureldin, A.: A neuro-fuzzy model for inflow forecasting of the
Nile river at Aswan high dam. Water Resour. Manage. 21, 533–556 (2007)

18. Firat, M., Gungor, M.: River row estimation using adaptive neuro fuzzy inference system.
Mathematics and Computers in Simulation 75, 87–96 (2007)

19. Firat, M., Gungor, M.: Hydrological time-series modelling using an adaptive neuro-fuzzy
inference system. Hydrological Processes 22, 2122–2132 (2008)

20. Firat, M.: Comparison of artificial intelligence techniques for river flow forecasting. Hydrol.
Earth Syst. Sci. 12, 123–138 (2008)

21. Hong, Y.S.T., White, P.A.: Hydrological modeling using a dynamic neuro-fuzzy system with
on-line and local learning algorithm. Advances in Wat. Res. 32, 110–119 (2009)

22. Nayak, P., Sudheer, K., Ragan, D., Ramasastri, K.: A neuro-fuzzy computing technique for
modeling hydrological time series. J. of Hydrology 291, 52–66 (2004)

23. Wang, W.C., Chau, K.W., Cheng, C.T., Qiu, L.: A comparison of performance of several
artificial intelligence methods for forecasting monthly discharge time series. J. of Hydrol-
ogy 374, 294–306 (2009)

24. Kurtulus, B., Razack, M.: Modeling daily discharge responses of a large karstic aquifer using
soft computing methods: Artificial neural network and neuro-fuzzy. J. of Hydrology 381,
101–111 (2010)

276 B. Kurtulus et al.

25. Chu, H.J., Chang, L.C.: Application of optimal control and fuzzy theory for dynamic ground-
water remediation design. Water Resour. Manage. 23, 647–660 (2009)

26. Firat, M., Turan, M.E., Yurdusev, M.A.: Comparative analysis of fuzzy inference systems for
water consumption time series prediction. J. of Hydrology 374, 235–241 (2009)

27. Yurdusev, M.A., Firat, M.: Adaptive neuro fuzzy inference system approach for municipal
water consumption modeling: An application to izmir, turkey. J. of Hydrology 365, 225–234
(2009)

28. Bárdossy, A., Haberlandt, U., Krysanova, V.: Automatic fuzzy-rule assessment and its appli-
cation to the modelling of nitrogen leaching for large regions. Soft Computing 7, 370–385
(2003)

29. Marcé, R., Comerma, M., Garcı́a, J., Armengo, J.: A neuro-fuzzy modeling tool to estimate
fluvial nutrient loads in watersheds under time-varying human impact. Limnol. Oceanogr.:
Methods 2, 342–355 (2004)

30. Bárdossy, A.: The use of fuzzy rules for the description of elements of the hydrological cycle.
Ecol. Model. 85, 59–65 (1996)

31. Kholghi, M., Hosseini, S.M.: Comparison of groundwater level estimation using neuro-fuzzy
and ordinary kriging. Environ. Model Assess. 14(6), 729–737 (2009)

32. Lin, G.F., Chen, L.H.: A spatial interpolation method based on radial basis function networks
incorporating a semivariogram model. Journal of Hydrology 288(3-4), 288–298 (2004)

33. Anctil, F., Filion, M., Tournebize, J.: A neural network experiment on the simulation of daily
nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment. Ecol.
Model. 220, 879–887 (2009)

34. Flipo, N., Even, S., Poulin, M., Théry, S., Ledoux, E.: Modelling nitrate fluxes at the catch-
ment scale using the integrated tool CAWAQS. Sci. Total Environ. 375, 69–79 (2007)

35. Chilés, J.P., Delfiner, P.: Geostatistics: modeling spatial uncertainty. Wiley, New York (1999)
36. Isaaks, E., Srivastava, R.: An introduction to applied geostatistics, p. 561. Oxford University

Press, Oxford (1989)
37. Goovaerts, P.: Geostatistics for natural ressources evaluation, p. 181. Oxford University

Press, Oxford (1997)
38. Geovariances: Isatis Software Manual, 5 edn., Geovariances and Ecole Nationale Supérieure

des Mines de Paris, p. 710 (2004)
39. Chauvet, P.: Aide-mémoire de géostatistique linéaire. Ecole Nationale Supérieure des Mines

de Paris (1999)
40. Jang, J.: ANFIS adaptive-network-based fuzzy inference systems. IEEE Trans. Systems, Man

Cybern. 23(3), 665–685 (1993)
41. Jang, J.: Neuro-fuzzy modeling and control. Proceedings of the IEEE 833, 378–406 (1995)
42. Jang, J.: Input selection for ANFIS learning. In: IEEE International Conference on Fuzzy

Systems, vol. 2, pp. 1493–1499 (1996)
43. Pratihar, D.: Soft Computing. Alpha Science International Ltd (2008)
44. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and

control. IEEE Trans. Systems Man and Cybernetics 15(1), 116–132 (1985)
45. Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)
46. Demuth, H., Beale, M.: Neural networks toolbox user guide. Technical report, Mathworks

Inc. (2003)
47. Heuvelmans, G., Muys, B., Feyen, J.: Regionalisation of the parameters of a hydrological

model: Comparison of linear regression models with artificial neural nets. Journal of Hydrol-
ogy 319(1-4), 245–265 (2006)

48. Rivest, M., Marcotte, D., Pasquier, P.: Hydraulic head field estimation using kriging with an
external drift: A way to consider conceptual model information. Journal of Hydrology 361(3-
4), 349–361 (2008)

K. Madani et al. (Ed.): Computational Intelligence, SCI 343, pp. 277–288.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Predicting NN5 Time Series with Neurosolver

Andrzej Bieszczad

California State University Channel Islands, One University Drive
Camarillo, CA 93012, U.S.A.

andrzej_bieszczad@csuci.edu

Abstract. Neurosolver is a neuromorphic planner and a problem solving
system. It was tested on several problem solving and planning tasks such as re-
arranging blocks and controlling a software-simulated artificial rat running in a
maze. In these tasks, the Neurosolver created models of the problem as
temporal patterns in the problem space. These behavioral traces were then used
to perform searches and generate actions. In this paper, we present an analysis
of the capabilities of the Neurosolver to predict data points in time series. We
report on testing those capabilities on the sample data sets that were made
available for the neural network forecasting competition NN5 [14]. We
conclude with a brief description of several ideas that we are currently applying
to the data sets posted for the 2010 competition, NN GC1.

Keywords: Forecasting, Neural network, Neuromorphic systems, General
problem solvers, Predicting future, Behavioral patterns.

1 Introduction

The goal of the research that led to the original introduction of Neurosolver, as
reported in [1], was to design a neuromorphic device that would be able to solve
problems in the framework of the state space paradigm [2]. In that paradigm, the
states of a system are expressed as points in an n-dimensional space. Trajectories in
such spaces formed by state transitions represent behavioral patterns of the system. A
problem is presented in this paradigm as a pair of two states: the current state and the
desired, or goal, state. A solution to the problem is a trajectory between the two states
in the state space. Fundamentally, we are asking how to attain the goal state of the
system given its starting state; in other words, we are searching for a sequence of state
transitions leading from the start state to the goal state.

The Neurosolver can solve such problems by traversing the recorded trajectories as
described in section 2. In this paper, we demonstrate how the very trajectories can be
used for forecasting.

The original research on Neurosolver modelling was inspired by Burnod’s
monograph on the workings of the human brain [3]. The class of systems that employ
state spaces to present and solve problems has its roots in the early stages of AI
research that derived many ideas from the studies of human information processing;
e.g., on General Problem Solver (GPS) [2]. This pioneering work led to very
interesting problem solving (e.g. SOAR [4]) and planning systems (e.g. STRIPS [5].

278 A. Bieszczad

The Neurosolver employs activity spreading techniques that have their root in early
work on semantic networks (e.g., [6] and [7]).

The behavior of the Neurosolver bears similarities to stochastic processes [8];
especially discrete Markov models [9 10]. The Neurosolver learning algorithm
resembles the forward-backward algorithm [11].

2 Neurosolver

2.1 Neurosolver as a GPS

The Neurosolver is a network of interconnected nodes. Each node is associated with a
state in a problem space. In its original application, the Neurosolver is presented with
a problem by two signals: the goal associated with the desired state and the sensory
signal associated with the current state. A sequence of firing nodes that the
Neurosolver generates represents a trajectory in the state space. Therefore, a solution
to the given problem is a succession of firing nodes starting with the current node and
ending with the goal node.

The node used in the Neurosolver is based on a biological cortical column
(references to the relevant neurobiological literature can be found in [1]). It consists
of two divisions: the upper and the lower, as illustrated in Figure 1. The upper
division is a unit integrating internal signals from other upper divisions and from the
control center providing the limbic input (i.e., a goal or - using more psychological
terms - a drive or desire). The activity of the upper division is transmitted to the lower
division where it is subsequently integrated with signals from other lower divisions
and the thalamic input. The upper divisions constitute a network of units that
propagate search activity from the goal, while the lower divisions constitute a network
of threshold units that integrate search and sensory signals, and generate sequences of
firing nodes. The output of the lower division is the output of the whole node. An
inhibition mechanism prevents cycles and similar chaotic behavior. Simply, a node
stays desensitized for a certain time after firing.

Fig. 1. An artificial cortical column

 Predicting NN5 Time Series with Neurosolver 279

2.2 Neurosolver as a Forecaster

Normally, in the goal-oriented problem solving the flow of activity from the upper to
the lower division is limited. This mode of operation can be described as exploration
of possibilities and looking for environmental cues. The cues come as thalamic input
from the sensory apparatus. Often though, we operate without far reaching goals
forcing our brains to make predictions based on the knowledge of the past and the
currently observed facts. In the Neurosolver, similar phenomenon may be observed if
the activity in the upper division is gradually increased, and at the same time is
allowed to be transmitted in its entirety from the upper to the lower division.
Assuming that that activity is allowed to grow above the firing threshold level hosted
by the lower division, a node may fire without extra signals from the sensors, or even
in absence of the thalamic input whatsoever. In this paper, we explore this capability
to predict future outcomes based on the statistical model created by the Neurosolver.

3 Data Sets

We presented some initial ideas on using the Neurosolver in the forecasting capacity
at ISF‘2008 [12]. We were encouraged to test the ideas on the data set that was used
for the NNx competition. The last published data set available at the time of initiating
experiments reported here was for the NN5 contest held in 2008, so that’s what we
used. The neural network forecasting competition is an ongoing event, so there are
newer sets available currently.

The NN5 data set is a collection of records of daily withdrawals from a number of
ATM machines in England over a two-year period. A set from an individual machine
is divided into a larger training part collected over two years and smaller test part
collected over two months. Each set is a time series that represents a temporal usage
pattern of that particular machine. That temporal nature of the patterns was what
caught our attention in the context of the Neurosolver.

We started with the use the data in their raw format by assigning each datum to a
Neurosolver node. In that sense, each datum is a state of the system in the progression
of states as specified by the given time series. The Neurosolver therefore learns the
trajectory that corresponds to each training time series, and over time generalizes the
trajectories to represent all time series by it adaptation rules. No states are hidden
behind observations: states are the observations in this model.

Due to the large number of data points and the proximity of some of them, we also
tried to cluster the data with several cluster sizes. For that, we approximated the k
neighbor algorithm by one that is very straighforward in one dimension. Simply, we
decided on an arbitrary number of clusters, and then recursively divided the data set
into two subsets allocating the number of clusters for each of the two division
according to the data density. An example of this process is shown in Figure 2. The
desired number of clusters is 4, and the reader may notice that the left part of the set
gets more clusters allocated due to a higher number of captured data points. The
algorithm allows for a balanced distribution of data amongst a known number of
clusters.

280 A. Bieszczad

Fig. 2. An example of data clustering

A simpler approach to clustering is dividing the domain into a number of equal
segments and then creating clusters based on the data membership in the clusters.
However, the problem with this approach is that is does not take into consideration
data distribution. Therfore, some clusters are not balanced: some might be empty,
while others are overcrowded.

After the custering stage, we assigned the centers of the clusters to the
Neurosolver’s nodes. Subsequently, for each data point we activated the node that
represented the cluster to which the point was classified. The predicted sequences
were built also out of the numbers that corresponded to the centers of the clusters
represented by the firing nodes.

4 Neurosolver Learning

4.1 Learning Rules

We used two types of learning in our experiments. The first follows the traditional
incremental learning through gradient ascent (a.k.a gradient descent and hill-
climbing) approaches (e.g., [13]) that are taken by many researchers in the neural
networks community. The second, follows the stochastic scheme that was used in the
original Neurosolver.

4.1.1 Incremental Learning
The Neurosolver learns by translating teaching samples representing state transitions
into sequences of firing nodes corresponding to subsequent states in the samples. For
each state transition, two connections are strengthened: one, in the direction of the
transition, between the lower divisions of the two nodes, and another, in the opposite
direction, between the upper divisions as shown in Figure 3. As we said earlier, the
process is similar to the one employed in the forward-backward algorithm [11],
although there is only one pass here.

In the incremental learning, we simply add a small value to the connection
strength. We did not use any decay factor in the experiments reported here.

 Predicting NN5 Time Series with Neurosolver 281

Fig. 3. Neurosolver learning rule

4.1.2 Statistical Learning
In the second approach, the strength of all inter-nodal connections is computed as a
function of two probabilities: the probability that a firing source node will generate an
action potential in this particular connection and the probability that the target node
will fire upon receiving an action potential from the connection.

To compute the probabilities, each division and each connection collects statistics
as shown in Figure 4. The number of transmissions of an action potential Tout is
recorded for each connection. The total number of cases when a division positively
influenced other nodes Sout is collected for each division. A positive influence means
that an action potential sent from a division of a firing node to another node caused
that node to fire in the next cycle. In addition, we also collect statistical data that
relate to incoming signals. Tin is the number of times when an action potential
transmitted over the connection contributed to the firing of the target node and is
collected for each connection.

Sin, collected for each division, is the total number of times when any node
positively influenced the node. With such statistical data, we can calculate the
probability that an incoming action potential will indeed cause the target node to fire.
The final formula that is used for computing the strength of a connection (shown in

Fig. 4. Statistics collected for computation of the connection strength between nodes

282 A. Bieszczad

Equation 1) is the likelihood that a firing source node will induce an action potential
in the outgoing connection, multiplied by the likelihood that the target node will fire
due to an incoming signal from the connection:

P = Pout⋅Pin = (Tout/Sout)⋅(Tin/ Sin) (1)

4.2 Learning Sequences

As we already indicated, in the goal-oriented problem solving mode the function of
the network of upper divisions is to spread the search activity along upper-to-upper
connections. In the forecasting mode, the same network could be used to provide
some guidance in forecasting as we indicate in the notes on the future directions of the
research. However, in the experiments that we report in this paper, the network of the
upper divisions is ignored. Instead, we focus on the functionality provided by the
network built out of the lower divisions.

The purpose of the network composed of the lower divisions and their connections
is to generate a sequence of output signals from firing nodes (along the connections
shown in Figure 5). In the goal-oriented search mode, such a sequence corresponds to
a specific path between the current state and the goal state, and—as stated earlier—
can be considered a solution to the given problem.

In the forecasting mode, the node corresponding to the current state (“current
observations”) is activated through the thalamic input and allowed to fire. The activity
from the firing node is transmitted to the nodes that are connected to the firing node
through the efferent connections with non-zero strengths. Assuming a substantial
learning sample, it is very likely that there is only one connection that is strongest, so
the node that is connected through that connection is the winner of the contest for the
highest activation level. The number that is the center of the cluster corresponding to
that node is the predicted value. In the non-clustering tests, it is the datum that is
associated with the node. Subsequently, the winning node is forced to fire next, and
the process for selecting the next winner is repeated until no more predictions can be
made.

Fig. 5. The Neurosolver learn temporal patterns

 Predicting NN5 Time Series with Neurosolver 283

4.3 Implementation Tweaks

4.3.1 Inhibition
As indicated earlier, to avoid oscillations, the firing node is inhibited for a number of
computational cycles. The length of the inhibition determines the length of cycles that
can be prevented. For example, an inhibition that lasts three cycles prevents cycles of
three nodes. There are some negative implications here; for example, any pattern
containing such a cycle cannot be predicted.

4.3.2 Higher-order Connections
Our initial implementation had first degree connections that link only to a direct
predecessor of a node. We later enhanced our models with second degree
connections, which provided a link to more distant predecessors in the Neurosolver’s
firing history. Adding connection degrees allows us to take into consideration a
number of previously fired nodes when forecasting the next node to fire. In that
respect, this approach is similar to Markov models [9]. We will analyze further
enhancements in the section on future work.

5 Experiments

5.1 Quality Measure

To measure the quality of our predictions and to compare them with the benchmarks
and submissions to the NN5 competition we used Symmetric Mean Absolute Percent
Error (SMAPE) that was recommended by the NN5 organizers (Equation 2). The
SMAPE calculates the symmetric absolute error in percent between the actuals X and
the forecast F across all observations t of the test set of size n for each time series s
with the following formula:

(2)

5.2 Results

We generated a substantial body of results running the NN5 data sets with numerous
incarnations of the Neurosolver. We processed the data in the raw form, as well as
pre-processed by clustering techniques as described earlier. We also tested the
Neurosolver with the two learning algorithm: gradient ascent and stochastic.

In the following sections, we present an analysis of the Neurosolver’s performance
on some selected data. In the analysis, we compare several models and approaches
that we used, and relate the results to the test data provided with the NN5 data sets.
We conclude with a comparison with the benchmark predictions generated by non-
neural methods provided by the organisers of the NN5 competition for reference [14].

284 A. Bieszczad

5.2.1 Comparing Learning Models
The graph in Figure 6 illustrates Neurosolver’s predictions following presentation of
one of the data points (4025) from the NN5 data sets. The four lines in the graph
represent:

• the actual data provided by the NN5 competition (bottom at 16),

• our forecasted values for the stochastic model (top at 16), and

• forecasting made with two hill-climbing models (middle at 16).

The data in the table below the graph show the standard deviation between our results
and the test data from the NN5 data sets.

The graph in Figure 6, illustrates how the Neurosolver behaves when the data is
not shaped by clustering algorithms. We used a cluster size of one in the shown
clustered gradient ascent, so a node is used per each value, making it virtually the
same as an un-clustered model. Therefore, the Neurosolver generated the same
forecasts for both the clustered and un-clustered gradient ascent models. The lines
corresponding to the two gradient ascent models—middle at 16—are collapsed and
displayed as a single purple line.

From the graph and the standard deviation between the forecasted values and the
NN5 data (top at 16), we observe that the probabilistic model provides forecasts that
are closer to the actual data (as provided with the NN5 sets) in terms of the standard
deviation from the measured data.

Fig. 6. Probabilistic vs. Gradient Ascent. NN5 competition: bottom at 16, stochastic model: top
at 16, and two hill-climbing model: middle at 16.

5.2.2 The Clustering Factor
The graph in Figure 7 illustrates how the clustering algorithms affect the forecasting.
The value used as the input to our forecaster is the same as before (4025). The

 Predicting NN5 Time Series with Neurosolver 285

Fig. 7. Clustered vs. Unclustered. NN5 competition: bottom at 16, stochastic not clustered
model: top at 16, and two hill-climbing models: middle at 16.

cluster-by-range gradient ascent model divides the input into 50 clusters. The k-means
clustering algorithm divides the size of the input by 50, giving us 173 clusters for this
particular data set. The significance of the clustering process can be seen in the
change in our standard deviation for the gradient ascent model. The forecasted values
from the gradient ascent models are now much closer to the actual data provided with
the NN5 data sets.

The clustering algorithms provide an overall improvement in our results; however,
we have encountered some cases in which the clustering algorithm increased our
deviation from the actual values.

5.2.3 Comparing with the NN5 Submissions
The NN5 website provides a list of contest submissions and benchmark results. They
use the SMAPE formula to calculate the quality of predictions generated by the
competing and benchmark models. The best predictions that come from benchmark
models are shown on the right side of Figure 8. No competing submission exceeded
the performance of the benchmark models.

The left side of Figure 8 shows the performance of several models of the
Neurosolver.

6 Conclusions

Currently our results are below the classical benchmarks on the NN5 website.
However, we are not that much apart. We have found our current findings to be

286 A. Bieszczad

Fig. 8. Neurosolver vs. Benchmarks

promising and plan to apply a number of enhancements that we believe will improve
the performance of the Neurosolver significantly.

Our initial implementation had first degree connections that link only to a direct
predecessor of a node. We later enhanced our models with second degree
connections, which provided a link to more distant predecessors in the Neurosolver’s
firing history. Adding 2nd-degree connections allowed us to take into consideration
two (rather than one) previously fired nodes when forecasting the next node to fire.
As we reported in [3], the addition of the second degree connection improved the
prediction capabilities of the Neurosolver. In our new version of the Neurosolver, we
are increasing the number of node predecessors to an arbitrary number, and call the
new model n-order Neurosolver accordingly. We are going to use the new model to
process the dataset posted for NN GC1 2010.

All the principles from the 1st-order Neurosolver are preserved, but the
connectivity is enhanced as showed in Figure 9 that shows a connectivity of a single
node in a 4-order Neurosolver. A connection from every predecessor of a node is
subjected to the same learning rules as the connection from the direct predecessor. In
the computing mode, the activity of every node is influenced by the activity of the n
predecessors of the node.

We have concluded that a potential source for our deviation in forecasted values
could be due to incomplete data in our learning set. In such cases the Neurosolver gets
stuck. We will be looking into engineering some means to boost Neurosolver’s
activity to address such problems.

As we indicated, we use node inhibition to solve the problem with cycles that can
lead to looping. At the same time, however, we may prevent generation of genuine
cycles that may be present in the data sets. We believe that this is the main cause of
the occasional inability to generate predictions at certain critical points. We are
planning to look into developing a mechanism that would accommodate generating
genuine cycles while still preventing endless loops.

 Predicting NN5 Time Series with Neurosolver 287

Fig. 9. The 4-order Neurosolver

Yet another venue that we are planning to pursue is a guided prediction. For that,
we would employ the network of upper divisions. For example, we may want to limit
the number of potential outcomes and present a number of goal states to the
Neurosolver. Rather than spreading predictive activity only according to the strength
of the connections, additional signals coming from the search network corresponding
to the activation of the set of desired goals would also be taken into account.

Acknowledgements. The author would like to express gratitude to several students
that were members of the research group operating in Spring 2009 semester under the
umbrella of Faculty-Undergraduate Student Research Initiative supported by
California State University Channel Islands. The following students provided great
help with programming, testing, analyzing data and charting the results: Fahimeh
Fakour, Douglas Holmes, Maximillian Kaufmann, and Nicholas Peters.

References

1. Bieszczad, A., Pagurek, B.: Neurosolver: Neuromorphic General Problem Solver.
Information Sciences: An International Journal 105, 239–277 (1998)

2. Newell, A., Simon, H.A.: GPS: A program that simulates human thought. In: Feigenbaum,
E.A., Feldman, J. (eds.) Computer and Thought. McGrawHill, New York (1963)

3. Burnod, Y.: An Adaptive Neural Network: The Cerebral Cortex. Masson, Paris (1988)
4. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: An architecture for General

Intelligence. Artificial Intelligence 33, 1–64 (1987)
5. Nillson, N.J.: Principles of Artificial Intelligence. Tioga Publishing Company, Palo Alto

(1980)
6. Collins, A.M., Loftus, E.F.: A spreading-activation theory of semantic processing.

Psychological Review 82(6), 407–428 (1975)
7. Anderson, J.R.: A spreading activation theory of memory. Journal of Verbal Learning and

Verbal Behavior 22, 261–295 (1983)
8. Doob, J.L.: Stochastic Processes. Wiley, Chichester (1953)
9. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability, 2nd edn. Cambridge

University Press, Cambridge (2009)

288 A. Bieszczad

10. Markov, A.A.: An Example of Statistical Investigation of the Text Eugene Onegin
Concerning the Connection of Samples in Chains. Translation by David Link. Science in
Context 19(4), 591–600 (2006)

11. Baum, L.E., Petrie, T.: Statistical Inference for Probabilistic Functions of Finite State
Markov Chains. Annals of Mathematical Statistics 37(6), 1554–1563 (1966)

12. Bieszczad, A.: Exploring Neurosolver’s Forecasting Capabilities. In: Proceedings of the
28th International Symposium on Forecasting, Nice, France, June 22-25 (2008)

13. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn.,
pp. 122–125. Prentice Hall, Upper Saddle River (2010)

14. NN5, http://www.neural-forecasting-competition.com/

Author Index

Aizenberg, Igor 223
Ali, Mostafa 103
Ali, Rose 103
Arcay, Bernardino 195

Baciu, George 59
Badaloni, Silvana 73
Balkenius, Christian 251
Bernardino, Anabela Moreira 165
Bernardino, Eugénia Moreira 165
Bieszczad, Andrzej 277
Bugeja, Marvin K. 237

Chan, Eddie C.L. 59
Cline, Bryan 135
Cuccu, Giuseppe 121

Dafonte, Carlos 195

Eisenmann, Jonathan 135

Fabri, Simon G. 237
Falda, Marco 73
Flipo, Nicolas 265

Goblet, Patrick 265
Gómez-Pulido, Juan Antonio 165

Hesslow, Germund 251

Johnsson, Magnus 251

Kurtulus, Bedri 265

Leandro, Carlos 45
Lewis, Matthew 135

Maeda, Michiharu 209
Mak, S.C. 59
Manteiga, Minia 195
Massignan, Paolo 73
Monteiro, Lúıs 45

Noppen, Joost 85

Ordóñez, Diego 195

Paperin, Greg 151
Perlovsky, Leonid 3
Pita, Hélder 45

Ramı́rez-Torres, José Gabriel 179
Reyes-Medina, Angelina Jane 179
Reynolds, Robert 103

Sadedin, Suzanne 151
Salhieh, Ayad 103
Sambo, Francesco 73
Sánchez-Pérez, Juan Manuel 165
Shang, Changjing 23
Shen, Qiang 23

Tallec, Gaëlle 265
Toscano-Pulido, Gregorio 179
Tournebize, Julien 265

van den Broek, Pim 85
Vanneschi, Leonardo 121
Vega-Rodŕıguez, Miguel Angel 165
Vilain, Guillaume 265

	Title Page
	Preface
	Conference Committee
	Contents
	Invited Papers
	Mechanisms of the Brain and Cultures
	Mechanisms of Language: Recent Development
	Mechanisms of Perception and Cognition
	Instincts, Emotions, Concepts
	Combinatorial Complexity and Logic
	Perception Example
	Classical Engineering Applications of NMF-DL

	Language and Cognition
	Dual Model
	Experimental Evidence
	Dual Hierarchy
	Emotionality of Language and Meanings

	Cultural Dynamics
	Future Research
	References

	A Framework for Intelligent Analysis of Intelligence Data
	Introduction
	Intelligent Data Analysis Framework
	Flexible Composition Modelling
	Intelligence Data Modelling and Analysis

	Component Techniques
	Fuzzy Learning and Feature Selection
	Fuzzy Interpolation and Extrapolation
	Fuzzy Risk Assessment

	Conclusions
	References

	Part I: Fuzzy Computation
	Symbolic Knowledge Extraction from Trained Neural Networks Governed by Łukasiewicz Logics
	Introduction
	Preliminaries
	Łukasiewicz Logics
	Processing Units
	Similarity between a Configuration and a Formula
	Neural Network Crystallization

	Learning Propositions
	Training

	Reverse-Engineering
	Real Data
	Mushrooms

	Conclusions and Future Work
	References

	Wireless Signal and Information Tracking Using Fuzzy Logic
	Introduction
	Topographic Model Design
	Propagation-Based Algorithm
	Fuzzy Membership Function
	Topographic Node
	Nelder-Mead Method
	Topographic Model Generation

	iPhone Application Implementation
	Fuzzy Modeling for Distance and Price
	Experimental Setup
	Discussion and Analysis
	Effect of LOS on RSS
	Behavior Study on the Human's Presence

	Conclusions
	References

	Redefinition of Mutual Information in the Fuzzy Sets Framework for Computational Genomics
	Introduction
	Mutual Information and the REVEAL Algorithm
	Fuzzy Extension of the REVEAL Algorithm
	Membership Functions and Conditional Probability
	Fuzzy Mutual Information
	The Algorithm

	Example of Application
	Related Works
	Conclusions
	References

	Exact Membership Functions for the Fuzzy Weighted Average
	Introduction
	Computation of α-Cuts of the Fuzzy Weighted Average
	Analytical Solution for the Fuzzy Weighted Average
	Examples
	Conclusions
	References

	Part II: Evolutionary Computation
	Knowledge-Based Constrained Function Optimization Using Cultural Algorithms with an Enhanced Social Influence Metaphor
	Introduction
	Cultural Algorithms
	Knowledge Sources
	Communication Protocols
	The Cultural Algorithms Toolkit

	Related Work
	The Social Fabric Influence Function
	Concept
	Weaving the Social Fabric into the CAT System

	Experimental Framework and Results Analysis
	Experimental Framework
	Analysis of Results

	Conclusions
	References

	Reconstructing Dynamic Target Functions by Means of Genetic Programming Using Variable Population Size
	Introduction
	Dynamic Optimization, Previous and Related Work
	Variable Size Population GP
	DIV and SUP in Dynamic Environments
	New Variable Size Population Model

	Test Problems and Experimental Setting
	Experimental Results
	Conclusions
	References

	Interactive Evolution for Designing Motion Variants
	Introduction
	Related Work
	Evolutionary Design
	Motion Variation
	Crowd Design
	Particle System Design

	Interactive Evolutionary Design
	Motion Generation
	Input
	Balance
	Self-collision
	Replacement Method
	Diversity
	Using the Filters

	Results
	Future Work
	Conclusions
	References

	Dual Phase Evolution as a Framework for Understanding Complex Adaptive Systems
	Introduction
	Dual Phase Evolution
	Examples
	The DPE Framework
	DPE and Self-organised Criticality
	DPE and the Adaptive Cycle

	A DPE Simulation Model
	Results

	Conclusions
	References

	Ant Colonies to Assign Terminals to Concentrators
	Introduction
	Terminal Assignment Problem
	Ant Colonies
	Initialisation of Parameters
	Initialisation of Solutions
	Evaluation of Solutions
	Improvement Method
	Pheromone Trails Initialisation
	Modification of Solutions
	Intensification Mechanism
	Pheromone Trails Update
	Diversification Mechanism
	Termination Criterion

	Studied Examples
	Results
	Conclusions
	References

	A Statistical Study of the Effects of Neighborhood Topologies in Particle Swarm Optimization
	Introduction
	Particle Swarm Optimization
	PSO: Neighborhood Topologies
	Description of Our Experiment
	Test Functions
	Discussion of Results
	Statistical Analysis
	Statistical Analysis: Discussion of Results

	Conclusions and Future Work
	References

	Part III: Neural Computation
	Genetic Algorithms Applied to Spectral Index Extraction
	Introduction
	Signal Processing Techniques
	Data Description
	Material and Methods
	Genetic Algorithm Configuration
	Fitness Function and Artificial Neural Networks

	Parallel Fitness Function
	Results
	Conclusions
	References

	Algorithms of Image Restoration in Self-organizing Maps Grounded on Learning with Neighboring Inputs
	Introduction
	Self-organizing Maps
	Image Restoration
	Numerical Experiments
	Conclusions
	References

	On the Projection of k-Valued Non-linearly Separable Problems into m-Valued Linearly Separable Problems
	Introduction
	Multi-Valued Neuron (MVN)
	Discrete and Continuous MVN
	MVN Learning

	Universal Binary Neuron
	A Periodic Activation Function for the MVN
	Learning Algorithm for the MVN with a Periodic Activation Function
	Simulation Results
	Wisconsin Breast Cancer (Diagnostic)
	Sonar
	k-Valued Non-threshold Function

	Conclusions
	References

	Dual Adaptive Neurocontrol of Mobile Robots Using the Unscented Transform: Monte Carlo and Experimental Validation
	Introduction
	WMR Mathematical Model
	Kinematics
	Dynamics

	Control Design
	Kinematic Control
	UT-Based Dual Adaptive Control

	Simulation and Experimental Results
	Simulation Results
	Experimental Results

	Conclusions
	References

	Multimodal System Based on Self-organizing Maps
	Introduction
	Associative Self-organizing Map
	Experiments and Results
	Associating the A-SOM with Two Ancillary SOMs
	Generalization
	Adding an Action Network

	Discussion
	References

	Hydraulic Head Interpolation in an Aquifer Unit Using ANFIS and Ordinary Kriging
	Introduction
	Experimental Site
	Data
	Interpolation Methods
	ANFIS

	Interpolation of Hydraulic Head: Results and Discussion
	Ordinary Kriging
	ANFIS
	Comparison of the Interpolation Methods

	Conclusions
	References

	Predicting NN5 Time Series with Neurosolver
	Introduction
	Neurosolver
	Neurosolver as a GPS
	Neurosolver as a Forecaster

	Data Sets
	Neurosolver Learning
	Learning Rules
	Learning Sequences
	Implementation Tweaks

	Conclusions
	References
	Experiments
	Quality Measure
	Results

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

