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Preface

This book is primarily intended as a textbook introducing to the reader the basic
elements of the quantum theory of the electronic structure of molecular systems,
including in its first two parts the basic axioms of the nonrelativistic quantum
mechanics and rudiments of the wave function and density based theories. Its
remaining two parts, of a more monographic character, contain the Information
Theory (IT) description and some elements of the modern theory of chemical
reactivity, respectively. The basic aim of this book is to present in a single text
alternative outlooks on the molecular electronic structure, including the basic
principles and techniques of the contemporary conceptual and computational quan-
tum chemistry, covering also the insights provided by IT. Together these comple-
mentary perspectives enhance the depth of our understanding of the electronic/
geometric structure of molecules and provide a full “vocabulary” to tackle diverse
conditions, which influence their reactivity behavior. Indeed, only the insights from
several different point of view amount to a real understanding of the problem. The
emphasis is on the concepts involved and the key ideas encountered in these
alternative approaches in the molecular quantum mechanics, and on the interpreta-
tion of calculated results in chemical terms: the bonded atoms and molecular
fragments, the chemical bonds that connect these building blocks of molecules,
and on their responses in a changing environment, which shape the reactivity
preferences of reactants.

Explanation and understanding of chemical phenomena ultimately call for the
quantum mechanical description provided by the modern quantum chemistry. The
latter uses ideas and concepts that differ substantially from their classical analogs. A
precise formulation of these generalized physical concepts, which requires some new
mathematical tools, is the subject of Part I of this book. The depth and rigor of this
physical/mathematical supplement have been dictated by the main didactic purpose
of this text: to introduce all tools necessary for understanding the abstract ideas of the
modern theory of the molecular structure and chemical reactivity. The foundations
of quantum mechanics are covered using the familiar axiomatic approach, with only
an introductory summary of the key experiments that led to their formulation.
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The reader can familiarize himself with these novel ideas in the simplest problem
of the stationary (bonded) states of the hydrogen-like atom presented in the part
closing chapter.

The main theories of the molecular electronic structure are presented in Part II.
In its opening chapter it examines available techniques of reducing the complexity
of solving the molecular Schrodinger equation. In particular, the rudiments of the
adiabatic separation of the electronic and nuclear motions are given and the
elements of the approximate perturbational and variational approaches for deter-
mining the electronic quantum states are outlined. This brief overview also covers
the basics of the orbital approximation and the idea of a pseudopotential, which
effectively removes the chemically inactive electrons of the atomic inner shells
from an explicit treatment in molecular calculations. The subsequent exposition of
the principal Wave Function Theories (WFT), in which the system wave-function
(probability amplitude) defines the quantum state of the molecule, covers the
Self-Consistent-Field Molecular Orbital (SCF MO) theory, major Configuration-
Interaction (CI) techniques for dealing with the Coulomb correlation problem, and
rudiments of the Valence Bond (VB) treatment, which gives a more chemical
understanding of molecules compared to its chief rival, the Molecular Orbital
(MO) description and currently experiences a notable revival.

The following presentation of theoretical basis of the modern techniques of the
Density-Functional Theory (DFT), in which the electron density or the density
matrix constitute the system basic state-variables, covers the famous Hohenberg—
Kohn (HK) theorems and some of their refinements/extensions, the basic elements
of the ground-state Kohn—Sham (KS) theory and the associated ensemble approach
to excited states. The theory of the density functional for the exchange-correlation
energy is summarized, including the rudiments of the adiabatic connection and
some more recent developments in the field of the density-matrix and orbital-
dependent functionals, time-dependent DFT and alternative approaches to the
molecular van der Waals (vdW) interactions. This short exposition also introduces
the main concepts of the density-based reactivity theory: the hardness and softness
responses of the electron distribution in molecules in the complementary electron-
following (EF) and electron-preceding (EP) perspectives.

The additional insights from IT are presented in the monographic Part III of this
textbook. Its dominating theme is the electron distribution as a source and carrier of
information in molecules. First, the basic elements are summarized in the part
opening chapter, to be followed by a brief exposition of the information principles
in molecular quantum mechanics. The local IT probes of the presence of the direct
chemical bonds are formulated and the importance of the nonadditive (interference)
information tools is emphasized. In particular, the Electron Localization Function
(ELF) and the Contra-Gradience (CG) bond criterion are used to explore the
molecular electronic structure and the IT variational principles are used to derive
the so called stockholder scheme for dividing the molecular electron density into
the associated atomic pieces. Various Charge Transfer (CT) and Polarization (P)
displacements accompanying the formation of chemical bonds in molecular
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systems are examined, including the equilibrium redistribution of electrons among
the bonded Atoms-in-Molecules (AIM) and the molecular promotion of the latter.

Alternative bond-multiplicity descriptors and the electron localization criteria
are introduced and molecules are interpreted as communication systems. This
concept, developed within the standard SCF MO description, gives rise to the
Orbital Communication Theory (OCT) of the chemical bond (Nalewajski 2010)
an extension of the bond Communication Theory in atomic resolution (Nalewajski
2006). They both use the standard entropic descriptors of information channels in
exploring patterns of the chemical bonds in molecules and their constituent parts, as
well as the bond covalent/ionic composition.

The molecularly promoted AIM are only slightly modified, compared to their
free (separated) analogs, mainly in the outer (valence) shell of electrons. These
“external” electrons are responsible for the AIM chemical behavior and the equi-
librium bonding pattern they exhibit in the field exerted by the framework of the
practically unchanged atomic-cores. This bonding shell of the (delocalized) elec-
trons is also crucial for the propagation of information in the molecule among the
system constituent AIM and the Aromic Orbitals (AO) the latter contribute to the
bonding subspace of the occupied MO, which ultimately determine the system
network of chemical bonds. Using the standard tools of IT (summarized in the
opening chapter of Part III) in treating these information scattering phenomena due
to “communications” via the system chemical bonds provides a novel perspective
on the origins and multiplicity of the system chemical bonds, as well as on the
entropic nature of their covalent and ionic composition. In particular, the IT multi-
plicities of the localized chemical bonds are generated, the bond-coupling phenom-
ena in molecular subsystems are discussed and the interference effects due to the
multiple information scattering in molecules are examined. The new indirect
(through-bridge) bonding mechanism is identified, which complements the familiar
direct (through-space) chemical interactions in molecular systems, and its origins
due to the implicit dependencies between AO in the molecular bonding subspace
are explored.

The chemical concepts are discussed in a more depth in Part I'V. It first provides
a survey of alternative perspectives on diverse phenomena conditioning the chemi-
cal reactivity, stressing the importance of the conceptual approaches for a more
chemical understanding of these bond-forming/bond-breaking processes. The dis-
tinction between the “horizontal” (involving displacements of the system electron
density) and “vertical” (for the fixed electron distribution) changes in the molecular
electronic structure is made and the responses of molecular fragments in the
fragment-constrained equilibria are described in terms of the subsystem charge
sensitivities. These perturbation—response relations are summarized for all admis-
sible representations of the molecular/subsystem states, covering both the EF
perspective of the Born—Oppenheimer approximation and the complementary EP
picture, in the spirit of modern DFT. The illustrative case of the bimolecular
reactive system is discussed in a more detail and alternative measures of the
adiabatic coupling between the electronic and geometrical degrees-of-freedom of
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the molecular and reactive systems, including the novel compliant theoretical
framework, are identified and modeled.

Finally, several qualitative approaches to reactivity phenomena are summarized.
They cover recent IT probes of the elementary reaction mechanisms, chemical
reactivity indices provided by the alternative hardness/softness (Fukui function)
descriptors of molecules and their fragments, e.g., reactants in the Donor—Acceptor
(DA) systems, as well as the associated equilibrium and stability criteria of mole-
cules and the maximum hardness and the Hard/Soft Acids and Bases (HSAB)
principles of chemistry. The importance of the complementary internal and external
eigenvalue problem of quantum-mechanical observables for a compact description
of the electronic processes in molecules and reactants is stressed and alternative
hardness-decoupling schemes are examined.

This joint exposition of a variety of perspectives on the electronic structure of
molecular systems, which are usually presented in separate texts, aims at comparing
these diverse philosophies of treating the subject in the unifying language of the
(nonrelativistic) molecular quantum mechanics and IT. Such presentation should
help in uncovering the mutual relations between the specific concepts and techni-
ques of these complementary approaches by extracting their common roots in the
molecular quantum mechanics, in the frameworks of both the molecular states
involved and the associated probability/density distributions.

The book may serve as both the classroom and reference text of the classical and
modern ideas in the field of the chemical bond and reactivity theories. This text has
evolved from teaching both the graduate and undergraduate courses in quantum
chemistry, density-functional and reactivity theories, as well as the I'T of molecular
systems. It is intended for graduate and advanced undergraduate students and
chemical researchers interested in the new ways of looking at the subject. It is
hoped that a significant diversity of the student backgrounds have been accommo-
dated in this textbook/monograph of the contemporary ways of thinking about
classical issues in the theory of the electronic structure and reactivity behavior of
molecules.

Cracow Roman F. Nalewajski
June 2011
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Chapter 1
Sources

Abstract A brief presentation of the experimental origins of quantum mechanics
is given. The key experiments leading to contradictions with accepted physical
theories of matter and radiation, signaling a need for a thorough revision of
classical mechanics and electrodynamics, are surveyed. The early attempts to
resolve these controversies, formulated at the beginning of twentieth century and
often named as the Old Quantum Theory, which mark the genesis of the modern
quantum mechanics, are summarized. The specificity of the classical description
of physical processes is briefly outlined and main suggestions addressed to a more
general mechanics describing the elementary particles, atoms, and molecules are
enumerated. The particle diffraction experiment is examined in some detail to
pinpoint the essence of the wave—particle duality and to identify the key elements
of the quantum description: the initial and final experiments, as well as the free
evolution of the system dynamic state which separates them, without any interfer-
ence from the measuring apparatus. The internal angular momentum of an elemen-
tary particle, called spin, is introduced. The emphasis in this historical background
is on the development of the classical concepts into their more general quantum
counterparts, rather than on their discontinuity in the two theories. On one hand, the
classical (approximate) mechanics, in which some very small quantities such as the
quantum of the physical action — measured by the Planck constant — are approxi-
mated by zero, provides the geometric optics limit of the quantum (exact) mecha-
nics. On the other hand, the quantum description has to use the classical concepts
due to a macroscopic character of the measuring devices, which adds to the intimate
relationship between the two formulations.

1.1 Experimental Origins and Old Quantum Theory

At the current state of our understanding of matter the modern quantum mechanics
plays a fundamental role in describing phenomena and processes in the surrounding
world, particularly at the microscopic level of photons, elementary particles, atoms,
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and molecules. It should be emphasized, however, that the complete theory of
macroscopic objects, of dimensions perceived by our senses, also requires the
quantum mechanical description of interactions between their constituent atoms
and molecules since the quantum nature of these microscopic particles can be
manifested also at the macroscopic level. Clearly, in the limit of very large masses
and energies of macroscopic objects the predictions of quantum mechanics must
be identical with those resulting from its classical analog. Thus, when supple-
mented by the laws of statistical thermodynamics the quantum mechanics gives
rise to the complete description of the natural world.

It was born in the atmosphere of severe confusion at the beginning of twentieth
century, when the accepted physical theories were challenged by numerous dilemmas
resulting from a series of remarkable new experimental observations, which could
not be explained by the classical mechanics and electrodynamics. The physics at the
end of nineteenth century distinguished the categories of matter and radiation,
and used separate laws to describe them: Newton’s mechanics, to predict motions
of material bodies, and the Maxwell equations of the electromagnetic theory of
radiation, which unites the electric, magnetic, and optical phenomena. We recall at
this point that the so-called wave optics becomes the geometric optics in the limit
of infinitely small wavelength, 4 — 0, i.e., for infinitely large frequency, v — oo,
of the monochromatic radiation.

Let us now briefly summarize the key stages of the development of quantum
ideas in physics (see, e.g., van der Waerden 1968) with the experiment and intuitive
insight ultimately leading to a new philosophy of science (Heisenberg 1949, 1958;
Yourgrau and van der Merve 1979; Bohm 1980) with the exact determinism of
classical predictions being replaced by the statistical determinism of quantum
laws. This “revolution” has also led to a dramatically different way of thinking
about the process of measurement, to a discovery of the universal character of the
particle—wave dualism of both the radiation and matter, and a new definition of the
mechanical state of microscopic systems. The crisis of classical physics was indeed
observed first on the subatomic and atomic/molecular scales, in processes involv-
ing interactions of such objects with electromagnetic radiation, a diffraction of
radiation and elementary particles, etc.

We begin this short survey with the problem of the black-body radiation,
at equilibrium in the given temperature 7, which could not be explained by the
classical electrodynamics and eventually led to formulation in 1901 of the famous
Planck’s hypothesis of the energy quantization. The question was this: how much
energy is present as radiation in the given volume of an empty space of a cavity in
an object held at the definite temperature 7, and how it is distributed as a function of
the radiation frequency? The quantity describing such a distribution is called the
radiation energy density u(v, T), which measures the energy of the monochromatic
radiation of frequency v per unit volume of the cavity, in thermal equilibrium at
absolute temperature T. The Rayleigh—Jeans law of 1900, u(v, T) o v*T, derived
using the classical electrodynamics and statistical thermodynamics, is correct only
for low frequencies (in the infrared region of the electromagnetic radiation spec-
trum) and it dramatically fails for high frequencies (in the ultraviolet region), where
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the experimental data show a sharp drop in the energy distribution, with # — 0 in
the geometric optics limit of v — oo. This classical distribution has been obtained
by first calculating the number of elementary oscillators (cavity standing waves) of
the electromagnetic field, each corresponding to a particular frequency of radiation,
and then ascribing them an average energy kg7, where the Boltzmann constant
kg = 1.381 x 107> [JK™'], in accordance with the classical energy equi-partition
principle.

In order to overcome this discrepancy, also known as the ultraviolet catastrophe,
which could not be explained by classical means, Planck has proposed that the
energy of the elementary radiation oscillator of frequency v, is restricted to integral
multiples of the energy quantum, hv = hw, where the new universal constant 4 has
a dimension of the mechanical action [energy X time]; here, the radiation angular
frequency w = 2mv [radians/s] and the symbol /i = i/27. In other words, this finite
“grain” of the oscillator energy constitutes the smallest amount by which the
oscillator energy can be increased or lowered. Hence, the energy absorbed by the
elementary oscillators of the surrounding cavity can also be absorbed or emitted
in integral multiples of such energy quanta, for all frequencies allowed by the
cavity standing-wave boundary conditions, as implied by the condition of a thermal
equilibrium in the black-body radiation problem: AE = hv. This quantum (non-
classical) assumption gives rise to the celebrated Planck’s distribution law:

u(v,T) o< v} [exp(hv/ksT) — 1], (L.1)

which is in perfect agreement with experimental observations for the Planck
constant (quantum portion of the physical action) 4 = 6.626 x 107>* [Js] or i =
hi2m = 1.055 x 107>* [Js].

It should be emphasized that this assumption was incompatible with the
principles of classical physics. Thus, the agreement with experiment has been
achieved only by introducing into the framework of the contemporary physics, in
which the oscillator energy and mechanical action constitute the continuous
dynamical quantities, the artificial “discrete” quantum condition, incompatible
with the basic principles of the classical theory.

This energy quantization has been generalized in 1905 by Einstein into hypo-
thesis of the elementary, localized (indivisible) portions of the electromagnetic
energy, defining the radiation particles called photons, each containing Planck’s
portion of the energy: E = hv. This assumption provides the complete explanation
of the photoelectric effect discovered by Hertz in 1886 and 1887. Photoelectrons are
produced instantaneously, when the light of a frequency higher than some threshold
value v, strikes any substance. This phenomenon is governed by the two laws
formulated by Lenard in 1899-1902: (1) the number of photoelectrons is propor-
tional to the intensity of the incident radiation; (2) their maximum velocity v and
hence also the kinetic energy are affected only by the radiation frequency, and not
by its intensity as predicted by the classical, wave theory of radiation. In Einstein’s
hypothesis the photoelectron energy of motion originates entirely from a single
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photon, representing a localized corpuscle of the energy, and satisfies the energy
conservation

1
Emev2 = hv — hvy, (1.2)

where m, denotes the mass of an electron and the threshold energy @ = hv, mea-
sures the so-called work function of the irradiated substance.

The electromagnetic radiation thus exhibits a dual character. On one hand, in the
diffraction (interference) experiments, it behaves as a wave characterized by the
frequency v [s~'] or wave length 1 = c/v, where c stands for the velocity of light in
vacuum. On the other hand, as the localized particle of energy, it should be char-
acterized by the linear momentum p. Using the relativistic expression for the energy,
E=mc* = prc = hv, where m; stands for the photon mass of motion (its rest mass
vanishes), one obtains the relativistic expression for the photon momentum:

pr=hv/c=h/A or pf=h(2n/\) = hk, (1.3)

where k [mfl] stands for the photon wave number.

In 1922 this corpuscular nature of radiation has been confirmed experimentally
by Compton in the X-ray photon scattering by electrons. The collisions between
photon (particle of radiation) and electron (particle of matter) have been shown to
be governed by the conservation of the system energy and linear momentum, the
two laws that govern any perfectly elastic collisions, e.g., of the billiard balls in
the macroscopic world. It also follows from this experiment that any measurement
of the particle position, effected by a scattering of light, influences the particle
linear momentum; the more precise is this experiment, i.e., the shorter the wave
of the incident radiation, the more perturbed is the particle motion after collision
with the photon. This implies that in the microscopic world the measuring device
and the object of measurement are not absolutely separable as it is implicitly
assumed in the classical theory.

A second challenge to the established theory came from the atomic physics.
In 1911 Rutherford had demonstrated, by scattering the a-radiation particles (nuclei
of the helium atoms) on thin layers of heavy metals, that each atom contains
the positively charged, heavy nucleus, with the estimated diameter of the order
10" [m], surrounded by light, negatively charged electrons, with the estimated
diameter of the atom as a whole of the order 107'° [m]. He also guessed that
electrons are moving along the circular or elliptic trajectories around the nuclear
attractor. This “planetary” model of an atom was in an obvious conflict with the
accepted classical electrodynamics, which predicted that electrons moving on a cir-
cular orbit, thus being accelerated, should radiate electromagnetic energy and ulti-
mately collapse onto the nucleus. Therefore, the very stability of such a “classical”
atomic model has been put in doubt.

To remove this troubling inconsistency, in 1913 Bohr has followed the Planck
approach of incorporating in the classical theory subsidiary quantum conditions
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which contradicted it. He has achieved an excellent agreement with the available
experimental data for the hydrogen atom by assuming that in the circular motion of
an electron allowed are only specific, stationary orbits, on which the particle energy
remains fixed. These stationary energy levels {E, } and corresponding radii {r,} are
identified by the orbit quantum number n = 1, 2,.... The energy is emitted/
absorbed in the discrete manner, not continuously as predicted by the classical
electrodynamics, only when electron makes a transition between the two stationary
orbits. Emission takes place when electron “jumps” from an outer orbit, exhibiting
larger radius, to an inner orbit of smaller radius, identified by the higher and lower
values of n, respectively. Accordingly, the inner — outer transitions are possible
only after absorbing the energy from an incident radiation. Bohr has used Planck’s
relation between the transition energy and frequency of the emitted/absorbed
radiation:

AEnﬂn’ =Ey —Ey=hv, . (1.4)

Bohr’s quantum conditions, which determine the stationary orbits, can be
formulated as those for the allowed, discrete values of the length of the electron
angular momentum [, = r, X p,,

I, = |l,| = mevyr, = nh, (1.5)

where r,, denotes the electron position vector on nth orbit, and p,, = m.v,, stands for
its linear momentum.

This model has been subsequently developed in 1915 and 1916 by Sommerfeld
and Planck, who introduced the elliptic orbits and the spatial quantization of the
angular momentum. This generalized planetary model still gave wrong predictions
already for helium atom (two-electron system), which signaled that this Old Quan-
tum Theory was far from the final formulation of the new, generalized mechanics
of microscopic objects. It should be realized, however, that new physical ideas
are always arrived at by understanding the novel in terms of the familiar. Clearly,
Bohr’s quantization rules, successful as they were, entail assumptions which are in
conflict with the classical physics. For example, the latter predicts that an electron
on the circular orbit should emit radiation and this contradicts the assumed station-
ary character of such a trajectory. Although it was clear already at the time of its
invention that this ad hoc synthesis of the quantum elements with the classical
theory has hardly any future as the consistent physical theory, Bohr’s planetary
model has turned out to be quite successful in explaining the observed series of
spectral lines emitted by hydrogen. The predictive power of the model was quite
limited, however, since — despite later improvements — it dramatically failed to
explain the spectral data of many electron atoms.

Since the micro-objects escape perception by human sense organs, their obser-
vation always requires the measurement devices, the macro-objects which translate
their interactions with the micro-objects in terms of macroscopic quantities. This
points out to a subtle relationship between the quantum mechanics and classical
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physics. In his celebrated Correspondence Principle Bohr has recognized that
quantum mechanics must be consistent with classical mechanics. The classical
limit corresponds to very large energies (quantum numbers), when such minute
quantities as the Planck constant can be formally treated as zeros, in the 7 — 0
limit.

In 1924 the quantum condition (1.5) of Bohr’s model has gained a convincing
interpretation in de Broglie’s hypothesis of the universal character of the particle—
wave dualism, which was first observed in the electromagnetic radiation. He
suggested that the relations between corpuscular (E, p) and wave (v, 1) attributes
of material particles, which exhibit a nonzero rest mass, are the same as for photons,
for which the rest mass vanishes (1.3). Therefore, there should also be a new,
wave facet of electrons, linked to their more familiar corpuscular aspect by the
associated relations:

Ec =hve, pe=hve/c=h/le. (1.6)

The existence of such matter waves has been confirmed experimentally in 1927
by Davisson and Germer, who diffracted the electron beam on a crystal. This
development has quantitatively verified the preceding relations thus demonstrating
that the particle-wave duality constitutes a universal characteristic of nature, i.e.,
of all objects in the microworld, or the micro-objects for short, rather than being
a monopoly of light. Apparently, in this scale of the linear dimensions 10~5-107"°
[m], the differences between the material and radiation particles are significantly
blurred. The hope was that in the final version of the quantum theory this important
discovery will find a consistent synthesis and a more explicit dynamical expression.
At this time it has not been understood yet as to how de Broglie’s waves propagate
and how they influence the motion of individual particles. They do offer, however,
a solid basis for explaining Bohr’s quantum condition of (1.5). More specifically,
rewriting it in terms of the electron de Broglie’s wavelength of an electron moving
on nth stationary orbit, 1, = h/p, (1.6), gives: 2nr, = nl,. This condition thus
represents the classical criterion for the standing wave along the whole perimeter of
the electron circular orbit. In other words, only on the stationary orbits of Bohr the
constructive interference of de Broglie’s (traveling) waves explains the stability of
the electron distribution. Accordingly, the destructive interference of the de Broglie
waves in an atom disallows any orbit which fails to satisfy this quantum condition.

Since science is concerned only with observable things one has to let the micro-
particle to respond to some outside influence, in order to observe it. As we have
already argued above, when examining the implications of the Compton experiment,
the measurement process inadvertently modifies the state of the micro-object.
A careful examination of the limitations imposed by this influence on the accuracies
Ax and Ap, of the simultaneous determination of the particle position (Cartesian)
coordinate x and its conjugate linear momentum p,, respectively, has led Heisenberg
to formulate in 1926 and 1927 his famous Uncertainty Principle, also known as the
Principle of Indeterminacy, which states that the limiting value of the product of
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these two indeterminacies has a very small but finite value of the order of Planck’s
constant:

Ax Ap, > h. (1.7)

The specific multiple of 7 in r.h.s. of the preceding inequality depends on the
adopted measure of the measurement precision. For example, the standard devia-

1 1
tion o, of physical quantity A, AA =g, = <(A — <A>)2>2 = (<A2> — <A>2)2,
where (A) is the average, statistical expectation value of A and <A2> denotes the
average value of its square, can be used to quantify the accuracy of such measure-
ments. We shall use this familiar descriptor of a random variable later in this book,
when formulating the Uncertainty Principle in terms of concepts of the molecular
wave mechanics.

This limit to the fineness of our power to observe the atomic objects and the
smallness of their accompanying disturbance in an act of measurement introduces
the absoluteness to the distinction between the micro- and macro-objects. This limit
can never be surpassed by an improved technique or increased skill of an observer,
since a fraction of a photon is never observed. It is inherent in natural world and the
dual particle—wave behavior, “anomalous” from the classical perspective, is not
peculiar to light, but it is universally present in all material particles as well.

1.2 Classical-Mechanical Description and a Need for Its
Revision in Generalized Mechanics

A necessity for a departure from the classical mechanics and its causality is thus
clearly demonstrated by the experimental observations. The classical concepts have
been proved to be inadequate to describe the molecular, atomic, and subatomic
events. The uncertainty principle denies an observer the ability to simultaneously
measure the conjugate components of the position and momentum vectors of
micro-objects with arbitrary high precision. This contradicts the basic assumption
of the classical mechanics, in the canonical formulation of the Hamilton equations
of motion, where the exact knowledge of such quantities is required for the very
definition of the particle dynamic state. According to the Heisenberg principle of
indeterminacy such simultaneously (sharply) unobserved quantities are unknow-
able. Therefore, one is forced to resign from the classical concept of the particle
trajectory, e.g., Bohr’s orbit, which is unobservable thus belonging in the micro-
world to a “metaphysical” rather than physical category.

Hence, the precise description of the time evolution of a micro-object, which
requires an exact knowledge of its position and momentum at the given time, is
unavailable in the quantum theory. This restriction does not reflect our technical
inability of a precise measurement, but rather it signifies the incompatibility of the
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two observations involved. Such physical quantities, which cannot be sharply defined
simultaneously, are called the complementary observables. As we shall see later in
the book, besides the complementary pair of the particle position and momentum,
(x, p,), there is a number of such relations in quantum physics: energy and time, (E, t),
any two Cartesian components of the angular momentum, e.g., (/,, [,), etc.

The uncertainty relations give rise to statistical predictions of the quantum theory,
in contrast to the deterministic predictions of the classical physics. In the macroscale
of objects perceived by our senses, the statistical distribution of the alternative
outcomes of a measurement, represented by the normal (Gaussian) distribution,
can be made infinitely sharp in the limit of the Dirac delta function (Dirac 1967),
which can be thought of as representing the ordinary Gauss curve of the probability
theory in the limit of its vanishing variance. Therefore, the statistical (multiple-
valued) determinism of quantum mechanics constitutes a natural extension of its
limiting form in the strict (single-valued) determinism of the classical theory.

According to Bohr’s Complementarity Principle both coexisting wave and particle
aspects of all objects in the microworld are essential for their full description.
However, the precise specification of one complementary observable rules out
any specification of the other. Should the particle momentum be known exactly,
Ap, — 0, one would then have no knowledge of its position whatsoever, Ax — o0;
accordingly, when the object position is sharply defined, Ax — 0, one looses all the
knowledge about its momentum: Ap, — oo. The principle operates not only in
these limiting cases, but it also covers all intermediate, finite precisions of speci-
fying the pairs of complementary observables. The more the precise localization
of an electron (or photon) in space, when its momentum is not well specified, the
more the particle-like behavior. Accordingly, the wave-like character is uncovered,
when the particle localization is not well specified, i.e., when its momentum is
determined more precisely.

As further articulated by Bohr and his Copenhagen School, all physical quan-
tities such as position, momentum, angular momentum, energy, etc., have to be
specified by measurement, which conveys information to our senses. It has to
contain amplification mechanisms by which microscopic effects are translated
into macroscopic effects accessible to our understanding. Indeed, all experiments
in the atomic, nuclear, and subnuclear scales in the final analysis are described in
classical terms, related to attributes of the macroscopic measuring apparatus. This
emphasizes a unique, intimate relationship between the quantum mechanics and
its classical limit, with the former being destined to use the concepts of the latter
to describe the behavior of the micro-objects.

The indeterminacy principle also implies a relativity of the quantum description
with respect to the adopted method of measurement, since the specific experimental
device uncovers its own “projection” of the observed “reality.” This also constitutes
a natural extension of the classical relativity of the description of physical phenom-
ena with respect to the adopted reference frame. This feature signifies a deeper,
fully objective approach, which resigns from the subjective classical idealization
of the exact separability of the observed object and the measuring device. It is
implicitly assumed in the classical theory that the progress of a physical process is
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independent of the experimental observations, which monitor its current stage.
In other words, classical theory claims a lack of interference of the measuring
device into the state of the probed mechanical system, i.e., the absolute separability
of these two subsystems of an experimental arrangement.

Clearly, the physical objects evolve freely when undisturbed by an act of mea-
surement, but finally we have to bring them into contact with the experimental
apparatus to monitor their current (final) state. The progress of classical process is
assumed to be independent whether they are observed experimentally or not, but in
the realm of quantum mechanics the experimental monitoring is not without an
influence, sometimes decisive, on the behavior of the observed micro-object. In the
macroworld this influence can be practically neglected. For example, the pertur-
bation of the airplane trajectory created by the photons of the illuminating radar
radiation is nonexistent for all practical reasons. To summarize, the impression
of the unequivocal determinism in the Newtonian mechanics is created by the very
high masses and energies of the classical objects. It hardly implies the universality of
this limiting macroconjecture of the absolute separability of the object and measur-
ing device, to also cover the microworld where such small perturbations do matter.

The classical description also assumes the possibility of limitless gathering of
simultaneous measurement information, i.e., the availability of the precise values of
all mechanical properties of all constituent particles at the given time. In other
words, this approach assumes that in principle at a given time all objects can be
absolutely localized in space and their momenta can be determined with arbitrary
precision, as can be any physical property of the dynamical system under consi-
deration. Clearly, for practical reasons only, we are unable to reach this level of
the precise specification of the mechanical microstate of all atoms/molecules in
a macroscopic amount of matter. However, as claimed in the classical statistical
thermodynamics, such detailed data are in principle knowable with arbitrary preci-
sion. Only due to the obvious “technical” difficulties of reaching this goal, and
in view of the implications of the Law of Large Numbers, which renders such
information irrelevant, we resort to familiar methods of the statistical mechanics in
predicting the average descriptors of the system macrostate.

Let us briefly summarize the main suggestions addressed to the generalized
mechanics capable of describing the behavior of micro-objects. As we have already
argued in the preceding section, the relation between this, yet unknown, new
mechanics and its classical analog should be similar to the relation between the
wave- and geometrical optics; the former becomes the latter in the formal short-
wave limit of A — 0 (v — 00), which is a characteristic of de Broglie’s wave of
a macro-object, when the free particle would not be diffracted but going along
a straight rectilinear path, just as we expect classically. The new mechanics should
thus include the classical mechanics as its limiting case for very large energies and
hence also large values of its quantum numbers — or equivalently — in the formal
limit of the vanishing quantum of the physical action: # — 0. This can be argued
more precisely by observing that the wave aspect of matter will be hidden from
our sight, if de Broglie’s wavelength 4 is much lower than a characteristic length
d involved in describing the motion of a body of momentum p: 1/d = h/(dp) < 1.
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Thus, the 4 — 0 and & — O limits are equivalent in identifying the range of
applications of the classical mechanics. This postulate is known as Bohr’s Corre-
spondence Principle.

In contrast to old quantum theories, the general quantum theory must be internally
consistent, i.e., all its experimental consequences must follow from the same axiom-
atic basis. It has to be capable of explaining all known experimental facts, rather than
a narrow selection of such data. In the new mechanics we have to refrain from the
classical definition of the system dynamic state, which uses the complementary
observables. The new definition must instead be based only on the strictly knowable
state parameters, which can be simultaneously determined with utmost precision.
Clearly, such a positivistic attitude is a prerequisite of any sound physical theory.

The new definition of the mechanical state must be complete so that the results
of all possible experiments performed on the microsystem can be extracted from it.
In particular, it must offer means to predict the possible outcomes (spectrum) {a;}
of any single measurement of quantity A, as well as the frequencies m; (or proba-
bilities) {p; = m;/m} of these experimentally allowed values of the measured
physical quantity in many repetitions m = ) ;m; of the given experiment,
performed on systems in the same dynamical state. This information on a multitude
of measurements performed on replicas of the system then suffices to determine the
statistical expectation value of the measured physical quantity:

(A)=>" pia (1.8)

1.3 Implications from the Particle Diffraction Experiment

Let us consider the double-slit interference of photons or electrons, in analogy with
Young’s optical experiment. In this experimental arrangement the monochromatic
stream of quantum particles falls on the opaque diaphragm with two slits O and O,.
This experiment is crucial for distinguishing whether a perturbation traveling
in space is of the particle or wave character.

The intensities /;(x) and I(x) of two streams of the noninteracting particles
passing through the openings O and O,, respectively, when the other slit is closed,
upon reaching the screen & would produce the sum of such individual inten-
sities (probabilities), I1(x) + I>(x). The superposition of the corresponding waves

Y1(x0) = W (0l expli(x)] and Ya(x) = W20l expligo(x)],

Y(x) =y (x) + 5 (x), (1.9)
gives rise to the screen intensity distribution exhibiting the interference effects,
1) = [ ()P = ()" () = [y () [ ()2 20 () () cos [ (x) — 5 ()]

= [11 () 41> ()] 42111 () (x) [P cos (b, () — by ()] = 197 () 417 (x),
(1.10)
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because of the last, nonadditive (oscillatory) term I"““(x). Above, we have identi-

fied the intensity of wave by the squared modulus of the scalar wave field y(x),
by analogy to the intensities of the electric, E(x), or magnetic, H(x), fields.

It has been established experimentally that the interference fringes are the statis-
tical result of a very large number of independent particles hitting the screen, when
each particle retains its individuality being finally deposited on a single grain of
the photographic plate of the screen, at apparently random positions, hitting also
the regions no classical particle could reach. The same interference pattern appears
when a beam of particles goes through the slits simultaneously, and when single
particles are scattered, one at a time, with the impact locations being observed
in seemingly random fashion, now here, now there, over a length of time. The
statistical determinism in this scattering of micro-objects, which give the impres-
sion of being truly indeterminable and chaotic, is only revealed after very many
repetitions of such elementary, single-particle experiments, when the interference
pattern finally emerges.

The appearance of interference depends critically on both slits being open, and
it vanishes when one of them is closed, i.e., when a single particle goes definitely
through one slit or the other, giving after many repetitions the separate distributions
I1(x) or I,(x) on the screen. One thus concludes that the observance of interference
denies us the determination of the slit through which the particle has actually
passed. The interference pattern cannot be explained in the corpuscular representa-
tion, as a result of some collective effect of interactions between the beam particles.
More specifically, by diminishing the density of the incident stream of particles,
and hence also the number of particles passing through the slits in unit time, one
changes such interactions, and this should affect the interference pattern on the
screen. However, the experiment does not exhibit any influence of this kind; the
diffraction pattern remains the same even in the limit of a single particle passing
the slits at a time. The attempts to explain this phenomenon in the wave representa-
tion alone also fail, as the interference intensities, i.e., the wave determinism of the
particle distribution is uncovered only after many repetitions of the single-particle
scatterings performed at the specified dynamical conditions of the incident beam.

These apparent contradictions illustrate the wave—particle dualism of the micro-
objects. Indeed, in accordance with the Heisenberg indeterminacy principle, it
is impossible to simultaneously, sharply specify the particle momentum p = h/4,
which implies the knowledge of the interference pattern, and its position, which
presupposes the knowledge of the slit, through which the particle has passed, when
the other slit remains closed.

Therefore, there is a distinct wave causality in this at first glance “random”
scattering of independent particles so that de Broglie’s wave Y(x, t), or the wave
(state) function for short, indeed describes in a statistical sense a movement of
a single particle, with the wave intensity I(x, 1) = Wy(x, t)I2 (1.10) measuring the
chance of finding it hitting the screen at location x at time ¢. This probabilistic
interpretation of the waves of matter is due to Born, who proposed in 1927 to call
the intensity I(x, ) the probability density of observing the particle at specified
localization at the given time. As we shall see later in the book, in the modern
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quantum mechanics this identification forms a basis for interpreting the system
wave function, which carries the complete information about the dynamic state of
the micro-object. It should also be emphasized that this function itself, the solution
of the Schrodinger wave equation formulated in 1926, which governs the dynamics
of microsystems, cannot be treated as a measure of the likelihood of finding a
particle at the given position, since for that it should be positive everywhere, being
then incapable of the destructive interference, which is the observed fact.

The double-slit diffraction of microparticles identifies two types of experiments
involved in establishing the classical attributes of quantum systems. Let us examine
the consecutive stages of a general setup in a thought experiment shown in Fig. 1.1.
We denote the initial and final states (wave functions) of the quantum system, at
time f5 = 0 and ¢t > 0, respectively, by ¥(x, fo) and Y(x, £). The classical attributes
of the initial state are determined by performing the so-called initial experiment,
which in fact creates (x, ty), e.g., the monochromatic beam of particles of the
specified momentum. Thus, this first category of experiment in quantum mechanics
always refers to the future, by preparing the quantum state the time evolution of
which we intend to study.

In the period t, — ¢ the system evolves freely, ¥(x, tg) — Y(x, f), without any
perturbing influence from measuring devices. This wave deterministic process will
be described by the Schrodinger equation of motion, which in the modern quantum
mechanics replaces the Newton (Hamilton) equations of motion of the classical
theory. As we shall see later in the book, this evolution of the state function in the

free evolution

— w(ty) (1) final experiments:
nitia
{ experim enl} = | initial | = ﬁt'nctzl = | measurements of A spectrum, probabilities
state state N
{Ayp(D)} = {ai}, {pi}

Fig. 1.1 Qualitative diagram of the initial and final experiments involved in preparing the initial
state /(o) and extracting the classical attributes of the final state (¢) reached after free (undis-
turbed by measurement) evolution in the time interval #, — ¢. The initial experiment arrangement,
including the particle collimating slits and an appropriate velocity selector, transforms the poly-
chromatic electron beam into its monochromatic component, thus preparing the initial state /().
In the time interval ¢, — t the system evolves freely, without any intervention from the measuring
devices, in the specified dynamical conditions, e.g., when the particle motion is influenced by the
force field generated by the external potential v(x), in accordance with the strictly deterministic
laws of quantum dynamics: /(fy) — (7). The statistically distributed classical attributes of the
final state y(¢) are then extracted by performing the final experiment, using, e.g., the double-slit
arrangement or a crystal as the measuring apparatus, which diffracts electrons to the movable
detector or a photographic plate. This position-extraction experiment is an illustrative example of
a general measurement-event of any physical observable A. The process of extracting the observed
values {a;} (spectrum) of A in the single-particle experiments performed on the final state (¢) has
been symbolically depicted in the diagram as performance of the relevant mathematical operation
A on y(p), Atp(t), with the operator A being specific for the measured quantity A. The observed
spectrum {a;} of A and the associated probabilities {p; = m;/m} can be determined only after
many m = ();m;) — oo repetitions of the single-electron scatterings, with m; denoting the
frequency of observing a;
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specified dynamical conditions is strictly deterministic, with the given initial state
Y (x, ty) giving rise to a single final state y(x, ).

The aim of the final experiment is to determine the classical descriptors of the
quantum system in state (x, t). It should be stressed that after the particle has been
localized on the screen, by using the photographic plate or some clever monitoring
device, its dynamical state has been inadvertently and irreversibly destroyed as
a result of the interaction with such an apparatus. Indeed the particle’s precise
localization denies us of any knowledge about the particle momentum. Thus, the
final experiment can have implications only to the very past event, when the micro-
object reaches the screen.

Due to the particle-wave duality, the link between y/(x, f) and possible outcomes
of the final experiment is generally of the “one-to-many” type, thus giving rise to
statistical predictions of specific values of classical descriptors of the system final
state. Indeed, we cannot a priori predict, where the scattered electron hits the screen,
but the final interference pattern, obtained after numerous repetitions of the single-
electron diffractions, uniquely identifies the probability distribution h(x, )i of the
final state. It should be emphasized that only very numerous repetitions of the
single-particle “experiment” together constitute the complete final experiment in
quantum mechanics.

The preceding discussion prompts us to revise our ideas of causality (Heisenberg
1949, 1958; Born 1964; Bohm 1980; see also: Penrose 1989). Causality applies
only to the micro-objects which are left undisturbed. Therefore, only the free-
evolution in the chain of events depicted in Fig. 1.1 represents the causal stage,
while the final measurement produces a disturbance in the state of the object serious
enough to destroy any causal connection between the separate results of obser-
vations monitoring the object final state.

The statistical predictions and the indeterminism of quantum laws are a property
inherent in nature, and should not be regarded as resulting from our temporary
ignorance, which could be removed by some future theory, better and more
complete. Although the modern quantum theory provides a thoroughly rational,
coherent, and extremely successful description of micro-objects of the subatomic
and atomic/molecular levels, one should not dogmatically rule out its future impro-
vements and extensions, e.g., on the subnuclear level. However, as much as the
quantum mechanics was forced upon the modern science by the physical rather than
metaphysical necessity, these developments have to address future experimental
findings, which could not be explained by the quantum theory. Indeed, as history
teaches us, no matter how complete the description of the dynamical state may
seem today, sooner or later new experimental facts will require us to improve the
theoretical model and arrive at an even more general description, more detailed
and usually more complex.

For example, all empirical evidence, including the Stern—-Gerlach experiment
and atomic spectra, points to the need for attributing to many elementary particles,
notably electrons, protons, and neutrons, the intrinsic angular momentum, or spin,
and the associated magnetic moment. Therefore, such particles can hardly be
treated as mass points without any internal structure. Hence, for the complete
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specification of their dynamic states one has to provide the relevant spin quantum
numbers, which fix these internal degrees-of-freedom of such micro-objects. These
new dynamical variables of entirely nonclassical origin have to be specified besides
the remaining simultaneously measurable observables.

1.4 Particle Spin

In 1925 Uhlenbeck and Goudsmit hypothesized the existence of yet another internal
attribute of atoms and elementary particles, called spin angular momentum and the
associated intrinsic magnetic dipole moment, which complement such properties of
these micro-objects as mass, electric dipole moment, moment of inertia, electric
charge, etc. This internal state variable has been originally introduced to simplify
the classification of atomic spectra. This goal has been achieved, when one
envisaged the existence of the internal angular momentum s of an electron, called
the spin, the length of which is quantized by the half integral quantum number
o =35 =Is| = [o(o + 1)} (Fig. 1.2

Confirmation of this experimental conjecture came in 1928 from the relativistic

quantum theory of Dirac. The existence of the electronic spin also transpires from

Is|=|s'|=(/3/2)n

spin-up state

spin-down state

Fig. 1.2 The electron spin s can be characterized iln quantum mechanics by two simultaneously
observable attributes: its length s = |s| = [s(s + 1)]?h = (v/3/2)#, for the half-integral spin quan-
tum number s = %, and its projection on the specified axis, say axis “z” of the Cartesian coordinate
system: s, = o/, where ¢ = £ s. These two observables do not strictly specify the spin vector, but
rather they define the whole family of admissible vector directions determining the cone surfaces
shown in the diagram. The length and a single projection exhaust the complete list of simulta-
neously observed properties of any angular momentum in quantum mechanics. In other words, the
direction of the angular momentum of the microparticle is not an observable
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the earlier Stern—Gerlach experiment of 1921 in which a beam of silver atoms,
containing a single, outermost spin-unpaired electron, produce two traces corres-
ponding to the spin-up (s, = !/,f) and spin-down (s, = —1/h) states (Fig. 1.2) of
their valence electron, after being deflected in a nonuniform magnetic field.

These two spin states of a single electron can be uniquely specified by the quantum
numbers determining the two simultaneously measurable attributes of the spin vector:
s, for its length, and ¢ = +9, for its projection along the specified direction, say the
“z” axis in Fig. 1.2: s, = oh. They can be symbolically represented as the following
“state vectors,” in which one provides an explicit or symbolic specification of the state
spin quantum numbers within the arrow-like symbol of Dirac:

spin—up state: o) = 8,0 =+0) = |, + 1) = | +),

spin—downstate: |f) =1s,0 =—0) =|lh, —15) =|—).

1.5 Birth of Modern Quantum Mechanics

The consistent quantum mechanics (see, e.g., Messiah 1961; Davydov 1965; Dirac
1967; Merzbacher 1967; Cohen-Tannoudji et al. 1977; Fock 1986), which explains
the origins of the quantization of the physical observables and introduces the
generalized dynamics of quantum states, has emerged in 1926—1927 in two equiva-
lent forms: the Matrix Mechanics of Heisenberg and the Wave Mechanics of
Schrodinger. Although using quite different mathematical apparatuses, the matrix
algebra and differential equations, respectively, these two rival theories gave rise
to identical physical predictions, in complete agreement with all experimental data.
It was clear, therefore, that these two approaches represent the same physical
theory, as indeed demonstrated later by Schrodinger and Dirac (see, e.g., Buckley
and Peat 1979).

Heisenberg discovered the need for a generally noncommutative multipli-
cation of physical quantities in quantum mechanics, which gives rise to the
position—-momentum indeterminacy. The analogies with systems in classical
mechanics, which are governed by the linear equations of motion, a consequence
of the superposition relationships between states of vibrating strings or membranes,
have led Schrodinger to establish the basic equations of the Wave Mechanics. The
resulting equation of state is also linear in the unknowns, because of the assumption
of the quantum superposition principle. In Heisenberg’s approach the quantum
states and physical observables are represented by the matrix vectors and square
matrices, respectively, while in Schrodinger’s treatment they are accordingly
associated with functions and differential operators. The important contributions
to the final form of the modern quantum theory have also been made by other
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members of the Gottingen School, Born and Jordan, and by Dirac and Pauli, who
invented the relativistic version of the quantum theory.

These revolutionary departures from principles of the classical theory, and
particularly in the form of the quantum superposition of states demanding indeter-
minacy in the results of observations, are necessary to provide a sensible physical
interpretation and to explain all known experimental facts. These new ideas find
their expression through the introduction of a new mathematical formalisms as well
as novel axioms and rules of manipulation. The two original formulations of the
modern quantum mechanics can be united in a more general and abstract form of
the quantum theory, which includes both the wave mechanics and matrix theory as
its special cases. This “geometric” formulation requires the complex linear vector
space, called the Hilbert space, in which vectors represent state functions. Both
n-dimensional and n — oo spaces are invoked, including the indenumerably infi-
nite case of vectors corresponding to continuous variables. The matrix and wave
function theories then appear as corresponding to different choices of the basic
vectors in the Hilbert-space, which define the chosen reference frame for concepts
and equations of quantum mechanics. This is similar to the relationship between the
form of equations in classical physics and the adopted coordinate system in which
they are formulated. With the increased elegance and mathematical abstractness of
this unifying geometric formulation one also gains a great deal of understanding.

The geometric approach using Dirac’s vector notation is the method chosen in
the present short presentation of the principles of quantum mechanics. Its relation
to the two original formulations will be briefly explored, emphasizing their equi-
valence in predicting the possible outcomes of experiments and the dynamical
equation of motion. Since the wave mechanics appears to be conceptually simpler
in chemical applications and directly connecting to the particle—wave dualism,
a stronger emphasis will be made on this (nonrelativistic) version of the quantum
theory. However, for reasons of convenience, in specific problems covered by the
book the matrix theory will also be applied. In this study an emphasis is put on
the conceptual developments rather than specific applications. For the solvable
problems in quantum mechanics and quantum chemistry the reader is referred
to specific textbooks and monographs (e.g., Fligge 1974; Szabo and Ostlund
1982; Atkins 1983; Levine 1983; McQuarrie 1983; Johnson and Pedersen 1986).
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Chapter 2
Mathematical Apparatus

Abstract The mathematical tools of quantum mechanics are summarized. This
overview, which makes no attempt to be mathematically complete and rigorous, is
intended as an introduction for readers unfamiliar with the subject. We begin with
some geometrical analogies of the basic concepts and techniques of the mathemati-
cal formalism used to treat the extended Hilbert space of the quantum-mechanical
states, the abstract vector space spanned by the state vectors or the associated wave
functions of the physical system of interest. Dirac’s vector notation, which greatly
simplifies manipulations on these mathematical objects, and the alternative rep-
resentations of the singular delta “function” are given. The linear operators acting
on the state vectors as well as their adjoints are defined and the basis set rep-
resentations of vectors and operators are introduced. The eigenvalue problem of the
linear self-adjoint (Hermitian) operators is examined in some detail and the com-
plete set of the commuting observables is defined. The two most important (contin-
uous) bases of vectors for representing quantum states of a single particle, defined
by the eigenvectors of the particle position and momentum operators, respectively,
are explored. In particular, the position representation of the momentum operator,
as well as the momentum representation of the position operator, are examined in
some detail. Next, the discrete energy representation is briefly examined and the
unitary transformation of states and operators is discussed. Finally, the functional
derivatives are introduced and the associated Taylor expansion of functionals is
formulated. The localized displacements of the functional argument function
are defined using Dirac’s delta function and the rules of functional differentiation
are outlined stressing analogies to familiar operations performed on functions
of many variables. The chain rule transformations of functional derivatives are
summarized.
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DOI 10.1007/978-3-642-20180-6_2, © Springer-Verlag Berlin Heidelberg 2012



22 2 Mathematical Apparatus
2.1 Geometrical Analogies

The ordinary three-dimensional physical space R> is spanned by the orthonormal
basis {i, j, k} = e® (a row vector of vector elements), consisting of three unit
vectors {e;,i = 1 = x,2 = y,3 = z} along the mutually perpendicular axes {x, y, z},
respectively, in the Cartesian coordinate system. The orthogonality of different
basis vectors, i # j, expressed by the vanishing scalar product e;-¢; = 0, and their
unit length (normalization), e;e; = |e; 2= e,-2 =1, can be combined into the
orthonormality relations expressed in terms of Kronecker’s delta,

e-ej=0;;={l, fori=j;0, for i #j}, (2.1a)

defining the three-dimensional, unit-metric tensor represented by the identity
matrix I®) = {0:}:

e® . ¢ = (BTe0) = [O), (2.1b)

where ¢ denotes the transposed (T), column vector of transposed vector elements.
Any vector in R can be expanded in this reference system,

3 3
A=A +A +A. =) A =iac+jay+ka: =) e =eVaVT,  (22)
i=1

i=1

with the row vector of coordinates a® = {a; = e;A} = [a,, ay, a.], measuring the
lengths {a; = |A,|} of projections {A;} of A onto the corresponding axes, providing
the matrix representation of A in the adopted basis set: A —a'.

It should be also observed that in the preceding equation the resolution of A into
its projections {A;} along the directions of basic vectors e in this coordinate
system can be also interpreted as a result of acting on A with the projection operator

P(R?) onto the whole R space,

N
o>
)

P(R’) = 23: (eieir) =

i=1 i=1

(2.3)

defined by the sum of individual projectors {P(e;)} onto the specified axes. Indeed,
the following identity directly follows from (2.2):

i=1

3 3 3
A=) ea= <Zele, )A PRYA = Ple)A =) A, (2.4)
i=1 i=1

The preceding relation also implies that the projection of any vector A in R?,
or A(R?) for short, amounts to multiplying it by the unity (identity) operation
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P(R?) = 1: IS(Rg) (R?) =A(R ) Clearly, the sum of projections onto any two
basis vectors P(e;, e;) = P(e;) + P(e;) defines the projection onto the plane defined
by these two axes:

Pei,e)A =P(e)A +P(e)A =A; +A; = Ay, 2.5)

This overall projection onto the whole physical space allows one to interpret the
scalar product of two vectors A and B in R? in terms of their coordinates a*> and
b, respectively:

A-B=A P(R)B=

3 3
i=

(A-e)(ei-B) = ab;=aVpO". (2.6)

1 i=1

As seen from this example, the coordinate-resolved expression results directly from
placing the identity operator 13(R3) =1 between the two vectors in the scalar
product. Obviously, this formal manipulation has no effect on the product value.
The characteristic property of projections is that the effect of a singular projec-
tion is identical to that of the subsequent repetition of the same projection. This
immediately implies the idempotency property of the projection operators,

P(R')P(R’) = [P(R')? =P(R’), [Plei,e)]” =Pleie)), [Plen)]” =Pler). 2.7)

where we have identified the square of an operator as a double execution of the
operation it symbolizes. One can straightforwardly verify these identities using the
orthonormality relations of (2.1a, 2.1b), which also imply that the product of
projections into the mutually orthogonal subspaces identically vanishes, e.g.,

B(i)P(k) = P()P(j) = P(j)P(k) = P(i,j)P(k) = 0. 2.8)

These observations can be naturally generalized into the n-dimensional Euclid-
ean space R", spanned by n orthonormal basic vectors e = {e,i=1,2,... n},
e e = 1" also including the n — oo limit. In particular, the matrix repre-
sentations of vectors and the coordinate-resolved expression for the scalar product
of vectors A(R") and B(R") directly follow from applying the projector onto the
whole space R",

P(R") = Z (eje;) = Zf’(e,-), (2.9)

= Ze,-a,- = iA,- = ea"T, (2.10)
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A(R")-B(R") = A(R") -P(R")B(R") => (A -e;)(e;- B)

=> abi =a"p"" (2.11)

In particular, for two identical vectors A(R") = B(R") one obtains the following
expression for the vector length (norm):

1/2
=A| = <Za ) > 0. (2.12)

One similarly defines the projection operators into various subspaces in R”, e.g.,
its complementary, mutually orthogonal parts P" = {e;,i = 1,2,...,m} = P and
o' ={e, j=m+1,m+2,...,n} =Q

P’” = p_ZPe, Q” " Ef’ Z f’pf’Q:Q
icP jeQ
A(R") = (Pp +PQ)A(R") = Ap + Aq, (2.13)

n—m

where Ap and Ag stand for the projections of A(R") into the P” and Q
subspaces, respectively.

The scalar product of (2.11) can be also given the (linear) functional interpreta-
tion. In mathematics the linear functional F[¢] of the argument ¢, e.g. a function or
vector, is a linear operation performed on the argument,{ which gives the scalar

2

quantity F, F[p] = F, e.g., the definite integral I[f] = ff(x) dx = I. The same

property can be associated with the (discrete) scalar produ'gt, say a projection of the
argument vector A = A onto another vector B = B:

—

B-A=B-A=BJA|, (2.14)

where B[ ] denotes the functional of the vector argument 1% giving the value of its
scalar product with the vector B. The latter thus defines the functional B[X] itself,
denoted as the “reversed” vector, by specifying the direction onto which the
argument vector X is to be projected.

It can be then demonstrated that these scalar product functionals also span the
vector space, called the dual space, since any combination of such quantities
represents another linear functional of the same type. Let us examine these
reversed “vector” quantities (functionals) associated with the independent basis
vectors {e; = ¢;}. They represent the dual basis “vectors” {e;[V] = ¢;} of the
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scalar product functionals. Indeed, any combination of them also belongs to this
dual space, e.g.,

Ciei[V] + Cjej[V] = (Ciéi + Cjé;) - V=W -V = W[V], (2.15)

and to every vector A corresponds its functional analog A in the dual space, since
the vector is uniquely specified by the complete set of its scalar products
(components) with all independent vectors e:

n

A :iaizizi&:fx Za,e, =Y AV]. (2.16)
i=1 i=1 i=1

It also follows from these relations that in Euclidean space this correspondence
is linear: the linear combination of vectors in R" is represented in the associated
dual space by the associated combination, with the same expansion coefficients, of
the corresponding dual-space functionals.

It should be emphasized that the dual-space elements, the “reversed” vectors,
represent mathematical quantities (functionals of vectors) quite different from the
original (argument) vectors on which they act.

2.2 Dirac’s Vector Notation and Delta Function

In accordance with the Superposition Principle of quantum mechanics (Dirac
1967), any combination of states represents an admissible quantum state of the
given molecular or atomic system. This property is also typical of ordinary vectors,
C4y A + Cp B = C, where the numerical coefficients C4 and Cp determine the
relative participation of both vectors in the combination. We shall use this analogy
in the vector notation of Dirac, in which the quantum states ¥ and @ are denoted as
arrowed “ker” symbols |W¥), |®), .. ., called state vectors. Their linear combination
Cy|¥) + Co|P) = |®) determines another state |®@). When these states are
functions of the continuous parameter x €[, { ], |¥) = |P(x)) = | x), this summa-
tion of vector states is generalized into its continuous (integral) analog:

|®) = Jc(x) |x) dx. (2.17)

Here, the combination coefficients {c(x), c(x), . ..} are in general complex since the
quantum states are complex entities. The resultant state |®) of the given combina-
tion is said to be dependent upon the component states {|x), |x'), ...}. These
independent state vectors cannot be expressed as combinations, with nonvamshmg
coefficients, of the remaining states in this basis set.
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In the quantum kinematics it is the direction of the state vector |¥) that matters
and uniquely identifies the quantum state Y. Therefore, the opposite state vectors
along the same direction, e.g., |¥) and —|W), in fact represent the same state V', and
any combination of the state with itself, C;|¥) + C,|¥) = (C; + Cy) |¥) = C|¥)
= Me'” |W), where M and ¢ stand for the modulus and phase of the complex
coefficient C, also denote the same state ¥. As we shall see later in this chapter,
the length (norm) of the state vectors in quantum mechanics will be fixed by the
appropriate normalization requirement resulting from the probabilistic interpreta-
tion of quantum states. In case of the square integrable wave functions it calls for
M = 1, but the phase ¢ will be left undetermined as immaterial and having no
physical meaning.

This property of the quantum superposition rule distinguishes it from the
corresponding classical principle, e.g., that for combining vibrations of a string or
a membrane, in which the combination of a state with itself gives another state
exhibiting different amplitude. There is also another important distinction between
the quantum and classical kinematics: in quantum mechanics the state vector of the
vanishing norm (length), which thus has no specified direction in the vector space of
quantum states, does not exist and thus has no physical meaning, while the classical
vibration of the vanishing amplitude everywhere does in fact represent the real
physical state of rest of a string or a membrane.

It was shown in the preceding section that to any vector space the dual space of
the “reversed” vectors, the entities of quite different mathematical variety
(functionals), can be ascribed through the concept of the scalar product (projection)
of the vectors themselves. The dual space to the ket-space of state vectors {|W,)} is
called the bra-space of the reversed “vectors” (functionals) {(¥;|}, with the one-
to-one (antilinear) correspondence: (¥,| < |¥,), (¥i| + (¥)]) « (¥)) + |'¥)),
C*(¥| < C|¥), etc., where C" denotes the complex conjugate of C. In the original
terminology of Dirac the bra- “vector” (V| represents the conjugate-imaginary of
the associated ket-vector |¥). Again, the basic difference between the elements of
the two vector spaces, with the “bras” in fact representing the functionals acting
on “kets,” it is improper to regard the bra-“vectors” as the complex conjugates of
the corresponding ket-vectors.

In Dirac’s notation the bra (®| and ket |¥) symbols are examples of an
incomplete “bracket,” while the result of (®| acting on |¥) gives the complete
bracket of the scalar product of |¥') and |®), (®|¥) = ®[|'¥)], which measures the
projection of |'¥) on |®). The complete bracket generates the complex number. This
association also explains the English nomenclature of the “bra” and “ket” symbols.
This definition also implies that in contrast to the Euclidean space the complex
numbers of the projections of |¥) on |®) and of |®) on |¥), respectively, are not
equal in general, one representing the complex conjugate of the other:

(@¥) = O[|¥)] = (V|@)" = ¥[|D)]". (2.18)

One also observes that this linear functional of the ket vector:
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q)“C]“Pl + Cijzﬂ = Cl(l)[|ll’l>] + CZ(DH\P2>], (2.19)

is antilinear with respect to the bra vector, which determines the direction on which
the projection is made:

(C1®0) + C, 05| W) = C* 0 [|W)] + Co D, [|W)]. (2.20)

Any vector in the ket space has its unique analog in the dual space of the bra
“vectors” (functionals). There is a close analogy with the Euclidean space, in which
the scalar product functional has also been used to define the dual “vector”. Indeed
the vector is uniquely defined by its projections on all (independent, orthonormal)
vectors {|X;) = |i)}, possibly including indenumerable vectors {|X(x)) = |x)} labeled
by the continuous parameter(s) x. The set of projections {(®[X;) = (X;|®)"} thus
uniquely determines the original ket D) associated with the functional @[] = (®|.

The “orthonormality” relations for the continuous basis vectors {lx)} are
expressed in terms of the continuous analog of the Koronecker delta 9, ; = (i),
called the Dirac delta “function” 6(x' — x) = (x|x’). For any function f(x) of the
continuous argument(s) x this kernel satisfies the following “projection” identity:

flx) = Jé(x/ —x)f (X)) dx’. (2.21)

This equation indicates that this singular function represents the kernel of the
integral operator fdx’ o(x — x), which acting on function f{x') generates f(x).
Moreover, since the integral of the preceding equation formally expresses the
functional f{x) = f[f(x')], Dirac’s delta can also be interpreted as the functional
derivative (see Sect. 2.7):

of (x)

o(x —x) = o)

(2.22)

We shall discuss other properties of this mathematical entity later in this section.

The Dirac delta function d(x' — x) of (2.21) represents the unity-normalized,
Jo(' — x)dx’ = 1, infinitely sharp distribution centered at x’ = x, exhibiting
vanishing values at any finite distance from this point. It can be thus envisaged as
the limiting form of the ordinary Gaussian (normal) distribution of the probability
theory in the limit of the vanishing variance:

/ T 1 (.X/ 7)()2
o(x' —x) = (ITILI(I) N exp (— 552 ) (2.23)

Alternatively, one can use any complete, say discrete, set of orthonormal basis
functions {y;(x)}, f;{i*(x))(_,«(x)dx = 0;,, to generate the analytical representation of
this singular function. Indeed, expanding f(x) in terms of the complete (orthonor-
mal) basis set {y(x)} gives:
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Z,{, Z/, J 1O () dx']
J{Z,(, 7 } () ax. (2.24)

Hence, comparing the last equation with (2.21) gives the closure relation:

x — x Z'{’ /{1 (2253)

For the continuous orthonormal basis set {u,(x)} labeled by the continuous index
o, f U, (X) uy (x) dx = 8(a’—a), one similarly finds

oK —x) = Jua(x) u," (x') do. (2.25b)

When the complete basis set is “mixed,” containing the discrete and continuous
parts, {y:(x), u,(x)}, with fua*(x) %i(x) dx = 0, this closure relation reads

O(x —x) Zx, x) 7 ( J (%) uy " (X') do. (2.25¢)

Another important example of the continuous analytical representation of
Dirac’s delta originates from the Fourier-transform relations, e.g., between the
wave function in the position and momentum representations of quantum mechan-
ics (see Sect. 2.6),

&(k) = \/% Jexp(—ikx)f(x)dx and f(x) = \/%_n Jexp(ik'x)@(k’)dk’,

i=+v-1.

(2.26)
Substituting the second, inverse transformation into the first one then gives
D (k) = 2171 J (k') {Jexp[ix(k’ — k)] dx} dk’ (2.27)
and hence
(k' — k) = % Jexp[ix(k’ — k)] dx. (2.28)

The singular Dirac delta function 6(xX' — x) = d(z) satisfies the following
identities:
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d(* —a®) = (2la]) ' [0(x — a) + 0(x + a)]. (2.29)

Of interest also are the related properties of the derivative of Dirac’s delta
“function,” 6 '(z) = di(z)/dz,

Jf(z)é’(z)dz =—f"(0) or Jf(z)é’(—z)dz =£(0), z8'(z) = —=d(z). (2.30)

2.3 Linear Operators and Their Adjoints

The complex number resulting from the scalar product between two state vectors is
the result of applying the functional represented by its bra factor to its ket argument.
When the linear action of a mathematical object on ket results in another ket, i.e.,
when it attributes in the linear fashion the uniquely specified result-vector |¥’) to
the given argument-vector |\W), it is said to define the linear operator A:

AlP) = [AY) = V'), A|C\Y) + C¥)) = CIA|Y)) + CGA|W,) . (2.31)

The operator is defined when its action on every ket is determined; it becomes zero,

A = 0, when its action on every ket |¥) gives zero. Thus, two operators are equal
when they produce equal results when applied to every ket.
The linear operators can be added and multiplied:

(A+B)|¥) = A|¥Y) + B|¥), (AB)|¥Y)=A(B|¥)) = AB|¥). (2.32)

In general, they do not commute, giving rise to nonvanishing commutator
[A,B] = AB — BA #0. (2.33)
A multiplication by a number is a trivial case of a linear operation, which commutes

with all linear operators. It can be easily verified that commutators satisfy the
following identities:

[A,B] = —[B,A], [A,B+C]=[AB]+[AC],
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[A,BC] = [A,BIC +B[A,(], [A,[B,C]] + [B,[C,A]] + [C, [A,B]] = 0.
(2.34)

Linear operators can also act on the bra vectors, with the latter always put to the
left of the operator, giving other bras. Indeed, the symbol A(CD| has no meaning of
the bra vector (functional), since its action on the ket vector |¥) gives another
operator, (A(®|)|¥) = A(D|¥) = (®|¥)A, thus representing an alien object in the
present mathematical formalism. However, it can be straightforwardly demon-
strated, again using the scalar product functional as the link to the definition of
(2.31), that (®|A = (@'|. Indeed, since A is linear and the scalar product depends
linearly on the ket, the scalar products ®[A|¥)] = (®|(A|¥)) for the specified (D
and A, associate with every ket |¥) in the vector space a number which depends
linearly on |¥). This new linear functional thus defines a new bra vector (@’|, which
can be regarded as a result of A acting on (®|:

(D[(A]¥)) = ((DIA)|¥) = (@'|'P). (2.35)

Therefore, the linear operators act either on bras to their left or on kets to their
right. In other words, the position of parentheses in the above matrix element of A is
of no importance:

(D(AlY)) = (PIA)[) = (RIA]'P). (2.36)

The operation (®|A = (@] is linear, because for arbitrary |¥) and (Q| =
C1(®;| + C»{(®,| one obtains:

(QIA)Y) = (QUA]Y)) = CL{D1[(A]P)) + C2(D2| (A]Y))

= C1((®1]A) ) + C2((D2|A)[W), (2.37)

and hence (Q|A = C,(®;|A + C»(D|A.

It can be directly verified that the product of the ket and bra vectors, |¥) (@],
represents an operator. When acting on ket |Z) it generates another ket vector along
[¥), |¥) (D|Z) = (®|E) |¥), while the result of its action on bra (Q| produces
another bra vector (functional), proportional to (®|: (Q|¥) (®|. It thus defines the
linear operator:

|¥) (D|C1E| + C25y) = C(DIE))|Y) + C2(D[E2)|Y),
(CLO| + Co(Qa]) W) (D] = C1 (@i W) (B] + Co(Qu]¥) (B, (2.38)

In particular, the operator |X;) (X;| defined by the normalized vector |X;) = |i)
and its bra conjugate amounts to the projection onto the |i) direction:

i) (i|¥) = P;|¥) = (i|P) |i) = Wi|i), (2.39)
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where¥; stands for ith component of |¥) in the |i) = {|i)} representation (row
vector). The projector idempotency then directly follows:

P = |i)(i|i)(i| = |i)(i| = Pi. (2.40)

When this discrete (countable) basis set spans the complete space, the sum of all
such projectors, i.e., the projection on the whole space, amounts to the identity
operation,

= |i)(i| = Zﬁ,- =1, (2.41a)

where (i| stands for the column vector of bras associated with the row vector of the
i), because then P|¥) = |¥). Similarly, when the complete basis set
|x) = {|x)} is noncountable in character, with the orthonormality relations
expressed by Dirac’s delta “function” of (2.21), the summation is replaced by the
integral over the continuous parameter(s),

P=|x)(x| = J|x> (x| dx = Jls(x) dy =1, (2.41b)

where we have again interpreted |x) and (x| as the (continuous) row and column
vectors, respectively. Finally, when the complete (mixed) basis contains both the
discrete part |&) = {|«)} and the indenumerable subspace |y) = {|y)}, |[m) = [|a),
|¥)] the identity operator of the complete overall projection operator includes both
the discrete and continuous projections:

P = |m)(m| = |a)(a| + |y)(y| = ZP +J =1. (2.41c)

The (antilinear) one-to-one correspondence between kets and bras associates
with every linear operator A its adjoint (linear) operator Af by the requirement that
the bra associated with the ket A|¥) = |A¥) = |¥') is given by the result of action
of AT on the bra associated with |¥):

(P'| = (A®| = (P|AT. (2.42)
Hence, since (D|AW) = (A¥|®)* one obtains:
(D|AY) = (D|A|P) = (AP|D)" = (P|AT|D)". (2.43)

Moreover, because (Af)" = A and hence (AT®| = (®|A, the adjoint operators can
be alternatively defined by the identity:

(ATO|P) = (D|A|¥) = (D|AV). (2.44)
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Next, it is easy to show that (AA)" = 1*Af and (A 4+ B)" = AT + BI. To deter-
mine the adjoint of the product of two operators one observes that the ket |Q) =
AB|W) = A|O®) is associated with the bra

Q] = (¥|(AB) = (O]AT = (W[BT A, (2.45)

where we have realized that the bra associated with |®), (®| = (¥|B'. Hence,
(AE)T — BYAT. This change of order, when one takes the adjoint of a product of
operators, can be generalized to an arbitrary number of them: ((AE . ..C)T =
Cf...BYAT. One also observes that the following identity is satisfied for com-
mutators: [A, B]" = [BT, Af].

We can now summarize the mutual relations between the mathematical entities
hitherto introduced in terms of the general Hermitian conjugation denoted by the
adjoint symbol “7. In the Dirac notation the ket |¥) and its associated bra (V| are
said to be Hermitian conjugates of each other: (¥| = |¥)" and (¥|" = |¥). More-
over, the operators A and AT are also related by the Hermitian conjugation. As we
have observed in the preceding equation the hermitian conjugation of the product
of operator factors changes the order in the product of the adjoint operators. This rule
holds for other entities as well. For example, the Hermitian conjugate of A|¥) gives:

(AW) = |JAP) = |@)TAT = (¢|AT. (2.46)
Similarly,

(1) (@)1 = (@[) (1)) = ) (¥, (@) = (%)) (®])) = (¥a),
(@) ) (@) = @) (¥ (P|0)* = 1* (¥]®)|®) (¥, ctc. (2.47)

Thus, to obtain the adjoint (Hermitian conjugate) of any expression composed of
constants, kets, bras and linear operators, one replaces the constants by their
complex conjugates, kets by the associated bras, bras by the associated kets,
operators by their adjoints and reverses the order of factors in the products.
However, as we have observed in the last line of (2.47), the position of constants,
s (¥|®@), etc., is of no importance.

2.4 Basis Set Representations of Vectors and Operators

Selection of the complete (orthonormal) basis of the reference ket vectors in
the vector space of the system quantum-mechanical states, either discrete |i) =
{li)}, (ilj) = 0:;, or the continuous infinity of vectors |x) = {|x)}, (x[x) =
0(x'—x), defines the specific representation in which both the vectors and operators
can be expressed. By convention the basis vectors |{) and |x) are arranged as the row
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vectors. Accordingly, their Hermitian conjugates define the respective column
vectors of the bra basis: [i)" = (i| and |x)T = (x|.

Using the closure relations of (2.41a), (2.41b) and the above orthonormality
relations for these basis vectors gives the associated expansions of any ket |\¥):

) = SN ) = SO = [0 i) = e,

W) — J|x> (x|%) dx = J WP dr = [x) (1) = W, (2.48)

The components {¥; } or {¥(x), ¥(x'), ...}, by convention arranged vertically
as the column vectors, ¥ = (i|'¥) and ™ = (x|¥), provide the representations
of the ket |} in the basis sets |i) and |x), respectively. In the mixed basis set case of
(2.41c) the expansion of ket |'¥') in |m) will contain both the discrete and continuous
components:

¥) = |m) (m|¥) = [m)¥™ = |a) (] ¥) +|y) (¥) = |a) ¥+ |y) ¥
= Yl @) + [ ) o19) o
o
(2.48b)
The associated expansions of the bra vector (®| in terms of the reference

bra vectors (i|, (x|, and (m|, respectively, directly follow from applying the
corresponding unity-projections of (2.41a)—(2.41c) to (®| (from the right):

(@] = (@) (1 = S 0 il = (@) il = @],

(@] = J<<I>|x> (x| dx = Jq&*(x) (] dx = (D|x) (x| = PDT (],

(@] = (@|m) (m| = @™ (m| = (D|a) (@] + (Dly) (y| = PV (a| + PVT(y|.
(2.49)

Therefore, the vector components @®7 = (®i), @7 = (®|x) and [{D,"}, D" ()]
= [(®|a), (D|y)], when arranged horizontally as the associated row vectors, con-
stitute the corresponding representations of (®| in these three types of the basis set.
Again, the continuous representation of the bra vector, e.g., the complex conjugate
wave function @"(x) = (®|x), can also be regarded as the continuous row vector
with components [®(x), @ (X)), .. .].

In these three types of the basis sets, the linear operator A is accordingly
represented by the square matrix and/or the continuous kernel, respectively,
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A(i, 1) = (Al) = {Ay = (|A]1)} = AV
A(x,x) = (x|Alx) = {A(x,X) = (x]A]x)} = AW
Ala,@) = (alAle)) Ale,y) = (e|Aly)

R N =AM,
Ay, ') = (ylAla’)  Aly,y) = (IAlY)

A(mm') = <m|A|m’>:
(2.50)

The adjoint operator Al is similarly represented by the corresponding Hermitian
conjugates of these “matrices,”

AN =(Adli) = (Al = A0) = [AGT) T =A@ =AT0),
(e|AT ') =([Alx)" = (x|AlY) = A(x¥) = [A(r,x)TT =AT,
(ml A |m') = (m'|Alm) = (m|Alm')! = A(m.m')! = [A(m.m')"]"

Ala,a) = (@|Ala)" Ala.y) = (|Ala)"

— . S =ATm@2s)
Ay, o) =(/Aly)" AQy.y)'=(|Aly)

Hence, the Hermitian (self-adjoint) operator A of the physical observable A,
for which AT = A is represented by the Hermitian matrix/kernel: AT® — A®
b=1i x m.

The relations between vectors of (2.31) and (2.42) are thus transformed into the
corresponding equations in terms of the basis set components. For example, (2.31)
then reads:

AP) =) > AO WO — @'Y p—jxm, e
> A Wy =W, JA(M’) YY) dy = ¥ (x),

)

D Ava Wy + JA(oc, y) Y()dy =¥, and

9('

S A P+ [ A0) PO = V), @52)
9(/

The corresponding basis set transcriptions of (2.42) similarly give:

(W) = (PA o AN = ) o WO 9 p_ym e,
S WA= J'P(x')*A(x',x)*dx' = ¥'(x)",

S0 () + [ PO AG ) = () and

SV AGLY) [ PO AC ) @ = v0) (2:53)
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It should be emphasized that the basis set representations of the state vector
are fully equivalent to the state specification by the vector itself. For example
(see Sect. 2.6), when the continuous basis set is labeled by the position of a
particle in space, x = r, or its momentum, x = p, the associated representations
P =¥() = (rf|¥) and WP = ¥(p) = (p|'P), called the wave functions in
the position (r) and momentum (p) representations, respectively, provide alterna-
tive specifications of the quantum state of the particle, which uniquely establish the
direction of the ket |'¥') in the system Hilbert space.

2.5 Eigenvalue Problem of Linear Hermitian Operators

For the linear operator to represent the physically observable quantity in quantum
mechanics it has to be self-adjoint, i.e., its hermitian conjugate (adjoint) must be
identical with the operator itself: A=A, Only such Hermitian operators can be
associated with the measurable quantities of physics. They satisfy the following
scalar product identity [see (2.43)]:

(D|A|P) = (P|A|D)" = (D|A|P)'. (2.54)

The projector Py = |¥)(¥| provides an example of the Hermitian operator:

lsfl, = Py. One also observes that the change of order of the adjoint factors in the
Hermitian conjugate of the product of two operators implies that the product of the
commuting Hermitian operators also _represents the Hermitian operator. Indeed,
when [A,B] =0, (AB)! = BfAT = BA = AB.

In quantum mechanics the eigenvalue problem of the linear Hermitian operator
A corresponding to the physical quantity A is of paramount importance in deter-
mining the outcomes of its measurement. It is defined by the following equation:

A|\Pl> = Cl,'|\Pi> or <\I“,|1&Jr = (‘I’i|ai* = <IP,|A = (‘P,-|a,», (255&)

where a; denotes ith eigenvalue (a number) and |¥;) = |@;) and (¥;| = (a;| stand
for the associated eigen-ket(bra), i.e., the eigenvector belonging to a;. Therefore,
the action of A on its eigenvector does not affect the direction of the latter, with only
its length being multiplied by the corresponding eigenvalue.

A trivial example is the multiplication by a number a. This operator has just one
eigenvalue, this number itself: any ket is an eigenket and any bra is an eigenbra
corresponding to this eigenvalue. One observes that this number has to be real for
such a number operator to be self-adjoint [see (2.55a)].

In quantum theory the Hermitian operator A, the eigenvectors of which form a
basis in the state space, is called an observable. The projections onto all such
eigenstates amounts to the identity operations of (2.41a)—(2.41c). The projector

Py is an example of the quantum-mechanical observable, which exhibits only two
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eigenvectors. Indeed, for an arbitrary ket |®) the two functions |1) = Py|®) and
|0) = (1 — Py)|®) can be shown to satisfy the eigenvalue problem of Py:

Py|l) = PY|®) = Py|®) = [1), Py|0) = (Py — PF)[®) =0/0),  (2.56)

where we have used the idempotency property of projection operators [(2.40)].
Therefore, the two state vectors {|1), |0)} are the eigenvectors of Py corresponding
to eigenvalues {1, 0}. Since every ket in the state space can be expanded in these
two eigenstates, |®) = [1) + |0), they form the basis in the state space, |1)(1| +
|0)(0| = 1, thus confirming that Py is an observable.

The eigenbra problem is similarly defined by the Hermitian conjugate of (2.55a):

(¥;|A = (¥|a;". (2.55b)

It then follows from the Hermitian character of A that all its eigenvalues are real
numbers. It suffices to multiply (2.55a) by (¥;| (from the left) and (2.55b) by |¥;)
(from the right), subtract the resulting equations and use (2.54) (for® = ¥ =Y¥,) to
obtain the identity:

0= ((1,' — a,-*) <lP,|\P,> = a; = al-*. (2.57)

The eigenvalues can be degenerate, when several independent eigenvectors
(W)} = {|¥ir), [Wia), - |Wig)} = {]ip),j = 1,2, ..., g} belong to the same
eigenvalue a;:

Aliy) = ailir), Alia) = ailia), ..., Alig) = ajliy); (2.58)

here the number g of such linearly independent (mutually orthogonal) components
determines the multiplicity of such degenerate eigenvalue. It then directly follows
from the linear character of A that any combination of such states, say |¥) =
Ciliy) + Caliz) + ... Cyliy), also represents the eigenvector of A belonging to this
eigenvalue:

AlW) = C1A]i)) + CoAlip) 4 - + C,Ali,) = ai'P). (2.59)

The Hermitian character of the linear operator also implies that eigenvectors
|¥;) = |i) and |¥;) = | j), which belong to different eigenvalues a; # a;, respec-
tively, are automatically orthogonal. Indeed, the associated eigenvalue equations,
Ali) = a;]i) and (j|A = (jla;, give by an analogous manipulation involving a
multiplication of the former by (j|, of the latter by [i), and a subtraction of the
resulting equations,

0= (@ —a) {jli) = (li) =o. (2.60)

In the degenerate case, each vector belonging to the subspace {|i;)} of eigen-
value ¢; is thus orthogonal to every vector belonging to the subspace {|j;)} of
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eigenvalue a;: (i|j;) = 0. Inside each degenerate subspace the vectors can always
be constructed as othonormal, {iz|i;) = 0, by choosing appropriate combinations
of the initial independent (normalized but nonorthogonal) state vectors.

For the given representation in the Hilbert space, say, specified by the discrete
orthonormal basis |i), the eigenvalue equation (2.55a) assumes the form of the
separate systems of algebraic equations for each eigenvalue, which can be
summarized in the joint matrix form [see (2.52)]:

AD Pl — ) (2.61)

with the operator represented by the square matrix AD = {(i|A|i")}, the diagonal
matrix a = {a,0, y = <‘I’ |A|‘I’ )d; ¢ } grouping the eigenvalues {a,} corresponding
to eigenvectors |¥) = {|¥,) = |s)} determined by the corresponding columns
WD — (i|s) of the rectangular matrix W@ = {W P} = (i|{W) = ((i|s)} grouping
the relevant expansion coefficients (projections).

Moreover, since both |¥) and [i) form bases in the Hilbert space, the overall
projection |¥)(W| = |i)(i| = 1 and hence

O Wi — (W) (Wli) = (ili) = {6} =1¥ and
wO ) = (i) (i| W) = (W|W) = (0,5} =17 2.62)

Thus, the basis set components of eigenvectors, W, define the unitary matrix:
(WD = (WD)~ Hence, the multiplication, from the right, of both sides of (2.61)
by WOT allows one to rewrite this matrix equation as the unitary (similarity)
transformation (“rotation”), which diagonalizes the Hermitian matrix AP, the
basis set representation of the Hermitian operator A, to its eigenvector representa-
tiona = (W]|A|W) = AW):

POTAODWE — (@i~ AO 0 — 5 (2.63)

This is the standard numerical procedure, which is routinely applied in the com-
puter programs for the finite basis set determination of eigenvalues of Hermitian
matrices.

When dealing with problems of the simultaneous measurements of physical
quantities in quantum mechanics, one encounters the common eigenvalue problem
of several mutually commuting observables. It can be straightforwardly
demonstrated that the commutation of operators A and B, [A, ]§] = 0, implies the
existence of their common eigenvectors, which form the basis in the space of state
vectors. In other words, for the case of the discrete spectrum of eigenvalues {a;} and
{b;} of these two operators, there exist the common eigenvectors {]ai, <>} of A
and B, which satisfy the simultaneous eigenvalue problems of these two operators:

A|a,-,b,-> = ai|a,-,bj> and ]§|ai,b/> = bj|(l,’,bj>. (264)
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Indeed, when |a;) denotes the eigenvector of A, Ala;) = aila;), and [A,E] =0,
applying B to both sides of this eigenvalue equation gives: BA|a;) = A(Bla;)) =
a;(Bla;)). Therefore, B|a;) is also the eigenvector of A belonging to the same
eigenvalue a;. Hence, for the nondegenerate eigenvalue a;, B\a,} must be collinear
with |a;), since there is only one independent eigenstate corresponding to a;,
identified by the direction of |a;). Hence, Bla;) is then proportional to |a;), thus
also satisfying the eigenvalue equation of B,

Bla)) = bjla;) = |a;) = |ai, b)). (2.65)

For the degenerate eigenvalue a;, B|a,-) gives a vector belonging to the subspace
{|a;)x} of a;, so that such eigenvalue subspace of A remains globally invariant under
the action of B. One also observes that for such a pair of commuting operators,
the two eigenvectors for different eigenvalues of one operator, say |a;) and |a;) of
A, a; # aj, give the vanishing matrix element of the other operator: (¢;[B|a;) = 0.
This directly follows from their vanishing commutator which implies

(ai|[A,Blla;) = (a; — a;){@i|Blaj) =0 = (a|Blaj) =0, (2.66)

where we have recognized the Hermitian character of A.

In fact the commutation of two operators constitutes both the necessary and
sufficient condition for the two operators to have the common eigenvectors. The
above demonstration of the sufficient criterion can be supplemented by the inverse
theorem of the necessary condition that the existence of the common eigenvalue
problem of the two operators implies that they commute. Since the common
eigenvectors {|a;, b;)} constitute the basis (complete) set one can expand any ket

[¥) = i by)(ai b|¥) = > |ai, bj)Ciy. 2.67)

ij ij
Therefore:
[A,B ZC,JAB BA ||a:, b; ZC’J — bja;) ‘a,, >:0
ij
= [A,B]=0. (2.68)
The minimum set of the mutually commuting observables {A, E, R C}, which

uniquely specify the direction of the state vector |'V'), is called the complete set of
commuting observables. Hence, there exists a unique orthonormal basis of their
common eigenvectors and the corresponding eigenvalues (a;, b, ..., ¢;) provide
the complete specification of the state under consideration: |¥) = |a;, bj, ..., ¢x).
One should realize, however, that for a given molecular system there exist several
such sets of observables. We shall encounter their examples in the next section.
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2.6 Position and Momentum Representations

Two important cases of the continuous basis sets in the vector space of quantum
states of a single (spinless) particle combine all state vectors corresponding to its
sharply specified position r = (x, y, z) or momentum p = (p,, py, p-). These states,
{|r)} and {|p)}, respectively, labeled by the respective three continuous coordinates
are the eigenvectors of the particle position and momentum operators, ¥ = (X, y,Z)

and p = (p,, Py, P.)-

) =), (o) =37 =) =), | el dr =1

plp) =p'IP"),  (plp) = o(p" = p) = uy (p), J p)pldp=1. (269
The Dirac deltas {6(¥' — r)} and {5(p’ — p)} in these equations define the continu-

ous basis functions {u,(r)} and {uy(p)} for expanding the particle wave functions
Y(#) = (FI'¥) and ¥(p') = (p'I'P) in these two bases:

YY) = J(r'|r> (r|¥) dr = Ju,«*(r) Y(r) dr,
Vo) = [00) ) dp = [ (0) ¥(p) dp. 2.70)

Indeed, these two equations express the basic integral property of Dirac’s delta
function [(2.21)]:

YY) = Jé(r —r)¥(r)dr and Y(p') = Jé(p —p)¥(p)dp.

They also identify the function “coordinates” as the corresponding projections in
the function space spanned by the bases {u.(r)} and {u,(p)}, respectively.

The orthogonality relation between quantum states |¥) and |®) can thus be
expressed as the isomorphic relations between the corresponding wave functions:

(P|®) = J(‘P|r> (r|®@) dr = J‘I’*(r) O(r)dr
- J<‘P|p>@|c1>> dp = jw*@@(p) dp = 0. @71)

It also follows from (2.69) that the basis functions u,(r) and u, (p) are themselves
wave functions of quantum states with the sharply defined position r = ¥ and
momentum p = p’, respectively. There is one-to-one correspondence between
wave functions and the associated state vectors they represent, e.g.,

up(r) & |F), upy(p) & Ip), Y(r) e |¥), ¥p) e |¥) (2.72)
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Of interest also are the relations between the wave functions in the momentum
and position representations. They are summarized by the Fourier transformations
of (2.26), which in three dimensions read in terms of the wave vector k = p/h,

Y(k)= (2n)73/zjexp(7ik -r)¥(r)dr or ¥(p)= (272?71)73/2 Jexp(f%p -r)¥(r)dr,

Y(r)= (271)73/2 Jexp(ik -r)¥(k)dk= (2nh)73/2 Jexp(%p -r)¥(p) dp.
(2.73)

Substituting one transform into the other then generates the following analytical
representations of the Dirac deltas [see (2.28)]:

o —r) = (2nn)"> Jexp [% p(r - r)] dp,
o(p —p) = @2mn)? Jexp [}% r—-p) - r} dr. (2.74)

Hence, by transcribing (2.73) in terms of corresponding state vectors,

W@rzwmo:J@|wmwwh:j@vwwwm,
wwzvmw=ﬁwmwmww=jwwwwmn 2.75)

one identifies the following representation of basis vectors of one representation in
terms of vectors comprised in the other basis set:

w(r) = (rip) = (27h) P exp(p-r) and
ur(p) = (pIr) = p(r)* = (22) 2 exp(—%p 7). (2.76)

Let us now examine the associated representations of the position and momen-
tum operators in these two continuous basis sets. We first observe that these
operators are the continuous diagonal when represented in the basis set of their
own eigenvectors [see (2.69)]:

(FE) =r () = o =), ("Iplp) = P (P"IP') = PO’ — p"). 2.77)
Therefore, the action of the position operator on the wave function in the

position representation amounts to a straightforward multiplication by the position
vector:
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J(r”|f'|r’> (F|¥)dr = Jr’é(r’ —r"Y()dr =r"Y"). (2.78)

The action of the momentum operator on the wave function in the momentum
representation similarly represents the multiplication by the momentum vector:

J(p//|f)‘pl> <p/|]{/> dp/ — Jp/é(p/ _p//)lP(p/)dp/ :pl/ \P(p,/). (279)

Next, let us establish the form of the momentum operator in the position
representation. It can be recognized by examining the position representation of
the ket p|'¥),

A . _ i
wlo1?) = [ olbw ap = a2 [exp (oo o v ) ap. 250
Hence, by comparing the previous equation with the last (2.73) gives:

(rlp|¥) = —inV,(r|¥) = p(r)¥(r), (2.81)
where the differential vector operator V, =id/0x +jd/0y + kd/0z = 0/0r
stands for the position gradient. Therefore, the action of the momentum operator
in the position representation amounts to performing the differential operation
p(r) = —ikV, on the wave function W(r). Hence, the matrix element (®|p|¥) in

this representation is determined by the associated integral in terms of the position
wave functions:

(®|p|¥Y) = J<(ID|r) (r|p|¥) dr = —in Jd)*(r) V¥ (r)dr. (2.82)

One could alternatively calculate the kernel p(r,r’) = (r|p|r’) (the continuous
matrix element) of the momentum operator, in terms of which the operation of
(2.81) reads:

(rlp|¥) = J(r\ﬁ|r’><r’\‘1’> dr = Jf)(r, r)Y(r)dr. (2.83)

By twice inserting the closure relation into this matrix element, and using the
analytical expression for the Dirac delta (2.74) one then finds:

rlplr) = jj (rlp) @ lble') (') dp dpf
= [ )90 e apap

= (2nh) "> Jexp {%p -(F - r)}pdp = ihV, 0(r —r). (2.84)
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Substituting this result to (2.83), after integration by parts [see (2.30)], gives the
same result as in (2.82):

Jf)(r, YY) dr =in [V,Jé(r' —r)¥Y(r)ar.
= —ih J o(r —r)V,¥(r)dr = —inv,¥(r). (2.85)

One similarly derives the remaining kernel providing the momentum represen-
tation of the position operator,

£(p.0) = plFl) = [[ Gl 16y 07 drd = [[ a0 o0 = 1)y (0 drar

— (27I71)_3 Jexp |:% »—-p)- r]rdr = —ihVyd(p' — p),
(2.86)

where the momentum gradient V,, = id/9p, +jo/0py + kd/dp. = 0/0p. It gives
rise to the following momentum representation of the ket £l'V'):

(plF ) = J@|f|p’> W) dpl = jf@, )P dpf

= —ih J Vo' —p)¥Y(P')dp' =in Jé(p' —p)Vpy¥@')dr
— iV, ¥(p) = F(p) ¥ (p). (2.87)

Therefore, the action of the position operator in the momentum space coincides
with the differential operation r(p) = ihV, performed on the wave function ¥ (p).

The same result directly follows from inserting the closure identity into the
initial scalar product of the preceding equation:

(p|F|W) = J (p|r) (F|F|W) dr = (27h) >/ Jexp(—%p r)r¥(r)dr.  (2.88)

Hence, by comparing this expression with the second (2.73) again gives:

(p|F|W) = ihV, (p|¥) = F(p)¥ (p). (2.89)

2.7 Energy Representation and Unitary Transformations

The energy representation of quantum states and operators is defined by the basis
set of the (orthonormal) eigenvectors {|E.)} of the system energy operator, the
Hamiltonian E = H,
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HIE,) = E,|E,). (2.90)

They represent the stationary states, with the sharply specified energy. Here, for
the sake of simplicity we have assumed the discrete spectrum of the allowed energy
levels {E,}.

In the position representation & = {|&), |&), ...} = {|&)}, (&'|&) = o(& — &),
where & groups the system coordinates, the eigenkets { |E,)} of the energy basis set
are represented by the associated wave functions {¢g (&) = (¢|E,)} = (§|E,) of
the continuous column vector, while the corresponding eigenbras define the
associated continuous row vector: {¢y (&) = (E|E,)" = (Eq|&)} = (E,|€). In this
position basis the Hamiltonian H is similarly represented by the continuous (diago-
nal) matrix: H = {H(¢, &) = (¢[H|&) = H(E)(E — &)} In the position represen-
tation the energy eigenvalue problem of (2.90) reads:

J<é|ﬂ|é’><é’|En> d4& = Ey(EIE) @.90)

or

Jﬁ(é, g, (&) dE = Jﬂ(i’)é(é’ — &) (&) dE = H(E) g (&) = Enpg, (€).
(2.92)

The orthonormality of the energy eigenvectors (discrete spectrum), (E,|E,) =
Ok, £, can be also expressed in terms of the associated wave functions:

(En|E,) = J<Em|é><¢\En> d = jsoz,y,@) or (OdE=dpp.  (293)

Any state vector |¥) is thus equivalently represented either by the components
{We, = (EJ|Y) = [@f (&)W(&)dé} = w'E) in the energy representation or by the
wave function (&) = (V) = P in the position representation. They are
related via the following transformations:

V(&) = (E¥) =D (ClEn)(Enl¥) = Zsog ) P, or W& =T(¢£ E)yw®),

m

Wy, = (E,|¥) = j<En|5><a‘P> d = J@Zﬂ(é)‘l’(é)dé or WE) = T(E,£)w®
(2.94)

Thus, the energy eigenfunctions {¢; ()}, with the continuous (discrete) position
(energy) labels, transform the energy representation of the state vector to its
associated position representation. Accordingly, the complex conjugate functions
{wg (&)} are seen to define the reverse transformation of the state vector, from its

position representation to the energy representation.
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Therefore, should one regard the coefficients of these mutually reverse trans-
formations as elements of the corresponding transformation matrices identified by
the discrete {E,} and continuous {¢} indices,

{6, ()} = T(£,E) = (€|E),

. (2.95)
{05, (6} =T(E,£) = (E|§) =T(£,E)',
their mutual reciprocity relations imply:
T(¢.E)T(E.£§) = (£ |E) (E|¢) = (£'|§) = (£ - £)
= T(E.§) =TEE) =TEE) ™"
T(E,&)T(§.E') = (E|§) (§|E') = (E|E") = dpp =1
= T(¢,E) =T(E, &) =T(E, ¢ (2.96)

One thus concludes that each of these mutually inverse transformation matrices is
the Hermitian conjugate of the other thus defining the wunitary transformations
(“rotations”) of one orthonormal basis set into another.

To summarize, the system energy, with discrete (or continuous/mixed) set of
eigenvalues, constitutes the independent variable of the energy representation. The
square of the modulus of the component Vg, = (E,|'¥) measures the (conditional)
probability W(E,|V') of observing the system in state |'V') at the specified energy:

W(En|ql) - |<En‘\{l>|2 = <lP|En> <En|lP>a
Y WENE) = D (PIE) (Ed|¥) = (¥1¥) = 1. (297)

n n

As we have already observed in (2.75) of the preceding section, the wave
functions (2.76) define another pair of such mutually reverse transformations:

ur(p) = (plr) = t(p,r) and u,(r) = (rlp) = t(r,p),
Jt(p, r)t(r,p)dr =6(p —p'), Jt(r,p) t(p,r')dp = 6(r — r'). (2.98)

They also define the unitary kernels,
tp.r) = t(r.p)' =t(r.p)”" and t(r.p) =t(p,r) = t(p,r)"",  (2.99)
of the integral transformations between the position and momentum representations:
Jt(z», r)W(r)dr = T(p,r) W(r) = W(p) or T(p,r)E(r) =¥(p).

Jt<r,p> W(p)dp =T(r.p) W(p) = W(r) or T(r.p)¥(p)=¥(r). (2100
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Above, T(p, r) represents the integral operator T (p, r) defined by the kernel t(p, r),
which replaces the arguments of the wave function: r — p, etc.
It follows from the preceding equations that these transformations are unitary:

T(r.p) =T, ) =Tp.r) or T (p.r) =T (p.r) =T(r,p), (2.101)

where the inverse operator T (p,r) replaces the variables in the wave function
it acts upon in the inverse order: p — r. Therefore, the reciprocity relations of
(2.98) in fact express the unitary character of the above (integral) transformation
operators,

Trp)T (rp) = Tep)T@p,r) =1 and
Tp.)T (pr) = T Ter.p) = 1, (2.102)

because the double exchange of variables p — r — p amounts to identity operation
on the wave function W (p) and the double exchange r — p—r operation performed
of W(r) leaves it unchanged.

Transitions from one set of independent variables to another are called the
canonical transformations. They have been shown to correspond to unitary
operators, which also transform the matrix representations of the quantum-mechan-
ical operators to a new set of variables. Indeed, by unitary transforming both sides
of the momentum representation of (2.31),

|20 vw) v = v,
and using the identity (2.102) one obtains

[Trp)Alp, )T (F pHITC p)W ()] = Alr, ¥ )¥(r)
Trp)¥'(p) = ¥'(r). (2.103)

Hence, the canonically transformed resultant vector Y'(p) in the new variables
becomes: T(r,p) ¥ (p) = W' (r). It results from the transformed vector T(r'.p’)
Y(p') = ¥(¥) by the action of the transformed operator

Torp) A, p)T (F' p) =Tp)Ap,p) T (0 r) =A(r,r) (2.104)

with the preceding equation thus expressing a general transformation law for
changing representations of linear operators.

Another important type of the unitary operators is represented by the phase
transformation S(x) = exp[i&(x)]. It involves the linear Hermitian operator &(x),
the function of the same list of variables as those of the wave function itself.
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This transformation of ¥(x) modifies the wave function without affecting its set of
the independent state variables.

All physical predictions of quantum mechanics can be shown to remain unaf-
fected by the unitary transformations of states and operators, since they are related
to specific invariants of such operations. These invariant properties include the
linear and Hermitian character of quantum-mechanical observables, all algebraic
relations between them, e.g., the commutation rules, spectrum of eigenvalues and
the matrix elements of operators.

The diversity of unitary transformations is not limited to those changing a
description of the system quantum-mechanical states at the given time (quantum
kinematics): W(x) = W(x, t = 0). In the next chapter, we shall examine other
examples of unitary transformations of wave functions and operators, which gener-
ate different pictures of the quantum-mechanical dynamics, e.g., the evolution of
quantum states with time in the Schrodinger picture:

Y(x, 1) = 00O¥E), U000 =1 (2.105)

2.8 Functional Derivatives

The functional of the state vector argument or of its continuous basis
representation — the wave function — gives the scalar. The representative example
of such a mathematical entity is the definite integral, e.g., the scalar product of two
wave functions. It may additionally involve various derivatives of the function
argument. For simplicity, let us assume the functional F of a single function f{x) of
the continuous variable x,

Flf] = J.B[x,f(x),f/(x), .. Jdx. (2.106)

This functional attributes to the argument function f the scalar F = FJ[f]. It is
defined by the functional density L[x,f(x),f’(x),...], which in a general case
depends on the current value of x, the argument function itself, f(x), and its
derivatives: f'(x) = df (x) /dx, etc.

An important problem, which we shall often encounter in this book, is to find the
functional variation 6F = F[f + 0f]—F[f] due to a small modification of the argu-
ment function, df = ¢h, where ¢ is a small parameter and / stands for the displace-
ment function (perturbation). The first differential of the functional is the
component of JF that depends on Jf linearly:

Wp_ [9F
5 F—J 0 SF (x) dx, (2.107)
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with the (local) coefficient before Jf(x) in the integrand defining the first functional
derivative of F with respect to f at point x. It is seen to transform the local
displacements of the argument function into the first differential of the functional.
This expression can be viewed as the continuous generalization of the familiar
differential of the function of several variables: d'"f(x;, x5, ...) = Y (Of10x;) dx;.

The global shift §f in the functional argument can be viewed as composed
of local manipulations on f which are conveniently expressed in terms of the
Dirac delta function: §f(x) = [ f (x'—x) dx’, where of(x’ — x) = If(x)o(' — x) =
eh(xX)o(x' — x) = eh(xX’ — x)}. Here, of(x’ — x) stands for the localized displace-
ment of the argument function, centered around x, in terms of which the first
functional derivative, itself the functional of f, reads:

OF _ . FIF) +eh(x )], — FIF)],
5f(x) e—0 e

where subscript x’ in the functional symbol symbolizes integration over this argu-
ment [see (2.106)].

One similarly introduces higher functional derivatives, which define the con-
secutive terms in the functional Taylor—Volterra expansion (Volterra 1959; Gelfand
and Fomin 1963):

= glfs o], (2.108)

2
o#i = [ e+ [0 s
= 0WF[f] + 0@F[f] + ... (2.109)

Of () dxdx + ...

For example, in the localized perspective on modifying the argument function of
the functional, one interprets its second functional derivative as the limiting ratio:

52F _ 5g[f; X] — lim [f( ///) +8h( " /) L(w g[f ]
S of () of (¥) = lim - . (110

In (2.109) it determines the continuous transformation of the two-point
displacements of the argument function, of (X" — x)df (x"" — x’), centered around x
and x’, respectively, into the second differential 3 ®F[f]. The latter again parallels
the familiar expression for the second differential of a function of several variables:
dPfxy, xa, .. ) = BYY; (0°f10x,0x)) dx; dx;.

The rules of the functional differentiation thus represent the local, function
generalization of those characterizing the differentiation of functions. The func-
tional derivatives of the sum and product of two functionals, respectively, read:

0 oF oG
—(5]"( ) {aF[f] + bGI[f]} = a_f(x) + b—éf(x) )
oF oG

{FIr1GIf1} = (2.111)

() ‘o Ty
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The chain rule transformation of funct_ional derivatives also holds. Consider
the composite functional F[f] = F[f[g]] = F|g]. Substituting the first differential of
fx) =flg xl,

oWrlg: :J og(x') ax’ 2.112
[g; «] 52(0) g(x)dx, ( )
into & VF[f] of (2.108) gives:

5V Flg] = J% Sa(w) dy’ :J 5}‘?& ) U Z ((;ﬂ)) 5a(¥) dx’} d. @2.113)

Hence, the functional derivative of the composite functional follows from the chain
rule

oF J SF  Of (x)

dx. 2.114
5e() ~ ) oF ) ss) ™ @119

One similarly derives the chain rules for implicit functionals. When functional
F[f, g] is held constant, the variations of the two argument functions are not
independent, since the relation F[f, g] = const. implies the associated functional
relation between them, e.g., g¢ = g[f]r. The vanishing first differential,

(%)g[éﬂx)}p " (%f))f [6g<x>1F] dr=0, or

[ (o) s = [ (555 i @11

is determined by the partial functional derivatives, a natural local extension of the
ordinary partial derivatives of a function of several variables, e.g.,

SWFIf, g = J

Finally, differentiating both sides of Eq. (2.115) with respect to one of the argument
functions for constant F' gives the following implicit chain rules:

(o), =1 ) (5
<%)f -] (fﬁ)) (g(())) & @17
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These relations parallel familiar manipulations of derivatives in the classical
thermodynamics. ~
For the fixed value of the composite functional F[f[u], glul]l = Flu] = const.

one similarly finds:
(55)- () (5
o (

) -
”:aKngiigﬂﬁ“ e

<3g(X’)>ﬁ

Let us further assume that functions f(x) and g(x) are unique functionals of each
other, fix) = f[g; x] and g(x') = g[f; x']. Substitution of (2.112) into

sWelf; ¥ = J(S;c(g; ;) Sf (x) dx, (2.119)

then gives:

(1) - = 5g(x”) dx = 5g(x”) 5f(x) Ny dx
0 glf; x| Jéf(x) of (x)d ﬂ 570 5g(x,)5g( Ydx'dx. (2.120)

This equation identifies the Dirac delta function as the functional derivative of the
function at one point with respect to its value at another point, as also implied by
(2.107):

() og)” ~ Sg()

Jég(x") ) o - 87) _ S — ), (2.121)

where we have applied the functional chain rule. The preceding equation also
defines the mutually inverse functional derivatives:

dg() (o)
o (x) (5g(x’)) : (2.122)

Let us assume the functional (2.106) in the typical form including the depen-
dence of its density on the argument function itself and its first n derivatives:
FO0 =d fldd ,i=1,2,...,n

L(x) = L(x,f(x), fD @), D), ..., f(x)). (2.123)

The functional derivative of F[f] is then given by the following general
expression:
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OF _0e(r) d (a_e(x)) & (8£(x) ) I a (aﬁ(x) )

of(x)  of(x) dx\ofD(x)) = d \9f@(x) dx" \§f " (x)
(2.124)

The first term in the r.h.s. of the preceding equation defines the so-called variational
derivative. It determines the functional derivative of the local functionals, the
densities of which depend solely upon the argument function itself.

This development can be straightforwardly generalized to cover functionals of
functions in three dimensions. Consider, e.g., the functional of f{(r) depending on
the position vector in the physical space: r = (x, y, z). Equation (2.124) can be then
extended to cover the f = f(r) case by replacing the operator d/dx by its three-
dimensional analog — the gradient V = 9/0r. For example, for £(r,f(r), |[Vf(r)|)
the functional derivative of F[f] is given by the expression:

OF _0L(r) ( 0L(r)
of(r)  Of(r) (8|Vf(r)|>' (2.125)

Similarly, for
Flf] = FIf] + Jl(Af (r)dr= JI:(r, ), IVF()], Af(r)) dr, A = V2,

OF _ OF OL(r)
of(r)  of(r) A <8Af(r)> ' (2.126)
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Chapter 3
Basic Concepts and Axioms

Abstract The postulates of quantum mechanics are formulated using the
mathematical tools of the preceding chapter. First, the axioms related to the
quantum kinematics are summarized, dealing with a variety and physical meaning
of quantum states at the specified time. They include alternative definitions and
interpretations of the wave functions of microobjects as amplitudes of the particle
probability distributions in the configuration or momentum spaces. As an illustra-
tive example the electron densities are then discussed. The superposition principle
is formulated, and the symmetry implications of indistinguishability of identical
particles in quantum mechanics are examined. The links between the quantum
states and outcomes of the physical measurements are then surveyed and the
physical observables are attributed to quantum mechanical operators, linear and
Hermitian, and their specific forms in the position and momentum representations
are introduced. The eigenvalues of the quantum mechanical operator are
postulated to determine a variety of all possible results of a single experiment
measuring the physical property the operator represents, while the operator
expectation value represents the average value of this quantity in a very large
number of repeated measurements performed on the system in the same quantum
state. The eigenstates of the quantum mechanical operator are shown to corre-
spond to the sharply specified value of the physical property under consideration,
while other quantum states exhibit distributions of its allowed eigenvalues. The
statistical mixtures of quantum states are defined in terms of the density operator and
the ensemble averages of physical observables in such mixed states are examined.
The simultaneous sharp measurement of several physical observables is linked to the
mutual commutation of their operators and the quantum mechanical formulation of
the general Principle of Indeterminacy is given. Properties of the electron angular
momentum and spin operators are examined.

In the dynamical development, the pictures of time evolution in quantum mecha-
nics are introduced through the alternative time-dependent unitary transformations of
the state vectors/operators. The Schrodinger equation is explored in some detail, with
the emphasis placed upon the stationary states, time dependence of expectation
values, conservation laws, the probability current, and continuity equation. The
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correspondence between the quantum and classical dynamics is established through
the Ehrenfest principle. Finally, the rudiments of the Heisenberg and interaction
pictures of quantum dynamics are briefly summarized.

3.1 N-Electron Wave Functions and Their Probabilistic
Interpretation

In the canonical formulation of classical mechanics, the system dynamics is
formulated in terms of the Hamilton function E = H(Q, P) expressing the system
energy E in terms of its generalized coordinates O = {Q,} and their conjugated
momenta P = {P,}, a =1, 2, ..., f, with f denoting the system number of
dynamical degrees of freedom. Together these conjugate dynamical variables
uniquely specify the system mechanical state. Indeed, the knowledge of Q(f) and
P(¢) at the specified time ¢ = t; allows one to determine the exact time evolution of
these state parameters, via the Hamilton equations of motion:

do, OH . dP,  OH .
= - = Po(: = -7, :1727...,.. 3.1
di 0P, di 00,” f G-1)

0.

Since these are the first-order differential equations, their solutions {Q(¢), P(¢)} are
uniquely specified when the values of these classical state variables are fixed at
t = to. Thus, knowing the state {Q(#(), P(ty)} of the classical system at this time,
one can in principle predict with certainty the system mechanical state at t # t, i.e.,
precisely determine the outcome of any measurement at an earlier or later stage of
the system time evolution.

As we have argued in Chap. 1, this classical specification of the mechanical state
is inapplicable in the quantum theory, due to the simultaneous indeterminacy of
coordinates and momenta of microobjects (the Heisenberg principle). Indeed, since
the state variables must be precisely specified, either the position coordinates or the
components of the canonically conjugated momenta of the system particles should
be used to uniquely characterize its quantum state. Therefore, at the given time ¢,
which in the simplest (nonrelativistic) formulation of the quantum theory plays the
role of a parameter, the quantum state corresponding to the state vector |\P'(¢)) is
represented by the wave functions in either the position or momentum
representations,

V(i) = (QI¥() or (Pi) = (PI¥(); (3.20)

here, the representation basis sets {|@)} and {|P)} correspond to the position and
momentum eigenstates, respectively, in which these molecular variables are known
precisely. For quantum particles these classical state “coordinates” should be also
supplemented with all nonclassical, internal (spin) degrees of freedom for each
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particle, 3 = {X}. Therefore, the full specification of the mechanical state of the
given quantum system, in either the position-spin or momentum-spin represen-
tations, is embodied in the corresponding wave functions:

(Q,3: 1) = (Q,3¥(1)) or W(P,3:1) = (P,3¥(1)). (3.2b)

Since the theoretical description of the electronic structure of molecules is the
main objective of this book, in what follows we shall focus on a general (atomic or
molecular) N-electron system, with the list of the (coordinate/momenta)-spin
variables in the Cartesian coordinates:

|Q72> = ’qN> = |{qk}> = ’&N>7 qr = (rk’ O-k)a

3.3)
|P,3) = ’uN> = {u}) = ‘fl’N>, w. = (py, or), k=1,2,...,N;

here ry = (X¢, Yk, Zk), Px = (Pxi» Pyi» D= ) and oy, respectively, denote the continuous
position, momentum vectors of kth electron and its discrete spin orientation variable
or € (+%, =) (see Fig. 1.2).

Therefore, the vector space of the N-electron system is spanned by all basis
vectors in either the position {|€")} or momentum {|#")} representations. In what
follows we shall call this vector space the molecular Hilbert space. The specific
state of such an N-electron system in time ¢ will be denoted by the ket |¥"(7)). Since
each basis vector is specified by the three position/momentum coordinates and one
spin variable for each electron, the overall dimensionality of either the position-spin
or momentum-spin spaces is 4 N. The basis vectors [€") and |#") are then identified
by corresponding points in these configurational spaces. It should be observed that
in the classical mechanics the system state was uniquely specified at the given time
by selecting the point in the 6 N-dimensional position-momentum phase space of N
particles.

Moreover, the corresponding position-spin or momentum-spin data for the
atomic nuclei are also required for the complete specification of the molecular
state. However, as we shall argue in Part II of this book, due to a huge difference in
masses between the (light) electrons and (heavy) nuclei, the dynamics of the former
can be to a good approximation described by examining their fast movements in the
effective potential generated by the “frozen” nuclear framework, with the fixed
positions of nuclei playing the role of parameters in the electronic structure theory.
In this adiabatic approximation of Born and Oppenheimer the nuclei, sources
of the external potential in which electrons move, thus determine the assumed
molecular geometry.

After these short preliminaries, we are now in a position to formulate the important
postulate of quantum mechanics, due to Born, which provides the physical interpre-
tation of the wave functions of (3.2a) and (3.2b):

Postulate I: The (normalized) quantum mechanical state og the molecular system
containing N-electrons in time ¢, (¥" ()| ¥V (¢)) = H‘I’N(I)H =1, where H‘PN(Z)H
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stands for the norm (“length”) of the state vector, is uniquely specified by the
orientation of the state-vector |¥"(#)) in the molecular Hilbert space or equivalently
by its equivalent representations (wave functions) in the position or momentum
basis sets, respectively,

(@) = (@ ¥V (1)) or W(@;r) = (V¥ (r)). (3.2c)

These in general complex-valued functions determine the probability amplitudes of
simultaneously observing at this time the specified positions/momenta and spin
orientations of all N electrons, with the corresponding probability densities being
determined by the squares of the wave function moduli:

p(@;1) = (@ |¥V(0))[* = [P(@;0)]

= P[PV (1)),
Jp((zN; 1) d@ = J<\PN(z)|&N><&N\TN(z)>d&N =YV |¥¥(0) =1,

(34

Here, the generalized “integration” symbol jd&N actually denotes the definite
integrations over the position coordinates and summations over the spin variables
of all electrons:

Jd@NEqul...quEJdrl...drNZ...Z, (3.52)
[ ON

The related operation in the momentum-spin space similarly reads:

Jd:’l’NEJdul...duN Ejdpl...deZ...Z. (3.5b)
[} ON

In fact, the normalization conditions of this postulate, for the position-spin and
momentum-spin probability densities p(€";) and n(P";¢), respectively, express
the unit probability of the sure event that at the specified time ¢ all electrons are
located somewhere in the physical or momentum spaces, and assume one of its
allowed spin orientations. We have also indicated in (3.4) that the probability
densities P[@"|W"(¢)] and P[P"|¥N(¢)] of the particle positions and momenta,
respectively, are conditional upon the specified quantum state. Indeed, these densities
represent the conditional probabilities of observing the basis set events corresponding
to the wave function arguments @' or " (variables), given the molecular state
|¥N(t)) (the parameter): p(€"; 1) = P[E@" |¥N (¢)] and n(PV;1) = P[P |¥N(¢)]. The
normalization relations thus involve the integrations/summations of these conditional
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probabilities over the variable states {|€")} and {|2")}, respectively, for the fixed
parameter state | P (#)). The integrands of these sum rules thus provide the associated
probabilities of the particles being simultaneously found in their specified, infinitesi-
mal ranges of coordinates d@" = {dry, o;} ormomenta d?" = {dp,,d;},i.e., of the
system particles occupying the corresponding volumes of the position or momentum
spaces for their specified spin orientations.

This physical interpretation of the quantum mechanical wave functions has far
reaching implications for their admissible analytical form. First, the normalization
condition excludes the functions which become infinite over a finite region of space,
since then Born’s interpretation would be untenable. Clearly, the Dirac-delta wave
functions of (2.69), which correspond to precise localizations or momenta of
electrons, are not excluded since their infinite values extend only over the infinitesi-
mal volumes of space, thus giving rise to the finite normalization integral. However,
for the finite, constant probability densities, e.g., p((QN ;1) = const. > 0, this integral
may become infinite, when the movements of electrons are not confined to finite
regions of space. In such cases, this density provides only a relative measure of
probability.

Another implication of the Born probability interpretation is that the wave
functions must be single valued. Indeed, ¥ (&";7)[or ¥(#";)] must generate the
unique representation of the quantum state |\"(r)). Additional constraints on their
admissible forms are imposed by the form of the quantum mechanical operators.
As we have established in Sect. 2.6, the position operator in the momentum
representation and the momentum operator in the position representation corre-
spond to differential operators (gradients), e.g., p(r) = —iiV. For these operations
to be mathematically meaningful, the wave functions on which these observables
act must be continuous. Sometimes, the additional condition of the continuous first
derivative is also invoked, since the action of the kinetic energy operator of a single
particle in the position representation, T(r) = p*(r)/2m = —(h*/2m)A, involves
a double differentiation of the wave function embodied in the Laplacian operator
A= V2 However, this condition is too severe, since the expectation value of the
kinetic energy, when transformed by parts,

T = (¥|T|¥) = J‘P*(r)T(r)‘I’(r)dr = (B*/2m) J |V¥(r)[dr, (3.6

remains well defined even for the discontinuous derivatives of the wave function.
For example, such discontinuity is encountered for some excessively ill-behaved
potentials V(r) of forces acting on the particle, e.g., in the particle-in-the-box
problem, when it jumps from zero to infinity in an infinitesimal distance.

To summarize, in quantum mechanics only such well-behaved wave functions
have the physical meaning of probability amplitudes implied by Postulate I. The Born
interpretation thus imposes a restriction on the “acceptable” solutions of the differ-
ential equations of quantum mechanics, e.g., the crucial Schrodinger equations for
determining the system stationary states and their quantum dynamics. Only such
well-behaved wave functions may represent the dynamical states of physical systems.
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The constraints of the wave function finiteness, single valuedness, and continuity,
supplemented by the boundary conditions appropriate for the physical problem in
question, give rise to the quantization of physical properties, e.g., the system energy
(see Sect. 2.7). Indeed, only for some energy levels, the eigenvalues {E,} of the
system Hamiltonian, it is possible to construct the well-behaved eigenfunction. For
example, in a system with boundaries, when the movement of particles is confined to
some finite region of space, the energy is quantized and the less confining is the
potential, the less separation is predicted between the neighboring energy levels.

As a result of the Heisenberg uncertainty principle the physically admissible
wave functions may penetrate, i.e., exhibit finite values, in the classically forbidden
regions, where the total energy is below the potential energy level, E < V, thus
generating the nonzero probability of finding a particle in such locations. For
example, the motion of the quantum mechanical harmonic oscillator is not confined
to the classical region between the turning points of the parabolic Hooke potential,
and the quantum particles may tunnel through the finite potential barriers. In these
classically-forbidden positions the microparticle formally exhibits the negative
kinetic energy. This does not imply, however, that the average kinetic energy,
represented by the expectation value of (3.6), becomes negative in such states.
Indeed, the average value over both the (dominating) region of space, where the
kinetic energy is positive, and the classically inaccessible (marginal) regions, where
it is negative, is always positive. It should be observed, however, that it would be
meaningless to speak of the precise kinetic energy of the localized particle anyway,
since its momentum is completely unknown!

The electron density p(r) of locating any of the system N electrons at point r can
be obtained from the N-electron probability density p(€";7) of Eq. (3.4) by the
appropriate integration/summation over the remaining arguments of the wave
function, i.e., over all admissible events satisfying the condition r, = r, k = 1, 2,
..., N, enforced by the relevant Dirac deltas in the integrand,

N

plrit) = > [ - (@) ae”

=1 3.7

J‘P*(&N; N pr)P(E ;1) d@” = NJé(rl —r)p(@ ;1) d@".

In the preceding equation we have introduced the electron density operator p(r) =
> 40(ry — r) and recognized that due to the indistinguishability of electrons, i.e.,
impossibility to recognize which electron is which, all contributions in the sum
of the first line of the equation must be identical. Indeed, we cannot follow the
precise trajectories of the separate electrons, due to the incompatibility of its
position and momentum, so that their specific identities (hypothetical labels)
remain unknown. Clearly, the integral of the electron density over all locations in
space must satisfy the sum rule

Jp(r; t)dr :JEN: Ué(rk—r)dr} p(@; 1) d@ = ij(&’v; )de" =N. (3.8)

k=1
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One similarly obtains the corresponding spin densities of electrons, of detecting
at the specified location r electrons with the specified spin ¢ = (—%, +%), the
condition enforced by the corresponding Dirac and Kronecker deltas, which
together identify the point ¢ = (r, ) in the four-dimensional position-spin space:

N
p(g;t) = p°(r;t) = Z Jé(rk r) 85, 0p(€"; 1) dE@Y

EJ P (E; 1) d@”
=N, Ja( r)p(@; 1) d@", (3-9)

Z ); J (g;t)dr =N,
Jp<q; ndg=3" Jp<q; dr=N,

where N, stands for the number of electrons exhibiting the spin orientation .

In a similar manner, one determines the many-electron densities or their respec-
tive spin components and the associated operators in the position representation.
For example, the spinless two-electron density, p,(r, ¥'; ), of observing one electron
(of all N electrons) at r and another electron (of all the remaining N—1 electrons) at
¥ is given by the following expression:

p,(r,r;t) = Z Zjé(rk—r)é(rl —)p(@ ;1) d@’

— * (0N . 5. (r r/ N . N

= | v @ purree) de 10
N(N —1) Jé(rl—r)é(rz —)p(@;1) d@”,

ijz(r, Fit)ydrdr' =N(N —1).

Again, this rwo-electron distribution can be decomposed into the spin-resolved
components:

0:(q,q;6)=p" (r,r;1) ZZJ ri—r)3(r1—1) 85, 605, (€" ;1) d@Y
1k

- jT*(cﬂN;r) ba(a.4) W (@";1) e,

,(r,r;1) ZZp” r,r';t),

N(N —1), o'=0
drdr =< 7 07
ijz(%‘b) rdr { NN, a,7ég ,

JJ ,(q,4';1)dqdq = ZZJJ (r,;t)drdr =N(N—1). (3.11)
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Of interest also is the pair density in which the permuted rwo-electron localiza-
tion events (ry = r)A(r; = ¥) and (r, = ¥)A(r; = r) are regarded as physically
identical and thus counted only once:

F(r,r/;t):J‘P*((ﬁN O E(r, ¥ )P (@; 1) e,

N—1

N
Zé re —r)d(r — 1), (3.12)

JJF(r,r’;t)dr dr' =N(N — 1)/2 = (Z)

This distribution of the physically indistinguishable electronic pairs satisfies the
pair normalization of the preceding equation (Lowdin 1955a, b), which differs from
that adopted for the two-electron distribution of (3.10) (McWeeny 1989). This
change in the normalization simplifies the expression for the average electron
repulsion energy,

VeelN:1) = Jw*(&N; Ve (V) (€ 1de, (3.13)
the expectation value of the associated (multiplicative) operator in position repre-

sentation, \A/€79(N ), which measures the interelectron Coulomb interaction for the
sharply specified locations of all N electrons:

Ve N) =D ) " —r;l Z Z (k,1). (3.14)

In terms of the above two-electron densities, the expectation value of the electron
repulsion energy of (3.13) thus reads:

Vee(N;t) = i JJ'r — r’|_1p2(r, rit)dr dr

(3.15)
= JJ Ir— r’|71F(r, rit)dr dr.
Clearly, by using the corresponding Kronecker deltas of the spin variables of
electrons [see (3.11)], one could similarly define the spin components of the pair
density as well.
The extension of these concepts into the corresponding momentum-spin
densities is straightforward. For example, the spinless one- and two-electron
densities in the momentum space of N electrons become:

N

wpin) = Y- [0l -p) n(0%i0) 9 = | W) 7o) V(9" 0) a9

k=1

—Njam—m 7(#";1)dP" = NP(p;1)
Jn(p;t)dpzN; (3.16)
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mopi0 = Y- 3 |00l — p)n(#"50) 9"

= [ v malp.p)P@Yi 0 ag
—N(N )jam—p)a(pz P 1) d?,

”nz(p, pit)dpdp’ =N(N —1).
(3.17)

Consider now the expectation value of the kinetic energy of N-electrons in the
momentum representation,

T.(N;t) = (PY ()| T(V) [PV (1)) = JT*(TN;t)T(?N)T(?N;t)d?N
(3.18)
= JT(.‘?‘N)n(ﬂw 0)dP",

where the (multiplicative) kinetic energy operator T(ﬂ’N )= T(ﬁ’N ) measures the
system kinetic energy when the momenta of all N electrons are sharply specified:

T =5- > p =D Tp) =T(2") =NI(p). (3.19)

k=1 k=1

Therefore, the expectation value of (3.18) is given by the following mean value
expression involving the one-electron density in momentum space:

T.(N:1) = Njnpmp; )dp = jnp) 7(p; )dp. (3.20)

3.2 Superposition Principle, Expectation Values,
and Indistinguishability of Identical Particles

The superposition principle of Sect. 2.2 is formally summarized by another basic
axiom of quantum mechanics:

Postulate II: Any combination [¥) = Y ; C;|'¥';) of the admissible quantum states
{|¥;)}, where {C;} denotes generally complex factors, also represents a possible
quantum state of the system under consideration. The squares of moduli of
these expansion coefficients determine the normalized conditional probabilities
{P(Y;|P) = |C,-\2} of observing state ¥; given the state W: Y ; P(¥;|¥) = 1.
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As an illustration let us consider the basis eigenvectors |i } = {|¥;) = |a;)} of
the quantum observable A (2.55a), which for reasons of simplicity we assume to
correspond to the discrete spectrum of eigenvalues {a;}. Expanding a general
state vector |V) in this basis set (2.48a) then gives the following components of
its (column) vector representation: W(i) = (i|¥) = {C; = (¥;|¥)} = C. Hence
[see (2.39)], the corresponding conditional probabilities read:

P(Yi|¥) = |G} = C:C; = (Yi|W)(P|W)) = (¥i|Py|¥,)

) . (3.21)

=G Ci = (YY) (Yil¥) = (FIP[¥) = P(P[V)).
It follows from this equation that the conditional probabilities between two
quantum states can be considered as the expectation values in the variable state
of the projection operator onto the reference state, which plays the role of

a parameter. Their normalization then directly follows from the basis set closure
of (2.41a):

P(WiW) = (Y] ) PW) = (P|¥) = 1. (3.22)

As we shall see in Sect. 3.3, the conditional probabilities of (3.21) also reflect
relative frequencies of possible outcomes {a; = (W;|A|¥;)} of the experiments
measuring the physical quantity A. Indeed, the eigenvector representation of
A is given by the diagonal matrix A = (i|A[i) = {A, = (¥l A|¥,) = @ndm,}-
Therefore, the statistical average (expectation) value (A) in state |'P') is given by the
relevant mean value expression:

(A) = ZpP(Yn|¥) an = Z0Z0Cpy Ann Co = (Pl (IAJQ) (i|¥) = (YIA|W).
(3.23)

We have already encountered such a statistical (ensemble) interpretation in (2.97),
when defining the probability W(E,,|'V') of observing the specified energy level E,, in
the given quantum state |\V).

In the case of a degenerate eigenvalue a; the probability of observing it in state
|'V') is given by the sum of contributions P(\¥; |'¥) originating from all independent
component states for this eigenvalue, {|¥;;) = |ij), j =1, 2, g} [see (2.58)]:

Pla) = S|(1¥)-

The superposition principle can be straightforwardly extended into the continu-
ous basis sets |x) = {|x)}, e.g., the position and momentum representations of Sect.
2.6: any continuous combination [see (2.17)] also represents a possible quantum
state of the system with {P(x|'¥) = |c(x)|*} now providing the conditional proba-
bility density of observing |x) given |¥), and hence also of all its physical


http://dx.doi.org/10.1007/978-3-642-20180-6#Sec6_2

3.2 Superposition Principle, Expectation Values 61

observables in the reference state |¥'), with the relevant normalization condition
[P(x|¥) dx = 1.Indeed, since {c(x)} = ¥(x) = (x|'¥) (continuous column-vector),

JP(x|‘I‘)dx _ J(‘I’|x> (<) = (W) (x¥) = (PW) = 1, (3.24)

where we have used the closure relation of (2.41b). Best illustration of this
continuous version of the superposition principle is Postulate I itself. Indeed, as
implied by (2.70) and (3.2c), the wave functions in the position and momentum
representations constitute the expansion coefficients in the basis sets consisting of
the eigenstates of the position and momentum operators, respectively, and hence
the squares of their moduli are in fact the conditional probabilities of observing in
|‘I’N (#)) the sharply specified locations and momenta of the system constituent
particles:

PIE¥(0)] = [¥(€@ 0 = p(@"1),  PIPV[¥(0)] = [¥(9V;0)]" = n(9";0).
(3.25)

Consider next the expression for the average kinetic energy (3.6) of a spinless
particle, corresponding to the quantum observable T = f)z(r) /2m. The relevant
expansion is again that in terms of the eigenstates { |p)} of the particle momentum
(2.75), c(p) = ¥(p) = (p|'¥), which also mark the eigenstates of T corresponding
to the eigenvalues {T(p) = p*/2m}. The associated conditional probability density
is therefore the momentum density of (3.16), P(p|¥) = |¥(p)|* = n(p), which
gives rise to the following mean value expression for the expectation value of the
kinetic energy in state |¥) [see also (3.20)]:

(T)y = JT(p)P(p|\I’) dp = jT@) 7(p) dp. (3.26)

In the mixed basis set case, |[m) = ({|)}, {|y)}), the expansion is generated by
the identity projector of (2.41c). The squares of expansion coefficients, {C, =
(o|¥)} and {c(x) = (x|¥)}, thus determine the corresponding conditional
probabilities of observing the representation discrete and continuous eigenvalues,
respectively,

P(a|¥) = [(«]¥)] and POIY) =|(¥)[, (3.27)

with the normalization condition [see the closure relation of (2.41¢)]:

S P(al®) + ij‘P)dy — (Plm)(m|¥) = (P|¥) = 1. (328)

o
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An important property of the wave functions of identical particles is embodied
in their symmetry properties with respect to the operation exchanging the spin-
position (or momentum-position) variables of two particles. The physical meaning
of the quantum state is not affected by such an operation since the identical
particles, e.g., electrons in a molecule, are indistinguishable due to the basic
inability to follow their classical trajectories in quantum mechanics (the Heisenberg
Principle of Indeterminacy). Therefore, should we mentally associate some labels
distinguishing electrons at the specified time, their identity afterwards would be still
completely unknown. Clearly, the objective laws of quantum mechanics cannot
depend upon such a subjective act of attributing these identity labels to electrons.

This physical invariance with respect to exchanging two identical particles, say
electrons k and /, symbolized by the associated permutation operator X(k, 1), is also
reflected by the symmetry of the system Hamiltonian H(&") with respect to such an
operation [see (2.104)],

(3.29)

The conservation in such an operation of the probability densities of Postulate I,

Py, @it =Py G G- QN3 T OT (3.30)
Ty, Wy Uy ) = (W Uy U U T,

thus requires preservation of the squares of the moduli of the associated wave

functions. It is assured, when the wave functions themselves are either symmetrical

or antisymmetrical with respect to such a permutation of two identical particles:

ﬁ)
=
i
|
H-
gad
12
L=
Il
iy
=
2
Q
=

(3.31)

Thus, in view of the commutation relation (3.29), [PI(CQN),X(k, D] =0, the
eigenfunctions of the Hamiltonian of a system of identical particles also satisfy
the simultaneous eigenvalue problem (3.31) (see Sect. 2.5) of the particle exchange
operator )A((k7 1), which exhibits only two eigenvalues: X: = £1. This symmetry or
antisymmetry feature of the wave function reflects the identity of the particles
involved. This permutational symmetry of quantum states is conserved in time.

These symmetry properties of the admissible wave functions of identical
particles can be summarized in the following postulate of Pauli:

Postulate III: The physical wave functions of the system of identical particles
must be either symmetric or antisymmetric with respect to the permutation of their
position-spin {g;} or momentum-spin {u,} variables. Those particles for which the
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wave functions are symmetric are called bosons and those for which they are
antisymmetric are called fermions.

Thus, the elementary particles existing in nature are divided into two categories:
the particles corresponding to X = +1, i.e., the symmetric wave functions, called
bosons, and those associated with X = —1, i.e., the antisymmetric wave functions,
called fermions. All currently known particles obey the following empirical rule
related to their spin quantum number S (see Sect. 1.4): particles of half-integral spin
(e.g., electrons, positrons, protons, neutrons, muons) are fermions, while those of
the integral spin (e.g., photons, mesons) are bosons. It also holds for the composite
particles such as the atomic nuclei, which are known to be composed of nucleons
(neutrons and protons), which are fermions. Thus, the spin of the nucleus as
a whole, is reflected by the parity of the number of nucleons: the nuclei with an
even number of fermions, e.g., “He isotope, are bosons, while those containing
an odd number of nucleons, e.g., *He isotope, are fermions, since the resultant
spin of such composite particles is integral in the first case and half-integral in the
other case.

There are also macroscopic consequences of the particle spin identity in the
statistical mechanics, which predicts the physical properties of systems composed
of a very large number of particles as averages over the ensembles corresponding
to alternative thermodynamic equilibria. The statistical weight of a macroscopic
state is then proportional to a number of the microscopic states, through which it
can be realized, a variety of which strongly depends on the particle identity.

In the classical, Maxwell-Boltzmann statistics, the identical particles were in
fact treated as if they are different. Indeed, the microscopic states with identical
list of states of individual (identical) particles were considered distinct, when the
permutation of particles among these states was different. In the quantum statistical
mechanics the above symmetrization postulate intervenes, so that an admissible
microscopic state is now solely identified by the enumeration of individual particle
states which form it, their actual ordering being insignificant. This gives rise to
different predictions compared with those resulting from the classical statistical
mechanics.

The consequence of the antisymmetrization rule for the wave function of
fermions implies that two identical fermions cannot “occupy” the same quantum
state, a restriction known as the Pauli Exclusion Principle. There are no such
occupation restrictions implied by the symmetrization rule for bosons, so that an
individual state is accessible to any number of such integral spin particles. Different
statistical averages result: the bosons obey the Bose—Einstein statistics, while
fermions — the Fermi—Dirac statistics, which explains the nomenclature adopted
to distinguish these two categories of quantum particles. Thermodynamic differences
between them are amplified at low temperatures: the Bose condensation is observed
for systems composed of identical bosons, with particles accumulating in the lowest
energy individual states; by the Pauli exclusion rule this effect is prohibited in
systems of identical fermions.

All physical predictions for quantum objects are expressed in terms of the
probability amplitudes (see Postulate I), which represent the scalar products of
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two state vectors, or matrix elements of an operator. The symmetrization require-
ment of Postulate Il causes special interference effects between the so-called
“direct” and “exchange” processes, to appear in the conditional probabilities
(see Postulate II) of specific outcomes of experiments performed on systems of
identical particles. The formal postulates related to measurement processes, single
or repeated, performed on quantum systems are the subject of the next section.

3.3 Results of Physical Measurements

In this section, we shall further elaborate on the physical implications of the mathe-
matical concepts of the quantum mechanical description, which has been introduced
in the preceding chapter, by specifically addressing the link between this abstract
formalism and the results of measurements. As in previous sections we shall focus on
the position and momentum wave functions and the associated operators representing
the physical properties of the microsystems. In what follows both the results of a single
experiment and the average values of a large number of repetitions of the same
experiment performed on systems in the same initial quantum state will be tackled
by the corresponding postulates of quantum mechanics.

3.3.1 Classical Observables in Position and Momentum
Representations

As we have already remarked in Sect. 2.5, each physical quantity A is represented in
quantum mechanics by its linear and Hermitian operator A, the eigenvalue problem
of which plays the fundamental role in predicting the outcomes of physical
measurements. This correspondence is formalized in terms of the following axiom:

Postulate IV.1: To every mechanical quantity A there corresponds in quantum
mechanics the associated operator A called an observable. It has to be linear, to
satisfy the requirements of the Superposition Principle (Postulate 1), and Hermitian
(self-adjoint), for its eigenvalues to be real. Their eigenvectors form the bases in the
vector space of all quantum states of the physical system.

The prescription for constructing the position/momentum representations of the
quantum mechanical observables are known as the Jordan rules. Consider the classi-
cal quantities, which can be expressed as functions of the particle positions and
momenta, A = A({r},{pi}), or equivalently in terms of the conjugated Cartesian
coordinates, A = A({x,}, {pg}). The Jordan rules summarize the results of Sect. 2.6 by
attributing to such functions the corresponding functions of the position and momen-
tum operators:

A=A, {pe}) or A=A({&}, {ps}). (3.32)
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In the position representation {r;} = {x,}, the coordinate operator X, denotes
the multiplication by x,, X, = x,. Similarly for any function of the particle
coordinates, e.g., the position vector r = xi + yj + zk or the potential energy
V({x,}), there corresponds the associated multiplicative operators:

r(r)=xi+yj+zk=xi+yj+zk=r,
. . (3.33)
V({{x}) = V({xa}) = V({xa}), ete.
The elementary momentum operators in this representation,
py(ri) = —ihV,, = —ihVy, p,(xy) = —ihd/0x,, (3.34)

similarly determine the quantum mechanical operator of any function of the particle
momenta, e.g., the kinetic energy T = T({pi}) = Yi pi’/2my:

2
T({r}) = T{Bi(r)}) = Zubi (re) /2mi = — zh—mAk~ (3.35)
— 2my;

These rules are sufficient to generate the quantum operator in the position
representation for any physical quantity encountered in the classical mechanics,
e.g., that of the orbital angular momentum of a single particle:

i j k A R . .
I=rxp=|x y z|—=1({x}) =il +jl+kL
Px Py P:
i j k
= —ih X y z ) (336)

0/0x 0/dy 9/0z

or the operator attributed to the system Hamilton function H({t;}, {p,(r)}) =
E({t+}, {p;(r0)}) = H({x,}), the system Hamiltonian in the position representation:

2
({n) = T({n) + V({nh) = = oA+ VL)), (3:37)
k

where the Laplacian Ay = Vi = 0% /0x} + 0% /0y; + 0%/ 0.
These rules can be straightforwardly transcribed into the associated prescriptions
for the momentum representation {p;} = {p,}, in which (see again Sect. 2.6) p, =

Po, OT ﬁ(]’) = p,d + f)y.] +p.k :pxi+p)’j + p:k = p, and

X4(px) = 1h0/0py or Tr(p) = iV, (3.38)
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Therefore, in this representation the kinetic energy corresponds to the multipli-
cative operator T({p,}) = T({p;}) = >_p*/2my, while the potential energy func-
tion generates the associated differential operator:

V({&a(p,)}) = V({ind/0p,}). (3.39)

3.3.2 Possible Outcomes of a Single Measurement

In accordance with the discussion in Sect. 2.5 the possible outcomes of individual
measurements of the physical quantity A are related to its quantum mechanical
operator A via the

Postulate IV.2: The result of a single measurement of the physical quantity A is
one of the eigenvalues {a;} of its observable A in the eigenvalue problem (2.55a).
In position/momentum representations, it reads:

Alfe)¥i({n)) = a¥i{x)),  Alp))Yil{pa)) = a¥i{p.}),  (3:40)

where W;({x,}) and ¥;({p,}) denote the corresponding eigenfunctions associated
with the eigenvalue a;.

Since the set of eigenvectors {|'¥;}} of the quantum mechanical observable A
forms the complete basis in the system vector space (see Sect. 2.5), any state |'¥')
can be expressed as their combination, with the squares of the moduli of the
expansion coefficients determining the conditional probabilities of observing |¥;)
in state |W¥) (Postulate II):

W) = Z;|W) (Pi|P) = %W Ci, P(PY) = |C,~|2 <. (3.41)

The P(W;|¥) = 1, and hence {P(¥;.|¥) = 0}, marks the eigenvector itself,
|¥) = |¥,), when we know with certainty that the eigenvalue a; (nondegenerate)
has been observed. Therefore, a general combination of the preceding equation is
reduced after the measurement of A to a single eigenvector of A, the one
corresponding to the observed eigenvalue. This “contraction” of |¥) into |¥;)
marks the irreversible intervention of the measuring device. Indeed, as we have
emphasized in Chap. 1, any experiment performed on the microobject inadvertently
modifies its state.

This contraction of a combination of eigenstates into its single member has to be
modified in the case of the degenerate eigenvalue a; of the physical quantity A. Such
a result of the experiment implies that the state immediately after the measurement
is now the normalized projection ((‘P|13( )|‘I—‘>) ~1/2P(a;)|¥) of the initial state
|¥) into the eigensubspace associated with a, {|¥:,) = li,j = 1,2, g}, which is

effected by the subspace projector P(a;) Z |i7) i
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In quantum mechanics the set of eigenvalues {a;} thus determines the spectrum
of all possible outcomes of tpg single measurement of A. Since the eigenvalues of
the square of the observable A are given by the squares of eigenvalues of A, for the
same set of eigenstates,

Az|‘Pi> = aA|¥;) = a*|¥y), (3.42)

the square of the dispersion in A, g,* = (A?) — (A)? [see (3.23)], observed in
the repeated measurements of A in the eigenstate |\V;), represented by the
eigenfunctions W;({x,}) or ¥;({p,}), identically vanishes:

oa2 = (A%), — (A)2 = (| A" W) — (WA =a? —a?=0.  (343)

Therefore, in the eigenstate of A the physical quantity A is sharply specified, and
each single measurement of this physical property in this state always gives
the same result a;, as reflected by the conditional probabilities: P(W,|¥;) = 1 and

As we have already demonstrated in (2.60), the eigenstates corresponding to differ-
ent eigenvalues are automatically orthogonal. However, for the degenerate eigenvalues,
several eigenstates correspond to the same eigenvalue (2.58), so they have to be
orthogonalized to safeguard their linear independence. This orthogonalization is
performed by taking appropriate linear combinations of generally nonorthogonal state
vectors, which satisfy the conditions of their mutual orthogonality.

As schematically shown in Fig. 3.1, the prescription to make any pair of
degenerate state vectors to be mutually “perpendicular” is not unique. Thus, the
specific orthogonalization scheme can be selected for reasons of convenience. For
the sake of simplicity consider two normalized state vectors |a;) = {li;), |i>)} of the
doubly degenerate eigenvalue a;, ¢ = 2, which define the overlap matrix of their
scalar products:

e g 1 S
S (ala) = ()7 =121 = | ¢} (.44)

where for definiteness we assume S > 0. In the (nonsymmetric) Schmidt orthogo-
nalization scheme (see Fig. 3.1) of transforming the original vectors {|i,), |i)} to
the mutually orthogonal set |@;) = {|i1),|i2)}, one leaves one of these vectors
unchanged, say |i;) = |i1), and “rotates” the other, |iy) = M(|i2) + C|i})), where
AN is the normalization constant and C denotes the mixing coefficient, until the
two vectors become mutually orthogonal: (i1|i;) = 0. This condition then gives
C = —S, while the normalization (i>|i>) = 1 implies ¥, = (1 — $2)"/2, and hence

i) = (1= 8%)"(lia) = |i1)S) = Ma(liz) — lir){irliz)) = Na(liz) — i)
(3.45a)



68 3 Basic Concepts and Axioms

This expression can be straightforwardly extended to a general case of the
normalized state vector |i/) Schmidt orthogonalized with respect to the given
subspace |¢) = (|¢1), |©2)s - - -» |©,)) of the orthonormal states:

9= 1) = 3ol | 9] = V) Pl Bast)

Alternatively, as also shown in the figure, one could manipulate the two non-
orthogonal vectors simultaneously in a symmetrical way, so that both ortho-
gonalized vectors |@;) = {|i}), |i2)}, strongly resemble their initial, nonorthogonal
analogs. In the Lowdin orthogonalization scheme, this transformation is effected
through the symmetric matrix $™2, |a;) = |a;)S™'/?, defined by the eigenvalue
problem of the overlap matrix S, i.e., its diagonalization in the orthogonal
transformation:

0"SO =5 = {5,0,n}, S7/2 = 0571207, s* ={(5,,)" 0}, 00T = L. (3.46)

Indeed, the orthogonality of the symmetrically rotated vectors |@;) then directly
follows from the orthogonal transformation O which diagonalizes the overlap
matrix:

(a|a;) = S7"*(a;|a;) ST'/? =871/?28871/2 =80 =1L (3.47)

These matrix equations apply to any number of the orthogonalized vectors

or wave functions. In the latter case, the overlap matrix is defined to be the

corresponding integrals between nonorthogonal functions, e.g., x(r) = {y(r)}

(row vector), when S, = (x|x) = {S,, = jx,.*(r)x,(r) dr}: x(r) = X(r)SX’l/Z.
The specific forms of these matrices for the metric of (3.44) read:

[1—|—S 0 } [sl 0} 1 {1 1]

S = = s O:— s
0 1-S 0 s V211 =1

1

b —

b (3.48)
S—l/z:{“ } azl(L+L) _ (L_L)'
boal T2\A VRS T T e

3.3.3 Expectation Value of Repeated Measurements
and Heisenberg Uncertainty Principle

The average result of the repeated measurements of A in quantum mechanics,
performed on the system in the same initial quantum state |W), has already
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by
| i2)
Y
[ip) =] 71)
| i)

Fig. 3.1 The diagrammatic representation of the mutually nonorthogonal state vectors { i), |i2)},
and the two sets of their orthogonalized (mutually “perpendicular”’) analogs: the Schmidt
(nonsymmetrically) orthogonalized vectors |a;) = {|i), |i2)}, and the Lowdin (symmetrically)
orthogonalized vectors |a;) = {|i1),|i2)}. The two sets are related by the unitary (rotation)
transformation U = (a;]a;): |a;) = |a;)U

been established in (3.23). It can be formally stated in the form of a separate
postulate:

Postulate IV.3: The statistically average result of a very large number m — oo of
repeated measurements of the physical quantity A performed on the microsystem in
the same initial state |\V') is given by the expectation value of its quantum mechanical
operator A:

(Ahy = S PCEIT) @ = (PIAY) = W@ A@)P(€r) de”
! (3.49)
= J‘I’ (PV: 1) APV YR (PV; 1) .

It has been demonstrated in (3.43) that in the eigenstate |¥;) this quantity is
sharply specified with (A)y = a;, <A2>\v,- =a?, etc. The same conclusion applies to
all physical observables which commute with A, since all these operators have a
common set of eigenvectors (see Sect. 2.5). However, in a general quantum state of
(3.41), one will detect a dispersion in the measured values of A, with a statistically
distributed results {a;} appearing with frequencies {m; = mP(\¥;|¥)} proportional
to the conditional probabilities {P(¥;|¥)} of observing the specified eigenstates
(see caption of Fig. 1.1).

We are now in a position to provide a general formulation of the Heisenberg
Principle of Indeterminacy in quantum mechanics (see Chap. 1). As specific
measures of the simultaneous accuracies of the physical quantities A and B we
adopt their dispersions (standard deviations), ox = ((X—(X))*)”* = (X*)—(X)?",
X = A, B, with the corresponding expressions in terms of the quantum mechanical
expectation values:

ox? = (X*)y — (X)5= (P|(X — (X)y)’|¥) = (PIA|¥), X=A,B. (3.50)
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We further observe that the displacement operators A4 and Ay are both Hermitian,
as are the observables A and B themselves, and the following commutator identity
is satisfied:

[A,B] = [A4, Ag), (3.51)

since the average values (X)y (numbers) commute with every operator [see (2.34)].
We shall now demonstrate that the following inequality is satisfied by the
simultaneous indeterminacies of the physical quantities A and B:

|
oplop? > - (YIA, B]|W)”. (3.52)

It constitutes the quantum mechanical formulation of the Heisenberg Uncertainty
Principle, which indeed predicts the simultaneous sharp specification of the com-
muting observables.

In order to prove this inequality let us introduce the physically meaningful, i.e.,
exhibiting a finite norm, auxiliary state vector |®(4)) depending on real parameter /:

(1)) = (2As — ihAg)|P). (3.53)

The square of its norm (positive) then determines the quadratic function f(4):

(7 As — lAB)T(;LAA — iAg)|¥)

((AAx +iAp)(7 Ay — i Ap) W)

|(2A% — i [Ax, Ag] + AD)|P) (3.54)
04202 — i(P|[A, B]|W)A + 05>
=a)> + bl +c>0.

(®(2) ¥

(
(¥
= (¥

o(2)) = |o(2)|* =

For a = 6,> > 0 this inequality can be satisfied only when there are no
solutions of the associated quadratic equation ai* + b/ + ¢ = 0, i.e., when 4 =
b* —4ac <0or

— (¥|[A,B]|¥)’ <4 0303, (3.55)

which completes the proof.

Consider the illustrative example of the position—-momentum relation (1.7). In
position representation (3.34), A =x,B= —ihd/0x, so that their commutator
acting on the continuous function f(x) gives:

[A,B]f = —ihx(3f /Ox) + ihx(df /Ox) + ihif = ihf or [X,p,] =ik  (3.56)
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Thus, these two physical quantities are incompatible, with the limit of the product
of their lowest (simultaneous) inaccuracies being determined by (3.52):

1
00, > Eh (3.57)

These predictions agree with the constant (position-independent) probability of
finding a particle at the specified location in space in the state described by the basis
function u,(r) (2.76), corresponding to the sharply specified momentum: o, — 0.
It indeed implies that all localization events are then equally probable, i.e., we are
then completely ignorant about the particle position: ¢, — 0. In accordance with
the Heisenberg principle of (3.57) only the infinite position indeterminacy gives the
finite product when multiplied by the infinitesimal momentum uncertainty o, — 0.

3.3.4 Ensemble Averages in Mixed States

Only certain idealized systems, isolated from their environment, are completely
described by a single state vector |¥) or a single wave function W(x). The wave
function of an isolated system depends only on its internal coordinates x and carries
the maximum information about the state of the microsystem available in quantum
physics. The full specification of quantum state of the microobject is through the
state vector belonging to the basis set of the simultaneous eigenvectors of the
system complete set of the mutually commuting observables {A, B, ...}, which
diagonalize the matrix representations of these operators, |¥) € {|V¥,) =
|ag, by, .. .) }. Their eigenvalues (ay, by, . . .) then provide the complete identification
of the direction of the state vector |ay, by, . ..) in the molecular Hilbert space.

However, microobjects can be coupled to their surroundings. For example, the
particles at constant temperature are in contact with the thermostat (heat “bath”)
and the open systems, exhibiting fluctuating (fractional, continuously changing)
number of particles, are coupled to the external particle “reservoir(s).” The state of
the closed system interacting with its environment will also depend on the external
degrees of freedom describing the latter. Therefore, the formalism of quantum
mechanics must also admit all intermediate stages of an imprecise definition of
the system state, which cannot be linked to a single state vector (wave function).
Such generalized states are called the mixed states, while the systems with the
specified wave function are said to be in the pure state.

As in statistical mechanics, the incomplete information about the system calls
for the concept of an ensemble of quantum states, in which the admissible pure
states appear with some probability. The ensemble consists of a very large number
of replicas of the same system. For example, a system in the thermodynamic
equilibrium at temperature T has a probability of being in its energy eigenstate
|E,) proportional to exp(—E,/kgT), where kg is the Boltzmann constant. This
probability describes the frequency of such a state among members of the canonical
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ensemble. Similarly, the systems in the grand-canonical ensemble describing the
system in thermodynamic equilibrium with the heat bath at temperature 7" and the
particle reservoir characterized by the chemical potential ¢ will exhibit the proba-
bility proportional to exp(uN;—E, )/kgT of observing the eigenvalue E, ; of the
Hamitonian H(N;), for the specified (integral) number of electrons N;.

Therefore, such an imprecise definition of the quantum mechanical state can be
interpreted as the statistical mixture of the admissible states { /1), [¥»), ...} of the
system replicas in the ensemble, which appear with the associated (extemal)
probabilities {pi, ps, ...}, 2.4 P = 1. The individual states in the mixture do not
have to be orthogonal, e.g., in the grand ensemble, when we mix eigenstates of
different Hamiltonians, but they are always assumed to be normalized.

The statistical mixture should not be confused with the expansion of a single
wave function |®) in the (orthonormal) basis set, say {|'¥,,)},

®) = > |¥,) (Fal®) = > [¥o)en, (3.58)

where |c,,|2 generates the conditional probability P(¥,|®) of observing in state |®)
the physical attributes of |¥,,). Indeed, this does not imply that |®) is the mixture of
|'¥,) with the probability P(¥,|®), and |'¥,) with the probability P(\¥»|®), etc. The
square of the modulus of ®(x), which generates the probability distribution p(x) =
(D*(x)d)(x), then includes the crucial interference terms between different basis
functions, cn*cm‘l’n*(x)‘}’m(x), which are not present in the statistical mixture of
the same basis functions. Thus, the probability weighted sum of distributions
{p.(x) = ¥, OWP,0), generated by each state in the basis set, p,,s.(X) = Y., Pu
pn(x), cannot reproduce the true probability density p(x). In other words, it is not
possible to describe a statistical mixture by an “average” state vector in the form of
the combination of states of (3.58): p,,,.(X) # p(x).

The two levels of probabilities are thus involved in determining the results of
measurements performed on systems in their mixed quantum states. On one hand,
there is the intrinsic quantum mechanical probability of finding in each (pure) state
,) a specific eigenvalue a; of the observable A, A|¥;) = a;|¥;), given by the
square of the modulus of the expansion coefficient Cy,, = (Vi|¥y), Pro = |Cko<|2
(Postulate II), which determines the quantum mechanical expectation value

(A), = (WolAW,) ZakPka (3.59)

Notice that these eigenstates generate the diagonal representation of A,
== {Am,n == <le|A|an> = an(sm‘n}-

On the other hand, the additional level of the external probabilities {p,} of
observing the individual states {|},)} in the ensemble intervenes in the mixed
quantum mechanical states. They define the associated density operator given by
the sum of the externally weighted projections onto the quantum states being mixed,
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15 = Z|%>Pa<%| = Zpoclsm (3.60a)

Its matrix representation in the basis set of eigenstates of A,

¥ = {Dm-n = <le|D‘IIIn> = Z<Tn|lﬁx>}?a<lﬁ“|\ym>}, (3.60b)

o

determines the ensemble average value of A:

Aem = ZP ZP {Zakpk 1}

= ZZ{Z (Pultb,)pa (W, I‘Pm>} (¥,,|A|WP,)
=SS TR (Eal A =SS DA (3.60¢)

= u[D™A™] =) (¥,[DA|Y,) = u(DA)

n

= u[A®D™)] =) (¥,|AD|¥,) = w(AD).

m

The Hermitian (nonidempotent!) density operator D involves the probability
weighted projections { {l%} } onto the individual states being mixed, while the trace
operation (tr) denotes the summation of all diagonal elements of the matrix
representations of operators in the adopted basis. It also follows from the definition
of D that its expectation value in state |®)

(®DI®) =D (| P)(DI,) =Y ps P(,|®) >0, (3.61)

o

and hence D is a positive operator.
It can be also verified that the trace of the product of operators is invariant with
respect to the cyclic permutations of factors in the product [see (3.60c)],

tr(AB...CD) = tr(DAB ... C), etc., (3.62)

and to a change ¥ — ® in the (orthonormal) basis set:

rA=> (¥,|A|¥,) = rAy

=35 ([0, (@A D, ) (@, [P,

n m m

=3 D (D [ W) (F| D) (DA D) (3.63)

n m m

m m

= (D,]AlD,) = trAg,
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where we have used the closure relations Y ,|®,,)(®,,| = ¥,|¥,.)(¥,| = 1 and the
orthonormality of basis functions (®,,|®,,) = J,,,. One also observes that

D= Z ¥, |D|¥,) ZZ}? (W) (il
= Zp W, = Zp“ =1 (3.64)

o

Obviously, the pure state, e.g., ), can be viewed as the limiting case of the
ensemble, when p, = 1 and {pg_, = 0}, so tl%at D = P,. Only in the pure quantum
state the density operator is idempotent, D = =D (idempotency of P,), so that

trD = trD = 1. The corresponding inequality for the mixed state reads: trD <I.

When describing parts of a physical system the concept of the partial trace
emerges. Assume that the global system, (1) + (2), consists of distinct subsystems
(1) and (2), described by their associated Hilbert spaces #£(1) = {|¥,(1))} and
FE(2) = {|®,,(2))}, the tensor product of which spans the Hilbert space of the
system as a whole:

J0(1,2) = {|¥i(1))|©n(2)) = [¥i(1)Dn(2))} = F(1) @ I0(2).  (3.65)
We now introduce the partial traces of the system density operator D, which define

the effective density operators for each subsystem: D(1) and D(2). This is effected
by contractions of the matrix representation of D in #£(1, 2),

D(, 2) = {<‘I’i(1)(I)n,(2)|I§|‘Pir(1)(1)n1/(2)> =Djmim(1,2)}, (3.66)

by partial trace summations over m = m’ in one subsystem or i = i’ of the other
subsystem:

D(1) = > (¥i(1)®n(2)|D|¥:(1)®,(2)) = tr,D(1,2) = { D; (1)},
D(2) = > (¥i(1)0u(2)|D[¥i(1)Dp(2)) = tr1D(1,2) = { Dy w(@} . (3.67)

Let A(1) be a physical quantity of subsystem (1) with the corresponding observ-
able A(1) acting in #€(1), which is represented in J£(1, 2) by the matrix:

A1) = ({(Fi(1) @ (2)| A1)y (1)@ (2)) = Ajgr (1)

(Pi(DIAMW)Y: (1))( P (2)| P (2)) = Aiir (1) 0 (2)}
A(1) @ L2). (3.68)
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The ensemble average value of A(1) [see (3.60a)—(3.60c)] now reads:

Aens(1) = tr[D(1,2)A"2(1)]

= ZZ ZZDt m:i’ m’ 1 2 4 m/lm(l)]

i’om

_ZZZZD,m,m 1 2 ll( )5m m( )]
— ZZ ZD’?’”?"”’" 1,2)]Azi(1)]
- ZZ[ZDW(UA, (1)]

— twr[D(1)A(1)]. (3.69)

Therefore, the partial trace concept enables one to calculate the ensemble
average of the subsystem quantity A(1) as if this part of the whole physical system
were isolated in the effective mixed state of (1) in the system as a whole, defined
by the density operator D(1), which already involves the partial trace over the states
of the other subsystem.

3.4 Angular Momentum and Spin Operators

In (3.36) we have used the Jordan rules to generate the quantum mechanical
observable 1({x,}) = —ifir x V corresponding in the position representation to
the particle angular momentum I = r x p, e.g., that of the electron moving around
nucleus in an atom. This equation also defines the associated component operators,
obtained by expanding the determinant of the vector product:

x =9p. — f) = —ih(y0/0z — z0/9y),
. = —ih(z0/0x — x0/0z), (3.70)
I, = %p, — yp, = —ih(xD/dy — yO/0x).

<
I
N>
>
=
I
><>
Il

They give rise to the following commutation relations:

o) =i, [i,,0) =iy, (i1 =y, (50 =[51] =[50 =o.
3.71)

It thus follows from the first three relations of this equation that for the finite
angular momentum |I| > 0 its three components cannot be simultaneously deter-
mined precisely; clearly, for |I| = 0 they are all vanishing: I, = I, = I. = 0. The
remaining relations indicate that only the length |I| = ()" of the angular
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momentum and one of its components, say /,, can be simultaneously sharply
defined. Indeed, the analysis of the quantized eigenvalue problems of these
operators, which can be found in any textbook of quantum mechanics, gives:

P=I1l+Dr 1=0,1,2,...; L=mh, m=—1—1+1,...,0,....01—1,1
(3.72)

The commutation relations can be straightforwardly derived using the commu-
tator identities of (2.34) and the known commutators involving the position {X;}
and momentum {p,} observables [see (3.56)]:

%, %] = [, B =0, [%i, ;] = ifidy;. (3.73)

For example,
o) + [2Dy, XD,] (3.74)

However, the origin of the spin angular momenta (see Sect. 1.4) is not classical,
so that the Jordan rules do not apply in constructing their operators. Consider a single
electron as an example. We shall now derive the matrix representations of the spin
operator § = i8, + jS, + j$: in the basis set of the two allowed spin states |£) = (|a),
|8)) (see Fig. 1.2) by postulating that these nonclassical angular momentum
operators satisfy the same commutator relations as their classical analogs:

[8e,8] = ihs., [8,,8.] = ils,, [3.,8] = is,, [§%,8,] = [§%,8,] = [*,8.] = 0.
(3.75)

In other words, we again recognize that, as in the classical case, only the length and
one of the components of the spin angular momentum can be simultaneously
specified. This is exactly what is observed in the experiment (see Fig. 1.2).

We first observe that the two spin states of an electron are then represented by the
associated spin wave functions (column vectors):

a(€) = (el = (o) = | |- 86 =€) = telmy = ||,
(Blz) = > (hloolz) = BT (@) (&) = 0,

g

(2la) = Y (alo)(olo) = &l (&) (&) = (BIB) = Y (Blo)(olp) = BT (©)BE) = 1.

a a

(3.76)
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To simplify notation, we introduce the dimensionless Pauli operator,
6 =28/h =i6,+j6,+j6:, 3.77)
in terms of which the first three commutation relations of (3.75) read:
[6y,6y] =2i6., [6y,6.] =2i6,, [6.,6,] =2i6,. (3.78)
The same relations must be satisfied by the matrix representations of the spin
components {&;} in the basis |£), called the Pauli matrices.

Since [6’2, 6,] = 0, these two operators are represented by the diagonal matrices
in this basis set |£) of their common eigenvectors:

&’y =3Jo),  6°|B) =3|p); Sl = |w), G-

) = =IB)-

These matrices include the corresponding eigenvalues as diagonal elements:

30

o = Ela’e) = ) 3] we ot S

5.|¢) = {0 1]. (3.79)

In order to determine the Pauli matrices representing the remaining spin
components,

. b b
} and Gyz<§|oy|§>:[b; bzﬂ, (3.80)

’

a  daip
a1 ap

o, = (€66 = |

we first use two commutation relations of (3.78):

o . 0 72012 _ A b131 bl,2
[0y, 0] = —2ioy = {2612‘1 0 } = -2i |:b2‘l b212]7 (3.81)
e 0 =2b1y| L. |a1 ain
[0y, 0] =2io, = {252,1 0 } =2j [02,1 0| (3.82)
Hence, ap = dxp = bl,l = b2’2 = O, bl,2 = —l.alvz, b2,1 = l.a2,1. The remaining

two matrix elements then result from the third commutation rule,

Y .| a12021 0 Y 1 0
oy, 0] = 2io. = 21{ 0 —a1,2a2,1} =2 [0 _1 }, (3.83)

which implies a; »a, 1 = 1. Therefore, by setting a; » = a,; = 1, one arrives at the
following explicit forms of the Pauli matrices in (3.80):
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0 1 0 —i
O'X—|:1 0] and o'y—[l. 0} (3.84)

Their nondiagonal character reflects the fact that these observables are not
sharply defined simultaneously with the two spin parameters defining the basis
set |€).

It thus directly follows from these explicit representations of the Pauli operators
that their actions on the spin functions of (3.76) give:

ca=p of=a oa=ip, of=-ia; c.a=ca, o.f=—B. (3.85)

3.5 Pictures of Time Evolution

After establishing the basic concepts of the quantum kinematics, dealing with the
quantum objects at the given time ¢t = t,, we now turn to alternative formulations of
the quantum dynamics, which determines the evolution of the microsystems in
time. The possibility of such different formulations arises because the basic mathe-
matical entities of the theory, such as state vectors and operators, are not directly
accessible to physical measurement. As we have seen in the preceding sections
of this chapter, only the eigenvalues of the quantum observables and the scalar
products of state vectors have direct experimental implications. They respectively
determine the spectrum of all possible outcomes of single measurements of the
physical quantity to which the operator corresponds and their associated
probabilities in a very large number of repetitions of experiments carried on the
same quantum state of the physical system in question. Therefore, as long as these
experimental predictions remain the same, the alternative formulations of the
quantum dynamics, called state pictures, remain acceptable and fully equivalent
physical theories. A 4

As we have seen in Sect. 2.7, the unitary operators U, for whichU' = U | have
the desired property of not affecting the eigenvalues of the transformed operators

Al = UAﬁT and the scalar products between the transformed vectors [¥') = U|'¥)
and |@') = U|®) : (O'|¥) = <d>|fJTfJ\‘P> = (®|¥). The range of unitary operators
is not limited to their time-independent form, which we have examined in Sect. 2.7,
giving rise to different descriptions of the quantum object at the specified time
t = to. The unitary transformations can be also used to express a change of quantum
states with time, i.e., the alternative dynamical pictures of quantum mechanics.
For example, in the Schrodinger (S) picture, when the spectrum of the operator
eigenvalues does not depend on time, one uses the time-independent operators
A = Ay so that the evolution of quantum objects in time is embodied in the


http://dx.doi.org/10.1007/978-3-642-20180-6#Sec7_2
http://dx.doi.org/10.1007/978-3-642-20180-6#Sec7_2

3.5 Pictures of Time Evolution 79

time-dependent state vector |‘I{S(t)), generated from the initial state |¥(zy)) by the
action of the unitary operator U(¢ — #) of the time evolution 7y — ¢ of |¥(#)):

s(0)) = U — 10)|®(t9)), Ut —10)T = U= 16)™" = Ut — ),

N . . (3.86)
U(t—1)U(fp—1) =1 and U(0) =1

where the inverse evolution t — fo of |Ws(f)) recovers the state vector at t = fq:

Uty — 1)|¥s(1)) = |¥(10)). (3.87)

It also directly follows from the unitary character of the time evolution operator that
the normalization of state vectors is conserved in time:

(Ps(0)[¥s(2) = (‘{’(fo)m(f— fo)TO(f— t0)['¥(t0)) = (¥(t0)[¥(t0)).  (3.88)

In the Heisenberg (H) picture, the state vectors do not change in time, but
the operators become time dependent. Therefore, the operator of the inverse time
evolution in (3.86) marks the unitary transformation of |Ws(¢)) into the time-
independent vector of the Heisenberg picture: [¥(¢y)) = |¥y). The time-dependent
operators are then given by the transformation:

Au(t) =U(tg — 1)AsU(tg — 1) = Ulto — )AsU(t — 1). (3.89)

When the quantum object is composed of interacting subsystems, its time-
independent energy operator of the Schrodinger picture, the Hamiltonian H, can
be partitioned into the contribution representing the energy of the noninteracting
subsystems, Ho, and their mutual interaction, V

H=H+V. (3.90)

The quantum dynamics of such composite systems can be best expressed in the
Interaction (I) picture, in which both the state vectors and operators are time
dependent. The relevant time-dependent unitary operator, which transforms these
mathematical entities from the above Schrodinger picture, depends solely on Ho:

S(r) = exp (;Hm) (3.91)

Here, the exponential operator is defined by its power series expansion:

00 ~

B(7) = exp(A

(3.92a)
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giving rise to the time derivative:

dB(1) im"—lA” - (A"
- - AZ
n_
n=0

dt n! o (

1 N
(AT -
0= AMZ:O = Aexp(Ar).  (3.92b)
The state vectors and operators in the /-picture of Quantum Mechanics are defined
by the following transformations of their corresponding S-picture analogs:

W, (1)) = S(1)[Ws (1)), As(t) =S()AsS(r)~". (3.93)

In the remaining part of this chapter we shall explore in some detail the time
evolution of quantum states in the Schrodinger picture and examine some of its
physical implications. In the final Sect. 3.7 we summarize the related dynamical
equations in the alternative pictures of quantum dynamics.

3.6 Schrodinger Picture: Dynamics of Wave Functions
and Density Operators

Let us determine the explicit form of the unitary operator G(I —19) of (3.86). The
relevant equation of motion for quantum states in this dynamical picture is the
subject of

Postulate V: The time evolution of the state vector |Ws(¢)) = |¥(?)) is governed
by the Schrodinger equation:

L d|'P(t -
YO gy, (3.94)
dt
where the Hamiltonian H is the observable associated with the system total energy.
The corresponding wave equations, either in the position-spin or the momentum-
spin representations, determine the dynamics of the associated wave functions:

av(e” . av ey X
ih(d—t’t) = HE¥(@ 1) or ih% =H@)¥(@",1). (3.95)
Substituting (3.86) into (3.94) gives:

dU(t — - dU(t — -
ih% “HU(— 1) | (o) = 0 or ih% —HU0(—1). (3.96)
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The formal solution of this differential equation is thus given by the following
evolution operator [see also (3.92a) and (3.92b)]:

U(r — 1y) = exp (—%(r — to)ﬂ) = exp (—%rﬁ) =U(7). (3.97)

Hence, the operator of the reverse evolution, from ¢ to ¢,

IAJ(‘E)]L =U(x) ' =exp (%7: I:I) =U(—1). (3.98)

It can be easily verified by the differentiation with respect to time, using the
derivative (3.92b) of the exponential operator (3.92a), that the action of this unitary
operator is equivalent to the dynamical Schrodinger equation (3.94).

We now briefly examine the implications of Schrodinger’s time evolution for
the mixed states. The unitary character of the time evolution operator then directly
implies that if the system at the initial time ¢ = £y has probability p, of being
in the state |/,) = |¥,(#)), then, at a subsequent time ¢, it has the same probability
of being in the evolved state |/,(r)). Indeed, the density operator at time ¢ [see
(3.60a)—(3.60c)],

D(1) = P, () (W, (0] =D _pa(t)Pu(0), (3.99)
gives
Pa(t) = W (DO W, (1)) = (Y, IDl,) = pa, (3.100)

since the matrix elements of operators are invariants of the unitary transformations.
Before we examine the equation of motion for D(t) = > p,P,(t) let us first

derive it for the projection operator P,(f) onto the pure state |y/,(f)). Using the

Schrédinger equation (3.94) for |/,(7)) and its Hermitian conjugate gives:

%f’a(t) = (W) W, (O] + 1, (0)) (@)

(3.101)

1. A .
= == (H () (W (0] = W (1) (o (1) [H) = = [H, Po(0))-
Multiplying the preceding equation by p,(f) = p, and summing over all states in
the statistical mixture of D(#) gives the related dynamics of the density operator

itself:

ih—D(r) = [H,D(7)]. (3.102)



82 3 Basic Concepts and Axioms
3.6.1 Energy Representation and Stationary States

The explicit form of the time-dependent wave function
(@t —1) = P(@ ;1) = exp(— %H(&N)r)q/(&”; f0), (3.103)

can be obtained in the energy representation of Sect. 2.7, i.e., for the orthonormal
basis set of the eigenfunctions {y,(€") = (€@" | y,)} of the system Hamiltonian

(@) = (@"[H|@"):
H@) v, (@) = B, (). (3.104)
Indeed, by expanding the wave function in this energy basis set,

N O) = ZCH wn(&N)v

(3.105)
Co= (Y | P(t0) = jw;wN)&"(&N;m) de,

and using the power series for the exponential evolution operator (3.92a) and its
derivative (3.92b), one finds the wave function after the time interval T = r—t:

=1

Y@ 1) = Zld(—H(QN >Zc,1¢,, (@)
00 . k
_Zc v, (@) Z%(—%Er)

k=0

= zn: Crexp (— ﬁEnr) v, (@)
= Zun(t) v, (@) = ZC,, Y, (@V;1)

(3.106)

In the preceding expansion, the time-dependent wave function is expressed in
terms of the time-dependent eigenfunctions of the Hamiltonian,

W, (@V; 1) =y, (@) exp<—£E,,r) =, (@) exp(—iw,1)
=(&" | ¥, (1)), (3.107)

which represent the stationary states of the system, for its sharply specified energies
{E,}. Such states are given by the product of the time-independent amplitude
lﬁn(&N ), determined by the eigenvalue problem of (3.104), and the time-dependent
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phase factor exp(—iw,), which does not contribute to the associated (time inde-
pendent) probability distribution,

2

pu@50) = @) exp (B0 )| =, @)F = vi@ @), Gaos

which is seen to be determined solely by the state amplitude.

The time-dependent coefficients {u,(t) = (¥, | ¥(7)) = Cpexp(—iw,t} in
(3.106) provide the energy representation of state |'P(t)). Since the conditional
probability P(,,|'Y(1)) = \u,,('c)l2 =|C ,,|2, we thus conclude that the time evolution
of the state vector in the S-picture represents its “rotation” in the Hilbert space,
which conserves in time the probabilities of observing the system stationary states.
We also observe that for the combination of (3.106) to retain the stationary
character it must be limited only to the subspace corresponding to a single degen-
erate eigenvalue E,, with all its components thus exhibiting the same phase factor.

To summarize, the stationary states, in which the system energy is sharply
defined, are distinguished by several special features. The energy determines
uniquely the time-dependent factor of the wave function, so that the probability
distribution and its current (see Section 3.6.3) are time independent. Moreover, the
expectation values of any physical observable A(&N ), which does not depend on
time explicitly, are conserved:

()= [#@ DA P @50 = [ (@A), (@)t =cons.
(3.109)

These average values thus become sharply defined, equal to a single eigenvalue
of A(@"), (A) = a;, when the latter commutes with the system Hamiltonian.
Also, when these two observables do not commute, the conditional probability
P(g;|'¥,) of finding a given eigenvalue a;, where npj(&N ) represents the eigenstate of

A(@"),
A(E) 0 (@) = ap o (@), (3.110)

given by the square of the modulus of the relevant expansion coefficient, the
projection of ¥, into ¢y, also remains constant in time:

P(p;|¥,) = ‘J@(&N)\P,,(&N;r) d@"|? = const. (3.111)

The Schrodinger equation emphasizes the crucial role of the system energy
operator in determining the system dynamics, similar to that played by the
Hamilton function in classical mechanics [see (3.1)]. In general, the precise
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specification of the system energy does not identify the stationary quantum state
uniquely. Indeed, for this to be the case one also requires the eigenvalues a = {a;}
of the complete set of the commuting observables {Ai}, which also commute with
the system Hamiltonian (see Sect. 2.5):

HA]=[AL,A] =0, ij=1,2,...,s. (3.112)

Together with the sharply defined energy E,, they provide the complete description
of their common eigenvectors:

H|E,,a) = E,|E,,a), {AJ|E,,a) = a|E,,a)}. (3.113)

It follows from (3.102) that in the energy representation the dynamics of the
diagonal elements of the density operator D(t), D,, »(t) = (y,,|D(7)|¥,,), represent-
ing the population of state |i,,) in the ensemble, predicts:

ih%D"y"(T) = <‘//n|Hb(T) - ﬁ(T>I:I|lpn> = En<¢n|f)(f) - ﬁ(r)|‘//i1> =0. (31 14)

For its off-diagonal matrix element D, ,(t) = (,,|D(t)|{,), representing
coherences between states [,,,) and |,,) in the ensemble, one similarly finds:

d e o
lhEDm,ﬂ(T) = <lpm|HD(T) - D(T)H‘l//”>

= (En = E) W D()W,) G5
= (Em - En)Dmn T)
or
d i
—[InDy (7)) = — 7 (Em — Ep). (3.115b)
N ,
Therefore, in the stationary-state representation D, ,(t) = const. and
Dyp(%) = exp (_ = (En— E,1)7,-> Dy n(0). (3.116)

In the remaining part of this section we shall explore some physical implications
of the dynamical Schrodinger equation.
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3.6.2 Time Dependence of Expectation Values
and Ehrenfest Principle

Since the Schrodinger equation (3.94) is of the first order in ¢, the state |¥(¢)) at any
subsequent time ¢ > #y is uniquely determined given the initial state |W(zo)).
Therefore, there is no indeterminacy in the free evolution of quantum systems.
The irreversibility arises only in an act of measurement, which unpredictably
modifies the system state. Thus, between the two measurements the evolution of
quantum states is perfectly deterministic.

It also follows from the linear and homogeneous character of this equation that
its solutions are linearly superposable. More specifically, the linear combination
at the initial time |¥(19)) = C1|W¥1(to)) + Co|Wa(tp)) becomes |W(r)) =
Ci|¥1(®) + Co|¥2(2)) at t > 1y, so that the correspondence between |W(zy)) and
| (1)) is marked by preservation of the coefficients before their components during
time evolution. Another manifestation of this property is the conservation in time of
the ensemble probabilities (3.100).

Next, let us examine the time evolution of the mean (expectation) values of the
physical observables. As we have already observed in (3.88), the preservation in
time of the state normalization is assured by the unitary character of the time
evolution operator of (3.86). Thus, in the mean value of the physical quantity
A, which in general case may explicitly depend on time, A= A(t), only the explicit
time dependency of the wave function and that of the observable do matter, since
the implicit dependence through the coordinates (or momenta) has already been
eliminated by integration in the expectation value of (3.109). Using the relevant
Hilbert space expression and the Schrodinger equation (3.94) then gives:

d{P()A@NY (1) _ (g
dt dt

PO AP+ P OIA(170) ) + 0I5 P 0)

1

o OA R OA
=P OIAH]Y () +(F (1) | ¥ (1) == ([A.H]) + <5>-

(3.117)
Therefore, for the physical observables, which do not depend explicitly on time,

d{A)

= ([H,A]), (3.118)

St~

and hence the observable commuting with the Hamiltonian represents the system
constant of motion.

Consider the illustrative example of a motion in one dimension, in the potential
V(x), of the spinless particle described by the Hamiltonian H(x) = V (x) + pZ/2m.
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We first examine the time dependence of the particle average position (x). Using
(2.34) and (3.56) in the preceding equation gives:

LS]) = 3 (. 51) = 2 (i) + o Slp) = 22

. (3.119)

Therefore, the relation between the expectation values of the position and momen-
tum is the same as that between their classical analogs: v, = dx/dt = p,/m.

One similarly arrives at the second Newton’s law of classical dynamics,
dp./dt = F, = —dV(x)/dx, where F stands for the force acting on the particle, by
examining the time evolution of (p,):

) — 2 ip)) = V.0 = (n50) = () = ). G0

Accordingly, for the movement of a quantum particle in three dimensions, in the
potential V(r) generating the classical force field F(r) = —VV(r), one finds

dp) _ _
= —(VV) = (F). (3.121)

This correspondence between the quantum relations in terms of the expectation
(mean) values of physical quantities and the associated equations of classical
mechanics expresses the Ehrenfest principle of quantum mechanics. In any quan-
tum state |) the time dependencies of the expectation values of the position and
momentum operators are seen to follow the corresponding relations between the
associated classical quantities. This rule complements the related Correspondence
Principle of Bohr (see Chap. 1) that the quantum description becomes classical in
the limit of high energies and very large quantum numbers, when one can safely
neglect the finite value of the quantum of action: 7 — 0.

3.6.3 Probability Current and Continuity Equation

Let us again assume the system composed of a single (spinless) particle. In the
position representation, the state [y(f)) is represented by the normalized wave
function Y (r; ©) = (r|\(z)) which generates the probability density

p(rst) = W (r, ) = WO @) = @OROW@) = plrs1).  (3.122)

It directly follows from the Schrodinger equation (3.94) that the square of the norm
of the wave function, i.e., the integral of p(r, f) over the whole physical space,
remains constant in time and equal to 1 for the normalized quantum state. This does
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not imply, however, that p(r, t) is also locally conserved over time. Indeed, the
stream of probability may transport the particles from one region of space to
another. It is our goal in this section to establish the appropriate expression for
the local probability current.

It should be recalled that in the electromagnetism the charge (volume) density
p.i(r; 1) is linked to the flux of the vector current density J,,(r; f) through the local
continuity equation,

0
5%1("% 1) ==V - Ju(r), (3.123)

where the left-hand part of the equation expresses the net change of the density in
the fixed, infinitesimal volume around r, and the right-hand part represents the flux
across the surface, which defines this volume element. We are now searching for
an analogous equation expressing the local probability balance in the quantum
mechanics, i.e., the appropriate definition of the probability current j(r; ¢). The
negative divergence of this yet unknown vector will then measure the flux of
particles leaving the local volume element.
The system Hamiltonian in the position representation,

A, (3.124)

with the real potential V(r) for H(r) to be Hermitian, gives the dynamical
Schrodinger equation in the form:

h2

m@ﬂ;ﬁzvmwvm om

3 AY(r;1). (3.125)

Multiplying, from the left, both sides of this equation by ¥ (r; £), and of the complex
conjugate Schrodinger equation by Y/(r; ), subtracting the resulting equations and
dividing by ih then give:

oWl i
ot 2mi

WAy — YAy (3.126)

This equation can be then transformed into the continuity-type equation (3.123),

B o
P 1) ==V - j(r1), (3.127)

with the probability current
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Jri0) = S )V 0) — Y )V (r50)

1 ) (3.128)
= —Rely"(r;1) = V¥ (r;1)],

V= o [(0°) - () 4 (V) — (V) - (V) — p(V)]

hi
=—N'AYy — AYT].
S0 A = Ay
The form of the probability current (3.128) indicates that it is determined by the
expectation (mean) value in state [y(¢)) of the Hermitian operator

2 1

i(r) =5 Ir){rlp + plr)(r], (3.129)

which represents the symmetrized product of operators for the probability density,
p(r) = |r)(r|, and particle velocity, v = p/m. Indeed, such a product is also
associated with the physical meaning of the current density vector of a classical
fluid.

To conclude this section, let us express the complex wave function Y(r, ) in
terms of its (real) modulus R(r; f) and phase &(r; 1):

W(r,t) = R(r;t) exp[i®(r;1)]. (3.130)
It then directly follows from (3.122) and (3.128) that

p(r;t) =R*(r;t) and
3.131
e = LR v = provitemn. O

3.7 Heisenberg and Interaction Pictures of Quantum Dynamics

We conclude this short outline of the formal framework of quantum dynamics with
a summary of the relevant equations of motion in the H- and I-pictures of Sect. 3.5.
As we have already indicated in (3.89) the operators {AH} in the Heisenberg picture
generally depend on time, even if their analogs in the Schrodinger picture {Ag}
do not. However, for the conservative system, the Hamiltonian ﬂs of which does
not depend on time, and an observable Ag representing a constant of motion
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(commuting with Hy), the evolution operator U(r — #9) = U(t) of (3.97) commutes
with Ag so that

~ ~—1 PN ~—1 ~

An(t) =U (0)AsU(r) = U (1)U(1)Ag = Ag. (3.132)
The operators for such physical properties are thus equal in both dynamical
pictures, and in particular Hy = Hg.

For an arbitrary observable As(r) one finds using (3.96), its adjoint, and (3.89):

-1 o

%AH(‘E) =7 U (1)Ag(t)Hg(1)U(1) — G_I(T)ﬂs(f)As(f)U(T)}
o dAs(o) . (3.133)
+U (1) ; U(z).

Inserting next the unity factor U(r)ﬂ_l (t) = 1 between Hg and Ag in the first two
terms of the right hand side in the preceding equation finally gives

~ PR TN

L au(@) =2 { 107 A0 [0 As(r)0 (o)
0 OREUE] [0 @A)} + 07 0 P o
(3.134)
and hence
i Au) = . a4 in (£ A0) G139

It was Schrodinger who first discovered the dynamical equation bearing his
name. The subsequent Heisenberg picture has established the evolution of matrices
representing operators { Ay ()}, hence the name Matrix Mechanics (see Chap. 1), to
be later shown to be fully equivalent to the Schrodinger Wave Mechanics.

For the physical observables Ag, which do not depend explicitly on time, the last
term in (3.135) vanishes. Moreover, since the expectation value is invariant to the
unitary transformation linking the two pictures,

(A) = (Ws(0) [AsIWs(0)) = (Pl An(0) [ ¥n). (3.136)

Since in the last term only the operator depends on time
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dAH(t) |\IJH> — l <‘-PH| [AH(T)7 HH(T)]|1PH>
o - (3.137)

= 09SO [As, Bl I¥s(0) = £ ([, A

d
S (AW) = (P

where we have again recognized that commutators and expectation values are
invariants of the unitary transformation between the two pictures.

We have thus recovered (3.118) for the time evolution of expectation values in
the Schrodinger dynamics. Notice, however, that (3.135) is more general than
(3.118), providing the relation between operators, instead of their expectation
values. Indeed, an advantage of the Heisenberg picture is that it gives rise to
equations which are formally similar to those in classical mechanics. For example,
the Heisenberg picture generalization of the Ehrenfest principle relations of (3.119)
and (3.120) reads:

dxp(t) _ Py (t) and dp, (1) _ 8V():(H7t) ' (3.138)
dt m dt oXy

Finally, let us examine the equation of motion in the interaction picture introduced
in Sect. 3.5, with the unitary operator of (3.91), determined by the noninteracting
Hamiltonian Hy, now transforming the vectors and operators of the Schrodinger
picture into their interaction picture analogs. Substituting the reverse transformation
to that of (3.93),

W) =S ()| (1)) = exp(—%ﬁot) P, (1)), (3.139)

into the Schrodinger equation (3.94) gives the corresponding dynamical equation in
the I-picture:

ihdijll(t» = V,|¥(7)), (3.140a)

with the time evolution now governed by the transformed interaction part V of the
Hamiltonian (3.90):

V, =S(1)VS™ (t) = exp (%ﬁm)\?exp <— %ﬂm). (3.140b)

Therefore, in the interaction picture, the time dependence of operators (3.93)
reads:

Ae) = $(0AsS (1) = exp (%ﬁ0t>/&exp(_ %’ﬁot), (3.141)
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where the observable A = Ag is time independent. It can be also expressed by the
equivalent expression obtained by the differentiation with respect to time of the
preceding equation [see also (3.92a) and (3.92b)]:

ih%AI(t) = [As(r), Hp). (3.142)

Therefore, in the interaction picture both state vectors and operators are chang-
ing with time: the time evolution of the former is described by the Schrodinger-like
(3.140a) and (3.140b), while the latter evolve in time in accordance with the
Heisenberg-like (3.142). This form of quantum dynamics thus represents an inter-
mediate level between the Schrodinger and Heisenberg pictures in treating dynam-
ics of quantum objects. Operators depend on time as do operators in the Heisenberg
picture for the noninteracting physical system described by the noninteracting
Hamiltonian Hy, while the Schrodinger-like time dependence of the state vectors
(or wave functions) is determined solely by the interaction operator V..

References

Lowdin P-O (1955a) Phys Rev 97:1474
Lowdin P-O (1955b) Phys Rev 97:1490
McWeeny R (1989) Methods of molecular quantum mechanics. Academic, London



Chapter 4
Hydrogen-Like Atom

Abstract As an illustration of the basic principles of the Schrodinger wave mecha-
nics presented in the preceding chapter the bonded (stationary) states and the
corresponding energy levels of the one-electron (hydrogenic) atom are determined
analytically. First, the Hamiltonian of this rwo-particle, central-potential system is
separated into parts describing the free movement of the Center-of-Mass (CM) and
the internal motion of electron relative to nucleus, respectively. In the Cartesian
CM coordinates R = (X, Y, Z) the eigenstates of the CM problem are the plane
waves representing the common eigenvectors with the operator of the system
overall momentum P. The separation of the spherical coordinates R = (R, 0, ¢)
allows one to uniquely specify the spherical-waves of the CM motion as simulta-
neous eigenvectors of the compatible attributes of the CM angular momentum L,
viz., the square of its length (L2) and the selected coordinate (L,), thus express-
ing them as products of the associated spherical harmonic (angular part) and the
spherical Bessel function (radial part). The analogous separation of the internal
spherical coordinates r = (r, ¥, @) expresses the eigenvectors (orbitals) of the
relative-motion Hamiltonian as products of the angular functions representing the
simultaneous eigenfunctions of the compatible (commuting) observables /> and I
associated with the electron orbital angular momentum , called the orbital spherical
harmonics (the associated Legendre polynomials), and the corresponding radial
functions (the Laguerre polynomials). Selected properties of these stationary states
and the atomic shell structure they determine are discussed, the relation to Bohr’s
model of the Old Quantum Theory is examined and the system of atomic units
(a.u.), convenient in molecular applications, is introduced.

4.1 Separation of Hamiltonian and Center-or-Mass Motion

The hydrogen-like atom consists of an electron of mass m, in position r,, which
exhibits the elementary negative charge —e, moving around the positively charged
nucleus +Ze of mass M,, in position R,,. It represents one of the very few prototype

R.F. Nalewajski, Perspectives in Electronic Structure Theory, 93
DOI 10.1007/978-3-642-20180-6_4, © Springer-Verlag Berlin Heidelberg 2012
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systems, the stationary states of which can be determined analytically by solving
the associated eigenvalue problem of the system Coulombic Hamiltonian.

It is convenient to separate the movement of the Center-of-Mass (CM) of this
two-particle system, M = m, + M, with the coordinates R = (m.r, + M,R,)/M
and momentum P = p, + P,, where p, and P, denote the momenta of its two
constituent parts, from the internal motion described by the electron position rela-
tive to nucleus, r = r, — R,,, and the associated relative momentum p = (M,p, —
m.P,)/IM = ur = p,, where the system reduced mass ¢ = m,M,/M = m,, due to
the dominant mass of the heavy nucleus. This allows one to separate the
contributions due to these two sets of coordinates/momenta in the classical Hamil-
tonian function combining the kinetic energies of individual particles and the
potential energy due to their Coulomb interaction, V(r) = —e?/r, which depends
only on the interparticle distance r = Irl:

1, 1, ¢
H(revpeaRnaPn):zm pe+2M n_7
e " (4.1)
1 1
=—P 4 |—p* V()| =Hcm(P) + h
s |5 - V0| = Hewl®) + hipn)

It should be observed that the CM movement is free (there is no potential of forces
acting on CM in Hcy) so that P is conserved in time.

These additive contributions to the classical Hamiltonian function give rise
to the corresponding energy operators in the position representation [see (3.35)
and (3.37)]:

H(R,r) = PR, [‘52(” + V(r)} = ;—f;AR + [;—fA + v(r)}

Here, the separate Hamiltonians Hey (R) and h(r), respectively, denote the energy
operators of the free movement of CM and of the relative motion of the electron in
the field of its nuclear attractor.

Therefore, the stationary Schrodinger equation (3.104)

H(R,r)®(R,r) = EQ(R,r), (4.3a)
where the amplitude wave function is given by the product
O(R,r) = FPem(R)Y(r) (4.3b)

which separates the two sets of coordinates, reduces into two simpler eigenvalue
problems for the two additive energy components:

Hem(R)Pom(R) = EcuPem(R)  and  h(r)y(r) = ey (r). (4.4)
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The system total energy is then given by the sum of their eigenvalues,
E=Ecm +¢, (4.3¢)

measuring the sharply defined kinetic energy Ecy of the free motion of the system
as a whole, and the internal energy ¢ of the relative motion of electron around
nucleus.

Obviously, in the Cartesian coordinate system R = (X, Y, Z) the kinetic energy
operator Hey(R) commutes with the system overall momentum operator P(R),
since the square of an operator commutes with the operator itself. Therefore, the
solutions of the first of these two Schrodinger equations can be sought as
eigenfunctions of f’(R), i.e., as the states corresponding to the sharply specified
momentum, represented by the plane waves of (2.76):

Yem(R) = (2nh) > exp(iK -R), K =P/h, Ecy =K>/2M).  (4.5)

Indeed, operators ﬂCM and P constitute one of the complete sets of observables for
the free motion of this CM “particle,” with their common eigensolutions
thus providing the full description of this global movement state in quantum
mechanics.

4.2 Free Motion in Spherical Coordinates

The alternative set of the complete set of observables commuting with Hey (R)
involves the compatible pair of f operators assocmted with the system overall angular
momentum L = R X P, say L~ and Lz, [L LZ] = 0 [see (3.71)], which can also
be shown to commute with the CM Hamiltonian:

IL*, Hem] = [Lz, Hem] = 0. (4.6)

Expressing L = |LI in terms of the lengths of the two defining vectors and the angle
o between them gives:

L[> = (RP sina)® = R2P*[1 — (cos@)’] = R2P2 — (R - P)* = R2(P* — Px?), (4.7)

where Pgr = (R/R)-P = eg-P measures the radial component of the total momen-
tum P, i.e., its projection onto the unit vector eg = R/R. It can then be verified that
the kinetic energy of the CM

1 1 1
Hem(P) = —P> = —P2 +

L. 4,
M oM™ R 2MR? 4.8)




96 4 Hydrogen-Like Atom

Let us further recall that all quantum mechanical observables must be Hermitian.
Therefore, as the momentum operator does not commute with eg [see (3.56)],
in forming the quantum operator corresponding to Pg, one has to symmetrize the
defining product, Py = Y2(eg-P + P-eg), which assures the Hermitian character of
the associated operator for the radial component of the overall momentum in the
position representation:

7
Pr(R) = Llex - P(R) + P(R) - ex) = — ’5 (er Ve +Vg-er). (49

The first part in parentheses measures the component of 13(R ) in direction R, which
in the spherical coordinates R = (R, 0, ¢) amounts to the radial differentiation
operator

R R
. 9 zOR 0 0

PR)=—-i—- 5 =—ih— w5 =—ih—. 4.1
e POR)=—ihp o~ "ok ok~ "ok (*-10)
Therefore, the action of P¢(R) on the continuous function f(R) gives:
s . i (Of : S (Of S
PRf = *E (ﬁ‘i’elg : VRf +va '€R> = lh<ﬁ+ﬁ
10
= —ihi= =R 4.11
(! 2)s an
thus identifying the radial momentum operator
. 1 0
Pr(R) = —ifi— —=R. 4.12
R(R) = —ihg =0 (4.12)

To summarize, in the adopted spherical coordinates the CM Hamiltonian, which
represents in quantum mechanics the physical quantity of (4.8) reads:

A —i 1o 1

Using next the explicit form of the Laplacian in spherical coordinates,

1o N\ 1[1 8 B 1 o
S v/ i P P _ _
Ar = Vi = (R 8RR> TR [sine a0 (Slnoaf)) T in20 a¢2}’ (14

one identifies

206 — 2] 2 (Gnpl) L 9
L(0.¢) =4 Line a0 (Slnoa(a) *5in?0 92| (5:49)
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In addition, by a straightforward chain-rule transformation of derivatives in (3.70),
one finds:

Ly(¢) = —ih%. (4.16)

Therefore, it directly follows from (4.13) and (4.15) that the first commutation
relation of (4.6) indeed holds, {I:z, I:ICM} =0, since L2 commutes with itself and

does not act on the radial coordinate R, thus also commuting with the first, radial
part of I:ICM(R, 0,¢). The second commutation relation of (4.6) directly follows
from the commutation relations between observables representing the Cartesian
components of L [see (2.34)]:

A2~ A2 A2 a2 A2 a2 A2 A2
[L°,Lz] = [LX +Ly +LZvLZ] = [Lx + LYaLZ] = [LX’LZ] + [LvaZ]
= Lx[Lx, Lz] + [Lx,Lz]Lx + Ly[Ly,Lz] + [Ly, Lz]Ly
= —ih(LxLy + LyLx) + ii(LyLy + LyLy) = 0, (4.17)
where we have used the elementary commutators of (3.71):
[£X7£Z] = —ihﬁy and [ﬁy,ﬁz] = lhix
It thus follows from (4.6) that the eigenfunctions W(R,0,¢) of Hem(R,0, )
should also satisfy the following simultaneous eigenvalue problems:
Hom(R,0,9)¥(R.0,¢) = Ecm¥(R.0,¢), Ecw = I°K*/(2M);
0,$)¥(R,0,¢) =L*¥(R,0,¢) and

7(P)V(R,0,¢) = L; ¥ (R,0, ). (4.18)

Hence, these common eigenfunctions can be written as products of the radial factor
fxi(R) and one of the angular momentum eigenfunctions {Y}"(0, ¢)}, called the
spherical harmonics,

Yem(R,0,¢) = fx(R)Y]"(0, ¢). (4.19a)

The latter represent the common eigenfunctions of the two compatible angular
momentum observables:

L*(0,)Y](0,0) = I(1 + DIPY]'(0,4), 1=0,1,2,...,
Lz ()Y (0, ) = mh Y™ (0, ), m=—1,—1+1,....,1—1,1, (4.20)

where the integral quantum numbers / and m determine the allowed spectrum of
these physical quantities: L* = I(/ + 1)4* and L, = mh.
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Inserting the product function of (4.19a) into the Schrodinger equation (4.18) for
the CM motion gives the following radial equation for fx ,(R):

1 a2 (I+1

where we have used the identity

1 2 @
Tdpy_1d . (4.22)
R dR R dR?

Upon substituting z = KR, this differential equation is transformed into the spheri-
cal Bessel equation,

deK_’[(Z) % de’/(Z) + 1 — l(l + 1)
dz? z dz z2

}fm(z) =0, (4.23)

the regular solutions of which define the spherical Bessel functions:

i(kR) = (- 5)1(1 d )]jo(KR% jo(kr) = SMER) o

K)\R dR KR

satisfying the following orthogonality relation for the continuous spectrum of K:

J Ji(KR)jy (K'R) R*dR = %5(1{ — K)oy (4.25)
0

To summarize, it is natural in the spherical coordinate system to specify the
stationary states of the free motion of the CM in the hydrogen-like atom as product
of the spherical Bessel function and the spherical harmonic:

Weu(R,0,0) = jI(KR)YT(0, ). (4.19b)

4.3 Eigenfunctions of Angular Momentum Operators

The spherical harmonics can be similarly factorized into eigenfunction of I:Z(qb)

@, (¢) = (2n) " exp(im ¢), (4.26)
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and the remaining factor ®7'(0):

Y7'(0,¢) = ©]'(0)Pn(4)- 4.27)

Substituzting this expression into (4.20) and using the explicit form (4.15) of the
operator L™ (0, ¢) then give the following differential equation for ®}"(0):

1 9. 000 o
sir1080<sm0 a0 >+[1(1+1)—Sm29 0}'(0) = 0. (4.28)

The subsequent substitution —1 < x = cos < 1 then transforms the previous
equation into a more familiar form of the differential equation defining the
associated Legendre polynomials,

i[(l—xz)%}—k[l(lﬁ-l) " }®"’( )=0. (429

dx 1 —x2

For m = 0 it reduces to the differential equation defining the Legendre polynomials
of order 1, ®)(x) = P(x),

d > dPl(x)
dx [(1 —x) dx

} + (14 1)Py(x) =0. (4.30)

Its solutions can be written in the compact (Rodrigues) form:

1 d

o dx’( -1 (4.31)

P [()C)
The remaining associated Legendre polynomials of degree / and order Iml < I,

@ (x) = N,,,P\"(x), which satisfy (4.28) for m # 0, can then be obtained from
these polynomials by repeated differentiations with respect to x:

mly2d"™ Py (x) .

Ty (4.32)

P (@) = (=1)"(1 =)
The normalization constant N, reflecting the proportionality between ®]"(x) and
P!"(x) is to be determined from the following condition:

1

1/2
Q21+ 1)(1— |m)!] )

m 2, _ —
J (OF'(x))dx=1= Ny, = [ ESTN

-1
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The spherical harmonics {Y}"(6, ¢) = Y"(Q)} satisfy the usual orthonormality
conditions,

T 2n
Jsin 0db J dopY! (0,9)Yr(0,¢) = Jy,m* (Q) Y1 (Q)dQ = 01 p0ppe, (4.34)
0 0

involving the integration over the whole range of 4 steradians of the solid angle Q,
i.e., over all possible directions of the unit vector in the physical space:

n 2n 1 2n
Jsin@dﬁjddb: JdcosGquﬁ:JdQ:4n. (4.35)
0 0 ~1 0

They are automatically satisfied when the two factors in (4.27) are chosen to obey
the associated partial relations:

n 2n
Jsin 0d0O"(0)@(0) = 8, and J dp ()P ($) = Sy (4.36)
0 0

Clearly, the same type of spherical functions describes the eigenstates of
the internal (orbital) angular momentum I = r X p, associated with the relative
motion of electron around the atomic nucleus. The corresponding internal spherical
harmonics now depend on the angular coordinates specifying the direction of the
relative position vector r = (r, 1, ) of the system electron,

Y/'(0, ¢) = 07 (9) Q) (4.37)

and satisfy the associated eigenvalue problems of the compatible operators of the
orbital angular momentum of (3.70) and (3.71):

(0, 0) Ym0, 0) = I+ DI2Y"(9,0), 1=0,1,2,...,
L()Y"(0, ) = mh Y™ (9, ), m=—l,—l+1,....0—1,I, (438)

The associated commutation relations are given by (3.71) and those involving
the internal Hamiltonian h(r) = h(r, 9, ¢):

1°,h] = [i.,h] =0, (4.39)
where in full analogy to (4.13)
2

. —h 1 . 1 2
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here, the operator of the radial component of the orbital momentum [see (4.12)],

p,(r) = —ihl 2r, (4.41)

and the operators of the orbital angular momentum in the spherical coordinates of
the system electron read [see (4.15) and (4.16)]:

2o o= |- (nol) 1L ] i =il
1 (Y, ¢)=—nh [Sinﬁ&ﬁ(smﬁaﬁ)—&—smzﬂ 82| L(¢) = zh&p. (4.42)

It thus follows from (4.39) that the eigenfunctions of the internal Schrodinger
equation (4.4) can be factorized in the form analogous to that in (4.19a):

Vonim(r, 0, 0) = Ry (r)Y]"(9, ). (4.43)

These functions represent the simultaneous eigenstates of the associated three
(internal) commuting observables:

ﬁ(ra v, @)%,z,m(r, U, ) = gn‘rbn.,l,m(ra 9, )
12(197 @)wn,l‘m("a 197 90) = l(l + 1)7121%1’1‘,"(1‘, 193 90)5 l= 07 17 27 R

L)W (.0, 0) = mh, ,(r, 9, 0), m=—l,—1+1,...,0—1,l
(4.44)

4.4 Radial Eigenfunctions and Energy Levels

To obtain the radial functions {R,, ()} and the admissible energy levels {¢,} of the
bonded, stationary states of the internal motions of the electron around the nucleus
in the hydrogen-like atom, when ¢, < 0, one substitutes the product function of
(4.43) into the first eigenvalue problem of the preceding equation. This gives the
radial Schrodinger equation in the form [compare (4.21)]:

(1 d* RUl+1)  zZé?
|: (; W") —+ W - T + |8n| Rn,](r) = 0 (445)

_2u

It can be subsequently simplified by the substitution U, (r) = R, (r) and by
the introduction of the redefined coefficients in this differential equation: the
energy parameter k,” = 2yle,l/i%, the energy-scaled (dimensionless) radial dis-
tance p, = 2k,r, and a reduced measure of the nuclear charge {, = Z/(x,ay),
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where ay = hz/(,uez) = 0.5292 x 107'° m denotes the radius of the first Bohr’s
orbit in the hydrogen atom,

d*U,,(p,) 1(1+1 a1
dplgp ) o ( p2 )Un,l(pn) + (i_ - Z) Un,l(pn) =0. (446)

In the asymptotic region of very large distances p,, — oo it thus reduces to a
simple differential equation

2
d Un‘,l(pn) — Uﬂ.l(pn)’ pn — 00, (4‘47)

dp? 4

the general solution of which reads: U, (p,) ~ Aexp(—p,/2) + Bexp(p,/2), where
A and B are integration constants. For this radial function to be finite in this limit
B =0, so that U, (p,) ~ Aexp(—p,/2) (p, — 00).

In the other extreme region of p,, — 0 the radial equation (4.46) becomes

dUnilp,) _ UL+ 1)
ol — Uni(p,), 0. 4.48
dp,% P% 7l(pn) Pn — ( )

Inserting into the preceding equation the trial function U,, /(p,) = pné then gives the
following quadratic equation for the critical exponent ¢:

thus predicting the general solution near the nucleus in the form U, (p,,) ~ A’ p,f’ +
B'p,/*'. The well-behaving (finite) solution thus results only for A’ = 0:
Unipn) ~B'p,*" (pu — 0).

The above analysis suggests the following general form of the radial wave
function,

U"J(pn) = exp(_pn/z)pnl+lv(pn)v (4503_)

which automatically guarantees the correct behavior in both these asymptotic
regions, including the additional (finite) factor V(p,,) defined by the power series:

Vip,) = aip),. (4.50b)
i=0

Its substitution into (4.46) gives the following differential equation for determining
this unknown radial factor:

2

FRIE2-p) - (1= L)V =0 @S

Pn>5>5
dp? dp,
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As V(p,) represents the power series this differential equation effectively deter-
mines the (energy dependent) recursive relation between the coefficients {a;}.
Indeed, the left-hand side of this equation also constitutes the power series which
vanishes only when coefficients at all powers of p, are simultaneously equal to
zero. This requirement generates the following recursion relation between the
neighboring coefficients in (4.50b) for the representative term p,,‘:

ax  (k+1D)(k+20+2) (4.52)

This power series thus begins with the constant term ¢y # 0 and it must terminate at

some finite maximum power. Indeed, if it failed to do so, in the limit of very large

values of £, i.e., k — 00, aiy1/a; — 1/k, which is characteristic of the power series
o0

expansion of the function exp(p,) = >_ 4 p}. Thus, should the power series in

(4.50Db) fail to terminate, the radial wa'vie0 function U, ,(p,) would become infinite
(ill-behaved) at p,, — oo, diverging as exp(p,/2).

Therefore, the truncation of this series into the polynomial is the crucial require-
ment for the radial wave function to well behave at large distances. A reference
to (4.52) shows that the series will indeed become the polynomial of degree k = j
when a;,,/a; = 0, which takes place only for

GHi+1)=n=¢, or n?={72=27%(ka?) = 221/ (2ule,|ag®). (4.53)

As, by definition, j is a non-negative integer and / = 0, 1,... [see (4.44)], the
principal quantum number n, which identifies the electronic “shells,” must also be a
positive integer n = 1, 2, .. .. It is subject to the restriction n > [, since the degree
of the polynomial after which the series expansion terminatesj = n — (I + 1) > 0,
V(p,) = V,.(p,), so that there are n values of the angular momentum quantum
number / consistent with the givenn: [ =0, 1,...,n — 1.

To summarize, the radial wave function of the internal states of the one-electron
atom reads:

n—I—1

Un,l(pn) :An,/exp(_pn/z)pnprlVn.,l(pn) :An,lexp(_pn/z)pnl+1 Z aipf1’ (4.54)
i=0

where A, stands for the appropriate normalization constant. The polynomials
Vui(pn), the solutions of the differential equation (4.51), are known as the
associated Laguerre polynomials:

N G Vi (Gt U

Va =L = :
#Pn) = Lotz () Z; Mn—1—1— )2+ 1+

(4.55)

=
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Again, the associated Laguerre polynomials L] (p,) of degree p and order ¢, are
compactly represented by the following formulas of Rodrigues in terms of the
Laguerre polynomials Ly(p,,) of degree p:

_ &

LI=(p,) = Ly(p,) = exp(p,) i [0 exp(—p,)], (4.56)
q d‘I

Lg(pn) = (_1) d—pZL(I-FP(pn) (457)

Thus, the condition of the well-behaved wave function at infinity gives rise to a

quantization of the internal energy ¢, = —le,| of electron in the hydrogen-like atom:
7* (et 7% (mee*\  7* 77
len| = oy <h2) =50 < pu; ) = 2—nzhartrees = n—zrydbergs, (4.58)

1 hartree = 2 rydbers = 2|gy| = 27.21161 eV = 4359814 x 1078 J,  (4.59)

where we have introduced two popular units of energy used in atomic and mole-
cular physics. For Z = 1 this energy spectrum reproduces that following from the
historically first quantum model of the hydrogen atom proposed by Bohr in the Old
Quantum Theory. One also observes that the scaling factor x, = Z/(nagy) of
the radial distance p,, is shell-specific.

4.5 Orbital Degeneracy and Electron Distribution

The energy spectrum of (4.58) becomes very dense for large values of the principal
quantum number, with ¢,, = 0, and becomes continuous for the nonbonded (scat-
tering) states, for ¢ > 0, when the electron can exhibit the infinite separation from
the nucleus. Therefore, such energy-continuum states of the hydrogen-like atom
describe the ionization processes, involving a removal of the system electron.

The wave functions of (4.43) define the admissible (linearly independent)
bonded states of electron in the hydrogen-like atom. Since the value of the allowed
internal energy of (4.58) depends solely on the principal quantum number n
the number of combinations of the remaining quantum numbers, the secondary
(orbital) quantum number / and magnetic (azimuthal) quantum number m, which
are consistent with the given value of n, determines the system overall orbital
degeneracy. For each value of the quantum number associated with the length of
the orbital angular momentum, / = 0, 1,...,n — 1, which identifies specific atomic
“subshells,” there are 2/ + 1 admissible values of the azimuthal quantum number
m (4.44) determining the spatial orientation of the angular momentum vector
(Fig. 1.2). Hence, the total orbital degeneracy g, of the given eigenvalue ¢, in


http://dx.doi.org/10.1007/978-3-642-20180-6_1#Fig2

4.5 Orbital Degeneracy and Electron Distribution 105

hydrogen-like atom, i.e., the number of independent stationary (bonded) electronic
states belonging to this energy level:

n—1

gn= (2+1)=n (4.60)
=0

This orbital-degeneracy is doubled if the two spin states of an electron, a(a) or (a),
depending on the discrete spin variable ¢ = (—', /2), are taken into account, as
each Atomic Orbital (AO) ¥, ;,,(r,7,¢) can be combined with any of these spin
functions into the correspondihg Spin Orbitals (SOs)

lprtl,m (’Aa v, ¢, G) = l/jn.l,m(ra v, 90)“(0-)

. 4.61
V(9. 0.0) = (7, 9. ) B(0) @.o

lp;[m(r, 9, ¢, 0) = {

Hence, in hydrogen-like atom all energy levels with n > 1 exhibit some orbital
degeneracy, while the ground 1s state,

3

7\ 12
lﬁho,o(”,ﬁ,@):(ﬁ) exp(—Zr/ap), (4.62)

0

exhibits only the double spin degeneracy.

The appearance of the degenerate quantum states can be often ascribed to
some apparent symmetry in the physical system. For example, the degeneracy
with respect to the magnetic quantum number m reflects the central potential
feature of the one-electron atom. It originates from the absence of the preferred
spatial direction and hence from the invariance with regard to rigid rotations
about the origin. The degeneracy of states corresponding to different values of /
consistent with the given »n is peculiar to the Coulomb potential. Any departure
from the strict 1/r dependence, e.g., in many-electron atoms, will remove this
(“accidental”) degeneracy.

The atomic orbitals of (4.43) are complex for m # 0, because of the @,,(p)
factor in Y7*(9, ) (4.37), with only m = 0 functions,

lpn,0,0(r) = ns, lpn,l,O(rﬂ ?9) = np:, lrbn.2,0(ra 19) = ndzzv etc., (463)

which do not depend on the spherical angle , are automatically real. However, one
can always transform the pair of the complex—conjugate orbital factors ®@,,(¢) =
®* (p) for m > 0 into two real combinations by extracting their real and imagi-
nary parts:

Re[®,, ()] = 5 [@u(p) + P_n(p)] = cos(mp),

Im[(I)m(go)] = [(I)m(ga) - (Dfm(@)] = sin(m<p). (4.64)

2] = 121 =
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Since such real combinations involve functions with the same length of the angular
momentum, this physical quantity still remains sharply specified in these combined
states. However, the real orbitals are no longer eigenfunctions of the z-component
of the angular momentum, as they combine functions with different eigenvalues of
this observable. Therefore, in a single measurement of /., one has probability 2 of
observing either /I, = mh or I, = —mh and hence (/) =0 in such linear
combinations ¥/, ; ., of the complex orbitals 1, ; .

The AO parity, i.e., the symmetry (g) or antisymmetry (i) property of W, 1m With
respect to the inversion operator i, which reverses the internal Cartesian
coordinates, i(x,y,z) = (—x, —y, —z), is determined solely by the associated prop-
erty of the spherical harmonic factor Y7*(¥, ¢), since such operation of reversing
directions of the coordinate system does not affect the radial distance r. Indeed, in
the spherical coordinates i(r, 9, ¢) = (r,m — 9, ¢ + 7) and hence the action of i on
D, (p) gives:

i exp(img) = [exp(in)]" exp(imp) = (—1)" exp(imy). (4.65)

Thus, the magnetic quantum number m itself determines the parity of @,,(¢), which
is symmetric (g) [antisymmetric (#)] with respect to inversion for the even (odd)
values of m.

Next, let us examine the parity of the other, ¥-dependent part of the angular
function, ©/"(x) = N,,P\"!(x), x = cos®. Since icos® = cos(m — 1) = — cos )
and the associated Legendre polynomial of degree / and order m, P‘[m‘ (), is obtained
by differentiating (/ + Iml)-times the even function (x> — 1)’ of the argument x in
(4.31) and (4.32), the action of the inversion operation on this angular factor of the
wave function gives:

iP‘,m‘(cos 9) = (—l)lﬂm‘ exp(imgp)P‘lm‘(cos 9). (4.66)

It thus follows from the preceding two equations that the overall parity of the
angular function is determined by the parity of the orbital quantum number /:

Y70, 0) = (=), ) = (=179, ). (4.67)

Atomic orbitals posses a number of nodal surfaces on which ,,;, =0, as
indeed required to satisfy the orthogonality relations, which guarantee the linear
independence of AO. For this purpose it is customary to examine the spatial
properties of the real AO (4.64),

cos(myp)
sin(mp)
a b ¢

=Ry ()Y 7, (4.68)

l//n,/,im(ra 197 <P) X },l eXp(K,ﬂ‘)LiEll (ZKVIF)P?I(COS 19) {
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e.gy Yy = {”Pm’lpy}a Vips1 = {”dxzv”dyz}’> Voo = {ndy,nda_y}, etc.
The angular functions Yf"’y " of the real AO are simple functions of the respective
integer powers {a, b, ¢} of the electron Cartesian coordinates, which are indicated
in their symbolic notation.

By examining the individual factors in the preceding expression, one first
realizes that there are / — m values of ¥ for which P}’(cos®)) vanishes and the
real/imaginary parts of (4.64) vanish at m values of the azimuth. Moreover, the
associated Laguerre polynomial vanishes at n — [ — 1 values of r; for [ # 0
the radial factor # has also the “node” at r = 0. Hence, disregarding the latter,
the total number of nodal surfaces in AO at finite distances is n — 1, including
n — | — 1 radial and / angular surfaces.

It thus follows from these considerations that only the / = n — 1 AO, e.g., 1s,
2p, 3d, 4f, etc., have zero radial nodal-surfaces, thus exhibiting only one maximum
in their radial probability density, which is customarily used to represent the dis-
tribution of electrons in atoms. More specifically, using the probability density of
finding the electron at point r = (r, 9, ) = (r, Q),

Pt (70, 0) = Wy, 9, 0) P = R2,(1) Y7 (9, 0), (4.69)

one finds from (4.34) the associated radial probability of locating the electron in the
infinitesimal radial range, between the concentric spheres of radii » and r + dr,

P (r,dr) = rzRiJ(r) dr J |Y1'"(Q)|2dQ = rzRiJ(r) dr, (4.70)

where we have recognized the angular normalization of (4.34). Hence, the radial

probability density reads:

dP(r,dr)
dr

p;;‘fld‘ (r) = rzRiJ(r). 4.71)

For example, for the ground state of the hydrogen-like atom (4.62), for which
R1o (r) o< exp(—Zr/ap) and hence p’]“g (r) o< r* exp(—2Zr/ap), the maximum of
the radial distribution is observed at r,,,, (Z) = ap/Z. This radial probability density

also predicts the following average values of r and r*:
ao

(r(2)) = Tm’fg-(r)dr = 4(5)3
0

where we have used the typical integral [ y"exp(—by)dy = n!/b"!. Hence, the
0

square of the dispersion o, in the radial distance of this one-electron atom reads:
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2
i = (A(2)) - (r2))* :Z(%) or o = (?) (“Z_") (4.74)

Therefore, in the hydrogen atom the maximum radial probability is found at
Fmax(Z = 1) = aq as already predicted by Bohr. It should be emphasized, however,
that the latter model has invoked the classical (“flat”) planetary picture of the
electron movements around the nucleus, while the quantum-mechanical perspec-
tive predicts the correct spherical distribution of the electron probability density
around the nucleus.

The radial densities for the remaining AO in this prototype atomic system are well
known and available in practically every textbook of quantum chemistry or elemen-
tary quantum mechanics. Let us only recall here that with the increasing principal
quantum number n = 1, 2, 3, which determines the successive electronic shells, the
average distance from the nucleus increases. The atomic subshells, identified by the
alternative values of the orbital quantum number / consistent with the given principal
quantum number 7, exhibit the decreasing trend with increasing / in their most
probable and average distances from the nucleus, e.g., (rs;) <<r3,,><<r3s>. This
observation reflects the intervention of the orthogonality constraints with respect to
the stationary states exhibiting the same symmetry and lower energy, for which the
electron is on average distributed closer to the nucleus. These requirements effectively
shift the probability of the outer subshells away from the nucleus. Indeed, the 3s
orbital must be orthogonal to both 1s and 2s states, the 3p state is only constrained by
its orthogonality to the 2p subshell, while 3d orbital has no lower-lying analog.
Therefore, in the given electronic shell n, the / = n — 1 and / = 0 subshells always
exhibit the minimum and maximum average distance from the nucleus, respectively.

These prototype analytical solutions for the one-electron atom can be also regarded
as determining a general pattern of the shell structures in N-electron atoms (N > 1), in
which electrons, occupying N lowest SO, are moving in the effective potential due to
the nucleus and the remaining electrons. As this effective attraction by the “screened”
nucleus is then no longer of the 1/ type, the accidental degeneracy of the hydrogen-
like atom is lifted and the subshell energies in many-electron atoms depend on both n
and /, ¢ = ¢,,;. In such atomic systems the configuration of the outer-most (most
polarizable) valence shell electrons is decisive for determining the atom propensity to
form chemical bonds with other atoms. In such bond-forming processes the
distributions of the inner-shell electrons remain practically unaffected (“frozen”).

It should be finally observed that these “exact” solutions of the Schrodinger
equation for the one-electron atom, also determining the gross features of the elec-
tronic structure of many-electron systems, still require several corrections which
must be taken into account to relate theoretical predictions to the experimental data.
For example, corrections are due to the coupling between the spin and orbital
angular momenta and the high speed of the electron, which call for the relativistic
approach, the hyperfine structural effects reflect the magnetic properties of the
nucleus, and the Lamb shift accounts for the interaction between the electron and
electromagnetic field.
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4.6 Atomic Units

When describing objects and processes in the atomic scale, it is convenient to use
the system of atomic units (a.u.), which greatly simplify equations and expressions
in molecular quantum mechanics [see (4.58), (4.72), (4.73)]. For example, the
proportionality constant in the Coulomb Law determining the potential V(r) of
(4.1), ke = (4mep) ", where &, stands for the electric permittivity of the free space,
becomes unity in a.u., kc = 1 a.u. so that V(r) = —kCZez/r = —Zez/r = —Z/r
(a.u.), where we have recognized that the magnitude of the electronic charge
(proton charge) determines in a.u. the unit of electric charge: ¢ = 1. Thus the a.u.
of electric permittivity equals 47e,, or the vacuum permittivity &, = (47)"" a.u.

This system will be used in the remaining part of the book, unless specified
otherwise. It is based upon the underlying units of length, mass, time, and electric
charge, which subsequently determine the associated units of the remaining physi-
cal quantities, e.g., energy, physical action, angular momentum, etc. Some of these
units are summarized in Table 4.1, where the expressions in terms of the universal
constants and corresponding values in the Systeme International d’ Unités (SI) are
also given.

Table 4.1 Atomic units

Property Unit Symbol SI value
Action and angular ~ Planck’s constant h 1.0546 x 1073 7Js
momentum
Electric charge Charge of proton e 1.6022 x 107 C
Electric permittivity —4me, E/(E,, ap) 1.1127 x 107 Fm™!
Energy Hartree, double magnitude E;, = k¢ lag 43598 x 107187
of the ground-state = kczmé, et
energy of hydrogen
atom for u = m,, i.e.,
M, — oo
ke Constant in Coulomb ke = Ej aole® 8.9875 x 10° Jm C~2
Law
Length The first Bohr’s radius ag = hz/(kc meez) 5.2918 x 107 %m
Mass Rest mass of electron m, 9.1095 x 10" kg
Probability density apy”> 6.7483 x 10°°m~3
Time Time in which one To = aplvo 24189 x 1077 s
electron on the first = IB/(kPm et
Bohr’s orbit travels
the angle distance
of 1 radian
Velocity Speed of electron on Vo = aplTg 2.1877 x 10°m s~!
the first Bohr’s orbit = hf(m.ag)

= ke &h
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Chapter 5
Approximating Molecular Schrodinger Equation

Abstract Theoretical basis of the approximate perturbational and variational
approaches in quantum chemistry is outlined and the adiabatic separation of the
fast (electronic) motions from slow (nuclear) movements in molecular systems is
established. The rudiments of the Ritz method, a linear variant of the variational
treatment, are summarized and the criteria for an effective mixing of quantum states
are formulated. The illustrative applications of the perturbative and variational
methods to helium atom are discussed and compared. The elements of the orbital
approximation of the many-electron wave functions are introduced and selected
properties of the Slater determinant, defined by the antisymmetrized product of the
occupied spin orbitals, are examined in the context of the Pauli exclusion principle.
The relevant expression for the expectation value of the electronic energy in orbital
theories is derived and the Slater—Condon rules for matrix elements of the elec-
tronic Hamiltonian between determinantal wave functions are given. The additional
possibilities of reducing the complexity of the molecular electronic Schrodinger
equation by using the pseudopotentials are briefly outlined. These core potentials
reflect a resultant influence of the “frozen” (chemically inactive) inner-shell elec-
trons and the system nuclei in the effective Schrodinger equation for the (chemi-
cally active) valence shell electrons of constituent atoms, coordinates of which are
treated explicitly in the approximate wave functions.

5.1 Rudiments of Perturbational and Variational Approaches

The stationary (time-independent) Schrodinger equation, i.e., the eigenvalue prob-
lem of the system Hamiltonian, can be solved analytically only for simple model
systems. The quantum mechanical determination of the electronic structure of
molecules, and particularly the complicated systems of interest in contemporary
chemistry, requires adequate approximate methods of sufficient accuracy. In recent
decades a remarkable progress of applying quantum mechanics to diverse problems
in physics, chemistry, and molecular biology was possible due to spectacular

R.F. Nalewajski, Perspectives in Electronic Structure Theory, 113
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developments in the approximate theories of molecular electronic structure, cover-
ing original and sometimes ingenious new concepts and efficient algorithms, as
well as a steadily increasing capability of modern computers and new software
techniques of the advanced computational tools of modern quantum chemistry and
solid state physics.

It is the main purpose of this chapter to summarize the main strategies used in
reducing the complexity of the molecular Schrodinger equation and approximating
its electronic wave function. It is intended to provide an overview of the successive
levels of reducing the immense computational complexity of treating the coupled
N-electron and m-nuclei problem of the molecular quantum mechanics. These
perturbational and variational methods use the adiabatic, Born—Oppenheimer
(BO) separation of the electronic and nuclear motions in molecules, as well as the
orbital (Slater determinant) approximation of the trial N-electron wave functions,
which automatically satisfy the requirements of the Pauli exclusion principle.

5.1.1 Perturbation Theory

It is the often encountered scenario in quantum theory that we have to estimate
solutions of the Schrodinger equation for a more complicated (perturbed) real
system from the known solutions of a simpler (unperturbed) model system, e.g.,
the stationary states and the associated energy levels of an anharmonic oscillator
from the known (analytical) results for the harmonic oscillator. This goal
summarizes the basic purpose of the perturbation theory (PT), which has also
been used in classical mechanics. Its simplest variant within the Rayleigh—
Schrodinger theory, for the nondegenerate energy levels and time-independent
perturbations, will be summarized below.

Let us assume that the Hamiltonian H of the real (perturbed) system can be
expressed as the sum of the simpler, model Hamiltonian HO, representing the
associated unperturbed system the eigensolutions of which are assumed to be
available, and the perturbation h = i’ including weak interactions compared
with those already comprised in H°. The perturbation approach can be then used
to generate corrections to eigensolutions of H, due to a presence of the perturba-
tion, to approximate the exact eigensolutions of H. Formally, this assumption of a
relative “smallness” of h can be expressed by the condition involving the perturba-
tion parameter 4, || < 1,

H =040 =1 +h(1) = H(A). (5.1)
It controls the order of corrections to the known unperturbed solutions,

H)n ) = EOn ), n=0,1,2,..., 0O |m)=5,, (52
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for the nondegenerate energy levels E(()0> < E(lo) < E(ZO) <.. with n=0

corresponding to the ground state of the model system, introduced to approximate
the unknown stationary states of the perturbed system:

H()|n(A) = E,(AD)|n(A)), n=0,1,2,..., (n(d)|m(2) =0um  (5.3)

These corrections appear as coefficients in the corresponding power series
expansions of the perturbed eigenstates and the associated eigenvalues,

Z |n<’) =|n )+ Z ‘An(i)>
E,(7) =Y EVZ=EY +> AEY, (5.4)
j=1

=0

which define the kth-order corrections to the nth unperturbed state,
ARy = 7K™y and  AEW = JFEW . k=1,2,...

They can be determined by substituting these expansions into (5.3):

00 o8 e8]
AHC 4 2R [n®) = "N " AED [n) (5.5)

=0 i=0 j=0

Indeed, by comparing the coefficients at the given power k of the enhancement

parameter A in both sides of the preceding equation, one arrives at the following

system of equations determining the corrections to the nth unperturbed state and its

energy:

a0 > E ’n
VA nWY + 1 ]n0) = E§0>’n<1)> +ED [0,
22 > > E’(10)|n(2)> _|_E£ll)|n(1)> +E£12)|n(0)>;
P
Vi H 1) + 1 [nP D) = 3" ED[nlr ). (5.6)

J=0

As expected, the 1%-equation repeats the eigenvalue problem (5.2) of the unper-
turbed Hamiltonian. The subsequent elimination of corrections from these
equations recognizes the completeness of the unperturbed solutions {|n<°>>},
which allows one to expand any state of the system, including all unknown
corrections {‘n@>>} or {]An@>>}, in this basis set.
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For example, one can expand the first-order correction |n(1)),

ZU“ =570V, = Oy, (57

J#n

or the resultant state ﬁ’|n(0> >:

o0
W) = 31 = GO ). 68)

J=0

In (5.7) we have recognized that cﬁ,l,z = <n<0) | n(1>> = 0, since the direction of the
unperturbed state vector |n > can be modified only by combining this state with the
remaining states {| /), j # n}, which are orthogonal to [n?).

Projecting 4'-equation (5. 6) onto [n?) and [k'?), k # n, respectively, gives the
associated equations for determining the first-order corrections we seek:

<n<0>|p1°|n(1)> + (O [20) = EO (a4 by = by

n

= EO(n®[nV) + ED (n®[n0) = ED, (5.9)

<k(0)

7Y + (KO [n ) = EO (kO 0Dy + by = EDcl) + by,
EO (kO [0y 4+ ED (KO |0y = EO ). (5.10)

A straightforward rearrangements of these equatlons then give the following
explicit expressions for the first-order corrections to E,, ,

EY = (nOW [0y = h,, or  AEY = (n'O|h]n®), (5.11)
and to |n?):
(1 _ © _ 50 Ay — 5K °>>
Con =lin/[EY) —E] or |AntD) ZE“)) yk . (5.12)
k#n Ln  —

When determining the second-order corrections one similarly expands
2 ;
Z|J =[O, D = (0@, (5.13)
J#n

again realizing that c,(f,)l = <n<0>‘n(z)> = 0. The corresponding projections of the
22-equation (5.6) onto |7”) and [k'©’), k # n, respectively, gives the relevant
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equations determining the expansion coefficients {cﬁf} and the second-order
energy:

(O [0 + (0O a1} = EO (0] + 3D (O]
=" Dy = EO(nO[n®) + ED (0O |n ) +[Zz><n<o>,n<0)> — EO®,
” (5.14)
(k© i 2@+ (KO [V = EO (k0 |n?) +ZC§,L><"(O) (1)
I#n
EQ )+ el

I#n
_ E<o><k<o> ‘n<2> n E<1><k<o> () + E@ (k)0
(5.15)

Subsequent substitution to (5.14) of the known first-order solutions gives the
following expression for the second-order correction to E),

EQ = <n(0)|ﬁ”n Zhn zcln Zhn thin/[EY )] or

I#n I#n
AER) = (OB An) = 37 [ [§[10) P/ £ — £ 516
I#n

A similar rearrangement of (5.15) gives the expansion coefficients

2 _ 1 [Z hiih hinhinn ]

Cn = 0 0) 0) 0 p0) _ (0
EY —EY = EY " EY —E|

determining the associated correction to [n):

a3 (3 (KOROYIO[R[n®) (KO [h]n®) ()R] <O
S\FEY-ENEY -EY) (g0 -0
(5.17)

Obviously, one could similarly extract the higher order corrections, but the
above explicit expressions for the first- and second-order corrections are sufficient
for most applications included in this book.
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5.1.2 Variational Method

The alternative variational method of determining the approximate solutions of the
time-independent Schrodinger equation guarantees that the successive approxi-
mations of increasing accuracy approach from above the exact energy level E, of
the molecular ground state |1/o). In other words, this exact eigenvalue represents the
lower bound of all approximate estimates of the system average energy: (E) > E.

Indeed, the eigenstates { |i/,)} of the system Hamiltonian (the quantum mechan-
ical observable),

Hy,) =Ey,), n=0,1,2,..., E<E <Ey<..., (5.18)

form the basis of the energy representation (see Sect. 2.7) in the molecular Hilbert
space, so that any approximate state |¢) can be expanded in this set:

¢y =D W) Wald) =D I,)Cu, (5.19)

with |C,,|* = P(/,|¢) measuring the conditional probability of observing E,, in state
|¢) (see Postulate II of Sect. 3.2). Hence, any approximate estimate of the system
average energy can be expressed as the mean value of the exact energy levels (see
also Postulate IV.3 of Sect. 3.3.3):

We thus conclude that (E), = E, can be reached only for P(ifo|¢) = 1 and
{P(Y,~0l¢) = 0}, and hence |¢) = |}yo). Any deviation from this exact solution
implies a finite probability of observing one of the higher (excited) energy levels,
and hence (E)4 > E,. These deductions constitute the essence of the Rayleigh-Ritz
variational principle of quantum mechanics: for any approximate state |¢) the
average energy

<E>¢ > Ey. (5.20)
Thus, the more accurately |¢) approximates [\/), the lower (E)4 level, and hence
the smaller (E), — E, error gap.

This general statement gives rise to the efficient computational technique, the
variational method, which dominates the modern quantum mechanical calculations
of molecular electronic structure. The main idea behind this computational tool is to
use the parametrically deﬁned trial state including several variational parameters
A={i,t=1,2,. ¢) = |¢p(L1, 22, . . ., Ay)). The domain of their admissible
values then determlnes the whole range of the approximate (variational) states.
In accordance with the variational principle, the best approximation of the
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molecular ground state in this family of trial states is then obtained for the optimum
values of variational parameters A" which correspond to the minimum of the
system average energy (E(A)), = (¢|(A)|H|p(A)):

min(E)), = (EA™)), > Eo or
IEM)),

4 —0, t=1,2,...,s (5.21)
aA, P!

Both linear and nonlinear parameters A are used to provide the trial state vectors
or the associated wave functions exhibiting a sufficient variational flexibility, so
that they are capable to adjust to the interactions embodied in the system Hamilto-
nian, in order to lower the energy, and thus to resemble the most the true ground
state of the molecular system in question. The former, e.g., the coefficients
multiplying the adopted set of the (“frozen”) basis functions, are more easily
handled, giving rise to a system of linear secular equations for determining the
optimum values of the expansion coefficients. The latter, e.g., the exponents of the
Slater-type orbitals (STO) or Gaussian-type orbitals (GTO), the popular analytical
functions used to approximate the atomic or molecular orbitals, although relatively
more efficient in modifying the trial wave functions, are more difficult to handle,
requiring more advanced, nonlinear optimization techniques.

Consider the illustrative application of this procedure to the hydrogen-like atom
of Chap. 4, for simplicity adopting a.u. of Sect. 4.6. Suppose that we take the trial
wave function in the general form of a parametric family of the spherically
symmetric, exponentially decaying functions defined by a single nonlinear varia-
tional parameter A, ¢(r, ¥, ¢; A) = N(L) exp(—Ar), with N(4) standing for the
appropriate normalization factor [see (4.62)]: N(1) = (1*/m)"2. 1t gives rise to the
average electronic energy, the expectation value of the Hamiltonian (4.40),

E(J) = %;ﬂ —Z. (5.22)

The optimum value of 4, which identifies the best approximation to the ground
state, is then obtained for the minimum of E(2), dE(A)/dA|pp. = 27" — Z = 0, or
AP = Z, thus correctly predicting the true ground state of (4.62).

Not knowing the true asymptotic behavior of the ground state at large distances
from the nucleus, one could alternatively try the spherical Gaussian function ¢(r, ¥,
p, &) = N(©&) exp(—irz) as an approximate representation of the ground state wave
function in this one-electron atom, which gives:

—E _ % 0pt-_i 2 opt. _i 2~ 2
E(é)—zé \/;Z, ¢ =02 E(¢ )_3nz_ 0.4247%. (5.23)
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Therefore, on the basis of the variational criterion one concludes that the exponen-
tial form of the variational wave function provides a better representation of the
electronic wave function in the one-electron atom, since it generates lower energy
compared with that resulting from the optimum Gaussian state.

The linear variant of the variational approach is known as the Ritz method. The
trial state |¢) is then given as the linear combination of the adopted basis states
IX) = {lx), p = 1,2, ..., w} (row vector) defined by the expansion coefficients
C = (x|¢) = {C,)} (column vector):

x)C. (5.24)

o) = Zi: |Xp>cﬂ

However, since w basis functions define w linearly independent combina-

tions |¢@) = {|¢®),s =1,2,...,w} (row vector), we can generalize the above
expression:
[69) =3 [1,)Cps =ICY =g, 1), s=1,2,...,w, (5.25)
p=1

or in the joint, matrix notation:
) =I)C, C=(CV|c?]...|cY]...|c™) = (Co|C1]...|Cyr] ... [Cm1). (526)

In general, the basis vectors give rise to a nonunit metric tensor defined by the
overlap matrix S = (x|x) = {Spy = (Xplxg)}, while the Hamiltonian is
representated by the energy marrix H = (x|H|x) = {H,, = </,,’I;I‘yq>}

In what follows we shall assume that the optimum combinations are ordered in
accordance with their increasing energies {(E®) = (oW [H|p)) = (E; ) }:

(ED) = E)] < [(ED) = (E)] < ... < (EY) = (E). G2

(l)>

The optimum combination |¢' ) = |@o) corresponding to the lowest energy
(EVY = (Eo) will then approximate the system ground state [ifo), while the
remaining orthonormal combinations will approach the corresponding excited
states.

In the last three equations, we have relabeled the upper indices of the
eigenvectors, the associated columns in the (w X w) square matrix C grouping
the combination coefficients, the linear variational parameters of the Ritz method,
and the associated energy estimates into the corresponding subscripts conforming
to the customary labeling of the molecular energy levels of (5.18), with |pg) and (E()
denoting the ground state approximations and the remaining states corresponding to
successive excited states:

) =lon), C={CV=C}, {((EY) = (Ec)}.
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Let us first consider a single combination of (5.24). The expectation value of the
system energy in state Igo) reads: (E) % f H}<p> (p|H|p)/{@]@), where the

denominator {p | ) = Z Z CySpaCq = = C'SC is due to the normalization con-
p=1g¢=1
stant of |¢p) in the normalized trial state |@) = (¢ o) ~"/?|¢). Hence,

(E){plp) = ZZC SpaCq = (p[Hlp). (5.28)

p=1 q=

One further observes that the expansion coefficients C are in general complex
numbers. Therefore, the unknowns in this linear variational problem consist of
their real and imaginary parts, C = Re(C) + iIm(C), where: Re(C) = (C + cH/
2 and Im(C) = (C — C")/2i. Thus, one can alternatively designate the coefficients
C and their complex conjugates C* as independent variational parameters, since
they uniquely identify both parts of C. In fact, due to the Hermitian character of H
and the symmetrical character of the metric S, the secular equations for the
optimum values of the linear variational parameters derived from the independent
variations of C* and C, respectively, are identical.

The optimum solutions must minimize the system energy function <E(C*, 0))
[see (5.21)]:

VEC O _ oy VECO)
ac, | ac,

min

=0, p=12,...,w. (529

min

Differentiating (5.28) with respect to C,,* and taking into account the condition of
the energy minimum of (5.29) then gives:

8C* Z Z CySpgCq + (E) Z Sp.aCq = (E) Z SpaCq = ZHp,ch or
q=1 q=1 q=1

r=1 q=

S (Hpg = (E)Spq) Co=0, p=1.2,...,w. (5.30)

q=1

This system of the secular (linear, homogeneous) equations has in fact only w — 1
independent unknowns. The additional, nonhomogeneous equation required to
specify C uniquely is provided by the normalization condition for the combination
in question:

(elp) = ZZC*SMC —cfsc=1. (5.31)
p=1 g=1

It then directly follows from the Cramer rules of Algebra that the necessary
condition for the physically meaningful, nontrivial solutions C # 0 of these secular
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equations is the vanishing determinant of coefficients before the unknowns in these
homogeneous equations, called the secular determinant:

Hii—(E)Si1 Hip—(E)Si12 ... Hiyw—(E)Siw
H2’1 — <E>Szﬁ1 H272 — <E>S272 Hzﬁw — <E>S2w
......................... | = Hra = (E)Spa] =0
HM 1 <E>Swl HwZ - <E>Sw2 HMM <E>Sw w

(5.32)

Hence, by expanding the determinant one arrives at the equation of degree w for the
unknown (E). Its ordered solutions { (E®)) = (E,_)} (5.27) approximate the exact
energy levels of the system ground and the first (w — 1) excited states (5.18).

To summarize, one first solves (5.32) for the approximate energy levels { (E®)},
the knowledge of which is required to uniquely specify the coefficients of the
secular equations (5.30) supplemented by (5.31). Selecting (E) = (E*) in these
equations gives the coefficients C** determining '), etc.

Fortunately, this rather cumbersome procedure in terms of determinants can be
recast in the form of the standard matrix diagonalization problem, which is easily
handled in computer calculations. For this purpose, we arrange the energy estimates
{(E®)} as diagonal elements of the eigenvalue matrix E = {E,y = (E®)d, s} and
rewrite the secular equations (5.30) for sth combination of (5.25):

> (Hpa = (E)Spa) Cas = D HpaCas = DD SpaCorEis = 0 or
q=1 g=1 g=1 s'=1

HC=SCE. (5.33)

This equation must be supplemented by the matrix equation combining the relevant
orthonormality requirements for the optimum combinations, which are summarized
by the requirement of the unit metric tensor defined by |¢) = |x)C,

(¢le) = CT(x | x)C=C'SC = 1. (5.34)

As already shown in Sect. 3.3.2, the nonorthogonal basis vectors |y) can
be transformed into the symmetrically orthogonalized analogs |¥) = [x)S™"/? of
Lowdin, strongly resembling the original basis vectors |x), which can be subse-
quently “rotated” in the unitary transformation U to the final optimum combinations
we seek:

@) =C=(ls"2)U= YU, WUI=UU =1 (535)

This way of arriving at orthonormal combinations thus automatically satisfies
(5.34). In this Lowdin orthogonalized representation the only unknown part of
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C=S"Uisits U=S"C factor, where we have used the relation ST126172 —
S° = I (3.47). A straightforward transcription of (5.33) multiplied from the left by
S~ then gives:

(S™'/?HS™'/?)(S'/2C) = HU = (S"'/?S)CE = (S'?C)E = UE.  (5.36)

Hence, by multiplying the preceding equation from the left by U" finally gives:
U'HU =E. (5.37)

The determination of the optimum coefficients C, the linear variational parameters
of the Ritz method, and of the associated average energy estimates E is thus
simultaneously accomplished by the diagonalization in the unitary transformation
U of the Hermitian matrix H = S™'/?HS™"/2. The latter constitutes the matrix
representation of the Hamiltonian in the symmetncally orthogonalized basis set |x),

H= (y[H[y) =S"*(xH[x)s™"* = s~'?HS "', (5.38)
where we have observed that (¥| = (|X>S*1/2 o S™/2(x|, since S~ is the real,
symmetric matrix. This linear variational procedure thus amounts to the standard
algorithmic problem in the matrix algebra.

We conclude this section by examining general criteria for an effective mixing
of quantum states in the linear combination of (5.24). In textbooks on quantum
chemistry such an analysis is carried out in the context of mixing AO into Molecu-
lar Orbitals (MO), when the prototype chemical bond is being formed, say between
atoms A and B. To simplify these qualitative considerations, we reduce the problem
to two AO states |x) = (|A), |B)), originating from atoms A and B, respectively,
which are assumed to be normalized but nonorthogonal (overlapping):

|11 s | B
s_{s 1], H_[é‘ WJ, (5.39)

where for definiteness we put S=(A|B)>0 and oy=(A[H|A) < o=
<B|ﬂ|B> <0 (Fig. 5.1). The (negative) Coulomb integrals {a,} reflect the energy
levels associated with the individual AO and hence the corresponding negative
ionization potentials (see the Koopmans theorem of Sect. 6.1.2 and the Janak

theorem of Sect. 7.3.6), o, = —I,, p = A, B, while the resonance integral f =

(AJH|B) = (B|H|A) measures their mutual interaction (coupling) in the bond for-
mation process. In the semiempirical theories of the molecular electronic structure,
it was adequately approximated as being proportional to the AO overlap integral S
and an average value (Av), arithmetic, geometric, or harmonic, of
the corresponding diagonal elements of the Hamiltonian: f o< SAv(ay, o)
= S{o) = —SAv(l4, Ig) <O.

It then directly follows from the eigenvalue equation (5.32)
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Fig. 5.1 A qualitative diagram of the chemical interaction between two AO
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B — (E)S ocB—<E>‘00r(aA (E)) (o5 — (E)) = (B— (E)S)* >0, (5.40)

that the two AO energy levels “repel” each other as a result of their quantum
mechanical coupling into MO. More specifically, the preceding equation allows the
two optimum MO energies, which are simultaneously either above or below both
AO energies:

[0a — (E)>0and op — (E) >0] = (E) = E, <04 or

[0a — (E) <0 and ag — (E) <0] = (E) = E, > ap.
As a result the two MO energy estimates are obtained: the bonding level
(E?) = E, < oy and the antibonding level (E“’) = E, > o, which are also
shown in the schematic diagram of Fig. 5.1.

For a general case of nonequal AO energy levels, the secular equation (5.40)
gives the following expression for the bonding energy:

o — Ep = (B — EpS)*/ (a5 — Ey), (5.41)

which satisfies the following inequalities:
0 <oy —Ep < (B—EpS)* /(o5 — ), (5.42)

since ap — E;, > op — a4 > 0 (see Fig. 5.1).

We thus conclude from the preceding equation that the larger the difference
between the energy levels of the mixed states the smaller the bonding effect of their
interaction. Indeed the strongest bonding results for o3 = 24 = o when

Ey=(a+p)/(1+8)<a, |g,) = (|A) +|B))/(2 +25)" "/
E,= (2= B)/(1-8)>0, |o,) = (|A) — |B)/(2—28)""/%. (5.43)

It follows from these equations that for the overlapping AO the antibonding
effect £, — o always exceeds its bonding companion o« — Ej,. This explains why no



5.2 Adiabatic Separation of Electronic and Nuclear Motions 125

net chemical bonding results in this simple orbital description from the interaction
between the two fully occupied AO, e.g., in He, and Be,. Moreover, due to an
approximate proportionality relation f§ o< S{a), the r.h.s. of (5.42), which marks the
upper limit of the bonding effect,

o — Ey < (B — EpS)* /(o — aa) = §* () — Eb)*/ (o5 — ta),

identically vanishes, when there is no overlap between AO. For example, at finite
separations between atoms, this can be due to the symmetry restrictions in the
valence shell or the “narrowness” of electron distributions in the inner shells of both
atoms. Together with the nucleus these chemically inactive electrons of the inner
shells define the atomic “core,” which remains largely unaffected by the chemical
bonds formed in the valence shell. At very large internuclear distances, in the
separated atoms limit, the AO overlap also vanishes, so that no chemical interaction
is predicted. We thus conclude that a large AO overlap is conducive for a strong
chemical bonding originating from the orbital interaction in a molecule.

Let us next consider the squared secular equation for the unknown coefficients
of the combination:

(04 — (E))Ca 4 (B — (E)SCp = 0 = (04 — (E))’C% = (B — (E)S)’C%.  (5.44)

Using the expression for (f — <E>S)2 from (5.40) gives the following ratio of the
squares of coefficients, reflecting a relative participation (conditional probability)
of AO in the combination,

C/Cp = (o5 — (E))/ (o — (E)) = |ug — (E)|/lota — (E)I. (5.45)

Indeed, for ap = a4 both AO participate equally in MO and C4 = +Cp, in accor-
dance with (5.43). In a general case of Fig. 5.1, one predicts for (E) = E;: o5 —
E;, > a4 — E,, so that orbital |A) dominates the bonding combination |¢;): C 7>
C3. One similarly predicts a stronger similarity of |¢,) to |B) for (E) = E,, since
then |op — E,| < |aq — E,|. Therefore, with increasing gap ap — oy of the AO
energies the bonding combination |p,) more strongly resembles |A) and the anti-
bonding combination |p,) becomes more like |B).

5.2 Adiabatic Separation of Electronic and Nuclear Motions

To a good approximation, when describing the state of (light) electrons in a
molecule, one can treat the system (heavy) nuclei as being at rest, in view of the
drastic difference in masses of these two micro-objects. Indeed, the motions of the
former are very fast compared with the slow movements of the latter. This physical
intuition suggests that for the nuclear dynamics the instantaneous positions of
electrons are unimportant, with only the average effect of their fast motions
influencing the forces acting on nuclei in the molecular system under consideration.



126 5 Approximating Molecular Schrodinger Equation

The formal basis of this separation of the electronic and nuclear degrees of freedom
in the molecular (stationary) quantum mechanics is the familiar adiabatic approxi-
mation of Born and Oppenheimer (1927).

Consider the molecular wave function W(q, Q) of N electrons at positions
r = {r;} exhibiting the spin orientations o = {g;}, or in the combined notation
q=(r, o) ={r, o} = {q;}, and m nuclei of masses {M,} and charges {Z,} in
positions R = {R,} with spins 3 = {X,}, which determine the corresponding
position-spin variables Q = (R, 3) = {R,, 2,} = {Q.}. It generates the asso-
ciated probability distribution of the joint, electronic-nuclear events: P(q, Q) =
Y(q, Q)I?, which satisfies the relevant overall and partial normalizations:

[[Pa.@) dadq = [ =(@) s = [ p(@) da=1. (5.46)

where ©(Q) and p(q) denote the partially integrated nuclear and electronic proba-
bility distributions, respectively.

The essence of the adiabatic approximation lies in extracting from this joint
distribution the probability density of the heavy (slow) nuclei as the reference
(parameter) distribution:

P(q,Q)
n(Q)

P(q.Q) = 7(Q) 2(Q)p(alQ), Jp<q|Q> dg=1. (547

In the conditional probability density of electrons, p(q|Q), the nuclear variables
thus play the role of parameters, as indeed reflected by the above normalization
condition. This further implies the associated factorization of the system wave
function in terms of the nuclear, x(Q), and electronic, ¢(q|Q), functions,

¥(q,Q) = 72(Q)»(q|Q). (5.48)

They accordingly represent the nuclear and (conditional) electronic amplitudes of
the associated probability distributions:

Q) = [x(Q) and p(q|Q) = |¢(q|Q)*. (5.49)

Therefore, in the Born—Oppenheimer (BO) approximation, the nuclear wave func-
tion is not explicitly dependent upon the electronic positions, while the electronic
state ¢(q|Q) is defined for the fixed geometry of the molecular system, defined by
specified, parametric positions of the nuclei. The relevant orthonormality relations
satisfied by different adiabatic states {y;} and {,} thus read:

Jx? (Q)%(Q)dQ = (x| 1;)q = i and

Jsoﬁ (a/Q)#(aQ) da = (¢,(Q) [ #:(Q))q = .- (5.50)
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The molecular (Coulombic) Hamiltonian in the position representation,

H(q,Q) = T.(Q)

Il
;ﬂ)
e
+
(F)
=
e
Il
o
@ =
+
an
=
e
_l_
o
e

(5.51)

groups operators of the following (dominating) contributions to the molecular
energy (a.u.):

N m N
nuclear-electron attraction energy: V,.(q,Q)=—>"( > ‘RZ*r |) =3 v(r;,Q);
=1 \a=11"%"" =1
) N=1 N Nl N . ’
electronrepulsion energy: V. (q)= > > B lr| = > g(iy), gl )=1/ri;
i=1 j=i 1= iy
. ) m=1 m 2,24 m—=1 m 2,25
nuclear repulsion energy: V,,,(Q) = > = P
Tt plar [RaR| = g Rus

Above, v(r, Q) denotes the external potential for an electron in position r due to the
nuclei in their “frozen” positions {R,}.

The electronic Hamiltonian H,(q, Q) defined in (5.51) groups all these terms
except the nuclear kinetic energy operator. Since the nuclear repulsion energy does
not affect the electronic states, representing just the irrelevant additive constant in
He(q7 Q), it is sometimes neglected in the Schrodinger equation for electrons,
defined by the eigenvalue problem of the redefined electronic Hamiltonian
H* (q7 Q) = H()(qv Q) - Vﬂ’l (Q)

Therefore, in the BO approximation of (5.48), the molecular states ‘¥, 1(q,Q) =
©(q]Q)y:(Q) must satisfy the stationary Schrodinger equation:

[T,(Q) + He(q, Q)]0 (a]Q)7(Q) = Erx0,(a]Q)7:(Q), (5.52)

where E, ; stands for the molecular energy in the adiabatic state combining rth
electronic and kth nuclear states. Since both factors depend, at least parametrically,
on the nuclear positions the action of the nuclear kinetic energy operator on
adiabatic wave function gives:

Tu(or) = - iﬁ (Ap) +2(Va0,) - (Vi) 0, (Aot

ml R
= Twe)t = D5 (V) - (Var) +n(Tu). (5.53)

a=1 “
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The adiabatic approximation assumes that the kinetic energy operator TH(Q)
constitutes a minor perturbation compared with the electronic Hamiltonian

ﬂe(q,Q). One can therefore envisage the perturbation approach constructed on
the basis of the unperturbed Hamiltonian H° = H,(q,Q), in which there are no
gradient operations with respect to nuclear positions. Therefore, in zeroth order
approximation the nuclear positions are treated as parameters and one neglects the
second term in r.h.s. of (5.53) as negligible, eventually to be taken into account in
higher orders of PT. In other words, one assumes that nuclear gradient of the
electronic wave function is generally small compared with the associated action
of the electronic Hamiltonian. One could also neglect the first (small) Laplacian
term, as in the original BO approach, but this contribution can be easily accounted
for without any serious complication of the emerging formalism.

Therefore, neglecting only the second term in (5.53), which involves the scalar
product of the nuclear gradients of both factors in the adiabatic form of the
molecular wave function, multiplying from the left (5.52) by ¢,", and “integrating”
the result over the electronic position-spin variables q, denoted by ()4, then give the
following effective Schrodinger equation for the nuclear function y(Q):

[T.(Q) + (¢,(a/Q)|He(q, Q)| 0, (qlQ))q + (#,(a]Q)| Tu(Q) |0, (qlQ)) o] (Q)
= {T.(Q) + [E{(Q) + T} (Q)[} %:(Q) = [T4(Q) + U (Q)]1(Q)
= E 17:(Q). (5.54)

This equation contains the effective adiabatic potential in the electronic state ,,
U]‘?di”b'(Q), the dominant component of which is the average electronic energy, the
associated expectation value of the electronic Hamiltonian:

E{(Q) = (¢,(q|Q)[He(q,Q)|,(qQ)),, (5.55)

called the Potential Energy Surface (PES). It parametrically depends on nuclear
positions (molecular geometry) and carries the influence of the average electronic
distribution on the system nuclei. It follows from (5.54) that adiabatic potential also
includes a (small) diagonal correction due to T, (Q) in state ¢,,

77(Q) = (,(alQ)| Ta(Q) |, (alQ))y; (5.56)

which has been neglected in the original, crude-adiabatic BO approximation.

It thus follows from the nuclear Schrodinger equation (5.54) that it requires the
knowledge of the whole electronic PES E¢(Q) of electrons in the specified adiabatic
state ¢,(q|Q), the eigenfunction of the electronic Schrodinger equation:

H.(q,Q)¢,(q|Q) = EX(Q)y,(q|Q). (5.57)
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Clearly, the parametric dependence of the electronic energy on nuclear coordinates
can be extracted only from a very large number of solutions of the preceding
equation, for a sufficient multitude of the fixed nuclear configurations {Q(i>},
by an analytical interpolation of the known energies {E¢(Q”)}, points on the
resulting PES.

To summarize, solving the molecular Schrodinger equation in the adiabatic (BO)
approximation first involves solving the fixed-nuclei, electronic eigenvalue problem
for a large number of molecular geometries, in order to extract the effective
potential of forces acting on the system nuclei, averaged over the instantaneous
positions of the fast-moving electrons. In the second, nuclear stage one uses this
effective adiabatic potential to solve the nuclear Schrodinger equation (5.54), which
generates the amplitude functions of the nuclear probability distributions and the
molecular energy levels containing the kinetic energy of the slowly moving nuclei.

As we have already mentioned earlier in this section, the nonadiabatic effects
can be accounted for in the higher order of the perturbation theory in which the
kinetic energy of nuclei represents the perturbation to the unperturbed, electronic
Hamiltonian. Therefore, the electronic states {,(q|Q)} span the complete basis of
the zeroth order solutions [see (5.57)], in terms of which the nonadiabatic states can
be expanded. Consider the dominating, first-order corrections to the adiabatic
electronic state ,(q|Q) (see Sect. 5.1):

AV (q]Q) =Y ¢ (Q) v (q1Q). (5.58)
t#r

It follows from (5.12) that this expansion coefficient is given by the following ratio:

(.(qlQ)[Tx(Q)|¢,(aQ)), .

Do) =
ir (Q) E(Q) — E¢(Q)

(5.59)

The adiabatic approximation is thus adequate only, when the numerator in this
expression is small compared with the denominator. Indeed, the degeneracy or
near-degeneracy of electronic states (small value of the denominator) would
generate a large nonadiabatic correction thus contradicting the basic assumption
of the adiabatic approximation. The same would be true for a large value of the
numerator, signifying a strong nuclear-motion coupling between electronic states.

Therefore, the adiabatic approximation breaks down when for some molecular
geometries several electronic states exhibit very close values of the electronic
energy. This is the case in the familiar Jahn—Teller effect (removal of the electronic
degeneracy by spontaneous distortion of the molecule) and the related Renner
effect, due to the vibronic coupling between electronic and nuclear motions,
which have profound structural and spectroscopic implications. Let us recall that
the Jahn-Teller theorem states that in any nonlinear system there exists some
vibrational mode that removes the degeneracy of an electronically (orbitally)
degenerate state by lowering the system symmetry. The vibronic coupling between
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the degenerate electronic states of linear molecules and the deformation (bending)
vibrations of the nuclei are responsible for splitting these energy levels in the
Renner effect. A proper quantum mechanical description of these processes calls
for an explicit dependence of electronic states on nuclear coordinates in the
nonadiabatic molecular wave functions, which are customarily represented as linear
combinations of several adiabatic states [see (5.58)]. The nuclear motions, of the
paramount importance for molecular dynamics (e.g., Murrell et al. 1984; Murrell
and Bosanac 1989) and spectroscopy (e.g., Longuet-Higgins 1961), are not covered
by this book.

5.3 Orbital Approximation of Electronic Wave Functions

The quantum theory of electronic structure of molecules is based upon the one-
electron approach to electronic functions of many-electron systems, known as the
orbital approximation. It has greatly influenced the existing terminology of quan-
tum chemistry and the chemical concepts used in interpretations of diverse chemi-
cal processes. It ascribes to each electron in the system the one-electron function
called the spin orbital (SO, see Sect. 4.5).

Let us recall that the internal stationary state of the hydrogen-like atom discussed
in Chap. 4 has been described by a single SO, y(q) = ¢(r){(o), given by the
product of the spatial function, the orbital ¢(r), and one of the two admissible
spin functions {(o) = {a(o) = {(o|a), f(o) = (o|p)} of an electron [see (3.76)].
When the same orbital is used to generate two SO, thus describing a pair of
electrons with the opposite spin orientations, as in (3.76), one adopts the so-called
spin-restricted version of the orbital approximation. Accordingly, in the spin-
unrestricted description of such two spin-paired electrons, one uses different
orbitals for different spins:

{7 (q) = @, (r)a(o), ¥ (q) = @p(r)B(o)}- (5.60)

Let us now examine the Slater (1929, 1931, 1960) method of constructing in the
orbital approximation the N-electron wave functions ¥(q|Q) = W(I), which auto-
matically satisfy the basic requirement of the Fermi-—Dirac statistics, the Pauli
postulate of their antisymmetry with respect to an exchange of any two indistin-
guishable fermions. Should the electronic states be exactly independent, the
N-electron wave function would then be exactly given by the product of N ortho-
normal SO attributed to each particle,

N N

Y(N) = H‘//i(‘li) = H‘//z(l) =y (MYa(2) - (@) () - Yy (N). (5.61)

i=1 i=1
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Indeed, the N-electron probability distribution would then be given by the product
of distributions of independent one-electron events:

p(N) = [¥WN)]* = [T w:()* = T (). (5.62)
i=1 i1

Obviously, due to a finite electric charge, electrons repel each other, so that this
independent particle approximation can at best be considered only as a first step in a
more adequate treatment, which recognizes the dependence (correlation) between
their instantaneous positions. Besides this Coulomb correlation the electron
probabilities must also reflect the constraints imposed by the antisymmetry princi-
ple of Pauli, thus additionally exhibiting the Fermi (exchange) correlation, which
severely conditions the simultaneous probability distributions of the spin-like
electrons in the physical space.

The product trial function of (5.61), which has been used as the variational wave
function in the Hartree (1928) method, clearly violates this antisymmetry require-
ment, since each electron is distinguished by the identity of the SO to which it
has been individually ascribed. Thus, the permutation 13(1' ,j) of electrons i and j, of
exchanging the wave function arguments g¢; and g;, instead of changing only the
sign of W(N) transforms it into an entirely different function, in which electrons are
attributed to different SO:

PL)YIN) = (DY (2) -9 (0) - () - Yy (N) # (V). (5.63)

This shortcoming can be remedied by the appropriate antisymmetrization oper-
ation A performed on the product function of (5.61). It is effected by combining all
product functions obtained by permuting all N electrons between all N occupied
SO. Each permutation P is now identified by the list of electrons

I(P) = {ll(P)} = [II(P)»IZ(P)v"'7lN(P)]> li(P) € (1727"'7N)a

attributed to orbitals ; in the ordered list {y;} = (Y1, ¥», ..., Yy). Thus, the
permutation I(P) = (4, 2, ..., 1) symbolizes the product function y/{(4) }»(2) ...
(1), etc. One could alternatively identify the current permutation P by the list of
orbitals {(P)}, identified by their labels

k(P) = {kI(P)} = [kl(P)’kz(P)V"ka(P)L k.i(P) € (1727"'aN)7

which are attributed to the ordered list of electrons {j} = (1, 2, ..., N). Thus, the
permutation k(P) = (4, 2, ..., 1) stands for the product function y4(1) ¥»(2) ...
Yi(N).

For the chosen type of permuting the products of SO, one then introduces the
appropriate sign convention for each of N! permutations in the antisymmetrized
combination. In order to enforce the change of sign of the wave function, when the
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current permutation is obtained by an odd number of elementary replacements of
pairs of electrons in the ordered permutation Py = (1, 2, ..., N) of (5.61), one
introduces the permutation parity p(P), which counts the number of such pair
exchanges required to bring the current permutation P to the initial permutation
Py, with p(Pg) = 0, and puts the sign (=1’ before the associated product
function.

The antisymmetric combination of such N! product functions corresponding to
either all permutations of electrons among the ordered list of SO, or all
permutations of SO among the ordered list of electrons, thus determines the Slater
determinant:

TAN) = APO) =~ 3 (D0 (6 P)) W (P)) -y (1n(P)
P
= T 2 W (D @) i
WD) (@) UiV
_ L () ¥a(2) e ¥,(N)
VN s s
In() (@) e Uy (V)
= Wy Y| = det(Y g, - y). (5.64)

Here, the constant before the determinant assures the normalization for the ortho-
normal set of SO: [V (q) V/;(q) dg = (i | j) = d;;. Since exchanging two electrons
amounts to the permutation of two columns in this determinantal wave function, the
correct result of a change of sign of W ,(N) is obtained, P(i, /) ¥4 (N) = —¥4(N), as
indeed required by the Pauli antisymmetry postulate for fermions. One also
observes that this form of wave function automatically satisfies the Pauli exclusion
principle that two electrons cannot be described by identical SO. More specifically,
should this be the case, the two rows in the Slater determinant would then be
identical, thus automatically implying W,(N) = 0.

A more subtle implication also follows, when two spin-like electrons near-
coalesce in the same position, when g; 2 g;. This limiting proximity of two elec-
trons exhibiting the same spin orientation gives rise to two identical columns in
W 4(N), thus again predicting W4 (N) =2 0. In other words, the probability of such an
event becomes very small indeed. This implies that spin-like electrons are statisti-
cally correlated, avoiding nearby positions in space. This effect is called the Fermi
or exchange correlation between electrons. It should be emphasized that no such
restrictions on the instantaneous positions of electrons intervene for the electrons
with opposite spins, since then spatial coalescence of two electrons does not imply
equality of their position-spin variables: ¢; = (r,1) # ¢; = (r, |). Therefore,
electrons with different orientations of their spins exhibit only the Coulomb corre-
lation, resulting from their electric charge, while the movements of the spin-like
electrons are influenced by both the Fermi and Coulomb correlations.
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Thus, in the orbital approximation of the Slater determinant (5.64), the spin-like
electrons are not independent, being already Fermi correlated by the exchange
symmetry of the electronic wave function. It should be emphasized, however,
that this variational wave function ignores completely the Coulomb correlation of
all electrons. Therefore, the latter effect should be relatively more important in
interactions between electrons exhibiting different spin states, since the spin-like
electrons have already been Fermi correlated. It could be also expected that
accounting for this missing effect within the spin-restricted approach should most
influence the simultaneous probabilities of two electrons occupying the same
orbital, the movements of which are confined to the same part of space, probed
by the square of their common spatial function (orbital).

It should be observed that the correct symmetry of the analogous orbital wave
function for the set of N identical hosons would call for the related symmetrization
operation S performed on the product wave function:

Wy(N) = S¥(N) = ﬁ S U (Pl (P)] -yl (P)]
= \/% D Ve (W) (2) - Yy (V). (5.65)

Indeed, this symmetrical combination of the permuted product functions satisfies
the symmetry postulate for bosons, P(i, j)¥s(N) = Ws(N), since such an operation
only exchanges two product functions in the sum of all N! terms of W¢(N).

It should be realized that the set 4 of singly occupied SO defining the Slater
determinant is not unique. Indeed, any unitary transformation ¢ = T, TT =1,
which preserves the orbital orthonormality, replaces the rows {i/;} of the original
determinant (5.64), ¥, = det(), with their combinations {y,’ = Y ;}/;T;,} in the
transformed determinant W, = det(¢’). It thus follows from the elementary
properties of determinants that these two functions are identical: ¥, = W4. The
two sets of SO which define them are called the equivalent orbitals.

One thus encounters various types of molecular orbitals (MO) in the theory of
electronic structure, selected for their numerical or interpretative convenience. For
example, in the two most popular computational methods, formulated within the
Hartree—Fock (HF) (Fock 1930) and Kohn—Sham (KS) (Kohn and Sham 1965)
theories, the two canonical sets of orbitals are introduced, which are delocalized
throughout the whole molecule and reflect the system spatial symmetry. They
provide a useful orbital picture of the spectroscopic and electron ionization phe-
nomena, satisfying important theorems linking their energies and decay behavior
with the molecular ionization potentials. The Natural Orbitals (NO) of the Config-
uration Interaction (CI) theory similarly generate a compact representation of the
Coulomb correlation effects. Finally, the Localized Orbitals (LO), describing
the diatomic chemical bonds and lone electronic pairs, are useful in providing the
orbital interpretations of the near-additivity of several molecular properties and in
explaining the remarkable invariance of the given type of ¢ bonds in different
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molecular environments. It should be also noticed that the very criteria for the
orbital localization are not unique either, so that a variety of alternative sets of the
physically equivalent LO have been reported in scientific literature (e.g., Boys and
Foster 1960; Edmiston and Ruedenberg 1963), which generate the same determi-
nantal wave function of the molecular system as a whole.

The orbital approximation provides a firm basis for the classification and under-
standing of electronic states and configurations in atomic and molecular systems.
Since to a good approximation the length of the resultant spin S of all electrons and
its z-component S, are sharply defined simultaneously with the system electronic
energy E,, the electronic wave functions are required to be eigenfunctions of the
associated quantum mechanical operators S” and S., which commute with the
electronic Hamiltonian. In the spin-unrestricted form the Slater determinant does
not generally satisfy this requirement, while the spin-restricted functions

Wa(N =2p) = (@Ts@fﬁwz‘ Py | (5.66)

WA(N=2p+q) = ‘w?%w?w;-«oj%wi“so,Lz‘--so,Lq : (5.67)

are eigenfunctions of these two resultant-spin operators, corresponding to the
quantum numbers S and Mg determining the associated eigenvalues: |S |2 =
S(S —|—1)h2 and S, = Msh, Mg = —S, =S + 1, ..., § —1, S. Hence, the state spin-
multiplicity 2§ + 1 determines the overall degeneracy of the electronic state with
respect to alternative orientations of the resultant spin. For example, the
multiplicities of the representative wave functions of (5.66) and (5.67), which
correspond to S = 0 and S = ¢/2, respectively, are 1 and ¢ + 1.

The occupation numbers of shells and orbitals define the system electron
configuration. When the (doubly occupied) spin-restricted orbitals of (5.66) involve
all symmetry-related (degenerate) orbitals of each electronic subshell, this wave
function is said to describe the closed-shell state of the molecule. Accordingly the
open-shell state is either characterized by the singly occupied MO, as in (5.67), or it
involves doubly occupied subset of the symmetry-related (degenerate) orbitals of
the occupied electronic subshell(s).

5.4 Matrix Elements of Electronic Hamiltonian
in Orbital Approximation

In order to apply the Slater determinants in the variational determination of the
approximate electronic states, we have to derive the associated expression for the
expectation value of the system electronic energy in the orbital approximation.
Moreover, when mixing different determinantal wave functions in a more accurate
CI variant, capable of accounting for the Coulomb correlation between electrons,
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one needs the related expressions for the matrix elements of the electronic Hamil-
tonian in such a basis set of N-electron functions. A short derivation of these
missing elements in the independent electron approximation is the main goal of
this section.

Let us first verify the normalization constant of the Slater determinant.
Expanding the W, and ¥, " determinants in the normalization integral gives:

) = [ | i@ i@ da
N
:I%ZZ(_ PPY+P(P H P) | K(P)).  (5.68)
PP =1

Therefore, for the orthonormal orbitals {y,(q) = x(r){i(o) = (q|k)}, when (k|l) =
Or.1» One obtains a nonvanishing contribution in this sum only when for all electrons
kj(P) = k{(P'"), i.e., when the lists of orbitals {k;(P)} and {k;(P")} in permutations P
and P’ are identical, i.e., when P = P’, and hence

{¥al¥a) NIZ ;: L

where we have recognized that there are N! distinct permutations involved in the
Slater determinant of (5.64).

Let us now separately combine all one- and two-electron contributions in the
electronic Hamiltonian of (5.51):

N N-1 N R
H'(q,Q) = Z(H., 'Zg( /) =%(q,Q) +G(q)
= F(N) + Q(N); (5.69)

here, the one-electron Hamiltonian fl(l) groups the operators of the kinetic energy
of ith electron and its attraction energy to all nuclei in their specified, fixed
positions, which generate the external potential v(i) (5.51),

h(i) = — %A,- + (i), (5.70)

while the multiplicative operator g(i,j) corresponds to the Coulomb repulsion
between the indicated pair of electrons. Thus, the expectation value of the
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electronic energy in the state (5.64) is determined by the trivial nuclear-repulsion
contribution and the sums of one- and two-electron contributions in the N-electron
system:

<E€'>\'PA = <‘PA | H"’\PA> = <\PA | HE|lPA> + Vi = <Ee>\PA + Vins

(B, = (¥ ’ 5‘\I‘A> + (%] Gles) <§>h + <(}>T (5.71)

Consider first the one-electron energy <5>\1,A. Expanding the two determinants as
in (5.68) gives:

(B, =g oD S ) ) ) T P [P 572)
PP

i—1 £

Again, a nonvanishing product of the overlap integrals in this expression can appear
only when the two permutations are identical: P = P’. One also realizes that due to
indistinguishability of N electrons in the Slater determinant, each of them gives the
same contribution as the representative electron “1” so that the above expression
can be further simplified:

(F)y, = %z}; (1) &y (P) | R(1) ki (P)) = ﬁ zpjﬁmp),k.(p). (5.73)

The above summation over permutations can be replaced by the equivalent sum-
mation over N different choices of spin orbital y,, describing electron 1, which
defines the matrix elements {/i, , } in the SO basis. These one-electron integrals
should be then multiplied by their multiplicity in all permutations P, equal to the
number (N — 1)! of all permutations of the remaining (N — 1) occupied SO {k; #
ki} among (N — 1) electrons (2, 3, ..., N). Hence,

<5>‘PA = % Zﬁk,k = Z 7k,k- (5.74)

One similarly arrives at the corresponding expression for the fwo-electron
energy <g>‘h‘ Expanding the determinantal wave functions and taking into account
the indistinguishability of electrons give:
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, N
@, =17 20 (<IN (PP | 80, ki (P (P)

= a1 2o 2 U PP (1, 2)ka (P o)
P P

< [T (P) | k(P)),

1£(1,2)

where we have recognized that each of the N(N — 1)/2 electronic pairs gives the
same contribution as the representative pair (1, 2). A subsequent examination of
the overlap integrals in the product indicates that all SO for remaining electrons
[ # (1, 2) in permutations P and P’ must be identical for electrons (3, 4, ..., N).
Therefore, the nonvanishing contributions arise only when the two permutations are
identical, P = P’, or when they differ only in orbitals describing electrons 1 and 2:
P =P(1,2)P'. In the former case, the parities of both permutations are equal,
giving rise to factor (—1)"” P — (—1)2®) = 1, while in the latter case they
differ by one exchange of two electrons, so that (— 1)"’ (Prp®) — _1. Moreover, for
each choice of the two SO describing electrons 1 and 2, we thus have (N — 2)!
permutations of the remaining (N — 2) orbitals {k; # (k;, k»)} among (N — 2)
electrons (3, 4, ..., N). Therefore, the preceding expression can be expressed in
terms of contributions from two-electron integrals:

(N=2)! (L&
<(}>~pA=WZZ[<k(1)l(2)Ig(l,Z)Ik(l)l(Z»—<k(1)l(2)\g(l,Z)ll(l)k(Z)ﬂ
k=1 I=1
1 N N 1 N N
= EZZ [(kl|g|kl) — (Ki|g|lk)] = EZZ [(kk| 1) — (Ki|1k)]
k=1 I=1 k=1 I=1
=S Kl =Y > Kl (579)
k=1 I=1 k=1 I=k-+1

The two-electron integrals for the specified pair of SO describing the states of the
representative electrons “1”” and “2,”

Telet] = (K(DIQ) | g(1, k)IQ)) = ﬂ|wk<1>\2g<1,2>|¢%<1>|2dq1dq2
Ejk.,lv

Ry t] = (K()I) | g(1, 2)[(1DK(2)
— jj v (Dg(1, 2); 2 (2)da,day = Ki, (5.76)
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are called the Coulomb and exchange integrals, respectively. The former is indeed
seen to measure the Coulomb interaction between the charge distributions of
electrons occupying SO ;. and V,, respectively.

Since two-electron “integrations” involve summation over spin variables, the
exchange integrals identically vanish for the two electrons with opposite spins, due
to orthogonality of their spin functions (3.76),

kk,l[‘//ka‘ﬁl] :<”<P1t("1)<ﬂl("l)g("la’"2) ®r 1 (r2) (12 d”ld”2> [Z Q a1){(0 ]

X [Z (7((72)§k(0—2)

= Kl pildg.q, = Kiidg g0 (5.77)

where K, ; stands for the exchange integral defined by the specified pair of the
spatial functions (orbitals).

It should be observed that no such restriction intervenes in calculating the
Coulomb integrals:

Tl <”|<Pk(r1)|2g(r1»r2)|80;2(r2)|2dr1dr2> [Z mof] [Z cmﬂ

(]

= Jiilors 21l = Jiis (5.78)

where the sums in the square brackets are both equal to 1 by the normalization
condition of the spin states [see (3.76)]:

<a|a>=Za|o () = Zla = (BIB) =D _(Blo)(s|B)
= Zlﬁ (5.79)

It also follows from (5.77) and (5.78) that J; x = Ki s, Jxs = J1p and Ky, = Kz,
since the value of the electron repulsion energy must be independent of the
subjectively assigned labels of electrons. This justifies the final expression in
(5.75), involving only the off-diagonal terms in the double summation Y ; ;.

The same is true for the one-electron integrals /iy x = hy i []:

i) = [0 bita) da = (j () h(r) ) [Z Lo ]

= hkA,k [(p,\] = hk,k- (580)
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For example, for the wave function (5.66), one obtains the following functional
for the expectation value of the electronic energy:

)4 P )4
=2 hity > (20— Ki)). (5.81)

i=1 i=1 j=1

Clearly, its numerical value depends on the shapes of the p doubly occupied orbitals
defining the associated one- and two-electron integrals. In the closed-shell ground
state configuration [1s2] of the helium atom, one thus finds

(E (H€)>\y0 = 2h15,15 + 1515, (5.82)

while for the ground state of beryllium, defined by configuration [1s*2s%], one
predicts

<E8(Be)>\p0: 2/1lsA,ls+2h2sﬁ23+~[ls,l5+J23,2x+4-]ls,2x - 2K15,2s- (5.83)

The same result can be heuristically derived by summing the elementary one-
electron energies of all N electrons, the expectation values of the Hamiltonian
(5.70), and the repulsion energies in each of the N(N — 1)/2 different electronic
pairs. Indeed, the average interaction energy between two (indistinguishable)
electrons (1, 2) occupying spin orbitals 1, and i; is given by the expectation value
of the g(1, 2) in the Slater determinant W,(2) = Iyl = 27 [y 2) —
YWADI:

(¥a@)ls(1,2)¥a@)) = Jij — Kij = J,-jijf:/, for identical spin states

= {J iy for different spin states
Thus, for the two spin-paired electrons in He atom, when K; j = 0, one reproduces
the result of (5.82). It can be also easily verified that for beryllium atom in the
ground state W ,(4) = 115715 2s*2s7|, one recovers (5.83).

The expectation value <‘I’A f PAIE'|‘I’A> = <‘Po | I:Ie|‘1’0 (5.71) represents a par-
ticular, ground state case of a general diagonal matrix element of the electronic
Hamiltonian, (¥, ‘ Iﬁle“I’nP, for any antisymmetric electronic state (Slater deter-
minant) W, specified by alternative choices of N occupied, orthonormal SO. The
same energy formulas also apply to excited electron configurations ¥,,~.o obtained
by replacing some of the SO occupied in ¥, by the virtual orbitals, unoccupied in
Wo. Thus, given the modified list of SO occupied in W¥,,, occd.[n] = [n], a general
formula for the expectation value of the electronic energy remains unaffected:

<E€>‘I—'n:<\yn|ﬁe|q’n> thH- ZZ Ty — K]

] [n] ]
= {(khlk) + > (k| g|ki — (P ) =]l =1. (584
k !

i



140 5 Approximating Molecular Schrodinger Equation

Finally, let us examine the off-diagonal matrix elements <‘I’,7 | a |‘I’,,/>
between two electron configurations, differing in the list of the occupied SO. Due
to the orthogonality of SO such configurations can be shown to be also automati-
cally orthogonal: (¥, | ¥,») = 0 [see (5.68)]. The sets of the occupied SO in these
two states may still exhibit some common SO, be it in different positions (rows) of
two determinantal functions. Therefore, for definiteness, we assume that by appro-
priate exchange of rows in one of these two Slater determinants, the two
configurations have been brought to the maximum coincidence form, in which the
rows of the common SO of both configurations appear in the same positions in both
determinants. We already know from the properties of the Slater determinant that
such exchanges can at best change the sign of the wave function, which can be
diagnosed from the known number of the row permutations in the original Slater
determinant required for reaching this maximum coincidence. This sign can then be
used to multiply the matrix element obtained from the maximum coincidence rules.

There are three general types of differences between such prearranged lists of SO
in both Slater determinants, giving rise to the associated expressions for the matrix
element of the electronic Hamiltonian. They can be derived in a way analogous
to that used to derive the diagonal element, by expanding both determinants in terms
of the permuted products of SO, applying the SO orthonormality relations, and
recognizing the indistinguishability of electrons. The relevant cases are summarized
by the following Slater—Condon rules (Slater 1929; Condon 1930):

1. Configurations ¥, and ¥,/ differ only in a single SO, with i, of the former being
replaced by 1, in the latter, as a result of the electron excitation y/,, — ¥,

[n]
(P [H[®) = (plhlr) + > (pilgl — jr),
J

[n]
(P ¥w) = [ [T G 10 =05 (5.85)

i#p
2. Configurations ¥, and ¥, differ only in two SO, as a result of the double
excitation (‘//p - lpr, lpq - lps) or (l//p, qu) - (lpr’ lps),

(P, |H W) = (pqlglrs — sr),
[n]
() = (p|r)gls) T G li)=o0. (5.86)
i#(p.q)

3. Configurations ¥, and W,, differ in more than two SO, thus reflecting the triple
or higher excitations,

(P, [H|P,) =0, (¥,|¥,)=0. (5.87)
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To summarize, the determinantal functions corresponding to the system ground
and excited configurations, in which electrons have been excited from some
Wy-occupied to the corresponding W-virtual SO of the molecule, form the ortho-
normal basis of N-electron functions. The Slater—Condon rules allow one to express
their average energies and the coupling matrix elements between them in terms of
the elementary one- and two-electron integrals involving SO, the elementary one-
electron functions of the orbital approximation.

5.5 Example: Helium Atom

As an illustration we shall now apply the approximate methods to estimate the
ground state energy of the helium atom, when its two electrons occupy the lowest
orbital 1s