
Chapter 3

Basic Concepts and Axioms

Abstract The postulates of quantum mechanics are formulated using the

mathematical tools of the preceding chapter. First, the axioms related to the

quantum kinematics are summarized, dealing with a variety and physical meaning

of quantum states at the specified time. They include alternative definitions and

interpretations of the wave functions of microobjects as amplitudes of the particle

probability distributions in the configuration or momentum spaces. As an illustra-

tive example the electron densities are then discussed. The superposition principle

is formulated, and the symmetry implications of indistinguishability of identical

particles in quantum mechanics are examined. The links between the quantum

states and outcomes of the physical measurements are then surveyed and the

physical observables are attributed to quantum mechanical operators, linear and

Hermitian, and their specific forms in the position and momentum representations

are introduced. The eigenvalues of the quantum mechanical operator are

postulated to determine a variety of all possible results of a single experiment

measuring the physical property the operator represents, while the operator

expectation value represents the average value of this quantity in a very large

number of repeated measurements performed on the system in the same quantum

state. The eigenstates of the quantum mechanical operator are shown to corre-

spond to the sharply specified value of the physical property under consideration,

while other quantum states exhibit distributions of its allowed eigenvalues. The

statistical mixtures of quantum states are defined in terms of the density operator and

the ensemble averages of physical observables in such mixed states are examined.

The simultaneous sharpmeasurement of several physical observables is linked to the

mutual commutation of their operators and the quantum mechanical formulation of

the general Principle of Indeterminacy is given. Properties of the electron angular

momentum and spin operators are examined.

In the dynamical development, the pictures of time evolution in quantum mecha-

nics are introduced through the alternative time-dependent unitary transformations of

the state vectors/operators. The Schr€odinger equation is explored in some detail, with

the emphasis placed upon the stationary states, time dependence of expectation

values, conservation laws, the probability current, and continuity equation. The
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correspondence between the quantum and classical dynamics is established through

the Ehrenfest principle. Finally, the rudiments of the Heisenberg and interaction

pictures of quantum dynamics are briefly summarized.

3.1 N-Electron Wave Functions and Their Probabilistic

Interpretation

In the canonical formulation of classical mechanics, the system dynamics is

formulated in terms of the Hamilton function E ¼ H(Q, P) expressing the system

energy E in terms of its generalized coordinates Q ¼ {Qa} and their conjugated

momenta P ¼ {Pa}, a ¼ 1, 2, . . ., f, with f denoting the system number of

dynamical degrees of freedom. Together these conjugate dynamical variables

uniquely specify the system mechanical state. Indeed, the knowledge of Q(t) and
P(t) at the specified time t ¼ t0 allows one to determine the exact time evolution of

these state parameters, via the Hamilton equations of motion:

_Qa ¼ dQa

dt
¼ @H

@Pa
; _Pa ¼ dPa

dt
¼ � @H

@Qa
; a ¼ 1; 2; . . . ; f : (3.1)

Since these are the first-order differential equations, their solutions {Q(t), P(t)} are
uniquely specified when the values of these classical state variables are fixed at

t ¼ t0. Thus, knowing the state {Q(t0), P(t0)} of the classical system at this time,

one can in principle predict with certainty the system mechanical state at t 6¼ t0, i.e.,
precisely determine the outcome of any measurement at an earlier or later stage of

the system time evolution.

As we have argued in Chap. 1, this classical specification of the mechanical state

is inapplicable in the quantum theory, due to the simultaneous indeterminacy of

coordinates and momenta of microobjects (the Heisenberg principle). Indeed, since

the state variables must be precisely specified, either the position coordinates or the

components of the canonically conjugated momenta of the system particles should

be used to uniquely characterize its quantum state. Therefore, at the given time t,
which in the simplest (nonrelativistic) formulation of the quantum theory plays the

role of a parameter, the quantum state corresponding to the state vector jC(t)i is
represented by the wave functions in either the position or momentum

representations,

CðQ; tÞ ¼ QjCðtÞh i or CðP; tÞ ¼ PjCðtÞh i; (3.2a)

here, the representation basis sets {jQi} and {jPi} correspond to the position and

momentum eigenstates, respectively, in which these molecular variables are known

precisely. For quantum particles these classical state “coordinates” should be also

supplemented with all nonclassical, internal (spin) degrees of freedom for each
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particle, S ¼ {Sk}. Therefore, the full specification of the mechanical state of the

given quantum system, in either the position-spin or momentum-spin represen-

tations, is embodied in the corresponding wave functions:

CðQ;S; tÞ ¼ Q;SjCðtÞh i or CðP;S; tÞ ¼ P;SjCðtÞh i: (3.2b)

Since the theoretical description of the electronic structure of molecules is the

main objective of this book, in what follows we shall focus on a general (atomic or

molecular) N-electron system, with the list of the (coordinate/momenta)-spin

variables in the Cartesian coordinates:

Q;Sj i � qN
�� � ¼ fqkgj i � QN

�� �
; qk ¼ ðrk; skÞ;

P;Sj i � uN
�� � ¼ fukgj i � PN

�� �
; uk ¼ ðpk; skÞ; k ¼ 1; 2; . . . ;N;

(3.3)

here rk ¼ xk; yk; zkð Þ; pk ¼ ðpxk ; pyk ; pzkÞ and sk, respectively, denote the continuous
position, momentum vectors of kth electron and its discrete spin orientation variable

sk 2 (þ½, �½) (see Fig. 1.2).

Therefore, the vector space of the N-electron system is spanned by all basis

vectors in either the position fjQNig or momentum fjPNig representations. In what
follows we shall call this vector space the molecular Hilbert space. The specific

state of such an N-electron system in time twill be denoted by the ket jCN(t)i. Since
each basis vector is specified by the three position/momentum coordinates and one

spin variable for each electron, the overall dimensionality of either the position-spin
ormomentum-spin spaces is 4N. The basis vectors jQNi and jPNi are then identified
by corresponding points in these configurational spaces. It should be observed that

in the classical mechanics the system state was uniquely specified at the given time

by selecting the point in the 6N-dimensional position–momentum phase space of N
particles.

Moreover, the corresponding position-spin or momentum-spin data for the

atomic nuclei are also required for the complete specification of the molecular

state. However, as we shall argue in Part II of this book, due to a huge difference in

masses between the (light) electrons and (heavy) nuclei, the dynamics of the former

can be to a good approximation described by examining their fast movements in the

effective potential generated by the “frozen” nuclear framework, with the fixed

positions of nuclei playing the role of parameters in the electronic structure theory.

In this adiabatic approximation of Born and Oppenheimer the nuclei, sources

of the external potential in which electrons move, thus determine the assumed

molecular geometry.

After these short preliminaries, we are now in a position to formulate the important

postulate of quantum mechanics, due to Born, which provides the physical interpre-

tation of the wave functions of (3.2a) and (3.2b):

Postulate I: The (normalized) quantum mechanical state of the molecular system

containing N-electrons in time t, hCNðtÞjCNðtÞi � CNðtÞ�� ��2 ¼ 1; where CNðtÞ�� ��
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stands for the norm (“length”) of the state vector, is uniquely specified by the

orientation of the state-vector jCN(t)i in the molecular Hilbert space or equivalently

by its equivalent representations (wave functions) in the position or momentum

basis sets, respectively,

CðQN; tÞ ¼ QNjCNðtÞ� �
or CðPN; tÞ ¼ PNjCNðtÞ� �

: (3.2c)

These in general complex-valued functions determine the probability amplitudes of

simultaneously observing at this time the specified positions/momenta and spin

orientations of all N electrons, with the corresponding probability densities being

determined by the squares of the wave function moduli:

pðQN; tÞ ¼ QN
��CNðtÞ� ��� ��2 ¼ CðQN; tÞ�� ��2 � P½QNjCNðtÞ�;ð

pðQN; tÞ dQN ¼
ð

CNðtÞ��QN
�
QN
� ��CNðtÞ� �

dQN ¼ CNðtÞ ��CNðtÞ� � ¼ 1;

pðPN; tÞ ¼ PN
��CNðtÞ� ��� ��2 ¼ CðPN; tÞ�� ��2 � P½PNjCNðtÞ�;ð

pðPN; tÞ dPN ¼
ð

CNðtÞ��PN
�
PN
� ��CNðtÞ� �

dPN ¼ CNðtÞ ��CNðtÞ� � ¼ 1:

(3.4)

Here, the generalized “integration” symbol
Ð
dQN actually denotes the definite

integrations over the position coordinates and summations over the spin variables

of all electrons:

ð
dQN �

ð
dq1 . . . dqN �

ð
dr1 . . . drN

X
s1

:::
X
sN

; (3.5a)

The related operation in the momentum-spin space similarly reads:

ð
dPN �

ð
du1 . . . duN �

ð
dp1 . . . dpN

X
s1

:::
X
sN

: (3.5b)

In fact, the normalization conditions of this postulate, for the position-spin and

momentum-spin probability densities pðQN; tÞ and pðPN; tÞ, respectively, express
the unit probability of the sure event that at the specified time t all electrons are
located somewhere in the physical or momentum spaces, and assume one of its

allowed spin orientations. We have also indicated in (3.4) that the probability

densities P½QNjCNðtÞ� and P½PNjCNðtÞ� of the particle positions and momenta,

respectively, are conditional upon the specified quantum state. Indeed, these densities

represent the conditional probabilities of observing the basis set events corresponding

to the wave function arguments QN or PN (variables), given the molecular state

jCN(t)i (the parameter): pðQN; tÞ ¼ P½QNjCNðtÞ� and pðPN; tÞ ¼ P½PNjCNðtÞ�. The
normalization relations thus involve the integrations/summations of these conditional
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probabilities over the variable states fjQNig and fjPNig, respectively, for the fixed
parameter state jCN(t)i. The integrands of these sum rules thus provide the associated

probabilities of the particles being simultaneously found in their specified, infinitesi-

mal ranges of coordinates dQN ¼ fdrk; skg or momenta dPN ¼ fdpk; skg, i.e., of the
system particles occupying the corresponding volumes of the position or momentum

spaces for their specified spin orientations.

This physical interpretation of the quantum mechanical wave functions has far

reaching implications for their admissible analytical form. First, the normalization

condition excludes the functions which become infinite over a finite region of space,

since then Born’s interpretation would be untenable. Clearly, the Dirac-delta wave

functions of (2.69), which correspond to precise localizations or momenta of

electrons, are not excluded since their infinite values extend only over the infinitesi-

mal volumes of space, thus giving rise to the finite normalization integral. However,

for the finite, constant probability densities, e.g., pðQN; tÞ ¼ const: > 0, this integral

may become infinite, when the movements of electrons are not confined to finite

regions of space. In such cases, this density provides only a relative measure of

probability.

Another implication of the Born probability interpretation is that the wave

functions must be single valued. Indeed, CðQN; tÞ½or CðPN; tÞ� must generate the

unique representation of the quantum state jCN(t)i. Additional constraints on their

admissible forms are imposed by the form of the quantum mechanical operators.

As we have established in Sect. 2.6, the position operator in the momentum

representation and the momentum operator in the position representation corre-

spond to differential operators (gradients), e.g., p̂ðrÞ ¼ �i�hr. For these operations

to be mathematically meaningful, the wave functions on which these observables

act must be continuous. Sometimes, the additional condition of the continuous first

derivative is also invoked, since the action of the kinetic energy operator of a single

particle in the position representation, T̂ðrÞ ¼ p̂
2ðrÞ=2m ¼ �ð�h2=2mÞD, involves

a double differentiation of the wave function embodied in the Laplacian operator

D ¼ ∇2. However, this condition is too severe, since the expectation value of the

kinetic energy, when transformed by parts,

T ¼ Ch jT̂ Cj i ¼
ð
C�ðrÞT̂ðrÞCðrÞdr ¼ ð�h2=2mÞ

ð
rCðrÞj j2dr; (3.6)

remains well defined even for the discontinuous derivatives of the wave function.

For example, such discontinuity is encountered for some excessively ill-behaved

potentials V(r) of forces acting on the particle, e.g., in the particle-in-the-box
problem, when it jumps from zero to infinity in an infinitesimal distance.

To summarize, in quantum mechanics only such well-behaved wave functions

have the physical meaning of probability amplitudes implied by Postulate I. The Born

interpretation thus imposes a restriction on the “acceptable” solutions of the differ-

ential equations of quantum mechanics, e.g., the crucial Schr€odinger equations for
determining the system stationary states and their quantum dynamics. Only such

well-behaved wave functions may represent the dynamical states of physical systems.
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The constraints of the wave function finiteness, single valuedness, and continuity,

supplemented by the boundary conditions appropriate for the physical problem in

question, give rise to the quantization of physical properties, e.g., the system energy

(see Sect. 2.7). Indeed, only for some energy levels, the eigenvalues {En} of the

system Hamiltonian, it is possible to construct the well-behaved eigenfunction. For

example, in a system with boundaries, when the movement of particles is confined to

some finite region of space, the energy is quantized and the less confining is the

potential, the less separation is predicted between the neighboring energy levels.

As a result of the Heisenberg uncertainty principle the physically admissible

wave functions may penetrate, i.e., exhibit finite values, in the classically forbidden

regions, where the total energy is below the potential energy level, E < V, thus
generating the nonzero probability of finding a particle in such locations. For

example, the motion of the quantum mechanical harmonic oscillator is not confined

to the classical region between the turning points of the parabolic Hooke potential,

and the quantum particles may tunnel through the finite potential barriers. In these

classically-forbidden positions the microparticle formally exhibits the negative

kinetic energy. This does not imply, however, that the average kinetic energy,

represented by the expectation value of (3.6), becomes negative in such states.

Indeed, the average value over both the (dominating) region of space, where the

kinetic energy is positive, and the classically inaccessible (marginal) regions, where

it is negative, is always positive. It should be observed, however, that it would be

meaningless to speak of the precise kinetic energy of the localized particle anyway,

since its momentum is completely unknown!

The electron density r(r) of locating any of the system N electrons at point r can
be obtained from the N-electron probability density pðQN; tÞ of Eq. (3.4) by the

appropriate integration/summation over the remaining arguments of the wave

function, i.e., over all admissible events satisfying the condition rk ¼ r, k ¼ 1, 2,

. . ., N, enforced by the relevant Dirac deltas in the integrand,

rðr; tÞ ¼
XN
k¼1

ð
dðrk�rÞ pðQN; tÞ dQN

�
ð
C�ðQN; tÞ r̂ðrÞCðQN; tÞ dQN ¼ N

ð
dðr1�rÞ pðQN; tÞ dQN:

(3.7)

In the preceding equation we have introduced the electron density operator r̂ðrÞ ¼P
kdðrk � rÞ and recognized that due to the indistinguishability of electrons, i.e.,

impossibility to recognize which electron is which, all contributions in the sum

of the first line of the equation must be identical. Indeed, we cannot follow the

precise trajectories of the separate electrons, due to the incompatibility of its

position and momentum, so that their specific identities (hypothetical labels)

remain unknown. Clearly, the integral of the electron density over all locations in

space must satisfy the sum rule

ð
rðr; tÞdr ¼

ðXN
k¼1

ð
dðrk�rÞdr

� �
pðQN; tÞ dQN ¼ N

ð
pðQN; tÞ dQN ¼ N: (3.8)
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One similarly obtains the corresponding spin densities of electrons, of detecting

at the specified location r electrons with the specified spin s ¼ (�½, +½), the

condition enforced by the corresponding Dirac and Kronecker deltas, which

together identify the point q ¼ (r, s) in the four-dimensional position-spin space:

rðq; tÞ � rsðr; tÞ ¼
XN
k¼1

ð
dðrk�rÞ dsk ;spðQN; tÞ dQN

�
ð
C�ðQN; tÞ r̂ðqÞCðQN; tÞ dQN

¼ Ns

ð
dðrs�rÞ pðQN; tÞ dQN;

rðr; tÞ ¼
X

s
rðq; tÞ;

ð
rðq; tÞ dr ¼ Ns;ð

rðq; tÞ dq ¼
X

s

ð
rðq; tÞ dr ¼ N;

(3.9)

where Ns stands for the number of electrons exhibiting the spin orientation s.
In a similar manner, one determines the many-electron densities or their respec-

tive spin components and the associated operators in the position representation.

For example, the spinless two-electron density, r2(r, r0; t), of observing one electron
(of all N electrons) at r and another electron (of all the remaining N�1 electrons) at

r0 is given by the following expression:

r2ðr; r0; tÞ ¼
XN
k¼1

X
l 6¼k

ð
dðrk�rÞdðrl � r0ÞpðQN; tÞ dQN

�
ð
C�ðQN; tÞ r̂2ðr; r0ÞCðQN; tÞ dQN

¼ NðN � 1Þ
ð
dðr1�rÞdðr2 � r0ÞpðQN; tÞ dQN;ðð

r2ðr; r0; tÞ dr dr0 ¼ NðN � 1Þ:

(3.10)

Again, this two-electron distribution can be decomposed into the spin-resolved

components:

r2ðq;q0;tÞ�rs;s
0 ðr;r0;tÞ¼

XN
k¼1

X
l 6¼k

ð
dðrk�rÞdðrl�r0Þdsk ;sdsl;s0pðQN;tÞdQN

�
ð
C�ðQN;tÞr̂2ðq;q0ÞCðQN;tÞ dQN;

r2ðr;r0;tÞ¼
X
s

X
s0

rs;s
0 ðr;r0; tÞ;

ðð
r2ðq;q0;tÞdr dr0 ¼

NsðNs�1Þ; s0 ¼s
NsNs0 ; s0 6¼s

�
;ðð

r2ðq;q0;tÞdq dq0 ¼
X
s

X
s0

ðð
rs;s

0 ðr;r0;tÞdr dr0 ¼NðN�1Þ: ð3:11Þ
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Of interest also is the pair density in which the permuted two-electron localiza-

tion events (rk ¼ r)∧(rl ¼ r0) and (rk ¼ r0)∧(rl ¼ r) are regarded as physically

identical and thus counted only once:

Gðr; r0; tÞ ¼
ð
C�ðQN; tÞ Ĝðr; r0ÞCðQN; tÞ dQN;

Ĝðr; r0Þ ¼
XN�1

k¼1

XN
l¼kþ1

dðrk � rÞdðrl � r0Þ;
ð ð

Gðr; r0; tÞ dr dr0 ¼ NðN � 1Þ=2 ¼ N

2

	 

:

(3.12)

This distribution of the physically indistinguishable electronic pairs satisfies the

pair normalization of the preceding equation (L€owdin 1955a, b), which differs from
that adopted for the two-electron distribution of (3.10) (McWeeny 1989). This

change in the normalization simplifies the expression for the average electron

repulsion energy,

Ve;eðN; tÞ ¼
ð
C�ðQN; tÞV̂e;eðNÞCðQN; tÞdQN; (3.13)

the expectation value of the associated (multiplicative) operator in position repre-

sentation, V̂e;eðNÞ, which measures the interelectron Coulomb interaction for the

sharply specified locations of all N electrons:

V̂e;eðNÞ ¼
XN�1

k¼1

XN
l¼kþ1

1

rk � rlj j �
XN�1

k¼1

XN
l¼kþ1

gðk; lÞ: (3.14)

In terms of the above two-electron densities, the expectation value of the electron

repulsion energy of (3.13) thus reads:

Ve;eðN; tÞ ¼ 1

2

ð ð
r � r0j j�1r2ðr; r0; tÞ dr dr0

¼
ð ð

r � r0j j�1Gðr; r0; tÞ dr dr0:
(3.15)

Clearly, by using the corresponding Kronecker deltas of the spin variables of

electrons [see (3.11)], one could similarly define the spin components of the pair

density as well.

The extension of these concepts into the corresponding momentum-spin

densities is straightforward. For example, the spinless one- and two-electron
densities in the momentum space of N electrons become:

pðp; tÞ ¼
XN
k¼1

ð
dðpk�pÞ pðPN; tÞ dPN �

ð
C�ðPN; tÞ p̂ðpÞCðPN; tÞ dPN

¼ N

ð
dðp1�pÞ pðPN; tÞ dPN � NPðp; tÞð

pðp; tÞ dp ¼ N; ð3:16Þ
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p2ðp; p0; tÞ ¼
XN
k¼1

X
l 6¼k

ð
dðpk�pÞdðpl � p0ÞpðPN; tÞ dPN

�
ð
C�ðPN; tÞ p̂2ðp; p0ÞCðPN; tÞ dPN

¼ NðN � 1Þ
ð
dðp1�pÞdðp2 � p0ÞpðPN; tÞ dPN;ð ð

p2ðp; p0; tÞ dp dp0 ¼ NðN � 1Þ:
(3.17)

Consider now the expectation value of the kinetic energy of N-electrons in the

momentum representation,

TeðN; tÞ ¼ CNðtÞ� ��T̂ðNÞ CNðtÞ�� � � ð
C�ðPN; tÞ T̂ðPNÞCðPN; tÞdPN

¼
ð
TðPNÞpðPN; tÞdPN;

(3.18)

where the (multiplicative) kinetic energy operator T̂ðPNÞ ¼ TðPNÞ measures the

system kinetic energy when the momenta of all N electrons are sharply specified:

T̂ðPNÞ ¼ 1

2m

XN
k¼1

p2k �
XN
k¼1

TðpkÞ ¼ TðPNÞ ¼ NTðpÞ: (3.19)

Therefore, the expectation value of (3.18) is given by the following mean value

expression involving the one-electron density in momentum space:

TeðN; tÞ ¼ N

ð
TðpÞPðp; tÞdp ¼

ð
TðpÞ pðp; tÞdp: (3.20)

3.2 Superposition Principle, Expectation Values,

and Indistinguishability of Identical Particles

The superposition principle of Sect. 2.2 is formally summarized by another basic

axiom of quantum mechanics:

Postulate II: Any combination jCi ¼ ∑i CijCii of the admissible quantum states

{jCii}, where {Ci} denotes generally complex factors, also represents a possible

quantum state of the system under consideration. The squares of moduli of

these expansion coefficients determine the normalized conditional probabilities

{P(CijC) ¼ jCij2} of observing state Ci given the state C: ∑i P(CijC) ¼ 1.
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As an illustration let us consider the basis eigenvectors ji i ¼ {jCii � jaii} of

the quantum observable Â (2.55a), which for reasons of simplicity we assume to

correspond to the discrete spectrum of eigenvalues {ai}. Expanding a general

state vector jCi in this basis set (2.48a) then gives the following components of

its (column) vector representation: C(i) ¼ hijCi ¼ {Ci ¼ hCijCi} � C. Hence
[see (2.39)], the corresponding conditional probabilities read:

PðCijCÞ ¼ jCij2 ¼ CiC
�
i ¼ hCijCihCjCii ¼ hCijP̂CjCii

¼ C�
i Ci ¼ hCjCiihCijCi ¼ hCjP̂ijCi ¼ PðCjCiÞ:

(3.21)

It follows from this equation that the conditional probabilities between two

quantum states can be considered as the expectation values in the variable state

of the projection operator onto the reference state, which plays the role of

a parameter. Their normalization then directly follows from the basis set closure

of (2.41a):

SiPðCijCÞ ¼ hCj
X
i

P̂ijCi ¼ hCjCi ¼ 1: (3.22)

As we shall see in Sect. 3.3, the conditional probabilities of (3.21) also reflect

relative frequencies of possible outcomes fai ¼ hCijÂjCiig of the experiments

measuring the physical quantity A. Indeed, the eigenvector representation of

Â is given by the diagonal matrix A ¼ hijÂjii ¼ fAm;n ¼ hCmjÂjCni ¼ amdm;ng:
Therefore, the statistical average (expectation) value hAi in state jCi is given by the
relevant mean value expression:

hAi ¼ SmPðCmjCÞ am ¼ SmSnC
�
m Am;n Cn ¼ hCjiihijÂjiihijCi ¼ hCjÂjCi:

(3.23)

We have already encountered such a statistical (ensemble) interpretation in (2.97),

when defining the probabilityW(EnjC) of observing the specified energy level En in

the given quantum state jCi.
In the case of a degenerate eigenvalue ai the probability of observing it in state

jCi is given by the sum of contributions P(Ci,jjC) originating from all independent

component states for this eigenvalue, {jCi,ji ¼ jiji, j ¼ 1, 2, g} [see (2.58)]:

P aið Þ ¼ Pg
j¼1

ijjC
� ��� ��2:

The superposition principle can be straightforwardly extended into the continu-

ous basis sets jxi ¼ {jxi}, e.g., the position and momentum representations of Sect.

2.6: any continuous combination [see (2.17)] also represents a possible quantum

state of the system with {P(xjC) ¼ jc(x)j2} now providing the conditional proba-

bility density of observing jxi given jCi, and hence also of all its physical
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observables in the reference state jCi, with the relevant normalization condition

ʃP(xjC) dx ¼ 1. Indeed, since {c(x)} ¼ C(x) ¼ hxjCi (continuous column-vector),

ð
PðxjCÞdx ¼

ð
hCjxihxjCidx ¼ hCjxihxjCi ¼ hCjCi ¼ 1; (3.24)

where we have used the closure relation of (2.41b). Best illustration of this

continuous version of the superposition principle is Postulate I itself. Indeed, as

implied by (2.70) and (3.2c), the wave functions in the position and momentum

representations constitute the expansion coefficients in the basis sets consisting of

the eigenstates of the position and momentum operators, respectively, and hence

the squares of their moduli are in fact the conditional probabilities of observing in

jCN(t)i the sharply specified locations and momenta of the system constituent

particles:

P½QNjCðtÞ� ¼ jCðQN; tÞj2 ¼ pðQN; tÞ; P½PNjCðtÞ� ¼ jCðPN; tÞj2 ¼ pðPN; tÞ:
(3.25)

Consider next the expression for the average kinetic energy (3.6) of a spinless

particle, corresponding to the quantum observable T̂ ¼ p̂
2ðrÞ=2m. The relevant

expansion is again that in terms of the eigenstates {jpi} of the particle momentum

(2.75), c(p) ¼ C(p) ¼ hpjCi, which also mark the eigenstates of T̂ corresponding

to the eigenvalues {T(p) ¼ p2/2m}. The associated conditional probability density

is therefore the momentum density of (3.16), P(pjC) ¼ jC(p)j2 ¼ p(p), which
gives rise to the following mean value expression for the expectation value of the

kinetic energy in state jCi [see also (3.20)]:

hTiC ¼
ð
TðpÞPðpjCÞ dp ¼

ð
TðpÞ pðpÞ dp: (3.26)

In the mixed basis set case, jmi ¼ ({jai}, {jyi}), the expansion is generated by

the identity projector of (2.41c). The squares of expansion coefficients, {Ca ¼
hajCi} and {c(x) ¼ hxjCi}, thus determine the corresponding conditional

probabilities of observing the representation discrete and continuous eigenvalues,

respectively,

PðajCÞ ¼ jhajCij2 and PðyjCÞ ¼ jhyjCij2; (3.27)

with the normalization condition [see the closure relation of (2.41c)]:

X
a

PðajCÞ þ
ð
PðyjCÞdy ¼ hCjmihmjCi ¼ hCjCi ¼ 1: (3.28)
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An important property of the wave functions of identical particles is embodied

in their symmetry properties with respect to the operation exchanging the spin-

position (or momentum-position) variables of two particles. The physical meaning

of the quantum state is not affected by such an operation since the identical

particles, e.g., electrons in a molecule, are indistinguishable due to the basic

inability to follow their classical trajectories in quantum mechanics (the Heisenberg

Principle of Indeterminacy). Therefore, should we mentally associate some labels

distinguishing electrons at the specified time, their identity afterwards would be still

completely unknown. Clearly, the objective laws of quantum mechanics cannot

depend upon such a subjective act of attributing these identity labels to electrons.

This physical invariance with respect to exchanging two identical particles, say

electrons k and l, symbolized by the associated permutation operator X̂ðk; lÞ, is also
reflected by the symmetry of the system Hamiltonian ĤðQNÞwith respect to such an
operation [see (2.104)],

X̂ðk; lÞ ĤðQNÞX̂ðk; lÞ�1 ¼ ĤðQNÞ or
X̂ðk; lÞ ĤðQNÞ ¼ ĤðQNÞ X̂ðk; lÞ:

(3.29)

The conservation in such an operation of the probability densities of Postulate I,

pðq1; . . . qk; . . . ; ql; . . . ; qN; tÞ ¼ pðq1; . . . ql; . . . ; qk; . . . ; qN; tÞ or

pðu1; . . . uk; . . . ; ul; . . . ; uN; tÞ ¼ pðu1; . . . ul; . . . ; uk; . . . ; uN; tÞ;
(3.30)

thus requires preservation of the squares of the moduli of the associated wave

functions. It is assured, when the wave functions themselves are either symmetrical

or antisymmetrical with respect to such a permutation of two identical particles:

X̂ðk; lÞCðQN; tÞ ¼ �CðQN; tÞ � XxCðQN; tÞ or

X̂ðk; lÞCðPN; tÞ ¼ �CðPN; tÞ � XxCðPN; tÞ: (3.31)

Thus, in view of the commutation relation (3.29), [ĤðQNÞ; X̂ðk; lÞ� ¼ 0, the

eigenfunctions of the Hamiltonian of a system of identical particles also satisfy

the simultaneous eigenvalue problem (3.31) (see Sect. 2.5) of the particle exchange

operator X̂ðk; lÞ, which exhibits only two eigenvalues: Xx ¼ �1. This symmetry or

antisymmetry feature of the wave function reflects the identity of the particles

involved. This permutational symmetry of quantum states is conserved in time.

These symmetry properties of the admissible wave functions of identical

particles can be summarized in the following postulate of Pauli:

Postulate III: The physical wave functions of the system of identical particles

must be either symmetric or antisymmetric with respect to the permutation of their

position-spin {qk} or momentum-spin {uk} variables. Those particles for which the
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wave functions are symmetric are called bosons and those for which they are

antisymmetric are called fermions.

Thus, the elementary particles existing in nature are divided into two categories:

the particles corresponding to X ¼ +1, i.e., the symmetric wave functions, called

bosons, and those associated with X ¼ �1, i.e., the antisymmetric wave functions,

called fermions. All currently known particles obey the following empirical rule
related to their spin quantum number S (see Sect. 1.4): particles of half-integral spin
(e.g., electrons, positrons, protons, neutrons, muons) are fermions, while those of

the integral spin (e.g., photons, mesons) are bosons. It also holds for the composite

particles such as the atomic nuclei, which are known to be composed of nucleons

(neutrons and protons), which are fermions. Thus, the spin of the nucleus as

a whole, is reflected by the parity of the number of nucleons: the nuclei with an

even number of fermions, e.g., 4He isotope, are bosons, while those containing

an odd number of nucleons, e.g., 3He isotope, are fermions, since the resultant

spin of such composite particles is integral in the first case and half-integral in the

other case.

There are also macroscopic consequences of the particle spin identity in the

statistical mechanics, which predicts the physical properties of systems composed

of a very large number of particles as averages over the ensembles corresponding

to alternative thermodynamic equilibria. The statistical weight of a macroscopic

state is then proportional to a number of the microscopic states, through which it

can be realized, a variety of which strongly depends on the particle identity.

In the classical, Maxwell–Boltzmann statistics, the identical particles were in

fact treated as if they are different. Indeed, the microscopic states with identical

list of states of individual (identical) particles were considered distinct, when the

permutation of particles among these states was different. In the quantum statistical

mechanics the above symmetrization postulate intervenes, so that an admissible

microscopic state is now solely identified by the enumeration of individual particle

states which form it, their actual ordering being insignificant. This gives rise to

different predictions compared with those resulting from the classical statistical

mechanics.

The consequence of the antisymmetrization rule for the wave function of

fermions implies that two identical fermions cannot “occupy” the same quantum

state, a restriction known as the Pauli Exclusion Principle. There are no such

occupation restrictions implied by the symmetrization rule for bosons, so that an

individual state is accessible to any number of such integral spin particles. Different

statistical averages result: the bosons obey the Bose–Einstein statistics, while

fermions – the Fermi–Dirac statistics, which explains the nomenclature adopted

to distinguish these two categories of quantum particles. Thermodynamic differences

between them are amplified at low temperatures: the Bose condensation is observed

for systems composed of identical bosons, with particles accumulating in the lowest

energy individual states; by the Pauli exclusion rule this effect is prohibited in

systems of identical fermions.

All physical predictions for quantum objects are expressed in terms of the

probability amplitudes (see Postulate I), which represent the scalar products of
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two state vectors, or matrix elements of an operator. The symmetrization require-

ment of Postulate III causes special interference effects between the so-called

“direct” and “exchange” processes, to appear in the conditional probabilities

(see Postulate II) of specific outcomes of experiments performed on systems of

identical particles. The formal postulates related to measurement processes, single

or repeated, performed on quantum systems are the subject of the next section.

3.3 Results of Physical Measurements

In this section, we shall further elaborate on the physical implications of the mathe-

matical concepts of the quantum mechanical description, which has been introduced

in the preceding chapter, by specifically addressing the link between this abstract

formalism and the results of measurements. As in previous sections we shall focus on

the position and momentumwave functions and the associated operators representing

the physical properties of themicrosystems. Inwhat follows both the results of a single

experiment and the average values of a large number of repetitions of the same

experiment performed on systems in the same initial quantum state will be tackled

by the corresponding postulates of quantum mechanics.

3.3.1 Classical Observables in Position and Momentum
Representations

As we have already remarked in Sect. 2.5, each physical quantity A is represented in

quantum mechanics by its linear and Hermitian operator Â, the eigenvalue problem

of which plays the fundamental role in predicting the outcomes of physical

measurements. This correspondence is formalized in terms of the following axiom:

Postulate IV.1: To every mechanical quantity A there corresponds in quantum

mechanics the associated operator Â called an observable. It has to be linear, to

satisfy the requirements of the Superposition Principle (Postulate II), and Hermitian

(self-adjoint), for its eigenvalues to be real. Their eigenvectors form the bases in the

vector space of all quantum states of the physical system.

The prescription for constructing the position/momentum representations of the

quantum mechanical observables are known as the Jordan rules. Consider the classi-
cal quantities, which can be expressed as functions of the particle positions and

momenta, A ¼ A({rk},{pk}), or equivalently in terms of the conjugated Cartesian

coordinates,A ¼ A({xa}, {pb}). The Jordan rules summarize the results of Sect. 2.6 by

attributing to such functions the corresponding functions of the position and momen-

tum operators:

Â ¼ Aðfr̂kg; fp̂kgÞ or Â ¼ Aðfx̂ag; fp̂bgÞ: (3.32)
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In the position representation {rk} ¼ {xa}, the coordinate operator x̂a denotes

the multiplication by xa, x̂a ¼ xa. Similarly for any function of the particle

coordinates, e.g., the position vector r ¼ xi + yj + zk or the potential energy

V({xa}), there corresponds the associated multiplicative operators:

r̂ðrÞ ¼ x̂ iþ ŷ j þ ẑ k ¼ xiþ yj þ zk ¼ r;

V̂ðfxagÞ ¼ Vðfx̂agÞ ¼ VðfxagÞ; etc:
(3.33)

The elementary momentum operators in this representation,

p̂kðrkÞ ¼ �i�hrrk � �i�hrk; p̂aðxaÞ ¼ �i�h@ @xa= ; (3.34)

similarly determine the quantum mechanical operator of any function of the particle

momenta, e.g., the kinetic energy T ¼ T({pk}) ¼ ∑k pk
2/2mk:

T̂ðfrkgÞ ¼ Tðfp̂kðrkÞgÞ ¼ Skp̂
2
kðrkÞ=2mk ¼ �

X
k

�h2

2mk
Dk: (3.35)

These rules are sufficient to generate the quantum operator in the position

representation for any physical quantity encountered in the classical mechanics,

e.g., that of the orbital angular momentum of a single particle:

l ¼ r � p ¼
i j k
x y z
px py pz

������
������ ! l̂ðfxagÞ ¼ îlx þ ĵly þ k̂lz

¼ �i�h
i j k
x y z

@ @x= @ @y= @ @z=

������
������; (3.36)

or the operator attributed to the system Hamilton function Hðfr̂kg; fp̂kðrkÞgÞ ¼
Eðfr̂kg; fp̂kðrkÞgÞ ¼ ĤðfxagÞ, the systemHamiltonian in the position representation:

ĤðfxagÞ ¼ T̂ðfxagÞ þ V̂ðfxagÞ ¼ �
X
k

�h2

2mk
Dk þ VðfxagÞ; (3.37)

where the Laplacian Dk ¼ r2
k ¼ @2 @x2k

� þ @2 @y2k
� þ @2 @z2k

�
.

These rules can be straightforwardly transcribed into the associated prescriptions

for the momentum representation {pk} ¼ {pa}, in which (see again Sect. 2.6) p̂a ¼
pa; or p̂ðpÞ ¼ p̂xiþ p̂y j þ p̂zk ¼ pxiþ py j þ pzk ¼ p, and

x̂aðpaÞ ¼ i�h@ @pa= or r̂kðpkÞ ¼ i�hrpk : (3.38)
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Therefore, in this representation the kinetic energy corresponds to the multipli-

cative operator T̂ fpkgð Þ ¼ T fpkgð Þ ¼ P
kpk

2=2mk, while the potential energy func-

tion generates the associated differential operator:

V̂ðfx̂aðpaÞgÞ ¼ Vðfi�h@ @pa= gÞ: (3.39)

3.3.2 Possible Outcomes of a Single Measurement

In accordance with the discussion in Sect. 2.5 the possible outcomes of individual

measurements of the physical quantity A are related to its quantum mechanical

operator Â via the

Postulate IV.2: The result of a single measurement of the physical quantity A is

one of the eigenvalues {ai} of its observable Â in the eigenvalue problem (2.55a).

In position/momentum representations, it reads:

ÂðfxagÞCiðfxagÞ ¼ aiCiðfxagÞ; ÂðfpagÞCiðfpagÞ ¼ aiCiðfpagÞ; (3.40)

where CiðfxagÞ and CiðfpagÞ denote the corresponding eigenfunctions associated

with the eigenvalue ai.
Since the set of eigenvectors {jCii} of the quantum mechanical observable Â

forms the complete basis in the system vector space (see Sect. 2.5), any state jCi
can be expressed as their combination, with the squares of the moduli of the

expansion coefficients determining the conditional probabilities of observing jCii
in state jCi (Postulate II):

jCi ¼ SijCiihCijCi ¼ SijCiiCi; PðCijCÞ ¼ jCij2 � 1: (3.41)

The P(CijC) ¼ 1, and hence {P(Cj6¼ijC) ¼ 0}, marks the eigenvector itself,

jCi ¼ jCii, when we know with certainty that the eigenvalue ai (nondegenerate)
has been observed. Therefore, a general combination of the preceding equation is

reduced after the measurement of A to a single eigenvector of Â, the one

corresponding to the observed eigenvalue. This “contraction” of jCi into jCii
marks the irreversible intervention of the measuring device. Indeed, as we have

emphasized in Chap. 1, any experiment performed on the microobject inadvertently

modifies its state.

This contraction of a combination of eigenstates into its single member has to be

modified in the case of the degenerate eigenvalue ai of the physical quantity A. Such
a result of the experiment implies that the state immediately after the measurement

is now the normalized projection Ch jP̂ðaiÞ Cj i�  �1=2 P̂ðaiÞ Cj i of the initial state

jCi into the eigensubspace associated with ai, {jCi,ji ¼ jiji, j ¼ 1, 2, g}, which is

effected by the subspace projector P̂ðaiÞ ¼
Pg
j¼1

ij
�� �

ij
� ��.
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In quantum mechanics the set of eigenvalues {ai} thus determines the spectrum

of all possible outcomes of the single measurement of A. Since the eigenvalues of
the square of the observable Â

2
are given by the squares of eigenvalues of Â, for the

same set of eigenstates,

Â
2jCii ¼ aiÂjCii ¼ ai

2jCii; (3.42)

the square of the dispersion in A, sA
2 ¼ hA2i � hAi2 [see (3.23)], observed in

the repeated measurements of A in the eigenstate jCii, represented by the

eigenfunctions CiðfxagÞ or CiðfpagÞ, identically vanishes:

sA2 ¼ hA2ii � hAii2 ¼ hCijÂ2jCii � hCijÂjCii2 ¼ ai
2 � ai

2 ¼ 0: (3.43)

Therefore, in the eigenstate of Â the physical quantity A is sharply specified, and

each single measurement of this physical property in this state always gives

the same result ai, as reflected by the conditional probabilities: P(CijCi) ¼ 1 and

P(Cj6¼ijCi) ¼ 0.

As we have already demonstrated in (2.60), the eigenstates corresponding to differ-

ent eigenvalues are automatically orthogonal. However, for the degenerate eigenvalues,

several eigenstates correspond to the same eigenvalue (2.58), so they have to be

orthogonalized to safeguard their linear independence. This orthogonalization is

performed by taking appropriate linear combinations of generally nonorthogonal state

vectors, which satisfy the conditions of their mutual orthogonality.

As schematically shown in Fig. 3.1, the prescription to make any pair of

degenerate state vectors to be mutually “perpendicular” is not unique. Thus, the

specific orthogonalization scheme can be selected for reasons of convenience. For

the sake of simplicity consider two normalized state vectors jaii ¼ {ji1i, ji2i} of the
doubly degenerate eigenvalue ai, g ¼ 2, which define the overlap matrix of their

scalar products:

S ¼ haijaii ¼ fhijjij0 i; j; j0 ¼ 1; 2g � 1 S
S 1

� �
; (3.44)

where for definiteness we assume S > 0. In the (nonsymmetric) Schmidt orthogo-
nalization scheme (see Fig. 3.1) of transforming the original vectors {ji1i, ji2i} to

the mutually orthogonal set j�aii ¼ fj�i1i; j�i2ig, one leaves one of these vectors

unchanged, say j�i1i ¼ ji1i, and “rotates” the other, j�i2i ¼ N2ðji2i þ Cji1iÞ, where
N2 is the normalization constant and C denotes the mixing coefficient, until the

two vectors become mutually orthogonal: hi1j�i2i ¼ 0. This condition then gives

C ¼ �S, while the normalization h�i2j�i2i ¼ 1 impliesN2 ¼ ð1� S2Þ�1=2
, and hence

j�i2i ¼ ð1� S2Þ�1=2ðji2i � ji1iSÞ ¼ N2ðji2i � ji1ihi1ji2iÞ ¼ N2ðji2i � P̂iji2iÞ:
(3.45a)
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This expression can be straightforwardly extended to a general case of the

normalized state vector jci Schmidt orthogonalized with respect to the given

subspace jwi ¼ (j’1i, j’2i, . . ., j’ri) of the orthonormal states:

�c
�� � ¼ N½ cj i �

Xr

i¼1

’ij i ’i j ch i� ¼ N½ cj i � P̂w cj i�: (3.45b)

Alternatively, as also shown in the figure, one could manipulate the two non-

orthogonal vectors simultaneously in a symmetrical way, so that both ortho-

gonalized vectors j~aii ¼ fj~i1i; j~i2ig, strongly resemble their initial, nonorthogonal

analogs. In the L€owdin orthogonalization scheme, this transformation is effected

through the symmetric matrix S�1/2, j~aii ¼ jaiiS�1=2, defined by the eigenvalue

problem of the overlap matrix S, i.e., its diagonalization in the orthogonal

transformation:

OTSO ¼ s ¼ fsmdm;ng, S�1=2 ¼ Os�1=2OT, sk ¼f(smÞkdm;ng, OOT ¼ I: (3.46)

Indeed, the orthogonality of the symmetrically rotated vectors j~aii then directly

follows from the orthogonal transformation O which diagonalizes the overlap

matrix:

h~aij~aii ¼ S�1=2haijaii S�1=2 ¼ S�1=2S S�1=2 ¼ S0 ¼ I: (3.47)

These matrix equations apply to any number of the orthogonalized vectors

or wave functions. In the latter case, the overlap matrix is defined to be the

corresponding integrals between nonorthogonal functions, e.g., x(r) ¼ {wt(r)}
(row vector), when Sx ¼ hxjxi ¼ {Sr,t ¼ ʃwr

*(r)wt(r) dr}: ~xðrÞ ¼ xðrÞSx�1=2.

The specific forms of these matrices for the metric of (3.44) read:

s ¼ 1þ S 0

0 1� S

� �
¼ s1 0

0 s2

� �
; O ¼ 1ffiffiffi

2
p 1 1

1 �1

� �
;

S�1=2 ¼ a b

b a

� �
; a ¼ 1

2

1ffiffiffiffi
s1

p þ 1ffiffiffiffi
s2

p
	 


; b ¼ 1

2

1ffiffiffiffi
s1

p � 1ffiffiffiffi
s2

p
	 


:

(3.48)

3.3.3 Expectation Value of Repeated Measurements
and Heisenberg Uncertainty Principle

The average result of the repeated measurements of A in quantum mechanics,

performed on the system in the same initial quantum state jCi, has already
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been established in (3.23). It can be formally stated in the form of a separate

postulate:

Postulate IV.3: The statistically average result of a very large number m ! 1 of

repeated measurements of the physical quantity A performed on the microsystem in

the same initial state jCi is given by the expectation value of its quantum mechanical

operator Â:

hAiC ¼
X
i

PðCijCÞ ai ¼ hCjÂjCi ¼
ð
C�ðQN; tÞ ÂðQNÞCðQN; tÞ dQN

¼
ð
C�ðPN; tÞ ÂðPNÞCðPN; tÞdPN:

(3.49)

It has been demonstrated in (3.43) that in the eigenstate jCii this quantity is

sharply specified with Ah iCi
¼ ai, A2

� �
Ci

¼ a2i , etc. The same conclusion applies to

all physical observables which commute with Â, since all these operators have a

common set of eigenvectors (see Sect. 2.5). However, in a general quantum state of

(3.41), one will detect a dispersion in the measured values of A, with a statistically

distributed results {ai} appearing with frequencies {mi ¼ mP(CijC)} proportional

to the conditional probabilities {P(CijC)} of observing the specified eigenstates

(see caption of Fig. 1.1).

We are now in a position to provide a general formulation of the Heisenberg

Principle of Indeterminacy in quantum mechanics (see Chap. 1). As specific

measures of the simultaneous accuracies of the physical quantities A and B we

adopt their dispersions (standard deviations), sX ¼ h(X�hXi)2i½ ¼ (hX2i�hXi2)½,
X ¼ A, B, with the corresponding expressions in terms of the quantum mechanical

expectation values:

sX2 ¼ X2
� �

C � Xh i2C¼ hCjðX̂� hXiCÞ2jCi � hCjD̂2
XjCi; X ¼ A;B: (3.50)

| i2 〉
| ~
i2〉

| i2 〉

| i1〉  = | i1〉

| ~
i1〉

Fig. 3.1 The diagrammatic representation of the mutually nonorthogonal state vectors {ji1i, ji2i},
and the two sets of their orthogonalized (mutually “perpendicular”) analogs: the Schmidt

(nonsymmetrically) orthogonalized vectors j�aii ¼ fj�i1i; j�i2ig, and the L€owdin (symmetrically)

orthogonalized vectors j~aii ¼ fj~i1i; j~i2ig. The two sets are related by the unitary (rotation)

transformation U ¼ h�aij~aii: j~aii ¼ j�aiiU
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We further observe that the displacement operators D̂A and D̂B are both Hermitian,

as are the observables Â and B̂ themselves, and the following commutator identity

is satisfied:

½Â; B̂� ¼ ½D̂A; D̂B�; (3.51)

since the average values hXiC (numbers) commute with every operator [see (2.34)].

We shall now demonstrate that the following inequality is satisfied by the

simultaneous indeterminacies of the physical quantities A and B:

sA2sB2 	 � 1

4
Ch j½Â; B̂� Cj i2: (3.52)

It constitutes the quantum mechanical formulation of the Heisenberg Uncertainty

Principle, which indeed predicts the simultaneous sharp specification of the com-

muting observables.

In order to prove this inequality let us introduce the physically meaningful, i.e.,

exhibiting a finite norm, auxiliary state vector jF(l)i depending on real parameter l:

jFðlÞi ¼ ðlD̂A � iD̂BÞjCi: (3.53)

The square of its norm (positive) then determines the quadratic function f(l):

hFðlÞjFðlÞi ¼ FðlÞk k2 ¼ hCjðl D̂A � iD̂BÞyðl D̂A � iD̂BÞjCi
¼ hCjðl D̂A þ i D̂BÞðl D̂A � i D̂BÞjCi
¼ hCjðl2D̂2

A � il ½D̂A; D̂B� þ D̂2
BÞjCi

¼ sA2l
2 � i Ch j½Â; B̂� Cj ilþ sB2

� al2 þ blþ c> 0:

(3.54)

For a ¼ sA
2 > 0 this inequality can be satisfied only when there are no

solutions of the associated quadratic equation al2 + bl + c ¼ 0, i.e., when D ¼
b2 � 4 ac < 0 or

� Ch j½Â; B̂� Cj i2< 4 s2As
2
B; (3.55)

which completes the proof.

Consider the illustrative example of the position–momentum relation (1.7). In

position representation (3.34), Â ¼ x; B̂ ¼ �i�h@ @x= , so that their commutator

acting on the continuous function f(x) gives:

½Â; B̂� f ¼ �i�hxð@f=@xÞ þ i�hxð@f=@xÞ þ i�h f ¼ i�h f or ½x̂; p̂x� ¼ i�h: (3.56)
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Thus, these two physical quantities are incompatible, with the limit of the product

of their lowest (simultaneous) inaccuracies being determined by (3.52):

sxspx >
1

2
�h: (3.57)

These predictions agree with the constant (position-independent) probability of

finding a particle at the specified location in space in the state described by the basis

function up(r) (2.76), corresponding to the sharply specified momentum: sp ! 0.

It indeed implies that all localization events are then equally probable, i.e., we are

then completely ignorant about the particle position: sr ! 1. In accordance with

the Heisenberg principle of (3.57) only the infinite position indeterminacy gives the

finite product when multiplied by the infinitesimal momentum uncertainty sp ! 0.

3.3.4 Ensemble Averages in Mixed States

Only certain idealized systems, isolated from their environment, are completely

described by a single state vector jCi or a single wave function C(x). The wave

function of an isolated system depends only on its internal coordinates x and carries
the maximum information about the state of the microsystem available in quantum

physics. The full specification of quantum state of the microobject is through the

state vector belonging to the basis set of the simultaneous eigenvectors of the

system complete set of the mutually commuting observables fÂ; B̂; . . .g, which
diagonalize the matrix representations of these operators, jCi ∈ {jCni ¼
jak, bl, . . .i}. Their eigenvalues (ak, bl, . . .) then provide the complete identification

of the direction of the state vector jak, bl, . . .i in the molecular Hilbert space.

However, microobjects can be coupled to their surroundings. For example, the

particles at constant temperature are in contact with the thermostat (heat “bath”)

and the open systems, exhibiting fluctuating (fractional, continuously changing)

number of particles, are coupled to the external particle “reservoir(s).” The state of

the closed system interacting with its environment will also depend on the external

degrees of freedom describing the latter. Therefore, the formalism of quantum

mechanics must also admit all intermediate stages of an imprecise definition of

the system state, which cannot be linked to a single state vector (wave function).

Such generalized states are called the mixed states, while the systems with the

specified wave function are said to be in the pure state.
As in statistical mechanics, the incomplete information about the system calls

for the concept of an ensemble of quantum states, in which the admissible pure

states appear with some probability. The ensemble consists of a very large number

of replicas of the same system. For example, a system in the thermodynamic

equilibrium at temperature T has a probability of being in its energy eigenstate

jEni proportional to exp(�En/kBT), where kB is the Boltzmann constant. This

probability describes the frequency of such a state among members of the canonical
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ensemble. Similarly, the systems in the grand-canonical ensemble describing the

system in thermodynamic equilibrium with the heat bath at temperature T and the

particle reservoir characterized by the chemical potential m will exhibit the proba-

bility proportional to exp(mNi�En,i)/kBT of observing the eigenvalue En,i of the

Hamitonian ĤðNiÞ, for the specified (integral) number of electrons Ni.

Therefore, such an imprecise definition of the quantum mechanical state can be

interpreted as the statistical mixture of the admissible states {jc1i, jc2i, . . .} of the
system replicas in the ensemble, which appear with the associated (external)
probabilities {p1, p2, . . .}, ∑a pa ¼ 1. The individual states in the mixture do not

have to be orthogonal, e.g., in the grand ensemble, when we mix eigenstates of

different Hamiltonians, but they are always assumed to be normalized.

The statistical mixture should not be confused with the expansion of a single

wave function jFi in the (orthonormal) basis set, say {jCni},

jFi ¼
X
n

jCnihCnjFi ¼
X
n

jCnicn; (3.58)

where jcnj2 generates the conditional probability P(CnjF) of observing in state jFi
the physical attributes of jCni. Indeed, this does not imply that jFi is the mixture of

jC1i with the probability P(C1jF), and jC2i with the probability P(C2jF), etc. The
square of the modulus of F(x), which generates the probability distribution r(x) ¼
F*(x)F(x), then includes the crucial interference terms between different basis

functions, cn
*cmCn

*(x)Cm(x), which are not present in the statistical mixture of

the same basis functions. Thus, the probability weighted sum of distributions

{rn(x) ¼ Cn
*(x)Cn(x)}, generated by each state in the basis set, rens.(x) ¼ ∑n pn

rn(x), cannot reproduce the true probability density r(x). In other words, it is not

possible to describe a statistical mixture by an “average” state vector in the form of

the combination of states of (3.58): rens.(x) 6¼ r(x).
The two levels of probabilities are thus involved in determining the results of

measurements performed on systems in their mixed quantum states. On one hand,

there is the intrinsic quantum mechanical probability of finding in each (pure) state

jcai a specific eigenvalue ak of the observable Â; ÂjCki ¼ akjCki, given by the

square of the modulus of the expansion coefficient Ck,a ¼ hCkjcai, Pk,a ¼ jCkaj2
(Postulate II), which determines the quantum mechanical expectation value

hAia ¼ hcajÂjcai ¼
X
k

akPk;a: (3.59)

Notice that these eigenstates generate the diagonal representation of Â,

AðCÞ ¼ Am;n ¼ hCmjÂjCni ¼ andm;n
� �

.

On the other hand, the additional level of the external probabilities {pa} of

observing the individual states {jcai} in the ensemble intervenes in the mixed

quantum mechanical states. They define the associated density operator given by

the sum of the externally weighted projections onto the quantum states being mixed,
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D̂ ¼
X
a

jcaipahcaj ¼
X
a

paP̂a; (3.60a)

Its matrix representation in the basis set of eigenstates of Â,

DðCÞ ¼ fDm;n ¼ hCmjD̂jCni ¼
X
a

hCnjcaipahcajCmig; (3.60b)

determines the ensemble average value of A:

Aens: ¼
X
a

pahAia ¼
X
a

paf
X
k

akPk;ag

¼
X
n

X
m

X
a

hCnjcaipahcajCmi
( )

hCmjÂjCni

¼
X
n

X
m

hCnjD̂jCmihCmjÂjCni �
X
n

X
m

Dn;mAm;n

� tr½DðCÞAðCÞ� ¼
X
n

hCnjD̂ ÂjCni � trðD̂ ÂÞ

¼ tr½AðCÞDðCÞ� ¼
X
m

hCmjÂ D̂jCmi ¼ trðÂ D̂Þ:

(3.60c)

The Hermitian (nonidempotent!) density operator D̂ involves the probability

weighted projections {fP̂ag} onto the individual states being mixed, while the trace
operation (tr) denotes the summation of all diagonal elements of the matrix

representations of operators in the adopted basis. It also follows from the definition

of D̂ that its expectation value in state jFi

hFjD̂jFi ¼
X
a

pahcajFihFjcai ¼
X
a

pa PðcajFÞ 	 0; (3.61)

and hence D̂ is a positive operator.

It can be also verified that the trace of the product of operators is invariant with

respect to the cyclic permutations of factors in the product [see (3.60c)],

tr (AB . . .CD) = tr(DAB . . .C), etc:; (3.62)

and to a change C ! F in the (orthonormal) basis set:

tr Â ¼
X
n

hCnjÂjCni � trAC

¼
X
n

X
m

X
m0

hCnjFmihFmjÂjFm0 ihFm0 jCni

¼
X
n

X
m

X
m0

hFm0 jCnihCnjFmihFmjÂjFm0 i

¼
X
m

X
m0

hFm0 jFmihFmjÂjFmi

¼
X
m

hFmjÂjFmi � trAF;

(3.63)
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where we have used the closure relations∑mjFmihFmj ¼ ∑njCnihCnj ¼ 1 and the

orthonormality of basis functions hFm0jFmi ¼ dm,m0. One also observes that

tr D̂ ¼
X
n

hCnjD̂jCni ¼
X
a

X
n

pahcajCnihCnjcai

¼
X
a

pahcajcai ¼
X
a

pa ¼ 1: (3.64)

Obviously, the pure state, e.g., jcai, can be viewed as the limiting case of the

ensemble, when pa ¼ 1 and {pb 6¼a ¼ 0}, so that D̂ ¼ P̂a. Only in the pure quantum

state the density operator is idempotent, D̂
2 ¼ D̂ (idempotency of P̂a), so that

trD̂
2 ¼ trD̂ ¼ 1. The corresponding inequality for the mixed state reads: trD̂

2
<1.

When describing parts of a physical system the concept of the partial trace
emerges. Assume that the global system, (1) + (2), consists of distinct subsystems

(1) and (2), described by their associated Hilbert spaces ℋ(1) ¼ {jCi(1)i} and

ℋ(2) ¼ {jFm(2)i}, the tensor product of which spans the Hilbert space of the

system as a whole:

ℋð1; 2Þ ¼ fjCið1ÞijFmð2Þi � jCið1ÞFmð2Þig ¼ ℋð1Þ 
ℋð2Þ: (3.65)

We now introduce the partial traces of the system density operator D̂, which define

the effective density operators for each subsystem: D̂ð1Þ and D̂ð2Þ. This is effected
by contractions of the matrix representation of D̂ in ℋ(1, 2),

D(1, 2) = fhCið1ÞFmð2ÞjD̂jCi 0 ð1ÞFm0 ð2Þi � Di;m;i 0;m 0(1,2)g, (3.66)

by partial trace summations over m ¼ m0 in one subsystem or i ¼ i0 of the other

subsystem:

Dð1Þ ¼
X
m

hCið1ÞFmð2Þj D̂ jCi0 ð1ÞFmð2Þi � tr2Dð1; 2Þ � f Di;i0(1)g,

Dð2Þ ¼
X
i

hCið1ÞFmð2Þj D̂ jCið1ÞFm0 ð2Þi � tr1Dð1; 2Þ � f Dm;m0 (2)g : (3.67)

Let A(1) be a physical quantity of subsystem (1) with the corresponding observ-

able Âð1Þ acting in ℋ(1), which is represented in ℋ(1, 2) by the matrix:

A1;2(1) ¼ fhCið1ÞFmð2ÞjÂð1ÞjCi0 ð1ÞFm0 ð2Þi � Ai;m;i0;m0 ð1Þ
¼ hCið1ÞjÂð1ÞjCi0 ð1ÞihFmð2ÞjFm0 ð2Þi ¼ Ai;i0 ð1Þdm;m0(2)g
� Að1Þ 
 I(2): (3.68)

74 3 Basic Concepts and Axioms



The ensemble average value of A(1) [see (3.60a)–(3.60c)] now reads:

Aensð1Þ ¼ tr½Dð1; 2ÞA1;2ð1Þ�
¼

X
i

X
m

½
X
i0

X
m0

Di;m;i0;m0 ð1; 2ÞAi0;m0;i;mð1Þ�

¼
X
i

X
m

½
X
i0

X
m0

Di;m;i0;m0 ð1; 2ÞAi0;ið1Þdm0;mð2Þ�

¼
X
i

X
i0
½
X
m

Di;m;i0;mð1; 2Þ�Ai0;ið1Þ�

¼
X
i

X
i0
½
X
m

Di;i0 ð1ÞAi0;ið1Þ�

¼ tr½Dð1ÞAð1Þ�: (3.69)

Therefore, the partial trace concept enables one to calculate the ensemble

average of the subsystem quantity A(1) as if this part of the whole physical system
were isolated in the effective mixed state of (1) in the system as a whole, defined

by the density operator D(1), which already involves the partial trace over the states

of the other subsystem.

3.4 Angular Momentum and Spin Operators

In (3.36) we have used the Jordan rules to generate the quantum mechanical

observable l̂ðfxagÞ ¼ �i�hr �r corresponding in the position representation to

the particle angular momentum l ¼ r � p, e.g., that of the electron moving around

nucleus in an atom. This equation also defines the associated component operators,

obtained by expanding the determinant of the vector product:

l̂x ¼ ŷp̂z � ẑp̂y ¼ �i�hðy@ @z= � z@ @y= Þ;
l̂y ¼ ẑp̂x � x̂p̂z ¼ �i�hðz@ @x= � x@ @z= Þ;
l̂z ¼ x̂p̂y � ŷp̂x ¼ �i�hðx@ @y= � y@ @x= Þ:

(3.70)

They give rise to the following commutation relations:

½̂lx; l̂y� ¼ i�ĥlz; ½̂ly; l̂z� ¼ i�ĥlx; ½̂lz; l̂x� ¼ i�ĥly; ½̂l2; l̂x� ¼ ½̂l2; l̂y� ¼ ½̂l2; l̂z� ¼ 0:

(3.71)

It thus follows from the first three relations of this equation that for the finite

angular momentum jlj > 0 its three components cannot be simultaneously deter-

mined precisely; clearly, for jlj ¼ 0 they are all vanishing: lx ¼ ly ¼ lz ¼ 0. The

remaining relations indicate that only the length jlj ¼ (l2)1/2 of the angular
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momentum and one of its components, say lz, can be simultaneously sharply

defined. Indeed, the analysis of the quantized eigenvalue problems of these

operators, which can be found in any textbook of quantum mechanics, gives:

l2 ¼ lðlþ 1Þ�h2; l ¼ 0; 1; 2; . . . ; lz ¼ m�h; m ¼ �l;�lþ 1; . . . ; 0; . . . ; l� 1; l:

(3.72)

The commutation relations can be straightforwardly derived using the commu-

tator identities of (2.34) and the known commutators involving the position fx̂ig
and momentum fp̂ig observables [see (3.56)]:

½x̂i; x̂j� ¼ ½p̂i; p̂j� ¼ 0; ½x̂i; p̂j� ¼ i�hdi;j: (3.73)

For example,

½̂lx; l̂y� ¼ l̂x̂ly � l̂ŷlx ¼ ½ŷp̂z � ẑp̂y; ẑp̂x � x̂p̂z�
¼ ½ŷp̂z; ẑp̂x� þ ½ẑp̂y; x̂p̂z�
¼ ðx̂p̂y � ŷp̂xÞ½ẑ; p̂z� ¼ i�ĥlz:

(3.74)

However, the origin of the spin angular momenta (see Sect. 1.4) is not classical,

so that the Jordan rules do not apply in constructing their operators. Consider a single

electron as an example. We shall now derive the matrix representations of the spin

operator ŝ ¼ îsx þ jŝy þ jŝz in the basis set of the two allowed spin states jji � (jai,
jbi) (see Fig. 1.2) by postulating that these nonclassical angular momentum

operators satisfy the same commutator relations as their classical analogs:

½̂sx; ŝy� ¼ i�hŝz; ½̂sy; ŝz� ¼ i�hŝx; ½̂sz; ŝx� ¼ i�hŝy; ½̂s2; ŝx� ¼ ½̂s2; ŝy� ¼ ½̂s2; ŝz� ¼ 0:

(3.75)

In other words, we again recognize that, as in the classical case, only the length and

one of the components of the spin angular momentum can be simultaneously

specified. This is exactly what is observed in the experiment (see Fig. 1.2).

We first observe that the two spin states of an electron are then represented by the

associated spin wave functions (column vectors):

aðjÞ ¼ hjjai ¼ fhsjaig ¼ 1

0

� �
; bðjÞ ¼ hjjbi ¼ fhsjbig ¼ 0

1

� �
;

hbjai ¼
X
s

hbjsihsjai ¼ byðjÞaðjÞ ¼ 0;

hajai ¼
X
s

hajsihsjai ¼ ayðjÞaðjÞ ¼ hbjbi ¼
X
s

hbjsihsjbi ¼ byðjÞbðjÞ ¼ 1:

(3.76)
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To simplify notation, we introduce the dimensionless Pauli operator,

ŝ ¼ 2ŝ=�h ¼ iŝx þ jŝy þ jŝz; (3.77)

in terms of which the first three commutation relations of (3.75) read:

½ŝx; ŝy� ¼ 2iŝz; ½ŝy; ŝz� ¼ 2iŝx; ½ŝz; ŝx� ¼ 2iŝy: (3.78)

The same relations must be satisfied by the matrix representations of the spin

components fŝig in the basis jji, called the Pauli matrices.

Since ½ŝ2; ŝz� ¼ 0, these two operators are represented by the diagonal matrices

in this basis set jji of their common eigenvectors:

ŝ2 aj i ¼ 3 aj i; ŝ2 bj i ¼ 3 bj i; ŝz aj i ¼ aj i; ŝz bj i ¼ � bj i:

These matrices include the corresponding eigenvalues as diagonal elements:

s2 ¼ jh jŝ2 jj i ¼ 3 0

0 3

� �
and sz ¼ jh jŝz jj i ¼ 1 0

0 �1

� �
: (3.79)

In order to determine the Pauli matrices representing the remaining spin

components,

sx ¼ jh jŝx jj i ¼ a1;1 a1;2
a2;1 a2;2

� �
and sy ¼ jh jŝy jj i ¼ b1;1 b1;2

b2;1 b2;2

� �
; (3.80)

we first use two commutation relations of (3.78):

½sx;sz� ¼ �2isy ) 0 �2a1;2
2a2;1 0

� �
¼ �2i

b1;1 b1;2
b2;1 b2;2

� �
; (3.81)

½sy;sz� ¼ 2isx ) 0 �2b1;2
2b2;1 0

� �
¼ 2i

a1;1 a1;2
a2;1 a2;2

� �
: (3.82)

Hence, a1,1 ¼ a2,2 ¼ b1,1 ¼ b2,2 ¼ 0, b1,2 ¼ �ia1,2, b2,1 ¼ ia2,1. The remaining

two matrix elements then result from the third commutation rule,

½sx;sy� ¼ 2isz ) 2i
a1;2a2;1 0

0 �a1;2a2;1

� �
¼ 2i

1 0

0 �1

� �
; (3.83)

which implies a1,2a2,1 ¼ 1. Therefore, by setting a1,2 ¼ a2,1 ¼ 1, one arrives at the

following explicit forms of the Pauli matrices in (3.80):
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sx ¼ 0 1

1 0

� �
and sy ¼ 0 �i

i 0

� �
: (3.84)

Their nondiagonal character reflects the fact that these observables are not

sharply defined simultaneously with the two spin parameters defining the basis

set jji.
It thus directly follows from these explicit representations of the Pauli operators

that their actions on the spin functions of (3.76) give:

sxa ¼ b; sxb ¼ a; sya ¼ ib; syb ¼ �ia; sza ¼ a; szb ¼ �b: (3.85)

3.5 Pictures of Time Evolution

After establishing the basic concepts of the quantum kinematics, dealing with the

quantum objects at the given time t ¼ t0, we now turn to alternative formulations of

the quantum dynamics, which determines the evolution of the microsystems in

time. The possibility of such different formulations arises because the basic mathe-

matical entities of the theory, such as state vectors and operators, are not directly

accessible to physical measurement. As we have seen in the preceding sections

of this chapter, only the eigenvalues of the quantum observables and the scalar

products of state vectors have direct experimental implications. They respectively

determine the spectrum of all possible outcomes of single measurements of the

physical quantity to which the operator corresponds and their associated

probabilities in a very large number of repetitions of experiments carried on the

same quantum state of the physical system in question. Therefore, as long as these

experimental predictions remain the same, the alternative formulations of the

quantum dynamics, called state pictures, remain acceptable and fully equivalent

physical theories.

As we have seen in Sect. 2.7, the unitary operators Û; for which Û
y ¼ Û

�1
, have

the desired property of not affecting the eigenvalues of the transformed operators

Â0 ¼ ÛÂÛ
y
and the scalar products between the transformed vectors jC0i ¼ ÛjCi

and jF0i ¼ ÛjFi : hF0jC0i ¼ hFjÛyÛjCi ¼ hFjCi. The range of unitary operators
is not limited to their time-independent form, which we have examined in Sect. 2.7,

giving rise to different descriptions of the quantum object at the specified time

t ¼ t0. The unitary transformations can be also used to express a change of quantum

states with time, i.e., the alternative dynamical pictures of quantum mechanics.

For example, in the Schr€odinger (S) picture, when the spectrum of the operator

eigenvalues does not depend on time, one uses the time-independent operators

Â � ÂS so that the evolution of quantum objects in time is embodied in the
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time-dependent state vector jCS(t)i, generated from the initial state jC(t0)i by the

action of the unitary operator Ûðt� t0Þ of the time evolution t0 ! t of jC(t0)i:

jCSðtÞi ¼ Ûðt� t0ÞjCðt0Þi; Ûðt� t0Þy ¼ Ûðt� t0Þ�1 � Ûðt0 � tÞ;
Ûðt� t0ÞÛðt0 � tÞ ¼ 1 and Ûð0Þ ¼ 1;

(3.86)

where the inverse evolution t ! t0 of jCS(t)i recovers the state vector at t ¼ t0:

Ûðt0 � tÞ CSðtÞj i ¼ Cðt0Þj i: (3.87)

It also directly follows from the unitary character of the time evolution operator that

the normalization of state vectors is conserved in time:

hCSðtÞjCSðtÞi ¼ hCðt0ÞjÛðt� t0ÞyÛðt� t0ÞjCðt0Þi ¼ hCðt0ÞjCðt0Þi: (3.88)

In the Heisenberg (H) picture, the state vectors do not change in time, but

the operators become time dependent. Therefore, the operator of the inverse time

evolution in (3.86) marks the unitary transformation of jCS(t)i into the time-

independent vector of the Heisenberg picture: jC(t0)i � jCHi. The time-dependent

operators are then given by the transformation:

ÂHðtÞ ¼ Ûðt0 � tÞÂSÛðt0 � tÞ�1 ¼ Ûðt0 � tÞÂSÛðt� t0Þ: (3.89)

When the quantum object is composed of interacting subsystems, its time-

independent energy operator of the Schr€odinger picture, the Hamiltonian Ĥ, can

be partitioned into the contribution representing the energy of the noninteracting

subsystems, Ĥ0, and their mutual interaction, V̂,

Ĥ ¼ Ĥ0 þ V̂: (3.90)

The quantum dynamics of such composite systems can be best expressed in the

Interaction (I) picture, in which both the state vectors and operators are time

dependent. The relevant time-dependent unitary operator, which transforms these

mathematical entities from the above Schr€odinger picture, depends solely on Ĥ0:

ŜðtÞ ¼ exp
i

�h
Ĥ0t

	 

: (3.91)

Here, the exponential operator is defined by its power series expansion:

B̂ðtÞ � exp Ât
�  ¼ X1

n¼0

ðÂtÞn
n!

; (3.92a)
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giving rise to the time derivative:

dB̂ðtÞ
dt

¼
X1
n¼0

ntn�1Â
n

n!
¼ Â

X1
n¼1

ðÂtÞn�1

ðn� 1Þ! ¼ Â
X1
m¼0

ðÂtÞm
m!

¼ ÂexpðÂtÞ: (3.92b)

The state vectors and operators in the I-picture of Quantum Mechanics are defined

by the following transformations of their corresponding S-picture analogs:

jCIðtÞi ¼ ŜðtÞjCSðtÞi; ÂIðtÞ ¼ ŜðtÞÂSŜðtÞ�1: (3.93)

In the remaining part of this chapter we shall explore in some detail the time

evolution of quantum states in the Schr€odinger picture and examine some of its

physical implications. In the final Sect. 3.7 we summarize the related dynamical

equations in the alternative pictures of quantum dynamics.

3.6 Schr€odinger Picture: Dynamics of Wave Functions

and Density Operators

Let us determine the explicit form of the unitary operator Ûðt� t0Þ of (3.86). The
relevant equation of motion for quantum states in this dynamical picture is the

subject of

Postulate V: The time evolution of the state vector jCS(t)i � jC(t)i is governed
by the Schr€odinger equation:

i�h
d CðtÞj i

dt
¼ Ĥ CðtÞj i; (3.94)

where the Hamiltonian Ĥ is the observable associated with the system total energy.

The corresponding wave equations, either in the position-spin or the momentum-

spin representations, determine the dynamics of the associated wave functions:

i�h
dCðQN; tÞ

dt
¼ ĤðQNÞCðQN; tÞ or i�h

dCðPN; tÞ
dt

¼ ĤðPNÞCðPN; tÞ: (3.95)

Substituting (3.86) into (3.94) gives:

i�h
dÛðt� t0Þ

dt
� Ĥ Ûðt� t0Þ

� �
Cðt0j i ¼ 0 or i�h

dÛðt� t0Þ
dt

¼ Ĥ Ûðt� t0Þ: (3.96)
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The formal solution of this differential equation is thus given by the following

evolution operator [see also (3.92a) and (3.92b)]:

Ûðt� t0Þ ¼ exp � i

�h
ðt� t0ÞĤ

	 

� exp � i

�h
t Ĥ

	 

� ÛðtÞ: (3.97)

Hence, the operator of the reverse evolution, from t to t0,

ÛðtÞy ¼ ÛðtÞ�1 ¼ exp
i

�h
t Ĥ

	 

¼ Ûð�tÞ: (3.98)

It can be easily verified by the differentiation with respect to time, using the

derivative (3.92b) of the exponential operator (3.92a), that the action of this unitary

operator is equivalent to the dynamical Schr€odinger equation (3.94).

We now briefly examine the implications of Schr€odinger’s time evolution for

the mixed states. The unitary character of the time evolution operator then directly

implies that if the system at the initial time t ¼ t0 has probability pk of being

in the state jcai ¼ jca(t0)i, then, at a subsequent time t, it has the same probability

of being in the evolved state jca(t)i. Indeed, the density operator at time t [see
(3.60a)–(3.60c)],

D̂ðtÞ ¼
X
a

paðtÞjcaðtÞihcaðtÞj ¼
X
a

paðtÞP̂aðtÞ; (3.99)

gives

paðtÞ ¼ hcaðtÞjD̂ðtÞjcaðtÞi ¼ hcajD̂jcai ¼ pa; (3.100)

since the matrix elements of operators are invariants of the unitary transformations.

Before we examine the equation of motion for D̂ðtÞ ¼ P
apaP̂aðtÞ let us first

derive it for the projection operator P̂aðtÞ onto the pure state jca(t)i. Using the

Schr€odinger equation (3.94) for jca(t)i and its Hermitian conjugate gives:

d

dt
P̂aðtÞ ¼ d caðtÞj i

dt

	 

caðtÞh j þ caðtÞj i d caðtÞh j

dt

	 


¼ 1

i�h
Ĥ caðtÞj i caðtÞh j � caðtÞj i caðtÞh jĤ�  ¼ 1

i�h
½Ĥ; P̂aðtÞ�:

(3.101)

Multiplying the preceding equation by pa(t) ¼ pa and summing over all states in

the statistical mixture of D̂ðtÞ gives the related dynamics of the density operator

itself:

i�h
d

dt
D̂ðtÞ ¼ ½Ĥ; D̂ðtÞ�: (3.102)
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3.6.1 Energy Representation and Stationary States

The explicit form of the time-dependent wave function

CðQN; t� t0Þ � CðQN; tÞ ¼ exp � i

�h
ĤðQNÞt

	 

CðQN; t0Þ; (3.103)

can be obtained in the energy representation of Sect. 2.7, i.e., for the orthonormal

basis set of the eigenfunctions cnðQNÞ ¼ QN
�� cn

� �� �
of the system Hamiltonian

ĤðQNÞ ¼ QN
� ��Ĥ QN

�� �
:

ĤðQNÞ cnðQNÞ ¼ En cnðQNÞ: (3.104)

Indeed, by expanding the wave function in this energy basis set,

CðQN; t0Þ ¼
X
n

Cn cnðQNÞ;

Cn ¼ cn j Cðt0Þh i ¼
ð
c�
nðQNÞCðQN; t0Þ dQN;

(3.105)

and using the power series for the exponential evolution operator (3.92a) and its

derivative (3.92b), one finds the wave function after the time interval t ¼ t�t0:

CðQN; tÞ ¼
X1
k¼0

1

k!
� i

�h
ĤðQNÞ t

	 
k X
n

Cn cnðQNÞ

¼
X
n

Cn cnðQNÞ
X1
k¼0

1

k!
� i

�h
Ent

	 
k

¼
X
n

Cnexp � i

�h
Ent

	 

cnðQNÞ

�
X
n

unðtÞcnðQNÞ �
X
n

Cn CnðQN; tÞ:

(3.106)

In the preceding expansion, the time-dependent wave function is expressed in

terms of the time-dependent eigenfunctions of the Hamiltonian,

CnðQN; tÞ ¼ cnðQNÞ exp � i

�h
Ent

	 

� cnðQNÞ exp �iontð Þ

¼ QN
�� CEn

ðtÞ� �
; (3.107)

which represent the stationary states of the system, for its sharply specified energies

{En}. Such states are given by the product of the time-independent amplitude

cnðQNÞ, determined by the eigenvalue problem of (3.104), and the time-dependent

82 3 Basic Concepts and Axioms

http://dx.doi.org/10.1007/978-3-642-20180-6#Sec7_2


phase factor exp �iontð Þ, which does not contribute to the associated (time inde-

pendent) probability distribution,

pnðQN; tÞ ¼ cnðQnÞ exp � i

�h
Ent

	 
����
����
2

¼ cnðQnÞj j2 ¼ c�
nðQnÞcnðQnÞ; (3.108)

which is seen to be determined solely by the state amplitude.

The time-dependent coefficients funðtÞ ¼ cn j CðtÞh i ¼ Cnexpð�iontg in

(3.106) provide the energy representation of state jC(t)i. Since the conditional

probability P(cnjC(t)) ¼ jun(t)|2 ¼ jCnj2, we thus conclude that the time evolution

of the state vector in the S-picture represents its “rotation” in the Hilbert space,

which conserves in time the probabilities of observing the system stationary states.

We also observe that for the combination of (3.106) to retain the stationary

character it must be limited only to the subspace corresponding to a single degen-

erate eigenvalue En, with all its components thus exhibiting the same phase factor.

To summarize, the stationary states, in which the system energy is sharply

defined, are distinguished by several special features. The energy determines

uniquely the time-dependent factor of the wave function, so that the probability

distribution and its current (see Section 3.6.3) are time independent. Moreover, the

expectation values of any physical observable ÂðQNÞ, which does not depend on

time explicitly, are conserved:

Ah i¼
ð
C�

nðQN;tÞÂðQNÞCnðQN;tÞdQN¼
ð
c�
nðQNÞÂðQNÞcnðQNÞdQN¼ const:

(3.109)

These average values thus become sharply defined, equal to a single eigenvalue

of ÂðQNÞ, hAi ¼ ai, when the latter commutes with the system Hamiltonian.

Also, when these two observables do not commute, the conditional probability

P(’jjCn) of finding a given eigenvalue aj, where ’jðQNÞ represents the eigenstate of
ÂðQNÞ,

ÂðQNÞ’kðQNÞ ¼ ak ’kðQNÞ ; (3.110)

given by the square of the modulus of the relevant expansion coefficient, the

projection of Cn into ’k, also remains constant in time:

Pð’jjCnÞ ¼
ð
’�
j ðQNÞCnðQN; tÞ dQN

����
���� 2 ¼ const: (3.111)

The Schr€odinger equation emphasizes the crucial role of the system energy

operator in determining the system dynamics, similar to that played by the

Hamilton function in classical mechanics [see (3.1)]. In general, the precise
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specification of the system energy does not identify the stationary quantum state

uniquely. Indeed, for this to be the case one also requires the eigenvalues a ¼ {ai}
of the complete set of the commuting observables fÂig, which also commute with

the system Hamiltonian (see Sect. 2.5):

½Ĥ; Âi� ¼ ½Âi; Âj� ¼ 0; i; j ¼ 1; 2; . . . ; s: (3.112)

Together with the sharply defined energy En they provide the complete description

of their common eigenvectors:

Ĥ En; aj i ¼ En En; aj i; fÂi En; aj i ¼ ai En; aj ig: (3.113)

It follows from (3.102) that in the energy representation the dynamics of the

diagonal elements of the density operator D̂ðtÞ;Dn;nðtÞ ¼ cnh jD̂ðtÞ cnj i, represent-
ing the population of state jcni in the ensemble, predicts:

i�h
d

dt
Dn;nðtÞ ¼ cnh jĤD̂ðtÞ � D̂ðtÞĤ cnj i ¼ En cnh jD̂ðtÞ � D̂ðtÞ cnj i ¼ 0: (3.114)

For its off-diagonal matrix element Dm;nðtÞ ¼ cmh jD̂ðtÞ cnj i, representing

coherences between states jcmi and jcni in the ensemble, one similarly finds:

i�h
d

dt
Dm;nðtÞ ¼ cmh jĤD̂ðtÞ � D̂ðtÞĤ cnj i

¼ ðEm � EnÞ cnh jD̂ðtÞ cnj i
¼ ðEm � EnÞDm;nðtÞ

(3.115a)

or

d

dt
½lnDm;nðtÞ� ¼ � i

�h
ðEm � EnÞ: (3.115b)

Therefore, in the stationary-state representation Dn;nðtÞ ¼ const: and

Dm;nðtÞ ¼ exp � i

�h
ðEm � EnÞt

	 

Dm;nð0Þ: (3.116)

In the remaining part of this section we shall explore some physical implications

of the dynamical Schr€odinger equation.
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3.6.2 Time Dependence of Expectation Values
and Ehrenfest Principle

Since the Schr€odinger equation (3.94) is of the first order in t, the state jC(t)i at any
subsequent time t > t0 is uniquely determined given the initial state jC(t0)i.
Therefore, there is no indeterminacy in the free evolution of quantum systems.

The irreversibility arises only in an act of measurement, which unpredictably

modifies the system state. Thus, between the two measurements the evolution of

quantum states is perfectly deterministic.

It also follows from the linear and homogeneous character of this equation that

its solutions are linearly superposable. More specifically, the linear combination

at the initial time jC(t0)i ¼ C1jC1(t0)i + C2jC2(t0)i becomes jC(t)i ¼
C1jC1(t)i + C2jC2(t)i at t > t0, so that the correspondence between jC(t0)i and

jC(t)i is marked by preservation of the coefficients before their components during

time evolution. Another manifestation of this property is the conservation in time of

the ensemble probabilities (3.100).

Next, let us examine the time evolution of the mean (expectation) values of the

physical observables. As we have already observed in (3.88), the preservation in

time of the state normalization is assured by the unitary character of the time

evolution operator of (3.86). Thus, in the mean value of the physical quantity

A, which in general case may explicitly depend on time, Â ¼ ÂðtÞ, only the explicit
time dependency of the wave function and that of the observable do matter, since

the implicit dependence through the coordinates (or momenta) has already been

eliminated by integration in the expectation value of (3.109). Using the relevant

Hilbert space expression and the Schr€odinger equation (3.94) then gives:

d CðtÞh jÂðtÞ CðtÞj i
dt

¼ d

dt
CðtÞh j

	 

Â CðtÞj iþ CðtÞh jÂ d

dt
CðtÞj i

	 

þ CðtÞh j@Â

@t
CðtÞj i

¼1

ih�
CðtÞh j½Â;Ĥ� CðtÞj iþ CðtÞh j@Â

@t
CðtÞj i�1

ih�
½Â;Ĥ�� �þ @Â

@t

* +
:

(3.117)

Therefore, for the physical observables, which do not depend explicitly on time,

d Ah i
dt

¼ i

�h
½Ĥ; Â�� �

; (3.118)

and hence the observable commuting with the Hamiltonian represents the system

constant of motion.
Consider the illustrative example of a motion in one dimension, in the potential

V(x), of the spinless particle described by the Hamiltonian ĤðxÞ ¼ VðxÞ þ p̂2x=2m.
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We first examine the time dependence of the particle average position hxi. Using
(2.34) and (3.56) in the preceding equation gives:

d xh i
dt

¼ i

�h
½Ĥ; x̂�� � ¼ i

2m�h
½p̂2x ; x̂�
� � ¼ i

2m�h
½p̂x½p̂x; x̂� þ ½p̂x; x̂�p̂xh i ¼ pxh i

m
: (3.119)

Therefore, the relation between the expectation values of the position and momen-

tum is the same as that between their classical analogs: vx ¼ dx/dt ¼ px/m.
One similarly arrives at the second Newton’s law of classical dynamics,

dpx/dt ¼ Fx ¼ �dV(x)/dx, where Fx stands for the force acting on the particle, by

examining the time evolution of pxh i:

d pxh i
dt

¼ i

�h
½Ĥ; p̂x�
� � ¼ i

�h
½VðxÞ; p̂x�h i ¼ i

�h
i�h
@V

@x

� �
¼ � @V

@x

� �
¼ Fxh i: (3.120)

Accordingly, for the movement of a quantum particle in three dimensions, in the

potential V(r) generating the classical force field F(r) ¼ �∇V(r), one finds

d ph i
dt

¼ � rVh i ¼ Fh i: (3.121)

This correspondence between the quantum relations in terms of the expectation

(mean) values of physical quantities and the associated equations of classical

mechanics expresses the Ehrenfest principle of quantum mechanics. In any quan-

tum state jCi the time dependencies of the expectation values of the position and

momentum operators are seen to follow the corresponding relations between the

associated classical quantities. This rule complements the related Correspondence

Principle of Bohr (see Chap. 1) that the quantum description becomes classical in

the limit of high energies and very large quantum numbers, when one can safely

neglect the finite value of the quantum of action: �h ! 0.

3.6.3 Probability Current and Continuity Equation

Let us again assume the system composed of a single (spinless) particle. In the

position representation, the state jc(t)i is represented by the normalized wave

function c(r; t) ¼ hrjc(t)i which generates the probability density

pðr; tÞ ¼ jcðr; tÞj2 ¼ hcðtÞjrihrjcðtÞi � hcðtÞjr̂ðrÞjcðtÞi ¼ rðr; tÞ: (3.122)

It directly follows from the Schr€odinger equation (3.94) that the square of the norm
of the wave function, i.e., the integral of p(r, t) over the whole physical space,

remains constant in time and equal to 1 for the normalized quantum state. This does
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not imply, however, that p(r, t) is also locally conserved over time. Indeed, the

stream of probability may transport the particles from one region of space to

another. It is our goal in this section to establish the appropriate expression for

the local probability current.

It should be recalled that in the electromagnetism the charge (volume) density

rel(r; t) is linked to the flux of the vector current density Jel(r; t) through the local

continuity equation,

@

@t
relðr; tÞ ¼ �r � Jelðr; tÞ; (3.123)

where the left-hand part of the equation expresses the net change of the density in

the fixed, infinitesimal volume around r, and the right-hand part represents the flux

across the surface, which defines this volume element. We are now searching for

an analogous equation expressing the local probability balance in the quantum

mechanics, i.e., the appropriate definition of the probability current j(r; t). The
negative divergence of this yet unknown vector will then measure the flux of

particles leaving the local volume element.

The system Hamiltonian in the position representation,

ĤðrÞ ¼ VðrÞ þ p̂
2ðrÞ
2m

¼ VðrÞ � �h2

2m
D; (3.124)

with the real potential VðrÞ for ĤðrÞ to be Hermitian, gives the dynamical

Schr€odinger equation in the form:

i�h
@cðr; tÞ

@t
¼ VðrÞcðr; tÞ � �h2

2m
Dcðr; tÞ: (3.125)

Multiplying, from the left, both sides of this equation by c*(r; t), and of the complex

conjugate Schr€odinger equation by c(r; t), subtracting the resulting equations and

dividing by i�h then give:

@½c�c�
@t

¼ � �h

2mi
½c�Dc� cDc��: (3.126)

This equation can be then transformed into the continuity-type equation (3.123),

@

@t
pðr; tÞ ¼ �r � jðr; tÞ; (3.127)

with the probability current
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jðr; tÞ ¼ �h

2mi
½c�ðr; tÞrcðr; tÞ � cðr; tÞrc�ðr; tÞ�

¼ 1

m
Re½c�ðr; tÞ �h

i
rcðr; tÞ�;

(3.128)

r � j ¼ �h

2mi
½ðrc�Þ � ðrcÞ þ c�ðr2cÞ � ðrcÞ � ðrc�Þ � cðr2c�Þ�

¼ �h

2mi
½c�Dc� cDc��:

The form of the probability current (3.128) indicates that it is determined by the

expectation (mean) value in state jc(t)i of the Hermitian operator

ĵðrÞ ¼ 1

2m
rj i rh jp̂þ p̂ rj i rh j½ �; (3.129)

which represents the symmetrized product of operators for the probability density,

r̂ðrÞ ¼ jrihrj, and particle velocity, v̂ ¼ p̂=m. Indeed, such a product is also

associated with the physical meaning of the current density vector of a classical

fluid.

To conclude this section, let us express the complex wave function c(r, t) in
terms of its (real) modulus R(r; t) and phase F(r; t):

cðr; tÞ ¼ Rðr; tÞ exp½iFðr; tÞ�: (3.130)

It then directly follows from (3.122) and (3.128) that

pðr; tÞ ¼ R2ðr; tÞ and

jðr; tÞ ¼ �h

m
R2ðr; tÞrFðr; tÞ ¼ pðr; tÞr½�h

m
Fðr; tÞ�:

(3.131)

3.7 Heisenberg and Interaction Pictures of Quantum Dynamics

We conclude this short outline of the formal framework of quantum dynamics with

a summary of the relevant equations of motion in the H- and I-pictures of Sect. 3.5.
As we have already indicated in (3.89) the operators fÂHg in the Heisenberg picture
generally depend on time, even if their analogs in the Schr€odinger picture {ÂS}

do not. However, for the conservative system, the Hamiltonian ĤS of which does

not depend on time, and an observable ÂS representing a constant of motion
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(commuting with ĤS), the evolution operator Ûðt� t0Þ � ÛðtÞ of (3.97) commutes

with ÂS so that

ÂHðtÞ ¼ Û
�1ðtÞÂSÛðtÞ ¼ Û

�1ðtÞÛðtÞÂS ¼ ÂS: (3.132)

The operators for such physical properties are thus equal in both dynamical

pictures, and in particular ĤH ¼ ĤS.

For an arbitrary observable ÂSðtÞ one finds using (3.96), its adjoint, and (3.89):

d

dt
ÂHðtÞ ¼ 1

i�h
Û

�1ðtÞÂSðtÞĤSðtÞÛðtÞ � Û
�1ðtÞĤSðtÞÂSðtÞÛðtÞ

h i

þ Û
�1ðtÞ dÂSðtÞ

dt
ÛðtÞ:

(3.133)

Inserting next the unity factor ÛðtÞÛ�1ðtÞ ¼ 1 between ĤS and ÂS in the first two

terms of the right hand side in the preceding equation finally gives

d

dt
ÂHðtÞ ¼ 1

i�h
½Û�1ðtÞÂSðtÞÛðtÞ� ½ Û�1

ĤSðtÞÛðtÞ�
n

�½Û�1ðtÞĤSðtÞÛðtÞ� ½ Û�1ðtÞÂSðtÞÛðtÞ�
o
þ Û

�1ðtÞ dÂSðtÞ
dt

ÛðtÞ
(3.134)

and hence

i�h
d

dt
ÂHðtÞ ¼ ½ÂHðtÞ; ĤHðtÞ� þ i�h

d

dt
ÂSðtÞ

	 

H

: (3.135)

It was Schr€odinger who first discovered the dynamical equation bearing his

name. The subsequent Heisenberg picture has established the evolution of matrices

representing operators fÂHðtÞg, hence the nameMatrix Mechanics (see Chap. 1), to
be later shown to be fully equivalent to the Schr€odinger Wave Mechanics.

For the physical observables ÂS, which do not depend explicitly on time, the last

term in (3.135) vanishes. Moreover, since the expectation value is invariant to the

unitary transformation linking the two pictures,

AðtÞh i ¼ CSðtÞh jÂS CSðtÞj i ¼ CHh jÂHðtÞ CHj i: (3.136)

Since in the last term only the operator depends on time
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d

dt
AðtÞh i ¼ CHh j dÂHðtÞ

dt
CHj i ¼ 1

i�h
CHh j½ÂHðtÞ; ĤHðtÞ� CHj i

¼ 1

i�h
CSðtÞh j½ÂS; ĤS� CSðtÞj i ¼ i

�h
½Ĥ; Â�� �

S
;

(3.137)

where we have again recognized that commutators and expectation values are

invariants of the unitary transformation between the two pictures.

We have thus recovered (3.118) for the time evolution of expectation values in

the Schr€odinger dynamics. Notice, however, that (3.135) is more general than

(3.118), providing the relation between operators, instead of their expectation
values. Indeed, an advantage of the Heisenberg picture is that it gives rise to

equations which are formally similar to those in classical mechanics. For example,

the Heisenberg picture generalization of the Ehrenfest principle relations of (3.119)

and (3.120) reads:

dx̂HðtÞ
dt

¼ p̂x;HðtÞ
m

and
dp̂x;HðtÞ

dt
¼ � @Vðx̂H; tÞ

@x̂H
: (3.138)

Finally, let us examine the equation of motion in the interaction picture introduced

in Sect. 3.5, with the unitary operator of (3.91), determined by the noninteracting

Hamiltonian Ĥ0, now transforming the vectors and operators of the Schr€odinger
picture into their interaction picture analogs. Substituting the reverse transformation

to that of (3.93),

jCSðtÞi ¼ Ŝ
�1ðtÞjCIðtÞi ¼ exp � i

�h
Ĥ0t

	 

jCIðtÞi; (3.139)

into the Schr€odinger equation (3.94) gives the corresponding dynamical equation in

the I-picture:

i�h
d CIðtÞj i

dt
¼ V̂I CIðtÞj i; (3.140a)

with the time evolution now governed by the transformed interaction part V̂ of the

Hamiltonian (3.90):

V̂I ¼ ŜðtÞV̂Ŝ�1ðtÞ ¼ exp
i

�h
Ĥ0t

	 

V̂ exp � i

�h
Ĥ0t

	 

: (3.140b)

Therefore, in the interaction picture, the time dependence of operators (3.93)

reads:

ÂIðtÞ ¼ ŜðtÞÂSŜ
�1ðtÞ ¼ exp

i

�h
Ĥ0t

	 

Â exp � i

�h
Ĥ0t

	 

; (3.141)
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where the observable Â ¼ ÂS is time independent. It can be also expressed by the

equivalent expression obtained by the differentiation with respect to time of the

preceding equation [see also (3.92a) and (3.92b)]:

i�h
d

dt
ÂIðtÞ ¼ ½ÂIðtÞ; Ĥ0�: (3.142)

Therefore, in the interaction picture both state vectors and operators are chang-

ing with time: the time evolution of the former is described by the Schr€odinger-like
(3.140a) and (3.140b), while the latter evolve in time in accordance with the

Heisenberg-like (3.142). This form of quantum dynamics thus represents an inter-

mediate level between the Schr€odinger and Heisenberg pictures in treating dynam-

ics of quantum objects. Operators depend on time as do operators in the Heisenberg

picture for the noninteracting physical system described by the noninteracting

Hamiltonian Ĥ0, while the Schr€odinger-like time dependence of the state vectors

(or wave functions) is determined solely by the interaction operator V̂I.
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