
Chapter 5

ApproximatingMolecular Schr€odinger Equation

Abstract Theoretical basis of the approximate perturbational and variational
approaches in quantum chemistry is outlined and the adiabatic separation of the

fast (electronic) motions from slow (nuclear) movements in molecular systems is

established. The rudiments of the Ritz method, a linear variant of the variational

treatment, are summarized and the criteria for an effective mixing of quantum states

are formulated. The illustrative applications of the perturbative and variational

methods to helium atom are discussed and compared. The elements of the orbital
approximation of the many-electron wave functions are introduced and selected

properties of the Slater determinant, defined by the antisymmetrized product of the

occupied spin orbitals, are examined in the context of the Pauli exclusion principle.
The relevant expression for the expectation value of the electronic energy in orbital

theories is derived and the Slater–Condon rules for matrix elements of the elec-

tronic Hamiltonian between determinantal wave functions are given. The additional

possibilities of reducing the complexity of the molecular electronic Schr€odinger
equation by using the pseudopotentials are briefly outlined. These core potentials

reflect a resultant influence of the “frozen” (chemically inactive) inner-shell elec-
trons and the system nuclei in the effective Schr€odinger equation for the (chemi-

cally active) valence shell electrons of constituent atoms, coordinates of which are

treated explicitly in the approximate wave functions.

5.1 Rudiments of Perturbational and Variational Approaches

The stationary (time-independent) Schr€odinger equation, i.e., the eigenvalue prob-
lem of the system Hamiltonian, can be solved analytically only for simple model

systems. The quantum mechanical determination of the electronic structure of

molecules, and particularly the complicated systems of interest in contemporary

chemistry, requires adequate approximate methods of sufficient accuracy. In recent

decades a remarkable progress of applying quantum mechanics to diverse problems

in physics, chemistry, and molecular biology was possible due to spectacular
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developments in the approximate theories of molecular electronic structure, cover-

ing original and sometimes ingenious new concepts and efficient algorithms, as

well as a steadily increasing capability of modern computers and new software

techniques of the advanced computational tools of modern quantum chemistry and

solid state physics.

It is the main purpose of this chapter to summarize the main strategies used in

reducing the complexity of the molecular Schr€odinger equation and approximating

its electronic wave function. It is intended to provide an overview of the successive

levels of reducing the immense computational complexity of treating the coupled

N-electron and m-nuclei problem of the molecular quantum mechanics. These

perturbational and variational methods use the adiabatic, Born–Oppenheimer
(BO) separation of the electronic and nuclear motions in molecules, as well as the

orbital (Slater determinant) approximation of the trial N-electron wave functions,

which automatically satisfy the requirements of the Pauli exclusion principle.

5.1.1 Perturbation Theory

It is the often encountered scenario in quantum theory that we have to estimate

solutions of the Schr€odinger equation for a more complicated (perturbed) real
system from the known solutions of a simpler (unperturbed) model system, e.g.,

the stationary states and the associated energy levels of an anharmonic oscillator

from the known (analytical) results for the harmonic oscillator. This goal

summarizes the basic purpose of the perturbation theory (PT), which has also

been used in classical mechanics. Its simplest variant within the Rayleigh–

Schr€odinger theory, for the nondegenerate energy levels and time-independent

perturbations, will be summarized below.

Let us assume that the Hamiltonian Ĥ of the real (perturbed) system can be

expressed as the sum of the simpler, model Hamiltonian Ĥ0, representing the

associated unperturbed system the eigensolutions of which are assumed to be

available, and the perturbation ĥ � lĥ’ including weak interactions compared

with those already comprised in Ĥ0. The perturbation approach can be then used

to generate corrections to eigensolutions of Ĥ0, due to a presence of the perturba-

tion, to approximate the exact eigensolutions of Ĥ. Formally, this assumption of a

relative “smallness” of ĥ can be expressed by the condition involving the perturba-

tion parameter l, lj j � 1,

Ĥ ¼ Ĥ0 þ lĥ0 ¼ Ĥ0 þ ĥðlÞ � ĤðlÞ: (5.1)

It controls the order of corrections to the known unperturbed solutions,

Ĥ0
��nð0Þ� ¼ Eð0Þ

n

��nð0Þ�; n ¼ 0; 1; 2; . . . ;
�
nð0Þ

�� mð0Þ� ¼ dn;m; (5.2)
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for the nondegenerate energy levels E
ð0Þ
0 < E

ð0Þ
1 < E

ð0Þ
2 < :::, with n ¼ 0

corresponding to the ground state of the model system, introduced to approximate

the unknown stationary states of the perturbed system:

ĤðlÞ nðlÞj i ¼ EnðlÞ nðlÞj i; n ¼ 0; 1; 2; . . . ; nðlÞ j mðlÞh i ¼ dn;m: (5.3)

These corrections appear as coefficients in the corresponding power series

expansions of the perturbed eigenstates and the associated eigenvalues,

nðlÞj i ¼
X1
i¼0

��nðiÞ�li ���nð0Þ�þX1
i¼1

��DnðiÞ�;
EnðlÞ ¼

X1
j¼0

EðjÞ
n lj �Eð0Þ

n þ
X1
j¼1

DEðjÞ
n ; (5.4)

which define the kth-order corrections to the nth unperturbed state,

jDnðkÞi ¼ lkjnðkÞi and DEðkÞ
n ¼ lkEðkÞ

n ; k¼ 1; 2; . . .

They can be determined by substituting these expansions into (5.3):

X1
i¼0

liðĤ0 þ lĥ0Þ��nðiÞ� ¼ X1
i¼0

X1
j¼0

liþjEðjÞ
n

��nðiÞ�: (5.5)

Indeed, by comparing the coefficients at the given power k of the enhancement

parameter l in both sides of the preceding equation, one arrives at the following

system of equations determining the corrections to the nth unperturbed state and its
energy:

l0 : Ĥ
0��nð0Þ� ¼ Eð0Þ

n

��nð0Þ�;
l1 : Ĥ

0��nð1Þ�þ ĥ0
��nð0Þ� ¼ Eð0Þ

n

��nð1Þ�þ Eð1Þ
n

��nð0Þ�;
l2 : Ĥ

0��nð2Þ�þ ĥ0 nð1Þ
�� � ¼ Eð0Þ

n nð2Þ
�� �þ Eð1Þ

n nð1Þ
�� �þ Eð2Þ

n

��nð0Þ�;
lp : Ĥ

0��nðpÞ�þ ĥ0
��nðp�1Þ� ¼

Xp
j¼0

EðjÞ
n

��nðp�jÞ�: (5.6)

As expected, the l0-equation repeats the eigenvalue problem (5.2) of the unper-

turbed Hamiltonian. The subsequent elimination of corrections from these

equations recognizes the completeness of the unperturbed solutions nð0Þ
�� �� �

,

which allows one to expand any state of the system, including all unknown

corrections nðpÞ
�� �� �

or DnðpÞ
�� �� �

, in this basis set.
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For example, one can expand the first-order correction jn(1)i,

��nð1Þ� ¼ X1
j¼0

�� jð0Þ� cð1Þj;n ¼
X
j6¼n

�� jð0Þ� cð1Þj;n ; c
ð1Þ
j;n ¼ �

jð0Þ
��nð1Þ�; (5.7)

or the resultant state ĥ0 nð0Þ
��� :

ĥ0
��nð0Þ� ¼

X1
j¼0

�� jð0Þ�hj;n; hj;n ¼
�
j ð0Þ

��ĥ0��nð0Þ�: (5.8)

In (5.7) we have recognized that c
ð1Þ
n;n ¼

�
n
ð0Þ��nð1Þ� ¼ 0, since the direction of the

unperturbed state vector jn(0)i can be modified only by combining this state with the

remaining states {j j(0)i, j 6¼ n}, which are orthogonal to jn(0)i.
Projecting l1-equation (5.6) onto jn(0)i and jk(0)i, k 6¼ n, respectively, gives the

associated equations for determining the first-order corrections we seek:

�
nð0Þ

��Ĥ0��nð1Þ�þ �
nð0Þ

��ĥ0��nð0Þ� ¼ Eð0Þ
n

�
nð0Þ

��nð1Þ�þ hn;n ¼ hn;n

¼ Eð0Þ
n

�
nð0Þ

��nð1Þ�þ Eð1Þ
n

�
nð0Þ

��nð0Þ� ¼ Eð1Þ
n ; (5.9)

�
kð0Þ

��Ĥ0��nð1Þ�þ �
kð0Þjĥ0��nð0Þi ¼ E

ð0Þ
k

�
kð0Þ

��nð1Þi þ hk:n ¼ E
ð0Þ
k c

ð1Þ
k;n þ hk;n

¼ Eð0Þ
n

�
kð0Þ

��nð1Þi þ Eð1Þ
n

�
kð0Þ

��nð0Þi ¼ Eð0Þ
n c

ð1Þ
k;n: (5.10)

A straightforward rearrangements of these equations then give the following

explicit expressions for the first-order corrections to E
ð0Þ
n ,

Eð1Þ
n ¼ �

nð0Þ
��ĥ0��nð0Þ� ¼ hn;n or DEð1Þ

n ¼ �
nð0Þ

��ĥ��nð0Þ�; (5.11)

and to jn(0)i:

c
ð1Þ
k;n ¼ hk;n=½Eð0Þ

n � E
ð0Þ
k � or

��Dnð1Þ� ¼ X
k 6¼n

�
kð0Þjĥ��kð0Þ�
E
ð0Þ
n � E

ð0Þ
k

��kð0Þ�: (5.12)

When determining the second-order corrections one similarly expands

��nð2Þ� ¼
X1
j¼0

�� jð0Þ� cð2Þj;n ¼
X
j 6¼n

�� jð0Þ� cð2Þj;n ; c
ð2Þ
j;n ¼ �

jð0Þ
��nð2Þ�; (5.13)

again realizing that c
ð2Þ
n;n ¼ nð0Þ

��n 2ð Þ� � ¼ 0. The corresponding projections of the

l2-equation (5.6) onto jn(0)i and jk(0)i, k 6¼ n, respectively, gives the relevant
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equations determining the expansion coefficients fcð2Þj;n g and the second-order
energy:

�
nð0Þ

��Ĥ0��nð2Þ�þ �
nð0Þ

��ĥ0��nð1Þ� ¼ Eð0Þ
n

�
nð0Þ

��nð2Þ�þX
l 6¼n

c
ð1Þ
l;n

�
nð0Þ

��ĥ0��lð0Þ�
¼

X
l6¼n

c
ð1Þ
l;n hn;l ¼ Eð0Þ

n

�
nð0Þ

��nð2Þ�þ Eð1Þ
n

�
nð0Þ

��nð1Þ�þ Eð2Þ
n

�
nð0Þ

��nð0Þ� ¼ Eð2Þ
n ;

(5.14)

�
kð0Þ

��Ĥ0��nð2Þ�þ �
kð0Þ

��ĥ0��nð1Þ�¼ E
ð0Þ
k

�
kð0Þ

��nð2Þ�þX
l 6¼n

c
ð1Þ
l;n

�
kð0Þ

��ĥ0��lð0Þ�
¼ E

ð0Þ
k c

ð2Þ
k;n þ

X
l6¼n

c
ð1Þ
l;n hk;l

¼ Eð0Þ
n

�
kð0Þ

��nð2Þ�þEð1Þ
n

�
kð0Þ

��nð1Þ�þEð2Þ
n

�
kð0Þ

��nð0Þ�
¼ Eð0Þ

n c
ð2Þ
k;n þEð1Þ

n c
ð1Þ
k;n:

(5.15)

Subsequent substitution to (5.14) of the known first-order solutions gives the

following expression for the second-order correction to E
ð0Þ
n :

Eð2Þ
n ¼ �

nð0Þ
��ĥ0��nð1Þ� ¼

X
l 6¼n

hn;lc
ð1Þ
l;n ¼

X
l6¼n

hn;lhl;n=½Eð0Þ
n � E

ð0Þ
l � or

DEð2Þ
n ¼ �

nð0Þ
��ĥ��Dnð1Þ� ¼ X

l 6¼n

���nð0Þ��ĥ��lð0Þ���2=½Eð0Þ
n � E

ð0Þ
l �: (5.16)

A similar rearrangement of (5.15) gives the expansion coefficients

c
ð2Þ
k;n ¼

1

E
ð0Þ
n � E

ð0Þ
k

�X
l 6¼n

hk;lhl;n

E
ð0Þ
n � E

ð0Þ
l

� hk;nhn;n

E
ð0Þ
n � E

ð0Þ
k

�

determining the associated correction to jn(0)i:

��Dnð2Þi ¼ X
k 6¼n

X
l 6¼n

�
kð0Þjĥ��lð0Þi�lð0Þjĥ��nð0Þi

ðEð0Þ
n � E

ð0Þ
l ÞðEð0Þ

n � E
ð0Þ
k Þ

�
�
kð0Þjĥ��nð0Þi�nð0Þjĥ��nð0Þi

ðEð0Þ
n � E

ð0Þ
k Þ2

0
@

1
A��kð0Þi:

(5.17)

Obviously, one could similarly extract the higher order corrections, but the

above explicit expressions for the first- and second-order corrections are sufficient
for most applications included in this book.
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5.1.2 Variational Method

The alternative variational method of determining the approximate solutions of the

time-independent Schr€odinger equation guarantees that the successive approxi-

mations of increasing accuracy approach from above the exact energy level E0 of

the molecular ground state jc0i. In other words, this exact eigenvalue represents the
lower bound of all approximate estimates of the system average energy: hEi � E0.

Indeed, the eigenstates {jcni} of the system Hamiltonian (the quantum mechan-

ical observable),

Ĥ cnj i ¼ En cnj i; n ¼ 0; 1; 2; . . . ; E0 � E1 � E2 � . . . ; (5.18)

form the basis of the energy representation (see Sect. 2.7) in the molecular Hilbert

space, so that any approximate state jfi can be expanded in this set:

jfi ¼
X
n

jcnihcnjfi ¼
X
n

jcniCn; (5.19)

with jCnj2 ¼ P(cnjf) measuring the conditional probability of observing En in state

jfi (see Postulate II of Sect. 3.2). Hence, any approximate estimate of the system

average energy can be expressed as the mean value of the exact energy levels (see

also Postulate IV.3 of Sect. 3.3.3):

hEif ¼ hfjĤjfi ¼
X
n

PðcnjfÞEn;
X
n

PðcnjfÞ ¼ 1:

We thus conclude that hEif ¼ E0 can be reached only for P(c0jf) ¼ 1 and

{P(cn>0jf) ¼ 0}, and hence jfi ¼ jc0i. Any deviation from this exact solution

implies a finite probability of observing one of the higher (excited) energy levels,

and hence hEif > E0. These deductions constitute the essence of the Rayleigh–Ritz

variational principle of quantum mechanics: for any approximate state jfi the

average energy

hEif � E0: (5.20)

Thus, the more accurately jfi approximates jc0i, the lower hEif level, and hence

the smaller hEif � E0 error gap.

This general statement gives rise to the efficient computational technique, the

variational method, which dominates the modern quantum mechanical calculations

of molecular electronic structure. The main idea behind this computational tool is to

use the parametrically defined trial state including several variational parameters
l ¼ {lt, t ¼ 1, 2, . . ., s}, jfi ¼ jf(l1, l2, . . ., ls)i. The domain of their admissible

values then determines the whole range of the approximate (variational) states.

In accordance with the variational principle, the best approximation of the
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molecular ground state in this family of trial states is then obtained for the optimum

values of variational parameters lopt. which correspond to the minimum of the

system average energy EðlÞh if ¼ fh jðlÞ Ĥ�� ��fðlÞi:
min
l
hEðlÞif ¼ hEðloptÞif � E0 or

@ EðlÞh if
@lt

����
lopt:

¼ 0; t ¼ 1; 2; . . . ; s: (5.21)

Both linear and nonlinear parameters l are used to provide the trial state vectors

or the associated wave functions exhibiting a sufficient variational flexibility, so

that they are capable to adjust to the interactions embodied in the system Hamilto-

nian, in order to lower the energy, and thus to resemble the most the true ground

state of the molecular system in question. The former, e.g., the coefficients

multiplying the adopted set of the (“frozen”) basis functions, are more easily

handled, giving rise to a system of linear secular equations for determining the

optimum values of the expansion coefficients. The latter, e.g., the exponents of the

Slater-type orbitals (STO) or Gaussian-type orbitals (GTO), the popular analytical
functions used to approximate the atomic or molecular orbitals, although relatively

more efficient in modifying the trial wave functions, are more difficult to handle,

requiring more advanced, nonlinear optimization techniques.

Consider the illustrative application of this procedure to the hydrogen-like atom

of Chap. 4, for simplicity adopting a.u. of Sect. 4.6. Suppose that we take the trial

wave function in the general form of a parametric family of the spherically

symmetric, exponentially decaying functions defined by a single nonlinear varia-

tional parameter l, f(r, #, ’; l) ¼ N(l) exp(�lr), with N(l) standing for the

appropriate normalization factor [see (4.62)]: N(l) ¼ (l3/p)1/2. It gives rise to the

average electronic energy, the expectation value of the Hamiltonian (4.40),

EðlÞ ¼ 1

2
l2 � lZ: (5.22)

The optimum value of l, which identifies the best approximation to the ground

state, is then obtained for the minimum of E(l), dE(l)/dljopt. ¼ lopt. � Z ¼ 0, or

lopt. ¼ Z, thus correctly predicting the true ground state of (4.62).

Not knowing the true asymptotic behavior of the ground state at large distances

from the nucleus, one could alternatively try the spherical Gaussian function ’(r, #,
’; x) ¼ N(x) exp(�xr2) as an approximate representation of the ground state wave

function in this one-electron atom, which gives:

EðxÞ ¼ 3

2
x�

ffiffiffiffiffi
8x
p

r
Z; xopt: ¼ 8

9p
Z2; Eðxopt:Þ ¼ 4

3p
Z2 ffi � 0:424 Z2: (5.23)

5.1 Rudiments of Perturbational and Variational Approaches 119

http://dx.doi.org/10.1007/978-3-642-20180-6_4#Sec5


Therefore, on the basis of the variational criterion one concludes that the exponen-

tial form of the variational wave function provides a better representation of the

electronic wave function in the one-electron atom, since it generates lower energy

compared with that resulting from the optimum Gaussian state.

The linear variant of the variational approach is known as the Ritz method. The
trial state j’i is then given as the linear combination of the adopted basis states

jxi ¼ {jwpi, p ¼ 1, 2, . . ., w} (row vector) defined by the expansion coefficients

C ¼ hxj’i ¼ {Cp} (column vector):

’j i ¼
Xw
p¼1

wp
�� �

Cp � xj iC: (5.24)

However, since w basis functions define w linearly independent combina-

tions wj i ¼ fj’ðsÞi; s ¼ 1; 2; . . . ;wg (row vector), we can generalize the above

expression:

��’ðsÞ� ¼ Xw
p¼1

wp
�� �

Cp;s ¼ xj iCðsÞ � ’s�1j i; s ¼ 1; 2; . . . ;w; (5.25)

or in the joint, matrix notation:

wj i ¼ xj iC; C¼ ðCð1ÞjCð2Þj . . . jCðsÞj . . . jCðwÞÞ � ðC0jC1j . . . jCs�1j . . . jCw�1Þ: (5.26)

In general, the basis vectors give rise to a nonunit metric tensor defined by the

overlap matrix S ¼ hxjxi ¼ {Sp,q ¼ hwpjwqi}, while the Hamiltonian is

representated by the energy matrix H ¼ xh jĤ xj i ¼ Hp;q ¼ wp
� ��Ĥ wq

�� �� �
.

In what follows we shall assume that the optimum combinations are ordered in

accordance with their increasing energies EðsÞ� � ¼ ’ðsÞ� ��Ĥ ’ðsÞ�� � � Es�1h i� �
:

½hEð1Þi � hE0i� � ½hEð2Þi � hE1i� � . . . � ½hEðwÞi � hEw�1i�: (5.27)

The optimum combination j’(1)i ¼ j’0i corresponding to the lowest energy

hE(1)i � hE0i will then approximate the system ground state jc0i, while the

remaining orthonormal combinations will approach the corresponding excited

states.

In the last three equations, we have relabeled the upper indices of the

eigenvectors, the associated columns in the (w 	 w) square matrix C grouping

the combination coefficients, the linear variational parameters of the Ritz method,

and the associated energy estimates into the corresponding subscripts conforming

to the customary labeling of the molecular energy levels of (5.18), with j’0i and hE0i
denoting the ground state approximations and the remaining states corresponding to

successive excited states:

j’ðsÞi � ’s�1j i; C = f CðsÞ � Cs�1g; fhEðsÞi � hEs�1ig:
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Let us first consider a single combination of (5.24). The expectation value of the

system energy in state |’i reads: hEi ¼ ~’
�� Ĥ��~’D E

¼ ’h jĤ ’j i ’ ’jh i= , where the

denominator ’ j ’h i ¼ Pw
p¼1

Pw
q¼1

C

pSp;qCq ¼ C{SC is due to the normalization con-

stant of j’i in the normalized trial state ~’j i ¼ ’ j’h i�1=2 ’j i. Hence,

hEih’j’i ¼ Eh i
Xw
p¼1

Xw
q¼1

C

pSp;qCq ¼ h’jĤj’i: (5.28)

One further observes that the expansion coefficients C are in general complex

numbers. Therefore, the unknowns in this linear variational problem consist of

their real and imaginary parts, C ¼ Re(C) + iIm(C), where: Re(C) ¼ (C + C*)/

2 and Im(C) ¼ (C � C*)/2i. Thus, one can alternatively designate the coefficients

C and their complex conjugates C* as independent variational parameters, since

they uniquely identify both parts of C. In fact, due to the Hermitian character of H

and the symmetrical character of the metric S, the secular equations for the

optimum values of the linear variational parameters derived from the independent

variations of C* and C, respectively, are identical.
The optimum solutions must minimize the system energy function hE(C*, C)i

[see (5.21)]:

@ EðC
;CÞh i
@C


p

�����
min

¼ 0 and
@ EðC
;CÞh i

@Cp

����
min

¼ 0; p ¼ 1; 2; . . . ;w: (5.29)

Differentiating (5.28) with respect to Cp
* and taking into account the condition of

the energy minimum of (5.29) then gives:

@ EðC
;CÞh i
@C


p

Xw
p¼1

Xw
q¼1

C

pSp;qCq þ Eh i

Xw
q¼1

Sp;qCq ¼ Eh i
Xw
q¼1

Sp;qCq ¼
Xw
q¼1

Hp;qCq or

Xw
q¼1

Hp;q � Eh iSp;q

 �

Cq ¼ 0; p ¼ 1; 2; . . . ;w: (5.30)

This system of the secular (linear, homogeneous) equations has in fact only w � 1

independent unknowns. The additional, nonhomogeneous equation required to

specify C uniquely is provided by the normalization condition for the combination

in question:

h’j’i ¼
Xw
p¼1

Xw
q¼1

C

pSp;qCq ¼ CySC ¼ 1: (5.31)

It then directly follows from the Cramer rules of Algebra that the necessary

condition for the physically meaningful, nontrivial solutions C 6¼ 0 of these secular
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equations is the vanishing determinant of coefficients before the unknowns in these

homogeneous equations, called the secular determinant:

H1;1 � Eh iS1;1 H1;2 � Eh iS1;2 ::: H1;w � Eh iS1;w
H2;1 � Eh iS2;1 H2;2 � Eh iS2;2 ::: H2;w � Eh iS2;w
:::::::::::::::::::::: :::::::::::::::::::::: ::: ::::::::::::::::::::::

Hw;1 � Eh iSw;1 Hw;2 � Eh iSw;2 ::: Hw;w � Eh iSw;w

���������

���������
� Hp;q � Eh iSp;q

�� �� ¼ 0:

(5.32)

Hence, by expanding the determinant one arrives at the equation of degree w for the

unknown Eh i. Its ordered solutions EðsÞ� � � Es�1h i� �
(5.27) approximate the exact

energy levels of the system ground and the first (w � 1) excited states (5.18).

To summarize, one first solves (5.32) for the approximate energy levels {hE(s)i},
the knowledge of which is required to uniquely specify the coefficients of the

secular equations (5.30) supplemented by (5.31). Selecting hEi ¼ hE(s)i in these

equations gives the coefficients C(s) determining j’(s)i, etc.
Fortunately, this rather cumbersome procedure in terms of determinants can be

recast in the form of the standard matrix diagonalization problem, which is easily

handled in computer calculations. For this purpose, we arrange the energy estimates

{hE(s)i} as diagonal elements of the eigenvalue matrix E ¼ {Es,s0 ¼ hE(s)ids,s0} and
rewrite the secular equations (5.30) for sth combination of (5.25):

Xw
q¼1

Hp;q � EðsÞ
D E

Sp;q

� 

Cq;s ¼

Xw
q¼1

Hp;qCq;s �
Xw
q¼1

Xw
s0¼1

Sp;qCq;s0Es0;s ¼ 0 or

HC¼SCE: (5.33)

This equation must be supplemented by the matrix equation combining the relevant

orthonormality requirements for the optimum combinations, which are summarized

by the requirement of the unit metric tensor defined by wj i ¼ xj iC;

wh wj i ¼ Cy x j xh iC ¼ CySC ¼ I: (5.34)

As already shown in Sect. 3.3.2, the nonorthogonal basis vectors jxi can

be transformed into the symmetrically orthogonalized analogs ~xj i ¼ xj i S�1=2 of

L€owdin, strongly resembling the original basis vectors jxi, which can be subse-

quently “rotated” in the unitary transformationU to the final optimum combinations

we seek:

wj i ¼ xj iC � xj iS�1=2
� 


U ¼ ~xj iU; UUy¼UyU ¼ I: (5.35)

This way of arriving at orthonormal combinations thus automatically satisfies

(5.34). In this L€owdin orthogonalized representation the only unknown part of
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C ¼ S�1/2U is its U ¼ S1/2C factor, where we have used the relation S�1/2S1/2 ¼
S0 ¼ I (3.47). A straightforward transcription of (5.33) multiplied from the left by

S�1/2 then gives:

ðS�1=2HS�1=2ÞðS1=2CÞ � ~HU ¼ ðS�1=2SÞCE ¼ ðS1=2CÞE ¼ UE: (5.36)

Hence, by multiplying the preceding equation from the left by U{ finally gives:

Uy ~HU ¼ E: (5.37)

The determination of the optimum coefficients C, the linear variational parameters

of the Ritz method, and of the associated average energy estimates E is thus

simultaneously accomplished by the diagonalization in the unitary transformation

U of the Hermitian matrix ~H ¼ S�1=2HS�1=2. The latter constitutes the matrix

representation of the Hamiltonian in the symmetrically orthogonalized basis set ~xj i,
~H ¼ ~xh jĤ ~xj i ¼ S�1=2 xh jĤ xj i S�1=2 ¼ S�1=2HS�1=2; (5.38)

where we have observed that ~xh j ¼ xj iS�1=2
� 
y

¼ S�1=2 xh j, since S�1/2 is the real,

symmetric matrix. This linear variational procedure thus amounts to the standard

algorithmic problem in the matrix algebra.

We conclude this section by examining general criteria for an effective mixing

of quantum states in the linear combination of (5.24). In textbooks on quantum

chemistry such an analysis is carried out in the context of mixing AO into Molecu-
lar Orbitals (MO), when the prototype chemical bond is being formed, say between

atoms A and B. To simplify these qualitative considerations, we reduce the problem

to two AO states jxi ¼ (jAi, jBi), originating from atoms A and B, respectively,

which are assumed to be normalized but nonorthogonal (overlapping):

S ¼ 1 S
S 1

� �
; H ¼ aA b

b aB

� �
; (5.39)

where for definiteness we put S ¼ A j Bh i> 0 and aA¼ Ah jĤ Aj i � aB ¼
Bh jĤ Bj i< 0 (Fig. 5.1). The (negative) Coulomb integrals {ap} reflect the energy

levels associated with the individual AO and hence the corresponding negative

ionization potentials (see the Koopmans theorem of Sect. 6.1.2 and the Janak

theorem of Sect. 7.3.6), ap ffi �Ip, p ¼ A, B, while the resonance integral b ¼
Ah jĤ Bj i ¼ Bh jĤ Aj i measures their mutual interaction (coupling) in the bond for-

mation process. In the semiempirical theories of the molecular electronic structure,

it was adequately approximated as being proportional to the AO overlap integral S
and an average value (Av), arithmetic, geometric, or harmonic, of

the corresponding diagonal elements of the Hamiltonian: b / SAv(aA; aBÞ
� S ah i � �SAv(IA; IBÞ< 0.

It then directly follows from the eigenvalue equation (5.32)
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aA � Eh i b� Eh iS
b� Eh iS aB � Eh i
����

���� ¼ 0 or (aA � hEiÞðaB � hEiÞ ¼ ðb� hEiSÞ2 > 0; (5.40)

that the two AO energy levels “repel” each other as a result of their quantum

mechanical coupling into MO. More specifically, the preceding equation allows the

two optimum MO energies, which are simultaneously either above or below both

AO energies:

½aA � hEi> 0 and aB � hEi> 0� ) hEi ¼ Eb < aA or

½aA � hEi< 0 and aB � hEi< 0� ) hEi ¼ Ea > aB:

As a result the two MO energy estimates are obtained: the bonding level

hE(b)i ¼ Eb < aA and the antibonding level hE(a)i ¼ Ea > aB, which are also

shown in the schematic diagram of Fig. 5.1.

For a general case of nonequal AO energy levels, the secular equation (5.40)

gives the following expression for the bonding energy:

aA � Eb ¼ ðb� EbSÞ2=ðaB � EbÞ; (5.41)

which satisfies the following inequalities:

0< aA � Eb < ðb� EbSÞ2=ðaB � aAÞ; (5.42)

since aB � Eb > aB � aA > 0 (see Fig. 5.1).

We thus conclude from the preceding equation that the larger the difference

between the energy levels of the mixed states the smaller the bonding effect of their

interaction. Indeed the strongest bonding results for aB ¼ aA ¼ a when

Eb ¼ ðaþ bÞ=ð1þ SÞ< a; j’bi ¼ ðjAi þ jBiÞ=ð2þ 2SÞ�1=2

Ea ¼ ða� bÞ=ð1� SÞ> a; j’ai ¼ ðjAi � jBiÞ=ð2� 2SÞ�1=2: (5.43)

It follows from these equations that for the overlapping AO the antibonding

effect Ea � a always exceeds its bonding companion a � Eb. This explains why no

Ea > aB 

aB

aA

Eb < aA

Fig. 5.1 A qualitative diagram of the chemical interaction between two AO
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net chemical bonding results in this simple orbital description from the interaction

between the two fully occupied AO, e.g., in He2 and Be2. Moreover, due to an

approximate proportionality relation b / Shai, the r.h.s. of (5.42), which marks the

upper limit of the bonding effect,

aA � Eb < ðb� EbSÞ2=ðaB � aAÞ � S2ðhai � EbÞ2=ðaB � aAÞ;
identically vanishes, when there is no overlap between AO. For example, at finite

separations between atoms, this can be due to the symmetry restrictions in the

valence shell or the “narrowness” of electron distributions in the inner shells of both
atoms. Together with the nucleus these chemically inactive electrons of the inner
shells define the atomic “core,” which remains largely unaffected by the chemical

bonds formed in the valence shell. At very large internuclear distances, in the

separated atoms limit, the AO overlap also vanishes, so that no chemical interaction

is predicted. We thus conclude that a large AO overlap is conducive for a strong

chemical bonding originating from the orbital interaction in a molecule.

Let us next consider the squared secular equation for the unknown coefficients

of the combination:

ðaA � hEiÞCA þ ðb� hEiSCB ¼ 0 ) ðaA � hEiÞ2C2
A ¼ ðb� hEiSÞ2C2

B: (5.44)

Using the expression for (b � hEiS)2 from (5.40) gives the following ratio of the

squares of coefficients, reflecting a relative participation (conditional probability)

of AO in the combination,

C2
A=C

2
B ¼ ðaB � hEiÞ=ðaA � hEiÞ ¼ jaB � hEij=jaA � hEij: (5.45)

Indeed, for aB ¼ aA both AO participate equally in MO and CA ¼ �CB, in accor-

dance with (5.43). In a general case of Fig. 5.1, one predicts for hEi ¼ Eb: aB �
Eb > aA � Eb, so that orbital jAi dominates the bonding combination j’bi: CA

2 >
CB

2. One similarly predicts a stronger similarity of j’ai to jBi for hEi ¼ Ea, since

then jaB � Eaj < jaA � Eaj. Therefore, with increasing gap aB � aA of the AO

energies the bonding combination j’bi more strongly resembles jAi and the anti-

bonding combination j’ai becomes more like jBi.

5.2 Adiabatic Separation of Electronic and Nuclear Motions

To a good approximation, when describing the state of (light) electrons in a

molecule, one can treat the system (heavy) nuclei as being at rest, in view of the

drastic difference in masses of these two micro-objects. Indeed, the motions of the

former are very fast compared with the slow movements of the latter. This physical

intuition suggests that for the nuclear dynamics the instantaneous positions of

electrons are unimportant, with only the average effect of their fast motions

influencing the forces acting on nuclei in the molecular system under consideration.
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The formal basis of this separation of the electronic and nuclear degrees of freedom

in the molecular (stationary) quantum mechanics is the familiar adiabatic approxi-
mation of Born and Oppenheimer (1927).

Consider the molecular wave function C(q, Q) of N electrons at positions

r ¼ {ri} exhibiting the spin orientations s ¼ {si}, or in the combined notation

q � (r, s) ¼ {ri, si} � {qi}, and m nuclei of masses {Ma} and charges {Za} in

positions R ¼ {Ra} with spins S ¼ {Sa}, which determine the corresponding

position-spin variables Q � (R, S) ¼ {Ra, Sa} � {Qa}. It generates the asso-

ciated probability distribution of the joint, electronic-nuclear events: P(q, Q) ¼
|C(q, Q)|2, which satisfies the relevant overall and partial normalizations:

ðð
Pðq;QÞ dq dQ ¼

ð
pðQÞ dQ ¼

ð
rðqÞ dq ¼ 1; (5.46)

where p(Q) and r(q) denote the partially integrated nuclear and electronic proba-

bility distributions, respectively.

The essence of the adiabatic approximation lies in extracting from this joint

distribution the probability density of the heavy (slow) nuclei as the reference

(parameter) distribution:

Pðq;QÞ ¼ pðQÞPðq;QÞ
pðQÞ � pðQÞpðqjQÞ;

ð
pðqjQÞ dq ¼ 1: (5.47)

In the conditional probability density of electrons, p(qjQ), the nuclear variables

thus play the role of parameters, as indeed reflected by the above normalization

condition. This further implies the associated factorization of the system wave

function in terms of the nuclear, w(Q), and electronic, ’(qjQ), functions,

Cðq;QÞ ffi wðQÞ’ðqjQÞ: (5.48)

They accordingly represent the nuclear and (conditional) electronic amplitudes of

the associated probability distributions:

pðQÞ ¼ wðQÞj j2 and pðqjQÞ ¼ ’ðqjQÞj j2: (5.49)

Therefore, in the Born–Oppenheimer (BO) approximation, the nuclear wave func-

tion is not explicitly dependent upon the electronic positions, while the electronic

state ’(qjQ) is defined for the fixed geometry of the molecular system, defined by

specified, parametric positions of the nuclei. The relevant orthonormality relations

satisfied by different adiabatic states {wi} and {’r} thus read:

ð
w
i ðQÞwjðQÞ dQ � wi

�� wj� �
Q
¼ di;j andð

’

r ðqjQÞ’tðqjQÞ dq � ’rðQÞ j ’tðQÞh iq ¼ dr;t: (5.50)
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The molecular (Coulombic) Hamiltonian in the position representation,

Ĥðq;QÞ ¼ T̂nðQÞ þ ½T̂eðqÞ þ Vneðq;QÞ þ VeeðqÞ þ VnnðQÞ�
� T̂nðQÞ þ Ĥeðq;QÞ � T̂nðQÞ þ Ĥ

eðq;QÞ þ VnnðQÞ; (5.51)

groups operators of the following (dominating) contributions to the molecular

energy (a.u.):

kinetic energy of nuclei: T̂nðQÞ ¼ � Pm
a¼1

1
2Ma

Da; Da ¼ r2
Ra
;

kinetic energy of electrons: T̂eðqÞ ¼ � 1
2

PN
j¼1

Dj; Dj ¼ r2
rj
;

nuclear-electron attraction energy: Vneðq;QÞ¼�PN
j¼1

Pm
a¼1

Za
Ra�rjj j

� �
�PN

j¼1

vðrj;QÞ;

electron repulsion energy:VeeðqÞ¼
PN�1

i¼1

PN
j¼iþ1

1

ri�rjj j�
PN�1

i¼1

PN
j¼iþ1

gði;jÞ; g i; jð Þ¼1=ri;j;

nuclear repulsion energy: VnnðQÞ ¼ Pm�1

a¼1

Pm
b¼aþ1

ZaZb

Ra�Rbj j ¼
Pm�1

a¼1

Pm
b¼aþ1

ZaZb
Ra;b

:

Above, v(r, Q) denotes the external potential for an electron in position r due to the
nuclei in their “frozen” positions {Ra}.

The electronic Hamiltonian Ĥeðq;QÞ defined in (5.51) groups all these terms

except the nuclear kinetic energy operator. Since the nuclear repulsion energy does

not affect the electronic states, representing just the irrelevant additive constant in

Ĥeðq;QÞ, it is sometimes neglected in the Schr€odinger equation for electrons,

defined by the eigenvalue problem of the redefined electronic Hamiltonian

Ĥeðq;QÞ � Ĥeðq;QÞ � VnnðQÞ.
Therefore, in the BO approximation of (5.48), the molecular states Cr,k(q,Q) ¼

’r(qjQ)wk(Q) must satisfy the stationary Schr€odinger equation:

½T̂nðQÞ þ Ĥeðq;QÞ�’rðqjQÞwkðQÞ ¼ Er;k’rðqjQÞwkðQÞ; (5.52)

where Er,k stands for the molecular energy in the adiabatic state combining rth
electronic and kth nuclear states. Since both factors depend, at least parametrically,

on the nuclear positions the action of the nuclear kinetic energy operator on

adiabatic wave function gives:

T̂nð’rwkÞ ¼ �
Xm
a¼1

1

2Ma
½wkðDa’rÞ þ 2ðra’rÞ 
 ðrawkÞþ’rðDawkÞ�

¼ ðT̂n’rÞwk �
Xm
a¼1

1

Ma
ðra’rÞ 
 ðrawkÞþ’rðT̂nwkÞ: (5.53)
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The adiabatic approximation assumes that the kinetic energy operator T̂nðQÞ
constitutes a minor perturbation compared with the electronic Hamiltonian

Ĥeðq;QÞ. One can therefore envisage the perturbation approach constructed on

the basis of the unperturbed Hamiltonian Ĥ0 ¼ Ĥeðq;QÞ, in which there are no

gradient operations with respect to nuclear positions. Therefore, in zeroth order

approximation the nuclear positions are treated as parameters and one neglects the

second term in r.h.s. of (5.53) as negligible, eventually to be taken into account in

higher orders of PT. In other words, one assumes that nuclear gradient of the

electronic wave function is generally small compared with the associated action

of the electronic Hamiltonian. One could also neglect the first (small) Laplacian

term, as in the original BO approach, but this contribution can be easily accounted

for without any serious complication of the emerging formalism.

Therefore, neglecting only the second term in (5.53), which involves the scalar

product of the nuclear gradients of both factors in the adiabatic form of the

molecular wave function, multiplying from the left (5.52) by ’r
*, and “integrating”

the result over the electronic position-spin variables q, denoted by hiq, then give the
following effective Schr€odinger equation for the nuclear function wk(Q):

½T̂nðQÞ þ ’rðq Qj Þh Ĥeðq;QÞ�� ��’rðq Qj Þiq þ ’rðq Qj Þh T̂nðQÞ�� ��’rðq Qj Þiq�wkðQÞ
� fT̂nðQÞ þ ½Ee

rðQÞ þ Tn
r ðQÞ�gwkðQÞ � ½T̂nðQÞ þ Uadiab:

r ðQÞ�wkðQÞ
¼ Er;kwkðQÞ: (5.54)

This equation contains the effective adiabatic potential in the electronic state ’r,

Uadiab:
r ðQÞ, the dominant component of which is the average electronic energy, the

associated expectation value of the electronic Hamiltonian:

Ee
rðQÞ ¼ ’rðq Qj Þh Ĥeðq;QÞ�� ��’rðq Qj Þiq; (5.55)

called the Potential Energy Surface (PES). It parametrically depends on nuclear

positions (molecular geometry) and carries the influence of the average electronic

distribution on the system nuclei. It follows from (5.54) that adiabatic potential also

includes a (small) diagonal correction due to T̂nðQÞ in state ’r,

Tn
r ðQÞ ¼ ’rðq Qj Þh T̂nðQÞ�� ��’rðq Qj Þiq; (5.56)

which has been neglected in the original, crude-adiabatic BO approximation.

It thus follows from the nuclear Schr€odinger equation (5.54) that it requires the

knowledge of the whole electronic PES Ee
rðQÞ of electrons in the specified adiabatic

state ’r(qjQ), the eigenfunction of the electronic Schr€odinger equation:

Ĥeðq;QÞ’rðq Qj Þ ¼ Ee
rðQÞ’rðq Qj Þ: (5.57)
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Clearly, the parametric dependence of the electronic energy on nuclear coordinates

can be extracted only from a very large number of solutions of the preceding

equation, for a sufficient multitude of the fixed nuclear configurations {Q(i)},

by an analytical interpolation of the known energies fEe
rðQðiÞÞg, points on the

resulting PES.

To summarize, solving the molecular Schr€odinger equation in the adiabatic (BO)
approximation first involves solving the fixed-nuclei, electronic eigenvalue problem
for a large number of molecular geometries, in order to extract the effective

potential of forces acting on the system nuclei, averaged over the instantaneous

positions of the fast-moving electrons. In the second, nuclear stage one uses this

effective adiabatic potential to solve the nuclear Schr€odinger equation (5.54), which
generates the amplitude functions of the nuclear probability distributions and the

molecular energy levels containing the kinetic energy of the slowly moving nuclei.

As we have already mentioned earlier in this section, the nonadiabatic effects

can be accounted for in the higher order of the perturbation theory in which the

kinetic energy of nuclei represents the perturbation to the unperturbed, electronic

Hamiltonian. Therefore, the electronic states {’r(qjQ)} span the complete basis of

the zeroth order solutions [see (5.57)], in terms of which the nonadiabatic states can

be expanded. Consider the dominating, first-order corrections to the adiabatic

electronic state ’r(qjQ) (see Sect. 5.1):

D’ð1Þ
r ðq jQÞ ¼

X
t 6¼r

c
ð1Þ
t;r ðQÞ ’tðq jQÞ: (5.58)

It follows from (5.12) that this expansion coefficient is given by the following ratio:

c
ð1Þ
t;r ðQÞ ¼ ’tðq Qj Þh T̂nðQÞ�� ��’rðq Qj Þiq

Ee
rðQÞ � Ee

t ðQÞ : (5.59)

The adiabatic approximation is thus adequate only, when the numerator in this

expression is small compared with the denominator. Indeed, the degeneracy or

near-degeneracy of electronic states (small value of the denominator) would

generate a large nonadiabatic correction thus contradicting the basic assumption

of the adiabatic approximation. The same would be true for a large value of the

numerator, signifying a strong nuclear-motion coupling between electronic states.

Therefore, the adiabatic approximation breaks down when for some molecular

geometries several electronic states exhibit very close values of the electronic

energy. This is the case in the familiar Jahn–Teller effect (removal of the electronic

degeneracy by spontaneous distortion of the molecule) and the related Renner

effect, due to the vibronic coupling between electronic and nuclear motions,

which have profound structural and spectroscopic implications. Let us recall that

the Jahn–Teller theorem states that in any nonlinear system there exists some

vibrational mode that removes the degeneracy of an electronically (orbitally)

degenerate state by lowering the system symmetry. The vibronic coupling between
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the degenerate electronic states of linear molecules and the deformation (bending)

vibrations of the nuclei are responsible for splitting these energy levels in the

Renner effect. A proper quantum mechanical description of these processes calls

for an explicit dependence of electronic states on nuclear coordinates in the

nonadiabatic molecular wave functions, which are customarily represented as linear

combinations of several adiabatic states [see (5.58)]. The nuclear motions, of the

paramount importance for molecular dynamics (e.g., Murrell et al. 1984; Murrell

and Bosanac 1989) and spectroscopy (e.g., Longuet-Higgins 1961), are not covered

by this book.

5.3 Orbital Approximation of Electronic Wave Functions

The quantum theory of electronic structure of molecules is based upon the one-
electron approach to electronic functions of many-electron systems, known as the

orbital approximation. It has greatly influenced the existing terminology of quan-

tum chemistry and the chemical concepts used in interpretations of diverse chemi-

cal processes. It ascribes to each electron in the system the one-electron function

called the spin orbital (SO, see Sect. 4.5).
Let us recall that the internal stationary state of the hydrogen-like atom discussed

in Chap. 4 has been described by a single SO, c(q) ¼ ’(r)z(s), given by the

product of the spatial function, the orbital ’(r), and one of the two admissible

spin functions z(s) ¼ {a(s) ¼ hsjai, b(s) ¼ hsjbi} of an electron [see (3.76)].

When the same orbital is used to generate two SO, thus describing a pair of

electrons with the opposite spin orientations, as in (3.76), one adopts the so-called

spin-restricted version of the orbital approximation. Accordingly, in the spin-
unrestricted description of such two spin-paired electrons, one uses different

orbitals for different spins:

fcþðqÞ � ’aðrÞaðsÞ; c�ðqÞ � ’bðrÞbðsÞg: (5.60)

Let us now examine the Slater (1929, 1931, 1960) method of constructing in the

orbital approximation the N-electron wave functions C(qjQ) � C(N), which auto-

matically satisfy the basic requirement of the Fermi–Dirac statistics, the Pauli

postulate of their antisymmetry with respect to an exchange of any two indistin-

guishable fermions. Should the electronic states be exactly independent, the

N-electron wave function would then be exactly given by the product of N ortho-

normal SO attributed to each particle,

CðNÞ ¼
YN
i¼1

ciðqiÞ �
YN
i¼1

ciðiÞ ¼ c1ð1Þc2ð2Þ . . .ciðiÞ . . .cjð jÞ . . .cNðNÞ: (5.61)
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Indeed, the N-electron probability distribution would then be given by the product

of distributions of independent one-electron events:

pðNÞ ¼ jCðNÞj2 ¼
YN
i¼1

ciðiÞj j2 ¼
YN
i¼1

piðiÞ: (5.62)

Obviously, due to a finite electric charge, electrons repel each other, so that this

independent particle approximation can at best be considered only as a first step in a

more adequate treatment, which recognizes the dependence (correlation) between

their instantaneous positions. Besides this Coulomb correlation the electron

probabilities must also reflect the constraints imposed by the antisymmetry princi-

ple of Pauli, thus additionally exhibiting the Fermi (exchange) correlation, which
severely conditions the simultaneous probability distributions of the spin-like

electrons in the physical space.

The product trial function of (5.61), which has been used as the variational wave

function in the Hartree (1928) method, clearly violates this antisymmetry require-

ment, since each electron is distinguished by the identity of the SO to which it

has been individually ascribed. Thus, the permutation P̂ði; jÞ of electrons i and j, of
exchanging the wave function arguments qi and qj, instead of changing only the

sign ofC(N) transforms it into an entirely different function, in which electrons are

attributed to different SO:

P̂ði; jÞCðNÞ ¼ c1ð1Þc2ð2Þ . . .cjð iÞ . . .ciðjÞ . . .cNðNÞ 6¼ �CðNÞ: (5.63)

This shortcoming can be remedied by the appropriate antisymmetrization oper-

ation Â performed on the product function of (5.61). It is effected by combining all

product functions obtained by permuting all N electrons between all N occupied

SO. Each permutation P is now identified by the list of electrons

lðPÞ ¼ fliðPÞg ¼ ½l1ðPÞ; l2ðPÞ; . . . ; lNðPÞ�; liðPÞ 2 ð1; 2; . . . ;NÞ;

attributed to orbitals ci in the ordered list {ci} ¼ (c1, c2, . . ., cN). Thus, the

permutation l(P) ¼ (4, 2, . . ., 1) symbolizes the product function c1(4) c2(2) . . .
cN(1), etc. One could alternatively identify the current permutation P by the list of
orbitals {cj(P)}, identified by their labels

kðPÞ ¼ fkjðPÞg ¼ ½k1ðPÞ; k2ðPÞ; . . . ; kNðPÞ�; kjðPÞ 2 ð1; 2; . . . ;NÞ;

which are attributed to the ordered list of electrons {j} ¼ (1, 2, . . ., N). Thus, the
permutation k(P) ¼ (4, 2, . . ., 1) stands for the product function c4(1) c2(2) . . .
c1(N).

For the chosen type of permuting the products of SO, one then introduces the

appropriate sign convention for each of N! permutations in the antisymmetrized

combination. In order to enforce the change of sign of the wave function, when the
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current permutation is obtained by an odd number of elementary replacements of

pairs of electrons in the ordered permutation P0 ¼ (1, 2, . . ., N) of (5.61), one
introduces the permutation parity p(P), which counts the number of such pair

exchanges required to bring the current permutation P to the initial permutation

P0, with p(P0) ¼ 0, and puts the sign (�1)p(P) before the associated product

function.

The antisymmetric combination of such N! product functions corresponding to

either all permutations of electrons among the ordered list of SO, or all

permutations of SO among the ordered list of electrons, thus determines the Slater

determinant:

CAðNÞ ¼ ÂCðNÞ ¼ 1ffiffiffiffiffi
N!

p
X
P

ð�1ÞpðPÞc1 l1ðPÞð Þ c2 l2ðPÞð Þ . . .cN lNðPÞð Þ

¼ 1ffiffiffiffiffi
N!

p
X
P

ð�1ÞpðPÞck1ðPÞð1Þck2ðPÞð2Þ . . .ckNðPÞðNÞ

¼ 1ffiffiffiffiffi
N!

p

c1ð1Þ c1ð2Þ ::::::: c1ðNÞ
c2ð1Þ c2ð2Þ ::::::: c2ðNÞ
::::::: ::::::: ::::::: :::::::

cNð1Þ cNð2Þ ::::::: cNðNÞ

���������

���������
� jc1c2 . . .cNj � detðc1c2 . . .cNÞ: (5.64)

Here, the constant before the determinant assures the normalization for the ortho-

normal set of SO:
Ð
c

i ðqÞcjðqÞ dq ¼ i j jh i ¼ di;j. Since exchanging two electrons

amounts to the permutation of two columns in this determinantal wave function, the

correct result of a change of sign ofCA(N) is obtained, P̂ði; jÞCAðNÞ ¼ �CAðNÞ, as
indeed required by the Pauli antisymmetry postulate for fermions. One also

observes that this form of wave function automatically satisfies the Pauli exclusion

principle that two electrons cannot be described by identical SO. More specifically,

should this be the case, the two rows in the Slater determinant would then be

identical, thus automatically implying CA(N) ¼ 0.

A more subtle implication also follows, when two spin-like electrons near-

coalesce in the same position, when qi ffi qj. This limiting proximity of two elec-

trons exhibiting the same spin orientation gives rise to two identical columns in

CA(N), thus again predictingCAðNÞ ffi 0. In other words, the probability of such an

event becomes very small indeed. This implies that spin-like electrons are statisti-

cally correlated, avoiding nearby positions in space. This effect is called the Fermi
or exchange correlation between electrons. It should be emphasized that no such

restrictions on the instantaneous positions of electrons intervene for the electrons

with opposite spins, since then spatial coalescence of two electrons does not imply

equality of their position-spin variables: qi ¼ ðr; "Þ 6¼ qj ¼ ðr; #Þ. Therefore,

electrons with different orientations of their spins exhibit only the Coulomb corre-

lation, resulting from their electric charge, while the movements of the spin-like

electrons are influenced by both the Fermi and Coulomb correlations.
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Thus, in the orbital approximation of the Slater determinant (5.64), the spin-like

electrons are not independent, being already Fermi correlated by the exchange

symmetry of the electronic wave function. It should be emphasized, however,

that this variational wave function ignores completely the Coulomb correlation of

all electrons. Therefore, the latter effect should be relatively more important in

interactions between electrons exhibiting different spin states, since the spin-like

electrons have already been Fermi correlated. It could be also expected that

accounting for this missing effect within the spin-restricted approach should most

influence the simultaneous probabilities of two electrons occupying the same

orbital, the movements of which are confined to the same part of space, probed

by the square of their common spatial function (orbital).

It should be observed that the correct symmetry of the analogous orbital wave

function for the set of N identical bosons would call for the related symmetrization

operation Ŝ performed on the product wave function:

CSðNÞ ¼ ŜCðNÞ ¼ 1ffiffiffiffiffi
N!

p
X
P

c1½l1ðPÞ�c2½l2ðPÞ� . . .cN½lNðPÞ�

¼ 1ffiffiffiffiffi
N!

p
X
P

ck1ðPÞð1Þck2ðPÞð2Þ . . .ckNðPÞðNÞ: (5.65)

Indeed, this symmetrical combination of the permuted product functions satisfies

the symmetry postulate for bosons, P̂ði; jÞCSðNÞ ¼ CSðNÞ, since such an operation

only exchanges two product functions in the sum of all N! terms of CS(N).
It should be realized that the set c of singly occupied SO defining the Slater

determinant is not unique. Indeed, any unitary transformation c0 ¼ cT, TT{ ¼ I,

which preserves the orbital orthonormality, replaces the rows {ci} of the original

determinant (5.64), CA ¼ det(c), with their combinations {ck
0 ¼ ∑jcjTj,k} in the

transformed determinant CA
0 ¼ det(c0). It thus follows from the elementary

properties of determinants that these two functions are identical: CA
0 ¼ CA. The

two sets of SO which define them are called the equivalent orbitals.
One thus encounters various types of molecular orbitals (MO) in the theory of

electronic structure, selected for their numerical or interpretative convenience. For

example, in the two most popular computational methods, formulated within the

Hartree–Fock (HF) (Fock 1930) and Kohn–Sham (KS) (Kohn and Sham 1965)

theories, the two canonical sets of orbitals are introduced, which are delocalized

throughout the whole molecule and reflect the system spatial symmetry. They

provide a useful orbital picture of the spectroscopic and electron ionization phe-

nomena, satisfying important theorems linking their energies and decay behavior

with the molecular ionization potentials. The Natural Orbitals (NO) of the Config-
uration Interaction (CI) theory similarly generate a compact representation of the

Coulomb correlation effects. Finally, the Localized Orbitals (LO), describing

the diatomic chemical bonds and lone electronic pairs, are useful in providing the

orbital interpretations of the near-additivity of several molecular properties and in

explaining the remarkable invariance of the given type of s bonds in different
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molecular environments. It should be also noticed that the very criteria for the

orbital localization are not unique either, so that a variety of alternative sets of the

physically equivalent LO have been reported in scientific literature (e.g., Boys and

Foster 1960; Edmiston and Ruedenberg 1963), which generate the same determi-

nantal wave function of the molecular system as a whole.

The orbital approximation provides a firm basis for the classification and under-

standing of electronic states and configurations in atomic and molecular systems.

Since to a good approximation the length of the resultant spin S of all electrons and

its z-component Sz are sharply defined simultaneously with the system electronic

energy Ee, the electronic wave functions are required to be eigenfunctions of the

associated quantum mechanical operators Ŝ
2
and Ŝz, which commute with the

electronic Hamiltonian. In the spin-unrestricted form the Slater determinant does

not generally satisfy this requirement, while the spin-restricted functions

CAðN ¼ 2pÞ ¼ ’þ
1 ’

�
1 ’

þ
2 ’

�
2 . . .’þ

p ’
�
p

��� ���; (5.66)

CAðN ¼ 2pþ qÞ ¼ ’þ
1 ’

�
1 ’

þ
2 ’

�
2 :::’

þ
p ’

�
p ’

þ
pþ1’

þ
pþ2:::’

þ
pþq

��� ���; (5.67)

are eigenfunctions of these two resultant-spin operators, corresponding to the

quantum numbers S and MS determining the associated eigenvalues: jSj2 ¼
S(S þ1)�h2 and Sz ¼ MS�h, MS ¼ �S, �S + 1, . . ., S �1, S. Hence, the state spin-

multiplicity 2S + 1 determines the overall degeneracy of the electronic state with

respect to alternative orientations of the resultant spin. For example, the

multiplicities of the representative wave functions of (5.66) and (5.67), which

correspond to S ¼ 0 and S ¼ q/2, respectively, are 1 and q + 1.

The occupation numbers of shells and orbitals define the system electron
configuration. When the (doubly occupied) spin-restricted orbitals of (5.66) involve

all symmetry-related (degenerate) orbitals of each electronic subshell, this wave

function is said to describe the closed-shell state of the molecule. Accordingly the

open-shell state is either characterized by the singly occupied MO, as in (5.67), or it

involves doubly occupied subset of the symmetry-related (degenerate) orbitals of

the occupied electronic subshell(s).

5.4 Matrix Elements of Electronic Hamiltonian

in Orbital Approximation

In order to apply the Slater determinants in the variational determination of the

approximate electronic states, we have to derive the associated expression for the

expectation value of the system electronic energy in the orbital approximation.

Moreover, when mixing different determinantal wave functions in a more accurate

CI variant, capable of accounting for the Coulomb correlation between electrons,
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one needs the related expressions for the matrix elements of the electronic Hamil-

tonian in such a basis set of N-electron functions. A short derivation of these

missing elements in the independent electron approximation is the main goal of

this section.

Let us first verify the normalization constant of the Slater determinant.

Expanding the CA and CA
* determinants in the normalization integral gives:

hCAjCAi ¼
ð
. . .

ð
C


AðqÞCAðqÞ dq

¼ 1

N!

X
P

X
P0

ð�1ÞpðPÞþpðP0Þ YN
j¼1

kjðPÞ
�� kjðP0Þ� �

: (5.68)

Therefore, for the orthonormal orbitals {ck(q) ¼ ’k(r)zk(s) � hqjki}, when hkjli ¼
dk,l, one obtains a nonvanishing contribution in this sum only when for all electrons

kj(P) ¼ kj(P
0), i.e., when the lists of orbitals {kj(P)} and {kj(P

0)} in permutations P
and P0 are identical, i.e., when P ¼ P0, and hence

hCAjCAi ¼ 1

N!

X
P

ð�1Þ2pðPÞ ¼ N!

N!
¼ 1;

where we have recognized that there are N! distinct permutations involved in the

Slater determinant of (5.64).

Let us now separately combine all one- and two-electron contributions in the

electronic Hamiltonian of (5.51):

Ĥeðq;QÞ ¼
XN
i¼1

ĥðiÞ þ
XN�1

i¼1

XN
j¼iþ1

gði; jÞ � F̂ðq;QÞ þ ĜðqÞ

� F̂ðNÞ þ ĜðNÞ; (5.69)

here, the one-electron Hamiltonian ĥðiÞ groups the operators of the kinetic energy
of ith electron and its attraction energy to all nuclei in their specified, fixed

positions, which generate the external potential v(i) (5.51),

ĥðiÞ ¼ � 1

2
Di þ vðiÞ; (5.70)

while the multiplicative operator gði; jÞ corresponds to the Coulomb repulsion

between the indicated pair of electrons. Thus, the expectation value of the

5.4 Matrix Elements of Electronic Hamiltonian in Orbital Approximation 135



electronic energy in the state (5.64) is determined by the trivial nuclear-repulsion

contribution and the sums of one- and two-electron contributions in the N-electron
system:

Eeh iCA
¼ CA

�� Ĥe

��CA

� � ¼ CA

�� Ĥe��CA

D E
þ Vnn � Eeh iCA

þ Vnn;

Eeh iCA
¼ CA

��� F̂���CA

D E
þ CA

�� Ĝ��CA

D E
� F̂

D E
CA

þ Ĝ
D E

CA

: (5.71)

Consider first the one-electron energy Fh iCA
. Expanding the two determinants as

in (5.68) gives:

Fh iCA
¼ 1

N!

X
P

X
P0

ð�1ÞpðPÞþpðP0ÞXN
i¼1

kiðPÞ
�� ĥðiÞ��kiðP0Þ� �Y

j 6¼i

kjðPÞ
��kjðP0Þ� �

: (5.72)

Again, a nonvanishing product of the overlap integrals in this expression can appear

only when the two permutations are identical: P ¼ P0. One also realizes that due to
indistinguishability of N electrons in the Slater determinant, each of them gives the

same contribution as the representative electron “1” so that the above expression

can be further simplified:

Fh iCA
¼ N

N!

X
P

ð�1Þ2pðPÞ k1ðPÞ
�� ĥð1Þ��k1ðPÞ� � ¼ 1

ðN � 1Þ!
X
P

�hk1ðPÞ;k1ðPÞ: (5.73)

The above summation over permutations can be replaced by the equivalent sum-

mation over N different choices of spin orbital ck1 describing electron 1, which

defines the matrix elements f�hk1;k1g in the SO basis. These one-electron integrals

should be then multiplied by their multiplicity in all permutations P, equal to the

number (N � 1)! of all permutations of the remaining (N � 1) occupied SO {kj 6¼
k1} among (N � 1) electrons (2, 3, . . ., N). Hence,

Fh iCA
¼ ðN � 1Þ!

ðN � 1Þ!
XN
k¼1

�hk;k ¼
XN
k¼1

�hk;k: (5.74)

One similarly arrives at the corresponding expression for the two-electron
energy Gh iCA

. Expanding the determinantal wave functions and taking into account

the indistinguishability of electrons give:
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Gh iCA
¼ 1

N!

X
P

X
P0

ð�1ÞpðPÞþpðP0Þ XN�1

i¼1

XN
j¼iþ1

kiðPÞkjðPÞ
�� gði; jÞjkiðP0ÞkjðP0Þ� �

	
Y
l6¼ði;jÞ

klðPÞ j klðP0Þh i

¼ 1

2ðN � 2Þ!
X
P

X
P0

ð�1ÞpðPÞþpðP0Þ
k1ðPÞk2ðPÞ j gð1; 2Þjk1ðP0Þk2ðP0Þh i

	
Y

l6¼ð1;2Þ
klðPÞ j klðP0Þh i;

where we have recognized that each of the N(N � 1)/2 electronic pairs gives the

same contribution as the representative pair (1, 2). A subsequent examination of

the overlap integrals in the product indicates that all SO for remaining electrons

l 6¼ (1, 2) in permutations P and P0 must be identical for electrons (3, 4, . . ., N).
Therefore, the nonvanishing contributions arise only when the two permutations are

identical, P ¼ P0, or when they differ only in orbitals describing electrons 1 and 2:

P ¼ P̂ð1; 2ÞP0. In the former case, the parities of both permutations are equal,

giving rise to factor (�1)p(P)+p(P
0) ¼ (�1)2p(P) ¼ 1, while in the latter case they

differ by one exchange of two electrons, so that (�1)p(P)+p(P
0) ¼ �1. Moreover, for

each choice of the two SO describing electrons 1 and 2, we thus have (N � 2)!

permutations of the remaining (N � 2) orbitals {kl 6¼ (k1, k2)} among (N � 2)

electrons (3, 4, . . ., N). Therefore, the preceding expression can be expressed in

terms of contributions from two-electron integrals:

Gh iCA
¼ ðN�2Þ!

2ðN�2Þ!
XN
k¼1

XN
l¼1

�
kð1Þlð2Þ jgð1;2Þjkð1Þlð2Þh i� kð1Þlð2Þ jgð1;2Þjlð1Þkð2Þh i�

� 1

2

XN
k¼1

XN
l¼1

�
klh jg klj i� klh jg lkj i� � 1

2

XN
k¼1

XN
l¼1

�ðkkjllÞ�ðkljlkÞ�

� 1

2

XN
k¼1

XN
l¼1

�Jk;l� �Kk;l

� �¼XN�1

k¼1

XN
l¼kþ1

�Jk;l� �Kk;l

� �
: (5.75)

The two-electron integrals for the specified pair of SO describing the states of the

representative electrons “1” and “2,”

�Jk;l½ck;cl� ¼ kð1Þlð2Þ j gð1; 2Þjkð1Þlð2Þh i ¼
ðð

ckð1Þj j2gð1; 2Þ c2
l ð1Þ

�� ��2dq1dq2
� �Jk;l;

�Kk;l½ck;cl� ¼ kð1Þlð2Þ j gð1; 2Þjlð1Þkð2Þh i
¼

ðð
c

kð1Þclð1Þgð1; 2Þc


l ð2Þckð2Þdq1dq2 � �Kk;l; (5.76)
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are called the Coulomb and exchange integrals, respectively. The former is indeed

seen to measure the Coulomb interaction between the charge distributions of

electrons occupying SO ck and cl, respectively.

Since two-electron “integrations” involve summation over spin variables, the

exchange integrals identically vanish for the two electrons with opposite spins, due

to orthogonality of their spin functions (3.76),

�Kk;l½ck;cl� ¼
ðð

’

kðr1Þ’lðr1Þgðr1; r2Þ’


l ðr2Þ’kðr2Þdr1dr2
� � X

s1

z
kðs1Þzlðs1Þ
" #

	
X
s2

z
l ðs2Þzkðs2Þ
" #

¼ Kk;l½’k; ’l�dzk ;zl � Kk;ldzk ;zl ; (5.77)

where Kk,l stands for the exchange integral defined by the specified pair of the

spatial functions (orbitals).
It should be observed that no such restriction intervenes in calculating the

Coulomb integrals:

�Jk;l½ck;cl� ¼
ðð

’kðr1Þj j2gðr1; r2Þ ’2
l ðr2Þ

�� ��2dr1dr2
� � X

s1

zkðs1Þj j2
" # X

s2

zlðs2Þj j2
" #

¼ Jk;l½’k; ’l� � Jk;l; (5.78)

where the sums in the square brackets are both equal to 1 by the normalization

condition of the spin states [see (3.76)]:

hajai ¼
X
s

hajsihsjai ¼
X
s

jaðsÞj2 ¼ hbjbi ¼
X
s

hbjsihsjbi

¼
X
s

jbðsÞj2 ¼ 1: (5.79)

It also follows from (5.77) and (5.78) that Jk,k ¼ Kk,k, Jk,l ¼ Jl,k, and Kk,l ¼ Kl,k,

since the value of the electron repulsion energy must be independent of the

subjectively assigned labels of electrons. This justifies the final expression in

(5.75), involving only the off-diagonal terms in the double summation ∑k < l .

The same is true for the one-electron integrals �hk;k � �hk;k½ck�:

�hk;k½ck� ¼
ð
c

kðqÞ ĥðrÞckðqÞ dq ¼

ð
’

kðrÞ ĥðrÞ’kðrÞ dr

� � X
s

zkðsÞj j2
" #

¼ hk;k½’k� � hk;k: (5.80)
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For example, for the wave function (5.66), one obtains the following functional

for the expectation value of the electronic energy:

Eeh iCA
¼ 2

Xp
i¼1

hi;i þ
Xp
i¼1

Xp
j¼1

ð2Ji;j � Ki; jÞ: (5.81)

Clearly, its numerical value depends on the shapes of the p doubly occupied orbitals
defining the associated one- and two-electron integrals. In the closed-shell ground

state configuration [1s2] of the helium atom, one thus finds

EeðHeÞh iC0
¼ 2h1s;1s þ J1s;1s; (5.82)

while for the ground state of beryllium, defined by configuration [1s22s2], one
predicts

EeðBeÞh iC0
¼ 2h1s;1sþ2h2s;2sþJ1s;1sþJ2s;2sþ4J1s;2s � 2K1s;2s: (5.83)

The same result can be heuristically derived by summing the elementary one-
electron energies of all N electrons, the expectation values of the Hamiltonian

(5.70), and the repulsion energies in each of the N(N � 1)/2 different electronic

pairs. Indeed, the average interaction energy between two (indistinguishable)

electrons (1, 2) occupying spin orbitals ci and cj is given by the expectation value

of the g(1, 2) in the Slater determinant CA(2) ¼ |cicj| ¼ 2�1/2[ci(1)cj(2) �
ci(2)cj(1)]:

hCAð2Þjgð1; 2ÞjCAð2Þi ¼ �Ji;j � �Ki;j ¼ Ji;j; for different spin states

Ji;j � Ki;j; for identical spin states

�
:

Thus, for the two spin-paired electrons in He atom, when �Ki;j ¼ 0, one reproduces

the result of (5.82). It can be also easily verified that for beryllium atom in the

ground state CA(4) ¼ |1s+1s�2s+2s�|, one recovers (5.83).
The expectation value CA

�� Ĥe��CA

D E
¼ C0

�� Ĥe��C0

D E
(5.71) represents a par-

ticular, ground state case of a general diagonal matrix element of the electronic

Hamiltonian, Cn

�� Ĥe��Cn

D E
, for any antisymmetric electronic state (Slater deter-

minant) Cn specified by alternative choices of N occupied, orthonormal SO. The

same energy formulas also apply to excited electron configurations Cn>0 obtained

by replacing some of the SO occupied in C0, by the virtual orbitals, unoccupied in

C0. Thus, given the modified list of SO occupied in Cn, occd.[n] � [n], a general
formula for the expectation value of the electronic energy remains unaffected:

Eeh iCn
¼ Cn

�� Ĥe��Cn

D E
¼
X½n�
k

�hk;k þ 1

2

X½n�
k

X½n�
l

�Jk;l � �Kk;l

� �

�
X½n�
k

�
kh jĥ kj i þ

X½n�
l

klh jg kl� lkj i�; hCnjCni ¼
Y½n�
i

i j ih i ¼ 1: (5.84)
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Finally, let us examine the off-diagonal matrix elements Cn

�� Ĥe��Cn0
D E

between two electron configurations, differing in the list of the occupied SO. Due

to the orthogonality of SO such configurations can be shown to be also automati-

cally orthogonal: Cn j Cn0h i ¼ 0 [see (5.68)]. The sets of the occupied SO in these

two states may still exhibit some common SO, be it in different positions (rows) of

two determinantal functions. Therefore, for definiteness, we assume that by appro-

priate exchange of rows in one of these two Slater determinants, the two

configurations have been brought to the maximum coincidence form, in which the

rows of the common SO of both configurations appear in the same positions in both

determinants. We already know from the properties of the Slater determinant that

such exchanges can at best change the sign of the wave function, which can be

diagnosed from the known number of the row permutations in the original Slater

determinant required for reaching this maximum coincidence. This sign can then be

used to multiply the matrix element obtained from the maximum coincidence rules.

There are three general types of differences between such prearranged lists of SO

in both Slater determinants, giving rise to the associated expressions for the matrix

element of the electronic Hamiltonian. They can be derived in a way analogous

to that used to derive the diagonal element, by expanding both determinants in terms

of the permuted products of SO, applying the SO orthonormality relations, and

recognizing the indistinguishability of electrons. The relevant cases are summarized

by the following Slater–Condon rules (Slater 1929; Condon 1930):

1. ConfigurationsCn andCn0 differ only in a single SO, with cp of the former being

replaced by cr in the latter, as a result of the electron excitation cp ! cr,

�
Cn

�� Ĥe��Cn0
� ¼ ph jĥ rj i þ

X½n�
j

pjh jg rj� jrj i;

hCnjCn0 i ¼ p j rh i
Y½n�
i6¼p

i j ih i ¼ 0; (5.85)

2. Configurations Cn and Cn0 differ only in two SO, as a result of the double

excitation (cp ! cr, cq ! cs) or (cp, cq) ! (cr, cs),�
Cn

�� Ĥe��Cn0
� ¼ pqh jg rs� srj i;

hCnjCn0 i ¼ p j rh i q jsh i
Y½n�

i 6¼ðp;qÞ
i j ih i ¼ 0: (5.86)

3. Configurations Cn and Cn0 differ in more than two SO, thus reflecting the triple

or higher excitations,

�
Cn

�� Ĥe��Cn0
� ¼ 0; hCnjCn0 i ¼ 0: (5.87)
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To summarize, the determinantal functions corresponding to the system ground

and excited configurations, in which electrons have been excited from some

C0-occupied to the corresponding C0-virtual SO of the molecule, form the ortho-

normal basis of N-electron functions. The Slater–Condon rules allow one to express

their average energies and the coupling matrix elements between them in terms of

the elementary one- and two-electron integrals involving SO, the elementary one-
electron functions of the orbital approximation.

5.5 Example: Helium Atom

As an illustration we shall now apply the approximate methods to estimate the

ground state energy of the helium atom, when its two electrons occupy the lowest

orbital 1s, from the known solutions for the one-electron atom [(4.58) and (4.62)].

The a.u. are used throughout.

5.5.1 Perturbation Approximation

The internal (Coulomb) Hamiltonian of two electrons moving in the field of the

helium nucleus (Z ¼ 2) determines the perturbed Hamiltonian (a.u.),

Ĥðr1; r2Þ ¼ Ĥ
0ðr1; r2Þ þ ĥðr1; r2Þ; ĥðr1; r2Þ ¼ gð1; 2Þ ¼ jr1 � r2j�1 ¼ r1;2

�1;

Ĥ
0ðr1; r2Þ ¼ Ĥ1ðr1Þ þ Ĥ2ðr2Þ; ĤiðriÞ ¼ � 1

2
Di � Z

ri
; i ¼ 1; 2;

(5.88)

with the electron repulsion operator representing the perturbation and the separable
Hamiltonian Ĥ0ðr1; r2Þ given by the sum of the hydrogen-like operators fĤiðriÞg
of two electrons determining the unperturbed Hamiltonian. This assumption thus

defines the unperturbed solutions:

E
ð0Þ
0 ¼ �Z2 ¼ �4; Cð0Þ

0 ðr1; r2Þ ¼ c1sðr1Þc1sðr2Þ ¼
Z3

p
exp½�Zðr1 þ r2Þ�; (5.89)

since the hydrogen-like solutions for each electron read:

c1sðriÞ ¼
ffiffiffiffiffi
Z3

p

r
exp �Zrið Þ; ĤiðriÞc1sðriÞ ¼ � Z2

2
c1sðriÞ; i ¼ 1; 2: (5.90)

This energy estimate should be compared with the experimental value E0 ¼
�2.9037.

The first correction to this crude estimate [see (5.11)] determines the expectation

value in state Cð0Þ
0 of the repulsion energy operator (perturbation):
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DEð1Þ
0 ¼ Cð0Þ

0

D ���ĥ Cð0Þ
0

��� E
¼

ðð
c

1sðr1Þc


1sðr2Þ
1

r1;2
c1sðr1Þc1sðr2Þ dr1 dr2: (5.91)

To calculate this integral we first assume the spherical coordinates of electron “1”

relative to the nucleus, r1 ¼ (r1, #1, ’1), adopt the relative spherical coordinates of

electron “2” with respect to electron “1,” r1,2 ¼ r2 � r1 ¼ (r1,2, y, f), and

use Carnot’s cosine formula to express the inter-electron separation:

r1;2 ¼ ðr21 þ r22 � 2r1r2 cos yÞ1=2: (5.92)

Hence, the first-order correction of (5.91) reads:

DEð1Þ
0 ¼ Z6

p2

ðp
0

sin#1 d#1

ð2p
0

d’1

0
@

1
A ð2p

0

df

0
@

1
A

	
ð1
0

r21e
�2Zr1

ð1
0

r22e
�2Zr2

ðp
0

ðr21 þ r22 � 2r1r2 cos yÞ�1=2
sin y dy dr1dr2

0
@

1
A:

(5.93)

We then substitute x ¼ cosy:

ðp
0

ðr21 þ r22 � 2r1r2 cos yÞ�1=2
sin y dy ¼

ð1
�1

ðr21 þ r22 � 2r1r2xÞ�1=2
dx

¼ � 1

r1r2

ðr1;2ðx¼1Þ

r1;2ðx¼�1Þ

dr1;2 ¼
2
r1
; r1 > r2

2
r2
; r1 < r2

(
:

(5.94)

Using this result and typical integral
Ð1
0

yn expð�ayÞdy ¼ n!=anþ1in (5.93) gives:

DEð1Þ
0 ¼ 16Z6

ð1
0

r21e
�2Zr1

1

r1

ðr1
0

r22e
�2Zr2dr2 þ

ð1
r1

r2e
�2Zr2dr2

0
@

1
A dr1

¼ 4Z3

ð1
0

r21e
�2Zr1

1

r1
� Z þ 1

r1

� �
e�2Zr1

� �
dr1 ¼ 5Z

8
: (5.95)

Thus, in the first order of the perturbation theory, one estimates the ground state

energy of the helium atom as being much closer to the experimental value,

E
ð1Þ
0 ¼ �Z2 þ 5Z=8 ¼ �2:75: (5.96)
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5.5.2 Variational Estimates

The simplest trial wave function of this two-electron system in the spin-restricted

(R) approximation is given by the product function of (5.89), when one replaces Z
with an effective nuclear charge z, a nonlinear variational parameter,

Fðr1; r2; zÞ ¼ z3

p
exp½�zðr1 þ r2Þ� ¼ c1sðr1; zÞc1sðr2; zÞ � FRðr1; r2; zÞ; (5.97)

where the normalized trial orbital c1sðri; zÞ satisfies the energy eigenvalue equation
for the one-electron atom described by Hamiltonian Ĥðr; zÞ ¼ � 1

2
D� z

r ,

c1sðri; zÞ ¼
ffiffiffiffiffi
z3

p

s
exp �z rið Þ; Ĥðri; zÞc1sðri; zÞ ¼ � z2

2
c1sðri; zÞ; i¼ 1; 2: (5.98)

Since each electron in the helium atom experiences a diminished attraction com-

pared with that in He+, due to a partial screening of the nucleus by the other

electron, one expects the optimum value of this variational parameter to be in the

range 1 < z < 2.

In order to express the average electronic energy, the expectation value of the

Hamiltonian Ĥðr1; r2Þ (5.88), we first express the latter in terms of the effective

one-electron Hamiltonians fĤðri; zÞg:

Ĥðr1; r2Þ ¼ Ĥðr1; zÞ þ Ĥðr2; zÞ þ ðz� ZÞðr�1
1 þ r�1

2 Þ þ r�1
12 : (5.99)

Hence, using the eigenvalues of (5.98) and the electron repulsion energy of (5.95)

for Z ¼ z, gives

EðzÞ ¼
ðð

F
ðr1; r2; zÞĤðr1; r2ÞFðr1; r2; zÞ dr1dr2

¼ z6

p2

ðð
e�2zðr1þr2Þ½�z2 þ ðz� ZÞðr�1

1 þ r�1
2 Þ þ r�1

12 � dr1dr2
¼ �z2 þ 2ðz� ZÞzþ 5z=8 ¼ z2 � 27z=8: (5.100)

The optimum value of the effective nuclear charge is then determined by the

variational condition:

dEðzÞ
dz

����
zopt:

¼ 2zopt: � 27=8 ¼ 0 or zopt: ¼ 27=16 ffi 1:69 < Z: (5.101)

It gives the following estimate of the helium ground state energy (Hylleraas 1828):

5.5 Example: Helium Atom 143



Eðzopt:Þ ¼ �ð27=16Þ2 ffi �2:848>E0 ¼ �2:9037: (5.102)

It should be realized that the full electronic wave function for the helium atom in

the spin-restricted variant also includes the spin singlet function of two electrons,

C½ðr1;s1Þ; ðr2; s2Þ� ¼ CRðq1; q2Þ

¼ FRðr1; r2Þ 1ffiffiffi
2

p ½aðs1Þbðs2Þ � bðs1Þaðs2Þ�: (5.103)

In the spin-unrestricted (U) approximation, using different orbitals for different

spins, the spatial function depends on two nonlinear variational parameters:

FUðr1; r2; z1; z2Þ ¼
1ffiffiffi
2

p ½c1sðr1; z1Þc1s0 ðr2; z2Þ þ c1s0 ðr1; z2Þc1sðr2; z1Þ�: (5.104)

Its symmetrization with respect to the exchange of the position vectors of two

electrons is required by the Pauli exclusion principle. The product of the spatial

(symmetric) wave function and the singlet (antisymmetric) spin function is then

antisymmetric with respect to the permutation of two electrons. The optimum

values of these exponents of the two 1s orbitals, z1
opt. ¼ 1.19 and z2

opt. ¼ 2.18,

give E(z1
opt., z2

opt.) ¼ �2.876 < E(zopt.) thus offering a better approximation

(variational flexibility) of the ground state wave function compared with the spin-

restricted analog.

Indeed, it follows from (5.104) that two electrons in the spin-unrestricted state

correlate (radially) their movements around the nucleus: when one electron

occupies a more compact orbital, thus being on average closer to the nucleus, the

other electron occupies the more diffuse orbital, thus exhibiting larger average

separation from the nucleus. Therefore, the average inter-electron distance in the

spin unrestricted state is expected to be larger compared with that in the spin-

restricted case, in which both electrons are kept within confines of the same orbital.

5.6 Idea of a Pseudopotential

As we have already observed at the end of Sect. 5.1.2, the atomic cores are

predicted to remain largely inactive (invariant) in the chemical processes of the

bond forming and/or bond breaking. Indeed, it directly follows from the AO-mixing

criteria that the system chemical bonds must be shaped by the valence shells of

constituent atoms. This observation is particularly important for heavy many-
electron atoms, in which the number of the inner-shell electrons (n) is much larger

than the complementary number of the chemically active, valence shell electrons:

N � n � n. It is thus tempting to formulate the chemical bond theory focused

solely on the quantum states of the valence electrons, since such a reduction of
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the problem gives rise to a significant conceptual and mathematical simplification

while still retaining all significant sources of the chemical binding in molecular

systems.

It is evident from the orthogonality relations between orbitals, which generate

the familiar nodal structure of valence orbitals in the regions of atomic cores, that

any change of the orbitals in one set affects the shapes of orbitals in the other set.

Therefore, such constraints appear to prevent any formulation of the “valence-only”

theory, in which the optimized valence orbitals satisfy the orthogonality constraints

to the “frozen” core orbitals. However, the Pauli antisymmetrization postulate for

fermions (Sect. 5.3) is automatically satisfied by the determinantal wave function,

no matter whether the orbitals defining the Slater determinant are mutually orthog-

onal or not. Thus, the requirement that the valence orbitals be orthogonal to the

core orbitals is not actually needed to satisfy the exclusion principle. The

pseudopotential theory makes use of this very property in designing the “valence-

only” theory of molecular electronic structure.

Achieving this goal calls for a nontrivial replacement of the valence core

orthogonality requirement by an equivalent theoretical concept, which turns out

to represent an additional (nonclassical) operator or the associated local potential

term in the effective Hamiltonian of the valence electron, called the pseudo-
potential (Hellmann 1935; Gombas 1967; Slater 1960, 1974; Szasz 1985). It

explicitly depends on the shapes and energies of the core orbitals. The pseudo-
orbitals, the eigenfunctions of this effective Hamiltonian, are determined as if the

core did not exist at all, its presence being felt exclusively through the pseudo-

potential. The lowest pseudoorbital exhibits no nodes in the atomic core regions and

generates the maximum probability density in the system valence shell.

The first attempt in this direction was made by Hellmann (Hn) (Hellmann 1935),

who introduced the very idea of replacing the orthogonality requirement by the

pseudopotential within the statistical Thomas–Fermi (TF) model (Thomas 1927;

Fermi 1928; Gombas 1949; March 1975). He also proposed the use in atomic and

molecular calculations of the model atomic potential for the valence electron, say

in Na atom, including the Coulomb attraction Vq(r) due to the core net charge

q ¼ Z � n and the model pseudopotential Vp(r):

VHnðrÞ ¼ VqðrÞ þ VpðrÞ ¼ � q

r
þ A

expð�krÞ
r

: (5.105)

Here, the adjustable parameters A and k are determined by fitting the predicted

eigenvalues of the associated effective Hamiltonian for the valence electron,

ĤHnðrÞ ¼ �ð1=2ÞDþ VHnðrÞ � Ĥval:
Na ð1Þ; (5.106)

to the atom experimental energy spectrum in the valence shell regime.

Notice that the pseudopotential part of this effective potential generates at small

distances from the nucleus the repulsive wall, which prevents the valence orbital

(nodeless in the core range) to assume large values in the region occupied by the
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inner-shell electrons. In other words, this repulsive barrier prevents the valence

electron from falling into the core, despite the lack of the core–valence orthogonal-

ity. Thus, in the pseudopotential approach, the usual geometrical constraints of the
orbital orthogonality are replaced by equivalent physical barriers preventing the

valence orbitals to collapse into the inner-shell region.

Hellmann has applied the same idea to atoms with many valence electrons. For

example, by determining the model potential of (5.105) to fit as accurately as

possible the valence energy spectrum of Mg+, containing a single valence electron,

one writes the valence-only Hamiltonian for the neutral atom, containing two

valence electrons, in the following form:

Ĥval:
Mg ð1; 2Þ ¼ ĤHnð1Þ þ ĤHnð2Þ þ 1=r12: (5.107)

The molecular applications, e.g., to Na2 ¼ NaA � NaB, is also valid. Since Na+

cores do not participate in this s bond, the effective Hamiltonian for the two valence

electrons in the molecular sodium can be simplified as follows:

Ĥval:
Na2

ð1; 2Þ ¼
X2
i¼1

� 1

2
Di þ VHnðriAÞ þ VHnðriBÞ

� �
þ 1

r12
; riX ¼ ri � RXj j: (5.108)

The pseudopotential method generates the exact “valence only” formalism for

atoms and molecules. It can be formulated either as a model (semiempirical)

procedure or as the ab initio theory in the spirit of the Phillips and Kleinman

(PK) (Phillips and Kleinman 1959, 1960) treatment, which defines the local
pseudopotential corresponding to the pseudopotential operator representing the

Pauli exclusion principle (core–valence orthogonality). The latter aspect will be

addressed in Sect. 6.1.5.

Having outlined the basic idea of the local pseudopotential, without attempting

at this stage to present the ab initio theory in a comprehensive way, let us complete

this section with just a short comment on some of the method’s most attractive

aspects. The effects of the exclusion principle and orbital orthogonality have been

shown to be exactly representable in the form of the associated effective local

pseudopotential. This localization of operators in the PK theory is very much in

spirit of that later used in the semiempirical methods of quantum chemistry and

in the modern DFT, to establish the effective Hamiltonian determining the KS

orbitals. The local pseudopotentials are more suitable for an analytical representa-

tion, in the form of model potentials, both semiempirical and those having ab

initio justifications as their background. It brings a deeper, physical understanding

of the core–valence separation problem. Indeed, the local pseudopotential has

permitted a plausible physical interpretation and opened the way to wide range of

applications and modeling. It has provided the causal picture of the quantum states

of valence electrons in atomic or molecular systems, as moving in the resultant

potential generated by atomic cores, including both their electrostatic potentials and

the “Pauli” term mimicking the valence–core orthogonality constraint.
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The pseudopotential theory was first applied in 1930 and 1940 to problems of the

solid state physics, to build up the quantum theory of metals, and then – starting

from 1960 – it has been developed as an alternative theory of atoms and molecules.

This conceptually appealing approach is mathematically coherent and elegant,

particularly in its ab initio formulation. Its conceptual simplicity, still combined

with remarkable accuracy, facilitates a subsequent modeling of atomic and molec-

ular phenomena. These models also include those derived from the ab initio theory.

A good exposition of the method origins and capabilities is given in the monograph

by Szasz (1985), the chief proponent of the molecular applications of the pseudo-

potential theory.
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