
Chapter 4

Hydrogen-Like Atom

Abstract As an illustration of the basic principles of the Schr€odinger wave mecha-

nics presented in the preceding chapter the bonded (stationary) states and the

corresponding energy levels of the one-electron (hydrogenic) atom are determined

analytically. First, the Hamiltonian of this two-particle, central-potential system is

separated into parts describing the free movement of the Center-of-Mass (CM) and

the internal motion of electron relative to nucleus, respectively. In the Cartesian

CM coordinates R ¼ (X, Y, Z) the eigenstates of the CM problem are the plane
waves representing the common eigenvectors with the operator of the system

overall momentum P. The separation of the spherical coordinates R ¼ (R, y, f)
allows one to uniquely specify the spherical-waves of the CM motion as simulta-

neous eigenvectors of the compatible attributes of the CM angular momentum L,
viz., the square of its length (L2) and the selected coordinate (Lz), thus express-

ing them as products of the associated spherical harmonic (angular part) and the

spherical Bessel function (radial part). The analogous separation of the internal
spherical coordinates r ¼ (r, #, ’) expresses the eigenvectors (orbitals) of the

relative-motion Hamiltonian as products of the angular functions representing the

simultaneous eigenfunctions of the compatible (commuting) observables l2 and lz
associated with the electron orbital angular momentum l, called the orbital spherical
harmonics (the associated Legendre polynomials), and the corresponding radial

functions (the Laguerre polynomials). Selected properties of these stationary states

and the atomic shell structure they determine are discussed, the relation to Bohr’s

model of the Old Quantum Theory is examined and the system of atomic units

(a.u.), convenient in molecular applications, is introduced.

4.1 Separation of Hamiltonian and Center-or-Mass Motion

The hydrogen-like atom consists of an electron of mass me in position re, which
exhibits the elementary negative charge �e, moving around the positively charged

nucleus +Ze of mass Mn in position Rn. It represents one of the very few prototype
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systems, the stationary states of which can be determined analytically by solving

the associated eigenvalue problem of the system Coulombic Hamiltonian.

It is convenient to separate the movement of the Center-of-Mass (CM) of this

two-particle system, M ¼ me þ Mn, with the coordinates R ¼ (mere þ MnRn)/M
and momentum P ¼ pe þ Pn, where pe and Pn denote the momenta of its two

constituent parts, from the internal motion described by the electron position rela-

tive to nucleus, r ¼ re � Rn, and the associated relative momentum p ¼ (Mnpe �
mePn)/M � mr ffi pe, where the system reduced mass m ¼ meMn/M ffi me, due to

the dominant mass of the heavy nucleus. This allows one to separate the

contributions due to these two sets of coordinates/momenta in the classical Hamil-

tonian function combining the kinetic energies of individual particles and the

potential energy due to their Coulomb interaction, V(r) ¼ �e2/r, which depends

only on the interparticle distance r ¼ |r|:

Hðre; pe;Rn;PnÞ ¼ 1

2me
p2e þ

1

2Mn
P2
n �

e2

r

¼ 1

2M
P2 þ 1

2m
p2 � VðrÞ

� �
¼ HCMðPÞ þ hðp; rÞ;

(4.1)

It should be observed that the CM movement is free (there is no potential of forces

acting on CM in HCM) so that P is conserved in time.

These additive contributions to the classical Hamiltonian function give rise

to the corresponding energy operators in the position representation [see (3.35)

and (3.37)]:

ĤðR; rÞ ¼ P̂
2ðRÞ
2M

þ p̂
2ðrÞ
2m

þ VðrÞ
� �

¼ ��h2

2M
DR þ ��h2

2m
Dþ VðrÞ

� �

� ĤCMðRÞ þ ĥðrÞ: (4.2)

Here, the separate Hamiltonians ĤCMðRÞ and ĥðrÞ, respectively, denote the energy

operators of the free movement of CM and of the relative motion of the electron in

the field of its nuclear attractor.

Therefore, the stationary Schr€odinger equation (3.104)

ĤðR; rÞFðR; rÞ ¼ EFðR; rÞ; (4.3a)

where the amplitude wave function is given by the product

FðR; rÞ ¼ CCMðRÞcðrÞ (4.3b)

which separates the two sets of coordinates, reduces into two simpler eigenvalue

problems for the two additive energy components:

ĤCMðRÞCCMðRÞ ¼ ECMCCMðRÞ and ĥðrÞcðrÞ ¼ ecðrÞ: (4.4)
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The system total energy is then given by the sum of their eigenvalues,

E ¼ ECM þ e; (4.3c)

measuring the sharply defined kinetic energy ECM of the free motion of the system

as a whole, and the internal energy e of the relative motion of electron around

nucleus.

Obviously, in the Cartesian coordinate system R ¼ (X, Y, Z) the kinetic energy
operator ĤCMðRÞ commutes with the system overall momentum operator P̂ðRÞ,
since the square of an operator commutes with the operator itself. Therefore, the

solutions of the first of these two Schr€odinger equations can be sought as

eigenfunctions of P̂ðRÞ, i.e., as the states corresponding to the sharply specified

momentum, represented by the plane waves of (2.76):

CCMðRÞ ¼ ð2p�hÞ�3=2
expðiK � RÞ; K ¼ P=�h; ECM ¼ �h2K2=ð2MÞ: (4.5)

Indeed, operators ĤCM and P̂ constitute one of the complete sets of observables for

the free motion of this CM “particle,” with their common eigensolutions

thus providing the full description of this global movement state in quantum

mechanics.

4.2 Free Motion in Spherical Coordinates

The alternative set of the complete set of observables commuting with ĤCMðRÞ
involves the compatible pair of operators associated with the system overall angular

momentum L ¼ R � P, say L̂
2
and L̂Z, [L̂

2
, L̂Z] ¼ 0 [see (3.71)], which can also

be shown to commute with the CM Hamiltonian:

½L̂2
; ĤCM� ¼ ½L̂Z; ĤCM� ¼ 0: (4.6)

Expressing L ¼ |L| in terms of the lengths of the two defining vectors and the angle

a between them gives:

L2 ¼ ðRP sin aÞ2 ¼ R2P2½1� ðcos aÞ2� ¼ R2P2 � ðR � PÞ2 � R2ðP2 � PR
2Þ; (4.7)

where PR ¼ (R/R)�P � eR�P measures the radial component of the total momen-

tum P, i.e., its projection onto the unit vector eR ¼ R/R. It can then be verified that

the kinetic energy of the CM

HCMðPÞ ¼ 1

2M
P2 ¼ 1

2M
P2
R þ

1

2MR2
L2: (4.8)
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Let us further recall that all quantum mechanical observables must be Hermitian.

Therefore, as the momentum operator does not commute with eR [see (3.56)],

in forming the quantum operator corresponding to PR, one has to symmetrize the

defining product, PR ¼ ½(eR�P + P�eR), which assures the Hermitian character of

the associated operator for the radial component of the overall momentum in the

position representation:

P̂RðRÞ ¼ 1

2
½eR � P̂ðRÞ þ P̂ðRÞ � eR� ¼ � i�h

2
ðeR � rR þrR � eRÞ: (4.9)

The first part in parentheses measures the component of P̂ðRÞ in direction R, which
in the spherical coordinates R ¼ (R, y, f) amounts to the radial differentiation

operator

eR � P̂ðRÞ ¼ �i�h
R

R
� @

@R
¼ �i�h

@R

@R
� @

@R
¼ �i�h

@

@R
: (4.10)

Therefore, the action of P̂RðRÞ on the continuous function f(R) gives:

P̂Rf ¼ � i�h

2

@f

@R
þ eR � rRf þ f rR � eR

� �
¼ �i�h

@f

@R
þ f

R

� �

¼ �i�h
1

R

@

@R
R

� �
f ; (4.11)

thus identifying the radial momentum operator

P̂RðRÞ ¼ �i�h
1

R

@

@R
R: (4.12)

To summarize, in the adopted spherical coordinates the CM Hamiltonian, which

represents in quantum mechanics the physical quantity of (4.8) reads:

ĤCMðR; y;fÞ ¼ ��h2

2M
DR ¼ 1

2M
P̂
2

R þ
1

2MR2
L̂
2
: (4.13)

Using next the explicit form of the Laplacian in spherical coordinates,

DR ¼ r2
R ¼ 1

R

@

@R
R

� �2

þ 1

R2

1

sin y
@

@y
sin y

@

@y

� �
þ 1

sin2y
@2

@f2

� �
; (4.14)

one identifies

L̂
2ðy;fÞ ¼ ��h2

1

sin y
@

@y
sin y

@

@y

� �
þ 1

sin2y
@2

@f2

� �
: (4.15)

96 4 Hydrogen-Like Atom



In addition, by a straightforward chain-rule transformation of derivatives in (3.70),

one finds:

L̂ZðfÞ ¼ �i�h
@

@f
: (4.16)

Therefore, it directly follows from (4.13) and (4.15) that the first commutation

relation of (4.6) indeed holds, L̂
2
; ĤCM

h i
¼ 0, since L̂2 commutes with itself and

does not act on the radial coordinate R, thus also commuting with the first, radial

part of ĤCMðR; y;fÞ. The second commutation relation of (4.6) directly follows

from the commutation relations between observables representing the Cartesian

components of L [see (2.34)]:

½L̂2
; L̂Z� ¼ ½L̂2

X þ L̂
2

Y þ L̂
2

Z; L̂Z� ¼ ½L̂2

X þ L̂
2

Y ; L̂Z� ¼ ½L̂2

X; L̂Z� þ ½L̂2

Y ; L̂Z�
¼ L̂X½L̂X; L̂Z� þ ½L̂X; L̂Z�L̂X þ L̂Y ½L̂Y ; L̂Z� þ ½L̂Y ; L̂Z�L̂Y

¼ �i�hðL̂XL̂Y þ L̂YL̂XÞ þ i�hðL̂YL̂X þ L̂XL̂YÞ ¼ 0; (4.17)

where we have used the elementary commutators of (3.71):

½L̂X; L̂Z� ¼ �i�hL̂Y and ½L̂Y ; L̂Z� ¼ i�hL̂X:

It thus follows from (4.6) that the eigenfunctions CðR; y;fÞ of ĤCMðR; y;fÞ
should also satisfy the following simultaneous eigenvalue problems:

ĤCMðR; y;fÞCðR; y;fÞ ¼ ECMCðR; y;fÞ; ECM ¼ �h2K2=ð2MÞ;
L̂
2ðy;fÞCðR; y;fÞ ¼ L2CðR; y;fÞ and

L̂ZðfÞCðR; y;fÞ ¼ LZCðR; y;fÞ: (4.18)

Hence, these common eigenfunctions can be written as products of the radial factor

fK,l(R) and one of the angular momentum eigenfunctions fYm
l ðy;fÞg, called the

spherical harmonics,

CCMðR; y;fÞ ¼ fK;lðRÞYm
l ðy;fÞ: (4.19a)

The latter represent the common eigenfunctions of the two compatible angular

momentum observables:

L̂
2ðy;fÞYm

l ðy;fÞ ¼ lðlþ 1Þ�h2Ym
l ðy;fÞ; l ¼ 0; 1; 2; . . . ;

L̂ZðfÞYm
l ðy;fÞ ¼ m�h Ym

l ðy;fÞ; m ¼ �l;�lþ 1; . . . ; l� 1; l; (4.20)

where the integral quantum numbers l and m determine the allowed spectrum of

these physical quantities: L2 ¼ l(l þ 1)�h2 and LZ ¼ m�h.
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Inserting the product function of (4.19a) into the Schr€odinger equation (4.18) for
the CM motion gives the following radial equation for fK,l(R):

� 1

R

d2

dR2
R

� �
þ lðlþ 1Þ

R2

� �
fK;lðRÞ ¼ K2fK;lðRÞ; (4.21)

where we have used the identity

1

R

d

dR
R

� �2
¼ 1

R

d2

dR2
R: (4.22)

Upon substituting z ¼ KR, this differential equation is transformed into the spheri-
cal Bessel equation,

d2fK;lðzÞ
dz2

þ 2

z

dfK;lðzÞ
dz

þ 1� lðlþ 1Þ
z2

� �
fK;lðzÞ ¼ 0; (4.23)

the regular solutions of which define the spherical Bessel functions:

jlðKRÞ ¼ � R

K

� �l
1

R

d

dR

� �l
j0ðKRÞ; j0ðKRÞ ¼ sinðKRÞ

KR
; (4.24)

satisfying the following orthogonality relation for the continuous spectrum of K:

ð1
0

jlðKRÞjl0 ðK0RÞR2dR ¼ p
2K2

dðK � K0Þdl;l0 : (4.25)

To summarize, it is natural in the spherical coordinate system to specify the

stationary states of the free motion of the CM in the hydrogen-like atom as product

of the spherical Bessel function and the spherical harmonic:

CCMðR; y;fÞ ¼ jlðKRÞYm
l ðy;fÞ: (4.19b)

4.3 Eigenfunctions of Angular Momentum Operators

The spherical harmonics can be similarly factorized into eigenfunction of L̂ZðfÞ,

FmðfÞ ¼ ð2pÞ�1=2
expðimfÞ; (4.26)
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and the remaining factor Ym
l ðyÞ:

Ym
l ðy;fÞ ¼ Ym

l ðyÞFmðfÞ: (4.27)

Substituting this expression into (4.20) and using the explicit form (4.15) of the

operator L̂
2ðy;fÞ then give the following differential equation for Ym

l ðyÞ:

1

sin y
@

@y
sin y

@Ym
l ðyÞ
@y

� �
þ lðlþ 1Þ � m2

sin2y

� �
Ym

l ðyÞ ¼ 0: (4.28)

The subsequent substitution �1 � x ¼ cosy � 1 then transforms the previous

equation into a more familiar form of the differential equation defining the

associated Legendre polynomials,

d

dx
ð1� x2Þ dY

m
l ðxÞ
dx

� �
þ lðlþ 1Þ � m2

1� x2

� �
Ym

l ðxÞ ¼ 0: (4.29)

For m ¼ 0 it reduces to the differential equation defining the Legendre polynomials
of order l; Y0

l ðxÞ � PlðxÞ,

d

dx
ð1� x2Þ dPlðxÞ

dx

� �
þ lðlþ 1ÞPlðxÞ ¼ 0: (4.30)

Its solutions can be written in the compact (Rodrigues) form:

PlðxÞ ¼ 1

2ll!

dl

dxl
ðx2 � 1Þl: (4.31)

The remaining associated Legendre polynomials of degree l and order |m| � l,

Ym
l ðxÞ � Nl;mP

mj j
l ðxÞ, which satisfy (4.28) for m 6¼ 0, can then be obtained from

these polynomials by repeated differentiations with respect to x:

P
mj j
l ðxÞ ¼ ð�1Þ mj jð1� x2Þ mj j=2 d mj jPlðxÞ

dx mj j : (4.32)

The normalization constant Nl,m reflecting the proportionality between Ym
l ðxÞ and

P
mj j
l ðxÞ is to be determined from the following condition:

ð1
�1

Ym
l ðxÞ

� �2
dx ¼ 1 ) Nl;m ¼ ð2lþ 1Þðl� mj jÞ!

2ðlþ mj jÞ!
� �1=2

: (4.33)
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The spherical harmonics fYm
l ðy;fÞ � Ym

l ðOÞg satisfy the usual orthonormality

conditions,

ðp
0

sin y dy
ð2p
0

dfYm	
l ðy;fÞ Ym0

l0 ðy;fÞ ¼
ð
Ym	
l ðOÞ Ym0

l0 ðOÞ dO ¼ dl;l0dm;m0 ; (4.34)

involving the integration over the whole range of 4p steradians of the solid angle O,
i.e., over all possible directions of the unit vector in the physical space:

ðp
0

sin y dy
ð2p
0

df ¼
ð1
�1

d cos y
ð2p
0

df ¼
ð
dO ¼ 4p: (4.35)

They are automatically satisfied when the two factors in (4.27) are chosen to obey

the associated partial relations:

ðp
0

sin y dyYm
l ðyÞYm

l0 ðyÞ ¼ dl;l0 and

ð2p
0

dfF	
mðfÞFm0 ðfÞ ¼ dm;m0 : (4.36)

Clearly, the same type of spherical functions describes the eigenstates of

the internal (orbital) angular momentum l ¼ r � p, associated with the relative

motion of electron around the atomic nucleus. The corresponding internal spherical

harmonics now depend on the angular coordinates specifying the direction of the

relative position vector r ¼ (r, #, ’) of the system electron,

Ym
l ð#; ’Þ ¼ Ym

l ð#ÞFmð’Þ; (4.37)

and satisfy the associated eigenvalue problems of the compatible operators of the

orbital angular momentum of (3.70) and (3.71):

l̂
2ð#; ’ÞYm

l ð#; ’Þ ¼ lðlþ 1Þ�h2Ym
l ð#; ’Þ; l ¼ 0; 1; 2; . . . ;

l̂zð’ÞYm
l ð#; ’Þ ¼ m�h Ym

l ð#; ’Þ; m ¼ �l;�lþ 1; . . . ; l� 1; l; (4.38)

The associated commutation relations are given by (3.71) and those involving

the internal Hamiltonian ĥðrÞ ¼ ĥðr; #; ’Þ:

½̂l2; ĥ� ¼ ½̂lz; ĥ� ¼ 0; (4.39)

where in full analogy to (4.13)

ĥðr; #; ’Þ ¼ ��h2

2m
Dðr; #; ’Þ þ VðrÞ ¼ 1

2m
p̂2r þ

1

2mr2
l̂
2ð#; ’Þ þ VðrÞ; (4.40)
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here, the operator of the radial component of the orbital momentum [see (4.12)],

p̂rðrÞ ¼ �i�h
1

r

@

@r
r; (4.41)

and the operators of the orbital angular momentum in the spherical coordinates of

the system electron read [see (4.15) and (4.16)]:

l̂
2ð#; ’Þ ¼ ��h2

1

sin#

@

@#
sin#

@

@#

� �
þ 1

sin2#

@2

@’2

� �
; l̂zð’Þ ¼ �i�h

@

@’
: (4.42)

It thus follows from (4.39) that the eigenfunctions of the internal Schr€odinger
equation (4.4) can be factorized in the form analogous to that in (4.19a):

cn;l;mðr; #; ’Þ ¼ Rn;lðrÞYm
l ð#; ’Þ: (4.43)

These functions represent the simultaneous eigenstates of the associated three

(internal) commuting observables:

ĥðr; #; ’Þcn;l;mðr; #; ’Þ ¼ encn;l;mðr; #; ’Þ
l̂
2ð#; ’Þcn;l;mðr; #; ’Þ ¼ lðlþ 1Þ�h2cn;l;mðr; #; ’Þ; l ¼ 0; 1; 2; . . . ;

l̂zð’Þcn;l;mðr; #; ’Þ ¼ m�hcn;l;mðr; #; ’Þ; m ¼ �l;�lþ 1; . . . ; l� 1; l:

(4.44)

4.4 Radial Eigenfunctions and Energy Levels

To obtain the radial functions {Rn,l(r)} and the admissible energy levels {en} of the
bonded, stationary states of the internal motions of the electron around the nucleus

in the hydrogen-like atom, when en < 0, one substitutes the product function of

(4.43) into the first eigenvalue problem of the preceding equation. This gives the

radial Schr€odinger equation in the form [compare (4.21)]:

� �h2

2m
1

r

d2

dr2
r

� �
þ �h2lðlþ 1Þ

2mr2
� Ze2

r
þ enj j

� �
Rn;lðrÞ ¼ 0: (4.45)

It can be subsequently simplified by the substitution Un,l(r) ¼ rRn,l(r) and by

the introduction of the redefined coefficients in this differential equation: the

energy parameter kn
2 ¼ 2m|en|/�h

2, the energy-scaled (dimensionless) radial dis-

tance rn ¼ 2knr, and a reduced measure of the nuclear charge zn ¼ Z/(kna0),
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where a0 ¼ �h2/(me2) ¼ 0.5292 � 10�10 m denotes the radius of the first Bohr’s

orbit in the hydrogen atom,

d2Un;lðrnÞ
dr2n

� lðlþ 1Þ
r2n

Un;lðrnÞ þ
zn
rn

� 1

4

� �
Un;lðrnÞ ¼ 0: (4.46)

In the asymptotic region of very large distances rn ! 1 it thus reduces to a

simple differential equation

d2Un;lðrnÞ
dr2n

¼ Un;lðrnÞ
4

; rn ! 1; (4.47)

the general solution of which reads: Un,l(rn) ~ Aexp(�rn/2) þ Bexp(rn/2), where
A and B are integration constants. For this radial function to be finite in this limit

B ¼ 0, so that Un,l(rn) ~ Aexp(�rn/2) (rn ! 1).

In the other extreme region of rn ! 0 the radial equation (4.46) becomes

d2Un;lðrnÞ
dr2n

¼ lðlþ 1Þ
r2n

Un;lðrnÞ; rn ! 0: (4.48)

Inserting into the preceding equation the trial function Un,l(rn) ¼ rn
x then gives the

following quadratic equation for the critical exponent x:

xðx� 1Þ ¼ lðlþ 1Þ ) fx1 ¼ �l; x2 ¼ lþ 1g; (4.49)

thus predicting the general solution near the nucleus in the form Un,l(rn) ~ A0rn
�l þ

B0rn
l+1. The well-behaving (finite) solution thus results only for A0 ¼ 0:

Un,l(rn) ~ B0rn
l+1 (rn ! 0).

The above analysis suggests the following general form of the radial wave

function,

Un;lðrnÞ ¼ expð�rn=2Þrnlþ1VðrnÞ; (4.50a)

which automatically guarantees the correct behavior in both these asymptotic

regions, including the additional (finite) factor V(rn) defined by the power series:

VðrnÞ ¼
X1
i¼0

airin: (4.50b)

Its substitution into (4.46) gives the following differential equation for determining

this unknown radial factor:

rn
d2

dr2n
þ ð2lþ 2� rnÞ

d

drn
� ðlþ 1� znÞ

� �
VðrnÞ ¼ 0: (4.51)
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As V(rn) represents the power series this differential equation effectively deter-

mines the (energy dependent) recursive relation between the coefficients {ai}.
Indeed, the left-hand side of this equation also constitutes the power series which

vanishes only when coefficients at all powers of rn are simultaneously equal to

zero. This requirement generates the following recursion relation between the

neighboring coefficients in (4.50b) for the representative term rn
k:

akþ1

ak
¼ ðk þ lþ 1Þ � zn

ðk þ 1Þðk þ 2lþ 2Þ : (4.52)

This power series thus begins with the constant term a0 6¼ 0 and it must terminate at

some finite maximum power. Indeed, if it failed to do so, in the limit of very large

values of k, i.e., k ! 1, ak+1/ak ! 1/k, which is characteristic of the power series

expansion of the function expðrnÞ ¼
P1
i¼0

1
i! r

i
n. Thus, should the power series in

(4.50b) fail to terminate, the radial wave function Un,l(rn) would become infinite

(ill-behaved) at rn ! 1, diverging as exp(rn/2).
Therefore, the truncation of this series into the polynomial is the crucial require-

ment for the radial wave function to well behave at large distances. A reference

to (4.52) shows that the series will indeed become the polynomial of degree k ¼ j
when aj+1/aj ¼ 0, which takes place only for

ðjþ lþ 1Þ � n ¼ zn or n2 ¼ zn
2 ¼ Z2=ðkn2a02Þ ¼ Z2�h2=ð2mjenja02Þ: (4.53)

As, by definition, j is a non-negative integer and l ¼ 0, 1,. . . [see (4.44)], the

principal quantum number n, which identifies the electronic “shells,” must also be a

positive integer n ¼ 1, 2, . . .. It is subject to the restriction n > l, since the degree
of the polynomial after which the series expansion terminates j ¼ n � (l þ 1) 
 0,

V(rn) ¼ Vn,l(rn), so that there are n values of the angular momentum quantum

number l consistent with the given n: l ¼ 0, 1, . . ., n � 1.

To summarize, the radial wave function of the internal states of the one-electron
atom reads:

Un;lðrnÞ¼An;lexpð�rn=2Þrnlþ1Vn;lðrnÞ¼An;lexpð�rn=2Þrnlþ1
Xn�l�1

i¼0

airin; (4.54)

where An,l stands for the appropriate normalization constant. The polynomials

Vn,l(rn), the solutions of the differential equation (4.51), are known as the

associated Laguerre polynomials:

Vn;lðrnÞ ¼ L2lþ1
n�l�1ðrnÞ ¼

Xn�l�1

i¼0

ð�1Þi½ðnþ lÞ!�2
i!ðn� l� 1� iÞ!ð2lþ 1þ iÞ! r

i
n: (4.55)
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Again, the associated Laguerre polynomials LqpðrnÞ of degree p and order q, are
compactly represented by the following formulas of Rodrigues in terms of the

Laguerre polynomials LpðrnÞ of degree p:

Lq¼0
p ðrnÞ ¼ LpðrnÞ ¼ expðrnÞ

dp

drpn
½rpn expð�rnÞ�; (4.56)

LqpðrnÞ ¼ ð�1Þq dq

drqn
LqþpðrnÞ: (4.57)

Thus, the condition of the well-behaved wave function at infinity gives rise to a

quantization of the internal energy en ¼ �|en| of electron in the hydrogen-like atom:

enj j ¼ Z2

2n2
me4

�h2

� �
ffi Z2

2n2
mee

4

�h2

� �
� Z2

2n2
hartrees � Z2

n2
rydbergs, (4.58)

1 hartree = 2 rydbers = 2je0j ¼ 27:21161 eV = 4:359814� 10�18 J; (4.59)

where we have introduced two popular units of energy used in atomic and mole-

cular physics. For Z ¼ 1 this energy spectrum reproduces that following from the

historically first quantum model of the hydrogen atom proposed by Bohr in the Old

Quantum Theory. One also observes that the scaling factor kn ¼ Z/(na0) of

the radial distance rn is shell-specific.

4.5 Orbital Degeneracy and Electron Distribution

The energy spectrum of (4.58) becomes very dense for large values of the principal

quantum number, with e1 ¼ 0, and becomes continuous for the nonbonded (scat-

tering) states, for e > 0, when the electron can exhibit the infinite separation from

the nucleus. Therefore, such energy-continuum states of the hydrogen-like atom

describe the ionization processes, involving a removal of the system electron.

The wave functions of (4.43) define the admissible (linearly independent)

bonded states of electron in the hydrogen-like atom. Since the value of the allowed

internal energy of (4.58) depends solely on the principal quantum number n
the number of combinations of the remaining quantum numbers, the secondary
(orbital) quantum number l and magnetic (azimuthal) quantum number m, which
are consistent with the given value of n, determines the system overall orbital

degeneracy. For each value of the quantum number associated with the length of

the orbital angular momentum, l ¼ 0, 1,. . ., n � 1, which identifies specific atomic

“subshells,” there are 2l þ 1 admissible values of the azimuthal quantum number

m (4.44) determining the spatial orientation of the angular momentum vector

(Fig. 1.2). Hence, the total orbital degeneracy gn of the given eigenvalue en in

104 4 Hydrogen-Like Atom

http://dx.doi.org/10.1007/978-3-642-20180-6_1#Fig2


hydrogen-like atom, i.e., the number of independent stationary (bonded) electronic

states belonging to this energy level:

gn ¼
Xn�1

l¼0

ð2lþ 1Þ ¼ n2: (4.60)

This orbital-degeneracy is doubled if the two spin states of an electron, a(s) or b(s),
depending on the discrete spin variable s ¼ (�½, ½), are taken into account, as

each Atomic Orbital (AO) cn;l;mðr; #; ’Þ can be combined with any of these spin

functions into the corresponding Spin Orbitals (SOs)

cs
n:l;mðr; #; ’; sÞ ¼

cþ
n;l;mðr; #; ’; sÞ ¼ cn;l;mðr; #; ’ÞaðsÞ

c�
n;l;mðr; #; ’; sÞ ¼ cn;l;mðr; #; ’ÞbðsÞ

(
: (4.61)

Hence, in hydrogen-like atom all energy levels with n > 1 exhibit some orbital
degeneracy, while the ground 1s state,

c1;0;0ðr; #; ’Þ ¼
Z3

pa30

� �1=2

expð�Zr=a0Þ; (4.62)

exhibits only the double spin degeneracy.

The appearance of the degenerate quantum states can be often ascribed to

some apparent symmetry in the physical system. For example, the degeneracy

with respect to the magnetic quantum number m reflects the central potential
feature of the one-electron atom. It originates from the absence of the preferred

spatial direction and hence from the invariance with regard to rigid rotations

about the origin. The degeneracy of states corresponding to different values of l
consistent with the given n is peculiar to the Coulomb potential. Any departure

from the strict 1/r dependence, e.g., in many-electron atoms, will remove this

(“accidental”) degeneracy.

The atomic orbitals of (4.43) are complex for m 6¼ 0, because of the Fm(’)
factor in Ym

l ð#; ’Þ (4.37), with only m ¼ 0 functions,

cn;0;0ðrÞ � ns; cn;1;0ðr; #Þ � npz; cn;2;0ðr; #Þ � ndz2 ; etc:; (4.63)

which do not depend on the spherical angle ’, are automatically real. However, one

can always transform the pair of the complex–conjugate orbital factors Fmð’Þ ¼
F	

�mð’Þ for m > 0 into two real combinations by extracting their real and imagi-

nary parts:

Re½Fmð’Þ� ¼ 1

2
½Fmð’Þ þ F�mð’Þ� ¼ cosðm’Þ;

Im½Fmð’Þ� ¼ 1

2i
½Fmð’Þ � F�mð’Þ� ¼ sinðm’Þ: (4.64)
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Since such real combinations involve functions with the same length of the angular

momentum, this physical quantity still remains sharply specified in these combined

states. However, the real orbitals are no longer eigenfunctions of the z-component

of the angular momentum, as they combine functions with different eigenvalues of

this observable. Therefore, in a single measurement of lz, one has probability ½ of

observing either lz ¼ m�h or lz ¼ �m�h and hence lzh i ¼ 0 in such linear

combinations cn;l;�m of the complex orbitals cn;l;m.

The AO parity, i.e., the symmetry (g) or antisymmetry (u) property of cn;l;m with

respect to the inversion operator î, which reverses the internal Cartesian

coordinates, îðx; y; zÞ ¼ ð�x;�y;�zÞ, is determined solely by the associated prop-

erty of the spherical harmonic factor Ym
l ð#; ’Þ, since such operation of reversing

directions of the coordinate system does not affect the radial distance r. Indeed, in
the spherical coordinates îðr; #; ’Þ ¼ ðr; p� #; ’þ pÞ and hence the action of î on
Fm(’) gives:

î expðim’Þ ¼ ½expðipÞ�m expðim’Þ ¼ ð�1Þ mj j
expðim’Þ: (4.65)

Thus, the magnetic quantum number m itself determines the parity of Fm(’), which
is symmetric (g) [antisymmetric (u)] with respect to inversion for the even (odd)

values of m.
Next, let us examine the parity of the other, #-dependent part of the angular

function, Ym
l ðxÞ � Nl;mP

mj j
l ðxÞ, x ¼ cos#. Since î cos# ¼ cosðp� #Þ ¼ � cos#

and the associated Legendre polynomial of degree l and orderm, P
mj j
l ðxÞ, is obtained

by differentiating (l þ |m|)-times the even function (x2 � 1)l of the argument x in

(4.31) and (4.32), the action of the inversion operation on this angular factor of the

wave function gives:

îP
mj j
l ðcos#Þ ¼ ð�1Þlþ mj j

expðim’ÞP mj j
l ðcos#Þ: (4.66)

It thus follows from the preceding two equations that the overall parity of the

angular function is determined by the parity of the orbital quantum number l:

îYm
l ð#; ’Þ ¼ ð�1Þlþ2 mj jYm

l ð#; ’Þ ¼ ð�1ÞlYm
l ð#; ’Þ: (4.67)

Atomic orbitals posses a number of nodal surfaces on which cn;l;m ¼ 0, as

indeed required to satisfy the orthogonality relations, which guarantee the linear

independence of AO. For this purpose it is customary to examine the spatial

properties of the real AO (4.64),

cn;l;�mðr; #; ’Þ / rl expðknrÞL2lþ1
n�l�1ð2knrÞPm

l ðcos#Þ
cosðm’Þ
sinðm’Þ

�

¼ Rn;lðrÞYxa;yb;zc

l ; (4.68)
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e.g., cn;1;�1 ¼ npx; npy
	 


; cn;2;�1 ¼ ndxz; ndyz
	 


; cn;2;�2 ¼ fndxy; ndx2�y2g, etc.

The angular functions Yxa;yb;zc

l of the real AO are simple functions of the respective

integer powers {a, b, c} of the electron Cartesian coordinates, which are indicated

in their symbolic notation.

By examining the individual factors in the preceding expression, one first

realizes that there are l � m values of # for which Pm
l ðcos#Þ vanishes and the

real/imaginary parts of (4.64) vanish at m values of the azimuth. Moreover, the

associated Laguerre polynomial vanishes at n � l � 1 values of r; for l 6¼ 0

the radial factor rl has also the “node” at r ¼ 0. Hence, disregarding the latter,

the total number of nodal surfaces in AO at finite distances is n � 1, including

n � l � 1 radial and l angular surfaces.
It thus follows from these considerations that only the l ¼ n � 1 AO, e.g., 1s,

2p, 3d, 4f, etc., have zero radial nodal-surfaces, thus exhibiting only one maximum

in their radial probability density, which is customarily used to represent the dis-

tribution of electrons in atoms. More specifically, using the probability density of

finding the electron at point r ¼ (r, #, ’) ¼ (r, O),

rn;l;mðr; #; ’Þ ¼ jcn;l;mðr; #; ’Þj2 ¼ R2
n;lðrÞ Ym

l ð#; ’Þ
�� ��2; (4.69)

one finds from (4.34) the associated radial probability of locating the electron in the

infinitesimal radial range, between the concentric spheres of radii r and r þ dr,

Pn;lðr; drÞ ¼ r2R2
n;lðrÞ dr

ð
Ym
l ðOÞ

�� ��2dO ¼ r2R2
n;lðrÞ dr; (4.70)

where we have recognized the angular normalization of (4.34). Hence, the radial
probability density reads:

rrad:n;l ðrÞ �
dPðr; drÞ

dr
¼ r2R2

n;lðrÞ: (4.71)

For example, for the ground state of the hydrogen-like atom (4.62), for which

R1,0 (r) / exp(�Zr/a0) and hence rrad:1;0 ðrÞ / r2 expð�2Zr=a0Þ, the maximum of

the radial distribution is observed at rmax.(Z) ¼ a0/Z. This radial probability density
also predicts the following average values of r and r2:

rðZÞh i ¼
ð1
0

rrrad:1;0 ðrÞdr ¼ 4
Z

a0

� �3 ð1
0

exp � 2Zr

a0

� �
r3dr ¼ 3

2

a0
Z
; (4.72)

r2ðZÞ�  ¼ ð1
0

r2rrad:1;0 ðrÞdr ¼ 4
Z

a0

� �3 ð1
0

exp � 2Zr

a0

� �
r4dr ¼ 3

a0
Z

� �2

; (4.73)

where we have used the typical integral
Ð1
0

yn expð�byÞ dy ¼ n!=bnþ1. Hence, the

square of the dispersion sr in the radial distance of this one-electron atom reads:
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s2r ¼ r2ðZÞ� � rðZÞh i2 ¼ 3

4

a0
Z

� �2

or sr ¼
ffiffiffi
3

p

2

� �
a0
Z

� �
: (4.74)

Therefore, in the hydrogen atom the maximum radial probability is found at

rmax.(Z ¼ 1) ¼ a0 as already predicted by Bohr. It should be emphasized, however,

that the latter model has invoked the classical (“flat”) planetary picture of the

electron movements around the nucleus, while the quantum-mechanical perspec-

tive predicts the correct spherical distribution of the electron probability density

around the nucleus.

The radial densities for the remaining AO in this prototype atomic system are well

known and available in practically every textbook of quantum chemistry or elemen-

tary quantum mechanics. Let us only recall here that with the increasing principal

quantum number n ¼ 1, 2, 3, which determines the successive electronic shells, the

average distance from the nucleus increases. The atomic subshells, identified by the

alternative values of the orbital quantum number l consistent with the given principal
quantum number n, exhibit the decreasing trend with increasing l in their most

probable and average distances from the nucleus, e.g., r3dh i< r3p
� 

< r3sh i. This
observation reflects the intervention of the orthogonality constraints with respect to

the stationary states exhibiting the same symmetry and lower energy, for which the

electron is on average distributed closer to the nucleus. These requirements effectively

shift the probability of the outer subshells away from the nucleus. Indeed, the 3s
orbital must be orthogonal to both 1s and 2s states, the 3p state is only constrained by
its orthogonality to the 2p subshell, while 3d orbital has no lower-lying analog.

Therefore, in the given electronic shell n, the l ¼ n � 1 and l ¼ 0 subshells always

exhibit the minimum and maximum average distance from the nucleus, respectively.

These prototype analytical solutions for the one-electron atom can be also regarded

as determining a general pattern of the shell structures inN-electron atoms (N > 1), in

which electrons, occupying N lowest SO, are moving in the effective potential due to

the nucleus and the remaining electrons. As this effective attraction by the “screened”

nucleus is then no longer of the 1/r type, the accidental degeneracy of the hydrogen-
like atom is lifted and the subshell energies inmany-electron atoms depend on both n
and l, e ¼ en,l. In such atomic systems the configuration of the outer-most (most

polarizable) valence shell electrons is decisive for determining the atom propensity to

form chemical bonds with other atoms. In such bond-forming processes the

distributions of the inner-shell electrons remain practically unaffected (“frozen”).

It should be finally observed that these “exact” solutions of the Schr€odinger
equation for the one-electron atom, also determining the gross features of the elec-

tronic structure of many-electron systems, still require several corrections which

must be taken into account to relate theoretical predictions to the experimental data.

For example, corrections are due to the coupling between the spin and orbital

angular momenta and the high speed of the electron, which call for the relativistic

approach, the hyperfine structural effects reflect the magnetic properties of the

nucleus, and the Lamb shift accounts for the interaction between the electron and

electromagnetic field.
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4.6 Atomic Units

When describing objects and processes in the atomic scale, it is convenient to use

the system of atomic units (a.u.), which greatly simplify equations and expressions

in molecular quantum mechanics [see (4.58), (4.72), (4.73)]. For example, the

proportionality constant in the Coulomb Law determining the potential V(r) of

(4.1), kC ¼ (4pe0)
�1, where e0 stands for the electric permittivity of the free space,

becomes unity in a.u., kC ¼ 1 a.u. so that V(r) ¼ �kCZe
2/r ¼ �Ze2/r ¼ �Z/r

(a.u.), where we have recognized that the magnitude of the electronic charge

(proton charge) determines in a.u. the unit of electric charge: e ¼ 1. Thus the a.u.

of electric permittivity equals 4pe0, or the vacuum permittivity e0 ¼ (4p)�1 a.u.

This system will be used in the remaining part of the book, unless specified

otherwise. It is based upon the underlying units of length, mass, time, and electric

charge, which subsequently determine the associated units of the remaining physi-

cal quantities, e.g., energy, physical action, angular momentum, etc. Some of these

units are summarized in Table 4.1, where the expressions in terms of the universal

constants and corresponding values in the Système International d’Unités (SI) are
also given.

Table 4.1 Atomic units

Property Unit Symbol SI value

Action and angular

momentum

Planck’s constant �h 1.0546 � 10�34 J s

Electric charge Charge of proton e 1.6022 � 10�19 C

Electric permittivity 4pe0 e2/(Eh a0) 1.1127 � 10�10 F m�1

Energy Hartree, double magnitude

of the ground-state

energy of hydrogen

atom for m ¼ me, i.e.,

Mn ! 1

Eh ¼ kC e2/a0
¼ kC

2me e
4/�h2

4.3598 � 10�18 J

kC Constant in Coulomb

Law

kC ¼ Eh a0/e
2 8.9875 � 109 J m C�2

Length The first Bohr’s radius a0 ¼ �h2/(kC mee
2) 5.2918 � 10�10 m

Mass Rest mass of electron me 9.1095 � 10�31 kg

Probability density a0
�3 6.7483 � 1030 m�3

Time Time in which one

electron on the first

Bohr’s orbit travels

the angle distance

of 1 radian

t0 ¼ a0/v0
¼ �h3/(kC

2mee
4)

2.4189 � 10�17 s

Velocity Speed of electron on

the first Bohr’s orbit

v0 ¼ a0/t0
¼ �h/(mea0)
¼ kC e2/�h

2.1877 � 106 m s�1
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