

Lecture Notes in Computer Science 6588
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jeffrey Xu Yu Myoung Ho Kim
Rainer Unland (Eds.)

Database Systems
for Advanced Applications

16th International Conference, DASFAA 2011
Hong Kong, China, April 22-25, 2011
Proceedings, Part II

13

Volume Editors

Jeffrey Xu Yu
The Chinese University of Hong Kong
Department of Systems Engineering and Engineering Management
Shatin, N.T., Hong Kong, China
E-mail: yu@se.cuhk.edu.hk

Myoung Ho Kim
Korea Advanced Institute of Science and Technology (KAIST)
Department of Computer Science
291 Daehak-ro (373-1 Guseong-don), Yuseong-gu, Daejeon 305-701, Korea
E-mail: mhkim@dbserver.kaist.ac.kr

Rainer Unland
University of Duisburg-Essen
Institute for Computer Science and Business Information Systems (ICB)
Schützenbahn 70, 45117 Essen, Germany
E-mail: rainer.unland@icb.uni-due.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-20151-6 e-ISBN 978-3-642-20152-3
DOI 10.1007/978-3-642-20152-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011923553

CR Subject Classification (1998): H.2-5, C.2, J.1, J.3

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

DASFAA is an annual international database conference, which showcases state-
of-the-art R&D activities in database systems and their applications. It provides
a forum for technical presentations and discussions among database researchers,
developers and users from academia, business and industry. It is our great plea-
sure to present you the proceedings of the 16th International Conference on
Database Systems for Advanced Applications (DASFAA 2011), which was held
in Hong Kong, China, during April 22-25, 2011.

DASFAA 2011 received 225 research paper submissions from 32 countries /
regions (based on the affiliation of the first author). After a thorough review
process for each submission by the Program Committee and specialists recom-
mended by Program Committee members, DASFAA 2011 accepted 53 full re-
search papers and 12 short research papers (the acceptance rates were 24% and
5%, respectively). Other papers in this volume include four industrial papers
selected by a committee chaired by Takahiro Hara (Osaka University), Tengjiao
Wang (Peking University), and Xing Xie (Microsoft Research China), and eight
demo papers selected by a committee chaired by Jidong Chen (EMC Research
China), Lei Chen (The Hong Kong University of Science and Technology), and
Kyoung-Gu Woo (Samsung Electronics).

This volume also includes two invited keynote papers, presented by lead-
ing experts in database research and advanced applications at DASFAA 2011,
Josephine M. Cheng (IBM Research Almaden Lab) and Divy Agrawal (Univer-
sity of California at Santa Barbara), on the topics of “Smarter Planet: Empower
People with Information Insights” and “Database Scalability, Elasticity, and
Autonomy in the Could,” respectively; one extended abstract for the DASFAA
2011 ten-year best paper on “What Have We Learnt from Deductive Object-
Oriented Database Research?” by Mengchi Liu (Carleton University), Gillian
Dobbie (University of Auckland), and Tok Wang Ling (National University
of Singapore); three tutorial abstracts, selected by Tutorial Co-chairs Reynold
Cheng (The University of Hong Kong), Ken Lee (University of Massachusetts
Dartmouth), and Ee-Peng Lim (Singapore Management University), “Manag-
ing Social Image Tags: Methods and Applications” by Aixin Sun and Sourav S.
Bhowmick, “Searching, Analyzing and Exploring Databases” by Yi Chen, Wei
Wang and Ziyang Liu, and “Web Search and Browse Log Mining: Challenges,
Methods, and Applications” by Daxin Jiang; and one panel abstract selected
by Panel Co-chairs, Haibo Hu (Hong Kong Baptist University), Haixun Wang
(Microsoft Research China), and Baihua Zheng (Singapore Management Uni-
versity). The conference program boasts conference proceedings that span two
volumes in Springer’s Lecture Notes in Computer Science series.

Beyond the main conference, six workshops, held in conjunction with
DASFAA 2011, were selected by Workshop Co-chairs Jianliang Xu (Hong Kong

VI Preface

Baptist University), Ge Yu (Northeastern University), and Shuigeng Zhou (Fu-
dan University). They are the First International Workshop on Graph-structured
Data Bases (GDB 2011), the First International Workshop on Spatial Informa-
tion Modeling, Management and Mining (SIM3), the International Workshop
on Flash-Based Database Systems (FlashDB), the Second International Work-
shop on Social Networks and Social Media Mining on the Web (SNSMW), the
First International Workshop on Data Management for Emerging Network In-
frastructures (DaMEN), and the 4th International Workshop on Data Quality
in Integration Systems (DQIS). The workshop papers are included in a sepa-
rate volume of proceedings also published by Springer in its Lecture Notes in
Computer Science series.

DASFAA 2011 was jointly organized by The Chinese University of Hong
Kong, The Hong Kong University of Science and Technology, Hong Kong Baptist
University, The University of Hong Kong, City University of Hong Kong, and
The Hong Kong Polytechnic University. It received in-cooperation sponsorship
from the China Computer Federation Database Technical Committee. We are
grateful to the sponsors who contributed generously to making DASFAA 2011
successful. They are the Department of Systems Engineering and Engineering
Management of The Chinese University of Hong Kong, Oracle, IBM, K.C. Wong
Education Foundation, and Hong Kong Pei Hua Education Foundation.

The conference would not have been possible without the support of many col-
leagues. We would like to express our special thanks to Honorary Conference Co-
chairs, Xingui He (Peking University), Shan Wang (Renmin University of China),
and Kyu-Young Whang (KAIST) for their valuable advice on all aspects of or-
ganizing the conference. We thank Organizing Committee Chair Kam-Fai Wong
(The Chinese University of Hong Kong), Publicity Co-chairs, Raymond Wong
(The Hong Kong University of Science and Technology), Xiaochun Yang (North-
eastern University), and Xiaofang Zhou (University of Queensland), Publication
Chair Rainer Unland (University of Duisburg-Essen), Finance Chair Vincent
Ng (The Hong Kong Polytechnic University), Local Arrangements Chair Hong-
va Leong (The Hong Kong Polytechnic University), Sponsor Chair Joseph Ng
(Hong Kong Baptist University), Best Award Committee Co-chairs Ming-Syan
Chen (Academia Sinica, Taiwan and National Taiwan University) and Aoying
Zhou (East China Normal University), and Demo Award Committee Co-chairs
Ben Kao (The University of Hong Kong) and Lizhu Zhou (Tsinghua University).
Our thanks go to all the committee members and other individuals involved in
putting it all together, and all authors who submitted their papers to this con-
ference.

July 2010 Dik Lun Lee
Wang-Chien Lee

Kamal Karlapalem
Jeffrey Xu Yu

Myoung Ho Kim

Organization

Honorary Conference Co-chairs

Xingui He Peking University, China
Shan Wang Renmin University of China, China
Kyu-Young Whang Korea Advanced Institute of Science and

Technology (KAIST), Korea

Conference General Co-chairs

Dik Lun Lee The Hong Kong University of Science and
Technology, China

Wang-Chien Lee Penn State University, USA
Kamal Karlapalem IIIT-Hyderabad, India

Program Committee Co-chairs

Jeffrey Xu Yu The Chinese University of Hong Kong, China
Myoung Ho Kim Korea Advanced Institute of Science and

Technology (KAIST), Korea

Organizing Committee Chair

Kam-Fai Wong The Chinese University of Hong Kong, China

Workshop Co-chairs

Jianliang Xu Hong Kong Baptist University, China
Ge Yu Northeastern University, China
Shuigeng Zhou Fudan University, China

Industrial Co-chairs

Takahiro Hara Osaka University, Japan
Tengjiao Wang Peking University, China
Xing Xie Microsoft Research China, China

Tutorial Co-chairs

Reynold Cheng The University of Hong Kong, China
Ken Lee University of Massachusetts Dartmouth, USA
Ee-Peng Lim Singapore Management University, Singapore

VIII Organization

Panel Co-chairs

Haibo Hu Hong Kong Baptist University, China
Haixun Wang Microsoft Research China, China
Baihua Zheng Singapore Management University, Singapore

Demo Co-chairs

Jidong Chen EMC Research China, China
Lei Chen The Hong Kong University of Science and

Technology, China
Kyoung-Gu Woo Samsung Electronics, Korea

Publicity Co-chairs

Raymond Wong The Hong Kong University of Science and
Technology, China

Xiaochun Yang Northeastern University, China
Xiaofang Zhou University of Queensland, Australia

Local Arrangements Chair

Hong-va Leong The Hong Kong Polytechnic University, China

Finance Chair

Vincent Ng The Hong Kong Polytechnic University, China

Publication Chair

Rainer Unland University of Duisburg-Essen, Germany

Web Chair

Hong Cheng The Chinese University of Hong Kong, China

Demo Award Committee Co-chairs

Ben Kao The University of Hong Kong, China
Lizhu Zhou Tsinghua University, China

Best Paper Committee Co-chairs

Ming-Syan Chen Academia Sinica, Taiwan and National Taiwan
University, Taiwan

Aoying Zhou East China Normal University, China

Organization IX

Steering Committee Liaison

Qing Li City University of Hong Kong, China

Sponsor Chair

Joseph Ng Hong Kong Baptist University, China

CCF DBTC Liaison

Xiaofeng Meng Renmin University of China, China

DASFAA Awards Committee

Tok Wang Ling (Chair) National University of Singapore, Singapore
Jianzhong Li Harbin Institute of Technology, China
Krithi Ramamirtham Indian Institute of Technology at Bombay,

India
Kian-Lee Tan National University Singapore, Singapore
Katsumi Tanaka Kyoto University, Japan
Kyu-Young Whang Korea Advanced Institute of Science and

Technology (KAIST), Korea
Jeffrey Xu Yu The Chinese University of Hong Kong, China

DASFAA Steering Committee

Katsumi Tanaka (Chair) Kyoto University, Japan
Ramamohanarao Kotagiri

(Vice Chair) University of Melbourne, Australia
Kyu-Young Whang (Advisor) Korea Advanced Institute of Science and

Technology (KAIST), Korea
Yoshihiko Imai (Treasurer) Matsushita Electric Industrial Co., Ltd., Japan
Kian Lee Tan (Secretary) National University of Singapore (NUS),

Singapore
Yoon Joon Lee Korea Advanced Institute of Science and

Technology (KAIST), Korea
Qing Li City University of Hong Kong, China
Krithi Ramamritham Indian Institute of Technology at Bombay,

India
Ming-Syan Chen National Taiwan University, Taiwan
Eui Kyeong Hong Univerity of Seoul, Korea
Hiroyuki Kitagawa University of Tsukuba, Japan
Li-Zhu Zhou Tsinghua University, China
Jianzhong Li Harbin Institute of Technology, China
BongHee Hong Pusan National University, Korea

X Organization

Program Committees

Research Track

Toshiyuki Amagasa University of Tsukuba, Japan
Masayoshi Aritsugi Kumamoto University, Japan
James Bailey University of Melbourne, Australia
Ladjel Bellatreche Poitiers University, France
Boualem Benatallah University of New South Wales, Australia
Sourav S. Bhowmick Nanyang Technological University, Singapore
Athman Bouguettaya CSIRO, Australia
Chee Yong Chan National University Singapore, Singapore
Jae Woo Chang Chonbuk National University, Korea
Lei Chen The Hong Kong University of Science and

Technology, China
Ming-Syan Chen National Taiwan University, Taiwan
Reynold Cheng The University of Hong Kong, China
Hong Cheng The Chinese University of Hong Kong,

China
James Cheng Nanyang Technological University,

Singapore
Byron Choi Hong Kong Baptist University, China
Yon Dohn Chung Korea University, Korea
Gao Cong Nanyang Technological University,

Singapore
Bin Cui Peking University, China
Alfredo Cuzzocrea ICAR-CNR / University of Calabria, Italy
Gill Dobbie University of Auckland, New Zealand
Xiaoyong Du Renmin University of China, China
Jianhua Feng Tsinghua University, China
Ling Feng Tsinghua University, China
Sumit Ganguly IIT Kanpur, India
Yunjun Gao Zhejiang University, China
Vivek Gopalkrishnan Nanyang Technological University, Singapore
Wook-Shin Han Kyungpook National University, Korea
Takahiro Hara Osaka University, Japan
Bingsheng He Nanyang Technological University,

Singapore
Wynne Hsu National University Singapore, Singapore
Haibo Hu Hong Kong Baptist University, China
Seung-won Hwang POSTECH, Korea
Yoshiharu Ishikawa Nagoya University, Japan
Mizuho Iwaihara Waseda University, Japan
Adam Jatowt Kyoto University, Japan,
Ruoming Jin Kent State University, USA
Jaewoo Kang Korea University, Korea

Organization XI

Norio Katayama National Institute of Informatics, Japan
Yiping Ke The Chinese University of Hong Kong,

China
Sang Wook Kim Hanyang University, Korea
Young-Kuk Kim Chungnam National University, Korea
Markus Kirchberg Hewlett-Packard Labs Singapore and

National University of Singapore, Singapore
Hiroyuki Kitagawa University of Tsukuba, Japan
Flip Korn AT&T Research, USA
Hady W. Lauw Institute for Infocomm Research, Singapore
Jae-Gil Lee IBM Almaden, USA
Mong Li Lee National University of Singapore, Singapore
Sang-goo Lee Seoul National University, Korea
Sang-Won Lee Sungkyunkwan University, Korea
Wang-Chien Lee Pennsylvania State University, USA
Cuiping Li Renmin University of China, China
Jianzhong Li Harbin Institute of Technology, China
Xuemin Lin University of New South Wales, Australia
Chengfei Liu Swinburne University of Technology,

Australia
Eric Lo Hong Kong Polytechnic University, China
Jiaheng Lu Renmin University of China, China
Nikos Mamoulis The University of Hong Kong, China
Weiyi Meng Binghamton University, USA
Xiaofeng Meng Renmin University of China, China
Bongki Moon University of Arizona, USA
Yang-Sae Moon Kangwon National University, Korea
Yasuhiko Morimoto Hiroshima University, Japan
Yunmook Nah Dankook University, Korea
Miyuki Nakano University of Tokyo, Japan
Tadashi Ohmori University of Electro-Communications, Japan
Makoto Onizuka NTT Cyber Space Labs, Japan
Sanghyun Park Yonsei Universiy, Korea
Seog Park Sogang University, Korea
Jian Pei Simon Fraser University, Canada
Uwe Rohm University of Sydney, Australia
Markus Schneider University of Florida, USA
Heng Tao Shen University of Queensland, Australia
Hyoseop Shin Konkuk University, Korea
S. Sudarshan IIT Bombay, India
Atsuhiro Takasu National Institute of Informatics, Japan
Kian-Lee Tan National University Singapore, Singapore
Jie Tang Tsinghua University, China
David Taniar Monash University, Australia
Egemen Tanin University of Melbourne, Australia

XII Organization

Vincent S. Tseng National Cheng Kung University, Taiwan
Vasilis Vassalos Athens University of Economics and Business,

Greece
John Wang Griffith University, Australia
Jianyong Wang Tsinghua University, China
Guoren Wang Northeastern University, China
Wei Wang University of New South Wales, Australia
Raymond Wong The Hong Kong University of Science and

Technology, China
Xiaokui Xiao Nanyang Technological University, Singapore
Jianliang Xu Hong Kong Baptist University, China
Man-Lung Yiu Hong Kong Polytechnic University, China
Haruo Yokota Tokyo Institute of Technology, Japan
Jae Soo Yoo Chungbuk National University, Korea
Ge Yu Northeastern University, China
Aidong Zhang University of Buffalo, SUNY, USA
Rui Zhang University of Melbourne, Australia
Yanchun Zhang Victoria University, Australia
Baihua Zheng Singapore Management University, Singapore
Aoying Zhou East China Normal University, China
Xiaofang Zhou University of Queensland, Australia

Industrial Track

Wolf-Tilo Balke University of Hannover, Germany
Edward Chang Google, China and University of

California Santa Barbara, USA
Bin Cui Peking University, China
Dimitrios Georgakopoulos CSIRO, Australia
Seung-Won Hwang POSTECH, Korea
Marek Kowalkiewicz SAP, Australia
Sanjay Kumar Madria Missouri University of Science and Technology,

USA
Mukesh Mohania IBM Research India, India
Makoto Onizuka NTT Corporation, Japan
Jilei Tian Nokia Research China, China
Masashi Tsuchida Hitach, Ltd., Japan
Jianyong Wang Tsinghua University, China
Wei Wang Fudan University, China
Yu Zheng Microsoft Research Asia, China

Demo Track

Ilaria Bartolini University of Bologna, Italy
Bin Cui Peking University, China
Heasoo Hwang Samsung Electronics, Korea

Organization XIII

Jin-ho Kim Kangwon National University, Korea
Changkyu Kim Intel Labs, USA
Guoqiong Liao Jiangxi University of Finance and Economics,

China
Hongrae Lee Google Research, USA
Jiaheng Lu Renmin University of China, China
Peng Wang Fudan University, China
Feng Yaokai Kyushu University, Japan

External Reviewers

Eunus Ali
Parvin Asadzadeh
He Bai
Moshe Barukh
Seyed-Mehdi-Reza

Beheshti
Arnab Bhattacharya
Nick Bozovic
Xin Cao
Wing Kwan Chan
Lijun Chang
Muhammad Aamir

Cheema
Jinchuan Chen
Jiefeng Cheng
Taewon Cho
Jaehoon Choi
Shumo Chu
Ke Deng
Wei Feng
Shen Ge
Haris Georgiadis
Kazuo Goda
Jian Gong
Reza Hemayati
He Hu
Hai Huang
Jun Huang
Stéphane Jean
Bin Jiang
Lili Jiang
Yifan Jin
Akimitsu Kanzaki
Hideyuki Kawashima

Selma Khouri
Henning Koehler
Neila Ben Lakhal
Dong-Ho Lee
Injoon Lee
Jongwuk Lee
Kyubum Lee
Mu-Woong Lee
Sanghoon Lee
Sunwon Lee
Guoliang Li
Jianxin Li
Jing Li
Jiang Li
Lin Li
Xian Li
Xiang Li
Xiang Lian
Wenxin Liang
Lian Liu
Wenting Liu
Xingjie Liu
Jiangang Ma
Hossein Maserrat
Takeshi Mishima
Surya Nepal
Bo Ning
Wee Siong Ng
Junho Oh
Sai Tung On
Jin-woo Park
Yu Peng
Jianzhong Qi
Kun Qian

Miao Qiao
Hongda Ren
Jong-Won Roh
Seung Ryu
Sherif Sakr
Shuo Shang
Jie Shao
Mohamed A. Sharaf
Gao Shen
Wei Shen
Zhitao Shen
Wanita Sherchan
Reza Sherkat
Lei Shi
Chihwan Song
Ha-Joo Song
Shaoxu Song
Yehia Taher
Takayuki Tamura
Guanting Tang
Yuan Tian
Guoping Wang
Puwei Wang
Yi Wang
Yousuke Watanabe
Ingo Weber
Chuan Xiao
Hairuo Xie
Kexin Xie
Lin Xin
Jiajie Xu
Zhiqiang Xu
Kefeng Xuan
Yuan Xue

XIV Organization

Qingyan Yang
Xuan Yang
Zenglu Yang
Peifeng Yin
Mingxuan Yuan
Henry Ye
Mao Ye
Pengjie Ye
Peifeng Yin
Tomoki Yoshihisa

Naoki Yoshinaga
Gae-won You
Li Yu
Qi Yu
Weiren Yu
Bin Zhang
Shiming Zhang
Peiwu Zhang
Song Zhang
Geng Zhao

Xiang Zhao
Ye Zhen
Kai Zheng
Yu Zheng
Bin Zhou
Guangtong Zhou
Gaoping Zhu
Andreas Zuefle

Table of Contents – Part II

Similarity

Efficient Histogram-Based Similarity Search in Ultra-High Dimensional
Space . 1

Jiajun Liu, Zi Huang, Heng Tao Shen, and Xiaofang Zhou

A Retrieval Strategy Using the Integrated Knowledge of Similarity and
Associations . 16

Yong-Bin Kang, Shonali Krishnaswamy, and Arkady Zaslavsky

PG-Skip: Proximity Graph Based Clustering of Long Strings 31
Michail Kazimianec and Nikolaus Augsten

An Effective Approach for Searching Closest Sentence Translations
from the Web . 47

Ju Fan, Guoliang Li, and Lizhu Zhou

Searching and Digital Preservation

Finding the Sites with Best Accessibilities to Amenities 58
Qianlu Lin, Chuan Xiao, Muhammad Aamir Cheema, and Wei Wang

Audio Lifelog Search System Using a Topic Model for Reducing
Recognition Errors . 73

Taro Tezuka and Akira Maeda

Towards Web Search by Sentence Queries: Asking the Web for Query
Substitutions . 83

Yusuke Yamamoto and Katsumi Tanaka

The DISTARNET Approach to Reliable Autonomic Long-Term Digital
Preservation . 93

Ivan Subotic, Heiko Schuldt, and Lukas Rosenthaler

Spatial Queries

A Unified Algorithm for Continuous Monitoring of Spatial Queries 104
Mahady Hasan, Muhammad Aamir Cheema, Xuemin Lin, and
Wenjie Zhang

Real-Time Monitoring of Moving Objects Using Frequently Used
Routes . 119

Yutaka Ohsawa, Kazuhisa Fujino, Htoo Htoo,
Aye Thida Hlaing, and Noboru Sonehara

XVI Table of Contents – Part II

wNeighbors: A Method for Finding k Nearest Neighbors in Weighted
Regions . 134

Chuanwen Li, Yu Gu, Ge Yu, and Fangfang Li

Aggregate Farthest-Neighbor Queries over Spatial Data 149
Yuan Gao, Lidan Shou, Ke Chen, and Gang Chen

Query Processing I

Querying Business Process Models Based on Semantics 164
Tao Jin, Jianmin Wang, and Lijie Wen

Discovering Implicit Categorical Semantics for Schema Matching 179
Guohui Ding and Guoren Wang

Expressive Power of Query Languages for Constraint Complex Value
Databases . 195

Hong-Cheu Liu

Scaling Up Query Allocation in the Presence of Autonomous
Participants . 210

Jorge-Arnulfo Quiané-Ruiz, Philippe Lamarre, Sylvie Cazalens, and
Patrick Valduriez

Generating Preview Instances for the Face Validation of
Entity-Relationship Schemata: The Acyclic Case . 225

Maria Amalfi, Alessandro Artale, Andrea Cal̀ı, and
Alessandro Provetti

Query Processing II

Dynamic Skylines Considering Range Queries . 235
Wen-Chi Wang, En Tzu Wang, and Arbee L.P. Chen

EcoTop: An Economic Model for Dynamic Processing of Top-k Queries
in Mobile-P2P Networks . 251

Nilesh Padhariya, Anirban Mondal, Vikram Goyal,
Roshan Shankar, and Sanjay Kumar Madria

REQUEST: Region-Based Query Processing in Sensor Networks 266
Dong-Wan Choi and Chin-Wan Chung

Efficient Distributed Top-k Query Processing with Caching 280
Norvald H. Ryeng, Akrivi Vlachou, Christos Doulkeridis, and
Kjetil Nørv̊ag

Exploiting Correlation to Rank Database Query Results 296
Jaehui Park and Sang-goo Lee

Table of Contents – Part II XVII

Indexing and High Performance

LinearDB: A Relational Approach to Make Data Warehouse Scale Like
MapReduce . 306

Huiju Wang, Xiongpai Qin, Yansong Zhang, Shan Wang, and
Zhanwei Wang

Genetic Algorithm Based QoS-Aware Service Compositions in Cloud
Computing . 321

Zhen Ye, Xiaofang Zhou, and Athman Bouguettaya

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval
in Wireless Data Broadcast . 335

Jiaofei Zhong, Weili Wu, Yan Shi, and Xiaofeng Gao

Buffer Cache De-duplication for Query Dispatch in Replicated
Databases . 352

Takeshi Yamamuro, Yoshiharu Suga, Naoya Kotani,
Toshio Hitaka, and Masashi Yamamuro

Indexing for Vector Projections . 367
Sean Chester, Alex Thomo, S. Venkatesh, and Sue Whitesides

Industrial Papers

Assessment of Cardiovascular Disease Risk Prediction Models:
Evaluation Methods . 377

Richi Nayak and Ellen Pitt

Visual Analysis of Implicit Social Networks for Suspicious Behavior
Detection . 388

Amyn Bennamane, Hakim Hacid, Arnaud Ansiaux, and
Alain Cagnati

Compositional Information Extraction Methodology from Medical
Reports . 400

Pratibha Rani, Raghunath Reddy, Devika Mathur,
Subhadip Bandyopadhyay, and Arijit Laha

A Framework for Semantic Recommendations in Situational
Applications . 413

Raphaël Thollot and Marie-Aude Aufaure

Demo Papers

Storage and Use of Provenance Information for Relational Database
Queries . 429

Zhifeng Bao, Henning Koehler, Xiaofang Zhou, and Tok Wang Ling

XVIII Table of Contents – Part II

MRQSim: A Moving Range Query Simulation Platform in Spatial
Networks . 434

Yu Gu, Na Guo, Chuanwen Li, and Ge Yu

DWOBS: Data Warehouse Design from Ontology-Based Sources 438
Selma Khouri and Ladjel Bellatreche

AUCWeb: A Prototype for Analyzing User-Created Web Data 442
Weining Qian, Feng Chen, Juan Du, Weiming Zhang, Can Zhang,
Haixin Ma, Peng Cai, Minqi Zhou, and Aoying Zhou

Blending OLAP Processing with Real-Time Data Streams 446
João Costa, José Cećılio, Pedro Martins, and Pedro Furtado

AutoBayesian: Developing Bayesian Networks Based on Text Mining . . . 450
Sandeep Raghuram, Yuni Xia, Jiaqi Ge, Mathew Palakal, Josette
Jones, Dave Pecenka, Eric Tinsley, Jean Bandos, and
Jerry Geesaman

Classify Uncertain Data with Decision Tree . 454
Biao Qin, Yuni Xia, Rakesh Sathyesh, Jiaqi Ge, and Sunil Probhakar

StreamFitter: A Real Time Linear Regression Analysis System for
Continuous Data Streams . 458

Chandima Hewa Nadungodage, Yuni Xia, Fang Li,
Jaehwan John Lee, and Jiaqi Ge

Panel

Challenges in Managing and Mining Large, Heterogeneous Data 462
Haibo Hu, Haixun Wang, and Baihua Zheng

Tutorials

Managing Social Image Tags: Methods and Applications 463
Aixin Sun and Sourav S. Bhowmick

Web Search and Browse Log Mining: Challenges, Methods, and
Applications . 465

Daxin Jiang

Searching, Analyzing and Exploring Databases . 467
Yi Chen, Wei Wang, and Ziyang Liu

Author Index . 471

Table of Contents – Part I

Keynote Talks

Smarter Planet: Empower People with Information
Insights (Abstract) . 1

Josephine Cheng

Database Scalability, Elasticity, and Autonomy in the Cloud
(Extended Abstract) . 2

Divyakant Agrawal, Amr El Abbadi, Sudipto Das, and
Aaron J. Elmore

Ten Year Award

What Have We Learnt from Deductive Object-Oriented Database
Research? . 16

Mengchi Liu, Gillian Dobbie, and Tok Wang Ling

Social Network

ECODE: Event-Based Community Detection from Social Networks 22
Xiao-Li Li, Aloysius Tan, Philip S. Yu, and See-Kiong Ng

A User Similarity Calculation Based on the Location for Social Network
Services . 38

Min-Joong Lee and Chin-Wan Chung

Modeling User Expertise in Folksonomies by Fusing Multi-type
Features . 53

Junjie Yao, Bin Cui, Qiaosha Han, Ce Zhang, and Yanhong Zhou

Identifying Topic Experts and Topic Communities in the Blogspace 68
Xiaoling Liu, Yitong Wang, Yujia Li, and Baile Shi

Social Network and Privacy

Utility-Oriented K-Anonymization on Social Networks 78
Yazhe Wang, Long Xie, Baihua Zheng, and Ken C.K. Lee

Distributed Privacy Preserving Data Collection . 93
Mingqiang Xue, Panagiotis Papadimitriou, Chedy Räıssi,
Panos Kalnis, and Hung Keng Pung

XX Table of Contents – Part I

Privacy Preserving Query Processing on Secret Share Based Data
Storage . 108

XiuXia Tian, ChaoFeng Sha, XiaoLing Wang, and AoYing Zhou

Node Protection in Weighted Social Networks . 123
Mingxuan Yuan and Lei Chen

Data Mining I

An Unbiased Distance-Based Outlier Detection Approach for
High-Dimensional Data . 138

Hoang Vu Nguyen, Vivekanand Gopalkrishnan, and Ira Assent

A Relational View of Pattern Discovery . 153
Arnaud Giacometti, Patrick Marcel, and Arnaud Soulet

Efficient Incremental Mining of Frequent Sequence Generators 168
Yukai He, Jianyong Wang, and Lizhu Zhou

An Alternative Interestingness Measure for Mining Periodic-Frequent
Patterns . 183

R. Uday Kiran and P. Krishna Reddy

Data Mining II

A Framework of Mining Semantic Regions from Trajectories 193
Chun-Ta Lu, Po-Ruey Lei, Wen-Chih Peng, and Ing-Jiunn Su

STS: Complex Spatio-Temporal Sequence Mining in Flickr 208
Chunjie Zhou and Xiaofeng Meng

Mining High Utility Mobile Sequential Patterns in Mobile Commerce
Environments . 224

Bai-En Shie, Hui-Fang Hsiao, Vincent S. Tseng, and Philip S. Yu

Reasoning about Dynamic Delegation in Role Based Access Control
Systems . 239

Chun Ruan and Vijay Varadharajan

Probability and Uncertainty

Robust Ranking of Uncertain Data . 254
Da Yan and Wilfred Ng

Probabilistic Image Tagging with Tags Expanded By Text-Based
Search . 269

Xiaoming Zhang, Zi Huang, Heng Tao Shen, and Zhoujun Li

Table of Contents – Part I XXI

Removing Uncertainties from Overlay Network . 284
Ye Yuan, Deke Guo, Guoren Wang, and Lei Chen

Probabilistic and Interactive Retrieval of Chinese Calligraphic
Character Images Based on Multiple Features . 300

Yi Zhuang, Nan Jiang, Hua Hu, Haiyang Hu, Guochang Jiang, and
Chengxiang Yuan

Stream Processing

Real-Time Diameter Monitoring for Time-Evolving Graphs 311
Yasuhiro Fujiwara, Makoto Onizuka, and Masaru Kitsuregawa

Handling ER-topk Query on Uncertain Streams . 326
Cheqing Jin, Ming Gao, and Aoying Zhou

Seamless Event and Data Stream Processing: Reconciling Windows
and Consumption Modes . 341

Raman Adaikkalavan and Sharma Chakravarthy

Querying Moving Objects with Uncertainty in Spatio-Temporal
Databases . 357

Hechen Liu and Markus Schneider

A Novel Hash-Based Streaming Scheme for Energy Efficient Full-Text
Search in Wireless Data Broadcast . 372

Kai Yang, Yan Shi, Weili Wu, Xiaofeng Gao, and Jiaofei Zhong

Graph

Efficient Topological OLAP on Information Networks 389
Qiang Qu, Feida Zhu, Xifeng Yan, Jiawei Han, Philip S. Yu, and
Hongyan Li

An Edge-Based Framework for Fast Subgraph Matching in a Large
Graph . 404

Sangjae Kim, Inchul Song, and Yoon Joon Lee

Context-Sensitive Query Expansion over the Bipartite Graph Model for
Web Service Search . 418

Rong Zhang, Koji Zettsu, Yutaka Kidawara, and Yasushi Kiyoki

BMC: An Efficient Method to Evaluate Probabilistic Reachability
Queries . 434

Ke Zhu, Wenjie Zhang, Gaoping Zhu, Ying Zhang, and Xuemin Lin

XXII Table of Contents – Part I

XML

Improving XML Data Quality with Functional Dependencies 450
Zijing Tan and Liyong Zhang

Identifying Relevant Matches with NOT Semantics over XML
Documents . 466

Rung-Ren Lin, Ya-Hui Chang, and Kun-Mao Chao

Evaluating Contained Rewritings for XPath Queries on Materialized
Views . 481

Rui Zhou, Chengfei Liu, Jianxin Li, Junhu Wang, and Jixue Liu

XStreamCluster: An Efficient Algorithm for Streaming XML Data
Clustering . 496

Odysseas Papapetrou and Ling Chen

XML and Graph

Efficient Evaluation of NOT-Twig Queries in Tree-Unaware Relational
Databases . 511

Kheng Hong Soh and Sourav S. Bhowmick

A Hybrid Algorithm for Finding Top-k Twig Answers in Probabilistic
XML . 528

Bo Ning and Chengfei Liu

Optimizing Incremental Maintenance of Minimal Bisimulation of Cyclic
Graphs . 543

Jintian Deng, Byron Choi, Jianliang Xu, and Sourav S. Bhowmick

Social Based Layouts for the Increase of Locality in Graph
Operations . 558

Arnau Prat-Pérez, David Dominguez-Sal, and Josep L. Larriba-Pey

Generating Random Graphic Sequences . 570
Xuesong Lu and Stéphane Bressan

Author Index . 581

Efficient Histogram-Based Similarity Search in
Ultra-High Dimensional Space

Jiajun Liu1, Zi Huang1,2, Heng Tao Shen1, and Xiaofang Zhou1,2

1 School of ITEE, University of Queensland, Australia
2 Queensland Research Laboratory, National ICT Australia

{jiajun,huang,shenht,zxf}@itee.uq.edu.au

Abstract. Recent development in image content analysis has shown
that the dimensionality of an image feature can reach thousands or
more for satisfactory results in some applications such as face recogni-
tion. Although high-dimensional indexing has been extensively studied in
database literature, most existing methods are tested for feature spaces
with less than hundreds of dimensions and their performance degrades
quickly as dimensionality increases. Given the huge popularity of his-
togram features in representing image content, in this papers we propose
a novel indexing structure for efficient histogram based similarity search
in ultra-high dimensional space which is also sparse. Observing that all
possible histogram values in a domain form a finite set of discrete states,
we leverage the time and space efficiency of inverted file. Our new struc-
ture, named two-tier inverted file, indexes the data space in two levels,
where the first level represents the list of occurring states for each in-
dividual dimension, and the second level represents the list of occurring
images for each state. In the query process, candidates can be quickly
identified with a simple weighted state-voting scheme before their actual
distances to the query are computed. To further enrich the discrimina-
tive power of inverted file, an effective state expansion method is also
introduced by taking neighbor dimensions’ information into considera-
tion. Our extensive experimental results on real-life face datasets with
15,488 dimensional histogram features demonstrate the high accuracy
and the great performance improvement of our proposal over existing
methods.

1 Introduction

Image retrieval based on content similarity has been put in spotlight for the
past few decades [8]. Histogram constructed by counting the number of pix-
els from an image in each of a fixed list of bins is one of the most popular
features used in many applications [11], where each image is represented by a
high-dimensional histogram feature vector. Among many distance functions pro-
posed for histogram comparison, the histogram intersection and the Euclidean
distance are widely used due to their high efficiency and effectiveness [16]. The
dimensionality of an image histogram is typically about tens or hundreds. Re-
cently, driven by the significant need of real-life applications such as identity

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 J. Liu et al.

verification, video surveillance, automated border control, crime scene footage
analysis, and so on, more sophisticated image features are required to reduce
false alarm rate under various conditions and noises in face recognition. For ex-
ample, Local Binary Patterns (LBP) [1] and recently proposed Local Derivative
Patterns (LDP) [19] are well known and proved to be very effective. According to
the particular settings, an 88× 88 face image can generate a 15,488-dimensional
histogram feature or more. A major challenge that prevents face recognition
from being widely applied on large-scale or real-time applications is the vast
computational cost when faces are compared based on the above ultra-high di-
mensional histogram features. Obviously, without any database support, few
applications can actually bear such high computational cost rooted from the
ultra-high dimensionality. Although many high-dimensional indexing methods
have been introduced in database literature [4], performance results on feature
spaces over thousands dimensions are hardly found.

In this paper, we frame our work in the context of histogram-based similarity
search. Our main idea comes from the following observations on histogram fea-
tures. Firstly, given the known image resolution and the fixed number of bins,
all the possible values in a histogram feature vector form a finite set of discrete
values. Therefore, a value in an arbitrary dimension has a finite number of possi-
ble states. Secondly, many dimensional values could be zeros since features may
not be evenly distributed, especially in the ultra-high dimensional space. Our
LDP feature dataset extracted from standard face datasets show that more than
30% dimensional values are zeros. The particular characteristics of discrete state
and high sparsity in the high-dimensional feature space have not been previously
exploited to tackle the similarity search problem.

Motivated by the above observations and the high efficiency of inverted file
in text retrieval where data are also discrete and sparse, we propose a novel
two-tier inverted file structure to index the ultra-high dimensional histograms
for efficient similarity search, where a dimension for a state (and a state for an
image) is analogous to a word for a document. To be more specific, we make the
following contributions.

– We model histogram feature values in a finite set of discrete states, based
on which a two-tier inverted file structure is proposed to leverage the high
efficiency of inverted file. In the new structure, the first tier represents the
list of states for each individual dimension, and the second tier represents
the list of images for each state. Meanwhile, techniques are also employed to
remove those indiscriminate state lists for further performance improvement
and space reduction.

– We propose a fast query processing algorithm based on a simple weighted
state-voting scheme. Only those images with highest voting scores with re-
spect to the query are remained for the actual similarity computations in
the original space.

– We propose an effective state expansion method for each dimensional value
of a histogram by taking its local information into consideration. Each di-
mension of an image is assigned with a larger number of possible states by

Efficient Histogram-Based Similarity Search 3

comparing itself with its left and right neighbor dimensions. The purpose of
this is to further increase the discriminative power of inverted file.

– We conduct an extensive performance study on real-life face datasets with
up to 15488-dimensional histogram features. The results demonstrate the
high accuracy and the significant performance improvement of our proposal
over existing methods.

The rest of the paper is organized as follows. We review some related work in
Section 2. Section 3 provides some preliminary information on the ultra-high
dimensional histogram feature and the related similarity measure. The proposed
two-tier inverted file indexing structure is introduced in Section 4, which followed
by the query processing in Section 5. Extensive experiments regarding effective-
ness, efficiency and scalability has been conducted and analyzed in Section 6.
Finally we conclude our work in Section 7.

2 Related Work

Towards effective database supports for high-dimensional similarity search, a lot
of research efforts have been witnessed in database community. Various cate-
gories of high-dimensional indexing methods have been proposed to tackle the
“curse of dimensionality”.

Tree structures have achieved notable success in managing low-dimensional
feature vectors, from early R-tree, kd-tree and their variants, to M-tree [6], A-
tree [13] and many other trees [4]. The key idea is to prune tree branches as much
as possible based on the established bounding distances so that the number of
accessed feature vectors (or points) can be reduced significantly. However, their
performance rapidly degrades as feature dimensionality increases, and eventually
most of them are outperformed by sequence scan when dimensionality reaches
high tens due to the massive overlap among different branches [18].

Apart from exact search, approximate search has recently drawn much atten-
tion. The aim is to gain performance improvement by sacrificing minor accuracy.
One typical approach is Locality Sensitive Hashing (LSH) [9]. The basic idea is
to use a family of locality sensitive hash functions composed of linear projec-
tion over random directions in the feature space. The intuition behind is that
for at lease one of the hash functions, nearby objects have high probability of
being hashed into the same state. Improvements to LSH have been made contin-
uingly during the past decade, regarding its accuracy, time efficiency and space
efficiency by improving the hashing distribution [7], by enforcing its projection
method [3], and by combining efficient tree structures [17]. However, how to gen-
erate effective hash functions for thousands of dimensions or higher is unclear.

One-dimensional indexing using the efficient B+-tree is another category, such
as iDistance [10]. It partitions data points into clusters and indexes all the points
by their distances to their respective reference points using a single B+-tree. Its
efficiency comes from the localized distances to corresponding reference points
and B+-tree. Its performance is further improved by finding the optimal refer-
ence points which can maximize the performance of B+-tree [14]. Nonetheless,

4 J. Liu et al.

single dimensional distance values become very indistinguishable for ultra-high
dimensional feature vectors.

Another direction is to reduce the number of dimensions of the high-dimensional
data before indexing it. The data is first transformed into a much lower-
dimensional space using dimensionality reduction methods and then an index is
built on it to further facilitate the retrieval [15,5]. The key idea is to transform
data from a high-dimensional space to a lower dimensional space without losing
much information. However, it is mostly infeasible to reduce the dimensionality
from thousands or higher to tens without losing critical information.

Instead of reducing dimensionality, some methods aim to approximate data,
such as VA-file [18]. It approximates each dimension with a small number of
bits, by dividing the data space into 2b rectangular cells where b denotes a user
specified number of bits. The VA-File allocates a unique bit-string of length b
for each cell, and approximates data points that fall into a cell by that bit-string.
The VA-File itself is simply an array of these compact, geometric approxima-
tions. Query process is performed by scanning the entire approximation file and
excluding points from the actual distance computation based on the lower and
upper bounds established from these approximations. This approach is insen-
sitive to the dimensionality and thus able to outperform sequential scan if a
small number of candidates are finally accessed. However, the improvement ra-
tio is rather limited since every single dimension needs to be encoded. Some
refined approaches based on VA-file have also been proposed to handle datasets
of different distributions [2,12].

It is clear that most existing works are not deemed to index ultra-high di-
mensional feature vectors for efficient similarity search. VA-file is likely the most
feasible one to have comparable performance with sequential scan in ultra-high
dimensional spaces since its is dimension independent. Interestingly, inverted file
has been a very effective solution for indexing large-scale text databases with
extremely high dimensionality [20]. In this paper, by analyzing the histogram
intrinsic properties, we introduce a novel and compact indexing structure called
two-tier inverted file to index ultra-high dimensional histograms. The fact that
dimensional values in histogram are discrete and finite motivates us to utilize
the efficiency of inverted file for histogram-based similarity search.

3 Preliminaries

In this section, we provide the information on how ultra-high dimensional fea-
ture vectors can be generated from images and explain the observations which
motivate our design. For easy illustration, we take the recently proposed Local
Derivative Pattern (LDP) feature [19] in face recognition as the example.

3.1 LDP Histogram

Face recognition is a very important topic in pattern recognition. Given a query
face image, it aims at finding the most similar face from a face database. Due to

Efficient Histogram-Based Similarity Search 5

the strong requirement in high accuracy, face images are usually represented by
very sophisticated features in order to capture the face in very detailed levels.
Given a certain similarity measure, face recognition can be considered as the
nearest neighbor search problem in ultra-high dimensional spaces.

An effective face feature or descriptor is one of the key issues for a well-designed
face recognition system. The feature should be of high ability to discriminate be-
tween classes, has low intra-class variance, and can be easily computed. Local Bi-
nary Pattern (LBP) is a simple yet very efficient texture descriptor which labels
the pixels of an image by thresholding the neighborhood of each pixel with the
value of the center pixel and considers the result as a binary number [1]. Due to
its discriminative power and computational simplicity, LBP has become a pop-
ular approach in face recognition. As an extension to LBP, the high-order Local
Derivative Pattern (LDP) has been recently proposed as a more robust face de-
scriptor, which significantly outperforms LBP for face identification and face veri-
fication under various conditions [19]. Next, we provide a brief review of these two
descriptors.

Derived from a general definition of texture in a local neighborhood, LBP is
defined as a grayscale invariant texture measure and is a useful tool to model
texture images. The original LBP operator labels the pixels of an image by
thresholding the 3 × 3 neighborhood of each pixel with the value of the central
pixel and concatenating the results binomially to form a 8-bit binary sequence
for each pixel. LBP encodes the binary result of the first-order derivative among
local neighbors.

As an extension to LBP, LDP encodes the higher-order derivative information
which contains more detailed discriminative features. The second order LDP
descriptor labels the pixels of an image by encoding the first-order local derivative
direction variations and concatenating the results as a 32-bit binary sequence for
each pixel. A histogram can then be constructed based on the LDP descriptor
to represent an image.

To get more precise image representation, an image is typically divided into
small blocks, on which more accurate histogram is calculated. For example, given
an image with resolution of 88 × 88, it can be divided into a number of 484
4 × 4 sized blocks. In [19], each block is represented by 4 local 8-dimensional
histograms along four different directions, where each dimension represents the
number of pixels in the bin. The final LDP histogram of the image is generated
by concatenating all the local histograms of each block, i.e., 484 32-dimensional
histogram. Its overall dimensionality is the number of blocks multiplied by the
local histogram size, i.e., 484 × 32 = 15, 488. Theoretically, the maximum di-
mensionality could reach 88 × 88 × 32 when each pixel is regarded as a block.
This LDP histogram is claimed as a robust face descriptor which is insensitive
to rotation, translation and scaling of images.

For histogram features, the number of bins for an image (or block) is always
predetermined. Since the number of pixels in the image (or block) is also known,
the value along each dimension in the histogram is an integer within the range
from 0 to the maximum number of pixels in the image (or block). For example,

6 J. Liu et al.

in LDP histogram, if the block size is 4 × 4, then the value in the histogram
can only be an integer in the range of [0,16]. Clearly, the first observation is
that the histogram values are discrete and from a finite set of numbers, where
each number is regarded as a state. Note that values could also be float if some
normalization is applied. However, normalization does not change the nature
of being discrete and finite. At the same time, many dimensions may have zero
value in ultra-high dimensional histograms. Motivated by the discrete and sparse
characteristics, we utilize the efficiency of inverted file to achieve efficient similar-
ity search in ultra-high dimensional histogram feature spaces, as to be presented
in Section 4.

3.2 Histogram Similarity Measures

Many similarity measures have been proposed for histogram matching. The his-
togram intersection is a widely used similarity measure. Given a pair of LDP
histograms H and S with D dimensions, the histogram intersection is defined as

Sim(H, S) =
D∑

i=1

min(Hi, Si) (1)

In the metric defined above, the intersection is incremented by the number of
pixels which are common between the target image and the query image along
each dimension. Its computational complexity is very low. It is used to calculate
the similarity for nearest neighbor identification and has shown very good accu-
racy for face recognition [19]. Another popular measure is the classical Euclidean
distance which has also been used in many other feature spaces. Although other
similarity measures can be used, in this paper we will test both the histogram
intersection and the Euclidean distance to see their effects on the performance.

4 Two-Tier Inverted File

As introduced in Section 3, the face image feature, LDP histogram, is usually in
ultra-high dimensionality (i.e., more than ten thousands). Given its extremely
high dimensionality, it is not practical to perform the full similarity computations
for all database images. In this section, we present a novel two-tier inverted file
for indexing ultra-high dimensional histograms, based on the discrete and sparse
characteristics of histograms.

Inverted file has been used widely in text databases for its high efficiency
[20] in both time and space, where the text dimensionality (i.e., the number of
words) is usually very high and the word-document matrix is very sparse since
a document only contains a small subset of the word dictionary. However, it
has not been well investigated in the low-level visual feature databases. Here we
exploit the discrete and finite nature of histograms and design a two-tier inverted
file structure for efficient similarity search in ultra-high dimensional space.

In the traditional text-based inverted file, each word points to a list of docu-
ments which contain the word. Naive adoption of inverted file to histograms is

Efficient Histogram-Based Similarity Search 7

to regard each dimension as a word pointing to a list of images whose values (or
states) on the dimension is not zero. By doing this, all zero entries in histograms
are removed. However, histograms also have some different features from text
datasets. Firstly, word-document matrix is far more sparser than histograms,
since the word dictionary size is typically much larger than the average number
of words in documents. This leads to a rather long images list for each dimension.
Secondly, all values in histograms are distributed in a predetermined state range
from 0 to the maximum number of pixels allowed in a bin. This inspires us to
create another level of inverted file for each dimension by regarding each state on
the dimension as a word pointing to a list of images which have the same state.
Therefore, a long image list can be further partitioned into multiple shorter lists
for quicker identification. Thirdly, comparing with the number of images, the
number of states is often much smaller. For example, LDP histograms generated
from 4×4 sized blocks have 16 possible states only, without considering the zero
state. To further improve the discriminative power of inverted file, we design an
effective state expansion method, before we look at the overall structure of the
two-tier inverted file.

4.1 State Expansion

Given that the number of states in histograms is relatively small, we aim to ex-
pand the number of states to balance the state list size and the image list size for
better performance. The basic idea is to expand the original state on a dimen-
sion of an image into multiple states which are more specific and discriminative.
The difficulty for state expansion lies in the preservation of the original state
information. We propose to take the local neighbor information into account for
expansion.

To illustrate the idea, we assume an image is divided into 4×4 sized blocks in
LDP histogram. The number of pixels in each bin ranges from 0 to B, where B
is the block size, i.e., B=16. Thus the number of possible states for a dimension
is B+1. Since all zero entries in histograms are not indexed in inverted file, we
have B states left to consider.

To expand the number of states, we consider the relationship between the
states of ith dimension with its neighbor dimensions, i.e., its left and right neigh-
bors. Comparing the values of ith dimension and (i−1)th dimension for an image,
there exist three relationships, including “ < ”, “ > ” and “ = ”. Similarly, the
comparison between values of ith dimension and (i + 1)th dimension have three
relationships as well. Therefore, by considering the relationship with its left and
right neighbor dimensions, a single ith dimension’s state can be expanded into
3 × 3 possible states.

Given an image histogram H = (h1, h2, ..., hD), it can be transformed to the
expanded feature H ′ = (h′

1, h
′
2, ..., h

′
D), where h′

i is calculated by the following
formula

h′
i = hi × 9 + t1 × 3 + t2 × 1, (2)

8 J. Liu et al.

t1 =

⎧⎨⎩
0 if hi < hi−1 or i = 1
1 if hi = hi−1

2 if hi > hi−1

t2 =

⎧⎨⎩
0 if hi < hi+1 or i = D
1 if hi = hi+1

2 if hi > hi+1

<

=

>

8

< 8 <
< 8 =
< 8 >
= 8 <
= 8 =
= 8 >
> 8 <
> 8 =
> 8 >

State72
State73
State74

...

State79
State80

DimiDimi-1 Dimi+1

<

=

>

State
Expansion

8×9+0×3+0=72

8×9+2×3+1=79

8×9+2×3+2=80

Fig. 1. An example for state expansion

Basically, each state is stretched into an interval which contains nine new
states based on the local relationship with its left and right neighbors. The term
hi × 9 is used to distinguish original states into different intervals, and the term
t1 × 3 + t2 × 1 is used to differentiate nine local relationships within an interval.
Figure 1 depicts an example where ith dimension has an original state of 8
and is expanded into nine new states. Since a dimension of an image originally
have B possible states without considering zero, the total number of states after
expansion becomes 3 × 3 × B. For example, when B is 16, the total number of
possible states for a dimension is expanded to 3 × 3 × 16 = 144.

State expansion is performed on the original feature for each dimension of
every histogram. The ith dimension of jth image, Hij , is assigned with the new
value of H ′

ij = Hij × 9 + t1 × 3 + t2 × 1. Note that more local relationships
can be exploited if more neighbor dimensions are considered. If the number of
histograms is overwhelming, more neighbors like (i−2)th dimension and (i+2)th

dimension can be used. For our data scale used in experiments, expansion on
two neighbor dimensions has shown very satisfactory performance.

State expansion achieves a more detailed description of histogram by consid-
ering neighbor information. It plays an important role in accelerating the search
process, by distributing fixed number of images into a larger number of states.
The average number of images on each state is hence reduced, making query
process more efficient, as to be explained in Section 5.

4.2 Index Construction

Given an image dataset consisting of N histograms in D dimensionality, Figure 2
illustrates the general process of constructing the two-tier inverted file.

Given an image represented as a histogram, H = (h1, h2, ..., hD), it is firstly
transformed to H ′ = (h′

1, h
′
2, ..., h

′
D) by taking state expansion. In H ′, each

dimension of an image is associated with a new state value, which is generated
by considering the relationships with its neighbor dimensions.

Efficient Histogram-Based Similarity Search 9

Img1
Img2

ImgN

...

Dim1 DimD...

Hij

State1

State2

State6

...

Img1

Img3

Img7
...

State26
Img1

Img10

Img51

...

...

...

State3

State6

State8

...

Img1

Img2

Img5
...

State15
Img3

Img11

Img20

...

...
State

Expansion

Img1
Img2

ImgN

...

Dim1 DimD...

Hij'=Hij×9+t1×3+t2

Indexing

Dim1 DimD

...

... ...

Dimension

State
List

Image
List

State
List

Image
List

Fig. 2. Construction of the two-tier inverted file indexing structure

Motivated by the discrete nature of values (or states) in histogram, we propose
a two-tier inverted file to effectively index H ′ and handle the sparsity issue. The
right sub figure in Figure 2 shows an overview of the indexing structure. In the
first tier, an inverted list of states is constructed for each individual dimension
among all images. This tier indicates what states exist on a dimension. If the
number of states is small while the number of images is large, all dimensions
will basically have a complete list of states. By effective state expansion, each
dimension is likely to have a different list of states. In the second tier, an inverted
list of images is built for each state existing in a dimension. Denote the number of
states as M . The maximum number of image lists is M ×D. Given the relatively
small block size, M is usually much smaller than D and N . With state expansion,
M can be enlarged so that a better balance between the state lists and the image
lists can be obtained.

Like the traditional inverted file for documents, the new two-tier inverted file
for histograms does not index the original zero states. Meanwhile, one question
rises here. Is it necessary to keep those states with very long image lists? In text
retrieval, we understand that frequent words are removed since they are not dis-
criminative. Here we adopt the same assumption which is also verified by our ex-
periments. A threshold on the length of image list, ε, is used to determine if an
image list should be removed from the indexing structure. Only the states (and
their image lists) who have less number of images than this threshold are kept in
the two-tier inverted file. Note that rare states are also retained in our structure
since some applications such as face recognition only search for the nearest neigh-
bor. Rare information could be helpful in identifying the most similar result.

Thus, the original histograms in the ultra-high dimensional space are finally
indexed by the compact two-tier inverted file. Given an image query, it can be
efficiently processed in the structure via a simple weighted state-voting scheme,
as to be explained next.

10 J. Liu et al.

Input: Q[], D, B, L[][]
Output: Nearest Neighbor
1. for (i = 1; i < D; i + +) do
2. q′i ← ComputeState(qi);
3. end for
4. Candidates = {}
5. for (i = 1; i <= D; i + +) do
6. Candidates+ ← L[i].q′i;
7. end for
8. Candidates[k] ← WeightedStateVoting(Candidates+);
9. NearestNeighbor ← ComputeNearestNeighbor(Candidates[k]);

10. return NearestNeighbor;

Algorithm 1. The Query Processing Algorithm

5 Query Processing

Based on the two-tier inverted file, query processing is efficient and straight-
forward. We use a simple weighted state-voting scheme to quickly rank all the
images and only a small set of candidates will be selected for full similarity
computations in the original space. Algorithm 1 outlines the query process.

Given a query image histogram, Q = (q1, ..., qD), we firstly transform it to
Q′ = (q′1, ..., q

′
D) by applying state expansion (lines 1-3). ComputeState() is the

method to compute the new state value for qi, based for Equation 2. Next, the
two-tier inverted file, denoted as L[][], is searched. For ith dimension, its corre-
sponding image list which has the same state value as q′i is quickly retrieved via
allocating ith dimension in the first tier and then q′i in the second tier in the struc-
ture. After all dimensions are searched, a set of candidates is generated (lines
5-7). Each image in the candidate set shares one or more common states with the
query image in certain dimensions. Here a weighted state-voting method is em-
ployed to compute the amount of contribution to the final similarity between the
query and a candidate. The frequency of an image in the candidate set reflects
the number of common states it shares with the query image. Note that candi-
dates are generated by matching states on each dimension. However, different
matched states contribute differently to the final similarity when the histogram
intersection is used. Matched states with larger values contribute more to the
final similarity. Therefore, state values have to be considered when candidates
are ranked. Since only expanded states are indexed in the data structure, the
matched state q′i has to be transformed back to the original state qi, according
to Equation 2. WeightedStateVoting() is the method to rank all the candidates
(line 8). When the histogram intersection is applied, the ranking score for each
candidate is computed based on

∑
q̄i, where q̄i is the value of matched state be-

tween Q and a candidate. Top-k candidates are returned for the actual histogram
intersection computations to find the nearest neighbor to Q (line 9). For example,

Efficient Histogram-Based Similarity Search 11

assume that D = 3, Q = (1, 3, 2), L[1].1 = {img1, img2}, L[2].3 = {img2, img4},
and L[3].2 = {img4} without state expansion. The weighted state-voting result
is for img1, img2 and img3 is 1, 1+3, and 3+2 respectively. By setting k = 2,
img3 and img2 are returned as the final candidates to compute their histogram
intersection similarities with respect to the query to find the nearest neighbor.
When the Euclidean distance is applied, two matched dimensions have distance
of 0. In this case, by setting the same weight for all matched states, top-k most
frequently occurring candidates in the candidate set are returned for the actual
Euclidean distance computations. This is reasonable since more matched dimen-
sions lead to a smaller overall distance with a higher probability. This algorithm
also has the flexibility in returning more nearest neighbors which will affect the
setting of k. The effect of k will be examined in the experiments.

It is noticeable that the above query processing algorithm only returns ap-
proximate results. There are three factors which affect the accuracy. Firstly, state
expansion may cause information loss. In state expansion, one original state may
be expanded into different new states if the neighbor relationships are different.
Since the algorithm selects the candidates based on matching states and their
voting scores, two different new states with the same original state cannot be
matched. It is expected that this loss becomes relatively less significant as dimen-
sionality increases and the encoded local information can compensate the loss
to certain extent. Secondly, removal of frequent states in the two-tier inverted
file may also affect the accuracy, as studied in text retrieval. Thirdly, since only
top-k candidates are selected for final similarity computations, the correctness
of the results cannot be guaranteed. In the next section, we extensively study
the effects of the above three factors. Results on real-life ultra-high dimensional
histograms show very promising performance with negligible sacrifice on quality,
despite of the correctness guarantee problem.

6 Experiments

6.1 Set Up

We have collected 40,000 face images from different sources, including various
standard face databases1, such as FERET, PIE Database, CMU, the Yale Face
Database, etc., and faces extracted from different digital albums. Both database
images and query images are represented by 15,488 dimensional LDP histograms
which have shown very good accuracy in face recognition [19]. All experiments
are conducted on a desktop with 2.93GHz Intel CPU and 8GB RAM.

To measure the search effectiveness of our proposal, we use the standard
precision, where the ground-truth for a query is the search results from sequential
scan in the original space. In face recognition, typically only the top one result is
needed. Thus, we only evaluate results on the nearest neighbor search, although
more nearest neighbors can also be returned.

1 http://www.face-rec.org/databases/

http://www.face-rec.org/databases/

12 J. Liu et al.

Before the performance comparison with existing methods, We first conduct
experiments on FERET to test our method. FERET2 is a standard face dataset
consisting of 3,541 gray-level face images representing the faces of 1,196 peo-
ple under various conditions (i.e., variant facial expression, illumination, and
ageing). The dataset is divided into five categories, fa (i.e., frontal images), fb
(i.e., facial expression variations), fc (i.e., under various illumination conditions),
dup1 (i.e., face images taken later in time between one minute to 1,031 days) and
dup2 (i.e., a subset of dup1; face images taken at least after 18 months). FERET
is widely used as a standard dataset for evaluation of face recognition related
algorithms and systems. For effectiveness and efficiency evaluation, categories
fb, fc, dup1 and dup2 of FERET are considered as four query image sets.

Since we have 2 parameters in our scheme, ε, and k, representing the threshold
on the image list for a state, and the number of candidates for actual similarity
computations respectively, both of them need to be tested. By default, state
expansion is applied, ε is 5% of the size of the image dataset, and k = 20. Due
to the space limit, we only report the results by applying histogram intersection
similarity measure. Euclidean distance actually shows very similar results.

6.2 Effect of ε

In our two-tier indexing structure, we assume that the length of an image list for
a state reflects its discrimination power. If the number of images for a state is
greater than ε, this image list is considered as non-discriminative and removed
from the index structure. We test different values of ε including 5%, 7%, 15%
and 20% of the total image size to observe its effect on effectiveness.

Observed from Figure 3(a), a larger ε leads to a better precision for all query
sets since more image lists are maintained in the data structure. However, the
overall precision under various settings is promising, i.e., all higher than 98%.
The precision difference among different settings is not significant and nearly
identical. The search time for different ε values is shown in Figure 3(b). As
ε goes up, the indexing structure is larger and more images are likely to be
accessed and compared. Therefore, for different sets of queries, they show the
same trend. The search time drops quickly as ε goes up. Since ε has greater
impact on efficiency, by default, we set ε = 5%.

6.3 Effect of k

In query processing, voting scheme is applied to generate a set of candidates for
further similarity calculation. Different settings on k lead to different precisions.
Figure 3(c) shows the results of k = 5, 10, 20 and 50 for the nearest neighbor
search. Precision reaches almost 100% when k ≥ 20. The reason is that the
more candidates we include, the higher probability that the correct results are
finally accessed and returned. The search time increases as k increases since more
candidates are compared, as shown in Figure 3(d). k = 20 is a reasonable default
value for both precision and efficiency consideration.
2 http://www.itl.nist.gov/iad/humanid/feret/feret_master.html

http://www.itl.nist.gov/iad/humanid/feret/feret_master.html

Efficient Histogram-Based Similarity Search 13

6.4 Effect of State Expansion

A key factor that contributes to the high effectiveness and efficiency of our
method is that we expand the space of effective states and consequently encode
more local distinctiveness into each of the states. In this subsection, we also test
the effect of state expansion.

Figure 3(e) and 3(f) depict the selectivity improvement made by state expan-
sion. The total number of image lists and the average number of images in each
list are reported. Clearly by expanding the number of states, the average number
of images for each state is greatly reduced. The average number of images per
list is about 30 after state expansion.

The effect of state expansion on precision and efficiency is reflected in Figure
3(g) and 3(h) respectively. Very surprising, with our state expansion, the accu-
racy is even higher, especially for fc, dup1 and dup2 query sets. This is a bit hard
to explain since state expansion may possibly miss some results if local neighbor
relationships among their dimensions are different. Without state expansion, in-
formation loss mainly comes from the removal of long image lists. Because images
lists without state expansion are expected to be much longer than those with
state expansion (as depicted in 3(f)), there is a risk to remove more lists from
the indexing structure. As a result, more information could be lost if the states
are not expanded. Undoubtedly, state expansion improves the search efficiency
(as shown in Figure 3(h)) since fewer and shorter lists are searched. In short,
state expansion achieves improvement in both precision and efficiency.

6.5 Performance Comparison

In the last experiment, we conduct a comparison study on efficiency, with se-
quential scan, VA-file and iDistance. Sequential scan is included because that,
in the ultra-high dimensional space, its performance is even better than most of
existing indexing methods due to the “curse of dimensionality”. VA-file, on the
other hand, is less sensitive to the dimensionality than most tree-based index
structures. Two bits are used for each dimension in VA-file since only 17 original
states exist in LDP histogram. Note that the above index structures return com-
plete results, while two-tier inverted file is an approximate search scheme which
offers superior efficiency with negligible precision loss. In order to compare the
two-tier inverted file with other approximate searchs, we also adopt iDistance as
an approximate search scheme. Ten clusters are used in iDistance and its search
radius is increased until the scheme reaches the same precision as the two-tier
inverted file. The whole dataset of 40,000 face images is used for this experiment.

Figure 3(i) shows the average search time for a single query with four different
methods. We observe that our method outperforms all other three methods by
more than two orders of magnitude. The search time for all methods increases
as the data size increases. However, our method grows very slow as the data
size increases from 1000 to 40,000 (up to 0.1 second), while the search time for
sequential scan, VA-File and iDistance increase dramatically. Notice that VA-File
is outperformed by sequential scan. There are two main reasons. Firstly, LDP

14 J. Liu et al.

 0.8

 0.85

 0.9

 0.95

 1

fb fc dup1 dup2

P
re

ci
si

on

20%
10%
7%
5%

(a) effect of ε

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

fb fc dup1 dup2

A
vg

. R
es

po
ns

e
T

im
e

(S
ec

)

20%
10%
7%
5%

(b) effect of ε

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

fb fc dup1 dup2

P
re

ci
si

on

10
20
30
50

100

(c) effect of k

 0

 0.02

 0.04

 0.06

 0.08

 0.1

fb fc dup1 dup2

A
vg

. R
es

po
ns

e
T

im
e

(S
ec

)

10
20
30
50

100

(d) effect of k

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

6 9 12 15

N
o.

N
on

-e
m

pt
y

Li
st

s
(1

06)

No.Dimensions Considered (103)

Without Expansion
With Expansion

(e) effect of state expansion

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

6 9 12 15A
vg

. N
o.

Im
gs

 in
 N

on
-e

m
pt

y
Li

st
s

No.Dimensions Considered (103)

Without Expansion
With Expansion

(f) effect of state expansion

 0.8

 0.85

 0.9

 0.95

 1

fb fc dup1 dup2

P
re

ci
si

on

Without Expansion
With Expansion

(g) effect of state expansion

0

0.02

0.04

0.06

0.08

0.1

fb fc dup1 dup2

A
vg

. R
es

po
ns

e
T

im
e

(S
ec

)

Without Expansion
With Expansion

(h) effect of state expansion

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 5 10 20 40

A
vg

. R
es

po
ns

e
T

im
e

(S
ec

)

No.Records (103)

Two-tier Inverted File
Sequential Scan

VA-File

(i) scalability

Fig. 3. Effectiveness, efficiency and scalability

histograms are highly skew in different localities. Secondly, it is difficult for VA-
File to have a tight bound for the histogram intersection similarity to achieve
efficient pruning. IDistance shows slightly better performance than sequential
scan. However, its search time still climbs quickly, because the distance between
any point and the reference point tends to be very close when dimensionality is
extremely high, making a minor increase on search radius include an excessive
number of data points to process. This experiment proves that by utilizing the
high efficiency of inverted file, our method is able to achieve real-time retrieval
in ultra-high dimensional histogram spaces.

7 Conclusion

In this paper, we present a two-tier inverted file indexing method for efficient
histogram-based similarity search in ultra-high dimensional spaces. It indexes the
sparse and ultra-high dimensional histograms with a compact structure which
utilizes the high efficiency of inverted file, by observing that histogram values
are actually discrete and from a finite value set. An effective state expansion
method is designed to further discriminate the data for an efficient and effective

Efficient Histogram-Based Similarity Search 15

feature representation. An extensive study on a large-scale face image dataset
confirms the novelty and practical significance of the proposal.

References

1. Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns:
Application to face recognition. IEEE TPAMI 28(12), 2037–2041 (2006)

2. An, J., Chen, H., Furuse, K., Ohbo, N.: Cva file: an index structure for high-
dimensional datasets. Knowl. Inf. Syst. 7(3), 337–357 (2005)

3. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. CACM 51(1), 117–122 (2008)

4. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Comput.
Surv. 33(3), 322–373 (2001)

5. Chakrabarti, K., Mehrotra, S.: Local dimensionality reduction: A new approach to
indexing high dimensional spaces. In: VLDB, pp. 89–100 (2000)

6. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: VLDB, pp. 426–435 (1997)

7. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Symposium on Computational Geom-
etry, pp. 253–262 (2004)

8. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and
trends of the new age. ACM Comput. Surv. 40(2) (2008)

9. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: VLDB, pp. 518–529 (1999)

10. Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: iDistance: An adaptive
B+-tree based indexing method for nearest neighbor search. ACM TODS 30(2),
364–397 (2005)

11. Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information
retrieval: State of the art and challenges. ACM TOMCCAP 2(1), 1–19 (2006)

12. Lu, H., Ooi, B.C., Shen, H.T., Xue, X.: Hierarchical indexing structure for efficient
similarity search in video retrieval. IEEE TKDE 18(11), 1544–1559 (2006)

13. Sakurai, Y., Yoshikawa, M., Uemura, S., Kojima, H.: The A-tree: An index struc-
ture for high-dimensional spaces using relative approximation. In: VLDB, pp. 516–
526 (2000)

14. Shen, H.T., Ooi, B.C., Zhou, X., Huang, Z.: Towards effective indexing for very
large video sequence database. In: SIGMOD, pp. 730–741 (2005)

15. Shen, H.T., Zhou, X., Zhou, A.: An adaptive and dynamic dimensionality reduction
method for high-dimensional indexing. VLDB Journal 16(2), 219–234 (2007)

16. Swain, M.J., Ballard, D.H.: Color indexing. IJCV 7(1), 11–32 (1991)
17. Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high dimensional

nearest neighbor search. In: SIGMOD, pp. 563–576 (2009)
18. Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and performance study

for similarity-search methods in high-dimensional spaces. In: VLDB, pp. 194–205
(1998)

19. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary
pattern: face recognition with high-order local pattern descriptor. IEEE TIP 19(2),
533–544 (2010)

20. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput.
Surv. 38(2) (2006)

A Retrieval Strategy Using the Integrated
Knowledge of Similarity and Associations

Yong-Bin Kang1, Shonali Krishnaswamy1, and Arkady Zaslavsky2

1 Faculty of Information Technology,
Monash University, Australia

{yongbin.kang,shonali.krishnaswamy}@monash.edu
2 Department of Computer Science and Electrical Engineering,

Lule̊a University of Technology, Sweden
arkady.zaslavsky@ltu.se

Abstract. Retrieval is often considered the most important task in
Case-Based Reasoning (CBR), since it lays the foundation for overall
performance of CBR systems. In CBR, a typical retrieval strategy is re-
alized through similarity knowledge encoded in similarity measures. This
strategy is often called similarity-based retrieval (SBR). This paper pro-
poses and validates that association analysis techniques can be used to
improve SBR. We propose a retrieval strategy USIMSCAR that performs
the retrieval task by integrating similarity and association knowledge. We
show its reliability, in comparison with several retrieval methods imple-
menting SBR, using datasets from UCI ML Repository.

1 Introduction

Retrieval is a very important task in CBR, since it lays the foundation for overall
performance of CBR systems [1]. The goal of this task is to retrieve useful cases
that can be successfully reused to solve a new problem. If retrieved cases are not
useful, CBR systems will not eventually produce any good solution for the new
problem. For the retrieval task, CBR systems are typically reliant on a specific
strategy that exploits similarity knowledge. This strategy is thus often called
similarity-based retrieval (SBR) [2]. In SBR, similarity knowledge represents a
heuristic for approximating the usefulness of stored cases [3]. This knowledge
is usually encoded in similarity measures. By using similarity knowledge, SBR
retrieves useful cases, ranked by their similarities to a new problem. Then, solu-
tions, of the top ranked cases, are used to solve the new problem.

However, the main limitation of SBR is that it cannot guarantee that cases,
retrieved through similarity knowledge, are sufficiently useful to solve a new
problem. This limitation is rooted in the fact that SBR only considers the prob-
lem space−a set of problems−in a given case base, when formalizing similarity
knowledge. This leads to trouble. The reason is that determining the usefulness
of stored cases cannot be completed without considering how known problems
are actually associated with specific known solutions. SBR thus cannot retrieve

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 16–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Retrieval Strategy Using the Integrated Knowledge 17

those useful cases, whose solutions have stronger associations with the problems
of certain cases similar to the new problem.

The goal of this work is to improve SBR by incorporating association analysis
techniques into retrieval in CBR. For this purpose, we propose a new retrieval
strategy USIMSCAR that exploits both similarity knowledge and association
knowledge. The aim of association knowledge is to represent implicit and po-
tentially useful associations (dependencies), between problems and solutions,
observed in stored cases. More precisely, this knowledge models a set of highly
correlated attribute-value pairs, of problems and solutions, shared by a large
number of stored cases. To formalize this knowledge we use association rule
mining techniques. The key idea of USIMSCAR is the exploitation of associa-
tion knowledge, ignored in SBR, in conjunction with similarity knowledge, to
provide a more complete strategy for retrieval in CBR.

This paper is organized as follows. In Section 2, we provide an overview of
SBR, and the main problem of SBR. In Section 3, we introduce a well-known
principle that formalizes similarity knowledge, and describe association analysis
techniques used for formalizing association knowledge. In Section 4, we present
our association knowledge formalism, and the USIMSCAR algorithm. In Section
5, we evaluate USIMSCAR, using 6 datasets found from UCI ML Repository1, in
comparison with 5 retrieval methods implementing SBR. In Section 6, we review
related work. In Section 7, we finally conclude this paper with future work.

2 Similarity-Based Retrieval and Its Main Problem

Similarity-based retrieval (SBR) is typically implemented through the technique
using a derivative of the nearest neighbor algorithm [4,1]. This technique is called
k-nearest neighbor retrieval or simply k-NN [1]. The idea of k-NN is that, to solve
a new problem, useful cases are determined using its k most similar cases (i.e.
nearest neighbors). Here, similarity is used to represent a heuristic for estimating
such cases. Thus, similarity is the most important aspect in k-NN.

Let a case base D be a set of cases. These cases (including a new problem q)
are described by m (numeric and discrete) attributes A1, ..., Am. Assume that
any numeric attributes have been normalized to the range [0,1]; and each case
is labeled with a solution label y ∈ Y . Our aim here is to assign an appropriate
solution label to q. For this purpose, k-NN first determines the nearest neigh-
bors (i.e. similar cases) of q by using a distance metric. The standard for this
metric is the Euclidean distance [5]. For each case c ∈ D, the Euclidean distance
DIST (q, c), between q and c, is represented as

DIST (q, c) =

√√√√ m∑
i=1

dist(qi, ci)2, dist(qi, ci) =

⎧⎨⎩|qi − ci|, if Ai is numeric,
0, if Ai is discrete & qi = ci,
1, otherwise,

(1)

where qi and ci denote the values of the Ai of q and c, respectively, and dist(qi, ci)
represents their distance.

1 http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html

18 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

The distance metric DIST (q, c) has the merit that it allows knowledge to be
brought to bear on the assessment of similarity−the nearer two objects are, the
more similar they are. In the rest of this paper, we thus consider similarity only
to find the nearest neighbors of q. Once the neighbors are selected, there are
various ways for determining a solution of q. The simplest approach is to choose
the majority solution among the neighbors, called majority voting [6].

Over the years, researchers have widely studied k-NN to improve its perfor-
mance in terms of accuracy. For example, its sensitiveness to k is overcome by
determining a best k through a learning technique such as cross-validation [5].
Feature selection [7] is a good technique that determines a subset of relevant fea-
tures (attributes) among the original features of stored cases. Feature weighting
[8] is also a useful technique, in which each feature (attribute) is multiplied by a
weight. The weight is usually determined by considering the ability of the feature
in distinguishing solution labels. In this work, we categorize k-NN and its exten-
sions, integrated using the above enhancements, into representative techniques
(or models) implementing SBR.

Problem Statement. We now present a main limitation of SBR. To illustrate,
we choose an extension of k-NN as a representative model implementing SBR.
Assume that this model is made by integrating k-NN and feature weighting,
and denoted as Z. Consider a medical diagnosis scenario2, where 5 patient cases
are stored in a case base D (See Table 1a). Each case consists of 5 symptoms
(attributes) A1, ..., A5 and the corresponding diagnosed disease (solution).

Table 1. A patient case base and similarity results

(a) A patient case base

Patients Local Pain Other Pain Fever Appetite Loss Age Diagnosis
p1 right flank vomit 38.6 yes 10 appendicitis
p2 right flank vomit 38.7 yes 11 appendicitis
p3 right flank vomit 38.8 yes 13 appendicitis
p4 right flank sickness 37.5 yes 35 gastritis
p5 epigastrium nausea 36.8 no 20 stitch
q right flank nausea 37.8 yes 14 ?

Weight 0.91 0.78 0.60 0.40 0.20

(b) Similarity results

SIM(q, p1) = 0.631
SIM(q, p2) = 0.623
SIM(q, p3) = 0.618
SIM(q, p4) = 0.637
SIM(q, p5) = 0.420

Our aim is to diagnose the correct disease of a new patient q. Z achieves this
goal by identifying the k most similar cases to q. To find them, it selects cases
whose symptoms are similar to q, using a similarity metric. Assume that we use
the following metric3 to measure the similarity between q and each case pk ∈ D:

SIM(q, pk) =

∑m
i=1 wi · sim(qi, pki)∑m

i=1 wi
, sim(qi, pki) =

⎧⎪⎨⎪⎩
1 − |qi−pki|

Amax
i −Amin

i

, if Ai is numeric,

1, if Ai is discrete & qi = pki,
0, otherwise,

(2)

2 This scenario is a simple modification of the scenario found in the work [9].
3 This similarity metric is the same one used in the work [9].

A Retrieval Strategy Using the Integrated Knowledge 19

where wi
4 is a weight of Ai; qi and pki are the values of the Ai of, q and pk,

respectively; m is 5; sim(qi, pki) is the similarity between qi and pki; and Amax
i

and Amin
i are the “max” and “min” values of Ai, respectively, in all the cases.

Using the metric SIM(q, pk), assume that Z chooses the single most similar
case to q. As seen in Table 1b, we then choose the most similar case to q as p4.
This means that a diagnosis for q is chosen as ‘gastritis’. However, this turns
out to be wrong, since q is actually identified to suffer from ‘appendicitis’5. This
wrong diagnosis may lead to a serious error for q. If the disease ‘appendicitis’,
that q really has, is not treated correctly, q’s health may be endangered.

The scenario clearly shows that SBR has a significant limitation, rooted in
the fact that SBR is strongly based on similarity knowledge. To overcome the
limitation, a potential idea is to exploit the knowledge of how certain attribute-
value pairs of known problems are associated with specific known solutions in D.
With the above scenario, we may obtain the following knowledge: the attribute-
value pairs of p1, p2 and p3 have a strong association with ‘appendicitis’, and
those of p4 with ‘gastritis’. The strength of the former association, denoted as
A1, may be higher than that of the latter association, denoted as A2. Because
A1 is supported by three cases, while A2 is supported by only one case. If these
associations were to be appropriately quantified and integrated with the simi-
larity results in Table 1b, a diagnosis for q may be more accurately determined.
This is the fundamental idea underlying USIMSCAR.

3 Similarity Knowledge and Association Analysis

We now present a similarity knowledge formalism, and the association analysis
techniques used for building association knowledge. Before this, we first give the
case model that is the basis for formalizing these two kinds of knowledge.

To represent cases, CBR systems often adopt well-known knowledge represen-
tation formalisms, such as attribute-value pairs or object-oriented representation
[1]. We adopt the attribute-value pairs representation, due to its flexibility and
popularity [3]. An attribute-value pair is represented as the form of (Ai, ai),
where Ai is an attribute (or feature6) and ai is a value of Ai. Let a case be
characterized by m + 1 attributes A1, ..., Am, Am+1 in a domain T . Let P be
the problem space, a set of potential problems in T , where each problem x ∈ P
is characterized by A1, ..., Am. Let S be the solutions space, a set of potential
solutions in T , where each solution s ∈ S is characterized by Am+1. We call
Am+1 solution-attribute. A case is then defined as a pair (x, sx), where x is a
problem, x = {a1, ..., am} ∈ P , and sx is a solution of x, sx = am+1 ∈ S. For
the sake of simplicity, we assume that x is associated with a unique solution sx.
In Section 7, we remark that USIMSCAR can be extended to the case, where a
problem is described by more complex structures, and a problem is associated
with more than one solution.
4 The weight is borrowed from the work [9] and assigned by the domain expert.
5 This fact is cited from the work [9].
6 To simplify the presentation, we do not distinguish between terms attribute and

feature.

20 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

3.1 Similarity Knowledge

Similarity knowledge is referred to as the knowledge encoded in similarity mea-
sures. SBR often uses a principle that models the similarity measures, suitable
for the attribute-value pairs representation. It is local-global principle that de-
composes an entire similarity computation by local similarities for individual
attributes and a global similarity that aggregates these local similarities [3]. An
accurate definition of local similarities relies on attribute types. An example of
a similarity measure, based on this principle, is seen in Equation 2: “SIM” is a
global similarity measure, and “sim” includes three local similarity measures.

3.2 Association Analysis

From the CBR viewpoint, association rule mining [10] is concerned about mining
a set of highly correlated “attribute-value pairs of problems” and “solutions”,
shared by a large number of stored cases.

To formalize association knowledge, we build named soft-matching class asso-
ciation rules (scars) by using association rule mining techniques. A scar is a class
association rule (car) [11] whose antecedent and consequent are generated by ap-
plying the soft-matching criterion [12]. A car is a special form of an association
rule. Hence, we give an overview of association rules, cars, and the soft-matching
criterion, involved in the formalization of scars.

• association rules [10]: Let D be a set of cases. Each case T ∈ D is char-
acterized by attributes A1, ..., Am, Am+1, where the problem is characterized by
A1, ..., Am, and the solution by Am+1. We call a pair (Ai, ai)1≤i≤m+1 an item.
Let I be a set of items. A set X ⊆ I, with k = |X |, is called a k-itemset or
simply an itemset. We say that a case T ∈ D supports an itemset X ⊆ I, if
X ⊆ T holds. An association rule has two parts, antecedent and consequent, and
denoted as X → Y . Here, X is an itemset in the antecedent and Y is an itemset
in the consequent, and X ∩ Y = ∅ holds. The fraction of cases that support an
itemset X in D is called the support of X , supp(X) = |{T ∈ D|X ⊆ T }|/|D|.
The support of X → Y is defined as the probability that both X and Y occur
together in a case T , supp(X → Y) = supp(X ∪ Y). The confidence of X → Y
is defined as conf(X → Y) = supp(X ∪ Y)/supp(X). We say that an itemset X
is frequent, if supp(X) ≥ minsupp (a user-specified minimum support). Apriori
[10] is a representative algorithm widely used for association rule mining.

• class association rules (cars) [11]: A special subset of association rules, whose
consequents are restricted to a single target, is called cars. From the CBR per-
spective, the solution-attribute (Am+1) can become the target. We call a pair
(Ai, ai)1≤i≤m an item, and call a pair (Am+1, am+1) a s-item. Let I be a set
of items, and SI be a set of s-items. A car is then an implication of the form
X → s, where X is an itemset X ⊆ I and s ∈ SI is a s-item.

• soft-matching criterion [12]: To discover frequent itemsets F , traditional
association rule mining algorithms (e.g. Apriori) consider only itemsets that ex-
actly match F . However, when treating attribute values, semantically related to
each other, these algorithms may perform poorly. Because they ignore semantic

A Retrieval Strategy Using the Integrated Knowledge 21

relevance between those values. For example, they cannot find a rule like “80% of
the customers, who buy milk-related (e.g. cheese) products and eggs-related (e.g.
mayonnaise) products, also buy bread.” To address this issue, the SoftApriori
algorithm is proposed by [12]. SoftApriori uses soft-matching criterion, in which
frequent itemsets are found by similarity assessment between itemsets.

4 Modeling Association Knowledge and USIMSCAR

We now propose an approach to formalizing association knowledge used in USIM-
SCAR. As mentioned above, this knowledge is encoded as scars, generated from
stored cases. We then present the algorithm of USIMSCAR.

4.1 Soft-Matching Class Association Rules (SCARS)

A scar is a car whose antecedent and consequent are made by applying the soft-
matching criterion. Our aim for building association knowledge is to encode the
special knowledge of “how attribute-value pairs of known problems are actually
associated with specific known solutions.” Thus, it needs to be noted that we
consider only cars representation, since it is suited to this objective.

A scar r, X → s, reveals that a problem p is likely to be associated with a
solution s, if p’s attribute-value pairs are similar to an itemset X . The likelihood
is quantified by r’s interestingness. Interestingness measures are very useful to
evaluate the quality of association rules [13]. For the measures, the support and
confidence criteria are often used. On some occasions, a combination of them is
used. Often, a rationale for doing so is to define a single optimal interestingness
by leveraging the correlations between them. One example is the Laplace measure
[13]. Below we describe it in detail. We first provide the definition of scars, and
scars mining, following the definitions of terms in Section 3.2.

• scars : Let SM be an m × m similarity matrix, where m is the total num-
ber of items in I. Let sim(x, y) be a similarity, between two items x, y ∈ I,
driven from SM . We say that an item x is similar to an item y (x ∼ y), iff
sim(x, y) ≥ minsim (the user-specified minimum similarity). Let SIM(X, Y) be
a similarity between two itemsets X, Y ∈ I, SIM(X, Y) =

∑
x,y sim(x, y)/|X |,

where x, y ∈ X are two items characterized by the same attribute. We say
that an itemset (or a case) Y soft-support of an itemset X (X ⊆soft Y),
iff SIM(X, Y) ≥ minsim. The soft-supporting-sum of X regarding D is de-
fined as softSuppSum(X) =

∑
t∈T SIM(X, t), for each case T ∈ D satisfy-

ing X ⊆soft T . The soft-support of X regarding D is defined as softSupp(X)
= softSuppSum(X)/|D|. The soft-support of a scar X → s is defined as the
fraction of cases, in D, that soft-support X and are described by the s-item s,
softSupp(X → s) = softSupp(X ∪s). The soft-confidence of this rule is defined
as softConf(X → s) = softSupp(X → s)/softSupp(X). A ruleitem is of the
form 〈X, s〉 and basically represents a rule X → s. A scar is an implication of
the form X → s, whose soft-support is greater than minsupp. The definition
of our soft-support differs from the one used in SoftApriori. In SoftApriori, the

22 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

soft-support of each itemset is calculated by summing the number of occurrences
of all similar itemsets. For example, the soft-support, of an 1-itemset x ∈ I, is
computed as “softSupp(x) =

∑
y∈I sim01(x, y) · supp(y)”, where sim01(x, y) is

a binary function which is 1, if x ∼ y, and 0, otherwise; and supp(y) is the sup-
port of 1-itemset y ∈ I. Unfortunately, softSupp(x) cannot reflect the different
degrees of the similarities between x and all y ∈ I. In contrast, our definition
replaces sim01(x, y) by SIM(x, y) so that it can reflect such degrees.

• scars mining: The key operation of scars mining is to find all “ruleitems”
that have soft-supports greater than minsupp. We call such ruleitems frequent
ruleitems. For all the ruleitems that have the same set of items in the antecedent,
one with the highest interestingness is chosen as possible rule (PR). To measure
the interestingness, we choose a measure that combines soft-support and soft-
confidence such that they are monotonically related (i.e. positively correlated).
Thus, we choose the Laplace measure [13]. Given a scar r, this measure is de-
fined as Laplace(r) = N ·softSupp(r)+1

N ·softSupp(r)/softConf(r)+2 , where N is the total number of
cases in D. Since N is a constant, it is easy to see that this measure is monoton-
ically related to soft-support and soft-confidence. If Laplace(r) is greater than
a user-specified minimum interestingness, called min-interesting, we say that r is
accurate. A candidate set of scars consists of all PRs that are both “frequent”
and “accurate”. To select optimal scars, we finally ignore a scar X → s in the set,
where |X | is less than a user-specified minimum itemset size, named minitemsize.

4.2 The USIMSCAR Algorithm

USIMSCAR is designed to find potentially useful objects that can be used to
solve a new problem by exploiting similarity and association knowledge. Each of
these objects can be either a case or a scar. Given a new problem q, the goal of
USIMSCAR is to generate a retrieval result set (RR) that holds those objects.

Let D be a set of cases; prSCARS be the set of scars to be generated; and
SM be the same similarity matrix used in scars mining. We now present the
USIMSCAR algorithm M in the following:

(1) M retrieves the k most similar cases to q in D, and stores them into a set
RC. Assume that SIM(q, c) is the function used for measuring the similarity
between q and a case c in D. This function can be defined using the global-
local principle. The local similarities, for individual attributes of q and c, are
computed using SM .

(2) M retrieves the k most similar scars to q in prSCARS. An important
question raised here is how to determine the similarity SIM(q, r) between q and
a scar r. Its answer lies in our choice of cars representation for scars mining. This
implies that scars have the identical structure to all cases in D. To illustrate,
assume a case c is simply characterized by attributes A1 and A2. So, c is formed
as c = (a1, a2), where a1 ∈ A1 is a problem and a2 ∈ A2 is a solution of a1. Using
c, we can generate a scar r, {(A1, a1)} → (A2, a2). Note that the values a1 and
a2, in the antecedent and consequent of r, correspond to the problem a1 and the
solution a2 of c, respectively. This choice allows M to compute SIM(q, r) using

A Retrieval Strategy Using the Integrated Knowledge 23

the same similarity measure used in the step (1). The retrieved rules are stored
into a set RS.

(3) For each case c ∈ RC, M selects a specific scar rc ∈ prSCARS that meets
the following condition: a scar r ∈ pcSCARS is chosen as rc, if it has the highest
interestingness, Laplace(r), among specific scars in pcSCARS. These scars must
cover7 c and also their solutions are equal to the solution of c. Then, M computes
a combined score, for q and c, along with rc by integrating two factors: SIM(q, c),
computed by using similarity knowledge, and Laplace(rc), calculated by using
association knowledge. We denote this score as cs(q, c), defined by cs(q, c) =
SIM(q, c) · Laplace(rc). If rc is more than one, for example rc = {rc1, ..., rcm},
M uses the average of Laplace(rc1), ..., Laplace(rcm). If there is no rc for c, we
use the given min-interesting8, instead of Laplace(rc). Our combination scheme
aims to enhance the significance of SIM(q, c) by weighting the interestingness
of rc. Then, a universe object9 is created. It has two fields. The instance field
stores c, and the cs field holds cs(q, c). This object is added to a set UR.

(4) For each scar r ∈ RS, M computes a combined score of r regarding q.
That is, cs(q, r) = SIM(q, r) · Laplace(r). A universe object is then created,
whose instance field stores r and cs field holds cs(q, r). It is also added to the
UR. This combination aims to enhance the significance of r’s interestingness by
weighting it with r’s similarity to q.

(5) M finally produces the set RR that is a subset of UR through the function
getRR(UR). Before we explain this function, we first illustrate how the above
four steps (1)-(4) perform using an example, to ease of the readability of M.
Then, we give the description of getRR(UR).

An Example. Consider again the patient cases in Table 1a. Using these cases,
we can obtain four scars shown in Table 2. To generate the scars in the above
table, we used the similarity knowledge encoded in the similarity measure “SIM”
in Equation 2. Recall that Z10 retrieved p4 as the most useful case to q, and its
diagnosis ‘gastritis’ was determined to be the diagnosis of q. However, this led
to trouble, since q suffered from ‘appendicitis’, not ‘gastritis’.

Table 2. The scars generated: A1 = ‘Local Pain’, A2 = ‘Other Pain’, A3 = ‘Fever’,
A4 = ‘Appetite Loss’, A5 = ‘Age’ and A6 = ‘Diagnosis’

ID Antecedent Consequent Laplace Covered by
r1 {(A1,right flank),(A2,vomit),(A3,38.6),(A4,yes),(A5,13)} → (A6,appendicitis) 0.922 p1, p2, p3

r2 {(A1,right flank),(A2,vomit),(A3,38.7),(A4,yes),(A5,10)} → (A6,appendicitis) 0.922 p1, p2, p3

r3 {(A1,right flank),A2,vomit),(A3,38.8),(A4,yes),(A5,10)} → (A6,appendicitis) 0.922 p1, p2, p3

r4 {(A1,right flank),(A2,sickness),(A3,37.5),(A4,yes),(A5,35)} → (A6,gastritis) 0.775 p4

USIMSCAR can overcome this trouble. It takes the following steps (assume
k=2): (1) It generates the 2 most similar cases to q by using SIM . Thus, RC =
7 We say that a scar r covers a case c, iff r is generated being soft-supported by c.
8 This is mentioned in “scars mining” in Section 4.1.
9 We refer to a universe object as a generic object that can encapsulate any case and

scar and also have any attributes.
10 Z was used as a representative model of SBR in Section 2.

24 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

{p4, p1} (See Table 1b). (2) It generates the 2 most similar scars to q by also using
SIM . Thus, RS = {r1, r4} with SIM(q, r1) = 0.640 and SIM(q, r4) = 0.637.
(3) For each case c ∈ RC, the rc is determined. With this example, for p4, rp4

is selected as r4, and, for p1, rp1 as r1, r2 and r3. Then, the combined scores
cs(q, p4) and cs(q, p1) are computed: cs(q, p4) = 0.494 and cs(q, p1) = 0.582.
Thereafter, p4 and p1, with their combined scores, are copied to new universe
objects. These object are then added to a set UR. (4) For each scar r ∈ RS,
its combined score, regarding q, is computed: cs(q, r1) = 0.590, and cs(q, r4) =
0.494. Then, r1 and r4, with their combined scores, are copied to new universe
objects. These objects are also added to the UR. The further exploitation of the
UR is explained below.

Function getRR(UR). This function aims to retrieve a subset of “universe
objects” (simply objects) from the UR. These objects are selected to be po-
tentially useful to solve the query q. To realize this function, we use both the
“combined scores” of objects in the UR, and the “number” of objects in the UR
that are associated with the same solution. The solution of each object o ∈ UR
is differently interpreted, according to whether o was created from a case c or a
scar r. If created from c, its solution corresponds to c’s solution, Otherwise, its
solution corresponds to the solution in the r’s consequent.

Let Se be a set of solutions of objects in the UR. For each object in the
UR, we find a subset Sek

∈ Se, where all objects in (Sek
)k≤|Se| are associated

with the same solution. For any i, j ≤ |Se|, thus Sei ∩ Sej = ∅ holds. Then, for
each Sek

∈ Se, we compute the average of the combined scores of objects in
Sek

, denoted as avg(Sek
). This avg(Sek

) is further enhanced by multiplying a
ratio, denoted as strength(Sek

) = |Sek
|/|UR|. The enhanced score is called the

final score of Sek
, and denoted as fs(Sek

) = avg(Sek
) · strength(Sek

). We then
retrieve the objects, in the UR, grouped by the n top ranked solutions, by means
of their final scores. If n = 1, we retrieve the objects grouped by the solution
satisfying max(fs(Sei))i≤|Se|. These objects are finally stored into the RR.

To illustrate, consider the UR formed in the above example. Assuming that
s1 = ‘gastritis’ and s2 = ‘appendicitis’, the UR has four objects: UR = {o1, o2,
o3, o4}11, where {o1.cs = 0.494, o1.s = s1}, {o2.cs = 0.582, o2.s = s2}, {o3.cs =
0.590, o3.s = s2} and {o4.cs = 0.494, o4.s = s1}. With the UR, fs(s1) = 0.247
and fs(s2) = 0.293. If we choose the objects, in the UR, grouped by the solution
satisfying max(fs(si))i=1,2, USIMSCAR returns the result set RR = {o2, o3}.
Then, objects in the RR can be used to determine a solution of q using voting.
With this example, since o2 and o3 have the solution ‘appendicitis’. USIMSCAR
thus give a diagnosis for q as ‘appendicitis’ that q really had.

5 Evaluation

Our evaluation goal is to empirically validates that USIMSCAR can improve
similarity-based retrieval (SBR). To achieve it, we need to determine two

11 Assume that each object has another field s representing “solution”.

A Retrieval Strategy Using the Integrated Knowledge 25

essential ingredients. The first is a set of representative models, implementing
SBR, to be compared with USIMSCAR. The second is an application field,
where the models and USIMSCAR can be properly tested. As the representa-
tive models, we choose k-NN and its several extensions, since SBR is typically
implemented through the technique using a derivative of k-NN, as mentioned
in Section 2. Regarding the application field, we choose classification, since the
case-based approach, using the chosen models, to classification usually requires
no sophisticated adaptation methods [3]. For the classification task, the perfor-
mance of the models relies almost completely on the retrieval task identifying
the similar cases to a new problem q [14]. So, we choose several k-NN based
classifiers, for our comparison purpose, that will be described in the following
section.

From the viewpoint of k-NN based classifiers, classification has two stages. The
first is the determination of the nearest neighbors of a new problem q, driven by
similarity knowledge. The second is the determination of the class of q using these
neighbors. From the viewpoint of USIMSCAR, the first is the determination of
the “useful cases and rules” CR for q, driven by “similarity knowledge and asso-
ciation knowledge”. The second is the determination of the class of q using CR.
Our work is only focused on the first stage. Hence, to achieve the classification
task, we use the simplest approach, majority voting (See Section 2), for the sec-
ond stage. For the fair comparison, we configure majority voting to be used in the
k-NN based classifiers compared. By applying this evaluation scheme, we justify
the performance comparison between USIMSCAR and SBR.

5.1 Evaluation Methodology

We compare 5 k-NN based classifiers with USIMSCAR in our evaluation. These
are all implemented in Weka [15]: (1) IB1 [16] is the simplest form of k-NN
classifiers. To classify a new problem q, its nearest neighbor n1 is selected by
using the Euclidean distance. Then q is classified to be the class of n1. As the
baseline for our comparison purpose, we choose IB1 due to its simplicity. (2)
IBkBN extends IB1 by using the best k−the number of nearest neighbors. The
best k is determined by cross-validation. (3) IBkFS extends IBkBN by using
feature selection. We choose the correlation-based feature selector [17] (known
as CfsSubsetEval in Weka), to determine the goodness of feature subsets. (4)
IBkFW extends IBkBN by using feature weighting. We choose InfoGainAttribu-
teEval evaluator in Weka, due to its popularity. It assigns weights to features
individually, based on the information gain with respect to the class. (5) KStar is
an implementation of K* [18], where the similarity for finding nearest neighbors
is defined by their entropy. The entropy is measured as the complexity of trans-
forming one instance into the other. To classify q, KStar uses the probability of
q being in class c by summing the probabilities from q to each member of c. It
then chooses the class with the highest probability as the classification of q.

As our test datasets, we used 6 datasets found from UCI ML Repository (See
Table 3). These were chosen by the criteria of being different in terms of number
of instances (cases), number and types of attributes, and number of classes.

26 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

Table 3. The test datasets used in the experiments

Dataset Instance # Attribute # Attribute Type Class #
Numeric Binary Nominal

Breast Cancer 683 9 9 2
Car 1728 6 6 4
Heart Disease 270 13 6 3 4 2
Clever 297 13 6 3 4 2
Crx 653 15 6 4 5 2
Tae 151 5 1 2 2 3

For the evaluation metric, we used classification accuracy, since it is often
assumed to be the best performance indicator in classification [19]. It measures
the ratio of correctly classified instances over all the instances tested. To test a
model on the datasets, we used 10-fold cross-validation, in which each dataset
is divided into 10 subsets. Of the 10 subsets, a subset is retained as testing data,
and the remaining 9 subsets are used as training data. The validation process is
then repeated 10 folds (times). Then, the 10 results from the folds were used to
measure the classification accuracy of the model.

For USIMSCAR, the similarity knowledge was defined on two attribute types,
numeric and categorical (including boolean). It is defined using the global-local
principle, actually encoded in the similarity measure in Equation 2. The feature
weights, in Equation 2, were equally assigned. Note that this measure is another
form of the Euclidean distance that is used in the classifiers compared.

To generate scars, the following parameters were used: minsupp = 0.02 (2%),
minsim = 0.98 (98%), min-interesting = 0.7 (70%), minitemsize = 0.8 (80%). To
run USIMSCAR, we set k to 6.

5.2 Results and Analysis

We now evaluate the results of USIMSCAR, in comparison with the compared
classifiers, in classification accuracy. We first compare the results of USIMSCAR
and the baseline IB1. The results are shown in Table 4.

Referring to the above table, for each dataset, the better one in the accuracy is
denoted in boldface. Also, the mark “•” indicates that USIMSCAR is determined
to attain a statistically significant improvement over the target classifier, while
“◦” shows there is no significant improvement found. As observed in the table,
USIMSCAR outperforms IB1 on all the datasets in the accuracy. Outstandingly,
USIMSCAR achieves 16.425% (maximum difference) higher than IB1 on the
Car. Using the Z-test [20] at 95% confidence, for differences in the accuracy,
USIMSCAR shows a significant improvement over IB1 on five datasets.

We now compare the results, of USIMSCAR with IBkDN, IBkFS and IBkFW,
in classification accuracy. The results are seen in Table 5, where the best one in the
accuracy for each dataset is also denoted in boldface. Also, the k, selected from 1
to 30, that gives the best classification accuracy on each dataset for each classifier,
is denoted in the parentheses. As observed in the table, USIMSCAR occupies the
2th place on the Breast Cancer, with a small difference (0.44%), compared to the

A Retrieval Strategy Using the Integrated Knowledge 27

Table 4. USIMSCAR vs. IB1 in classification accuracy (%)

Dataset IB1: Baseline USIMSCAR
Breast Cancer 95.461 ◦ 96.193
Car 80.334 • 96.759
Heart Disease 75.556 • 85.185
Clever 76.014 • 84.459
Crx 81.317 • 87.136
Tae 64.238 • 67.550

Table 5. USIMSCAR vs. IBkBN, IBkFS and IBkFW in classification accuracy (%).

Dataset IBkBN IBkFS IBkFW USIMSCAR
Breast Cancer 96.633 (k=5) 96.633 (k=5) 95.900 (k=5) ◦ 96.193
Car 80.334 (k=1) • 80.334 (k=1) • 84.833 (k=1) • 96.759
Heart Disease 81.852 (k=8) ◦ 77.407 (k=6) • 82.222 (k=10) ◦ 85.185
Clever 82.432 (k=7) ◦ 79.730 (k=10) ◦ 81.419 (k=7) ◦ 84.459
Crx 86.524 (k=10) ◦ 85.605 (k=3) ◦ 86.630 (k=7) ◦ 87.136
Tae 64.238 (k=1) • 46.358 (k=2) • 44.371 (k=1) • 67.550

accuracy of IBkBN and IBkFS. However, USIMSCAR outperforms all the com-
pared classifiers on all the remaining datasets. Outstandingly, it achieves 16.425%
better than IBkBNon the Car, 21.192%better than IBkFS on the Tae, and 23,179%
better than IBkFW on the Tae. Each mark “•” shows that there is a statistically
significant difference between USIMSCAR and the target classifier on the consid-
ered dataset, using the Z-test at 95% confidence.

We now compare the results of USIMSCAR and KStar in classification accu-
racy. As observed in Table 6, USIMSCAR outperforms KStar on all the datasets.
Outstandingly, USIMSCAR performs 10.370% and 17.463% better than KStar
on the Car and Heart Disease, respectively, in the accuracy. Using the Z-test at
95% confidence in these results, we observe that the differences between them
are statistically significant on five datasets, as the mark “•” indicates.

Table 6. USIMSCAR vs. KStar in classification accuracy (%)

Dataset KStar USIMSCAR
Breast Cancer 94.876 ◦ 96.193
Car 79.296 • 96.759
Heart Disease 74.815 • 85.185
Clever 75.675 • 84.459
Credit Approval 78.560 • 87.136
Tae 59.603 • 67.550

We finally compare USIMSCAR with the classifiers, in the averages of the
results in Tables 4 - 6. The comparison is presented in Fig. 1. As observed,
USIMSCAR performs 7.393%, 4.211%, 8.536%, 6.985% and 9.076% better than
IB1, IBkBN, IBkFS, IBKFW and KStar, respectively. These differences show

28 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

that USIMSCAR achieves statistically significant improvements over the classi-
fiers using the Z-test at 95% confidence. Through the experimental evaluation,
we empirically verify that USIMSCAR is an effective retrieval strategy for CBR.

78.820

82.002

77.678

79.229

77.138

86.214

72 74 76 78 80 82 84 86 88

IB1

IBkBN

IBkFS

IBkFW

KStar

USIMSCAR

Mean Classifica�on Accuracy (%)

Fig. 1. The mean classification accuracy results

6 Related Work

SBR is typically implemented through the technique using a derivative of k-
NN. To improve its accuracy, various extensions have been developed, including
the integration of k-NN and the best k, feature selection, or feature weighting.
USIMSCAR differs from these techniques. The most distinctive difference is the
use of association knowledge for the retrieval task. The last two techniques often
focus on finding the features that are highly correlated to specific solutions. But
they only consider relationships between individual features and each solution.
This leads to trouble, since they ignore complex relationships between multi-
ple features and each solution. For example, two features may be individually
correlated with a certain solution, but together they may not, or vice versa. In
contrast, USIMSCAR exploits not only the individual relationships, but complex
relationships between multiple features (itemsets in scars) and solutions.

Several researchers have attempted to augment SBR with certain factors ob-
tained through statistical learning and adaptation knowledge. For example, Park
et al. [21] suggest a new case retrieval technique, called statistical CBR (SCBR).
The idea of SCBR is that an optimal number of neighbors can be dynami-
cally obtained by considering the distribution of distances between potential
similar neighbors for a new problem. SCBR finds the optimal distance thresh-
old θ, and selects similar neighbors satisfying θ. Smyth and Keane [2] propose
the adaptation-guided retrieval approach that provides direct link between the
retrieval and the adaptation task in CBR. This approach utilizes formulated
adaptation knowledge about whether a case can be easily modified to fit a new
problem to influence similarity assessment during the retrieval phase. Hoffmann
[22] also applies this approach for a dietary consultation evaluation for patients.
USIMSCAR also significantly differs from the above approaches. First, it exploits
association knowledge derived using data mining techniques and incorporates it
into the retrieval task. Second, it does not assume that any kind of adaptation
knowledge must be formalized in advance.

A Retrieval Strategy Using the Integrated Knowledge 29

7 Extension Schemes and Conclusion

In CBR, cases can also be represented by more complex structures, like object-
oriented (OO) or hierarchical (HR) representation [1]. We briefly give possible
extension schemes, in which USIMSCAR could support the cases modeled using
such structures. The OO representation utilizes the data modeling approach of
the OO paradigm, such as “is-a” and inheritance [1]. In the HR representation,
a case is characterized through multiple levels of abstraction, and its attribute
values can reference nonatomic cases [1]. For USIMSCAR to treat the cases,
characterized by those two representations, two issues must be addressed−how
to formalize similarity knowledge, and how to generate association knowledge.
To address the former, one may use similarity measures, for OO data [23] or
HR data [24], widely studied in IR. To address the latter, one may integrate the
soft-matching criterion and specific algorithms extending Apriori [10]. A possible
choice for such algorithms is OR-FP [25] for OO data and DFMLA [26] for HR
data.

USIMSCAR may also be extended to cases, where each case problem is as-
sociated with more than one solution. This occasion can be simply generalized
into the occasion−each case problem is associated with one solution. The gener-
alization is possibly done by splitting a case C into k number of sub cases (k: the
number of solutions). We then restrict all the sub cases to have the same case
identification with C. Then, USIMSCAR may run for the cases, whose solutions
are more than one, without any modification. This scheme even may be extended
for solutions described in free-text. As long as such solutions are converted to
the “bag-of-words” representation [6], the above scheme can be also applied.

In this paper, we proposed a new retrieval strategy USIMSCAR, aimed to im-
prove similarity-based retrieval (SBR), used in many CBR systems. The unique-
ness of USIMSCAR is to exploit the specific knowledge, integrating similarity
knowledge and association knowledge, into retrieval in CBR. Similarity knowl-
edge is encoded in similarity measures, while association knowledge is derived
using association rule mining techniques. The goal of association knowledge is
to represent implicit, previously unknown and potentially useful associations
between problem features and solutions among stored cases. This knowledge is
combined with similarity knowledge to make a more complete retrieval strategy.
We empirically evaluated the performance of USIMSCAR, in comparison with
several retrieval methods adopting SBR. The evaluation results showed that
USIMSCAR is an effective retrieval strategy for CBR.

References

1. Lopez De Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,
Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M., Aamodt, A., Watson,
I.: Retrieval, reuse, revision and retention in case-based reasoning. Knowl. Eng.
Rev. 20, 215–240 (2005)

2. Smyth, B., Keane, M.T.: Adaptation-guided retrieval: questioning the similarity
assumption in reasoning. Artif. Intell. 102, 249–293 (1998)

30 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

3. Stahl, A.: Learning of knowledge-intensive similarity measures in case-based rea-
soning. PhD thesis, Technical University of Kaiserslautern (2003)

4. Dudani, S.A.: The Distance-Weighted k-Nearest-Neighbor Rule. IEEE Transac-
tions on Systems, Man and Cybernetics SMC-6, 325–327 (1976)

5. Jiang, L., Cai, Z., Wang, D., Jiang, S.: Survey of Improving K-Nearest-Neighbor for
Classification. In: FSKD 2007: Proceedings of the Fourth International Conference
on Fuzzy Systems and Knowledge Discovery, pp. 679–683 (2007)

6. Cunningham, P.: A Taxonomy of Similarity Mechanisms for Case-Based Reasoning.
IEEE Trans. on Knowl. and Data Eng. 21, 1532–1543 (2009)

7. Yusta, S.C.: Different metaheuristic strategies to solve the feature selection prob-
lem. Pattern Recogn. Lett. 30, 525–534 (2009)

8. Wettschereck, D., Aha, D.W.: Weighting features. In: Proceedings of the First
International Conference on CBR Research and Development, pp. 347–358 (1995)

9. Castro, J.L., Navarro, M., Sánchez, J.M., Zurita, J.M.: Loss and gain functions for
CBR retrieval. Inf. Sci. 179, 1738–1750 (2009)

10. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB 1994, pp. 487–499 (1994)

11. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: Proceedings of the 4th KDD, pp. 443–447 (1998)

12. Nahm, U.Y., Mooney, R.J.: Mining soft-matching association rules. In: Proceedings
of CIKM 2002, pp. 681–683 (2002)

13. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM
Comput. Surv. 38, 9 (2006)

14. Jurisica, I., Glasgow, J.: Case-Based Classification Using Similarity-Based Re-
trieval. In: Proceedings of ICTAI (1996)

15. Witten, I.H., Frank, E.: Data mining: Practical machine learning tools and tech-
niques with Java implementations. Morgan Kaufmann, San Francisco (2000)

16. Aha, D.W., Kibler, D., Albert, M.K.: Instance-Based Learning Algorithms. Mach.
Learn. 6, 37–66 (1991)

17. Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning. PhD
thesis, University of Waikato, Hamilton, New Zealand (1998)

18. Cleary, J.G., Trigg, L.E.: K*: An Instance-based Learner Using an Entropic Dis-
tance Measure. In: Proceedings of the 12th ICML, pp. 108–114 (1995)

19. Lim, T.S., Loh, W.Y., Shih, Y.S.: A comparison of prediction Accuracy, complexity,
and training time of thirty-three old and new classification algorithms. Machine
Learning, 203–229 (2000)

20. Richard, C.S.: Basic Statistical Analysis. Allyn & Bacon, Boston (2003)
21. Park, Y.J., Kim, B.C., Chun, S.H.: New knowledge extraction technique using

probability for case-based reasoning: application to medical diagnosis. Expert Sys-
tems 23, 2–20 (2006)

22. Hoffmann, A., Khan, A.S.: A new approach for the incremental development of
retrieval functions for CBR. Applied Artificial Intelligence 20, 507–542 (2006)

23. Bergmann, R., Stahl, A.: Similarity measures for object-oriented case represen-
tations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI),
vol. 1488, pp. 25–36. Springer, Heidelberg (1998)

24. Ganesan, P., Garcia-Molina, H., Widom, J.: Exploiting hierarchical domain struc-
ture to compute similarity. ACM Trans. on Infor. Sys. 21, 64–93 (2003)

25. Kuba, P., Popelinsky, L.: Mining frequent patterns in object-oriented data (2005)
26. Pater, S.M., Popescu, D.E.: Market-Basket Problem Solved With Depth First

Multi-Level Apriori Mining Algorithm. In: SOFA 2009, 3rd International Work-
shop on Soft Computing Applications, pp. 133–138 (2009)

PG-Skip: Proximity Graph Based Clustering of
Long Strings

Michail Kazimianec and Nikolaus Augsten

Faculty of Computer Science, Free University of Bozen-Bolzano,
Dominikanerplatz 3, 39100 Bozen, Italy
{kazimianec,augsten}@inf.unibz.it

Abstract. String data is omnipresent and appears in a wide range of
applications. Often string data must be partitioned into clusters of sim-
ilar strings, for example, for cleansing noisy data. A promising string
clustering approach is the recently proposed Graph Proximity Cleansing
(GPC). A distinguishing feature of GPC is that it automatically de-
tects the cluster borders without knowledge about the underlying data,
using the so-called proximity graph. Unfortunately, the computation of
the proximity graph is expensive. In particular, the runtime is high for
long strings, thus limiting the application of the state-of-the-art GPC
algorithm to short strings.

In this work we present two algorithms, PG-Skip and PG-Binary, that
efficiently compute the GPC cluster borders and scale to long strings.
PG-Skip follows a prefix pruning strategy and does not need to compute
the full proximity graph to detect the cluster border. PG-Skip is much
faster than the state-of-the-art algorithm, especially for long strings, and
computes the exact GPC borders. We show the optimality of PG-Skip
among all prefix pruning algorithms. PG-Binary is an efficient approx-
imation algorithm, which uses a binary search strategy to detect the
cluster border. Our extensive experiments on synthetic and real-world
data confirm the scalability of PG-Skip and show that PG-Binary ap-
proximates the GPC clusters very effectively.

1 Introduction

String clustering is required by many applications, such as Web analysis, doc-
ument retrieval, and text cleansing. Different well-known clustering techniques
were used to cluster syntactically similar strings, e.g., hierarchical, density-based,
or partitional clustering. Typically, these methods require knowledge about the
underlying data, for example, the number of expected clusters or a distance
threshold. Such knowledge is often not available and hard to estimate.

Recently, Mazeika and Böhlen proposed the Graph Proximity Cleansing
(GPC) method [1] for clustering strings. A distinctive feature of GPC is the
automatic detection of the cluster borders. GPC randomly chooses a cluster
center among the strings in the dataset and includes all strings within some sim-
ilarity neighborhood into the cluster. Intuitively, the neighborhood is increased

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 31–46, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

32 M. Kazimianec and N. Augsten

until further increasing it does not increase the cluster size. After each step that
adds new strings to the cluster the cluster center is adjusted.

Technically, the problem of computing the cluster border for a given center is
solved by computing its proximity graph. The proximity graph shows the simi-
larity threshold τ on the x-axis and the number of strings within the respective
similarity neighborhood on the y-axis. The cluster border is the rightmost end-
point of the longest horizontal line in the proximity graph (or the rightmost
horizontal line if there are multiple horizontal lines of the same length). The
proximity graph for the string pauline in the dataset {adriana, irvin, piper,
linda, paulina, pauline} is shown in Figure 1. The longest horizontal line is
between the similarity thresholds 4 and 6, thus τ = 6 defines the cluster bor-
der, i.e., all strings with similarity 6 or more form a cluster around the center
pauline.

1 2 3 4 5 6

2

4

6

0

8

7

of

 s
tr

in
gs

pauline
paulina

pauline
paulina

piper
irvin
adriana

linda

linda

pauline

paulina
pauline

8 τ

Fig. 1. Proximity Graph for the String ‘pauline’

Unfortunately, the computation of the proximity graph is expensive, in par-
ticular for long strings. The computation time of the proximity graph critically
depends on the number of neighborhoods that must be computed. For long
strings, many neighborhoods must be computed, thus leading to high runtimes
and limiting the state-of-the-art GPC algorithm to short strings.

In this paper we address the problem of computing GPC for large datasets
with long strings efficiently. We present two new algorithms, PG-Skip and PG-
Binary, that substantially reduce the runtime of the cluster border detection.
Our algorithms leverage the fact that not all the neighborhoods of a proximity
graph need to be computed to find the cluster border. In particular, only the
neighborhoods required to determine the longest horizontal line are relevant.

PG-Skip implements prefix pruning, a strategy that skips the neighborhood
computation for all points in the proximity graph below a certain similarity. The
intuition is that the cluster is typically defined by a high similarity threshold,
thus low similarities are unlikely to be relevant. Prefix pruning is effective since
the neighborhoods for low similarities contain many strings and thus are more
expensive to compute. The problem in prefix pruning is to skip only points that
are not relevant for computing the cluster border. We prove that PG-Skip is
a correct and optimal prefix pruning, i.e., it skips only irrelevant points and it
skips all irrelevant points.

PG-Skip: Proximity Graph Based Clustering of Long Strings 33

Summarizing, our contributions are the following:

– We propose the PG-Skip algorithm for computing the GPC cluster borders
efficiently. We formally show that PG-Skip is the optimal prefix pruning.

– We present PG-Binary, an efficient and effective approximation algorithm
for GPC cluster borders.

– Our extensive experiments on three real-world datasets show that our algo-
rithms are substantially faster then the state-of-the-art algorithm, especially
for long strings. The approximation algorithm, PG-Binary, is faster than
PG-Skip and reaches an effectiveness of up to 99%.

The remaining paper is organized as follows. We briefly revisit the state-of-the-
art in computing GPC clusters in Section 2. In Section 3 we introduce our new
algorithms, PG-Skip and PG-Binary, which are empirically evaluated in Section
4. Related work is discussed in Section 5. We conclude and identify future work
in Section 6.

2 Background

In this section we give a short introduction to GPC and the state-of-the-art in
computing the cluster border using the proximity graph.

2.1 Proximity Graph

Let s be a string, and s̄ be s prefixed and suffixed with q−1 characters ‘#’. The
profile P (s, q) of the string s is the multiset of all substrings of s̄ of length q,
called q-grams. The overlap of two profiles P (s′, q) and P (s′′, q) is the cardi-
nality of their intersection, i.e., o(P (s′, q), P (s′′, q)) = |P (s′, q) � P (s′′, q)|. The
overlap measures the similarity between two strings; the higher the overlap, the
more similar are the strings.

Given a set of strings, D, and a profile, P , the neighborhood of P in D for
similarity threshold τ (τ -neighborhood) is the subset of all strings of D that have
an overlap of at least τ with P , N(D, P, τ) = {s ∈ D : o(P, P (s, q)) ≥ τ}; we
simply write Nτ if P and D are clear from the context. The center Pc(Nτ , q) of
the neighborhood Nτ is the profile that consists of the K most frequent q-grams
in the neighborhood, i.e., in

⊎
s∈Nτ

P (s, q), where K =
∑

s∈Nτ
|P (s, q)|/|Nτ | is

the average profile size in the neighborhood Nτ .

Definition 1. Let D be a set of strings, s ∈ D, q the size of the q-grams. The
proximity graph of string s is defined as PG(s, D, q) = ((1, |N1|), (2, |N2|),
. . . , (m, |Nm|)), m = |P (s, q)|, where Nτ is recursively defined as follows:

Nτ =

{
{s} if τ = |P (s, q)|,
N(D, Pc(Nτ+1, q), τ) ∪ Nτ+1 otherwise.

(1)

34 M. Kazimianec and N. Augsten

Table 1. Computation of the Proximity Graph PG(pauline, D, q) in Example 1

τ Neighborhood, Nτ Center of Nτ , Pc(Nτ , q)
8 {s6} {#p, pa, au, ul, li, in, ne, e#}
7 {s6} {#p, pa, au, ul, li, in, ne, e#}
6 {s5, s6} {#p, pa, au, ul, li, in, na, a#}
5 {s5, s6} {#p, pa, au, ul, li, in, na, a#}
4 {s5, s6} {#p, pa, au, ul, li, in, na, a#}
3 {s4, s5, s6} {#p, pa, au, ul, li, in, a#}
2 {s4, s5, s6} {#p, pa, au, ul, li, in, a#}
1 {s1, s2, s3, s4, s5, s6} {#p, au, ul, li, in, na, a#}

The proximity graph maps similarity thresholds τ , 1 ≤ τ ≤ |P (s, q)|, to the size
of the respective neighborhood Nτ and is computed from right to left, i.e., from
the largest to the smallest overlap. The neighborhood of the largest overlap
is defined to be {s}. For the remaining points the neighborhood is computed
around the center of the previous neighborhood.

Example 1. Let D = {s1, s2, . . . , s6} = {adriana, irvin, piper, linda, paulina
pauline}, q = 2. We compute the proximity graph for the string s6 = pauline.
The similarity threshold ranges between τ = 1 and τ = |P (s6, q)| = 8. N8 = {s6}
by definition. The neighborhood N7 is computed around the center Pc(N8, q) =
{#p, pa, au, ul, li, in, ne, e#} of the neighborhood N8, N6 is computed around
Pc(N7, q), and so on. Table 1 shows all neighborhoods and their centers, Figure 1
illustrates the resulting proximity graph.

2.2 Cluster Border Detection and State-of-the-Art Algorithm

Let PG = {(1, |N1|), (2, |N2|), . . . , (m, |Nm|)} be a proximity graph. We de-
fine the horizontal lines in the proximity graph by their endpoints. The set
of all horizontal lines in the proximity graph PG is defined as H(PG) =
{(i, j)| (i, |Ni|), (j, |Nj |) ∈ PG, |Ni| = |Nj |, i ≤ j}. The length of a horizontal line
(i, j) is j − i. The cluster border, border(PG) = {j| (i, j) ∈ H(PG), ∀(x, y) ∈
H(PG) : y − x ≤ j − i}, is the right endpoint of the rightmost horizontal line
of maximal length (border-defining horizontal line). The GPC cluster is the
neighborhood Nb for the similarity threshold b = border(PG).

Example 2. In the proximity graph in Figure 1 the cluster border is b = 6, and
the GPC cluster is Nb = {pauline, paulina}.
PG-GPC (Algorithm 1) is the state-of-the-art in computing GPC clusters. Given
a set D of strings, a string s ∈ D, and the q-gram size q, PG-GPC first computes
the full proximity graph PG(s, D, q), i.e., all neighborhoods Nτ in the range
τ = 1, 2, . . . , |P (s, q)|, and then detects the cluster border b in the computed
proximity graph.

PG-Skip: Proximity Graph Based Clustering of Long Strings 35

Algorithm 1. PG-GPC(s,D,q)
Data: s: center; D: set of strings; q: size of q-grams
Result: cluster of strings
begin1

τ ← |P (s, q)|;2
PG[1..τ] : empty array of neighborhoods; // proximity graph3
PG[τ] ← {s}; // neighborhood for τ = |P (s, q)| is {s}4
τ ← τ − 1;5
while τ ≥ 1 do6

P ← Pc(PG[τ + 1], q); // P is the center of the previous neighborhood7
PG[τ] ← N(D, P, τ) ∪ PG[τ + 1]; // τ-neighborhood of P in D8
τ ← τ − 1;9

b ← border(PG); // compute the cluster border10
return PG[b]; // return the cluster11

end12

Fig. 2. Computation of the Cluster

Algorithm 2. GPC(D,q)
Data: D: set of strings; q: size of q-grams
Result: set of mutually disjoint clusters covering D
begin1

ζ ← ∅; // initialize the clustering2
φ ← D; // initialize the set of eligible centers3
while φ
= ∅ do // while non-clustered strings are left4

s ← random string from the set φ of eligible centers;5
C = PG-GPC(s, D, q); // compute the GPC cluster around s6
// update the clustering ζ and the eligible centers φ
ζ ← ζ ∪ {C}; // add new cluster7
φ ← φ \ C; // clustered strings not eligible as centers8

// merge overlapping clusters
while ∃Ci, Cj ∈ ζ : Ci
= Cj , Ci ∩ Cj
= ∅ do9

ζ ← Clusters \ {Ci, Cj} ∪ {Ci ∪ Cj};10

return ζ;11

end12

Fig. 3. GPC Clustering Algorithm

2.3 The GPC Method

GPC (Algorithm 2) takes a string set D and the q-gram size q at the input and
returns a set of disjoint clusters ζ = {C1, C2, . . . , Ck} that cover D. It randomly
selects a non-clustered string s ∈ D as the cluster center and computes the cluster
border b. The new cluster C is the b-neighborhood in the proximity graph of s.
GPC marks all the strings of C as clustered and proceeds with the next center
until all strings are clustered. Overlapping clusters are merged to produce a hard
clustering.

3 Efficient Border Detection

The computation of the proximity graph is at the core of the GPC method.
The state-of-the-art GPC algorithm [2] computes the full proximity graph to

36 M. Kazimianec and N. Augsten

detect the cluster borders. This is expensive, especially for long strings for which
many neighborhoods must be computed. Among the neighborhoods, those of low
similarity thresholds are harder to compute since they include more strings.

In this section we introduce the concept of prefix pruning and two new algo-
rithms, PG-Skip and PG-Binary, to detect the cluster border. Both algorithms
leverage the fact that not all points of the proximity graph must be computed to
detect the cluster border. PG-Skip is shown to be a correct and optimal prefix
pruning algorithm, PG-Binary is an efficient approximation. The input of the
algorithms is a set of strings D, the center string s ∈ D, and the q-gram size q.
The algorithms return the (approximated) GPC cluster around s.

3.1 Prefix Pruning of the Proximity Graph

We observe two properties of the proximity graph. (1) The neighborhoods of the
low similarity thresholds are more expensive to compute since they contain more
strings. (2) The cluster border is often a high similarity threshold and the low
similarity thresholds are not relevant to detect it.

These observations lead to a pruning strategy that avoids computing the
neighborhoods of low similarity thresholds, the prefix pruning. Given a prox-
imity graph PG = ((1, n1), (2, n2), . . . , (m, nm)), a k-prefix of PG is defined as
pref(PG, k) = {(i, ni)|(i, ni) ∈ PG, i ≤ k}. A prefix pruning algorithm does
not compute the full proximity graph, but only a suffix suff(PG, k + 1) =
PG \ pref(PG, k) for some cutoff point k that depends on the proximity graph.

Intuitively, a prefix pruning algorithm is correct if the neighborhoods in the
pruned prefix are not relevant for the border detection. A prefix pruning algo-
rithm is optimal if it always prunes the largest possible prefix that leads to a
correct pruning and thus minimizes the computation cost. We formally define
the correctness and optimality of a prefix pruning algorithm.

Definition 2. A prefix pruning algorithm is correct iff for all proximity graphs
PG it prunes a prefix pref(PG, k) such that ∀PG′ : suff(PG′, k+1) = suff(PG, k+
1) ⇒ border(PG′) = border(suff(PG, k + 1)). A prefix pruning algorithm is op-
timal iff it is correct and for all proximity graphs PG it prunes the maximal prefix
pref(PG, k), i.e., for any prefix pref(PG, x), x > k, ∃PG′ : suff(PG′, x + 1) =
suff(PG, x + 1) ∧ border(PG′) �= border(suff(PG, x + 1)).

If we prune a prefix pref(PG, k), we do not know how the proximity graph PG
continues in the range [1, k]. PG′ in the definition stands for all possible variants
of PG, given its suffix suff(PG, k + 1).

3.2 The PG-Skip Algorithm

In this section we present the PG-Skip algorithm that implements the prefix
pruning strategy, i.e., it skips the computation of irrelevant neighborhoods at the
left end of the proximity graph. We prove that PG-Skip is correct and optimal.

PG-Skip (Algorithm 3) computes the proximity graph from right to left in de-
creasing order of the similarity threshold. After the neighborhood for the current

PG-Skip: Proximity Graph Based Clustering of Long Strings 37

Algorithm 3. PG-Skip(s,D,q)
Data: D: set of strings; s: center string, q: gram size
Result: GPC cluster around the center string s
begin1

m ← |P (s, q)|;2
PG[1..m] : empty array of neighborhoods; // proximity graph3
PG[m] ← {s}; // neighborhood for τ = |P (s, q)| is {s}4
lmax ← 0; // length of the border-defining horizontal line5
l ← 0; // length of the current horizontal line6
b ← m; // cluster border7
for τ = m − 1 downto 1 do8

P ← Pc(PG[τ + 1], q); // P is the center of the previous neighborhood9
PG[τ] ← N(D, P, τ) ∪ PG[τ + 1]; // τ-neighborhood of P in D10
if |PG[τ]| = |PG[τ + 1]| then l ← l + 1; // increase current horizontal line11
else l ← 0; // start new horizontal line12
if l > lmax then // current horizontal line is new border-defining line13

lmax ← l; b ← τ + l;14

// prefix pruning
if (b = τ + l ∧ τ − 2 ≤ lmax) ∨ (τ − 1 + l ≤ lmax) then15

return PG[b]; // prune prefix of length τ − 116

return PG[b];17

end18

Fig. 4. PG-Skip: Border Detection Algorithm

similarity threshold τ is computed (Line 10), the length l of the current horizontal
line (i.e., the longest horizontal line with the left endpoint in τ) is updated
(Lines 11–12). If l > lmax, the current horizontal line is longer than all horizontal
lines found so far, lmax is updated, and the cluster border b is set to the right
end of the current horizontal line (Lines 13–14).

The pruning is done in Lines 15–16. In the pruning condition in Line 15,
the left side of the disjunction covers the case when τ is the left endpoint of the
border-defining horizontal line (b = τ +l): if τ−2 ≤ lmax, the prefix pref(PG, τ−
1) is pruned and the cluster defined by the current border is returned. The
intuition is that the pruned prefix can not contain a new horizontal line that is
longer than lmax. The right side of the disjunction covers the case b �= τ + l: the
prefix pref(PG, τ − 1) is pruned if the horizontal line that starts or continues in
τ can not grow longer than lmax in the pruned prefix.

Example 3. Figure 6(b) illustrates PG-Skip. The algorithm computes the neigh-
borhoods from right to left starting with the similarity threshold τ = 16. The
algorithm stops at τ = 4 and prunes the prefix of length 3 since τ − 1− l ≤ lmax

(l = 0, lmax = 3). lmax = 0 and b = 16 in the similarity range [15, 16]; lmax = 1,
b = 15 in [10, 14], lmax = 2, b = 11 for τ = 9, lmax = 3 and b = 11 in [4, 8].

Theorem 1. The prefix pruning algorithm PG-Skip is correct and optimal.

Proof. In the pruning condition (Line 15), τ is the smallest similarity threshold
computed so far, l is the length (possibly zero) of the current horizontal line, lmax

is the length of the border-defining horizontal line in suff(PG, τ). We distinguish
two complementary cases and show correctness and optimality by contradiction.

(1) τ is the left endpoint of the border-defining horizontal line in suff(PG, τ):
Since b = τ + l, l = lmax, and τ − 1 ≤ 0∧ lmax > 0 ⇒ τ − 2 ≤ lmax, the pruning

38 M. Kazimianec and N. Augsten

condition is equivalent to τ − 2 ≤ lmax. Correctness: Assume a proximity graph
PG′, suff(PG′, τ) = suff(PG, τ) with border(PG′) �= border(PG). The border-
defining horizontal line of PG′ must be in the interval [1, τ−1] and can be at most
of length τ − 2. This is not possible since τ − 2 ≤ lmax. Optimality: Assume we
prune a prefix pref(PG, x), x > τ −1. Case τ −2 = lmax: The prefix pref(PG, x)
can contain a horizontal line (1, τ) of length τ −1 > lmax and thus the pruning is
not correct; case τ − 2 < lmax: border(suff(PG, τ)) �= border(suff(PG, x)) since
the condition τ − 2 ≤ lmax also holds for the similarity threshold τ + 1, but
the algorithm did not exit in the previous loop. The prefix pref(PG, x) may not
contain a horizontal line and thus the pruning is not correct.

(2) τ is not the left end of the border-defining horizontal line in suff(PG, τ):
Since b �= τ + 1, the pruning condition is equivalent to τ − 1 + l ≤ lmax.
Correctness: Assume a proximity graph PG′, suff(PG′, τ) = suff(PG, τ) with
border(PG′) �= border(PG). The border-defining horizontal line of PG′ must
be in the interval [1, τ + l] and can be at most of length τ + l − 1. This is not
possible since τ + l − 1 ≤ lmax. Optimality: The condition τ − 1 + l ≤ lmax

only holds if l = 0 since on a horizontal line τ − 1 + l is constant and is first
evaluated for the right endpoint; thus τ − 1 ≤ lmax. Assume we prune a pre-
fix pref(PG, x), x > τ − 1. (a) τ − 1 = lmax: The prefix pref(PG, x) may be
such that (1, τ + 1) is a horizontal line and thus the pruning is not correct; (b)
τ − 1 < lmax: Since the pruning condition did not hold in the previous loop,
τ +1 is the left end of a horizontal line; since the pruning condition did not hold
for any point on the horizontal line, the line must start at a similarity threshold
y > lmax + 1. For any x > τ − 1 the pruning is incorrect since there is a prox-
imity graph PG′ with the horizontal line (1, y) (length y − 1 > lmax) for which
suff(PG′, x + 1) = suff(PG, x + 1). ��

3.3 The PG-Binary Algorithm

In this section we present PG-Binary, our approximation algorithm for comput-
ing GPC clusters. In addition to pruning a prefix of the proximity graph (as
PG-Skip does), PG-Binary also prunes other neighborhood computations.

PG-Binary (Algorithm 4) uses the fact that the proximity graph is monoton-
ically decreasing. If the neighborhoods for two similarity thresholds a < b are
of the same cardinality, |Na| = |Nb|, then there is a horizontal line (a, b) in the
proximity graph. The neighborhoods between a and b need not to be computed
to verify the horizontal line (a, b).

PG-Binary maintains the length lmax of the border-defining horizontal line
and computes the proximity graph from right to left for decreasing starting
points st of the current horizontal line. In each iteration, PG-Binary does the
following steps. If st starts a new border-defining horizontal line (that ends in
en = st − lmax − 1), update lmax and the current border b. Otherwise, move st
to the starting point of the horizontal line that goes through en.

When st is moved, two cases are distinguished. (1) st starts the border-defining
horizontal line of length st = lmax; in this case, en starts a new horizontal line

PG-Skip: Proximity Graph Based Clustering of Long Strings 39

Algorithm 4. PG-Binary(s,D,q)
Data: D: set of strings; s: center string, q: gram size
Result: cluster of strings for the center s
begin1

m ← |P (s, q)|;2
PG[1..m] : empty array of neighborhoods; // proximity graph3
PG[m] ← {s}; // neighborhood for similarity threshold m is {s}4
lmax ← 0; // length of the border-defining horizontal line5
b ← m; // cluster border6
st ← m; // start (right endpoint) of the current horizontal line7
while st > 1 do8

en ← st − lmax − 1;9
P ← Pc(PG[st], q); // center of neighborhood Nst10
PG[en] ← N(D, P, en) ∪ PG[st]; // neighborhood Nen of P in D11
if |PG[en]| = |PG[st]| then // border-defining horizontal line starts in st12

lmax ← lmax + 1; b ← st;13

else if b = st then // new horizontal line starts in en14
st ← en;15

else16
// binary search for start st of horizontal line through en
while st
= en ∧ st − 2 ≥ lmax + 1 do17

mid = �(en + st)/2�;18
if PG[mid]
= ∅ then PG[mid] ← N(D, P, mid) ∪ PG[st];19
if |PG[en]| = |PG[mid]| then en ← mid; else st ← min(mid, st − 1);20

if en
= st then return PG[b]; // pruning in binary search21

if (b = st ∧ st − lmax − 2 < lmax + 1) ∨ (st − 1 < lmax + 1) then22
return PG[b]; // prefix pruning23

return PG[b];24

end25

Fig. 5. PG-Binary: Border Detection Algorithm

and st is set to en. (2) Otherwise, the starting point of the horizontal line through
en is between en and st, and a binary search is performed in the interval [en, st).

The binary search computes the middle point mid between en and st. If there
is a horizontal line between en and mid (|Nen| = |Nmid|), a binary search is
done in [mid, st), otherwise in [en, mid). The binary search terminates when
the starting point of the horizontal line is found or no horizontal line of length
lmax +1 can start in the search interval [en, st). In the latter case, the algorithm
prunes all remaining neighborhood computations and stops.

In Line 22, PG-Binary prunes the prefix pref(PG, st − 1) (a) if st starts the
border-defining horizontal line (b = st) and no new border-defining horizontal
line can start to the left of st (st − lmax − 2 < lmax + 1), or (b) if st can not be
the starting point of a new border-defining horizontal line (st − 1 < lmax + 1).

Example 4. Figure 6(c) illustrates PG-Binary. The algorithm moves st from
left to right and checks for new border-defining horizontal lines (en, st). For
(14, 15), (9, 11), (8, 11), the check is a success and the border b and lmax are
updated in Line 13; st is the same in the next iteration, but en changes (due
to lmax). For (15, 16), (13, 15), (7, 11) en is the next point after the border-
defining horizontal line and st is set to en (no binary search required). For (11, 13)
and (3, 7) a binary search identifies the start of the horizontal line through en

40 M. Kazimianec and N. Augsten

2

6

10

2 6 10 144 8 12 16 τ

...
21

537

264

...

...

...

...

...

...
694

...

...

...

...

...

|N|

112

366

s = maso della pieve

(a) State-of-the-Art

=1,2,3τ

maxl =3

return PG[b]

2

6

10

2 6 10 144 8 12 16 τ

...
21

112

537

264

366

...

...

...

...

...

...
694

...

...

|N|

are skipped b=11

(b) PG-Skip

maxl =3

2

6

10

2 6 10 144 8 12 16 τ

...
21

112

537

264

366

...

...

...

...

...

...

...

...

|N|

694

computation of these
neighborhoods

is skipped

b=11

return
PG[b]

(c) PG-Binary

Fig. 6. PGs for the String ‘maso della pieve’ in the Street Name Dataset

(Lines 17–20). The algorithm stops the binary search for st = 5, since there
cannot be a horizontal line longer than lmax = 3 to the left of st (Line 17) and
terminates (Line 21). The arrows show the order in which the neighborhoods are
computed.

Discussion. In some cases, PG-Binary only approximates the correct GPC clus-
ter. The reason is that in the original GPC algorithm the center for computing
a neighborhood Nτ depends on the center of the previous neighborhood Nτ+1.
Since PG-Binary skips intermediate points, Nτ+1 may not be available and an
other neighborhood must be used to compute the center.

In practice, the GPC cluster computed by PG-Binary is often correct. In
particular, errors can only be introduced

– to the left of the rightmost horizontal line of length > 0,
– by points that start a horizontal line of length ≥ 0,
– if the center of the skipped neighborhoods is different from the center of the

next neighborhood to the right.

The prefix pruning does not introduce an additional error. In Section 4 we em-
pirically evaluate the quality of the approximation on three real world datasets.

4 Experiments

4.1 Datasets and Experimental Setup

We compare our algorithms PG-Skip (Algorithm 3) and PG-Binary (Algorithm 4)
with the state-of-the-art algorithm [2] for computing GPC clusters (PG-GPC, Al-
gorithm 1). We evaluate our algorithms on synthetic data and three real-world
datasets: Bozen Street Names is a dataset with 1313 syntactic representations of
403 street names in the city of Bozen-Bolzano1; the Oxford misspellings2 are 39030
1 http://www.inf.unibz.it/~augsten/publ/tods10
2 http://www.dcs.bbk.ac.uk/~roger/corpora.html

PG-Skip: Proximity Graph Based Clustering of Long Strings 41

strings in 6003 non-overlapping clusters (each cluster consists of a correct string
and its misspellings); the DBLP dataset consists of 10000 paper titles chosen from
the online bibliography DBLP3. The distribution of the string lengths is very dif-
ferent between the datasets and is shown in Figure 7.

0
20
40
60
80

100
120
140
160

0 5 10 15 20 25 30 35

of

 S
tr

in
gs

String Length

(a) Bozen Sreet Names

0

1

2

3

4

5

6

0 5 10 15 20

of

 S
tr

in
gs

 (t
ho

us
an

ds
)

String Length

(b) Oxford Misspellings

0
20
40
60
80

100
120
140
160
180
200

0 100 200 300

of

 S
tr

in
gs

String Length

(c) DBLP Paper Titles

Fig. 7. Distribution of String Length

4.2 Proximity Graph Computation

Scalability and String Length. Figure 8 shows the average time for computing the
proximity graph for a string of a specific length. Our algorithms are consistently
faster than the state-of-the-art algorithm. The performance advantage clearly
increases with the string length. For the DBLP dataset with its long strings,
PG-Binary is faster than PG-Skip.

Effectiveness of the Pruning Strategy. In this experiment, we count the number
of neighborhood computations that are skipped by the algorithms. Let n be the
total number of neighborhoods that can be computed for some similarity thresh-
old τ in the dataset, let k be the number τ -neighborhoods that where actually
computed. Then PSN = n−k

n measures the percentage of skipped neighbor-
hoods. PSN = 1 for τ if no τ -neighborhood was computed by an algorithm,
PSN = 0 if all τ -neighborhoods where computed; thus high PSN values are
good.

The results for the three real-world dataset are shown in Figure 9. The base-
line algorithm always computes the full proximity graph and no neighborhoods
are pruned (PSN = 0). The pruning power of both PG-Skip and PG-Binary
increases for the datasets with long strings and is best for DBLP. For low simi-
larity thresholds much more neighborhoods are pruned than for high thresholds.
PG-Binary skips more neighborhoods since in addition to pruning a prefix, it
also skips intermediate neighborhood computations.

Overall, the results are very encouraging. Our pruning strategy works best
on the datasets with long strings. The long strings are more expensive to com-
pute, because of the greater number of neighborhoods in the proximity graphs.
Further, most of the pruned points are small similarity thresholds, for which
the neighborhoods are more expensive to compute, because they contain more
strings.
3 http://www.informatik.uni-trier.de/~ley/db

42 M. Kazimianec and N. Augsten

0

1

2

3

4

5

0 10 20 30

Ru
nt

im
e,

 m
s

String Length

Bolzano Street Names
PG-GPC PG-Skip PG-Binary

(a) Bozen Sreet Names

0

5

10

15

20

25

30

35

0 4 8 12 16

Ru
nt

im
e,

 m
s

String Length

Oxford Misspellings
PG-GPC PG-Skip PG-Binary

(b) Oxford Misspellings

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

Ru
nt

im
e,

 m
s

String length

DBLP Paper Titles
PG-GPC PG-Skip PG-Binary

(c) DBLP Paper Titles

Fig. 8. Proximity Graph Computation

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25 30 35

Similarity Threshold

Bolzano Street Names
PG-Skip PG-Binary PG-GPCPSN

(a) Bozen Sreet Names

0

0.05

0.1

0.15

0.2

0 4 8 12 16
Similarity Threshold

Oxford Misspellings
PG-Skip PG-Binary PG-GPCPSN

(b) Oxford Misspellings

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200 240 280
Similarity Threshold

DBLP Paper Titles
PG-Skip PG-Binary PG-GPCPSN

(c) DBLP Paper Titles

Fig. 9. Percentage of the Skipped Neighborhoods in the Proximity Graphs

4.3 Scalability Results on Synthetic Data

In this section we do a controlled experiment on synthetic data and compare our
optimal prefix pruning algorithm PG-Skip with the state-of-the-art algorithm
PG-GPC. We produce datasets with random strings. For each random string
we produce a number of noisy strings by deleting, inserting, or renaming some
characters.

In Figure 10(a) we produce datasets with a fixed number of strings (|D| =
32000) and clusters of size |C| = 8 and vary the string length. PG-Skip clearly
outperforms PG-GPC and the performance advantage increases with the string
length; for strings of length 40, PG-Skip is almost five times faster. Figure 10(b)
shows that PG-Skip scales better to larger datasets than the state-of-the-art
algorithm.

The runtime of GPC decreases with the cluster size, because less proximity
graphs must be computed (one for each cluster) if the clusters become larger
(Figure 10(c)). For all cluster sizes, our algorithm is faster than PG-GPC.

4.4 Clustering Runtime and Quality

Runtime. Table 2 shows the runtime results for clustering the real-world
datasets. Our algorithms are always faster than PG-GPC. We get the best perfor-
mance gain for DBLP, for which PG-Skip is more than 2 times faster, PG-Binary
even more than 6 times.

PG-Skip: Proximity Graph Based Clustering of Long Strings 43

0

200

400

600

800

1000

1200

10 20 30 40

Ru
nt

im
e,

 s

String Length

PG-GPC PG-Skip

(a) |D| = 32000, |C| = 8

0

20

40

60

80

100

120

8000 16000 24000 32000 40000

Ru
nt

im
e,

 s

Dataset Size

PG-GPC PG-Skip

(b) |s| = 16, |C| = 8

0

50

100

150

200

250

300

350

2 4 8 16 32 64

Ru
nt

im
e,

 s

Cluster Size

PG-GPC PG-Skip

(c) |s| = 16, |D| = 32000

Fig. 10. Clustering of Synthetic Data

Table 2. Quality of the Pruning Methods

PG-GPC PG-Skip PG-Binary

Dataset time time F-measure time F-measure

Street Names 2120 ms 1597 ms 1 1139 ms 0.79
Oxford 733 s 637 s 1 570 s 0.98
DBLP Sample 11443 s 5245 s 1 1735 s 0.99

Quality. We compare the clustering obtained by our GPC approximation PG-
Binary with the clustering that results from the original GPC algorithm. To
measure how close the approximated clusters are to the GPC clusters we apply
the F -measure, which is defined as the harmonic mean of precision p and recall
r, F = 2 · p·r

p+r .
We consider the pairwise statistics of the dataset elements in order to compute

precision and recall. Let D be the string dataset, ξ be the GPC clustering, and
ζ be the clustering obtained by the pruning method. Each pair (s1, s2) ∈ D ×D
is classified into one of the following sets:

– TP (true positive) if ∃K ⊂ ζ : s1, s2 ∈ K and ∃H ∈ ξ : s1, s2 ∈ H ,
– TN (true negative) if ∃K, L ∈ ζ : s1 ∈ K, s2 ∈ L and ∃H, P ∈ ξ : s1 ∈

H, s2 ∈ P ,
– FP (false positive) if ∃K ∈ ζ : s1, s2 ∈ K and ∃H, P ∈ ξ, s1 ∈ H, s2 ∈ P ,
– FN (false negative) if ∃K, L ∈ ζ : s1 ∈ K, s2 ∈ L and ∃H ∈ ξ : s1, s2 ∈ H .

Then precision and recall are computed as usual, p = |TP |/(|TP | + |FP |) and
r = |TP |/(|TP | + |FN |).

The results are shown in Table 2. GPC-Binary performs best for the Ox-
ford and the DBLP dataset (F-measure at least 0.98). In the Oxford dataset,
the strings are short and have small horizontal lines and PG-Binary skips only
few points, increasing the clustering quality but also increasing the runtime; in
fact, the gain over PG-Skip is small. The best setting for PG-Binary is the DBLP
dataset. The strings are long and have long horizontal lines such that PG-Binary
can take full advantage of the binary search. Since the PG-Skip pruning algo-
rithm computes the exact GPC clusters, the clusterings are identical, and the
F-measure is always 1.

44 M. Kazimianec and N. Augsten

Our experimental evaluation confirms the analytic result and suggests that
PG-Skip should always be preferred over the state-of-the-art algorithm, since
it is always faster and results in the same clustering. For datasets with long
strings, PG-Binary should be considered, because it is faster than PG-Skip and
the approximation error in the clustering is small.

5 Related Work

Proximity Graph Cleansing (GPC) was originally developed by Mazeika and
Böhlen [1] to cleanse string data that cannot be found in a dictionary, like
proper names in biology, medicine, or geography. The strings are clustered and
all strings in a cluster are substituted with the most frequent spelling in the
cluster. For this task traditional clustering techniques are hard to use, since
they often require input parameters, for example, the number of clusters that
are not known in a data cleansing setting. Mazeika and Böhlen only approximate
the GPC clusters using sampling. In our work we develop new algorithms for
computing the GPC clusters of Mazeika and Böhlen efficiently.

Kazimianec and Augsten [2] recently presented the first algorithms, PG-DS
and PG-SM, for computing the exact GPC clusters. PG-DS is based on the τ -
occurrence problem [3], PG-SM on sort-merge joins of q-grams [4]. In combina-
tion with the DivideSkip technique on the inverted list index that was developed
by Chen Li et al. [5], the exact PG-DS algorithm outperforms the approximate
algorithm of Mazeika and Böhlen for reasonable sample sizes. In the present
paper, we develop PG-Skip and show that it is correct, i.e., it always computes
the exact GPC clusters, and it is always faster than PG-DS.

The application of the GPC method to short strings was investigated by
Kazimianec and Mazeika [6]. In datasets with short strings the proximity graph
may not have a horizontal line. The authors propose a new border criterion and
get better results for short strings. Further the cluster quality increases when
the longest non-clustered string in a dataset is chosen as the center string, rather
than choosing strings randomly.

GPC uses the overlap of q-gram profiles to measure similarity between strings.
In order to improve the effectiveness of GPC, other types of q-grams can be used,
e.g. positional q-grams or q-grams of variable length [7]. In our work we do not
change the original GPC method but improve its scalability.

String clustering and cleansing is an active field of research. Depending on
the task, specific clustering techniques like GPC or general techniques like parti-
tional [8], hierarchical [9] and density-based [10, 11] clustering are used to cluster
strings. If a dictionary is available, spelling techniques [12, 13] can be used to
cleanse strings. In fuzzy string matching, the goal is to find strings that are
similar to a given pattern. Chaudhuri et al. [14] introduced an algorithm that
retrieves tuples that match a query string with a high probability. The SSJoin
algorithm proposed by Arasu et al. [15] finds pairs of sets of high q-gram simi-
larity in two set collections. The Ed-Join algorithm developed by Chuan Xiao et
al. [16] uses mismatching q-grams to speed up the join process and reduce the

PG-Skip: Proximity Graph Based Clustering of Long Strings 45

computation time. In this paper we do not study new clustering techniques, but
improve the scalability of an existing clustering approach, GPC.

6 Conclusions and Future Work

GPC is a string clustering method that automatically detects the cluster borders
and was developed to cleanse non-dictionary string data [1]. To find the cluster
border, the state-of-the-art methods compute a so-called proximity graph that
is expensive to compute for datasets with long strings.

In this work, we proposed two new algorithms, PG-Skip and PG-Binary, that
detect the cluster border in the partially computed proximity graph and thus
reduce the computational costs. The PG-Skip method computes the exact GPC
clustering, while PG-Binary approximates it, but performs much faster for long
strings. We showed the optimality of PG-Skip among all prefix pruning algo-
rithms and empirically evaluated our solutions in extensive experiments.

We plan to further improve the runtime of GPC by incrementally updating the
neighborhoods in the proximity graph instead of computing each neighborhood
from scratch.

References

1. Mazeika, A., Böhlen, M.H.: Cleansing databases of misspelled proper nouns. In:
CleanDB (2006)

2. Kazimianec, M., Augsten, N.: Exact and efficient proximity graph computation.
In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295,
pp. 293–307. Springer, Heidelberg (2010)

3. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates. In: SIGMOD
Conference, pp. 743–754 (2004)

4. Augsten, N., Böhlen, M., Dyreson, C., Gamper, J.: Approximate joins for data-
centric XML. In: International Conference on Data Engineering (ICDE), Cancún,
Mexico, pp. 814–823. IEEE Computer Society, Los Alamitos (2008)

5. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate
string searches. In: International Conference on Data Engineering (ICDE), Wash-
ington, DC, USA, pp. 257–266. IEEE Computer Society, Los Alamitos (2008)

6. Kazimianec, M., Mazeika, A.: Clustering of short strings in large databases. In:
International Workshop on Database and Expert Systems Applications, pp. 368–
372 (2009)

7. Li, C., Wang, B., Yang, X.: Vgram: improving performance of approximate queries
on string collections using variable-length grams. In: Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases, VLDB 2007, pp. 303–314, VLDB
Endowment (2007)

8. MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-
servations. In: Cam, L.M.L., Neyman, J. (eds.) Proc. of the fifth Berkeley Sympo-
sium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University
of California Press, Berkeley (1967)

9. Kaufman, L., Rousseeuw, P.: Finding Groups in Data An Introduction to Cluster
Analysis. Wiley Interscience, New York (1990)

46 M. Kazimianec and N. Augsten

10. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: KDD, pp. 226–231 (1996)

11. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: Ordering points to
identify the clustering structure. ACM SIGMOD Record 28(2), 49–60 (1999)

12. Kukich, K.: Techniques for automatically correcting words in text. ACM Comput.
Surv. 24(4), 377–439 (1992)

13. Hodge, V.J., Austin, J.: A comparison of standard spell checking algorithms and
a novel binary neural approach. IEEE Trans. on Knowl. and Data Eng. 15(5),
1073–1081 (2003)

14. Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and efficient fuzzy
match for online data cleaning. In: SIGMOD, pp. 313–324 (2003)

15. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity joins. In: VLDB
2006: Proceedings of the 32nd International Conference on Very Large Data Bases,
pp. 918–929, VLDB Endowment (2006)

16. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins
with edit distance constraints. Proc. VLDB Endow. 1(1), 933–944 (2008)

An Effective Approach for Searching Closest Sentence
Translations from the Web

Ju Fan, Guoliang Li, and Lizhu Zhou

Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China

fan-j07@mails.thu.edu.cn, {liguoliang,dcszlz}@thu.edu.cn

Abstract. There are large numbers of well-translated sentence pairs on the Web,
which can be used for translating sentences in different languages. It is an in-
teresting problem to search the closest sentence translations from the Web for
high-quality translation, which has attracted significant attention recently. How-
ever, it is not straightforward to develop an effective approach, as this task heavily
depends on the effectiveness of the similarity model which is used to quantify the
similarity between two sentences. In this paper, we propose several optimization
techniques to address this problem. We devise a phrase-based model to quantify
the similarity between two sentences. We judiciously select high-quality phrases
from sentences, which can capture the key features of sentences and thus can
be used to quantify similarity between sentences. Experimental results show that
our approach has performance advantages compared with the state-of-the-art sen-
tence matching methods.

1 Introduction

With the rapid growth of the Web, hundreds of millions of parallel sentences (i.e., sen-
tences with their well-translated counterparts) are now available on the Web, forming a
rich source for translation reference. The following English sentence with its Chinese
translation from a Chinese Web page is an example (the translation is in a pair of paren-
theses): “The president says he knows the problem too well (

)”. Recently, utilizing the parallel sentences from the Web to build a sentence-level
translation-aid (STA) system for producing high-quality translations has attracted much
attention. Some commercial search engines, e.g., Youdao (http://dict.youdao.com) and
Iciba (http://dj.iciba.com), have incorporated STA systems into their services.

An overview of a typical STA system is shown in Figure 1. A huge amount of parallel
sentences are crawled, extracted from the Web, and stored in a parallel-sentence database.
Given a source sentence to be translated by a translator, the Sentence Matching com-
ponent searches for the most similar (or closest) sentences with their translations from
the database. The translator then chooses some of the retrieved sentences, revises their
translation counterparts if necessary, and then obtains the appropriate translation for the
source sentence by limited revisions. For example, given a source sentence, “My elder
sister is one year older than her husband”, the Sentence Matching component may find
the following two sentences: 1) “My elder sister is one year older than me (����
������)”, and 2) “My elder sister is older than her husband (�������

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 47–57, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

48 J. Fan, G. Li, and L. Zhou

Web
Crawling

Extraction

Translator

Sentence

Matching

A sentence to be translated

Closest sentences with

translation

Parallel-Sentence

Database

Fig. 1. An overview of a typical STA system

���)”. Although neither of the retrieved sentences is identical with the source sen-
tence, the translator can reuse these two sentences to obtain the correct translation of the
source sentence, “������������” from either of the Chinese translations
of the two sentences with a very minor revision. Some translator surveys have shown
that the STA systems are very effective and helpful to both translators and translation
companies [5].

In this paper, we study the problem of sentence matching, i.e., searching the clos-
est sentences with their translations for a source sentence, given a parallel-sentence
database obtained from the Web. Note that we focus on English-to-Chinese parallel sen-
tences with English as the source sentences to be translated for illustration purpose. No-
tice that it is not straightforward to develop a sentence matching approach with good
performance, as the task heavily depends on the effectiveness of the similarity model
that quantifies the similarity between two English sentences. Word-based models, e.g.,
Translation Models [10,12], the percentage of shared words [1] and edit distance [13],
assume that words in the sentence are mutually independent, and thus they cannot cap-
ture the order of words and will lead to low performance. N-gram model [4], one of
the Markov models, segments a sentence into a sequence of N-length grams, and makes
use of the local dependencies among words. However, it does not consider the syntactic
information, which is rather crucial for sentence matching for translation. Cancedda et
al. [3] propose the word sequence kernel, which selects all subsequences of sentences
and computes the inner product on top of the subsequences to measure the similarity.
Although this model has the sound theoretical background, it is very expensive to select
all subsequences. To address this problem, we devise a phrase-based similarity model
between the source sentence to be translated and the sentences in the database, where
a phrase is a subsequence of a sentence. We judiciously select high-quality phrases by
considering both the dependency syntax [9] and the frequencies of phrases. The selected
phrases can capture the syntactic and frequency features of sentences and thus can be
used for effective sentence matching.

The contributions of our paper are summarized as follows: 1) We propose an ef-
fective method for searching sentence translations from the Web. 2) We introduce a
phrase-based similarity model and propose a method to judiciously select the high-
quality phrases. 3) We conducted extensive experiments on two real data sets from the
Web, and the experimental results show that our method outperforms existing methods.

The rest of this paper is organized as follows. The related work of sentence match-
ing techniques is briefly reviewed in Section 2. We discuss our similarity model in
Section 3 and the phrase-selection algorithms in Section 4. In Section 5 we report our
experiments, and finally we conclude in Section 6.

An Effective Approach for Searching Closest Sentence Translations 49

2 Related Work

Sentence matching, a.k.a., sentence retrieval, which retrieves sentences for some re-
quirements, has been widely studied in the research community. Word-based sentence
matching methods assume that words in the sentence are mutually independent [12,10],
which is only a simplification in mathematics. Some studies discussed the relationship
of words. Metzler and Croft [11] examined the sequential dependencies of words using
a Markov assumption. However, the Markov assumption is also too strong. Therefore,
some researchers used a syntax parser to analyze the structure of each sentence [6,2],
and then computed the dependencies of words. Some similarity measures combine the
above-mentioned ideas. They used sequences of words (i.e., phrases) to replace words
by taking into account the order of words. The words in a phrase are closely depen-
dent with each other, and phrases are assumed to be mutually independent. Cancedda et
al. [3] proposed the word sequence kernel which extracts all n-length subsequences. Li
et al. [7] proposed VGRAM (variable-length grams) to select high-quality grams to rep-
resent an string (This technique can also been applied to sentences). Hiroshi Ichikawa
et al. examined syntactic impacts and manually annotated the syntactic structure of a
sentence [6], which is not capable of a large number of sentences.

Our approach introduces the syntactic and frequency information to the similarity
measure, and can be seen as an extension of the VGRAM based method [7] and word
sequence kernel [3]. On the one hand, we generalize the variable-length grams to the
phrases by allowing gaps between words. On the other hand, we incorporate the syn-
tactic gap constraint, the maximum constraint and the frequency constraint to select
high-quality phrases to avoid the exponential combination of words in [3].

3 Similarity Models for Sentence Matching

Sentence matching essentially involves a similarity model between a source sentence
s to be translated and a sentence u in the parallel-sentence database �. As we use an
ordered set of phrases/words to represent a sentence, we use the similarity between
two ordered sets to quantify the similarity between the two sentences. Given a source
sentence to be translated, we compute the similarity score of every sentence in � to
the source sentence, and suggest the sentences with the highest scores. In this paper, we
concentrate on the effectiveness of sentence matching, and take the efficient matching
problem as a future work.

Commonly used similarity models between two ordered sets are Jaccard coefficient,
cosine distance, and edit distance. Note that we use the sentences in Table 1 as a running
example. Suppose we obtain three parallel sentences, u1, u2 and u3 from the Web, and
store them in the database. We take s as a source sentence to be translated.

We firstly introduce the three commonly used similarity models. The Jaccard coeffi-
cient between s and u is defined as S im j(s� u) �

� � �s � �u �
�
�
� � �s � �u �

�
, where

�s (�u) denotes the set of phrases of sentence s (u). Cosine distance is summarized as
S imc(s� u) �

� �
f̄i��s��u

w(f̄i)
�
�
��� �s � �

�� �u �
�
, where f̄i is an element in the ordered

set, �s ��u, and w(f̄i) is the weight of f̄i. The edit distance between two ordered sets is
the minimum number of operations, such as insertion, deletion, and substation, required
to transform one set into the other.

50 J. Fan, G. Li, and L. Zhou

Table 1. An example (s is the source sentence and u1 � u3 are parallel sentences in the database)

Sentence Translation
s He has eaten an apple –

u1 He has an apple ������

u2 He ate a red apple ��������

u3 He has a pencil ������

The three models focus on common phrases/words but cannot capture the syntactic
information of a sentence. Alternatively, we propose a phrase-based similarity model
in Equation (1). The model is based on two factors. One is the percentage of shared
phrases, and the other is the sum of their syntactic weights.

S imp(s� u) �
� �s � �u �
� �u �

�
�

f̄i��s��u

�(s� f̄i)�(u� f̄i)w(f̄i) (1)

where ��s��u �

��u �
is the percentage of the shared phrases between sentences s and u, �(s� f̄i)

(or �(u� f̄i)) is the importance of f̄i to the sentence s (or u), and w(f̄i) is the weight of f̄i.
As phrase f̄i can be discontinuous, its importance to s contains two factors: the

matched words and the words in gaps which are composed of the unmatched words
in the phrase. Take a sentence “�� ��� ����� �� ���	�” and a phrase “��� ���	�” as
an example. “����� ��” is a gap. We use �� to denote the syntactic weight of a matched
word � and �� to denote the penalty of an unmatched word � in gaps. �(s� f̄i) can be
computed as �(s� f̄i) �

�
1� j�m �� j

�
1�k�n ��k , where m is the number of matched words

and n is the number of unmatched words in gaps.
Apparently, our model S imp is a generalization of cosine distance and Jaccard coeffi-

cient, and incorporates the syntactic feature �(s� f̄i) (or �(u� f̄i)) into the computation of
the similarity. We will experimentally prove that our proposed similarity model achieves
the best performance in Section 5.

Now we discuss how to estimate the parameters introduced in the proposed model.
Since �� is the syntactic weight of a matched word �, we employ the dependency syn-
tax [9] to estimate this weight. In the dependency syntax, a sentence is parsed as a tree
structure, where each node is a word in the sentence and an edge between the parent
node and the child node represents a dependency relationship between the two corre-
sponding words. More specifically, the child word is the modifier of the parent word. In
particular, the root of the tree is the predicate of the sentence. For example, consider a
sentence “�� ��� ����� �� ���	�’. In the parsed tree, the root is the predicate, “���”,
and the root has three child nodes, i.e., “��”, “��
�”, and “���	�”. In addition, “��” is
the child node of “���	�”, as the former is the article of the latter. We assume that the
ancestors are more important than the decedents in terms of syntax. According to this
rule, we introduce a decay factor d (0 � d � 1) to ensure that the weight of a child �c is
smaller than its parent �p by the decay factor, i.e., ��c � d � ��p . On the other hand, ��
is set to a constant for penalizing the unmatched words.

In addition, given a phrase, we use its inverse document frequency (IDF) in � to
estimate its weight, i.e., w(f̄i) � log ���

��uj � f̄i�uj��
where ��� is the size of �, and f̄i � u j

means that u j (u j � �) contains the phrase f̄i.

An Effective Approach for Searching Closest Sentence Translations 51

4 High-Quality Phrase Selection

In this section, we discuss an effective method to select high-quality phrases from sen-
tences. We firstly give the formulation of high-quality phrases in Section 4.1, and then
develop efficient algorithms to generate such phrases from sentences in Section 4.2.

4.1 High-Quality Phrases

As selecting all subsequences of a sentence as phrases is rather expensive, we propose a
heuristic approach to select the infrequent phrases with syntactic gap constraints as the
high-quality phrases. We restrict the gaps of discontinuous phrases with syntactic rules:
if two discontinuous words of a sentence are selected, they must have syntactic de-
pendency relationships (Section 3). Consider the sentence “�� ��� ����� �� ���	�”
and the phrase “�� ����� �� ���	�” that has a gap “���”. The phrase is meaningful
because “��” and “�����” have a dependency relationship. In contrast, “��� ���	�”
should be eliminated because “���” is independent on “���	�”. We also select phrases
according to its frequency. Phrases with high frequencies have small IDF scores, thus
they are less important than the infrequent ones according to our similarity model.
Therefore we eliminate them in order to improve the efficiency.

Now, we formally define the high-quality phrase. Let a sentence s be a word sequence
s � s1 s2 � � � s�s�, where � s � is the length of s and si is the i-th word of s (1 � i �� s �).
Notice that all words are stemmed and stop-words are eliminated (We maintain a subset
of commonly used stop-word list where some playing important roles in syntax, i.e.,
“he” and “I”, are excluded). We denote a phrase as f̄ [I] � si1 si2 � � � � � sin where I �

[i1� i2� � � � � in] (1 � i1 � i2 � � � � � in �� s �). The infrequent phrase with syntactic gap
constraints (i.e., high-quality phrases) is defined in Definition 1.

Definition 1 (High-Quality Phrases). f̄ [I] is a high-quality phrase if it satisfies:
1. Gap constraint: If i j�1 � i j � 1 (1 � j � n), si j�1 and si j must have a dependency

relationship, and
2. Frequency constraint: f̄ [I] is infrequent, that is, its frequency is smaller than a

given threshold which is determined empirically, and
3. Maximum constraint: f̄ [I] is not a prefix of any other phrases.

Take the sentence “�� ��� � ��� ���	�” in Table 1 as an example. We preprocess it
into “�� ��� ��� ���	�”. Suppose that the given frequency threshold is 2. Consider
the phrase “��� ���	�”. Firstly, it satisfies the gap constraint: “���	�” is the object of
the verb “���”. Secondly, the frequency of this phrase in u1� u2, and u3 in Table 1 is 1,
which validates the frequency constraint. Thirdly, it is the longest phrase started with
“���”, thus the maximum constraint also holds. So this phrase is a high-quality phrase.

4.2 Generating High-Quality Phrases from a Sentence

Selecting Phrases with Gap and Maximum Constraints. As the high-quality phrases
must satisfy gap constraint, we describe an algorithm to generate such phrases for a
sentence. The aim of this model is extracting the sequential and syntactic relationships

52 J. Fan, G. Li, and L. Zhou

between words and modeling these relationships into a graph. A plain sentence model
(a sequence of words) cannot reach this point because we allow gaps in the phrases.
Instead, we use the Minipar [8] to preprocess the sentence s and model it as a S-Graph,
a directed acyclic graph, where each node represents a word in the sentence s, and
there is an edge between two nodes, say si and s j, if j � i � 1 or si has a dependency
relationship with s j. Obviously, the longest path started with one node in the graph
corresponds to a phrase with gap and maximum constraints.

Selecting Phrases with Frequency Constraint. As the phrases must satisfy frequency
constraint, we have to consider all the sentences in the database � to generate high-
quality phrases of a sentence. We use a frequency-trie structure to collect frequencies
of all possible high-quality phrases. We develop a two-step algorithm to achieve our
goal as follows. In the first step, we use a frequency-trie to collect the frequencies of
the phrases, and then we traverse the trie to prune frequent phrases.

Step1: Collecting the Phrase Frequencies: Each node in the frequency-trie has a number
to represent the frequency of the phrase corresponding to the path from root node to this
node (Note that we set the value in a leaf node as 0). Figure 2 (a) displays an example.
The value 2 on node N2 denotes that the frequency of “�� ��
�” is 2.

N0(7)

N24(1)

red

N6(2)

have

N17(1)

eat

N1(3)

he

N25(1)

apple

N26(0)

#

N29(1)

pencil

N7(1)

apple

N30(0)

#

N8(0)

#

N18(1)

red

N22(1)

apple

N19(0)

#

N20(1)

apple

N21(0)

#

N23(0)

#

N2(2)

have

N9(1)

eat

N27(1)

pencil

N3(0)

#

N4(1)

apple

N28(0)

#

N5(0)

#

N10(0)

#

N11(1)

red

N15(1)

apple

N12(0)

#

N13(1)

apple

N14(0)

#

N16(0)

#

N0

N24

red

N6

have

N17

eat

N1

he

N25

apple

N26

#

N28

pencil

N7

apple

N29

#

N8

#

N18

red

N22

apple

N19

#

N20

apple

N21

#

N23

#

N9

eat

N10

#

N11

red

N15

apple

N12

#

N13

apple

N14

#

N16

#

(a) The trie for all possible phrases. (b) The trie for infrequent phrases.

Fig. 2. The frequency tries corresponding to u1, u2 and u3 in Table 1

We initialize the root node of the frequency-trie as 0. For each S-Graph 	 modeled
from s, we collect all paths from the graph node ni, which correspond to the phrases
started with si. We examine whether these phrases are prefixes of the generated phrases.
If not, they can be inserted into the phrase set P, and their prefixes in P which are pre-
viously generated should be removed. Thus the phrases in P satisfy both gap constraint
and maximum constraint. Then, for each phrase in P, we insert it to the frequency-trie
and increase the frequency for each node on the corresponding path. Next, for each
node (excluding the root) on the path, we add a leaf node with an endmarker # to them
if the leaf node does not exist to distinguish a phrase from its extended ones. Take u2

in Table 1 as example. One longest phrase started with “��” is “�� ��� ���	�”. It is
inserted into the frequency-trie as shown in Figure 2 (a). The frequencies of nodes N1,
N9 and N15 are increased and a new leaf node N10 is appended for the prefix “�� ���”.

Step2: Selecting Infrequent Phrases: The frequency-trie collects all the phrases satis-
fying the syntactic gap constraint and maximum constraint. In this step, we select the

An Effective Approach for Searching Closest Sentence Translations 53

phrases based on the frequencies. The algorithm traverses the nodes of the frequency-
trie in pre-order. For each node n with leaf node (which means there is a phrase corre-
sponding to the path from the root to n), if its frequency is not smaller than Æ, we delete
this node and recursively delete its children; otherwise, we recursively visit all of its
children. According to this algorithm, given the threshold Æ � 2, the frequency-trie in
Figure 2 (a) is converted to the trie in Figure 2 (b). For example, node N2 and its de-
scendants are eliminated since N2’s frequency is not smaller than Æ. N1 and N17 should
not be deleted, because they are infrequent or have no leaf node.

5 Experiments

In this section, we evaluate the performance of our proposed sentence matching method.
We obtained two sets of parallel sentences from the Web to evaluate our proposed meth-
ods. ICIBA (http://www.iciba.com), denoted as DI , contains 520,899 parallel sentences,
most of which are expressions for everyday use. The average length of the English
sentences is 13.2 words. CNKI (http://dict.cnki.net), denoted as DC , contains 800,000
parallel sentences extracted from the academic papers. The average length of the sen-
tences is 20.5 words. For each data set, we randomly selected 100 sentences as source
sentences to be translated, and took the other sentences in the database �.

We compared our model with the three models on top of the selected phrase set:
Jaccard coefficient, Cosine distance, and Edit distance. We also evaluated our proposed
method with state-of-the-art sentence-matching methods. Translation Model based
methods (TM) estimate the probability that one sentence is a translation of another
by using a translation model, and take the probability as the similarity [10,12]. We
implemented the state-of-the-art translation model with its optimal parameters in [12].
Variable-length gram based methods (VGRAM) select variable-length grams, rather
than fixed-length grams, as features of sentences [7]. We implemented the VGRAM
and computed the cosine similarity with TF-IDF weights between gram sets.

We exploited the most popular metric BLEU in machine translation to evaluate the
sentence-matching effectiveness. BLEU measures the similarity between the translation
output and a reference translation using the N-gram strategy. Thus, it can measure the
revision efforts of translators that transform the translation of the retrieved sentences
to the reference translation. The BLEU score was calculated by the NIST script with
default settings (http://www.nist.gov/speech/tests/mt/2008/scoring.html).

All the programs were implemented in JAVA and all the experiments were ran on a
computer with an Intel Core 2 CPU 1.87 GHz, 2 GB RAM and 100 GB disk.

5.1 Effects of High-Quality Phrase Selection

We first evaluated the effects of selecting phrases with different maximum length thresh-
olds. Figures 3(a) and 3(b) illustrate the BLEU scores of phrases with different maxi-
mum length thresholds. We observe that selecting too long phrases does not yield too
high performance. Surprisingly, the highest performance is achieved at the maximum
length thresholds of 2 or 3. This can be explained by the maximum constraint intro-
duced in Section 4.1. This constraint guarantees that each generated phrase is not a

54 J. Fan, G. Li, and L. Zhou

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

10k 20k 30k 40k 50k 60k 70k 80k

B
L

E
U

Num. of sentences in the database

Max. Length 1
Max. Length 2
Max. Length 3
Max. Length 4

(a) Effect on max. lengths on DI .

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

10k 20k 30k 40k 50k

B
L

E
U

Num. of sentences in the database

Max. Length 1
Max. Length 2
Max. Length 3
Max. Length 4

(b) Effect on max. lengths on DC .

 0.056

 0.058

 0.06

 0.062

 0.064

 2 4 6 8 10 12 14 16 18 20 22 24

B
L

E
U

The maximum frequency(*100)

BLEU

(c) Effect on freq. thresholds on DI .

 0.143

 0.144

 0.145

 0.146

 0.147

 0.148

 0.149

 4 6 8 10 12 14 16 18 20 22 24 26 28
B

L
E

U

The maximum frequency(*100)
(d) Effect on freq. thresholds on DC .

Fig. 3. Effect of Phrase Selection

prefix of others. Therefore selecting too long phrases will eliminate many other possi-
ble high-quality ones, which will affect the performance. As the phrases must satisfy
the frequency constraint, we also examined the effect of different maximum frequency
thresholds. Figures 3(c) and 3(d) give the experimental results on the two data sets. As
the threshold increases, the performance first increases and then decreases at a fixed
point (No phrase is eliminated given a large enough threshold). It indicates that select-
ing phrases within a maximum frequency indeed improves the performance of sentence
matching. However, too many phrases will be eliminated if this threshold is too small.

5.2 Effectiveness Comparisons

Comparison of Similarity Models. We compared the effectiveness of Jaccard coeffi-
cient, edit distance, cosine distance, and our model (Section 3) on top of the selected
phrase sets. Observed from Figures 4(a) and 4(b), our model achieves the highest BLEU
score for various numbers of sentences in the database. This is because our model intro-
duces the syntactic importance of each phrases by considering the matched words and
unmatched words in the gaps, compared with Jaccard coefficient and cosine distance
which only count the number (or weights) of shared phrases. The performance of edit
distance is the worst. Because taking the minimum number of operations of transform-
ing one sentence to the other as the similarity is not very useful for translation.

Comparison with Existing Matching Methods. We compared our proposed method
with two baseline methods, TM and VGRAM. Figures 4(c) and 4(d) display their per-
formance. Our method achieves the best BLEU scores and outperforms the baseline
methods significantly. For example, the BLEU score of our method is 37% higher than
that of TM in Figure 4(c), and is 30% higher than that of VGRAM in Figure 4(d). The

An Effective Approach for Searching Closest Sentence Translations 55

 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1
 0.11

10k 20k 30k 40k 50k 60k 70k 80k

B
L

E
U

Num. of sentences in the database

Our Model
Jaccard Coefficient

Edit Distance
Cosine Distance

(a) Model comparison on DI .

 0.05
 0.06
 0.07
 0.08
 0.09

 0.1
 0.11
 0.12
 0.13
 0.14
 0.15
 0.16
 0.17

10k 20k 30k 40k 50k

B
L

E
U

Num. of sentences in the database

Our Model
Jaccard Coefficient

Edit Distance
Cosine Distance

(b) Model comparison on DC .

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

800k

B
L

E
U

Num. of sentences in the database

Our Method
TM

VGRAM

(c) Approach comparison on DI .

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

800k
B

L
E

U

Num. of sentences in the database

Our Method
TM

VGRAM

(d) Approach comparison on DC .

Fig. 4. Performance Comparison

improvement of our approach is mainly due to the selected high-performance phrases.
TM assumes that each word translates by itself [12,10] and neglects the order of words.
VGRAM only considers continuous words, and misses some discontinuous phrases that
reflect syntactic features of a sentences for translation. For example, consider the sen-
tence, “he have eaten an red apple”. The discontinuous words “he eat apple” is very im-
portant for translation. Unfortunately, they cannot be selected as features of the sentence
by VGRAM. In contrast, our method allows discontinues words (i.e., phrases), and pro-
poses effective rules to select high-quality phrases by considering syntactic and fre-
quency information. The experimental results show that such information really plays
an important role in sentence similarity measurement, and the selected phrases are more
powerful in capturing the key features of sentences. Secondly, compared with the trans-
lation probability used by TM and the standard cosine model with the TF-IDF weight
used by VGRAM, our proposed similarity model can further exploit the matched words
and unmatched words in gaps in the selected phrases and then improve the sentence
matching for translation.

User Studies. We conducted user studies to evaluate the usefulness of our sentence
matching method. We compared with the PSW (Percentage of Shared Words) and the
edit distance, which are widely used in commercial STA systems (e.g., Youdao and
Trados) and Translation Memory systems [13] respectively. We asked 10 volunteers to
annotate whether each retrieved sentence translation is helpful for the translation of the
source sentence. Then, we averaged their results and computed the precision according
to these labels. Observed from Figures 5(a) and 5(b), our method outperforms the two
baseline approaches significantly. For example, the precision at position 1 (i.e., P@1)
of our method is nearly 50% higher than that of baseline methods in Figure 5(b). The

56 J. Fan, G. Li, and L. Zhou

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3

Pr
ec

is
io

n(
%

)

Position of retrieved sentences

Our Model
PSW

Edit Distance

(a) Precision over 3 positions on DI .

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3

Pr
ec

is
io

n(
%

)

Position of retrieved sentences

Our Model
PSW

Edit Distance

(b) Precision over 3 positions on DC

Fig. 5. The user study on the two data sets, DI and DC

results show that our proposed methods are effective and helpful for assisting users to
produce high-quality translations.

6 Conclusion

In this paper, we have proposed an effective approach for searching closest sentence
translations from the Web. We introduced a phrase-based sentence similarity model and
selected high-quality phrases from sentences for effectively quantifying the similarity
between sentences. We have implemented our method and built an STA system, where
parallel sentences are crawled and extracted from the Web. We have conducted exten-
sive experiments to benchmark our method, and the experiment results show that our
approach achieves high result quality, and outperforms state-of-the-art methods.

Acknowledgement

This work was supported by the National Natural Science Foundation of China under
grant No. 61003004 and No. 60833003.

References

1. Biçici, E., Dymetman, M.: Dynamic translation memory: Using statistical machine transla-
tion to improve translation memory fuzzy matches. In: CICLing, pp. 454–465 (2008)

2. Cai, K., Bu, J., Chen, C., Liu, K.: Exploration of term dependence in sentence retrieval. In:
ACL (2007)

3. Cancedda, N., Gaussier, E., Goutte, C., Renders, J.: Word sequence kernels. The Journal of
Machine Learning Research 3, 1059–1082 (2003)

4. Damerau, F.: Markov models and linguistic theory: an experimental study of a model for
English. Mouton De Gruyter, Berlin (1971)

5. Garcia, I.: Power shifts in web-based translation memory. Machine Translation 21(1), 55–68
(2007)

6. Ichikawa, H., Hakoda, K., Hashimoto, T., Tokunaga, T.: Efficient sentence retrieval based on
syntactic structure. In: ACL (2006)

7. Li, C., Wang, B., Yang, X.: Vgram: Improving performance of approximate queries on string
collections using variable-length grams. In: VLDB, pp. 303–314 (2007)

An Effective Approach for Searching Closest Sentence Translations 57

8. Lin, D.: Dependency-Based Evaluation Of Minipar. Treebanks: Building and Using Parsed
Corpora (2003)

9. Mel’cuk, I.: Dependency Syntax: Theory and Practice. State University of New York Press
(1988)

10. Metzler, D., Bernstein, Y., Croft, W.B., Moffat, A., Zobel, J.: Similarity measures for tracking
information flow. In: CIKM, pp. 517–524 (2005)

11. Metzler, D., Croft, W.B.: A markov random field model for term dependencies. In: SIGIR,
pp. 472–479 (2005)

12. Murdock, V., Croft, W.B.: A translation model for sentence retrieval. In: HLT/EMNLP
(2005)

13. Planas, E., Furuse, O.: Multi-level similar segment matching algorithm for translation mem-
ories and example-based machine translation. In: COLING, pp. 621–627 (2000)

Finding the Sites with Best
Accessibilities to Amenities

Qianlu Lin, Chuan Xiao, Muhammad Aamir Cheema, and Wei Wang

The University of New South Wales,
Australia

{qlin,chuanx,macheema,weiw}@cse.unsw.edu.au

Abstract. Finding the most accessible locations has a number of appli-
cations. For example, a user may want to find an accommodation that is
close to different amenities such as schools, supermarkets, and hospitals
etc. In this paper, we study the problem of finding the most accessible
locations among a set of possible sites. The task is converted to a top-k
query that returns k points from a set of sites R with the best accessi-
bilities. Two R-tree based algorithms are proposed to answer the query
efficiently. Experimental results show that our proposed algorithms are
several times faster than a baseline algorithm on large-scale real datasets
under a wide range of parameter settings.

1 Introduction

Optimal location problems have received significant research attention in the
past[9, 21]. In this paper, we study a new problem that finds the sites with the
best accessibilities to amenities. Consider the example of a person who wants
to rent an apartment. He may be interested in finding an apartment such that
different amenities are close to it (e.g., it has a restaurant, a bus stop and a
super market nearby). The person may specify different types of amenities that
are of his interest. The accessibility of an apartment can be defined based on
its closest amenity of each type. Furthermore, the person may define a scoring
function such that it gives higher priority to certain types of amenities (e.g., a
nearby bus stop may be more important than a nearby restaurant). We allow
the users to define a monotonic scoring function to set such preferences. Formal
definition is given in Section 2.

Similar to the existing work on the other versions of facility location problems
[9, 21], our focus is on solving the problem in Euclidean space. Also, we focus on
the case where the accessibility of a site depends on the closest amenity of each
type. Nevertheless, we remark that the pruning rules presented in this paper can
be extended to the case where the accessibility depends on m-closest amenities
of each type.

Several approaches have been proposed to solve the all nearest neighbors
problem (ANN) [22,7, 10] and aggregate nearest neighbor problem [15, 14, 16].
However, these techniques only consider one type of amenity and cannot be effi-
ciently applied to our problem. Nevertheless, we use these techniques to design a

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 58–72, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Finding the Sites with Best Accessibilities to Amenities 59

baseline algorithm and show that our proposed algorithms perform significantly
better than the baseline algorithm.

We propose two efficient R-tree based algorithms. The first algorithm con-
structs indexes for different types of amenities in separate R-trees, and traverses
the R-trees in parallel to progressively output top-k query results. The second
algorithm indexes the different types of amenities in a single R-tree and demon-
strates better performance in most of the settings. Both algorithms carefully
exploit the lower bound of the accessibility scores with several non-trivial opti-
mizations applied.

Another important feature of our algorithms is that we progressively report
the best sites in an order of their accessibility scores. Such progressive/incre-
mental answer may be useful in many interactive applications and a user may
terminate the algorithm if he is satisfied with first j results (where j < k).

Below we summarize our contributions.

– We proposed two algorithms to find top-k accessible sites among a set of
possible locations. Unlike traditional algorithms, our algorithms are able to
compute the results progressively.

– We developed several non-trivial pruning and optimization techniques that
can be integrated into the two proposed algorithms in order to reduce the I/O
cost and running time.

– We performed experiments on several real datasets. Our proposed algorithms
are shown to outperform the baseline algorithm in all settings.

The rest of the paper is organized as follows: Section 2 gives the problem defini-
tion and introduces a baseline algorithm to the problem. We propose two main
algorithms in Section 3. Several optimizations to the main algorithms are pre-
sented in Section 4. We present and analyze experimental results in Section 5,
and survey related work in Section 6. Section 7 concludes the paper.

2 Preliminaries

In this section, we define the problem and introduce a baseline algorithm based
on R-trees.

2.1 Problem Definition

We define R and S as two spatial datasets, and each point s in S is assigned
a type i. Let |T | be the total number of types. A distance metric d(r, s) mea-
sures the Euclidean distance between two points r and s. For a point r ∈ R, let
NN(r, Si) be the nearest point of type i from r. The accessibility cost cr of r is
given by the formula below;

cr = f(d(r, NN(r, S1)), · · · , d(r, NN(r, S|T |)). (1)

60 Q. Lin et al.

where f() is a monotonic scoring function that takes |T | values as parameters
and returns a single value1. Our goal is to find k points from R, such that their
accessibility costs are the smallest among all the points in R.

2.2 All Nearest Neighbor Algorithm

An immediate solution to the proposed top-k problem is to borrow the tech-
niques from all nearest neighbor queries [10, 22, 7, 12, 2, 8]. For each point r in
R, we enumerate its nearest neighbors of each type in S, compute the accessibil-
ity cost for r, and then output the k points with the smallest accessibility costs.
Existing algorithms for computing all nearest neighbor queries presume the data
points are indexed by an R-tree [11] and use various optimizations to reduce the
search space.

First, we build an R-tree IR on the points in R, and for each type of points
in S, we build a separate R-tree ISi . Hence there are |T | + 1 R-trees. We then
probe these R-trees, starting from their roots.

In order to determine the access order of the nodes, we employ the following
two data structures:

Local Priority Queue (LPQ). Each node u in IR owns exactly one LPQ, a
min-heap that maps its entries to the nodes in ISi . Each entry v in the priority
queue has two values mind and maxd, indicating the minimum distance from
u’s MBR to v’s MBR, and the maximum distance from u’s MBR to v’s MBR.
Figure 1 shows an example of two MBRs and their mind and maxd. The pri-
ority queue orders its entries by increasing mind values, while maxd values are
used for pruning unpromising entries. An LPQ also keeps two values minmind
and minmaxd, representing the smallest of the mind values among its entries,
and the smallest of the maxd values among its entries, respectively.

Global Priority Queue (GPQ). A min-heap maintains all the LPQs that are
generated when accessing the R-trees, ordered by increasing minmind. minmaxd
is used for pruning the LPQs that are guaranteed not to produce any nearest
neighbors.

LPQ and GPQ allow us to access the nodes with smallest lower bound of dis-
tance first, which are the most promising nodes. Additionally, we apply pruning
techniques to avoid accessing the nodes that cannot generate nearest neighbors
to the points in R. We only allow one LPQ for each node in IR, so that accessing
duplicate nodes in IR can be avoided.

The all nearest neighbor algorithm iterates through all the types in S. Within
each iteration for a type i, it starts with the root of IR and ISi , and expands
the nodes in a bi-directional fashion [7, 19]2. The nearest neighbors are returned
1 For sake of simplicity, in rest of the paper, we consider that the monotonic

scoring function returns the sum of these |T | values. However, we remark that our
algorithms can be applied on any monotonic scoring function.

2 Although there exist alternative ways to expand nodes in R-trees, we choose
bi-directional expansion because it is shown to outperform others in extensive
experiments [7].

Finding the Sites with Best Accessibilities to Amenities 61

Fig. 1. Illustration of mind anx maxd

if the point level is reached in both IR and ISi . After finish the tree expanding
for all the types in S, the k points with smallest accessibility costs are output
as final results to the top-k query.

The all nearest neighbor algorithm sequentially processes the points in S ac-
cording to types. The drawback is that IR will be traversed |T | times, and we
cannot obtain any results until all the types are processed. In addition, the algo-
rithm does not exploit the abundant information provided by the top-k results,
and hence the pruning power is very limited. In Section 3, we will show how
to traverse the R-trees simultaneously and output top-k results progressively, as
well as exploit the inherent information contained in these results.

3 Main Algorithm Frameworks

In this section, we give two basic algorithms to compute the k locations with
the smallest accessibility cost.

3.1 Separate-Tree Method

The first algorithm is to choose the same indexes as the all nearest neighbor
algorithm, but traverse these trees in a parallel fashion. Since different types of
points in S are indexed in separate R-trees, we call this approach separate-tree
algorithm.

We still choose LPQ and GPQ as the data structures in separate-tree algo-
rithm. However, each entry u in IR owns |T | LPQs in separate-tree algorithm
because we expand the entries in R-trees in a parallel way. We call these LPQs
u’s LPQ group, still denoted LPQu, with which we are able to estimate the lower
bound of the accessibility costs for the points indexed in u. In u’s LPQ group,
we denote LPQu[i] the LPQ that maintains entries from ISi , and calculate the
lower bound as

LBc =
|T |∑
i=1

LPQu[i].minmind.

A major difference from the all nearest neighbor method is that we arrange the
LPQs pushed to GPQ by increasing order of LBc. A fixed sized min-heap M is

62 Q. Lin et al.

used to keep the top-k results seen so far, and M [k] gives the temporary result
with k-th smallest accessibility cost. Before expanding entries to form new LPQ
groups, we compare the new LPQ groups’ LBc with M [k]’s accessibility cost,
and allow only those whose LBc are smaller than M [k]’s accessibility cost. Oth-
erwise they are guaranteed not to produce any results that can beat the current
temporary results.

Algorithm 1. SeparateTree (IR, IS)
for each point r in R do1

cr ← 0;2

M ← InitializeTempResults ; /* Store any k points as initial results */3

GPQ← ∅;4

for i = 1 to |T | do5

u← IR.root; v ← ISi .root;6

LPQu[i]← ∅;7

LPQu[i].minmind ← +∞; LPQu[i].minmaxd ← +∞;8

SepTreePushAndUpdate(LPQu[i], v);9

GPQ.push(LPQu);10

while GPQ �= ∅ do11

LPQu ← GPQ.pop();12

SepTreeExpandTrees(LPQu, GPQ);13

Algorithm 1 describes this parallel algorithm. We initialize the min-heap M
by choosing any k points as initial temporary results. These points are computed
for their all type nearest neighbors and accessibility costs. Like the all nearest
neighbor algorithm, the separate tree algorithm starts with the roots of IR and
all ISi , and then expands the nodes in a bi-directional fashion. The first LPQ
group formed is owned by IR’s root, and the root of ISi is inserted into priority
queues (Line 6 – 9). Then this LPQ group is pushed into a GPQ (Line 10).
We iteratively select an LPQ group from the GPQ, and expand nodes in both
R-trees IR and ISi .

Algorithm 2. SepTreePushAndUpdate (LPQu[i], v)
if mind(u, v) < LPQu[i].minmaxd then1

LPQu[i].push(v);2

LPQu[i].minmind ← min(LPQu[i].minmind, mind(u, v));3

LPQu[i].minmaxd ← min(LPQu[i].minmaxd, maxd(u, v));4

LPQu.LBc ←∑|T |
i=1 LPQu[i].minmind5

; /* update lower bound of accessibility cost */

The expansion algorithm is shown in Algorithm 3. Given a node u in IR, the
entries in u’s LPQ group are popped, according to the order of mind. We identify
the nearest neighbor, add the distance to the the accessibility cost, and update

Finding the Sites with Best Accessibilities to Amenities 63

Algorithm 3. SepTreeExpandTrees (LPQu, GPQ)
if u is a point then1

for i = 1 to |T | do2

while LPQu[i] �= ∅ do3

v ← LPQu[i].pop();4

if v is a point then5

cu ← cu + d(u, v);6

if u’s NNs of all types are found and cu < M [k].cost then7

M.add(u, cu) ; /* update temp results */8

return9

else10

for each v′ ∈ v do11

SepTreePushAndUpdate(LPQu[i], v′);12

if LPQu.LBc < M [k].cost then GPQ.push(LPQu);13

else14

for each u′ ∈ u do15

LPQu[i]′ ← ∅; LPQu[i]′.minmind ← +∞; LPQu[i]′.minmaxd← +∞;16

for i = 1 to |T | do17

while LPQu[i] �= ∅ do18

v ← LPQu[i].pop();19

if v is a point then20

for each u′ ∈ u do21

SepTreePushAndUpdate(LPQ′
u[i], v);22

else23

for each v′ ∈ v do24

for each u′ ∈ u do25

SepTreePushAndUpdate(LPQ′
u[i], v′);26

for each u′ ∈ u do27

if LPQu.LBc < M [k].cost then GPQ.push(LPQu);28

temporary results when point level is reached in both IR and ISi (Line 8). Other-
wise, the children of both u and popped entry v paired to form new LPQ groups.
Specifically, for each type, we expand u and create a group for each of its children
u′, and the children of v is then inserted to the LPQ of u′. To avoid accessing the
nodes that cannot generate any nearest neighbors for the points in u, we compare
the nodes’ mind to u′ with the minmaxd of u′. Only if its mind is smaller than
u′’s minmaxd, we insert this node to u′’s LPQ (Line 1, Algorithm 2). The values
of minmind and minmaxd of the LPQ are updated once an entry is inserted, and
finally we check the LBc of new formed LPQ group before inserting it into the
GPQ (Line 13 and 28), since the temporary results in M can be used to prune
unnecessary LPQ groups. In addition, a temporary result is confirmed as a final

64 Q. Lin et al.

result if its accessibility cost is smaller than the LBc of the LPQ group popped
from GPQ. The results are progressively output with the execution of the
algorithm.

3.2 One-Tree Method

The above separate-tree method adopts the same indexing scheme as the all near-
est neighbor algorithm. Here, we consider building indexes for the various types
of points in S in one tree. Although the estimation of LBc will be looser due to
multiple types indexed in the nodes of R-trees, we are able to achieve a more
efficient node expansion and hence better runtime performance.

We call this method one-tree algorithm. To record the type information, we
add an attribute to the nodes of the R-tree built on S. This new attribute main-
tained in each node of IS is a type bitmap B of length |T | that indicates which
types of points are contained in (the descendants of) the node. The bit i is set to
1 if the node or its descendants contain at least one point of type i, or 0 otherwise.

The one-tree algorithm follows the separate-tree algorithm framework, but dif-
fers in the generation of LPQs and lower bound estimations of accessibility costs.
Now we allow an LPQ to store entries of various types. In order not to miss any
real results due to abuse of types, the values of minmaxd are broken down into
specific types. We use the notation minmaxd[i] to capture the smallest of the
maxd values among its entries that contain points of type i. Before inserting an
entry to the LPQ, we check the type bitmap of the entry, and allow only the
entries whose mind is smaller than minmaxd[i] on at least one type i.

Similarly, minmind[i] stores the smallest of the mind among the entries that
contain points of type i. This is to estimate the lower bound of accessibility cost,
as given by the following equation:

LBc =
|T |∑
i=1

LPQu.minmind[i].

Algorithm 4 captures the pseudo-code of forming new LPQs and updating LBc

in the one-tree algorithm. Before inserting entry v into u’s LPQ, we check the
types contained in v. If the pair (u, v) can produce final top-k results, there must
be at least one type i such that v’s mind is smaller than LPQu’s minmaxd [i].
We use a boolean variable flag to capture whether such type can be found. If it
is set to true, we insert v into u’s LPQ, and make necessary updates.

4 Optimizations on Existing Algorithms

In this section, we introduce several pruning and optimization techniques that
can be integrated into the two basic algorithm frameworks proposed in
Section 3.

Finding the Sites with Best Accessibilities to Amenities 65

Algorithm 4. OneTreePushAndUpdate (LPQu, v)
flag ← false;1

for each type i in Bv do2

if mind(u, v) < LPQu.minmaxd[i] then flag ← true;3

if flag = true then4

LPQu.push(v);5

for each type i in Bv do6

LPQu.minmind[i]← min(LPQu.minmind[i], mind(u, v));7

LPQu.minmaxd[i]← min(LPQu.minmaxd[i], maxd(u, v));8

LPQu.LBc ←∑|T |
i=1 LPQu.minmind[i];9

4.1 Break Ties in Priority Queues

In both separate-tree and one-tree algorithms, the entries in LPQs are arranged by
increasing order of mind. Consider a node u in IR, and an entry in its LPQ, v. If
u’s and v’s MBRs are overlapped, the value of mind will become zero. This often
happens for the high-level nodes in R-trees. To alleviate this problem, we break
ties by choosing the one with the smaller maxd if two entries have the same mind.

The same problem may occur in GPQ. We compute the upper bound of the
accessibility costs for the points indexed in u:

UBc =
|T |∑
i=1

LPQu.minmaxd[i].

The LPQ with the smaller UBc is chosen to break ties if there exist multiple
LPQs that have the equal value of LBc in GPQ.

4.2 Early Check to Avoid Unnecessary Expansion

In the basic separate-tree and one-tree algorithm, an entry v′ is checked for its
mind before it is inserted to u′’s LPQ. The LPQ admits only the entries whose
mind is smaller than the LPQ’s current minmaxd.

Since the entry v′ is expanded from its parent node v, we can check the mind
between u′ and v, and safely prune v′ from u′’s LPQ given that the mind(u′, v)
is larger than or equal to the minmaxd of u′. This is because mind(u′, v) ≤
mind(u′, v′).

We apply this optimization before expanding v by calculating the mind be-
tween u′ and v, so that the access to v’s children can be avoided if the minimum
distance between the two MBRs is too large.

4.3 Pre-update Temporary Results

The third major optimization is based on the observation that all the points
indexed in a node u may have smaller accessibility cost than the temporary

66 Q. Lin et al.

result M , and the number of points indexed in u exceeds k. We can verify this by
comparing UBc, the upper bound of the accessibility costs for the points indexed
in u, and the k-th temporary result’s cost. If the upper bound is smaller, the top-
k temporary results are to be updated in future expansions. In this case, the k-th
temporary result’s cost is updated beforehand, although the expansions are not
done yet. We assign the value of UBc to the k-th temporary result’s accessibility
cost, because the cost of the final k-th result is at most as large as UBc.

5 Experiments

In this section, we report our experimental results and analysis.

5.1 Experiment Setup

The following algorithms are compared in the experiment.

ANN is the all nearest neighbor algorithm described in Section 2.
Sep-Tree is separate-tree top-k search algorithm proposed in Section 3.
One-Tree is one-tree top-k search algorithm proposed in Section 3.

All optimizations described in Section 4 are applied to separate-tree and one-tree
unless specified otherwise.

All algorithms are implemented as in-memory algorithms. They are imple-
mented in C++ and performed on a PC with Pentium D 3.00GHz CPU and
2GB RAM. The operating system is Debian 4.1. The algorithms are complied
using GCC 4.1.2 with -O3 flag. We used two publicly available real datasets in

Table 1. Statistics of Datasets

Dataset |S| |R|
NA 174,956 17,000
SF 175,813 17,000

the experiment, San Francisco Road Network (SF) and Road Network of North
America (NA)3. Some important statistics and data distribution are shown in
Table 1 and Figure 2. We split each dataset into |T | types, and the default |T | is
set to 20 unless specified otherwise. For each data point in the dataset, a random
type is assigned.

To generate the set of possible locations R, we choose 10% of the points from
the original dataset, and shift the x and y coordinates by a random number in
the range of [−5, 5].

We measure the number of internal nodes expanded and the number of leaf
nodes expanded in the R-trees, as well as the processing time. The processing
time measured does not include the time for constructing R-tree indexes.
3 http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm

Finding the Sites with Best Accessibilities to Amenities 67

(a) San Francisco Road Network
(SF)

(b) Road Network of North America
(NA)

Fig. 2. Data Distribution

5.2 Effect of Optimization

We first study the effect of optimizations, and run the two proposed algorithms
on both NA and SF datasets with several optimization techniques applied. We
compare four optimizations:

No-Opt. The basic separate-tree (one-tree) algorithm with no optimization tech-
niques applied.

Break-Tie-PQ. The above algorithm equipped with the “break ties in prior-
ity queues” optimization. In LPQs, we arrange entries by increasing order of
mind, and then maxd. In GPQs, we arrange entries by increasing order of LBc,
and break ties by UBc.

Early-Check. The above algorithm equipped with the “early check” optimiza-
tion technique to avoid redundant node expansions. Before expanding a node
v in IS , we check the mind between the LPQ owner u′ and v, and prune v if
the value of mind is no smaller than the minmaxd of u′’s LPQ.

Preupdate-Temp-Result. The above algorithm equipped with the “preupdate
temporary result” technique. If a node u in IR contains at least k points in
R, and its LPQ (group)’s UBc is smaller than the current k-th temporary
result’s accessibility cost, we then regard UBc as the k-th temporary result’s
accessibility cost so as to improve the algorithm’s pruning power.

Figures 3(a) – 3(c) show the processing time, the number of internal node expan-
sions, and the number of leaf node expansions using separate-tree on NA dataset.
The performance on SF dataset displays similar trends and thus is not shown
here in the interest of space. It can be observed that Early-Check is the most
effective optimization for separate-tree algorithm. It reduces the processing time
by 57%. The main reason is that the number of internal nodes is reduced by
50%, and the number of leaf nodes expanded is reduced by 63% after applying
Early-Check. The other two optimization techniques exhibit minor improvements
to the separate-tree algorithm.

Figures 3(d) – 3(f) show the processing time, number of internal node and
leaf node expansions using one-tree algorithm on NA dataset. Break-Tie-PQ is
the most significant optimization technique for one-tree algorithm. It reduces the

68 Q. Lin et al.

 0

 5

 10

 15

 20

 25

 30

 35

1 2 5 10 20 50 100 200 500

P
ro

ce
ss

in
g

T
im

e
(s

ec
on

d)

k

Processing Time (Sep-Tree, |T| = 20)

No-Opt
Break-Tie-PQ

Early-Check
Preupdate-Temp-Result

(a) Processing Time

 0

 5000

 10000

 15000

 20000

 25000

1 2 5 10 20 50 100 200 500

In
te

rn
al

 N
od

e
#

k

Internal Node (Sep-Tree, |T| = 20)

No-Opt
Break-Tie-PQ

Early-Check
Preupdate-Temp-Result

(b) Internal Node Expansion

0.0⋅100

5.0⋅104

1.0⋅105

1.5⋅105

2.0⋅105

2.5⋅105

3.0⋅105

3.5⋅105

4.0⋅105

1 2 5 10 20 50 100 200 500

Le
af

 N
od

e
#

k

Leaf Node (Sep-Tree, |T| = 20)

No-Opt
Break-Tie-PQ

Early-Check
Preupdate-Temp-Result

(c) Leaf Node Expansion

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

1 2 5 10 20 50 100 200 500

P
ro

ce
ss

in
g

T
im

e
(s

ec
on

d)

k

Processing Time (One-Tree, |T| = 20)

No-Opt
Break-Tie-PQ

Early-Check
Preupdate-Temp-Result

(d) Processing Time

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

1 2 5 10 20 50 100 200 500

In
te

rn
al

 N
od

e
#

k

Internal Node (One-Tree, |T| = 20)

No-Opt
Break-Tie-PQ

Early-Check
Preupdate-Temp-Result

(e) Internal Node Expansion

6.0⋅104

8.0⋅104

1.0⋅105

1.2⋅105

1.4⋅105

1 2 5 10 20 50 100 200 500

Le
af

 N
od

e
#

k

Leaf Node (One-Tree, |T| = 20)

No-Opt
Break-Tie-PQ

Early-Check
Preupdate-Temp-Result

(f) Leaf Node Expansion

Fig. 3. Effect of Optimization (NA)

processing time by about 10% when k is small and about 20% when k is large.
The other two optimizations can further reduce the processing time. The reason
why the effect of Break-Tie-PQ is more remarkable on one-tree algorithm than on
separate-tree algorithm is that one-tree algorithm constructs indexes by putting
the points with various types in one node, and therefore yields looser estimation
of lower bound of accessibility cost. There are more LPQs sharing equal values
of LBc, and therefore it is necessary to break them by introducing the upper
bound of accessibility cost.

5.3 Comparison with All Nearest Neighbor Algorithm

We run the three algorithms with various numbers of returned objects (k) and
types of points (|T |). Figures 4(a) – 4(c) show the performance on SF dataset
with respect to different k. The general trend is that running time of both
separate-tree and one-tree algorithm slightly increases when we move k towards
larger values; the running time of ANN algorithm is irrelevant to the change of k
because it always computes the nearest neighbors for all the possible locations.
The result shows that separate-tree algorithm is 1.5 times as fast as the ANN

Finding the Sites with Best Accessibilities to Amenities 69

algorithm, and the speed-up of one-tree algorithm can be up to 5.7x. The speed-
up is mainly due to more efficient internal node and leaf node expansion. As
can be seen, separate-tree reduces the the number of internal nodes by 48%, and
one-tree reduces the number by additional 23%. In terms of leaf node expansion,
separate-tree and one-tree display similar performance, and the reduction can be
up to 61%, compared to the ANN algorithm.

 0

 5

 10

 15

 20

1 2 5 10 20 50 100 200 500

P
ro

ce
ss

in
g

T
im

e
(s

ec
on

d)

k

Processing Time (SF, |T| = 20)

ANN
Sep-Tree
OneTree

(a) Processing Time (SF)

 0

 5000

 10000

 15000

 20000

 25000

 30000

1 2 5 10 20 50 100 200 500

In
te

rn
al

 N
od

e
#

k

Internal Node (SF, |T| = 20)

ANN
Sep-Tree
One-Tree

(b) Internal Node Expansion (SF)

5.0⋅104

1.0⋅105

1.5⋅105

2.0⋅105

2.5⋅105

3.0⋅105

3.5⋅105

4.0⋅105

1 2 5 10 20 50 100 200 500

Le
af

 N
od

e
#

k

Leaf Node (SF, |T| = 20)

ANN
Sep-Tree
One-Tree

(c) Leaf Node Expansion (SF)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 5 10 15 20

P
ro

ce
ss

in
g

T
im

e
(s

ec
on

d)

|T|

Processing Time (NA, k = 500)

ANN
Sep-Tree
One-Tree

(d) Processing Time (NA)

 0

 5000

 10000

 15000

 20000

1 2 5 10 15 20

In
te

rn
al

 N
od

e
#

|T|

Internal Node (NA, k = 500)

ANN
Sep-Tree
One-Tree

(e) Internal Node Expansion (NA)

0.0⋅100

5.0⋅104

1.0⋅105

1.5⋅105

2.0⋅105

2.5⋅105

3.0⋅105

1 2 5 10 15 20

Le
af

 N
od

e
#

|T|

Leaf Node (NA, k = 500)

ANN
Sep-Tree
One-Tree

(f) Leaf Node Expansion (NA)

Fig. 4. Comparison with ANN

We study the performance of the algorithms with respect to varying number
of types |T |, and plot the results on NA dataset in Figures 4(d) – 4(f). k is set to
500 in this set of experiments. As shown in the figures, the processing time and
the node expansion grow linearly while the number of types |T | is increasing.
Both separate-tree and one-tree have slower increasing rates than ANN.

5.4 Scalability against Data Sizes

We study how the proposed algorithms perform on different size of datasets.
Figure 5 shows the performance on NA dataset with respect to different number
of data points. The number of points in R is fixed at 17,000, and k is set to 500

70 Q. Lin et al.

 0

 2

 4

 6

 8

 10

 12

 20 40 60 80 100

P
ro

ce
ss

in
g

T
im

e
(s

ec
on

d)

Data Size (%)

Processing Time (NA, k = 500, |T| = 20)

ANN
Sep-Tree
One-Tree

(a) Processing Time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 20 40 60 80 100

In
te

rn
al

 N
od

e
#

Data Size (%)

Internal Node(NA, k = 500, |T| = 20)

ANN
Sep-Tree
One-Tree

(b) Internal Node Expansion

0.0⋅100
2.0⋅104
4.0⋅104
6.0⋅104
8.0⋅104
1.0⋅105
1.2⋅105
1.4⋅105
1.6⋅105
1.8⋅105

 20 40 60 80 100

Le
af

 N
od

e
#

Data Size (%)

Leaf Node (NA, k = 500, |T| = 20)

ANN
Sep-Tree
One-Tree

(c) Leaf Node Expansion

Fig. 5. Scalability (NA)

for this set of experiments. We observe that when data size grows, the processing
time of the algorithm grows linearly, When data size is 20% of the original S, one-
tree algorithm is about twice as fast as separate-tree algorithm. When data size is
100%, one-tree algorithm is more than three times as fast. Although separate-tree
expands three times fewer nodes than one-tree when data size is small, one-tree
is still faster under this scenario. This is because one-tree accesses less number of
entries in the point level of R-trees, while separate-tree needs to access |T | times
for each point to create its LPQ group and compute the accessibility cost.

5.5 Index Sizes

Table 2 shows the size of index on the two datasets using different algorithms, and
the size of the original datasets. separate-tree algorithm uses the same amount
of disk memory as ANN algorithm, which is 2.6 times as large as the original
datasets. one-tree uses about 13% more disk space to store the R-trees because
it needs to keep an additional bitmap in each node to indicate what types are
assigned to the points indexed by this node and its descendants.

Table 2. Index Size

Dataset ANN separate-tree one-tree Original Dataset
NA 11.36MB 11.36MB 12.80MB 4.35MB
SF 11.34MB 11.34MB 12.69MB 4.33MB

Summary. Considering the runtime performance and the space usage of the
three algorithms, we find that one-tree algorithm achieves the best runtime
performance while occupying similar amount of space with the other two. We rec-
ommend users to select the highest accessible locations using one-tree algorithm.

Finding the Sites with Best Accessibilities to Amenities 71

6 Related Work

Facility location problem, also known as location analysis, is to find optimal
placement of facilities respective to cost to a given set S. The problem we pro-
pose in this paper is one of the variations.

Another variation is Minsum facility location [9]. It is to seek a location that
minimizes the sum of distances from a set of points to the selected location. [9]
proposed three tree-based algorithm to solve it. Among these three proposed
algorithms, Virtual OL-tree is the most efficient algorithm. Virtual OL-tree is
an extension of k-d-B tree [17]. In [21], an variant of the Minsum facility loca-
tion problem was studied. This paper proposed a partition-based algorithm. It
recursively partitions candidate cell of the query region to smaller cells.

Other related studies include [4, 3, 20]. In [4, 3], the optimization problem is
defined as: Given two sets S and P , find the point s in S that satisfies: 1) number
of bichromatic reverse nearest neighbours (BRNN) of s in P is maximum; 2) the
maximum distance of the BRNN of s is minimum; 3) the minimum distance of
the BRNN of s is maximum. [20] solves the problem to find a region Q such that
when placing s in Q, its BRNN size is maximum.

The problem we propose is related to k nearest neighbor (NN) query as well.
kNN query has been extensively studied by spatial database community and
many spatial indexes were proposed to solve this problem [18, 13, 5]. Among
these indexes, R-tree [11] and its variations [1] are most popular ones. Two vari-
ations of NN query, group nearest neighbor queries and all nearest neighbor,
have been recently studied. [6] provided a detailed survey of work related to
these two types of queries.

7 Conclusion

In this paper, we study the problem finding k best locations that are close to var-
ious types of facilities. We focus on Euclidean space and measure the accessibility
using the sum of distances to nearest neighbors. Two algorithms are proposed to
efficiently find the top-k answers, with several non-trivial optimizations applied
to reduce the number of node expansion and improve runtime performance. The
separate-tree algorithm creates indexes for different types of points in separate
R-trees, while the one-tree algorithm indexes all the points in a single R-tree. The
experiment results show that both proposed algorithms outperform the baseline
algorithm with a speed-up up to 5.7 times.

Acknowledgement. The authors would like to thank the anonymous review-
ers for their insightful comments. Wei Wang is supported by ARC Discovery
Projects DP0987273 and DP0881779.

References

1. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: An efficient
and robust access method for points and rectangles. In: SIGMOD Conference, pp.
322–331 (1990)

72 Q. Lin et al.

2. Böhm, C., Krebs, F.: The -nearest neighbour join: Turbo charging the kdd process.
Knowl. Inf. Syst. 6(6), 728–749 (2004)

3. Cabello, S., Dı́az-Báñez, J.M., Langerman, S., Seara, C., Ventura, I.: Reverse
facility location problems. In: CCCG, pp. 68–71 (2005)

4. Cabello, S., Dı́az-Báñez, J.M., Langerman, S., Seara, C., Ventura, I.: Facility
location problems in the plane based on reverse nearest neighbor queries. European
Journal of Operational Research 202(1), 99–106 (2010)

5. Chaudhuri, S., Gravano, L.: Evaluating top- selection queries. In: VLDB, pp.
397–410 (1999)

6. Cheema, M.: Circulartrip and arctrip: Effective grid access methods for continuous
spatial queries

7. Chen, Y., Patel, J.M.: Efficient evaluation of all-nearest-neighbor queries. In:
ICDE, pp. 1056–1065 (2007)

8. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Algorithms
for processing k-closest-pair queries in spatial databases. Data Knowl. Eng. 49(1),
67–104 (2004)

9. Du, Y., Zhang, D., Xia, T.: The optimal-location query. In: Anshelevich, E.,
Egenhofer, M.J., Hwang, J. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 163–180.
Springer, Heidelberg (2005)

10. Emrich, T., Graf, F., Kriegel, H.-P., Schubert, M., Thoma, M.: Optimizing
all-nearest-neighbor queries with trigonometric pruning. In: Gertz, M., Ludäscher,
B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 501–518. Springer, Heidelberg (2010)

11. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In:
SIGMOD Conference, pp. 47–57 (1984)

12. Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spatial
databases. In: SIGMOD Conference, pp. 237–248 (1998)

13. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans.
Database Syst. 24(2), 265–318 (1999)

14. Li, H., Lu, H., Huang, B., Huang, Z.: Two ellipse-based pruning methods for
group nearest neighbor queries. In: GIS, pp. 192–199 (2005)

15. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning:
An efficient method for continuous nearest neighbor monitoring. In: SIGMOD
Conference, pp. 634–645 (2005)

16. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries.
In: ICDE, pp. 301–312 (2004)

17. Robinson, J.T.: The k-d-b-tree: A search structure for large multidimensional
dynamic indexes. In: SIGMOD Conference, pp. 10–18 (1981)

18. Seidl, T., Kriegel, H.-P.: Optimal multi-step k-nearest neighbor search. In:
SIGMOD Conference, pp. 154–165 (1998)

19. Shin, H., Moon, B., Lee, S.: Adaptive multi-stage distance join processing. In:
SIGMOD Conference, pp. 343–354 (2000)

20. Wong, R.C.-W., Özsu, M.T., Yu, P.S., Fu, A.W.-C., Liu, L.: Efficient method for
maximizing bichromatic reverse nearest neighbor. PVLDB 2(1), 1126–1137 (2009)

21. Zhang, D., Du, Y., Xia, T., Tao, Y.: Progressive computation of the min-dist
optimal-location query. In: VLDB, pp. 643–654 (2006)

22. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-nearest-neighbors queries in
spatial databases. In: SSDBM, pp. 297–306 (2004)

Audio Lifelog Search System Using a Topic Model for
Reducing Recognition Errors

Taro Tezuka and Akira Maeda

College of Information Science and Engineering
Ritsumeikan University

{tezuka,amaeda}@media.ritsumei.ac.jp

Abstract. A system that records daily conversations is one of the most useful
types of lifelogs. It is, however, not widely used due to the low precision of
speech recognizers when applied to conversations. To solve this problem, we pro-
pose a method that uses a topic model to reduce incorrectly recognized words.
Specifically, we measure relevancy between a term and the other words in the
conversation and remove those that come below the threshold. An audio lifelog
search system was implemented using the method. Experiments showed that our
method is effective in compensating recognition errors of speech recognizers.
We observed increase in both precision and recall. The results indicate that our
method has an ability to reduce errors in the index of a lifelog search system.

Keywords: Lifelog, topic model, information retrieval, audio data, hierarchical
Bayes.

1 Introduction

A lifelog is a system that digitally stores the user’s daily activities through various
recording devices. Among various types of lifelogs, the audio lifelog, which records
daily conversations, is probably the one with the clearest merit. Looking through past
discussions with colleagues often provides beneficial business ideas. The lifelog also
makes it possible to find a piece of information that was once heard in a casual
conversation.

Despite its high potential, such a system is not widely used outside of research lab-
oratories. One reason is that the speech recognition for daily conversations is not pre-
cise enough. Until recently, speech recognition systems were targeted at recognizing
formal speech, such as lectures and presentations. A conversation is a more difficult
target, since the speed of speech varies, and words are often less clearly spoken. Tran-
scriptions by speech recognizers used with conversations, therefore, contain too many
errors, making them unsuitable for retrieval or text mining.

Our approach is to use contextual information about the conversation to correct
words that are possibly recognition errors. The approach is based on the observation
that speech recognizer errors are often phonetically similar to the correct word but se-
mantically far from other words appearing in the conversation. We developed a lifelog
search system that uses a topic model to rank terms according to its relevance to the

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 73–82, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

74 T. Tezuka and A. Maeda

whole context. In other words, we rank terms using semantic context of the conversa-
tion. The goal is to filter out recognition errors and to increase the search precision.

In this paper, we mainly discuss a method of reducing recognition errors that fre-
quently occur when applying speech recognition to daily conversations. The rest of
the paper consists of the following sections. Section 2 gives related work. Section 3
describes our method in detail. Section 4 illustrates implementation, and Section 5 de-
scribes the evaluation results. Section 6 is the conclusion.

2 Related Work

We discuss related work on lifelog search, speech recognition for conversations, and
the use of global semantic context for speech recognition.

2.1 Lifelog Search

Lifelogs can include images, videos, sound, locations, documents, physiological data,
and all other types of sensory data. There are now a vast number of studies on lifelogs,
although only a few of them are actually being used outside research laboratories. Sellen
and Whittaker give an overview of possible future directions of lifelogs [1]. They point
out that the system should aim to meet the user’s specific goals in using the lifelogs,
rather than just trying to store everything.

2.2 Speech Recognition for Conversation

Using speech recognition with conversation is difficult, and there have been various
approaches. It is a typical case of a large-vocabulary continuous speech recognition
(LVCSR) problem [2,3]. When the vocabulary set is large, estimation of the parameters
of a language model becomes high dimensional, and it becomes increasingly difficult to
obtain an accurate model. Because the size of the training corpus is limited, it is often
difficult to obtain good parameter estimation.

In addition to the difficulties of LVCSR, conversations present more difficulties due
to disfluencies, hesitations, or false starts [4]. Speaking rate (speaking speed) is likely to
vary, and the speech of other speakers may come in as a noise. It is easier if the domain
of conversation is limited, but this is not feasible for lifelogs, since it can cover a wide
range of domains.

2.3 Global Semantic Context for Speech Recognition

In our proposed method, we use global semantic context in a conversation to reduce
recognition errors. Unlike widely used n-gram-based language models that consider
only local context, we consider the global topic of the conversation.

Bellegarda did extensive work on applying latent semantic analysis (LSA) to im-
prove speech recognition [5,6]. LSA has been criticized for assuming continuous vari-
ables for term appearance, since the appearance of a term in a document is a discrete
feature. Instead, we use a model that assumes discrete variables for terms and docu-
ments. Also, his aim was different from ours in that his goal was to incorporate the

Audio Lifelog Search System Using a Topic Model for Reducing Recognition Errors 75

LSA model into the language recognition process, whereas our goal is to improve pre-
cision of terms in the inverted index.

Wick et al. used a topic model to improve precision of OCR (optical character
recognition)[7]. In estimating the topic of a given document, their method uses words
that were judged to be highly reliable by the OCR system. Words that were judged to be
less reliable are corrected based on the topic indicated by the highly reliable words. On
the other hand, our method does not require any external information source to find out
which words are reliable and which are not. In this sense our problem setting is harder
than the one handled by Wick et al.

3 Method

The output of a speech recognizer is called a transcription. A lifelog search system must
search through a database of transcriptions and find conversations that are relevant to the
query given by the user. Unfortunately, the state-of-the-art speech recognition engines
contain many recognition errors in its transcriptions, resulting in too many irrelevant
terms added to the index. On the other hand, since the task is to search, fully transcribed
results are not necessary. A set of terms relevant to each part of the conversation is what
we need. We therefore developed a method that uses a topic model to rank terms and
to filter out speech recognition errors. The basic idea is that a term can be filtered out
from the speech recognition results, if it is semantically distant from other terms in the
same conversation.

A topic model is constructed using statistical distributions of terms in a training
corpus. Specifically, we use a topic model to measure relevancy between a term and the
transcription it is contained in.

3.1 Topic Model

There is a wide range of choice regarding topic models, but we used Latent Dirichlet
Allocation (LDA), which is considered one of the most effective text modeling meth-
ods [8]. The parameters of LDA can be learned using a Gibbs sampler [9]. Figure 1
is a graphical model of LDA. It is a generative model of words in documents. It con-
siders the probability distribution of a topic mixture for each document. Once a topic
mixture is generated, words are generated from the mixture using a conditional distri-
bution. Through topics, LDA expresses a relationship between words based on their
occurrences in a large set of text.

In the following formulation, “term” refers to an element of a vocabulary, and “word”
refers to an instantiation of a term in a specific position in a document. Therefore,
a term t can appear more than once in a transcription, meaning wi = wj = t. In
Figure 1, M is the number of documents, Nm is the number of words in a document
m, K is the number of latent topics, and wm,n is a discrete random variable repre-
senting a word at a position n of a document m. The value of wm,n is represented
by t, which is an element of vocabulary V . The z is a discrete variable representing a
topic in a position n of a document m. It is a latent variable and cannot be observed, but

76 T. Tezuka and A. Maeda

probabilistically determines the value of a word wm,n. θm is a K dimensional parameter
vector of a multinomial distribution P (zm,n). It represents an underlying topic alloca-
tion of a document m. The φk is a V dimensional parameter vector of a multinomial
distribution P (wm,n|zm,n = k), where V is the size of a vocabulary and k is a topic.
φk represents a probability distribution of term appearances when the topic is k. The α
and β are hyperparameter vectors.

From the outcome of the training, we use the parameters of multinomial distributions
P (w|z) and P (z) to measure relevancy between a term and a transcription. P (w =
t|z = k) is equal to φkt where k is a topic and t is a term. Since P (z = k) is equal
to
∑

m P (z = k|d = m)P (d = m), assuming the probability of the appearance of a
document m as equal, we can use

∑
m θmk for P (z = k).

3.2 Speech Recognition

Many speech recognition engines (speech recognizers) can provide multiple candidate
transcriptions ranked in decreasing order of likelihood. Our system uses not only the
result with the highest likelihood, but also the lower-ranked results. It often happens that
the top-ranked transcription does not contain the terms actually spoken by the speaker,
but the lower ranked transcriptions do. We therefore store terms that are contained in
top-κ transcriptions, where κ is an arbitrary number. Since our goal is a search system,
it is not necessary to store results as sentences. We therefore store all terms appearing in
top candidates to indices, and then filter out irrelevant ones. The grammatical structure
is lost, but it will suffice for the search purpose.

3.3 Term Ranking and Filtering

When a recognition error occurs during transcription, the error is usually phonetically
similar but semantically far from the correct term. For example, the term “year” may
be recognized as “ear.” In such a case, the semantic meanings of two terms are totally
different. It is therefore natural to use semantic information to make corrections. People
are also likely to use such a mechanism while listening to someone else talking, since
whenever terms irrelevant to the context appear, we are not good at understanding them.

By filtering out semantically isolated terms, the search result is expected to give
higher precision. Since we are storing top-κ transcriptions provided by the speech rec-
ognizer, if the terms in the top-ranked transcription are filtered out, the terms in the
lower ranked transcriptions are the only ones to be added to the index. In this sense, our
method is correcting the recognition errors by using the semantic context, rather than
just filtering out error terms.

3.4 Relevancy Measure between Term and Transcription

To rank terms and filtering out semantically isolated terms, a relevancy measure be-
tween a term and a transcription must be defined. We defined it using the parameters of
the probability distributions P (w|z) and P (z) obtained in Subsection 3.1. One way to
define the relevancy of a term t to a transcription m̃ is to use a conditional probability
P (w = t|d = m̃). It can be calculated using P (w|z) and P (z|d).

Audio Lifelog Search System Using a Topic Model for Reducing Recognition Errors 77

r(t, m̃) = P (w = t|d = m̃)c(t, m̃) (1)

=
K∑

k=1

P (w = t|z = k)P (z = k|d = m̃)c(t, m̃)

P (w = t|d = m̃) is the probability of term t appearing in transcription m̃. c(t, m̃) is the
maximum score attached to term t in the transcription m̃, provided by the speech rec-
ognizer. Conditional independence indicated by Figure 1 is used in factorizing P (w =
t|d = m̃).

From LDA, we have parameters for P (w = t|z = k). The problem is that since
the transcription m̃ is not a part of the original corpus used for training LDA, P (z =
k|d = m̃) is not available. We therefore calculate it based on the terms contained in
the transcription m̃. Using the Bayes’ theorem, we can rewrite P (z = k|d = m̃) in the
following way.

P (z = k|d = m̃) =
P (d = m̃|z = k)P (z = k)

P (d = m̃)
(2)

∝ P (d = m̃|z = k)P (z = k)

Assuming conditional independency of words in a transcription, P (d = m̃|z = k) can
be factorized as follows.

P (d = m̃|z = k) =
nm̃∏
i=1

P (wi = ti|z = k) (3)

In Equation 3, wi is the word at position i, and ti is the term appearing there in the
transcription m̃. The number of terms in m̃ is represented by nm̃. When the number
of terms in a dictionary is large, P (wi = ti|z = k) is small. Multiplying nm̃ of them
results in an extremely small amount. One way to cope with it is to use the logarithm
of
∏nm̃

i=1 P (wi = ti|z = k)P (z = k), but in that case it becomes difficult to compute
marginalization by z in Equation 1. To avoid this problem, we used the following value
Q(m̃, k) instead of P (z = k|d = m̃). Specifically, we took the arithmetic average
of P (wi = ti|z = k), the probability that the term ti appears, and multiplied it by
P (z = k).

Q(m̃, k) =
1

nm̃

nm̃∑
i=1

P (wi = ti|z = k)P (z = k) (4)

Using this value, we defined a new measure of relevancy, r̂(t, m̃), as follows.

r̂(t, m̃) =
K∑

k=1

P (w = t|z = k)Q(m̃, k)c(t, m̃) (5)

78 T. Tezuka and A. Maeda

Terms appearing in a transcription are sorted using the value of r̂(t, m̃). If a term is
ranked below the ratio ρ of the whole set, it is filtered out. In other words, a set of terms
that are added to the inverted index is expressed by Equation 6. nm̃ is the number of
terms in the transcription m̃ and R(t) is the rank of the term t. Inequality R(t) < R(t′)
means that r̂(t, m̃) > r̂(t′, m̃). Ranking starts from 1, which means R(t) ≥ 1.

{tj|R(tj) < nm̃ · r0} (6)

If a term that is not contained in the vocabulary appears, it will not be filtered out. The
terms that were not filtered out are added to the inverted index of the lifelog search
system. By changing the threshold value ρ, we can obtain different values for recall
and precision. In the evaluation section, we compare it to the result based on the index
created using the top-ranked transcription from the speech recognizer.

4 Implementation

Using the proposed method, we implemented LifeRecycle, a lifelog search system de-
veloped by ourselves for storing and searching audio lifelogs. It consists of a recording
module, indexing module, and search interface. Each component is described in more
detail in the following subsections. We used Java for implementation. For database man-
agement, we used MySQL. For now, we have implemented the system using Japanese.
The method is, however, independent of language, so it can be applied to other lan-
guages as well. Audio data is recorded using a digital voice recorder. We use a headset
microphone for recording.

4.1 Document Set

Estimating the parameters of a topic model requires a large set of documents. Such a
set of documents is called a corpus. Since everyday conversation covers a wide range of
topics, it is preferable that the content of the corpus cover as many topics as possible. To
meet this need, we chose to use Wikipedia, one of the largest online encyclopedias on
the Web[11]. Articles on Wikipedia are submitted and revised by volunteer contributors.
There are more than 670,000 articles in the Japanese version of Wikipedia.

From each of the top 10,000 categories (in terms of the number of contained articles)
in Wikipedia, we sampled a single article. To set the sizes of documents nearly equal,
1,000 nouns from the beginning of each article were extracted to form a document. This
is to avoid too much influence from long articles. By using nouns only, the grammatical
structures in the original articles are lost, but since our model uses the bag-of-word
assumption, it is permissible. We call this set of documents a corpus. There are of
course some differences between the content of Wikipedia articles and the content of
daily conversations. We assume that we can cope with these differences, since by the
nature of LDA, we do not necessary use all topics appearing in Wikipedia, but only the
ones that are relevant to the words appearing in a conversation.

Using the set of documents obtained as described, we extracted a set of terms ful-
filling the conditions described below. We call it a vocabulary. Terms that appeared
in more than half of the documents in the corpus were excluded from the vocabulary.

Audio Lifelog Search System Using a Topic Model for Reducing Recognition Errors 79

Fig. 1. Graphical model for LDA Fig. 2. Search functions in LifeRecycle

These are common terms and do not characterize a document. The terms that appear in
more than δ documents were added to the vocabulary set. The δ is an arbitrary thresh-
old. If all the terms were added to the vocabulary, the dimensions of the word vector
would be too large, and the estimation process would be computationally too intensive.

From this corpus, we used terms that appear in more than two documents but less
than 50% of the documents. This resulted in a vocabulary of 22,131 words. We have
set K , the number of latent topics, to 50. For the hyperparameters of the prior density,
we used symmetric values: α = 1, β = 0.1. Following the recommended values of
hyperparameters in Griffiths and Steyvers, we used αk = 50/K and βt = 0.1, which is
in this case αk = 1 and βt = 0.1[9].

4.2 Speech Recognition and Indexing

For speech recognition, we used Julius[12]. It is an open source speech recognition sys-
tem consisting of a preprocessor for sound file and a speech recognizer. For a phonetic
and language model, we used a model built using the CSJ corpus[13]. Since these mod-
els are built mainly on lectures and presentations, the speed of speech is different from
that of conversation. Therefore, we used an adjustment method using multiple frame
shifts and window sizes, described in Subsection 3.2. For the frame shifts and window
sizes, we used the following pairs: 160 - 400, 152 - 380, 144 - 360.

We used κ = 100, which means terms contained in the top 100 candidates were
stored in the transcription hash and used in the filtering phase. Using the method de-
scribed in Subsection 3.4, the output of Julius was sent to the filter. Terms that were not
filtered are added to the inverted index.

4.3 Search Interface

We have implemented a lifelog search system in which the user can find the content
of a past conversation by sending a query consisting of terms that were spoken during
the conversation. Figure 2 shows our search interface. We implemented it so that the
user can access our search system from a regular web browser, since this is one of the
most familiar search interfaces. It has an input box to type in a query at the top. A set of
keywords divided by spaces is interpreted as an AND query, just like in an ordinary web

80 T. Tezuka and A. Maeda

search engine. Search results are ranked in order of relevance. In each transcription, the
matched transcription and its surrounding transcriptions are presented to the user.

5 Evaluation

We have performed experiments to test the effectiveness of our proposed method. We
evaluated precision and recall of the terms added to the inverted index by altering the
threshold value ρ. For a comparison, we measured precision and recall for LSA (Latent
Semantic Analysis), which is a widely used topic model in existing papers.

5.1 Precision and Recall

Experiments to check precision and recall of our proposed method were performed us-
ing texts from the CSJ (Corpus of Spontaneous Japanese)[13]. This corpus consists of
audio data from spontaneous speech. It has a part called “core,” which contains manu-
ally transcribed texts to speech data. The core of the CSJ contains 45 hours of conver-
sations, about 500,000 words. The reason for using the CSJ rather than conversations
obtained by our recording device is because manually transcribing conversations is a
tremendously laborsome task. Since the CSJ contains the transcribed texts, it is ready
for evaluation.

Speech data in the CSJ comes from the following sources. We measured precision
and recall for each of them. “A” is for an academic presentation speech. “D01” is for
an interview after a simulated public speaking. “D02” is for a task oriented dialogue, in
which is a conversation between two speakers performing a specific task designed by
the editors of the CSJ. “D04” is for an interview after an academic presentation speech.

Although the phonetic and language model we used in the speech recognizer were
trained using the CSJ, our proposed method is independent from these models, therefore
it is not a problem to use the part of the corpus as test data. We tested our method using
talks and conversations in the core of the CSJ, since it contains manually transcribed
texts. Terms appearing in these texts are considered as the correct terms.

Precision and recall are defined as follows. Let N indicate a set of terms obtained
using our proposed method and M indicate a set of terms contained in the manually
transcribed text. In other words, M is the set of correct terms. Precision is defined as
|N∩M|
|N | . Recall is defined as |N∩M|

|M| .
Figures 3-6 illustrate precision-recall curves for each source, using different values

of threshold ρ. The precision and recall are average values obtained using all files in
each source. We used the following values for ρ: 0, 0.005, 0.01, 0.015, 0.02, 0.025,
0.03, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, and 0.5. A rectangular marker (“semantic
ranking”) indicates the result using our proposed method that ranks and filters terms
obtained from top-κ transcriptions. A triangular marker (“ASR score”) indicates to the
result using the scores provided by the automatic speech recognizer (ASR) for ranking
and filtering the same set of terms. An X marker (”LSA”) indicates the result based on
a topic model obtained by Latent Semantic Analysis.

The result indicates that our system is effective in increasing the average precision
and recall of the inverted index. The content of source D01, D02, and D04 are more

Audio Lifelog Search System Using a Topic Model for Reducing Recognition Errors 81

0.45

0.55

0.65

0.75

0.85

0.3 0.4 0.5 0.6 0.7 0.8

Pr
ec

is
io

n

Recall

seman�c ranking

ASR score

LSA

Fig. 3. P-R curve for source A (academic pre-
sentation speech)

0.2

0.3

0.4

0.5

0.1 0.15 0.2 0.25 0.3 0.35

Pr
ec

is
io

n

Recall

seman�c ranking

ASR score

LSA

Fig. 4. P-R curve for source D01 (interview
after simulated public speaking)

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4

Pr
ec

is
io

n

Recall

seman�c ranking

ASR score

LSA

Fig. 5. P-R curve for source D02 (task ori-
ented dialogue)

0.25

0.35

0.45

0.55

0.65

0.15 0.2 0.25 0.3 0.35

Pr
ec

is
io

n

Recall

seman�c ranking

ASR score

LSA

Fig. 6. P-R curve for source D04 (interview
after academic presentation speech)

casual than that of A. The result shows that our method is effective for both formal and
casual talks.

Figures 3-6 also compare our method with the result using only the scores c(t, m̃)
provided by the speech recognizer. Terms are ranked according to the score and those
that came below the threshold rank are removed. The corresponding P-R curve is worse
than that of our method. Our method is much better than using LSA also. We can as-
sume that LSA did not represent the topic structures of conversations well enough. One
possible reason is that while LSA models the frequency of a term as a continuous prob-
abilistic variable, in reality it can only take discrete values, therefore resulting in an
inadequacy of the model.

6 Conclusion

Low precision and recall in an automatic speech recognition engines is a problem
that prohibit its wider use in storing and searching past conversations. We proposed
a method of ranking terms in a transcription by their semantic appropriateness and fil-
tering out those that are likely to be errors. We applied a topic model constructed from

82 T. Tezuka and A. Maeda

Wikipedia articles to cope with a wide range of topics covered in everyday conver-
sations. The result showed improvement of precision and recall for various types of
speeches. Using our method, we have implemented an actual audio lifelog search sys-
tem. We plan to extend our system to handle more complex queries, including search
facility using a phrase.

Acknowledgments

This work was supported in part by a MEXT Grant-in-Aid for Strategic Formation
of Research Infrastructure for Private University “Sharing of Research Resources by
Digitization and Utilization of Art and Cultural Materials” (Grant Number: S0991041)
and a MEXT Grant-in-Aid for Young Scientists (B) “Object Identification System using
Web Image Collection and Machine Learning” (Leader: Taro Tezuka, Grant Number:
21700121), and IPA Exploratory IT Human Resources Project (The MITOH Program)
“LifeRecycle - A search engine for life”. (Leader: Taro Tezuka, 2008 second semester).

References

1. Sellen, A., Whittaker, S.: Beyond total capture: a constructive critique of lifelogging. Com-
munications of the ACM 53(5), 70–77 (2010)

2. Rabiner, L., Juang, B.H.: Fundamentals of speech recognition. Prentice Hall, Englewood
Cliffs (1993)

3. Ney, H., Ortmanns, S.: Dynamic Programming Search for Continuous Speech Recognition
Contents. IEEE Signal Processing Magazine 16, 64–83 (1999)

4. Holmes, J., Holmes, W.: Speech synthesis and recognition. Taylor & Francis, Abington
(2001)

5. Bellegarda, J.R.: Exploiting latent semantic information in statistical language modeling.
Proc. of the IEEE 88(8), 1279–1296 (2000)

6. Bellegarda, J.R.: Statistical language model adaptation: review and perspectives. Speech
Communication 42, 93–108 (2004)

7. Wick, M.L., Ross, M.G., Learned-Miller, E.G.: Context-Sensitive Error Correction: Using
Topic Models to Improve OCR. In: Proc. of the 9th International Conference on Document
Extraction and Analysis, pp. 1168–1172 (September 2007)

8. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet Allocation. Journal of Machine Learning
Research 3, 993–1022 (2003)

9. Griffiths, T.L., Steyvers, M.: Finding Scientific Topics. Proc. of the National Academy of
Sciences of the United States of America 101, 5228–5235 (2004)

10. Heinrich, G.: Parameter estimation for text analysis, Technical Note, ver 2.4 (2008),
http://www.arbylon.net/publications/text-est.pdf

11. Wikipedia, http://wikipedia.org
12. Julius - Open-Source Large Vocabulary CSR Engine,

http://julius.sourceforge.jp/en_index.php
13. The Corpus of Spontaneous Japanese (CSJ Corpus),

http://www.kokken.go.jp/katsudo/seika/corpus/public/

http://www.arbylon.net/publications/text-est.pdf
http://wikipedia.org
http://julius.sourceforge.jp/en_index.php
http://www.kokken.go.jp/katsudo/seika/corpus/public/

Towards Web Search by Sentence Queries:
Asking the Web for Query Substitutions

Yusuke Yamamoto1,2 and Katsumi Tanaka1

1 Graduate School of Informatics, Kyoto University, Japan
{yamamoto,tanaka}@dl.kuis.kyoto-u.ac.jp

2 JSPS Research Fellow

Abstract. In this paper, we propose a method to search the Web for
sentence substitutions for a given sentence query. Our method uses only
lexico-syntactic patterns dynamically generated from the input sentence
query to collect sentence substitutions from the Web on demand. Ex-
perimental results show that our method works well and can be used
to obtain sentence substitutions for rare sentence queries as well as for
popular sentence queries. It is also shown that our method can collect
various types of sentence substitutions such as paraphrases, generalized
sentences, detailed sentences, and comparative sentences. Our method
searches for sentence substitutions whose expressions appear most fre-
quently on the Web. Therefore, even if users issue the sentence query
by which Web search engines return no or few search results for some
reasons, our method enables users to collect more Web pages about the
given sentence query or the sentences related to the query.

1 Introduction

Web search engines like Google and Bing are great tools for searching the Web.
People can efficiently obtain what they want by conveying their information
needs as queries to Web search engines. There are three possible ways to gener-
ate queries for Web search engines: keyword query, phrase query, and sentence
query. Using keyword queries or phrase queries, people can obtain many Web
pages containing the queries, but sometimes many irrelevant Web pages are also
collected. In contrast, when using sentence queries, people can convey their in-
formation needs in more detail, expecting to obtain very relevant Web pages.

Although sentence queries are very useful for clearly representing information
needs, people rarely use them because the sentence queries often cause users
failure to get Web pages about the queries. There are two possible cases not to
obtain Web pages well using sentence queries. The first case is that the meaning
of sentence queries is correct but the expressions of the queries are rare on the
Web. For example, when users want to search for Web pages describing that
Germany is famous for beer and they issue sentence query “beer is famous in
Germany”, if the expression of the sentence query appears in few Web pages,
Web search engines return few results. The second case is that what sentence
queries means is wrong or rare on the Web. For example, if users misunderstand

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 83–92, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

84 Y. Yamamoto and K. Tanaka

that the capital of Austria is Canberra and they issue sentence query “the capital
of Austria is Canberra”, Web search engines do not return any results although
they can returns Web pages describing “the capital of Australia is Canberra”.
The both cases result from the cause that if expressions of sentence queries rarely
appear on the Web, search engines cannot return any relevant Web pages.

As for keyword query search, most Web search engines provide query substi-
tution functions to deal with the cases that users’ queries have miss spelling, that
the queries’ expression or meaning is rare or abstract, or that the queries are
partially wrong because of users’ misunderstandings [1,4]. Users can obtain more
Web pages which they want to browse using suggested keyword queries. How-
ever, unfortunately, there is no Web search engines provide query substitution
functions for sentence queries as far as we know. For more flexible Web search
with natural language, query substitution for sentence query is important.

In this paper, we propose a method to search for sentence substitutions for
sentence queries, for obtaining more Web search results for the initial sentence
queries and sentences related to them. Our main idea is to search the Web for sen-
tence substitutions of a sentence query by considering popular expressions and
popular topics on the Web. In our method, given a sentence query, we first collect
paraphrases for the sentence query from the Web by issuing keywords consisting
of the sentence query to Web search engines. After that, we extract sentence
substitutions from Web search engines’ indices by applying lexico-syntactic pat-
tern mining with the sentence query and its paraphrases. Our proposed method
does not require huge corpora in advance because necessary and fresh corpora
are collected by using Web search engines on demand. The method also does not
need language dictionaries or tools like POS taggers or parsers. Therefore, our
method can search for sentence substitutions for any type of sentence query.

2 Related Work

One possible output of our method is paraphrase. Many studies have been done
on paraphrasing in the field of natural languages processing. Qiu et al. pre-
sented a framework to recognize paraphrases from text corpora, focusing on the
dissimilarity between sentences [6]. Kaji et al. proposed a method to paraphrase
from expressions for written language to ones for spoken language based on oc-
currence in written and spoken language corpora [5]. As in these studies, most
approaches are based on off-line processing through machine learning or deep
natural-language processing, and they require huge corpora for paraphrasing in
advance. Moreover, most are focused on only paraphrases based on types of
phrase substitution. In contrast, our method collects not only paraphrases but
also related sentences (generalized sentences, specified sentences, comparative
sentences, and so on) as sentence substitutions for a given sentence query, and
these are collected from Web search engine indices on demand.

In the field of information extraction, lexico-syntactic patterns are often used
for entity extraction [3,7]. KnowItAll is a system for searching the Web

Towards Web Search by Sentence Queries 85

Germany is famous for beer

Germany is famous for its beer

Beer is famous in Germany

Germany is famous for beer

Germany is famous for beer

...

...

Belgium is famous for beer

Japan is famous for beer

Germany is famous for sausages

Germany is famous for its party
Belgium is famous for its beer
Munich is famous for its beer

...

1: Germany is famous for beer

2: Belgium is famous for beer

4: Germany is famous for sausages

3: Munich is famous for its beer

...
Germany is famous for its sausages

Phrase 1

Paraphrase collection
Phrase 2

Phrase substitution collection
Phrase 3

Phrase substitution ranking

 (comparative phrase)

(paraphrase)

 (comparative phrase)

 (detailed phrase)

Fig. 1. Workflow of our method for the sentence query, “Germany is famous for beer”

for entity names in the same class as a given example using lexico-syntactic
patterns like “such as” and “and other” [2]. KnowItAll learns effective syn-
tactic patterns for entity extraction in advance from many relevant and irrelevant
terms for expected entity names. In our previous work, we used lexico-syntactic
pattern mining techniques to develop HontoSearch, a system which collects
comparative sentences for a given sentence that helps users check the credibility
of a given sentence [8]. The goal of this study is to comparative sentences for
credibility judgment on a given sentence. On the other hand, our sentence sub-
stitution method provides paraphrases, generalized sentences, and specialized
sentences for a given sentence as well as comparative sentences, for the purpose
of assisting users to efficiently obtain Web pages by sentence queries..

3 Method

Given sentence query q, we wish to search the Web for sentence substitution
s of q. We define this as q �→ s. The goal of our work is to collect sentence
substitutions S = {s|q �→ s} from the Web and rank them using ranking function
rank(s|q). The workflow of our approach is shown below (Fig.1 illustrates the
workflow when sentence Germany is famous for beer is given): We first collect
paraphrases P = {p1, p2, .., pm} of q from the Web using core terms of q (Phase
1). The core terms are the ones which consist of the sentence query and are
not stopwords. After that, we obtain Web search results by using P and collect
q’s sentence substitutions S from the search results (Phase 2). To collect S
from the Web search results without using specific language parsers such as
POS taggers, we use a combination of multiple lexico-syntactic patterns which
we can generate with S. After collecting S, we rank each sentence substitution
s ∈ S for q through rank(s|q), which evaluates s’s frequency of appearance on
the Web and its relevance for q (Phase 3).

3.1 Searching for Paraphrases

Given sentence query q, we first collect sentences that contain all core terms in
sentence query q and that have a low edit distance between them and q. We

86 Y. Yamamoto and K. Tanaka

regard such sentences as paraphrases of q. For example, given sentence query
q =“Germany is famous for beer”, “Germany is famous for its beer” contains
all of the core terms {Germany, beer, famous} of q, and the edit distance between
it and q is low. Therefore we regard sentence “Germany is famous for it beer”
as one of possible paraphrases of q.

We search the Web for paraphrases P of sentence query q as follows:

Phase 1. Searching the Web for paraphrases

1. The given q is divided into terms. Stop words are then omitted from a
list of the terms. The remaining terms are denoted as Tq = {t1, t2, ..., tn}
and we call Tq the core terms.

2. Text contents (snippets) that contain all terms in Tq are gathered by
issuing query “t1 ∧ t2 ∧ ... ∧ tn” to a conventional Web search engine.
They are denoted as Doc(Tq).

3. The system extracts the strings that contain all terms in Tq and are
minimal-length from each split sentence in Doc(Tq).

4. For each pc of the extracted strings, the term-based edit distance
distedit(q, pc) is calculated. If distedit(q, pc) is lower than threshold θedit,
pc is added to a set of paraphrases P .

3.2 Searching for Sentence Substitutions

Given a sentence query, we suppose that its sentence substitutions have the
following features: Lexical-syntactic patterns of the sentence substitutions are
similar to that of the sentence query or those of its paraphrases. For example,
given sentence query q =“Germany is famous for beer”, sentence “Munich is
famous for beer” has the same lexico-syntactic pattern as that of q (X is famous
for beer). Also, sentence “Munich is famous for its beer” has the same syntactic
pattern as that of q’s paraphrase “Germany is famous for its beer” (X is famous
for its beer). This indicates that we can collect sentence substitutions using
lexico-syntactic patterns of the sentence query and its paraphrases.

In the next phase, we search the Web for sentence substitutions for a given
sentence based on the above hypothesis. Here, given sentence q, we denote the
lexico-syntactic pattern to focus on term t in q as pt(q, t). For example, given
sentence q = “Germany is famous for beer”, pt(q, “Germany′′) represents “(*)
is famous for beer”. We use only lexico-syntactic patterns of sentence query q
and its paraphrases P to search for sentence substitutions. The following is a
workflow of the method.

Phase 2. Searching for Sentence substitutions

1. Given q and core term t ∈ Tq, the system generates lexico-syntactic
patterns of each of collected paraphrases P , Pt(P, t) = {pt(p, t)|p ∈ P},
by replacing term t in each paraphrase with asterisk.

Towards Web Search by Sentence Queries 87

2. The system issues each pt(p, t) ∈ Pt(P, t) as a sentence query to a con-
ventional Web search engine, and then the system gathers Web search
results Doc(pt(p, t)) for each pattern.

3. For each pt(p, t) ∈ Pt(P, t), the substrings that match the asterisk of
pt(p, t) are extracted from snippets of Doc(pt(p, t)). We denote extracted
substrings as E = {e1, e2, .., em}. Moreover, for each e ∈ E, the number
of e extracted by only pt(p, t) is temporarily retained as num(e, pt(p, t)).

4. For e ∈ E, the replaceability of e for t is scored by considering
num(e, pt(p, t)) for p ∈ P and the characteristics of the paraphrases
used to extract e.

5. If the replaceability of e for t is higher than threshold θrep, we replace
t with e in the paraphrases with which e is extracted. After that, the
replaced sentences are added to a list of sentence substitutions S.

6. For all t ∈ Tq, the operations from Step 1 to 5 are executed.

In Steps 1 and 2, we focus on a certain core term t ∈ Tq and prepare a corpus
for collecting sentence substitutions for p ∈ P from the Web. For example, given
sentence q =“Germany is famous for beer”, we get P = {Germany is famous
for beer, Germany is famous for its beer, Germany famous for beer} in Phase
1. We now wish to obtain sentence substitutions of q focusing on the core term
t =“Germany”. We issue sentence queries, “* is famous for beer”, “* is famous
for its beer”, and “* famous for beer” to a conventional Web search engine.

In Step 3, we extract all substrings that match asterisk of pt(p, t) in Doc
(pt(p, t)). For example, when we have a snippet “Prague, the Czech Republic
is famous for its beer, and they have the ...” for pt(p, “Germany′′) = “* is
famous for its beer”, we can extract substrings, Republic, Czech Republic, the
Czech Republic, , the Czech Republic, and Prague, the Czech Republic from the
snippet. These are then added to a list of substrings E.

In Step 4, we score the replaceability of extracted substring e ∈ E for core
term t using the following functions:

rep(e|t) =
∑
pi,pj

min(num(e, pt(pi, t)), num(e, pt(pj , t))·simedit(q, pi)·simedit(q, pj)

(1)
where function simedit(q, p) = 1 − distedit(q, p).

Formula 1 means that we estimate the replaceability of the extracted sub-
strings for a core term in a give sentence query by considering the following
hypotheses: (1) The more similar a paraphrase used for substring extraction is
to a sentence query, the more replaceable an extracted substring can be with a
core term of the sentence query. (2) The more kinds of paraphrase the substring
is more frequently extracted through, the more replaceable the substring can
be with the core term of the sentence query. In function min of Formula 1, we
check the frequency of substrings that can be mutually obtained through pairs
of paraphrases. This operation enables us to extract only the terms or the sen-
tences which are grammatically replaceable for parts of paraphrases from Web
snippets without using lexical analyzers or syntax analyzers.

88 Y. Yamamoto and K. Tanaka

3.3 Scoring of Sentence Substitutions

In the next phase, we score sentence substitutions. In our hypothesis, if a sentence
substitution is important for a given sentence query, the substitution should meet
the following conditions: (1) The sentence substitution appears frequently on the
Web. (2) The context in which the substitution appears on the Web is similar
to the context in which the sentence query appears on the Web.

Based on the above hypothesis, the score of sentence substitution s for sen-
tence query q is calculated using the following formula rank(s|q):

rank(s|q) = WebCount(s) · simcontext(q, s). (2)

WebCount(s) is the total number of Web pages that a search engine returns
for sentence query s. simcontext(q, s) is the context similarity between sentence
q and s on the Web. This similarity is defined as the cosine similarity between
feature vectors of q and s. The feature vector of a sentence is generated as fol-
lows: First, text contents which contain the sentence are gathered by issuing the
sentence as query to conventional Web search engines. We regard the collected
text snippets as a document featuring the sentence. In this paper, features of
the sentence vectors are defined as terms which appear in the documents, and a
tf/idf algorithm is used to weight each feature.

4 Experiments and Results

We conducted experiments to evaluate how effective our method is for searching
the Web for sentence substitutions. For this experiment, we prepared a set of 50
sentence queries and divided them into two classes. Class 1 contained 20 popular
sentences, each of which appeared on at least six Web pages. Class 2 contained
30 rare sentences, each of which appeared on at most five Web pages. Table 1
shows examples from our test set.

We subjectively compared the performance of our method against that of a
baseline method. The baseline method searches the Web for sentence substitu-
tions simply by using lexico-syntactic patterns of a given sentence query. For
example, given sentence query “Germany is famous for beer”, the system gener-
ates patterns “* is famous for beer”, “Germany is * for beer”, and “Germany is

Table 1. Examples of sentence queries in the test set. Each number in parentheses
indicates how many Web pages the sentence query appears in.

Class Sentence query
Obama is the current president of the United States (200)

Popular sentence The mouse was invented by Apple (35)
Canberra is the capital of Australia (1378)

Germany is very famous for beer (1)
Rare sentence Europa was discovered by Galileo Galilei in 1610 (3)

Sodium leads high blood pressure (0)

Towards Web Search by Sentence Queries 89

Table 2. Accuracy and Web access cost of two methods for popular sentence queries
and rare ones. Numbers in front of the slash are for popular sentence queries, and
numbers behind the slash are for rare queries.

Method @1 @3 @5 @10 @20 Access
Our method 100/92.3 98.3/92.3 95.0/89.2 90.5/84.2 83.0/70.6 76.2/79.4
Baseline 100/88.9 93.3/79.7 88.0/76.6 81.0/65.6 70.5/46.4 3.5/3.7

famous for *”. The system then collects the sentences matching these patterns
by using the method in Step 3 of Phase 2. Collected sentence substitutions are
ranked according to the number of them extracted.

In our implementation, we used Yahoo! Search Boss APIs1 to access Web
search engine indices. In Phase 1, the number of search results for collecting
paraphrases was fixed at 1000, and threshold θedit was set to 0.5. In Phase 2,
The number of search results for collecting sentence substitutions was fixed at
50, and threshold θrep was 1. In Phase 3, we collected 50 Web documents to
generate the feature vector of each sentence substitution.

4.1 Performance of Searching for Sentence Substitutions

We evaluated our algorithm from four viewpoints: (1) the accuracy of sentence
substitutions ranking, (2) the processing time, and (3) the number of valid sen-
tence substitutions. To evaluate the accuracy of the substitutions ranking, we
checked the average percentage of valid sentence substitutions in the top N
of the ranking. The value is denoted as @N. Here valid sentence substitutions
means valid paraphrase or valid alternative sentences (generalized sentences,
specified sentences, or comparative sentences) for a given sentence. We subjec-
tively checked whether obtained substitutions are valid paraphrases or not. Note
that for some sentence queries in the test set, the system failed to obtain more
than N sentence substitutions. In such cases, when we obtained k results for
any of such sentences (k < N), we supposed that (N-k) irrelevant results were
additionally obtained and we calculated @N. To evaluate the processing time of
each method, we counted the average number of Web accesses.

Table 2 shows the accuracy and the Web access cost of our method and the
baseline method for both popular sentence queries and rare ones. For popular
queries, both our method and the baseline method provided high accuracy for
any @N. In contrast, for rare sentences, the baseline method provided low ac-
curacy for @10 and @20, compared to our method. Regarding Web access cost,
the baseline method was far less than our method. These results suggest that
if we ignore results under the top 10 ranking, the baseline method might be
better than our method because the baseline method can provide reasonably
high accuracy with a low processing cost. However when we checked the number
of valid sentence substitutions of the two methods for searching valid sentence
substitutions, the relative situation changed.

1 http://developer.yahoo.com/search/boss/

http://developer.yahoo.com/search/boss/

90 Y. Yamamoto and K. Tanaka

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Our method

Baseline

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of obtained valid sentence substituions

Our method
Baseline

(a) For popular sentence queries (b) For rare sentence queries

Number of obtained valid sentence substituions

N
um

b
er

 o
f

se
nt

en
ce

 q
ue

ri
es

N
um

b
er

 o
f

se
nt

en
ce

 q
ue

ri
es

Fig. 2. Histogram of the number of obtained valid sentence substitutions. Graph (a)
and (b) are histograms for popular sentence queries and rare ones, respectively.

We checked the number of valid sentence substitutions obtained by both meth-
ods. Fig.2 shows histograms of the number of the valid sentence substitutions
obtained through our method and the baseline method for popular sentence
queries and rare ones. For both the popular sentence queries and the rare ones,
our method on average collected more kinds of valid sentence substitution than
the baseline method. Notably, our method collected many sentence substitutions
for most rare queries, while the baseline method collected few or no sentence
substitutions for most rare queries. When our proposed method is used, simi-
lar sentences (paraphrase candidates) of a given sentence query are generated,
and the system then searches the Web for sentence substitutions using multiple
similar sentences. Fig.2 indicates that this operation worked well for collecting
more sentence substitutions, expecially for rare sentence queries.

These results indicate that our method is more robust than the baseline
method. Although Table 2 shows that the baseline method could be better than
our method in some respects, people do not always search with popular sentence
queries that appear on a lot of Web pages. Therefore, our method should be
useful for rare sentence queries even if the processing cost is somewhat high.

4.2 Discussion

There are various types of sentence substitution. Therefore, we checked 874 ob-
tained sentence substitutions through our method and manually categorized
them into five classes: paraphrases, generalized sentences, detailed sentences,
comparative sentences, and irrelevant sentences for sentence queries. Paraphrases
are sentences semantically similar to sentence queries, but whose expression dif-
fers from one of the sentence queries. Generalized sentences are sentences whose
meaning is broader or more general than the meaning of the sentence queries.
Detailed sentences are those whose meaning is more specific or more detailed
that of the sentence queries. Comparative sentences are useful for comparison
with sentence queries from specific aspects.

Table 3 shows the percentage of obtained sentence substitutions belonging
to each of the five classes. About 42% of the obtained sentence substitutions
were paraphrases for the sentence queries. The second and third most obtained

Towards Web Search by Sentence Queries 91

Table 3. Percentage of sentence substitutions belonging to each of the following classes:
paraphrases, generalized sentences, detailed sentences, comparative sentences, or irrel-
evant sentences

Class Ratio Examples
Europa was discovered by Galileo Galilei in 1610

Paraphrase 41.6% 	→ Galileo Galilei discovered Europa in 1610

Oil will be depleted by 2050
Comparative 27.7% 	→ Oil reserves will be depleted by 2030

Kyoto was the capital of Japan in the past
Detailed 17.2% 	→ Kyoto was the capital of Japan over 1000 years

2014 winter olymics will be held in Sochi
Generalized 7.8% 	→ 2014 winter olympics are to be held in Russia

Ozone is potent greenhouse gas
Irrelevant 5.7% 	→ Ozone and is a potent greenhouse gas

sentence substitutions were comparative sentences and detailed sentences. In
our method, the system searches the Web for sentence substitutions with the
lexico-syntactic patterns generated from sentence queries and their paraphrases.
These results indicate that our approach worked well and the system succeeded
in obtaining both comparative sentences and detailed sentences for the sentence
queries. On the other hand, the system obtained far fewer generalized sentences
than comparative sentences and detailed sentences. This suggests that our ap-
proach does not work well for collecting generalized sentences. One possible rea-
son for this is that the lexico-syntactic patterns generated from sentence queries
keep the context of the sentence queries and so they have greater potential for
collecting paraphrases, comparative sentences, and detailed sentences which in-
clude the context of the sentence query rather than generalized sentences.

5 Conclusion and Future Work

In this paper, we have proposed a method to search the Web for sentence sub-
stitutions for a given sentence query. If users issue the sentence substitutions
to Web search engines, users can obtain more Web pages about the query than
the initial query. Our proposed method obtains sentence substitutions from the
Web using lexico-syntactic patterns generated from the input sentence and its
paraphrases. Our method does not need language tools such as POS taggers or
parsers. Also, huge corpora do not need to be prepared in advance because the
method collects fresh corpora through Web search engines on demand. Exper-
imental results have shown that our method can accurately collect many and
various sentence substitutions, especially for rare sentences on the Web.

Several problems remain regarding the search for sentence substitutions. For
example, we need a method to segment core sentences of a given sentence query
to generate effective lexico-syntactic patterns. Furthermore, we need to deal with
cases where input sentence queries contain inappropriate or unpopular keywords
on the Web so that we can still robustly collect sentence substitutions. In the
future, we plan to develop a method to automatically classify obtained sentence

92 Y. Yamamoto and K. Tanaka

substitutions into classes such as paraphrases, generalized sentences, detailed
sentences, and comparative sentences. We believe that such a method will en-
hance the ability to search for Web pages using sentence queries and knowledge
mine using lexico-syntactic sentence patterns.

Acknowledgments

This work was supported in part by the following projects and institutions:
Grants-in-Aid for Scientific Research (No. 18049041) from MEXT of Japan, a
Kyoto University GCOE Program entitled “Informatics Education and Research
for Knowledge-Circulating Society,” the National Institute of Information and
Communications Technology, Japan, and Grants-in-Aid for Scientific Research
(No. 09J01243) from JSPS.

References

1. Craswell, N., Szummer, M.: Random Walks on the Click Graph. In: Proceedings of
the 30th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR 2007), pp. 239–246 (2007)

2. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked, T., Soderland,
S., Weld, D., Yates, A.: Web-Scale Information Extraction in KnowItAll (Prelimi-
nary Results). In: Proceedings of the 13th International Conference on World Wide
Web (WWW 2004), pp. 100–110 (2004)

3. Hearst, M.A.: Automatic Acquisition of Hyponyms from Large Text Corpora. In:
Proceedings of the 14th Conference on Computational Linguistics (ACL 1992), pp.
539–545 (1992)

4. Jones, R., Rey, B., Madani, O., Greiner, W.: Generating Query Substitutions. In:
Proceedings of the 15th International Conference on World Wide Web (WWW
2006), pp. 387–396 (2006)

5. Kaji, N., Okamoto, M., Kurohashi, S.: Paraphrasing Predicates from Written Lan-
guage to Spoken Language Using the Web. In: Proceedings of the 2004 Human
Language Technology Conference of the North American Chapter of the Associa-
tion for Computational Linguistics (HLT-NAACL 2004), pp. 241–248 (2004)

6. Qiu, L., Kan, M.Y., Chua, T.S.: Paraphrase Recognition via Dissimilarity Signifi-
cance Classification. In: Proceedings of the 2006 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2006), pp. 18–26 (2006)

7. Ravichandran, D., Hovy, E.: Learning Surface Text Patterns for a Question An-
swering System. In: Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics (ACL 2002), pp. 41–47 (2002)

8. Yamamoto, Y., Tanaka, K.: Finding Comparative Facts and Aspects for Judging
the Credibility of Uncertain Facts. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.)
WISE 2009. LNCS, vol. 5802, pp. 291–305. Springer, Heidelberg (2009)

The DISTARNET Approach to Reliable
Autonomic Long-Term Digital Preservation

Ivan Subotic1, Heiko Schuldt2, and Lukas Rosenthaler1

1Imaging & Media Lab
2Databases and Information Systems Group

University of Basel, Switzerland
firstname.lastname@unibas.ch

Abstract. The rapidly growing production of digital data, together
with their increasing importance and essential demands for their
longevity, urgently require systems that provide reliable long-term preser-
vation of digital objects. Most importantly, these systems have to ensure
guaranteed availability over a long period of time, as well as integrity
and authenticity of the preserved data and their metadata. This means
that all kinds of technical problems need to be reliably handled and that
the evolution of data formats is supported. At the same time, systems
need to scale with the volume of data to be archived. In this paper, we
present DISTARNET, a fully distributed system that reliably executes
pre-defined workflows for long-term preservation. Moreover, DISTAR-
NET is designed as an open system that allows the curators of digital
objects to specify new processes to cope with additional challenges.

1 Introduction

Digital data, either digitized or digital born, are increasingly gaining importance
in our everyday life. As a consequence, a large spectrum of applications require
that data is preserved over long periods of time — up to several years due to
legal constraints in business applications or for scientific data, for the duration of
the lifetime of a human in medical applications, up to potentially unlimited time
spans for the preservation of cultural heritage. Approaches to digital long-term
preservation are constrained by the enormous and ever growing volumes of data.
In addition, long-term data archiving and preservation also needs to take into
account that data has to outlive the hardware on which they are stored and the
data formats in which they are represented.

Metadata is the key to providing long-term digital preservation. We will use
the term Information Object to denote the digital data (bit-stream) and the
corresponding representation information, or some other kind of metadata.

Further, the Open Archival Information System (OAIS) reference model [1]
also explicitly considers the migration of digital data to new data carriers and/or
data formats in periodic intervals in order to escape from the technological ob-
solescence of specific hardware and software products.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 93–103, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

94 I. Subotic, H. Schuldt, and L. Rosenthaler

In short, digital long-term preservation can be defined as the task of preserv-
ing information objects, despite potential changes of the formats in which ob-
jects are stored and the underlying hardware environment. Therefore, a software
system for digital long-term preservation has to support preservation processes
that guarantee i.) integrity: the information captured by data is not altered in
any way; ii.) authenticity: provenance information is properly linked to each
stored object by means of appropriate metadata; iii.) chain of custody: location
and management controls are tracked within the preservation environment; iv.)
completeness : everything that was initially stored is also available in the future
and finally v.) ease of access : the necessary means are provided to find and
identify the stored digital objects. Moreover, an essential requirement for viable
long-term preservation systems is their capability to do the necessary mainte-
nance and failure recovery in an autonomous way, e.g., to automatically identify
when a pre-defined replication level is no longer reached and to trigger corrective
actions (deploy new replicas) without human intervention.

To cope with all these challenges, we are currently developing DISTARNET
(DIstributed STorage ARchival NETwork), a system for digital long-term preser-
vation of information objects as required by archives, museums, research commu-
nities or the corporate sector. The goal is to provide a software system based on
which deploying institutions can, on their own or through collaboration with
others, build an autonomous, reliable, replicated, geographically distributed,
Internet-based digital archiving system. Maintenance and recovery from software
or hardware failures is handled in DISTARNET by means of dedicated processes
that are automatically executed in a reliable way. Some of these processes encom-
pass the necessary steps for format conversions, while other processes address
failure recovery, for instance, by deploying new replicas or by migrating content
from an unreliable host to a more stable one.

In the following we briefly sketch two use case scenarios that highlight the
broad applicability of DISTARNET.

Scenario 1: Jim, a digital archivist at the National Museum of History & Native
Art in a small European country wants to implement a new archiving solution
for preserving his country’s cultural heritage. This new solution should enable
him to have redundant off-site replicas, although the museum itself has only one
site available that can be used to deploy such a solution. However, there is a col-
laboration agreement between the national museums of different countries that
includes access to the other institutions’ computation and storage resources for
deploying replicas, together with the enforcement of access restrictions on these
shared data (pretty much like in a virtual organization known in the context
of grid computing). Each museum deploys a DISTARNET node. When data is
ingested, they will be handled according to the policies specified by their owner
and will automatically be distributed across the storage resources of different
museums. DISTARNET will also periodically instantiate maintenance processes
and launch recovery processes when necessary.

The DISTARNET Approach to Long-Term Digital Preservation 95

Scenario 2: The cloud storage provider Stratocumulus Inc. plans to release
DA3S (Data Archiving as a Service), a new data management service. Essen-
tially, DA3S offers customers the option for long-term digital preservation of their
digital assets, with dedicated quality of service guarantees on data availability
(replication), integrity (regular checks) and authenticity. For this, Stratocumu-
lus Inc. installs DISTARNET on each of their data-centers. In this setting, DIS-
TARNET will be a layer underneath the cloud, so that Stratocumulus Inc. can
provide the services offered by DISTARNET fully transparent to their end users.
As optional services for DA3S for an extra cost, Stratocumulus Inc. offers au-
tomated data format migration. Moreover, storage location constraints can be
defined through preservation policies that will allow to restrict where data will
be stored since Stratocumulus Inc. runs multiple data-centers around the world.

This paper introduces the flexible and reliable DISTARNET approach to dig-
ital preservation, and in particular its metadata model and the processes that
are pre-defined for maintenance and failure handling purposes. We present the
challenges and risks that need to be addressed by a system for long-term digital
preservation. The main contribution of the paper is the detailed analysis of DIS-
TARNET’s self-∗ capabilities, i.e., how the system is able to automatically adjust
itself to changing environments (both in terms of volumes of digital content to
be archived and the available storage resources) and how it automatically re-
covers from different kinds of failures. The autonomic behavior also includes the
compliance to quality of service guarantees for the DISTARNET users (digital
archivists) such as a predefined level of data availability or specific constraints
on the locality of data and replica placement.

The remainder of this paper is organized as follows. In Section 2, we summarize
the challenges of digital long-term preservation. Section 3 introduces DISTAR-
NET, in particular its metadata model and processes. In Section 4 we analyze
how these processes can take care of maintenance and failure recovery in digital
preservation. Section 5 discusses related work, Section 6 concludes.

2 Distributed Digital Long-Term Preservation:
Challenges

The challenges that distributed digital long-term preservation systems are faced
with are fault tolerance, scalability, load balancing, and security in addition to
integrity of complex information objects, authenticity, data format obsolescence,
long-term readability, and ease of access.

Fault Tolerance and Failure Management. The failure of one or more compo-
nents in a distributed preservation system should not endanger the whole system,
and should only have isolated effects. Failure or disaster situations resulting in
destruction or corruption of some of the stored information objects should not
lead to a complete loss of the archived data. Automated replication mecha-
nisms should maintain a minimum number of geographically dispersed replicas
(number and location defined by preservation policies) of the stored information
objects. Any data loss event should trigger automated recovery processes that

96 I. Subotic, H. Schuldt, and L. Rosenthaler

will reestablish the minimum number of geographically dispersed replicas. This
should be done by either using the repaired failed storage nodes, or by using
other available and suitable storage nodes found through resource discovery.

Management of Complex Information Objects. The long-term preservation of
digital data requires the management of complex information objects, i.e. infor-
mation objects that are comprised of or are part of other information objects.
The challenge lies in the automated management of such complex objects in a
distributed setting. Preserving the integrity of complex objects is a twofold prob-
lem. First, the integrity of the referential information needs to be maintained,
and second, the integrity of the objects themselves. Referential and object in-
tegrity checking needs to be automated. Any loss of integrity needs to trigger
automated processes that will restore the integrity of the information object.
If the information object cannot be repaired solely by the information it car-
ries itself, other remote replicas need to be used. Besides, preserving integrity
is an important challenge when information objects evolve (e.g., annotations or
collection/subcollection information).

Scalability. The growing production of digital data that needs to be archived
requires a scalable distributed preservation system that should work efficiently
even with an increasing number of users and rapidly growing volumes of data
that need to be stored. The addition of storage resources should enhance the per-
formance of the system. This requires that the processes supporting the archiving
operations be automated and scalable themselves.

Openness and Extensibility. A long-term preservation system should provide
clearly separated and publicly available interfaces to enable easy extensions to
existing components and the possibility of adding new components. The system
should be able to be adapted to arising new challenges, by allowing curators of
digital objects to specify new processes to cope with additional challenges.

Resource Discovery, Load Balancing and Remote Execution. In a distributed
preservation system, the discovery of newly available resources, together with the
monitoring and management of existing resources is very important and should
be handled efficiently. The information gathered is important for the function-
ing of processes that provide automated replication of the information objects
to suitable remote storage nodes, constrained through preservation policies. The
system should be able to distribute the replicas among the available resources
for improving performance based on availability, access speed, higher security,
and/or reliability. Dynamically incorporating new resources or correctly han-
dling the loss of existing resources (temporarily or permanently) should also be
provided via automated processes with transactional semantics.

Security. Access to resources should be secured to ensure only known users
are able to perform allowed operations. In addition, in a distributed where dif-
ferent institutions cooperate and share storage resources, only the data owning
institution should be able to access and manage its data. However, cooperating
institutions should be able to access other institution’s meta-data and be granted
access to the content of interest after having been authorized by the data owner.

The DISTARNET Approach to Long-Term Digital Preservation 97

3 DISTARNET

DISTARNET is a fully distributed system consisting of a network of collaborat-
ing nodes. The DISTARNET network consists of nodes organized together into
virtual organizations (VO) [3]. The structure of the network inside the VOs is
in itself organized in a P2P fashion, and thus creates what we call a P2P-VO. A
DISTARNET node can be part of one or more P2P-VOs. Resources provided by
nodes within a P2P-VO can only be accessed by other member nodes. Within a
P2P-VO access restriction management can be used to define the allowed access
characteristics to the stored content. The discovery of new resources, monitoring
and management of existing resources will be done in a P2P fashion.

3.1 DISTARNET Data Model

In the context of DISTARNET the term DISTARNET Archival Object (DAO)
will be used to denote a container holding an Information Object consisting of a
Data Object (e.g., image, audio/video, text document, etc.) and the correspond-
ing representation information, or some other kind of metadata. This metadata
can provide additional descriptions for an information object (e.g., annotations),
the descriptions of relationships between information objects (links) or infor-
mation about collection/subcollection sets. Furthermore, also metadata on the
object’s storage and deployment can also be part of the DAO.

DISTARNET distinguishes between mutable and immutable content [12]:
First, the read-only digital objects that are to be archived (e.g., images, au-
dio/video, text documents, etc.) are considered immutable, i.e., thex cannot be
modified once created. Second, the metadata of the archived digital objects is
usually mutable and may exist in several versions and which can be modified
(e.g., annotations pertaining to some archived digital object).

The data model used in DISTARNET allows the archiving of complex data
objects. Figure 1 shows the DISTARNET logical data model in UML. In DIS-
TARNET, every container stores one information object characterized by its
type. To represent for example an annotation for an archived image, we will cre-
ate a DISTARNET Archival Object of the corresponding type which will contain
the annotation and make a link to the DAO containing the image – note that
an annotation can be anything from text to a full-fledged DAO. The container
storing the information objects corresponds to the Archival Information Pack-
age (AIP) described in the OAIS Reference Model. Although information such
as annotations which are generated over time are not the original data objects
that where archived, they are treated equally since they provide additional de-
scription information and need to be preserved as such alongside the originally
archived data objects.

3.2 DISTARNET Processes

The goal of DISTARNET is to provide dynamic replication, automated con-
sistency checks, and recovery of the archived digital objects utilizing autonomic

98 I. Subotic, H. Schuldt, and L. Rosenthaler

-URI

Distarnet Archival Object

Collection

Type

Representation

Preservation Policy

Audit Trai l

Access Control Policy

1

1

1 1

1
1

1 1..*
0..*1

1..*

1..*

0..*

0..*
0..1

0..1

hasRelationship hasAnnotation

Fig. 1. Logical Data Model for DISTARNET using UML notation

behavior and predefined processes, governed by preservation policies without any
centralized coordinator in a fully distributed network. Rather, the system pro-
vides two distributed repositories, namely a distributed Replica Location Repos-
itory that stores the degree of replication and the replica locations for each DIS-
TARNET DAO, and a distributed Node Information Repository with relevant
metadata on the participating nodes in a P2P-VO. Based on the information
stored in these repositories, DISTARNET provides several processes that ex-
hibit self-* properties needed for automatically dealing with the challenges of
long-term digital preservation.

Self-Configuration

In DISTARNET self-configuration manifests itself in the ability of the system to
automatically detect changes in the network. Events such as new nodes joining
or nodes leaving are being constantly monitored and taken into account.

Node Joining Process (NJP). A node joins the network after the node creden-
tials are configured and a number of seed nodes are added to the Neighbor Node
List. The NJP then contacts the seed nodes and starts to gather information
about other nodes in the network (e.g., populate the Node Information Reposi-
tory). The Neighbor Node List is a dynamic list, which will contain a few near
nodes defined as such by the P2P overlay metric.

Periodic Neighbor-Node Checking Process (PNCP). Every node will check pe-
riodically its neighbors (from the Neighbor Node List) by sending a message to
which the receiver has to reply in a defined time. If the receiver does not reply,
this node is marked, after some defined period of time, as lost. After that, the
system will begin with the self-healing behavior.

Automated Dynamic Replication Process (ADRP). The ADRP is responsible
for finding suitable storage nodes, estimating the optimal number of replicas
and initiating the creation of replicas. For this, the ADRP will find – using
the Node Information Repository – suitable geographically dispersed nodes for
storing the replicas by taking into account possible policy-based geographical
restrictions. The system will estimate the optimal number of replicas needed by
taking into account the availability of nodes (based on statistics on the individual
availability collected in the past) used to store a DAO and via the preservation

The DISTARNET Approach to Long-Term Digital Preservation 99

policy imposed availability threshold of the DAO itself. This estimate will be used
to raise the number of replicas if needed. To optimize the access performance the
system will create if necessary additional replicas by analyzing the usage patterns
of the digital objects. After evaluating a DAO regarding its overall availability in
the network, ADRP will initiate if needed the Reliable Copying Process (RCP)
and create new replicas. The reliable copying process is a BitTorrent-like transfer
mode that uses existing replicas in the network for creating new ones in a secure
and efficient manner. At process level, transactional semantics according to the
model of transactional processes [8] will be applied.

Self-Healing

Due to the continuous monitoring of nodes, the DISTARNET system will detect
abnormal conditions or problems that may harm its proper functioning (e.g., in
the case of a Node-Lost Event or a Corrupted DAO Event) and it will be able
to automatically recover from the following situations.

Node-Lost Event. The system will automatically react and initiate counter-
measures by reevaluating the DAOs affected by the disappeared node by the
ADRP and if needed create new replicas so that the policy-defined redundancy
and availability requirements are upheld again.

Corrupted DAO Event. Periodic integrity checks is done by the Periodic In-
tegrity Checking Process (PICP) and if integrity is breached, will automatically
trigger countermeasures like finding healthy replicas in the network and by us-
ing the reliable copying process to copy them in place of the corrupted DAOs to
rectify the problem.

Obsolete Data-Format. Data formats of the archived data objects are con-
stantly monitored and warnings are issued if a given data format is becoming
obsolete. The Data-Format Migration Process (DMPP) can be used to automat-
ically migrate data formats by following a predefined migration path.

Self-Learning

All the mentioned properties until now can only be provided if the system has
the needed information on which it can act upon. As a consequence, the DIS-
TARNET system must know its environment, especially the available resources,
and track their changes over time. This knowledge will be continuously gathered
and disseminated throughout the network and be used to autonomously manage
and maintain resource allocation through ADRP (e.g., finding suitable nodes
where data can be replicated to, automatic policy-based geographical distribu-
tion of data, etc.) and other processes needed for the operation of DISTARNET.
ADRP and PICP are triggered periodically. The parameters that trigger these
processes will be adapted dynamically by the system. They will be prolonged in
the case that for a longer period of time there where no changes in the network,
or shortened if there where recent changes.

100 I. Subotic, H. Schuldt, and L. Rosenthaler

4 DISTARNET Maintenance and Recovery

In what follows, we analyze how DISTARNET addresses the challenges intro-
duced in Section 2. which can be broadly categorized in issues involving Main-
tenance and Recovery processes.

4.1 Maintenance

DISTARNET enforces referential integrity (e.g., links between DAOs, collec-
tion/subcollection information) of its complex information objects using PICP.

Authenticity, chain of custody and completeness of the archived objects are
supported by the data model and supporting processes through maintaining
an audit trail. DISTARNET processes create automatically an audit record for
every operation done on an DAO, with details about who, what, when, where
and why the operation was executed.

The dynamic and autonomic nature of DISTARNET encounters hardware and
software obsolescence that at the bitstream level endanger the DAOs by means
of automated “media” migration, by allowing to simply turn off the old hardware
and turn on the new hardware.

The interpretability of the logical representation of the DAOs is guarantied by
processes providing automated data format migration and is supported by the
data model and the collection of extended format descriptions by using format
identification and characterization tools.

Scalability, resource discovery and load balancing are supported by a fully
distributed design of the network, adaptability of the triggers to lower the overall
load on the nodes caused by the maintenance processes, and by the ADRP which
also optimizes the usage of the storage resources provided in the network.

Openness and extensibility are very important attributes which DISTARNET
supports by allowing the curators to define new process, and by providing a
flexible data model that can adapt to new needs that can arise in the future
(e.g., in case of new data formats, new metadata standards).

4.2 Recovery

Due to the continuous monitoring of nodes, the DISTARNET system will detect
abnormal conditions or problems that may harm its proper functioning and it
will be able to automatically recover from those situations, again by means of
predefined processes.

Hardware problems caused by failure (e.g., power failure, hardware failure,
etc) or disaster (e.g., natural disaster, fire) can result in destruction of the whole
node, or in destruction or corruption of the stored DAO. The loss of a node
is discovered through the PNCP which triggers a node-lost event after some
predefined period of time, because at first a network problem is assumed. In
the case of a ode-lost event, this information is stored in the Node Information
Repository, the Replica Location Repository is updated, and both are propagated
throughout the network. Subsequently, the ADRP is started for the DAOs that
are affected (network wide redundancy) by the lost node.

The DISTARNET Approach to Long-Term Digital Preservation 101

Network problems caused by lost network connection or an intermittent net-
work connection are detected through the PNCP. For a lost connection to a node
to be classified as a network problem, upon the return of a node it has to be
verified that the node was running, only the network was down, and all DAOs
are accounted for. Such discovered network problems trigger an entry into the
Node Information Repository and are taken into consideration (e.g., reliability
of a node) by the ADRP.

Problems with the content of the archive caused through the corruption (e.g.,
hardware problems, malicious acts, etc.) of the DAOs is discovered through the
PICP. Any detected corruption is logged correspondingly in the Node Infor-
mation Repository where it speaks about the reliability of a specific node, in
the Replica Location Repository, and in the audit trail of the DAO for future
reference. Also subsequently the ADRP is triggered to resolve the problem.

DISTARNET processes are able to self recover from problems encountered
during their execution. Every DISTARNET process is composed of single atomic
tasks or other (sub)processes. The workflow engine responsible for the execution
the processes, monitors and logs every step. In the event of failure of any step, the
corresponding recovery process, either of the main process or of the subprocess
is triggered. Further we divide the processes in repeatable and non-repeatable
processes. The recovery of repeatable processes consist in the repeated execution
of those processes either until the process succeeds or a predefined number of
retries is reached. In the case of non-repeatable process, the recovery process
consist of clean-up tasks to end the process in a consistent state.

5 Related Work

For the design of digital archives, two different approaches can be distinguished.
First, a centralized approach which is followed by Kopal [5] and SHERPA DP [4].
This approach allows to easily control the archived content but implies rather
high infrastructure and maintenance costs and the inflexibility to cope with
rapidly increasing loads if they exceed the initial design. Second, a distributed
approach followed by LOCKSS [7], Cheshire 3 [13], and SHAMAN [9] where
the archiving infrastructure is distributed across the participants’ sites. These
systems have lower infrastructure and maintenance costs, the ability for virtually
unlimited growth, and allow for a higher degree of availability and reliability.
DISTARNET is built following the distributed approach.

Fedora Commons [6] and DSpace [11] are open source projects that allow the
creation of Digital Repositories for managing digital objects. Those two initia-
tives have been merged in the context of DuraCloud [2] which offers both storage
and access services, including content replication and monitoring services that
can span multiple cloud-storage providers. The idea is that Digital Reposito-
ries using DuraCloud can expand their systems and provide long-term preserva-
tion capabilities, or individuals can use directly use DuraCloud as a long-term
preservation system. DuraCloud and DISTARNET are similar as both provide
processes for the management of digital objects necessary for digital long-term
preservation. The difference lies in the flexibility of the DISTARNET processes

102 I. Subotic, H. Schuldt, and L. Rosenthaler

that manage digital objects between DISTARNET nodes by using local storage
or, if necessary, by using cloud based storage.

Hoppla [10] is an archiving solution that combines back-up and fully auto-
mated migration services for data collections in environments with limited re-
sources for digital preservation. Similar to Hoppla, DISTARNET also provides
processes that support data format migration for the archived digital objects.

6 Conclusion and Future Work

In this paper, we have presented DISTARNET’s self-healing and self-adaptation
features. DISTARNET is an ongoing effort to build a long-term digital preserva-
tion system that will provide a fully distributed, fault tolerant archiving
environment with autonomic behavior governed by preservation policies. DIS-
TARNET autonomously provides dynamic replication, automated consistency
checking and recovery of the archived digital objects. As part of DISTARNET,
we have developed a highly flexible data model that takes into account user gen-
erated annotations or collections and arbitrary links between objects. Based on
that, we have specified sophisticated management processes that are triggered
automatically when a violation of one of the preservation policies is detected.

In our future work, we plan to run a series of test cases that will simulate
the real world usage of the DISTARNET network and evaluate the autonomic
behavior of the system. A further emphasis will be put on testing the scalability
and performance of the system under load.

References

1. CCSDS: Reference Model for an Open Archival Information System (OAIS).
CCSDS 650.0-B-1, Consultative Committee for Space Data Systems

2. Duracloud, http://duraspace.org/duracloud.php
3. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable

virtual organizations. Int’l Journal of Supercomputer Applications 15(3) (2001)
4. Knight, G.: SHERPA DP: Establishing an OAIS-Compliant Preservation Environ-

ment for Institutional Repositories. In: Digital Repositories, pp. 43–48 (2005)
5. Kopal, http://kopal.langzeitarchivierung.de/
6. Lagoze, C., Payette, S., Shin, E., Wilper, C.: Fedora: an Architecture for Complex

Objects and their Relationships. Int’l Journal on Digital Libraries 6, 124–138 (2006)
7. Reich, V., Rosenthal, D.S.H.: LOCKSS (Lots Of Copies Keep Stuff Safe). The New

Review of Academic Librarianship 6, 155–161 (2000)
8. Schuldt, H., Alonso, G., Beeri, C., Schek, H.J.: Atomicity and Isolation for Trans-

actional Processes. ACM TODS 27(1), 63–116 (2002)
9. Shaman, http://shaman-ip.eu/shaman/

10. Strodl, S., Petrov, P., Greifeneder, M., Rauber, A.: Automating Logical Preser-
vation for Small Institutions with Hoppla. In: Lalmas, M., Jose, J., Rauber, A.,
Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 124–135.
Springer, Heidelberg (2010)

http://duraspace.org/duracloud.php
http://kopal.langzeitarchivierung.de/
http://shaman-ip.eu/shaman/

The DISTARNET Approach to Long-Term Digital Preservation 103

11. Tansley, R., Bass, M., Smith, M.: DSpace as an Open Archival Information System:
Current Status and Future Directions. In: Koch, T., Sølvberg, I.T. (eds.) ECDL
2003. LNCS, vol. 2769, pp. 446–460. Springer, Heidelberg (2003)

12. Voicu, L.C., Schuldt, H., Akal, F., Breitbart, Y., Schek, H.J.: Re:GRIDiT - Coordi-
nating Distributed Update Transactions on Replicated Data in the Grid. In: 10th
IEEE/ACM International Conference on Grid Computing, pp. 120–129 (2009)

13. Watry, P., Larson, R.: Cheshire 3 Framework White Paper. In: International Sym-
posium on Mass Storage Systems and Technology, pp. 60–64 (2005)

A Unified Algorithm for Continuous
Monitoring of Spatial Queries

Mahady Hasan, Muhammad Aamir Cheema, Xuemin Lin, and Wenjie Zhang

The University of New South Wales, Australia
{mahadyh,macheema,lxue,zhangw}@cse.unsw.edu.au

Abstract. Continuous monitoring of spatial queries has gained signif-
icant research attention in the past few years. Although numerous al-
gorithms have been proposed to solve specific queries, there does not
exist a unified algorithm that solves a broad class of spatial queries. In
this paper, we first define a versatile top-k query and show that vari-
ous important spatial queries can be modeled to a versatile top-k query
by defining a suitable scoring function. Then, we propose an efficient
algorithm to continuously monitor the versatile top-k queries. To show
the effectiveness of our proposed approach, we model various inherently
different spatial queries to the versatile top-k query and conduct exper-
iments to show the efficiency of our unified algorithm. The extensive
experimental results demonstrate that our unified algorithm is several
times faster than the existing best known algorithms for monitoring con-
strained k nearest neighbors queries, furthest k neighbors queries and
aggregate k nearest neighbors queries.

1 Introduction

With the availability of inexpensive mobile devices, position locators and cheap
wireless networks, location based services are gaining increasing popularity. Some
examples of the location based services include fleet management, geo-social
networking (also called location-based networking), traffic monitoring, location-
based games, location based advertisement and strategic planning etc. Due to
the popularity of these services, various applications have been developed that
require continuous monitoring of spatial queries. For example, a person driving a
car may issue k nearest neighbors (kNN) query to continuously monitor k closest
restaurants. Similarly, a taxi driver might issue a query to continuously monitor
the passengers that are within 5 Km of his location. Cabspotting1 and Zhiing2

are two examples of such applications.
Driven by such applications, continuous monitoring of spatial queries has re-

ceived significant research attention in the past few years. For example, sev-
eral algorithms have been proposed to answer kNN queries [14,22,20], range
queries [8,12,18,3], constrained kNN queries [7,9] and aggregate kNN queries [14].

1 http://cabspotting.org/faq.html
2 http://www.zhiing.com/how.php

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 104–118, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://cabspotting.org/faq.html
http://www.zhiing.com/how.php

A Unified Algorithm for Continuous Monitoring of Spatial Queries 105

Although various algorithms have been proposed to solve each of these spatial
queries, to the best of our knowledge, there does not exist a unified algorithm
that solves all the above mentioned queries. In this paper, we propose a uni-
fied algorithm to monitor a broad class of spatial queries including the above
mentioned spatial queries.

In Section 3.1, we first define a versatile top-k query and then show that var-
ious spatial queries can be modeled to the versatile top-k query (Section 3.2).
Given a set of objects, a versatile top-k query reports k objects with the lowest
scores. The score of each object is computed by using a versatile scoring func-
tion vsf() (the properties of a versatile scoring function are formally defined in
Section 3). Various spatial queries can be modeled to the problem of a versatile
top-k query by choosing a suitable scoring function. For example, a kNN query
can be modeled to a versatile top-k query by choosing a scoring function such
that vsf(o) = dist(o, q) where dist(o, q) returns the Euclidean distance between
the object o and a reference point q (called query point in spatial queries).

We present an efficient algorithm to continuously monitor versatile top-k
queries. Our unified algorithm can efficiently monitor any spatial query that
can be modeled to versatile top-k queries by defining a suitable scoring function.
To monitor any of these spatial queries, the only change we need to make in the
implementation is to add a new scoring function for that specific spatial query.
The unified algorithm then uses this scoring function to monitor the spatial
query.

To show the effectiveness of our approach, we choose various inherently differ-
ent spatial queries and model these queries to versatile top-k queries. Then, we
conduct experiments to show the efficiency of our unified algorithm. More specifi-
cally, we show the performance of our algorithm for monitoring constrained kNN
queries, furthest k neighbor queries and aggregate kNN queries.

Below we summarize our contributions in this paper.

– We define versatile top-k queries and show that various spatial queries can
be modeled to a versatile top-k query by choosing a suitable scoring function.

– To the best of our knowledge, we are first to present a unified algorithm to
efficiently monitor various spatial queries. We prove that our algorithm is
optimal in number of grid cells it visits to monitor the spatial queries.

– We conduct extensive experiments to study the performance of our unified
algorithm for monitoring various inherently different spatial queries. The
experimental results show that our unified algorithm outperforms existing
best known algorithms for these specific queries.

2 Background

2.1 Preliminaries

In this sectiom, we formally define few inherently different spatial queries.

k nearest neighbors query. A kNN [10,16,11,14,22,20] query returns the k
closest objects from the query point q. Given a set of objects O and a query

106 M. Hasan et al.

point q, the kNN query returns a set N of k objects such that for each ni ∈ N
the dist(ni, q) ≤ dist(o′, q) where o′ ∈ O − N .

kNN queries have a wide range of applications. For example, a person may
issue a kNN queries to find k closest restaurants to his location.

Constrained k nearest neighbors query. A constrained kNN query [7,9] re-
turns k objects closest to the query point q among the objects that lie inside
a constrained region CR. Given a set of objects O, a query point q and a con-
strained region CR, the constrained kNN query returns a set N containing k
objects such that for each ni ∈ N , dist(ni, q) ≤ dist(o′, q) where o′ ∈ O−N and
both o′ and ni lie in the constrained region CR.

Consider that a user wants to find k post offices closest to his location from
a suburb named Randwick. He may issue a constrained kNN query where the
constrained region corresponds to the suburb Randwick.

Furthest k neighbors query. A furthest k neighbors query [17,6,1] returns k
furthest objects from the query point q. Given a set of objects O and a query
point q, the furthest k neighbors query returns an answer set N containing k
objects such that for each ni ∈ N , dist(ni, q) ≥ dist(o′, q) where o′ ∈ O − N .

Consider that a town planner wants to establish a service center in a town.
Before establishing this service center, the town planner may need to find the
furthest service user to identify the maximum range the service would need to
cover.

Aggregate k nearest neighbors query. Given a set of objects O and a query
set Q with m numbers of instances {q1, ..., qm}, the aggregate kNN query[21,15,13]
returns k objects with the minimum aggregate distance from Q. Let aggdist(o, Q)
be the aggregate distance of an object o from Q. An aggregate kNN query
returns an answer set N containing k objects such that for each ni ∈ N ,
aggdist(ni, Q) ≤ aggdist(o′, Q) where o′ ∈ O−N . Below we define the aggregate
distance functions for some common aggregate kNN queries.

1. Sum-aggregate kNN query uses aggdist(o, Q) =
∑

qi∈Q dist(o, qi).
2. Max-aggregate kNN query uses aggdist(o, Q) = maxqi∈Q(dist(o, qi)).
3. Min-aggregate kNN query uses aggdist(o, Q) = minqi∈Q(dist(o, qi)).

Consider that a group of friends wants to meet at a restaurant such that the total
distance traveled by them to reach the restaurant is minimum. A sum-aggregate
kNN query (k = 1) returns the location of such a restaurant.

2.2 Related Work

[22,20,14] are some notable techniques that use grid-based index to monitor spa-
tial queries. Conceptual Partitioning Monitoring (CPM) technique [14] organizes
the grid cells into conceptual rectangles and assigns each rectangle a direction
and a level number. The direction is R, D, L, U (for right, down, left, up) and
the level number is the number of cells in between the rectangle and q as shown
in Fig. 1.

A Unified Algorithm for Continuous Monitoring of Spatial Queries 107

q

o1
o2o3

o4

R1

CR

R0D0

D1

L0L1L2L3L4 U0

U1

U2

U3

U4

Fig. 1. CPM Constrained
NN

q2

o3 q1

o1

o5 o2

o4

M

L0L1 R0 R1

D0
D1

U0

U1

Fig. 2. Cells accessed by
CPM

q2

o3 q1

o1

o5 o2

o4

Fig. 3. Cells accessed by
an optimal algorithm

CPM first initializes an empty min-heap H . It inserts the query cell cq with
key set to zero and the level zero rectangles (R0, D0, L0, U0) with the keys set to
minimum distances between the query q and the rectangles into H . The entries
are de-heaped iteratively. If a de-heaped entry e is a cell then it checks all its
objects and updates q.kNN (the set of kNN for the query q) and q.distk (the
distance of current kthNN from q). If e is a rectangle, it inserts all the cells inside
the rectangle and the next level rectangle in the same direction into the heap
H . The algorithm stops when the heap becomes empty or when e’s distance is
greater than q.distk.

The update of each object is handled as follows. (1) Incoming update: CPM
removes the kth NN and inserts the object in q.kNN . (2) Outgoing update:
CPM removes the object from q.kNN and finds the next NN by visiting the
remaining entries in the heap. In case the query moves, CPM starts from the
scratch. CPM outperforms both YPK-CNN [22] and SEA-CNN [20]. CPM can
also be extended to solve few other spatial queries.

CPM can be used to answer continuous constrained kNN queries by making
a small change. More specifically, the algorithm inserts only the rectangles and
the cells that intersect the constrained region into the heap. Figure 1 shows an
example where the constrained region is a polygon R. The constrained NN is o2

and the rectangles/cells shown shaded are inserted into the heap by CPM.
CPM can also be extended to answer Aggregate kNN queries. In case of a con-

ventional kNN query, the algorithm starts with the query cell cq. For aggregate
kNN query, the algorithm computes a rectangle M such that all query instances
lie in M . At the initial phase, the algorithm inserts the rectangle M and the zero
level rectangles in the heap with their aggregated distance aggdist(e, Q) (e.g.,
minqi∈Q dist(e, qi)) from the query set Q. For instance, in the Fig. 2 the min-
aggregate NN is o3 and all rectangles shown in solid lines are inserted in the heap
to compute o3. Please note that the algorithm inserts all the shaded cells into the
heap. Note that CPM inserts many un-necessary cells into the heap. Fig. 3 shows
the minimum number of cells (shown shaded) that are needed to be inserted

108 M. Hasan et al.

in heap by an optimal algorithms. We show that our approach significantly
reduces the number of cells inserted in the heap.

CircularTrip [5] and iSEE [19] also efficiently monitor kNN queries. Circu-
larTrip visits the cells around query point round by round until all NNs are
retrieved. On the other hand iSEE computes a visit order list around the query
point to efficiently answer the kNN query. However, extension of these algorithms
for other spatial queries (e.g., aggregate kNN query) is non-trivial.

3 Problem Definition

Let p be a point and R and Rc be two hyper-rectangles in a d-dimensional space
Rd. If R contains Rc (i.e., Rc is inside the hyper-rectangle R) then Rc is called
the child of R. Consider a function f(p) that returns the score of a given point
p. An upper bound score SU (R) of a hyper-rectangle R is defined as,

SU (R) = max
p∈R

(f(p))

where, p ∈ R denotes a p that lies in the hyper-rectangle R. Similarly, the lower
bound score SL(R) is defined as,

SL(R) = min
p∈R

(f(p))

Versatile Scoring function: A function f() is called a versatile scoring func-
tion iff SU (R) ≥ SU (Rc) and SL(R) ≤ SL(Rc) for any R and Rc where Rc is
a child rectangle of R. We denote the versatile scoring function as vsf(). The
versatile score of a given point p is denoted as vsf(p).

Consider a function f(p) = dist(p, q) where dist(p, q) is the Euclidean dis-
tance3 between the point p and a given point q. Hence, the upper bound score
SU (R) is the maximum Euclidean distance between the rectangle R and the fixed
point q. Similarly, the lower-bound score SL(R) is the minimum Euclidean dis-
tance between the rectangle R and the fixed point q. Note that f(p) = dist(p, q)
is a versatile scoring function.

3.1 Versatile Top-k Queries

Consider a set of objects O = {o1, . . . , oN} where oi denotes the spatial location
of ith object. Also, consider a versatile scoring function vsf() to compute the
score of the objects. A top-k query returns a set of k objects N = {n1, . . . , nk}
such that vsf(ni) ≤ vsf(o′) for any ni ∈ N and any o′ ∈ O − N . Hence, top-k
query returns k objects having smallest scores.

In this paper we study the continuous monitoring of top-k query where the
top-k results are updated with the changes in the datasets. We follow timestamp
model where the results are required to be updated after every t time units.

3 Other Lp distance metrics can also be used.

A Unified Algorithm for Continuous Monitoring of Spatial Queries 109

3.2 Modeling Spatial Query to Top-k Query

We can model various spatial queries to a versatile top-k query by defining
a suitable versatile scoring function. The versatile scoring functions for some
popular spatial queries are given below.

k nearest neighbors queries:

vsf(o) = dist(o, q)

Here, the dist(o, q) is the Euclidean distance between an object o and the query
point q.

Furthest k neighbors queries:

vsf(o) = −dist(o, q)

Please not that the object furthest from the query q has the smallest score.
Hence, the further objects are preferred in this case.

Aggregate k nearest neighbors queries:

Below we define the scoring functions for Sum, Max and Min aggregate k nearest
neighbors queries, respectively.
i) Sum-Aggregate k nearest neighbors queries: vsf(o) =

∑
qi∈Q dist(o, qi)

ii) Max-Aggregate k nearest neighbors queries:vsf(o) = maxqi ∈ Q(dist(o, qi))
iii) Min-Aggregate k nearest neighbors queries: vsf(o) = minqi ∈ Q(dist(o, qi))

Constrained kNNs queries:

vsf(o) =

{
dist(o, q), if o lies inside the constrained region CR;
∞, otherwise.

Note that we can also define the versatile scoring functions for other queries like
constrained furthest neighbors query and constrained aggregate kNNs query etc.

Next, we define the versatile scoring function to model another spatial query
which is not essentially a top-k query. This demonstrates that our proposed
unified algorithm can be applied to answer several other queries that are not
top-k queries.

Circular Range queries: Given a set of objects O, a query point q and a
positive value r. A circular range query [8,12,3] returns every object n ∈ O
that lies within distance r of the query location q (i.e., every object such that
dist(n, q) ≤ r). We call such query a circular range query because the search
space is a circle around the query point q with the radius r. Below we define the
versatile scoring function for the circular range query.

vsf(o) =

{
1, if dist(o, q) ≤ r;
∞, otherwise.

Here, r is the radius of the circular range query.

110 M. Hasan et al.

To model the circular range query to a versatile top-k query we need to make
the following small changes: i) every object with score equal to kth object’s score
must also be reported: ii) an object with score ∞ must not be reported. Note
that we if the range contains more than k objects then all the objects inside the
range are reported. On the other hand, if the range contains less than k objects
then objects outside the range are not reported.

4 Technique

4.1 Conceptual Grid Tree

In this section, we briefly describe the conceptual grid tree which we introduced
in [4] and later used to answer other spatial queries in [3,9]. The conceptual grid
tree is the backbone of our approach. First, we briefly describe the grid index
and then we describe the conceptual grid tree which is a conceptual visualization
of the grid index.

In a grid based index ,the whole space4 is divided into a number of cells,
where the size of each cell is δ × δ. Hence, the extent of each cell in a dimension
is δ. A particular cell is denoted as c[i, j] where i is the column number and j
is the row number. The lower left cell of the grid is c[0, 0]. An object o with the
position (x, y) is located into the cell c[�x/δ�, �y/δ�]. I.e., a cell c[i, j] contains
all the objects with x-coordinate in the range i.δ to (i + 1).δ and y-coordinate
in the range j.δ to (j + 1).δ.

In our proposed conceptual grid tree structure we assume a grid that consists
of 2n×2n cells5. The grid is treated as a conceptual tree where the root contains
all 2n × 2n grid cells. Each intermediate entry e in a level l (for root l = 0) is
recursively divided into four children of equal sized rectangles such that each
child of an entry e contains x/4 cells where x is the number of cells contained by
the intermediate entry e. I.e., if an entry e at level l contains 2n−l × 2n−l cells
then each child of the entry e will contain 2n−l−1 × 2n−l−1 cells. Every leaf level
entry contains four grid cells.

The root, intermediate entries and the grid cells are shown in Fig. 4. In Fig. 4
the grid size is 4× 4 (i.e., 22 × 22 grid cells). Hence, the root contains all 22 × 22

cells. An intermediate entry with level 1 contains 22−1 × 22−1 cells (i.e., four
cells).

Please note that the Grid-tree is just a conceptual visualization of the grid
and it does not exist physically (i.e., we do not need pointers to store entries
and its children). In Fig. 4 the rectangles with dotted lines are considered as
conceptual structure and the rest are physical structure. Therefore, root and the
intermediate entries are conceptual only and they are not stored in the memory.

4 For the ease of demonstration of our algorithm we use two dimensional space, al-
though our technique can be applied to higher dimensional space.

5 If the grid size is not 2n × 2n, it can be divided into several smaller grids such that
each grid is 2i×2i for i > 0. For example, a 8×10 grid can be divided into 5 smaller
grids (i.e., one 8× 8 grid and four 2× 2 grids).

A Unified Algorithm for Continuous Monitoring of Spatial Queries 111

Grid cells

Intermediate

root

entries
Object List

Query List

 o1 o4 ….

Physical Structure

 q1 q7 ….

Conceptual Structure

Fig. 4. Conceptual Grid Tree Structure

To retrieve the children of an entry (or root), we divide its rectangle into four
equal sized rectangles such that each child has side length d/2 where d is the
side length of its parent. A rectangle with side length equal to δ (the width of a
grid cell) refers to a cell c[i, j] of the grid.

4.2 Unified Algorithm

Initial computation. Most of the spatial queries algorithms that can be ap-
plied on other tree structure (e.g., R-tree) can easily be applied on the conceptual
grid tree. The advantage of using this grid tree over previously used grid based
access methods is that if an intermediate entry of the tree lies in the pruned
region then none of its cells are accessed.

Algorithm 1. CGTree-based Unified Initial Computation
Input: q: query point with the versatile scoring function(vsf()); k: an integer
Output: top-k query results
1: q.scorek=∞; q.kA = φ; H = φ
2: Initialize a min-heap H with root entry of the conceptual grid tree
3: while H �= φ do
4: de-heap an entry e
5: if SL(e) ≥ q.scorek then
6: return q.kA
7: if e is a cell in the grid then
8: update q.kA and q.scorek by the objects in e
9: else

10: for each of the four children c do
11: if SL(c) ≤ q.scorek then
12: insert c into H with key SL(c)
13: return q.kA

The initial computation of the unified algorithm using the Conceptual Grid-
Tree is presented in Algorithm 1. The main idea is similar to that of applying
BFS search [11] on R-tree based data structure. Specifically, the algorithm starts
by inserting the root of the Grid-tree into a min-heap. The algorithm iteratively
de-heaps the entries. If a de-heaped entry e is a grid cell then it visits the cell

112 M. Hasan et al.

and updates q.kA and q.scorek where q.kA is the answer set and q.scorek is the
kth smallest score of objects in q.kA (line 8). If |q.kA| < k (i.e, the size of the
answer set is less then k) then q.scorek is set to infinity. Please recall that the
width of a cell is δ. So, the algorithm checks the width of each entry e to identify
whether e is a grid cell or not (line 7).

If the de-heaped entry e is not a grid cell, then the algorithm inserts its
children into the heap H with their lower bound scores (lines 10 to 12). The
algorithm terminates when the heap becomes empty (line 3) or when a de-heaped
entry e has its lower bound score SL(e) ≥ q.scorek (line 5). This guarantees the
correctness of the algorithm. This is because any cell c for which SL(c) ≥ q.scorek

cannot contain an object that has a score smaller than q.scorek (and cannot be
the answer for this reason). When the de-heaped entry e has its lower bound
score SL(e) ≥ q.scorek, every remaining entry e′ in the heap H has its lower
bound score SL(e′) ≥ q.scorek because the entries are accessed in ascending
order of their lower bound scores.

Continuous Monitoring. Before we present the continuous monitoring algo-
rithm, we introduce the data structure that is used for efficient update of the
results.

The system stores a query table and an object table to record the information
about the queries and the objects. An object table stores the id and location of
all objects. The query table stores the query id, query location, the answer set
q.kA and the cellList (cells that the query has visited to retrieve all objects in
the answer set q.kA).

Each cell of the grid stores two lists namely object list and query list. The
object list of a cell c contains the object id of every object that lies in c. The
query list of a cell c contains the id of every query q that has visited c (by
visiting c we mean that it has considered the objects that lie inside it (line 8 of
Algorithm 1)). The query list is used to quickly identify the queries that might
have been affected by the object movement in a cell c.

Handling a single update: Assume that an object o reports a location update
and oold and onew correspond to its old and new locations, respectively. The
object update can affect the results of a query q in the following three ways;

1. internal update: vsf(oold) ≤ q.scorek and vsf(onew) ≤ q.scorek; clearly,
only the order of the answer set may have been affected, so we update the
order of q.kA accordingly.

2. incoming update: vsf(oold) > q.scorek and vsf(onew) ≤ q.scorek; this means
that o is now a part of q.kA. Hence, o is inserted in q.kA.

3. outgoing update: vsf(oold) ≤ q.scorek and vsf(onew) > q.scorek; i.e., o is
not part of the answer set anymore. Therefore, we delete o from q.kA.

The complete update handling module: The update handling module con-
sists of two phases. In the first phase, we receive the object updates. For each
object update, we reflect its effect on the results according to the three scenarios
described earlier. In the second phase, we compute the final results. Algorithm 2
presents the details.

A Unified Algorithm for Continuous Monitoring of Spatial Queries 113

Algorithm 2. Continuous Monitoring
Input: location updates
Output: q.kA
Phase 1: receive updates
1: for each object update o do
2: Affected queries Qaff = coold .q list ∪ conew .q list
3: for each query q in (Qaff) do
4: if internal update; update the order of q.kA
5: if incoming update; insert o in q.kA
6: if outgoing update; remove o from q.kA

Phase 2: update results
7: for each query q do
8: if |q.kA| ≥ k; keep top k objects in q.kA and update q.scorek

9: if |q.kA| < k; expand q.kA
10: return q.kA

Phase 1: First, we receive the object updates and for each object update, we
identify the queries that might have been affected by this update. It can be
immediately verified that only the queries in the query lists of cold and cnew

may have been affected where cold and cnew denote the old and new cells of
the object, respectively. For each affected query q, the update is handled (lines 3
to 6) as mentioned previously (e.g., internal update, incoming update or outgoing
update).

Phase 2: After all the updates are received, the results of the queries are updated
as follows; if q.kA contains more than k objects in it (more incoming updates than
the outgoing updates), the results are updated by keeping only the top k objects.
Otherwise, if q.kA contains less than k objects, we expand the search region
so that q.kA contains k objects. The expansion is similar to the Algorithm 1
except the following changes. Any entry e that has SU (e) ≤ q.scorek are not
inserted into the heap. This is because such entries have already been explored.
The stopping criteria is same as the initial computation i.e., we stop when a
de-heaped entry e has SL(e) ≥ q.scorek.

If a query changes its location the versatile score become invalid. Hence, the
results are computed by calling the Algorithm 1 (i.e., we compute the result for
the query from the scratch).

Proof of optimality and correctness. Before we prove the optimality, we
define two terms; accessing and visiting a cell. We say that a cell has been
accessed if the algorithm inserts it in the heap (e.g., line 12 of Algorithm 1).
If a cell is de-heaped from the heap and the algorithm retrieves the objects in
this cell, we say that the cell has been visited by the algorithm (e.g., line 8 of
Algorithm 1). Please note that the cost of visiting a cell is usually significantly
higher than the cost of accessing a cell.

We prove that our algorithm is opitmal in number of visited cells (i.e., it does
not visit any unnecessary cell to answer the query). To prove the correctness, we

114 M. Hasan et al.

show that our algorithm visits all the cells that must be visited to compute the
correct results.

Proof. Let qold.scorek and qnew.scorek be the scores of kth object before and
after the update, respectively. Consider the case when qold.scorek ≥ qnew.scorek

(i.e., the number of incoming updates is at least equal to the number of outgoing
updates). This implies |q.kA| ≥ k (line 8 of Algortihm 2) and we do not need to
visit any new cell to update the result. Therefore, we only need to consider the
case when qold.scorek < qnew.scorek (line 9 of Algorithm 2). Below, we prove
the optimality and correctness of our algorithm for this case.

Let C be the set of minimum cells that have to be visited in order to guarantee
the correct results. First, we identify C and show that our algorithm does not
visit any unnecessary cell c′ such that c′ /∈ C. A cell c′ for which SU (c′) ≤
qold.scorek is not required to be visited. This is because all the objects in this cell
have been considered earlier. Similarly, a cell c′ for which SL(c′) ≤ qnew.scorek

is not required to be visited. This is because every object in such cell has score
at least equal to qnew .scorek. Therefore, the set C of minimum cells consists of
every cell c that satisfies the following two inequalities.

SU (c) > qold.scorek (1)
SL(c) < qnew.scorek (2)

Please note that in our update handling algorithm, we ignore the cells that have
SU (c) ≤ qold.scorek and terminate the algorithm when SL(c) ≥ qnew.scorek (see
Section 4.2 Phase 2). Thus, we satisfy both of the above inequalities. Therefore,
our algorithm does not visit any un-necessary cell and is optimal in the number
of visited cells.

Please note that the initial computation can be considered as a special case
of update handling where qold.scorek is set to zero.

As a proof of correctness, we show that our algorithm visits all the cells in the
set C. Recall that we maintain the cells in a heap based on their lower bound
scores. Therefore, the cells are visited in the ascending order of their lower bound
scores and it guarantees that every cell c for which SL(c) < qnew.scorek is visited.

5 Experiments

We choose three inherently different spatial queries and run experiments to eval-
uate the efficiency of our unified algorithm. More specifically, we run the exper-
iments for the constrained kNN queries, the aggregate kNN queries and the
furthest k neighbors queries. Since our algorithm is based on the Conceptual
Grid Tree, we refer to it as CGT.

We compare our algorithm with CPM [14]. As mentioned by the authors, it
can be modified to answer constrained kNN and aggregate kNN queries. We
extend CPM to answer furthest k neighbors query as follow. We compute the
furthest conceptual rectangles from the query cell cq in all four directions (i.e.,
right, down, left, up). Initially, we insert the furthest rectangles in the heap with
their keys set to the maximum distances between the query and the rectangles.

A Unified Algorithm for Continuous Monitoring of Spatial Queries 115

Table 1. System Parameters

Parameter Range

Number of objects (×1000) 20, 40, 60, 80, 100

Number of queries 100, 500, 1000, 2500, 5000
Value of k 2, 4, 8, 16, 32, 64, 128
Object/query agility (in %) 10, 30, 50, 70, 90
Aggregate function (for aggregate queries only) sum, max, min
Number of query instances (for aggregate queries only) 5, 10, 25, 50, 100

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

162 322 642 1282 2562

T
im

e
in

 s
ec

on
d

Grid Cardinality

CPMAggNN
CGTAggNN

(a) Aggregate kNN

 0

 0.5

 1

 1.5

 2

 2.5

162 322 642 1282 2562

T
im

e
in

 s
ec

on
d

Grid Sizes

CPM
CGT

(b) Furthest k neighbor

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

162 322 642 1282 2562

T
im

e
in

 s
ec

on
d

Grid Cardinality

CPMConstNN
CGTConstNN

(c) Constrained kNN

Fig. 5. Effect of grid cardinality

After de-heaping a rectangle, the previous level (closer to the query cell) rect-
angle in the same direction is inserted in the heap. We use a max heap and thus
retrieve the rectangles in descending order of their maximum distances from the
query.

Our experiment settings are similar to those used in [14]. More specifically,
we use Brinkhoff data generator [2] to generate objects moving on the road
network of Oldenburg, a German city. The queries are generated similarly. Each
query is monitored for 100 time stamps and the experiment figures show the
total computation time for a single query for the duration of 100 time stamps.
Table 1 shows the parameters used in our experiments and the default values
are shown in bold. Agility corresponds to the percentage of objects and queries
that issue location updates at a given timestamp.

First we study the effect of grid cardinality. We vary the grid size and compare
the algorithms for each of the three queries in Fig. 5. In accordance with previous
work that use grid based approach, the performance degrades if the grid size is
too small or too large. More specifically, if the grid has too low cardinality, the
cost of the queries increases because each cell contains larger number of objects.
On the other hand, if the grid cardinality is too high then most of the cells are
empty and the cost increases because the number of visited cells becomes large.

Based on Fig. 5, we choose the default grid sizes for both of the algorithms.
More specifically, the default grid size selected for CPM is 64× 64 and for CGT
is 128 × 128. In the remaining experiments, we choose these default grid sizes
for both of the algorithms.

In Fig. 6, Fig. 7, Fig. 8 and Fig. 9, we study the effect of k, the number of
data objects, the number of queries and the agility of the datasets, respectively.

116 M. Hasan et al.

 0.3

 0.4

 0.5

 0.6

 2 4 8 16 32 64 128

T
im

e
in

 s
ec

on
d

k Values

CPM
CGT

(a) Aggregate kNN

 0

.20

.40

.60

.80

1.0

 2 4 8 16 32 64 128

T
im

e
in

 s
ec

on
d

k Values

CPM
CGT

(b) Furthest k Neighbor

.05

.10

.15

.20

.25

.30

 2 4 8 16 32 64 128

T
im

e
in

 s
ec

on
d

k Values

CPM
CGT

(c) Constrained kNN

Fig. 6. Effect of the value of k

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

20K 40K 60K 80K 100K

T
im

e
in

 s
ec

on
d

Number of Objects

CPM
CGT

(a) Aggregate kNN

0.15

0.20

0.25

20K 40K 60K 80K 100K

T
im

e
in

 s
ec

on
d

Number of Objects

CPM
CGT

(b) Furthest k Neighbor

0

0.05

0.10

0.15

0.20

0.25

20K 40K 60K 80K 100K

T
im

e
in

 s
ec

on
d

Number of Objects

CPM
CGT

(c) Constrained kNN

Fig. 7. Effect of number of objects

 0

 1000

 2000

 3000

 4000

 5000

100 500 1000 2500 5000

T
im

e
in

 s
ec

on
d

Number of queries

CPM
CGT

(a) Aggregate kNN

 0

 200

 400

 600

 800

 1000

 1200

100 500 1000 2500 5000

T
im

e
in

 s
ec

on
d

Number of queries

CPM
CGT

(b) Furthest k Neighbor

150

300

450

600

750

100 500 1000 2500 5000

T
im

e
in

 s
ec

on
d

Number of queries

CPM
CGT

(c) Constrained kNN

Fig. 8. Effect of number of queries

Although our algorithm is unified and does not require modification for different
queries, it outperforms CPM for all different settings.

Since aggregate kNN queries has two extra parameters (the number of query
instances and the aggregate function), we conduct more experiments to evaluate
the performance of our algorithm for these parameters. Fig. 10(a) shows the effect
of number of query instances. As expected, the cost of each algorithm increases
when the number of query instances is large. This is because the cost of aggregate
function increases with the increase in the number of query instances.

Fig. 10(b) studies the effect of different aggregate functions (i.e., Sum, Max
and Min). Our algorithm outperforms CPM for each of the aggregate functions.
The percentage on top of each group represents the percentage of the time taken
by our unified algorithm with respect to CPM.

A Unified Algorithm for Continuous Monitoring of Spatial Queries 117

 0

 0.2

 0.4

 0.6

 0.8

1.0

 1.2

 1.4

10 30 50 70 90

T
im

e
in

 s
ec

on
d

Agility (in %)

CPM
CGT

(a) Aggregate kNN

0.10

0.15

0.20

0.25

0.30

10 30 50 70 90

T
im

e
in

 s
ec

on
d

Agility (in %)

CPM
CGT

(b) Furthest k Neighbor

0.05

0.15

0.25

0.35

0.45

10 30 50 70 90

T
im

e
in

 s
ec

on
d

Agility (in %)

CPM
CGT

(c) Constrained kNN

Fig. 9. Effect of data agility

 0

 1

 2

 3

 4

 5

 5 10 25 50 100

T
im

e
in

 s
ec

on
d

Number of aggregated queries

CPM
CGT

(a) # of instances for a
query

 0

 0.2

 0.4

 0.6

 0.8

Min Max Sum

T
im

e
in

 s
ec

on
d

Aggregated function

46.80% 49.50%

52.75%

CPM
CGT

(b) Aggregate function

Fig. 10. Aggregate kNN effect

6 Conclusion

We are first to present a unified algorithm to answer a broad class of spatial
queries. Our proposed algorithm is optimal in the sense that it visits minimum
number of cells throughout the life of a continuous query. Our extensive experi-
mental results demonstrate that for each inherently different spatial queries our
unified algorithm significantly outperforms existing best known algorithm.

Acknowledgments. Xuemin Lin was supported by the ARC Discovery Grants
(DP110102937, DP0987557 and DP0881035).

References

1. Bae, S.W., Korman, M., Tokuyama, T.: All farthest neighbors in the presence of
highways and obstacles. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS,
vol. 5431, pp. 71–82. Springer, Heidelberg (2009)

2. Brinkhoff, T.: A framework for generating network-based moving objects. GeoIn-
formatica 6(2), 153–180 (2002)

3. Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Multi-guarded safe
zone: An effective technique to monitor moving circular range queries. In: ICDE,
pp. 189–200 (2010)

4. Cheema, M.A., Lin, X., Zhang, Y., Wang, W., Zhang, W.: Lazy updates: An ef-
ficient technique to continuously monitoring reverse knn. VLDB 2(1), 1138–1149
(2009)

118 M. Hasan et al.

5. Cheema, M.A., Yuan, Y., Lin, X.: CircularTrip: An effective algorithm for con-
tinuous kNN queries. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nan-
tajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 863–869. Springer,
Heidelberg (2007)

6. Chen, Z., Ness, J.W.V.: Characterizations of nearest and farthest neighbor algo-
rithms by clustering admissibility conditions. Pattern Recognition 31(10), 1573–
1578 (1998)

7. Ferhatosmanoglu, H., Stanoi, I., Agrawal, D.P., Abbadi, A.E.: Constrained nearest
neighbor queries. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.)
SSTD 2001. LNCS, vol. 2121, pp. 257–278. Springer, Heidelberg (2001)

8. Gedik, B., Liu, L.: Mobieyes: Distributed processing of continuously moving queries
on moving objects in a mobile system. In: EDBT, pp. 67–87 (2004)

9. Hasan, M., Cheema, M.A., Qu, W., Lin, X.: Efficient algorithms to monitor con-
tinuous constrained k nearest neighbor queries. In: Kitagawa, H., Ishikawa, Y., Li,
Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 233–249. Springer,
Heidelberg (2010)

10. Henrich, A.: A distance scan algorithm for spatial access structures. In: ACM-GIS,
pp. 136–143 (1994)

11. Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Egenhofer, M.J.,
Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 83–95. Springer, Heidelberg
(1995)

12. Lazaridis, I., Porkaew, K., Mehrotra, S.: Dynamic queries over mobile objects. In:
Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke, M.
(eds.) EDBT 2002. LNCS, vol. 2287, pp. 269–286. Springer, Heidelberg (2002)

13. Luo, Y., Chen, H., Furuse, K., Ohbo, N.: Efficient methods in finding aggregate
nearest neighbor by projection-based filtering. In: Gervasi, O., Gavrilova, M.L.
(eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 821–833. Springer, Heidelberg
(2007)

14. Mouratidis, K., Hadjieleftheriou, M., Papadias, D.: Conceptual partitioning: An
efficient method for continuous nearest neighbor monitoring. In: SIGMOD, pp.
634–645 (2005)

15. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor
queries in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)

16. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD,
pp. 71–79 (1995)

17. Suri, S.: Computing geodesic furthest neighbors in simple polygons. J. Comput.
Syst. Sci. 39(2), 220–235 (1989)

18. Wu, K.L., Chen, S.K., Yu, P.S.: Incremental processing of continual range queries
over moving objects. IEEE Trans. Knowl. Data Eng. 18(11), 1560–1575 (2006)

19. Wu, W., Tan, K.L.: isee: Efficient continuous k-nearest-neighbor monitoring over
moving objects. In: SSDBM, p. 36 (2007)

20. Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous
k-nearest neighbor queries in spatio-temporal databases. In: ICDE, pp. 643–654
(2005)

21. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road
networks. IEEE Trans. Knowl. Data Eng. 17(6), 820–833 (2005)

22. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving
objects. In: ICDE, pp. 631–642 (2005)

Real-Time Monitoring of Moving Objects Using
Frequently Used Routes

Yutaka Ohsawa1, Kazuhisa Fujino1, Htoo Htoo1, Aye Thida Hlaing1,
and Noboru Sonehara2

1 Graduate School of Science and Engineering, Saitama University
2 National Institute of Informatics

Abstract. Recently, real-time monitoring of moving objects (MOs),
such as cars and humans, has attracted interest. In these systems,
tracking trajectories and positions of MOs accurately and for the least
communication cost is an important goal. To achieve this, MO position
prediction is important. Some studies have proposed real-time monitor-
ing systems that share route information between MOs and a server to
predict MO position; however, these systems target public transporta-
tion, such as buses, for which the route is always fixed. To the best of
the authors’ knowledge, a real-time monitoring method for sharing route
information between passenger cars and a central server does not exist.
This paper proposes such a method using the sharing of frequently used
routes (FUR) data between each MO and the server. The server and the
MO predict near-future position of MO on the basis of the FUR informa-
tion using a common algorithm. When the position of the MO deviates
from the prediction, it sends a message to the server to maintain posi-
tion synchronization. This paper evaluates the proposed method using
real trajectories of cars and shows that the proposed method outperforms
the conventional method, that is, dead-reckoning on a road network.

1 Introduction

Efficient transportation systems for human travel and logistics are required for
both environmental and resource-saving reasons. In addition, the diversification
of information services required for comfortable and efficient car driving has in-
creased. In particular, the popularity of in-car navigation systems is increasing,
as well as pedestrian navigation systems using mobile phones. Using these de-
vices, it is possible to track moving objects and deliver to them various types of
location-based services (LBS) .

Car position monitoring is an essential technology for management of taxis,
home delivery vehicles, patrol cars, and ambulances . Such moving objects (MOs)
can get their positions easily by using GPS (Global Positioning System). If MOs
send their position to a server every Tu seconds, the server can monitor the
positions of the fleet in real time. However, this method requires very frequent
reports to maintain high accuracy of the MO positions. On the other hand, when
Tu is large and an MO moves a large distance during Tu seconds, the server
cannot know the real trajectory of that MO during this interval. However, if

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 119–133, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

120 Y. Ohsawa et al.

the trajectory information is known, then the state of traffic congestion on the
road where the MO is moving can be estimated. Therefore, efficient real-time
monitoring of MO position and trajectory is required.

To reduce the overhead of position updating, several shared-prediction-based
approaches have been proposed [9]. These approaches share a prediction of MO’s
near-future position between each MO and the server. The MO sends a message
to the server when the MO’s real position deviates from the predicted position.
When the server receives the message, it modifies the prediction based on the
parameters in the message and then continues monitoring.

Over the previous two decades, several methods have been reported for the
prediction of MO movement; however, most of these have targeted MOs freely
moving in Euclidian space. The most common applications are tracking for cel-
lular phone networks and LBSs, which are not constrained to movement on a
road network.

Scheduled vehicles, for example buses, are an important application target of
real-time monitoring. In this case, the MO moves strictly along the predeter-
mined route, and therefore the arrival time to bus stops can be easily estimated
from the schedule and deviations from the route do not need to be considered.
Late and early deviations from the schedule are the only cases that require a
location update to be sent to the server.

Dead-reckoning on a road network is the second method for MO position
prediction. This method predicts MO near-future position based on the assump-
tion that the MO is moving along a road with a constant speed. When the MO
reaches the end of the road or a T-junction, the MO sends the information about
the newly selected road.

The third method uses prediction from the trajectory history of the individ-
ual MO. For example, a delivery car that goes around to franchise stores can be
assumed to follow a similar route every day. By accumulating the routes day by
day, the car’s position can be predicted using this frequently used routes (FUR)
information. The proposed method is based on this observation. This idea is
straightforward, and Liu et al. [12] have proposed such a trajectory prediction
method based on FUR information. However, their work is limited to future tra-
jectory prediction to serve LBS, and they do not apply this method to prediction
for the real-time monitoring of MOs.

To the best of the authors’ knowledge, this is the first work to adopt FUR
information to real-time monitoring of MO locations. We also propose an adap-
tive Level of Detail (LoD) setting for monitoring. We show that the proposed
method outperforms dead-reckoning on a road network by showing the results
from experiments using real movement paths.

The rest of this paper is organized as follows. Section 2 describes the outline of
the proposed method. Section 3 shows the MO tracking algorithms by explaining
the data structure, messages exchanged between MOs and the server, and the
monitoring algorithms on the MO side and the server side. Section 4 describes
the experiments and results. Section 5 reviews the related work. Finally, Section
6 summarizes our present work and its future direction.

Real-Time Monitoring of MOs Using Frequently Used Routes 121

2 Moving Object Monitoring with FUR

2.1 System Configuration

This section describes the fundamental ideas of the proposed real-time moni-
toring system. Figure 1 shows the configuration of the system. A MO has a
terminal equipped with a GPS receiver, a wireless communication device, a road
map, and a computer. This configuration consists of almost the same compo-
nents as the in-car navigation systems common in Japan, except for the wireless
communication device.

The MO acquires its position every 1 second using the GPS, and this position
is matched to the map to determine the position on the road network. The
MO also predicts its own position. The predicted position is compared with the
position matched on the map, and the difference between them is calculated. If
the difference exceeds a predetermined threshold value (θD), the MO sends a
message to the server. If the difference is less than θD, the MO does not send
any message to the server and continues prediction and map matching.

The server monitors several MOs simultaneously. The monitoring of an MO
starts when the server receives the start-of-trip message from the MO, after which
the server starts a thread for monitoring the MO. In the thread, the location
of the MO is predicted by the same algorithm and the parameters of the MO.
Therefore, the prediction is synchronized between the MO and the server. When
the server receives a message (usually a position correction) from an MO, the
server corrects the parameters for the MO, and then continues the prediction.

In parallel with this monitoring, the server also sends MO locations to the
LBS application programs. The sent locations have uncertainties which depend
on the threshold θD. When a small θD is specified, the communication cost
is likely to be high. Usually, a large θD is specified, for example 1 km. When
the application program requests a more precise location, the server sends a

Frequently Used Route

M ap m atching

positional
correction data

position prediction

M oving O bjects Server

LBS application

programs

Fig. 1. General concept of the proposed system

122 Y. Ohsawa et al.

message to MOs to decrease θD. This operation is called the “LoD (Level of
Detail) control”. LoD control is necessary to control some location requests that
need more precision and also occasionally when communication capacity becomes
limited. Usually, high LoD is requested only for a limited number of MOs, for
example, for MOs that are inside a special area of the town or neighborhood of
a designated position.

For location prediction on a road network, the road segments along which
each MO is passing must be determined. This is determined by two methods,
one based on FUR and the other based on dead-reckoning on the road network.

2.2 Frequently Used Routes

When one drives a car daily, a trip starts from one location, then ends at another
location. For example, one can start the trip from home and go to a shopping
center, stay there for some time, and then go to the office. During this trip,
one may stop at a gas station for refueling or stop at a convenience store to
buy a magazine. Hereafter, we call the start location of a trip or any place
at which the MO stays for long periods of time a “Base Point (BP)”. In the
above example, home, the shopping center, and the office are BPs. Furthermore,
places at which one stops for relatively short periods of time are called “Points
of Interest (POIs)”. In the same example, the gas station and the convenience
store are POIs. To summarize, a trip starts at a BP aiming for another BP, with
some POIs being visited during the trip.

It can be assumed that there are several target BPs for a trip starting from an
origin BP. For example, when a trip starts from home, it can be assumed that the
office, the usual shopping centers, and favorite restaurants may be target BPs.
In daily life, the number of possible target BPs can be assumed to be limited.
In a daily drive, the drivers are likely to take their favorite routes between two
BPs, and so the routes can be assumed to be similar. The proposed method is
based on this assumption.

As another example, a delivery car going around franchise chain stores would
consider the office, the warehouse, and the garage as BPs, and the stores as POIs.
On a given day, it can be assumed that the driver takes a similar route connecting
the stores in order because the driver knows the most efficient or comfortable
roads for driving; however, deviations due to traffic jams, road repair, or a sense
of adventure may occur. Hereafter, we call a set of historical routes starting from
a BP a FUR.

Figure 2 shows an example of a FUR. The FUR consists of a series of BP to
BP paths. Each FUR has a start BP (A in this example) and several destination
BPs (B, C, and D). The thickness of roads shows the frequency at which the
given route is used. Thus, this figure shows that the car often goes to B from A
and only occasionally to C or D.

2.3 FUR Description

A FUR is initially acquired using one of the methods described below. When
many historical trajectories of an MO are available, the FUR can be extracted

Real-Time Monitoring of MOs Using Frequently Used Routes 123

A

B

C

D

Fig. 2. Example of frequently used routes

sr0 sr1

sr2

p1

p2
sr3 sr4 sr5

sr6

sr7

(a) (b)

n1 n2 n3

Fig. 3. Construction of a FUR

from this information. When an MO has a recommended route, for example a
shortest route or a route that is easy to drive, this can be set as the initial FUR.
The most probable situation is incremental acquisition starting from an empty
FUR.

Independent of how the routes in the FUR are acquired, an MO can have
many different FURs, each with a different starting BP. Once the starting BP
is specified, the FUR is determined. Usually, a FUR is not only a tree rooted
at the starting BP, but also a network that contains closed loops. This network
is a subgraph of the background road network, which consists of a graph whose
nodes represent intersections and links represent road segments.

Because the length of each road segment connecting intersections is not long,
a route can contain an enormous number of road segments. Therefore, a sim-
ple expression is used to describe the formation of the route network. A FUR
has branching paths and merging paths. The intersections at which these paths
branch or merge are called control nodes. The network denoting a FUR consists
of BPs and control nodes. A path on the network connecting the control points
with each other or between a control point and a BP is called a subroute. A
subroute consists of several road segments.

Figure 3(a) shows an example of the branches in a FUR network. In this
figure, sr0, sr1, and sr2 indicate the subroute links, and p1 and p2 indicate

124 Y. Ohsawa et al.

Table 1. Subroute structure

SR ID subroute ID
v average velocity
SN start node ID of subroute
EN end node ID of subroute
f choosing frequency of SR ID
n number of links
Vtx[0] vertex ID[0]
.

Vtx[n–1] vertex ID[n–1]
Dist[0] distance from SN to Vtx[0]
.

Dist[n–1] distance from SN to Vtx[n–1]

the probabilities that the subroute will be taken if the MO arrives at node n1
from sr0. At node n1, subroute sr0 is followed by sr1 with probability p1, and
turns right to sr2 with probability p2. Figure 3(b) shows a more complicated
example. At node n2, the subroute sr3 branches into sr4 and sr7, and the sub-
route sr4 branches again at node n3 into sr5 and sr6. The subroute reaching
node n2 from sr6 always continues to sr7. As this example shows, a subroute
should be expressed by a directed graph that includes the probabilities of the
next selected subroute for a given trip. Karimi and Liu [10] proposed a method
using probability matrices to express the trajectory choice at each intersection.
They considered all combinations of the coming links and going links at each
intersection. On the other hand, the proposed method can reduce the number
of combinations and still obtain an expression of the trajectory choice. On the
FUR network, the intersections that need an expression of the trajectory choice
are restricted to the FUR network nodes, that is, the control nodes.

The subroutes in the network are expressed in the format shown in Table 1.
In this table, SR ID is the ID assigned to the subroute. SN and EN are the
start node ID and the end node ID of the subroute, and f is the frequency with
which the subroute is selected. Each subroute is assigned the average velocity
(v) of the MO. Vtx[i] is a vertex ID forming the subroute. Dist[i] expresses the
distance along the road in meters from the start of the subroute (SN) to Vtx[i].
This value is used for rapid calculation of the distance between the MO’s current
and expected positions on a FUR.

3 Moving Object Tracking Algorithms

3.1 Moving Object Tracking

As mentioned earlier, the MO and the server share FURs and the algorithm
predicting the MO’s position. Each MO continuously acquires its current position
using GPS measurements. Thus, an attempt is made to match the position of an
MO with the current predicted position on the route. When late arrival, early

Real-Time Monitoring of MOs Using Frequently Used Routes 125

arrival, or deviation from the predicted route is detected, the MO reports it to
the server. When the server receives this message from the MO, the server can
capture the position of the MO within a predetermined allowance.

Two prediction modes are used in the algorithm. One predicts the position
based on a FUR (On Route (OR) mode), and the other one is dead-reckoning
on the road network (Dead-Reckoning (DR) mode). Tracking of MOs primarily
begins in the OR mode. Then, when an MO diverges from the FUR, the predic-
tion mode is shifted to the DR mode. The outline of the prediction algorithm is
as follows:

(1) Match the object’s position with the most frequently used subroute. Find
the distance between the current and predicted positions on the route. If
this exceeds the threshold value due to late or early arrival, the MO sends
its current position to the server for position synchronization.

(2) When the MO diverges to another subroute on a FUR of lower trip frequency,
the MO reports to the server the newly selected subroute for synchronization.

(3) When the MO diverges to a road segment that is not on a FUR, both the
server and the MO predict the route and the position using dead-reckoning
on the road network.

Usually, dead-reckoning predicts the future position under the assumption that
the MO continues in the same direction at the same speed. However, under
the conditions dealt with in this paper, the locus of MOs is restricted to the
road network. Thus, dead-reckoning is restricted to the road network (dead-
reckoning on the road network: DRRN). Namely, the MO moves in the same
direction along the road until it reaches a dead-end or a T-junction. There, the
MO sends information about its change in direction to the server, and then
continues with dead-reckoning. Ding and Güting [5] and Čivilis et al. [3] also
use a similar prediction method. The following summarizes the method used for
dead reckoning.

– An MO’s motion is restricted to the road network.
– When an MO encounters an intersection, it selects the road segment going

straight ahead.
– When an MO encounters a T-junction, DRRN is suspended until the road

link on which the selection of MO can be determined.

It is often the case that a road does not have a unique name. This is especially
common in Japan, but rarer in most European and North American countries.
Thus, DRRN is defined as above. If each road has a unique name, DRRN can
be defined as an MO continuing on the same named road at a constant speed.

As described above, the server and the MO share the FUR, the prediction
algorithm, and the parameters. When the distance between the MO’s actual
and the predicted positions exceeds a threshold value or the MO deviates from
the predicted route, the MO sends the current parameters and maintains the
synchronization with the prediction.

126 Y. Ohsawa et al.

Table 2. op-codes

code meaning parameters
0 start of trip carID and BPID
1 send position (OR-mode) carID and position
2 another subroute is selected (OR-mode) carID, position, and subrouteID
3 enter to dead-reckoning mode carID,new RoadID,

direction, and position
4 send position (DR-mode) carID and position
5 another road segment is selected carID, new RoadID,

(DR-mode) direction, and position
6 recover to OR-mode carID, position, and subrouteID
7 end of trip carID and position

3.2 Moving Object Side Algorithm

Algorithm 1 shows the procedure executed on the MO side for following the
above-described method. In this algorithm, the send function sends a message
to the server. The first parameter of send is op-code, the meaning of which is
shown in Table 2.

Each car (MO) is assigned an individual ID to identify the car uniquely in the
system. getPosition in the first line returns the location (p) of the MO captured
by GPS, and getBPID searches for the BP that is the nearest neighbor of p
and returns its ID. getFUR in the third line reads the FUR whose starting BP
matches BP#. Then, the most frequent subroute (rt) starting from BP# is
determined from the FUR. Then, the MO sends op-code 0 with the current
position to the server to signal the beginning of the trip (Line 4). mode in line
5 shows the tracking mode that takes either the value OR (on route) or DR
(dead-reckoning). At the beginning of the tracking, the mode is set to OR. As
described later, when the server receives this message, the server also starts the
monitoring of the MO. Lines 6 to 41 are repeated until the end of the trip.

The position of the MO is updated every 1 second (Line 7). The position is
checked to determine whether it is still on the predetermined subroute.
OnRoute(p, rt) in line 9 does this check and returns a Boolean value, where
the value true shows the MO’s current position p is located on rt, and false
shows p has deviated from the subroute rt. When the result is true, the distance
between p and the predicted position of rt at the current time is calculated by
the function distNow(p, rt). Then, if the distance d is greater than a predeter-
mined threshold value (θD), the MO informs the server that it is late or early
with respect to the expected time of arrival.

Lines 15 to 21 correspond to the situation of the MO deviating from the
predicted subroute, usually at an intersection. When p diverges from the cur-
rently predicted route, a new predicted route is determined by the function
getSubroute(p) (line 15). getSubroute(p) first checks whether p is adjacent to
the end node (EN) of the subroute. If it is, other subroutes connected to EN are
retrieved, and the subroute (sr) to which p can be best matched p is determined.

Real-Time Monitoring of MOs Using Frequently Used Routes 127

When a matching subroute (or any subroute connected at the intersection) does
not exist, getSubroute returns NULL.

If the search for a branch to which p can be matched on a FUR succeeds, the
MO informs the server about the route change (line 17), and the MO’s position
is matched to this newly selected subroute(rt). On the other hand, when rt is
NULL (i.e., the search fails), the tracking mode shifts to DR mode. getDRRoute
returns a tuple consisting of rt, newRoad#, and dir, where rt is the path for
dead-reckoning composed of the chain of road segments which has the best match
with the position p, newRoad# is the uniquely assigned road segment ID on
which dead-reckoning is started, and dir is the direction of movement on the
road segment. To inform the server of this mode change, op-code 3 with car#,
newRoad#, and position p is sent (line 21).

Lines stating from line 25 of the algorithm correspond to DR mode. In this
mode, the MO’s position is predicted based on the assumption that the MO con-
tinues straight ahead on the road. As with OR mode, whether the MO is still on
the predicted route is checked (line 25). When p is on the route (rt), the differ-
ence between the MO’s current position and the predicted position is calculated.
When the difference exceeds the specified value θD, the MO sends the real posi-
tion to the server (line 28). When the server receives this information, it corrects
the MO’s current position. When the MO diverges from the current route inferred
by dead-reckoning, the part of the route from the start of rt to the current inter-
section is added to the FUR (line 31). This function also returns a Boolean value.
true indicates that the MO has returned to a known FUR, in which case, the mode
is switched to OR mode. On the other hand, when the return value is false, DR
mode continues. Then, the newly rt is searched (line 36). Next, the MO sends the
newly selected road ID, the direction of motion(dir), and the current position to
the server (line 37). When the MO reaches a T-junction or cannot find a road seg-
ment going straight, the MO also sends this format of signal to the server.

When the trip ends, the MO sends OP-code 7, which terminates the moni-
toring (line 42).

For simplifying the description of the algorithm, the frequency update for
selected subroute is omitted. However, every time a new subroute is selected on
the FUR, the frequency attached to the subroute is incremented.

3.3 Server Side Algorithm

Monitoring the system on the server side consists of three kinds of modules. One
is the communication module, which monitors the data sent from each MO. When
the server receives an op-code 0 message, this module starts a thread that tracks
a new MO, which is a tracking module. The communication module distributes
the messages from each MO to the corresponding tracking module. The third
module is a location observer to provide the MOs’ position to several types of
LBS applications. This module receives the individual MO route and the latest
positions, and responds to LBS applications based on their requests, for example,
range query or k-NN query. This module also directs the communication module
to alter LoD according to the LBS application’s requests.

128 Y. Ohsawa et al.

Algorithm 1. Moving Objects
1: p← getPosition()
2: BP#← getBPID(p)
3: rt← getFUR(BP#)
4: send(0,car#, BP#)
5: mode← OR {On Route}
6: repeat
7: p← getPosition()
8: if mode = OR then
9: if OnRoute(p,rt) then

10: d← distNow(p, rt)
11: if d > θD then
12: send(1,car#,p)
13: end if
14: else
15: {rt, rt#} ← getSubRoute(p)
16: if rt is not NULL then
17: send(2,car#,rt#) {rt# is the selected subrouteID}
18: else
19: mode← DR {Dead-Reckoning}
20: {rt, newRoad#, dir} ← getDRRoute(p)
21: send(3,car#,newRoad#, dir, p)
22: end if
23: end if
24: else
25: if OnRoute(p, rt) then
26: d← distNow(p, rt)
27: if d > θD then
28: send(4,car#,p)
29: end if
30: else
31: if addNewLinkToFUR(rt) then
32: {rt, rt#} ← getSubRoute(p)
33: mode← OR
34: send(6,p,rt#)
35: else
36: {rt, newRoad#, dir} ← getDRRoute(p)
37: send(5,car#,newRoad#, dir, p)
38: end if
39: end if
40: end if
41: until end of trip
42: send(7,car#)

Algorithm 2 shows the pseudocode carried out on the tracking module. This
module is started with two parameters, car# and BP#. This module retrieves
the database, gets FUR for car# starting from BP#, sets the current car position
at the BP# position, and selects the initial route that has the highest frequency

Real-Time Monitoring of MOs Using Frequently Used Routes 129

on the FUR. This tracking module watches the data received from the MO and
alters the MO’s state according to the received data.

Algorithm 2. Tracking Module
Require: car# and BP#
1: Retrieve the FUR of the car# starting from BP#, then set the result to tr.
2: cp←BP#’s position
3: mode← OR {On Route}
4: repeat
5: {code, args} ←receive()
6: if code = 1 then
7: cp←reported position by args.
8: else if code = 2 then
9: Set tr to the new subroute specified by the SubrouteID in args.

10: cp←reported position by args.
11: else if code = 3 then
12: mode← DR {Dead-Reckoning}
13: tr ← getDRRoute(args)
14: cp←reported position by args.
15: else if code = 4 then
16: cp←reported position by args.
17: else if code = 5 then
18: addNewLinkToFUR(rt)
19: tr ← getDRRoute(args)
20: cp←reported position by args.
21: else if code = 6 then
22: mode← OR
23: cp←reported position by args.
24: Set tr to the new subroute specified by SubrouteID in args.
25: end if
26: send car#, tr, currentT ime, cp to the location observer.
27: until code = 7

The individual tracking module in charge of each MO sends a tuple that consists
of tr, ct, and cp to the location observer every time when the tracking module
receives a message from the MO. tr is the route along which the MO will progress,
ct is the current time, and cp is the current position when the update is received.
tr and cp are altered based on the messages from the MO.

The location observer integrates the message sent from the tracking modules
and provides the MO locations to LBS applications, depending on their request.
This module estimates the current position of MOs periodically (e.g., every 1
minute) based on tr, ct, and cp of each MO.

4 Experimental Results

4.1 Environments

For the experiments, a digitized road map from a 1/25,000 scale base map that
covers Saitama City, Japan was used. The trajectory of the MO was captured by

130 Y. Ohsawa et al.

a GPS logger (Global Sat, BT-335) placed in the car. The GPS logger recorded
longitude, latitude, and time of measurement every 1 second.

Many trajectories were collected using the GPS logger for 1 year. These tra-
jectories are mainly the commuting route from the home of one of the authors
to the office (about 10 km). Most of the trips were made from home to the office
between 08:00 and 09:30 and from the office back home between 21:00 and 22:30.
Figure 2 shows an example of the FUR obtained from the accumulated log by
map matching.

4.2 Position Monitoring

The communication cost of the proposed method was compared with that using
dead-reckoning on road network (DRRN) for the entire trip to evaluate the
efficiency of the proposed method. In the method described in Section 3, MOs
send a small amount of data for all eight types of information. It was assumed
that one communication requires only one packet, and therefore, the efficiency
was evaluated using the number of packets sent.

First, the FUR information described in Section 2.3 with about 100 trajec-
tories was obtained. Next, the MO position monitoring using the other 70 tra-
jectories that were not used to create the FURs were tested. Figure 4 compares
the proposed method and DRRN. In the proposed method, the speed obtained
from the historical data can be used in OR mode. However, DRRN lacks this
information. Thus, the MO’s speed was varied from 10 to 30 km/h in increments
of 10 km/h.

The horizontal axis in Figure 4 is the permissible positional error (θD), and
the vertical axis is the average number of communication packets needed to
keep tracking under a θD value from 100 m to 1 km. As shown in this figure,
though the best result was obtained when the speed was set 10 or 20 km/h,
the packet number with dead-reckoning is not so sensitive to the MO’s speed,

0

10

20

30

40

50

60

70

80

90

100 200 300 400 500 600 700 800 900 1000
positional error (m)

nu
m

be
r

of
 p

ac
ke

ts

Proposed Method
DR(10km/h)
DR(20km/h)
DR(30km/h)

Fig. 4. Comparison of communication cost

Real-Time Monitoring of MOs Using Frequently Used Routes 131

especially when the θD value is large. This is because most packets in DRRN
are only used to report road changes. The proposed method outperforms the
conventional method DRRN by factors from 2 to 4. As described in subsection
2.1, the positional update threshold value θD usually can be set with a large
value, and then the precise location is requested for a limited number of MOs
to satisfy the needs of LBS. This control can be performed by a suitable setting
of LoD. Whenever this assumption is true, the update cost can be quite low.

5 Related Work

Location tracking of moving objects (MO) has been studied actively for such ap-
plications as wildlife animal monitoring, child-care systems, intelligent transport
systems, logistics, and fleet management. These studies are roughly categorized
into two groups: one targeting MOs that can move freely in the Euclidean space,
and the other one targeting MOs for which the trajectories are restricted to a
road network.

Although frequent reports improve the accuracy of monitoring MO position,
it increases location update cost. To reduce this cost, several policies, including
time-based [1], distance-based [14], dead-reckoning [19], and safe range adjust-
ment [22] algorithms, have been proposed. The tracking method described in this
paper belongs to the category of MOs restricted to a road network. Therefore,
this will be the focus of the rest of this section.

The most of the efficient methods proposed in the literature are based on the
prediction of movement of MO on a road network. Wolfson et al. [18],[20] studied
this problem under the assumption that objects move along a pre-specified route.
They proposed location update policies based on several types of dead-reckoning.
In their study, deviations from the pre-specified route are not considered. Tiesyte
et al. [16],[17] proposed a monitoring method targeting buses that strictly follow
a predetermined route. However, their algorithm also does not allow any diver-
gence from the specified route. Thus, these studies have different objectives than
our study.

Ding and Güting [5] studied MO management on a road network. They assumed
that objects could move freely on the road network. In their work, they proposed
three location update policies: ID-triggered location update, distance-threshold-
triggered location update, and speed-threshold-triggered location update. Čivilis
et al. [3],[4] proposed a tracking method for MOs based on a client-server architec-
ture. A client (MO) is equipped with a GPS receiver and a communication device.
A client predicts its own position, and when the difference between the current
and predicted positions exceeds a threshold value, the client sends an update to
the server. In their work, three simple prediction policies were proposed. However,
these studies do not use knowledge about objects’ patterns of motion.

To create an MO monitoring method, a technique for matching a location
acquired by a device such as GPS with a position on a road network is essential.
This technique is called map matching, and has been actively studied in [2], [7],
[15], [21]. In our study, we applied the map-matching technique to acquire initial
FUR, and to determine deviation from the FUR and the dead-reckoning route.

132 Y. Ohsawa et al.

Spatio-temporal access methods to manage the moment-to-moment changes
in an object’s position have also been studied actively. Frentzos [6] proposed
a spatio-temporal data structure for MOs on a road network. Ding et al. [5]
proposed a suitable method for managing object positions on a road network.
Usually, a road network is divided into several short segments that connect inter-
section to intersection. However, to manage the object positions on such short
segments is not efficient. Thus, they proposed a data structure named Mov-
ing Objects on Dynamic Transportation Networks in which road segments are
connected to form a route. The proposed FUR method follows this suggestion.

In addition to acquiring the MO positions, a spatio-temporal query method
is also essential for real-time monitoring applications. Ku et al. [11] proposed a
k-NN search for MOs. Mouratidis et al. [13] also proposed a k-NN MO search
method. Hsueh et al. [8] proposed an MO management method using a location
information table. These techniques are necessary to serve LBS based on MO
monitoring.

6 Conclusions

This paper proposes a method for the real-time monitoring of MOs on a road
network using FURs. Because conventional real-time monitoring does not use
knowledge about routes, scalability remains low and the accuracy of tracking is
also low. On the other hand, using FURs extracted from historical trajectories
decreases the communication cost and achieves highly accurate monitoring.

In this paper, it was assumed that the MOs possess a road map and suffi-
cient computation power. However, the equipment that is required is expensive.
Therefore, research into developing appropriate economical terminals, for exam-
ple, equipped only with a GPS receiver and a communication device but without
the road map data inside, is required.

Acknowledgment

This study was supported in part by Grant-in-Aid for Scientific Research (C)
(21500093), and by Transdisciplinary Research Integration Center.

References

1. Bar-Noy, A., Kessler, I., Sidi, M.: Mobile users: to update or not to update? Wire-
less Networks 1(2), 175–185 (1995)

2. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking
data. In: Proc. 31st VLDB Conference, pp. 853–864 (2005)

3. Čivilis, A., Jensen, C.S., Nenortaitė, J., Pakalnis, S.: Efficient tracking of moving
objects with precision guarantees. Technical Report TR-5, Department of Com-
puter Science, Aalborg University (2004)

4. Čivilis, A., Jensen, C.S., Pakalnis, S.: Techniques for efficient road-network-based
tracking of moving objects. IEEE Trans. on Knowledge and Data Engineer-
ing 17(5), 698–712 (2005)

Real-Time Monitoring of MOs Using Frequently Used Routes 133

5. Ding, Z., Güting, R.H.: Managing moving objects on dynamic transportation net-
works. In: Proc. 16th SSDBM, pp. 287–296 (2004)

6. Frentzos, E.: Indexing objects moving on fixed networks. In: Hadzilacos, T.,
Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750,
pp. 289–305. Springer, Heidelberg (2003)

7. Greenfeld, J.S.: Matching GPS observations to locations on a digital map. In: Proc.
81th Annual Meeting of the Transportation Reseach Board (2002)

8. Hsueh, Y.L., Zimmermann, R., Wang, H., Ku, W.S.: Partition-based lazy updates
for continuous queries over moving objects. In: Proc. ACM GIS 2007 (2007)

9. Jensen, C.S., Pakalnis, S.: TRAX – real-world tracking of moving objects. In: Pro-
ceeding of 33rd VLDB, pp. 1362–1365 (2007)

10. Karimi, H.A., Liu, X.: A predictive location model for location-based services. In:
Proc. ACM GIS 2003, pp. 126–133 (2003)

11. Ku, W.S., Zimmermann, R., Wang, H., Wan, C.N.: Adaptive nearest neighbor
queries in travel time network. In: Proc. ACM GIS 2005, pp. 210–219 (2005)

12. Liu, X., Karimi, H.A.: Location awareness through trajectory prediction. Comput-
ers, Environment and Urban Systems 30, 741–756 (2006)

13. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous nearest neigh-
bor monitoring in road networks. In: Proc. 32th VLDB, pp. 43–54 (2006)

14. Pitoura, E., Samaras, G.: Locating objects in mobile computing. IEEE Trans. on
Knowledge and Data Engineering 13(4), 571–592 (2001)

15. Quddus, M.A., Ochieng, W.Y., Zhao, L., Noland, R.B.: A general map matching
algorithm for transport telematics applications. GPS Solutions 7, 157–167 (2003)

16. Tiesyte, D., Jensen, C.S.: Efficient cost-based tracking of scheduled vehicle jour-
neys. In: The 9th MDM, pp. 9–16 (2008)

17. Tiesyte, D., Jensen, C.S.: Similarity-based prediction of travel times for vehicles
traveling on known routes. In: Proc. ACM GIS 2008 (2008)

18. Wolfson, O., Chamberlain, S., Dao, S., Jiang, L., Mendez, G.: Cost and imprecision
in modeling the position of moving objects. In: Proc. 14th ICDE, pp. 588–596
(1998)

19. Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and queying
databases that track mobile units. Distributed and Parallel Databases 7(3), 257–
287 (1999)

20. Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving objects databases: Issues
and solutions. In: Proc. 10th SSDBM, pp. 111–122 (1998)

21. Yin, H., Wolfson, O.: A weight-based map matching method in moving objects
databases. In: Proc. 16th SSDBM, pp. 437–438 (2004)

22. Zhou, J., Leong, H.V., Lu, Q., Lee, K.C.: Generic adaptive moving object tracking
algorithms. In: International Conference on Parallel Processing, pp. 93–100 (2006)

wNeighbors: A Method for Finding k Nearest
Neighbors in Weighted Regions�

Chuanwen Li, Yu Gu, Ge Yu, and Fangfang Li

Northeastern University, China
{lichuanwen,guyu,yuge,lifangfang}@ise.neu.edu.cn

Abstract. As the fundamental application of Location Based Service
(LBS), k nearest neighbors query has received dramatic attention. In
this paper, for the first time, we study how to monitor the weighted k
nearest neighbors(WkNN) in a novel weighted space to reflect more com-
plex scenario. Different from traditional kNN approaches, the distances
are measured according to a weighted Euclidean metric. The length of a
path is defined to be the sum of its weighted subpaths, where a weighted
subpath is relative to the weights of its passing regions. By dividing the
plane into a set of Combination Regions, a data structure “Weighted
Indexing Map”(WIM) is presented. The WIM keeps an index of the
weighted length information. Based on WIM, we propose an efficient al-
gorithm, called wNeighbors, for answering the WkNN query. The exper-
imental results show that our WIM based WkNN processing algorithm
are effective and efficient.

Keywords: Nearest neighbor query, Weighted Region, kNN, LBS,
Weighted Indexing Map.

1 Introduction

Location-based services(LBS) provide accurate position information in a variety
of contexts, such as health care, tourism, traffic monitoring, industrial produc-
tion, etc. There has been an increasing development for LBS currently, involving
larger spatial data sets and more efficient query algorithms[19]. Nearest neigh-
bor query and its variant k nearest neighbor(kNN) query are of the fundamental
issues in the LBS research area. As an effective method to determine the most
important objects of interests, the kNN query is designed to find the top k closest
objects to a specified query point, given a set of objects and a distance metric.

Most consideration of the kNN query is focused on the techniques[17,14,2].
Also, the problem of determining the top k nearest neighbors from the source
in a plane in the presence of disjoint simple polygonal obstacles is studied[12].
In obstructed scenarios, one can not travel straightly if an obstacle lies on the
line to its destination. However, all these space model can not effectively reflect
� This research was partially supported by the National Natural Science Foundation of

China under Grant No.60773220, No.61003058 and No.60933001, and the 863 High
Technology Foundation of China under Grant No. 2009AA01Z131.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 134–148, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

wNeighbors: A Method for Finding kNN in Weighted Regions 135

realistic monitoring scenarios, where regions of different features are divided by
the road networks.

Consider a hiker(that can be seen as a point) whose objective is to use a given
terrain map to find optimal route choices through varied terrain from a source to
some types of destinations(inns, snack bars, etc.). The terrain map might look
like the diagram in Fig. 1. The meaning of “optimal” here may be considered as
the minimal traveling time. When traveling through different terrains, the hiker
may take different speeds with respect to the terrain types(e.g., snow, rocks,
forests, grass). We segments the terrain into regions according to the covered
terrain types and model the regions as polygonal patches. Note that there may
be roads between two patches(different or of the same type), on which one can
travel faster than inside the surrounding patches. Obviously, based on available
methods, effective spatial query cannot be conducted directly. In this paper, we

Snow

Snow

Ice

RocRocRocRocRocRocRocRocRocRocR kskskkskskskskskskskkksRocks

FForForForForForForForForoForooooF estestestestestestestese sssssssssForests

GGraGGrGraGraGGraGraGGraGrarraraGraGGGraraGraGraGG ssssssssssssssssssssGrass

Fig. 1. A map of varied terrain

formalize the novel space model, namely Weighted Region, where the plane is
subdivided into polygonal regions with different weights by road network. The
weight α associated to each region specifies the “cost per unit distance” of trav-
eling in that region. In fact, although weighted region problem has long been
studied in GIS community[15], to the best of our knowledge, common spatial
queries such as kNN queries still remain uninvestigated at large. Therefore, our
main target is to crack the nut of finding the top k nearest neighbors in the
weighted regions, we refer as the Weighted k Nearest Neighbors(WkNN) prob-
lem. Also, the problem of resolving kNN in obstructed plane can be easily seen
as WkNN problem by setting the weight of regions to 1 or +∞ depending on
whether the space is free or obstacle, respectively. This type of query can be
applied to many scenarios, such as algorithmic motion-planning for robotics,
military exercises, navigation monitoring, location-based games, virtual world
simulation, intelligent robot control, etc.

In order to effectively deal with the kNN problem in weighted regions, we
propose a Weighted Indexing Map(WIM) data structure to index the weighted
distances in combination regions. The combination region is a combination of

136 C. Li et al.

faces that share the same indexing data. A WkNN searching algorithm, called
wNeighbors, is designed based on WIM. In wNeighbors, we adopt the Dijkstra’s[3]
algorithm to find an upper bound of the top k neighbors. The upper bound can
help pruning most irrelevant points before constructing the candidate set. For
a query point, the destination points are classified to be determinate and in-
determinate. The determinate points can be checked by WIM directly and the
weighted distances of the indeterminate points is calculated by the Mitchell’s
method[13].

Specifically, the main contribution of this work includes:

– The concept of combination region is proposed, which ensures the possibility
of indexing the weighted length.

– The Weighted Indexing Map(WIM) data structure is proposed, which can
tremendously reduce the real time calculation of the weighted distance.

– Based on the WIM, an efficient searching algorithm, called wNeighbors, is
designed to process WkNN queries.

– Extensive experiments are conducted to verify that the proposed algorithms
achieve satisfactory performance.

The remainder of this paper is organized as follows: The related work is de-
scribed in Section 2. In Section 3, we introduce the preliminary of weighted
spaces. Section 4 describes the Weighted Indexing Map(WIM) data structure
and the wNeighbors method . The experimental studies are presented in Section
5. Finally, the work is concluded in Section 6.

2 Related Work

Common kNN search algorithms mostly consider the Euclidean space. One of
the common features is the branch-and-bound strategy on the tree structure,
such as the DF-kNN [17] or BF-kNN [9]. The kNN search in road networks
are also a consideration of the researching community[10,2]. Another important
kNN problem is that of determining the top-k nearest neighbors in the pres-
ence of disjoint simple polygonal obstacles. Zhang et al. proposed the obstructed
NN (ONN) query[18] that can find top-k points in a data set to a specified fixed
query point q in an obstructed area. Each query request is considered as a to-
tally new query, which can result in considerable duplicate calculation while the
query point moves. Gao et al. considered the continuous visible nearest neighbor
queries in obstructed areas. The approach in [4,7] handles the obstructed MkNN
in the special scenario when the query point q moves on a given line segment.
To deal with the obstacles, a novel concept of control points is proposed. The
reverse k -nearest neighbor query with consideration of obstacles is proposed in
[6] and [5], which employs half-plane property and visibility check to prune the
search space and thus reduces the preprocessing time. In [16], the authors pro-
pose an architecture that integrates network and Euclidean information that can
be successfully applied to the most popular spatial queries.

Although the kNN problem is not considered, the weighted region problem
has been intensively studied in GIS community. The most common approach

wNeighbors: A Method for Finding kNN in Weighted Regions 137

of finding shortest path between two specified point in weighted region is to
lay down a grid on top of the surface[15]. This produces a grid graph of pixels
each of which is a small square with sides equal in length of the fineness of
the grid. Then costs are assigned to each arcs which connect adjacent pixels.
The Dijkstra’s algorithm[3] is then used to compute minimum cost paths in the
grid graph. The problem of this approach is to require extremely fine grids to
capture the content of a simple map, and it creates a digitization bias because
of the metrication error imposed by confining movements to limited number of
orientations.

3 Preliminary

3.1 Problem Definition

We consider a straight-line planar polygonal subdivision P, specified by a set of
faces, edges, and vertices, with each edge occurring between two faces. The infor-
mation of P can be stored in data structured like quad-tree which allows simple
operations. We are given a set of points D specifying particular destinations.
Given a special point q indicating the query position, the problem of k nearest
neighbors is to find q’s top k nearest neighbors from D. The concept of length

s

d1

d2

d3

d4

d5

d6

d7 d

d

Fig. 2. Shortest paths in weighted regions

in this paper is defined according to a weighted Euclidean metric. Each face f
has an associated weight αf ∈ [1, +∞], indicating the cost per unit distance of
traveling through f . Each edge e, similarly, has a weight αe ∈ [1, +∞] associated
with it. The weighted length d(x, y) between two point x and y is simply the
product of αf and the Euclidean distance |x, y|, when they are both in face f .
Similarly, d(x, y) = αe|xy| when x and y are both in edge e. The weighted length
of a path through the subdivision is then the sum of the weighted lengths of its
subpaths through each face and along each edge.

We assume, without loss of generality, that the roads in P are all along the
edges. The weight of an edge is less than that of its surrounding faces if the edge

138 C. Li et al.

represents a part of a road. Otherwise, we have αe = min{αf , αf ′} when the
edge e is not a road, where faces f and f ′ are shared by e. This indicates that
when one travels on the boundary between f and f ′, it is as if one is traveling
just inside the cheaper of the two faces. Note that αe > min{αf , αf ′} does not
make any sense, since one can travel just along the edge in the cheaper face
instead of actually traveling on it.

With our assumption that all faces are triangles(which can be easily achieved
by triangulation) and each face has a uniform weight, we are able to define the
kNN problem in weighted regions:

Definition 1. Given a finite triangulation in the plane, assignments of weights
αe and αf to each edge and each face, a query point s, a destination point set
D and a specified value k. The Weighted k Nearest Neighbor(W kNN) query is
defined to find a result set R of the top k nearest neighbors of s in D, that
satisfies

{d(x, q) < d(x′, q)|x ∈ R, x′ ∈ D − R, |R| = k}, (1)

where d(·) stands for the weighted distance between two points.

See Fig. 2 for an example. The weights of each faces is indicated by the gray
level of each faces, meaning that it is more expensive to travel through a darker
face than through a lighter one. We find the top 4 NNs({d2, d4, d5, d7}) for
the query point s. The thick lines indicate the shortest paths from s to these
points. Note that the shortest paths are not necessarily be a straight line(as
in normal Euclidean planes) or line segments around obstacles(as in obstructed
planes). The shortest path in weighted regions can be a straight line(as line
sd2), a path that intersects an edge before going along edges and outgoing to
the destination(as line sd5, sd7), a series of “bending” segments(as line sd4) or
a mixture of these types.

In the rest of this paper, we’ll discuss efficient indexing and processing meth-
ods for finding the top k nearest neighbors of a query point.

3.2 Basic Concepts

Lemma 1. Snell’s Law of Refraction[15]
The nearest weighted path passing through a boundary e between regions f and
f ′ with indices of refraction αf and αf ′ obeys the relationship that αf sin θ =
αf ′ sin θ′, where θ and θ′ are the angles of incidence and refraction(respectively).

We define the angle between the incoming ray and the normal to the region
boundary be the angle of incidence, θ; and the angle between the outgoing ray
and the normal be the angle of refraction, θ′(see Fig. 3). According to the Snell’s
Law, the shortest path between point d1 and d3 is line segments d1l2d3.

The angle, θc(f, f ′), at which αf

αf′ sin θc(f, f ′) = 1, is called the critical angle
with regard to faces f and f ′. The critical angle can be used whenever we are
considering nearest path going from one region f to a less expensive region f ′, or
otherwise. An example is given in Fig. 3, providing that αf ≥ αf ′ , the shortest

wNeighbors: A Method for Finding kNN in Weighted Regions 139

path from d1 to d3 can “bend” at l2 with the injection angle θ and the reflection
angle θ′.

The shortest path that travels through f to strike an edge at the critical angle
may travel along ab rather than enter into the interior of f ′ immediately. Before
leaving edge ab(at the critical angle) into f ′ to the destination point, the shortest
path travels along the edge ab for a positive distance. See Fig. 3 for an example,
the shortest path from d1 to d4 travels along the line segment l3l5 before it leaves
the edge ab.

d1 d2

d3 d4

l1 l2 l3 l4 l5 l6a b
θ

θ′
β′

β′

ββ

Fig. 3. Examples for Snell’s law

Another situation occurs when the source point and the destination point are
both near the edge(road), when the path is incident on edge ab at the critical
angle θc and then travels along ab for some distance. Then the path exits edge
ab and goes back into face f before leaving the edge at the critical angle. This
kind of path is called critical reflected by edge ab. In Fig. 3, the shortest path
from d1 along segments d1l3, l3l6, l6d2 to d2 is of this kind.

Based on the discussion above, the following lemma can be achieved(which is
detailedly discussed in [13]):

Lemma 2. Assuming that αe < min{αf , αf ′}, the shortest path that crosses
edge e will do so in one of two ways: either intersect edge e at one point of cross-
ing and obey Snell’s Law at that point, or it will hit edge e at the incoming critical
angle θc = sin−1(αe, αf), travel along the edge for some distance, and then exit
the edge(to the other side) at an outgoing critical angle θc = sin−1(αe, αf ′).

4 The wNeighbors

In this section, we describe a novel kNN processing scheme, called wNeighbors,
which is used in the weighted regions. The design of wNeighbors is motivated by
the following observations. First, some of the shortest paths between two points
are mostly along the roads, especially when the faces that the two points belong
are not adjacent. Second, in particular situations the shortest path to some
destination points always travels through one of the vertices of the face that
the destination point belongs. Third, although the weighted distance is different
from the Euclidean distance, there are relations between these two metrics. The
basic idea behind our methodology is to reduce real time calculation as more as
possible by indexing essential data in advance.

140 C. Li et al.

4.1 Characterization of Shortest Paths

Before introducing the main wNeighbors method, we first infer some essential
properties of the shortest paths(weighted). Now consider this situation, when a
point p1 is on one edge e1 of a face f , whose weight is αf , and another point
p2 is on another edge e2 of f , what is the shortest path between p1 and p2 like?
Lemma 3 gives the answer to this question.

Lemma 3. Given a triangle face f with its weight be m, two points p1 and p2

on different edges(e1 and e2 respectively) of f , the intersection angle of e1 and
e2 be β and the intersection point of e1 and e2 be v. We have that

1. When cosβ < 1−2/m2, the shortest path from p1 to the point p2 must travel
along the edges of f(either along e1 to v and then along edge e2, or along
the other edge of f);

2. Otherwise, the shortest path between p1 and p2 may be the direct line between
the two points(not necessary but possible).

Proof. Let d(p1, v) be x and d(p2, v) be y, then the weighted distance of p1vp2

and p1p2 are x + y and m ·
√

(x · cosβ − y)2 + x2 · sin2 β. Solve the equation

x + y − m ·
√

(x · cosβ − y)2 + x2 · sin2 β < 0, (2)

we get that when cosβ < 1 − 2/m2, equation 2 has no real number solution,
which means that the weighted distance p1vp2 is always less than the direct line
p1p2. �
This lemma tells us that faces which have angles satisfying the condition cosβ <
1 − 2/m2 can block the shortest paths that try to cross the adjacent edges of
these angles. We call an angle β which satisfies cosβ < 1−2/m2 the block angle,
and a face(recall that all faces are triangles under our assumption) is a block face
if all three angles are block angles. We call the angle which is not a block angle
the combination angle, meaning that a shortest path can cross the two edges of
this angle from one side to another as if the angle connects the two sides.

Now we can make a few observations that will be of use later.

Lemma 4. A shortest path can never cross a block face if the destination point
and the source point are not in the face.

Proof. The proof is trivial and we omit it for lack of space. �
In the wNeighbors method, the whole plane is divided into several Combination
Regions. The Combination Region, CR for short, is defined as follows:

Definition 2. A Combination Region(CR), denoted by R, is an area that con-
sists of (1) one block face, or (2) faces that are connected by combination angles.

Fig. 4 shows the CR division of the example in Fig. 2, in which CRs are divided
by the thick black lines. We can see that some CRs consist of several faces, like

wNeighbors: A Method for Finding kNN in Weighted Regions 141

the one that contains d6, the one that contains d5 and the one that contains d2

and d4. These faces are connected by combination angles(illustrated by black
sectors). The thin dotted lines indicate the original boundaries of the faces.

s

d1

d2

d3

d4

d5

d6

d7

dddd

777777

Fig. 4. Connection Regions

Analogous to Lemma 4, we get the following observation.

Lemma 5. A shortest path can never cross R, if the destination and source
points are not in R or neighbor CRs of R.

Proof. Assume the claim is false. Then the shortest path between two points
s and d crosses R at two crossing points c1 and c2. From the definition of
combination angle, we can deduce that one combination region has at least 3
faces, for a combination angle can connect the face at it’s left side, it’s right side
and it’s belonging face. Then there are two possibilities for the points c1 and c2:
(1) they belong to the same face; (2) they belong to different faces. We discuss
these two cases:

1. When c1 and c2 belong to the same face f , assume the two edges of f
are e1 and e2(obviously, they can not be on the same edge). We know that the
intersection angle of e1 and e2 are not combination angle, for that the edges of
a combination angle can not be the surrounding edge of a CR(see the definition
of the combination region). Therefore, any path that cross e1 and e2 cannot be
optimal.

2. When c1 and c2 belong to different faces, the shortest path must cross one
or more edge(s). Assume c1 and c2 belong to edges e1 and e2, the edges crossed
by the shortest path are {e1, e

′
1, . . . , e

′
n, e2}. The intersection angle between e1,

e′1 or e′n,e2 can not be a combination angle, for the same reason as the proof
above. Consequently, the path cannot be optimal. �
Now we have the following important characterization of shortest paths based
on the two lemma above.

Theorem 1. Given two points s(in Rs) and d(in Rd). If Rs and Rd are not
the same or adjacent to each other, the shortest path between them must pass
at least one vertex v1 of Rs and at least one vertex v2 of Rd. Furthermore, the
shortest path between v1 and v2 are all along the edges.

142 C. Li et al.

Proof. Assume the claim is false. The shortest path, p, passes the boundary edge
of Rs at point c1 at edge e1, which means that in Rs the incoming part of p is
the optimal path between c1 and s. We know from the definition of critical region
that the edges of a critical angle cannot be the boundary edge of a critical region.
Consequently, the two angles which has an edge being e1 cannot be critical angle.
Therefore, the path from c1 cannot be optimal(see Lemma 5), which conflicts
with the assumption. �

4.2 Data Structure

In wNeighbors, all the information is stored in the Weighted Indexing Map
(WIM), a data structure that stores several kinds of indexing data. In WIM,
we first keep a list, crList, of combination region(CR)s. A CR, cr, in crList has
the following information associated with it: its ID, crId; its containing faces,
fList; its containing destination points, dList and its neighbor CRs, ncrList.
We then write cr = {crId, fList, dList, ncrList}. We also keep an altered R*
tree[1], pList, to store the position information of the vertices and destination
points with the relation information of their neighbors. A point, p, in pList has
the following information associated with it: its ID, pId; its type, t, indicating it’s
a vertex or a destination point; its neighbor list, nList, which contains the direct
neighbor vertices(for a vertex) or the vertices of the face that it belongs(for a
destination point); the related destination points(for a vertex), dList(along with
the shortest distance to these points); the CR that it belongs, cr. We then write
p = {pId, t, nList, dList, cr}.

The WIM is constructed by a three-step algorithm. In the first step, the plane
is split into a set of CRs. Then, for each destination point, the weighted shortest
distance to the vertices of its CR are calculated. Finally, in the third step, all
data points(vertices and destination points) are indexed in the WIM.

In the CR splitting step, we examine each angle of faces to check whether
the condition in Lemma 3 is met. The neighbor faces which share edges with a
critical angle are connected to create a CR. The splitting process is done after
all angles are tested and all CRs are created. The second and third step is trivial
and we omit the description for lack of space. We only discuss a lemma that can
help calculate the weighted length between a destination point and the vertices
of the face that it belongs:

Lemma 6. Given a point p which belongs to face f , a vertex v of f and two
surrounding line segments l1 and l2 which intersect at v. The shortest(weighted)
path from p to v is (1) the direct line segment between p and v, when all the two
intersection angles between line pv and v-intersected borders are greater than
π/2 − θ, where θ is the critical angle of f , or (2) otherwise, the path along the
critical intersection path to the nearer line.

Proof. Without loss of generality, assume that α < β. We wish to get the smaller
length(weighted) between l1 = d(e1, v1) + m · d(p1, e1) and l2 = d(e2, v1) + m ·
d(p1, e2), where d(x, y) means the Euclidean distance between points x and y.

wNeighbors: A Method for Finding kNN in Weighted Regions 143

Assume that d(p1, v1) = c. Then, l1 − l2 = c · ((sin α − sinβ) · cos θ/ sin θ +
(cosα − cosβ)) = 2c · sin(α − β)/2(cos(α + β)/2 · cos θ/ sin θ − sin(α + β)/2).
Note that α, β < π/2 − θ, then (α + β)/2 < π/2 − θ. Consequently, we have
cos(α + β)/2/ sin(α + β)/2 > sin θ/ cos θ , sin(α − β)/2 < 0. Therefore, we can
conclude that l1 − l2 < 0, which means, even in weighted regions, the path along
the nearer road is shorter. �

4.3 WkNN Search Algorithm

By adopting the WIM data structure, an immediate consequence of Theorem 1
is achieved, which forms the basis of our searching algorithm:

Theorem 2. The shortest path between a query point p1, which is in R1, and
a destination point p2, which is in R2, can be calculated as follows:

1. When R1 and R2 are disconnected(they do not share any edge), the weighted
length of the shortest path between p1 and p2 can be calculated by Dijkstra’s
algorithm[3] using the position information of WIM.

2. When R1 and R2 are adjacent(they share one or more edges), the weighted
length of the shortest path between p1 and p2 can be calculated by Mitchell’s
algorithm[13].

We call p2 a determinate point in the first case and indeterminate otherwise.

Proof. For the first case, when R1 and R2 are disconnected, we can deduce from
Theorem 1 that the shortest path between p1 and p2 are from p1 to a certain
vertex of R1 and then go along edges till it hits R at its certain vertex, thereafter
go to p2 inside R by an optimal path. We know from the definition of WIM that
the information of weighted length between vertices and destination points are
all stored as a graph, then Dijkstra’s algorithm[3] can be adopted here to find
the optimal path.

For the second case, the shortest path can not be calculated just from the
information in WIM. Then we adopt Mitchell’s algorithm[13] to handle this
situation. Mitchell’s algorithm[13] can find the shortest path between two points
in arbitrary faces. �

The main procedure of our wNeighbors method is illustrated in Algorithm 1.
Before explaining the main concept of the algorithm, let us discuss several im-
portant routines. Routine Max(resp., Min) returns the upper(resp., lower) bound
of the length from query point to the specified node. The upper bound between
two points is their distance inferred from WIM, and the lower bound is defined to
be the product of their Euclidean distance and the lowest weight of regions along
the direct line between them. Note that for determinate nodes the upper bounds
and lower bounds are both set as the real distances to the query point. The rou-
tine MaxUpperbound(R) is a successively comparing procedure, which returns the
maximum upper bound of each node in R. Routine LocalNearest(s, D) returns
the nearest indeterminate destination point. Note that from the indexing data in

144 C. Li et al.

Algorithm 1. Weighted k Nearest Neighbor Search(wNeighbors)
Input : query point s, destination set D, WIM index WIM
Output: result set R

1 C ← D, R← Φ
2 R← find top k nearest destination points in WIM using Dijkstra’s algorithm[3]
3 D ← D −R;
4 upperBound←MaxUpperbound(R)

5 while n←LocalNearest(s,D) and Min(n) < upperBound do

6 D
add←−− n

7 if Max(n) < upperBound then
8 upperBound←MaxUpperbound(R)

9 foreach d ∈ D do
10 Remove d if its lower bound is more than the upperBound

11 foreach r ∈ R do
12 lr ← Calculate d(s, r) by Mitchell’s algorithm[13]
13 if lr < upperBound then
14 upperBound← lr
15 foreach d ∈ D do
16 Remove d if its lower bound is more than the upperBound

17 if The first k points in R are all determinate then
18 Remove other points expect the top k from R
19 Break the loop

20 return R

WIM, we can easily get the nearest neighbor(by Euclidean metric) of the query
point. We now explain the searching algorithm. The essence of the algorithm is
to utilize the Weighted Indexing Map(WIM) to directly calculate the distances
of determinate points and to refrain as many indeterminate points as possible
from the calculation of Mitchell’s algorithm. Searching in wNeighbors begins by
scanning the WIM, using the Dijkstra’s algorithm[3], for the candidate result
set R of top k nearest neighbors. Note that some neighbor destination points
in R may be indeterminate, for that the destination point and the query point
p may be in the same CR. Consequently, the weighed distance from p to these
indeterminate points are not real shortest distance to them. However, from these
distances we can deduce an upper bound, denoted by upperBound, of the top
k nearest neighbors, which can help pruning the points whose lower bounds are
greater than it. Then the search algorithm only need to check the points that
have not been pruned(whose lower bounds are less than upperBound). Recall
that the position information in WIM is spatially indexed(using the altered R*
tree[1]), we can easily found these indeterminate points by the order of their
Euclidean distances to the query point. The searching process stops when all
the points in the candidate set are checked.

wNeighbors: A Method for Finding kNN in Weighted Regions 145

5 Experiments

In this section, we present a detailed performance analysis of our solution frame-
work. We first describe our experimental settings, and then discuss the effective-
ness of our approach based on the experimental results.

5.1 Experimental Setup

Our evaluation is based on both real and synthetic experiments and is imple-
mented in C++. All experiments are run on a 1.86 GHz Intel Core 2 6300 CPU
and 4 GB RAM.

 0

 500

 1000

 1500

 2000

10 15 20 25 30 35 40 45 50

Pa
ge

 a
cc

es
s

k

wNeighbors US
wNeighbors CD
wNeighbors MX
Mitchell US
Mitchell CD
Mitchell MX

(a) Page access

 0

 100

 200

 300

 400

 500

 600

10 15 20 25 30 35 40 45 50

To
ta

l r
es

po
ns

e
tim

e(
m

illi
se

c)

k

wNeighbors US
wNeighbors CD
wNeighbors MX
Mitchell US
Mitchell CD
Mitchell MX

(b) Total response time

Fig. 5. Comparative study, Uniform

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

10 15 20 25 30 35 40 45 50

Pa
ge

 a
cc

es
s

k

wNeighbors US
wNeighbors CD
wNeighbors MX
Mitchell US
Mitchell CD
Mitchell MX

(a) Page access

 0

 100

 200

 300

 400

 500

 600

 700

10 15 20 25 30 35 40 45 50

To
ta

l r
es

po
ns

e
tim

e(
m

illi
se

c)

k

wNeighbors US
wNeighbors CD
wNeighbors MX
Mitchell US
Mitchell CD
Mitchell MX

(b) Total response time

Fig. 6. Comparative study, Clustered

The search space is fixed at 2000000×2000000 square shaped ranges and
adopts R*-tree[1] as the spatial index. We deploy three real datasets to present
the regions and three real datasets to present the destination points1. The re-
gions are divided by line segment data of railroads and roads in US, Canada(CD)
and Mexico(MX). The destination points are the point data of popular places
and cultural landmarks in US, Canada and Mexico. The line segment datasets
contain information of 355, 312, 121, 416 and 92, 392 line segments respectively,
and the popular places and cultural landmarks datasets contain 21,223, 7, 093
1 The datasets are available in the R-tree Portal website
(http://www.rtreeportal.org).

(http://www.rtreeportal.org)

146 C. Li et al.

and 5,380 points respectively We normalize the real datasets to fit our search
space and triangulate these regions to fit our algorithm. Besides the real regions,
the weight of each regions are synthetically generated. The two generated weight
datasets are uniformly distributed and clustered distributed. In the Uniform gen-
erated datasets, the weight values are uniformly placed along each dimension.
For the clustered weight value, the default number of clusters is 400 and the
weights are set proportional to the distance to its nearest cluster center. We first
compare the wNeighbors method and the state-of-art GIS methods and find
that the wNeighbors method is much better. Then we focus our study on the
behavior of wNeighbors with various parameters and under different workloads.
In our evaluation, we use the number of page access and the total response time
as the performance metric. To account for the imprecision that may occur in
the synthetic datasets, we run every experiment 10 times and take the average
value.

5.2 Comparative Study of wNeighbors and Other Approaches

We begin by comparing wNeighbors with original Mitchell’s method[13]. Since
this is the first work, to the best of our knowledge, of the WkNN problem, we can
only compare our approach to the “kNN version” of Mitchell’s method, which
means the distance between points are calculated by the Mitchell’s method and
the kNN search algorithm adopts the widely used kNN search method[11]. As
we can see in Fig.5(Uniform) and Fig.6(Clustered), wNeighbors has significantly
fewer page accesses and shorter total response time than Mitchell’s method. The
page access and total response time in clustered scenarios are both less than that
in the uniform scenarios. This is because that the shortest paths in the clustered
area have more chance to be long the roads, which makes the Dijkstra’s method
available.

5.3 wNeighbors under Different Parameters and Workloads

We further study the performance of wNeighbors in this subsection by eval-
uating the effects of different parameters and different workloads. In the first
experiment, we examine the effect of the dataset size. The results of queries

 0

 100

 200

 300

 400

 500

20 40 60 80 100

Pa
ge

 a
cc

es
s

Dataset size(percent)

Uniform
Clustered

(a) Page access

 0

 100

 200

 300

 400

 500

 600

 700

 800

20 40 60 80 100

To
ta

l r
es

po
ns

e
tim

e(
m

illi
se

c)

Dataset size(percent)

Uniform
Clustered

(b) Total response time

Fig. 7. Effects of dataset size

wNeighbors: A Method for Finding kNN in Weighted Regions 147

 0

 100

 200

 300

 400

 500

20 40 60 80 100

Pa
ge

 a
cc

es
s

Destination points density

Uniform
Clustered

(a) Page access

 0

 100

 200

 300

 400

 500

 600

 700

 800

20 40 60 80 100

To
ta

l r
es

po
ns

e
tim

e(
m

illi
se

c)

Destination points density

Uniform
Clustered

(b) Total response time

Fig. 8. Effects of destination points density

using 20-100 percents of the real dataset(both destination points and line seg-
ments) are shown in Fig. 7. We can see that as the size of dataset increases, both
the number of page access and total response time increase. This is expected as
more data needs to be examined. The second experiment studies the effect of the
density of destination points on the performance on wNeighbors by using 20-100
percents of the real dataset. The results are shown in Fig.8. As expected, as the
destination increases, wNeighbors incurs larger number of page access and total
response time.

6 Conclusion

In this paper, we consider the weighted kNN search problem. By proposing the
concept of combination region, we design an effective indexing data structure,
called Weighted Indexing Map(WIM), which can tremendously reduce the cal-
culation cost of the online kNN processing. The WkNN processing algorithm,
called wNeighbors, is proposed based on the WIM data structure. Experiments
show that the wNeighbors algorithm can handle the WkNN problem effectively
and efficiently.

References

1. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The r*-tree: an efficient and
robust access method for points and rectangles. ACM SIGMOD Record 19(2),
322–331 (1990)

2. Chen, Z., Shen, H.T., Zhou, X., Yu, J.X.: Monitoring path nearest neighbor in road
networks. In: SigMod (2009)

3. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Math-
ematik 1(1), 269–271 (1959)

4. Gao, Y., Zheng, B.: Continuous obstructed nearest neighbor queries in spatial
databases. In: SIGMOD, pp. 577–590 (2009)

5. Gao, Y., Zheng, B., Chen, G., Lee, W.-C., Lee, K.C., Li, Q.: Visible reverse k-
nearest neighbor query processing in spatial databases. TKDE 21(9), 1314–1327
(2009)

6. Gao, Y., Zheng, B., Chen, G., Lee, W.-C., Lee, K.C.K., Li, Q.: Visible reverse
k-nearest neighbor queries. In: ICDE, pp. 1203–1206 (2009)

148 C. Li et al.

7. Gao, Y., Zheng, B., Lee, W.-C., Chen, G.: Continuous visible nearest neighbor
queries. In: EDBT, pp. 144–155 (2009)

8. Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and
the computation of Voronoi. ACM Transactions on Graphics (TOG) 4(2), 123
(1985)

9. Hjaltason, G., Samet, H.: Ranking in spatial databases. In: Advances in Spatial
Databases, pp. 83–95. Springer, Heidelberg (1995)

10. Hu, H., Lee, D., Lee, V.: Distance indexing on road networks. In: Proceedings
of the 32nd International Conference on Very Large Data Bases, p. 905, VLDB
Endowment (2006)

11. Jagadish, H., Ooi, B., Tan, K., Yu, C., Zhang, R.: iDistance: An adaptive B-
tree based indexing method for nearest neighbor search. ACM Transactions on
Database Systems (TODS 2005) 30(2), 364–397 (2005)

12. Li, C., Gu, Y., Li, F., Chen, M.: Moving k-nearest neighbor query over obstructed
regions. In: APWeb, Pusan, Korea (2010)

13. Mitchell, J., Papadimitriou, C.: The weighted region problem: Finding shortest
paths through a weighted planar subdivision. Journal of the ACM (JACM) 38(1),
18–73 (1991)

14. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The v*diagram: A query dependent
approach to moving knn queries. In: VLDB, pp. 1095–1106 (2008)

15. Papadakis, N., Perakis, A.: Deterministic minimal time vessel routing. Operations
Research 38(3), 426–438 (1990)

16. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: Proceedings of the 29th International Conference on Very Large Data
Bases, vol. 29, pp. 802–813, VLDB Endowment (2003)

17. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD,
pp. 71–79 (1995)

18. Zhang, J., Papadias, D., Mouratidis, K., Zhu, M.: Spatial queries in the presence
of obstacles. In: Hwang, J., Christodoulakis, S., Plexousakis, D., Christophides,
V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 366–384.
Springer, Heidelberg (2004)

19. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial
queries. In: SIGMOD, pp. 443–454 (2003)

Aggregate Farthest-Neighbor Queries over Spatial Data

Yuan Gao, Lidan Shou, Ke Chen, and Gang Chen

College of Computer Science, Zhejiang University, China

Abstract. In this paper, we study a new type of spatial query, namely aggregate
k farthest neighbor (AkFN) search. Given a data point set P , a query point set
Q, an AkFN query returns k points in P with the largest aggregate distances
to all points in Q. For instance, it is reasonable to build a new hotel where the
aggregate distances to all existing hotels are maximized to reduce competition.
Our investigation of AkFN queries focuses on three aggregate functions, namely
SUM, MAX and MIN. Assuming that the data set is indexed by R-tree, we pro-
pose two algorithms, namely minimum bounding (MB) and best first (BF), for
efficiently solving AkFN queries with all three aggregate functions. The BF algo-
rithm is incremental and IO optimal. Extensive experiments on both synthetic and
real data sets confirm the efficiency and effectiveness of our proposed algorithms.

1 Introduction

The aggregate nearest neighbor (ANN) search is an important variant of the nearest
neighbor query. It takes multiple query points into account, and has been well studied
in recent years [1] [2]. Let P be a set of data points in multidimensional space. Given
a query point set Q, an ANN query retrieves the point p in P , which has the small-
est aggregate distances to all points in Q. Specifically, ∀p′ ∈ P − {p}, the aggregate
distance AGGq∈Q ‖p, q‖ ≤ AGGq∈Q ‖p′, q‖1, where AGG denotes an aggregate dis-
tance function. Taking aggregate function of SUM for an example, ANN finds a meeting
point that minimizes the sum of distances to all users (query points). Figure 1 shows
a simple example, with data set P = {p1, p2, p3, p4, p5, p6, p7} and Q = {q1, q2},
the ANN(Q) with aggregate function SUM is p6, as ‖p6, q1‖ + ‖p6, q2‖ ≤ ‖pi, q1‖ +
‖pi, q2‖, ∀pi ∈ P − {p6}. This is obvious because p6 is on line segment q1q2, thus the
minimum sum of distances to q1 and q2 is ‖q1, q2‖ All the other points have sum of
distances greater than ‖q1, q2‖ by the rule of triangle inequality.

While nearest neighbor (NN) search [3] [4] is one of the most important query type
in spatial database and has been studied extensively, farthest neighbor (FN) search has
not received adequate attention. However, FN is useful in real life. For example, a user
wants to buy a facility that has serviceable range, like transceiver, telescope etc. He(she)
can utilize the distance between he(she) and his(her) FN to decide which kind of facil-
ity to buy. Moreover, as a counterpart of the NN, the FN indicates a point that is least
interesting to the user. Alternatively, FN is the one that can reduce the undesirable in-
fluence from a query point mostly. So FN is useful for finding some quiet place away
from a noisy factory. As depicted in Figure 1, the FN points of q1 and q2 are p2 and p3,
respectively.

1 Without loss of generality, ‖p, q‖ computes the Euclidean distance between points p and q.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 149–163, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

150 Y. Gao et al.

Fig. 1. Example of AkFN queries

To date, the existing work on computing FN only considers single query point and
all-pairs farthest neighbor problem [5] [6] [7]. In this paper, we propose a novel type of
FN query, called aggregate k farthest neighbor (AkFN), which involves multiple query
points. Given a data set P and a query set Q, an AkFN query retrieves a set of k points
A in P with largest aggregate distances to all points in Q. i.e., ∀p ∈ A, ∀p′ ∈ P − A,
AGGq∈Q ‖p, q‖ ≥ AGGq∈Q ‖p′, q‖. AkFN is useful in real-life applications such as
decision support. A possible scenario of an AkFN is building a new hotel in a city.
Taking the existing hotels into account, the location of the new hotel is chosen so as to
maximize the aggregate distances to all the other hotels for reducing competition most.
Another scenario of an AkFN is to find a location for a school keeping away from noisy
factories, amusement places, etc. A third scenario is a multi-point monitoring where n
places(Q) need to monitor m places(P). The result of MIN-AFN can be used to buy
telescopes that make sure all places in P are monitored by at least one place in Q, while
MAX-AFN is used to monitor all places in P by all places in Q. As depicted in Figure
1, the A1FN(Q) (or AFN(Q)) with aggregate function SUM is p1, all other points are
in the ellipse that has the same total distance to q1 and q2 as p1. It is important to note
that p1 is neither the FN of q1 nor the FN of q2, so the SUM-AkFN of a query set may
not be in the FN set of any single query point.

To the best of our knowledge, AkFN has not been studied in the literature. The main
contributions of this paper are summarized as follows:

– We formally define a new type of query called AkFN, and investigate its character-
istics for three aggregate functions, namely SUM, MAX and MIN.

– We propose two algorithms, namely the minimum bounding (MB) algorithm and
the best first (BF) algorithm, for solving AkFN efficiently. The BF algorithm is
incremental and proved to be optimal in terms of IO cost.

– Extensive experiments on both synthetic and real data sets are performed to demon-
strate the efficiency and effectiveness of our proposed algorithms.

For the following discussion, we consider Euclidean distance and 2D point data sets
indexed by R-tree [8], but the proposed techniques are applicable to other spatial in-
dexes such as quadtree [9]. The extension to higher dimensions will be discussed in
Section 4.3.

The rest of the article is organized as follows. Section 2 reviews related work on NN
queries on R-tree and ANN searches. Section 3 provides preliminaries on AkFN query
and some distance metrics used in this paper. Section 4 presents the two algorithms for
processing AkFN queries efficiently. Results of our experimental study are reported in
Section 5. Finally, Section 6 concludes the paper.

Aggregate Farthest-Neighbor Queries over Spatial Data 151

2 Related Work

In this section, we briefly review previous work related to AkFN queries. We shall look
at techniques for answering NN queries on R-tree and ANN queries.

2.1 Algorithms for kNN Search on R-tree

The k nearest neighbor (kNN) search finds the k points nearest to a given query point.
The algorithms for kNN query usually prune nodes based on some metrics in a branch-
and-bound manner when traversing the R-tree. The commonly used metrics include
MINDIST, MAXDIST and MINMAXDIST.

Existing algorithms for kNN query follow either depth-first (DF) or best-first (BF)
paradigm. DF-kNN [3] algorithm recursively visits R-tree nodes and maintains a can-
didate set containing the k nearest neighbors found so far. The kth nearest neighbor’s
distance to the query point is then used as the pruning distance to discard R-tree nodes.
The candidate set becomes kNN when all nodes and points have been either visited or
pruned. The DF-kNN algorithm is suboptimal as it accesses more nodes than necessary.

The BF-kNN [4] algorithm keeps the nodes visited so far in ascending order of
MINDIST in a heap. It then recursively retrieves entries from the head of the heap.
If the retrived entry is a node, the child entries of the node are inserted into the list for
later exploration. Otherwise, it must be a data point and is inserted into the answer set.
The algorithm terminates when the kNN is found. Compared to DF-kNN, BF-kNN is
optimal in terms of IO cost. In addition, BF-kNN is an incremental algorithm.

2.2 Aggregate Nearest Neighbor Queries

Papadias et al. introduced group nearest neighbor (GNN) query [10] as a novel form of
NN search that involves multiple query points. Later, the authors extended GNN to ANN
[1] with aggregate functions SUM, MAX and MIN. In the latter work, they proposed
three algorithms, named multiple query method (MQM), single point method (SPM)
and minimum bounding method (MBM) respectively, for processing ANN queries.

Variants of ANN and GNN queries like ANN queries in network databases [2], the
group visible nearest neighbor (GVNN) query [11], the aggregate visible k nearest
neighbor (AVkNN) query [12] and the probabilistic group nearest neighbor (PGNN)
query [13] have also been studied.

3 Preliminaries

In this section, we present the definitions of AkFN query and some distance met-
rics. Given a set of data points P = {p1, p2, ..., pn}, a set of query points Q =
{q1, q2, ..., qm}, the aggregate distance is defined in Definition 1, based on which we
formulate the AkFN query in Definition 2.

Definition 1 (Aggregate Distance (AGGDIST)). Given a data point p, the aggregate
distance between p and Q is

AGGDIST(p, Q) = AGGm
i=1‖p, qi‖,

152 Y. Gao et al.

where AGG is an aggregate function such as SUM, MAX and MIN. All three aggre-
gate functions correspond to three distance functions, namely ASUMDIST, AMAXDIST

and AMINDIST, respectively. In the sequel, AGG in any definition can be replaced by
ASUM, AMAX and AMIN to represent the respective aggregate function.

Definition 2 (Aggregate k Farthest Neighbor (AkFN) query). The aggregate k farthest
neighbor of Q obtains an answer set A such that: (i) A contains k data points from
P (given that the number of points in P is greater than or equal to k); (ii) for any
given p in A and p′ not in A, p′ ∈ P − A, AGGDIST(p, Q) is greater than or equal to
AGGDIST(p′, Q).

There are three kinds of AkFN, namely, SUM-AkFN, MAX-AkFN and MIN-AkFN
based on the selection of the aggregate function.

As widely presented with R-tree, MAXDIST is the maximum distance between a
point and a minimum bounding rectangle (MBR). In this paper, we will use MAXDIST

to measure the maximum distance of two MBRs too. It is formally defined as follows.

Definition 3 (Maximum Distance (MAXDIST)). (i) Given a point q and an MBR M ,
the maximum distance between q and M is

MAXDIST(q, M) = MAXp∈M‖q, p‖,
where ∈ means in the range of an MBR. (ii) Given two MBRs M1 and M2, the maxi-
mum distance between M1 and M2 is

MAXDIST(M1, M2) = MAXp∈M1,q∈M2‖p, q‖.
The MAXDIST of a point p and an MBR M has a property, which was also used in [4],
as described in the following lemma. The formal proof of it is given in Section 4.2.

Lemma 1. The MAXDIST of p and M is the distance between p and the farthest corner
of M . Namely, the farthest neighbor of p in M is one of the corners.

It immediately follows Lemma 1 that:

Lemma 2. The MAXDIST of M1 and M2 is the maximum of distances between one
corner of M1 and another of M2, i.e.,

MAXDIST(M1, M2) = MAXp∈COR(M1),q∈COR(M2)‖p, q‖,
where COR(M) returns the set of corner points of M .

Proof : Suppose the maximum distance between two MBRs M1 and M2 is ‖p, q‖ where
p ∈ M1, q ∈ M2 and at least one of the points are not at the corners. First we fix the
point p, according to Lemma 1, we can find a point q′ that is one of the corners of M2

such that ‖p, q′‖ ≥ ‖p, q‖. Then, we fix the point q′ and can find a point p′ that is a
corner of M1 such that ‖p′, q′‖ ≥ ‖p, q′‖. Hence, ‖p′, q′‖ ≥ ‖p, q‖. �
Since the locations of points in an MBR cannot be predicted, it is difficult to know the
maximum AGGDIST of a point in the MBR to Q. This maximum AGGDIST is called
MAXAGGDIST and is defined as following.

Definition 4 (Maximum AGGDIST (MAXAGGDIST)). Given an MBR M , the maxi-
mum AGGDIST of M and Q is

MAXAGGDIST(Q, M) = MAXp∈M AGGDIST(p, Q).

Aggregate Farthest-Neighbor Queries over Spatial Data 153

The point in M that attains MAXAGGDIST is denoted as p∗, namely,

p∗ = ARGMAXp∈M AGGDIST(p, Q).

In particular, MAXAGGDIST(Q, p) equals to AGGDIST(p, Q) when an MBR reduces
to a point.

Note that MAXAGGDIST is the optimal metric for node access ordering, which, if
combined with the best-first algorithm, would lead to an IO optimal method. We will
investigate this method in Section 4.2.

4 AkFN Query Processing

In this section, we present efficient algorithms for processing AkFN queries, assuming
that the data set P is indexed by R-tree and the query set Q fits in memory. We describe
the minimum bounding (MB) algorithm in Section 4.1 and the best first (BF) algorithm
in Section 4.2.

4.1 The Minimum Bounding Algorithm

The MB algorithm is motivated by the minimum bounding method (MBM) algorithm
in [1], which has been shown to have good performance. The main idea of MB is to
use the MBR of Q (MBR(Q)) and the MBR of some data points P ′ (MBR(P ′)) to
compute an upper bound of the maximum aggregate distance between Q and any data
point in MBR(P ′). If this bound is not qualified, i.e., too small, then MBR(P ′) can
safely be pruned.

In order to demonstrate the pruning strategies, we first need to define the aggregate
MAXDIST, whose definition is given as follows.

Definition 5 (Aggregate MAXDIST (AGGMAXDIST)). (i) Given an MBR M , the ag-
gregate MAXDIST of Q and M is

AGGMAXDIST(Q, M) = AGGm
i=1MAXDIST(qi, M).

(ii) Given an MBR M , the aggregate MAXDIST of MBR(Q) and M is

AGGMAXDIST(MBR(Q), M) = AGGm
i=1MAXDIST(MBR(Q), M),

i.e., aggregate of m MAXDIST(MBR(Q), M).
Since AGGMAXDIST is easy to compute, Lemma 3 can be used to prune R-tree

nodes efficiently.

Lemma 3. Given an MBR M , the following inequality holds,

AGGMAXDIST(MBR(Q), M)
≥ AGGMAXDIST(Q, M)
≥ MAXAGGDIST(Q, M).

154 Y. Gao et al.

Proof : For SUM, the following relations can be derived.

ASUMMAXDIST(MBR(Q), M)
= SUMm

i=1MAXDIST(MBR(Q), M)
≥ SUMm

i=1MAXDIST(qi, M) = ASUMMAXDIST(Q, M)
≥ SUMm

i=1‖qi, p
∗‖ = MAXASUMDIST(Q, M)

The cases for MAX and MIN can be proved similarly but are not presented here to save
space. �

Algorithm 1. MB-AkFN(RTree, Q, k)

1 Initialize an empty set A of answers
2 Call DF-MB-AkFN(RTree.root, Q, k, A)
3 return A

By the definition of MAXAGGDIST, AkFN query needs to visit a R-tree node (MBR)
iff its MAXAGGDIST is larger than the kth result k best dist found so far. So, if one of
the AGGMAXDISTs is smaller than or equal to k best dist, there is no way for MAXAG-
GDIST to be larger than k best dist and the corresponding R-tree node can be pruned.
Due to the computation complexity of AGGMAXDIST(Q, M), it is used only if M can
not be pruned by AGGMAXDIST(MBR(Q), M).

As a special case of Lemma 3, when an MBR becomes a point p, we have AG-
GMAXDIST(p, MBR(Q)) ≥ AGGDIST(p, Q), where p is also regarded as a set con-
taining a single point. This is used to prune points before checking AGGDIST.

The MB-AkFN algorithm (Algorithm 1) is based on DF-kNN algorithm and applies
Lemma 3 to prune nodes. The body of the algorithm just calls another recursive function
DF-MB-AkFN (Algorithm 2), which does the actual work. In DF-MB-AkFN, Lines 1 to
7 deal with leaf nodes. For each data point in a leaf node, AGGMAXDIST is calculated
for pruning (Line 3) before checking the actual AGGDIST (Line 4). If the AGGDIST of
any point is larger than the kth largest distance in A, A.k best dist2, it is inserted into A
(Line 5). Lines 6 and 7 make sure |A| is no more than k. In terms of intermediate nodes
(Lines 8 to 18), all the child nodes of E that pass the two-phase filtering in sequence is
added to EntryList (Lines 10 to 13). In Line 14, EntryList is sorted in descending
order of AGGMAXDIST, i.e., from largest to smallest, to allow early end of iteration
through EntryList (Line 18), saving unnecessary nodes processing. DF-MB-AkFN is
recursively called on the child nodes that has AGGMAXDIST larger than A.k best dist
(Line 17).

It is worthwhile to mention that MB can also be used with the best first paradigm.
Nodes can be ordered by descending order of AGGMAXDIST(Q, M) in a priority
queue, as it is a tighter upper bound of MAXAGGDIST(Q, M).

4.2 The Best First Algorithm

As mentioned in Section 3, MAXAGGDIST can be used in a best first algorithm to
optimize IO cost. The BF-AkFN algorithm (Algorithm 3) starts by initializing a priority

2 In case |A| < k, A.k best dist < 0.

Aggregate Farthest-Neighbor Queries over Spatial Data 155

Algorithm 2. DF-MB-AkFN(E, Q, k, A)

1 if E is a leaf node then
2 for each data point p in E do
3 if AGGMAXDIST(p, MBR(Q)) > A.k best dist then
4 if AGGDIST(p, Q) > A.k best dist then
5 Insert (p, AGGDIST(p, Q)) into A
6 if |A| > k then
7 Remove the nearest entry from A

8 else //E is an intermediate node
9 Initialize an empty list EntryList

10 for each entry e in E do
11 if AGGMAXDIST(MBR(Q), e.MBR) > A.k best dist then
12 if AGGMAXDIST(Q, e.MBR) > A.k best dist then
13 Insert e into EntryList

14 Sort EntryList in descending order of AGGMAXDIST(Q, M)
15 for each entry e in EntryList do
16 if AGGMAXDIST(Q, e.MBR) > A.k best dist then
17 DF-MB-AkFN(e, Q, k, A)

18 else break

queue PQ with the root node of R-tree as the first entry and an empty answer set A
(Lines 1 and 2). The while loop (Lines 3 to 10) continues until PQ is empty or A has
k entries. Each time an entry E is retrieved from PQ, it is inserted into A (Line 5) if it
is a point; otherwise, for each child entry of E, MAXAGGDIST is calculated and then
inserted into PQ (Lines 6 to 10).

Unfortunately, computing MAXAGGDIST is not trivial. In the sequel, we will first
show that MAXASUMDIST and MAXAMAXDIST can be calculated efficiently by only
considering the corners of an MBR. Then we develop another solution for MAXA-
MINDIST.

Let us consider the region formed by all the points that have AGGDIST less than or
equal to a distance. Such region is known for ASUMDIST when |Q| ≤ 2 – it is enclosed
by a circle when |Q| = 1 and an ellipse when |Q| = 2. As a generalized form, the
aggregate region (AGGREGION) with arbitrary |Q| is defined as follows.

Definition 6 (Aggregate Region (AGGREGION)). Given a distance d, the aggregate re-
gion AGGREGION(Q, d) is the set of points p such that AGGDIST(p, Q) is less than or
equal to d, i.e.,

AGGREGION(Q, d) = {p : AGGDIST(p, Q) ≤ d}.
In [12] Nutanong et al. showed that ASUMREGION and AMAXREGION are convex.
Formally, we have the following lemma.
Lemma 4 (Lemma 1 in [12]). The ASUMREGION and AMAXREGION are convex.
Particularly, for any two points x and y in the ASUMREGION (AMAXREGION), all
points on segment xy are in the region too.

156 Y. Gao et al.

Algorithm 3. BF-AkFN(RTree, Q, k)

1 Initialize a priority queue PQ with RTree.root
2 Initialize an empty set A of answers
3 while PQ is not empty and |A| < k do
4 E ← PQ.pophead()
5 if E is a point then Insert E into A
6 else //E is a node
7 for each entry e in E do
8 D ← MAXAGGDIST(Q, e.MBR)
9 NewEntry ← (e,D)

10 Insert NewEntry into PQ

11 return A

With Lemma 4, the following claim becomes immediate.
Lemma 5. The maximum aggregate (SUM and MAX) distance between a query set
and a convex polygon must be the maximum of AGGDISTs of the convex polygon’s
vertices.

Proof: We prove it by contradiction. Suppose the point p with maximal AGGDIST is
not a vertex of convex polygon. As shown in Figure 2, then p is inside the convex
polygon p1p2p3p4p5p1. Let d = ASUMDIST(p, Q) (AMAXDIST(p, Q)), all the ver-
tices must be strictly in ASUMREGION(Q, d) (AMAXREGION(Q, d)). If we draw a
line through a vertex and p, it must intersect with an edge. The line extends p3p inter-
sects with p1p5 at a in Figure 2. By Lemma 4, we know a is in ASUMREGION(Q, d)
(AMAXREGION(Q, d)) and so is p. This leads to d < d. �
Since an MBR is a rectangle, which is a convex polygon, thus we have:

Corollary 1. p∗ is in the corner set of an MBR for SUM and MAX.
Note that Lemma 1 is just a special case of Corollary 1 where |Q| = 1.
For SUM and MAX, the MAXAGGDIST can be calculated by Algorithm 4.

Algorithm 4. MAXAGGDIST(Q, M) for SUM and MAX

1 Ans← 0
2 for c in Cor(M) do
3 Ans = MAX(Ans, AGGDIST(c, Q))

4 return Ans

For the MIN aggregate function, AMINREGIONs do not have the property of con-
vexity. Therefore it is not enough to only take the corners of an MBR into account for
MAXAMINDIST. By definition of MAXAMINDIST, infinite number of possible points
in an MBR need to be considered. Note that even if there are only a few points from P
in an MBR, the precise locations are not known in advance knowing the MBR. Hence,
it is also impractical to compute MAXAMINDIST based on the definition because of
the infinite number of possible AMINDISTs. Intuitively, the target of MIN-A1FN is to

Aggregate Farthest-Neighbor Queries over Spatial Data 157

Fig. 2. Proof of Lemma 5 Fig. 3. Example of voronoi diagram

find a point in P , centered at which a circle can spread mostly and does not enclose
any point in Q. For a fixed point p, it is the nearest neighbor of p in Q that determines
the radius. Thus we need a powerful structure for computing NNs, namely the Voronoi
Diagram (VD) [14], to help find the target point.

The voronoi diagram is an important technique mainly designed for evaluating near-
est neighbor queries efficiently. It partitions the plane to disjoin voronoi cells (VCs),
such that all the points in the same VC have the same NN. With VD, the task of NN
search is reduced to finding which VC the query point is in. The definitions of VD and
VC can be formally defined as:
Definition 7 (voronoi diagram (VD) and voronoi cell (VC)). For a set of points Q =
{q1, q2, ..., qm} in space S, the voronoi cell of qi V C(qi) is a region in S given by

V C(qi) = {p : ‖p, qi‖ ≤ ‖p, qj‖}forj �= i,

i.e., any point in V C(qi) has qi as its NN. The voronoi diagram of Q, V D(Q), is then
the collection of all VCs,

V D(Q) = {V C(q1), V C(q2), ..., V C(qm)}.
Figure 3 illustrates a sample voronoi diagram for Q = {q1, q2, q3}, where S is box
abcda, and polygon ahgea is the VC for q1.

Since VCs are formed by intersecting half planes, they are convex polygons. By
definition of VD, The entire space is divided into VCs of Q. Thus, for an MBR M , it
must be either fully enclosed by a VC or intersecting with some VCs. For simplicity,
the region M intersects with V C(qi) is denoted as Mqi . Mqi is either empty if M does
not intersect with V C(qi) or a convex polygon for sure. Furthermore, the union of all
Mqi is M .

As the example in Figure 3 shows, M is a R-tree node represented by rstur, which
intersects with V C(q1) and V C(q2). Thus, M is partitioned into two parts: Mq1 and
Mq2 , corresponding to polygons rsvwr and wvtuw, respectively. By the definition of
VC, any points in Mq1 will take q1 as their NNs and any points in Mq2 will take q2 as
their NNs, w.r.t Q. This is obvious because Mq1 ⊆ V C(q1) and Mq2 ⊆ V C(q2).

158 Y. Gao et al.

Since our goal is to maximize the distance, it only matters what is the maximum
distance between each qi and Mqi . We denote this maximum distance as MAXDIST

(qi, Mqi) as a generalized MAXDIST in Definition 3. MAXDIST(qi, Mqi) is easy to
compute by Lemma 5 since Mqi is a convex polygon. Particularly, MAXDIST(qi, Mqi)
is 0 if Mqi is empty. Then, MAXAMINDIST is immediately obtained by taking the
maximum of all MAXDIST(qi, Mqi). The algorithm for computing MAXAMINDIST is
given as Algorithm 5.

Algorithm 5. MAXAMINDIST(Q, M)

1 Ans← 0
2 Compute V D(Q)
3 for i = 1, ..., m do
4 Mqi ←M

⋂
V C(qi)

5 Ans = MAX(Ans, MAXDIST(qi, Mqi))

6 return Ans

Return to the example in Figure 3, we have MAXDIST(q1, Mq1) = ‖q1, w‖ and
MAXDIST(q2, Mq2) = ‖q2, w‖. Since w is on the perpendicular bisector of q1q2,
‖q1, w‖ is actually equal to ‖q2, w‖. As for q3, MAXDIST(q3, Mq3) is 0 since M does
not intersect V C(q3) at all. Hence, by Lemma 6, MAXAMINDIST(Q, M) is ‖q1, w‖
(or ‖q2, w‖).

As an optimization for Algorithm 3, we can store the point that gets the MAXAG-
GDIST in PQ too. With this modification, it first checks whether a child entry contains
this optimal point before calculating MAXAGGDIST (Line 8). As a property of BF algo-
rithm, if the optimal point is enclosed by a child node e, e must be the next entry to visit
and no distance computation is required. This optimization is especially useful for MIN

as MAXAMINDIST is harder to obtain than MAXASUMDIST and MAXAMAXDIST.
Finally, we prove that BF is IO optimal.

Theorem 1. The IO cost of BF algorithm is optimal.
Proof: BF algorithm orders R-tree nodes by MAXAGGDIST, so all the nodes processed
by BF is necessary. Thus, the algorithm visits the minimum number of nodes and is IO
optimal. �

4.3 Discussions

The BF algorithm is incremental while the MB algorithm is not. The most desirable
advantage of an incremental algorithm is that it can report results progressively. So the
AkFN results of BF are produced in descending order by nature. However, MB needs
to start from scratch when k changes.

Next, we discuss extensions of our algorithms to higher dimensions. First, MB and
BF for both SUM-AkFN and MAX-AkFN can be directly used in higher dimensions
since they only use vertices of MBRs for distance computations. Second, the idea of
BF for MIN-AkFN can be utilized in high dimensions. However, computing VD and
intersections of high dimensional convex polygons is infeasible because of high com-
putation complexity and programming complexity.

Aggregate Farthest-Neighbor Queries over Spatial Data 159

5 Experimental Results

In this section, we report the results of our experimental study. The algorithms are
implemented in C++ and the experiments are conducted on a Windows XP PC with an
Intel 2.26GHz CPU and 4GB memory.

Data sets. Our experiments are based on both synthetic and real data sets. The real data
sets consists of nodes from three road networks, namely Califonia (CA), San Francisco
(SF) and North America (NA). These data sets are available online3. Similar to [15],
we normalize each data set into space S = (0,0) × (1000000, 1000000) and merge them
into one larger real data set. The real data set contains 371817 number of points. The
synthetic data set is randomly generated based on uniform distribution. The coordinate
of each point is generated uniformly along each dimension as we assume that a point’s
coordinates on different dimensions are mutually independent. All data sets are indexed
by disk-based R∗-tree [16] with the page size fixed at 4KB. Each R∗-tree has the buffer
capacity of 5% of its index size.

Table 1. Parameter ranges and default values

Parameter Range
k 10, 40, 70, 100
m 20, 40, 60, 80, 100
n (× 1000) 10, 50, 100, 500, 1000, 1500, 2000, 3000, 4000, 5000

Performance measurement. We use two performance metrics in our study, namely,
IO cost and query time. The query time is the total execution time of an algorithm
which includes the IO time and the CPU time. The efficiency and effectiveness of our
proposed algorithms are evaluated under various parameters which are summarized in
Table 1. The underlined numbers are the default setting for each parameter. In each
set of experiment, we only vary one parameter with the other ones fixed at default
values to measure its impact on the performance. By default, each experiment runs
100 queries and the average performance is reported. For each query, the m points are
uniformly generated in the whole space. Due to space limitation, we only present the
performance on the real data sets in 5.1 and 5.2 since the algorithms perform similarly
on the synthetic data sets.

5.1 Effect of k

Figure 4 shows the performance of the algorithms as a function of k on the real data
sets.

SUM-AkFN. Figure 4(a) shows the IO cost and figure 4(d) shows the query time of
SUM-AkFN. As expected, both IO cost and query time of the two algorithms increase
as k increases, because a higher value of k implies a larger search space and more dis-
tance calculations. Moreover, as k increases, the number of entries in the answer list of

3 www.cs.fsu.edu/˜lifeifei/SpatialDataset.htm

www.cs.fsu.edu/~lifeifei/SpatialDataset.htm

160 Y. Gao et al.

 0

 2

 4

 6

 8

 10

 12

 14

 10 100

nu
m

be
r

of
 I

O
s

k

MB
BF

(a) SUM, IO cost

 0

 2

 4

 6

 8

 10

 10 100

nu
m

be
r

of
 I

O
s

k

MB
BF

(b) MAX, IO cost

 0

 5

 10

 15

 20

 25

 30

 35

 10 100

nu
m

be
r

of
 I

O
s

k

MB
BF

(c) MIN, IO cost

 0

 20

 40

 60

 80

 100

 120

 140

 10 100

qu
er

y
tim

e(
m

s)

k

MB
BF

(d) SUM, query time

 0

 20

 40

 60

 80

 100

 10 100

qu
er

y
tim

e(
m

s)

k

MB
BF

(e) MAX, query time

 0

 50

 100

 150

 200

 250

 300

 350

 10 100

qu
er

y
tim

e(
m

s)

k

MB
BF

(f) MIN, query time

Fig. 4. The effect of k on real data set

MB and the priority queue of BF increase. These changes contribute to more expensive
maintenance cost. It is observed that BF outperforms MB under all values of k.

MAX-AkFN. Similar to SUM-AkFN, BF is still better in all cases. However, both IO
cost and thus query time of MB are lower than SUM-AkFN, narrowing the gap between
MB and BF. We will explain this very shortly.

MIN-AkFN. Compared to SUM-AkFN and MAX-AkFN, the IO cost of BF does not
vary significantly while that of MB is much steeper. Though the gap in IO cost increases,
the gap in query time is not as obvious. This is because BF needs to compute VD and
polygon intersection, which is more complex than MB. Nevertheless, BF is still better
in most cases.

Discussions. BF outperforms MB under all circumstance. The IO cost of BF is almost
invariant for the three aggregate functions. However, the query time for MIN-AkFN
is much longer than the other two due to computation complexity. Both IO cost and
query time of MB increase in the order of MAX-AkFN, SUM-AkFN and MIN-AkFN,
since it is IO dominated. This also reflects the tightness of AGGMAXDIST. Actually,
AMAXMAXDIST equals to MAXAMAXDIST because they both obtain the maximum
distance between a corner point of an MBR and a query point. This explains the close-
ness of the two curves in Figure4(b). Nevertheless, MB for MAX-AkFN is still not IO
optimal due to its algorithm scheme. ASUMMAXDIST is better than AMINMAXDIST

since ASUMREGION is convex while AMINREGION is not and AGGMAXDIST uses
the corner points of MBRs.

Aggregate Farthest-Neighbor Queries over Spatial Data 161

 0

 2

 4

 6

 8

 10

 100

nu
m

be
r

of
 I

O
s

m

MB
BF

(a) SUM, IO cost

 0
 1
 2
 3
 4
 5
 6
 7
 8

 100

nu
m

be
r

of
 I

O
s

m

MB
BF

(b) MAX, IO cost

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 100

nu
m

be
r

of
 I

O
s

m

MB
BF

(c) MIN, IO cost

 0
 20
 40
 60
 80

 100
 120
 140
 160

 100

qu
er

y
tim

e(
m

s)

m

MB
BF

(d) SUM, query time

 0

 20

 40

 60

 80

 100

 120

 100

qu
er

y
tim

e(
m

s)

m

MB
BF

(e) MAX, query time

 0

 200

 400

 600

 800

 1000

 100

qu
er

y
tim

e(
m

s)

m

MB
BF

(f) MIN, query time

Fig. 5. The effect of m on real data set

5.2 Effect of m

Figure 5 illustrates the cost of the algorithms under different m values on the real data
sets.

SUM-AkFN. In terms of IO cost, both algorithms remain stable or increase very slowly
as m increases, and BF costs less. The query time of both algorithms increase by m.
However MB grows more rapidly than BF. This is because MB involves more distance
computations than BF.

MAX-AkFN. As explained above, MB has very similar IO cost as BF. The growth rates
of the query times of the two algorithms are similar to the case in SUM-AkFN.

MIN-AkFN. Unlike SUM-AkFN and MAX-AkFN, the IO cost of MB in MIN-AkFN
increases rapidly as m increases. The reason is that a larger value of m makes the VD
more complex and AMINMAXDIST bounds less tightly, which leads to more unneces-
sary nodes access. On the other hand, the performance of BF is stable and costs only
slightly more than that of SUM-AkFN and MAX-AkFN. Although the query time of
BF is less than MB in most cases, the increase in CPU time may overweight the gap of
IO time, which makes BF less efficient than MB (e.g. m = 20 in Figure 5(f)).

Discussions. In this set of experiments, BF is still the better choice in common cases.

5.3 Effect of n

We only evaluate this set of experiments on synthetic data set. The performance of the
algorithms under various values of n is depicted in Figure 6.

162 Y. Gao et al.

 0

 2

 4

 6

 8

 10

 10 100 1000

nu
m

be
r

of
 I

O
s

n (x 1000)

MB
BF

(a) SUM, IO cost

 0

 1

 2

 3

 4

 5

 6

 7

 10 100 1000

nu
m

be
r

of
 I

O
s

n (x 1000)

MB
BF

(b) MAX, IO cost

 0

 5

 10

 15

 20

 25

 30

 35

 10 100 1000

nu
m

be
r

of
 I

O
s

n (x 1000)

MB
BF

(c) MIN, IO cost

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 10 100 1000

qu
er

y
tim

e(
m

s)

n (x 1000)

MB
BF

(d) SUM, query time

 0

 10

 20

 30

 40

 50

 60

 10 100 1000

qu
er

y
tim

e(
m

s)

n (x 1000)

MB
BF

(e) MAX, query time

 0

 50

 100

 150

 200

 250

 300

 350

 10 100 1000

qu
er

y
tim

e(
m

s)

n (x 1000)

MB
BF

(f) MIN, query time

Fig. 6. The effect of n on synthetic data set

SUM-AkFN. As the figure shows, BF performs better under both metrics. The value of
n does not appear to have considerable impact on the performance. For MB, although
the search space grows as n increases, the locality of query results also increases due
to larger density of points in the fixed space, which improves the performance. So the
performance of MB is unpredictable in the experiments. In contrast, BF is very stable
for data sets of different sizes.

MAX-AkFN. It is similar to SUM-AkFN except that MB is significantly better in terms
of IO cost and query time.

MIN-AkFN. BF is better than MB in terms of IO cost and only performs worse when
n = 1 million in terms of query time.

Discussions. The performance of BF remains stable for all three aggregate functions
while that of MB sees apparent fluctuation. In summary, BF still outperforms MB in
this set of experiments.

6 Conclusions

In this article, we investigated the aggregate k-farthest-neighbor (AkFN) problem de-
fined for three aggregate functions: SUM, MAX and MIN. Furthermore, we presented
two R-tree based AkFN algorithms, MB and BF. MB follows the depth-first scheme
and uses AGGMAXDIST for branch ordering. BF is a best-first algorithm and thus IO
optimal. It maintains entries in a priority-queue by MAXAGGDIST. The experimental
results show that BF outperforms MB in terms of IO cost and query time. For future
work, we are interested in AkFN query for objects instead of points. We would also
consider AkFN in road networks.

Aggregate Farthest-Neighbor Queries over Spatial Data 163

Acknowledgment

This work is supported in part by the National Science Foundation of China (NSFC
Grant No. 60803003, 60970124).

References

1. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spa-
tial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)

2. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road networks.
IEEE Trans. Knowl. Data Eng. 17(6), 820–833 (2005)

3. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: SIGMOD Confer-
ence, pp. 71–79 (1995)

4. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans. Database
Syst. 24(2), 265–318 (1999)

5. Aggarwal, A., Kravets, D.: A linear time algorithm for finding all farthest neighbors in a
convex polygon. Inf. Process. Lett. 31(1), 17–20 (1989)

6. Suri, S.: Computing geodesic furthest neighbors in simple polygons. J. Comput. Syst.
Sci. 39(2), 220–235 (1989)

7. Cheong, O., Shin, C.-S., Vigneron, A.: Computing farthest neighbors on a convex polytope.
Theor. Comput. Sci. 296(1), 47–58 (2003)

8. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD Confer-
ence, pp. 47–57 (1984)

9. Turkiyyah, G.: Foundations of multidimensional and metric data structures, p. 1024. Mor-
gan Kaufmann, San Francisco (2006); ISBN 978-0-12-369446-1; Computer-Aided Design,
vol. 40(4), pp. 518–519 (2008)

10. Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: ICDE,
pp. 301–312 (2004)

11. Xu, H., Li, Z., Lu, Y., Deng, K., Zhou, X.: Group visible nearest neighbor queries in spatial
databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp.
333–344. Springer, Heidelberg (2010)

12. Nutanong, S., Tanin, E., Zhang, R.: Incremental evaluation of visible nearest neighbor
queries. IEEE Trans. Knowl. Data Eng. 22(5), 665–681 (2010)

13. Lian, X., Chen, L.: Probabilistic group nearest neighbor queries in uncertain databases. IEEE
Trans. Knowl. Data Eng. 20(6), 809–824 (2008)

14. Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data structure.
ACM Comput. Surv. 23(3), 345–405 (1991)

15. Yao, B., Li, F., Kumar, P.: Reverse furthest neighbors in spatial databases. In: ICDE, pp.
664–675 (2009)

16. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: An efficient and robust
access method for points and rectangles. In: SIGMOD Conference, pp. 322–331 (1990)

Querying Business Process Models
Based on Semantics

Tao Jin1,2, Jianmin Wang2, and Lijie Wen2

1 Department of Computer Science and Technology, Tsinghua University, China
2 School of Software, Tsinghua University, China

{jint05,wenlj00}@mails.thu.edu.cn, jimwang@tsinghua.edu.cn

Abstract. In recent years, the technology of business process manage-
ment is being more widely used, so that there are more and more business
process models (graphs). How to manage such a large number of business
process models is challenging, among which the business process model
query is a basic function. For example, based on business process model
query, the model designer can find the related models and evolve them in-
stead of starting from scratch. It will save a lot of time and is less error-
prone. To this end, we propose a language (BQL) for users to express their
requirements based on semantics. For efficiency, we adopt an efficient
method to compute the semantic features of business process models and
use indexes to support the query processing. To make our approach more
applicable, we consider the semantic similarity between labels. Our ap-
proach proposed in this paper is implemented in our system BeehiveZ.
Analysis and experiments show that our approach works well.

Keywords: business process model, graph, query, behavior, semantics.

1 Introduction

With the help of business process management technology, enterprises can build
or update their process aware information systems [1] quickly. They can adjust
their business processes according to the changes from market or policy adjust-
ment from government and so on, and improve their service in time.

The wide use of business process management technology results in a large
number of business process models in various industries with different formats.
For example, there are more than 3000 models in China Haier, and there are more
than 600 EPC models in SAP reference models. China CNR Corporation Limited
is a newly regrouped company which has more than 20 subsidiary companies.
Before the group company was established, most of these subsidiary companies
independently deployed their information systems with a total of more than
200,000 process models. These models describe how business runs in an enterprise
or in an industry, who is or are responsible for a specific task, and what data
is required or produced. They are invaluable assets for enterprises or industries.
How to manage them is challenging, among which the business process model
query is a basic function. Based on business process model query, the users can

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 164–178, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Querying Business Process Models Based on Semantics 165

retrieve the related models according to their requirements. For example, before
modeling a process, the designer can query the repository and obtain the related
models, and then evolve them instead of starting from scratch, it would save a
lot of time and is less error-prone.

Business process models can be regarded as a kind of graph. The behavior
characteristic is the essential characteristic of business process models. When
we query the repository, we always want to obtain some models satisfying the
given behavior feature requirements. For example, there would be requirements
as follows (or combination of them).

– R1: find the models in which the task “A” would be executed;
– R2: find the models in which after the execution of “A”, “B” would be

executed, i.e. the execution of “A” precedes the execution of “B”;
– R3: find the models in which task “A” can be executed parallelly with “B”;
– R4: find the models in which task “A” cannot be executed in the same

instance with “B”.

In this paper, the problem to be solved can be described as follows. Given a
model repository, retrieve all the models satisfying the user’s requirements based
on semantics (behavior). Although business process models are always stored as
XML format, XQuery cannot be used here because it is not convenient to express
the semantics of business process models. Although business process models can
be regarded as a kind of graph, the query and indexing research work on graph
such as [2,3,4,5,6] cannot be used here because these works only focus on graph
structure instead of on semantics.

There are many different notations used to describe the business processes,
such as BPMN, XPDL, BPEL, EPC, YAWL, PNML and so on. Because Petri
net has good formal foundation and is easy to understand, many research works
have been done on the transformation from other notations to Petri nets. A good
overview was given in [7]. To deal with business process models in a uniform way,
we assume that all the models in the repository are represented as Petri nets or
mapped from other formats into Petri nets. In addition, we only focus on control-
flow perspective of business process models in this paper, namely, we only focus
on what tasks are executed and the order they are executed. We summarize the
contributions of our work as follows.

1. To allow the users to describe the behavior features of the models that
they want to obtain, we propose a novel, user-friendly text language BQL
(Behavior Query Language);

2. To compute the behavior features of a business process model efficiently, we
adopt unfolding technology[8];

3. To achieve an efficient and scalable performance, we use inverted indexes to
support the query processing in the back-end, and all the indexes can be
updated incrementally;

4. To tackle the problem of applying different terminologies when modeling
processes, we consider the semantic similarity between labels in the query
processing;

5. The system is implemented in BeehiveZ.

166 T. Jin, J. Wang, and L. Wen

The rest of this paper is organized as follows. Section 2 introduces the definitions
used through this paper, such as Petri net and its semantics. Section 3 describes
the architecture of our system and the query language BQL. Section 4 describes
the index construction and how query is processed. Section 5 shows the system
implemented and experiments on both a synthetic dataset and a real dataset.
Section 6 compares our work with other works. Section 7 concludes our work
and points out the future work.

2 Preliminaries

Since Petri net has a good formalization foundation and is easy to understand, it
was introduced into business process management area for modeling, verification
and analysis[9].

Definition 1 (Petri net). A petri net is a triple N = (P, T, F), with P and T
as finite disjoint sets of places and transitions (P ∩ T = ∅), and F ⊆ (P × T) ∪
(T × P) is a set of arcs (flow relation)

We write X = (P ∪ T) for all nodes of a Petri net. For a node x ∈ X , •x = {y ∈
X |(y, x) ∈ F}, x• = {y ∈ X |(x, y) ∈ F}. A node x ∈ X is an input (output)
node of a node y ∈ X , iff x ∈ •y(x ∈ y•). Let F ∗ and F+ denote irreflexive and
reflexive transitive closure of F .

Definition 2 (Petri net semantics). Let N = (P, T, F) be a Petri net.

– M : P → N is a marking of N , N is the set of natural numbers. M denotes
all markings of N . M(p) denotes the number of tokens in place p. [p] denotes
the marking when place p contains just one token and all the other places
contain no tokens.

– For any transition t ∈ T and any marking M ∈ M, t is enabled in M ,
denoted by (N, M)[t〉, iff ∀p ∈ •t : M(p) ≥ 1.

– Marking M ′ is reached from M by firing of t, denoted by (N, M)[t〉(N, M ′),
meaning that M ′ = M − •t + t•, i.e. one token is taken from each input
place of t and one token is added to each output place of t.

– A firing sequence of length n ∈ N is a function σ : {0, . . . , n − 1} → T . For
σ = {(0, tx), . . . , (n − 1, ty)}, we also write σ = t0, . . . , tn−1.

– For any two markings M, M ′ ∈ M, M ′ is reachable from M in N , denoted
by M ′ ∈ [N, M〉, iff there exists a firing sequence σ leading from M to M ′.

– A net system is a pair (N, M0), where N is a net and M0 is the initial
marking of N .

Definition 3 (Reachability graph). The reachability graph of a Petri net
N = (P, T, F) is a directed graph RG = (M, E), where M is the set of all
markings of N , and E ⊆ M × M. For every e = (M, M ′) ∈ E, M, M ′ ∈ M, it is
attached with a transition t ∈ T such that (N, M)[t〉(N, M ′).

Querying Business Process Models Based on Semantics 167

Although people always use reachability graph to compute the behavior features
of business process models, there would be a problem of state explosion, and the
efficiency is limited. So we use complete prefix unfolding technique [8] instead.

Definition 4 (Occurrence net). A Petri net N = (P, T, F) is an occurrence
net iff ∀x, y ∈ P ∪ T : (x, y) ∈ F+ ⇒ (y, x) �∈ F+ and ∀p ∈ P : | • p| ≤ 1.

Definition 5 (Ordering relations). Let N = (P, T, F) be an occurrence net
and let x, y ∈ X be two nodes of N .

– x and y are in causal relation, if the net contains a path with at least one
arc leading from x to y (x precedes y, denoted as x− > y).

– x and y are in conflict relation, if the net contains two paths leading to x
and y respectively which start at the same place and immediately diverge
(x excludes y, denoted as x##y).

– x and y are in concurrency relation, if x and y are neither in causal rela-
tion nor in conflict relation (x can be executed parallelly with y, denoted as
x == y).

A Petri net system can be “unfolded” to an occurrence net. The corresponding
complete prefix unfolding is more compact than the occurrence net but con-
tains all the information about markings contained in the occurrence net. The
complete prefix unfolding is obtained by truncating the occurrence net in points
where the information about reachable markings starts to be redundant.

Definition 6 (Complete prefix unfolding)

– A local configuration �t is the set of transitions that precede t (t is included).
– The final marking of a local configuration Mark(�t) is the set of places that

are marked after all the transitions in �t fire.
– An adequate order ≺ is a strict well-founded partial order on local configu-

rations so that �t ⊂ �t′ implies �t ≺ �t′ .
– A transition t is a cutoff transition if there exists another transition t′ such

that Mark(�t) = Mark(�t′) and �t′ ≺ �t .
– A complete prefix unfolding is the greatest backward closed subnet of an oc-

currence net containing no transitions after cutoff transitions.

All the above definitions come from [10] except Definition 3 and Definition 5.
For example, Fig. 1 shows a Petri net and its reachability graph and complete
prefix unfolding. In Fig. 1(c), E and F are cutoff transitions.

3 System Architecture and Query Language

Fig. 2 shows the system architecture with the following main components:

168 T. Jin, J. Wang, and L. Wen

(a) A Petri net

(b) Reachability graph of the Petri net in (a)

(c) Complete prefix unfolding of the Petri net in (a)

Fig. 1. A Petri net example and its reachability graph and complete prefix unfolding

Fig. 2. System architecture

– Translator: translates business process
models from variant notations to Petri nets;

– Repository: stores the business process
model definitions, including the original
format and the corresponding Petri nets;

– Task Relation Indexes: indexes on the
behavior features extracted from the mod-
els in the repository;

– Text Query Editor: receives the users’
text query statements;

– Semantic Expander: expands the users’
statements using the semantic similar la-
bels in the repository;

– Query Processor: processes the query
statements and uses the indexes to retrieve
the models satisfying the requirements;

– Model Viewer: displays the results returned
by the query processor.

Based on the relations defined in Definition 5, we can describe the behavior
features of the models we want to retrieve. For convenience, we define the text
language BQL here. The BNF of our language can be found as follows. The
definition and usage of whitespace is omitted.

– 〈Expression〉 ::= 〈AndExpression〉 (〈Or〉 〈AndExpression〉)*
– 〈AndExpression〉 ::= (〈RelationExpression〉 | 〈ExistExpression〉 |

“(”〈Expression〉“)”) (〈And〉 (〈NotExpression〉 | 〈RelationExpression〉 |
〈ExistExpression〉 | “(”〈Expression〉“)”))*

– 〈NotExpression〉 ::= 〈Not〉 (〈RelationExpression〉 | 〈ExistExpression〉 |
“(”〈Expression〉“)”)

Querying Business Process Models Based on Semantics 169

– 〈ExistExpression〉 ::= 〈Exist〉 (〈Activity〉 | “(”(〈Activity〉)+“)”)
– 〈RelationExpression〉 ::= 〈Activity〉 〈Relation〉 〈Activity〉
– 〈Exist〉 ::= “exist”
– 〈Activity〉 ::= “ (∼[”])+ ”
– 〈Relation〉 ::= 〈ParallelWith〉 | 〈Exclude〉 | 〈Precede〉
– 〈ParallelWith〉 ::= “parallel with” | “==”
– 〈Exclude〉 ::= “exclude” | “##”
– 〈Precede〉 ::= “precede” | “− >”
– 〈And〉 ::= “and” | “&&”
– 〈Or〉 ::= “or” | “||”
– 〈Not〉 ::= “not” | “!”

Using BQL, we can describe the behavior features of the models we want to
retrieve, including the relations between tasks and existence of tasks. The AND-
OR-INVERT function is provided. Based on the text language, we can define
other graph languages.

For example, “A”− >“B” && “F”− >“D” && “B”==“C” means that we
want to retrieve the models where the execution of task “A” precedes task “B”,
task “F” precedes task “D”, and task “B” can be executed parallelly with task
“C”. It is easy to see that the Petri net in Fig. 1(a) satisfies the requirement.

4 Index Construction and Query Processing

To enhance the efficiency of query, we integrate indexes on the behavior features
of the models. Firstly, we extract the behavior features from the models, as
described in Section 4.1. Secondly, we build the indexes based on the behavior
features and show how query is processed, as described in Section 4.2. At last,
how to deal with the label similarity can be found in Section 4.3.

4.1 Behavior Features Extraction

As can be seen in the BNF of BQL, there are four categories of behavior features,
namely, existences, causal relations, conflict relations and concurrency relations.
All these behavior features can be extracted based on the reachability graphs or
the complete prefix unfoldings. But there would be a problem of state explosion
during the construction of reachability graphs, especially for the Petri nets with
too many transitions in parallel. On the contrary, the computation of complete
prefix unfoldings is more efficient. The performance comparison can be found in
Section 5.1. You can get the algorithm of reachability graph construction from
[11], and get both the algorithm of complete prefix unfolding construction and
the complexity analysis from [8].

The method based on reachability graph. Based on a reachability graph,
we can check whether a task can be executed (existence feature) by traversing
all the transitions in the reachability graph. The reason why we do not traverse
the original Petri net is that it would be very hard for us to determine whether

170 T. Jin, J. Wang, and L. Wen

Algorithm 1. Compute ordering relations of a reachability graph
input : A Petri net W = (PW , TW , FW), its reachability graph RG = (M, E),

and the mapping function lW : E → TW

output: the ordering relation matrix between transitions in W

1 foreach M ∈M do
2 foreach ei ∈ in-edges of M do
3 foreach eo ∈ out-edges of M do
4 follow[lw(ei)][lw(eo)] = reach[lw(ei)][lw(eo)] = true;

5 for k=1 to |TW | do
6 for i=1 to |TW | do
7 for j=1 to |TW | do
8 if reach[Ti][Tk] && reach[Tk][Tj] then
9 reach[Ti][Tj] = true;

10 for i=1 to |TW | do
11 for j=1 to |TW | do
12 if follow[Ti][Tj] && follow[Tj][Ti] then
13 if Ti, Tj in length one loop or length two loop then
14 set (Ti− > Tj), (Tj− > Ti) in ORel;

15 else
16 set (Ti == Tj), (Tj == Ti) in ORel;

17 else if !follow[Ti][Tj] && follow[Tj][Ti] then
18 set (Tj− > Ti) in ORel;

19 else if follow[Ti][Tj] && !follow[Tj][Ti] then
20 set (Ti− > Tj) in ORel;

21 else if !follow[Ti][Tj] && !follow[Tj][Ti] then
22 if reach[Ti][Tj] then
23 set (Ti− > Tj) in ORel;

24 if reach[Tj][Ti] then
25 set (Tj− > Ti) in ORel;

26 if !reach[Ti][Tj] && !reach[Tj][Ti] then
27 set (Ti##Tj), (Tj##Ti) in ORel;

28 return ORel;

a transition can be executed in a Petri net directly. But it is easy for us to
determine whether a transition can be executed based on the corresponding
reachability graph or the corresponding complete prefix unfolding. Petri nets
focus on graph structure, but reachability graphs and complete prefix unfoldings
focus on the semantics (behavior). Algorithm 1 can be used to compute the
features of causal relations, conflict relations and concurrency relations. This
algorithm has a low polynomial time to the size of the reachability graph.

Querying Business Process Models Based on Semantics 171

The method based on complete prefix unfolding. Based on the construc-
tion of complete prefix unfolding, we can check whether a task can be executed
(existence feature) by traversing all the transitions in the complete prefix un-
folding. Algorithm 2 (adapted from [10]) computes the ordering relations based

Algorithm 2. Compute ordering relations of a complete prefix unfolding
input : A Petri net W = (PW , TW , FW), its complete prefix unfolding

U = (P, T, F), and the mapping function lW : T → TW

output: the ordering relation matrix between transitions in U

1 foreach ti, tj ∈ T do
2 set (ti == tj) in ORel;

3 foreach ti ∈ T following a preorder traversal of the U do
4 foreach tj ∈ T such that tj ∈ •(•ti) do
5 set (tj− > ti) in ORel;
6 foreach tk ∈ T such that (tk− > tj) ∈ ORel do
7 set (tk− > ti) in ORel;

8 foreach tk ∈ T such that (tk##tj) ∈ ORel do
9 set (tk##ti), (ti##tk) in ORel;

10 foreach tj ∈ T such that ti �= tj ∧ •ti ∩ •tj �= ∅ do
11 set (ti##tj), (tj##ti) in ORel;
12 foreach tk ∈ T such that (tj− > tk) ∈ ORel do
13 set (tk##ti), (ti##tk) in ORel;

// update ordering relations from cutoff transitions and backwards

14 foreach ti, tj , tk ∈ T such that ti is a cutoff transition in U , tj is not a cutoff
transition, Mark(�ti�) = Mark(�tj�), and lW (ti) • ∩lW (tj) • ∩ • lW (tk) �= ∅ do

15 foreach tm, tn ∈ T such that (tk− > tm) ∈ ORel ∨ tk = tm and tn ∈ �ti� do
16 set (tn− > tm) in ORel;

17 return ORel;

on a complete prefix unfolding. This algorithm has a low polynomial time to the
size of the complete prefix unfolding. The relations of causal and conflict can
be extracted from the ordering relations directly, but because of cutoff transi-
tions, some concurrency relations are missing. For example, when we compute
the relation between B and C in Fig. 1(c), we get B− > C and C− > B, be-
cause F is a cutoff transition. But in fact, B can be executed parallelly with C.
To solve this problem, after we finish Algorithm 2, we find all the pairs (x, y)
with x− > y ∧ y− > x and check whether x can be executed parallelly with y
by using Algorithm 3, and then we can obtain all the relations of concurrency.
In Algorithm 3, we try to find the nearest common ancestor of the given two
transitions x and y. If the nearest common ancestor node is type of transition, x
and y can be executed parallelly. This algorithm has a linear time to the size of
complete prefix unfolding. If we consider the foata level information (refer to [8]
for details) produced during the construction of complete prefix unfolding, this
check can be faster.

172 T. Jin, J. Wang, and L. Wen

Algorithm 3. Check whether two tasks can be executed parallelly
input : A complete prefix unfolding U = (P, T, F) and two transitions x and y

with x− > y ∧ y− > x
output: true or false

// mark all the ancestor nodes of x
1 add x into queue;
2 while queue is not empty do
3 remove one node n from queue and mark n with x;
4 foreach pre ∈ •n not visited from x do
5 add pre into queue;

// mark all the ancestor nodes of y, if some node is marked by x
before and this node is type of transition, return true

6 add y into queue;
7 while queue is not empty do
8 remove one node n from queue;
9 if n is marked from x then

10 if n is type of transition then
11 return true;

12 else
13 return false;

14 else
15 mark n with y;
16 foreach pre ∈ •n not visited from y do
17 add pre into queue;

18 return false;

4.2 Index Building and Query Processing

Based on the behavior features extracted in Section 4.1, we can build the inverted
indexes. In total, there are four inverted indexes, indexing on “existence”, the
relations of “causal”, “concurrency”, and “conflict” respectively. Each inverted
index stores a mapping from a kind of behavior features to the models where
these features exists.

When a new model is added to the repository, all the behavior features are
extracted first and then inserted into the corresponding inverted indexes. It is
easy to see that our indexes can be updated incrementally. When a model is
deleted from the repository, we first extract all the behavior features from that
model, and then delete the mappings between these features and that model.

Given a query statement, after it is parsed we can get some basic queries (with
only one item such as A− > B), and then we can query on the inverted indexes.
For every basic query, we can get a set of models containing the corresponding
feature. Finally, we will apply the given AND-OR-INVERT function on these
sets to obtain the result set.

Querying Business Process Models Based on Semantics 173

4.3 Dealing with Label Similarity

In real life, different labels may be used for the same task. To make our approach
more applicable, we introduce the similarity between labels. Two tasks with the
label similarity greater than or equal to a specific threshold are regarded as the
same task. In our approach, the introduction of similarity between labels should
satisfy the following requirements:

1. It should be up to the users to decide whether to enable the similarity be-
tween labels during the query time;

2. The similarity threshold should be able to be configured by the users during
the query time;

3. The efficiency of query with label similarity should be as high as possible.

Accordingly, (i) we leave the construction of feature indexes unchanged, so when
the users enable or disable the label similarity or change the threshold, the
feature indexes will not be reconstructed; (ii) we extend the query expression
using the similar labels when the query is processed, so that the users can change
the threshold during the query time; (iii) we construct a label index to speed
up the retrieval of similar labels, and the label index is also not affected by the
similarity threshold and can also be updated incrementally.

Label Similarity. Let W (l) be the number of words can be extracted from
the label string l. Let SCW (l1, l2) be the number of words in the label l1 whose
synonymous can be found in the words of the label l2. The similarity between two
labels can be calculated using Equation 1, which is similar to Dices Coefficient[12]
except that the synonymous are considered now.

labelSim(l1, l2) =
2 × SCW (l1, l2)
W (l1) + W (l2)

. (1)

Note that before this equation is used, all the words must be extracted from
the labels, and converted into lower case. Stop words must be removed and the
remaining words are replaced with their stem. Of course, we can replace the
Equation 1 with other term based similarity measures.

Query Expansion. When the similarity between labels is considered, every
basic query should be expanded with its similar ones. For example, for a basic
query like A− > B, if A′ is similar to A and B′ is similar to B, the original basic
query will be expanded with A′− > B, A′− > B′ and A− > B′ so that there
would be four basic queries now.

Label Index. To speed up the retrieval of similar labels according to the specific
threshold, we construct an index on the labels. It is an inverted index, which
stores the mapping from words to labels where these words appear. When this
index is built, we extract all the words from the labels, lowercase these words,
remove the stop words from these words and replace every remaining word with
its stem. When we want to retrieve the similar labels according to the given
label and the specific similarity threshold, firstly, we tokenize the given label

174 T. Jin, J. Wang, and L. Wen

in the same way as the index is built; secondly, we expand the obtained words
with their synonyms; thirdly, we retrieve on the label index using these words
to get the candidate labels where at least one of these words appears; finally, we
calculate the similarity between the given label and every candidate label and
return similar labels with the similarity greater than or equal to the threshold.

5 System Implementation and Experiments

To evaluate our approach, we implemented it in a system named BeehiveZ1. Bee-
hiveZ was developed in Java, and all the models were stored as Text in MySQL
RDBMS. We used the ProM[13] to display the Petri nets. All the inverted in-
dexes proposed in this paper were managed by Lucene. To retrieve synonyms
quickly, we mapped WordNet synonyms into memory, which consumed approx-
imately 10MB. Whether to enable or disable the use of similar labels and the
similarity threshold both can be configured in BeehiveZ. During our experiments,
we used a computer with Intel(R) Core(TM)2 Duo CPU E8400 @3.00GHz and
3GB memory. This computer ran Windows XP Professional SP3 and JDK6. The
heap memory for JVM was configured as 1GB.

5.1 Behavior Features Extraction Performance Comparison

Fig. 3. A Petri net example
with many tasks in parallel

We extract behavior features from business process
models based on the complete prefix unfoldings
in this paper. Compared to the extraction based
on the reachability graphs, the performance is im-
proved greatly, especially when there are many
tasks in parallel as shown in Fig. 3. In this sit-
uation, the construction of reachability graph has
an exponential time to the number of tasks, while
the construction of complete prefix unfolding has a
linear time to the number of tasks. The dominating
factor for behavior features extraction complexity
is the construction of reachability graph or complete prefix unfolding, so the
method based on complete prefix unfolding is more efficient. The performance
comparison can be found in Table 1. In this table, “n” means how many tasks
are in parallel, “CP” means the extraction based on complete prefix unfoldings,
and “RG” means the extraction based on reachability graphs. “-” means it is not
computable because of the error of out-of-memory. We can see that the method
based on complete prefix unfolding works better.

5.2 Experiments on Synthetic Dataset

In this section, we conduct experiments on a synthetic dataset to show the per-
formance of query processing. All the models (Petri nets) in our experiments
1 BeehiveZ can be downloaded from http://sourceforge.net/projects/beehivez/

http://sourceforge.net/projects/beehivez/

Querying Business Process Models Based on Semantics 175

Table 1. Performance comparison on behavior features extraction

n 3 7 11 15 19 38 76

CP 3ms 3ms 3ms 3ms 3ms 13ms 44ms
RG 3ms 231ms 2919850ms - - - -

were generated automatically by using the rules in [11]. Because all the labels
were strings generated automatically, we disabled the use of label similarity.
There were more than 300,000 models in the repository. The number of models
with different number of transitions followed the normal distribution. The num-
ber of transitions in one model ranged from 1 to 50, the number of places in one
model ranged from 2 to 31, and the number of arcs in one model ranged from
2 to 1022. In total, there were 7,802,438 transitions in the repository, and the
number of transitions with different labels was 242,234. During the experiments,
we recorded the index construction time, query time, and index storage size. The
analysis can be found as follows.

250

300

350

400

co
st
(m

s)

10
12
14
16
18

ti
m
e
co
st
(h
)

10000
12000
14000
16000
18000

ze
(M

B)

models

indexes

0

50

100

150

200

250

300

350

400

Q
ue

ry
ti
m
e
co
st
(m

s)

0
2
4
6
8

10
12
14
16
18

de
x
co
ns
tr
uc
ti
on

ti
m
e
co
st
(h
)

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

St
or
ag
e
si
ze

(M
B)

models

indexes

0

50

100

150

200

250

300

350

400

50k 100k 150k 200k 250k 300k

Q
ue

ry
ti
m
e
co
st
(m

s)

The number of models

0
2
4
6
8

10
12
14
16
18

50k 100k 150k 200k 250k 300k

In
de

x
co
ns
tr
uc
ti
on

ti
m
e
co
st
(h
)

The number of models

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

50k 100k 150k 200k 250k 300k

St
or
ag
e
si
ze

(M
B)

The number of models

models

indexes

(a) Query time cost (b) Index construction time cost (c) Storage size

0

50

100

150

200

250

300

350

400

50k 100k 150k 200k 250k 300k

Q
ue

ry
ti
m
e
co
st
(m

s)

The number of models

0
2
4
6
8

10
12
14
16
18

50k 100k 150k 200k 250k 300k

In
de

x
co
ns
tr
uc
ti
on

ti
m
e
co
st
(h
)

The number of models

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

50k 100k 150k 200k 250k 300k

St
or
ag
e
si
ze

(M
B)

The number of models

models

indexes

(a) Query time cost (b) Index construction time cost (c) Storage size

Fig. 4. Performance of our approach

Since the performances of different queries are similar, we use the query
“06”− > “w4h” && “OZ” == “gnd” && “Y K”##“a” && exist(“G”“4Y V ”)
as an example here. With more and more models added into the repository, the
change of retrieval efficiency can be found in Fig. 4(a). We can see that with
more models added into the repository, it is more and more time-consuming, but
the query time is still acceptable. The index construction time can be found in
Fig. 4(b), which shows the accumulated time for index construction from scratch.
Since our index can be constructed incrementally, when a new model is added
into the repository, the index can be updated immediately, and the time for in-
dex updating is very short. The storage size of indexes (including the behavior

2 According to 7PMG proposed in [14], models should be decomposed if they have
more than 50 elements. That’s why we generated models with the maximum number
of transitions as 50, the number of places and arcs in a model is not configurable.

176 T. Jin, J. Wang, and L. Wen

feature indexes and the label index) can be found in Fig. 4(c). The storage size
of indexes is less than 10% of the storage size of models. Now, we can draw a
conclusion that our approach works well.

5.3 Experiments on SAP Reference Models Dataset

The SAP reference models are represented as EPCs, hence they were transformed
into Petri nets using ProM [13]. This resulted in 591 Petri nets (13 SAP reference
models could not be mapped to Petri nets using ProM). The characteristics of
these 591 Petri nets can be found in Table 2. There are at most 1,494 differently
labeled transitions out of 4,439 transitions in total. On this dataset experiments
were conducted with different similarity thresholds. First, all the models were
added to the repository and the indexes were built, then we used queries on the
repository with different similarity thresholds. Since the performances of different
queries are similar, we use an query “Measure Processing”− > “Analysis” as
an example here.

Table 2. The characteristic of SAP models

Number of transitions Number of places Number of arcs

Min 1 2 2
Max 53 83 138
Average 7.5 12.7 19.7
StDev 7.3 11.5 19.6

The size of result sets increases when the label similarity is enabled, and
the size will be smaller when the similarity threshold is higher. The query time
changes the same way. These changes can be seen in Table 3.

Table 3. Changes with the use of different label similarity thresholds

disabled 0.1 0.3 0.5 0.7 0.9

result set size 2 13 9 3 2 2
query time (ms) 0 259 169 25 6 3

6 Related Work

The importance of query languages for business processes has been recognized by
BPMI (the Business Process Management Initiative) who started a BPQL (Busi-
ness Process Query Language) initiative in 2002. However, no draft standard was
published since. Our query language BQL can be regarded as an example.

There are already some works on business process model query. In [15] the
authors use indexing techniques to search for matched process models. However,

Querying Business Process Models Based on Semantics 177

models here are represented as annotated finite state automata, whereas we use
generic Petri nets. BP-QL was proposed in [16]. It is based on an abstraction
of the emerging BPEL standard, but it only can retrieve the models containing
the specific nodes and paths, and ignores the run-time semantics. The VisTrails
system [17] allows users to query workflow by example and to refine workflows
by analogies. A workflow search engine, WISE, was proposed in [18], which
returns the most specific workflow hierarchies containing matching keywords. A
framework was proposed in [19], which is based on a visual query language for
business process models named BPMN-Q, and makes use of the robust indexing
infrastructure available by RDBMS. But all the above works only focus on graph
structure, not on semantics. For example, they would return some result models
in which some given tasks will not be executed at all (i.e. dead tasks), and
they cannot be used to query the models in which some given tasks can be
executed parallelly or some given tasks cannot be executed in the same instance
as described by R3 or R4 in Section 1. According to our knowledge, we are the
first ones to query business process models based on semantics (behavior).

7 Conclusion and Future Work

We propose a text query language in this paper. It can be used to describe
the behavior features of the models we want to obtain. To extract the behavior
features from models efficiently, we adopt the technology of complete prefix
unfolding. For efficiency, we use indexes to support the query processing. To make
our approach more applicable, we introduce the semantic similarity between
labels in our approach. A system has been implemented and experiments show
that our approach works well.

In this paper, we only focus on the control-flow perspective of business process
models. In the future, we will extend our work to include the data and resource
information as well.

Acknowledgments. We thank Arthur ter Hofstede, Chaokun Wang and Liang
Song for their suggestions on this paper. The work is supported by the National
Basic Research Program (973 Plan) of China (No. 2009CB320700), two NSF
Projects of China (No. 61003099 and No. 61073005).

References

1. Dumas, M., Van Der Aalst, W., Ter Hofstede, A.: Process-Aware Information Sys-
tems. Wiley Interscience, Hoboken (2005)

2. Shasha, D., Wang, J.T.-L., Giugno, R.: Algorithmics and Applications of Tree and
Graph Searching. In: PODS, pp. 39–52 (2002)

3. Yan, X., Yu, P.S., Han, J.: Graph Indexing: A Frequent Structure-Based Approach.
In: SIGMOD Conference, pp. 335–346 (2004)

4. Cheng, J., Ke, Y., Ng, W., Lu, A.: Fg-Index: Towards Verification-Free Query
Processing on Graph Databases. In: SIGMOD Conference, pp. 857–872 (2007)

178 T. Jin, J. Wang, and L. Wen

5. Zhao, P., Yu, J.X., Yu, P.S.: Graph Indexing: Tree + Delta >= Graph. In: VLDB,
pp. 938–949 (2007)

6. Williams, D.W., Huan, J., Wang, W.: Graph Database Indexing Using Structured
Graph Decomposition. In: ICDE, pp. 976–985 (2007)

7. Lohmann, N., Verbeek, E., Dijkman, R.M.: Petri Net Transformations for Business
Processes - A Survey. T. Petri Nets and Other Models of Concurrency 2, 46–63
(2009)

8. Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding Al-
gorithm. Formal Methods in System Design 20(3), 285–310 (2002)

9. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

10. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring Acyclic Process
Models. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336,
pp. 276–293. Springer, Heidelberg (2010)

11. Murata, T.: Petri Nets: Properties, Analysis and Applications, vol. 77, pp. 541–580
(1989)

12. Dice, L.R.: Measures of The Amount of Ecologic Association between Species.
Ecology, 297–302 (1945)

13. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The proM framework: A new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005)

14. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven Process Modeling Guide-
lines (7PMG). Information & Software Technology 52(2), 127–136 (2010)

15. Mahleko, B., Wombacher, A.: Indexing Business Processes Based on Annotated
Finite State Automata. In: ICWS, pp. 303–311 (2006)

16. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying Business Processes. In:
VLDB, pp. 343–354 (2006)

17. Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.T.: Querying and Re-
Using Workflows with VisTrails. In: SIGMOD Conference, pp. 1251–1254 (2008)

18. Shao, Q., Sun, P., Chen, Y.: WISE: A Workflow Information Search Engine. In:
ICDE, pp. 1491–1494 (2009)

19. Sakr, S., Awad, A.: A Framework for Querying Graph-Based Business Process
Models. In: WWW, pp. 1297–1300 (2010)

Discovering Implicit Categorical Semantics
for Schema Matching

Guohui Ding1,2 and Guoren Wang1,2

1 Key Laboratory of Medical Image Computing (NEU), Ministry of Education
2 College of Information Science & Engineering, Northeastern University, China

dgh acheng@sina.com, wanggr@mail.neu.edu.cn

Abstract. Attribute-level schema matching is a critical step in numer-
ous database applications, such as DataSpaces, Ontology Merging and
Schema Integration. There exist many researches on this topic, how-
ever, they ignore the implicit categorical information which is crucial
to find high-quality matches between schema attributes. In this paper,
we discover the categorical semantics implicit in source instances, and
associate them with the matches in order to improve overall quality of
schema matching. Our method works in three phases. The first phase is a
pre-detecting step that detects the possible categories of source instances
by using clustering techniques. In the second phase, we employ informa-
tion entropy to find the attributes whose instances imply the categorical
semantics. In the third phase, we introduce a new concept c-mapping
to represent the associations between the matches and the categorical
semantics. Then, we employ an adaptive scoring function to evaluate
the c-mappings to achieve the task of associating the matches with the
semantics. Moreover, we show how to translate the matches with seman-
tics into schema mapping expressions, and use the chase procedure to
transform source data into target schemas. An experimental study shows
that our approach is effective and has good performance.

1 Introduction

Schema matching is an essential building block in schema mapping. The basic
issue of schema matching is to find attribute correspondences, namely matches.
Significant attention has been paid to this topic in the literature, and a rich
body of techniques have been proposed [1, 4, 8, 11]. The task of finding matches
is difficult, because one person sometimes cannot understand the meaning of
attributes designed by another person accurately. As a result, schema matching
continues to be a challenge, and be a valuable research problem in practice.

Recently, Bohannon et al. [6] put the context into schema matching for the
refinement of matches. The context actually refers to an attribute whose values
are discrete (usually binary, e.g., the attribute “gender” in table “student”).
These values are able to classify the data instances into different classes (e.g.,
schoolboy and schoolgirl). They use the context to enable matches to work well
for different instances (see [6] for more details). However, the context cannot

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 179–194, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

180 G. Ding and G. Wang

id model sn priceprincipal

10

11...

ThinkPad X200 LX-T367B 9600Prof. Wang

ThinkPad T410 LT-T4289 11500Lili...

T.Laptop

(b) Target Table, Instances of Laptop

id model sn priceprincipal

20

21...

Lenovo dx7408 CNG85201ZN 3700Jack

Lenovo dx2708 CNG7230QV9 4000Lili...
T.Desktop

(c) Target Table, Instances of Desktop

screen

LCD

CRT

id type sn user

0

1

2

3

4

ThinkPad R60 L3-T6255 Tom

Lenovo dx7400 CNG821143M Prof. Li

Lenovo dc7800 CNG9020ZFY Tom

Lenovo dx2700 CNG7510RK1 Jone

S.Computer

(a) Source Table, Instances of Computer

price

8600

3200

4200

3600

ThinkPad R61i L3-T6738 Prof. Li 9900

date

2001-07

2001-07

2007-10

2007-10

2004-11

Fig. 1. Motivating Example: Source and Target Instances

always appear in practice scenarios. Instead, it is common that the categorical
information is implicit in some attribute whose values are not discrete. Consider
the transformation of source data in Figure 1. S represents a source schema with
only one table S.Computer which describes the information about the computers
of a lab. While the information in target schema T is similar to that of S, the
data instances are structured in two separate tables, T.Laptop and T.Desktop, in
another lab. The matches m1−8 shown in Figure 2 are the output of a traditional
matching tool. If these matches are directly used to transform source instances
in S into T, it will violate the semantics of T. This is because only partial source
instances conform to the semantics of T.Laptop. A reasonable solution might
be associating the matches with constraints to restrict them to be available for
corresponding source instances. Unfortunately, in S, there is no context which can
be used to generate the constraints. As a consequence, the approach proposed
in [6] falls short in our scenario of interest. In practice, this scenario is very
common because of the legacy schemas with early design. For example, S might
be created a long time ago, then, they only have the desktops. Thus, they did not
design the attribute describing the type of the computer in S.Computer. Here,
someone may insist on the approach [6] by inserting an attribute that describes
the type of the computer into S.Computer. However, this method is not feasible
for two reasons: first, for most practical scenarios, we have no permission to
modify source schemas; second, if the table size is large, it will be a difficult task
to populate the attribute inserted with the type data.

No attribute with discrete values explicitly indicating the categories of source
instances notwithstanding, we discover by the observation that the categorical
semantics is implicit in the instances of some attribute, e.g., the attributes “Com-
puter.type” (we call it categorical attributes). In this paper, we refer to this kind
of implicit categorical semantics as the constraints or the filtering conditions, in
short FC, and associate them with matches to improve overall quality of schema
matching. Our approach works in three phases. The first phase is a pre-detecting
step that detects the possible categories of source instances by using clustering
techniques. In particular, we exploit the minimum spanning tree (MST) clus-
tering algorithm to partition objects of an attribute into different clusters each
of which represents a possible category. The task of our second phase is to find

Discovering Implicit Categorical Semantics for Schema Matching 181

id type sn user price date

id model sn principal price

id model sn principal price screen

S.Computer

T.Laptop

T.Desktop

m1 m2 m3 m4

m5 m6 m7 m8

Fig. 2. Traditional Schema Matches

the categorical attributes whose instances imply the categorical semantics, like
“Computer.type”. Intuitively, we can achieve this task by checking the clustering
result of the first phase. However, this intuitive method is not feasible, because
there exist some interference attributes, like “Computer.user”, whose instances
can also be well clustered. To this end, we make use of information entropy to
find the categorical attributes. In the third phase, we achieve the task of as-
sociating the matches with the corresponding FCs. Specially, we introduce a
new concept c-mapping to represent the associations between the matches and
the FCs. Then, an adaptive scoring function [10] is used to evaluate these c-
mappings. Finally, we will find the optimal c-mapping based on the function,
which corresponds to a set of optimal associations. As an example of our ap-
proach, consider two object clusters in the attribute “Computer.type”, c1={“T.
R60”, “T. R61i”} and c2={“L. dx7400”, “L. dc7800”, “L. dx2700”}. Matches
m1−4 might be associated with the FC “type in c1”, while m5−8 with “type in
c2”. The view can be used to reflect an FC for several matches, for example,
the view “select type, sn, price, user from computer where type in c1” for m1−4.
The contributions of this paper are summarized as follows:

1. We refine the match results of standard schema matching tools by discovering
the categorical semantics implicit in source instances.

2. We make use of the minimum spanning tree (MST) clustering algorithm to
detect the possible categories of the source instances.

3. The information entropy is used to find the categorical attributes. Then, we
achieve the association between the matches and the corresponding FCs.

4. We perform an extensive experimental study on real-world data sets. The ex-
perimental results show that the proposed algorithm has good performance.

The rest of this paper is organized as follows. Section 2 describes the traditional
schema matching. The details of the three phases of our approach are discussed
in Section 3. The experimental results are given in Section 4. A brief related
work is reviewed in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

In this section, we first introduce the basic terminology used in our approach.
Then, we present an overview of the traditional schema matching techniques,
including the definition of the match, the classification of the techniques, etc.

182 G. Ding and G. Wang

2.1 Data Model

We mainly focus on relational schema in our approach. Source schema is rep-
resented by the symbol S, while the target schema by the symbol T. A schema
is a collection of tables which are denoted as the capital letter with a subscript
sometimes, R, Ri, RS, RT. The attributes of R are represented by a series of
low case letters a, b, ..., also by an attribute set, A(R). We also refer to the at-
tribute a as R.a to show the ownership between the table R and its attribute a.
The tuples of the source relations are also called the source instances. The set
R = {t1, ..., ti, ...tn} represents the relation R and its tuples. The values of an
attribute R.a are denoted as the set V (R.a) and called the instances of R.a as
well. Finally, the notations with the letter c are used to represent the clusters.

2.2 Traditional Schema Matching

Here, we briefly describe the traditional schema matching techniques. The aim
of schema matching is to discover the attribute correspondences, also called
matches, between a source schema and a target schema. A traditional match
is of the from (RS.a, RT.b), where a, b are two attributes. An accepted match
indicates that the two attributes are similar semantically. To achieve this task,
schema matching tools make use of a variety of matching algorithms, also referred
to as matchers, to compute the similarity (range 0-1) of semantics between a pair
of attributes (candidate match). These matching algorithms depend a lot on the
kinds of information they use and how they interpret it, and typically, they are
classified as schema-based or instance-based matchers. The available information
for schema-level matcher includes the usual properties of schema elements, such
as the attribute name, data type, schema structure and constraints etc., while
the instance-level matcher exploits the statistical information derived from the
contents of the schema elements, such as frequent patterns of words.

3 Finding Matches with Filtering Conditions

In this section, we detail the three phases of our techniques. Moreover, we show
how to transform source data into the target schemas. Before the discussion of
the phases, we present the formal description of the match with an FC.

Definition 1. Let (RS.a, RT.b) be a traditional match, where RS ∈ S and RT ∈
T. The match with a filtering condition is defined as a triple m = (RS.a, RT.b, fc),
where fc is the filtering condition.

This definition is uncompleted because of fc (its definition is provided later).
Actually, fc corresponds to a view of the form “select * from RS where fc”,
which represents a class of source instances. Thus, the match m is restricted to
be just available for this category of instances in the view, not all instances in
RS. Consequently, the matching results are refined and overall quality of schema
matching is improved. Now, what we need to face is the generation of the FC.

Discovering Implicit Categorical Semantics for Schema Matching 183

3.1 Detecting Possible Categories of Source Instances

In this subsection, we show the details of how to detect the possible categories
of source instances. This is the pre-detecting phase of our approach, where the
preparations for the generation of the FCs are performed.

A Naive Approach. Here, we first illustrate the naive method to make our
approach more approachable. To detect the possible categories, we need to group
the instances of the source relation into different clusters. Each cluster represents
a possible category. Intuitively, the simplest method is to consider each tuple of a
table R to be a point in the space each dimension of which is an attribute of the
table R. Then, the values of each attribute are normalized, and the clustering
techniques based on Euclidean distance can be used to partition these points into
different clusters. However, we argue that not all attributes of table R have the
categorical information, e.g., “Computer.date” and “Computer.user”. If many
attributes of this type exist in table R, we think, the quality of the clustering
result may be too bad. Consequently, the naive approach may be not feasible.

An Approach at Attribute-Level. It may not be feasible to detect the pos-
sible categories at the tuple-level. Our motivating example shows that the cate-
gorical semantics are just implicit in the instances of some attribute or several
attributes, not all attributes. Hence, we consider this problem at the attribute-
level. The key idea of our approach is that a category of source instances may
share the similar values on some attribute, in reverse, if we can group these
similar values of this attribute together, then we may find a category of source
instances. In particular, for an source attribute RS.a, we consider each value of
RS.a to be a data object. If the data type of RS.a is String, we will make use of
Q-grams (3-grams) to measure the distance between objects of RS.a, while the
data type of RS.a is Numeral, the Euclidean distance is used. Then, we normalize
the distance between two objects into the value in the range 0 to 1.

Definition 2. Let RS.a be a source attribute, and |V (RS.a)| = n. Let o, ó be two
objects and o, ó ∈ V (RS.a). Let |o − ó| be the distance between o and ó, which
may be the Q-grams or Euclidean distance. We normalize |o − ó| as follows :

d̄(o, ó) =
|o − ó|

max(|oi − oj|i,j≤n)
(1)

Based on this distance normalized, we employ the MST clustering technique,
which is an agglomerative hierarchical clustering algorithm based on the mini-
mum distance, to group the data objects of an attribute into different clusters.
Each cluster might represent a possible category of source instances. The details
are shown in Algorithm 1, which is an iterative process. The for loop (lines 1-10)
iteratively outputs the clustering result (C) in an attribute and inserts it into the
set C� (line 10). If any two objects in V (R.a) cannot be grouped into a cluster,
we believe that there is no categorical information in the attribute R.a, and we
ignore it (line 9). In lines 3-8, the distance between any oi, oj ∈ C is computed,
where oi, oj may be the object or the cluster generated by line 6.

184 G. Ding and G. Wang

Algorithm 1. Detecting The Possible Categories
input : R, a table of S;

γ, a threshold given by users;
output: C�, the set of clustering results in attributes of R;
for each attribute R.a in A(R) do1

C = V (R.a); // C is a set storing object clusters in an attribute.2

for each oi, oj ∈ C do3

if d̄(oi, oj) is minimum among other objects in C then4

if d̄(oi, oj) < γ then5

group(oi, oj); //group oi, oj into a cluster.6

else7

terminate;8

if |C| �= |V (R.a)| then9

C� = C� ∪ C;10

In line 5, the parameter γ is a threshold provided by users (0 < γ < 1). If the
distance between any objects or clusters exceeds this threshold, the clustering
will terminate. The set C� is the output that contains the clustering results in
the attributes of the table R. Each cluster in C� represents a possible category.
Now, we present the general form of the FC based on these clusters.

Definition 3. Let (RS.a, RT.b, fc) be a match, where RS ∈ S and RT ∈ T.
The filtering condition fc is defined as the form ((RS.a in Ca1) ∨ ... ∨ (RS.a in
Cai) ∨ ...) ∧ ((RT.b in Cb1) ∨ ... ∨ (RT.b in Cbi) ∨ ...) ∧ ..., where Cai, Cbi are the
object clusters in the attribute RS.a, RT.b, respectively.

As it can be seen, the general form of the FC is a composite condition that
logically consists of disjunctive conditions in an attribute and conjunctive condi-
tions among attributes. The object clusters in an attribute constitute the atomic
conditions of the general form. In the next phase, we will discover the categorical
semantics implicit in the clusters in C�.

3.2 Finding Categorical Attributes

Here, we will mainly discuss the discovery of the categorical attributes whose
instances imply the categorical semantics, like “Computer.type”. As in section
1, we cannot directly exploit the clustering results from the previous phase to
achieve this task because of the interference attributes.

Intuitively, if a relation R describes several categories of instances, the char-
acteristics of the instances of the same category may emerge in serval attributes
simultaneously. For example, the characteristics “desktop” and “laptop” in our
motivating example emerge in the attributes “Computer.type”, “Computer.sn”
and “Computer.price” simultaneously. This means that while clustering the in-
stances of R according to these attributes, we may obtain the identical clustering

Discovering Implicit Categorical Semantics for Schema Matching 185

result. We employ information entropy to formalize this intuition into a tech-
nique. Specially, we consider a tuple in the table R to be a “document”, and
an attribute to be a “clustering technique”. Then the “documents” in R can
be clustered according to different “techniques”. It is the ideal case that the
“documents” of the same category appear together in the same cluster while
performing different “clustering techniques”. In the worst case, a “document”
belongs to n different clusters for n “techniques”. Thus, the entropy may be the
best choice to measure this situation from the worst to the ideal.

We show how to obtain the tuple clusters according to different attributes.
The output of Algorithm 1, the set C�, is of the form {E1, ..., Ei, ..., Em}, where
Ei = {ei1, ..., eij , ..., eiq}. For a relation R, the symbol Ei represents the clus-
tering result in the attribute ai, and eij is an object cluster in Ei. Actually,
an object cluster eij corresponds to a tuple cluster according to the attribute
ai, where the values token by these tuples on the attribute ai belong to eij .
Consequently, the sets of tuple clusters has the same form as C�, denoted as
C� = {C1, ..., Ci, ..., Cm}, where Ci represents the set of tuple clusters according
to the attribute ai.

Definition 4. Let c1, c2 be two tuple clusters. If they satisfy one of the following
conditions : (1) |c1∩c2|

min(|c1|,|c2|) ≥ ε ; (2) the jaccard coefficient |c1∩c2|
|c1∪c2| ≥ ε, we say

that there exists a homogeneous relation between c1 and c2, denoted as c1 # c2.

The homogeneous relation represents two kinds of relationships between tuple
clusters. The first is the inclusion relationship described by the condition (1),
while the equality relationship described by the condition (2). We use the pa-
rameter ε to relax the two conditions because of the intrinsic inaccuracy of the
clustering techniques. We test the effect of ε on the performance of our approach
in the experiments. For a tuple t, t ∈ c1, t ∈ c2, if exists c1 # c2, we believe the
tuple t belongs to the same category while performing different “techniques”.

Definition 5. Let R = {t1, ..., ti, ..., tn} be a relation. For any tuple ti, let the set
D� = {Di1, ..., Dij , ..., Dip} be a partition of C�, i.e. any two elements D1∩D2 = ∅
and Di1 ∪ ... ∪ Dip = C�. D� also satisfies the following condition: for any Dij

and |Dij | ≥ 2, for any two elements C1 ∈ Dij , C2 ∈ Dij , there exist two tuple
clusters c1 ∈ C1 and c2 ∈ C2 such that ti ∈ c1, ti ∈ c2 and c1 # c2. Based on D�,
the entropy of the relation R is defined as :

E(R) = − 1
|R|

|R|∑
i=1

|D�|∑
j=1

pij logpij

2 (2)

pij =
|Dij |
|C�| (3)

The possibility pij represents the distribution that the tuple ti appears in differ-
ent categories. The entropy of the relation R is the average of the entropy of its
tuples. The value of E(R) of the ideal case above is the minimum 0, while the

186 G. Ding and G. Wang

value is the maximum for the worst case. The entropy E(R) quantifies the de-
gree of the decentralization that all the tuples of the relation R disperse among
different clusters. We use it to find the categorical attributes.

Definition 6. Let ai be an attribute of a relation R, and the tuple clusters
according to ai is Ci, Ci ∈ C�. Let Ea(R) be the entropy of R after ruling out Ci

in C�, while E(R) be the original entropy. The information gain of the attribute
ai is defined as :

Gain(ai) = E(R) − Ea(R) (4)

The key idea of our method is to rule out the interference attributes, then obtain
the categorical attributes. Gain(ai) measures the overall effect of the attribute
ai on the distribution of all tuples appearing in different categories. If the tuple
cluster (Ci ∈ C�) according to the attribute ai is different from most of other
attributes, then the effect of ai will be larger. Thus, the information gains of the
interference attributes whose clustering results are different from most of other
attributes will be bigger than the categorical attributes. As a result, we itera-
tively rule out the attribute with the maximum information gain until E(R) = 0
or the information gains of all the remaining attributes are identical. The details
are shown in Algorithm 2. The first termination condition E(R) = 0 represents
that all the rest attributes imply one kind of categorical semantics, while the
second shows that there exist multiple kinds of categorical semantics implicit in
the rest attributes, each of which has the same effect on the overall distribution
of the tuples. Finally, we will obtain a new set C�, each object cluster of which
represents an atomic FC. We will perform the task of our next phase based on
this result.

3.3 Associating Matches with Filtering Conditions

In this section, we show how to generate the FCs in Definition 3, then associate
them with the matches, namely the finally phase of our approach.

So far, we have finished the tasks of our previous two phases, i.e., in our moti-
vating example, we have discovered the categorical attributes “Computer.type”
etc., and the atomic FCs, “type in c1” and “type in c2”. Now, what we need
to face is to make a decision about associating the condition c1 (c2) with the
matches m1−4 or m5−8. This task can also be referred to as the problem of
finding a mapping between the clusters c1, c2 and the instances of the target
attributes “Laptop.model”, “Desktop.model”. A simple method is to compute
the distance between the clusters and the instances in the corresponding target
attributes. Then, a threshold is used to make this decision. However, if the target
attribute implies additional categories except for the one implicit in c1 (c2), the
distance will be larger, thus, the threshold may result in a wrong decision. For
a target attribute RT.b, we use the same method in our first phase to group the
objects of RT.b into different clusters. Then, our task is turned into finding a
mapping between the clusters in the categorical attribute and the clusters in the

Discovering Implicit Categorical Semantics for Schema Matching 187

Algorithm 2. Finding Categorical Attributes
input : C�, C�;
for 1 ≤ i ≤ m do1

float maxGain = 0.0;2

int flag = 0, j = 0;3

for each Ci ∈ C� do4

if maxGain ≤ Gain(ai) then5

if maxGain == Gain(ai) then6

flag = flag + 1;7

maxGain = Gain(ai); j = i;8

if E(R) == 0 or flag == |C�| − 1 then9

break;10

remove Cj ∈ C�, Ej ∈ C�;11

corresponding target attributes. We aim to find the mapping where each pair of
clusters are similar, i.e., they imply the same or similar category. We employ the
scoring function [10] to measure the overall similarity of the possible mappings
and find the mapping that maximizes the scoring function, denoted as m∗.

Definition 7. Let (RS.a, RT.b) be a traditional match where RS ∈ S, RT ∈ T.
Let ca, cb be two object clusters in RS.a, RT.b respectively. We call (ca, cb) the
cluster match, CM for short, and call ca the source cluster, cb the target cluster.

Definition 8. Let m = {cm1, ..., cmi, ..., cmn} be the set of the cluster matches
where cmi = (cai, cbi). If m satisfies the following conditions : (1) for 1 ≤ i ≤ n,
the clusters cai, cbi occur only once in m; (2) all the clusters cai, 1 ≤ i ≤ n,
come from the same categorical attribute, we say that m is the c-mapping.

As the definition shows, the c-mapping is the one-to-one mapping. A categorical
attribute corresponds to a set of possible c-mappings and one optimal c-mapping
m∗. A c-mapping involves only one source attribute but several target attributes,
and there exist the attribute matches between them.

Definition 9. Let A, B be two object clusters, and o ∈ A, ó ∈ B. Let d̄(o, ó)
be the distance between objects o and ó. Let d̄(o, B) be the distance between the
object o and the cluster B, and d̄(o, B) = min d̄(o, ó)ó∈B. Similarly, d̄(ó, A) =
min d̄(o, ó)o∈A. Let dm be the maximum distance between the objects in A, B.
The distance between A and B is defined as :

d̄(A, B) =
1

2dm
(

1
|A|
∑
o∈A

d̄(o, B) +
1
|B|
∑
ó∈B

d̄(ó, A)) (5)

Any one of the two summations in brackets is Hausdorff distance [12], and we
use it to define the distance between two object clusters. Based on this distance,
we begin to discuss the scoring function [10]. Let km be the number of the CMs
contained in a c-mapping. For a categorical attribute a, the corresponding km∗

188 G. Ding and G. Wang

is not always equal to the number of the object clusters in a, because there may
be no corresponding category in the target instances. For example, if the table
“Laptop” does not exist in T, for the categorical attribute “Computer.type”, the
corresponding km∗ is equal to 1 (here, c1 is redundant). The scoring function
in [10] is designed to compare between different mappings. It might be able
to automatically estimate the correct value of km∗ by the quantile. Given a
c-mapping m and any CM (cai, cbi) ∈ m, this function has the following form:

f(m) =
km∑
i=1

(1 − αid̄(cai, cbi)) (6)

The key idea of the function is to reward or penalize the c-mappings according
to the control variable αi. Let di be the value of the distance in Equation 6. If we
consider the distribution of di among all the possible c-mappings, we may expect
that di for m∗, denoted as d∗i , is among the smallest values in this distribution.
Consequently, if dgi is the value of the g-quantile of di, for some small value g, then
d∗i should be smaller than d

g
i . Thus, if αi is set to 1

dg
i
, the value of the difference

in brackets in Equation 6, may be positive for most values of i, and therefore m∗

is rewarded the most among other c-mappings [10]. For any c-mapping m whose
km is greater than the correct value, it will contain some wrong CMs whose di

is expected to be greater than dgi , and therefore the value of the difference will
be negative and m will be penalized. The analysis is similar for the other case.
In this way, this function can estimate the correct km∗ .

In practice, the number of the object clusters in an attribute may be few.
Thus, we enumerate all the possible c-mappings for a categorical attribute to
find the corresponding m∗ based on the scoring function above. We use the object
clusters in a categorical attribute to form the disjunctive condition in Definition
3. Specially, for the categorical attribute RS.a and its corresponding m∗, if there
exists a subset of m∗, denoted as m1 = {cm1, ..., cmi, ..., cmk}, whose target
clusters all come from the same target attribute RT.b, we will combine all the
source clusters of m1 into the disjunctive condition in Definition 3. The subset
m1 represents that the target relation RT implies several categories of instances.
Thus, we need to merge these atomic FCs in m1 into a disjunctive condition.
In the same way, we may find the disjunctive conditions in other categorical
attributes. Because there may exists homogeneous relation among the atomic
FCs of different categorical attributes, we need to combine these disjunctive
conditions of different categorical attributes into the conjunctive condition, i.e.,
generate the final FC in Definition 3. Finally, we achieve the task of associating
the matches with the final FCs.

3.4 Transforming Source Data

Here, we show how to use the matches with the FCs to generate schema mapping
that, in essence, is to transform source data to the target schema. Schema map-
ping is typically expressed by the declarative language of the form ∀x(φ(x) →
∃y(ψ(x, y))), where x, y are vectors of variables, and φ(x), ψ(x, y) are the

Discovering Implicit Categorical Semantics for Schema Matching 189

conjunction of atomic formulas over the source relation and the target rela-
tion respectively, and we call it mapping expression. The generation method of
schema mapping we described here is the generalization of the technique intro-
duced in [11]. As the first step, we need to find the primary paths. Because we
only consider the relational schema, the primary paths here are the sets of the
instances of each relation. The next step is concerned with generating the logical
relations. In our scenario, a logical relation is a view that is made of several tables
associated via the foreign key constraints. With the logical relations generated,
a number of mapping expressions can be produced. If there exists at lest one
match m between an attribute of the source logical relation lrs and an attribute
of the target logical relation lrt, we will generate a mapping expression. The lrs

is used to generate the left-hand side of the expression, while lrt generating the
right-hand side. All the attributes in lrs are used to generate universally quanti-
fied variables in the expression. For each attribute in lrt which is not involved in
any matches between lrs and lrt, we add an existentially quantified variable to
the right-hand side of the expression. As an example, consider the matches m5−8

with the FC “type in c2”. Because of no foreign key constraints in this example,
each table is a logical relation. We can obtain the following mapping expression:
∀i, t, s, u, p, d : Computer(i, t, s, u, p, d)∧ t ∈ c2 → ∃I, S : Desktop(I, t, s, u, p, S).
Finally, given the source instances, the standard chase procedure [4] is used to
chase the generated expressions to achieve the transformation of source data.

4 Experimental Evaluation

In this section, we evaluate the performance of our approach on the real-world
data set [2]. First, we compare our approach with the traditional approach [6].
Then, we show the experimental results evaluating the performance of our al-
gorithm. We evaluate the accuracy against the correct mappings determined by
manual inspection of the source and target schemas. Our algorithm is imple-
mented using C++ language and the experiments were carried on a PC com-
patible machine, with Intel Core Duo processor (2.33GHz).

The data set used in the experiments is from Illinois Semantic Integration
Archive [2], which contains house listing information from several real estate
websites. These houses can be classified into four types: tiny, small, middling
and big, according to the building area, etc. We use part of these data to form
the source schema including one single table which contains four types of houses,
while the other part is used to create the target schema including two separate
tables each of which contains two types of houses.

We compare our approach (MST) with the approach [6] (CON). We obtain the
source code of CON from the original author. We set the parameters associated
with CON as follows: τ = 0.5, ω = 5, SrcClassInfer = true and EarlyDisj =
true. We consider two cases for CON: with context and no context. As in [6], we
also add 3 extra correlated attributes in the source schema. For the first case, we
insert an attribute (context), whose domain may be {t,s,m,b} corresponding to
the four types of houses. The experimental results are shown in Figure 3(a). As
ρ increases, our approach has almost the same accuracy as CON when ρ < 0.5,

190 G. Ding and G. Wang

0
10
20
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FM
ea

su
re

 (
%

)

Correlation of 3 Extra Attributes

MST
CON

(a) with context

0
10
20
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

FM
ea

su
re

 (
%

)

Correlation of 3 Extra Attributes

MST
CON

(b) no context

Fig. 3. Our Approach VS. Traditional Approach With Context

0
10
20
30
40
50
60
70
80
90

100

5 10 15 20 25 30 35 40 45 50

FM
ea

su
re

 (
%

)

Threshold γ (10-2)

MST
Naive

Fig. 4. MST VS. Naive

0
10
20
30
40
50
60
70
80
90

100

50 55 60 65 70 75 80 85 90 95 100

FM
ea

su
re

 (
%

)

The Parameter ε (10-2)

g = 0.2
g = 0.6

Fig. 5. Varying Parameter ε

then performs well than CON. For the second case, we remove the context, but
preserve the correlated attributes. The results are shown in Figure 3(b). We can
see that the curve for CON is close to the x-axis when ρ < 0.4. This is because
CON cannot work without context. Then, the accuracy of CON increases when
ρ > 0.4. The reason is that the correlated attributes amount to the context when
ρ of these extra attributes are gradually close to 1. We can see that the correlated
attributes have little negative effect on our approach.

In Figure 4, we compare MST with the naive approach (set g to 0.2). MST
performs better than the naive one with the increase of the threshold γ. The
accuracy of MST obtains the maximums between γ = 0.2 and γ = 0.35. Thus,
we set γ to 0.3 in the other experiments. We study the effect of the variation
in the parameter ε, which is used to relax the conditions in Definition 4, on the
performance. The results are shown in Figure 5. The accuracy increases when the
parameter ε changes from 0.5 to 0.9, then the accuracy decreases when ε > 0.9.
The two curves for g = 0.2, g = 0.6 are almost the same. This behavior will be
explained in the following experiments. We set ε to 0.9 in other experiments.

The experiment in Figure 6 studies the effect of increasing the number (β)
of categories of the instances on the performance. To this end, we replace the
original values of the categorical attributes with new synthetic values, then these
house instances can be classified into several types. We can see that the accuracy
keeps stable and high values when β ≤ 5, then the two curves drop at the point
β = 6. The reason is that a large number of c-mappings generated when β = 6
affect the performance of our third phase.

Discovering Implicit Categorical Semantics for Schema Matching 191

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7

FM
ea

su
re

 (
%

)

Number of Categories β

g = 0.2
g = 0.6

Fig. 6. Varying Categories

0
10
20
30
40
50
60
70
80
90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FM
ea

su
re

 (
%

)

Quantile g

β = 4
β = 7

Fig. 7. Varying Quantile

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

FM
ea

su
re

 (
%

)

Number of Attrs Added Per Table

g = 0.2
g = 0.6

(a) β = 4

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25 30 35

FM
ea

su
re

 (
%

)

Number of Attrs Added Per Table

g = 0.2
g = 0.6

(b) β = 7

Fig. 8. Scalability in Schema Size

0
10
20
30
40
50
60
70
80
90

100

200 400 600 800 1000 1200 1400 1600 1800

FM
ea

su
re

 (
%

)

Size of Source Relation

g = 0.2
g = 0.6

(a) β = 4

0
10
20
30
40
50
60
70
80
90

100

200 400 600 800 1000 1200 1400 1600 1800

FM
ea

su
re

 (
%

)

Size of Source Relation

g = 0.2
g = 0.6

(b) β = 7

Fig. 9. Scalability in Table Size

We study the effect of the variation in the quantile on the performance. The
results are shown in Figure 7. The performance stays at an invariable and high
accuracy for most of the values of g. However, the accuracy decreases when the
parameter g beyond the value 0.6. This behavior is consistent with the analysis
in our third phase in Section 3.

To test the scalability of our approach, we vary the size of the schemas by
adding extra n attributes, where n

5 is categorical attributes while the rest is non-
categorical ones. The experimental results are shown in Figure 8. The accuracy
decreases with the increase of the number of the attributes added. The downtrend
of the curves is slow for small β in Figure 8(a). The performance for β = 7 drops
more obvious than the one for β = 4. This behavior corresponds with the result
of the previous experiment.

192 G. Ding and G. Wang

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

T
im

e
(s

)

Number of Attrs Added Per Table

β = 4
β = 7

(a) varying schema size

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600 1800

T
im

e
(s

)

Size of Source Table

β = 4
β = 7

(b) varying table size

Fig. 10. Time Cost of Our Approach

In Figure 9, we can see that our approach performs well and changes slowly
with the increase of the table size. The curves for g = 0.2 and g = 0.6 are very
similar in Figure 9(a). The corresponding curves in Figure 9(b) are different, but
also change slowly. We can see that the quantile is more sensitive to the number
of the attributes and the parameter β than the table size.

Finally, we test the time cost in Figure 10. Our approach runs slowly with the
increase of the schema size and the table size. The overall time cost of increasing
the table size is more than the time of increasing the schema size, because the
number of tuples in a table is much more than the number of its attributes. The
time curve for β = 7 is much higher than the curve for β = 4. The reason is that
there are a larger number of c-mappings generated when β = 7.

5 Related Work

A basic problem in data exchange is schema matching [3, 5, 6, 7, 9, 10], which
is a long-standing research problem. A recent work [6] proposes an approach
which puts the context into schema matching. The context is actually the dis-
crete values of some attribute, which can explicitly classify the source instances
into different categories. However, their approach cannot deal with the scenario
where the value domain of the attribute, which has the categorical semantics, is
continuous. Our approach is proposed for this drawback of their work.

The automatic approaches to schema matching are summarized in [3]. A
multi-column substring matching [5] is presented to detect complex schema
translations from multiple database columns. Recently, the possible mapping
is introduced to schema matching [7, 9]. The work of [10] defines a new class of
techniques for schema matching, which exploit information extracted from the
query logs to find correspondences between attributes.

Schema matching is a preliminary step for schema mapping [1, 4, 8, 11]. The
Clio system [1] generates SQL-like mappings based on attribute correspondences.
A semantic approach to discovering schema mapping expressions is proposed in
the work of [8]. They uses the concept model to discover the semantics between
schemas. In [11], they introduce several algorithms contributing to bridge the gap
between the practice of mapping generation and the theory of data exchange.

Discovering Implicit Categorical Semantics for Schema Matching 193

6 Conclusions

In this paper, we discover the categorical semantics implicit in source instances,
and associate them with the matches in order to improve overall quality of
schema matching. Our method works in three phases. In the first phase, we detect
the possible categories of the source instances by using the clustering technique.
In the second phase, we aim to find the categorical attributes by ruling out
the interference attributes. The information entropy is employed to quantify the
degree of the decentralization that all the tuples of a relation disperse among
different categories. Then, we use it to rule out the interference attributes. In the
third phase, we achieve the associations between the matches and the semantics.
Specially, the Hausdorff distance is used to measure the similarity between the
source cluster and the target cluster. Based on this distance, we exploit the
scoring function [10] to find the optimal c-mapping to achieve the task of this
phase. Moreover, we translate the matches with the FCs into schema mapping
expressions, and in turn, use the chase procedure [4] to transform source data
into target schemas based on these expressions. Finally, we compare our approach
with the traditional homogeneous approach [6]. The experimental results show
that our approach performs well.

Acknowledgments

This research was supported by the National Natural Science Foundation of
China (Grant No. 60773219, 60803026 and 61073063) and the 863 High Tech-
nique Program (Grant No. 2009AA01Z150).

References

1. Miller, R.J., Haas, L.M., Hernandez, M.A.: Schema Mapping as Query Discovery.
In: Proc. of VLDB, pp. 77–99 (2000)

2. Doan, A.: Illinois semantic integration archive
3. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.

VLDB Journal 10(4), 334–350 (2001)
4. Fagin, R., Kolaitis, P., Miller, R., Popa, L.: Data exchange: Semantics and query

answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS,
vol. 2572, pp. 207–224. Springer, Heidelberg (2002)

5. Warren, R.H., Tompa, F.: Multicolumn Substring Matching for Database Schema
Translation. In: Proc. of VLDB, pp. 331–342 (2006)

6. Bohannon, P., Elnahrawy, E., Fan, W., Flaster, M.: Putting context into schema
matching. In: Proc. of VLDB, pp. 307–318 (2006)

7. Dong, X., Halevy, A.Y., Yu, C.: Data integration with uncertainty. In: Proc. of
VLDB, pp. 687–698 (2007)

8. An, Y., Borgid, A., Miller, R.J.: A semantic approach to discovering schema map-
ping expressions. In: Proc. of ICDE, pp. 206–215 (2007)

194 G. Ding and G. Wang

9. Sarma, A.D., Dong, X., Halevy, A.: Bootstrapping Pay-As-You-Go Data Integra-
tion Systems. In: Proc. of SIGMOD, pp. 861–874 (2008)

10. Chan, C., Elmeleegy, H.V.J.H., Ouzzani, M., Elmagarmid, A.: Usage-Based Schema
Matching. In: Proc. of ICDE, pp. 20–29 (2008)

11. Mecca, G., Papotti, P., Raunich, S.: Core Schema Mappings. In: Proc. of SIGMOD,
pp. 655–668 (2009)

12. Radwan, A., Popa, L., Stanoi, I.R., Younis, A.: Top-K Generation of Integrated
Schemas Based on Directed and Weighted Correspondences. In: Proc. of SIGMOD,
pp. 641–654 (2009)

Expressive Power of Query Languages for
Constraint Complex Value Databases

Hong-Cheu Liu

Department of Computer Science and Multimedia Design
Taiwan Shoufu University

Tainan County, 72153 Taiwan
hongcheu.liu@gmail.com

Abstract. Motivated by constraint complex values which allow us to
represent nested finitely representable sets, we study the expressive power
of various query languages over constraint complex value databases. The
tools we use come in the form of collapse results which are well estab-
lished results in the context of first-order logic. We show that active-
generic collapse carries over to second-order logic for structures with
o-minimality and any relational signature in the complex value model.
We also consider the problem of safety in the context of embedded finite
complex value models and constraint complex value databases.

1 Introduction

Database management systems are being widely used to support recent appli-
cations such as engineering design, image or voice data management, spatial
information systems and bioinformatics. Many advanced applications involve
voluminous data, which may sometimes be convenient to be considered ‘infi-
nite’ data. To tackle applications that involve possibly infinite data, constraint
databases are proposed to store a finite representation of an infinite set and allow
users to express queries on such representation as if the entire infinite set was
stored.

In particular, spatial or temporal databases often contain voluminous data
points in a multidimensional space. These data points can be expressed as a set
of constraints, where the actual data points are defined to be the points that
satisfy such constraints. In many applications, spatial or temporal data are often
more intuitively described as constraints. This may be the reason why constraint
databases are emerging to be a unifying paradigm for conceptual representation
of spatial or temporal data.

The constraint database model, introduced by Kanellakis, Kuper and Revesz
in their seminal paper [1], is a powerful generalization of the relational data
model with finitely representable infinite relations. This model facilitates efficient
declarative database programming combined with efficient constraint solving: A
generalized tuple is a finite conjunction of constraints in some constraint theory.
For example, x ≤ y ∧ x ≤ 0 defines a binary generalized tuple. A generalized

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 195–209, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

196 H.-C. Liu

relation is a finite set (disjunctions) of generalized tuples. For example, the con-
straint relation R(x, y) = 20 < x ∨ y < 7 ∨ x = y has three generalized tuples.
The above relation R is an infinite relation. The formula of a generalized relation
R can also be viewed as the formula of its generalized tuples put in disjunctive
normal form (DNF), ψ1 ∨ ψ2 ∨ · · · ∨ ψn. We may use ϕR to denote a quantified
formula corresponding to the relation R. A generalized database is a finite set of
generalized relations.

Constraint databases have been an active area of database research. One
of the most challenging questions in the theoretical development of constraint
databases is the expressive power of their querying formalisms: what are the
limitations of query languages for constraint databases, e.g., [2]? In particular,
the classical techniques for analyzing the expressive power of relational query
languages no longer work in the context of constraint databases. In the past
several years, most questions on the expressive power based on some character-
ization of structures and a relational schema have been settled. These questions
were reduced to those on the expressiveness of query languages over ordinary
finite relational databases, with additional condition that databases may store
numbers and arithmetic operations (which form linear or polynomial equations)
may be used in queries [3].

In this paper, we investigate in detail on the expressive power of the various
query languages for the constraint complex value model. Our study extends
the constraint database model in two ways (to be detailed soon): (i) we allow
constraint complex values and (ii) we consider second order query languages
for complex values. Regarding the expressive power for languages for constraint
databases, there are well-established results. Many results on expressive power
use the notion of genericity, which comes from the classical relational database
setting. Therefore, to begin our investigation, we first review the concept of
genericity of queries in our problem setting.

Generic queries. In general, generic queries commute with permutations on
the domain. For example, the answer to the parity query is the same for the
input {1, 2, 3, 4, 5} and for another input {a, b, c, d, e}, which is obtained by the
mapping 1 �→ a, 2 �→ b, 3 �→ c, 4 �→ d, 5 �→ e. The main tools adopted in these
techniques are collapse results [4,3,2]. These collapse results mean that query
class A has no more expressive power with respect to some characteristics (e.g.,
generic queries) than query class B, where query class A may appear to be much
larger than query class B. For example, given the real order field (R, +, ∗, 0, 1, <)
and a relational signature SC, the classes of generic queries in first-order (FO)
logic over the real order field and SC, under active domain interpretation, and
FO logic over the universe domain are the same. It is worth-remarking that
attention on genericity of database queries with embedded finite model theory is
very often paid, where finite structures are embedded in an infinite structures.

Complex Values. Complex values provide flexible modeling, which is often
convenient for advanced database applications. They are represented by hierar-
chical structures rather than flat relations. Intuitively, complex value relations

Expressive Power of Query Languages 197

are relations in which their entries may themselves be tuples or (nested) rela-
tions. In other words, the complex value model allows using the tuple and set
constructors recursively. It should be remarked that this model provides the core
structure of object-relational databases and comprises an important component
of many semantic models.

We extend the constraint database model with complex values. This extended
model allows us to represent nested finitely-representable relations and sets.
Thus, applications over natural spatial-temporal objects can be easily mod-
eled, without casting the objects into flat relations. For example, many spatial
databases involve hierarchical data. In particular, populations of cities, rainfall
of regions, areas of river, etc., are properties associated with sets of possibly in-
finite points. Multi-layered geographic information systems (GIS) may represent
many regions and channels which in turn are represented by several atomic spa-
tial objects, like lines and triangles. These properties occur naturally in many
advanced GIS and applications of the constraint data model.

Higher order languages. In addition to the above practical considerations, we
consider constraint query languages in the contexts of embedded finite models
and constraint databases, motivated primarily by their expressive power. It is
well-known from literature that there are a number of limitations of first-order
logic. For example, queries such as parity, majority, connectivity, transitive clo-
sure and acyclic property are not definable in FO logic, with linear or polynomial
constraints. It is natural to turn one’s attention to a more expressive query lan-
guage to bypass these limitations. Second-order constraint query languages for
complex values appear to be a promising approach. We follow a popular tech-
nique in the research of embedded finite models and constraint databases which
adopts the tool of collapse results to analyze the expressive power of query lan-
guages.

Relational database queries are required to have certain closure property:
they return finite outputs on finite inputs. This requirement is well known in
the database theory under the name of query safety: we identify those formulas
which return finite results. In this paper, we consider this safety issue in the
context of embedded finite complex value model.

Main contributions. We summarize our main results of this paper as follows.

– We extend the constraint data model to constraint complex values and pro-
pose the most important constraint query languages for embedded finite
complex value model and constraint complex value databases.

– We study second-order logic over embedded finite complex value model and
constraint complex value databases settings. We show that natural-active
collapse with a condition and active-generic collapse carry over to second-
order logic for structures with o-minimality and any relational signature in
the complex value model.

– We show that complex value Datalog language with stratified negation over
polynomial constraints is closed. Some topological properties, for example,
connectivity, can be definable in second-order logic.

198 H.-C. Liu

– We develop an approach to restricting constraint complex value calculus
languages with negation to safe formulas that guarantee output answers in
closed-form.

Related work. For a general introduction to finite model theory, see [5,6].
Constraint databases were introduced in [1]. The active generic collapse was
proved independently in [4] and [7]. Benedikt et al. [4] proved that even simple
recursive queries like transitive closure cannot be expressed in relational calculus
with polynomial arithmetic constraints over the real numbers. The nature-active
collapse is from [8]. Safety is a central notion in relational database theory, see
[9]. Many researchers have attempted to tackle this safe issue in constraint query
languages [10,11,12]. Some attempts to extend the definitions of safe and domain
independence have already been made [13,14,15,16,17]. Grumbach and Su study
the complexity and the expressive power of various query languages over dense
order constraint databases [18].

Organization. We introduce notations in Section 2. In Section 3, we review the
concept of complex values and extend the constraint data model to constraint
complex values. Then we first give a formal definition of the embedded finite
complex value setting and define second-order logic over this setting. We also
propose the most important constraint query languages for constraint complex
value databases. We analyze expressive power of query languages in the context
of constraint complex value data model in Section 4. The techniques that we
use normally come in the form of collapse results. These techniques reduce many
questions over constraint databases or embedded finite models to the classical
finite model theory setting. In Section 5, we consider the problem of safety in
both settings. Finally, we give a conclusion in Section 6.

2 Notations

We first briefly review the basic concepts of constraint databases in this section,
then extend it to constraint complex object databases in the next section. Most
notations are adopted from the literature on constraint databases.

Structures, constraint databases, queries
Let M =< U, Ω > be an infinite structure, where U is an infinite set, called a
universe, and the signature Ω contains some function, predicate and constant
symbols. Let SC be a relational signature {R1, ..., Rl} where each relation symbol
Ri has arity pi > 0. Then an embedded finite model is a structure D =<
A, RD

1 , ..., RD
l >, where each RD

i is a finite subset of Upi , and A is the union of
all elements that occur in the relations RD

1 , ..., RD
l . The set A is called the active

domain of D, and is denoted by adom(D).
Given a structure M =< U, Ω > and a relational signature SC, the syntax

and semantics of first-order logic over M and SC, denoted by FO(SC, M),
are fairly standard as described in the literature. There are two different uni-
verses that can be quantified over: the universe U of the infinite structure M,

Expressive Power of Query Languages 199

and the active domain A of the finite structure D. Given a FO(SC, M) for-
mula ϕ(x1, ..., xn), and a = (a1, ..., an) ∈ Un, the notion of satisfaction relation
(M, D) |= ϕ(a) is defined in a standard manner.

Definition 1. [4] Given a structure M =< U, Ω >, a set X ⊆ Un is called M-
definable if there exists a formula ϕ(x1, ..., xn) in the language of M such that
X = {a ∈ Un | M |= ϕ(a)}. A constraint database of schema SC = {R1, ..., Rl}
is a tuple D = < RD

1 , ..., RD
l >, where each RD

i is a definable subset of Upi ,
where pi is arity of Ri.

Many results on expressive power use the notion of genericity, which is some-
times stated as data independence principle. We now define genericity of Boolean
queries and non-Boolean queries. Given a function π : U → U , we extend it to
finite SC-structures D by replacing each occurrence of a ∈ adom(D) with π(a).

Definition 2. [2]

– A Boolean query Q is totally generic (order-generic) if for every partial
injective function (partial monotone injective function, resp.) π defined on
adom(D), Q(D) = Q(π(D)).

– A non-Boolean query Q is totally generic (order-generic) if for every partial
injective function (partial monotone injective function, resp.) π defined on
adom(D) ∪ adom(Q(D)), π(Q(D)) = Q(π(D)).

Note that the main difference between the definition of an embedded finite model
and a constraint database is that in the former we interpret the SC-predicates
by finite sets, and in the latter - by definable sets which may be infinite.

Classical model theory provides us with many examples of structures which
have been considered in the field of constraint databases. A few are listed below.

– dense order constraints (R, <);
– linear constraints Rlin = (R, +,−, 0, 1, <);
– polynomial constraints R = (R, +, ∗, 0, 1, <); and
– exponential constraints Rexp = (R, +, ∗, ex, <).

The above structures admit quantifier-elimination.
In constraint databases, we normally consider relational calculus, or first-

order, FO, over the underlying structure and the database schema, as a basic
query language. The output of an FO(SC,M) formula ϕ(x1, ..., xn) on a finite
SC-structure D is ϕ(D) def= {a ∈ Un | D |= ϕ(a)}
O-minimality. To impose additional restrictions on the underlying structure,
we consider the model-theoretic notion of o-minimality, which plays an important
role in the study of constraint query languages. An ordered structure M =<
U, Ω > is o-minimality if every definable set is a finite union of points and open
intervals (a, b) = {x | a < x < b}, (−∞, a) = {x | x < a}, and (a,∞) = {x | x >
a}. The above mentioned structures are known o-minimal structures.

200 H.-C. Liu

3 Constraint Complex Value Model and Query
Languages for Constraint Complex Value Databases

3.1 Constraint Complex Value Model

In this subsection, we review the concept of complex values (CV) and extend the
constraint data model to constraint complex values. Complex values are formed
by using two constructors: tuple and set and associated with sorts.

We first define syntax and semantics for complex values.

Definition 3. (1) The abstract syntax of sorts is given by τ = dom | < A1 :
τ, · · · , Ak : τ] | {τ}, where k ≥ 0 and A1, · · · , Ak are distinct attributes. (2)
The interpretation of sort τ (i.e., the set of values of τ), denoted [[τ]], is defined
recursively as follows.

– [[dom]] = dom,
– [[{τ}]] = P([[τ]]) = {X |X ⊆ [[τ]] and X finite}, and
– [[A1 : τ1, · · · , Ak : τk]]] = [[τ1]] × · · · × [[τk]]

P denotes power-set operator. A complex value database schema SC is a finite
set of relation names {R1, ..., Rl} with associated sorts τ1, ..., τl.

We then define the constraint complex value model which allows us to repre-
sent nested finitely re-presentable infinite complex value databases. Constraint
complex values are built using tuple and set constructors from generalized tuples
and finite re-presentable sets. Many properties over natural spatial/temporal ob-
jects can be easily modeled as constraint complex values.

Definition 4. In the context of the constraint complex value model, for each
sort τ , the domain of τ denoted dom(τ), is defined recursively as follows.

– If τ is an n-ary flat tuple type, then dom(τ) is the set of all generalized n-ary
tuple.

– If τ = {τ ′} is a set type, then dom(τ) def= {∨k
i=1 ψi|k ≥ 1, ∀i ∈ {1, · · · , k}, ψi ∈

dom(τ
′
)}.

– If τ =< τ1, · · · , τk > is a tuple type, then

dom(τ) def= { ∧k
i=1 ψi| ψi ∈ dom(τi), if τi is not a set tuple;

ψi ≡ xi = {φi}, where φi ∈ dom(τ
′
i)

if τi is a set tuple {τ ′
i }. }

Example 1. Let τ = [{[Q, Q]}, Q] be a tuple type. A constraint complex value of
type τ is ψ(x, y) def= (x = {(x1, x2)|φ} ∧ y = 10), where φ = (0 < x1 < 5 ∧ x1 <
x2 < 5).

3.2 Query Languages for Constraint Complex Value Databases

In this subsection, we define query languages for constraint CV databases in
three different paradigms. We first define the embedded finite CV setting which

Expressive Power of Query Languages 201

is an extension of embedded finite model. Then we define second-order logic
(SO) over this setting.

Embedded finite CV model

Definition 5. Let M =< U, Ω > be an infinite structure on a set U , where the
signature Ω contains some functions, predicates and constant symbols. Let SC
be a complex value relational signature {R1, ..., Rl} where each relation symbol
Ri has sort τi. Then an embedded finite complex value model is a structure

D =< A, R1, ..., Rl >,

where each Ri is a finite subset of Uτ (Uτ denotes the set of complex value
constants with sort τ), and the set A is the adom(D).

In the embedded finite complex value setting, we use second-order logic. We give
a formal definition of second-order logic as follows.

Definition 6. Given a structure M =< U, Ω > and a complex value relational
signature SC, second-order logic (SO) over M and SC, denoted by SO(SC, M),
is defined as follows:

– Any atomic FO formula in the language of M is an atomic SO(SC, M).
– If S is a variable that ranges over a set of elements of domain and t is a

term in the language of Ω and SC in first-order form, then the expression
t ∈ S (also written S(t)) is an atomic SO(SC, M).

– If R ∈ SC is such a k-ary relation and t1, ..., tk are first-order terms then
the expression R(t1, ..., tk) is an atomic SO(SC, M).

– Formulas of SO(SC, M) are closed under the Boolean connectives (∧,∨,
and ¬).

– If ϕ is a SO(SC, M) formula and S is a relation symbol not in SC, then
the following: ∃xϕ, ∀xϕ, ∃Sϕ, ∀Sϕ are SO(SC, M) formulas.

The active-domain semantics of second-order logic, denoted by SOact(SC,M),
are those formulas in which all first-order, and second-order quantifiers range
over the active domain.

Our goal is to study SO(SC,M) and investigate its applications to query
languages for constraint complex value databases. Like in the first-order logic
formalism, the expressive power and query evaluation issues need to be solved by
new techniques and their solutions depend heavily on the model-theoretic prop-
erties of the underlying structure M. The fundamental complex value structure
and second-order logic also greatly impact on these solutions.

Constraint CV databases
We briefly describe three paradigms that can be used for querying constraint
CV databases.

202 H.-C. Liu

3.3 Algebra Queries

The first paradigm adopts the classical relational algebra approach which pro-
vides some algebraic operations for manipulating constraint tuples. In this sub-
section, we give a general definition of the constraint algebra operators. Let r be
a relation of sort τ . ϕ = t1 ∨ · · · ∨ tn is the constraint formula which corresponds
to r. The output of the selection operation is the conjunction of the constraint
tuples and the selection condition. That is,

σγϕ =
∨

1≤i≤n(ti ∧ γ)

The selection condition γ is of the form xi = d, xi = xj , xi ∈ xj or xi = xj .C,
where d is a constant, and τj is a tuple sort of xj with a C field.

When applying projection operation, we use existential quantifier to eliminate
required variables from each constraint tuples. For example, let X = {x1, ..., xk}
be the set of variables in ϕ, let xj ∈ X , and let Y = X − {xj}.

πY ϕ =
∨

1≤i≤n t̂i

where t̂i is semantically equivalent to ∃xjti.
The join operation pairs each constraint tuple from two relations [11].

3.4 Calculus Queries

In the logic paradigm, we denote CALCcv(SC, M) as the set of all CALCcv

formulas in the language that contains all symbols of SC and M. That is,
CALCcv(SC, M) formulas are built up from the atomic positive literal R(t),
t = t

′
, t ∈ t

′
, or t ⊆ t

′
and M formulas by using Boolean connectives ∨, ∧, ¬,

and quantifiers ∀, ∃.
We refer to the above syntactic query languages as complex value calculus with

M constraints. This will be denoted by CALCcv + M. When M is (+,−, 0, 1, <)
or (+, ∗, 0, 1, <) we use standard abbreviations CALCcv + LIN and CALCcv +
POLY. For a structure M and a SC -instance I, the notion of (M, I) |= ϕ is
defined in a standard way for CALCcv(SC, M) formulas. If M is understood,
we write I |= ϕ.

Example 2. Let M = (R, +,−, 0, 1, <). The following calculus query applies to
schema SC = {R, S} with sort τR = τS = [R, {R}].

ϕ ≡ ∃vR(x, u) ∧ S(y, v) ∧ x ∈ u ∧ y ∈ v ∧ x + y < 10

It defines a subset of the join with the condition that in join-able tuples (x, u) and
(y, v), x and y must be a member of the second component u and v respectively
and x plus y is less than 10.

3.5 Datalog Queries

The deductive paradigm provides logic programming style for reasoning query re-
sults. It is a rule-based language. A rule is an expression of the form p(x1, · · · , xk)

Expressive Power of Query Languages 203

← L1, · · · , Ln where the head p is a derived predicate, and each Li of the body
is a literal. A Datalog query is a pair (P, q) where P is a finite set of rules, and
q is a derived relation.

Example 3. Let τp = τt = [R], τr = τs = [R, {R}] and τq = [R, R]. The following
is a constraint Datalog query.

s(x, z) ← r(x, y) ∧ z ⊆ y ∧ 5 �∈ z

q(x, v) ← s(x, z) ∧ v = count(z)
t(x) ← p(x) ∨ (q(x, c) ∧ x + c < 100)

A stratification of a program P is a partition P1, · · · , Pn of the program such
that no relation symbol R that is negated in a Pi is a derived relation in any Pj

with j ≥ i.
A program is stratified, if there is a stratification for it. The output of a

stratified Datalog program query is called the perfect model.

4 Expressive Power

In the literature, the techniques used for analyzing expressive power of constraint
databases are normally presented in the form of collapse results [4,3,19]. The pur-
pose of these techniques is to reduce several important questions over constraint
databases or embedded finite models to the classical finite model theory set-
ting [2]. The focus is on expressive power of generic queries. We first summarize
the definitions of collapse results in first-order logic from the literature as fol-
lows. Then we will adopt these techniques to extend them to the constraint CV
model and investigate the issue of what properties of the underlying structure
will impact the results.

Definition 7. [4] We say that a structure M admits:

– natural-active collapse if FO(SC,M) = FOact(SC,M) for any SC;
– active generic collapse if, for any SC, the classes of order-generic queries in

FOact(SC,M) and FOact(SC, <) are the same;
– natural generic collapse if, for any SC, the classes of order-generic queries

in FO(SC,M) and FO(SC, <) are the same.

Embedded finite CV model
Establishing the natural-active collapse is difficult for the second-order logic.
To overcome this problem, we consider a fragment of SO(SC,M) in which all
second-order variable were produced by FO formulas by induction. We denote
this fragment as S̃O.

Our first goal is to show the following.

Theorem 1. (Natural-Active Collapse) Let M =< U , Ω > be an o-minimal
structure that admits quantifier elimination. Then it admits a weaker form of
the natural-active collapse in the setting of embedded finite CV model, i.e.,
S̃O(SC,M)= SOact(SC,M) for any SC.

204 H.-C. Liu

Proof Sketch. Suppose the input formula is ϕ. In the second-order logic, we
need to consider an sub-formula ∃Sα(x) case in addition to all cases in first-
order logic. As S is a set variable not in SC, it can be produced by FO formulas
by induction. Those FO formulas can be expressed by FOact(SC, M) formulas
based on o-minimal structure property. Therefore there is an SOact(SC,M)
formula which is equivalent to ϕ. ��
We then present the following result.

Theorem 2. (Active-generic collapse) The active generic collapse holds over
every structure M and complex value relational signature SC for second-order
logic. That is every order-generic query definable in SOact(SC, M) is definable
in SOact(SC).

Proof Sketch. The main ideas of the proof follows the proof for first-order
logic, by establishing the Ramsey property in the context of complex values. The
proof is by induction on the formulas. The only issues we should consider are that
of second-order quantification and complex values. We assume that every atomic
sub-formula is an SOact(SC) formula or an SO(M). In regards to SOact(SC)
formula, we need to consider three cases: (1) ∃S ϕ, (2) x ∈ S and (3) x ⊆ S. For
case (1), Let ϕ(x) = ∃S ∈ adom ϕ1(S, x). By the hypothesis. find T ⊆ X and
ψ1(S, x) such that for any database D and a over T and any Y ⊂ T we have
D |= ϕ1(Y, a) ↔ ψ1(Y, a).

In regards to cases (2) and (3), there is no need to change the formula or find
a subset. The sub-formula SO(M) has the Ramsey property [2]. ��
Constraint CV databases
We now study the expressive power of standard constraint CV query languages
such as CALCcv+POLY.

Theorem 3. The active generic collapse holds over every structure M for com-
plex value logic, CALCcv. That is, every order-generic query definable in
CALCact(SC,M) is definable in CALCact(SC).

Proof Sketch. CALCcv is a many-sorted calculus which is formed from a stan-
dard first-order logic. However, it facilitates set variables and has a second-order
flavor. The key features: second-order quantification and existential and subset
predicates have been proved in Theorem 2. Therefore, this is a direct conse-
quence of Theorem 2. ��
In the standard constraint databases, we sometimes want to write queries against
a linear constraint input database in FO + POLY. It is known that FO + POLY
has more expressive power than FO + LIN although FO + POLY has more costly
evaluation procedures. One sometimes may want to use FO + POLY to write
queries against semi-linear sets. Similarly, we may want to write queries against
a linear constraint input database or a polynomial constraint database in a more
expressive higher order language.

The fundamental topological connectivity property is important in many ap-
plications of constraint databases. As standard query languages for constraint

Expressive Power of Query Languages 205

databases lack the power to express connectivity properties [4], researchers at-
tempted to enrich query languages by adding some extra functions, like transitive
closure or fix-point operators. However, this extension may cause closure prop-
erty fail for the extended languages. In [20], authors add topological connectivity
property to the first-order constraint query languages and obtain new languages
which are closed. However, this extension may cause the language at expense of
high evaluation cost. The alternative approach is to adopt a higher-order query
language to overcome this deficiency.

Definition 8. Given a structure M =< U, Ω >, a set of complex values O ⊆ U τ

with complex value sort τ is called M-definable if there exists a formula ϕ(x) in
the language of M such that O = {o ∈ U τ | SO(SC,M) |= ϕ(o)}.
We show that connectivity is definable in SO(SC, M) where input database SC
contains just an M-definable set S ⊆ Rk.

Proposition 1. Some fundamental topological queries such as connectivity, hav-
ing exactly one hole and having exactly k connected components, etc., are defin-
able in SO(SC,M).

Theorem 4. Datalogcv,¬ + POLY is closed; that is, on an M- definable com-
plex value constraint databases, an Datalogcv + POLY query produces an M-
definable complex value set.

Proof Sketch. A query is expressible in Datalogcv with stratified negation if and
only if it is expressible in CALCcv [13]. We know that SO(SC,M) is closed
under Boolean connectives. As CALCcv ⊂ SO, CALCcv(SC,M) is also closed
under Boolean connectives. Therefore CALCcv(SC,M) is closed for any input
M- definable complex value constraint databases. Accordingly, Datalogcv,¬ +
POLY is closed on an M- definable complex value constraint databases. ��
While we expect to develop query languages having expressive power that can
express most desirable properties, low complexity and easy query evaluation
are major concerns in language design. The class of elementary queries is the
complexity class of complex value query languages with power-set operator. As
stated in [18], in terms of complexity, the characterizations of the calculus for
constraint complex value databases are similar to the case of the classical com-
plex values. However, we do expect a higher-order constraint query language can
be effective and without too high complexity.

We present the following observation.

Theorem 5. Every generic query in Inflationary Datalogcv,¬
act (SC,M) without

power-set operator can be evaluated in polynomial hierarchy time given that every
generic sentence in M can be evaluated in AC0/poly. .

Proof Sketch. All operations in CALCcv and accordingly in Datalogcv,¬
act can

be computed in polynomial time in the size of their arguments except for power-
set which takes exponential time. ��

206 H.-C. Liu

5 Finite and Infinite Query Safety

In the previous sections, we proposed several paradigms of query languages for
constraint complex value databases. As in classical databases, we normally require
that queries return finite outputs on embedded finite models. In this section, we
consider this safety issue in the context of embedded finite complex value mod-
els and constraint complex value databases. For the former, we consider whether
there is a procedure that takes as input an SO(SC,M) and determine it is safe
or not. For the problem of query safety over constraint complex value databases,
we show that whether it can preserve certain geometric properties in the complex
value output.

Embedded finite CV model
In (monadic) second-order logic, some variables are quantified over subsets of
the domain.

The output of a SO(SC, M) formula ϕ(x) on a finite complex value SC-
structure D is ϕ(D) def= {a ∈ Uτ | D |= ϕ(a)}, where Uτ denotes the set of
complex value constants with sort τ .

Definition 9. An MSO(SC, M) formula ϕ(x) is safe on a finite complex value
SC-structure D if ϕ(D) is finite. A formula is safe if it is safe on every finite
complex value structure.

It is well known that the safety problem is undecidable even for a simple structure
M =< U , ∅ >, and a simple formula, ϕ, an FOact(SC) formula. However, as in
first-order logic, we can find a procedure to identify a recursive subset of safe
formulas that capture the query class that returns finite complex value outputs
and every formula with this property belongs to this query class.

We now turn to the development of a syntactic condition that ensures calculus
queries to be evaluable in closed-form. Our general approach to defining safe
queries over embedded finite CV models is to check each input constraint sub-
formula whether it contains a not-allowed negative constraint. For example, a
negative constraint in ∃yR(y)∧¬(x2 = y) will cause the formula produce infinite
output.

Intuitively, if a query is in range-restricted form, then we can find an algebraic
formula f which plays the role of giving an upper bound for the output of
the query [10]. That means each set variable is range-restricted, i.e., the values
assigned to set variables are finite.

As in [9], we can develop a procedure which compute the set of safe-range
variables of a formula. In the procedure, we need to consider three key points:
(1) t ∈ S ∧φ, (2) R ⊆ S ∧φ, and (3) ¬C, C is a constraint. In order to make the
formula safe, the variables in the above three cases should be range-restricted.

Example 4. Let τp = τq = [{R}, R]. p(x, y) def= (x = {x1 | φ} ∧ y = 10), where
φ ≡ (0 ≤ x1 ≤ 10) ∧ x2

1 = y. Consider the formula

ψ = p(x, y) ∧ ∃t(u = x ∧ ¬q(u, t) ∧ t ∈ u).

free(ψ) = {x, y, u} and all variables are bounded. So ψ is a safe formula.

Expressive Power of Query Languages 207

Example 5. Let τp = [{R}, R]; τs = [{R}, {R}]. Consider the formula

ϕ = ∃x(¬p(x, y) ∧ s(u, z)), where
p(x, y) def= (x = {x1 | φ} ∧ y = 10), φ = (0 ≤ x1 ≤ 10);

s(u, z) def= u ⊂ z ∧ z = {1, 2, 3}.
s contains u ⊂ z and z = {1, 2, 3} which are both safe formulas. So s is a safe
formula. ∃x(¬p(x, y) is not a safe formula as it contains unbounded variable y.
Therefore ϕ is not a safe formula.

Constraint CV databases. In regards to the safety problem for constraint
complex value databases, we consider two issues. The first issue is whether we
still can express the output of our constraint CV query in terms of the class
of constraints used to define the input database. For example, when the input
database is a polynomial constraint database expressed in FO + POLY, then
we intend to use CALCcv + POLY to query input database. The output of an
CALCcv + POLY query may fail to be expressed in FO + POLY. Although
we get extra expressive power for our query languages, we encounter the safety
problem.

The second issue is whether the output of constraint CV query preserve certain
geometry properties of regions in Rk. Is there effective syntax for the class of
constraint CV queries which preserve some geometry property? Can this problem
be reduced to finite query safety for embedded finite CV models? It is known that
FO cannot express topological connectivity or transitive closure, we investigate
whether SO gains enough power to express such topological queries.

Theorem 6. There is an effective syntax for the class of queries definable in
SO(SC,M) preserving topological connectivity.

Proof sketch. This problem can be reduced to graph connectivity [2]. As CALCcv

can express the transitive closure of a binary relation, SO(SC,M) can test
graph connectivity. Therefore the class of safe SO(SC,M) preserving topological
connectivity has effective syntax. ��
As FO + POLY ⊂ SO + POLY, a union of conjunctive SO + POLY queries
preserves the property of being a convex polytopes. In regards to other topolog-
ical properties, we need to do further investigation.

Finally, we show the following.

Theorem 7. Safe CALCcv + POLY, ALGcv+ POLY and Inflationary
Datalogcv,¬ +POLY have equivalent expressive power.

Proof sketch. In the context of the complex value model, Safe CALCcv, ALGcv

and Inflationary Datalogcv,¬ have equivalent expressive power. This result still
holds by adding polynomial constraints.

208 H.-C. Liu

6 Conclusion

The constraints provide a sound mathematical framework to define both data
models and query languages. We investigated the expressive power of vari-
ous query languages over constraint complex value databases. We showed that
natural-active collapse and active-generic collapse carry over to second-order for
structures with o-minimality and any relational signature in the complex value
model. However, under what conditions natural-generic collapse will hold needs
to be further investigated.

Some of the classical topological queries, for example, connectivity, which can-
not be expressed in FO(SC, M) can easily be expressed in SO(SC,M), given
that M is an o-minimal expansion of the real field R. We considered a syn-
tactic condition that ensures constraint complex value calculus queries to be
evaluable in closed-form in the embedded finite model. The main results of the
paper could be helpful for designing query languages over advanced constraint
databases based on an extended data model.

Acknowledgment. The author would like to thank Byron Choi for helpful
discussion and suggesting numerous improvements.

References

1. Kanellakis, P., Kuper, G., Revesz, P.: Constraint query languages. Journal of Com-
puter and System Sciences 51(1), 26–52 (1995)

2. Libkin, L.: Embedded finite models and constraint databases. In: Book:Finite
Model Theory and its Applications. Springer, Heidelberg (2007)

3. Libkin, L.: Query languages with arithmetic and constraint databases. SIGACT
News, Database Theory Column, 41–50 (1999)

4. Benedikt, M., Dong, G., Libkin, L., Wong, L.: Relational expressive power of con-
straint query languages. Journal of the ACM 45, 1–34 (1998)

5. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer, Heidelberg (1995)
6. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
7. Otto, M., den Bussche, J.V.: First-order queries on databases embedded in an

infinite structure. Information Processing Letters 60, 37–41 (1996)
8. Benedikt, M., Libkin, L.: Relational queries over interpreted structures. Journal of

the ACM 47, 644–680 (2000)
9. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,

Reading (1995)
10. Benedikt, M., Libkin, L.: Safe constraint queries. SIAM Journal on Computing 29,

1652–1682 (2000)
11. Revesz, P.: Safe query languages for constraint databases. Transactions on

Database Systems 23, 58–99 (1998)
12. Stolboushkin, A., Taitslin, M.: Safe stratified datalog with integer order does not

have syntax. ACM Transactions on Database Systems 23(1), 100–109 (1998)
13. Abiteboul, S., Beeri, C.: The power of languages for the manipulation of complex

values. The Very Large Data Bases Journal 4, 727–794 (1995)
14. Avron, A.: Constructibility and decidability versus domain independence and ab-

soluteness. Theoretical Computer Science 394, 144–158 (2008)

Expressive Power of Query Languages 209

15. Suciu, D.: Domain-independent queries on databases with external functions. The-
oretical Computer Science 190(2), 279–315 (1998)

16. Liu, H.C., Yu, J.: Safe database queries with external functions. In: Proceedings
of International Database Engineering and Applications Symposium, Montreal,
Canada, pp. 260–269 (1999)

17. Liu, H.C., Yu, J., Liang, W.: Safety, domain independence and translation of com-
plex value database queries. Information Sciences 178, 2507–2533 (2008)

18. Grumbach, S., Su, J.: Dense-order constraint databases. In: Proceedings of ACM
Symposium on Principles of Database Systems, pp. 66–77 (1995)

19. Libkin, L.: A collapse result for constraint queries over structures of small degree.
Information Processing Letter 86, 277–281 (2003)

20. Benedikt, M., Grohe, M., Libkin, L., Segoufin, L.: Reachability and connectivity
queries in constraint databases. Journal of Computer and System Sciences 66, 169–
206 (2003)

Scaling Up Query Allocation
in the Presence of Autonomous Participants�

Jorge-Arnulfo Quiané-Ruiz1, Philippe Lamarre2,
Sylvie Cazalens2, and Patrick Valduriez3

1 Saarland University, Saarbruecken, Germany
Jorge.Quiane@cs.uni-saarland.de

2 LINA, University of Nantes, France
{Philippe.Lamarre,Sylvie.Cazalens}@univ-nantes.fr

3 INRIA and LIRMM, Montpellier, France
Patrick.Valduriez@inria.fr

Abstract. In large-scale, heterogeneous information systems, mediators
are widely used for query processing and the good operation of a sys-
tem strongly depends on the way the mediator allocates queries. On the
other hand, it is well known that a single mediator is a potential scal-
ability and performance bottleneck as well as a single point of failure.
Thus, multiple mediators should perform the query allocation process.
This task is challenging in large-scale systems because participants typ-
ically have special interests that are not performance-related. Mediators
should satisfy participants interests as if there was a single mediator in
the system — i.e., with no, or almost no, additional network traffic. In
this paper, we propose a virtual money-based query allocation method,
called V MbQA, to perform query allocation in the presence of multiple
mediators and autonomous participants. A key feature of V MbQA is that
it allows a system to scale up to several mediators with no additional
network cost. The results show that V MbQA significantly outperforms
baseline methods from both satisfaction and performance points of view.

1 Introduction

In the last decade there has been a considerable increase in computing resources
requirements in different research fields as well as in the industry. These needs
have motivated the development of new distributed systems allowing users to
share data, services, or computing resources using Internet as a large virtual
computer. In such large-scale and heterogeneous information systems, mediators
are commonly used to perform query allocation. BOINC and distributed.net are
only one example of large-scale information systems using a mediator. A par-
ticularity of this kind of systems is that participants (consumers and providers)
are autonomous in the sense that they may leave and join the mediator at will,
� Work partially funded by the Dataring project of the Agence Nationale de la

Recherche and the Epilog project of the PREDIT program of the french ministry of
transportation.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 210–224, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Scaling Up Query Allocation in the Presence of Autonomous Participants 211

but also, that they may have special interests (intentions) for some queries1 and
other participants. For example in BOINC, while a consumer may want to re-
ceive results from highly reputed providers, a provider might want to perform
queries for some preferred projects.

In such systems, participants usually have certain non-performance-related ex-
pectations, which reflect their intentions to allocate and perform queries in the
long-run, with respect to the mediator. These participants intentions are clearly
illustrated by Google AdWords, which proposes relevant commercial providers to
consumers and relevant consumers to commercial providers according to some
keywords of their interest. In this context, the mediator must satisfy partici-
pants (i.e., to fill their intentions), because dissatisfaction may lead participants
to leave the system [6]. Participants departure in turn cause some loss of sys-
tem functionality and capacity to perform queries. On the other hand, it is also
well known that in large-scale systems a mediator can quickly become a single
point of failure as well as a potential performance and scalability bottleneck.
This is why it is crucial to have several mediators performing query allocation.
However, in a multi-mediator system, a mediator can no longer compute solely
the satisfaction of providers as their satisfaction also depends on query alloca-
tions made by other mediators. Thus, when allocating a query, either a mediator
should keep informed all other mediators of the mediation results to update the
satisfaction of participants or a provider should frequently inform each mediator
of their current satisfaction. Nevertheless, network traffic increases significantly
in both cases, which hurts system performance. A natural way to avoid such a
traffic overhead between mediators is that providers be responsible of their satis-
faction and express their intentions only. But, some providers can lie about their
intentions so as to monopolize queries while providers revealing real intentions
can suffer from query starvation.

To overcome this problem, we propose the use of virtual money to scale
query allocation up to several mediators while keeping providers satisfaction
high. When using virtual money, providers no longer show their intentions di-
rectly, but rather bid on the incoming queries. As a result, the mediators no
longer consider the providers satisfaction but only their bids. On the other side,
satisfaction still depends on the work of the different mediators and hence it is
still important to satisfy participants. The query allocation problem in this con-
text is challenging for several reasons. First, a mediator cannot select providers
based only on their bids because of consumers intentions. Second, a mediator
must allocate each incoming query even if some cases providers do not desire
to perform them (imposition case), which makes still more difficult the task of
satisfying participants in the long-run. Third, invoicing providers is a difficult
task because some providers can be imposed a query, which in turn implies dis-
satisfy them. Fourth, when bidding for queries, a provider must efficiently take
into account the bids it made for other queries at different mediators.

1 We use the word “query” in the general sense of service request in information
systems, thus with a more general meaning than query in databases.

212 J.-A. Quiané-Ruiz et al.

Contributions. The main contributions of this paper are as follows:

– We make precise the flow of virtual money within the whole system and state
the network cost of using virtual money as a means of regulation (Section 3).

– We propose a Virtual Money-based Query Allocation (V MbQA) method to
allocate queries by considering both consumers intentions and providers bids.
A salient feature of V MbQA is that it may impose queries to some providers
without significantly impacting their satisfaction in the long run (Section 4).

– We define a bidding procedure that considers the satisfaction, utilization,
preferences, and virtual money balance of providers. But also, as a part of
such bidding procedure, we propose three strategies to bid in multi-mediator
systems (Section 5).

– We analytically demonstrate that V MbQA allows a system to scale up to
several mediators with no additional network cost with respect to a system
with a single mediator using V MbQA (Section 6).

– We experimentally demonstrate that V MbQA significantly outperforms
baseline methods from both the satisfaction and performance points of view.
We also show that V MbQA gracefully scales up in terms of number of me-
diators and participants (Section 7).

1.1 Related Work

Several approaches based on microeconomics have been proposed to deal with
resource or query allocation [1,2,5,9]. Mariposa [9] pioneered the use of a market
approach for dealing with the query allocation problem. Nevertheless, its query
allocation procedure is simple and limited. Consumers cannot freely express their
intentions since it is inherently assumed that they are just interested in response
times and low prices for acquiring services. In [4], the authors proposed some
optimization algorithms for buying and selling query answers, and for the ne-
gotiation strategy. However, this way of dealing with subqueries optimization is
orthogonal to our proposal and one may combine them to improve performance.
Auctions are widely recognized as a way to manage negotiation among partic-
ipants. Several kinds of auction mechanisms exist [7,11]. Our approach looks
like the generalized Vickrey auction, but it pushes generalization further since
it considers participants intentions. In the field of distributed rational decision
making [7], most of the processes are individually rational, which is not relevant
when participants may be imposed a query, which implies having lower utilities.
In work [6], we proposed a query allocation framework that considers participants
satisfaction and system performance, but we assumed mono-mediator systems.
In this work, we complete the puzzle by allowing the proposed query allocation
framework in [6] to gracefully scale up to as many mediators as required without
any loss in participants satisfaction nor system performance.

2 Problem Definition

We assume a distributed system to be a set I of participants registered in a medi-
ator of the system, forming then a Virtual Organization (VO). Each participant of

Scaling Up Query Allocation in the Presence of Autonomous Participants 213

a VO can play one or more of the following roles: consumers which send queries ;
providers which answer queries ; and mediators which allocate queries to providers.
The set of participants playing the role of consumer, resp. provider and mediator,
is noted C, resp. P and M , with C ∪ P ∪ M = I. We assume that a VO may be
x-redundant [12], i.e. there are several mediators acting as a single one by behaving
cooperatively. We formally define a x-redundant VO as follows.

Definition 1. x-redundant VO. A VO is said to be x − redundant if and
only if there is a set M (x > 1, with ||M || = x) of participants playing the role
of mediator and each provider in P is connected to each mediator in M .

Notice that, the above definition does not specify the way mediators are con-
nected among them. This is because the inter-mediator network should be as
independent as possible of the query allocation process. As a result, one can as-
sume any kind of inter-mediation network without caring of the query allocation
method used by mediators.

Providers have different capacity and hence some providers can treat more
queries per time unit than others. The utilization of a provider p ∈ P at a given
time t, Ut(p), is defined as the query load of p regarding its capacity. In other
words, function Ut(p) denotes the total cost of the queries that have been allo-
cated to p and have not already been treated at time t. Consumers send their
queries to a single mediator in a format abstracted as a triple q = < c, d, n >
such that q.c ∈ C is the identifier of the query initiator (the consumer) ; q.d is
the description of the task to be done, and; q.n ∈ N∗ is the number of providers
to which consumer q.c wishes to allocate its query. Indeed, a consumer may want
to query different providers, in particular in the case they can provide different
answers. Mediators should allocate queries so that good system performance is
obtained. If performance (such as load balancing and response time) is linked
to clear notions in distributed systems, satisfaction is less usual. However, sat-
isfaction has a deep impact on a system general behavior, particularly when
the participants are autonomous. In [6], we proposed a model that characterizes
autonomous participants by formally defining the adequation, satisfaction, and
other notions related to participant’s intentions. We briefly present below the
satisfaction notions required in this paper.

Because of autonomy, we assume a consumer to be interested in the way its
query is treated. Those intentions are represented as a vector

−→
CIq such that−→

CIq[p] represents the consumer intention towards provider p. Values are, by
convention, in the range [−1..1]. Consumer satisfaction, δs(c), allows a consumer
to evaluate if a mediator allocates queries with respect to its intentions. Formally,

δs(c) =
1

||IQk
c ||
∑

q∈IQk
c

1
n

(∑
p∈P̂q

(
−→
CIq[p] + 1)

/
2
)

(1)

where n stands for q.n, IQk
c denotes the set of k last queries issued by c, P̂q is

the set of providers that performed q. Similarly, the provider satisfaction allows
a provider to evaluate if a mediator givies it queries according to its expectations.

214 J.-A. Quiané-Ruiz et al.

Thus, as for consumers, a provider is not satisfied when it does not get what it
expects. A provider p ∈ P computes its satisfaction, δs(p), as follows,

δs(p) =

∣∣∣∣∣∣
1

||SQk
p ||
(∑

q∈SQk
p

(
−−→
PPIp[q] + 1)

/
2
)

if SQk
p �= ∅

0 otherwise

(2)

where SQk
p denotes the set of queries performed by p and

−−→
PPIp[q] is the intention

expressed by p towards query q, whose values are in [−1..1]. Notice that the way
a participant computes its intentions is out of scope of this paper and thus we
simply assume that a participant uses, for example, the techniques proposed
in [6] to do so.

Let Pq denote the set of providers registered to mediator m, which does not
appear in the notation for simplicity, and that can deal with an incoming query
q. Many matchmaking techniques have been proposed in the literature and thus
we simply assume there is one in the system to find out the set Pq. The allocation
of a query q is denoted by vector All−→ocq of length N (with N = ||Pq||) such that,

∀p ∈ Pq, All−→oc [p] =
1 if p gets the request
0 otherwise

Query Allocation Problem. Given a x-redundant VO with a set M of medi-
ators confronted to autonomous participants, ∀m ∈ M , m should allocate each
incoming query q to a set P̂q such that short response times and participants
satisfaction are ensured in the long-run, with a low network cost independently
of the number of mediators in the x-redundant VO.

3 VMbQA Overview: The Flow of Virtual Money

Overall, our approach consists in appropriately defining a mediation process for
a single mediator and in defining the way the virtual money should circulate
within the whole system to support multiple mediators. This section focuses
on the latter point. The general query allocation architecture is depicted in
Figure 1. Given an incoming query q to any mediator m ∈ M , m asks the
consumer q.c for its intentions and also asks set Pq of relevant providers for their
bid. Having obtained this information, the mediator must allocate q to a set P̂q

of providers. Finally, as we consider that providers have to “pay” for performing
or receiving queries, the mediator invoices relevant providers after the allocation
of q. In all this process, the “virtual” money we use is purely virtual and is
totally disconnected from the real money we use in current life. We could speak
of tokens or jetons as well. This point has to be stressed upon for two main
reasons. First, we do not focus on any particular business model: we only use
the virtual money as a means of regulation. Indeed, after a consumer has decided
which providers it chooses, it might give real money to them because it uses their
services. However, this point is far beyond the focus of this paper. Second, when
using real money, one can assume that participants get money from elsewhere.

Scaling Up Query Allocation in the Presence of Autonomous Participants 215

P d

P id

MMMMMMM dddddddiiiiii toooooooorrrrrrrrrrrrrooorrrrrrrrrrrr
Mediator

CCCCC eeeeerrrrrrrrrrrrrrr
Consumer

PPPPP iiiiidddddeeeeeerrrrrrrrrrrrrrrr
Provider

PPPPP iiiidddddeeeeerrrrrrrrrrrrrr
Provider

PPPPP iiiiidddddeerrrrrrrrrrr
Provider

1: query

2a: get
intentions

2a: get bids

3: select
providers

4: invoice

Fig. 1. General query allocation architecture

When dealing with virtual money, one can no longer make such assumptions: one
must precise the way in which the virtual money circulates within the system.

To stress the way in which virtual money circulates within the system is a
difficult task since it is a macroeconomic concern and hence one must have a
clear idea of the global system behavior. Furthermore, the policy used to regulate
the virtual money flow also depends on the query allocation method. Hence, we
adopt a simple solution. Providers spend and earn virtual money through a
mediator only. On the one hand, they spend money by bidding on queries and
to compensate other providers that have been imposed a query. On the other
hand, they earn money when they are imposed a query that they do not desire
to perform. Every time a provider has been allocated a query, has been imposed
a query, or has been required to compensate an imposed provider, it is informed,
by the concerned mediator, of the amount of virtual money it payed or won
(in the case of imposition). Of course, a provider is completely responsible of
its virtual money balance and hence no provider can spend the virtual money
of another one. Therefore, a provider always has an exact mirror of its virtual
money balance in local. In contrast to providers, mediators never looses money
but tends to accumulate money coming from the providers in the course of
time. Thus, in case a mediator has earned an amount of virtual money above a
defined threshold, it distributes such an amount of virtual money to providers
in an equitable way. For providers, this is another regular way of earning money.

In this paper, we assume that there exists a trusted third-party in the system
that plays the role of bank. Several ways to implement the bank exist (using a
DHT [8] for example), but this is well beyond the scope of this paper. Thus, for
clarity, we omit the bank in the remainder of this paper when we talk about the
virtual money balance of a provider. Indeed, the flow of virtual money requires
some network messages. We state this cost in the following proposition.

Proposition 1. Only 3 messages per query are required by any mediator to
control the flow of virtual money with any provider.

Proof (Sketch). First of all, we assume a vickrey auction to allocate queries
and hence no message is required by a provider to discover the bids of other
providers. Similarly, at first glance, a provider may require a network message
to know its current virtual money balance so as to bid for queries. However, a
mediator informs a provider of any change in its virtual money balance, thereby
allowing a provider to always know its current virtual money balance. Thus, no

216 J.-A. Quiané-Ruiz et al.

network message is required by a provider to know its virtual money balance.
Now, before a query mediation, two network messages are exchanged between a
mediator and the bank in order to validate the bids of providers, i.e. to verify if
they have enough virtual money that support their bids. After a query allocation,
the concerned mediator sends another network message to the bank, which is in
charge of invoicing providers. Therefore, a mediator requires 3 network messages
only: 2 to validate provider bids and 1 to invoice providers. �

4 VMbQA: Mediating Queries

To allocate a query, a mediator ask relevant providers to bid and stores such
bids in vector

−→
B . Intuitively, if a bid is positive, the higher it is, the more p

wants to be allocated q. If it is negative on the other hand, the lower it is, the
less p wants to treat q. Thus, one may consider only the bids of providers to
select providers, such as in several other approaches [2,5]. Nevertheless, this is
a provider-centric approach that can easily result into the consumers dissatis-
faction. This is because the intentions of consumers are not considered at all as
well as some of the incoming queries may stay untreated (because no provider
wants to treat them). Therefore, in V MbQA, a mediator: (i) directly considers
the intentions of consumers, and (ii) imposes a query when not enough providers
desire to perform it. With this in mind, we introduce the providers level notion,
denoted by vector

−→
L , which results from merging the consumers intentions with

the providers bids. We formally define this in Definition 2 where parameter ω,
whose values are in the interval [0..1], ensures the balance between consumers
intentions and providers bids. If ω = 0, only the consumers intentions are con-
sidered by the mediator, thus leading to providers dissatisfaction. Conversely, if
ω = 1, the mediator only considers bids, leading to consumers dissatisfaction.
This is why the mediator should set this parameter ω according to the balance
between both consumers and providers satisfaction that it wants to reach.

Definition 2. Provider Level

−→
L [p] =

∣∣∣∣∣∣
(
−→
B [p] + 1)ω × (

−→
CIq[p] + 1)1−ω if

−→
B [p] ≥ 0

−(−−→B [p] + 1)ω × (
−→
CIq [p] + 1)ω−1 otherwise

Given an incoming query q, a mediator ranks providers in accordance to their
level, resulting in ranking vector

−→
R . Intuitively,

−→
R [1] = p if and only if p is

the best ranked,
−→
R [2] stands for the second best ranked and so on. Then, the

mediator allocates q to the min(n, N) best providers, i.e., All−→ocq[p] = 1 if and
only if ∃i,

−→
R [i] = p and i ≤ min(n, N). After allocating query q, a mediator must

invoice those providers that participated in the mediation of q. A natural strategy
to invoice a provider that has been allocated q is that it pays what it bids (a.k.a.
first-price invoice mechanism). However, this incites providers to shade their bids
below their true value with the aim of maximizing their revenues (or satisfaction),
while those providers revealing true bids may suffer from query starvation (or

Scaling Up Query Allocation in the Presence of Autonomous Participants 217

dissatisfaction). Therefore, we adopt a second-price invoice mechanism (a.k.a.
vickrey), which has been proved to incentivize providers to reveal their true bid
values [10]. However, in contrast to vickrey, we cannot directly compare providers
bids because of consumers intentions. To overcome this difficulty, we introduce
the theoretical bid notion, which corresponds to the amount a provider should bid
for reaching a given level. Equation 3 formally states this notion, where ω �= 0
and α = 1 if l ≥ 0 or α = −1 otherwise.

bth(p, l) = α · max(((α × l)
1
ω (
−→
CIq[p] + 1)

α(ω−1)
ω − 1), 0) (3)

A mediator may then invoice providers by simply considering their theoretical
bid. However, given the providers level definition, a mediator is confronted to
the special case that q is allocated to a provider having a negative bid (i.e., that
does not desire the query): we call this an imposition case, otherwise, we have
a competition case. Obviously, being imposed a query q does not meet at all
the expectations of a provider. To keep a imposed provider satisfied in the long
run, we then distribute the cost of the imposition of query q on all the relevant
providers. Having obtained a reward, an imposed provider is more likely, in the
future, to obtain the queries it expects (because it has more virtual money) so
leading to its satisfaction. Thus, in an imposition case, a mediator computes the
partial bill of provider p regarding the imposition of provider p′ as follows.

Definition 3. Provider Partial Invoice: the Imposition Case

billq(p, p′) =

∣∣∣∣∣∣
−bth(p,

−→
L [
−→
R q[q.n + 2]])
Nq

if p �= p′

bth(p,
−→
L [
−→
R q[q.n + 1]]) − bth(p,

−→
L [

−→
Rq [q.n+2]])

Nq
else

In a competition case, a provider p allocated q only owes the amount of its
theoretical bid to reach the level of the best provider that has not been allocated
the query. That is, p does not have to share the cost of selecting other providers.
Formally, a mediator computes the partial bill of a provider p concerning the
selection of a non-imposed provider p′ as follows.

Definition 4. Provider Partial Invoice: the Competition Case

billq(p, p′) =
∣∣∣∣ bth(p,

−→
L [
−→
R q[q.n + 1]]) if p = p′ ∧ −→B [

−→
R q[q.n + 1]] ≥ 0 ∧ q.n < Nq

0 otherwise

Having the partial bills, a mediator simply bills a provider p with respect to the
allocation of a query q by aggregating all its partial bills.

billq(p) =
∑

p′∈P̂q

billq(p, p′) (4)

Overall, a provider that has not been allocated a query never pays for it, except if
another provider has been imposed. Moreover, the invoicing process we presented
here never requires a mediator from a financial point of view.

218 J.-A. Quiané-Ruiz et al.

5 VMbQA: Bidding for Queries

A simple way for a provider to compute bids is to maintain a local bulletin board
containing a billing rate for its resources, based on its preferences to perform
queries (denoted by function prf ∈ [−1..1]). Then, a provider bid for getting a
query can simply be the product of its current utilization by the billing rate, such
as in [9]. However, in our case, the context is more complex because a provider
must consider its current satisfaction and current virtual money balance (denoted
by balp) in addition to its preferences and load. The reader may think that a
provider may obtain its bid by computing the product of all these parameters.
Nevertheless, this procedure can lead a provider to spend all, or almost all, its
money on only one query. To avoid this, a provider should (i) offer at most only
a defined percent of its current virtual money balance, denoted by constant c0

whose values are in]0..1], and (ii) weight its preferences and utilization using its
current satisfaction. We thus formally define a provider bid, denoted by bidp(q),
as in the following definition.

Definition 5. Provider Bid

bidp(q) =

∣∣∣∣∣∣
(prfp(q)1−δs(p))× (1− Up(t))δs(p) × (balp · c0) if(prfp(q) > 0)

∧ (Up(t) < 1)
−((1− prfp(q) + 1)1−δs(p) × (Up(t) + 1)δs(p)

)× c1 otherwise

The idea behind the above definition is that a provider always sets a positive
bid when it desires to perform queries and it is not overutilized, otherwise it sets
a negative bid. As an imposed provider is awarded according to its negative bid
(see the previous Section), constant c1 is set to its initial virtual money balance so
that the award of an imposed provider be always less, or equal, than the amount
it got when joining the system. Notice that, in traditional micro-economic-based
mediation approaches, providers do not bid (or give a null bid) when they do
not desire to perform a query. However, this does not allow them to express how
much unpleasant it is for them to perform a query and how loaded they are.

Now, as in x-redundant VOs a provider receives queries from different media-
tors, it must pay special attention to its virtual money balance so that it never
bids more. To deal with this, we propose 3 strategies: the optimistic, preventive,
and pessimistic strategies. Before going to present these heuristics, let us say
that after bidding for a query q, a provider p locally stores in vector

−−→
CBp its bid

bidp(q) and removes such a bid from
−−→
CBp when it receives the invoice for q.

Optimistic Strategy. An optimistic provider assumes that it gets all those queries
to which it bids positively and that it does not get those to which it expresses a
negative bid. Thus, an optimistic provider p modifies its current virtual money
balance after the bidding phase of a given query q as follows,

balp =
∣∣∣∣ balp − bidp(q) if bidp(q) > 0
balp else

(5)

and when p receives the final invoice, it sets its virtual money balance as follows,

Scaling Up Query Allocation in the Presence of Autonomous Participants 219

balp =
∣∣∣∣ balp +

−−→
CBp[q]− billq(p) if bidp(q) > 0

balp − billq(p) otherwise
(6)

Preventive Strategy. A preventive provider assumes that it gets all those queries
to which it bids, independently of its bid value. In other words, conversely to an
optimistic provider, it also assumes that it gets those queries to which it made
a negative bid. Thus, a preventive provider p modifies its current virtual money
balance after the bidding phase of a given query q as follows,

balp = balp − bidp(q) (7)
and when p receives the final invoice, it sets its virtual money balance as follows,

balp = balp +
−−→
CBp[q] − billq(p) (8)

Pessimistic Strategy. In contrast to a preventive provider, a pessimistic provider
assumes it never gets the queries to which it bids. Thus, a pessimistic provider p
does not modifies its virtual money balance after bidding for queries. It therefore
modifies its current virtual money balance when it receives the final invoice from
the a mediator as follows.

balp = balp − billq(p) (9)

6 VMbQA: Communication Cost

In the following theorem, we state the communication cost in terms of number
of network messages that should be transferred to perform a query.

Theorem 1. The total number of transferred messages by V MbQA to perform
a query is 3(N + 2) + n.

Proof. Given a query q and a set Pq of relevant providers, a mediator first asks for
both the intentions of consumer q.c and the bids of set Pq of relevant providers,
which return such information to the mediator. The number of exchanged mes-
sages at this phase is mssg0 = 2N + 2. Once received such an information, the
mediator verifies if the relevant providers have enough virtual money to sup-
port their bids. This requires mssg1 = 2 messages between the mediator and
the bank. Next, it computes the level of each relevant provider and ranks them
according to their level. Having done this, the mediator invoices each relevant
provider and informs them of the mediation result. It then waits for results from
the n selected providers. The number of transferred messages at this phase is
mssg2 = 1 to invoice providers, mssg3 = N to inform providers, and mssg4 = n
to receive results from selected providers. Finally, the mediator sends the results
to consumer q.c, which implies one more network message, mssg5 = 1. Thus,
Mssg = mssg0 +mssg1 +mssg2 +mssg3 +mssg4 +mssg5 = 3(N +2)+n total
messages are exchanged to perform a query. �
The great advantage of V MbQA is that it has no network cost when dealing
with several mediators and continues to perform, from a satisfaction point of
view, as in a mono-mediator VO. The following theorem demonstrates this by
showing sthat V MbQA allows a VO to scale up to as many mediators as desired
with no loss in system performance.

220 J.-A. Quiané-Ruiz et al.

Theorem 2. V MbQA always satisfies (i) consumers and (ii) providers in a
x-redundant VO as in a mono-mediator VO with no additional network cost.

Proof. Consider a x-redundant VO, denoted by Svo and a mono-mediator VO,
denoted by Sm, consisting of the same set of participants P . Consider also that
the incoming queries in Svo are the same as those arriving in Sm. We prove both
(i) and (ii) by contradiction. (i) Assume to the contrary that, for the allocation
of some query q, consumer q.c is not equally satisfied by Svo and Sm. If this
is the case, we can know, by Equation 1, that Svo allocated q to a set P̂q such

that there exists at least a provider p ∈ P̂q

′
: p /∈ P̂q, where P̂q

′
is the set of

providers selected by Sm. Hence, we can know that the set of relevant providers
found by Svo is different from the set found by Sm. This implies that provider p
is not connected to the mediator that allocated q in Svo, which contradicts the
definition of an x-redundant VO. (ii) Assume to the contrary that a provider
p ∈ P is not equally satisfied by Svo and Sm. Then, by Equation 2, we can know
that p did not perform the same set of queries in Svo as in Sm. This means
that p is not connected to all mediators in Svo so as to receive all queries it can
perform, which contradicts the definition of a x-redundant VO.

Finally, given the providers level definition, a mediator does not directly deal
with providers satisfaction because it is up to a provider to manage its virtual
money balance so as to be satisfied in the long-run (Definition 5). Thus, the
mediator has no message to exchange among mediators to update providers
satisfaction. As stated in proposition 1, 3 messages are required by a mediator
to control the flow of virtual money. As mediators do not communicate after
query allocations, this cost remains constant independently of the number of
mediators in a VO. Therefore, no additional network message is required by a
VO to scale up to several mediators. �

7 Experimental Validation

Our main objectives in this experimental validation are: (i) to evaluate how
well V MbQA selects and invoices providers, (ii) to analyze the impact of using
virtual money as a means of regulation when performing query allocation, (iii)
to analyze if V MbQA satisfies participants in x-redundant VOs as well as in VOs
with a single mediator, and (iv) to evaluate the performance of V MbQA when
dealing with x-redundant VOs.

7.1 Setup and Methodology

We run our experiments in a computer running Linux Ubuntu 4.0.3 with a Pen-
tium IV processor of 3 GHz and 1 GB in RAM. The system consists of 200
consumers, 400 providers. We assume that consumers compute their inten-
tions by considering only their preferences such as defined in [6]. Concerning
a provider, we assume that it computes its bids as in Definition 5. Participants
compute their satisfaction as presented in Section 2 and initializes their satis-
faction with a value of 0.5, which evolves with their last 200 issued queries and

Scaling Up Query Allocation in the Presence of Autonomous Participants 221

500 queries that have passed through providers (i.e. k = 200 for a consumer and
k = 500 for a provider). Providers compute their bids following the optimistic
strategy. We consider that queries arrive to the system in a Poisson distribution,
as found in dynamic autonomous environments [3]. We implemented the bank
on top of a DHT network (based on Chord [8]) and the time that the bank takes
to validate providers bids and to invoice providers is included in the response
time results we present here. We run each series of experiments 10 times and
present the average results of all these experimentations.

To see the possible loss of performance that V MbQA may have, from the
provider point of view, we compare it with a first-price sealed-bid method
(FPSB). FPSB allocates queries to those providers having made the highest
bids and invoices providers the amount of virtual money that they offered for
queries. To study the efficiency of the way in which V MbQA invoices providers,
we compare it with a query allocation method that selects providers based on
their level (such as V MbQA does), but invoices them as FPSB does. We call this
query allocation method as best-level sealed-bid (BLSB). To validate V MbQA,
from a satisfaction point of view, we compare it with SbQA, which has been
shown to perform well in autonomous environments [6]. For this, we extend
SbQA to support several mediators using satisfaction as a means of regulation.
Then, we proceed in two steps for the experiments. First, we aim at evaluating
our mediation and invoicing mechanisms from both the satisfaction and perfor-
mance points of view. To this end, we compare V MbQA against the baseline
methods: FPSB and BLSB. Second, we vary the number of mediators and
participants to evaluate the scalability of V MbQA.

7.2 Quality Results in Mono-mediator VOs

To avoid any impact in performance of having multiple mediators, we run
these experiments with a single mediator to better evaluate the performance
of V MbQA. We release this assumption in the next section. We assume the me-
diator has enough resources so that it does not become a performance bottleneck.

Figure 2 illustrates how these three methods satisfy participants for different
workloads. As expected, we observe in Figure 2(a) that FPSB is completely
neutral to consumers because it does not take into account their intentions, which
is not the case for BLSB and V MbQA. In particular, we observe that V MbQA
outperforms the FPSB and BLSB methods by ensuring higher satisfaction
for consumers and providers. In fact, we observed during our experiments that
FPSB and BLSB methods have some problems to balance queries because most
adequate and preferred (by consumers) providers tend to monopolize incoming
queries. V MbQA does not suffer from this phenomenon by establishing a more
sophisticated invoice mechanism. Of course, this impacts on performance with
long response times for FPSB and BLSB (see Figure 2(c)). From results, we
can conclude that we can introduce virtual money, without any loss of system
performance, to regulate a system as long as we care about the way in which
providers are selected and invoiced.

222 J.-A. Quiané-Ruiz et al.

0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

VMbQA BLSB FPSB

Workload (% of the total system capacity)

A
v
e
ra

g
e
 S

a
ti
s
fa

c
ti
o

n

(a) Consumers satis.

0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

VMbQA BLSB FPSB

Workload (% of the total system capacity)

A
v
e
ra

g
e
 S

a
ti
s
fa

c
ti
o

n

(b) Providers satis.

0

10

20

30

40

50

20 40 60 80 100

VMbQA BLSB FPSB
Workload (% of the total system capacity)

R
e
s
p

o
n
s
e
 T

im
e
s
 (
s
e
c
o

n
d

s
)

(c) Response time.

Fig. 2. Results in monomediator VOs for different workloads

0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

VMbQA SbQA

Workload (% of the total system capacity)

A
v
e
ra

g
e
 S

a
ti
s
fa

c
ti
o

n

(a) Consumer satis.

0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

VMbQA SbQA

Workload (% of the total system capacity)

A
v
e
ra

g
e
 S

a
ti
s
fa

c
ti
o

n

(b) Provider satis.

0

10

20

30

40

50

20 40 60 80 100

VMbQA SbQA
Workload (% of the total system capacity)

R
e
s
p

o
n
s
e
 T

im
e
s
 (
s
e
c
o

n
d

s
)

(c) Response time.

Fig. 3. Quality results with captive participants for different workloads in a x-
redundant VO with 8 mediators

7.3 Dealing with x-Redundant VOs

We now compare V MbQA against SbQA — which is the baseline for satisfying
participants — when scaling up the query allocation up to several mediators.
We also demonstrated in the previous section that V MbQA correctly deals with
participants departures. Thus, in these experiments, we consider captive partic-
ipants to better study the scalability of both methods.

We start by evaluating the impact of having several mediators allocating
queries could have. We run a series of experiments for different workloads in
a x-redundant VO with 8 mediators. We observe in Figure 3(a) that SbQA
better satisfies consumers than V MbQA, because V MbQA makes a better bal-
ance between the satisfaction of consumers and providers. We can clearly observe
this in Figure 3(b) where V MbQA outperforms SbQA. In particular, we observe
that the satisfaction of providers decreases as the workload increases. This is
because providers becomes more utilized and hence it is more difficult to satisfy
them. SbQA cannot ensure the same providers satisfaction as V MbQA because of
the time it takes to update providers satisfaction at all mediators. Furthermore,
the network messages generated by SbQA consume computational resources at
mediators side, which degrades the response times (see Figure 3(c)). This is not
the case for V MbQA, which does not need to update providers satisfaction and
hence it significantly outperforms SbQA.

We also run a series of experiments with the aim of analyzing the impact, from
a performance point of view, of having several mediators allocating queries. In

Scaling Up Query Allocation in the Presence of Autonomous Participants 223

0

5

10

15

2 4 8 16

VMbQA SbQA

Number of Mediators

N
u
m

b
e
r

o
f

M
e
s
s
a
g

e
s
 (
x
1
0
0
0
)

(a) Exchanged mssgs.

0

30

60

90

120

2 4 8 16 32

VMbQA SbQA
Number of Mediators

R
e
s
p

o
n
s
e
 T

im
e
s
 (
s
e
c
o

n
d

s
)

(b) Several mediators

0

0.2

0.4

0.6

0.8

1.0

set 1 set 2 set 3 set 4

VMbQA (consumers) SbQA (consumers)
VMQA (providers) SbQA (providers)

Number of Participants

A
v
e
ra

g
e
 S

a
ti
s
fa

c
ti
o

n

(c) Several participants

Fig. 4. For a workload of 60% of the total system capacity, (a) illustrates the number of
exchanged messages, (b) illustrates the response times with different number of medi-
ators, and (c) illustrates the average satisfaction with different number of participants:
50 consumers and 100 providers (set1), 100 consumers and 200 providers (set2), 200
consumers and 400 providers (set3) and 400 consumers and 800 providers (set4)

Figure 4(a), we plot every 1000 incoming queries the number network messages
exchanged by V MbQA and SbQA to manage virtual money and satisfaction, re-
spectively. Notice that, in these results, we do not plot all the network messages re-
quired by V MbQA and SbQA to allocate a query since such a number is the same if
we discard the number of network messages to manage virtual money and satisfac-
tion. This why we just plot this difference in number of messages. We can observe
that V MbQA always generates 3 network messages per query while the number
of network messages generated by SbQA depends on the number mediators. We
observe that from 4 mediators SbQA generates more number of messages than
V MbQA. We also measure the impact in response times of varying the number of
mediators (see Figure 4(b)). We observe, on the one hand, that the performance of
V MbQA does not depend on the number of mediators and hence its performance
is constant. On the other hand, we observe that SbQA cannot perform well for a
high number of mediators because of the number of messages it generates. Finally,
we analyze how well SbQA and V MbQA satisfy participants when the number of
participants in a VO varies. To this end, we run several experiments with a single
mediator with a workload of 60% of the total system capacity, but with differ-
ent number of participants. Figure 4(c) illustrates these results. We observe that
V MbQA has, on average, the same performance as SbQA. In other words, V MbQA
can scale up, in terms of number of participants, without any loss in satisfaction
of participants. All these results demonstrate that V MbQA can scale up in terms
of number of participants, mediators, and incoming queries, while satisfying par-
ticipants as in VOs with a single mediator.

8 Conclusion

We considered large-scale distributed information systems where several me-
diators allocate queries and participants are free to leave the system and have
special interests towards queries. In particular, we addressed the problem of scal-
ing up the query allocation process to several mediators by keeping participants

224 J.-A. Quiané-Ruiz et al.

satisfied. To overcome this problem, we proposed V MbQA, a query allocation
method that uses virtual money as a means of regulation.

In summary, we made the following contributions. First, we formalized the
query allocation problem for multi-mediator systems with autonomous partici-
pants. Second, we demonstrated that only a few number of network messages (3
per query) are required by a mediator to control the flow of virtual money. Third,
we proposed V MbQA, a Virtual Money-based Query Allocation method that con-
siders both consumers intentions and providers bids. As a part of V MbQA, we
defined a bidding procedure that considers the satisfaction, utilization, prefer-
ences, and virtual money balance of providers, and proposed three techniques
that allow a provider to bid for queries in multi-mediator systems. Fourth, we
analytically and experimentally demonstrated that V MbQA can efficiently scale
up to several mediators with no additional network cost (compared to a VO with
a single mediator). We experimentally showed that V MbQA significantly outper-
forms baseline methods from a satisfaction and performance points of views. The
results also show that, in contrast to many microeconomic approaches, a query
allocation method should pay special attention to the invoicing mechanism, oth-
erwise it may have a great negative impact in performance. Last but not least,
to our knowledge this is the first work that evaluated microeconomic approaches
through a measure (participants satisfaction) that is outside the microeconomic
scope (besides load balancing and response time).

References

1. Dash, R.K., et al.: Market-Based Task Allocation Mechanisms for Limited Capacity
Suppliers. IEEE Transactions on Systems 37(3), 391–405 (2007)

2. Ferguson, D., et al.: Economic Models for Allocating Resources in Computer Sys-
tems. In: Clearwater, S.H. (ed.) Market-Based Control: A Paradigm for Distributed
Resource Allocation. World Scientific, Singapore (1996)

3. Markatos, E.P.: Tracing a large-scale peer to peer system: An hour in the life of
gnutella. In: CCGRID (2002)

4. Pentaris, F., Ioannidis, Y.: Query Optimization in Distributed Networks of Au-
tonomous Database Systems. TODS 31(2) (2006)

5. Pentaris, F., Ioannidis, Y.: Autonomic Query Allocation Based on Microeconomics
Principles. In: ICDE (2007)

6. Quiané-Ruiz, J.-A., Lamarre, P., Valduriez, P.: A Self-Adaptable Query Allocation
Framework for Distributed Information Syst. VLDBJ 18(3), 649–674 (2009)

7. Sandholm, T.W.: Distributed Rational Decision Making. In: Multiagent Systems, a
modern approach to Distributed Artificial Intelligence. The MIT Press, Cambridge
(2001)

8. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In: SIGCOMM (2001)

9. Stonebraker, M., et al.: Mariposa: A Wide-Area Distributed Database System.
VLDBJ 5(1), 48–63 (1996)

10. Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. In-
ternational Journal of Finance 16(1) (1961)

11. Wolfstetter, E.: Auctions: and introduction. Economic Surveys 10(4) (1996)
12. Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network. In: ICDE (2003)

Generating Preview Instances for the Face
Validation of Entity-Relationship Schemata: The

Acyclic Case

Maria Amalfi1, Alessandro Artale1, Andrea Cal̀ı2,3, and Alessandro Provetti2,4

1 Computer Science, Free Univ. of Bozen-Bolzano, I-39100 Bozen-Bolzano Italy
2 Oxford-Man Institute for Quantitative Finance, Oxford OX2 6ED, UK

3 Dept. of Comp. Science & Inf. Sys. Birkbeck, Univ. of London, London WC1E, UK
4 Dept. of Physics, Informatics Section, University of Messina, I-98166 Messina, Italy

Abstract. We describe a mapping of Extended Entity-Relationship
schemata to Answer Set Programming that allows us to generate in-
formative example instances of the relational database that is implied
by the conceptual schema. Such instances may be submitted to people
involved in the requirements phase as a glimpse of what instances are
allowed by the E-R schema at hand, thus enhancing database compre-
hension and so-called face validation.

1 Introduction

In the design and implementation of database systems (DB) one important step
is the creation of the conceptual model, namely the Entity-Relationship (ER)
schema [14]. The graphical language of ER schemata normally captures (almost)
all aspects of the specification. ER schemata are useful both to i) communicate
ideas, choices and requirements among humans involved in a project and ii) as
a first-step in the process of (semi-)automated generation of the database and
of the needed software.

DB designers draw the first version of ER schema starting from a set of in-
formal specifications, normally given in natural language and/or catalogue table
describing names, attributes etc. The ER schema preparation often goes through
several refinements. A refinement normally follows the realization that some as-
pects of the informal specification are not properly reflected by the current ER
schema. Such process may be tedious and error-prone, but can hardly be made
totally automated due to the inherent ambiguity and incompleteness of practi-
cally any natural-language specification. In other words, it is very hard, to give
a formal proof of correctness of a ER schema w.r.t. its informal specification.
Hence, formal methods and the mathematical assessment of the ER are not
readily applied to the face validation of a putative ER schema.

In this work we propose a methodology and a set of tools for supporting the
designer in the validation phase: given an ER schema, we automatically gener-
ate a sample snapshot of a state of affairs permitted by the conceptual schema.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 225–234, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

226 M. Amalfi et al.

Such sample, described in terms of individual instances of entities (and relation-
ships), may be suggestive of how the relational database, once it is created and
populated, would look like. By seeing a preview sample, the designer (or other
less-skilled participants to the design phase, viz. potential users) may make up
their mind whether the proposed sample is an acceptable database state, i.e., it
reflects a realistic situation and obeys the constraints that were stated informally.

If what they see is deemed correct (in an informal sense of the word), then
the ER can be finalized and the subsequent phases of the design (restructuring,
translation to the logical level and so on) can be carried out in a formalized
setting where correctness can be proved as a mathematical property. The process
described above is aptly called face validation in fields e.g. Expert Systems [13]
and Multi-agent systems [12]. Miller et al. [1] use a similar terminology in the
context of distributed databases.

In this paper we lay the technical foundations of our project with the following
results:

1. we define the notion of preview instance, intended as a sample snapshot
of a typical state of affairs implied by the ER schema, i.e., we define the
properties that a preview instance should possess;

2. we define a mapping from the EER syntax to Logic programs (with function
symbols) under Answer Set Semantics [10] and prove its properties (correct-
ness and completeness).

Due to lack of space, in this paper we shall assume the reader acquainted with the
main technical definitions of ER, database constraints and logic programming
under Answer Set semantics1.

2 Related Research

To the best of our knowledge, this work is the first attempt to generate exam-
ple instances out of EER schemata. Nonetheless, several research efforts have
addressed generating example instances, mainly at the relational level. Let us
summarize some of the best known here. The generation of relational instances
had been studied (also with some implementation effort) in the 80’s and early
90’s by several researchers, e.g., [9,11,2] who were interested in the mathematical
properties of Armstrong databases (ADBs). ADBs, in short, can be described as
synthetic instances that i) respect all constraints given (or logically implied) by
the designer and ii) violate all other possible constraints.

As it has been discussed in the Introduction, our work remains somewhat or-
thogonal to those on ADBs, as we focus on the conceptual level and on properties
of EER schemata. In particular, the known results on existence and finiteness
of the ADB for arbitrary relational schemata do not apply readily here since we
are considering only a subclass of key and inclusion dependencies (INDs) called
conceptual dependencies [6].
1 A companion Web site with software, examples and the long version of this article

is at http://mag.dsi.unimi.it/EER2instances/

http://mag.dsi.unimi.it/EER2instances/

Generating Preview Instances 227

In the area of information integration, the recent Muse (Mapping Understand-
ing and deSign by Example) project of Alexe et. al [1] exploits example instances
to assist designers in understanding and refining a schema mapping between rela-
tional databases. MUSE aims to guide the database designer in the specification
of the desired grouping of data, which are derived from related data source-sets.
Moreover, Muse drives the designer to choose the more suitable mapping among
ambiguous mapping. A schema mapping is deemed ambiguous when it specifies,
in more than one way, how an atomic element (or attribute) of the target schema
is to be obtained. Muse uses small examples to construct a small number of yes-
no questions such that, by answering them, the designer comes to construct,
step by step, the mapping she had in mind. Miller et al. make a compelling case
for the benefits of making designers work with data rather than with complex
specifications, since they have overwhelming empirical evidence that mapping
designers usually understand their data better than they understand mapping
specifications. To some extent such consideration carries over to our case though
the data we can present to the designer is purely synthetic.

In the context of data mining and database understanding, De Marchi and
Petit [8] have introduced the notion of illustrative database instance. They con-
sider a data-mining scenario where a database instance is available but the rela-
tive relational schema may not be accessible or even lost. Their aim is to provide
information about the structure of the database by letting the user inspect a suit-
ably small instance. Given an existing, normally very large, database instance,
DeMarchi et al. carve out a small database sample that i) has real (as opposed
to synthetic) tuples drawn from the existing DB, and ii) shows the same FDs
and IDs as the original.

There are two main differences between work and De Marchi-Petit’s. The
first, and fundamental, is that, in typical data mining fashion, they are working
out their instance backwards from an existing one, focusing on the instance
itself rather than the relational schema. In our work, we work forward from
the conceptual schema to a sample instance of a not-yet-existing database. As
a result, whereas their attribute values are real, ours are synthetic. The second
difference is the notion of minimality. DeMarchi-Petit’s Informative instances are
minimal w.r.t. inclusion. Our illustrative instances are not necessarily minimal,
by design. Let’s discuss minimality now.

Even when a conceptual schema would lead to a relational schema that ad-
mits the empty instance, we consider it to be scarcely illustrative of how the
implementation is going to look like during its life-cycle. A small example with,
say, only one tuple per relation would give a better illustration of how data in
each table connect to each other. Our translation is defined starting from such
concept: each relation representing entities and relationships must be non-empty
from the beginning. Indeed, the notion of full satisfiability, studied, e.g., in [3] is
along the same lines. The enforcement of inclusion dependencies may later im-
pose higher cardinalities. However, the minimal model semantics of Answer Set
Programming guarantees that cardinalities are always minimal w.r.t. the initial
instantiation of one tuple per relationship.

228 M. Amalfi et al.

2.1 Extended Entity Relationship

We adopt from [6] an others an extension of Chen’s Entity-Relationship graph-
ical language. It consists of a common extension that allows for IS-A relations
between entities or even relationships. Due to the lack of space, we rely on the
reader being acquanited with Entity-Relationship and database constraints, and
proceed to formulate an example.

Example 1. Consider the EER schema shown in Figure 1, depicted in a slightly
extended graphical notation for the EER model (components are indicated by
integers for the relationships). The schema describes employees working in de-
partments of a firm, and managers that are also employees, and manage depart-
ments. Managers who manage a department is also deemed to work in it.

Fig. 1. A small (but non-trivial) EER schema

The (1, 1) participation constraint on Employee in Works In imposes that
every instance of Employee participates at least once and only once (functional
participation) in Works In; the same constraints hold on the participation of
Manager in Manages. Vice versa, the participation of entity Dept to relation-
ships Works in and Manages is optional (0,N). The [1, 2] label in the is-a
relation between the two relationships denotes that the components of Man-
ages correspond, in that order, to components 1 and 2 of Works In. Several
straightforward inclusion dependencies can be read out of this schema, e.g.,
Manager[1] ⊆ Employee[1] from the IS-A between entities; by lack of space
they cannot be listed here.

3 Preview Instances

Let us now define preview instances of EERs schemata. First of all, an EER
instance is defined as a set of object constants, called occurrences assigned to
entities and a set of tuples assigned to relationships. We assume that the unique-
name assumption holds, so different objects are identified by different constants.
An EER instance is a preview instance if:

1. all constraints are satisfied;
2. there is at least one distinct occurrence for each of the entities and for each

of the relationships;

Generating Preview Instances 229

3. any two entities are either in containment (i.e., there is an IS-A constraint
between them) or disjoint; vice versa, relationships are not necessarily dis-
joint2, and

4. the extension of each entity is minimal (modulo constant renaming) wrt. the
constraints.

4 Computational Complexity Issues

Given an EER schema C , what is the (worst-time) complexity of deciding
whether C admits a legal instance, i.e., one that respects all constraints? Ar-
tale et al. [4] have assessed the computational complexity of deciding whether
a given ER schema admits a model (in their semantics for ER), which they
term satisfiability. They study complexity of several variations of the satisfiabil-
ity problem that are of practical relevance for DB design3. In particular, their
concept of full satisfiability comes very close to our concept of preview instance.

However, our working EER syntax is slightly different from Artale et al.’s,
(and such differences may have a huge impact on complexity); it falls between
that of ERfull (the version with the most expressive language, where check-
ing consistency has EXPTIME complexity) and ERisaR. On one hand, here we
are considering EERs that do not allow for the so-called boolean constraints:
covering and disjunction between classes. On the other hand, we always allow
functional participation of an entity to a relationship; the dual constraint of
mandatory participation of an entity to a relationship is not considered here be-
cause of the acyclicity restriction. As a result, of EER syntax, and its complexity
is not directly comparable with Artale et al. taxonomy, which is summarized in
Table 1.

Table 1. Complexity of the consistency problem for some variations of ER, from [3,5]

part. c. entities relationships
Language 0,1 1,k 1,1 isa disj cov isa disj cov Complexity

C1 � C2 C1 � C2 � ⊥ C = C1 � C2 R1 � R2 R1 � R2 �⊥ R=R1 � R2

ERfull − − − + + + + + + ExpTime

ERisaR − − − + + + + − − ExpTime

ERbool − − − + + + − − − NP

ERref − − − + + − − − − NLogSpace

ERref+isaR − − − + + − + − − NLogSpace

ERref+isaR+(0,1) + − − + + − + − − acyclic

ERref+isaR+(1,k) − + − + + − + − − cyclic

ERref+isaR+both + + + + + − + − − ExpTime

2 Notice how this provision disallows entities with multiple inheritance.
3 Also, [3] proves exact measures of the worst-case complexity for the problem of

finding models of UML diagram that has each class assigned to a non-empty set of
symbols.

230 M. Amalfi et al.

Whereas our syntax corresponds to case ERref+isaR+both, the acyclicity
restriction adopted here reduces us to consider the ERref+isaR+(0,1) case, with
a worst-case complexity that is still indeterminate. Hence, our embedding into
ASP programs provides a loose upper-bound of Σp

2 ; in any case since complexity
here is functional to the number of entities/relationships given in input, higher
worst-case complexities are still manageable for small instances.

5 From EER to Answer Set Programs

The embedding of EER into ASP programs with function symbols is composed
of three sets of rules: i)a line-by-line translation were each constraint of the in-
put EER schema are mapped to an equivalent rule –or constraint– of the output
ASP program; ii) a set of facts and rules is introduced once and for all at the
beginning of the translation to reconstruct the EER signature (entity names, re-
lationship names, arities etc.), within the signature of the output logic program,
and iii) a metapredicate participates that describes, via reification of entity and
relationship names, the order of participation of entities to a relationship. The
thus-assembled ASP program is fed to the DLV-complex inferential engine for
ASP programs (please refer to [7] for the details of this novel system), which will
compute an answer set representative of the preview instance.

Let C be an EER schema (sometimes called EER project) and let us define
its mapping into logic program πC as follows. First, the signature of πC , i.e. LπC ,
shall reflect the names used in the EER:

a: for each entity name E in C
• let LπC contain the pred. constant e of arity 1, henceforth denoted e/1 ;
• add to πC a fact e(c) where c is a fresh constant.

b: for each attribute name AE for an Entity E in C let LπC contain the predicate
aE of arity 2 (aE/2), where the first component refers to the entity E and
the second one is a function defined on it (the attribute hence is functional);

c: for each relationship name R of arity n in C , let LπC contain predicate
r/n where there is one component for each entity which participates in the
relationship, and

d: for each attribute name AR for a Relationship R of arity n in C let LπC
contain the predicate aR/n + 1 where the first n components refer to the
entities participating in the relationship and the last one is an ’attribute’
function defined on the participating entities.

Next, we define the translation that populates πC with rules and constraints.

1. for each attribute name AE for an Entity E in C let πC contain a constraint
which imposes that the first component of the predicate aE must be a term
that also occurs in predicate e/n (which represents E)4;

4 Step 1 makes explicit a form of closed-world assumption on attribute values that is
common but somewhat left implied.

Generating Preview Instances 231

2. for each attribute name AR for a Relationship R of arity n in C let πC
contain a constraint that the first n components of the predicate aR must
be an instance of predicate r/n (which represents R);

3. for each relationship name R of arity k in C , let πC contain k constraints
imposing that each of the k entities in a relationship instance must also be
an instance of the relative entity ei, 1 ≤ i ≤ n;

4. for each mandatory attribute name AE for an Entity E in C let πC contain a
consistency constraint that disallows an instance of e which is not an instance
of the connected predicate aE ;

5. for each mandatory attribute name AR for a Relationship R of arity n in C
let πC contain a consistency constraint that disallows an instance of r which
is not an instance of the connected predicate aR;

6. for each functional attribute name AE for an Entity E in C let πC contain a
key constraint (expressed as a consistency constraint);

7. for each functional attribute name AR for a Relationship R of arity n in C
let πC contain a key constraint;

8. for each IS-A relation between two entities, called, say, Emother and Edaughter ,
i.e., respectively, destination and origin of the IS-A arrow, in C let πC contain
an “inheritance” rule by which every occurrence of Edaughter will also be an
occurrence of Emother;

9. for each IS-A relation between two relationships, say, Rmother and Rdaughter

in C let πC contain an inheritance rule by which every occurrence of Rdaughter

will also be an occurrence of Rmother;
10. for each mandatory participation of the i-th component of an entity E in a

relation R of C , let πC contain a consistency constraint by which an instance
of E is forced to appear in the i-th position of one instance of R. To capture
this requirement, we need to introduce an auxiliary predicate participates(e,
r, i) which reifies predicate r into the (fresh) term r in order to represent
its parameters.

11. for each functional participation of the i-th component of an entity E in a
relation R of C , let πC contain a consistency constraint on mandatory par-
ticipation of the i-th component of an entity in a relation. Such requirement
is captured, as in rule 10, by introducing a participates auxiliary predicate
that reifies the predicate representing R.

6 Results

Thanks to the embedding described in the previous section, we can now prove
that for any EER schema C which is acyclic (in short: IDs do not form loops)
and consistent (in short: there exist legal instances, pl. see again Artale et al.)
the associated DLV-Complex program πC has an answer set. The answer set of
πC contains atoms from which a preview instance for C can be easily read out.

Currently, the class of EER for which the translation is proved correct, i.e.,
yields preview instances whenever they exist, can be characterized by the formal
statement below, where by cyclic definitions we intend a cycle on the EER graph.

232 M. Amalfi et al.

The formal definition is as follows. Given a project C, we define the underlying
graph GC as a directed graph that has

– one node for each entity (box) and one node for each relationship (diamond)
of C;

– one arc from the node representing a relationship R to the node representing
entity E whenever E participates to R;

– an arc from the node representing an entity E to the node representing a
relationship R whenever E participates to R with cardinality constraint (1,1)
or (1,N), and

– an arc between each two nodes representing entities (resp. relationships) that
are in IS-A relation in C (same orientation of the arrow).

Proposition 1. For any EER C for which the underlying graph GC is acyclic
the answer sets of πC are in one-to-one correspondence with preview instances
of C.

To prove it, we shall take advantage of the set-minimality property of answer sets
[10]. So, let S be an answer set of πC , and let S′ be its projection on predicates
ei, ri and ai representing entities, relationships and attributes, respectively. S′

trivially satisfies conditions 1 and 3 of the preview instance condition: the con-
straints introduced into πC by rules 1-7, 10 and 11 are satisfied by S.

By construction, i.e., steps A and B of the translation, each entity predicate
e has at least an instance. Also, by the inclusion rules described in step 3 of the
translation and by the above fact, it is easy to conclude that S must also contain
at least an instance for each relationship relation r (condition 2 of preview
instances) On the other hand, minimality (condition 4 of preview instances) is
guaranteed by the set-minimality property of answer sets.

Proposition 2. For any EER that contains neither cyclic definitions nor IS-
A between relationships, πC there is a 1-1 correspondence, modulo the language
between answer sets and illustrative instances of the ER schema.

6.1 Translation of the Example EER

When applied to the schema in the Example, our translation produces 33 formu-
lae, 18 of which are constraints. It is not possible to list the complete translation
here, but it can be found in the long version of this work5. However, it possible
to comment on the tricky points of the translation of this particular example:

– step C is composed of two parts: first we create the individual instances of
each relation, then we add rules stating that the constants used in those
instances are actually individuals of the entities participating to the given
relationship;

– steps 6 and 7 do not apply to this example, as there are no keys;
5 Available from http://mag.dsi.unimi.it/EER2instances

http://mag.dsi.unimi.it/EER2instances

Generating Preview Instances 233

– step 10 may be tricky to grasp because it involves the definiton of tha par-
ticipates predicate that describes the syntactic strucure of our predicates,
rather than the instance itself:
participates(E, works in, 1) :−dept(D), works in(E, D).
participates(D, works in, 2) :−employee(E), works in(E, D).
participates(E, manages, 1) :−dept(D), manages(E, D).
participates(D, manages, 2) :−manager(M), manages(M, D).

6.2 The Model Generation Phase

DLV-Complex is an extension of the well-known DLV inferential engine6 for
deductive databases and disjunctive logic programming which supports syntactic
functions and lists manipulation, allowing for a powerful (possibly recursive) use
of function terms together with disjunction and negation.

The ability to treat function symbols, which was not present in the basic DLV
inferential engine is here essential for a straightforward and efficient treatment
of inclusion dependencies, e.g. in rules like:
emp name(E, emp name of(E)) :−employee(E).
If we feed program πC obtained from our translation of the previous Example to
DLV-Complex we obtain the following Answer Set (with some abbreviation):

{manages(man,dept), employee(emp), employee(man),manager(man), dept(dept),
emp name(emp, emp name of(emp)), emp name(man, emp name of(man)),
dept name(dept, dept name of(dept)), works in(emp, dept), works in(man, dept),
since(emp, dept,w in since(emp, dept)), since(man, dept,w in since(man, dept)),
part(emp,works in, 1), part(man,works in, 1), part(man,manages,1),
part(dept,works in, 2), part(dept,manages,2)}

7 Conclusions

We have defined a new mapping of EER schemata to logic programs that en-
ables the automated creation of preview instances. Even though such type of
mappings are known in the literature, our translation is the first, to the best
of our knowledge, that permits to characterize and computer preview instances
of an EER project. On the theory side, we believe that our mapping, once we
allow for the needed adjustments to the variety of ER graphical languages now
available, may also support other types of reasoning about specifications, such
as evaluating the properties of conjunctive queries against the EER proposed by
Cal̀ı in [6]. However, several interesting open questions arise wrt. i) the relation
between our instances and Armstrong databases and ii) the possibility that an
EER schema, even though it admits legal finite instances, may induce our pro-
gram to the construction of an infinite instance. The latter case could happen in
presence of a circular sequence of inclusion dependencies, due to the interaction
of is a and obligatory participation constraints in the EER schema.
6 The software and related literature are available at http://www.dlvsystem.com/

http://www.dlvsystem.com/

234 M. Amalfi et al.

By its very nature, this work is not suitable for evaluation in terms of tradi-
tional benchmarks/scalability analysis. Rather, face validation tests, e.g., with
panels of DB students would give us a feedback on the impact on schema com-
prehension obtained by submitting preview instances back to those who laid out
the first specification.

The translation to DLV-Complex programs that is the core of our work has
been implemented and will be released as a branch project of the ERW tool [15].

References

1. Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.C.: Muse: Mapping understanding
and design by example. In: ICDE, pp. 10–19. IEEE, Los Alamitos (2008)

2. Armstrong, W., Delobel, C.: Decompositions and functional dependencies in rela-
tions. ACM Trans. on Database Systems (TODS) 5(4), 404–430 (1990)

3. Artale, A., Calvanese, D., Ibanez-Garcia, A.: Full satisfiability of UML class dia-
grams. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010.
LNCS, vol. 6412, Springer, Heidelberg (2010)

4. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Rea-
soning over extended ER models. In: Parent, C., Schewe, K.-D., Storey, V.C.,
Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 277–292. Springer, Heidelberg
(2007)

5. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-lite family
and relations. J. Artif. Intell. Res. (JAIR) 36, 1–69 (2009)

6. Cal̀ı, A.: Containment of conjunctive queries over conceptual schemata. In: Li Lee,
M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 628–643.
Springer, Heidelberg (2006)

7. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Enhancing asp by functions: Decidable
classes and implementation techniques. In: Fox, M., Poole, D. (eds.) AAAI. AAAI
Press, Menlo Park (2010)

8. DeMarchi, F., Petit, J.M.: Semantic sampling of existing databases through infor-
mative armstrong databases. Information Systems 32(3), 446–457 (2007)

9. Fagin, R., Vardi, M.Y.: Armstrong databases for functional and inclusion depen-
dencies. Information Processing Letters 16(1), 13–19 (1983)

10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing, 365–387 (1991)

11. Gottlob, G., Libkin, L.: Investigations on armstrong relations, dependency infer-
ence and excluded functional dependencies. Acta Cybernetica 9(4), 385–402 (1990)

12. Klügl, F.: A validation methodology for agent-based simulations. In: Wainwright,
R.L., Haddad, H. (eds.) SAC, pp. 39–43. ACM, New York (2008)

13. O’Keefe, R.M.: The validation of expert systems revisited. The Journal of the
Operational Research Society 40(5), 509–511 (1989)

14. Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology.
Springer, Berlin (2000)

15. Vigna, S.: Reachability problems in entity-relationship schema instances. In:
Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288,
pp. 96–109. Springer, Heidelberg (2004)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 235–250, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Dynamic Skylines Considering Range Queries

Wen-Chi Wang1, En Tzu Wang2, and Arbee L.P. Chen3,*

1 Telecommunication Laboratories Chunghwa Telecom Co., Ltd., Taipei, Taiwan, R.O.C.
lovelynoir@gmail.com

2 Cloud Computing Center for Mobile Applications, Industrial Technology Research Institute,
Hsinchu, Taiwan, R.O.C.

m9221009@em92.ndhu.edu.tw
3 Department of Computer Science, National Chengchi University, Taipei, Taiwan, R.O.C.

alpchen@cs.nccu.edu.tw

Abstract. Dynamic skyline queries are practical in many applications. For exam-
ple, if no data exist to fully satisfy a query q in an information system, the data
“closer” to the requirements of q can be retrieved as answers. Finding the nearest
neighbors of q can be a solution; yet finding the data not dynamically dominated by
any other data with respect to q, i.e. the dynamic skyline regarding q can be another
solution. A data point p is defined to dynamically dominate another data point s, if
the distance between each dimension of p and the corresponding dimension of q is
no larger than the corresponding distance regarding s and q and at least in one di-
mension, the corresponding distance regarding p and q is smaller than that re-
garding s and q. Some approaches for answering dynamic skyline queries have
been proposed. However, the existing approaches only consider the query as a
point rather than a range in each dimension, also frequently issued by users. We
make the first attempt to solve a problem of computing dynamic skylines consid-
ering range queries in this paper. To deal with this problem, we propose an efficient
algorithm based on the grid index and a novel variant of the well-known Z-order
curve. Moreover, a series of experiments are performed to evaluate the proposed
algorithm and the experiment results demonstrate that it is effective and efficient.

Keywords: Dynamic attributes, Dynamic skyline computation, Range queries,
Grid index, Z-order curve.

1 Introduction

In recent times, the skyline computation [1][2][3][4][5][6][7][8][9][11][13][14][15]
[16][17]has received considerable research attention due to playing an important role in
the applications involving multi-criteria decision making. Given an n-dimensional
dataset D, the skyline of D is a set of data points (objects) not dominated by any other
data points in D. A data point t with n dimensions (t[1], t[2], …, t[n]) is defined to
dominate another data point s (s[1], s[2], …, s[n]) iff 1) t[i] ≤ s[i], ∀ i = 1 to n, and 2) at
least in one dimension, say j, t[j] < s[j]. This definition of domination is under the
assumption that smaller values are preferred. An illustration of the skyline of a hotel
dataset is shown in Fig. 1. In this illustration, each hotel has two attributes (dimensions)

* Corresponding author.

236 W.-C. Wang, E.T. Wang, and A.L.P. Chen

Fig. 1. The traditional skyline of a hotel dataset Fig. 2. The dynamic skyline of a car dataset

including the price and distance to the beach. Since users usually prefer choosing the
hotels with distances closer to the beach and lower prices, the skyline of the dataset is
{h1, h3, h5, h9}. For example, hotel h2 is not in the skyline since neither the price nor
distance to the beach is smaller than that of hotel h3. Many approaches have been
proposed for efficient skyline computation, such as BNL [1], D&C [1], Bitmap [16],
SFS [3], LESS [8], BBS [11], SaLSa [2], ZSearch [9], and OSP [17]. However, most of
them only focus on static attributes, which means the attributes are rarely changed such
as “the distance to the beach” of a hotel.

The dynamic skyline mentioned in [11][5][13] is a variant of the original skyline,
where the attributes of each data point in a given dataset are calculated dynamically
according to a query issued. More specifically, given an n-dimensional dataset D and a
query q with n dimensions (q[1], q[2], …, q[n]), the dynamic skyline query regarding q
retrieves the data points not dynamically dominated by any other data points, with
respect to q. A data point t is defined to dynamically dominate another data point s, with
respect to q, iff 1) |t[i] − q[i]| ≤ |s[i] − q[i]|, ∀ i = 1 to n, and 2) at least in one dimension,
say j, |t[j] − q[j]| < |s[j] − q[j]|. An illustration of the dynamic skyline of a car dataset is
shown in Fig. 2. Suppose that a user prefers the car whose manufacturing year and seat
number are 2000 and 4, respectively. Then, q can be regarded as a query point of (2000,
4). If no data points exist to fully satisfy q, the data points with attributes closer to the
requirements of q, i.e. 2000 and 4, can be retrieved to recommend the user instead. The
nearest neighbors of q could be retrieved as answers. However, if we consider user
preference, the dynamic skyline points are more representative than the nearest
neighbors of q, where a dynamic skyline point is a data point in the dynamic skyline.
Accordingly, we turn to find the skyline in a transferred dataset in which all of the data
points in the original space are transferred to the other space whose origin is equal to
(2000, 4). For example, c1 = (1992, 8) is transferred to c1

T = (|1992 − 2000|, |8 − 4|) = (8,
4), and moreover, c2 and c3 are transferred to c2

T = (5, 4) and c3
T = (2, 1), respectively.

Then, the skyline in the transferred space, i.e. the dynamic skyline, is equal to {c4, c3}.
In many situations, users describe their needs in an imprecise way, i.e. issuing range

queries. For example, a user may want a car equipped with 2 to 4 seats and manufac-
tured between 2006 and 2008. If some data points exist to fully satisfy the range que-
ries, those data points are exactly what the user wants. If no data points exist, finding
the dynamic skyline is then performed. Since range queries are also frequently issued,
we make the first attempt to study a new problem on computing dynamic skylines
considering rangy queries in this paper. Similar to the dynamic skyline regarding a
query point, we want the skyline in a transferred dataset in which all of the data points
in the original space are transferred to the other space according to the range query. If

 Dynamic Skylines Considering Range Queries 237

the user query is a multi-dimensional point, we just need to transfer the data points into
the space whose origin is equal to the query point, accordingly. While the user query
has ranges in the dimensions, the definition of transformation needs to be reconsidered.
We think that since the range in a dimension represents the user preference in this
dimension, the data point with the corresponding dimension closer to the range, i.e.
closer to any position in the range, is appropriate to recommend to the user if no data
points fall into the range regarding the corresponding dimension. The transformation
can therefore be described as follows. To a data point p in a dataset, we find a position s
in the range query, closest to p, and transfer p to the other point pT according to s. The
formal definition related to this transformation is detailed in Section 3. A straightfor-
ward solution to compute the dynamic skyline regarding a range query is to transfer all
of the data points according to the range query and then apply one of the existing sky-
line algorithms, e.g. SFS, to obtain the skyline in the transferred dataset. Obviously, it is
costly to scan the whole dataset to generate the transferred dataset and then again scan
the whole transferred dataset for dominance checking. Therefore, we propose an effi-
cient approach based on the grid index and a variant of the well-known Z-order curve
[10] to avoid the need to generate the whole transferred dataset, thus also reducing the
times of dominance checking.

Our contributions can be summarized as follows. 1) We propose a new problem on
dynamic skyline computation regarding a range query. Moreover, the semantics of the
novel dynamic skyline query is also well explained as above. 2) To efficiently answer
this query, we propose an approach based on the gird index and a newly designed
variant of the well-known Z-order curve. By these two components, three efficient
pruning strategies are devised, thus avoiding the need to scan the whole dataset for
generating the transferred dataset and also reducing the times of dominance checking.
3) The correctness guarantees of the three pruning strategies are provided. 4) A series
of experiments are performed to evaluate our approach and the experimental results
demonstrate that our approach is effective and efficient. The remainder of this paper is
organized as follows. The related works of the dynamic skylines are reviewed in Sec-
tion 2. Then, the preliminaries of this paper are introduced in Section 3, including all
the terms used and the kernel component of our solution. The proposed approach is
detailed in Section 4. After that, the experiment results and performance analyses of our
approach are described in Section 5. Finally, Section 6 concludes this work.

2 Related Works

Different from the original skyline query considering data points with static attributes,
the dynamic skyline query is related to a variety of skyline queries considering data
points with dynamic attributes [4], which means the attributes of each data point are
dynamically calculated according to the queries specified by distinct users. The variant
skyline queries regarding dynamic attributes can be roughly categorized into the mul-
tiple-queries driven type and single-query driven type. Given a set of data points P =
{p1, p2, …, pm} and a set of query points Q = {q1, q2, …, qk}, each data point p in the
multiple-queries driven type is represented by an attribute vector 〈dist(p, q1), dist(p, q2),
…, dist(p, qk)〉, where dist(⋅, ⋅) is a distance function. Those data points whose attribute
vectors are not dominated by the attribute vectors of the other data points are returned

238 W.-C. Wang, E.T. Wang, and A.L.P. Chen

as skyline results. Focusing on distinct distance functions, a series of literatures in the
multiple-queries driven type are proposed, including [14][6][4][7]. Sharifzadeh and
Shahabi propose the spatial skyline queries in [14], in which dist(⋅, ⋅) is the Euclidean
Distance. Deng et al. propose the multi-source skyline query in [DZS09] and consider
the distance measure as the distance of the shortest path in road networks. [4] and [7]
solve the metric skyline query, where dist(⋅, ⋅) is a metric distance.

On the other hand, the concept of the dynamic skyline [11][5][13] belonging to the
single-query driven type is first mentioned in [11]. Papadias et al. briefly describe how
to extend BBS [11] to solve the dynamic skyline query. In [5], Dellis and Seeger use the
semantics of the dynamic skyline to introduce the reverse skyline query but do not
propose any solutions to solve the dynamic skyline queries. Given a point q, the reverse
skyline query [5] returns the data points whose corresponding dynamic skylines contain
q. Sacharidis et al. propose a caching mechanism in [13], using the information of the
past queries to speed up the dynamic skyline processing regarding a new query. Dif-
ferent from the dynamic skyline considering a query point as described in [5][13], we
make the first attempt to study a new problem on computing dynamic skylines con-
sidering range queries in this paper. The BBS algorithm [11] is based on R-tree and
using the concept of nearest-neighbor search. To decide the expanding order of MBRs
in the R-tree, BBS needs to compute the mindist for each entity, i.e. either a data point
or an MBR. To compute the original skyline, the mindist of a data point is defined as the
sum of its all dimensions while the mindist of an MBR is equal to the mindist of the
lower-left corner point of the MBR. It is difficult to extend BBS to compute the dy-
namic skylines regarding range queries since the mindist of an MBR is ambiguous and
undefined, with respect to a range query.

3 Preliminaries

In this section, the problem of computing the dynamic skyline regarding a range query
is formally defined. Thereafter, the kernel component used in our solution to this
problem, i.e. multidirectional Z-order curves, is also described in this section, followed
by a brief introduction to Z-order curve [10].

3.1 Problem Formulation

Given an n-dimensional dataset D and a range query q ([q1, q1'], [q2, q2'], …, [qn, qn']),
where [qi, qi'] is an interval representing the user interests in the ith dimension, ∀ i = 1 to
n, the dynamic skyline query regarding q returns the data points from D, not dynami-
cally dominated by any other data points, with respect to q.

Definition 1 (Dynamic Domination): Give an n-dimensional dataset D and a range
query q ([q1, q1'], [q2, q2'],…, [qn, qn']), a data point p1 ∈ D is defined to dynamically

dominate another data point p2 ∈ D, with respect to q iff 1) 1
[, ']

| [] |
i i i

i
x q q
Min p i x
∈

− ≤

2
[, ']

| [] |
i i i

i
y q q
Min p i y
∈

− , ∀ i = 1 to n, and 2) ∃ j, 1 ≤ j ≤ n, such that 1
[, ']

| [] |
j j j

j
x q q

Min p j x
∈

−
<

2
[, ']

| [] |
j j j

j
y q q

Min p j y
∈

− ,where p[i] is the ith dimension of a point p and
[, ']

| [] |
i i i

i
x q q
Min p i x
∈

− is the

minimum distance between p[i] and the ith dimension of q. ■

 Dynamic Skylines Considering Range Queries 239

 (a) the original space (b) the transferred space

Fig. 3. The dynamic skyline regarding a range query q

Example 1: A 2-dimensional dataset with 8 data points is shown in Fig. 3. Let a range
query q be ([15, 20], [20, 25]). According to the minimum distance function mentioned
in Definition 1, the data point p8 = (17, 30) can be transferred to (|17 − 17|, |30 − 25|) =
(0, 5), regarding q. Moreover, p7 and p3 can be respectively transferred to (|25 − 20|, |25
− 25|) = (5, 0) and (|25 − 20|, |5 − 20|) = (5, 15), regarding q. p3 is dynamically domi-
nated by p8 and p7 since each transferred dimension of p3 is larger than that of p8 and
that of p7. By the definition of dynamic domination, the results of the dynamic skyline
query are p8 and p7 since the transferred dimensions of p8 (the transferred p8 for short in
the following discussion), i.e. (0, 5) and those of p7 cannot be dynamically dominated
by any other transferred data points, with respect to q. ■

3.2 Data Structures Used in Our Solution

To solve this problem, a straightforward solution works as follows. All of the data
points are transferred using the minimum distance function according to q and then, the
existing skyline algorithms, e.g. SFS [3], are applied to find the dynamic skyline from
the transferred dataset. It is costly to scan the whole dataset to generate the transferred
dataset and then again scan the transferred dataset for dominance checking. In this
paper, an efficient algorithm based on the grid index and newly designed multidirec-
tional Z-order curves is proposed to solve this problem, avoiding the need to generate
the whole transferred dataset and also reducing the times of dominance checking. Next,
we describe the data structures used in our solution.

The grid index. The grid index is a space-driven indexing method opposed to the
data-driven indexing methods such as R-tree, partitioning the space into grids in ad-
vance. More specifically, each dimension of the n-dimensional space is partitioned into
b blocks, each associated with an equal domain range of r. The block i is related to the
domain of [ir, (i + 1)r). The whole space can therefore be regarded as being partitioned
into bn n-dimensional cells (cells for short in the following discussion). If a data point
falls into a cell, the information of the data point is kept in this cell. Moreover, each cell
has its own coordinates related to the block in each dimension. For example, if a
2-dimensional cell is associated with the blocks 0 and 1 in the first and second dimen-
sions, respectively, the coordinates of this cell are (0, 1).

Definition 2 (Query Cells): Given a range query q ([q1, q1'], [q2, q2'], …, [qn, qn']) in a
grid-indexed n-dimensional space, the cells whose coordinates (c1, c2, …, cn) satisfy
that ci ∈ [/ , '/]i iq r q r⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ , ∀ i = 1 to n, are defined as query cells. ■

240 W.-C. Wang, E.T. Wang, and A.L.P. Chen

Definition 3 (Pivot Cells): Given a range query q ([q1, q1'], [q2, q2'], …, [qn, qn']) in a
grid-indexed n-dimensional space, the cells whose coordinates (c1, c2, …, cn) satisfy the
conditions: 1) in only one dimension, say i, ci ∉ [/ , '/]i iq r q r⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ and 2) in the other di-
mensions j, ∀ j = 1 to n and j ≠ i, cj ∈ [/ , '/]j jq r q r⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ , are defined as pivot cells. ■

Definition 4 (Query-imported Orthants): Given a range query q in a grid-indexed
n-dimensional space, the space can be partitioned into 2n regions by the query cells and
pivot cells. These regions are defined as query-imported orthants (q-orthants). ■

Example 2: A grid-indexed 2-dimensional space is shown in Fig. 4. Each dimension of
the space is partitioned into 8 blocks. Accordingly, the space can be regarded as being
partitioned into 64 cells. Moreover, the coordinates of the cell C are (7, 0). Since q
overlaps four cells, the cells with coordinates equal to (3, 4), (3, 5), (4, 4), and (4, 5) are
query cells. For a concise presentation, we use a range form of ([3, 4], [4, 5]) to denote
these cells. Moreover, the pivot cells with respect to q are the cells with coordinates
equal to ([0, 2], [4, 5]), ([5, 7], [4, 5]), ([3, 4], [0, 3]), and ([3, 4], [6, 7]). According to
the query cells and pivot cells, the space is partitioned into 4 q-orthants. Notice that, the
cells in the q-orthants are neither query cells nor pivot cells. ■

Z-order curve. Z-order curve [10] is a space-filling curve, commonly used in mapping
data points in a multidimensional space to a one dimensional space by representing
each data point using a unique number named Z-address and then sorting the data
points into an increasing order of Z-address. More specifically, each dimension of a
data point in an n-dimensional space is represented using a binary sequence, e.g. 5 =
(101)2. Accordingly, a data point is related to n binary sequences, e.g. the coordinates of
a data point are (5, 4) = (101, 100)2. The Z-address of a data point is a sequence of bits,
generated by interlacing the bits from the n binary sequences related to the data point,
e.g. the Z-address of (5, 4) is (110010), where the 1st, 3rd, and 5th bits come from (101)2
and the 2nd, 4th, and 6th bits come from (100)2.

In our solution, cells rather than data points are represented using Z-addresses. As
mentioned above, since each dimension of the space is partitioned into b blocks, we use
v bits to represent a block of a dimension, where 2logv b= . A Z-address of a cell there-
fore consists of n × v bits, within a domain of [0, 2nv − 1]. Let the coordinates of a cell be
represented using binary sequences. Then, the ith bit of the Z-address of a cell comes
from the /i n⎡ ⎤⎢ ⎥

th bit of the (i mod n)th coordinate1 of the cell. For example, in a
2-dimensional space, let the coordinates of a cell, represented using binary sequences,
be (x1x2 …xv, y1y2 … yv)2, where xi and yi ∈ {0, 1}, ∀ i = 1 to v. The Z-address of the cell
is (x1y1x2y2…xvyv). Z-order curve has a good property, i.e. monotonic ordering [9],
which can be used in efficient skyline computation.

Property 1 (Monotonic Ordering of Z-order curve): While being applied to the tra-
ditional skyline computation, Z-order curve formed by sorting the cells using an in-
creasing order of Z-address is monotonic such that a data point in a cell with a former
order cannot be dominated by the data points in the cells with the latter order. ■

Multidirectional Z-order curves. In reality, the original skyline computation can be
regarded as the dynamic skyline computation with respect to a query point q equal to

1 If 0 ≡ i mod n, it indicates the nth coordinate of the cell.

 Dynamic Skylines Considering Range Queries 241

Fig. 4. A grid-indexed 2-dimensional space Fig. 5. The original Z-order curve

the origin, as shown in Fig. 5. Although the monotonic ordering of Z-order curve in
dominance can be used in efficient skyline computation, the benefit of Z-order curve is
excluded once the query is not equal to the origin. As shown in Fig. 5, although p4 =
(4, 4) is accessed latter than p1 = (1, 6) according to the Z-addresses, the transferred p4 =
(1, 0) dynamically dominates the transferred p1 = (2, 2), with respect to the query point
q' equal to (3, 4). It means that the property of the monotonic ordering of the original
Z-order curve may be destroyed while being applied to dynamic skyline computation.
We therefore design a variant of Z-order curve, i.e. multidirectional Z-order curves for
dynamic skyline computation regarding a range query.

Definition 5 (MZ-address and MZ-imported coordinates of a cell): Given a range
query q ([q1, q1'], [q2, q2'], …, [qn, qn']) in a grid-indexed n-dimensional space and a cell
with coordinates (c1, c2,…, cn), where each coordinate ci is represented as a binary
sequence (bi1bi2…biv)2, the binary sequence (bi1bi2…biv)2 of ci is transferred to an op-
posite sequence, i.e. 1 2 2(...)i i ivb b b , if r × (ci + 1) ≤ qi, ∀ i = 1 to n. Let the decimal repre-
sentation of the opposite sequence corresponding to ci be denoted ic . The MZ-address
of the cell is then defined as a sequence of bits, interlacing the bits from each coordinate
of the cell, represented as a (transferred or non-transferred) binary sequence. Moreover,
the MZ-imported coordinates (MZI-coordinates) of a cell are defined as pseudo
n-coordinates (d1, d2, …, dn), where di = ic if r × (ci + 1) ≤ qi and di = ci, otherwise. ■

Fig. 6. Multidirectional Z-order curves in q-orthants

Example 3: Let b and r be 8 and 10, respectively. Give a cell with coordinates (2, 4) =
(010, 100)2 and a query q equal to ([30, 35], [20, 25]), since (2 + 1) × 10 ≤ 30, the binary
sequence of 2, i.e. (010)2, is transferred to (101)2. Accordingly, the MZ-address of this
cell is (110010), different from its original Z-address equal to (011000). Moreover, the
MZI-coordinates of the cell, generated from (101, 100)2 are (5, 4). ■

As mentioned in Definition 4, the space is partitioned into 2n q-orthants, with respect to
q. By independently sorting the cells in each q-orthant into an increasing order of

242 W.-C. Wang, E.T. Wang, and A.L.P. Chen

MZ-address, multidirectional Z-order curves (MZ-order curves) are generated. An
example of MZ-order curves is shown in Fig. 6. We use an example of the one dimen-
sional cells to express the semantics of generating an opposite sequence related to a
coordinate of a cell. Let b be 8. Then, the coordinate of a cell is between 0 = (000)2 and
7 = (111)2. If a range query q [q1, q1'] exactly falls into the cell 3, the other cells can be
separated into two categories, i.e. the cells with coordinates larger or smaller than 3. To
the cells with coordinates larger than 3, i.e. the cells 4, 5, 6, and 7, the larger the coor-
dinate is, the further from q the corresponding cell is. Alternatively, to the cells with
coordinates smaller than 3, i.e. the cells 0, 1, and 2, the smaller the coordinate is, the
further from q the corresponding cell is. In other words, we prefer to earlier access the
cells with larger coordinates, i.e. the access order of 2, 1, and 0, if the corresponding
coordinates are smaller than 3. Using the opposite sequences to represent these cells,
e.g. 2 by (101)2, 1 by (110)2 and 0 by (111)2, and then sorting the bit sequences into an
increasing order of values can achieve the goal of inverse accessing. Accordingly,
following the property of the monotonic ordering of the original Z-order curve,
MZ-order curves also have the similar property.

Property 2 (Monotonic Ordering of MZ-order curves): If the cells in a q-orthant are
accessed according to an increasing order of MZ-address, the data points in a cell with a
former order cannot be dynamically dominated by the other data points in the cells with
the latter order, with respect to a range query q. ■

4 Dynamic Skyline Processing

Our solution to the problem of computing the dynamic skyline regarding a range query
is proposed in this section. We describe the principle of the pruning strategies used in
our solution in Subsection 4.1 and present the algorithm in Subsection 4.2.

4.1 Principle of Pruning Strategies

Lemma 1: Given a range query q ([q1, q1'], [q2, q2'], …, [qn, qn']) in a grid-indexed
n-dimensional space, if a data point p (p[1], p[2], …, p[n]) in a query cell with coor-
dinates = (c1, c2, …, cn) has only one transferred dimension, say i, not equal to 0,
i.e.

[, ']
| [] |

i i i
i

x q q
Min p i x
∈

− ≠ 0, the data points in the cells whose coordinates = (d1, d2, …, dn)
satisfying either 1) di > ci or 0 ≤ di < /iq r⎢ ⎥⎣ ⎦ − 1 if ci = '/iq r⎢ ⎥⎣ ⎦ or 2) di < ci or di > '/iq r⎢ ⎥⎣ ⎦ + 1
if ci = /iq r⎢ ⎥⎣ ⎦ can be dynamically dominated by p, with respect to q. ■

Proof: Since
[, ']

| [] |
i i i

i
x q q
Min p i x
∈

− ≠ 0 and
[, ']

| [] |
j j j

j
x q q

Min p j x
∈

− = 0, ∀ j = 1 to n and j ≠ i, p must
dynamically dominate any data point whose transferred i dimension is larger
than

[, ']
| [] |

i i i
i

x q q
Min p i x
∈

− , with respect to q. If ci = '/iq r⎢ ⎥⎣ ⎦ , the transferred i dimensions of any
data points in the cells with coordinates = (d1, d2, …, dn) and di > ci or 0 ≤ di < /iq r⎢ ⎥⎣ ⎦ − 1
must be larger than

[, ']
| [] |

i i i
i

x q q
Min p i x
∈

− . Moreover, if ci = /iq r⎢ ⎥⎣ ⎦ , the transferred i dimensions
of any data points in the cells with coordinates = (d1, d2, …, dn) and di < ci or di
> '/iq r⎢ ⎥⎣ ⎦ + 1 must be larger than

[, ']
| [] |

i i i
i

x q q
Min p i x
∈

− . Therefore, the data points in the cells
whose coordinates = (d1, d2, …, dn) satisfying either 1) di > ci or 0 ≤ di < /iq r⎢ ⎥⎣ ⎦ − 1 if
ci= '/iq r⎢ ⎥⎣ ⎦ or 2) di < ci or di > '/iq r⎢ ⎥⎣ ⎦ + 1 if ci = /iq r⎢ ⎥⎣ ⎦ can be dynamically dominated by p,
with respect to q. ■

 Dynamic Skylines Considering Range Queries 243

 (a) (b)

Fig. 7. Illustrations of Lemmas 1 and 2

Lemma 2: Given a range query q ([q1, q1'], [q2, q2'], …, [qn, qn']) in a grid-indexed
n-dimensional space, if a data point p (p[1], p[2], …, p[n]) in a pivot cell with coor-
dinates = (c1, c2, …, cn) has only one transferred dimension, say i, not equal to 0,
i.e.

[, ']
| [] |

i i i
i

x q q
Min p i x
∈

− ≠ 0, where 1 ≤ i ≤ n, the data points in the cells whose coordinates =
(d1, d2, …, dn) satisfying either 1) di > ci or 0 ≤ di < /iq r⎢ ⎥⎣ ⎦ + '/iq r⎢ ⎥⎣ ⎦ − ci if ci − '/iq r⎢ ⎥⎣ ⎦ > 0 or
2) di < ci or di > /iq r⎢ ⎥⎣ ⎦ + '/iq r⎢ ⎥⎣ ⎦ − ci if ci − /iq r⎢ ⎥⎣ ⎦ < 0 can be dynamically dominated by p,
with respect to q. ■

Proof: Since
[, ']

| [] |
i i i

i
x q q
Min p i x
∈

− ≠ 0 and
[, ']

| [] |
j j j

j
x q q

Min p j x
∈

− = 0, ∀ j = 1 to n and j ≠ i, p must
dynamically dominate any data point whose transferred i dimension is larger
than

[, ']
| [] |

i i i
i

x q q
Min p i x
∈

− , with respect to q. If ci − '/iq r⎢ ⎥⎣ ⎦ > 0, the transferred i dimensions of
any data points in the cells with coordinates = (d1, d2, …, dn) and di > ci or 0 ≤ di
< /iq r⎢ ⎥⎣ ⎦ + '/iq r⎢ ⎥⎣ ⎦ − ci must be larger than

[, ']
| [] |

i i i
i

x q q
Min p i x
∈

− . Moreover, if ci − /iq r⎢ ⎥⎣ ⎦ < 0, the
transferred i dimensions of any data points in the cells with coordinates = (d1, d2, …, dn)
and di < ci or di > /iq r⎢ ⎥⎣ ⎦ + '/iq r⎢ ⎥⎣ ⎦ − ci must be larger than

[, ']
| [] |

i i i
i

x q q
Min p i x
∈

− . Therefore, the
data points in the cells whose coordinates = (d1, d2, …, dn) satisfying either 1) di > ci or
0 ≤ di < /iq r⎢ ⎥⎣ ⎦ + '/iq r⎢ ⎥⎣ ⎦ − ci if ci − '/iq r⎢ ⎥⎣ ⎦ > 0 or 2) di < ci or di > /iq r⎢ ⎥⎣ ⎦ + '/iq r⎢ ⎥⎣ ⎦ − ci if ci
− /iq r⎢ ⎥⎣ ⎦ < 0 can be dynamically dominated by p, with respect to q. ■

Example 4: As shown in Fig. 7(a), if a data point falls into the cell with coordinates =
(3, 4) and moreover, the x-coordinate of the data point satisfies the corresponding
requirement of the range query q, (i.e. the transferred x-coordinate = 0), all of the data
points in the cells ([0, 7], [0, 3]) and the cells ([0, 7], 7) can be dynamically dominated
by this data point, with respect to q according to Lemma 1. Moreover, as shown in Fig.
7(b), if a data point falls into the cell with coordinates (3, 3) and the corresponding
transferred x-coordinate is equal to 0, then all of the data points in the cells ([0, 7], [0,
2]) and the cells ([0, 7], 7) can be dynamically dominated by this data point, with re-
spect to q according to Lemma 2. ■

Observation 1: Suppose that the coordinates of two cells C and D in a grid-indexed
n-dimensional space are (c1, c2, …, cn) and (d1, d2, …, dn), respectively, and moreover,
the query is equal to the origin (i.e. equivalent to the original skylines). Then, any data
points in C can dominate any data points in D if ci < di, ∀ i = 1 to n. ■

Observation 1 comes from that the block j of a coordinate of a cell is related to the
domain of [jr, (j + 1)r). Since the domain of ci is [cir, (ci + 1)r) and that of di is [dir, (di +

244 W.-C. Wang, E.T. Wang, and A.L.P. Chen

1)r), the i dimension of any data point in C must be smaller than that of any data point in
D, if ci < di. Accordingly, any data points in C can dominate any data points in D if ci <
di, ∀ i = 1 to n. To MZI-coordinates, we have the similar property.

Lemma 3: Suppose that the range query q is ([q1, q1'], [q2, q2'], …, [qn, qn']) and
moreover, the MZI-coordinates of two cells C and D in the same q-orthant are (c1, c2,
…, cn) and (d1, d2, …, dn), respectively. Then, any data points in C can dynamically
dominate any data points in D, with respect to q if ci < di, ∀ i = 1 to n. ■

Proof (by contradiction): We assume that a data point s in D cannot be dynamically
dominated by a data point t in C. Since C ≠ D, at least in one dimension, say i,

[, ']
| [] |

i i i
i

x q q
Min s i x
∈

− <
[, ']

| [] |
i i i

i
y q q
Min t i y
∈

− . Since C and D are in the same q-orthant, either the con-
dition of s[i] < qi and t[i] < qi or the condition of s[i] > qi' and t[i] > qi' holds.

Case 1 (s[i] < qi and t[i] < qi): |s[i] − qi| =
[, ']

| [] |
i i i

i
x q q
Min s i x
∈

− <
[, ']

| [] |
i i i

i
y q q
Min t i y
∈

− = |t[i] − qi|. We

obtain that qi − s[i] < qi − t[i], which implies [] / [] / .t i r s i r<⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ From [] / [] /t i r s i r<⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ , s[i]

< qi, and t[i] < qi, we can infer that ci > di, where a contradiction occurs.

Case 2 (s[i] > qi' and t[i] > qi'): |s[i] − qi'| =
[, ']

| [] |
i i i

i
x q q
Min s i x
∈

− <
[, ']

| [] |
i i i

i
y q q
Min t i y
∈

− = |t[i] − qi'|.

We obtain that s[i] < t[i], which implies [] / [] /s i r t i r<⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ . Since s[i] > qi' and t[i] > qi',

[] / [] /i id s i r t i r c= < =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ , where a contradiction occurs.
Therefore, any data points falling into C can dynamically dominate any data points

falling into D, with respect to q if ci < di, ∀ i = 1 to n. ■

Example 5: As shown in Fig. 8, the original coordinates of C are (2, 2) and its
MZI-coordinates are (5, 5). Moreover, any data points in C can dynamically dominate
any data points in the cells with original coordinates ([0, 1], [0, 1]), since their corre-
sponding MZI-coordinates are (6, 6), (6, 7), (7, 6), and (7, 7) with both coordinates
smaller than (5, 5). ■

 Fig. 8. An illustration of Lemma 3 Fig. 9. An illustration of the running MDS

4.2 The MDS Algorithm

By using the pruning strategies coming from Lemmas 1, 2 and 3, our algorithm of
computing the dynamic skyline regarding a range query, named MDS (Multi Direc-
tional Scanning) is devised. The pseudo code of MDS is shown in Algorithm 1 and we
describe the main steps of MDS as follows. Let the range query q specified by users be
([q1, q1'], [q2, q2'], …, [qn, qn']).

 Dynamic Skylines Considering Range Queries 245

Step 1: We first identify the query cells regarding q and then, check to see whether
any data points in the query cells satisfy q. If yes, return these data points as results.
Otherwise, all of the data points in the query cells are transferred using the minimum
distance function mentioned in Definition 1 and then, placed in the candidate point set.
If a data point in a certain query cell has only one transferred dimension not equal to 0,
some corresponding cells can be pruned according to Lemma 1, which means that the
data points in the cells pruned need not be checked again.

Algorithm 1 (The MDS Algorithm)
Input: a dataset D in a grid-indexed n-dimensional space and a range query q
Output: the dynamic skyline regarding q
Variable: the candidate point set CandP and the candidate cell set CandC CandP = and CandC = , initially

1. Find the data points satisfying q and return those data points as exact results.
2. If there are no data points satisfying q
3. For each query cell C
4. If there is a data point p in C with only one transferred dimension 0
5. Prune the corresponding cells using Lemma 1
6. Transfer all the data points in C and place them in CandP
7. For each un-pruned pivot cell C
8. If there is a data point p in C with only one transferred dimension 0
9. Prune the corresponding cells using Lemma 2

10. Transfer all the data points in C and place them in CandP
11. For each q-orthant Q
12. Compute the corresponding MZ-address and MZI-coordinates for each cell in Q and sort the cells into

an increasing order of MZ-address
13. For each cell C with MZI-coordinates = (c1, c2, …, cn) in Q
14. If (C is empty or a cell D with MZI-coordinates = (d1, d2, …, dn) in CandC exists such that di < ci

i = 1 to n)
15. C is pruned using Lemma 3
16. Else
17. C is placed in CandC
18. For each cell C in CandC
19. Transfer all the data points in C and place them in CandP
20. CandC =
21. Apply a existing skyline algorithm, e.g., SFS, to find the skyline in CandP and return the corresponding

skyline points

Step 2: For each un-pruned pivot cell, if it is non-empty, all of the data points in the
pivot cell are transferred and placed in the candidate point set. Again, if a data point in a
certain pivot cell has only one transferred dimension not equal to 0, some corresponding
cells can be pruned using Lemma 2. Notice that the pivot cells with adjacent coordinates
are sequentially accessed and moreover, the accessing order follows an increasing order
of the distance to the query. That is, the pivot cells closer to the query cells are earlier
accessed. This is because the pivot cells closer to the query cells may have the better
pruning capability, thus early terminating the accessing.

Step 3: For the cells in each q-orthant, we compute their corresponding
MZ-addresses and then sort them into an increasing order of MZ-address. After that,
each cell is sequentially accessed. The corresponding MZI-coordinates of the first
accessed and non-empty cell are placed in the candidate cell set. During the process of
sequentially accessing the cells, if a cell C with MZI-coordinates = (c1, c2, …, cn) is
empty or we can find the other cell, say D, with MZI-coordinates = (d1, d2, …, dn) from
the candidate cell set such that di < ci ∀ i = 1 to n, the cell C can be pruned using Lemma
3. Otherwise, C with its MZI-coordinates is placed in the candidate cell set. After all of

246 W.-C. Wang, E.T. Wang, and A.L.P. Chen

the cells in the current q-orthant are either accessed or pruned, all of the data points in
the cells kept in the candidate cell set are transferred and placed in the candidate point
set. Then, we clear the candidate cell set and turn to process another q-orthant.

Step 4: After the cells in all q-orthants are processed, we can apply the existing
skyline algorithms, e.g. SFS2 [3], to find the dynamic skyline regarding q from the
transferred data points in the candidate point set.

Example 6: As shown in Fig. 9, the cells with coordinates = ([0, 7], 0) and (0, [0, 7])
can be pruned by the cells with coordinates = (4, 1) (or (4, 7)) and (1, 4), respectively.
Moreover, after checking the pivot cells, the candidate point set = {a, b, c, d}. While
checking the lower-left q-orthant, the cell with MZI-coordinates = (5, 5), i.e. the cell
where h falling into is pruned since the cell with MZI-coordinates = (4, 4), i.e. the cell
where g falling into is kept in the candidate cell set. Moreover, the cell with
MZI-coordinates = (6, 6), i.e. the cell where i falling into, is also pruned due to the same
reason. After all the cells in the lower-left q-orthant are processed, the candidate cell set
= {the cells with MZI-coordinates = (4, 4) and (4, 5)}. Accordingly, the candidate point
set becomes {a, b, c, d, g, k}. ■

Using MDS to find the dynamic skyline regarding a range query can avoid the need to
generate the complete transferred dataset by scanning the whole dataset, thus reducing
the times of final dominance checking. Moreover, the other advantage of MDS is that it
is easy to be parallelized. Since the cells in each q-orthant are processed independently,
MDS can be easily performed in the system with multi-processors.

5 Performance Evaluation

In this section, a series of experiments are performed to evaluate our approach and
moreover, the experiment results are also presented and analyzed.

5.1 Experiment Setup

Following [13], the test datasets used in the experiments are synthetic datasets generated
using the data generator from [12]. The distributions of the test datasets [13] are shown in
Table 1. To the best of our knowledge, there are no existing approaches specially fo-
cusing on the dynamic skylines regarding range queries. Accordingly, since MDS is the
first work and applies the SFS algorithm [3] to find the skyline in the final partial trans-
ferred dataset in our implementation, MDS is therefore compared with a naïve approach
(Naïve) transferring the whole dataset according to the range query and then applying the
SFS algorithm to find the skyline. Both of the two algorithms are implemented in C and
performed on a PC with the Intel Core 2 Quad 2.66GHz CPU, 2GB of main memory, and
under the Ubuntu v9.10 Operating system. In order to simulate no data points exist to
fully satisfy the range queries in the experiments, after a range query is issued, the exact
results of the corresponding query are eliminated from the datasets. Moreover, the run-
ning time of each approach shown in the following experiment results is an average
processing time among processing 50 range queries. Notice that, the same as [13], the
issued queries are randomly generated, with a distribution identical to the distribution of

2 The other approaches on skyline computation, without indexing, can substitute SFS.

 Dynamic Skylines Considering Range Queries 247

the corresponding test dataset. On the other hand, since setting the block number b to
partition each dimension for index construction may affect the performance of MDS, we
therefore use distinct b in the experiments. b = 32 while d = 2 to 4 and b = 16 while d = 5.
The experiment factors are summarized in Table 2.

Table 1. The distributions of the test datasets

distribution description
Independent The attributes of each data point are generated uniformly and randomly.

Correlated If a data point has an attribute with low value, the other attributes of this
data point may likely have low values as well.

Anti-Correlated If a data point has an attribute with a low value, the other attributes of this
data point may likely have high values.

Table 2. Experimental factors

Factor Range description
d 2 ~ 5 the number of dimensions of each data point

of data points 500K ~ 2M the sizes of the datasets
b 16/32 the number of blocks in each dimension

5.2 Experiment Results

The experiment results regarding the test datasets with different distributions are shown
in Figs. 10-13. Since the larger sizes of datasets cause the longer processing time, the
processing time of MDS and that of Naïve are increased as the increasing of the sizes of
datasets. Moreover, as shown in Figs. 10-12, the performance of MDS is better than
that of Naïve in all of the cases. As shown in Fig. 13, we can find that the pruning power
of MDS is very strong; in general, the pruning strategies used in MDS can prune over
90% data points from the test datasets in most of the cases, making the number of data
points needing to be transferred few. In addition, this also greatly reduces the times of
dominance checking, therefore outperforming Naïve.

Fig. 10. The independent datasets Fig. 11. The correlated datasets

Fig. 12. The anti-correlated datasets

248 W.-C. Wang, E.T. Wang, and A.L.P. Chen

It is worth mentioning that in all the distributions of the test datasets, the processing
time of either MDS or Naïve with respect to the higher dimensions, e.g. 5, is shorter
than that with respect to the lower dimensions, e.g. 2. This is because the sizes of sky-
lines with respect to the lower dimensions are much larger than those with respect to the
higher dimensions, and the performance of SFS (both used in MDS and Naive) is
highly affected by the size of a skyline. Conceptually, the sizes of skylines may in-
crease with the increasing of the number of dimensions since a data point with higher
dimensions may not be dominated with the higher probability (referred to the definition
of dominance). However, in the experiments, since the domain range of each dimension
is identical, the datasets with lower dimensions are much denser than those with higher
dimensions under the condition of the same sizes of datasets. Therefore, the datasets
with lower dimensions may have skylines with the larger sizes, making the processing
time regarding the lower dimensions higher than that regarding the higher dimensions.

(a) 2 dimensions (b) 3 dimensions

(c) 4 dimensions (d) 5 dimensions

Fig. 13. The pruning rate of MDS

Moreover, although MDS prunes most of the data points (i.e. over 90%) in most of
the cases, in some cases regarding the correlated distribution as shown in Figure 11, the
performance of MDS is not greatly better than that of Naïve (say 10 times better).
Again, this is affected by the sizes of skylines. The sizes of skylines in the test datasets
with the correlated distribution are much larger than those regarding the other distri-
butions. Under the cases with the larger sizes of skylines, the performance bottleneck of
MDS is at the step of dominance checking (step 4) since the SFS approach is applied to
the candidate checking of MDS.

6 Conclusions

In this paper, we make the first attempt to solve a new problem on dynamic skyline
computation regarding a range query. Moreover, the semantics of this novel skyline
query is also well explained. Given a range query, the dynamic skyline query returns
the data points not dynamically dominated by any other data points, with respect to the

 Dynamic Skylines Considering Range Queries 249

given query. Since it is costly to scan the whole dataset for transferring all the data
points from the original space to the other space according to the range query and then
scan the whole transferred dataset for dominance checking, we propose an efficient
approach, i.e. MDS based on the gird index and newly designed multidirectional
Z-order curves to avoid generating the whole transferred dataset. The experiment re-
sults demonstrate that MDS is very efficient, outperforming a naïve approach using SFS
only. Moreover, since the three pruning strategies are used in MDS, most of the data
points i.e. over 90% need not be transferred to the other space for dominance checking.
In addition to high efficiency, the other main advantage of MDS is that it is easy to
perform MDS in the system with multi-processors since the cells in each q-orthant can
be independently processed.

References

[1] Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th
International Conference on Data Engineering, ICDE 2001, Heidelberg, Germany, pp.
421–430 (2001)

[2] Bartolini, I., Ciaccia, P., Patella, M.: SaLSa: Computing the skyline without scanning the
whole sky. In: Proceedings of the 2006 ACM International Conference on Information and
Knowledge Management, CIKM 2006, Arlington, Virginia, USA, pp. 405–414 (2006)

[3] Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proceedings of
the 19th International Conference on Data Engineering, ICDE 2003, Bangalore, India, pp.
717–719 (2003)

[4] Chen, L., Lian, X.: Efficient processing of metric skyline queries. IEEE Trans. Knowl.
Data Eng. 21(3), 351–365 (2009)

[5] Dellis, E., Seeger, B.: Efficient Computation of Reverse Skyline Queries. In: Proceedings
of the 33nd International Conference on Very Large Data Bases, VLDB 2007, Vienna,
Austria, pp. 291–302 (2007)

[6] Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road networks. In:
Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, Is-
tanbul, Turkey, pp. 796–805 (2007)

[7] Fuhry, D., Jin, R., Zhang, D.: Efficient skyline computation in metric space. In: Proceed-
ings of the 12th International Conference on Extending Database Technology, EDBT 2009,
Saint-Petersburg, Russia, pp. 1042–1051 (2009)

[8] Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In:
Proceedings of the 31st International Conference on Very Large Data Bases, VLDB 2005,
Trondheim, Norway, pp. 229–240 (2005)

[9] Lee, K.C.K., Zheng, B., Li, H., Lee, W.C.: Approaching the skyline in Z order. In:
Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB 2007,
Vienna, Austria, pp. 279–290 (2007)

[10] Orenstein, J.A., Merret, T.H.: A class of data structures for associate searching. In: Pro-
ceedings of the 3rd ACM SIGACT-SIGMOD Symposium on Principles of Database Sys-
tems, PODS 1984, Waterloo, Canada, pp. 294–305 (1984)

[11] Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database sys-
tems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

[12] Random dataset generator for SKYLINE operator evaluation,
http://randdataset.projects.postgresql.org/

250 W.-C. Wang, E.T. Wang, and A.L.P. Chen

[13] Sacharidis, D., Bouros, P., Sellis, T.K.: Caching dynamic skyline queries. In: Ludäscher, B.,
Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp. 455–472. Springer, Heidelberg
(2008)

[14] Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: Proceedings of the 32nd
International Conference on Very Large Data Bases, VLDB 2006, Seoul, Korea, pp.
751–762 (2006)

[15] Su, H.Z., Wang, E.T., Chen, A.L.P.: Continuous Probabilistic Skyline Queries over
Uncertain Data Streams. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA
2010. LNCS, vol. 6261, pp. 105–121. Springer, Heidelberg (2010)

[16] Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In: Proceedings
of the 27th International Conference on Very Large Data Bases, VLDB 2001, Roma, Italy,
pp. 301–310 (2001)

[17] Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable skyline computation using object-based
space partitioning. In: Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, SIGMOD 2009, Providence, Rhode Island, pp. 483–494 (2009)

EcoTop: An Economic Model for Dynamic Processing of
Top-k Queries in Mobile-P2P Networks

Nilesh Padhariya1, Anirban Mondal1, Vikram Goyal1,
Roshan Shankar2, and Sanjay Kumar Madria3

1 IIIT, Delhi, India
{nileshp,anirban,vikram}@iiitd.ac.in

2 NSIT, Delhi, India
roshan@nsitonline.in

3 Missouri University of Science and Technology, Rolla, USA
madrias@mst.edu

Abstract. This work addresses the processing of top-k queries in mo-
bile ad hoc peer to peer (M-P2P) networks using economic schemes.
Our proposed economic model, designated as EcoTop, issues economic
rewards to the mobile peers, which send relevant data items (i.e., those
that contribute to the top-k query result), and penalizes peers for sending
irrelevant items, thereby incentivizing the optimization of communica-
tion traffic. The main contributions of our work are three-fold. First, we
propose the EcoTop economic model for efficient top-k query processing
in M-P2P networks. Second, we propose two schemes, namely ETK and
ETK+, for assigning rewards/penalties to peers and for enabling peers
to re-evaluate the scores of their data items for item re-ranking pur-
poses. Third, we conduct a performance study, which demonstrates that
EcoTop is indeed effective in improving the performance of top-k queries,
while minimizing the communication traffic. Notably, our novel economic
incentive model also discourages free-riding in M-P2P networks.

1 Introduction

In a Mobile ad hoc Peer-to-Peer (M-P2P) network, mobile peers (MPs) interact
with each other in a peer-to-peer (P2P) fashion. Proliferation of mobile devices
(e.g., laptops, PDAs, mobile phones) coupled with the ever-increasing popularity
of the P2P paradigm strongly motivate M-P2P network applications.

Suppose an MP wants to find the top-k restaurants with “happy hours” (or
“manager’s special hours”) within 1 km of her current location. A broker can
facilitate the MP by soliciting information (in terms of both distance and time)
from peers in its vicinity, and it can then integrate this information with its
global ranking list of restaurants (e.g., using Michelin’s restaurant guide). In
a parking lot application, MPs can collect information about available parking
slots and charges, and then they can inform the brokers. Parking lot availability
information has to be current and the broker can integrate this information
with its (global) list of parking slots. The broker can then provide the top-
k available slots to the MP in terms of charges and distance (from the MP’s

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 251–265, 2011.
© Springer-Verlag Berlin Heidelberg 2011

252 N. Padhariya et al.

current location). Similarly, an MP may want to find the top-k stores selling
Levis jeans in a shopping mall with criteria such as (low) price.

Such spatio-temporal queries cannot be directly answered by the broker with-
out obtaining information from other MPs. Such M-P2P interactions are gen-
erally not freely supported by existing wireless communication infrastructures.
The inherently ephemeral nature of M-P2P environments suggests that timeli-
ness of data delivery is of paramount importance in these applications, thereby
necessitating query deadlines. For example, an MP looking for top-k restaurants
in her vicinity would generally prefer query results within a specified deadline.

Existing economic models for distributed systems [8] and static P2P networks
[3,7] do not address top-k queries and M-P2P issues such as frequent network
partitioning and mobile resource constraints. Incentive schemes for mobile en-
vironments [2,12,14] do not address top-k queries. Top-k querying approaches
[4,5,6,9,10,11,13] do not consider economic schemes and M-P2P architecture.

Data availability in M-P2P networks is typically lower than in fixed networks
due to frequent network partitioning arising from peer movement and/or peers
autonomously switching ‘off’ their mobile devices. Data availability is further
exacerbated due to rampant free-riding [3,7], which is characteristic of P2P en-
vironments. Furthermore, MPs generally have limited resources (e.g., bandwidth,
energy, memory space). Since sending/receiving messages expend the limited en-
ergy of MPs, minimizing communication traffic becomes a necessity to address
peers’ energy constraints. Thus, economic incentive schemes become a necessity
to entice resource-constrained MPs to improve data availability.

This work proposes an economic model, designated as EcoTop, which ad-
dresses the efficient processing of top-k queries in M-P2P networks. In EcoTop,
brokers facilitate top-k query processing in lieu of a commission. EcoTop requires
a query-issuing MP to pay a price (in virtual currency), which is application-
dependent, for obtaining its top-k query result. This price is used for making
payments to rankers (i.e., MPs that sent items to answer the query), brokers and
relay peers in order to incentivize them in answering the top-k query. Thus, an
MP has to earn adequate currency by providing service (as a broker, ranker or
relay peer) before it can issue its own queries, thereby discouraging free-riding.

EcoTop issues economic rewards to the rankers, which send relevant items
(i.e., those which contribute to the top-k results) and penalizes them for sending
irrelevant items. This incentivizes MPs to send only those items (to the broker),
which have a higher probability of being in the top-k results, while making them
careful about not sending irrelevant items. This optimizes communication traffic.
MPs use the rewards/penalties as a feedback to re-evaluate their items’ scores.

The main contributions of our work are three-fold:

1. We propose the EcoTop economic model for efficient top-k query processing
in M-P2P networks.

2. We propose two schemes, namely ETK and ETK+, for assigning rewards/
penalties to MPs and for enabling them to re-evaluate the scores of their
data items for item re-ranking purposes.

EcoTop: An Economic Model for Dynamic Processing of Top-k Queries 253

3. We conduct a performance study, which demonstrates that EcoTop is in-
deed effective in improving the performance of top-k query processing, while
minimizing the communication traffic.

ETK and ETK+ differ in that ETK performs equal distribution of rewards/
penalties across the relevant items, while ETK+ uses a weighted distribution.
Both schemes also discourage free-riding due to their economic nature.

2 Related Work

Economic models have been discussed in [8] primarily for resource allocation in
distributed systems. However, these works do not address M-P2P issues such as
frequent network partitioning and mobile resource constraints. Incentive schemes
for static P2P networks [3,7] are too static to be deployed in M-P2P networks
as they assume peers’ availability and fixed topology.

Incentive schemes for mobile ad-hoc networks (MANETs) [2] encourage MPs
in forwarding messages. They do not consider top-k query processing, rewards/
penalties to rankers and M-P2P architecture. The proposal in [4] discusses a
message processing method for top-k queries in MANETs with the objective
of reducing communication traffic, while maintaining the accuracy of the query
result. However, it does not consider economic schemes. Incentive schemes for
opportunistically disseminating spatio-temporal data in M-P2P networks have
been discussed in [12,14]. In contrast, our approach disseminates data on-demand
to optimize peers’ energy consumption. Furthermore, the proposals in [12,14] do
not address top-k queries and rewards/penalties to rankers.

Top-k query processing approaches focus on semantic-based probabilistic
formulations [11], cost-based optimization for middleware access [5] and location-
based methods using R-tree variants [6]. The work in [9] presents a top-k struc-
tured mobile Web search engine. Top-k query processing approaches have also
been proposed for wireless sensor networks [10,13]. However, these works do not
consider economic schemes and M-P2P architecture. The tutorial in [15] details
top-k query processing in wireless sensor networks.

3 EcoTop: An Economic Model for Dynamic Processing
of Top-k Queries in M-P2P Networks

This section discusses our proposed EcoTop economic model for top-k query
processing in M-P2P networks.

Architecture of EcoTop

EcoTop’s architecture comprises MPs that can assume one of the four following
roles: query-issuer, broker, ranker and relay. These roles are interchangeable e.g.,
an MP can be a broker for a given query, but a ranker for another query.

Query-issuer QI issues queries of the form (k, L, τQ, ρ), where k is the num-
ber of data items that are requested in the top-k query. L represents the query

254 N. Padhariya et al.

location, and is of the form of {(x, y), rad}. Here, (x, y) represents the spatial
coordinates associated with a given query Q, while rad represents the radius.
For example QI may want to find restaurants within 1 km of its current lo-
cation L. τQ is the deadline time of Q. Notably, the ephemerality of M-P2P
environments necessitates timely responses, and consequently query deadlines.
ρ is the query price that QI will pay to obtain the top-k query result1. Broker
B acts as a mediator, which facilitates efficient top-k query processing in lieu of
a commission. As we shall see in Section 4, B also performs economic incentive
functions i.e., distribution of rewards/penalties. For the sake of convenience, we
shall henceforth use the term payoffs to refer to rewards/penalties.

Rankers are MPs, which provide data items for answering the top-k query.
Rankers are rewarded if their items contribute to the top-k result, otherwise
they are penalized. Relay MPs forward messages in multi-hop M-P2P networks
in lieu of a small constant commission. Notably, payments to rankers are typi-
cally higher than that of broker commissions in order to better incentivize MPs
to provide data. This is because MPs providing data generally contribute signif-
icantly more to data availability than brokerage functions. Furthermore, relay
commission is lower than that of broker commission to better incentivize bro-
kerage functions as compared to relay functions.

Query Processing in EcoTop

QI broadcasts a top-k query Q. Each broker replies to QI with information about
its remaining energy En, bid price ρbid, current currency Curr and distance Dist
from QI. Then QI computes a score η for each broker, and selects the broker
with the highest value of η for processing Q. η is computed as follows:

η = (w1 × En) + (w2 / ρbid) + (w3 / Curr) + (w4 / Dist) (1)

where w1 to w4 are weight coefficients such that 0 < w1, w2, w3, w4 � 1 and∑4
i=1 wi = 1. Thus, EcoTop prefers relatively high-energy brokers because they

are less likely to run out of energy, while processing the query. Lower values of
bid prices are preferred by QI since it wants to obtain the query result at lower
cost. Brokers with less currency are given higher preference to facilitate revenue-
balancing across brokers. This prevents low-currency brokers from starvation,
which may result in decreased number of brokers in the network. Moreover, QI
prefers relatively nearby brokers to obtain the query result in a timely manner.

Now, the broker broadcasts Q over the network with time-to-live (TTL) of n
hops2. Each ranker R has an individual item ranking list TfR, each data item of
which is associated with an item rank r and a selection probability μ. Notably,
the value of r is subjective because it is autonomously assigned to an item by a
given ranker. The implication is that the same item may be ranked differently
at different rankers. As we shall see in Section 4, μ facilitates the adjustment
1 Query results received by QI after the deadline time of τQ entail no payments.
2 Results of our preliminary experiments showed that n = 6 is a reasonable value for

our application scenarios.

EcoTop: An Economic Model for Dynamic Processing of Top-k Queries 255

��

��

��

��

��

��

��

��

QI

query-issuer brokers rankers

Send replies to QI
�

Send confirmation message to

selected broker
�

Broadcast top-k query
�

Broadcast top-k query
�

Send individual T lists

��

��

��

��

��

�	

��

�

QI Send individual TR lists
�

Send computed top-k result
�

Send payment to broker
�

Send computed payoffs to

rankers
	

Fig. 1. Illustrative example of query processing in EcoTop

of item selection probability based on recent payoffs assigned to a given item.
Using the values of μ and r, each ranker R computes a score γ and selects items
with relatively higher values of γ to send to the broker. γ is computed below:

∀i ∈ TfR : γi = (w1 × (NTfR
− ri)/NTfR

) + (w2 × μi) (2)

where ri and μi are the rank and the selection probability of item i respectively.
NTfR

is the total number of items in TfR. Here, w1 and w2 are weight coefficients
such that 0 < w1, w2 � 1 and w1 + w2 = 1. EcoTop stipulates that w2 > w1 to
give higher weightage to the item selection probability than to the rank of the
item. As we shall see in Section 4, this is consistent with the overall objective of
our incentive model i.e., linking item re-ranking with payoffs. We set w1 = 0.2
and w2 = 0.8 for all the MPs. Each ranker is associated with a risk profile
δ, where 0 < δ � 1. Only items, whose respective values of γ exceed δ, are
consolidated by the ranker in a list TR and sent to the broker. As the value of δ
increases, ranker’s risk of getting penalized decreases.

Each broker has a global ranking list TG, which can differ across brokers. (In
our top-k restaurant application scenario, the global ranking list could be any
standard restaurant guide such as the Michelin’s guide.) Upon receiving TR lists
from possibly multiple rankers, the broker B collates and compares them with
TG. B parses TG in a top-down fashion as follows. If an item i in TG occurs in at
least one of the individual TR lists, it is added to the top-k result set TA along
with the unique identifiers of the rankers that sent i. (If i does not occur in any
of the individual TR lists, B simply traverses downwards to the next item in
TG.) B continues parsing TG until the result set TA contains k items. Then B
sends TA to QI3. Observe how the global ranking list is used as a benchmark
to evaluate the top-k relevance of the items sent by autonomous rankers, whose
individual item ranking lists may differ.
3 If TA contains less than k items, the result set is deemed to be incomplete, and it is

not sent to QI .

256 N. Padhariya et al.

Upon receiving TA, QI pays B, which deducts its own commission before
distributing the payoffs to rankers and commissions to relay MPs. Then each
ranker R re-evaluates the selection probability μ of each item in its own TR

based on received payoffs, and then re-computes the values of γ for these items.
Figure 1 depicts an illustrative example of query processing in EcoTop. Figures

2a, 2b and 2c present the algorithms executed by query-issuers, brokers and
rankers respectively.

Algorithm EcoTop_Query_Issuer (QI)
Input: Q: top-k query
(1) Broadcast Q
(2) Wait for replies from brokers
(3) Receive replies from brokers

/* Each reply contains broker’s energy level, bid price, currency and distance from QI*/
(4) Consolidate the replies into a list LB

(5) if LB is not empty
(6) Compute the value of η for each broker in LB

(7) Select the broker with the highest value of η
(8) Send confirmation message to the selected broker SelB
(9) Wait for the query result from SelB
(10) Receive the top-k result TA from SelB
(11) if TA is received within the deadline time τQ

(12) Send the payment ρ to SelB
end

(a) Algorithm for Query-issuer

Algorithm EcoTop_Broker (B)
Input: Q: top-k query
(1) Receive Q from query-issuer QI
(2) Send bid to QI with details of energy level,

bid price, currency and distance
(3) Wait for reply from QI
(4) if Selected by QI
(5) Broadcast Q to obtain top-k individual

rank lists TR from rankers
(6) Wait ε time units for replies from rankers
(7) Receive replies (within ε time units)

from interested rankers
/* Each reply contains top-k individual
rank list TR */

(8) Consolidate received TR lists into a set LTR
(9) if LTR

is not empty
(10) Compute top-k result set TA from LTR
(11) if |TA| < k
(12) Do not send TA to QI
(13) else
(14) Send TA to QI
(15) Receive payment ρ from QI
(16) Compute and send payoffs

to the rankers
end

(b) Algorithm for Broker

Algorithm EcoTop_Ranker (R)
Input: Q: top-k query
(1) Receive Q from broker B
(2) for each item i in rank list TfR

(3) Compute γi for i
(4) if γi > δ

/* δ quantifies ranker’s risk profile */
(5) Add i to a list TR

(6) Sort the items in TR

in decending order of γ
(7) if |TR| < k
(8) Do not send TR to B
(9) else
(10) Delete the bottom |TR|−k items from TR

(11) Send TR to B
(12) Wait for payoffs from B
(13) Receive payoffs from B
(14) for each item i in TR

(15) if i is rewarded
(16) Increase μ of i
(17) else
(18) Decrease μ of i
(19) Recompute γi

end

(c) Algorithm for Ranker

Fig. 2. Algorithms in EcoTop

EcoTop: An Economic Model for Dynamic Processing of Top-k Queries 257

4 Economic Schemes in EcoTop

This section discusses two economic schemes used by EcoTop for assigning pay-
offs to rankers to facilitate them in re-evaluating their item scores. We designate
these schemes as ETK (i.e., EcoTopK) and ETK+ respectively.

We define an item i to be relevant to a query Q if it occurs in the top-k query
result set TA. We define a successful ranker w.r.t. data item i if i is relevant to
the query Q, otherwise the ranker is deemed to be unsuccessful4.

ETK and ETK+ differ in that ETK performs equal distribution of rewards to
the relevant items, while ETK+ uses a weighted distribution. Furthermore, both
schemes also differ in their way of assigning penalties to unsuccessful rankers i.e.,
ETK and ETK+ assign equal and weighted penalties respectively. Incidentally,
both schemes also discourage free-riding due to their economic nature.

In both ETK and ETK+, the total payment ρR to be distributed to the
successful rankers is computed as follows:

ρR = ρ − ρB − ρRL (3)

where ρ is the query price paid by QI to the broker, ρB is the broker commission
and ρRL is the total amount of relay commission that the broker will pay to the
relay MPs in the respective successful query paths. Notably, the value of ρB

is application-dependent. For both ETK and ETK+, we defined ρB as 10% of
the query price ρ. Although our schemes can be intuitively generalized to work
with other values of ρB, results of our preliminary experiments showed that our
schemes perform best when ρB is in the range of 5% to 15% of ρ. Observe that
this is also consistent with our overall objective of providing better incentives to
rankers than to brokers.

As we shall see shortly, the rewards to be assigned to the successful rankers
are computed based on the value of ρR. Similarly, the penalties to be assigned
to the unsuccessful rankers are also computed based on the value of ρR. The
broker receives the penalty payments from the unsuccessful rankers, and sends
the total amount of penalty payments back to QI. Thus, it is possible for the
effective payment made by QI to the broker to be less than ρ.

ETK

In ETK, ρR is equally divided among all the relevant items. Then each ranker,
which successfully sent item i, receives a reward Pi that is equal to the total
reward for item i divided by the total number fi of successful rankers w.r.t. item
i. Given that the top-k result set is TA, Pi is computed as follows:

∀i ∈ TA : Pi =
1
fi

(ρR

k

)
(4)

The reward REWRj assigned to a given ranker Rj is the total amount that
it obtains for each of its relevant items i.e., those that occur in the TA ∩ TRj ,
4 A ranker may be successful w.r.t. item i, but unsuccessful w.r.t. another item j.

258 N. Padhariya et al.

where TRj is the individual rank list of Rj. Given the set of rankers SRanker ,
the computation of REWRj follows:

∀j ∈ SRanker : REWRj =
∑

i∈(TA∩TRj)

Pi (5)

ETK defines penalties based on the notion of opportunity cost. This is because
for all relevant items, which were not sent by ranker Rj, Rj would have earned
currency if it had sent those items. Hence, the penalty PENRj assigned to Rj
equals

∑
Pi, where i represents items that occur in TA −TRj . The computation

of PENRj follows:

∀j ∈ SRanker : PENRj = ψ ×
⎡⎣ ∑

i∈(TA−TRj)

Pi

⎤⎦ (6)

where ψ is the factor that represents the trade-off between communication over-
head and peer participation. If the value of ψ is high, communication overhead
would reduce because peers would be wary of sending data to the broker due
to the higher penalties assigned to unsuccessful rankers. However, this would
also reduce peer participation in the M-P2P network. On the other hand, if the
value of ψ is low, peer participation would increase albeit at the cost of increase
communication overhead due to lower disincentives for sending items that do
not contribute to the top-k result. In this work, we set the value of ψ to 1.3,
which implies that the penalties for sending irrelevant items is 30% more than
the reward for sending relevant items. This creates disincentives for sending out
irrelevant items, while keeping the peer participation at a reasonable level. We
leave the determination of an optimal value for ψ to future work.

The net payment NETRj received by Rj is the difference between its total
reward and its total penalty. Hence, NETRj equals REWRj − PENRj .

Now, based on the payoffs received, Rj will re-evaluate the selection prob-
ability of all the items in its individual TRj . ETK performs rank-weighted in-
crease/decrease in μ for each item, depending on whether the item is rewarded
or penalized. For each item i in TRj , the value of μij is computed as follows:

∀j ∈ SRanker , ∀i ∈ TRj :

μij =

⎧⎨⎩ min(μij + αup

(|TRj |−rij

|TRj |
)

, 1) if i is rewarded

max(μij − αdown

(|TRj |−rij

|TRj |
)

, 0) if i is penalized
(7)

where rij is the rank of item i in TRj . Observe that, μij increases slightly for
higher-rank items that received rewards but decreases significantly in case of
penalty. Similarly, μij increases significantly for lower-rank items that received
rewards but decreases relatively slightly in case of penalty. Here, αup and αdown

represent the weight coefficients for assigning rewards and penalties respectively.
ETK stipulates that 0 < αup, αdown � 1 and αup < αdown to ensure that
penalties exceed rewards, thereby creating these incentives for rankers in terms

EcoTop: An Economic Model for Dynamic Processing of Top-k Queries 259

of sending out items that are not relevant. In this work, we set the values of αup

and αdown to 0.1 and 0.3 respectively. We leave the determination of optimal
values of αup and αdown to future work.

ETK+

In ETK+, ρR is divided among all the items in the top-k result TA based on
their respective rank-weights i.e., each item i with its associated rank ri has
weight wi = (k − ri), where highest to lowest rank counts are from 0 to (k − 1).
Furthermore, total number W of weights of all items in TA is computed as
W =

∑k
i=1 wi = k (k + 1)/2. Similar to ETK, each ranker, which successfully

sent item i, receives a reward Pi that is equal to the total reward for item
i divided by the total number fi of successful rankers w.r.t. item i. Thus, in
ETK+, Pi is computed as follows:

∀i ∈ TA : Pi =
1
fi

(wi

W
× ρR

)
(8)

Consequently, rewards and penalties assigned to each ranker Rj are computed as
in Equations 5 and 6 respectively, using the value of Pi from Equation 8. Hence,
Rj ’s net payment is the difference between its received rewards and penalties.

Now, each ranker Rj will re-evaluate the score (effectively the selection prob-
ability μ) of each item i in its top-k rank list TRj on the basis of its received
payoffs. The effective change in the selection probability of an item depends upon
two factors: (a) the notion of item selection potential w.r.t. the risk profile (δ)
(b) earning potential of the ranker Rj. Item selection potential increases as the
difference between μ and δ increases. Average selection potential for rewarded
and penalized items for each ranker Rj are computed as sj and s′j respectively.
The computations of sj and s′j are shown below:

∀j ∈ SRanker : sj =
1

|TRj ∩ TA|

⎡⎣ ∑
i∈(TRj∩TA)

(μij − δj)

⎤⎦ (9)

∀j ∈ SRanker : s′j =
1

|TRj − TA|

⎡⎣ ∑
i∈(TRj−TA)

(μij − δj)

⎤⎦ (10)

where TRj is the top-k rank list of Rj, TA is the top-k result of a query Q, μij

is the selection probability of item i in TRj and δj is the risk profile of Rj.
Earning potential ej of each ranker Rj is a measure of its selection efficiency.

ej = | (REWRj − PENRj)/(REWRj + PENRj) |. Based on the payoff of each
item i in TRj , increase/decrease in μij is computed as follows:

∀j ∈ SRanker , ∀i ∈ TRj :

μij =

⎧⎨⎩ min(μij + αup

(
sj+ej

2

)
, 1) if i is rewarded

max(μij − αdown

(
s′

j+ej

2

)
, 0) if i is penalized

(11)

where αup and αdown are the weight coefficients discussed in Equation 7.

260 N. Padhariya et al.

Illustrative Example for ETK and ETK+

Figure 3 depicts an illustrative example of the computations in ETK and ETK+.
In Figure 3a, observe how each ranker R computes the value of γ using Equation
2 with w1 = 0.2 and w2 = 0.8. For ranker R1, the selected elements in TR1

are shaded i.e., TR1={77,51,60} because their respective values of γ exceed 0.8
(δ1 = 0.8). Figure 3b depicts the payoff computations with ψ = 1.3. Observe
that ETK+ assigns high penalties to rankers for sending irrelevant items e.g.
ETK+ assigned 97.50 to R3 as compared to 78.00 in ETK. Figure 3c depicts the
re-evaluation of the selection probability μ with αup = 0.1 and αdown = 0.3.

TfR1 (δ1 = 0.8)

r id μ γ

0 77 0.87 0.90

1 44 0.69 0.72

2 51 0.95 0.90

3 47 0.47 0.49

TfR2 (δ2 = 0.5)

r id μ γ

0 28 0.47 0.58

1 53 0.23 0.36

2 84 0.67 0.70

3 86 0.97 0.92

TfR3 (δ3 = 0.3)

r id μ γ

0 16 0.10 0.28

1 6 0.28 0.40

2 42 0.25 0.36

3 95 0.45 0.50

TR1

60

TR2

86

TR3

72

TG

id
95
52
60
13
22

TA

60

4 26 0.37 0.38

5 60 0.98 0.84

6 73 0.88 0.73

4 14 0.26 0.33

5 83 0.22 0.28

6 36 0.36 0.37

7 60 0.60 0.54

8 45 0.60 0.52

9 97 0.95 0.78

4 51 0.63 0.62

5 60 0.37 0.40

6 29 0.20 0.24

7 84 0.10 0.14

8 87 0.71 0.61

9 72 0.75 0.62

51

77

97

84

87

51

22
84
51
23
97
87
63

84

51

(a) Compilation of top-k result TA (k = 3)

Pj (ETK) Pj (ETK+)

TA ρR / k R1 R2 R3 ρR / k R1 R2 R3

60 30 30 - - 45 45 - -

84 30 - 30 - 30 - 30 -

51 30 15 - 15 15 7.5 - 7.5

REWRi 45 30 15 REWRi 52.5 30 7.5

Ranker TA-TRi PENRi (ETK) PENRi (ETK+)

R1 {84} 1.3 x 30 = 39.00 1.3 x 30 = 39.00

R2 {60, 51} 1.3 x (30+15) = 58.50 1.3 x (45+7.5) = 68.25

R3 {60 84} 1 3 (30 30) 78 00 1 3 (45 30) 97 50R3 {60, 84} 1.3 x (30+30) = 78.00 1.3 x (45+30) = 97.50

(b) Computation of rewards and
penalties

R1 (δ1 = 0.8)

id μ μETK μETK+

77 0.87 0.57 0.82

44 0.69 0.69 0.69

51 0.95 1.00 0.96

47 0.47 0.47 0.47

26 0.37 0.37 0.37

60 0 98 1 00 0 99

R2 (δ2 = 0.5)

id μ μETK μETK+

28 0.47 0.47 0.47

53 0.23 0.23 0.23

84 0.67 0.75 0.71

86 0.97 0.76 0.89

14 0.26 0.26 0.26

83 0.22 0.22 0.22

R3 (δ3 = 0.3)

id μ μETK μETK+

16 0.10 0.10 0.10

6 0.28 0.28 0.28

42 0.25 0.25 0.25

95 0.45 0.45 0.45

51 0.63 0.69 0.69

60 0.37 0.37 0.3760 0.98 1.00 0.99

73 0.88 0.88 0.88 36 0.36 0.36 0.36

60 0.60 0.60 0.60

45 0.60 0.60 0.60

97 0.95 0.92 0.87

29 0.20 0.20 0.20

84 0.10 0.10 0.10

87 0.71 0.65 0.53

72 0.75 0.72 0.57

(c) Updates in the selection probabilities

Fig. 3. Illustrative example of EcoTop schemes

5 Performance Evaluation

This section reports our performance evaluation by means of simulation in OM-
NeT++ (www.omnetpp.org). Our experiments consider a region with area of

EcoTop: An Economic Model for Dynamic Processing of Top-k Queries 261

Table 1. Parameters of our performance study

Parameter Default Value Variations
k 8 4, 12, 16, 20, 24

Number of MPs (NMP) 100 20, 40, 60, 80
Percentage of brokers 15%

Queries/time unit 10
Probability of MP availability 50% to 85%

Initial energy of an MP 90000 to 100000 energy units
Memory space of each MP 8 MB to 10 MB

Speed of an MP 1 meters/s to 10 meters/s
Size of a data item 50 Kb to 350Kb

1000 metres × 1000 metres. MPs in the region move according to the Random
Waypoint Model [1]. The Random Waypoint Model is appropriate for our appli-
cation scenarios, which consider random movement of users. As a single instance,
people looking for top-k restaurants generally move randomly i.e., they do not
follow any specific mobility pattern. Communication range of all MPs is a circle
of 50 metres radius. Each MP contains 20 to 25 data items.

For each top-k query Q, the query-issuer is selected randomly from among
all MPs. 10 such top-k queries are issued in the network per time unit and we
set the query deadline time τQ to 5 time units. Price ρ for each top-k query is
chosen randomly between 100 to 500 currency units. Broker commission ρB is
set to 10% of the total query price ρ. Relay commission ρRL is set to 1 currency
unit. Initial energy of an MP is selected to be randomly in the range of 90000 to
100000 energy units. Sending and receiving a message require 1.5 and 1 energy
units respectively. Incidentally, querying proceeds via the AODV protocol.

Recall that each ranker is associated with a risk profile δ. The number of MPs
with the values of δ as 0.3 (high-risk), 0.5 (medium-risk) and 0.8 (low-risk) are
27, 43 and 30 respectively. For all our experiments, the economic parameters for
ETK and ETK+ are set as follows: (a) weight coefficients w1 and w2 in γ (see
Equation 2) are set to 0.2 and 0.8 respectively (b) penalty factor ψ (see Equation
6) is set to 1.3 (c) αup and αdown (see Equations 7 and 11) are set to 0.1 and
0.3 respectively. Table 1 summarizes the parameters used in our performance
evaluation. Notably, parameter values depend on initial experiments.

Performance metrics are average response time (ART), precision rate (PREC),
query completeness rate (QCR) and communication traffic (MSG). We define
a query as completed if the broker receives at least k items from the rankers
within 70% of the query deadline time τQ. Notably, a broker may fail to receive at
least k items due to reasons such as ranker unavailability and network partition-
ing. We compute ART only for the completed queries. ART = 1

NC

∑NC

q=1(tf −t0),
where t0 is the query-issuing time, tf is the time of the query result reaching
the query-issuer, and NC is the total number of completed queries. We compute
ART in simulation time units (t.u.).

262 N. Padhariya et al.

1

2

3

2 4 6 8 10

A
R

T
 (

t.
u
.)

NQ (102)

ETK+
ETK

NE

(a) ART

 20

 40

 60

2 4 6 8 10

Q
C

R
 (

%
)

NQ (102)

ETK+
ETK

NE

(b) QCR

 20

 40

 60

 80

 100

2 4 6 8 10

P
R

E
C

 (
%

)

NQ (102)

ETK+
ETK

NE

(c) PREC

2

4

6

2 4 6 8 10

M
S

G
 (

1
0

4
)

NQ (102)

ETK+
ETK

NE

(d) MSG

Fig. 4. Performance of ETK & ETK+

PREC is the average precision rate over all the queries. Suppose TAq is the
top-k query result and TGq is the global top-k rank list of the respective bro-
ker for a query q. To obtain PREC for q, we measure the number of items
in TAq which also occur in TGq; then we divide by the number of items in
TGq. Notably, PREC is computed only for completed queries. Thus, PREC =[

1
NC

∑NC

q=1

(|TGq−TAq|
|TGq|

)
× 100

]
. QCR is the ratio of total number NC of com-

pleted queries to the total number NQ of queries. QCR = (NC/NQ) × 100.
We define MSG as the total number of messages incurred for query processing
during the course of the experiment. Thus, MSG =

∑NQ

q=1 Mq, where Mq is the
number of messages incurred for the qth query.

As reference, we adapt a scheme NE (Non_Economic), which does not
provide any economic incentives to MPs towards top-k query processing. Similar
to ETK and ETK+, brokers facilitate top-k query processing in NE. In NE,
query processing proceeds in exactly the same manner as in the case of ETK
and ETK+. The only difference is that the broker sends feedback to the rankers
without including any economic payoff. Thus, the broker’s feedback only concerns
which of the rankers-sent items contributed (or did not contribute) to the top-k
result. Hence, each ranker re-evaluates the selection probability as follows. If a
sent item contributed to the top-k result, it will increase the selection probability
of the item by m such that 0 < m � 1. Conversely, if an item did not contribute
to the top-k result, it will decrease the selection probability of the item by m.
For our experiments, we set m to 0.005. Observe that item re-ranking in NE is
not linked to any economic payoff.

Performance of ETK and ETK+

We conducted an experiment using the default values of the parameters in Table
1. Figure 4 depicts the results. After the first 300 queries have been processed,
ART decreases sharply for both ETK and ETK+, and QCR and PREC increase
steadily due to incentives and effective item re-ranking. However, ART, QCR
and PREC eventually plateau due to network partitioning and unavailability
of some of the rankers. Notably, ETK+ performs better than ETK in terms

EcoTop: An Economic Model for Dynamic Processing of Top-k Queries 263

of ART, QCR and PREC due to two reasons. First, ETK+’s rank-weighted
payoff strategy provides better incentivization than the uniform incentivization
provided by ETK. Second, ETK+ provides more effective re-evaluation of μ due
to its payoff-driven score update strategy as opposed to ETK’s rank-weighted
score update strategy, in which the item re-rankings are not directly tied to the
payoffs associated with the rankers’ items.

NE exhibits relatively constant ART due to its non-incentive nature, hence
most queries are answered relatively close to the deadline time. QCR and PREC
remain relatively low for NE because it does not provide any economic incen-
tives for ranker participation. Hence, the broker does not always receive at least
k items from rankers, thereby resulting in a significant number of incomplete
queries. The increase in QCR and PREC occurs due to the re-evaluation of
μ,but this increase is only slight due to the relatively less effective item re-
ranking strategy, which is neither directly nor indirectly tied to any economic
payoff.

Recall that MSG is the cumulative measure of the messages over the course
of the experiment. Hence, MSG increases over time for all the three approaches
as more queries are being processed. NE incurs lower MSG than both ETK and
ETK+ because fewer rankers reply to queries in the absence of incentives. ETK+
assigns higher amount of penalties (as compared to ETK) to rankers that send
irrelevant items, hence fewer rankers reply to the broker in case of ETK+. Thus,
ETK+ incurs lower MSG than ETK.

Effect of Variations in k

Figure 5 depicts the effect of variations in k. As k increases, ART increases and
QCR decreases for all the approaches. This is because at higher values of k,
fewer nearby rankers are able to provide enough relevant data items, thereby
resulting in longer query paths. However, as k increases, PREC increases for all
the approaches due to increasing probability of the items (sent by the rankers)
in terms of contributing to the top-k result. For example, if k = 4, an item will
contribute to the top-k only if it matches one of the four items in the broker’s
global top-k list TG. However, if k = 24, TG has 24 items, hence the ranker-sent
item has a better chance of a ‘match’ with any one of the items in TG.

Interestingly, even though ranker participation decreases with increase in k,
relay MP participation increases because of the involvement of more MPs for
retrieving a larger number of items. The (potential) rankers, which were not
able to send data items, simply start forwarding queries, thereby increasing MSG
for all the approaches. MSG eventually plateaus for ETK because its effective
incentivization strategy already involves the participation of the majority of
rankers at k = 8. Hence, relatively fewer additional rankers become involved in
the query processing when k > 8. ETK incurs more number of messages than
ETK+ and NE due to the reasons explained for the results in Figure 4d.

264 N. Padhariya et al.

 1

 2

 3

 4 8 12 16 20 24

A
R

T
 (

t.
u
.)

k

ETK+
ETK

NE

(a) ART

 20

 40

 60

 4 8 12 16 20 24

Q
C

R
 (

%
)

k

ETK+
ETK

NE

(b) QCR

 20

 40

 60

 80

 100

 4 8 12 16 20 24

P
R

E
C

 (
%

)

k

ETK+
ETK

NE

(c) PREC

2

4

6

 4 8 12 16 20 24

M
S

G
 (

1
0

4
)

k

ETK+
ETK

NE

(d) MSG

Fig. 5. Effect of variations in k

 1

 2

 3

 20 40 60 80 100

A
R

T
 (

t.
u
.)

NMP

ETK+
ETK

NE

(a) ART

 20

 40

 60

 20 40 60 80 100

Q
C

R
 (

%
)

NMP

ETK+
ETK

NE

(b) QCR

 20

 40

 60

 80

 100

 20 40 60 80 100

P
R

E
C

 (
%

)

NMP

ETK+
ETK

NE

(c) PREC

2

4

6

 20 40 60 80 100

M
S

G
 (

1
0

4
)

NMP

ETK+
ETK

NE

(d) MSG

Fig. 6. Effect of variations in the number of MPs

Effect of Variations in the Number of MPs

We conducted an experiment to examine the scalability of ETK and ETK+.
Figure 6 depicts the results. As the number NMP of MPs increases, ART shows
a generally increasing trend essentially due to larger network size. However, ART
increases at a lower rate for ETK and ETK+ as compared to NE due to their
effective economic incentive strategies, as discussed for the results in Figure 4a.

As NMP increases, QCR and PREC increase for both ETK and ETK+
because larger network implies the presence of more rankers. NE exhibits a sig-
nificantly lower rate of increase in QCR and PREC than both ETK and ETK+
essentially due to its non-economic approach, which does not effectively incen-
tivize ranker participation. The explanation for the results in Figure 6d is essen-
tially similar to that of the results in Figure 4d. Furthermore, MSG increases for
all the approaches due to larger network size.

6 Conclusion

We have proposed EcoTop, which is an economic model for dynamic processing
of top-k queries in M-P2P networks. EcoTop issues economic rewards to MPs,

EcoTop: An Economic Model for Dynamic Processing of Top-k Queries 265

which send relevant data items, and penalizes MPs for sending irrelevant items,
thereby incentivizing the optimization of communication traffic. EcoTop uses two
schemes, namely ETK and ETK+, for assigning payoffs to peers and for enabling
peers to re-evaluate the scores of their data items for item re-ranking purposes.
ETK and ETK+ differ in that ETK performs equal distribution of payoffs to
the relevant items, while ETK+ uses a weighted distribution. Our performance
study shows that EcoTop is indeed effective in improving the performance of
top-k queries, while minimizing the communication traffic. Our work has mainly
considered empirical formulae based on important parameters affecting top-k
queries. In the near future, we plan to extend EcoTop by incorporating game-
theoretic techniques.

References

1. Broch, J., Maltz, D.A., Johnson, D.B., Hu, Y.C., Jetcheva, J.: A performance
comparison of multi-hop wireless ad hoc network routing protocol. In: Proc.
MOBICOM (1998)

2. Buttyan, L., Hubaux, J.P.: Stimulating cooperation in self-organizing mobile ad
hoc networks. ACM/Kluwer Mobile Networks and Applications 8(5) (2003)

3. Golle, P., Brown, K.L., Mironov, I.: Incentives for sharing in peer-to-peer networks.
In: Proc. Electronic Commerce (2001)

4. Hagihara, R., Shinohara, M., Hara, T., Nishio, S.: A message processing method
for top-k query for traffic reduction in ad hoc networks. In: Proc. MDM (2009)

5. Hwang, S., Chang, K.C.: Optimizing top-k queries for middleware access: A unified
cost-based approach. ACM TODS 32(1) (2007)

6. Jung, H., Cho, B.K., Chung, Y.D., Liu, L.: On processing location based top-k
queries in the wireless broadcasting system. In: Proc. ACM SAC (2010)

7. Kamvar, S., Schlosser, M., Garcia-Molina, H.: Incentives for combatting freeriding
on P2P networks. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par
2003. LNCS, vol. 2790, pp. 1273–1279. Springer, Heidelberg (2003)

8. Kurose, J.F., Simha, R.: A microeconomic approach to optimal resource allocation
in distributed computer systems. IEEE Trans. Computers 38(5) (1989)

9. Lee, W., Lee, J.J., Kim, Y., Leung, C.K.: Anchorwoman: Top-k structured mobile
web search engine. In: Proc. CIKM (2009)

10. Liu, X., Xu, J., Lee, W.: A cross pruning framework for top-k data collection in
wireless sensor networks. In: Proc. MDM (2010)

11. Soliman, M.A., Ilyas, I.F., Chang, K.C.: Probabilistic top-k and ranking-aggregate
queries. ACM TODS 33(3) (2008)

12. Wolfson, O., Xu, B., Sistla, A.P.: An economic model for resource exchange in
mobile Peer-to-Peer networks. In: Proc. SSDBM (2004)

13. Wu, M., Xu, J., Tang, X., Lee, W.: Monitoring top-k query in wireless sensor
networks. In: Proc. ICDE (2006)

14. Xu, B., Wolfson, O., Rishe, N.: Benefit and pricing of spatio-temporal information
in Mobile Peer-to-Peer networks. In: Proc. HICSS-39 (2006)

15. Zeinalipour-Yazti, D., Vagena, Z.: Distributed top-k query processing in wireless
sensor networks. In: Proc. MDM (2008)

REQUEST: Region-Based Query Processing
in Sensor Networks

Dong-Wan Choi and Chin-Wan Chung

Department of Computer Science,
Korea Advanced Institute of Science and Technology(KAIST)

335 Gwahangno, Yuseong-gu, Daejeon, Republic of Korea
dongwan@islab.kaist.ac.kr, chungcw@kaist.edu

Abstract. In wireless sensor networks, node failures occur frequently.
The effects of these failures can be reduced by using aggregated values
of small groups of sensors instead of the values of individual sensors.
However, most existing works have focused on computing the aggrega-
tion of all the nodes without grouping. Only a few approaches proposed
the processing of grouped aggregate queries. However, since groups in
their approaches are disjoint, some relevant regions to the query can
be missing. In this paper, we propose REQUEST , region-based query
processing in sensor networks. A region in our approach is defined as a
maximal set of nodes located within a circle having a diameter specified
in the query. To efficiently construct a large number of regions covering
the entire monitoring field, we build the SEC (Smallest Enclosing Cir-
cle) index. Moreover, in order to process a region-based query, we adapt
a hierarchical aggregation method, in which there is a leader for each re-
gion. To reduce the communication cost, we formulate an optimal leader
selection problem and transform the problem into the set-cover problem.
Finally, we devise a query-initiated routing tree for the communication
between the leader and non-leader nodes in a region. In the experimen-
tal results, we show that the result of our region-based query is more
reliable than that of the query which is based on individual nodes, and
our processing method is more energy-efficient than existing methods for
processing grouped aggregate queries.

Keywords: Sensor networks, Regional query, Group-by aggregate query.

1 Introduction

Wireless sensor networks are widely used in various environmental monitoring
applications. By using these applications, we can find some phenomena of the
monitoring area, and detect some events corresponding to a given set of condi-
tions. For example, if farmers could collect the information about the distribution
of nutrients in the soil or locations colonized by many insects in real-time, the
farmers could predict where and how much water, pesticide, and fertilizer are
needed currently[1]. We can collect these information by gathering sensing values
from the sensor nodes deployed in the monitoring area.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 266–279, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

REQUEST: Region-Based Query Processing in Sensor Networks 267

select region
from sensors
group by region(10m)
having tl < AVG(temp) < tu

and hl < AVG(humid)< hu

select node
from sensors
where tl < temp < tu

and hl < humid < hu

(a) Query based on individual nodes (b) Region-based query

Fig. 1. Example queries

However, each sensing value can have some noises, as sensor nodes are prone
to failure inherently. Moreover, managing a large number of individual sensor
nodes is ineffective when only a macro view of the monitoring area is required.

To overcome these problems, we can construct small groups of sensor nodes,
and use an aggregated value for each group. Previous works on grouping nodes
[7,15] in the sensor networks address the problem by partitioning or clustering
nodes with appropriate criteria such as the geographic location. In these works,
there can be missing areas since they do not allow groups to overlap.

It is natural to group sensor nodes with regions of the same size. This is
because, in the sensor network applications, we are not interested in a node
itself, but a region in which the node is located.

Considering the above grouping method, we propose the region-based query
processing method in sensor networks (hereafter called “REQUEST ”). In RE-
QUEST, the primitive processing unit is a region instead of a node. In addition,
regions can overlap to cover every possible region generated by sensor nodes.
Fig 1 shows example queries that find nodes or regions with certain temperature
and humidity. Note the difference between our proposed region-based query(Fig
1(b)) and the query that is based on individual nodes(Fig 1(a)).

There are some challenging problems in REQUEST. First, since regions over-
lap and the number of regions is fairly large, it is not trivial to efficiently con-
struct regions with a specified size in the query. A naive approach is to move
a circle representing a region as a certain step size. However, this approach is
too inefficient, and it is not easy to find appropriate step size. To solve this
problem, we create the SEC (Smallest Enclosing Circle) index structure in the
preprocessing phase, and construct regions by using the SEC index.

Second, the communication costs of forwarding sensing values and aggregated
values can be considerably high due to a large number of regions. In order to pro-
cess the region-based queries energy-efficiently, we use a hierarchical aggregation
method [6] as a basic processing scheme. In the hierarchical aggregation method,
we have a leader node and several non-leader nodes in each group, and the aggrega-
tion of each group is computed locally in a group. Since there are numerous regions
in our environment, it is more beneficial to calculate an aggregated value for each
region as early as possible. By doing so, we can reduce the size and the total num-
ber of messages to send to the basestation. Moreover, to minimize communication
costs while gathering aggregated values, we need an algorithm that selects opti-
mal leader nodes efficiently in terms of energy consumption. To determine optimal

268 D.-W. Choi and C.-W. Chung

leader nodes, we consider some criteria such as the hop counts between nodes, the
size of messages, and the number of regions covered. Based on these criteria, we
formulate a leader selection problem, and design an algorithm that uses the idea
of transformation into the set-cover problem.

Finally, we need a topology for communication between leader nodes and non-
leader nodes. TAG-based global routing tree [10] is not appropriate for intra-
region communication, since it is constructed in order for the basestation to
collect the data of the entire network. For intra-region communication, it is
required to construct a tree in order for the leader node to collect the data of
non-leader nodes inside the region. Therefore, for each leader node, we build
a new routing tree whose root node is the leader node, called query-initiated
routing tree.

Our contributions in this paper are as follows:

– We propose region-based queries, a new type of queries which use a region as
a primitive data unit. This type of queries are useful especially when individ-
ual sensor readings are not reliable or only a rough view of the monitoring
environment is required. By adjusting the sizes of regions in the query, we
can collect the data in various degrees of circumstantiality. Moreover, since
regions can be overlapped in our approach, we can avoid that some impor-
tant regions are missing. To the best of our knowledge, the region-based
query is the first type of grouped aggregate query in which groups can be
overlapped.

– We propose algorithms to efficiently process region-based queries. To con-
struct regions efficiently in real time, we present an algorithm that utilize
the Smallest Enclosing Circle index. In addition, we address the optimiza-
tion problem for leader selection, and propose a corresponding algorithm to
the problem by using the algorithm that solves the set-cover problem.

– Lastly, we present extensive experimental results that show the effectiveness
and efficiency of our method.

The rest of the paper is organized as follows. In Section 2, we discuss the re-
lated work. In Section 3, we propose REQUEST, and explain our processing
method. In Section 4, we show experimental results, and we conclude our work in
Section 5.

2 Related Work

Our region-based queries are similar to the spatial queries in sensor networks.
These spatial queries in sensor networks have been actively reported [3,4,5,12].
For instance, in [12], they propose a distributed spatial index, called SPIX, over
the sensor nodes to process spatial queries in a distributed manner. However,
most of works about spatial queries in sensor networks have focused on using
the predefined regions. In [12], spatial queries are used to answer questions such
as “what is the average temperature in room-1?”. In contrast, our region-based
queries ask questions such as “which regions with a fixed size have the average

REQUEST: Region-Based Query Processing in Sensor Networks 269

temperature lower than a certain threshold?”. Thus, in REQUEST, regions are
not predefined before the query is posed, but redefined whenever the size of
region specified in the query is changed.

Our query processing scheme is also related to aggregate queries in sensor
networks. Even if many works have been proposed to process aggregate queries,
only a few works deal with grouped aggregate queries.

TAG [10] propose a grouped in-network aggregation method. In this method,
as climbing up the global routing tree from the leaf nodes to the basestaiton,
partial aggregated values for each group are computed and forwarded respec-
tively at each node. However, this method has a problem if there are many
groups to be maintained at each node. There have been other works [11,13] to
improve the grouped in-network aggregation method, which are based on TAG.
In these works, they focus on modifying the routing protocol, in order to reduce
the size of messages. In [11], they propose group-aware network configuration
algorithms. The key idea of these algorithms is selecting a node in the same
group as a parent. By doing so, the number of partial aggregations that should
be maintained at each node can be reduced. In [13], a multipath routing protocol
is proposed in order for each node to send its data to different parents. These
grouped in-network aggregation methods based on TAG consider only disjoint
groups. However, in REQUEST, a large number of overlapped regions (groups)
can be generated. The methods based on TAG are not directly applicable to our
environment, since a node can belong to several groups simultaneously.

Zhuang et al. propose the max regional aggregate query [16] which is the
most similar and related query with the proposed region-based query. The max
regional aggregate query is for finding a region with the maximum aggregated
value. To do that, they propose a sampling-based approach in which regions
and nodes are sampled within a certain accuracy. However, they only consider
regions at which individual nodes are centered. Therefore, some relevant regions
to the user’s interest can be missing. In addition, they only focus on reducing
the data to process but do not deal with an efficient collection of the data.

Lee et al. in [9] present a framework to efficiently process group-by aggregate
queries in sensor networks. They propose the compression scheme that uses the
Haar wavelet in order to reduce the size of messages. However, they assume that
groups and leader nodes are pre-determined, and only consider pre-clustered
groups which are disjoint each other.

3 Region-Based Query Processing

In this section, we propose REQUEST, region-based query processing in sensor
networks. The goal of REQUEST is gathering regional aggregated values energy-
efficiently so that we can find some interest regions satisfying several conditions.
The specification of the region-based query is as follows:

270 D.-W. Choi and C.-W. Chung

r1

r2

D

Fig. 2. 3 different regions in REQUEST

select {region, aggfunc(attributes)}
from sensors
group by region(diameter D)
having {having predicates}
sampling rate {time of sampling interval}
duration {maximum of sampling time}

We regard a region as a circle located in any places in the sensor network mon-
itoring field. For the simplicity, we assume that the diameter of the circle is not
larger than the communication range. We leave the problem which deals with
regions with a larger size than the communication range for the future work. In
fact, there are infinite number of regions in the monitoring field, even if every
region has the same size. However, the number of regions can be limited since
the number of sensor nodes is finite. In order to limit the number of regions
reasonably, we formally define a region as follows:

Definition 1. Let D be a diameter specified in the query. A region r is a max-
imal set of sensor nodes which are located within a circle having a diameter D.
Since r is maximal, it is not contained in any other regions.

Fig 2 shows that 3 different regions with the size D in REQUEST. We discard
region r2 since it is included in region r1. Unlike existing grouped aggregate
methods, regions can overlap in our approach. Through this, we can cover all
areas which contain the sensor nodes deployed uniformly in the monitoring field.
A node can belong to several different regions.

When there are a large number of groups or especially the selectivity of the
having predicates in the query is relatively low, the earlier aggregation can have
more benefits in terms of energy consumption. Therefore, we adapt a hierarchical
aggregation method to process region-based queries more energy-efficiently. In
this method, there is a leader node for each group, and non-leader nodes in the
same group forward their sensing values, and finally aggregation of each group
is computed in the leader node. Since regions overlap in our approach, a leader
node can represent more than one region. In Fig 2, a dark-colored node is a
leader node which covers 3 different regions.

REQUEST: Region-Based Query Processing in Sensor Networks 271

The overall process of REQUEST comprises the following steps:

1. Regions and leader nodes are decided at the basestation.
2. The initial query message with the leader notification is sent to the entire

network.
3. A query-initiated routing tree is constructed.
4. Every non-leader node sends its data to the leader node in the same region.
5. Leader nodes compute and forward the aggregation value for each region to

the basestation.

3.1 Region Construction

The region construction in REQUEST is to find every possible disjoint combi-
nation of sensor nodes located within a circle corresponding to the query. For
a naive idea, we can find regions by moving the circle from the top left corner
to the bottom right corner. However, it is difficult to determine the appropri-
ate step size for covering the entire region since a region can be placed at an
arbitrary position. Moreover, if the area of monitoring field is large, this naive
method is extremely time-consuming.

Therefore, we propose an efficient region construction method that utilizes the
SEC(Smallest Enclosing Circle) index. Our intuitive idea is that every region
can be identified by a SEC which encloses every node inside the region. Moreover,
every SEC can be defined by using at most 3 points [14].

For example, Fig 3 shows the relationship between regions and the corre-
sponding SECs. Fig 3(b) shows every possible SECs given a set of nodes. To
construct regions with a diameter D is identical to find maximal sets of nodes
inside a circle having a diameter D by Definition 1. In Fig 3(a), there are 2
regions, which are sets of nodes. To generate these sets, we find the largest SECs
among the SECs smaller than a circle with a diameter D. In Fig 3(b), the SECs
in the solid line correspond to the regions in Fig 3(a).

In summary, first we build the SEC index of the sensor network, and then
construct regions by using the SEC index.

To build the SEC index, we need an algorithm of finding a SEC that com-
pletely contains a given set of points. Finding SEC problem has been well-studied
in the research area of mathematics. We use an algorithm from [14], which is

D

(a) Regions with a diameter D (b) Smallest Enclosing Circles

Fig. 3. Regions and the corresponding SECs

272 D.-W. Choi and C.-W. Chung

Algorithm BuildSecIndex
Input The set of all nodes N = {n1, n2, . . . , nm}
Output The SEC index I which is sorted by a diameter
begin
1. for each node ni in N
2. for each node nj in N
3. for each node nk in N
4. sec = FindSmallestEnclosingCircle(ni, nj , nk)
5. nodeSet = The set of nodes which are contained in sec
6. Insert an index entry (sec.diameter, sec, nodeSet) to I
7. return I
end

Fig. 4. Algorithm of Building SEC Index

simple to implement and has linear average time complexity. Fig 4 shows the
algorithm of building the SEC index. Since every region can be defined by at
most 3 nodes, the number of the SEC index entries is at most m3, where m is
the number of nodes. We manage the SEC index to be sorted by a diameter so
as to construct regions efficiently in runtime. Each SEC index entry consists of
a diameter, a SEC, and a set of nodes which are located inside SEC(Line 5). We
assume that every node has a static position. Therefore, once the SEC index is
built, we do not need further modification to the index.

By means of the SEC index, we can construct corresponding regions when the
region-based query is posed. Fig 5 presents the algorithm of region construction.
First, we find the largest SEC among the SEC index entries which have a smaller
diameter than the diameter specified in the query(Line 1). From the largest SEC
to the smallest SEC, we generate regions unless they are sub regions of already
generated regions(Line 3∼5).

Algorithm ConstructRegions
Input The diameter of regions given in the query D, The SEC index I
Output The set of regions R = {r1, r2, . . .}
begin
1. MaxSEC = A largest SEC among SECs in I having a smaller diameter than D
2. MinSEC = A smallest SEC, thus, a node itself with a diameter 0
3. for each SEC sec from MaxSEC to MinSEC in I
4. if sec is not redundant then construct a region r using sec
5. Insert r to R
6. return R
end

Fig. 5. Algorithm of Region Construction

3.2 Leader Selection

To minimize the communication of REQUEST, it is important to select optimal
leaders of each region. There are several requirements for optimal leader selection
as follows:

– Leader nodes should be close enough to the basestation.
– Leader nodes should represent as many regions as possible.
– Distances between leader and non-leader nodes should be short enough.
– Leader nodes should cover all regions and sensor nodes.

REQUEST: Region-Based Query Processing in Sensor Networks 273

n1

n2 n3

n4

r1

r2
r3

r1 r2 r3

S1 S2 S3

S4

Fig. 6. Transformation from the leader selection problem to the set-cover problem

Based on these requirements, we formulate the leader selection problem as
follows:

Minimize
∑
j∈L

(dist(root, j) · |Rj | +
∑
i∈Nj

dist(i, j))

Subject to :
⋃
j∈L

Rj = R, where R is the set of entire regions.

L : The set of leader nodes.

Rj : The set of regions which include node j.

Nj : The set of nodes which are in the same region with node j.

dist(i, j) : The distance (hop counts) from node i to node j.

In this formulation, we want to find the optimal L while minimizing the objective
function at the same time. The objective function is the summation over j of the
expected cost when we select a certain node j. Note that the size of messages
between the basestation and the leader node j is |Rj | times larger than that
of messages between the leader node j and the non-leader nodes i. A unique
constraint is for covering all regions and nodes.

To solve this problem, we adapt an idea that the facility location problem
can be transformed into the weighted set-cover problem [8]. To transform the
problem into the set-cover problem, it is required to define the set and the cost of
the set. Intuitively, selecting a node as a leader in the leader selection problem
is identical to choosing a set in the set-cover problem. Therefore, each node
becomes a set and regions become elements of a set. Fig 6 shows that the sensor
network in the left-side can be transformed into the instance of the set-cover
problem in the right-side by means of our idea. If we select n4 as a leader, we
can cover 3 regions, which are r1, r2, and r3. This is identical to choosing S4

which can cover 3 elements in the set-cover problem.
The cost of each set is naturally derived from the objective function in our

formulation.
C(Sj) = dist(root, j) · |Sj | +

∑
i∈Nj

dist(i, j)

274 D.-W. Choi and C.-W. Chung

Algorithm SelectLeaders
Input The set of all nodes N , The set of all regions R
Output The set of leader nodes L
begin
1. U = R
2. X = ∅
3. for each node ni in N
4. Si = {r | r is a region which includes node ni}
5. Insert Si to X
6. C(Si) = dist(root, ni)·|Si|
7. for each region rj in Si

8. for each node nk in rj

9. C(Si) = C(Si) + dist(ni, nk)
10. L = GreedySetCover(U , X, C)
11. return L
end

Fig. 7. Algorithm of leader selection

The set-cover problem is a well-known NP-complete problem, and has been ac-
tively studied in the algorithmic research fields. Among the several approxima-
tion algorithms that solve the set-cover problem in polynomial time, we use the
set-greedy algorithm [2] which is the best known for the simplicity. In the set-
greedy algorithm, we pick a set that covers the greatest number of elements
not yet covered at each step. We skip the detail explanation of the set-greedy
algorithm since it is beyond our work.

Fig 7 presents the algorithm of the leader selection, in which the set-greedy
algorithm is called as a sub function.

3.3 Query-Initiated Routing Tree

In order for a leader node to communicate with non-leader nodes in the same
region, it is required to build a routing tree for each leader node, called the query-
initiated routing tree. When a new region-based query is posed, we construct
a new routing tree for each leader node since the requested diameter can be
changed. Basically, we apply to each leader node the routing method which is
similar to the method used when the basestation constructs the global routing
tree. The query-initiated routing tree construction performs the following steps:

1. Query messages with the leader nodes information are flooded in the entire
network. (Fig. 8(a))
– Each node is only aware whether itself is a leader or not.

2. The routing request messages (leader id, hop count) are broadcasted to the
non-leader nodes within distance D from the leader nodes. (Fig. 8(b))
– Receiver nodes should increase hop count and broadcast to its neighbors.
– We assume that every node can identify another node’s location from

the node id.
3. Each node designates the sender node as its parent node. (Fig. 8(c))

– If multiple messages with the same leader node arrive at a node, the
sender node of the message with the smallest hop count is selected as
the parent of the node.

REQUEST: Region-Based Query Processing in Sensor Networks 275

D

(a) Flooding the query
message with leader
information

(b) Flooding routing
request messages

(c) Parent selection (d) Local region
construction

Fig. 8. The process of query-initiated routing tree construction

4. For each leader node, the local region construction is performed. (Fig. 8(d))
– When the leader nodes received data message from the other nodes for

the first time, they perform the local region construction based on the
sender nodes of arrived messages.

Fig 8 shows these steps sequentially. Local region construction algorithm is al-
most same as the algorithm in Fig 5 except that we can only consider nodes
inside the regions that the leader node belongs to and SECs are dynamically
generated at each leader node.

4 Experiments

In order to investigate the effectiveness and efficiency of the proposed method
in REQUEST, we conduct experimental evaluations.

4.1 Experimental Environment

We implement our method and comparison methods using our own simulator.
As a topology for experimental evaluations, we deploy total 100 sensor nodes

in a grid environment. The area of each grid segment is 100m2, and 2 sensor
nodes are randomly located in each segment. We set the communication range
to 10m.

Since our experiments are not affected by the spatial or temporal correlation
in sensor networks, we use the synthetic data that is generated randomly. In
our simulator, sensing values for each node at each sampling time are randomly
changed in the range from 0 to 10.

For the convenience, we assume that a packet has a simple header informa-
tion which comprises of a source address and destination addresses. Note that
destination addresses can be more than one, if a node belongs to several regions
simultaneously. A message consists of the region or node identifier and the corre-
sponding sensing value(s). We set the node identifier and the region identifier to
a sequential number and coordinates of the region center, respectively. A region

276 D.-W. Choi and C.-W. Chung

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Failure Rate

Individual

REQUEST(10m)

REQUEST(8m)

Fig. 9. Reliability

center can be decided from the corresponding SEC index entry. However, in our
proposed method, we do not need the region identifier for a message, since the
basestation can identify regions from the leader node id.

4.2 Reliability

We conduct experiments to evaluate the effectiveness of REQUEST. As a metric
of the reliability, we use the average relative error rate. This metric is calculated
as follows:

Average(relative error) =

∑
i=1...n

|vi−v′
i|

|vi|
n

In the above formula, n is the number of values, v is the original value, and v′

is a value with noises due to the failure. Using the average relative error, we
conduct experiments with various failure rates from 10% to 90%. We use the
following region-based query for this experiment.

select region, AVG(temp) from sensors
group by region(D)
sampling rate 1 duration 100.

Fig 9 shows the results of experiments on the reliability. “Individual”, “RE-
QUEST(8m)”, and “REQUEST(10m)” are the cases that D is 0m, 8m, and
10m, respectively. As the failure rate increases, the average relative error rates
of all the cases also increase. However, REQUEST(8) and REQUEST(10) show
better accuracy than Individual especially when the failure rate is high. This
result shows that using the aggregated values in the regions is effective to reduce
the effect of the node failures.

REQUEST: Region-Based Query Processing in Sensor Networks 277

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0.00% 20.00% 40.00% 60.00% 80.00% 100.00% 120.00%

T
ra

ns
m

is
si

on
 C

os
t (

B
yt

e)

Selectivity (%)

REQUEST(10m)

TAG(10m)

Direct Collection

REQUEST(8m)

TAG(8m)

Fig. 10. Energy-efficiency

4.3 Energy-Efficiency

In sensor networks, consumed energy is the primary performance measure. Since
the communication is the dominant factor in consuming energy, we use the
amount of transmission as an efficiency metric. For the comparison system,
we implement the grouped in-network aggregation method which is proposed
in TAG [10]. In fact, in REQUEST, a node can belong to several groups at
the same time, and each node can not know those groups before the query is
posed. Groups can change according to the size of regions that is specified in
the query. Additional communication to notify the group information to each
node is needed. However, for the simplicity, we assume that every node knows
its corresponding groups in advance for the comparison system, TAG.

The query used in this experiment is as follows:

select region, SUM(temp) from sensors
group by region(D)
having 0 � SUM(temp) � t
sampling rate 1 duration 100

We conduct experiments with varying the selectivity of the having predicate.
To do that, we change t in the range from the minimum of SUM(temp) to
the maximum of SUM(temp). If t increases, the selectivity also increases. To
apply effects of changing the selectivity to the comparison system equally, we

278 D.-W. Choi and C.-W. Chung

implement TAG to exploit suppressing messages in the intermediate node. Like
the experiments on the reliability, we test on two region sizes which are 8m and
10m.

Fig 10 shows that the cost of REQUEST is smaller than those of TAG and
direct data collection in most cases. In the case that D is 8m, the difference
between REQUEST and TAG is not large, because the number of regions that
each node belongs to is smaller than that in the case that D is 10m. When
the selectivity is close to zero, the communication cost of TAG is smaller than
that of REQUEST. This is because in REQUEST, even if every aggregated
values are filtered by the having predicate, the communication inside regions is
still required. However, except for these cases, REQUEST is always better than
TAG and direct data collection with regards to energy consumption.

5 Conclusion

In this work, we proposed a new type of query in sensor networks, called the
region-based query. This type of queries are helpful to overcome noises in the
sensor data, and to provide a macro view of a monitoring area. By permitting
overlapping regions, we could deal with every possible regions which are gener-
ated by sensor nodes. In order to construct numerous regions efficiently, we used
the SEC index that is built in the preprocessing phase. Moreover, to efficiently
process the region-based query, we used a hierarchical aggregation method and
addressed an optimization problem for leader selection with a solution algorithm
by mapping the problem to the set-cover problem. Also, we built a new routing
tree for each leader node, a query-initiated routing tree that enables intra-region
communication. Finally, we showed that our proposed approach is effective and
energy-efficient from the experimental results.

We plan to extend our work to deal with big size regions and aggregation of
aggregation queries such as finding the average value among the maximum value
of each region.

Acknowledgments. This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea government (MEST) (No.
2010-0000863).

References

1. Precision agriculture, http://en.wikipedia.org/wiki/Precision_agriculture
2. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Op-

erations Research 4(3), 233–235 (1979)
3. Demirbas, M., Ferhatosmanoglu, H.: Peer-to-peer spatial queries in sensor net-

works. In: P2P 2003, pp. 32–39 (2003)
4. Dyo, V., Mascolo, C.: Adaptive distributed indexing for spatial queries in sensor

networks. In: DEXA Workshops 2005, pp. 1103–1107 (2005)

http://en.wikipedia.org/wiki/Precision_agriculture

REQUEST: Region-Based Query Processing in Sensor Networks 279

5. Gupta, H., Zhou, Z., Das, S.R., Gu, Q.: Connected sensor cover: self-organization
of sensor networks for efficient query execution. IEEE/ACM Transactions on Net-
working 14(1), 55–67 (2006)

6. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: HICSS 2000, pp. 8020–8029
(2000)

7. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: An application-specific
protocol architecture for wireless microsensor networks. IEEE Transactions on
Wireless Communications 1(4), 660–670 (2002)

8. Hochbaum, D.S.: Heuristics for the fixed cost median problem. Mathematical Pro-
gramming 22(1), 148–162 (1982)

9. Lee, C.H., Chung, C.W., Chun, S.J.: Effective processing of continuous group-by
aggregate queries in sensor networks. Journal of Systems and Software 83(12),
2627–2641 (2010)

10. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: a tiny aggrega-
tion service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36(SI), 131–146
(2002)

11. Sharaf, A., Beaver, J., Labrinidis, A., Chrysanthis, K.: Balancing energy efficiency
and quality of aggregate data in sensor networks. The VLDB Journal 13(4), 384–
403 (2004)

12. Soheili, A., Kalogeraki, V., Gunopulos, D.: Spatial queries in sensor networks. In:
GIS 2005, pp. 61–70 (2005)

13. Song, I., Roh, Y.J., Kim, M.H.: Content-based multipath routing for sensor net-
works. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010.
LNCS, vol. 5981, pp. 520–534. Springer, Heidelberg (2010)

14. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H.A. (ed.)
New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370.
Springer, Heidelberg (1991)

15. Younis, O., Fahmy, S.: Distributed clustering in ad-hoc sensor networks: A hybrid,
energy-efficient approach. In: INFOCOM 2004, pp. 629–640 (2004)

16. Zhuang, Y., Chen, L.: Max regional aggregate over sensor networks. In: ICDE 2009,
pp. 1295–1298 (2009)

Efficient Distributed Top-k Query Processing
with Caching

Norvald H. Ryeng, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørv̊ag

Norwegian University of Science and Technology,
Department of Computer and Information Science,

Trondheim, Norway
{ryeng,vlachou,cdoulk,noervaag}@idi.ntnu.no

Abstract. Recently, there has been an increased interest in incorporat-
ing in database management systems rank-aware query operators, such as
top-k queries, that allow users to retrieve only the most interesting data
objects. In this paper, we propose a cache-based approach for efficiently
supporting top-k queries in distributed database management systems.
In large distributed systems, the query performance depends mainly on
the network cost, measured as the number of tuples transmitted over
the network. Ideally, only the k tuples that belong to the query result
set should be transmitted. Nevertheless, a server cannot decide based
only on its local data which tuples belong to the result set. Therefore, in
this paper, we use caching of previous results to reduce the number of
tuples that must be fetched over the network. To this end, our approach
always delivers as many tuples as possible from cache and constructs a
remainder query to fetch the remaining tuples. This is different from the
existing distributed approaches that need to re-execute the entire top-k
query when the cached entries are not sufficient to provide the result set.
We demonstrate the feasibility and efficiency of our approach through
implementation in a distributed database management system.

1 Introduction

Nowadays, due to the huge amount of available data, users are often overwhelmed
by the variety of relevant data. Therefore, database management systems offer
rank-aware query operators, such as top-k queries, that allow users to retrieve
only a limited set of the most interesting tuples. Top-k queries [5,8,15] retrieve
the k tuples that best match the individual user preferences based on a user-
specified scoring function. Different scoring functions express the preferences of
different users. Several applications benefit from top-k queries, including web
search, digital libraries and e-commerce. Moreover, the high distribution of data
raises the importance of supporting efficient top-k query processing in distributed
systems.

In this paper, we propose a cache-based approach, called ARTO1, for effi-
ciently supporting top-k queries in distributed database management systems.
1 Algorithm with Remainder TOp-k queries.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 280–295, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Efficient Distributed Top-k Query Processing with Caching 281

In large-scale distributed systems, the dominant factor in the performance of
query processing is the communication cost, measured as the number of tuples
transmitted over the network. Ideally, only the k tuples that belong to the result
set should be fetched. Nevertheless, in the case of top-k queries, a server cannot
individually decide which of its top-k local tuples belong to the global top-k re-
sult set of the query. In order to restrict the number of fetched tuples and reduce
the communication costs, we employ caching of result sets of previously posed
top-k queries. Each server autonomously maintains its own cache and only a
summary description of the cache is available to any other server in the network.

In general, a top-k query is defined by a scoring function f and a desired
number of results k, and these parameters differ between queries. Given a set of
cached top-k queries in the system and a new query, the problem is to identify
whether the results of cached queries are sufficient to answer the new query. To
deal with this problem, we apply techniques similar to those of the view selection
problem in the case of materialized views [15] in centralized database systems.
Based on the cached queries, we need to decide whether the cached results cover
the results of a new query. In this case, the query is answered from the cache and
no tuples need to be transferred over the network. However, the major challenge
arises when the query is not covered by the cached tuples.

Different from existing approaches [20] that require the servers to recompute
the query from scratch, we do not evaluate the entire query, but we create a
remainder query that provides the result tuples that are not found in cache. More
detailed, we split the top-k query into a top-k′ query (k′ < k) that is answerable
from cache, and a remainder next-(k − k′) query that provides the remaining
tuples that were not retrieved from the top-k′ query. To further optimize the
query performance, we deliberately assign the top-k query to the server that is
expected to induce the lowest network cost based on the locally cached tuples.
To summarize, the contributions of this paper are:

– We propose a novel framework for distributed top-k queries that retrieves as
many tuples k′ (k′ < k) as possible from the cache, and poses a remainder
query that provides the remaining k − k′ tuples that are not found in cache.

– We present a novel method for efficiently computing remainder queries, with-
out recomputing the entire top-k query.

– We propose a server selection mechanism that identifies the server that owns
the cache with the most relevant entries for a given query.

– We evaluate our approach experimentally by integrating ARTO in an ex-
isting distributed database management system [14], and we show that our
method significantly reduces communication costs.

The rest of this paper is organized as follows. In Section 2, we explain how this
paper relates to previous work in this area. Section 3 presents preliminary con-
cepts, and Section 4 presents our framework for distributed top-k query process-
ing. Answering top-k queries from cache is outlined in Section 5. The remainder
queries are described in Section 6, while Section 7 presents the server selection
mechanism. Results from our experimental evaluation are presented in Section 8,
and in Section 9 we conclude the paper.

282 N.H. Ryeng et al.

2 Related Work

Centralized processing of top-k queries has received considerable attention re-
cently [2,5,8,15]. For a comprehensive survey of top-k query processing we refer
to [16]. Hristidis et al. [15] discuss how to answer top-k queries from a set of
materialized ranked views of a relational table. Each view stores all tuples of
the relation ranked according to different ranking functions. The idea is to ma-
terialize a set of views based on a requirement either on the maximum number
of tuples that must be accessed to answer a query, or on the maximum number
of views that may be created. When a query arrives, one of these views is se-
lected to be used for answering the top-k query. In [11], the materialized views
of previous top-k queries (not entire relations) are used to answer queries, as
long as they contain enough tuples to satisfy the new query. For each incoming
query, the view selection algorithm chooses a set of views that will give an opti-
mal (in terms of cost) execution of the proposed LPTA algorithm. A theoretical
background on view selection is given in [3], providing theoretical guarantees
whether a view is able to answer a query or not. However, the algorithms that
are presented only allow a query to be answered from views if the views are
guaranteed to provide the answer.

In distributed top-k query processing, the proposed approaches can be catego-
rized based on their operation on vertically [6,9,12,17,18] or horizontally [1,4,19,20]
distributed data. In the case of vertically distributed data, any server maintains
only a subset of the attributes of the complete relation. Then, each server is able
to deliver tuples ranked according to any scoring function that is applied on one
or more of its attributes [9,12,17]. The TPUT algorithm [6] focuses on limiting the
number of communication round-trips, and this work has later been improved by
KLEE [18].

In the case of horizontally distributed data, each server stores a subset of the
tuples of the complete relation, but for each tuple all attributes are maintained.
In [1], a broadcasting technique for answering top-k queries in unstructured
peer-to-peer networks is presented. For super-peer topologies, Balke et al. [4]
provides a method using indexing to reduce communication costs. This method
requires all super-peers to process queries, unless exactly the same query reap-
pears. SPEERTO [19] pre-computes and distributes skyline result sets of super-
peers in order to contact only those super-peers that are necessary at query time.
BRANCA [20] is a distributed system for answering top-k queries. Caching of
previous intermediate and final results is used to avoid recomputing parts of
the query. The cache is used much in the same way as the materialized views
in [3,11,15], but on intermediate results of the query. This means that some
servers in the system must process the query from scratch, while others may
answer their part of the same query from cache. The main difference between
ARTO and other caching approaches, such as BRANCA, becomes clear in the
hard cases, when the query cannot be answered by the cache. ARTO still uses the
part of the cache that partially answers the query and poses a remainder query
for the remaining tuples, without the need to process the query from scratch, as
in the case of BRANCA.

Efficient Distributed Top-k Query Processing with Caching 283

Finally, our techniques for answering top-k queries relate to stop-restart of
query processing [7,10,13]. These methods assume that some of the result tu-
ples are already produced and restart processing from where the original query
stopped. Our remainder queries differ by not restarting an existing top-k query
but a query that was partially answered by cached tuples.

3 Preliminaries

Top-k queries are defined based on a monotone function f that combines the
individual scores into an overall scoring value, that in turn enables the ranking
(ordering) of tuples. Given a relation R, which consists of n attributes ai, the
result set of a top-k query Q = 〈R, f, k〉 contains k tuples such that there exists
no other tuple in R with better score than the k tuples in the result set. The
relation R may be a base relation or the result of an algebra operator, i.e., the
result of a join. The most commonly used scoring function is the weighted sum
function, also called linear. Each attribute ai is associated with query-dependent
weight wi indicating ai’s relative importance for the query. Furthermore, without
loss of generality, we assume that for any tuple t and any attribute ai the values
t(ai) are scaled to [0, 1]. The aggregated score f(t) for a tuple t is defined as
a weighted sum of the individual scores: f(t) =

∑n
i=1 wit(ai), where wi ≥ 0

(1 ≤ i ≤ n), and ∃j such that wj > 0. The weights represent the relative
importance of different attributes, and without loss of generality we assume
that

∑n
i=1 wi = 1. Thus, a linear top-k query Q is defined by a vector wQ

and the parameter k. The ranked tuples can be delivered in either ascending or
descending order, but for simplicity, we will only consider descending order in
this paper. Our results are also valid in the ascending case.

A tuple t of R can be represented as a point in the n-dimensional Euclidean
space. Furthermore, given a top-k query Q = 〈R, f, k〉 defined by a linear scoring
function, there exists a one-to-one correspondence between the weighting vector
wQ and the hyperplane which is perpendicular to wQ. We refer to the (n-1)-
dimensional hyperplane, which is perpendicular to vector wQ and crosses the
k-th result tuple, as the query plane of wQ, and denote it as LQ. All points
on the query plane LQ have the same scoring value for wQ. A 2-dimensional
example is depicted in Fig. 1. Processing the top-k query Q is equivalent to
sweeping the line LQ from the upper right corner towards the lower left corner.
Each time LQ meets a tuple t, this tuple is reported as the next result tuple.
When LQ meets the k-th tuple, the complete result set has been retrieved.

4 ARTO Framework

In this paper, we assume a distributed database system where the relations
are horizontally fragmented over multiple servers. In more details, each relation
R is fragmented into a set of fragments R1, R2, . . . , Rf and each fragment Ri

consists of a subset of tuples of the relation R. Our approach is generic and
imposes no further constraints on the way fragments are created or whether

284 N.H. Ryeng et al.

Fig. 1. 2D representation of query and data space

(a) (b)

Fig. 2. (a) Query plan for distributed top-k query (b) Transformed query plan

they are overlapping or not. Furthermore, each server may store fragments of
different relations. Any server can pose a top-k query and we refer to that server
as querying server. During query processing, the querying server may connect
to any other server. Thus, no routing paths are imposed on the system other
than those of the physical network itself. The only assumption of ARTO is
that there exists a distributed catalog accessible to all servers, which indexes
the information about which server stores fragments of each relation R. Such a
distributed catalog can be implemented using a distributed hash table (DHT).

To answer a top-k query over a relation R, the querying server first locates
those servers that store fragments of R by using the catalog, and constructs a
query plan such as the one in Fig. 2(a). In our example, S2 is the querying server
and the relation R is fragmented in four fragments R1, . . . , R4 stored on servers

Efficient Distributed Top-k Query Processing with Caching 285

S1, . . . , S4 respectively. Based on the query plan, each fragment Ri is scanned in
ranked order (denoted in Fig. 2(a) as rank), and the top-k operator reads tuples
one by one, until the k highest scoring tuples have been retrieved. In more
details, the top-k operator maintains a sorted output queue and additionally a
list containing the score of the last tuple from each server. Since the tuples read
from Ri are in ranked order, whenever a tuple in the output queue has a higher
score than all scores in the list, it can safely be output as a result tuple. Thus,
the top-k tuples are returned incrementally. Moreover, the top-k operator reads
the next tuple from the fragment Ri with the tuple with the highest score in the
list. Therefore, the top-k operator reads as few input tuples as possible from the
fragments Ri.

This is the basic approach of answering top-k queries in a distributed data
management system. Since it is important to minimize the network cost of query
processing, ARTO uses a caching mechanism to take advantage of previously
answered top-k queries. Thus, ARTO avoids retrieving tuples from other servers,
when the cached tuples are sufficient to answer the new query. To this end,
each server maintains its own cache locally, and caches the queries (and their
results sets) that were processed by itself. During query processing, the querying
server first uses its cache to detect whether the cached tuples are sufficient to
answer the given top-k query (see Section 5). Even if the cached tuples are
not sufficient, ARTO minimizes the transferred data by using as many cached
tuples as possible and retrieving only the missing tuples from the remote servers
through the novel use of remainder queries (see Section 6). To this end, the query
plan is rewritten in order to take advantage of the local cache. The result of such
a query transformation is shown in Fig. 2(b). Compared to the initial query plan,
the top-k operator additionally retrieves tuples from the cache and performs a
limited scan from the relation fragments, thus transferring only tuples that are
not cached.

The combination of cached tuples and remainder queries allows ARTO to
reduce the number of transferred tuples. The exact number of transferred tuples
depends on the similarity of cached queries to the new query. Thus, in order
to improve further the query processing performance, we extend ARTO with
a server selection mechanism, which assigns the new query to the server with
the most similar cached query. In order to facilitate this mechanism, each server
publishes descriptions of its cached queries in the distributed catalog. Then, the
querying server first detects the server with the most similar cached query, and
re-assigns the new query to this server (see Section 7).

In rest of this paper, we assume that data tuples are not updated, inserted or
deleted during query processing. This means that the cache always will be up-
to-date. Techniques that enforce cache consistency can be adopted in a straight-
forward way, as they are orthogonal to our work.

5 Answering Top-k Queries from Cache

In ARTO, each server autonomously maintains its own cache. More specifically,
after answering a top-k query and retrieving the entire result set, the query

286 N.H. Ryeng et al.

Fig. 3. Cache containing the cache entries of two queries

originator is able to cache the query result. The cache C = {Ci} maintains a set
of m cache entries Ci. Each cache entry Ci = {Qi, bi, {p1, . . . , pki}} is defined
by a query Qi = {R, fi, ki}, the tuples {p1, . . . , pki} that belong to the result set
of Qi, and a threshold bi which is the scoring value of point pki with respect to
fi, i.e., bi = fi(pki). Consequently, any tuple p of the cache entry Ci has score
fi(p) ≥ bi. Notice that the description of a cached entry Ci that is published in
the catalog consists only of {Qi, bi}, without the individual result tuples. For the
sake of simplicity, we assume that all cache entries refer to the same relation R.
Obviously, given a query Q = {R, f, k}, only cache entries that refer to relation
R are taken into account for answering Q.

Fig. 3 shows a server’s cache C that contains two cache entries, C1 and C2.
Query Q1 corresponds to a top-3 query, while Q2 is a top-4 query with different
weights. Their corresponding lines, LQ1 and LQ2 , stop at the k-th point for each
query respectively.

5.1 Basic Properties

In this section, we analyze when the query results of a cache C are sufficient to
answer a top-k query Q. When this situation occurs, we say that the cache covers
the query. Given a query Q = {R, f, k}, we identify three cases of covering: (1) a
cache entry Ci covers a query defined by the same function (f = fi), (2) a cache
entry Ci covers a query defined by a different function (f �= fi), and (3) a set of
cache entries {Ci} cover a query defined by a different function (f �= fi, ∀i).

In the first case, if there exists a cache entry Ci such that the weighting vectors
that define f and fi are identical and k ≤ ki, then Q can be answered from the
result of the cache entry Ci. More specifically, the first k data points of the cache
entry Ci provide the answer to Q.

Efficient Distributed Top-k Query Processing with Caching 287

In the second case, we examine if a cache entry covers a query defined by a
different function. To this end, we use the concept of safe area [3] SAi of a cache
entry Ci.

Definition 1. (Safe area) The safe area SAi of a cache entry Ci with respect
to a query Q is the area defined by the right upper corner of the data space
and the (n − 1)-dimensional hyperplane SLCi that is perpendicular to the query
vector, intersects the query plane LQi , and has the largest scoring value for Q
between all candidate hyperplanes.

In Fig. 3, the lines that define the safe areas for C1 and C2 with respect to Q
are shown as SLC1 and SLC2 , respectively. Given a query Q, a cache entry Ci

is sufficient to answer a query Q, if it holds that the safe area SAi of the cache
entry Ci contains at least k data points. This means that there cannot be any
other tuples in the result set of Q that have not been retrieved by the query
Qi, because the safe area has been scanned during the processing of Qi. For
example, in Fig. 3, both cache entries are sufficient for answering the query Q
for k = 2, but none of those is sufficient to answer the query Q for k = 3.

The third case deals effectively with the previous situation. Several cache
entries need to be combined to answer the top-k query, since a single cache
entry is not sufficient. To determine whether a set of cache entries can be used
to answer a top-k query, we define the concept of cache horizon.

Definition 2. (Cache horizon) The cache horizon of a cache C = {Ci} is
defined as the borderline of the area defined by the union of query planes LQi .

The cache horizon represents the border between the points that are cached and
those that are not. Points behind the cache horizon (towards the right upper
corner of the data space) are contained in at least one cached entry, while points
beyond the cache horizon (near the origin of the data space) have to be retrieved
from the relation R that is stored at different servers. In Fig. 3, the cache horizon
is defined by the lines LQ1 and LQ2 and the enclosed area has been examined to
answer queries Q1 and Q2. In order to determine if the result set of Q is behind
the cache horizon and can be answered by combining more than one cache entry,
we define the limiting point of the cache.

Definition 3. (Limiting point) The limiting point of a cache C is the point,
where the hyperplane SLC perpendicular to the query vector intersects the cache
horizon, when SLC moves from the right upper corner of the data space towards
the origin.

The area defined by the hyperplane SLC and the right upper corner of the data
space is called safe area of the cache horizon. If this area contains more than k
data points, then Q can be answered by combining more than one cache entry.

Given a cache C with m cache entries C1, C2, . . . , Cm, the limiting point of the
horizon with respect to a query Q can be identified using linear programming. We
construct a constraint matrix H and right-hand-side values b from the weights
and thresholds of the m cache entries:

288 N.H. Ryeng et al.

H =

⎛⎜⎜⎜⎝
w11 w12 · · · w1n

w21 w22 · · · w2n

...
wm1 wm2 · · · wmn

⎞⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎝
b1

b2

...
bm

⎞⎟⎟⎟⎠
Given a query Q, the objective is to maximize f = wQ

Ta, subject to the con-
straints Ha ≤ b and 0 < ai < 1, ∀ai. The solution of this linear programming
problem provides the coordinates of the limiting point. By applying the scoring
function f defined by Q, we get the cache score b = f(p) of the limiting point
p. If at least k cached points pi exist such that f(pi) ≥ b, then the entire result
set of query Q is retrieved from the cache entries.

5.2 Cache Replacement Policy

A first observation regarding a cache entry Ci ∈ C is that it can become redun-
dant due to other cache entries in C. More formally, Ci becomes redundant if its
query Qi is covered by a set of other cache entries. Redundant cache entries can
be evicted from the cache without affecting the cache’s ability to answer queries.
Identifying whether a cache entry Ci is redundant is achieved by solving a linear
programming problem. More detailed, the objective is to maximize wCi

Ta, sub-
ject to H ′a ≤ b′ and ∀aj : 0 < aj < 1, where H ′ and b′ describe the combined
horizon of all cache entries except Ci. Thus, we find the limiting point p of the
cache when Ci is ignored. If bi > fi(p), the cache entry Ci is redundant and can
be removed.

Applying a traditional cache replacement policy, such as LRU, is inappropriate
due to the unique characteristics of our cache. The reason is that answering a
top-k query from the cache may require combining tuples from more than one
cache entry. Consequently, cache entries are utilized collectively, rendering any
policy based on usage statistics of individual cache entries ineffective.

Motivated by this, we introduce a new cache replacement policy named Least-
Deviation Angle (LDA), which is particularly tailored to our problem. After
removing redundant entries, LDA determines the priority of a cache entry to be
evicted based on deviation from the equal-weights vector eT = (1, 1, . . . , 1). For
each cache entry Ci, the angle θi = arccos(ŵCi ·ê) between e and Ci is calculated
and used as a measure of deviation. The entry Ci with the largest θi is replaced
first. Intuitively, LDA penalizes cache entries that have low probability to be
highly similar to other queries.

6 Remainder Queries

In the previous section, we described in which cases the entries of the cache
are sufficient for retrieving the entire result set of a query Q. When this oc-
curs, no networking cost exists for answering the query. In the case where only
k′ < k tuples t are retrieved from the cache for which the inequality f(t) ≥ b
holds (b is the cache score), the cache fails to return the complete result set.
Then, instead of executing the entire query Q from scratch, ARTO executes a

Efficient Distributed Top-k Query Processing with Caching 289

Fig. 4. Areas examined by the remainder query vs. restarting a query Q1

remainder query that retrieves only the k − k′ missing tuples and transfers only
the necessary tuples to provide the complete result set. We first provide a short
discussion showing that is more beneficial to execute a remainder query, rather
than restarting a cached query Qi = {R, fi, ki} and retrieving additional tuples,
so that the k tuples of Q are retrieved. Then, we define the remainder query and
explain how it will be processed in order to minimize the network consumption.

6.1 Discussion

In this section, we discuss the issue whether it is more beneficial to restart a
query of a cache entry Ci than posing a remainder query. Fig. 4 depicts a cache
containing one cache entry C1 that covers the data space until the line LQ1 (line
DB). A query Q is posed, and the points in the cache entry until the line SLC1

(line AB) are used for answering the query Q. If fewer than k tuples are enclosed
in ABR, additional uncached tuples must be retrieved from remote servers. We
consider two options for retrieving the remaining tuples. The first alternative is
to pose a remainder query that would scan the part FEBA of the data space.
Since the query is executed based on the given weighting vector of Q, we can
stop after retrieving k tuples exactly, i.e., at the query line LQ (FE). The other
alternative is to restart the cached query Q1. In this case, we can take advantage
of all k1 data points of the cache entry C1 (i.e., we save the cost of scanning
DBA). On the other hand, in order to be sure that we have retrieved all tuples
of the result set of Q we have to scan a larger area at least until the line GE .

If data is uniformly distributed, the number of tuples retrieved is proportional
to the area of the data space that is scanned. For the sake of simplicity, we assume
that the query line of any query lies in the the upper right triangle of the data
space. This means that we have scanned less than half the data space, in order
to retrieve the result set of any query, which is an acceptable assumption since
usually the values of k are small. In our example, the area of FEBA is smaller

290 N.H. Ryeng et al.

than the area of GEBD , and the retrieved tuples are expected to be fewer when
the remainder query is used. In the following, we prove that this always holds
for the 2-dimensional case, when the query line does not cross the diagonal line
XY. Similar conclusions can been drawn for arbitrary dimensionality.

Theorem 1. Given a 2-dimensional data space, if all query lines do not cross
the diagonal line XY , a smaller area is scanned if the remainder query is executed
than if continuing a cached query.

Proof. Using the areas of Fig. 4, it suffices to show that the area of trapezoid
FEBA is smaller than the area of trapezoid GEBD . The two trapezoids share
one common side, namely EB . Furthermore, it is always the case that BD > BA
and GE > FE . Based on Thales’ theorem about the ratios of line segments that
are created if two intersecting lines are intercepted by a pair of parallels, we
derive that FA

AR = EB
BR (1) and GD

DR = EB
BR (2). From (1) and (2) we conclude

that FA
AR = GD

DR . Since DR > AR, we derive that GD > FA. Therefore, three
sides of FEBA are smaller than the corresponding three sides of GEBD and the
remaining fourth side BE is common. Hence, the area of FEBA is smaller than
the area of GEBD .

6.2 Processing of Remainder Queries

Given a query Q and a cache score b, a remainder query is defined as Q′ =
〈R, f, k − k′, b〉, where k′ is the number of cached tuples p such that f(p) ≥ b.
Any server Si that stores a fragment Ri of the relation R receives the remainder
query Q′. Independently from the implementation of the top-k operator at Si,
the server Si transfers to the querying server only tuples p such that f(p) ≤ b.
Thus, it avoids transferring tuples that are already cached and lie in the safe
area of the querying server.

To further limit the number of transferred tuples to the querying server, Si

filters out some of the locally retrieved tuples by using the cache horizon before
transferring them. Even though some tuples lie outside the safe area, they are
available at the querying server in some cache entry. For example, in Fig. 4, the
remainder query has to start scanning the data space from the line SLC1 until
k tuples are retrieved, i.e., the remainder query fetches new tuples until the
query line LQ. Nevertheless, the points that fall in the triangle DBA are already
available at the querying server in the cache entry C1. These tuples do not need
to be transferred, thus minimizing the number of transferred data. In order for
Si to be able to filter out tuples based on the cache horizon, Si retrieves the
descriptions of all cache entries from the querying server. Then, all tuples p such
that there exists a cache entry Ci such that fi(p) > bi are not transferred to the
querying server, since these tuples are stored locally in the cache. The querying
server combines the tuples received from the servers Si with the tuples in the
cache and produces the final result set of the query Q. To summarize, the cache
horizon is used to limit the remainder query, which means that the whole cache
is exploited and a minimal number of tuples is fetched from other servers.

Efficient Distributed Top-k Query Processing with Caching 291

Algorithm 1. Server selection
1: Input: Query Q = {R, f, k}, Servers S
2: Output: Server S∗ that will process Q
3: S∗ ← null, minScore←∞
4: for (∀Si ∈ S) do
5: {(Qj , bj)} ← catalog.getCacheDesc(Si)
6: score(Si)← computeLimitingPoint({(Qj , bj)})
7: if (score(Si) < minScore) then
8: S∗ ← Si

9: minScore← score(Si)
10: end if
11: end for
12: return S∗

7 Server Selection

The problem of server selection is to identify the best server for executing the
top-k operator. While the rank scan operators must be located at the servers that
store the relation fragments, the top-k operator can be placed on any server. Our
server selection algorithm assigns the top-k operator to the server that results
in the most cost-efficient query execution in terms of network cost.

Intuitively, the best server S∗ to process the top-k query Q = {R, f, k} is the
one that can return as many as possible from the k result tuples from its local
cache, thereby reducing the amount of the remaining result tuples that need to
be fetched. To identify S∗, we need to inspect the cache entries for each server.
This operation is efficiently performed using the distributed catalog. In more
detail, the catalog can report the descriptions of cache entries C = {Ci} of any
server, where a description of Ci consists of {Qi, bi}. Based on this information,
the limiting point of the server is calculated, as described in Section 5. Based on
the limiting point, we compute the score of each server by applying the function
f of the query Q. The server S∗ with the smallest score is selected because this
server has the largest safe area and therefore is the best candidate to process
the top-k query. Algorithm 1 provides the pseudocode for the server selection
mechanism.

8 Experiments

In this section, we present an experimental evaluation of ARTO. We have imple-
mented ARTO into the DASCOSA-DB [14] distributed database management
system and use this implementation to investigate the effect of different param-
eters, query workloads and datasets.

Experimental setup. DASCOSA-DB provides a global distributed catalog
based on a distributed hash table, and this catalog was used to implement pub-
lishing and lookup of cache entries’ descriptions. Experiments were performed
for varying a) number of servers, b) values of k, and c) cache size. We used three

292 N.H. Ryeng et al.

20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

 25 50 75

T
ra

n
sf

er
re

d
 d

at
a

(t
u

p
le

s)

Number of servers

ARTO
Hit/miss

No caching

Fig. 5. Transferred data for 1,000 queries and uniform data distribution

datasets, with uniform, correlated and anti-correlated distributions. Each dataset
consisted of 1,000,000 5-dimensional tuples. The datasets were distributed hori-
zontally and uniformly over all servers. A separate querying server issued queries
to the system and received the results. The weights of the queries were uniformly
distributed.

Each experiment was performed both without caching and with ARTO en-
abled. In addition, we did experiments with a hit/miss implementation where
the cache was used only if it were sufficient to answer the complete query. This
is conceptually similar to previously proposed methods, e.g., BRANCA [20]. We
measured the number of tuples accessed a) locally on the querying server using
its cache, and b) from remote servers.

Varying number of servers. In this experiment, ARTO was evaluated with
uniformly distributed, correlated and anti-correlated datasets. Each dataset was
distributed over 25, 50 and 75 servers. A workload of 1,000 queries with uniformly
distributed weights and k = 50 were issued. Each server had 10,000 bytes cache,
which allows for 4 complete top-50 results to be cached at each server.

Fig. 5 shows the total number of tuples that are transferred over the network
for the query workload using a uniform dataset. We observed similar results
for correlated and anti-correlated datasets, which hints that the performance of
our approach is stable across different data distributions. The combination of
server selection with remainder queries causes a major improvement in network
communication costs, even with such a small cache size (4 cache entries). The
advantage of ARTO is clearly demonstrated when comparing to the hit/miss
strategy, which performs poorly, as it requires k tuples in the safe area to use
the cache. Since cache misses are frequent, the complete top-k query has to be
executed. The results of hit/miss are just barely better than without caching,
while ARTO achieves significant improvements.

Efficient Distributed Top-k Query Processing with Caching 293

20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

 25 50 75 100 125

T
u
p
le

s

k

ARTO total
Hit/miss total

No caching total
ARTO local

Hit/miss local
No caching local

Fig. 6. Results of queries with varying k

20k

40k

60k

80k

100k

0 5 10 15 20 25 30 35 40 45 50

T
ra

n
sf

er
re

d
 d

at
a

(t
u
p
le

s)

Cache size (kB)

ARTO
Hit/miss

Fig. 7. Results of queries with varying cache size

Varying k. The size of k affects the gain that can be obtained from caching. If
k is very small, there are not that many remote accesses that can be replaced by
local accesses. In this experiment, the caching method was tested with varying
values for k. A uniform dataset of 1,000,000 tuples on 25 servers was used. Each
site had 10,000 bytes cache. The results displayed in Fig. 6 show how the number
of total and local accesses increases with increasing k. ARTO always accesses
significantly more local tuples compared to the competitor approaches. Around
k = 100, the number of local tuples accessed starts to decrease. This is because
the cache is of a limited size. With k = 100, only two complete top-k results fit in
cache. Even in this extreme case, ARTO still manages to access a high percentage
of the total tuples from the local cache, thereby saving communication costs.

294 N.H. Ryeng et al.

Cache size. In order to study the effect of cache size in more detail, we per-
formed an experiment where we gradually increased the cache size up to 50,000
bytes, i.e., more than 20 complete results. We fixed k = 50 and used a uniform
dataset of 1,000,000 tuples on 25 servers. The results are shown in Fig. 7. As
the cache size increases, more top-k queries can be cached, thus enlarging the
safe area. Consequently, ARTO reduces the number of transferred data (remote
tuples accessed). In contrast, the hit/miss strategy always results in cache misses
and cannot reduce the amount of transferred data.

9 Conclusion

In this paper, we present ARTO, a novel framework for efficient distributed top-k
query processing. ARTO relies on a caching mechanism that reduces the network
communication costs significantly by retrieving as many tuples as possible from
the local cache. In order to retrieve the missing tuples, we define the remainder
query that transfers only the tuples that are not stored in the cache by filtering
out tuples based on the cache horizon. Moreover, ARTO provides a server selec-
tion mechanism that assigns a new top-k query to the most promising server.
We have implemented our framework in the DASCOSA-DB database manage-
ment system. The results of the experiments show considerable improvements in
network communication costs.

Acknowledgments

The authors would like to express their thanks to Jon Olav Hauglid for help with
the implementation in DASCOSA-DB and João B. Rocha-Junior for providing
the dataset generator.

References

1. Akbarinia, R., Pacitti, E., Valduriez, P.: Reducing network traffic in unstructured
P2P systems using top-k queries. Distributed and Parallel Databases 19(2-3), 67–86
(2006)

2. Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for top-k queries.
In: Proceedings of VLDB (2007)

3. Baikousi, E., Vassiliadis, P.: View usability and safety for the answering of top-k
queries via materialized views. In: Proceedings of DOLAP (2009)

4. Balke, W.T., Nejdl, W., Siberski, W., Thaden, U.: Progressive distributed top-k
retrieval in peer-to-peer networks. In: Proceedings of ICDE (2005)

5. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational
databases: Mapping strategies and performance evaluation. ACM Trans. Database
Syst. 27(2), 153–187 (2002)

6. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In:
Proceedings of PODC (2004)

7. Chandramouli, B., Bond, C.N., Babu, S., Yang, J.: Query suspend and resume. In:
Proceedings of SIGMOD (2007)

Efficient Distributed Top-k Query Processing with Caching 295

8. Chaudhuri, S., Gravano, L.: Evaluating top-k selection queries. In: Proceedings of
VLDB (1999)

9. Chaudhuri, S., Gravano, L., Marian, A.: Optimizing top-k selection queries over
multimedia repositories. IEEE Trans. on Knowledge and Data Engineering 16(8),
992–1009 (2004)

10. Chaudhuri, S., Kaushik, R., Ramamurthy, R., Pol, A.: Stop-and-restart style exe-
cution for long running decision support queries. In: Proceedings of VLDB (2007)

11. Das, G., Gunopulos, D., Koudas, N., Tsirogiannis, D.: Answering top-k queries
using views. In: Proceedings of VLDB (2006)

12. Güntzer, U., Balke, W.T., Kießling, W.: Optimizing multi-feature queries for image
databases. In: Proceedings of VLDB (2000)

13. Hauglid, J.O., Nørv̊ag, K.: PROQID: Partial restarts of queries in distributed
databases. In: Proceedings of CIKM (2008)

14. Hauglid, J.O., Nørv̊ag, K., Ryeng, N.H.: Efficient and robust database support
for data-intensive applications in dynamic environments. In: Proceedings of ICDE
(2009)

15. Hristidis, V., Koudas, N., Papakonstantinou, Y.: PREFER: A system for the ef-
ficient execution of multi-parametric ranked queries. In: Proceedings of SIGMOD
(2001)

16. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing tech-
niques in relational database systems. ACM Comput. Surv. 40(4) (2008)

17. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible
databases. ACM Trans. Database Syst. 29(2), 319–362 (2004)

18. Michel, S., Triantafillou, P., Weikum, G.: KLEE: A framework for distributed top-k
query algorithms. In: Proceedings of VLDB (2005)

19. Vlachou, A., Doulkeridis, C., Nørv̊ag, K., Vazirgiannis, M.: On efficient top-k query
processing in highly distributed environments. In: Proceedings of SIGMOD (2008)

20. Zhao, K., Tao, Y., Zhou, S.: Efficient top-k processing in large-scaled distributed
environments. Data and Knowledge Engineering 63(2), 315–335 (2007)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 296–305, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Exploiting Correlation to Rank Database Query Results*

Jaehui Park and Sang-goo Lee

Seoul National University, 599 Gwanak-ro, Seoul, Korea
{jaehui,sglee}@europa.snu.ac.kr

Abstract. In recent years, effective ranking strategies for relational databases
have been extensively studied. Existing approaches have adopted empirical
term-weighting strategies called tf×idf (term frequency times inverse document
frequency) schemes from the field of information retrieval (IR) without careful
consideration of relational model. This paper proposes a novel ranking scheme
that exploits the statistical correlations, which represent the underlying seman-
tics of the relational model. We extend Bayesian network models to provide de-
pendence structure in relational databases. Furthermore, a limited assumption of
value independence is defined to relax the unrealistic execution cost of the
probabilistic model. Experimental results show that our model is competitive in
terms of efficiency without losing the quality of query results.

Keywords: Ranking, Keyword search over structured data, Correlation,
Attribute value, Bayesian networks.

1 Introduction

In recent years, there has been significant interest in developing effective retrieval
models for structured data (e.g., relational databases) because a large portion of avail-
able data is structured and stored in database systems. Although relational database
systems are designed to manage structured data effectively, they currently only sup-
port a simple Boolean retrieval model. Recent studies [6, 2, 1, 7, 4] have proposed
many useful ranking functions for their own purposes. The most commonly used
ranking schemes are the adaptation of tf×idf schemes from the area of IR. However,
we note that tf×idf schemes often ignore the fundamental aspects of relational model.
Many of them ignore the relationship between values in practice. Although they work
well for several pragmatic cases such as in text databases, they are not appropriate for
general relational databases. For example, repeating groups of terms hardly ever ap-
pear in a tuple because a tuple is a set of attribute values; it cannot contain multiple
occurrences of an atomic value. For example of car sales databases, there is no car
that has two car body styles at the same time. A car instance is represented as a set of
atomic properties. Therefore, the frequency of a term (which is represented as a set of
attribute values) in a tuple is not appropriate measure for significance of it. Therefore,
the direct adaptation of tf×idf schemes in structured data cannot effectively work in
general cases.

* This research was supported by Seoul R&BD Program (WR080951).

 Exploiting Correlation to Rank Database Query Results 297

In this paper, we propose a novel ranking method by analyzing the rich dependen-
cy structures explicitly represented in relational databases. In an explicit feature
space, we can easily find the relationship between values and use it more effectively.
Rather than using the frequencies of a given term (as a query), we model the correla-
tions of the term with other terms in the same tuple to estimate the significance of the
term in the tuple. Although computing the dependency structured between terms may
incur high cost, we can reduce the cost by assuming a limited independence on term
sets selected by user’s intention. The Bayesian network model is used to describe the
correlations between terms with the assumption.

We evaluated and validated our ranking method through experimentation using
real datasets extracted from commercial web databases. We compared our method
with a state-of-the-art approach [4]. The experimental results show that our method is
competitive in terms of efficiency without losing the quality of query results.

The rest of the paper is organized as follows: In Section 2, we review related work
and compare it with our work. In Section 3, we describe a problem with a correlation-
based weighting scheme and statistical measures for quantifying the attribute value
correlations. In Section 4, we introduce a probabilistic ranking model based on
attribute value correlation with a limited assumption of value independence. In Sec-
tion 5, we present experimental results for evaluating our ranking method on real
datasets. Finally, we present concluding remarks in Section 6.

2 Related Work

The problem of ranking database query results has been actively investigated in recent
years. Several works such as [3, 9] have employed relevance feedback based on ma-
chine learning techniques. In [9], the authors proposed SQL extensions in which users
can specify ranking functions via preference constraints. In [4], authors adopt the
principles of the probabilistic model from the IR field, namely, the Probabilistic In-
formation Retrieval (PIR) model, to rank database tuples. The aspect that distinguish-
es our work from the above is that we do not need any prior knowledge from users
(e.g., query workloads or user feedback) for ranking query results.

Several existing works have supported keyword searches on relational databases,
e.g., [2, 7, 12]. They utilize state-of-the-art IR ranking strategies such as tf×idf
schemes or PageRank style schemes, which perform well in practice. Because they
mainly focus on the strategies to join tuples for keyword matches across multiple
tables, the size of the joined tuples is considered as an important measure of the rank-
ing. Recent work, such as [12], has focused on modifying ranking functions from the
approaches in IR and their related query processing methods. Top-k query algorithms
are considered as an efficient online query processing technique for score aggrega-
tion. Fagin et al. [5] introduced a set of novel algorithms, assuming that sorted access
and random access to the objects are available for each attribute. A number of im-
provements have been suggested by several studies, such as [8]. However, such ap-
proaches have primarily focused on the scores of an individual object based on its
own attributes independently. While the dependency among attributes comprises a
major part in many real-world datasets, ranking over correlated attribute value has not
been properly supported by the classic algorithms for top-k queries.

298 J. Park and S.-g. Lee

The works most closely related to ours are found in [4]. In particular, Chaudhuri et
al. [4] employed the inverse document frequency of attribute values to estimate odds
of relevance, given queries in the context of querying relational databases. They ex-
ploit the query workload (user query logs) to discover term significance for a query.
Although it is a usual technique in IR to exploit the knowledge of relevance at query
time, it can produce potentially unintuitive results if the query workload is unavailable
or is built up by unrelated terms in a query. On the other hand, we do not use any
prior knowledge to extract user preferences, but rather we proactively analyze given
database statistics. Our work is more intuitive when there is no proper information
related to previous uses (such as query workloads); this context is similar to cold start
problem in the fields of recommendation.

3 Attribute Value Correlation

3.1 Basic Concepts

In this section, we introduce the basic concepts for modeling the correlation in rela-
tional databases. We present two types of attribute values: specified attribute values
and unspecified attribute values.

Definition 1. Let K = {k1, k2, ..., kn} be the terms of a collection R of tuples, that is,
the set of n unique terms that appear in all tuples in R.

Definition 2. Let V = {v1, v2, ..., vo} be the attribute values of a collection R of tuples,
that is, the set of o unique attribute values that appear in all tuples in R. We assume
that a term ki in K is arbitrary mapping to an attribute value vi; there exists a mapping
function of ki to vi in R.

Definition 3. A query Q, Q⊆V, is a set of l attribute values. |Q| denotes the number of
query terms. A tuple T, T⊆V, is a set of m attribute values. |T| denotes the number of
attribute. An attribute value av of a tuple t binding to an attribute a is denoted as
av=t[a]. R is a set of tuples, R={ , , ..., | |} and Q⊆ , which contains all of
the query terms.

Definition 4. Given query Q, let SVi = {svi1, svi2, ..., svi|Q|}, SVi⊆ , be the set of
unique attribute values that appear in the query Q and the tuples . We define this set
as the specified attribute values. Let UVi = {uvi1, uvi2, ..., uvi|T|-|Q|}, UVi⊆ , be the
set of unique attribute values that appear in the tuples but not in the query Q. We
define this set as the unspecified attribute values. Two sets, SVi∩UVi=Ø, are disjoint,
and the union of SVi and UVi forms a tuple .

3.2 Illustrative Examples

To quantify the usefulness of terms in characterizing the semantics of the tuple in
which they appear, each attribute value matching the terms in a tuple is assigned a
weight based on its significance for the tuple, given a query. We suggest using the
correlations between the specified attribute values and the unspecified attributes to
derive the weight of the attribute values specified by the queries. A key feature of our

 Exploiting Correlation to Rank Database Query Results 299

Table 1. A part of a table with correlated values

 WD Brakes Doors Color
t1 AWD Power Brakes 3 Doors Silver
t2 AWD Power Brakes 3 Doors Black
t3 AWD Power Brakes 3 Doors Black
t4 AWD Power Brakes 3 Doors Black
t5 AWD Power Brakes 3 Doors Green
t6 AWD Power Brakes 2 Doors Grey

approach is that we can easily extract the correlations from the statistics of relational
databases.

The basic intuition in this example is that semantically related terms often occur
close to each other. Suppose that we have a set of tuples and wish to determine the
weight of an attribute value for a tuple. Let us consider Table 1 as the Boolean query
results for a query term “AWD” for a car sales database. The value AWD is consi-
dered as a specified attribute value for a car instance ti. We estimate the weight of the
specified attribute value based on the correlations with unspecified attribute values.
Table 1 illustrates an extreme case of statistical closeness, such as the correlations
between AWD and Power Brakes. These values are heavily correlated and can be
exploited to weight the specified attribute value AWD: the weight of the attribute
value AWD is estimated as high for a tuple that contains Power Brakes. The weight of
a specified attribute value for a given tuple is increased by the correlations of unspeci-
fied attribute values. To compute the correlation, we naively count the co-occurrences
of common tuples to estimate correlations. The correlations of the unspecified
attribute values Power Brakes, 3 Doors and 2 Doors are (approximately) proportional
to 6, 5 and 1, respectively. Based on this intuition, the weight of AWD for t1~t5 is
estimated higher than that for t6.

3.3 Measures of the Correlations

Originally, correlations represent statistical relationships between random variables or
observed data values. We consider relational databases as collections of random va-
riables at a specific point in a search space.

Definition 5. Let V be a discrete random variable on a finite set V = {v1, v2, ..., vn},
with probability distribution function p(vi) = Pr(V=vi). If the observations of V=vi are
dependent to the observations of V=vj, then we say that the two attribute values vi and
vj, have a correlation. Although correlation does not imply causation, we can establish
a causal relationship in the correlation by considering the prior condition, the observa-
tion of the query Q. Pr(V=vj|Q) describes the extent of the correlation of the unspeci-
fied attribute value vj with the specified attribute value vi given by the query Q.

To test the correlations (or dependencies) between categorical values, theoretical
frequencies are calculated using a distribution from values binding an attribute of a
column. We measure all possible outcomes pointwise from the expected value of the
covariance. The function of the correlation test for the attribute values x and y is:

300 J. Park and S.-g. Lee

 , ,1 1 . (1)

4 Probabilistic Ranking Model

4.1 Bayesian Network Model for Probabilistic Ranking

Bayesian networks provide a graphical formalism (a directed acyclic graph) for expli-
citly representing dependencies among the variables of a domain, thus providing a
concise specification of a joint probability distribution. In our model, the dependen-
cies can be interpreted as correlations, given a specific query. Let P be a joint proba-
bility distribution defined over the sample space U. As in [11], the probability P(c),
associated with a generic concept c (which represents a tuple or a query by a subset of
U) in the sample space U, is defined by the following formula:

 | .
(2)

The ranking computation is based on interpreting the relevance between a tuple t and
the query q as the intersection between the concepts t and q. To quantify the degree of
relevance of tuple t given the query q, we use the probability P(t|q), the probability of
relevance, as follows (for details, refer to [11]):

 | 1 | | . (3)

4.2 Problem Formulation

Consider a database table R with tuples T = {t1, t2, …, t|R|} with attributes A = {a1, a2,
…, am} and a query Q = {k1, k2, …, k|Q|} over R with a parameterized query of the
form “SELECT * FROM R WHERE a1 = k1 AND a2 = k2 … AND a|Q| = k|Q|”, where
each ai is the attribute from A corresponding to the specified attribute value ki speci-
fied by the query terms (|Q|<m). The set of attributes As = {sa1, sa2, ..., sa|Q|} A is
called the set of specified attributes by the query terms. Analogously, the set of
attributes Au = {ua1, ua2, ..., uam-|Q|} A is called the set of unspecified attributes.
We assume that the set of attributes As can be simply specified by a structured query
or previous work on candidate networks as in [6, 7] (topics related to querying on
multiple tables). To compute the score, we mine the attribute value correlations
C(sv,uv) for the given query, which is an specified attribute value sv=t[sai] (uv=t[uai]
denotes an unspecified attribute value). Now a simple scoring function can be defined
by the following formula:

 , ,, . (4)

 Exploiting Correlation to Rank Database Query Results 301

4.3 Extending the Bayesian Network Model with the Limited Assumption of
Value Dependency

Figure 1 illustrates the extended Bayesian network model for our purposes. A data-
base is represented by the set of the tuples ti. The nodes svi and uvj represent two types
of attribute values: the specified attribute values and the unspecified attribute values.
Each node ki represents a term in the sample space U. The universe of discourse U,
which we take as our sample space, is a set of elementary terms u in the space U. The
node q represents the query that corresponds to terms in u.

Fig. 1. Correlation modeling in the Bayesian network

First of all, we define an extended layer for attribute values to allow dependencies
between them. The specification of the probability P(t|q) needs to consider the depen-
dency. Traditionally, most practical retrieval models assume the following: given a
query Q and a tuple t, dependencies between the terms are not allowed. Although this
assumption is unrealistic in many cases, it reduces computational costs. For example,
given the sample space U, we can have 2t concepts (subsets of U). If all concepts are
considered to be equally likely a priori, each prior probability P(u) is set to
P(u)=(1/2)t, which is a constant. Without this assumption, the dependencies among
elementary nodes have to be specified by expanding P(u) to P(u|u’)P(u’|u”) … . Our
preliminary implementations suggested that such approaches have unacceptable pre-
processing and query processing costs to calculate the probabilities. Consequently, we
define a limited independence assumption only on the extended layer.

Limited Value Independence Assumption. Given a query q and a tuple t, the specified
attribute values are assumed to be mutually independent. Analogously, the unspecified
attribute values are assumed to be mutually independent. We allow dependencies be-
tween a specified attribute value and an unspecified attribute value. Therefore, p(sv,uv)
is not equal to p(sv)p(uv) if there exists a correlation between them.

By allowing dependencies (thick arrows in Figure 1) in only a limited set of nodes,
we can avoid the high cost of calculating the prior probabilities. Still, the dependen-
cies approximate the probability of relevance that is proved to be significant for the

302 J. Park and S.-g. Lee

quality of ranking. Based on Definition 5, the probability of the relevance between the
query Q and the tuple ti can be derived as follows:

| 1 | | (5)

 1 , | |

 1 | | , | .
Based on Definition 2, edges from the term ki only exist if ki is observed for a given
query and given attribute values. This implies that the term ki is conditionally inde-
pendent, given the query q. Therefore, u can be divided into two disjoint concepts uq
and ux=u-uq corresponding to the attribute values sv and uv, respectively. The condi-
tionally independent concepts ux (and uq) for corresponding svi (and uvi) is removed
because the value is reducible. Additionally, P(q) and P(u) can be considered as con-
stants. The final ranking function is as follows: | | , . (6)

Therefore, to infer the probability of a tuple ti given a query q, we need to specify the
following probabilities: P(SVi|uq), P(UVi|SVi,ux) and P(q|uq). The specifications of the
probabilities determine the final ranking function for our method.

. (7)

| , ,, . (8) 10 , . (9)

P(SVi|uq) is specified based on the mutual independence among the specified attribute
values. In our experiment, we set this probability to unity, which corresponds to Boo-
lean matching. P(UVi|SVi,ux) is defined as the aggregation of the attribute value corre-
lations C. We use P(q|uq) to select the concept uq that matches the query. The function
Iq(k) is 1 if k q and 0 otherwise. This equation guarantees that the states where the
active values uq of the query q are taken into consideration. By applying Equations 7, 8
and 9 to Equation 6, we obtain a ranking equivalent to the one found with Equation 4.
The score for tuple t, given the query Q, is defined by the probability p(t|q). To define
the probability of observing the unspecified values of the tuples ti, we use the correla-
tion measure, as described in Section 3.

 Exploiting Correlation to Rank Database Query Results 303

5 Experimental Evaluation

5.1 Experimental Setup

In our evaluation, we use a used car database CarDB (Make, Model, Year, Color,
Style, Price, Mileage, Location) containing 158351 tuples extracted from a web data-
base, Yahoo! Autos1. This database is used in the related works such as [4, 10]. In this
database, each tuple represents a car for sale, and each column represents a set of car
attributes. Because we focus on categorical data, the numerical attributes (e.g., Price
and Mileage) are discretized into five buckets. A MySQL Server 5.0 RDBMS is used
on an AMD Athlon 64 processor 3.2 GHz PC with 2GB of RAM for the environment
of the experiment. All of the algorithms are implemented in JAVA, connected to the
RDBMS through JDBC. Two other ranking methods (RANDOM, PIR[4]) are imple-
mented for comparison with our method (CORR-#).

5.2 Retrieval Effectiveness

While IR relies on extensive user studies and available benchmarks (such as the
TREC collection), such infrastructure is not currently available for evaluating data-
base rankings [1]. Nonetheless, we conducted user studies (similar to [1, 4, 12]) to
evaluate the search quality using limited resources in a nascent stage of research. We
requested 14 subjects who are graduate students from our respective universities and
institutions to behave like used-car buyers. We solicited 10 test queries that represent
a heterogeneous mix of different profiles of positional car buyers as we did not wish
our queries to be biased. Because it is not practical to ask participants to select all of
the query results for a specific query, we conducted a comparative study for the top-
10 results for average precision (cut-off: 10). To compare the performance of the
different ranking methods for the top-10 query results, first, top 10 tuples are col-
lected from each ranking method, obtaining a total of 30 tuples. If there is overlap
among the tuples resulting from the different methods, more tuples are extracted using
the RANDOM method so that 30 unique tuples are collected in total. Next, for each
of the 10 queries, each participant was asked to list the top-10 tuples in the order of
preference.

To evaluate the Kendall tau distance for the top-k results, we asked the participants
to order only the top-30 tuples for each query to evaluate the rank-specific effective-
ness, because requiring users to rank all of the results (over hundreds of tuples) for
each query would be tedious. In varying the number of k, 1 k 30, the Kendall tau
distance is measured by comparing the counts of swaps required to place the list of
one ranking method in the same order as the answer list ordered by the candidates. In
this experiment, a primitive correlation measure, co-occurrence (CORR-2), is consi-
dered as a baseline because the RANDOM method yields unreasonable effectiveness
in the top-k lists. The Pearson product-moment correlation coefficient-based method
is denoted by CORR-1.

Figure 2 shows the average precision of the different ranking methods for each
query. The evaluation results show that CORR generally produces rankings of higher

1 http://autos.yahoo.com

304 J. Park and S.-g. Lee

Fig. 2. Precision at 10

Fig. 3. Kendall tau distance

quality compared to the RANDOM method for every query. For most of the queries,
there are some overlaps between the results of CORR and that of PIR. The precision
of CORR is 0.1 higher than that of the PIR method on average. However, the query
results for q7 and q8 have lower in precision compared to the PIR method. The reason
for this phenomenon was that some terms that were very commonly surfaced in the
query workloads, but these terms were not popular terms for car sales databases. Be-
cause our method only focuses on the given database statistics, the vocabulary not
appearing in the database cannot be used as evidences. For eight of ten queries, the
precision of CORR is 0.15 higher than that of the PIR method on average. Figure 3
shows the Kendall tau distance of the different ranking methods for each top-k query.
It shows that CORR-1 generates the most relevant tuple ranking for any k threshold.
We emphasize that even the primitive correlation metrics-based method (e.g., co-
occurrences) performs better (or almost equal to) than the tf×idf scheme-based me-
thod, PIR. While the results of these user studies appear promising, we caution that it
would be premature to interpret the results as conclusive evidence at all cases. From
the above results, we find that our basic premise, that the statistical relationships be-
tween attribute values are effective for ranking tuples, is reasonable.

Fig. 4. Execution time

5.3 Computational Efficiency

In this section, we show how the performance of our methods changes according to
the size of the data processed. We measure the execution time while varying the num-
ber of tuples in the result set. Figure 4 shows the online execution time as a function

0

0.1

0.2

0.3

0.4

0.5

0.6

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Av
er

ag
e

Pr
ec

isi
on

Query

CORR

PIR

RANDOM

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

top1 top10 top20 top30

Ke
nd

al
l t

au
 d

is
ta

nc
e

PIR

CORR-1

CORR-2

0

100

200

300

400

500

600

700

800

900

1000

10 30 40 60 100 200

Ti
m

e
(m

se
c)

Result Size (number of tuples)

PIR

CORR

 Exploiting Correlation to Rank Database Query Results 305

of the number of tuples in the query results. The online query processing includes the
attribute value weight selection and aggregation for the tuple scores. The execution
time grows almost linearly with the number of tuples in the query results because the
number of categorical attributes and the query size are relatively smaller than the
number of tuples (l, m<<n). Our method is competitive compared to related work in
terms of efficient top-k computation in random access-based approaches.

6 Conclusion

In this paper, we introduce a probabilistic method to enable an effective retrieval over
relational databases with categorical attributes by analyzing the attribute value corre-
lation. Our ranking function is based on the Bayesian network model, explicitly intro-
ducing the limited independence assumption on the set of attribute values to avoid
high computational costs. We present a set of results from experiments conducted on
a real dataset. Our experiments show that our ranking strategy is effective without a
priori knowledge and provides a reasonable efficiency.

Further research is required to develop the efficient top-k computation for multiple
relational data structure.

References

1. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated Ranking of Database Query
Results. In: CIDR, pp. 262–268. ACM Press, New York (2003)

2. Hulgeri, A., Nakhe, C.: Keyword Searching and Browsing in Databases using BANKS. In:
ICDE, pp. 431–440. IEEE Press, Washington DC (2002)

3. Chakrabarti, K., Porkaew, K., Mehrotra, S.: Efficient Query Refinement in Multimedia
Databases. In: ICDE, pp. 196–204. IEEE Press, Washington DC (2000)

4. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic ranking of database query
results. In: VLDB, pp. 888–899, VLDB Endowment (2000)

5. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In:
PODS, pp. 102–113. ACM Press, New York (2001)

6. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in relational databases. In:
VLDB, pp. 670–681, VLDB Endowment (2002)

7. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style keyword search over
relational databases. In: VLDB, pp. 850–861, VLDB Endowment (2003)

8. Ilyas, F., Aref, G., Elmagarmid, K.: Supporting top-k join queries in relational databases.
The VLDB J. 13(3), 207–221 (2004)

9. Ortega-Binderberger, M., Chakrabarti, K., Mehrotra, S.: An Approach to Integrating Query
Refinement in SQL. In: EDBT, pp. 15–33. ACM Press, New York (2002)

10. Nambiar, U., Kambhampati, S.: Supporting queries with imprecise constraints. In: AAAI,
pp. 1654–1657. AAAI Press, New York (2006)

11. Ribeiro, B.A., Muntz, R.: A belief network model for IR. In: SIGIR, pp. 253–260. ACM
Press, New York (1996)

12. Meng, X., Ma, Z.M., Yan, L.: Answering approximate queries over autonomous web data-
bases. In: WWW, pp. 1021–1030. ACM Press, New York (2009)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 306–320, 2011.
© Springer-Verlag Berlin Heidelberg 2011

LinearDB: A Relational Approach to Make Data
Warehouse Scale Like MapReduce∗

Huiju Wang1,2, Xiongpai Qin1,2, Yansong Zhang1,2,
Shan Wang1,2, and Zhanwei Wang1,2

1 Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of
China), MOE, Beijing 100872, P.R. China

2 School of Information, Renmin University of China, Beijing 100872, P.R. China
wanghuiju.cn@hotmail.com, qxp1990@sina.com,

{zhangys_ruc,swang}@ruc.edu.cn, mayjojo@yeah.net

Abstract. Operating on computer clusters, parallel databases enjoy enhanced
performance. However, the scalability of a parallel database is limited by a
number of factors. Although MapReduce-based systems are highly scalable,
their performance is not satisfactory for data intensive applications. In this pa-
per, we explore the feasibility of building a data warehouse that incorporates the
best features from both technologies – the efficiency of parallel database and
the scalability and fault tolerance of MapReduce. Towards this target, we de-
sign a prototype system called LinearDB. LinearDB organizes data in a decom-
posed snowflake schema and adopts three operations – transform, reduce and
merge – to accomplish query processing. All these techniques are specially de-
signed for the cluster environment. Our experimental results show that its scal-
ability matches MapReduce and its performance is up to 3 times as good as that
of PostgreSQL.

Keywords: hierarchical encoding, data warehouse, scalability, star join.

1 Introduction

The scale of data warehouse continues exploding [4]. More and more enterprises have
started building their "private clouds", shifting away from high-end machines, and
moving to computer clusters composed of low-cost machines.

Parallel database does not adapt to the computer cluster architecture. Most par-
allel databases are designed for the platforms consisting of no more than several hun-
dreds of high-end servers, where queries take no more than a few hours to finish.
Failures are relatively rare in such an environment. Once a failure happens, a parallel

* This work is partly supported by the Important National Science & Technology Specific

Projects of China ("HGJ" Projects, Grant No.2010ZX01042-001-002), the National Natural
Science Foundation of China (Grant No.61070054), the Fundamental Research Funds for the
Central Universities (the Research Funds of Renmin University of China, Grant
No.10XNI018), the Renmin University of China (Grant No.10XNB053), and the Graduate
Science Foundation of Renmin University of China (Grant No.10XNH096 and
No.11XNH120).

 LinearDB: A Relational Approach to Make Data Warehouse Scale Like MapReduce 307

database can simply re-execute the query. In contrast, the machines in a computer
cluster tend to be cheaper, less reliable, and more numerous. Their failures are much
more common. When the system scales to a large number of nodes in a cluster, the
cost of system failures will increase quickly – a single node’s failure will cause the
whole query to be redone.

Star schema and snowflake schema are two of the most frequently used data mod-
els in data warehouse [7]. Traditionally, they are implemented on RDBMS, which
heavily depends on join operations to handle analytical queries. This solution prevents
data warehouse from scaling across a cluster. For example:

1. If we distribute both the dimension tables and the fact table evenly over the
computing nodes, we will introduce excessive network transmission to the cluster,
because star (snowflake) queries requires a significant number of join operations to
associate the dimension tables with the fact table;

2. If we copy all the dimension tables to each node and distribute only the fact
table, the storage space consumption may become unaffordable. For instance, to dis-
tribute 5GB dimension tables and 1TB fact table over one hundred nodes, the dimen-
sion tables will take 5GB*100=500GB, which is almost half of the fact table. If there
are more nodes, more additional space will be consumed.

MapReduce-based system proves to be inefficient. MapReduce-based system is
superior to RDBMS in scalability and fault tolerance, but inferior to RDBMS in per-
formance [12]. In particular, MapReduce-based systems are very inefficient at join
operations, let alone star (snowflake) joins.

It is possible to make data warehouse scale as MapReduce. Our aim is to divide a
query processing task into multiple sub-tasks, such that each sub-task can be distrib-
uted to a data node that works independently without communicating with the other
nodes. Then, the work of a failed node can be done by its backup node, without the
necessity of redoing the whole query. However, star (snowflake) schemas require
joins to correlate their fact tables and dimension tables, making it difficult to divide
the process into independent tasks. To handle this issue, we adopt a denormalization
method – putting dimension hierarchy information into fact tables. In this way, most
queries can be executed on the fact table without accessing the dimension tables. We
achieve such de-normalization through hierarchy encoding [1, 3, 14], as the vast ma-
jority of predicates of data warehouse queries operate on hierarchies (such as the
queries on MOLAP cubes).

Based on the de-normalized schema, we design a query processing model called
TRM. It consists of three operators: 1) Transform: probe dimension tables and trans-
late predicates on dimension tables into predicates on fact tables; 2) Reduce: scan,
aggregate and sort fact tables in a distributed manner; 3) Merge: merge all results
generated by the data nodes, perform residuary joins and ordering, and finally output
the results. The three operations can be executed independently. Most importantly,
our approach liberates the fact table from the dimension tables, so that we can distrib-
ute the fact table across a large cluster and scan it in parallel. Network transmission is
also minimized in our TRM execution model.

308 H. Wang et al.

The main contributions of this work include:

 We re-evaluate the traditional star (snowflake) schema in the context of the
cluster environment, and propose a scalable data warehouse schema – de-
composed snowflake schema for distributed data-warehouse query process-
ing. The improved schema eliminates the reliance of the fact table on the
dimension tables, such that the segments of the fact table can be stored and
processed independently. It also transforms the expensive star (snowflake)
join operation into a series of record matching based on the dimensional hi-
erarchy encoding and a scan of the fact table.

 We present a complete query processing model – TRM execution model,
which answers all data warehouse-style queries in three operations: Trans-
form, Reduce and Merge. To handle the optimization challenges posed by
the new execution model, we propose a number of optimization techniques,
such as multi-column scan, data merging, etc.

 We have performed extensive experiments to evaluate the scalability and
performance of our proposal.

The rest of the paper is organized as follows. Section 2 gives an overview of the re-
lated work. In Section 3, we describe the data organization in LinearDB. Section 4
presents the Transform–Scan–Reduce execution model, and Section 5 deals with its
implementation and optimization issues. Our experiment results are presented in Sec-
tion 6. Finally, Section 7 summarizes our approach and discusses directions of our
future work.

2 Related Work

Large scaled data analysis has proliferated recently with the introduction of the
Map- Reduce model [8] (represented by the open-source Hadoop [5]), and its related
soft-ware, such as Hive [9], Pig Latin [13], HBase [15], etc. However, MapReduce is
desi- gnnnned initially for unstructured data processing based on files. The applica-
tions are mainly focused on language and interface issues. There have been some
proposals to bridge the MapReduce-based systems and parallel DBMSs, such as
HadoopDB [10], Greenplum and Aster Data. HadoopDB is a hybrid of MapReduce
and DBMS techno- logies. It uses MapReduce as the communication layer and con-
duct data processing within DBMS. Greenplum and Aster Data provide the ability of
writing MapReduce jobs over data stored in the databases. These systems are impor-
tant steps towards the direction of making DBMS scalable [17]. Different from all of
them, we stem from the relational theory. In other words, we store all data as relations
and process queries based on relations.

Processing and optimizing star join queries based on hierarchically encoded star
schema are first introduced in [1, 3]. In [1, 3], surrogate keys based on the dimension
hierarchies are used to link dimension tables and fact tables. In their approaches, a
fact table is hierarchically clustered and star joins are transformed to multi- dimen-
sional range queries based on UB-Tree [16]. In [14], the authors proposed a CSB star
schema based on composite surrogate key, which is similar to our dimension surro-
gate key. We use hierarchical encoding too, but more thoroughly: first, each hierarchy

 LinearDB: A Relational Approach to Make Data Warehouse Scale Like MapReduce 309

is viewed as a dimension and associated with a hierarchy surrogate key; second, the
original dimension table’s key are replaced by a path-based dimension key; third, all
foreign keys in the fact table are replaced by a code which contains all the dimen-
sions’ hierarchical information; finally, each query is processed by a scan on fact
table, instead of a range query using an index.

Processing star queries based on table scans is a new trend for data warehouse. Blink
[2] pre-joins data, transforms star schema into a universal relation, and then encodes the
relation into a bit stream. It processes all queries using table scans. This method elimi-
nates expensive joins, but introduces heavy workload to preprocessing and high cost to
storage space. Our approach processes queries by table scans and a small number of
residuary joins. Our system organizes data in a more efficient way – the information we
store in the fact table is just the surrogate code of the dimension hierarchy, rather than
the complete dimension table. Our batch predicate evaluation is similar to the parallel
predicate evaluation in Blink. The difference is in the implementation, that is, we do not
distinguish between odd-numbered fields or even-numbered fields.

3 Data Organization

The query processing in LinearDB is centered around the decomposed snowflake
schema, an evolution of snowflake schema based on hierarchical encoding. In this
section, we discuss the key idea of LinearDB and its deployment strategy.

3.1 Decomposed Snowflake Schema

To eliminate the star (snowflake) joins, we modified a star (snowflake) schema into a
decomposed snowflake schema. This solves the scalability issue from the schema
level. The new schema puts the dimension hierarchy information into the fact table.
To achieve this, we use a code to represent the hierarchies of each dimension, and
replace the foreign keys in the fact table with the codes. Our encoding method is a
little more complex than that of the existing work:

Hierarchy Surrogate. A dimension table consists of several hierarchical attributes
and other descriptive information. Each hierarchy has a value domain, whose values
can be ordered. Hierarchical encoding uses a code to represent a value of each hierar-
chy level. Let L be a hierarchy level of a dimension with C values, < be the "less
than" comparison operator, and member (L) be the possible values of L. We can de-

fine a one-to-one function S: member (L) → [0, C-1], such that, for every u, u' ∈
member (L), u< u' implies S(u) < S(u'). Then, S (u) is called the surrogate of u. Note
that if < is not defined for the domain of L, S is simply defined as an arbitrary one-to-
one function from the value domain to [0, C-1]. In this work, we express surrogate as
a bit string. Then, at least [log2C] bits are reserved in the binary representation of the
surrogate of the level L. We denote the surrogate of a hierarchy as h_skey.

Dimension Surrogate. As suggested previously, each dimension of a snowflake
schema corresponds to a hierarchy tree. The dimension surrogate of a tuple v, denoted
by d_skey (v), is the path of v in the hierarchy tree, where the concatenated values are
replaced by their h_skey keys. If there are two or more paths for a level in the hierar-
chy tree, a d_skey is produced for each path, and then these d_skey keys are

310 H. Wang et al.

Fig. 1. A Star Schema and its transformational Decomposed Snowflake Schema. Each hierarc-
hy is transformed to a dimension table with an h_skey, and the original dimension table is trans-
formed to a new one with a d_skey. The two tables at the bottom correspond to the original fact
table.

concatenated to form a new d_skey. As a result, each d_skey contains all hierarchical
information of the corresponding dimension.

Examples for h_skey and d_skey are given in Figure 1(b). Based on the hierarchy
surrogate and the dimension surrogate, we propose the decomposed snowflake
schema, whose structures are described as follows.

The Dimension table. Every dimension is normalized and encoded using the hierar-
chical encoding. Each hierarchy level of a dimension corresponds to a dimension
table:

 LinearDB: A Relational Approach to Make Data Warehouse Scale Like MapReduce 311

1. If the hierarchy level is the lowest level, its dimension table consists of:

 Dimension surrogate key: d_skey;
 Fields of the original dimension table that depend on this hierarchy attribute.

2. If the hierarchy level is not the lowest level, its dimension table consists of:
 Hierarchy surrogate key: h_skey;
 Fields of the original dimension table that depend on this hierarchy attribute.

The Fact table. To put the dimensional hierarchical information into the fact table,
we use a surrogate attribute to represent the hierarchical information of every dimen-
sion in the fact table. This is achieved by replacing each foreign key of the fact table
with its corresponding d_skey, and concatenating all d_skey keys to form a new sur-
rogate key, called md_skey. Let t be a tuple, and d_skeyi(t) be a dimension surrogate
of the ith dimension of t. Then, md_skey(t) is the multi-dimensional surrogate key of
the tuple t. In other words, md_skey(t) = d_skey1(t).d_skey2(t) … d_skeyk(t), where k is
the dimension number of the fact table. To achieve good performance, we can drop
the former foreign keys from the fact table.

A typical analytical query usually needs to inspect a large number of tuples of the
fact table, but only a small subset of columns. For instance, in the SSB benchmark,
more than half of the queries only need to access one measure. To improve I/O per-
formance, we partition the fact table vertically by column. Each decomposed fact
table has only two columns:

 Multidimension surrogate key: md_skey key;
 The fields of a non-hierarchy field of the original fact table.

In a running system, all surrogates are system assigned and maintained, and typically
are made transparent to the user. A comparison between our decomposed snowflake
schema and the star schema is shown in figure 1.

3.2 Data Distribution Strategy

As described above, in a decomposed snowflake schema, the fact table and the di-
mension tables can be processed independently. Thus, we can design data distribution
strategies for the fact table and the dimension tables separately.

Our data distribution strategy is based on the following considerations: 1) The di-
mension tables are very small (normally less than 10GB); 2) The capacity of today’s
main memory is very large (some high-end servers can provide 1-2TB of memory
space), and can hold all dimension tables’ data; 3) The operations on the fact table are
most time-consuming. Thus, we adopt a master-slave architecture. We store the di-
mension tables on the master node to simplify the management and processing of
data, and distribute the fact table across data nodes to achieve good scalability. All the
other metadata, such as the information of tables and data nodes and the data backup
information, are stored on the master node.

To populate data into a decomposed snowflake schema, we partition the fact table
in two directions. Firstly, we partition the fact table horizontally across data nodes in
a Round-Robin fashion. Secondly, we repartition the data on each data node vertically
according to the decomposed snowflake schema. For fault tolerance, we backup each
node’s data on one of the other nodes.

312 H. Wang et al.

4 The Transform – Reduce – Merge Execution Model

The core of LinearDB’s query processing consists of three operations: transform, reduce
and merge. In this section, we show how to process queries using these operations.

4.1 An Overview of TRM Execution Model

Our approach handles all analytical queries in a unified model, called TRM (Trans-
form–Reduce–Merge), which is illustrated in Figure 2. A query is first transformed by
the transformer module into a reduce operation (filter, aggregation, sort) on the local
decomposed fact tables. Then the reduce operation is passed to a coordinator which
coordinates the related data nodes in the cluster to execute the reduce operation in
parallel. After finishing the reduce operation, the data nodes transfer the locally re-
duced data back to the coordinator, which invokes the merger to merge the data and
produces the final results. Following the idea of "Moving Computation is Cheaper
than Moving Data", we scatter reduce operations across data nodes when processing
queries. And other modules, including transformer module, coordinator module and
merge module are deployed on the master node.

Fig. 2. An Overview of TRM execution model. A SQL is transformed first, and the produced
reducer is scattered to each data node which scans fact table, and aggregates, sorts data in a
pipeline, lastly data converge at master node and are merged.

As we can see from Figure 2, TRM is a single-direction execution flow, and the
communication among the nodes occur only when the coordinator scatters the reduce
operations to the data nodes or each data node transfers the result data to the master
node. All the data nodes work in parallel without communicating with one another.
Thus, the network transmission load is minimized.

4.2 Transformer

In the first stage of the TRM execution model, a SQL is transformed to a reduce opera-
tion. The transformer extracts predicates on the dimension tables from the SQL query
and translates these predicates into predicates on the md_skey by checking the hierarchi-
cal encoding functions. The predicates on the fact table remain unchangeable.

 LinearDB: A Relational Approach to Make Data Warehouse Scale Like MapReduce 313

We restrict ourselves to those queries whose selection predicates can be expressed
as a conjunction of predicates in the form attrib op const, where attrib is an attribute
of the relation, op is a comparison operator, and const is a constant value. Queries
containing disjunctions can always be expressed as a union of such queries. Thus, this
is not a limitation. Our transformation rules are as follows:

A. Predicates on Hierarchy

Equation conjunctive predicate transformation. Predicates in an equation conjunc-
tive are all equation predicates. To transform this type of predicates, we create two bit
strings. One is a mask, extract_mask_equal, for exacting the required hierarchies by a
bitwise AND operation on the md_skey. The other is the expected result which con-
tains corresponding hierarchies’ h_skey at an appropriate offset. We denote this bit
string by md_skey_e. As a result, each conjunctive becomes a pair of ex-
tract_mask_equal and md_skey_e. Then, for each tuple t, we evaluate the equation
extract_mask_equal & t = md_skey_e, which only needs one comparison to evaluate
all the predicates.

Range conjunctive predicates transformation. Range conjunctive predicate trans-
formation is more complex, because there may be both range predicates and equation
predicates in the conjunctive. For this type of transformation, we produce a new con-
junctive predicate containing two predicates. One is an equation predicate which
contains all the equation predicates in the conjunctive. We get the equation predicate
in the same way as the equation conjunctive transformation described above. The
other is a range predicate which evaluates all range predicates in this conjunctive. We
transform all range predicates in a conjunctive into two bit strings that represent the
expected bound for all predicates to be true. One bit string represents the lower bound
(denoted by md_skey_l), and the other the upper bound (denoted by md_skey_u). The
md_skey_l is combined with the h_skey of all the hierarchies' lower bound in the con-
junctive. If a hierarchy has no lower bound, its corresponding bits in the md_skey are
set to false (representing the minimal value). In the same way, the upper bound
md_skey_u are combined with the h_skey of all the hierarchies' upper bound in the
conjunctive. If a hierarchy has no upper bound, its corresponding bits in the md_skey
are set to true (representing the maximum value). Bits that do not correspond to a
range predicates are set to false in both md_skey_l and md_skey_u. We also create two
masks – 1) extract_mask_range, for extracting the appropriate surrogates for the
range predicate from md_skey; 2) group_mask, for extracting the code of the hierar-
chies which appear in the group-by clause for aggregation. When evaluating a tuple t,
we test such a conjunctive: extract_mask_equal & t = md_skey_e and (ex-
tract_mask_range & t) between md_skey_l and md_skey_u. If a range predicate is in
the form of attrib < const (or attrib > const), we translate it into a form of attrib ≤
const’ (or attrib ≥ const’), where const’ is the biggest sibling that is smaller than const
(or the smallest sibling greater than const) in the hierarchy tree. For example,
year<1995 can be translated into year≤1994.

Consider a conjunctive predicate: dim1.hierarcy1=l1 and dim2.hierarcy2≤l2 and

dim3.hierarcy1≥ l3 and dim3.hierarcy1≤l4 and dim4.hierarcy1=l5., where dimi.hierarcyi

represents the jth hierarchy of the ith dimension and li are literals. This is a range con-
junctive of predicates. To transform it, we first divide the predicates into two conjunc-
tive predicates. One is an equation conjunctive: dim1.hierarcy1=l1 and

314 H. Wang et al.

dim4.hierarcy1=l5, the other is a range conjunctive: dim2.hierarcy2≤l2 and

dim3.hierarcy1 ≥ l3 and dim3.hierarcy1≤ l4.
We suppose that the start and end offsets of the bits for dimi.hierarcyj is [bij, eij],

and the h_skey key of hierarchy member l that belongs to the jth hierarchy of the ith
dimension is h_skeyij(l). Then, the transformation works as follows:

//extract_mask_equal: exact the needed fields for equation predicates

extract_mask_ equal← 11 11 12 12 41 411 0 ...1 ...e b e b e b− − −
.

//extract_mask_range: exact the needed fields for range predicates

extract_mask_range← 11 11 12 12 22 22 31 310 0 ...1 ...1 ...e b e b e b e b− − − −
.

// md_skey_e: mask with expected results for equation predicates

md_skey_e← 12 12 22 22
11 1 41 5_ ()0 ...0 ... _ ()...e b e bh skey l h skey l− − .

//md_skey_l: mask with expected lower bound for range predicates

md_skey_l← 11 11 12 12 22 22
31 30 0 ...0 ... _ ()...e b e b e b h skey l− − − .

//md_skey_u: mask with expected upper bound for range predicates

md_skey_u← 11 11 12 12
22 2 31 40 0 ... _ ()... _ ()...e b e b h skey l h skey l− − .

Finally, for each tuple t, we do the following test:
 extract_mask_equal & t = md_skey_e and (extract_mask_range & t) between

md_skey_l and md_skey_u.

Like and IN conjunctive predicates transformation. We handle these types of
predicates by transforming each one into an IN predicate. The value list is a set of
md_skey which are produced by evaluating the predicates on the dimension tables.

B. Predicates on other fields
There are two ways to transform the predicates on non-dimensional attributes. One
way is to transform the predicates into an IN predicate, as discussed above. For some
hot fields, we can use the second way – encoding these fields into d_skey and
md_skey, such that the predicates on these fields can be evaluated while the fact table
is being scanned, similar to the predicates on dimensional attributes.

4.3 Reducer

After the transformation, a reduce operation with new predicates is scattered to all the
data nodes which executes the operation in parallel. On each data node, the reduce
operation is executed in a pipeline: scan the fact table → group result data→ sort
result data, which is similar to the pipeline parallelization used by traditional
RDBMS.

It is worth mentioning that during the table scan, the transformed predicates are
evaluated in a batch job [2], which is more efficient than the traditional step-wise
method. For example, for predicates col1=2 and col2=4, the traditional method needs
to evaluate col1=2 and col2=4 one by one. In contrast, our method needs only a single
comparison. We describe the detailed implementation of the scan algorithm in
Section 5.1.

Finally, the grouping is executed based on the conjunctive result (called group-
code) of group_mask and md_skey. To improve the merge performance, we sort the
aggregated data on groupcode.

 LinearDB: A Relational Approach to Make Data Warehouse Scale Like MapReduce 315

4.4 Merger

Each data node transfers aggregated and sorted results to the master node, and the
master node merges the data. As each data node operates on bit strings and the out-
puts are <key, value> pairs, residuary joins are needed to parse the keys (bit strings)
and get their corresponding names according to those in the group-by clause. After
the merging operation, we execute the having-clause and sort the data if necessary.
The detailed implementation and the optimization of the merge operation are dis-
cussed in Section 5.2.

5 Implementation and Optimization Issues

In this section, we focus on the most crucial parts of the TRM execution model, the
fact table scan step and the merge step.

5.1 Scan-Index: A Runtime Index

Partitioning the fact table vertically can improve the I/O performance. However, if the
query involves multiple measures, this method is inefficient, because TRM has to
scan each local decomposed fact table and then join the results. After the fact able is
partitioned, the attributes of a tuple are distributed to different decomposed fact ta-
bles. However, they are logically a whole and are highly correlated. For instance, the
ith tuple in the original fact table is the ith tuple in each decomposed fact table. If the
tuple in the first decomposed fact table does not satisfy a predicate, the complete
logical tuple does not satisfy the predicate. Therefore, there is no need to process the
remaining tuples in the other decomposed fact tables that correspond to the same
primary key.

Based on the above observation, we propose an algorithm to accelerate the process-
ing of queries involving multiple measures. During the scan, we use an index (de-
noted as scan-index) to record the offsets of the tuples that have passed the predicate
evaluation. We implement the scan-index as a bitmap, in which the ith bit indicates
whether the ith tuple satisfies the predicates. The processing of the successive fact
tables is conducted based on the scan-index. Let TupNumInBlk be the tuple number in
a block, SIoffset be the offset of an indexed tuple in scan-index bitmap. We can calcu-
late the block offset of an indexed tuple by SIoffset / TupNumInBlk, and the offset in
block by SIoffset mod TupNumInBlk. In the following, we discuss different scan-index
generation algorithms.

1. All the predicates in the conjunctive are on hierarchies. As mentioned earlier,
most predicates operate on hierarchies. For this type of conjunctives, we need only
one scan to produce the scan-index. The non-dimensional columns can be accessed by
index lookups.

For instance, given the reduce operation (π: projection, σ: selection):
 πmeasure1, measure2(σmd_skey & "11100000111"="10001000101" (subjectName), its execution flow-

chart is that in figure 3. We need a full scan of the first table Fact_mearure1, and the
second table Fact_measure2 can be accessed through the index.

316 H. Wang et al.

md_skey measure1

10101010101 10

00100010101 20

10001011101 888

11101110101 45

10101111101 752

md_skey measure2

10101010101 25

00100010101 455

10001011101 773

11101110101 12

10101111101 845

0

0

1

0

0

Fig. 3. Two-column access based on scan-index

2. Some predicates are on multiple measures or other descriptive information. We
create the scan-index for such a query in two steps. First, we scan the first fact table,
evaluate the predicates on this table and produce an initial scan-index. Second, we
execute the other tables in a loop until all predicates are evaluated. The scan of each
subsequent fact table is based on the scan-index generated by the previous scan. Dur-
ing each scan, we apply the predicates related to the current decomposed fact table
and update the corresponding bits in the bitmap.

5.2 Parallelizing Merge Operation on Modern Hardware

Thus far, we have focused on the parallel scan operations. In fact, given thousands of
data nodes, the merge operation can be highly time consuming too, as it is performed
on only one node. Our design of LinearDB’s merge operation are based on the follow-
ing considerations: 1) Modern machines have large main memories, which are in
general in GB level (a typical high-end server can own memory of TB level), and the
intermediate results generated by the data nodes are usually in MB or KB level; 2)
Modern processor has two or more cores which provide parallel processing capability;
3) Data have been sorted on each data node in our TRM model.

These characteristics inspire us to design a parallel one-way merge algorithm which
operates only in memory. We partition the data horizontally and assign each thread a
partition. Then, each thread executes the merge operation and writes data to the shared
data structures in parallel. Although there can be small overlaps between the adjacent
partitions, they will not incur waiting among the threads. This is because all the threads
process data in the same order, such that when the previous thread begins to process the
overlapping elements, the latter thread most likely has finished with those elements.

6 Experiment

We have built a prototype of LinearDB and implemented all features described in this
paper. We used the pthread library and MPICH2 library (version 1.2.1p1) in our pro-
totype, and implemented our algorithm in C++. In this section, we present some ex-
perimental results of LinearDB. We first analyze the scalability of LinearDB, and
proceed to evaluate its overall performance.

Our datasets is from the SSB benchmark. We adopted a decomposed snowflake
schema (described in Section 3), and populated each local decomposed fact table with
120M rows (30GB in SSB). We performed experiments on a cluster consisting of five
PCs (detailed configurations are given in Table 1). The network bandwidth is 1Gbps.

 LinearDB: A Relational Approach to Make Data Warehouse Scale Like MapReduce 317

Table 1. Cluster Configuration

Computer CPU Memory
Disk

Capacity
OS

C1,
C2

Intel Core2 Duo 1.87GHZ
processor (1)

2G 130GB
32-bit

Windows Vista

C3
Intel P4 3GHZ processor

(1)
1G 80G

32-bit
Windows XP

C4
Intel P4 3GHZ processor

(1)
3 G 320G

32-bit
Windows XP

C5
Intel Xeon E5310 1.6GHZ

processors(2)
2G 1TB

32-bit
Windows 2008

6.1 Scalability Analysis

As described in section 4, we divide the total cost of TRM execution model into four
parts: the transformation cost (TC), the reduce cost (RC), the merge cost MC and
other cost OC. The total cost expression is: TotalCost= TC+ RC + MC + OC.

The main cost of transformation (TC) is the lookup operation to get surrogate keys
of the hierarchies in the predicates. We store each hierarchy of a dimension as an
individual relation in memory, such that each lookup can be finished efficiently
through a hash. As the processing on each node is limited to table scan, the reduce
cost (RC) should vary monotonically with the size of the fact table (as shown in figure
4). Suppose the size of the fact table is F and there are N nodes with the same con-
figuration in the cluster. Then the fragment of each data node is F/N. The cost can be
denoted as RC=f (F/N). The merging cost MC is determined by the result size. Other
costs are mainly network transmission cost which is related to the maximum size of
the results generated by each data node. As there is only a small amount of aggregated
data that need to be transferred on network, OC is usually very low.

0

15

30

45

60

8G 16G 24G 32G
data size

tim
e(

s)

Based on the analysis above, we car-
ried out an experiment to analyze the
time distribution of TRM execution
model. The experiment was performed
on C1 and C5, where C1 acted as a mas-
ter node to perform the transform-ation,
merge and other operations, and C5
acted as data nodes performing the re-
duce operation. We ran SSB Query 3.2
over a dataset of 30GB. This query is Fig. 4. Processing time vs data size

supposed to incur big TC+MC+OC, because it produces more results (six hundred
records) and scans less data (just one column) compared with other SSB queries.
Nevertheless, our experiments show that the proportion of TC+MC+OC to TotalCost
is less than 0.12‰ for Query 3.2. Hence, we can conclude that the system perform-
ance is dominated by the reduce cost. (This is also confirmed in Section 6.3). As
shown in Figure 4, the reduce cost is almost linear with the data size, thus we may
deduce that TotalCost ≈ RC = f (F/N), which indicates that the system performance is
almost linear to the data size on each data node.

318 H. Wang et al.

6.2 Fault Tolerance Analysis

Conventional databases on computer clusters usually experience high rates of failure
or slowdown. LinearDB achieves fault tolerance by re-executing the reduce operation
of failed nodes. If the coordinator does not receive response from a data node for a
preset period of time, it will restart the reduce operation of this node on its backup
node. To test the fault tolerance of LinearDB in the context of computer cluster, we
executed the SSB 3.2 query on a 5-node cluster. To simulate failure, we terminated
the slowest node before the completion of the query. As a result, LinearDB experi-
enced an increase of about 10% in its query processing time. As the execution time of
the terminated node was almost 2 times as much as that of its backup node, when we
restarted the query on the backup node, the overall execution time was only slightly
affected. This experiment also reveals a shortcoming of LinearDB: Query processing
time is determined by the time the slowest node takes to complete its task. The current
Round-Robin data distribution method does not consider different I/O speeds of dif-
ferent data nodes. Hence, we plan to design a new distribution algorithm according to
the local disk I/O throughput in our future work.

6.3 Performance Evaluation

We compared the performance of LinearDB against that of PostgreSQL 8.3 on a data-
set of 30GB. To minimize the influence of the hardware configuration, we conducted
this experiment on one machine C5 and optimized PostgreSQL with 200MB
work_mem. As shown in Figure 5, LinearDB exhibits a much more stable perform-
ance as compared with PostgreSQL, and outperforms PostgreSQL in most of the
queries. In average, LinearDB is 1.73 times faster than PostgreSQL. In the best case,
its performance is almost three times as fast as that of PostgreSQL.

0

50

100

150

200

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3

ti
m

e(
s)

LinearDB PostgreSQL

Fig. 5. PostgreSQL vs. LinearDB

We also observed that LinearDB is slower than PostgreSQL when running the first
group of the SSB queries. This is due to two reasons: 1) These queries need three
scans and there are too many tuples generated by the first scan. This suggests that
scan-index should take into account of the selectivity of different predicates: the more
selective the predicates, the earlier it should be executed. 2) The first group queries

 LinearDB: A Relational Approach to Make Data Warehouse Scale Like MapReduce 319

involve three measures and need to be evaluated on the detailed data. For instance, a
production of two measures and a subsequent addition need to access two data files at
the same time and cause high I/O cost. However, different from other methods, even
in the worst case, the scan-index approach is equivalent to a full table scan operation
because this index is memory resident and requires no random I/O.

6.4 Simulation of Merge

In the final set of experiments, we analyzed the characteristics of the merge operation.
Due to the restriction of experimental condition, we adopted a simulation method. We
populated a series of arrays with random data and then sorted the data to simulate data
returned from the data nodes. The network transmission time can be calculated by the
expression: (tupleSize*tupleNumber) / NetworkBandwidth. We supposed that tuple-
Size=24byte (17 bytes for md_skey, 8 bytes for measure), and ran the experi- ments in
the extreme case, where the cluster contains ten thousand nodes and each node pro-
duces 1000 tuples. We executed four merge threads in parallel. The results show that
even in this extreme case, the merge can be finished in less than 80ms on C5 and the
network transmission time is less than 0.2ms (we assumed that the data generated by
each data node arrive at the master node at the same time). Thus the total merge time
is less than 81ms, which is a very small compared to the time required by massive
data scan. The execution will be faster when running on a high-end server.

7 Summary and Future Work

In this paper, we investigated the scalability and fault tolerance problem for analytical
RDBMS in the context of cluster environment. Our design considers two levels: the
schema level and the execution level. On the schema level, we improve the star
(snowflake) schema and propose the decomposed snowflake schema, which elimi-
nates the star (snowflake) join in query processing. On the execution level, we
propose TRM execution model, which handles all data warehouse queries by three
operations: transform, reduce, and merge. Based on these techniques, we divide a data
warehouse-style query into many independent tasks, which can be distributed and
executed independently across a cluster. We also employs new techniques such as
multiple-column queries optimization, batch predicates evaluation, etc, to improve the
performance of our new query processing model. We implemented our approach in a
prototype called LinearDB. Our experiment results have illustrated that LinearDB can
achieve the linear scale-out in the cluster environment, and it is 1.73 times faster than
PostgreSQL in average. Our research also reveals that scan operation is more suitable
for cluster computing than join operation.

Many challenges remain as future work. To address unpredictable workload, we
need to use scan sharing techniques to reduce contention and amortize I/O cost be-
tween queries. LinearDB answers all queries by table scan and some residuary joins
with an almost constant time. This is not suitable for ad hoc queries, which can be
handled more efficiently by leveraging indexes.

320 H. Wang et al.

References

1. Karayannidis, N., Tsois, A., Sellis, T.K., Pieringer, R., Markl, V., Ramsak, F., Fenk, R.,
Elhardt, K., Bayer, R.: Processing Star Queries on Hierarchically-Clustered Fact Tables.
In: Proceedings of the 28th VLDB Conference, pp. 730–741 (2002)

2. Raman, V., Swart, G., Qiao, L., Reiss, F., Dialani, V., Kossmann, D., Narang, I., Sidle, R.:
Constant-Time Query Processing. In: Proceedings of the 24th ICDE Conference, pp.
60–69 (2008)

3. Markl, V., Ramsak, F., Bayer, R.: Improving OLAP Performance by Multidimensional Hi-
erarchical Clustering. In: Proceedings of the IDEAS 1999, pp. 165–177 (1999)

4. WinterCorp: 2005 TopTen Program Summary,
http://www.wintercorp.com/WhitePapers/WC_TopTenWP.pdf

5. http://hadoop.apache.org
6. Korth, H.F., Kuper, G.M., Feigenbaum, J., Gelder, A.V., Ullman, J.D.: SYSTEM/U: ada-

tabase system based on the universal relation assumption. TODS 9(3), 331–347 (1984)
7. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology.

SIGMOD Record 26(1), 65–74 (1997)
8. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In:

Proceeding of the 6th Symposium on Operating System Design and Implementation
(OSDI 2004), pp. 137–150 (2004)

9. http://hive.apache.org/
10. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D.J., Rasin, A., Silberschatz, A.:

HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Ana-
lytical Workloads. PVLDB 2(1), 922–933 (2009)

11. Largest Commercial Database in Winter Corp. TopTen? Survey Tops One Hundred
Terabytes, http://test.wintercorp.com/PressReleases/ttp2005_
pressrelease_091405.htm

12. Pavlo, A., Paulson, E., Rasin, A., Abadi, D.J., DeWitt, D.J., Madden, S., Stonebraker, M.:
A comparison of approaches to large-scale data analysis. In: Proceedings of the 35th
SIGMOD Conference, pp. 165–178 (2009)

13. Olston, C., Reed, B., Srivastava, U., et al.: Pig latin: a not-so-foreign language for data. In:
Proceedings of the 34th SIGMOD Conference, pp. 1099–1110 (2008)

14. Theodoratos, D., Tsois, A.: Heuristic Optimization of OLAP Queries inMultidimension-
ally Hierarchically ClusteredDatabases. In: DOLAP 2001(2001)

15. http://hbase.apache.org
16. Bayer, R.: The universal B-Tree for multi-dimensional Indexing: General Concepts. In:

Masuda, T., Tsukamoto, M., Masunaga, Y. (eds.) WWCA 1997. LNCS, vol. 1274.
Springer, Heidelberg (1997)

17. Abadi, D.J.: Data Management in the Cloud: limitations and Opportunities. IEEE Bulletin
of the Technical Committee on Data Engineering 32(1), 3–12 (2009)

Genetic Algorithm Based QoS-Aware Service
Compositions in Cloud Computing

Zhen Ye1,2, Xiaofang Zhou1,3, and Athman Bouguettaya2

1 School of Information Technology and Electrical Engineering
The University of Queensland, Australia

2 CSIRO ICT Centre, Australia
3 School of Information, Renmin University of China, China
Key Lab of Data Engineering and Knowledge Engineering,

Ministry of Education, China
zhenye@itee.uq.edu.au, zxf@uq.edu.au, Athman.Bouguettaya@csiro.au

Abstract. Services in cloud computing can be categorized into two
groups: Application services and Utility Computing Services. Compo-
sitions in the application level are similar to the Web service composi-
tions in SOC (Service-Oriented Computing). Compositions in the utility
level are similar to the task matching and scheduling in grid comput-
ing. Contributions of this paper include: 1) An extensible QoS model is
proposed to calculate the QoS values of services in cloud computing. 2)
A genetic-algorithm-based approach is proposed to compose services in
cloud computing. 3) A comparison is presented between the proposed
approach and other algorithms, i.e., exhaustive search algorithms and
random selection algorithms.

1 Introduction

Cloud computing is emerging as the new paradigm for the next-generation dis-
tributed computing. It has attracted a lot of attention in both academia and
industry. An increasing number of organizations have started to migrate their
IT infrastructure to the cloud. Several companies such as Amazon, Microsoft
and IBM are already offering cloud solutions in the market. The vision of cloud
computing is that computing will not be conducted on local computers in the fu-
ture, but on distributed facilities operated by third-party computing utilities [1].
Cloud computing aims at uniformly exposing hardware and software as a service
that can be rented at will [2]. In this new framework, organizations no longer
require the large capital outlays in hardware to deploy their services. They need
not be concerned about overprovisioning for a service whose popularity does not
meet their predictions, thus wasting costly resources, or underprovisioning for
one that becomes popular, thus missing potential customers and revenue.

Services in cloud computing can be categorized into application services and
utility computing services [2]. Almost all the software/applications that are avail-
able through the Internet are application services, e.g., flight booking services,
hotel booking services. Utility computing services are software or virtualized

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 321–334, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

322 Z. Ye, X. Zhou, and A. Bouguettaya

hardware that support application services, e.g., virtual machines, CPU ser-
vices, and storage services. Service compositions in cloud computing therefore
include compositions of application services and utility computing services. Com-
positions in the application level are similar to the Web service compositions in
SOC. Compositions in the utility level are similar to the task matching and
scheduling in grid computing. A composite application service fulfills several
tasks (i.e. abstract services). Each task is implemented by several substitute
application services (i.e. concrete services). The choice among these substitute
services is based on their non-functional properties, which are also referred to as
Quality of Service (QoS). QoS values of these substitute application services are
further dependent on the choices of utility computing services. In a word, once
a concrete application service is selected for each abstract service, the following
decisions have to be made: matching, i.e. assigning concrete application services
to utility computing services, and scheduling, i.e. ordering execution sequence of
application services.

Several approaches and systems are proposed to solve Web service composition
problems in SOC. Most of them [3] [4] only consider the compositions in the appli-
cation level. Composition approaches in cloud computing need to consider com-
positions both in the application level and utility computing level. Besides, most
existing composition approaches in SOC [3] [4] use integer programming to find
the global optimized solution. Although this is useful for small-scale compositions,
it incurs a significant performance penalty if applied to large-scale composition
problems such as compositions in cloud computing [6]. Contrasts to these existing
approaches, Genetic Algorithms (GAs) are heuristic approaches to iteratively find
near-optimal solutions in large search spaces. There is ample evidence regarding
the applicability of GAs for large-scale optimization problems [5] [6]. Whereas, no
GA based approach is available to compose services in cloud computing.

In this paper, a genetic-algorithm-based service composition approach is pro-
posed for cloud computing. In particular, a coherent way to calculate the QoS
values of services in cloud computing is presented. At last, comparisons between
the proposed approach and other approaches show the effectiveness and effi-
ciency of the proposed approach. The rest of the paper is structured as follows:
Section 2 illustrates the background and preliminaries of service composition
in cloud computing. Section 3 elaborates the details of the proposed approach.
Section 4 evaluates the approach and shows the experiment results. Section 5
presents the related work to the proposed approach. Section 6 concludes this
paper and highlights some future work.

2 Preliminaries

This section presents preliminary knowledge about cloud computing, service
compositions in cloud computing. Genetic algorithms are also introduced at the
end of this section. Services in a cloud, refers to both the applications delivered
as services over the Internet and the hardware and system software in the data
centers that provide those services [2]. Cloud computing provides easy access to
Application Services (i.e. SaaS) and Utility Computing Services (UCS) (Fig. 1).

GA Based Service Compositions in Cloud Computing 323

Fig. 1. Cloud System

– Application Services are the most visible services to the end users. Examples
of application services include: Salesforce’s CRM applications, Google Apps
etc. Application services that contain other component application services
are Composite Application Services. Simple Application Services do not con-
tain other component application services. Application Users can be end
users or other application services. Application Providers are providers of
application services.

– Utility Computing Services. Some vendors use terms such as PaaS (Plat-
form as a Service) or IaaS (Infrastructure as a Service) to describe their
products. In this paper, PaaS and IaaS are considered together as UCSs.
PaaS are platforms that are used to develop, test, deploy and monitor ap-
plication services. For example, Google has Google App Engine works as
the platform to develop, deploy and maintain Google Apps. Microsoft Azure
and Force.com are also examples of PaaS. IaaS services provide fundamental
computing resources, which can be used to construct new platform services
or application services. UCSs can be categorized into computation services,
i.e., Virtual Machines (VMs); storage services, i.e., Databases ; and network
services. UCS Users are these application providers or other utility com-
puting services etc. UCS Vendors are these companies or organizations that
make their computing resources available to the public.

2.1 Service Compositions in Cloud Computing

A composite service is specified as a collection of abstract application services
according to a combination of control-flow and data-flow. Control-flow graphs
are represented using UML activity diagrams. Each node in the graph is an
abstract application service. There are four control-flow patterns. For example,
Fig. 2 shows a composite service consists of four patterns of control-flows. S1 and

324 Z. Ye, X. Zhou, and A. Bouguettaya

Fig. 2. Control Flows

Fig. 3. Data Flow Graphs

S2 run in a sequence pattern. S3 runs in parallel with S4 (parallel pattern). After
that, either S5 or S6 is selected to run (conditional pattern). Finally, S7 cycles
for a certain times (loop pattern). There are several data-flow graphs for the
same control-flow graph, if the control-flow graph contains conditional patterns.
Fig. 3 shows the two data-flow graphs corresponding to the control-flow shown
in Fig. 2. Directed acyclic graphs (DAGs) are used to represent data-flow graphs.
The start node of an edge is denoted as source service, the node where the edge
ends is denoted as destination service. Source services must be executed before
the destination services. The destination service can only be executed after all its
source services are finished. Node Sb represents the start point of the composite
service. Se represents the end point. The data items transferred between these
abstract application services form a set D = {datai, 1 ≤ i ≤ d}.

A set of kn concrete application services {sn1, sn2, . . . , snkn} is available to
execute the abstract service Sn. A concrete application service can be executed
on several virtual machines, databases and network services. After mapping each
abstract service to a concrete application service, VM UCSs and Database UCSs
need to be selected for each application service. Network UCSs need to be se-
lected for each data transfer in the data-flow graph. Assume each VM can only
execute one application service at a time. A late application service can only
execute on the VM after the former application services finish their executions.
To sum up, any solution to a composition problem in cloud computing includes:
1) Map the abstract application services to concrete application services and
corresponding UCSs (VM, database and network services). 2) Schedule the ex-
ecution order of the application services. This execution order is a topological
sort [7] of the data-flow graph, i.e. a total ordering of the nodes in the DAG that
obeys the precedence constraints.

GA Based Service Compositions in Cloud Computing 325

Fig. 4. Aggregation Functions for each QoS Attribute

2.2 QoS Model

QoS attributes contains (1) ascending QoS attributes, i.e. a higher value is bet-
ter; (2) descending QoS attributes, i.e. a smaller value is better; (3) equal QoS
attributes, i.e. no ordering but only equality, e.g. security protocol should be
X.509. Four QoS attributes are considered in this work: response time, price,
availability and reputation. Among them, time and price belong to the de-
scending attributes while availability and reputation belong to the ascending
attributes. Vector Q = Q1, Q2, Q3, Q4 denotes all the available QoS attributes.
Qi, 1 ≤ i ≤ 4 represents time, price, availability and reputation.

QoS values of an application service consist of three parts: execution, network
and storage QoSs. Existing QoS models in SOC [3] only consider the execution
QoSs. Execution QoS refers to the QoS value for executing an application ser-
vice in a specified VM. Same application service has different execution QoS in
different VMs. Network QoS refers to the QoS for transferring data from one
application service to another using a specified network UCS. Data transfers
are determined by the source services and the destination services. Each data
will be transferred as soon as the source service produces them. Hence, network
QoS values are only calculated at the destination services. Storage QoS refers
to the QoS for storing certain amount of data for a certain time using specified
database service. Assume no data will be stored during the execution of an ap-
plication service. Therefore, the only data needs to be stored are the input data.
For example, a destination service has two input data. One input data arrives
early, the other arrives later. The earlier arrived data need to be stored when
waiting the second input data to arrive. The QoS value for a service therefore
equals to the sum of execution QoS, network QoS and storage QoS. Fig. 4 shows
the aggregation functions for calculating the overall QoS for composite services.
m is the number of component services in the composite service. QoS values are
normalized using Simple Additive Weighting (SAW), which is also used in [3].
The best QoS values are normalized to 0, the worst QoS values are normalized
to 1. Thus, higher normalized values indicate worse quality.

QoS constraints (denoted as QC) for composite services have two types: Global
Constraints and Local Constraints. Global Constraints are the QoS constraints
for the overall composite service, while Local Constraints apply to component
services within the composition. A global constraint (GC) for a given QoS at-
tribute Ql is denoted as GCl. Local constraints are denoted as LCl. Constraints
on different QoS attributes are transformed into inequality constraints [8]. QC1

(time) and QC2 (price) can be transformed by subtract the threshold to the
constraints, e.g. QC1 ≤ 1 minute is transformed to QC1 ⇐ QC1 − 1 ≤ 0;

326 Z. Ye, X. Zhou, and A. Bouguettaya

QC2 ≤ 5 USdollars is transformed to QC2 ⇐ QC2 − 5 ≤ 0. QC3 (availabil-
ity) and QC4 (reputation) can be transformed by subtracting the QoS value
from the threshold, e.g. QC3 ≥ 0.9 is transformed to QC3 ⇐ 0.9 − QC3 ≤ 0.
Constraints on equal QoS attributes can be transformed using this function:
QC ⇐ |QC|− ε ≤ 0, where ε is the tolerance allowed range (a very small value).

2.3 Genetic Algorithms

Genetic Algorithms (GAs) are heuristic approaches to iteratively find near-
optimal solutions in large search spaces. Any possible solution to the
optimization problem is encoded as a Chromosome (normally a string). A set of
chromosomes is referred to as a Population. The first step of a GA is to derive an
initial population. A random set of chromosomes is often used as the initial pop-
ulation. This initial population is the first generation from which the evolution
starts. The second step is selection. Each chromosome is eliminated or duplicated
(one or more times) based on its relative quality. The population size is typically
kept constant. The next step is Crossover. Some pairs of chromosomes are se-
lected from the current population and some of their corresponding components
are exchanged to form two valid chromosome. After crossover, each chromosome
in the population may be mutated with some probability. The mutation process
transforms a chromosome into another valid one. The new population is then
evaluated. Each chromosome is associated with a fitness value, which is a value
obtained from the objective function (details will be discussed in section 3). The
objective of the evaluation is to find a chromosome that has the optimal fitness
value. If the stopping criterion is not met, the new population goes through an-
other cycle (iteration) of selection, crossover, mutation, and evaluation. These
cycles continue until the stopping criterion is met.

3 QoS-Aware Service Composition in Cloud Computing

Assume there are m VM UCSs (vm1, vm2, . . . , vmm), p database UCSs (db1, db2,
. . ., dbp) and q network UCSs (net1, net2, . . . , netq) in different cloud systems.
Each composition solution (chromosome) consists of two parts, the matching
string (ms) and the scheduling string (ss). ms is a vector of length n, such that
ms(i) = sjvmxdbynetz, where 1 ≤ i ≤ n, 1 ≤ j ≤ kn, 1 ≤ x ≤ m, 1 ≤ y ≤ p
and 1 ≤ z ≤ q. A matching string means that abstract service Si is assigned to
concrete service sij which is lodged on virtual machine vmx and has database
service dby, network service netz. The scheduling string is a topological sort of
the data-flow graph. ss(k) = i, where 1 ≤ i, k ≤ n; i.e. service Si is the kth
running service in the scheduling string. Thus, a chromosome represents the
mapping from each abstract service to concrete service and UCSs, together with
the execution order of the application services. Fig. 5 shows a solution to the
composite problem that has the control-flow shown in Fig. 2, and the data-flow
shown in Fig. 3 (left DAG). In this solution, ms represents the mapping string,
e.g., abstract service S1 is mapped to application service S11, S11 is further
deployed on virtual machine vm1 and database db1. The network service for

GA Based Service Compositions in Cloud Computing 327

Fig. 5. Composition Solution

a transferred data is determined when the source service and the destination
service are mapped to the corresponding virtual machine and database services.
ss represents the scheduling string of the solution, e.g., the execution order of
this solution in Fig. 5 is S11, S23, S31, S41, S54, S71, S71.

3.1 Genetic Algorithm Based Approach

In the first step, a predefined number of chromosomes are generated to form
the initial generation. The chromosomes in a generation are first ordered by
their fitness values (explained later) from the best to worst. These having the
same fitness value are ranked arbitrarily among themselves. Then a rank-based
roulette wheel selection schema is used to implement the selection step [9]. There
is a higher probability that one or more copies of the better solution will be
included in the next generation, since a better solution has a larger sector angle
than that of a worse solution. In this way, the chromosomes formed the next
generation are determined. Notice that the population size of each generation is
always P .

The crossover operator for a matching string randomly chooses some pairs of
the matching strings. For each pair, it randomly generates a cut-off point to di-
vide both matching strings into two parts. Then the bottom parts are exchanged.
The crossover operator for a scheduling string randomly chooses some pairs of
the scheduling strings. For each pair, it randomly generates a cut-off point, which
divides the scheduling strings into top and bottom parts. The abstract applica-
tion services in each bottom part are reordered. The new ordering of the services
in one bottom part is the relative positions of these services in the other original
scheduling string in the pair. This guarantees that the newly generated schedul-
ing strings are valid schedules. Fig. 6(a) demonstrates the crossover operator for
a scheduling string.

The mutation operator for a matching string randomly selects an abstract
service and randomly replaces the corresponding concrete service and other util-
ity computing services. The mutation operator for a scheduling string randomly
chooses some scheduling strings. It then randomly selects a target service. The
valid range of this target service is the set of the positions in the scheduling
string at which the target service can be placed without violating any data

328 Z. Ye, X. Zhou, and A. Bouguettaya

Fig. 6. Crossover and Mutation Operators

dependency constraints. The valid range is after all source services of the tar-
get service and before any destination service of the target service. The muta-
tion operator can move this target service randomly to another position in the
scheduling string within its valid range. Fig. 6(b) demonstrates the mutation
operator for a scheduling string. sv is between sb and sc before the mutation, it
is between sa and sb after the mutation operator.

After crossover and mutation operators, GA will evaluate the chromosomes us-
ing fitness function. The fitness function needs to maximize some QoS attributes
(i.e. ascending attributes), minimize some other attributes (i.e. descending at-
tributes) and satisfy other QoS attributes (i.e. equal QoS attributes). In addition,
the fitness function must penalize solutions that do not meet the QoS constraints
and drive the evolution towards satisfaction. The distance from constraint sat-
isfaction for a solution c is defined as:

D(c) = Σl
i=1QCi(c) × ei × weighti, ei =

{
0 QCi(c) ≤ 0
1 QCi(c) > 0 (1)

where weighti indicates the weight of the QoS constraint. Notice that this dis-
tance function for constraints include both local and global constraints specified.
The fitness function for a chromosome c is then defined as follows:

F (c) = Σ4
i=1w

i ∗ Qi(c) + weightp ∗ D(c) (2)

wi are the weights for each QoS attribute. weightp is the penalty factor. Several
features are highlighted when calculating the fitness function based on the match
string and the scheduling string:

GA Based Service Compositions in Cloud Computing 329

(a) Example 1 (b) Example 2 for Data Forwarding

Fig. 7. Example of Scheduling String

1. Services are executed exactly in the order specified by the scheduling string.
For example, Fig. 7(a) shows a scheduling string for a composition. Assume there
are two different match strings for this ss. a) ms1: Let S1 and S2 be assigned to
the same VM vm1, and S3 be assigned to another VM vm2. In this chromosome,
because S1 is to be executed before S2, data1 is available before data2. Thus,
data1 will be transferred to S3 before data2. And data1 will be stored in S3’s
database service till data2 has been transferred to S3. b) ms2: Let the three
services S1, S2, and S3 be assigned to three different VMs vm1, vm2 and vm3.
S2 starts to execute just after S1 starts, S1 and S2 can be considered to start
their execution at the same time. If data2 is available (S2 executes faster) before
data1, data2 will be stored in S2’s database service till data1 has been transferred
to S3.

2. Another important feature is data forwarding [5]. For an input data, the
source service can be chosen among the services that produce or consume this
input data. All the consumers of this input data can be forwarders. For example,
Fig. 7(b) shows a scheduling string. S2 and S3 both have the input data from S1.
S2 may forward data1 from S1 to S3, i.e. shown as the dashed line in Fig. 7(b).
This kind of data forwarding is not allowed in our work. Data must be only
transferred from the original data producer to its consumers.

Stop criterions for the proposed approach are: 1) Iterate until the constraints
are met (i.e. D(c) = 0). 2) If this does not happen within MAXGEN gener-
ations, then iterate until the best fitness value remains unchanged for a given
number (MAXGEN) of generations. 3) If neither 1) nor 2) happens within
MAXGEN generations, then no solution will be returned.

3.2 Handling Multiple Data Flow Graphs

Assume the composite service (e.g. shown in Fig. 2) has multiple data-flow graphs
(shown in Fig. 3). For each data-flow graph, an optimal composition solution
can be generated using the proposed GA-based approach. Since each of the
optimal solution only covers a subset of the composite service, further actions are
needed to aggregate these partial composition solutions into an overall solution.
Assume the composite service has f data-flow graphs (i.e. dfg1, dfg2, . . . , dfgf).
The approach adopts the following strategies to aggregate multiple solutions into
an overall solution:

– Given an abstract service Si, if Si only belongs to one data-flow graph (e.g.
dfgj), then the proposed approach selects dfgj ’s solution chromosomej to
execute abstract service Si.

330 Z. Ye, X. Zhou, and A. Bouguettaya

– Given an abstract service Si, if Si belongs to more than one data-flow graphs,
then there are many solutions can be used to execute Si. The proposed ap-
proach will select the most frequently used solution (from execution history),
or ask end users to select a preferable solution.

4 Experiment and Evaluation

Our experiments consist of two parts. First, comparisons are conducted between
the proposed approach and other approaches in small-scale scenarios. Second,
comparisons are conducted in large-scale scenarios. All the experiments are con-
ducted on computers with Intel Core 2 Duo 6400 CPU (2.13GHz and 2GB
RAM).

4.1 Creation of Experimental Scenarios

Randomly generated scenarios are used for the experiments. Each scenario con-
tains a control-flow graph and a data-flow graph. QoS values of different con-
crete services, virtual machines, database services and network services for each
abstract service are generated randomly with uniform probability. A scenario
generation system is designed to generate the scenarios for experiments. The
system first determines a root pattern (i.e. sequence, conditional, parallel, loop
patterns) with uniform probability for the control-flow. Within this root, the
system chooses with equal probability to either place an abstract services into
it or to choose another composition pattern as substructure. This procedure
ends until the generation system has spent the predefined number (n) of ab-
stract services. All the conditional patterns have 2 possible options, either of
them has the probability of 0.5. Each loop pattern will run for twice. There are
k candidate concrete services to implement each abstract service. The number
of data transferred between each abstract services in the flow graph is d. Each
concrete service can be lodged in m virtual machines, p database services and q
network services. These variables are predefined and used as input (denoted as
{n, k, d, m, p, q}) to the generation system. Small-scale scenarios have the input
{5, 2, 6, 3, 3, 3}. Large-scale scenarios have 100 abstract services. Each abstract
service can be executed by 30 concrete services. 120 data items are transferred
between services and each concrete service is suitable to run in 20 different VMs,
20 different database services and 20 network services. The four QoS attributes
and the four QoS constraints have same weight equals 1. The execution QoS, net-
work QoS and storage QoS were randomly generated with uniform distribution
from the following intervals: Q1(T ime) ∈ [100, 2000], Q2(Price) ∈ [200, 1000],
Q3(Availability) ∈ [0.9750, 0.9999] and Q4(Reputation) ∈ [1, 100].

Every approach runs 50 times for each scenario. All the results shown below
are the average values from these experiments. Each experiment for the GA-
based approach starts from a different initial population each time. The proba-
bility of crossover pcross = 0.4 is the same for the matching string and scheduling
string. The probability of mutation pmut = 0.1 is also the same for the match-
ing string and scheduling string. The approach uses rank-based roulette wheel

GA Based Service Compositions in Cloud Computing 331

schema for selection. The angle ratio of the sectors on the roulette wheel for two
adjacently ranked chromosomes, i.e. R, was chosen to be 1 + 1/P , where P is
the population size. By using this simple formula, the angle ratio between the
slots of the best and median chromosomes for P = 50 (and also for P = 200 for
large-scale scenarios) is very closely to the optimal empirical ratio value of 1.5
in [10]. MAXFIT equals to 150. MAXGEN equals to 1000. Exhaustive search
approach would traverse all the possible solutions to the composition problem
and find the optimized solution that has the smallest fitness value. Although
this approach would always find the most optimal composition solution, the ex-
ecution time is extremely high. Random selection approach is also a GA-based
approach. This approach would randomly select chromosomes to form a new
generation. Comparisons with these approaches show the effectiveness and ef-
ficiency of the proposed approach. Integer Programming (IP) approaches have
been proposed to solve QoS-aware service composition in SOC. The IP approach
is implemented using LPSolve [11], which is an open source integer programming
system. Comparisons with IP approach show the scalability of the proposed
approach.

4.2 Experiments Results

Small-scale experiments are conducted on 10 different test datasets. We only
show two of them in Fig. 8(b) to make the graph much easier to read. Fig. 8(a)
shows the results between the proposed approach and the exhaustive search
approach. Proposed GA-based approach would always find near-optimal solu-
tion compared to exhaustive search algorithms. Fig. 8(b) shows the comparisons
between the proposed approach and the random selection solution. As shown
in this figure, proposed approach will always reach an optimized fitness value
while random selection seldom converges. To sum up, the proposed GA based
approach will always reach an optimal fitness value and the converged point is
very close to the actual optimal point. Fig. 9 shows the efficiency of the proposed
approach. These experiments are conducted on small-scale scenarios. Each test
dataset has the same configuration, except for the number of concrete services
for each abstract service. As shown in Fig. 9, the execution time increases quickly
at the beginning, but keeps stable when the number of concrete services for each
abstract service is larger than 200.

As shown in Fig. 10(a), IP approach performs as good as the GA based ap-
proach at the beginning. Notice that, when the number of the abstract services
becomes more than 40, IP approaches would cost exponential growing time to
solve the composition problems. Fig. 10(b) shows the fitness value’s trend cor-
responding to the increment of the number of the abstract services. Both IP
approach and GA based approach behave well when the number of abstract
services is relatively small. When the number of abstract services increases, the
optimal fitness value obtained from GA based approach also increases. This is
because population size and other related variables stay the same when the num-
ber of the abstract services varies. Hence, GA based approach are more scalable
and efficient than IP approaches.

332 Z. Ye, X. Zhou, and A. Bouguettaya

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1 2 3 4 5 6 7 8 9 10

F
itn

es
s

va
lu

e

Test dataset

GA
Exhaustive Search Algorithm

(a) Fitness VS. Dataset

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300 350 400

F
itn

es
s

va
lu

e

Number of generation

Test dataset 1 on GA
Test dataset 2 on GA

Test dataset 1 on Random selection
Test dataset 2 on Random selection

(b) GA VS. Random selection

Fig. 8. Experiment Result 1

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400

ex
ec

ut
io

n
tim

e

Number of concrete services for each abstract service

Test dataset 1
Test dataset 2

Fig. 9. Time VS. Concrete services

5 Related Work

Most composition approaches in SOC use linear programming methods. [3]
presents two approaches: one focuses on local optimization, the other on global
optimization. They use integer programming to solve the global optimization
problem. The limit of this approach is that all QoS attributes need to be lin-
earized as integer programming is a linear programming approach. [12] proposes
an improved approach based on [3], using Mixed Linear Programming (MILP)
approach. They also introduce several concepts such as loop peeling and negoti-
ation mechanisms to address situation where no feasible solution can be found.
[13] proposes an approach to decompose global QoS constraints into local con-
straints with conservative upper and lower bounds. These local constraints are
resolved by using an efficient distributed local selection strategy.

All of the aforementioned approaches only consider the service composition
problems in small-scale scenarios. These linear programming approaches are not
suitable to handle large-scale scenarios problems, e.g. service composition in
cloud computing. [14] was the first to use GA for optimization of QoS-aware
compositions in SOC. The results show that their GA implementation scales

GA Based Service Compositions in Cloud Computing 333

 0

 2000

 4000

 6000

 8000

 10000

 0 10 20 30 40 50 60 70 80 90 100

ex
ec

ut
io

n
tim

e

Number of abstract services

GA
Integer programming

(a) GA VS. Integer Programming on
Time

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70 80 90 100

F
itn

es
s

va
lu

e

Number of abstract services

GA
Integer programming

(b) GA VS. Integer Programming on
Fitness

Fig. 10. GA VS. Integer Programming Approach

better than linear programming. [15] presents a GA and a Culture Algorithm
(CA) for Web service compositions. The first algorithm is similar to [14], the
latter uses a global belief space and an influence function that accelerate the
convergence of the population. [6] presents a mutation operator which consider
both the local and global constraints to accelerate the converge of the population.

Existing GA-based approaches are solely focus on service composition in ap-
plication level, which do not consider the computing resources composition. Ser-
vice composition in cloud computing involves application service composition
and computing resources matching and scheduling. In this paper, a genetic al-
gorithm based approach is proposed to compose services in cloud computing, by
combining QoS-aware service composition approaches and resources matching
and scheduling approaches.

6 Conclusion

A genetic algorithm based approach is presented for service compositions in
cloud computing. Service compositions in cloud computing involve the selections
of application services and utility computing services. The chromosome size is
bound to the number of n of abstract services. The number of possible appli-
cation services and utility computing services only augments the search space.
For small-scale scenarios, the proposed approach finds optimal solutions. For
larger-scale problems, it outperforms the integer programming approach. This
is a beginning to propose robust service composition approaches in cloud com-
puting. Future work may focus to eliminate several assumptions: 1) QoS values
for each component are known in this research. Calculating the QoS values at
runtime is one direction; 2) penalty factor in the fitness function is static. More
dynamic fitness functions can be used to improve the performance of the ap-
proach. 3) novel crossover and mutation operators may accelerate the converge.

334 Z. Ye, X. Zhou, and A. Bouguettaya

References

1. Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the
5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley
view of cloud computing. Tech. rep. (February 2009)

3. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30(5), 311–327 (2004)

4. Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., Dustdar, S.: An end-to-
end approach for QoS-aware service composition. In: Proceedings of 13th IEEE
International EDOC Conference, pp. 1–4 (September 2009)

5. Wang, L., Siegel, H., Roychowdhury, V., Maciejewski, A.: Task matching and
scheduling in heterogeneous computing environments using a genetic-algorithm-
based approach. Journal of Parallel and Distributed Computing 47(1), 8–22 (1997)

6. Rosenberg, F., Muller, M., Leitner, P., Michlmayr, A., Bouguettaya, A., Dustdar,
S.: Metaheuristic Optimization of Large-Scale QoS-aware Service Compositions.
In: 2010 IEEE International Conference on Services Computing, pp. 97–104. IEEE,
Los Alamitos (2010)

7. Cormen, T.: Introduction to algorithms. The MIT press, Cambridge (2001)
8. Coello, C., Carlos, A.: Theoretical and numerical constraint-handling techniques

used with evolutionary algorithms: a survey of the state of the art. Computer
Methods in Applied Mechanics and Engineering 191(11-12), 1245–1287 (2002)

9. Srinivas, M., Patnaik, L.: Genetic algorithms: A survey. Computer 27(6), 17–26
(1994)

10. Whitley, D., et al.: The GENITOR algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best. In: Proceedings of the Third Inter-
national Conference on Genetic Algorithms, vol. 1, pp. 116–121, Citeseer (1989)

11. Berkelaar, M., Eikland, K., Notebaert, P., et al.: lpsolve: Open source (mixed-
integer) linear programming system. Eindhoven U. of Technology

12. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Transactions on Software Engineering, 369–384 (2007)

13. Alrifai, M., Risse, T.: Combining global optimization with local selection for ef-
ficient QoS-aware service composition. In: Proceedings of the 18th International
Conference on World Wide Web, pp. 881–890. ACM, New York (2009)

14. Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for QoS-aware
service composition based on genetic algorithms. In: Proceedings of the 2005 Con-
ference on Genetic and Evolutionary Computation, pp. 1069–1075. ACM, New
York (2005)

15. Gaber, J., Bakhouya, M.: An affinity-driven clustering approach for service discov-
ery and composition for pervasive computing. In: ACS/IEEE International Con-
ference on Pervasive Services, pp. 277–280. IEEE, Los Alamitos (2006)

Energy-Efficient Tree-Based Indexing Schemes
for Information Retrieval

in Wireless Data Broadcast�

Jiaofei Zhong1, Weili Wu1, Yan Shi1, and Xiaofeng Gao2

1 The University of Texas at Dallas, Department of Computer Science,
800 West Campbell Road, Richardson, TX 75080-3021

{fayzhong,weiliwu,yanshi}@utdallas.edu
2 Georgia Gwinnett College, 1000 University Center Lane,

Lawrenceville, GA 30043
xgao@ggc.edu

Abstract. Mobile computing can be equipped with wireless devices to
allow users retrieving information from anywhere at anytime. Recently,
wireless data broadcast becomes a popular data dissemination method,
especially for broadcasting public information to a large number of mo-
bile subscribers at the same time. Access Latency and Tuning Time are
two main criteria to evaluate the performance of a data broadcast sys-
tem. Indexing can dramatically reduce tuning time by guiding clients to
turn into doze mode while waiting for the data to arrive. B+-Tree Dis-
tributed Index Scheme (BTD) is a popular index scheme for wireless data
broadcast, which has been extended by many research works. Among tra-
ditional index structures, alphabetic Huffman tree is another important
tree-based index technique with the advantage of taking data’s access
frequency into consideration. In this paper, we are trying to answer one
question: can alphabetic Huffman tree replace B+-tree and provide better
performance? To answer this question, we propose a novel Huffman-Tree
based Distributed Index Scheme (HTD) and compare its performance
with BTD based on a uniform communication environment. The perfor-
mances of HTD and BTD are analyzed both theoretically and empiri-
cally. With the analysis result, we conclude that HTD outperforms BTD
and can replace BTD in most existing wireless data broadcast system.

1 Introduction

Wireless Data Broadcast has attracted great attention recently in wireless com-
puting area because of its scalability and flexibility to broadcast public informa-
tion to a large number of mobile subscribers. In a typical data broadcast system,
base stations broadcast a set of data periodically within its region. Mobile clients
within the region could tune into broadcast channel, search for the data it needs,
wait till target data items are broadcasted and download them. Considering that
mobile devices has limited battery power and restricted lifetime, access latency
and tuning time becomes two main criteria to evaluate the performance of a
data broadcast system. According to the architectural enhancements, each mo-
bile device has two modes: active mode and doze mode. The energy consumed
� This work is supported by NSF grant CCF-0829993 and CCF-0514796.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 335–351, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

336 J. Zhong et al.

in active mode can be up to 100 times higher than that in doze mode. Based on
this, access latency is defined to denote the whole time interval from the moment
when a client initiates a query, till the moment it finishes downloading the data
item, which evaluates the query time efficiency of a system; while tuning time
is defined as the sum of time when a client keeps “active” during the process,
which evaluates the energy efficiency of the system.

Researchers apply index technologies to reduce tuning time for a data broad-
cast system. An index is a specific data structure storing the location informa-
tion of data items. Due to the nature of data broadcast scheme, indices in data
broadcast system store the “time offset” of target data items. Once a client gets
this offset, it is aware of the waiting time for the target data item to arrive on
the broadcast channel. The client turns into doze mode to save some energy and
tunes back to the broadcast channel right before the data item appears. Different
index technologies have different searching efficiency. If we insert indices between
data items, then the whole size of a program will increase, resulting a longer ac-
cess latency. Therefore, discussing about an index technology, researchers will
always consider the balance between tuning time and access latency.

B+-Tree Distributed Index Scheme (BTD) is a popular index scheme for wire-
less data broadcast. Many other research works [3,4,5,18] have extended BTD
with respect to different system configurations. Since the idea of distributed
index can be generally adopted on tree-based search index methods, we natu-
rally wonder what impact the choice of different search tree structures will have
on the performance of broadcast system. Alphabetic Huffman tree is another
primary tree-based index techniques. Compared with B+-tree, it can not only
guide searching of target data item, but also take into consideration the access
frequencies of different data items. The higher access frequency a data item has,
the closer it is to the root in an alphabetic Huffman tree. This can be a very
beneficial feature for wireless data broadcast because it may reduce the time
needed to search for more frequently requested data items and consequently re-
duce the average access latency. The purpose of this paper is to construct an
Alphabetical Huffman-tree based Distributed Index Scheme (HTD) and evaluate
the performance of distributed index schemes BTD and HTD.

For fair comparison, we build up a uniform environment with same commu-
nication model and data set. We assume each data item can have different size
and different access probability, such that our mathematical model can be more
practical and more accurate. Since system performance in skew broadcast heav-
ily relies on data schedule algorithm/design, and we just want to compare the
performance of indices, flat broadcast is adopted in this paper. We choose single
channel data broadcast model to eliminate the impact of index and data allo-
cation algorithms on the performances so that the difference in performances
can be purely from different tree-based index structures. In order to perform
the evaluation, we first develop a novel Huffman-Tree based Distributed index
scheme (HTD). We also adjust the packet design of BTD to fit our communica-
tion model. Based on the uniform system setup, a detailed theoretical analysis
is performed on the expected access latency and tuning time of BTD and HTD.

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 337

Finally, we simulate the broadcast environment and provide mass numerical sim-
ulation. The theoretical and empirical analysis proves the superiority of Alpha-
betic Huffman tree based distributed index. We are the first work to construct
a Huffman-tree based Distributed Index Scheme for wireless data broadcast
problem.

The rest of this paper is organized as follows: in Section 2 we study previous
literatures for wireless data broadcast problem, including various index tech-
nologies in different communication environments. In section 3 we illustrate our
system model, and discuss broadcast environment, data type, and data schedule
in detail. In Section 4 and 5 we construct and evaluate distributed index and
Huffman tree correspondingly. Next, in Section 6 we illuminate the process of
simulation and discuss index performance based on our numerical experiments.
Finally, Section 7 gives conclusion and the plan of our next stage work.

2 Related Works

In wireless data broadcast area, the main research topics always focus on how to
design index structures and how to allocate data on channels. Their purpose is to
reduce access latency and tuning time, in order to improve the energy efficiency
of the system. Many research works deal with data scheduling problem so as
to decrease access latency. Acharya et al. [1] proposed “broadcast disk”, which
allocates data with similar access frequencies onto different disks and broadcast
data of these disks repeatedly according to their frequencies, in order to cope
with nonuniform access distribution. Vaidya et al. [16] discussed optimization
issue with respect to the average access latency when data access distribution is
nonuniform. Vlajic et al. [17] presented an optimized data broadcast strategy in
hierarchical cellular organization system. However, none of these works imple-
ments indexing technique. Moreover, without doze mode, the tuning time is as
long as access latency, which leads to high power consumption of mobile devices.

There are also many works converting traditional disk-based indexing ap-
proaches to air indexing by converting physical address into time offset. One pa-
per [12] discussed a signature based approach for information filtering in wireless
data broadcast. Another work by Xu et al. [19] gave an idea of exponential index
that shares links in different search trees and allows clients to start searching at
any index node. However, their approach may not perform well under nonuni-
form access probabilities. Yao et al. [22] proposed MHash to facilitate skewed
data access probabilities and reduce access latency. Imielinski et al. [8] presented
the flexible index and hash based index. Furthermore, they customized B+-tree
index and proposed (1, m) index as well as distributed index (BTD) [9]. BTD
was extended by many other researchers to fit different system requirements.
Hu et al. [5] designed a hybrid index scheme combining BTD and signature-
based index. [18] proposed an index allocation method named TMBT for multi-
channel data broadcast, which creates a virtual BTD for each data channel and

338 J. Zhong et al.

multiplexes them on the index channel. Hsu et al. [4] modified BTD to deal
with data with nonuniform access frequencies. In [3], Gao et al. built a complete
multi-channel broadcast system to broadcast a data set with nonuniform access
probability and data sizes, which used BTD as their index scheme.

Huffman-tree is a skewed index tree which takes into account the access prob-
ability of each data item, that the popular data has a shorter path from the
root of the tree, thus it minimizes the average tuning time [2,14]. In [2], the
proposed algorithms for constructing the skewed Huffman tree have a problem
that the clients may fail to find the desired data item by traversing that Huffman
tree. In [14], it discussed the construction of Huffman tree, which is similar to
that of Huffman code, but the constructed Huffman tree has the same problem.
There is another kind of Huffman tree, Alphabetic Huffman tree, proposed in [6],
which serves as a binary search tree. It is further extended to k-ary search tree
in [14], so that a tree node will fit in a wireless packet of any size by adjusting
the fanout of the tree. However, all the above works discussed Huffman-tree on
multi-channel environment. When it comes to the multi-channel data broadcast,
how to allocate index and data will produce heavy impact on the performance
of each index technique. A certain allocation method could be helpful to specific
index structure, but at the same time it might reduce the efficiency of another
index method. In this paper, we aim at comparing two commonly used index
approaches under the same conditions, as well as minimizing both average access
latency and average tuning time, so we adopt single channel data broadcast envi-
ronment to avoid all kinds of influences introduced by a multiplicity of different
multi-channel allocation methods. Unfortunately, there is no existing research
applying alphabetic Huffman-tree onto single channel data broadcast systems.

3 System Symbols and Bucket Design

Now we present the system model of a wireless data broadcast communication
environment for future comparison of tree-based distributed index schemes.

Table 1. Symbol Description

Sym Description Sym Description
D Data set D = {d1, · · · , dt} Di Data block on Bi

t Number of data items Pi Probability for block Bi

P Probability set P = {p1, · · · , pt} �i The ith subtree at level l+1 on T
S Length set S = {s1, · · · , st} Vi Distributed path for �i

T An index tree ui Length of index on Bi with average u
L Level of T vi Length of Vi on Bi with average v
k Maximum branch number for T xi Length of Di on Bi with average x
l Threshold to cut T R Total number of �i on T
B One broadcast sequence on a channel Bj

i The jth index at ith level of T

Bi The ith block on B dj
i The jth bucket of data item di

| · | Cardinality of one set ‖ · ‖ Length measured in data bucket unit

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 339

3.1 System Symbols

The Base Station broadcasts data set D on a single wireless broadcast channel,
where the total number of data items is t, and D = {d1, d2, · · · , dt}. Without loss
of generality, assume data items in D are arranged in a consecutively increasing
order of their primary key values. The access probability for each data item di is
pi, where

∑t
i=1 pi = 1, and P indicates the probability set of D. Data items may

have different sizes due to various applications, Let si denote the size of di, and
S denote the length set of D. Fig. 1 is an example data set with 16 data items,
which will be continuously used as our data sample throughout the paper.

In order to reduce tuning time for mobile clients, some tree-based index strate-
gies, for instance the B+-tree Index scheme, are applied to the wireless data
broadcasting system. We use T to denote the index tree for tree-based index
strategies, and define k as the maximum number of branches for each node in
T . L is the depth or height of T . In distributed index [9], T is “cut” at the lth

level. Bj
i denotes the jth index at ith level of T . Sec. 4 and 5 will give detailed

design of two index strategies. Table 1 lists most of the symbols used in this
paper. Some symbols will be introduced in later sections.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.08 0.01 0.04 0.03 0.06 0.10 0.05 0.07 0.10 0.06 0.02 0.04 0.05 0.05 0.07

Data Key

Probability

16

0.16

4 2 3 1 4 2 4 2 3 1 1 3 4 2 1Data Size 3

Fig. 1. An Example of Data Set

3.2 Bucket and Pointer Design

A bucket is the minimum logical unit for data transmission in wireless data
broadcast systems. Data buckets and index buckets have different structures
and sizes. An index bucket contains a complete index node; while a data item
can take several data buckets. Data item size si is measured by the number of
data buckets it occupies. A bucket has two segments: head and payload. For
both index bucket and data bucket, its head has the same elements:

bId: id of a bucket, in the format of (i, j, n). For a tree-based distributed
index bucket, it indicates the nth recurrence of index Bj

i . For a data
bucket, it denotes the jth bucket of di (denoted as dj

i) with n = si.
bType: the type of this bucket. E.g., a tree-based distributed index strategy

has three types of buckets, i.e. control index, search index and data.
bLength: the total length or size of this bucket.
bOffset: the offset to the next nearest control index.

The payload segments of a data bucket and an index bucket are different. In
a data bucket, the payload stores data. A data item may take up several data
buckets of same lengths. On the other hand, in an index bucket, the payload
stores index information, such as pointers, which indicate the time offsets to
some other index buckets. A pointer contains the following elements:

340 J. Zhong et al.

1
1B

2
2B1

2B

H ead Pointer_B 2
11

2B Poin ter_B 2
12

2B

bId bType bLength pKey pO ffsetbO ffset

Bucket_ 1
1BIndex_ 1

1B

Fig. 2. An Example of Index Bucket Structure

pKey: the bId of the bucket it points to.
pOffset: time offset from current moment to the moment target bucket starts

to broadcast.

For tree-based index strategies, an index bucket may contain several pointers,
each pointing to one of its children. The number of pointers depends on the
design of the index tree. Fig. 2 is an example index bucket storing an index
node B1

1 of a binary index tree, which has a head segment (the block in shadow)
to “label” index B1

1 itself, and a payload segment (two white blocks) to store
the pointers of B1

1 . Since B1
1 has two children B1

2 , and B2
2 , its payload segment

should have two pointers, recording the location of B1
2 , and B2

2 .

4 B+-Tree Based Distributed Index

We adopt B+-Tree based distributed index strategy BTD introduced in [9]. To
fit our model, we reformulate BTD with the bucket design in Sec. 3.2.

In BTD, B+-Tree index is streamed on broadcast channel in depth-first man-
ner, and it is “cut” at level l. Nodes from level 1 to l are replicated part, while
others are non-replicated part which can be viewed as a number of subtrees
rooted at the indices at level l + 1. Each index in the replicated part is a control
index and has a control table to specify the search ranges of different subtrees.

16

Replicated Part
Non-Replicated

Part

k = 2
L= 4
l = 2

3
4B 4

4B 5
4B

1
1B

2
2B1

2B

4
3B2

3B 3
3B1

3B

1
4B 2

4B 6
4B 7

4B 8
4B

1514131211109873 4 5 61 2

Fig. 3. An Example of B+-tree cut at the 2nd level

Fig. 3 is an example of a full binary B+-Tree based distributed index structure
with k = 2, L = 4, and l = 2. There are 16 data items in the data set D,
represented by grey blocks at the bottom. Each index node Bj

i means the jth

index node on the ith level of the tree. All the nodes above (including) the 2nd

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 341

Non, Non

1[1]
1B 1[1]

2B 1Δ

4,(212)

4, begin

1[2]
2B 2Δ

8, (112)

8, begin

1[2]
1B 2[1]

2B 3Δ

12,(222)

12, begin

2[2]
2B 4Δ

Non, Non

1
3B 1

4B1Δ 2
4B 2

3B 3
4B2Δ 4

4B 3
3B 5

4B3Δ 6
4B 4

3B 7
4B4Δ 8

4B

Control
Table

Search
Index

Broadcast
Sequence 1D 2D 3D 4D

1DData
Block 2D 3D 4D 161514139 10 11 125 6 7 81 2 3 4

1[2]
2B 1[2]

1B 2[2]
2B

Fig. 4. An Example of B with Control Tables

level of the tree are control indices of the replicated part, while the other nodes
below are search indices of the non-replicated part.

We traverse T according to distributed rules described in [9], and then append
control table for each control index. During traversing process, data buckets and
index buckets are interleaved on the same broadcast channel. B is a complete
program streamed on a broadcast channel, including both index buckets and
data buckets. Fig. 4 is an example of B with respect to the aforementioned index
tree example in Fig. 3. B

j[1]
i , · · · , B

j[k]
i represent k appearances of Bj

i , where k
is the same as branch number k in T .

Note that index bucket and data bucket may have different sizes. A data
bucket is usually measured by KB. Each data bucket has size 1KB. However,
the size of an index bucket is determined by the information stored in an index
bucket. Therefore, we let |B| denote the cardinality of set B, measured by the
number of bucket, and ‖B‖ denote the total length of set B, measured in the
unit of one data bucket (KB). An index bucket may have different size from a
data bucket, so we define “r” to indicate the ratio of data bucket size to index
bucket size, i.e. r = data bucket size/index bucket size. For instance, using the
data set in Fig. 1 as an example, in Fig. 4 we have |B| = 34, and ‖B‖ = 18/r +
40, since there are totally 18 indices, 6 of which are control indices and the rest
12 are search indices. Additionally, control tables are used to specify the ranges
of subtrees. For example, in the control table of B

1[2]
2 , the first entry [4,begin]

means that if the client is looking for a data item with key value ≤ 4, it needs
to wait till the beginning of next broadcast cycle. The second entry [8, B

1[2]
1]

implies if the client is looking for a data item with key value > 8, it should
wait till B

1[2]
1 arrives. This control table indicates that the subtree immediately

following it can only guide to data with key values in the range (4,8].
In BTD, index and data are interleaved on the same broadcast channel.

As in Fig. 4, (i denotes subtree in the non-replicated part, and is consist of
search indices. For instance, (2 is the subtree rooted at B2

3 , with two chil-
dren B3

4 and B4
4 . Di indicates the data buckets that (i guides to, which is

streamed sequentially by their key values. dft((i) is the depth-first traversal
of (i. For example, dft((2) = B2

3 , B3
4 , B4

4 . path(Bj
i) is a path from root

B1
1 to node Bj

i (excluding the endpoint Bj
i), and Vi is a distributed path be-

fore each (i. For example, from Fig. 3 we can see that the distributed path for
B3

3 should be V3 = {B1
1 , B2

2}. After this, the broadcast sequence is defined as
B = {V1,dft((1), D1, V2,dft((2),D2,· · ·,VR,dft((R),DR}.

342 J. Zhong et al.

4.1 Performance Analysis of B+-Tree Distributed Index

In this section, we analyze the performance of B+-Tree based distributed index
with respect to the expectation of access latency and tuning time.

Let’s consider access latency first. Let R denote the number of subtrees after
we cut T. The whole broadcast cycle is divided into B1, · · · , BR blocks, where
Bi = {Vi,dft((i), Di}, for 1 ≤ i ≤ R. Pi represents the access probability for
block Bi, which can be derived by summing up the probability of all data buckets
that belong to data block Di of Bi, i.e. Pi =

∑
j∈Di

pj , for i = 1, · · · , R. Let
v denote the average length of Vi, u the average length of Vi + (i, and x the
average length of Di. Note that u, v, and x are measured by data bucket(KB),
while ui, vi, and xi denote corresponding lengths for specific block Bi. Hence,
we have u = (‖B‖ − ‖D‖)/R, v =

∑R
i=1 ‖Vi‖/R, and x = ‖D‖R.

1V 1Δ 1D V i iΔ 1V i + 1i +Δ

Tune In

1V i w+ − 1i w+ −Δ V i w+ i w+Δ

(w -1) b locks G et R esult

2D 1D i + 1D i w+ − D i w+

1B iB 1i +B 1i w+ −B i w+B

Fig. 5. An Example of a Client Searching for Data

Theorem 1. If B+-tree based distributed index and data are interleaved on one
broadcast channel, then the average access latency is

E(AL) =
1
R

·
R∑

i=1

(R−2∑
w=1

((
1
2

+ w)u + wx) · P(i+w)%R + (u − v

2
+

x

2
) · v

u + x
· Pi

+(
u − v

2
+ w(u + x)) · Pi · u − v + x

u + x

)
. (1)

Proof. Assume that a client would like to retrieve data item dj . It first tunes
into the broadcast channel at block Bi, and then waits for another w blocks to
reach the block which contains the required datum dj at Bi+w. Next, the client
waits for the first data bucket of dj to come and begins to download, until it gets
all the data buckets of dj . Illustration of the whole process is shown in Fig. 5.
There are three possible cases with respect to the length w:
Case 1: 1 ≤ w < R. We divide this case into 3 phases:

1. the client tunes into block Bi. It takes an average (u + x)/2 time to visit Bi;
2. the client waits (w − 1) complete blocks, which takes (w − 1)(u + x) time;
3. it finds the index directly pointing to dj in (i+w and download data. The

average waiting time is u + x/2.

The expected access latency of this case is shown below, where b denotes the
current block number, and d means the distance from b to the block it gets data:

E(AL|b = i, d = w) =
u + x

2
+ (w − 1)(u + x) + u +

x

2
= (

1
2

+ w)u + wx

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 343

Case 2: w = 0. The client tunes into Vi of block Bi, and finds the pointer to
required data item which is indeed in the following (i of the same block Bi. In
this case, it takes only aforementioned phases 1) and 3), so we have:

E(AL|b = i, d = 0) =
v

2
+ u − v +

x

2
= u − v

2
+

x

2

Case 3: w = R. Suppose the client tunes into block Bi, and the required data is
also in this block Bi. Unfortunately, the client already missed the control index
of this block when it tunes in, so it has to wait for the next control index in the
next block to continue searching, and then wait for Bi to be broadcast again in
the next bcast. In this case, the expected access latency becomes:

E(AL|b = i, d = R) =
u − v + x

2
+ (w − 1)(u + x) + u +

x

2
=

u − v

2
+ w(u + x)

According to the law of total expectation and the above three cases, we can get
the average access latency as in Thm. 1.

Theorem 2. The average tuning time for B+-Tree based distributed index is

E(TT)=
R∑

i=1

3ui−vi + (2+r)xi

r‖B‖ +
2L−l

2
+

|D|∑
i=1

sipi (2)

Proof. The tuning time of searching and downloading one data item comprises
the following phases:

Step I: The client tunes into broadcast channel, and searches for the right
control index. Since the client can start searching only from a control
index, we analyze this phase by three cases:
Case 1: The first visited bucket is a control index. Then the client
could follow the control table to find the right control index in
one more step, which is discussed in [3]. The probability of this
case is

∑R
i=1 vi/‖B‖, and the average tuning time of this case is

2
r

∑R
i=1 vi/‖B‖.

Case 2: The first visited bucket is a search index. The client needs to
wait for the next nearest control index, and follow its control table to
reach the target control index. This has a probability of

∑R
i=1(ui −

vi)/‖B‖, and average tuning time is 3
r

∑R
i=1(ui − vi)/‖B‖.

Case 3: The first visited bucket is a data bucket. The client also need
to wait for the next control index, and then go to the target control
index, with probability

∑R
i=1 xi/‖B‖. The average tuning time is (1+

2
r)
∑R

i=1 xi/‖B‖.
Step II: The client searches for the index that directly points to the required

data. The average number of visited index bucket in this step is
1
r

(
l
2 + (L − l)

)
= 1

r (L − l
2).

Step III: The client sleeps until the required data appears, and then tunes in
again to download data. The average downloading time is

∑|D|
i=1 sipi.

Combining above steps, we have the average tuning time as in Thm. 2.

344 J. Zhong et al.

In order to get the actual values of the average access latency and average tuning
time, we need to know the values of L, R, B, u, v, and x. The total level L of an
index tree is determined by the number of branches k of T and the size t of data
set D. Since the total number of pointers at the bottom level of T should be
equal to the number of data items, the number of leaf nodes on T should be at
least �t/k , and the number of nodes at the second lowest level of T should be at
least ��t/k /k . In this way, we can calculate the size of each level inductively,
until we reach the root of T . We define N(L) as the set of nodes at the Lth level
of T . There is an algorithm in [3] describing how to compute L and N(L). With
known L and |N(L)|, we can get R = |N(l+1)|. What’s more, if T is a full k-ary
tree, there is a theorem as follows.

Theorem 3. If T is a full k-ary tree, then the total number of index buckets in
a bcast is k−kL

1−k + kl, where L = �logkt , l < L, and k, l are fixed parameters.

The detailed proof of this theorem could be found in [3]. We can also get the
value of other variables after the construction of B.

5 Huffman-Tree Based Distributed Index

Huffman-tree index has been applied to the wireless broadcast environment ever
since the last decades. It is an efficient index technique because it takes into ac-
count the access probability of data items when constructing the Huffman-tree.
The popular data with higher probability reside closer to the root in Huffman-
tree, which reduces search time when traversing from the root. Considering flat
broadcast, we found that the distributed method could be extended to Huffman-
tree based broadcast, which is an innovative idea that has not been consid-
ered before. In this section, we will discuss the construction of Huffman-Tree
based Distributed Index Scheme (HTD) and perform a theoretical analysis on its
efficiency.

The structure of index bucket and data bucket in HTD is almost the same as in
BTD. The first step is to construct a k-ary Alphabetic Huffman-Tree following
the methods introduced in [14]. Here we give an example of the construction
process based on the data set and access frequency in Fig. 6. Note that if we
normalize the access frequency in Fig. 6, we will get the same data set as in
Fig. 1. The Alphabetic Huffman-Tree construction is shown in Fig. 7 and 8.

Stage 1: choose data nodes di, dj as candidates to be merged when

1. there are no leaves between them,
2. the sum of their frequencies is the minimum,
3. di and dj are the leftmost nodes among all candidates.

If the above conditions hold, we create a new index node d′i with frequency
equal to the sum of di’s and dj ’s frequencies, and replace di, dj with d′i in the
construction sequence. This stage produces a tree T0 without alphabetic ordering

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 345

of the data nodes, as in Fig. 7, where we record the frequencies of each index
node inside the circle as index key values.
Stage 2: record the level of each data node (leaf node) of T0, denoted as Li of
data di. The root node level is 1. From bottom to the root, rearrange pointers
such that for each level the leftmost two nodes have the same parent, and then
the next two, and so on. We can generate an alphabetic Huffman-Tree T in this
way, without changing the level of each node in T0, as shown in Fig. 8.

We could easily extend this algorithm to construct k-ary Huffman-Tree, by
merging at most k nodes in stage 1, and combining up to k nodes with the same
parent in stage 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23 4 12 10 17 31 15 21 29 19 7 12 16 14 20

D ata Item K ey

Frequency

16

48

Fig. 6. An example Data Set of Huffman-Tree based Distributed Index

161 5

2 3

4

6

7 8

9

12 1311

1510

14

16

19

26

30

36 3840 50

57 65 78 98

122 176

298

Fig. 7. The first step of constructing T0

1 5

2 3

4

6

7 8

9

12 1311

1510

14

16

L= 6
l = 3

1
1B

1
2B 2

2B

3
3B 4

3B2
3B

3
4B 4

4B 5
4B

2
5B 3

5B

2
4B

1
3B

1
4B

1
5B

Replicated
Part

Non-
Replicated

Part

Fig. 8. The final Huffman-Tree T

After generating the alphabetic Huffman tree T , we cut T at level l, and
perform a distributed traversal as Sec. 4. The index nodes above l is still called
control index, and index nodes below l is search index. We append control tables
onto control index in the same way as Sec. 4.

Note that there are two major difference between Huffman tree and B+-tree,
that the position of leaf nodes and the subtree sizes below l are different. It is
possible that there might be data items above l in a Huffman tree, depending
on which level we choose for l, since data items are not restricted to reside at
bottom level of Huffman tree (they could also appear in higher level), which is a
major difference with B+-tree. Another difference is that sizes of subtrees below
l may vary a lot in Huffman tree, but for B+-tree each subtree has similar size.

The final broadcast sequence B generated in this example is illustrated in
Fig. 9; and the access protocol is described in Alg. 1. When searching in a con-
trol table, client firstly compares the key value of request data and that of the
first entry in control table; if request key is less than or equal to the first key,
it should wait until the root of next bcast; if request key is greater, the client
will go on to compare with the next entry in control table, and turn to doze mode

346 J. Zhong et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N, N

5, 2'

N, N

3, 4'

3, begin

5, 2'

N, N

8, 1'

Index bucket Data item, may contain several data buckets

5, begin

8, 1'

5, begin

6, 5'

6, begin

8, 1'

8, begin

N, N

8, begin

12, 3'

8, begin

9, 6'

9, begin

12, 3'

12, begin

N, N

12, begin

15, 7'

15, begin

N, N

1Δ 2Δ 3Δ 4Δ 5Δ 6Δ 7Δ 8Δ1V 2V 3V 4V 5V 6V 7V 8V

1B 2B 3B 4B 5B 6B 7B 8B

1[1]
1B 1[1]

2B 1[1]
3B 1

4B 1[2]
1B1[2]

2B1[2]
3B1

5B 2
4B 2[1]

3B 2[2]
3B 3

4B 2[1]
2B

1[2]
1B 1[2]

2B 1[2]
2B 1[2]

1B 1[2]
1B1[2]

3B

3[1]
3B 3[2]

3B 2[2]
2B4

4B 2
5B 4[1]

3B 4[2]
3B

4[2]
3B2[2]

2B 2[2]
2B2[2]

3B 3[2]
3B

5
4B 3

5B

Fig. 9. The broadcast sequence of Huffman-Tree based Index

for offset time if request key is not greater than the next key in control table;
otherwise, it will continue comparing with the rest entries of control table until
it finds such an entry, or go to default bucket (the next index) if not found.

Algorithm 1. Retrieve Data
Input: keyreq 	 key value of request data dreq

Output: dreq.
1: Access randomly onto broadcast channel;
2: B0 = current bucket;
3: if B0 is data bucket & B0.bId = (keyreq, 1, sreq) then
4: Download data dreq;
5: end if
6: if B0.bType �=control then
7: Doze B0.bOffset time till the next control index;
8: B0 = current bucket;
9: end if

10: Follow B0’s control table and go to the pointed bucket;
11: Download data dreq;

5.1 Performance Analysis of Huffman-Tree Distributed Index

In this section, we analyze the system performance of Huffman-Tree based dis-
tributed index by evaluating its expected access latency and tuning time.

First let’s consider access latency. Similar as BTD, all index and data buckets
are interleaved on one broadcast channel. The whole broadcast cycle is divided
into B1, · · · , BR blocks, where Bi = {Vi,dft((i)}, for 1≤ i≤R. Note that here
Vi and (i are different with those in BTD ; Vi is still distributed path, but (i

may contain data. If there is no data node above l, Vi is the same as in BTD,
and (i is the whole subtree including data; however, if there is data node above
l, Vi represents distributed path excluding data nodes, and (i indicates all data
items following Vi above l. We use Pi to represent the access probability for
block Bi, while Pi can be derived by summing up the probabilities of all data
buckets that belong to Bi, i.e. Pi =

∑
j∈Bi

pj , for i = 1, · · · , R. Let vi denote
the length of Vi, and δi indicate the length of (i. Furthermore, an index bucket
may have different size compared to a data bucket, so we continue to use “r” as
the ratio of data bucket size to index bucket size.

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 347

Theorem 4. If Huffman-Tree based distributed index and data are interleaved
on one broadcast channel, then the average access latency is

E(AL)=
1

‖B‖
R∑

i=1

(
R−2∑
w=1

(
vi + δi

2
+

i+w−1∑
j=i+1

(vj + δj) + vi+w+
δi+w

2
)P(i+w)%R(vi + δi)

+(
vi + δi

2
)Pivi +

R∑
i=1

(vi + δi)Piδi). (3)

Proof. Assume a client want to get data item dj . It first tunes into the broadcast
channel at block Bi. Then, it waits for another w blocks to reach the index which
contains the pointer to dj at Bi+w. Within Bi+w, the client waits for the first
data bucket of dj to be broadcast and begins to download, until it gets all the
data buckets of dj . There are three possibilities about the length of w:
Case 1: 1 ≤ w < R. We can divide this case into three phases: 1) the client
tunes into block Bi, and takes an average (vi + δi)/2 time in it; 2) it waits
through (w − 1) complete blocks, which takes

∑i+w−1
j=i+1 (vj + δj) time; and 3) it

finds the pointer to the datum in (i+w, and then download data, so the average
waiting time is vi+w + δi+w/2. The expected access latency of this case:

E(AL|b = i, d = w) =
vi + δi

2
+

i+w−1∑
j=i+1

(vj + δj) + vi+w +
δi+w

2
(4)

Case 2: w = 0. The client tunes into Vi of block Bi, and the pointer to required
data is indeed in the following bucket of the same block Bi. In this case, it only
contains aforementioned phases 1) and 3) of the first case, so the expected access
latency becomes:

E(AL|b = i, d = 0) =
vi

2
+

δi

2
=

vi + δi

2
(5)

Case 3: w = R. Suppose the client tunes into block Bi, and the required data is
in the same block Bi. Unfortunately, the client already missed the index buckets,
so it has to wait for the next available index in the next block to continue
searching, and then wait for Bi to be broadcast again in the next broadcast
cycle. In this case, the expected access latency is:

E(AL|b = i, d = R) =
δi

2
+

i+w−1∑
j=i+1

(vj + δj) + vi +
δi

2
=

R∑
i=1

(vi + δi) (6)

Combining equation (4), (5), (6), using law of total expectation, we can get the
average access latency as in Thm. 4.

Theorem 5. The average tuning time for alphabetic Huffman-Tree based dis-
tributed index scheme is

E(TT) = 2
∑R

i=1 vi+(2+r)|D|+3
∑R

i=1 δi

r‖B‖ +
∑|D|

i=1(
l
2r + 1

r (Li − l) + si)pi (7)

Proof. The tuning time of searching and downloading one data item comprises
the following steps:

348 J. Zhong et al.

Step I: The client tunes into broadcast channel, and search for the right in-
dex, following which it can get the required data on that same block.
Consider these three cases:
Case 1: The client first tunes into a control index. Then the client could
follow the control table to find the right control index in one more step,
which is discussed in [3]. The probability of this case is

∑R
i=1 vi/‖B‖,

and the average tuning time of this case is 2
r

∑R
i=1 vi/‖B‖.

Case 2: The first visited bucket is a data bucket. The client need to wait
for the next nearest control index, and then go to the target control
index, with a probability of |D|/‖B‖. Thus, the average tuning time of
this case is (1 + 2

r)|D|/‖B‖.
Case 3: The first visited bucket is a search index. The client also need
to wait for the next nearest control index, and follow its control table to
reach the target control index. This has a probability of

∑R
i=1 δi/‖B‖,

and average tuning time is 3
r

∑R
i=1 δi/‖B‖.

Step II: Next, the client searches for the pointer that directly points to the
required data. Then it sleeps until the required data appears, and tunes
in again to download data. The average time of this step is

∑|D|
i=1(

l
2r +

1
r (Li − l) + si)pi, where Li is the level of data di in the Huffman-Tree.

Finally, summarizing the above steps, we can get the average tuning time of
Huffman-Tree based distributed index as in Thm. 5.

6 Simulation

In this section, we use simulation results to evaluate the performance of HTD
and BTD. Our system is implemented using Java 1.6.0 on an Intel(R) Xeon(R)
E5520 computer with 6GB memory, and Windows 7 v6.1 operating system.

6.1 Simulation Settings

We simulate a base station with single broadcast channel, broadcasting a
database with 10,000 data items [20], each of which has different sizes from
1KB to 4KB, and multiple clients requesting various sets of data items. The ac-
cess probability of each data item satisfies the zipf distribution [13], a model for
non-uniform access patterns [10,18]. Each data bucket is set of size 1KB, and we
could calculate the size of each index bucket as [3] to be 0.1KB. Normally, in real
applications, the ratio of index bucket size over data bucket size is 1

r = 0.1, but
other papers never discuss about this. They assume index bucket is of the same
size as data bucket, which is not accurate. Therefore, in our simulation we set
up r = 10, which is much closer to the reality scenario. Moreover, for each group
of experiments, we generate 10,000 requests based on data access probabilities,
in order to calculate the average access latency (AAL) and average tuning time
(ATT) during data retrieval more accurately.

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 349

6.2 Simulation Results

When the size of the request set is 10,000, the ratio of index bucket size over
data bucket size 1

r = 0.1, we vary the size of database to compare AAL and ATT
of HTD and BTD. From Fig. 10 we can see that HTD has much shorter average
access latency than BTD, while both HTD ’s and BTD ’s average access latencies
gradually increases as the database size increases. Note that the measurement
of Y-axis denotes the unit time to read one data bucket. Thus, we can claim
that HTD reduces the average response time of request retrievals. Moreover, as
the database size increasing, the average access latency gap between HTD and
BTD is growing larger, and the advantage of HTD becomes more obvious. From
Fig. 11 we can see that no matter how database size increased, HTD always
needs less average tuning time than BTD during retrieval, which means HTD is
more energy-efficient. As the database size increasing, the average tuning times
gap between HTD and BTD is growing larger, which implies that the energy
advantage of HTD is getting more obvious.

Next, we evaluate the broadcast cycle length of HTD and BTD. Due to differ-
ent tree structures, these two approaches have different Bcast length after index
and data allocation, although the distributed traversal methods are similar. We
use ‖B‖ to represent the length of one Bcast on broadcast channel. We consider
the bucket size ratio r when analyzing the length of Bcast. As in Fig. 12, the
Bcast of BTD is always longer than that of HTD. The reason is that BTD has
much more index nodes than HTD due to its tree structure, even when they
use the same data set and same cutting level. Therefore, using HTD for data
broadcast will reduce the total length of data stream on broadcast channel.

Fig. 10. AAL w. r. t. |D| Fig. 11. ATT w. r. t. |D| Fig. 12. ‖B‖ w. r. t. |D|

7 Conclusion

In conclusion, we are the first work to propose a promising strategy under wire-
less data broadcast environment, which is a novel Huffman-Tree index scheme
combined with distributed index strategy. Specifically, we formally define an
uniform communication environment, redesign and enhance B+-tree distributed
index (BTD) structure and broadcasting scheme, propose a novel Huffman-tree
based distributed index (HTD), theoretically analyze each scheme under the same
environment and same criteria, and then evaluate the performance of them by

350 J. Zhong et al.

experiments. Simulation results show two major advantages of HTD : (1) it is
more energy efficient, and (2) it reduces response time significantly. Therefore,
HTD outperforms BTD in all major criteria.

All in all, our contribution includes three aspects. Firstly, we construct the
uniform communication environment for wireless data broadcast system, and
provide structured design of distributed index and Huffman-tree index. We fol-
low the latest and most efficient construction for both index technologies, and re-
design/modify some part of them such that they could be applied in the uniform
communication environment. Next, we provide a general theoretical analysis to
evaluate the performance of each index. Such analysis can be applied easily to
majority indices commonly used in data broadcast. It can be a standard to eval-
uate the efficiency of an index technique. Thirdly, we simulate data broadcast
system with a large number of numerical experiments, using the same group of
sample data, such that the output will be reliable. Simulation results reveals
that Huffman-tree distributed index is more power efficient and also responses
much faster. Our future work includes developing more efficient index schemes
for wireless data broadcast and provide more theoretical analysis on them.

References

1. Acharya, S., Alonso, R., Franklin, M., Zdonik, S.: Broadcast disks: Data manage-
ment for asymmetric communication environments, pp. 199–210 (1995)

2. Chen, M., Yu, P., Wu, K.: Indexed Sequential Data Broadcasting in Wireless Mobile
Computing. In: ICDCS 1997 (1997)

3. Gao, X., Shi, Y., Zhong, J., Zhang, X., Wu, W.: SAMBox: A Smart Asynchronous
Multi-Channel Blackbox for B+-Tree based Data Broadcast System under Wireless
Communication Environment, Submitted to Information Sciences (2010)

4. Hsu, C., Lee, G., Chen, A.: Index And Data Allocation On Multiple Broadcast
Channels Considering Data Access Frequencies. In: MDM 2002, pp. 87–93 (2002)

5. Hu, Q., Lee, W., Lee, D.: A Hybrid Index Technique for Power Efficient Data
Broadcast. Distrib. Parallel Dat. 9(2), 151–177 (2004)

6. Hu, T., Tucker, A.: Optimal Computer Search Trees and Variable-length Alpha-
betic Codes. SIAM J. Appl. Math. 21(4), 514–532 (1971)

7. Hurson, A., Muñoz-Avila, A., Orchowski, N., Shirazi, B., Jiao, Y.: Power-Aware
Data Retrieval Protocols for Indexed Broadcast Parallel Channels. Pervasive and
Mobile Computing 2(1), 85–107 (2006)

8. Imielinski, T., Viswanathan, S., Badrinath, B.: Power Efficient Filtering of Data
on Air. In: Jarke, M., Bubenko, J., Jeffery, K. (eds.) EDBT 1994. LNCS, vol. 779,
pp. 245–258. Springer, Heidelberg (1994)

9. Imielinski, T., Viswanathan, S., Badrinath, B.: Data on Air: Organization and
Access. IEEE TKDE 9(3) (1997)

10. Jung, S., Lee, B., Pramanik, S.: A Tree-Structured Index Allocation Method
with Replication over Multiple Broadcast Channels in Wireless Environment.
TKDE 17(3) (2005)

11. Lee, W., Zheng, B.: A Fully Distributed Spatial Index for Wireless Data Broadcast.
In: ICDE 2005, pp. 417–418 (2005)

12. Lee, W., Lee, D.: Using signature techniques for information filtering in wireless
and mobile environments. Distrib. Parallel Dat. 4(3), 205–227 (1996)

13. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge (1999)

Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval 351

14. Shivakumar, N., Venkatasubramanian, S.: Energy-Efficient Indexing For Informa-
tion Dissemination In Wireless Systems. ACM, Journal of Wireless and Nomadic
Application (1996)

15. Vijayalakshmi, M., Kannan, A.: A Hashing Scheme for Multi-channel Wireless
Broadcast. Journal of Computing and Information Technology-CIT 16 (2008)

16. Vaidya, N., Hameed, S.: Scheduling data broadcast in asymmetric communication
environments. Wireless Networks 5, 171–182 (1996)

17. Vlajic, N., Charalambous, C., Makrakis, D.: Wireless data broadcast in systems of
hierarchical cellular organization. In: ICC 2003, vol. 3, pp. 1863–1869 (2003)

18. Wang, S., Chen, H.: Tmbt: An Efficient Index Allocation Method for Multi-Channel
Data Broadcast. In: AINAW 2007 (2007)

19. Xu, J., Lee, W., Tang, X., Gao, Q., Li, S.: An Error-Resilient and Tunable Dis-
tributed Indexing Scheme for Wireless Data Broadcast. IEEE TKDE 18(3), 392–
404 (2006)

20. Yee, W., Navathe, S.: Efficient data access to multi-channel broadcast programs.
In: CIKM 2003, pp. 153–160 (2003)

21. Yang, X., Bouguettaya, A.: Broadcast-based data access in wireless environments.
In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Hwang, J., Böhm, K., Jarke,
M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 553–571. Springer, Heidelberg (2002)

22. Yao, Y., Tang, X., Lim, E., Sun, A.: An Energy-Efficient and Access Latency Op-
timized Indexing Scheme for Wireless Data Broadcast. IEEE TKDE 18(8), 1111–
1124 (2006)

23. Zheng, B., Lee, W., Liu, P., Lee, D., Ding, X.: Tuning On-Air Signatures for Bal-
ancing Performance and Confidentiality. IEEE TKDE 21(12), 1783–1797 (2009)

Buffer Cache De-duplication for
Query Dispatch in Replicated Databases

Takeshi Yamamuro, Yoshiharu Suga, Naoya Kotani,
Toshio Hitaka, and Masashi Yamamuro

NTT Cyber Space Laboratories
{yamamuro.takeshi,suga.yoshiharu,kotani.naoya,

hitaka.toshio,yamamuro.masashi}@lab.ntt.co.jp

Abstract. We propose a buffer cache de-duplication technique for query
dispatch in replicated databases. In the field of replicated databases,
there is the well-known problem called ’Buffer Cache Duplication’ prob-
lem, which means that different buffer caches share some identical data.
Unfortunately, existing approaches of de-duplication have shortcomings;
the only SQL statements of queries (e.g. FROM and WHERE clauses)
are insufficient to estimate exactly which data the queries reference for
duplication-free dispatch. Our approach uses index access patterns to
construct a look-up table that allows dispatchers to determine which
database it should dispatch a query. We implement a prototype and
demonstrate that under a certain condition around 90% of the duplica-
tion holds down to 12% in two databases, and it cuts down the referenced
data on each buffer cache to approximately 40% in eight databases. Fi-
nally, we will discuss whether the condition can be applied to actual
workloads.

Keywords: Replication, Query Dispatch, and De-duplication.

1 Introduction

There are several important Web services (e.g., Facebook and eBay) on the Inter-
net, and they are central to our day-to-day lives. These and similar services can
easily be launched by anyone based as cloud services nowadays. Typically these
services consist of three layers; (1)Web servers, which interact with clients using
HTTP, (2)Application servers, which execute internal logics, and (3)Database
servers, which store and load data. As internal processing on (1) and (2) are inde-
pendent between processes, these performances are easily improved by increasing
servers (easy scalability). However, factor (3) makes it difficult to improve per-
formances, and its penalties become an issue these days[1].

Various studies have been made to improve performances of database servers.
Replication is an obvious approach, and there are many proposals[2,3,4]. Typ-
ically, queries are near-evenly distributed among replicated databases by load
balancers, which follow some fixed strategies such as round-robin and least con-
nections. Although useful, this approach suffers from the well-known problem

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 352–366, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Buffer Cache De-duplication for Query Dispatch 353

Table 1. Analysis of the duplication on two replicated databases

State Ratio (%)
Duplicated 93.97

Non-duplicated 6.03

of ’Buffer Cache Duplication’[5,6]. The duplication means that same data are
loaded on buffer caches on replicated databases. We assume a query ’A’, which
needs data ’X’. If query ’A’ is dispatched to two replicate databases1, and then
common data ’X’ lie in buffer caches of databases. Table 1 shows an actual du-
plication ratio for two databases that use round-robin techniques and DBT-1
for 3, 600 seconds in an advance evaluation. DBT-1 is a subset of TPC-W plot-
ted out by Transaction Processing Performance Council[7], and a benchmark for
web-based workloads. In the evaluation, we define the duplication as the inter-
section of working sets2. As a result, we found that the most of data on the
buffer cache are duplicated.

In terms of restriction of actual or virtualized server’s resources, it happens
that buffer caches are too short to have frequently accessed data. In this scenario,
the duplication leads to problems of database performances. De-duplication de-
creases working sets on each buffer cache, and a hit ratio of the buffer cache could
increases. And then, it leads to improvement of response time and throughputs.
Even though performances do not deteriorate, reducing the necessary amount of
a buffer cache leads to saving resources of each server.

In previous studies, the duplication can be solved by two approaches: query-
based[5] and relation-based[6]. The query-based one is that identical queries
are transferred to same replicated databases on the assumption that required
data have already been present in buffer caches. The relation-based one assigns
batches of relations to databases, and queries are transferred to where required
relations are. The report on the former approach indicates that performances
fall as accessed data sizes increase[6]. The latter one has restriction of the type
of workloads. We assume two databases (’A’ and ’B’), and three relations (’X’,
’Y’, and ’Z’). Relation ’X’ corresponds to database ’A’, and relations ’Y’ and
’Z’ correspond to database ’B’. If most queries call relation ’X’, databases loads
become distorted.

We present a state-of-the-art query dispatch technique that overcomes the
above problems and eliminate the duplication. Our approach focuses on index
access patterns; more specifically the referenced counts of index leaves are pe-
riodically recorded as statistics to construct a look-up table for duplication-free
query dispatch.

The contributions of this paper are the following.

1. An analysis of the duplication: we point out that it is difficult to dispatch
queries without the duplication only based on its SQL statements.

1 We assume any replicated database outputs same responses to same requests.
2 We define working sets as referenced and identical parts of whole data in a database.

354 T. Yamamuro et al.

2. We propose a new query dispatch technique for de-duplication. We focus on
index access patterns to estimate which data queries reference, and analyze
data accessed simultaneously.

3. We implement its prototype using DBT-1, and show that under a certain con-
dition the duplication decreases from around 90% to 12% in two databases.
And also, working sets on each buffer cache is held down to approximately
40% in eight databases.

4. We model the duplication in buffer caches to analyze conditions, and finally
show that our technique has effect on DBT-1 with the zipf-like distribution
[11] close to actual workloads.

2 Problem Statement

2.1 Query Dispatch Problem

We assume that query sets Q is dispatched to N replicated databases in certain
periods of time T . T means time spans (e.g. one day, one week, . . .) in which
same sets are input periodically. Then, query sets are defined as:

Q = {qt|t ∈ T } (1)

For query dispatch, queries in Q is transferred to one of N, and is defined as:

γ : Q → 1, 2, 3, · · ·N (2)

This paper uses the index access patterns of workloads to solve the duplication
problem. Indexing is a common technique to quickly locate required information
in databases, and is visualized as a tree composed of nodes and leaves. Database
relations are formed by one or more blocks. A block is the unit of I/O, and
occupies contiguous and fix-length data areas (e.g. 8KB in PostgreSQL). For
example, one relation has K tuples, and one block is capable of holding two
tuples. Then, the relation consists of �K

2 blocks. A query triggers the search
of blocks to locate the tuples needed to satisfy requests, and if the blocks are
not in the buffer cache, it loads them. Therefore, in (2) our proposed technique
classifies query sets Q, and minimizes working sets in each buffer cache.

2.2 Query Characteristics in the Web

Workloads in databases correspond to application programs (APPs) in the Web.
In previous studies, it is typical to limit workloads, and have an effect in only
those domains. In this paper, we assume the following workload characteristics.

1. Simple SQL statements which include only a few searched keys such as pri-
mary keys in each relation.

2. Most of data accesses in workloads is via indices.

Buffer Cache De-duplication for Query Dispatch 355

Queries processed in databases from APPs in the Web tend to be short and
simple; this feature was reported in a previous study[8]. From this viewpoint,
our research considers only simple queries. As for the latter restriction, we take
into account that most databases have at least two access strategies, sequential
and indexed ones. The used strategy depends on access costs which are deter-
mined by database sizes, cardinality, and so on. However, as response time for
these APPs becomes more important, the indexed access strategy is popular, and
most of databases and queries tend to use its strategy compared to the sequen-
tial access strategy which is time-consuming. Accordingly, this paper assumes
indexed-based queries. Because TPC-W used in the initial evaluation (Section 1)
is a benchmark for APPs in the Web, response time makes a difference. Most of
workloads in TPC-W consist of searches for products or authors, and to process
these searches speedily the corresponding indices are used heavily. Therefore,
TPC-W matches our assumption above.

2.3 Common Blocks between Queries

A naive approach to avoid the duplication and to solve the previous problems
in the query-based and relation-based approach is to use tuples, which simply
uses conditions in WHERE clauses with ’predefined and fixed’ rules to dispatch
queries. For example, there are 1000 tuples with id between 1 and 1000, and two
databases (’A’ and ’B’). The tuple-based approach is that dispatchers transfer
queries for tuples with id between 1 and 500 to database ’A’, and the others
are dispatched to database ’B’. The tuple-based approach, however, suffers the
same problem as the query-based approach, where increasing the amount of
referenced data worsens performances. The cause is that there are referenced
common blocks between queries. We assume that query ’A’ needs blocks ’X’ and
’Y’, query ’B’ needs blocks ’Y’ and ’Z’, and the common block is ’Y’. If the two
queries are dispatched to deferent databases, block ’Y’ is duplicated. In case that
referenced blocks increase, the common blocks are central to the problem. Block
information is managed by database internals and the naive approach is unable
to judge whether blocks are common or not by means of only WHERE clauses.
Table 2 shows the statistics of a duplication ratio in DBT-1 with the tuple-based
strategy with fixed rules constructed to balance query loads. The average ratio
is 87.51% and the standard deviation is 11.41%. It is clear that the tuple-based
strategy has difficulty in eliminating the duplication. We think that its problem
must be solved in some way.

Table 2. Duplication ratio of the tuple-based technique with fixed rule

Statistics Value (%)
Average 87.51

Standard Deviation 11.41

356 T. Yamamuro et al.

3 Duplication-Free Query Dispatch

We introduce a state-of-the-art query dispatch technique that prevents the buffer
cache duplication. At first, the technique estimates the common blocks between
queries based on the index access patterns of workloads, that is, the index leaf
counts of usage on buffer caches. Results are used to build a look-up table that
can realize query dispatch without the duplication. The look-up table composes
of keys in WHERE clauses of queries, and if keys of input queries are not in the
look-up table, dispatchers transfer queries in the round-robin way. Our key idea
is how to build the look-up table, and its procedure is briefly described below.

1. Referenced usage counts for index leaves on buffer caches are recorded once
every T/g seconds, and these snapshots of referenced counts are continually
collected g times.

2. A correlation between leaves is calculated, and correlated leaves are groupd.
Section 3.1 describes the rational of why these leaves are grouped behind
this approach.

3. If one relation has multiple indices, we need additional operations. From
only index access statistics, we can’t see whether these leaves reference same
blocks, or not. Therefore, we build graphs, G, from reference relationship
between leaves by means of its pointers to blocks, and apply a global min-
cut algorithm, as is detailed in Section 3.2.

4. Finally, we classify grouped leaves into the number of databases so that the
referenced number of leaves are evenly distributed, and then construct the
look-up table that represents the rules of query dispatch.

Pseudo-code of its procedure above is shown in Algorithm 1.

3.1 The Look-Up Table for Query Dispatch

As explained in the beginning of Section 3, the look-up table for query dispatch
is derived from g snapshots, which are composed of the referenced counts of the
index leaves recorded every T/g seconds. Every T/g seconds, entries 〈 snapshot
IDs, leaf IDs, and usage counts 〉 are recorded for each leaf in buffer caches. The
size of one entry is 13B, where each size of snapshot IDs, leaf IDs, and usage
counts are 1B, 8B, and 4B, respectively. A total snapshot size is very small,
because the area of loaded leaves on buffer caches is much lower than the area
of data as shown in Table 3. For example, if T is 27, 000 seconds (7.5h), g is 300
seconds (5m), the size of buffer caches is 512MB, each size of leaves is 8KB, and
the ratio of leaves is 2%, a total snapshot size is around 1.5MB. These recorded
snapshots are input to Algorithm 1.

We focus on the correlations of the usage count of leaves to solve the com-
mon block problem, and explain this point of our observation in Fig.1. Typical
database systems hold usage counts on each buffer cache content, mainly for
buffer management. That is, when buffer caches are full, buffer managers pop
some based on these usage counts. Therefore, every time contents are loaded

Buffer Cache De-duplication for Query Dispatch 357

Algorithm 1. Generating the Look-Up Table
Require: A series of snapshots S, the number of databases db num, and threshold th

of the global min-cut algorithm
Ensure: Classified key sets K1 · · ·Kdb num for query dispatch
1: C ← 0;
2: for i← 1 to db num do
3: Ki ← 0;
4: end for
5: Calculate a correlated matrix cr from S;
6: while cr has a positive element do
7: Get the positive pair of leaves, and update grouped sets C to merge the pair;
8: Invalidate the pair;
9: end while

10: if one relation has multiple indices then
11: Build graphs G by means of C;
12: loop
13: Try to classify C to db num, and calculate a maximum difference ratio z from

its average;
14: if z < th then
15: break;
16: end if
17: Split a graph with maximum size in G, and update C;
18: end loop
19: end if
20: while C has a element do
21: Get sets C′ with maximum size, and pick key sets K′in C′;
22: Get database ID t with its minimum amount;
23: Kt ← Kt ∩K′;
24: C ← C − C′;
25: end while

or referenced on buffer caches, counts are added up. Queries reference multiple
leaves on buffer caches, and then the counts of two or more leaves are incre-
mented simultaneously. From this observation, we assume that simultaneously-
referenced leaves are correlated. These correlated leaves are grouped, and as a
result the data areas that queries reference in common are linked.

In the case of Fig.1, query A accesses DATA6, DATA10, and DATA11 via
LEAF3 and LEAF4, and query B accesses DATA11, DATA14, and DATA15
via LEAF4 and LEAF6. The counts of LEAF3 and LEAF4 are correlated since
they are incremented simultaneously by query A, and LEAF3 and LEAF4 are
grouped. In a similar way, LEAF4 and LEAF6 are grouped. Finally, LEAF3,
LEAF4, and LEAF6 are placed in a same group. Fig.2 shows the actual cor-
relations of the leaves of index ’item pkey’ on relation ’ITEM’ and index ’au-
thor pkey’ on relation ’AUTHOR’ in DBT-1. The peaked pairs are expected to
be referenced simultaneously, and on closer examination, these leaves are ac-
cessed at a time in queries below.

358 T. Yamamuro et al.

Query(X)=SELECT * FROM ITEM, AUTHOR
WHERE i id = ’X’ AND i a id = a id;

Relation ’ITEM’ has i id as a primary key with ’item pkey’ and i a id as a foreign
key to relation ’AUTHOR’, and relation ’AUTHOR’ has a id as a primary key
with ’author pkey’. As long as queries are processed via these indices, they are
referenced simultaneously, and correlated.

The grouped correlated leaves above are apportioned among databases ac-
cording to the first-fit rule (line 20-25)[9]. This rule is a heuristic technique for
bin-packing problems, and packages are packed into bins whose amount of space
is minimum. In the case of our approach, packages are regarded as grouped
leaves, and capacities are regarded as the sum of usage counts. Finally, index
keys included in these leaves are transformed into the table for query dispatch.

Table 3. The average ratio of contents of the buffer cache

Elements Ratio (%)
NODE 0.02
LEAF 1.43
DATA 98.55

Fig. 1. Grouping based on the correlations between the leaves

Fig. 2. Practical correlation in DBT-1

Buffer Cache De-duplication for Query Dispatch 359

3.2 Exception: Multiple Indices in a Relation

One relation can include multiple indices. If queries access data via all these
indices at one time, these usage counts in leaves might be correlated. However,
if not, it is impossible to judge whether the leaves of multiple indices reference
the same block, or not. Therefore, we present exceptional operations to avoid
this case. We start with reference graphs G, where nodes are leaves grouped by
correlations, and these nodes are connected by edges if common pointed blocks
lie between them. If one relation has multiple indices (line 10) in Algorithm
1, it generates G by means of leaves groups (line 11), where G means disjoint
graph sets. Grouped leaves are classified as a trial (line 13), if difference ratios
from its averages exceed threshold th, largest graphs needs to be split by means
of the global min-cut algorithm (line 17). The global min-cut algorithm is a
technique to find the combinations of edges which have minimum cost. The well-
known contraction algorithm[10] has complexity of θ(N2ln(N)), where N is the
number of nodes. The edge cost in our technique is regarded as the number of
the common pointed blocks multiplied by the sum of usage counts. This process
is looped until the difference ratio falls below th, or none of the edges could be
cut (line 10-19).

4 Experimental

Our proposed technique was evaluated against DBT-1 which incorporated query
dispatch functions. Three types of queries were implemented: ORDERING MIX,
SHOPPING MIX, and BROWSING MIX. The default one is SHOPPING MIX,
where the ratio of updating queries and referencing queries is 1 to 4. This query
type is used in all experiments. In subsequent experiment, the number of items is
1, 000, 000, the number of customers is 2, 880, 000, eu/min is 800, and the average
think time is 7.2 (required settings in DBT-1). The threshold th in Algorithm 1
is set to 0.05, the number of snapshots g is 60 seconds, and execution time T is
3, 600 seconds.

The system configuration is that DBT-1 and each database run in individual
servers. The database is a PostgreSQL v9.0beta4 with 512MB of shared memories
and ’Streaming Replication’, newly incorporated for replication in this version.
All experiments were run on IBM x3550 servers with a dual-core 3.33 GHz
Intel Xeon processor, 16GB of RAM, and 50GB SAS drives. These servers are
connected by a L2 switch with 1000BASE-T in a rack.

The objectives of experiments are shown below.

– What parameters impact the duplication of buffer caches?
– How do working sets by queries change with the use of other techniques and

the number of databases?

4.1 Performance Evaluation

There are many parameters in databases, but we found that FILLFACTOR, the
ratio of tuples in one block, was a only indicator for the duplication. For example,

360 T. Yamamuro et al.

Fig. 3. The effect of de-duplication in buffer caches

Fig. 4. The difference in the usage count of blocks

if FILLFACTOR=80, 80% of one block is filled with tuples, and the remaining
space is reserved for updates. Thus database sizes increase as FILLFACTOR
decreases. Fig.3 shows that the duplication ratio of the round-robin, the tuple-
based, and the proposed technique for two databases with FILLFACTOR values
of 30 ,50, and 80. Database sizes are 14GB, 7GB, and 4GB respectively. This re-
sult indicated that the round-robin technique yielded constant ratios regardless
of conditions, while the tuple-based and proposed techniques allowed ratios to de-
crease as FILLFACTOR decreased. In particular, the proposed technique offered
much lower ratios than the tuple-based technique, and if FILLFACTOR=30,
the duplication was held down to around 12%. At FILLFACTOR=80, the three
techniques had basically same effects on the duplication.

Fig.4 plots the distribution of the average working sets of these techniques
with 30 of FILLFACTOR. As you can see, the proposed technique offers the
lower working set ratio than the others. Moreover, the working set of the round-
robin technique is exactly same as the set of a single database, and this result is
same as noted in the previous study[6], where the working set of this technique
hardly depends on the number of databases. Fig.5 shows that the working sets
decrease corresponding to the increase of the number of databases. Finally, the
average working sets of each database in eight databases were reduced by 40%
compared to a single database. As the result, the decrease of working sets leads
to de-duplication.

Buffer Cache De-duplication for Query Dispatch 361

Fig. 5. The scalablity of databases

5 Analysis

A discussion of the experiment’s results is shown below.

1. Why does the proposed technique keep the duplication low when the number
of tuples in a block (FILLFACTOR) is low?

2. Could the aforementioned condition of the proposed technique be applied to
realistic workloads? Why?

5.1 Modeling

An outline of duplication models is shown in Fig.6. We assume that query sets
Q is split evenly into two parts: QA and QB. The probability of the duplication
in a certain block is defined as Pmc. Given that the distribution of the number
of duplicated blocks is binominal, P (|Nloss|) is represented as follows.

P (|Nloss| = k) =
(

N
k

)
P k

mc(1 − Pmc)N−k (3)

Next, we consider probability Pmc. At first, we model query processing. Given
that one query references |WS| blocks out of |N | blocks in databases and refer-
ence probabilities are uniform and independent, a referenced probability Pref of
a certain block are define as:

Pref =
|WS|

N
(4)

Fig. 6. The duplication model

362 T. Yamamuro et al.

The queries in Q defined above are independent and are input back-to-back.
Thus the probabilistic distribution of the referenced number of queries related
to one block is as follows.

P (X = l) =
(|Q|

l

)
P l

ref (1 − Pref)|Q|−l, (5)

where X means a stochastic variable of the number of queries above. Therefore,
Pmc is represented as follows.

Pmc =
|Q|∑

m=2

P (X = m)p′m (6)

Given one block is referenced m times, p′m is the conditional probability of its
reference by both queries, QA and QB. Since p′m is varied so as to classify query
sets Q, it can not be simply modeled. However, if |WS| = 1, p′m is always
zero which prevents the duplication. Since |WS| monotonically increases such as
1, 2, 3, . . . , we can expect it to quickly and asymptotically approach 1 from our
observation. From this viewpoint, we assume p′m is only defined as a function of
|WS|, and (6) is rewritten as below.

Pmc =
|Q|∑

m=2

P (X = m)Q(|WS|) = P (X > 1)Q(|WS|) (7)

Fig.7 shows that the estimation of the duplication is based on three parameters,
Q, N , and WS. And Q(|WS|) is defined as below. Although the error of about
10% is observed at FILLFACTOR=50, this model can roughly estimate actual
duplication ratios.

Q(|WS|) = 1 − 1
|WS| (8)

In the model defined above, the higher the P (X > 1) is, the bigger the number,
Nloss, of duplicated blocks is. As P (X > 1) represents the referenced probability
that one block will be referenced at least twice, it is expected to increase with the
number of tuples in one block. As long as the duplication conforms to the defined
model, its interpretation is that if the number of tuples in one block decreases,
P (X > 1) is held down, and as a result of that the ratio of the duplication is
kept low.

5.2 Zipf-like Distribution

In the previous subsection, the condition of our technique is that P (X > 1) is
held down, where one block is referenced stochastically infrequently by at least
two queries such that a single tuple size is large, or one block size is small; that
is, the number of tuples in one block is low. Although one of these conditions
is to make FILLFACTOR smaller, it is unrealistic because it increases database

Buffer Cache De-duplication for Query Dispatch 363

Fig. 7. Difference between estimated and actual values

sizes. Therefore, we will investigate different conditions for P (X > 1) to analyze
practical workloads without altering FILLFACTOR.

It is reported that workloads in the Web follow the zipf-like distribution[11],
where the relative probability of one request for i’th most popular pages is pro-
portional to 1

iα , with α taking some values ranging from 0.64 to 0.83. Thus tuples
in databases are expected to be referenced in accordance with this characteris-
tics. From this observation, as long as frequent accessed tuples are scattered
and located over mutliple blocks, frequently-referenced tuples and infrequently-
referenced tuples are expected to be mixed up in each block. Given that in-
frequently accessed tuples in one block are regarded as nonexistent tuples, this
situation is expected to be similar that the number of tuples packed in one block.

The evaluation of this hypothesis is shown in Fig.8, where we run the evalua-
tion with the zipf-like distribution applied to DBT-1 with 80% of FILLFACTOR.
As you can see, if α = 0.83, the referenced data of our technique are relatively
held down compared to the tuple-based one. Table 4 shows that the hit ratios
of buffer caches are evaluated with these conditions. We found that the hit ratio
of the proposed technique is higher than one of the tuple-based technique with
α = 0.83. What it comes down to is that given that tuples is partially accessed
according to the zipf-like distribution, our technique is expected to be effective
for de-duplication.

Fig. 8. A variance of working sets with the zipf-like distribution

364 T. Yamamuro et al.

Table 4. A comparison of the average hit ratios under the varing conditions

Conditions Hit Ratio (%)
tuple-based, and zipf-like (α = 0.64) 58.12

proposed, and zipf-like (α = 0.64) 61.26
tuple-based, and zipf-like (α = 0.83) 59.43

proposed, and zipf-like (α = 0.83) 65.14

6 Related Work

The previous studies on de-duplication in replicated databases fall into two
groups as follows.

– Cache cooperation between databases by means of global synchronism.
– Dispatchers transfer queries to databases considering each buffer cache in

databases.

The former includes Oracle RAC (Real Application Clusters), and IBM DB2
pureScale8 as the well-known business products, and many techniques have been
proposed[12,13,14]. These techniques need to implement a look-up table which
searches where required blocks are on buffer caches in a database cluster. If
required data are not in local buffer caches, databases check whether the data is
held by one of the other buffer caches based on the look-up table. This approach
avoids the duplication efficiently because of direct management of all buffer
caches in a cluster. However, the look-up table is a shared resource, and must be
synchronized as they update or reference it. This synchronization could become a
bottleneck. From the standpoint of the implementation, existing databases must
be extensively modified because buffer cache configurations are totally altered to
permit inter-working with the other databases and the look-up table. The latter
has two approach[5,6] as explained in Section 1: the query-based and the relation-
based. Aside from the explained query-based technique (Section 1), there was
the study that examined the size of returned values to estimate working sets of
queries[15]. These approache can dispatch queries without synchronization based
on predefined rules. However, the relation-based technique has little flexibilities
in terms of workloads as explained in Section 1, and parameters such as SQL
statements and the size of returned values are not good one estimating referenced
data in databases.

This paper presents a way of realizing de-duplication in which dispatchers
use the look-up table built from internal information, that is, the index access
patterns; it overcomes the weaknesses of the previous approaches: needs for syn-
chronization, poor flexibilities, and low efficiencies. Since the proposed technique
can be implemented as middleware, existing databases require very little modi-
fications. In practice, appended codes for PostgreSQL (to record snapshots) are
around 50 lines.

Finally, Our technique is orthogonal to dynamic load balancing techniques.
We assume query sets Q are input statically and periodically. However, actual

Buffer Cache De-duplication for Query Dispatch 365

workloads are dynamically changed, and therefore query dispatchers must han-
dle these workloads to balance loads in addition to our technique. Several studies
have examined about load balancing based on the usage of CPU and I/O, and
outstanding connections to databases[6,16,17], and cooperation with these tech-
niques is a future work.

7 Conclusion

In this paper, we presented a state-of-the-art de-duplication technique of buffer
caches. Our approach records the usage counts of index leaves as snapshots from
which the correlations of leaves are calculated. Common blocks between queries
are estimated and identified through the snapshots, and it builds a look-up table
for query dispatch. We constructed its prototype based on our technique, and
evaluated it against DBT-1. We found that as long as a single block is referenced
stochastically infrequently by at least two queries, our technique could eliminate
the duplication. More specifically, these conditions are the following.

– A size of a single tuple is relatively-large to one block size; that is, a single
tuple size is large, or one block size is small.

– Working sets of queries is small, or workloads follow the zipf-like distribution.

References

1. Ravi, J., et al.: A survey on dynamic Web content generation and delivery tech-
niques. Journal of Network and Computer Applications 32(5), 943–960 (2009)

2. Daudjee, K., Salem, K.: Lazy Database Replication with Snapshot Isolation. In:
Proceedings of 32nd International Conference on Very Large Data Bases (2006)

3. Mishima, T., et al.: Pangea: An Eager Database Replication Middleware guarantee-
ing Snapshot Isolation without Modification of Database Servers. In: Proceedings
of 35nd International Conference on Very Large Data Bases (2009)

4. Krikellas, K., et al.: Strongly consistent replication for a bargain. In: Proceedings
of the 2008 IEEE 24th International Conference on Data Engineering (2010)

5. Pai, V.S., et al.: Locality-Aware Request Distribution in Cluster-based Network
Servers. In: Proceedings of the 8th ACM Conference on Architectural Support for
Programming Languages and Operating Systems (1998)

6. Elnikety, S., et al.: Tashkent+: Memory-Aware Load Balancing and Update Fil-
tering in Replicated Database. SIGOPS Oper. Syst. Rev. 41(3), 399–412 (2007)

7. Transaction Processing Performance Council, http://www.tpc.org/
8. Sivasubramanian, S., et al.: Autonomic data placement strategies for update-

intensive Web applications. In: Proceedings of the International Workshop on Ad-
vanced Architectures and Algorithms for Internet Delivery and Applications (2005)

9. Garey, M.R., et al.: Resource constrained scheduling as generalized bin packing. J.
Combinatrial Teory, Ser. A, 257–298 (1976)

10. David, R.: Karger.: Global min-cuts in RNC, and other ramifications of a simple
min-out algorithm. In: Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms (1993)

http://www.tpc.org/

366 T. Yamamuro et al.

11. Breslau, L., et al.: Web caching and zipf-like distributions: evidence and im-
plications. In: Proceedings of IEEE Conference on Computer Communications
(INFOCOM 1999), pp. 126–134 (1999)

12. Levy, H., et al.: Implementing Cooperative Prefetching and Caching in a Globally-
Managed Memory System. In: Proceedings of the ACM SIGMETRICS 1998 Con-
ference (1998)

13. Feeley, M.J., et al.: Implementing global memory management in a workstation
cluster. In: Proceedings of the Fifteenth ACM symposium on Operating System
Principles (1995)

14. Markatos, E.P., Dramitinos, G.: Implementation of a Reliable Remote Memory
Pager. In: Proc. 1996 Usenix Technical Conf., pp. 177–190 (1996)

15. Cherkasova, L., Ponnekanti, S.R.: Optimizing a ’Content-Aware’ Load Balancing
Strategy for Shared Web Hosting Service. In: Proceedings of the 8th International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-
nication System (2000)

16. Qin, X., et al.: Dynamic load balancing for I/O-intensive applications on clusters.
ACM Transactions on Storage (TOS) 5(4), No.9 (2009)

17. Elnikety, S., et al.: A Method for Transparent Admission Control and Request
Scheduling in E-Commerce Web Sites. In: The Proceedings of the 13th Interna-
tional World Wide Web Conference, WWW 2004 (2004)

Indexing for Vector Projections

Sean Chester, Alex Thomo, S. Venkatesh, and Sue Whitesides

University of Victoria, P.O. BOX 1700 STN CSC, Victoria, BC, Canada
{schester,sue}@uvic.ca, {thomo,venkat}@cs.uvic.ca

Abstract. The ability to extract the most relevant information from a
dataset is paramount when the dataset is large. For data arising from a
numeric domain, a pervasive means of modelling the data is to represent
it in the form of vectors. This enables a range of geometric techniques;
this paper introduces projection as a natural and powerful means of scor-
ing the relevancy of vectors. As yet, there are no effective indexing tech-
niques for quickly retrieving those vectors in a dataset that have large
projections onto a query vector. We address that gap by introducing the
first indexing algorithms for vectors of arbitrary dimension, producing
indices with strong sub-linear and output-sensitive worst-case query cost
and linear data structure size guarantees in the I/O cost model. We im-
prove this query cost markedly for the special case of two dimensions.
The derivation of these algorithms results from the novel geometric in-
sight that is presented in this paper, the concept of a data vector’s cap.

1 Introduction

The conceptual simplicity and expressiveness of vectors makes them widely ap-
plicable to modelling a diverse set of problems and domains, especially from
business, the natural sciences, and engineering. A natural operation to apply
to vectors is projection, and in this paper we study how to support efficiently
identifying from a large database of vectors those which have sufficiently large
projections in the direction of a query.

As an example scenario in which this is appropriate, consider a credit card
company with a database of monthly card vectors, as in Table 1.1 Analysts
hired to detect suspicious credit card vectors could provide query vectors and
thresholds so that monthly card vectors with sufficiently large projections onto
those queries could be identified as suspicious. One analyst, for example, might
be interested in large or unusual expenses that are perhaps outside the area of
residence (a query qA0 = 〈−.5, 1〉), whereas another might be simply interested
in high-volume, low-cost purchasing (a query qA1 = 〈0,−1, 〉). The monthly card
descriptions best matching the first analyst’s preferences are those whose vectors
have large projections in the direction of qA0 (tuples a and b in Table 1). The
threshold is important, because the analysts have no idea beforehand how many
vectors will be suspicious. For example, none of the tuples match qA1 well.

1 For now, disregard τ and the last column, which will become clear later.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 367–376, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

368 S. Chester et al.

Table 1. A small example relation and a vector representation of each tuple. The
second attribute is normalised to [1,5] and the first attribute is scaled to match the
second attribute’s domain by the function f(x) = 4 ∗ (max− x)/(max−min) + 1.

id % trans inside city % trans above $ 1000 scaled vector dual point
a 25 .4 〈1, 4〉 ā∗ = (−.25, .25τ)
b 15 .5 〈3, 5〉 b̄

∗ = (−.60, .20τ)
c 5 .1 〈5, 1〉 c̄∗ = (−5, τ)

Supporting these applications can be costly if the set of vectors is large, since
the naive approach requires a sequential scan. Ideally, in such circumstances,
a database index could provide a more efficient (i.e., sub-linear) mechanism to
retrieve those vectors that project strongly onto a query vector. At this point,
no research directly addresses this need, so the full usefulness of vector repre-
sentations (be it for projections or other algebraic operations) is constrained by
the dirth of efficient (i.e., sub-linear) techniques for handling them. We discuss
related work in more detail at the end of this paper (Section 5).

It is understandable that vectors are not efficiently indexed for projections,
because creating such an index is a difficult problem. Indexing vectors in their
natural form is not useful without apriori knowledge of the query vector. The
difficulty is that an index organises the vectors so that similar vectors are near
each other (logically in the case of secondary indices and physically in the case
of primary indices). But the similarity of vectors to one another does not nec-
essarily imply the similarity of their projections onto arbitrary query vectors.
As an example, consider two arbitrary vectors u and v. If a user issues a query
orthogonal to u + v, then the vectors will be scored quite differently from each
other. On the other hand, if the issued query is u + v instead, then the vec-
tors will have quite similar scores. Consequently, efforts to pre-organise the vec-
tors can be quite substantially thwarted depending on user preferences. (See
Figure 1.)

Fig. 1. An illustration in 2d of the difficulty in preprocessing vector projection. Notice
that the projections of u and v are very similar in a direction like u+v, but substantially
different onto a vector orthogonal to u + v. Without knowing which query directions
are likely, it is difficult to predict whether the projections of u and v will be similar.

Indexing for Vector Projections 369

Our Results. In this paper we give the first indexing solutions to this vector
indexing problem. Specifically, we:

– Introduce the query vector indexing problem and cast it into a geometry
context in order to employ transformations and the novel geometric insight
of a vector’s cap, crucial to solving the problem (Sections 2 and 3).

– Using a duality transform, produce an algorithm for any dimension d ≥ 2 to
utilise an O(ns/b) simplicial partition tree data structure [1] to respond to
vector projection queries, where s/b reflects the number of blocks occupied by
each vector. The query cost of this index is O(n1−1/d+ε + ts/b) I/O’s, where
ε is a small constant and ts/b reflects the size of the output (Section 4.1).

– Demonstrate how additional insight in the primal space for the two dimen-
sional case can produce a yet more efficient index based on an Interval
Tree [2], querying in O(lg n + ts/b) rather than O(

√
n + ts/b) (Section 4.2).

– Prove geometrically how translating a dual query hyperplane along the xd

axis, a constant time operation, translates the entire dataset– effectively
altering the statically defined threshold τ to any new, dynamic threshold.
(Section 4.3).

2 Preliminaries

In this paper, we study the problem of efficiently retrieving from a set of vectors
those that have a sufficiently large projection onto an arbitrary unit vector.
Throughout the paper, we adopt the convention that boldface symbols denote
vectors, that the magnitude of a vector v is denoted v, and that v̂ is the unit
vector in the direction of v. First recall that the projection of a vector v onto
another vector u is the component of v in the direction of u. More formally:

Definition 1. The projection πu(v) of a vector v onto another vector u is the
component of v in the direction of u, given by

(
v·u
u

)
u.

The objective in this paper is to respond quickly to vector projection queries.
Formally, these queries are defined as follows.

Definition 2. Given a set D of vectors v ∈ IRd and a threshold τ ∈ IR+, the
result of a vector projection query for query vector q ∈ IRd is the set {v ∈ D :
πq(v) ≥ τ}.
Later in this paper we apply a duality transform in order to produce an effi-
cient indexing scheme to resolve these queries in higher dimensions. A duality
transform replaces points (hyperplanes) with hyperplanes (points) in the same-
dimensional Euclidean space, preserving both incidence and order. There are
many such transforms, so to be specific, we use the common example defined
below and illustrated in Figure 2:

Definition 3. An initial point p = (a1, . . . , ad) or hyperplane h = (bdxd =
b1x1 + . . . + bd−1xd−1 + c) is referred to as “primal.” The duality transform
transforms p into its “dual” hyperplane p∗ = (xd = ad − a1x1 − . . .− ad−1xd−1)
and transforms h into its dual point h∗ = (b1

bd
, . . . ,

bd−1
bd

, c
bd

).

370 S. Chester et al.

Fig. 2. An example of the duality transform we use in this paper. The point (1,2)
becomes the line (y=2-x), the point (3,1) becomes the line (y=1-3x) and the line
(y=x-1) becomes the point (1,-1). Notice how order is preserved with respect to the
origin.

A critical property of duality transforms is that if a point p lies on the opposite
side of a hyperplane h as the origin (i.e., p is above h), then h∗ is above p∗.

Additionally, halfspace range searchs (or halfspace range reporting) are critical
to this paper. Our second transformation yields a halfspace range search. Given
a set of points and a query halfspace, the response to a halfspace range search
is the set of points in the search space. Formally:

Definition 4. Given a set D of points in IRd and a half-hyperplane h, the result
of a halfspace range search is the set {p ∈ D : p ∈ h}.

3 Caps, Baseplanes, and Range Searching

In this section we detail the geometric techniques we employ in order to setup the
use of the indexing data structures described in Section 4. We do this in a series
of two techniques. First, we transform the vectors into caps. We then transform
the caps into dual points using the duality transform. The two transformations
can be combined into one O(d)-time step per vector.

3.1 The Cap of a Vector

There are two key insights for designing our index. Firstly, recall from Defini-
tion 1 that the size of a projection πq(v) is independent of the magnitude of q.
Hence πq(v) = πq̂(v). That is to say, all queries we can treat as (or scale to)
unit length. This simplifies calculations and enables us to represent the space of
all possible d-dimensional queries as the unit (d-1)-sphere.2

The second insight is that for a given data vector v, a representation of the
set of queries for which it should be returned is computable. As the angular
separation of the query direction from v increases, the size of the projection of
2 Throughout the paper, we refer to the sphere in d dimensions as the (d-1)-sphere.

For example, the outer surface of the Earth is (approximately) a 2-sphere.

Indexing for Vector Projections 371

Fig. 3. The caps and baseplanes corresponding to the scaled vectors from Table 1 for
τ = 4. The cap of b (denoted b

�

) spans the gray, blue, and red arcs, from b1 to b2. A
query on the red arc, for example, is in a� and b

�

, whereas a query on the turquoise arc
is only in c�. The interval tree in 2d can be constructed by decomposing the circle into
arc intervals [c1, b1], [b1, a1], [a1, c2], etc., as illustrated by the coloured arcs. These arc
intervals can be readily described by angles, as in the case of card c, which is delimited
by the angles of −.150π and .276π from the positive x-axis.

v onto the query decreases monotonically. Therefore, the set is contiguous in
the sense that it is the portion of the unit sphere contained within a particular
halfspace. We call the cap of a vector v and denote it v�.

The halfspace that defines v� is delimited by a hyperplane that we call the
baseplane of v and denote v̄. The baseplane is defined to be the one passing
through the sphere at points given by query vectors onto which the projection
of v is exactly τ . It is clear that v̄ is orthogonal to v: v/v is a radius of the unit
sphere which bisects the chord drawn by v̄. The caps and baseplanes of the card
vectors from Table 1 are illustrated in Figure 3.

Conveniently, the specifications of a cap can be computed quite effectively,
independent of the dimension, because the cap is symmetric about the vector.
Thus, we can make deductions by observing a planar cross-section of the unit
sphere. The next lemma gives these specifications (see Figure 4).

Lemma 1. The distance from the origin of the unit sphere to the base of the
query cap of a vector v = 〈v1, . . . , vd〉 is τ/v, the radius of the query cap is√

(1 − τ/v)(1 + τ/v), and the equation of the plane defining the cap is v̄ =
(v1x1 + . . . + vdxd − τ = 0).

Theorem 1. Given a set of vectors D, a threshold τ , and a query vector q,
πq(v) ≥ τ ⇔ p ∈ v�.

372 S. Chester et al.

Fig. 4. An axis-parallel planar cross section of a query space, passing through the
origin. The inner arc depicts all possible queries. The outer arc depicts vectors of
length τ . The query space is the portion of the unit sphere bounded by the line (ā)
orthogonal to a and at a distance of τ

a
from the origin. The projection of a onto any

vector on this arc is of size at least τ .

3.2 Venturing into the Dual Space

Given the preceding discussion, it is clear that a dataset of n vectors can be
interpreted as n caps or, under the assumption that queries must be normalised,
equivalently as n baseplanes. A query q can be regarded as a point pq. Since
a normalised query will always produce a point on the unit sphere, checking
whether pq lies above a baseplane v̄ is sufficient to determine if q is in v�. So,
the problem is to determine the set of baseplanes above which pq lies. It is to
this problem that we will apply a duality transform.

Recall from our earlier introduction of a duality transform that it inverts
“aboveness.” Thus, if one point p is above a particular hyperplane h, then h’s
dual point h∗ will be above the point’s dual hyperplane p∗.

We convert each cap into a point by applying the duality transform to its
baseplane, thus obtaining a set of n dual points. The position vector of any
query can be transformed into a hyperplane. This transforms the problem into
a halfspace range search, as described in Theorem 2.

Theorem 2. Let Q denote a set of vector baseplanes and let p > h denote that
point p lies on the opposite side of the hyperplane h as does the origin (i.e., is
above h). Then, for a given query q, {h ∈ Q : q > h} = {h ∈ Q : h∗ > q∗}.

In other words, by applying a duality transform, the problem of determining
in which caps a particular query lies becomes a case of halfspace range searching.

Indexing for Vector Projections 373

Using the particular duality transform given earlier, we transform the baseplane
v̄ (namely xd = − v1

vd
x1 − . . . − vd−1

vd
xd + τ

v2
d
(τ + vd − 1)) into the dual point

v̄∗ = (− v1
vd

, . . . ,− vd−1
vd

, τ
v2

d
(τ + vd − 1)).

4 An Index for Vector Projections

The techniques described above allow us to reformulate the problem in such a
way as to take advantage of existing efficient external memory data structures.
In particular, we show in Section 4.1 how a simplicial partition tree can resolve
queries with O(n1−1/d+ε+ts/b) I/O’s, for a dataset of size n in d dimensions and
a small constant ε, with t output vectors each occupying s bytes and a blocksize
of b bytes per block of I/O. The value ts/b reflects the number of blocks of
output. The data structure requires linear O(ns/b) space.

Then, we show how the use of an interval tree in two dimensions can improve
the query cost from O(

√
n+ ts/b) to O(lg n+ ts/b), still in linear O(ns/b) space,

in Section 4.2.

4.1 An Index for Arbitrary Dimension

By means of the two transformations described in Section 3, the vector pro-
jection problem can be reformulated as a case of halfspace range searching.
The purpose of this is to take advantage of the extensive research that has al-
ready been conducted on the halfspace range searching problem. The external
memory simplicial partition tree data structure given by Agarwal et al. [1] re-
quires linear O(ns/b) space and can answer halfspace range search queries in
O(n1−1/d+ε + ts/b) I/O’s.

The series of transformations from a vector to a cap to a dual point can
be arithmetically combined into one computation. Thus, as a result of Theo-
rems 1 and 2, we have Algorithm 1 for preprocessing a dataset D into a simplicial
partition tree index in order to efficiently respond to vector projection queries.

Algorithm 1
1. Create an empty point set S
2. For each vector v = 〈a1, . . . ad〉 in the dataset:
3. Compute the point h∗

v =
(
− a1

ad
, . . . ,−ad−1

ad
, τ

ad

)
4. Add h∗

v to S
5. Index the set S in the external memory simplicial partition tree

Then, for each query q, one can compute the dual hyperplane q∗ as (xd =
qd − q1x1 − . . . − qd−1xd−1) and execute a halfspace range search. Since the
output is unordered, a subsequent O(ts/b) postprocessing step on the query
results can explicitly compute the ranks. The last column of Table 1 describes
the dual points produced from each original card tuple.

374 S. Chester et al.

4.2 A Logarithmic Query-Time Index for Two Dimensions

In two dimensions, we can do better than O(
√

n + ts/b) if we keep the problem
in the primal space (i.e., do not apply the technique of Section 3.2). This is
because the unit sphere in two dimensions is a one-dimensional curve on which
any position can be uniquely identified by an angle with respect to a reference
axis. A cap, the intersection of the unit circle with a halfplane is simply an
arc that can be readily represented by an angular interval, a start angle to
an endpoint angle. Thus, assessing on which arcs a given query point lies is
effectively the interval stabbing problem.

The interval stabbing problem is optimally supported in external memory by
the interval tree of Arge and Vitter [2]. This structure uses linear O(ns/b) space,
and can respond to queries with optimal O(lg n + ts/b) I/O’s.

We arbitrarily decide to use the positive x-axis as a reference for the angles. Let
θv denote the angle a vector v makes with the positive x-axis, arccos(ax/a)+cπ/2,
for c ∈ {0, 1, 2, 3} depending on the quadrant. Then, the angular interval of the
arc can be computed as θv±arccos τ

v (refer to the right angle triangle in Figure 4).
For the example card database of Table 1, the arc intervals for τ = 4 are

illustrated in Figure 3. The vector corresponding to card c, for example, has an
interval of [c1, c2] = arctan .2 ± arccos 4√

26
= [−.150π, .276π].

4.3 Dynamic Thresholds

Until this point, we have assumed that the user is interested in a threshold query
in which the threshold is set statically by an administrator. Here we discuss how
the orthogonality of the data vector to the baseplane of its cap allows us to
efficiently transform the query to temporarily set a new, dynamic threshold. In
fact, the threshold τ can be regarded as an arbitrary seed to initialise the data
structure.

Recall from Algorithm 1 that each vector v is transformed into a point h∗
v =(

− a1
ad

, . . . ,−ad−1
ad

, τ
ad

)
. Consider what happens if v is scaled to cv: it is trans-

formed to the new point h∗
cv =

(
− ca1

cad
, . . . ,− cad−1

cad
, τ

cad
) = (− a1

ad
, . . . ,−ad−1

ad
, τ
cad

)
.

The direction of the vector is captured by the first d-1 coordinates of the dual
point and its magnitude is described by the last coordinate. This is intuitive
since the baseplanes of the caps of v and cv are parallel to each other. The suf-
ficiency of the first d-1 coordinates in capturing the direction of the baseplane
results from the fact that the nullspace of a line only spans d-1 dimensions and
it is from translating the nullspace of the v that v̄ is derived.

We exploit this fact as follows. Recall that a query q will be transformed into
a dual halfspace q∗ = (xd = qd − q1x1 − . . . − qd−1xd−1). This is intentionally
expressed in point-intercept form: the value of qd shifts the query up or down the
xd axis. Given that the relationship between the magnitude of a vector v and
the threshold τ is expressed along the xd axis, such a shift effectively changes
the threshold. If the user wishes to instead use a threshold of τ ′, one need only
adjust q∗ to

(
xd = qdτ ′

τ − q1x1 − . . . − qd−1xd−1

)
.

Indexing for Vector Projections 375

Theorem 3. For a vector projection query index initialised with a threshold τ ,
the response to a query vector q = 〈q1, . . . , qd〉 for another threshold τ ′ is the
same as the response to query vector 〈q1, . . . , qd−1, qdτ

′/τ〉 with threshold τ .3

5 Related Work

The closest problem to the one we study in this paper is that of providing indices
for linear optimisation queries. A linear optimisation query, if one interprets tu-
ples as vectors, ranks them against a query vector by dot product. The first result
was due to Matoušek [10], who demonstrated that the top result for such a query is
always on the convex hull of the dataset. Chang et al. [6] extended this idea to pro-
duce an algorithm to produce the top k responses based on the observation that
since the top result is on the convex hull, the top k results must be in the first k
convex layers. A different approach was given by Agarwal et al. [1], in which, like
us, the authors employed a duality transform technique to arrive at a case of half-
space range searching. The similarity of the solutions results from our observation
in Section 3.1 that πq(v) = πq̂(v) = v · q̂. Two other particularly interesting pa-
pers have addressed linear optimisation queries. Marian et al. [7] consider records
that are distributed across different sources, as in a search engine. These ideas
could be quite relevant to extending our work to a distributed database setting.
Tsaparas et al. [11] use vector projections to create an index for very general top
k queries, but only for problems in the plane.

A technique important to our approach is the use of a duality transform,
which allows us to cast the problem into an instance of halfspace range searching.
For more information about duality transforms we refer to the Computational
Geometry text of de Berg et al. [4] and to the survey by Matoušek [9], both which
demonstrate their use nicely and repeatedly. Range searching is a canonical
problem in Computational Geometry, of which halfspace range searching is a
specific, well-studied case. In higher dimensions, the best well-known algorithm
is the one due to Matoušek [8]. A similar algorithm with improved O(nlg n)
preprocessing time was given this year by Chan [5]. For a more general weighted
case of the problem, Arya et al. [3] have provided tight lower bounds to match
the upper bounds of Matoušek. The external memory simplicial partition tree
of Agrawal et al. [1] is an adaptation for disk of Matoušek’s data structure.

The interval tree data structure mentioned for our logarithmic-cost two di-
mensional index is from Arge and Vitter [2].

6 Conclusion

In this paper we have introduced the problem of efficiently reporting vectors
with large projections in a query direction and the concept of a vector’s cap,
the component of the unit d-sphere bounded by a hyperplane orthogonal to the
vector and at a distance from the origin proportionate to the vector’s magnitude.

3 Recall that the thresholds are from IR+.

376 S. Chester et al.

Semantically, the cap of a vector is a representation of the set of exactly those
queries for which the vector is part of the solution set.

Using this insight led to a general dimension index, based on previous liter-
ature and requiring O(n1−1/d+ε + ts/b) I/O blocks to respond to an arbitrary
query. We also gave an interval tree-based index for the particular case of two
dimensions, which led to an improvement to O(lg n + ts/b) blocks of I/O per
query. Finally, we described how our indices readily support adaptive thresholds.

It is clear that there is much opportunity to extend this work given the novelty
of the problem. In particular, our future work will focus on aiding the query
engine by estimating the size of a result set for a given query. Additionally,
we intend to experimentally validate the relative efficiency of the techniques
described, thus interpreting their performance in practice. It would also be very
interesting to determine asymptotic lower bounds on the I/O cost for queries on
an O(ns/b) data structure.

References

1. Agarwal, P.K., Arge, L., Erickson, J., Franciosa, P.G., Vitter, J.S.: Efficient search-
ing with linear constraints. Journal of Computer and System Sciences 61, 194–216
(2000)

2. Arge, L., Vitter, J.S.: Optimal external memory interval management. SIAM Jour-
nal of Computing 32(6), 1488–1508 (2003)

3. Arya, S., Mount, D.M., Xia, J.: Tight lower bounds for halfspace range searching.
In: Proceedings of the 26th Annual Symposium on Computational Geometry, pp.
29–37. ACM, New York (2010)

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

5. Chan, T.M.: Optimal partition trees. In: Proceedings of the 26th Annual Sympo-
sium on Computational Geometry. ACM, New York (2010)

6. Chang, Y.C., Bergman, L., Castelli, V., Li, C.S., Lo, M.L., Smith, J.R.: The onion
technique: indexing for linear optimization queries. In: Proceedings of the 26th SIG-
MOD International Conference on Management of Data. ACM, New York (2000)

7. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible
databases. ACM Transactions on Database Systems 29, 319–362 (2004)

8. Matoušek, J.: Reporting points in halfspaces. Computational Geometry: Theory
and Applications 2(3), 169–186 (1992)

9. Matoušek, J.: Geometric range searching. ACM Computing Surveys 26(4), 422–461
(1994)

10. Matoušek, J., Schwarzkopf, O.: Linear optimization queries. In: Proceedings of the
8th Annual Symposium on Computational Geometry. ACM, New York (1992)

11. Tsaparas, P., Palpanas, T., Kotidis, Y., Koudas, N., Srivastava, D.: Ranked join
indices. In: Proceedings of the 19th International Conference on Data Engineering,
pp. 277–288. IEEE, Los Alamitos (2003)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 377–387, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Assessment of Cardiovascular Disease Risk Prediction
Models: Evaluation Methods

Richi Nayak and Ellen Pitt

Computer Science Discipline, Queensland University of Technology
Brisbane, QLD, Australia
r.nayak@qut.edu.au

Abstract. This paper uses a real world anaesthesia time-series monitoring data
in the prediction of cardiovascular disease risk in a manner similar to exercise
electrocardiography. Models derived using the entire anaesthesia population
and subgroups based on pre-anaesthesia likelihood of complications are com-
pared in an attempt to ascertain which model performance measures are best
suited to populations with differing pre-test probability of disease. Misclassifi-
cation rate (MR) as a measure of prediction model performance was compared
with Kappa statistic, sensitivity, specificity, positive and negative predictive
values and area under the receiver operating characteristic curve (AUC). In this
medical application of data mining, MR is shown to be dependent on the preva-
lence of disease within the population studied but AUC and Kappa statistic are
shown to be independent of disease prevalence.

Keywords: Cardiovascular risk, prediction, misclassification rate, accuracy,
area under receiver operating characteristic curve (AUC), Kappa statistic.

1 Introduction

Assessment of cardiovascular risk in specific patients and in the general population is
an important component of medical care. Such importance is related to the relatively
high incidence and prevalence of disease and the high disease mortality and morbidity
[1]. General cardiology research has considered various methods for the prediction of
cardiovascular disease risk [2]. One of them is exercise electrocardiography (exECG).
ECG test performance has been improved by consideration of non ECG related para-
meters (exercise tolerance, heart rate (HR) variability, HR recovery) as well as patient
risk factor status (hypertension (HT), hyper-lipidaemias, smoking, diabetes and obesi-
ty) [3]. Of importance in interpretation of exECG benefit is the false positive rate
which is associated with potential unnecessary further investigation as well as addi-
tional clinical risk and cost.

Data mining methods are increasingly being applied to time series data and in the
medical domain [4]. Recent examples of this include the use of intensive care monitor-
ing data in the prediction of multi-organs system failure [5], ICU survival [6] and use of
laboratory data in the prediction of progression to renal failure in diabetic nephropathy
[7]. The most appropriate methods for pre-processing and prediction modelling are

378 R. Nayak and E. Pitt

considered to be data dependent and examples of medical domain application have used
decision tree (DT), artificial neural networks (ANN) and logistic regression (LR) pre-
diction methods. Issues of dealing with large time series data and unbalanced data have
been addressed. The importance of feature selection has been noted in these studies as
wrapper methods have been shown to perform poorly [8]. Decision tree (DT) methods
have been shown to be more comprehensible and variables used have domain relevance.
The accuracy of DT is somewhat lower than that for models derived using Naive Bayes
(NB) and Tree Augmented Naive Bayes (TAN) [5].

Several measures for the evaluation of prediction models exist and these include
misclassification rate (MR), accuracy, mean absolute error (MAE), root mean squared
error (RMSE), computational complexity, comprehensibility of the generated classifi-
er together with sensitivity, specificity, positive and negative predictive values and the
area under the receiver operating characteristic curves (AUC) and Kappa statistic
[10]. In general data mining applications, MR, MAE and RMSE are considered stan-
dard measures for assessment of model performance. Measures of performance used
in medical domain include sensitivity, specificity, positive and negative predictive
value as well as the area under the receiver operating characteristic curve [9, 10].
These measures are based on the number of true positives (TP), true negatives (TN),
false positives (FN) and false negatives (FN) and are defined in Table 1.

Table 1. Evaluation measures used in prediction model assessment

Measure Definition

Accuracy Percentage of correctly classified instances (TP+TN/ (TP+FP+TN+FN)) *
100

MR Percentage of instances misclassified 1- Accuracy
Sensitivity
/ Recall

Ratio of class instances predicted by rule or
DT (Proportion of those with the disease
and a positive test)

TP/TP+FN

Specificity Ratio of class instances not satisfying a
rule and not being n the class. (Proportion
of those without disease who have a
negative test result)

TN/FP+TN

Positive
predictive
value

Proportion of instances with a positive
result and the disease or disease risk

TP/TP+FP

Negative
predictive
value

Proportion of those without the disease or
disease risk who do not satisfy the rule or
have a negative test

TN/TN+FN

Area
under
ROC
curve

Represents the relationship between
sensitivity and specificity such that higher
AUC represent the best balance between
the ability of a rule to correctly identify
positive and negative cases

Area under the curve plotting TP
against FP

Kappa
statistic

Measure which allows for improvement in
accuracy over that which would be
obtained by chance alone. Difference
between observed and expected agreement
as expressed as a fraction of maximum
difference

I o = TP+TN/ TP+TN+FP+FN
Ie=((TN+FN)(TN+FP)+(TP+FP)(T
P+FN))/n2 where n =
TP+TN+FP+FN

o - Ie / 1- Ie

 Assessment of Cardiovascular Disease Risk Prediction Models: Evaluation Methods 379

The presence of unbalanced data is an issue in assessing the performance of model-
ling methods [7]. Classifier performance can be biased. This issue can be addressed
using pre-processing methods that under-sample the majority class such that classes
have an equal or otherwise nominated class distribution. The kappa statistic also takes
into account any bias related to class distribution [12]. The maximum value for Kappa
is 1 representing perfect agreement while Kappa values of 0.21-0.40 and those of
0.41-0.6 represent fair and moderate agreement respectively. Values between 0.61
and 0.80 show substantial agreement [12].

In anaesthesia practice, data collected is the same as that assessed during exECG
and, if shown to be useful in predicting cardiovascular risk, is available at no addi-
tional cost or procedural risk. Therefore, the goal of this study is to assess whether the
techniques of data mining can develop simple models for the prediction of cardiovas-
cular risk and to determine which methods of model performance are best suited to
this area of the medical domain.

2 The Proposed Cardiovascular Risk Prediction Method

This anaesthesia time series data represents 5 months (January to May, 2007) of non-
cardiac anaesthesia procedures at a tertiary care hospital. Heart rate and ST segment
level values were available for most cases in the dataset and were chosen as input
variables. Systolic blood pressure was available for those cases in which invasive
haemodynamic monitoring (arterial line) was used. Cases were grouped according to
the intensity of monitoring (Table 2). For prediction of cardiovascular disease, the
target variable chosen was that of a diagnosis of a cardiovascular related disease made
within a 10 year period (1999 to 2008). Risk factor variables were extracted from the
hospital health record database and included a history of cigarette smoking (both past
and current), lipid disorder, hypertension, diabetes mellitus and obesity. These were
considered together with age and gender from the demographic table of the anaesthet-
ic information management (AIM) database.

2.1 Pre-processing and Datasets

Time series data were used to derive variables based either on raw time series data
(dataset A) or time series data from which outliers (dataset B) and noise (dataset D) or
both (dataset C) have been removed. Another dataset was based on counts of physio-
logical variable values outside 1, 2, 3 and 4 standard deviations from the norm for
each case and this same dataset included the count of variable values outside the ac-
cepted normal range for each variable (dataset E). A further dataset was based on
summary statistics for segments of the time series data, either complete segment or
portion of the segment (dataset F). The final pre-processing method, Symbolic
Aggregate Approximation (SAX) transformation, was used to derive the final dataset
(dataset G). The time dimension and variable values were normalised and cluster
membership based on time series patterns was included for each of the physiological
variables and different alphabet size and segment count. Derived variables for data-
sets A to D, included summary statistics for HR, ST segment level and systolic blood
pressure (SBP) as well as variables representing heart rate recovery and classifying
ST segment changes as they would be in an exECG setting. Table 3 shows the com-
ponents of the datasets analysed here.

380 R. Nayak and E. Pitt

The time-series derived datasets and the datasets comprised of time-series and risk
factor variables were subjected to several feature selection methods and the method
found to produce the most compact and comprehensible models was the subset filter
method, Cfs [11]). The details of these experiments are not presented here but results
shown here are based on Cfs subsets.

Table 2. Classification of cases according to intensity of operative monitoring

Risk group Definition Number

General population All valid cases 3377

Low risk subgroup Cases with basic monitoring only 2764

High risk subgroup Cases for which invasive haemodynamic
monitoring (arterial line) was considered
appropriate based on pre-operative assessment of
anaesthetic and surgical risk. Represents a
subgroup of general population and includes those
for which more extensive ECG monitoring was used

613

Very high risk
subgroup

Cases for which 5 ECG leads were monitored and
data available for 3 ECG leads. All had arterial line
for continuous BP monitoring. Subset of High Risk
subgroup

249

Table 3. Variables used in model development

Variable
group

Variable type Variable examples

Time-series Cardiovascular HR, ST, SBP

Demographic Patient related Age, gender

Procedure related Duration of monitoring (trend length)

Clinical Risk factor Smoking, lipid disorder, HT, DM, Obesity

Target Coronary vascular disease

Fig. 1. Risk factor characteristics of cases in risk subgroups

 Assessment of Cardiovascular Disease Risk Prediction Models: Evaluation Methods 381

Fig. 2. Vascular disease distribution in risk subgroups

The risk factor characteristics of the population subgroups are shown in Figure 1.
Figure 2 shows the distribution of vascular disease, both coronary vascular (corVD)
and any vascular disease (anyVD) in each of the pre-operative risk subgroups as well
as the general population. The increase in vascular disease prevalence with in-
creased intensity of monitoring is seen and, for all subgroups, the prevalence of any
vascular disease is mostly twice the prevalence of coronary vascular disease (corVD).
In the general population, the prevalence of coronary vascular disease is almost 10%
while that for anyVD is approximately 18%. For the very high risk subgroup, the
prevalence of corVD is over 20% while that for anyVD is almost 60%.

Fig. 3. The Proposed Methodology

382 R. Nayak and E. Pitt

Fig. 4. Comparison of methods in prediction of corVD in selected datasets and using stratified
cross validation (AUC)

2.2 Prediction Model Development

Several prediction methods such as logistic regression, neural networks, support vec-
tor machine etc were used in building the models. Models derived using decision tree
method J48 (WEKA implementation of C4.5 [11]) were shown to be the most com-
prehensible and compact with acceptable performance (figure 4). The performance for
models based on risk factors or time series variables alone are compared with the
performance of datasets based on a combination of risk factor and time series vari-
ables. Study design is summarised in figure 3. The dataset was subjected to several
feature selection methods and results of these are not presented here. Models pre-
sented here were derived using Cfs [11] reduced subsets.

3 Model Evaluation

Several measures of model performance are used in the evaluation of the prediction
models here. Since class distribution for the datasets being studied here is unbalanced,
majority class undersampling (WEKA pre-processing method, SpreadSubsample
selection) is used in some models and their performance is compared with that of
models based on stratified n-cross validation. The SpreadSubsample method creates
subsets of cases with a user chosen distribution of class variable. For this section of
the data analysis, subsets with equal class distribution were created [11].

3.1 Misclassification Rate for Balanced and Unbalanced Data

The misclassification rates associated with models based on these data are compared
with models evaluated using stratified but unbalanced data subsets. Figure 5 shows
the performance data for the prediction of corVD. MR for models based on stratified
n-cross validation of unbalanced datasets shows a marked difference between the the
two risk categories (high risk and the general population). The MR for the high risk

 Assessment of Cardiovascular Disease Risk Prediction Models: Evaluation Methods 383

Fig. 5. Decision tree prediction of corVD using both stratified n-cross validation and Spread-
Subsample n-cross validation (misclassification rate)

category is almost twice that of the general population. This does not imply an
inherently worse model but relates primarily to the class distribution for the two
groups. In subsets of these datasets with balanced class distribution, the differences
are much less. It can be seen that the model is able to correctly classify cases more
accurately than chance alone would allow (distribution of corVD cases in the
population studied is 50% and the model misclassfication rate is only 18-25%).

3.2 Area under ROC Curve in Balanced and Unbalanced Data

Similar data for models evaluated using AUC are shown in Figure 6. For balanced
and unbalanced data, the area under the ROC (AUC) is similar for the high risk popu-
lation and there is a marginal increase for the general population. This suggests that

Fig. 6. Prediction of coronary vascular disease using both stratified cross validation and
SpreadSubsample cross validation and J48 decision tree (area under ROC)

384 R. Nayak and E. Pitt

for the evaluation of models based on this dataset, the AUC is less biased by the class
distribution, that is by the pre-test probability of disease.

3.3 Sensitivity, Specificity and Predictive Values

The use of other performance measures is shown in the Table 4.

Table 4. Other performance measures for models based on all RF and time-series variables in
the prediction of corVD in both general population and high risk subgroup

Other performance measures for corVD models, general population, all variables

Sensitivity Specificity PPV NPV
General
populati
on

High
risk
subgro
up

General
populati
on

High
risk
subgro
up

General
populati
on

High
risk
subgro
up

General
populati
on

High
risk
subgro
up

RF_on
ly

0.281 0.297 0.975 0.946 0.554 0.55 0.926 0.859

All 0.375 0.351 0.943 0.875 0.418 0.382 0.933 0.859
A 0.356 0.441 0.961 0.91 0.5 0.521 0.932 0.881
B 0.369 0.441 0.959 0.91 0.494 0.521 0.933 0.881
C 0.341 0.441 0.96 0.91 0.483 0.521 0.931 0.881
D 0.369 0.441 0.953 0.91 0.459 0.521 0.933 0.881
E 0.329 0.396 0.959 0.894 0.464 0.454 0.929 0.87
F 0.411 0.396 0.946 0.867 0.453 0.396 0.937 0.867
G 0.26 0.279 0.953 0.904 0.374 0.392 0.922 0.85

It can be seen that these measures are less sensitive to class distribution. For mod-
els based on the full variable set and both RF and time-series variables for the general
population, the sensitivity ranges from 0.26 to 0.37 while for the high risk subgroup
sensitivity ranges from 0.28 to 0.44. The variation in specificity, PPV, and NPV val-
ues between the models based on the general population and the high risk population
vary less than do the MR values for the same models.

3.4 Kappa Statistic in Unbalanced Data

The Kappa statistic compensates for the variation in class distribution by measuring
the agreement between the predicted and the observed categorisations of the dataset
and corrects for chance based agreement. A comparison of Kappa statistic values as
they relate to MR and AUC is seen in Figures 7-9. Figure 9 shows the kappa statistic
values for models derived from datasets RF_only, RF_A, RF_F and Figure 7 and
Figure 8 show MR and AUC for the corresponding models. For all risk categories,
the Kappa statistic increases in association with the addition of some time-series
derived variables to the RF only based model. However, for each risk category the
Kappa statistic values are in the same range. This is also seen in Figure 8 showing
AUC for the risk related subsets and the general population. Misclassification data
(Figure 7) shows obvious differences in model performance based on the class
distribution in the subsets studied.

 Assessment of Cardiovascular Disease Risk Prediction Models: Evaluation Methods 385

Fig. 7. Use of MR for evaluation of model performance based on selected subsets (RF_only, RF_A
and RF_F) in the general and risk subset groups (DT J48, corVD)

Fig. 8. Use of AUC for evaluation of model performance based on selected subsets (RF_only,
RF_A d RF_F) in the general and risk subset groups (DT J48, corVD)

Fig. 9. Kappa statistic for evaluation of model performance based on selected subsets in the
general and risk subset groups (DT J48, corVD)

3.5 Discussion

The results presented above show the effect of disease prevalence on the model per-
formance as assessed using several measures. In the evaluation of models based on a
dataset with unbalanced class distribution, there is a reduction in MR consistent with
the low prevalence of disease in the general population. When class distribution is
artificially balanced, the MR increases, however it remains below that which would
be expected if prediction was random or based solely on disease prevalence. For the

386 R. Nayak and E. Pitt

high risk subgroup, MR for unbalanced data is consistent with prevalence of disease
in that group. Evaluation of the models based on modified dataset with balanced class
distribution shows a limited increase in MR but again, the increase is less than would
be expected if prediction was random, that is for 50% with corVD. Chance alone
would result in a MR of 50%. Models, however, have a MR of only 20-25%.

Consideration of MR in comparison to AUC and Kappa statistic for models based
on selected datasets containing risk factor variables again shows the marked disparity
in model performance according to disease prevalence in the subgroup being as-
sessed. The low risk and very high risk subgroups are included in this analysis and
the MR ranges from 7% to 24 %. The same models assessed by Kappa statistic show
markedly less variability. The performance of RF_A based models varies little across
the low risk to high risk subgroups (0.3o to 0.35) while for the very high risk sub-
group, Kappa statistic is approximately 0.5 for the same dataset. A likely explanation
for this is the relatively small number of cases in this group (249 compared to 3377
for the general population and 2764 for the low risk subgroup. The increased Kappa
statistic values for the low risk subgroup and general population suggest the value of
this performance measure in cases whose operative risk was considered to be low. It
is in these groups that identification of increased risk of cardiovascular disease is of
greatest benefit.

For the evaluations based on AUC, the variability is reduced even further with
AUC values ranging from 0.60 to 0.70 for all groups except for the very high risk
subset (0.75). Again the slightly higher value for this subset is unlikely to be signifi-
cant and is more likely in association with the smaller sample size. A trend toward
better performance in models based on risk factor variables in addition to time-series
variables is seen for all of the evaluation measures. These models were based on Cfs
reduced datasets and, for the small number of variables in the RF_only based models,
performance has been underestimated. However, use of all RF variables in combina-
tion with Cfs reduced time series subsets resulted in models of increased complexity
without improvement in accuracy. This study has demonstration the effectiveness of
AUC in another setting within the medical domain. The findings are in keeping with
those noted in prediction of ICU survival [6].

Models developed in this study, if validated in a broader population, may represent
a screening method of cardiovascular disease risk for which there is no additional cost
or procedural risk. Assessment of the models in broader populations requires the use
of appropriate evaluation methods. Results obtained for the real world dataset studied
here show the value of different evaluation measures and stress the limited value of
misclassification rate in assessing risk for populations with differing pre-test probabil-
ity of disease. AUC and Kappa statistic are shown to be far less sensitive to class
distribution and thus represent better measures of prediction model performance.
Such findings are consistent with those noted in prediction of ICU survival [6].

While Kappa statistic and AUC are shown to be more appropriate than MR in the
assessment of anaesthesia data based models, the issue of false positive prediction re-
mains. Addition of other time series variables, such as the more precise representation
of HR variability (R-R interval) to model input, may improve model performance and
may better predict the risk of SCD. While the current study relied heavily on time-series
statistical summary data, further efforts to address the issue of variable time-series dura-
tion may include re-sampling the data or use of dynamic time warping techniques.

 Assessment of Cardiovascular Disease Risk Prediction Models: Evaluation Methods 387

4 Conclusions

This study has shown that (1) anaesthesia related time-series data when subjected to
data mining methods can predict disease risk more effectively than disease prevalence
alone would allow. AUC for sample models based on a combination of RF and time-
series variables range from 0.65 to 0.75; (2) MR as a model performance measure is
much more susceptible to bias by the prevalence of disease in the population group
being studied; (3) Kappa statistic and AUC as measures of prediction model perfor-
mance are much less biased by class distribution; (4) Sensitivity and specificity meas-
ures add little to AUC; and (5) Positive and negative prediction values are less
affected by disease prevalence than MR but somewhat more so than AUC and Kappa
values. They do however offer important information to clinicians faced with clinical
decisions in the setting of limited background information.

References

1. WHO, D. UN Data: Age-standardized mortality rate for cardiovascular disease (per
100,000 population),
http://data.un.org/Data.aspx?d=WHO&f=inID%3aMBD22
[cited 2009, February 7]

2. Pearson, T., et al.: AHA guidelines for primary prevention of cardiovascular disease and
stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult pa-
tient without coronary or other vascular disease. Circulation 106, 388–391 (2002)

3. Mora, S., et al.: Enhanced Risk Assessment in Asymptomatic Individuals With Exercise
Testing and Framingham Risk Scores. Circulation 112, 1566–1572 (2005)

4. Bellazzi, R., Zupan, B.: Predictive data mining in clinical medicine: Current issues and
guidelines. International Journal of Medical Informatics 77(2), 81–97 (2008)

5. Ramon, J., et al.: Mining data from intensive care patients. Advanced Engineering Infor-
matics 21(3), 243–256 (2007)

6. Luaces, O., et al.: Predicting the probability of survival in intensive care unit patients from
a small number of variables and training examples. Artificial Intelligence in Medi-
cine 45(1), 63–76 (2009)

7. Cho, B.H., et al.: Application of irregular and unbalanced data to predict diabetic nephro-
pathy using visualization and feature selection methods. Artificial Intelligence in Medi-
cine 42(1), 37–53 (2008)

8. Chen, L., et al.: Decision tool for the early diagnosis of trauma patient hypovolemia. Jour-
nal of Biomedical Informatics 41(3), 469–478 (2008)

9. Cios, K.J., Moore, G.W.: Uniqueness of medical data mining. Artificial Intelligence in
Medicine 26(1-2), 1–24 (2002)

10. Sokolova, M., Lapalme, G.: A systemic analysis of performance measures for classifica-
tion tasks. Information Processing and Management 45, 427–437 (2009)

11. Witten, I.H., Frank, E.: Credibility: Evaluating What’s Been Learned. In: Data Mining:
Practical Machine Learning Tools and Techniques, p. 173. Morgan Kaufmann, San
Francisco (2005)

12. Armitage, P., Berry, G.: Statistical Methods in Medical Research. Blackwell Sciences Pty,
Ltd., Malden (1994)

Visual Analysis of Implicit Social Networks for
Suspicious Behavior Detection

Amyn Bennamane1, Hakim Hacid1, Arnaud Ansiaux1, and Alain Cagnati2

1 Alcatel-Lucent Bell Labs France, Route de Villejust, 91620, Nozay, France
2 Ministère de l’Intérieur, ST(SI)2

{firstname.lastname}@alcatel-lucent.com, alain.cagnati@interieur.gouv.fr

Abstract. In this paper we show how social networks, implicitly built
from communication data, can serve as a basis for suspicious behavior
detection from large communications data (landlines and mobile phone
calls) provided by communication services providers for criminal investi-
gators following two procedures: lawful interception and data retention.
We propose the following contributions: (i) a data model and a set of
operators for querying this data in order to extract suspicious behavior
and (ii) a user friendly and easy-to-navigate visual representation for
communication data with a prototype implementation.

1 Introduction

Social networks, although an old topic, have gained an impressive importance
with the appearance of on-line social networks like Facebook1, Twitter2, and
Orkut3. This type of networks, generally built through an explicit declaration of
the social relation by the user, is only the visible part of the iceberg. In fact, social
networks could be implicitly constructed on different situations where advanced
analysis is needed [15][13]. Modeling a situation as a social network is motivated
by the need of understanding a person or a group of persons (or a resource) not
only as a particular case but as a whole thanks to the relation she/it may have
with other individuals/groups. Considering the relations between individuals
and their behavior instead of considering only individuals is of a great interest
and has been leveraged in several situations like: viral marketing [12], terrorism
attacks [8], criminal networks identification [16], to cite only few.

The power of social networks, as well as communication means, can be used
in unlawful ways. An illegal operation can range from a simple illegal use of oth-
ers’ communication means to more serious activities such as terrorism. To iden-
tify suspicious operations, investigations are conducted by investigators who are
generally not experts in Information Technologies (IT) and/or data analysis. In
fact, investigators are mainly field workers, they usually use IT as an additional
toll and precious source of information to enrich their knowledge about specific
1 http://facebook.com
2 http://twitter.com/
3 http://orkut.com/

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 388–399, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://facebook.com
http://twitter.com/
http://orkut.com/

Visual Analysis of Implicit Social Networks 389

cases. Spreadsheet programs are used in this context to manage lists, to sort
and make calculations in the hopes of building meaningful relations between the
data, thus extracting valuable knowledge. Spreadsheets are very powerful tools
for analyzing tabular data [9], but are not apt for revealing patterns in semi- or
non-structured data with many complex relationships and cross-references, as
well as significant meta-data. Unless the user knows what she is looking for, it’s
very difficult to directly extract new knowledge from the tables.

The major problem facing our users is the ability to extract meaningful and
useful facts from large, heterogeneous, and disparate datasets. This work is
performed in the VIGIEs research project where the goal is to provide French
authorities with a tool to capture, store, and analyze in an effective way all in-
tercepted information from fixed telephony, VoIP4, mobile telephony, etc. but
also from the Internet. In this paper we consider the case of telecommunication
data (landlines and mobile telephony) provided by services providers for inves-
tigators for handling suspicious cases as an illustrative case. We propose the
following contributions: (i) a data model and a set of operators for querying this
data. These operators are used by investigators to formulate queries in order to
extract suspicious behaviors and (ii) a user-friendly and easy-to-navigate visual
representation for communication data with a prototype implementation.

The rest of this paper is organized as follows: Section 2 motivates the work
with an example and presents a quick description of some related work by focus-
ing only on social networks and visualization. Section 3 presents the proposed
general data model for handling multi-channel communication analysis as well
as a set of proposed operators to interact with the data model. Section 4 presents
a prototype implementation of the tool integrating some of the proposed con-
cepts as well as additional concepts required by investigators. Finally, Section 5
concludes and provides some future directions of this work.

2 Related Work

2.1 Example of a Scenario

As mentioned above, the use of electronic data is necessary in many cases to
provide proof of the innocence or the guilt of a person. Hereafter is a description
of a real criminal case, shown in a demonstration with the French authorities on
July 2010, highlighting some of the challenges in this area: Wilhelm Gatter is an
important European business man visiting Paris. On the 22nd of June 2010, while
joining a meeting, he is kidnapped by an organized and well coordinated group.
The group seems to be organized into several teams, each taking responsibility
for specific part in the kidnapping. Few hours later, several cars were left trailing,
burned and the group and the victim were not found. The kidnappers used a
succession of cars to bring the hostage escape outside the Paris region. The first
of these cars is burned to remove traces and was found on June 25, 2010. In the
debris of the fire, several mobile phones were found including one which has been

4 VoIP: Voice Over IP.

390 A. Bennamane et al.

partially damaged. After few days, technical services have successfully rebuilt its
IMEI5: “#45449826248390”.

Starting from this IMEI, investigators ask now for the associated phone num-
ber. The result of that query shows that the phone was linked to several SIM
cards and therefore multiple subscriptions for few time ago. The authorities want
now to retrieve the customers’ details of these subscriptions and formulate the
following to services providers: “could you provide us with customers’ details
associated to MSISDN number “#33632399599”?”. After this query, the au-
thorities want to recover the call logs for all the communications of that number
since 04/01/2010. The authorities are looking into their database if the numbers
that have called or have been called by the considered number, one is known in
an earlier case. Authorities continue their investigation and want to know the
details about specific customer: “Could you provide us with the coordinates of
the client associated to number: “#33975621491”?”.

The number “#33975621491” is a number known to the police, an interception
is also in progress on this issue. An interesting conversation from a cyber-cafe is
intercepted. Authorities are asking for the result of interception in text format
with a tool to make the transcript “speech to text”. The authorities now wish to
recover the history of calls made and received by Mr. Gatter: “Can you give us
the history of communications number “#33643618644”?” The authorities now
wish to have the history of calls made on two cells: one corresponding to the
hotel where the Mr. Gatter was staying, and that corresponding to the place of
his abduction: “Can you give us the history of communication cells 184,380 and
252,310 on 22/06/2010?”

From the communication perspective, this data comes from two mandatory
functions provided by telecommunication operators and service providers: lawful
interception, which occurs in real time once the targets are identified, and data
retention, which is applied afterwards to understand or extract behaviors. In both
cases, the main problem remains to manage the complexity of the data and their
volume while considering strong time constraints imposed by authority actions.

2.2 Social Networks Analysis

A social network is a graph representation of all the interactions that occur
between people. This structure may be inferred or extracted from common in-
terests between users where nodes are persons and objects, and edges are the
existing relationship between them. Social Network Analysis (SNA) deals with
the understanding of the underlying phenomena in social networks [14]. SNA
considers the understanding of the social interactions not only at the node level
by introducing indicators such as centrality to measure the importance of a node,
but also considers the links between the nodes by considering communities and
the phenomena in those communities like influence.

There are several measures which may be applied on a social network to under-
stand the underlying structure like: diameter, transitivity, centrality, cohesion,

5 IMEI: International Mobile Equipment Identity.

Visual Analysis of Implicit Social Networks 391

density, etc. but centrality is the most frequently used one. There has been a
lot of effort done in analyzing and mining social networks in the previous years
to discover a variety of phenomena [10].The most recent ones include: detecting
anomalies [18], predicting interests of the social entities [1], learning influence
probabilities [6], identifying trends [5], mining mobility behavior [4], etc. With
current on-line social networks and more generally, communication networks, the
amount of information regarding both the nodes and the interactions became
more available. In addition, the available size of social networks became much
larger than what is considered in classical studies. As an example, Facebook has
more than 450 M users (statistics of July 2010). The existing measures may
not have meaning anymore in such a context and the hidden structures may
not be extracted using the existing techniques. As a consequence, more work is
necessary to propose better techniques and strategies on large social graphs.

2.3 Data Visualization

It is commonly agreed human brain can better process, analyze problems, and
extract interesting information visually rather than lists of data [3]. Our work
is closely related to data visualization, a vast field involving techniques ranging
from simple data positioning over a plane to more complex representations such
as neighborhoods, communities, etc. In the graph visualization, many of the
issues are related to layout optimization, to present a graph in the most readable
way within a reasonable time. TopoLayout algorithm [2] relies on state of the
art of graph layout algorithms to isolate prominent graph components and apply
individually the most appropriate layout algorithm.

More users oriented, some initiatives intend to give an ability to field experts
to work by harnessing their competences as much as possible. Systematic Yet
Flexible (SYF) Discovery [11] presents an approach centered around the dynam-
ics of the field expert in order to assist her in her investigation. SYF is a generic
Framework that follows the overall evolution of analysis tasks, cancels them,
executes them over new data sets, annotates them, etc. Vizster [7] proposes
operations based on SN metrics such as visual (centrality) clustering.

In this work, we are mainly interested in criminal networks visual analysis
which found a significant rise in scientific literature after the events of September
11th. Xu and Chen [17] present a state of the art of structural features of criminal
networks, as well as a classification of visualization and SNA tools into three
categories which rely on data representation as graphs, easily understandable by
the humans. Our approach for SNA and criminal network detection is a semi-
automatic approach in the sense that we consider automated generation of social
graphs but the user intervenes to implement the analysis chain that is needed to
verify her hypothesis. As a first contribution, we propose to adopt an approach
that offers functionalities in graph manipulation, which we call “visualization
operations”.A second contribution we propose is an approach that constraints
the data model that would permit to define simple operators in defining visual
queries over graph data.

392 A. Bennamane et al.

3 A General Model for Communication Data
Representation

The objective we are expecting is the following: Having a set of interactions
(i.e., activities) happening between people using communications means, how to
enable savvy users (i.e., users who don’t have as their primary function data
analysis or computer science, e.g., criminal investigators) to extract valuable
facts from huge interaction data? We first describe a generic data model we
have proposed to handle multi-channel communications. Then we move to the
description of a set of basic operators built on top of the model to answer some
of the investigators’ needs.

3.1 Data Model

To be able to provide a simple tool and high analysis capabilities for the user we
started by observing the way investigators work when analyzing communication
(interaction) data. At a logical level, users generally follow activities of a certain
entity, e.g., a person. These activities could be performed on different channels,
e.g., phone, email, money transfer, etc. Once each channel is analyzed alone, the
conclusion from each channel are aggregated to have a higher level perspective
on the case. Intuitively, while the consideration of basic interactions serve to
draw very fine grained conclusions, the aggregation serves as an interpretation
level. Thus, our model intends to translate this observation. We start by defining
a specific structure called s-Graph to translate the followed entity.

Definition 1. (Super graph (s-Graph)) A directed, weighted, and labeled
graph capturing a highest level of interaction between real or virtual objects.
An s-Graph is an aggregation of several sub-graphs, called property graphs (p-
Graph). Nodes of this graph represent the objects with their properties and the
links the interaction between those objects.

Let Ω denotes a s-Graph of objects, say persons, defined as Ω(V , A, L(V), W (A))
with V = {v1, ..., vn} representing a set of n nodes of the graph (corresponding
to a set of persons in this case). A represents of set of arcs linking the set of
nodes of the graph. It should be noted that the this is a virtual set of arcs (as
we will see it in the following paragraphs, which is built by the aggregation of
several arcs coming from sub-graphs). Since Ω is a directed and weighted graph,
we can define a function ω : V × V → R+ such that:

∀vi ∈ V , vj ∈ V , (vi, vj) ∈ A iff ω(vi, vj) ∈ R+ (1)

Thus, ω associates a weight for all the couples of nodes which have a common
interactions. This means that there is no arc between the two nodes. Ω is a
directed graph, the following property apply then for each arc:

∀vi ∈ V , vj ∈ V , (vi, vj) �= (vj, vi) (2)

Visual Analysis of Implicit Social Networks 393

L(V) represents a set of labels associated to each node of the super graph. We
denote this set with L and we define it L =

{
li|1 ≤ i ≤ m, ∀i, j, li �= lj

}
. We

define a function � : V → L such that:

∀vi ∈ V , �(vi) = li, li ∈ L ∧ li �= lj =⇒ �′(li) �= �′(lj) ∧ vi �= vj =⇒ �(vi) �= �(vj)
(3)

Where �′ is the inverse function of �. Equation 3 explicits the fact that each
node of the s-Graph is identified with a unique label. At this stage, examples of
labels may include, but not limited to, social security number, combination of
attributes, e.g., first name, last name, and date of birth, etc. We consider the
label as a passive attribute where its role is more informative. In contrast, as this
will be explained later, there are other active attributes, called linking properties
which are used for transporting information and communication.

Intuitively, since a s-Graph is an aggregation of graph (as defined in Definition
1), all its components should also be an aggregation of sub-components compos-
ing those aggregated sub-graphs. We introduce the notion of Property which is
similar to the definition of an attribute in the ER model except that in our case,
we consider as a property only attributes describing nodes of the s-Graph and
which have a connectivity capability. This means that Properties are those at-
tributes which help in materializing the links between individuals such as phone
numbers, email addresses, bank accounts, etc. Let P = {p1, ..., pk} be the set of
linking properties (or properties for short).

Definition 2. (Linking property) A linking property is an attribute which can
identify and capture the existence of a type of interaction between real or virtual
objects.

Thus, a property is different from a label defined in the previous paragraphs
since: (i) the labels have only an informative role where properties have an
active role (i.e., building connexions between individuals), and (ii) A property
may have a label, (iii) a property has a type describing its behavior. We denote
by p(V i) ∈ P the set of linking properties attached to the super node V i. To
be a complete as possible, let’s consider T as a set of types defined as follows:
T = {ti|1 ≤ i ≤ s, ∀i, j : ti �= tj} We define a function τ : P → T such that:

∀pi ∈ P, τ(pi) = ti, ti ∈ T ∧ ti �= tj ⇒ τ ′(pi) �= τ ′(pj) (4)

Since a linking property is a part of a node of a super graph which enables
linking to other nodes, each property can be considered as a separate part of
the system for, e.g., a deeper analysis. By doing that way, we can build several
graphs based on the type of each property. We introduce then a graph structure
that we call a property graph (or p-Graph for short).

Definition 3. (Property graph (p-Graph)) A directed, weighted and labeled
graph structure which: (i) links nodes having the same type and (ii) materializing
an interaction.

394 A. Bennamane et al.

P={
p

1
: T

x

p
2
: T

y
}

P={
p

1
: T

x

p
2
: T

x
}

P={
p

1
: T

y

p
2
: T

z

p
3
: T

x
}

...

...

entails

entails

entails

s-graphp-graph

: T
y

: T
y

()11 vll =

1v

()22 vll =

2v

()33 vll =

3v

p-graph

11

1

.

:

pv

Tv x

=

33

3

.

:

pv

Tv x

=

12

2

.

:

pv

Tv x

=

xTv :4

xTv :5

Fig. 1. Illustration of the different concepts of the data model and their relations

Formally, a p-Graph, denoted by G can be written as G(V, A, L(V), W (A)) With
V corresponds to the set of k vertices representing the set of linking properties,
i.e., each node of the graph is a linking property. This is done for notation
simplicity and ease of explanation. Thus, we abuse the notation of τ(pi) by
applying τ on the nodes vi: τ(vi). A is a set of arcs resulting from connecting
linking properties. The arcs are constrained by the type of the properties as
explained in the previous paragraphs. We revisit then the definition of arcs in
Equation 1 by adding this specific type constraint:

∀vi ∈ V, vj ∈ V, (vi, vj) ∈ A iff τ(vi) = τ(vj) ∧ ω(vi, vj) ∈ R+ (5)

The labels are defined in the same way as in Ω. At this stage we can intuitively
understand that an s-Graph is composed of several p-Graphs. Thus we can de-
note this: Ω = ∪k

i=1Gi. Finally, the following applies: (i) A node of an s-Graph
may have several properties of the same type. For example, if we consider V i

as a specific person, its not excluded to have a person with many phone num-
bers and email addresses. Intuitively, an inclusion relation is defined between the
property nodes, p-Graph and the nodes of the s-Graph. (ii) Nodes of the s-Graph
don’t necessarily have the same number of properties. This can be considered
as a consequence of the previous observation. This property is a pure ground
constraint and is useful to to translate the diversity of information an analyst
may have on analyzed objects.

3.2 Operators for Visual Social Networks Analysis

The defined data model supports the representation of different communication
channels but is not enough to be a useful tool for end-users in their analysis.
In this section, we define a first set of operators that translate users’ needs in
terms of information and hypothesis checking. The choice of following operators
oriented strategy instead of functionality based strategy is motivated by: (i) the
heavy process (in terms of resources and time) needed to implement each need of

Visual Analysis of Implicit Social Networks 395

the user as a functionality in the tool, and (ii) the increasing need of expressive
power by the user which joins and complicates (i). These operators are intended
to enable users in expressing their basic needs and then, by combining them,
expressing increasingly complex operations. Finally, two type of operators are
proposed: (i) data definition operators and (ii) data manipulation operators.

Data definition operators. This type of operators are dedicated to satisfy the
need of creating component of the data model, e.g., nodes, links, etc. This type
of operators is needed to enable the investigators to, e.g., group interactions into
one physical object. We define two operators: (i) CREATE and (ii) ASSOCIATE.

CREATE : This operator helps in creating a new component of the model, e.g., a
node (both in s-Graph and p-Graph), an arc, a linking property, etc. Depending
on the nature of the component, i.e., node, arc, property, etc. the structure of
this operator changes.

ASSOCIATE (⊕) : This operators enables the association of a node (or an arc)
of a p-Graph to a node (or an arc) of the s-Graph. Formula 6 illustrates the
definition of this operator in the case of a node of a p-Graph which is associated
to a node of an s-Graph. The association operator is defined as ⊕ : V × V → V :

∀vi ∈ V, ∀vjV : vi ⊕ vj = v′
j where p(v′

j) = p(vj) ∪ {vi} (6)

Data manipulation operators. This type of operator is intended to build
queries over the data in the sense of manipulation like selecting a set of data,
filtering according to some criteria, grouping, etc. According to the most frequent
queries fired by users, we have defined a set of five main operators: (i) Origin of
the arc (

→
η), (ii) target of the arc (

←
η), (iii) neighborhood (Θ), (iv) union (

⋃
),

and (v) intersection (
⋂

).

Origin and Target of an arc (
→
η ,

←
η) : These two operators capture two of the

most operations performed by investigators when analyzing a communication
network: the origin and the target of a communication. Intuitively, this opera-
tor operates on the arcs associated to an individual which are generally useful
to understand or capture social phenomena like chains and information flows.
Formula 7 formalizes the two operators:

∀vi, vj ∈ V, ∀j = 1..k,
→
η (vi) = {(vi, vj) ∈ A} ;

→
η (vi) = {(vj , vi) ∈ A} (7)

Neighborhood (Θ) : While the two previous operators operate on the links by
considering their direction, the neighbourhood operator retrieves the nodes that
are directly linked to a specified node. This is an important operator if since
it enables to build more complicated operators which help in understanding
the surrounding activity to a particular user (or communication channel). The
neighbourhood operator, Θ : V → V ∗, could be formalized as follows:

∀vi ∈ V, Θ(vi) = {∀vj ∈ V, j = 1..k : (vi, vj) ∈ A ∨ (vj , vi) ∈ A} (8)

396 A. Bennamane et al.

Union (
⋃

) : The previous operators are defined on a particular node. The union
operates on more than one node and translates the need of recovering nodes
which have participated to different interactions with selected nodes useful for
reducing the set of nodes which are analyzed in more detail.

∀vi, vj ∈ V, vi

⋃
vj = {Θ(vi) ∪ Θ(vj)} (9)

Intersection (
⋂

) : Retrieves common nodes who have been contacted by all the
specified nodes. This is an important operation since it enables investigators
to extract important nodes and understand information flows, sequences, and
mainly common communications linking individual through others.

∀vi, vj ∈ V, vi

⋂
vj = {Θ(vi) ∩ Θ(vj)} (10)

Most of these operators are defined to apply on nodes of the same p-Graph.
Generally, and as specified previously, investigators check their hypothesis by
moving from a type of interaction to another type. To make it possible to leverage
the whole capabilities of the data model, we propose to extend the definition of
some of the basic operators to make them able to take into consideration the
existence of different types of interactions (i.e., p-Graphs) and a global type
(i.e., s-Graph). The operators which are considered by this extension are: the
neighborhood, the union, and the intersection.

The basic idea behind the extension is as follows: for any operation between
nodes of different p-Graphs (i.e., different communication channels), the answer
to the query passes absolutely through the corresponding nodes of the s-Graph.
In addition to that, a set of meta-data are generally attached to each interac-
tion, e.g., time, location, etc. These meta-data are currently used through the
association of this information to the links. Due to the lack of space, we don’t
detail these operators.

4 Prototype Implementation: SemanticXL

The proposed approach is intended to feed a tool, SemanticXL, which will
be used by real investigators to solve criminal cases. As noticed in the beginning,
we have heavily used RDF6 for data representation, storage and integration in
the tool but since this not the focus of the paper, we do not go in more details.The
high level architecture of the system is shown in Figure 2. The first level is the
data integration level where the different data sources are transformed to an
RDF representation with an additional use of a communication ontology. The
second level is the visualization level where graph representations are drawn to
materialize the link between the different individual items. The proposed data
model as well as the operators fit into an intermediary level between the visu-
alization and the querying, i.e., in the translation level. The role of this level
is to capture the actions of the user, translate them to the data model to fire
6 Resource Description Framework (http://www.w3.org/RDF/).

(http://www.w3.org/RDF/)

Visual Analysis of Implicit Social Networks 397

Fig. 2. Illustration of the dif-
ferent levels of the application

Fig. 3. SemanticXL: Illustration of the current
prototype

a SPARQL7 query over the RDF data store. On the other hand, it translates
a result offered by the RDF data store into a coherent representation with the
proposed data model.

Figure 3 illustrates a prototype version and the current status of SemanticXL.
This prototype in its very basic version has been implemented at the French Min-
istry of Internal Affairs as an initiative to help investigators in better using the
communication data. We have heavily improved it by adding other functionali-
ties and by abstracting the problem of communication data analysis. Although
the operators are not completely implemented, some of them are in the form
of functionalities in this version and illustrate very well the interest of such ap-
proach. In the following, we describe the different functionalities available in the
tool.

The most important part for the user is certainly the central view. It con-
tains a graph representing individuals with nodes, and relations with edges. By
default, the user has the ability to control the scale and move the nodes. Techni-
cally, this visualization draws nodes using the Prefuse API8. Nodes are laid out
with a physical layout algorithm called force-directed layout (FDL) algorithm.
This algorithm, or more generally type of algorithms, implements a physical sim-
ulation of interacting forces. Nodes repel mutually, links behave like springs, and
friction forces are applied. The Prefuse implementation of FDL can be executed
once with a succession of iterations, or regularly to obtain a real time animation
and a dynamic and interactive layout.

The initial implementation of this algorithm has a problem inherent to its
working principle, and we experienced difficulties to get around it. A configura-
tion of the algorithm exists to prevent the nodes from going out from the visible

7 SPARQL Query Language for RDF: http://www.w3.org/TR/rdf-sparql-query/
8 Prefuse API: http://prefuse.org/doc/api/

http://www.w3.org/TR/rdf-sparql-query/
http://prefuse.org/doc/api/

398 A. Bennamane et al.

visualization area, but this solution causes the nodes to crowd around the bor-
ders of the area, which is not satisfactory. We customized the Prefuse layout
system by adding an invisible attraction force between all nodes in the center of
the visualization area.

The left side contains another view which translates the proposed model.
Technically, the data model is implemented using an OWL ontology where each
OWL type represents a linking property. This is transparent for the user who
still works with the logic of communication channels separation. A filtering fea-
ture supports the navigation between one p-Graph and another simply by using
a check-box as a visual component. Finally, the right view concentrates most
of the functionalities (operators) that allow to handle the central view. As an
example operator, the neighborhood which is translated in the Hops filtering
functionality. Its working principle is that the user selects a node and then she
chooses a value for the hops. All nodes that are distant to the selected nodes to
more than the selected value are then hidden. Other functionalities are imple-
mented in the interface in addition to the operators, in particular the clustering9.
All these functionalities and the prototype received a good feedback10.

5 Conclusion and Future Work

This paper described a model and a tool for visual analysis of communication
data (i.e., social networks). We proposed a general model for multi-channel com-
munications analysis, a very important contribution for this area. The model is
mainly based on the real experience of field workers, i.e., investigators. This
work intends also to bring a support for users who are mainly novice users in
IT. We presented a prototype implementing the different proposals of the paper.
Although the prototype implements the operators for this version as functionali-
ties, the contribution has received a positive feedback and seems to be promising
for the targeted users.

As a future work, we plan to improve SemanticXL by offering visual repre-
sentation of the operators for a higher flexibility for the users. From the data
perspective, we think at integrating wider range of data coming mainly from the
Web to open the system to external sources, an important need of the investiga-
tors. Our immediate next target is to improve the prototype to be demonstrated
for the French authorities in the frame of the VIGIEs project around June 2011.
A study about the completeness of the operators will be performed to decide
whether this set is sufficient or not. Finally, even if the whole work has been
done under the supervision of a user who is expert in criminal social networks
analysis, testing the tool with real users will be a priority once the operators are
visually represented to learn potential improvement axis.

9 This functionality is not detailed in this paper since this is not in its main scope.
10 The presentation of the paper, if accepted, will be followed by a presentation of the

tool on real datasets to show its capabilities.

Visual Analysis of Implicit Social Networks 399

References

1. Agarwal, A., Rambow, O., Bhardwaj, N.: Predicting interests of people on on-
line social networks. In: IEEE CSE 2009, pp. 735–740. IEEE Computer Society,
Washington, DC, USA (2009)

2. Archambault, D., Munzner, T., Auber, D.: Topolayout: Multilevel graph layout by
topological features. IEEE Trans. Vis. Comput. Graph. 13(2), 305–317 (2007)

3. DeFanti, T.A., Brown, M.D., McCormick, B.H.: Visualization: Expanding scientific
and engineering research opportunities. Computer 22(8), 12–25 (1989)

4. Giannotti, F., Nanni, M., Pedreschi, D., Renso, C., Trasarti, R.: Mining mobility
behavior from trajectory data. In: IEEE CSE 2009, pp. 948–951. IEEE Computer
Society, Washington, DC, USA (2009)

5. Gloor, P.A., Krauss, J., Nann, S., Fischbach, K., Schoder, D.: Web science 2.0:
Identifying trends through semantic social network analysis. In: IEEE CSE 2009,
vol. 4, pp. 215–222 (2009)

6. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social
networks. In: WSDM 2010, pp. 241–250. ACM, New York (2010)

7. Heer, J., Boyd, D.: Vizster: Visualizing online social networks. In: INFOVIS, p. 5
(2005)

8. Krebs, V.E.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2001)
9. Lakshmanan, L.V.S., Subramanian, S.N., Goyal, N., Krishnamurthy, R.: On query

spreadsheets. In: ICDE, pp. 134–141 (1998)
10. Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know:

inferring user profiles in online social networks. In: WSDM 2010, pp. 251–260.
ACM, New York (2010)

11. Perer, A., Shneiderman, B.: Systematic yet flexible discovery: guiding domain ex-
perts through exploratory data analysis. In: IUI, pp. 109–118 (2008)

12. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing.
In: KDD 2002, pp. 61–70. ACM, New York (2002)

13. Roth, M., Ben-David, A., Deutscher, D., Flysher, G., Horn, I., Leichtberg, A.,
Leiser, N., Merom, R., Mattias, Y.: Suggesting friends using the implicit social
graph. In: SIG-KDD (2010) (to appear)

14. Stanley, W., Katherine, F.: Social Network Analysis: Methods and Applications
Structural Analysis in the Social Sciences, 1st edn. Cambridge University Press,
Cambridge (1994)

15. Wen, Z., Lin, C.-Y.: On the quality of inferring interests from social neighbors. In:
KDD 2010, pp. 373–382. ACM, New York (2010)

16. Xu, J., Chen, H.: Criminal network analysis and visualization. Commun.
ACM 48(6), 100–107 (2005)

17. Xu, J.J., Chen, H.: Criminal network analysis and visualization. Commun.
ACM 48(6), 100–107 (2005)

18. Zhan, J., Oommen, B.J., Crisostomo, J.: Anomaly detection in dynamic social
systems using weak estimators. In: IEEE CSE 2009, pp. 18–25. IEEE Computer
Society, Washington, DC, USA (2009)

Compositional Information Extraction
Methodology from Medical Reports

Pratibha Rani1, Raghunath Reddy1, Devika Mathur2,
Subhadip Bandyopadhyay2, and Arijit Laha2

1 International Institute of Information Technology, Hyderabad
2 Infosys Technologies Ltd., SETLabs, Hyderabad

{pratibha_rani,raghunath_r}@research.iiit.ac.in,
{subhadip_b,devika_mathur,arijit_laha}@infosys.com

Abstract. Currently health care industry is undergoing a huge expan-
sion in different aspects. Advances in Clinical Informatics (CI) are an
important part of this expansion process. One of the goals of CI is to
apply Information Technology for better patient care service provision
through two major applications namely electronic health care data man-
agement and information extraction from medical documents. In this
paper we focus on the second application. For better management and
fruitful use of information, it is necessary to contextually segregate im-
portant/relevant information buried in a huge corpus of unstructured
texts. Hence Information Extraction (IE) from unstructured texts be-
comes a key technology in CI that deals with different sub-topics like
extraction of biomedical entity and relations, passage/paragraph level
information extraction, ontological study of diseases and treatments,
summarization and topic identification etc. Though literature is promis-
ing for different IE tasks for individual topics, availability of an inte-
grated approach for contextually relevant IE from medical documents
is not apparent enough. To this end, we propose a compositional ap-
proach using integration of contextually (domain specific) constructed
IE modules to improve knowledge support for patient care activity. The
input to this composite system is free format medical case reports con-
taining stage wise information corresponding to the evolution path of
a patient care activity. The output is a compilation of various types of
extracted information organized under different tags like past medical
history, sign/symptoms, test and test results, diseases, treatment and
follow up. The outcome is aimed to help the health care professionals
in exploring a large corpus of medical case-studies and selecting only
relevant component level information according to need/interest.

Keywords: Information Extraction, Medical document mining, Health
care application, Clinical Informatics.

1 Introduction

Clinical Informatics (CI) is a recent field of IT application research emphasizing
better quality of patient care in simultaneity with cost optimization. This in

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 400–412, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Compositional Information Extraction Methodology from Medical Reports 401

turn promises a huge scope of business application in health care industry. The
core technology behind this lies in the domain of electronic health care data
management and information extraction from unstructured documents, the two
parallel mainstreams in CI. The resulting applications induce better decision
making in different contexts like better treatment provision, enhancing quality
of life of patients and so on.

In this paper we consider the IE field and present a compositional approach
for information extraction from free format text related to patient care process.
Our aim is to extract information relevant to different context in the form of pas-
sage/collection of sentences from documents and present them in a composed,
self contained format. This approach has one essential generic concept; a doc-
ument creation is an outcome of evolution of a compound activity in a specific
domain. From initiation to completion the compound activity is viewed in terms
of granules of interlinked sub-activities at different intermediate stages creating
interdependent contextual information packets as output. These contextual in-
formation are distributed along the corresponding document(s) in an entangled
manner. An illustration of this concept in a patient care process is given in Fig. 1
as an ordered activity network. The document creation is actually carried out
following the underlying activity network in patient care domain. By relevant
extraction of information we emphasize the fact that our approach will extract
and organize information pertinent to these individual contexts.

Information extraction from medical documents has been addressed mostly
from discrete perspectives where the interest is usually on a few specific compo-
nents. The major challenges in building a holistic approach for relevant informa-
tion extraction from texts generated in patient care process are non explicitness,
repetition of information across the document in varied expression and over-
lapping of information belonging to different implicitly expressed contexts. The
bottom up view of a document creation through compilation of information ar-
tifacts generated from integrated sub-activities, as emphasized in this paper,
helps to overcome this problem. Along the same line of thought, we propose
individual modules for information extraction from each class (sign/symptom,
past medical history etc.) and thus the whole process can be viewed as an in-
tegrated system. The extracted fragments of information from different classes
are ultimately compiled to make a complete structure.

The rest of the paper is organized as follows. Section 2 discusses the motivation
and section 3 presents related studies in context to this and similar problems.
The methodologies and proposed algorithms are discussed in section 4. In sec-
tion 5 we present experimental study and results along with discussion on the
computational aspect of this problem. Finally section 6 concludes the article
with some comments on our focus and nature of the solution.

2 Motivation

Let us consider the representation of a patient care activity in terms of activ-
ity flow (Fig. 1) which is the motivation pivoting subsequent development of
concepts and discussions in this paper. As depicted in the figure, we perceive

402 P. Rani et al.

Fig. 1. Patient care process flow

Compositional Information Extraction Methodology from Medical Reports 403

a patient care process through different sub activities namely collection of past
medical history, observing sign/symptom, suggesting tests, observing test re-
sults, confirming a diagnosis, prescribing treatment and pursuing a follow up.
Thus different types of information like symptoms, medical history etc. are gener-
ated contextually in the execution of the sub-activities. The relevant information
in context to a physician’s interest is actually contained in six different medical
entities namely past medical history, sign/symptom, test and results, diagnosis,
treatment and follow up. These entities can be assumed to represent six different
classes of information with some class specific or contextual characteristics which
we explore and exploit to construct heuristic extraction rules. For example, the
vocabulary, semantics and sentence format corresponding to sub-activities symp-
toms collection and medical test result composition are markedly different. The
first type is a mixture of deep semantics related to feelings and observations on
clinical events often forming different types of regular expressions, where as the
second type is more prominent with typical medical vocabulary.

With the process flow, information piles up across the (sub)activity layers
to form a medical case report. This fragmented view of a document through
different contexts is the key motivation for compositional approach. Hence for
extracting relevant information from a medical document we can map the rele-
vance of the information artifacts with the underlying sub-activities and hence
can form clear guidelines on the target set. Thus an approach that is composed
of differentiated extraction task for individual types of information seems to be
a natural choice.

From the activity point of view, a patient care process starts with patient com-
ing to a doctor and continues through subsequent stages viz., diagnosis, treatment,
follow up, review. Intermediately it iterates in the diagnosis-treatment-follow up-
review-diagnosis or treatment-follow up-review-treatment cycle (or a cycle com-
bining part/whole from these two cycles) until a conclusion (cure, patient
quitting treatment or death of the patient) is reached. Thus the evolution of a
patient care process described in terms of combination of sub activities, in per-
ception of a physician’s context, is natural and seems to be justified enough to
work upon. The relevant information classes across different research reports cre-
ated by physicians thus remain the same. There may be ornamental changes in
presentation of the corresponding texts but the class specific characters stay close
to the information class which can be exploited for information extraction.

It can be noted that different contexts may correspond to different types of
information as relevant and hence the construction of the extraction rules will
change. For example, from a pharmacists point of view, the medicines prescribed
and the corresponding chemical groups might be of more interest. Here the con-
sideration of the contextual nature of information within a document and with
respect to a user is the differentiator of our extraction approach. Depending on
the context a user (e.g. a physician) might be interested in specific information,
like finding suitable tests given a set of symptoms or the set of treatments given
a disease. The proposed approach of information extraction can be applied easily
and efficiently to address such needs.

404 P. Rani et al.

Thus any document arising from a patient care activity has the inherent struc-
ture consisting of six relevant information class with class specific characteristics
which we intend to exploit for information extraction. This is explained in the
subsequent discussions. It can be noted that the diagnostic procedure itself is
made up of a complex flow of activities that we have not considered separately.

3 Related Work

Information extraction from medical document is a long standing area of re-
search addressed by a mixture of research communities during past few decades.
An excellent survey is available in [6]. Among the relevant papers, [17] uses a
SVM based supervised model to annotate unseen terms in new texts and con-
texts based on manually annotated terms by domain experts. [21] presents an
approximate dictionary-based biological concept extraction method where the
basic idea is to capture the significant words rather than all words of a concept
which is more related to biomedical field rather than a patient care scenario.
In [20] document retrieval is done on the basis of concepts and their relations.
The basic difference between our approach and these studies is that our focus is
on relevant part within a document rather than the document as a whole.

The study in [8] has some similarity with our thought process but they ex-
plore more in terms of hidden relation extraction using conditional random field
based approach. [9] uses a graphical model based on extension of the basic La-
tent Dirichlet Allocation framework for indexing PubMed abstracts with termi-
nological concepts from ontology. Similar type of study consisting of sub-topic
extraction is considered in [11]. Study conducted in [13] can be identified as a
part of the whole scenario that we have considered here. In [13] a NLP appli-
cation is designed to extract medical problems from narrative texts in clinical
documents that come from a patient’s electronic medical record.

[15] proposes a biological ontology (provided in UML S) based technique for
extracting summarization of texts obtained from BioMed Central. [19] imple-
ments a medical Information Extraction (MedIE) system that extracts a variety
of information from clinical medical records. Taking the help of section headings
they perform ontology based extraction of medical terms, graph-based extraction
of relations using link-grammar parser and text classification using ID3-based
decision tree. [10] presents a framework for patient data extraction along the
line of methodology describes in [19] with an automated storing process in a
relational database.

It can be noticed that at micro-level the output of our approach is a col-
lection of sentences belonging to different types of information related to the
sub-activities in the process flow of patient care. Application for executing simi-
lar (micro-level) task, perceived mainly as passage level information extraction,
is well discussed in literature, viz., [11,12,14,18]. But the integrated approach
to combine them for a single purpose of IE from patient care data is little dis-
cussed in the existing literature which is the focus of this study and the value

Compositional Information Extraction Methodology from Medical Reports 405

addition of this article. Also note that our integrated approach can harness
any such technological/methodological advancement in re-usability context and
increase the net value addition.

4 Compositional Information Extraction Method

The underlying activity flow of a patient care process illustrated in Fig. 1 is the
motivation behind the compositional information extraction approach. As we
have noticed, the activities involved in different levels of a patient care process
generate different classes of information which are of interest to a typical user
(e.g., a physician). Each of the class has some unique characteristic structure,
type of key word and phrase, semantics, vocabulary and so on. Due to these
profound interclass differences, a single holistic approach is not an appropriate
way to address the problem. Instead we plan for differentiated modules, one
for each class of information and combine them on a common platform for the
ultimate execution. The information extraction process adopted in this paper is
an integrated system of three parallel and mutually interacting building blocks:

1. Regular expression based pattern matching.
2. Dictionary based lookup and matching.
3. Heuristic based passage extraction algorithms.

We extract patient related information like age, gender etc. using regular ex-
pressions. Dictionary based lookup along with regular expression based pattern
matching is used for identifying medical tests and test results. Regular expres-
sions are required to identify test result related texts which contain numerical
information separated by measuring units like 130/80 mmHg, 9.84 gm/dl etc.

Dictionary based lookup is the common approach used for identifying medical
entities like disease, diagnosis, drugs, treatment, test and results, sign/symptoms
and follow-up. A category specific dictionary contains a list of words related to
the corresponding medical entity which can always be improved through do-
main expert intervention and hence the extraction efficiency can be improved
as well. It is important to note that test, sign/symptom and past medical his-
tory information are many a times overlapping which need some methodology
to differentiate. So by carefully analyzing the available case reports we develop
heuristics to handle this.

In the next subsections we discuss information extraction methods for the
class past medical history and follow up in detail as there are some typical
complexities to handle.

4.1 Extracting Past Medical History Passages

Past medical history related information in the type of documents we have con-
sidered has some inherent characteristic which restricts the direct applicability
of some reported approaches like in [7] and [16]. The authors of [7] propose a
robust corpus-based approach for temporal analysis of medical discharge sum-
maries.This learning based approach requires large trained corpus and will be

406 P. Rani et al.

history pattern = {for several years, was on therapy, ago, past, history, year previously,
no previous, years previously, many years, when aged, week before, months earlier,
years earlier, previous year, before admission, prior to admission, prior to presentation}

present pattern = {while, treated, initial, demonstrated, showed, confirmed, investiga-
tions, reveal, complained, initially, given, treatment, exam, diagnostics, presentation,
received, arrived, admission, now, normal, diagnosed, was admitted, presented to, on
along, presented with, admitted with, admittance, upon arrival, indicative, indicated,
discharge, on arrival, yet, so far, shortly, presently, recently, follow up, meanwhile,
within, physical examination, on physical examination}

Fig. 2. Patterns of History and Present text phrases

computationally very expensive when we just need to extract past medical his-
tory. The authors of [16] investigate four types of information found in clinical
text that helps in understanding what textual features can be used in extraction
of past medical history which are typically not much prominent in the research
report format.

One of the basic problem in the documents we consider is that the semantics
in these documents do not explicitly express past event related structure since
the documents are written as reports of events observed some time back and
hence the current context is also expressed in past format. Also precise chrono-
logical statement is not available; even if it is there it is mostly not in an explicit
hierarchical order. Thus the usual approaches that rely on graphical representa-
tion of temporal events etc. have a limited or no scope of applicability. We use
heuristic based approach to tackle this problem.

After analyzing the case reports we found that past medical history usually
appears in first half of the case report. Also it may be as a group of sentences in
the beginning or embedded within the case report. We use the spatial order of
sentences present in the report to extract the past medical history. The narration
of the case is assumed to be the present (on current state of patient) and anything
cited before in time will be past history.

We use simple Allen’s temporal logic [7] to find whether one sentence comes
before, after or has no relation with other sentence to identify past medical
history sentences and present sentences. We then identify frequent keywords
found in both type of sentences and use them in extracting passages related to
past medical history.

We use Mafia tool [1] along with a sliding window based algorithm Find-
WordSeq (Fig. 3) to find frequent text patterns or words found in past medical
history and present sentences. Mafia tool is designed to find single frequent words
which we utilize at the outset. Then after removing the duplicates we use these
single frequent words in a sliding window based algorithm FindWordSeq to find
frequent continuous sequence of words (up to size 3). Time complexity of Find-
WordSeq algorithm is O(n), where n is number of words in a file. Note that

Compositional Information Extraction Methodology from Medical Reports 407

FindWordSeq Algorithm:

1. Find frequency of each word in the text /*store it in a Hashmap*/
2. Repeat step 3 for window size k= 1, 2,3
3. While (not end of text)

(a) Use a sliding window of size k
(b) If (all the words in the window are frequent) /*use Hashmap values*/

– Output the word sequence
(c) Read new text in window

Fig. 3. Algorithm to find Frequent Word Sequences

Identifying Frequent Word Patterns:

1. Use Allen’s Temporal Logic to make two set of files – one set containing sentences
belonging to past medical history and other set containing non past medical history
sentences (present).

2. Extract frequent single words from the two set of files using Mafia tool.
3. Use algorithm FindWordSeq to find frequent continuous word sequences from the

two set of files.
4. Remove duplicates from both the sets.
5. Remove common phrases present in both the sets.
6. Label the frequent text phrases of past medical history set files as history pattern

and the frequent text phrases of non past medical history set files as present pattern.

Fig. 4. Identifying frequent word patterns of Past Medical History and Present Sen-
tences

choice of Mafia tool is just for the sake of scalability and open access. Otherwise
frequent single word finding can be addressed independently without any diffi-
culty. After analyzing the available documents we found that existing frequent
continuous word patterns are of maximum length 3, so we set the upper limit
of sliding window size to 3. We also observed that inclusion of text patterns
found by FindWordSeq improves the performance of the past medical history
extraction module.

The process of finding frequent text patterns is explained in Fig. 4. The ob-
tained frequent text phrases in past medical history sentences (history pattern)
and the frequent text phrases in non past medical history sentences (present
pattern) are shown in Fig. 2. We then use a simple heuristic based algorithm
ExtractHistory (Fig. 5) to extract past medical history passages. Using the his-
tory pattern and present pattern set this algorithm exploits the chronological
sentence order present in the case report to extract the past medical history of
a patient. One single scan of the text provides the required information. Time
complexity of this algorithm is linear and depends on the number of sentences.

408 P. Rani et al.

ExtractHistory Algorithm:

1. Mark each sentence as history category sentence or present category sentence on
the basis of phrases or words in history pattern and present pattern respectively.
(a) If a sentence contains words in history pattern mark it as history category

sentence.
(b) If a sentence contains present pattern mark it as present category sentence.
(c) If a sentence contains words both in history pattern and present pattern mark

it as history category sentence.
2. The sentence belonging to history category sentence marks the beginning of past

medical history (PMH). Go on including sentences in PMH until first present cate-
gory sentence is encountered. (The sentences marked in step 1 helps in identifying
the beginning and end of past medical history).

3. Repeat step 2 to find past medical history sentences that are found at different
places in the report.

Fig. 5. Algorithm for Extraction of Past Medical History Sentences

4.2 Follow Up Text Passage Extraction

Two major problems of extracting follow up related information are notably less
volume (in terms of sentence length and/or number of sentences) of it’s descrip-
tion and non-explicitness of the structure. However the spatial information of it’s
location can help in the extraction. The follow up text passage is usually present
at the end of a medical case report. We first find the most frequent keywords
found in follow up. If a sentence contains these keywords then it is added to
follow up passage. We also use the heuristic of including the sentences of last
paragraph before Conclusion or Discussion section as follow up since by manual
analysis we found them usually to be follow up sentences.

5 Experiments and Results

We use three softwares namely Eclipse [2], UIMA (Unstructured InformationMan-
agement Architecture) [3] and MySQL [4] for developing the tool. Most of the cod-
ing is done in Java apart from some preprocessing tasks done using Perl. We use
UIMA framework for implementing the algorithms as it provides a good platform
for integrating different sub-modules for executing a complex task through combi-
nation of simpler sub-tasks. Also it provides support for important functions like
entity annotation, regular expression annotation,POS tagging etc. For experimen-
tation we use the heart disease related research reports collected from Journal of
Medical Case Reports (a open source archive [5]). The collected data is first pre-
processed to remove figures, links, references etc and then converted into simple
text files. These files are supplied as input to the developed tool.

Compositional Information Extraction Methodology from Medical Reports 409

A typical medical case report is in general, but not limited to, a free text for-
mat description of a patient care event starting from past medical history related
description followed by observations and discussions on symptoms/signs, medi-
cal tests and results leading to diagnosis, treatment details covering medication,
surgery or different therapy and concluded by follow up. The typical features of
such type of texts described in a research paper format in the Journal of Medical
Case Reports are realized in the following aspects:

1. There are two broad sections containing the main case presentation and
discussion but typically the information from different fields are entangled.
One notable thing is that the follow up part is often found in the discussion
part entangled with other informations not of interest to us.

2. The sequence of events describing a patient care process is not followed quite
often and later issues are described first.

3. The domain dependence of the vocabulary.
4. Occurrence of numerical values with typical units and characters.
5. The whole report is written after the completion of treatment. Hence recog-

nition of the past medical history related sentence/passage is very confusing.

We use training corpus to learn the regular expressions and other notable fea-
tures to derive heuristic rules. The results of the manually tagged test corpus is
compared with the system extracted results to judge the performance. We con-
sider sentence as the unit level of comparison and compute Precision and Recall
by comparing the system extracted sentences and the corresponding manual ex-
traction. Since the information belonging to the different information classes are
not distributed uniformly within and as well as between documents, a better
way of performance measurements is to consider individual classes over the cor-
pus and evaluate the performance separately for them. We use the macroscopic
method of combining the results in which equal weight is given to all the samples
and so, Precision and Recall values are averaged over all the test samples.

Table 1 presents the overall Precision, Recall and F measure values obtained
over test corpus for classes Past Medical History, Sign/Symptom, Test and Test
Results, Disease/Diagnosis, Treatment and Follow up. Note that F1 measure
is the harmonic mean of Precision and Recall measures while F2 gives twice
weightage to Recall and F0.5 gives twice weightage to Precision. Definition of F2

and F0.5 measures are given below:

F2 = (1 + 22) · Precision · Recall/(Precision + 22 · Recall)

F0.5 = (1 + 22) · Precision · Recall/(22 · Precision + Recall)

5.1 Discussion

Results show excellent performance for Diagnosis and good performance for Past
Medical History. For Follow up performance is average. But for Signs/Symptoms,
Test and Treatment performance is less than average. One major reason of poor

410 P. Rani et al.

Table 1. Performance measure values for the six information classes

Class Precision Recall F1 F2 F0.5

Diagnosis 1 0.849206 0.918455 0.875614 0.965704
Signs/Symptoms 0.457173 0.412698 0.433799 0.420887 0.447528

Past Medical History 0.774376 0.588889 0.669014 0.61852 0.728485
Test and Results 0.714361 0.379107 0.49534 0.418376 0.607003

Treatment 0.5 0.39418 0.440828 0.411602 0.474522
Follow up 0.444709 0.620075 0.517951 0.574746 0.471371

performance for Sign/Symptom, Test and Treatment is that corresponding dic-
tionaries do not cover all possible cases. We expect that consulting a domain
expert will significantly improve the performance for these classes. It seems that
we also need to apply natural language processing techniques for Sign/Symptom
class where the patient’s feeling related expression characterizes the texts heavily.
Same applies for Follow up also because it is expressed through deep semantics
and occupies comparatively very less portion in the case reports.

An obvious point arises here regarding the comparison of our approach with
others. We would like to emphasize that there is hardly any room for such a study
since our approach is a holistic one and the related literature, as discussed in
section 3, are mostly focused towards extraction of a few specific information type
from specific kind of medical documents. While the existing literature focuses
on the efficient extraction of some atypical information from a document, we
concentrate on the relevant extraction of information by first defining “relevance”
contextually through characterization of document creation process and user’s
perspective. Thus when the context shifts from a physician’s interest to that of
a pharmacist, the relevance might lie in a few of the medical entities, mentioned
before in section 2. For example a pharmacist’s interest may be in the proposed
medicines and the corresponding chemical groups if such information is contained
in the text.

Another point to be noted is the performance aspect of our approach. There
are scopes to improve the extraction performance by adapting techniques from
Natural Language Processing or exploring inter class associations of the med-
ical entities mentioned earlier. But we want to emphasize that the ingenuity
of our approach lies in the perception of “relevance” of information through
document creation process where information artifacts are generated stage wise
in the evolution of a compound activity. The compound activity is carried out
through execution of interrelated sub activities. Our aim is to propose the con-
struction of a system that addresses relevant information extraction in a holistic
manner. Once the system construction is addressed, performance enhancement
can be achieved by adapting efficient extraction processes for individual mod-
ule construction. Thus the paper is not intended to explore the achievement in
performance/efficiency aspect but to introduce a novel idea.

Compositional Information Extraction Methodology from Medical Reports 411

6 Conclusion

In this paper we proposed a compositional approach for extracting necessary
information for six different classes namely past medical history, sign/symptom,
test and results, diagnosis, treatment and follow up from a free format medical
case report emerging from a patient care process. We perceive a patient care
process as a sequence of multiple sub-processes and the aforesaid information
classes are considered to be outcome of different sub-process(es). We proposed
a module based approach where each type of information is extracted using
specific module(s) and the modules are integrated to work as a single composite
system. The methodology is mainly based on heuristic approach that uses regular
expressions, dictionary and different types of rules that are learned from the
training corpus and the associated openly available resources. It can be noted
that the ingenuity of the paper is the inception of a holistic and relevant IE
approach from medical case research reports which is a kind of novel in it’s class
and hence not much scope for comparison with existing approach and/or study
on the performance measure/enhancement is conceived.

Similar idea can be ported to any domain for extraction of relevant informa-
tion from a free format text. Once we perceive the process flow of the events
underlying the text generation, we can define the relevance as the informational
artifacts generated at the granular process levels and set the information class
and execute the subsequent stages to construct a composite system.

References

1. http://himalaya-tools.sourceforge.net/Mafia/

2. http://www.eclipse.org/

3. http://incubator.apache.org/uima/

4. http://www.mysql.com/

5. http://jmedicalcasereports.com/

6. Afantenos, S., Karkaletsis, V., Stamatopoulos, P.: Summarization from medical
documents: a survey. Artif. Intell. Med. 33(2), 157–177 (2005)

7. Philip, B., Deshpande, P., Lee-and, Y.K., Barzilay, R.: Finding Temporal Order in
Discharge Summaries. In: EMNLP (2006)

8. Bundschus, M., Dejori, M., Stetter, M., Tresp, V., Kriegel, H.-P.: Extraction of
semantic biomedical relations from text using conditional random fields. BMC
Bioinformatics 9(1), 207 (2008)

9. Bundschus, M., Dejori, M., Yu, S., Tresp, V., Kriegel, H.-P.: Statistical modeling
of medical indexing processes for biomedical knowledge information discovery from
text. In: BIOKDD 2008 (2008)

10. Han, H., Choi, Y., Choi, Y.M., Zhou, X., Brooks, A.D.: A Generic Framework:
From Clinical Notes to Electronic Medical Records. In: CBMS 2006, pp. 111–118
(2006)

11. Hearst, M.A.: Multi-paragraph segmentation of expository text. In: Proceedings of
the 32nd Annual Meeting on Association for Computational Linguistics, pp. 9–16
(1994)

12. Mangold, C.: A survey and classification of semantic search approaches. Int. J.
Metadata Semant. Ontologies 2(1), 23–34 (2007)

http://himalaya-tools.sourceforge.net/Mafia/
http://www.eclipse.org/
http://incubator.apache.org/uima/
http://www.mysql.com/
http://jmedicalcasereports.com/

412 P. Rani et al.

13. Meystre, S., Haug, P.J.: Natural language processing to extract medical problems
from electronic clinical documents: Performance evaluation. J. of Biomedical In-
formatics 39(6), 589–599 (2006)

14. Mooney, R.J., Bunescu, R.C.: Mining knowledge from text using information ex-
traction. SIGKDD Explorations 7(1), 3–10 (2005)

15. Morales, L.P., Esteban, A.D., Gervás, P.: Concept-graph based biomedical auto-
matic summarization using ontologies. In: TextGraphs 2008, pp. 53–56 (2008)

16. Mowery, D.L., Harkema, H., Dowling, J.N., Lustgarten, J.L., Chapman, W.W.:
Distinguishing historical from current problems in clinical reports: which textual
features help? In: BioNLP 2009, pp. 10–18 (2009)

17. Takeuchi, K., Collier, N.: Bio-medical entity extraction using support vector ma-
chines. Artif. Intell. Med. 33(2), 125–137 (2005)

18. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E.,
Ciravegna, F.: Semantic annotation for knowledge management: Requirements and
a survey of the state of the art. Web Semantics 4(1), 14–28 (2006)

19. Zhou, X., Han, H., Chankai, I., Prestrud, A., Brooks, A.: Approaches to text mining
for clinical medical records. In: SAC 2006, pp. 235–239 (2006)

20. Zhou, X., Hu, X., Lin, X., Han, H., Zhang, X.-d.: Relation-Based Document Re-
trieval for Biomedical Literature Databases. In: Li Lee, M., Tan, K.-L., Wuwongse,
V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 689–701. Springer, Heidelberg (2006)

21. Zhou, X., Zhang, X., Hu, X.: MaxMatcher: Biological concept extraction using
approximate dictionary lookup. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS
(LNAI), vol. 4099, pp. 1145–1149. Springer, Heidelberg (2006)

A Framework for Semantic Recommendations in
Situational Applications

Raphaël Thollot1 and Marie-Aude Aufaure2

1 SAP BusinessObjects, 157 rue Anatole France, 92309 Levallois-Perret, France
raphael.thollot@sap.com

2 Ecole Centrale Paris, MAS laboratory, 92290 Chatenay-Malabry, France
marie-aude.aufaure@ecp.fr

Abstract. Information overload is an increasingly important concern as
users access and generate steadily growing amounts of data. Besides, en-
terprise applications tend to grow more and more complex which hinders
their usability and impacts business users’ productivity. Personalization
and recommender systems can help address these issues, by predicting
items of interest for a given user and enabling a better selection of the
proposed information. Recommendations have become increasingly pop-
ular in web environments, with sites like Amazon, Netflix or Google
News. However, little has been done so far to leverage recommendations
in corporate settings. This paper presents our approach to integrate rec-
ommender systems in enterprise environments, taking into account their
specific constraints. We present an extensible framework enabling het-
erogeneous recommendations, based on a semantic model of users’ sit-
uations and interactions. We illustrate this framework with a system
suggesting structured queries and visualizations related to an unstruc-
tured document.

1 Introduction

Information overload is a well-known issue in information systems, and users face
the difficult task of choosing among many existing sources those likely to satisfy
their needs. Not only more and more data are generated by a profusion of web
sites and services, but users access it in new diversified ways, e.g., using multi-
function mobile devices. Therefore, systems need to be developed to facilitate
the selection of information adapted to the current user context.

These considerations have partly driven two related research areas, recom-
mender systems and context awareness. The first one aims at predicting items
of interest for a given user, and the second intends to adapt information and ser-
vices to the current user’s environment. Our work aims at defining a framework
bringing these two approaches together.

1.1 Recommender Systems: Web and Enterprise Perspectives

Recommender systems (RS) are considered a major technological trend in both
industrial and academic environments. The goal of a recommender system (RS)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 413–428, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

414 R. Thollot and M.-A. Aufaure

is to provide personalized recommendations to improve and accelerate the user’s
navigation in a vast space of available resources. Techniques have been developed
to serve this purpose, using similarity measures between items, users and user-
item pairs. These techniques can mainly be categorized in content-based (CB)
and collaborative filtering (CF) approaches. The CB approach considers a user
may be interested by items similar to those he liked in the past. On the other
hand, CF techniques consider that a user may appreciate items that other users
with similar tastes have appreciated. The two approaches are often combined
into hybrid systems to address their respective shortcomings [2].

Recommender systems have become popular thanks to web sites like Amazon,
Netflix or Google News. In e-commerce contexts, these techniques directly benefit
both the user – with an improved navigation – and the service provider – by
encouraging more sales from each customer. To the best of our knowledge, little
has been done to apply RS techniques in corporate environments, where users
are employees of the same company, even though such systems could positively
impact their productivity. We consider that web and corporate environments
are often very different given the nature of resources, business users’ needs and
security constraints. To best serve business users’ needs, a corporate RS should
enable recommendations of very heterogeneous resources like a customer from
a CRM system, an application on a company’s Intranet, a common process to
follow, experts who might help, etc. Besides a lot of work has been done in web
settings to leverage users’ feedback coming through ratings, which we believe are
difficult to generalize to varied corporate resources. For instance, users are not
likely to rate personal emails or processes as they would rate cultural products
on a web site. Moreover, some special cases are bound to raise critical privacy
or political issues (e.g., employees rating themselves or their manager).

1.2 Context-Awareness and Situational Applications

Initially considered in so-called “intelligent environments”, e.g., to deal with data
acquired from sensors, the notion of context has since been used with varying
definitions. Dey defines the context as the state of any entity that impacts the in-
teraction between the application and the user [7]. This definition highlights the
fact that context cannot be limited to device adaptation or location sensitivity.

As opposed to the experience of a user limited to one given web site inside
a browser, a business user evolving inside a company’s network may interact
in varied ways with several communicating applications. Ideally, these applica-
tions would share the same knowledge and representation of the user’s interests
and intentions to better assist her and ease inter-operability. Such user-centric
applications are called situational applications and they emphasize the need to
leverage a shared representation of users, resources and their interactions. Vari-
ous context-aware systems have been developed and presented in the literature,
most of them using specific user and context models. Unfortunately, sharing
these models has not necessarily been a priority, which lead to many distinct
semantics and little shared understanding.

Framework for Semantic Recommendations in Situational Applications 415

1.3 Motivations of Our Work

We briefly presented the growing interest for recommender systems on the web,
and we consider such systems would be very valuable if applied in corporate
environments. However, doing so means taking a certain number of constraints
into consideration:

Resources and interactions heterogeneity. Resources of interest for a busi-
ness user are bound to come from various sources and be of very different
nature, be it documents, applications, structured data, etc. Interactions, or
more generally relations between resources may also carry different seman-
tics (user1 is reading document1, document1 written by user2, user1 manages
account customer1, document1 mentions customer1, etc.).

Applications inter-operability. Users exploit different applications to per-
form their daily activities and these applications rarely share much of the
user’s knowledge, which leads for instance to unnecessary repeated input or
incomplete users’ profiles and context models.

Security constraints. It is frequent, in web settings, that all resources can
be recommended to a user. On the other hand, this is rarely possible with
corporate resources where security constraints are often more complex (e.g.,
critical data from a finance or human resources department is not available
to everybody).

Recommendations usually base on some representation of a user’s profile (pref-
erences, history, etc.). Context-aware systems are complementary and go beyond
preferences to characterize dynamic interactions with available resources.

Given the broad range of resources to consider and the importance of sharing
models between applications to enable inter-operability (especially in a corporate
environment) such system requires the definition of a common meta-model to
describe users and their environments.

Multiple recommender systems have been developed to serve different needs,
and it is hard to consider that one RS could be generic enough to serve relevant
recommendations for any type of resource.

In response to these challenges, the work described in this paper brings the fol-
lowing contributions: (a) We define a framework for secure recommendations in
corporate environments. (b) Varied resources and interactions between them are
dynamically and homogeneously represented with semantic web technologies, en-
abling inter-operability. (c) Specific recommendations may be developed thanks
to the framework modularity. We experiment our framework by implementing
a recommendation scenario in a Business Intelligence (BI) context, successfully
combining the semantics of different models (BI queries, security rules, entities
extracted in an unstructured document).

2 Situation Modeling

Situational applications base on a situation model, defined by Heckmann as the
combination of a user model, a context model and a resource model [10]. In both

416 R. Thollot and M.-A. Aufaure

web and corporate settings, interactions between resources can be manifold and
we believe their semantics is crucial to interpret users’ interests. This section
describes our approach to provide a homogeneous representation of available
resources and their interactions thanks to a common graph-based meta-model.

2.1 Graph Repository

A corporate recommender system should integrate knowledge and resources from
various source systems (CRM, social network, BI data, etc.). We consider a com-
mon unifying ground is necessary to achieve this, and graphs are a natural and gen-
eral representation. We thus rely on a simple graph-based meta-model describing
different types of available nodes and relations in an RDFS schema noted Sbase.
Building and maintaining the complete graph of available resources would be ex-
tremely costly, which leads to adopt a modular approach. The Graph Repository
GR can thus be seen as an aggregation of several partial graphs Gi = (Ni, Ei),
defining nodes Ni and edges Ei identified by URIs. Each graph Gi is populated and
maintained by a provider Pi = (Gi, Si). Si is the custom schema that Pi may de-
clare (when registering to the repository) to define specific types, extending Sbase.
To enable schema-based reasoning, the complete schema S is obtained by merging
provider-specific schemas: S = Sbase ∪ (

⋃m
i=1 Si). Eventually, with G =

⋃m
i=1 Gi,

the graph repository can be noted GR = (G, S).
Many providers can be considered, for instance to describe the social network

between employees (e.g., from an LDAP directory) or relations between account
managers and customers (from a CRM system). However, most corporate sys-
tems impose security constraints like access-control rules. Therefore, providers
may have to authenticate on remote systems either with the credentials of a
given user, or using a specific account if more access rights are necessary (and
granted by the IT department).

2.2 Situation Statements

Heckmann et al. introduced situation statements, a data structure used to rep-
resent the unit of information in situation modeling [9]. Our work bases on this
structure to elaborate on an aggregated and dynamically maintained represen-
tation of a user’s situation. This section briefly introduces situation statements,
which have been described in more details in [10].

Situation statements have been defined as extended triples representing as-
sertions formed of a subject S, a predicate P and an object O, like ‘Maggie
reading document1’. Additional metadata M integrate temporal restrictions,
privacy settings, origin and confidence. A statement can then be noted as a tuple
(S, P, O, M), with M = (origin, t, l, s, c). The origin indicates which agent cre-
ated this statement. We define agents as resources of the system which can create
statements (providers, users, operators, client applications, etc.). The timestamp
t and the expected lifetime l are used to handle time-related validity constraints.
The privacy setting s indicates whether this statement is public, private or has
custom access authorizations. Finally, the confidence attribute c allows agents

Framework for Semantic Recommendations in Situational Applications 417

Fig. 1. Architecture overview: main components of the situation management platform

– like operators described in section 3.4 – to qualify the reliability level of the
statement, which is key in distributed environments (e.g., situational applica-
tions inside a corporate network). A statement (S, P, O, M) is an extended type
of relation between two resources S and O of the repository GR. This approach
differs from the one proposed by Heckmann et al., where distributed ontolo-
gies (including GUMO [11]) were used to represent resources without security
restrictions.

In a statement, the predicate P is crucial since it defines the semantics of the
interaction between S and O. The expected lifetime attribute can be overriden
for each statement, but the predicate P determines its default value.

At a given point in time, the situation of a user can be defined as the consoli-
dation of valid statements. The user’s situation finally takes the form of a graph,
centered on the user to reflect its particular importance [3, chap. 2]. The next
section presents the overall architecture of a situation management platform,
handling among other things dynamic aspects.

3 Situation Platform

We presented our approach to model situations using a uniform data structure
called situation statement, in conjunction with an extensible graph repository.
This section presents the high-level architecture of our situational platform and
its major components.

418 R. Thollot and M.-A. Aufaure

3.1 Architecture Overview

The role of the situation platform is to continuously maintain a complete and
consistent view of users’ situations. Doing so implies a constant monitoring of
interactions between resources, and actions to reflect these events in situations
graphs. Required operations are performed thanks to a set of core components,
illustrated in Figure 1 and described below.

Graph repository. This repository is the central component, referencing all
partial graphs managed by registered providers (see section 2.1). Models are
built by a factory which allows and controls the creation of graphs backed
by SQL databases, by XML/RDF files or simply held in memory.

Situations. The situation management component mainly consists of a cache
keeping graphs of monitored situations in memory, or initializing them from
stored statements on a per-need basis.

Business events. An event defines an interaction between two resources and
can be seen as a specific kind of statement. Events are sent to the platform
which queues them up so they can be further analyzed asynchronously.

Activation rules. Rules are defined to react to events and activate specific
operators with determined parameters. These rules may express constraints
on the event itself and information present in the graph repository.

Operators. Operators are used to perform core operations on situations graphs.
They can add new statements or update/delete existing ones. The way op-
erators are used and applied in response to events is determined by a set of
activation rules.

3.2 Business Events – Situation Dynamics

Business events are the crux of dynamic situation management, they describe
interactions between resources. Therefore, they are very similar to statements.
Events can be external as well as internal (raised by the platform itself). Ex-
ternal events are sent by client situational applications to contribute to and
benefit from the more complete, aggregated view of a user’s situation (including
recommendations).

The situation platform reacts to these business events to continuously update
situations. Resulting operations or actions may require a long processing time
and need to be run asynchronously. Events are thus prioritized and queued.

The platform exposes an interface through which events can be sent and
added to the queue. The event ‘Maggie reading document1’ can be described
as a statement and sent to the platform. Additional statements may be em-
bedded to enrich the event description (e.g., document1 sentBy John, Maggie
hasMeeting meet1, meet1 hasParticipant John, etc.). This relies on a uniform
event description using the RDF-S schema defined by the graph repository. The
listing below is the RDF representation of the previous event.

Framework for Semantic Recommendations in Situational Applications 419

<rdf:RDF xmlns:rdf="..." xmlns:rdfs="..." xmlns:repo="http://.../grepo/1.0#">

<rdf:Description rdf:nodeID="A0">

<rdf:type rdf:resource="http://.../#MeshStatement"/>

<repo:hasSource rdf:resource="http://.../users/Maggie"/>

<repo:hasPredicate rdf:resource="http://.../predicates/read"/>

<repo:hasTarget rdf:resource="http://.../document1"/>

<repo:hasOrigin rdf:resource="http://.../clients/EmailClient_Plugin"/>

<repo:priority>2</repo:priority>

</rdf:Description>

<rdf:Description rdf:about="http://.../clients/EmailClient_Plugin">

<rdfs:label>EmailClient_Plugin</rdfs:label>

<rdf:type rdf:resource="http://.../#Agent"/>

</rdf:Description>

<rdf:Description rdf:about="http://.../users/Maggie">

<rdf:type rdf:resource="http://.../#UserAgent"/>

</rdf:Description>

<rdf:Description rdf:about="http://.../document1">

<repo:content>Our revenue target was not reached...</repo:content>

<rdfs:label>document1</rdfs:label>

<rdf:type rdf:resource="http://.../#UnstructuredDocument"/>

</rdf:Description>

<rdf:Description rdf:about="http://.../predicates/read">

<rdf:type rdf:resource="http://.../#StatementPredicate"/>

</rdf:Description>

</rdf:RDF>

The next two sections present activation rules and operators which can be added
to the platform to evaluate and respond to events with different semantics.

3.3 Activation Rules

In event-driven architectures, the Event-Condition-Action (ECA) structure can
be used to define active rules, with clear declarative semantics [5]: ON event IF
condition DO action. Rules are used to react to specific events and trigger
additional processing, if some conditions are met.

We adopt the ECA structure to define activation rules. The event part is used
to filter events to which the rule applies. The condition part defines additional
conditions that need to be satisfied. Finally, the action part defines operations to
perform when the rule is activated. This approach is similar to the one presented
by Beer et al. with their CAIPS system [4].

Below is an example of rule used to activate a stemming operator when a
user interacts with an unstructured document (e.g., an email). This may be
used before applying other operators related to text processing (for instance an
operator performing Named Entity Recognition, NER).

420 R. Thollot and M.-A. Aufaure

<rule>

<event>

eventUser:=(SUBJECT HAS_TYPE "http://.../#UserAgent")

AND eventDoc:=(OBJECT HAS_TYPE "http://.../#UnstructuredDocument")

</event>

<condition >

NOT(EXISTS(s,

(s.SUBJECT IS "http://.../operators/stemming")

AND (s.PREDICATE IS "http://.../predicates/has_processed")

AND (s.OBJECT IS eventDoc))

</condition>

<action>

CALL "http://.../operators/stemming"

WITH_PARAMS eventDoc

ON_BEHALF_OF eventUser

</action>

<description>

Stems an ‘unstructured document’ a ‘user agent’ interacts with

</description>

</rule>

In this example, the event block filters events to keep only those stating that
a user agent (or a node of type user agent) is interacting with an unstructured
document.

The condition is an execution guard, it avoids to call multiple times the stem-
ming operator on the same document. This aspect – and more generally depen-
dencies between operators – is presented in more details in the next section. In
our case, rules conditions can be expressed as queries on the graph repository.

The action part indicates the activated operator (stemming) and parame-
ters to pass through. The complete call syntax is CALL operator WITH PARAMS
params... ON BEHALF OF user . The list of parameters params results from
the event-filtering and condition-evaluation process, using bound variables. In
the above example, the only parameter passed is the document mentioned by
the event, and operations will be performed on behlaf of the concerned user.
The operator will thus be able to access and operate on this user’s situation.
The next section discusses operators in more details.

3.4 Operators and Recommendations

Operators are key components which maintain situations graphs by adding,
updating or deleting statements. These operations represent either explicitly
declared facts (e.g., Maggie reading document1) or knowledge resulting of addi-
tional processing (for instance a NER result, like document1 mentions entity37).

The situation platform manages a pool of registered operators which can be
developed to interpret the specific semantics of various providers and/or events.
Many operators can be considered to perform a broad range of tasks. Table 1 lists
examples of operators implemented for the experimentation scenario, discussed
in section 4.

Framework for Semantic Recommendations in Situational Applications 421

Table 1. Examples of operators. This include system operators and specific ones re-
lated to the experimentation (see section 4).

Operator Description

Expiry checker (sys-
tem)

Checks statements of a given situation to determine and
remove those that are outdated. Outdated statements are
stored as historical data.

Consistency checker
(system)

Conflicting statements have to be resolved to ensure the
situation view is coherent.

Stemmer Applies stemming to unstructured resources.
NER Performs Named Entity Recognition on text resources, ex-

tracting entities with various dictionaries. Extracted entities
are mapped to objects of the data warehouse the user can
see.

Query recommenda-
tion

Combines results of entity extraction with the semantics of
a business domain to suggest meaningful queries.

The previous section described how activation rules are used to trigger oper-
ators with dynamic parameters. We distinguish two types of operators based on
the way they are invoked. The first category includes generic operators, simply
called with the CALL operator WITH PARAMS params... command. Operators
of this category do not access any specific user’s situation and the ON BEHALF OF
part of the command is not necessary. On the other side, the second category
contains situation operators, that is operators which perform their actions on
behalf of a dynamically determined user. Such operators are invoked with pa-
rameters as well the concerned user’s situation.

Some tasks can be performed independently, but two operators may also de-
clare mutual dependencies. For instance, an operator performing Named Entity
Recognition may require that stemming has been applied first to increase the re-
call. Such dependencies can be expressed using conditions in rules, checking the
existence of a given statement. In the previous example, the stemming operator in-
dicates it has processed a document by adding the statement stemmingOperator
hasProcessed document1. The activation rule for the NER operator can impose
the dependency by simply adding a condition to check if this statement exists.

Situation operators are distinguished from others since they can modify users’
situations. Among them, some may contribute specific statements interpreted
as recommendations (e.g., document2 suggested for Maggie). Like all situation
operators, recommendation operators benefit from the user’s situation view, the
semantics of which can be used to better personalize and dynamically adapt
recommendations made to a user.

4 Experimentation

In this section we present results obtained with a prototype implementation of
the situation platform. We illustrate the applicability and interest of the ap-
proach by integrating a first recommender system, Text-To-Query (T2Q) [20].

422 R. Thollot and M.-A. Aufaure

This system suggests structured queries to be executed on a corporate data
warehouse, related to a text document.

4.1 Prototype Platform Implementation

Graph Repository. The architecture presented in section 3.1 strongly relies on
the graph repository, populated by various providers. The implementation en-
ables the uniform data representation using RDF and RDFS, backed by the java
library Jena. Providers create and populate graphs through a factory, enabling
in-memory, file-based or SQL-backed storage of data.

The repository gives an access to data from registered providers. Figure 2
illustrates the graph viewer of the platform administration UI. It also exposes
the complete RDFS schema obtained by merging provider-specific schemas in
the core repository schema. Our implementation leverages interesting function-
alities coming with semantic web technologies, e.g., merging RDF graphs (e.g.,
to aggregate custom schemas defined by providers) and SPARQL-querying. We
also use simple RDFS reasoning at the schema level, e.g., for subclass and sub-
property relationships.

Extensibility and Operations. The extensibility of the framework is an im-
portant aspect of the platform. First, providers which create and populate graphs
can be plugged in the repository to contribute more entities and relations. In
future work, we will focus on improving storage and querying scalability with a
distributed database approach, e.g., using the Apache Cassandra project. This
strategy is enabled using a factory pattern, which allows the implementation of
custom storage adapters.

Operators are themselves treated as modules and dependencies between them
allow a good division of tasks, encouraging reusability. Operators – in particular
those providing recommendations – can leverage the user’s situation semantics to
perform their specific operations. However, since graphs are a very general rep-
resentation, operators can still implement other recommendation techniques like
content-based matching or collaborative filtering. Content-based methods can
leverage attributes associated to nodes and relations to represent various things
like keywords, title, etc. Besides, a graph can easily be represented as a matrix,
which opens the door for more statistical processing, for instance collaborative
filtering techniques.

4.2 Text-To-Query: An Example of Recommendation Operator

T2Q is a system that dynamically generates structured queries to be executed on
a corporate data warehouse, related to a text document. T2Q leverages models of
business domains (defining measures and dimensions) in a data warehouse to au-
tomatically create dictionaries of entities. These dictionaries are used at runtime
to perform entity extraction, and results can be combined to form meaning-
ful queries. The complete recommendation process has been presented in more
details in [20], and we illustrate here more specifically the operator-oriented im-
plementation.

Framework for Semantic Recommendations in Situational Applications 423

Fig. 2. Graph viewer showing some objects of the data warehouse and (functional)
dependencies between them

From the provider point-of-view, T2Q bases on a representation of data ware-
house objects defined in business domains models. A provider has been developed
to populate a graph describing measures and dimensions of a business domain,
and their mutual dependencies. The graph viewer of Figure 2 displays these
objects and dependencies. This provider requires users credentials to a Business
Intelligence platform, so authentication and security rights can be applied. Then,
at runtime, recommendation operations can be divided and implemented with
the following operators, listed in Table 1:

(a) Stemming. Stemming is applied to the text to increase recall of entity ex-
traction. We used the stemming technology provided by the BusinessObjects
Text Analysis SDK. This SDK also provides a Part-Of-Speech tagger but we
do not leverage it in our solution.

(b) NER and mapping. Named Entity Recognition is applied to the stemmed
text. The BusinessObjects Text Analysis platform exposes entity extraction
services allowing standard and custom dictionaries to be used. Extracted
entities are mapped to objects of the data warehouse the user can see.

(c) Query recommendation. Data warehouse objects are combined using
their semantics (hierarchies and functional dependencies) to propose mean-
ingful queries and visualizations.

These operations produce a certain number of statements, as illustrated in Fig-
ure 3. The left column lists processed and queued events. When a processed

424 R. Thollot and M.-A. Aufaure

Fig. 3. Events viewer showing statements resulting of an event processing

event is select, statements resulting of its processing are displayed in the grid
at the right hand side. For each statement, the following fields/attributes are
listed: source, predicate, object, origin, timestamp and confidence. Some of these
statements were added (by operators) to Maggie’s situation. The resulting situ-
ation graph is shown in Figure 4.

T2Q presents a first recommendation scenario using purely graph-based se-
mantics. However, as mentioned before, the platofrm allows more operators to
be developed and integrated so diversified recommendations can be produced.
These recommendations may also leverage content-based or collaborative filter-
ing techniques. Moreover, the modular approach enables reusability of previously
implemented operations.

5 Related Work

This section presents some related works in the following research areas: context-
awareness, situation modeling, personalization and recommender systems.

5.1 Context-Awareness and Situation Modeling

Research around context-awareness and pervasive or ubiquitous systems has
been very active. These systems are meant to provide information and services
to users, adapted to their context. Several architectures have been presented
for developing context-aware systems [8][21]. These systems leverage different
types of context models. Some used simple key-value pairs which lack semantics,

Framework for Semantic Recommendations in Situational Applications 425

Fig. 4. Graph of Maggie’s situation after the event ‘Maggie read document1’ and ac-
tivated operators

others, like [13], relied on object models which may be hard to share between
client applications. Finally, more recent works have proposed ontology-based
models which enable a uniform representation (e.g., using RDF) and improve
reasoning [22][16].

The notion of context can be very broad [14], but Dey defines it as any infor-
mation characterizing the state of an entity that impacts the interaction between
the application and the user [7]. The type of device and geographical position
are often used parameters, as in [14]. However, beyond these simple parameters,
the previous definition highlights the importance of capturing interactions.

Heckmann et al. reconciliated user, context and resources models into the
notions of situation [10] and situated interaction [9]. They introduced situation
statements which we leverage in our solution. In our work, we try to go beyond
the static view of a situation at a given point in time and we elaborate on
dynamic aspects.

5.2 Personalization and Recommender Systems

Personalization plays an important role in recommender systems. To provide
user-dependent recommendations, these systems need to capture some knowl-
edge about the current user, his hobbies, interests, goals, etc. The user profile is
then a core piece of Generic User Modeling Systems, thoroughly reviewed in [15].

It is necessary for a recommender system to be able to compare two resources,
two users or estimate the relatedness between a resource and the user’s profile.

426 R. Thollot and M.-A. Aufaure

Most recommender systems fall either in content-based (CB) or collaborative fil-
tering (CF) approaches [18]. The latter approach has been later refined to exploit
a trust network between users, like in TruskWalker [12]. This allows narrowing
the collaborative contribution to the current user’s neighborhood, supposedly
more relevant. On the other hand, a content-based system tries to maximize
the similarity between the user’s interests and the content of its suggestions [3].
Available resources can be of very different types and similarity measures have
to be defined to determine how close two of them are. Designed measures are
thus very specific to the chosen representation for the information content. In
our work, we address this heterogeneity issue with the graph repository, exposing
a common meta-model.

Based on the underlying recommendation method, different techniques have
been considered to introduce context sensitivity in recommender systems. From
the CF perspective, Adomavicius proposed the extension of the user-item space
with additional context dimensions, leading to multi-dimensional approaches [1].
In CB systems, items are represented through a set of descriptive features. The
user context can help determine the most interesting features [17]. Most im-
portantly, our approach brings a unified model towards situation and resources
modeling, adapted to multiple recommendation techniques.

6 Conclusion and Future Work

In this paper, we have presented a modular framework enabling recommen-
dations for situational applications in corporate environments. The situation
platform bases on a homogeneous representation of varied resources in a graph
repository, populated by secure providers. This platform dynamically maintains
situation graphs, interpreting events thanks to a set of operators. Additional
operators can easily be implemented and registered to the platform to perform
varied tasks. In particular, recommendation operators benefit from dynamic and
homogeneous situation models to enable personalized suggestions.

The proposed framework was first experimented by implementing Text-To-
Query, a recommender system suggesting queries and visualizations related to a
text. This experimentation illustrated the importance of the framework extensi-
bility and modularity, encouraging new attempts to diversify recommendations
and refine situation models. In future work, we will focus on pursuing the ex-
perimentation by extending recommendation use cases. In particular, it seems
promising to consider the interpretation of situation semantics in conjunction
with statistical approaches (e.g., content-based or collaborative-filtering tech-
niques). In order to reach the scalability required with diversified scenarios, we
will also focus our work on extending the graph repository storage with a dis-
tributed database, e.g., using the Apache Cassandra project.

Acknowledgements

This work was supported by SAP BusinessObjects Academic Research Center
(ARC).

Framework for Semantic Recommendations in Situational Applications 427

References

1. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating con-
textual information in recommender systems using a multidimensional approach.
ACM Transactions on Information Systems 23, 103–145 (2005)

2. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl.
Data Eng. 17(6), 734–749 (2005)

3. Alag, S.: Collective Intelligence in Action. Manning Publications (2008)
4. Beer, T., Rasinger, J., Höpken, W., Fuchs, M., Werthner, H.: Exploiting e-c-a rules

for defining and processing context-aware push messages. In: Paschke, A., Biletskiy,
Y. (eds.) RuleML 2007. LNCS, vol. 4824, pp. 199–206. Springer, Heidelberg (2007)

5. Behrends, E., Fritzen, O., May, W., Schenk, F.: Combining eca rules with process
algebras for the semantic web. In: Eiter, T., Franconi, E., Hodgson, R., Stephens,
S. (eds.) RuleML, pp. 29–38. IEEE Computer Society, Los Alamitos (2006)

6. Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): Adaptive Web 2007. LNCS, vol. 4321.
Springer, Heidelberg (2007)

7. Dey, A.K.: Understanding and using context. Personal and Ubiquitous Comput-
ing 5(1), 4–7 (2001)

8. Gu, T., Pung, H.K., Zhang, D.: A service-oriented middleware for building context-
aware services. J. Network and Computer Applications 28(1), 1–18 (2005)

9. Heckmann, D.: Distributed user modeling for situated interaction. In: Cremers,
A.B., Manthey, R., Martini, P., Steinhage, V. (eds.) GI Jahrestagung (1). LNI,
vol. 67, pp. 266–270. GI (2005)

10. Heckmann, D.: Situation modeling and smart context retrieval with semantic web
technology and conflict resolution. In: Roth-Berghofer, et al. [19], pp. 34–47

11. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-
Moellendorff, M.: Gumo - the general user model ontology. In: Ardissono, L., Brna,
P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 428–432. Springer,
Heidelberg (2005)

12. Jamali, M., Ester, M.: TrustWalker: a random walk model for combining trust-
based and item-based recommendation. In: Elder IV, J.F., Fogelman-Soulié, F.,
Flach, P.A., Zaki, M.J. (eds.) KDD, pp. 397–406. ACM, New York (2009)

13. Jrad, Z., Aufaure, M.A., Hadjouni, M.: A contextual user model for web person-
alization. In: Weske, M., Hacid, M.-S., Godart, C. (eds.) WISE Workshops 2007.
LNCS, vol. 4832, pp. 350–361. Springer, Heidelberg (2007)

14. Kirsch-Pinheiro, M., Villanova-Oliver, M., Gensel, J., Martin, H.: Context-aware
filtering for collaborative web systems: adapting the awareness information to the
user’s context. In: Haddad, H., Liebrock, L.M., Omicini, A., Wainwright, R.L.
(eds.) SAC, pp. 1668–1673. ACM, New York (2005)

15. Kobsa, A.: Generic user modeling systems. In: Brusilovsky, et al. [6], pp. 136–154
16. Liu, C.-H., Chang, K.-L., Chen, J.J.-Y., Hung, S.C.: Ontology-based context rep-

resentation and reasoning using owl and swrl. In: CNSR, pp. 215–220. IEEE Com-
puter Society, Los Alamitos (2010)

17. Loizou, A., Dasmahapatra, S.: Recommender systems for the seman-
tic web. In: ECAI 2006 Recommender Systems Workshop (2006),
http://eprints.ecs.soton.ac.uk/12584/

18. Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized search on the
world wide web. In: Brusilovsky, et al. [6], pp. 195–230

http://eprints.ecs.soton.ac.uk/12584/

428 R. Thollot and M.-A. Aufaure

19. Roth-Berghofer, T.R., Schulz, S., Leake, D.B. (eds.): MRC 2005. LNCS (LNAI),
vol. 3946. Springer, Heidelberg (2006)

20. Thollot, R., Brauer, F., Barczynski, W.M., Aufaure, M.A.: Text-to-query: dynam-
ically building structured analytics to illustrate textual content. In: EDBT 2010:
Proceedings of the 2010 BEWEB Workshop, pp. 1–8. ACM, New York (2010)

21. Wan, K., Alagar, V.S., Paquet, J.: An architecture for developing context-aware
systems. In: Roth-Berghofer, et al. [19], pp. 48–61 (2005)

22. Wang, X., Zhang, D., Gu, T., Pung, H.K.: Ontology based context modeling and
reasoning using owl. In: PerCom Workshops, pp. 18–22. IEEE Computer Society,
Los Alamitos (2004)

Storage and Use of Provenance Information for
Relational Database Queries

Zhifeng Bao1, Henning Koehler2, Xiaofang Zhou2, and Tok Wang Ling1

1 School of Computing, National University of Singapore
{baozhife,lingtw}@comp.nus.edu.sg

2 University of Queensland
{henning,zxf}@itee.uq.edu.au

Abstract. In database querying, provenance information can help users
understand where data comes from and how it is derived. Storing the
provenance data is critical in the sense that, the storage cost should be
as small as possible and of fine granularity, and it should support the user
query on provenance tracking efficiently as well. In this demo, we have
implemented a relational database system prototype which can support
SQL-like query while supporting provenance data recording during query
execution. In particular, we propose a tree structure to store provenance
information and further propose various reduction strategies to optimize
its storage cost; we support the functionality of provenance data tracking
at tuple level for user queries in a visualized way.

1 Introduction

In relational database, data provenance for a user query can describe how an
output result is derived from the data in source tables, and tracking of prove-
nance can help update views, explain unexpected results and assist with data
integration. The granularity of provenance data is usually a tuple or an attribute
value in tuple. The size of provenance data can often easily exceed the size of
actual data [1]; although disk space becomes cheaper, data itself grows as well.
If we compute provenance only when requested rather than storing it, the cost
can be expensive when no good inverse function is found, and it may require
intermediate query results to be stored [2].

In this work, we mainly address the issue of efficient provenance storage in the
context of relational database queries: the storage cost is as compact as possible,
while the computational overhead for provenance tracking and optimization is
reasonably small. First, we develop a provenance tree data structure for stor-
ing provenance information, which closely resembles the query tree. Redundant
storage of information about the derivation process is avoided as tuples which
possess the same derivation process (with different inputs) are grouped together.
Although we address provenance for DB queries here, our solutions are applica-
ble to dealing with arbitrary operator trees. Based on the provenance tree, in
order to further reduce the storage cost, we propose several optimization strate-
gies, which select good choices of nodes where provenance information should

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 429–433, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

430 Z. Bao et al.

be stored for a given query tree. By incorporating the above techniques, we im-
plemented a relational database prototype that supports both the evaluation of
SQL-like queries and the maintenance of provenance data of user queries.

2 Provenance Tree Storage

When considering provenance for database queries, the granularity of provenance
information can be data values, tuples or tables. For most database queries,
value-provenance can be derived from tuple-provenance in a straight-forward
and efficient manner, while it is time costly to derive tuple-provenance from
table-provenance by re-executing the query or using inversion [2]. Therefore, we
focus on how to store the tuple-level provenance information.

A common approach for storing tuple-level provenance is to store transforma-
tion functions as part of the provenance information. However, this can generate
significant storage overhead if multiple instances share the same transformation,
which is the case for many scenarios, and in particularly for database queries.
We address this problem by using a tree-structure with nested data types for
storing provenance information, which matches the query structure.

〈1〉
ID Student Course

1.1 Angela INFS2200
1.2 Angela INFS4205

〈2〉
ID Student

2.1 Angela

〈3〉
ID Student Count(*)

3.1 Angela 2

〈4〉
ID Student Count(*)

4.1 Angela 2
4.2 Nicole 1

Enrolment

Enrolment

〈1〉
ID source〈2, E〉
1.1 2.1 E.1
1.2 2.1 E.2

〈2〉
ID source〈3〉
2.1 3.1

〈3〉
ID source〈4〉
3.1 4.1

〈4〉
ID source〈E〉
4.1 {E.1, E.2}
4.2 {E.3}

Enrolment

Enrolment

Fig. 1. Intermediate Query Results and Provenance Tree

Given a query tree, we associate a provenance table with the root and some
of the intermediate nodes. Each provenance table contains a set of provenance
tuples of a fixed provenance type. A provenance type is constructed from a base
type tupleID, whose domain contains references to either a provenance tuple
or a tuple in the base table. E.g. the provenance type corresponding to a basic
aggregation operator should be a set of tupleIDs. The provenance tables together
with a mapping of output data tuples to provenance tuples form a provenance
tree. Figure 1 shows the intermediate results of a query tree during execution
and the corresponding provenance tree, for people to get a rough idea about how
the provenance tree looks like, the full example can be found in [3].

Storage and Use of Provenance Information for Relational Database Queries 431

After the initial provenance tree is built, we can traverse the tree in a top-
down manner to remove the tuples that have never been referenced by any output
tuple. We call such provenance tree as redundancy-free provenance tree.

There are two basic approaches for storing provenance information: (1) Store-
final approach, which uses a single provenance table for the final result refer-
encing base tuples directly. (2) Store-all approach, which is another extreme in
that it stores a provenance table for every intermediate result, i.e. every node in
the query tree. Both store-final and store-all can be arbitrarily poor, interested
readers can refer to [3] for detailed examples.

Instead of storing provenance information at every node of the query tree, we
propose two reduction rules to store it only at some of them, based on the tree
resulting from the store-all approach.
Rule I: Whenever all tuples in a provenance table are referenced at most once,
we copy the provenance information rather than referencing it.
Rule II: Whenever we would reference a provenance table of type tupleID (i.e.
referenced tuples contain only a single reference), we copy the provenance infor-
mation instead.

While these reduction rules are easy and fast to implement, the resulting
reduced provenance tree may not be optimal in term of storage space. Therefore,
we further propose a dynamic programming solution which runs in polynomial
time to optimally decide which node in the initial provenance tree should be
materialized. Please refer to [3] for details about the above reduction strategies.

3 System Architecture

The architecture of our system is shown in Figure 2. It consists of three core
parts: (1) Data storage unit, which takes the job of loading/storing the database
data and basic indices. (2) query evaluation engine, processing a SQL-like data
query on database. (3) Provenance data manager, which further contains two
units: the provenance storage unit that builds and stores the provenance tree
on the fly at the time of query processing; the provenance query engine which
provides user the facility to answer provenance tracking query from user side.

Data Query

Data Storage Unit

DB data

Index

Query
Evaluation

Engine
Provenance

Data
Manager

Provenance
Storage Unit

Provenance
Query Engine

321

Provenance Query

Fig. 2. System Architecture Fig. 3. Form-based Query Interface

432 Z. Bao et al.

4 System Features

Our system is a database system prototype supporting provenance data storage
and tracking besides the traditional data storing and querying. We describe the
features of our system by going through an empirical flow about how it works.

First, we have a data loader to parse and load raw data into database, based
on the database schema given. The system will provide the ER diagram to users
for them to learn the schema before issuing a query.

Second, we have implemented a query evaluation engine, which accepts SQL-
like-syntaxed queries, where most operators such as join, aggregation, group
by, selection, projection are efficiently supported. The query format follows the
flow of evaluating a query tree in a bottom-up fashion. Since learning SQL (or
similar) query syntax have been a tough job for novice user, we additionally
provide user a form-based query interface, where user can express their query
intention by specifying the database, table, attributes and associated operators
on these attributes (see Figure 3). Then the query translator will translate the
form-based query into our SQL-like syntax followed by query evaluation and
result return, as shown in Figure 4.

Fig. 4. Query Interface Fig. 5. Provenance Storage
& Tracking

Fig. 6. Tracking Results

Third, at the end of query evaluation, the redundancy-free provenance tree
is built, and the system offers user different options for tree reduction, such as
store-final, reduction by rule 1, rule 2, and optimal reduction, as shown in Figure
5. The user can try any of them to see the effects of different reduction strategies
by comparing the size of resulted provenance tree.

Fourth, our system achieves a novel visualization of the provenance usability
facility. We provide user an efficient processing on two common types of prove-
nance tracking queries (in Figure 5): (i) For any output tuple of the query that
user is interested in, the system will return an instance of the provenance tree
in a visualized way, showing the user how this output tuple is derived from a
particular (set of) data tuples in database (through which kind of query opera-
tors) in the order of query tree evaluation. (ii) User can specify several output
tuples and source data tuples, and would like to see whether there is a lineage re-
lationship between them. For the above two types of queries, the provenance tree

Storage and Use of Provenance Information for Relational Database Queries 433

instance returned only keeps track of the tuple ids of intermediate tables, while
the user may also want to view the intermediate results in each step. Therefore,
we also maintain a tree instance that keeps the intermediate results during query
evaluation. As a result, both the provenance tree instance and data tree instance
w.r.t the provenance query is returned, as shown in Figure 6.

References

1. Chapman, A., Jagadish, H.V., Ramanan, P.: Efficient provenance storage. In: SIG-
MOD Conference, pp. 993–1006 (2008)

2. Cui, Y., Widom, J.: Practical lineage tracing in data warehouses. In: ICDE, pp.
367–378 (2000)

3. Koehler, H., Bao, Z., Zhou, X., Sadiq, S.: Provenance trees: Optimizing relational
provenance storage. submitted to SIGMOD (2011),
http://www.comp.nus.edu.sg/∼baozhife/provenancetree/
provenance longversion.pdf

http://www.comp.nus.edu.sg/~baozhife/provenancetree/provenance_longversion.pdf
http://www.comp.nus.edu.sg/~baozhife/provenancetree/provenance_longversion.pdf

MRQSim: A Moving Range Query Simulation
Platform in Spatial Networks�

Yu Gu, Na Guo, Chuanwen Li, and Ge Yu

Northeastern University, China
{guyu,guona,lichuanwen,yuge}@ise.neu.edu.cn

Abstract. In this paper, we present our system MRQSim to efficiently
conduct the continuous range query in the simulated road network envi-
ronment when the query object moves. We propose two kinds of query
types and consider complex simulation setups. The relative system ar-
chitecture and demonstration are illustrated. Because incremental main-
tenance methods based on valid intervals are adopted and the potential
uncertainty of objects is considered, MRQSim can obtain high efficiency
with good adaptability to complex running scenarios.

1 Introduction

In recent years, location-based services (LBS) are extensively offered in a wide
range of applications including intelligent transportation systems, self-help travel
services and digital battlefield. Due to the large size of spatio-temporal data, how
to process the queries efficiently has been a hot research topic in the field of LBS
and spatio-temporal data management[1]. Especially, as the directions and tra-
jectories of mobile objects are usually restricted by an underlying spatial network
in practice, such as railway, highway or waterway route network environment,
many researches turn to focus on the query in the spatial network [2]. Compared
to the query execution in the snapshot manner offered by most car navigation
systems, the continuous range query is also quite useful in practical applications.
Furthermore, unlike the kNN query [3], how to efficiently process the continuous
range query in spatial networks has not been sufficiently studied. Therefore, our
proposed system MRQSim is targeted at solving this problem.

In detail, the moving range query in spatial networks is defined as: when the
query object q moves along the pre-defined paths, given a set of spatial objects O
and the query radius r, find all the objects with the distance from q no more than
r periodically. According to different applications, we define two types of range
queries in spatial networks namely NDMR (Network Distance Moving Range)
and EDMR (Euclidean Distance Moving Range). Although the movement of the
query object must be constrained by the road network, NDMR utilizes the road
network distance as the metric while EDMR utilizes the Euclidean distance to
determine the range of queries. In the detailed implementation, the incremental
� This research was partially supported by the National Natural Science Foundation

of China under Grant No.61003058, No.60773220 and No.60933001.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 434–437, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

MRQSim: A Moving Range Query Simulation Platform in Spatial Networks 435

maintenance strategy based on split nodes is adopted. Furthermore, due to the
privacy protection or the limited positioning precision, there may be widespread
location information uncertainty. We extend the algorithms in MRQSim to adapt
to the uncertainty. In the next sections, we will further illustrate the system
architecture and interface demonstration of MRQSim.

2 System Architecture

The system MRQSim is composed of three major components.

Simulation Engine. The simulation engine is responsible for the road net-
work simulation, the target object simulation and the query object movement
simulation. The detailed parameters can be flexibly set up by users to reflect
different scenarios. Specifically, we offer two real road network data sets down-
loaded from the website http://www.maproom.psu.edu/dcw to ensure the effec-
tiveness of our algorithms, which are separately collected from Oldenburg City
in Germany(OL)(including 7304 edges and 6104 nodes) and San Joaquin City
in USA(TG)(including 23873 edges and 18262 nodes). The engine can be easily
replaced by the data collection module in the real-life applications.

Processing Engine. The processing engine is the core system module which ex-
ecutes the major query optimization algorithms. In the detailed implementation
for accurate positions, we propose the concept of split nodes and classify the split
nodes into four categories according to the judgements of the extreme point, the
non-extreme point, the vertex point and the edge point. When the query objects
enters a new indexing partition region, the split nodes will be computed on line
for those target objects bounded in the query range. The efficient indexing, merg-
ing and compressing techniques are further adopted. Split nodes will split road
segments into valid intervals in which the query result remains unchanged. Con-
sequently, the new result can be obtained by incremental maintenance according
to the information recorded for relative split nodes. Partial detailed techniques
can be referred in [4]. Furthermore, considering the scenario when the position
uncertainty exists, the position is represented by a segment instead of a point.
Correspondingly, the framework of split nodes will be extended to split intervals.
We modify the algorithms to efficiently execute the probabilistic range query.
Because different split node or split interval computation methods are utilized
by NDMR and EDMR, the processing engine needs to choose from four execu-
tion strategies namely NDMR(accurate), NDMR(uncertain), EDMR(accurate)
and EDMR(uncertain) according to different query requests.

User Interface. We offer flexible and friendly user interface including the input
control panel, the scenario display panel and the result output panel. The input
control panel offers the function to set up the input parameters of the simulation
engine. The runtime map information will be timely updated in the scenario
display panel with the split nodes or split intervals indicated. The result objects
will be continuously output during each query period.

436 Y. Gu et al.

3 System Demonstration

In the demonstration, users need to first set up the input control panel. After spec-
ifying the road network data set, the distribution and number of target objects and
the ambiguity degree(accurate when it is zero), a map will be generated which is
illustrated in Figure 1. Furthermore, the information such as the query type, the
query range and the moving object speed can be flexibly offered by the users.

Fig. 1. Environment simulation interface display

Fig. 2. NDMR(accurate) query interface display

After pressing the start button, according to different ambiguity levels and
query types, corresponding strategies in the processing engine will be executed.
Also, the split nodes and split intervals are displayed and updated in the display
panel. The route where the objects have passed will be indicated by the blue

MRQSim: A Moving Range Query Simulation Platform in Spatial Networks 437

Fig. 3. EDMR(uncertain) query interface display

color and the result will be returned in the timely fashion. As the examples,
Figure 2 and Figure 3 illustrate the runtime layout of NDMR(accurate) and
EDMR(uncertain) separately.

4 Conclusion and Future Work

MRQSim is designed for efficient moving range query in the tunable simulated
road networks. We offer the flexible control function and visualized scenario
interface. In the detailed implementation, split nodes and split intervals are
separately computed for the accurate and uncertain position situation, and thus
incremental maintenance can be conducted. In the future work, given the map
and real-time moving object information, our system is expected to be extended
to real-life monitoring scenarios with high efficiency and robustness.

References

1. Wu, K.L., Chen, S.K., Yu, P.S.: Incremental processing of continual range queries
over moving objects. IEEE Transactions on Knowledge and Data Engineer-
ing 18(11), 1560–1575 (2006)

2. Kolahdouzan, M.R., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial
network databases. In: Proceedings of VLDB, pp. 840–851 (2004)

3. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The v*-diagram: a query-dependent
approach to moving knn queries. PVLDB 1(1), 1095–1106 (2008)

4. Guo, N., Gu, Y., Wang, Y.Q., Yu, G.: Valid interval: an effective technique for con-
tinuous range query in spatial networks. In: Proceedings of International Conference
on Emerging Databases, pp. 222–227 (2010)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 438–441, 2011.
© Springer-Verlag Berlin Heidelberg 2011

DWOBS: Data Warehouse Design from Ontology-Based
Sources

Selma Khouri1 and Ladjel Bellatreche2

1 National High School of Computer Science, Algiers, Algeria
s_khouri@esi.dz

2 LISI/ENSMA Poitiers University, Futuroscope, France
bellatreche@ensma.fr

Abstract. In the past decades, data warehouse (DW) applications were built
from traditional data sources. The availability of domain ontologies creates the
opportunity for sources to explicit their semantics and to exploit them in many
applications, including in data warehousing. In this paper, we present DWOBS,
a case tool for ontological-based DW design based on domain ontologies. It
takes as inputs (i) a set of sources referencing OWL ontology and (ii) a set of
decisional requirements formulated using Sparql syntax on that ontology.
DWOBS gives a semantic multidimensional model of the DW to be designed.

1 Introduction

Ontologies have been advocated by software engineering community, where they are
used to solve several problems during different stages of software engineering
lifecycle: requirement engineering, modeling, model transformations, maintenance,
and software comprehension [3]. In the field of data warehousing (DW) development,
a design methodology is not really useful unless a case tool supporting it is provided.
Two main components are required to design a DW: data sources and users
requirements. Ontologies contribute largely to explicit the sense of the concepts used
by these components. Several research efforts have recognized ontologies as the key
to ensure an automatic integration of heterogeneous data sources [1]. Their presence
generates large amount of ontological instances usually stored in ontology-based
databases (OBDB). Several architectures supporting OBDB were proposed by
academicians (OntoDB, Jena, Sesame, etc.) [4] and commercial editors (Oracle, IBM
SOR, etc.). Different other studies propose the use of ontologies to assist designers to
identify users’ requirements, to unify the requirements by detecting their
inconsistencies, and offer a formal specification of the requirements model. The
spectacular development of domain ontologies and their similarity with conceptual
models of OBDBs motivate us to propose an ontology-based tool, named DWOBS, to
design DWs. The main objective of this tool is to assist designers to exploit these
ontologies in building their multidimensional schemes. DWOBS gives designers
similar functionalities offered by classical database design tools such as: PowerAMC,
Rational Rose, etc. The use of ontologies in the development of DWs represents a
challenging issue. Note that they contributed in various phases of DW lifecycle: ETL,

 DWOBS: Data Warehouse Design from Ontology-Based Sources 439

semantic optimization, etc., but none design tool exists. DWOBS is, to our
knowledge, the first graphical tool for multidimensional DW design dedicated for
OBDB. It is based on a comprehensive methodology presented in [5]. One of its main
characteristics is the consideration of both sources and designer requirements defined
at the ontological level. It supposes the existence of a set of OBDBs that reference an
integrated ‘global’ ontology (GO) described in OWL and a set of decisional
requirements (Fig 1). It gives DW designers the ability to express their decisional
requirements on the domain ontology by means of Sparql language. The projection of
the decisional requirements on GO generates a local ontology (LO) that can be seen
as a view of the GO. The generated LO represents the conceptual model of the DW. It
offers: (i) a formal and expressive representation (based on description logics) and
(ii) reasoning capabilities. Having a LO has several advantages: (i) it specializes the
GO, since this former is usually large (like the Cyc ontology used in our scenario)
which makes its exploitation more difficult, (ii) it facilitates the reasoning process
(existing reasoners are efficient only on small ontologies) and (iii) it is well adapted to
satisfy visualization constraints which is an important aspect for DW designers.

Fig. 1. DWOBS architecture

2 System Description

DWOBS is a graphical tool developed in Java. The OBDBs that participate in the
construction of the DW reference an existing integrated ontology formalized in OWL.
Note that DWOBS is not an ETL tool; it simply loads the OBDBs via ODBC and
displays their contents to the user. The GO integrating the selected OBDBs is
identified by its URI, and its information is displayed on the same way as Protégé
editor. Classes are presented as a hierarchy. The selection of a class displays its

440 S. Khouri and L. Bellatreche

information (Concept name, description, properties, super-classes and instances).
Access to all ontologies is made through the OWL API. Requirements are expressed
using the Sparql language syntax. Designers can either express the requirements
through an interface allowing them to select the different classes and properties used
in the requirements or by choosing a text file containing the requirements (Fig 2). The
tool checks the syntax of each requirement in the case. The signature of each
requirement is given as follows:

SELECT ontological_properties, Aggregation_Fonction (ontological_properties)
FROM ontological classes
WHERE Selection condition (ontological_properties)
GROUP BY ontological properties (that can be grouped)

A parser analyzes these requirements in two phases (Fig 1): (i) in the first one, it
projects the decisional requirements on the integrated ontology to generate a LO. This
LO contains all the terms used in the requirements and is generated by GenerOnto
module as an OWL file using the OWL module extractor (plugin available in Protégé
editor) ensuring the logical completeness of the extracted ontology. Some statistics of
this ontology are presented (number of entities extracted, logical axioms and ontology
URI). GenerOnto accesses this LO and displays it to the user in the same way as the
GO. ExtendOnto module offers different interfaces to extend the LO (by importing,
adding, specializing or renaming classes and properties) so that it covers all the
application objectives. The designer may also express new sparql requirements on the
extended LO. Fact++ reasoner is invoked to classify the LO classes taxonomy and to
check its consistency. OwlToUml module converts the LO to an UML conceptual
model by translating owl constructors to UML constructors using a set of rules
defined based on [2], and displays it as an UML class diagram. The goal of this
translation is to present to users a conceptual model easy to read and understand so
that they can validate it. (ii) The second parsing phase analyzes the decisional
requirements expressed on the GO and LO to identify the multidimensional role of
each class and property according to their occurrence in the Sparql clauses (for
example properties in the Aggregation and the Group by clause are candidates to
represent respectively measures and dimension attributes…). GenerLS module
accesses the LO and annotates the identified concepts by their multidimensional role
(fact, dimension, measure, attribute or hierarchy). It also generates the logical star or
constellation schema corresponding to the multidimensional concepts identified
(Fig 3). Dimensions hierarchies classes are connected to their facts through (1:n)
relationships (detected by the presence of functional ObjectProperties). Is-a
relationships are used to deduce new facts and generalized dimensions. This
multidimensional model is defined semantically i.e., a formal link between the LO
and the DW model is saved. The multidimensional model is presented in two ways
(Fig 3): (i) as a tree whose nodes are the identified facts, their measures, their
respective dimensions and the dimensions attributes, (ii) graphically as a relational
star schema that can be printed. The designer can modify this model graphically by
adding and deleting classes and properties. He is aided by a set of recommendations
obtained from the ontology constraints (used to specify cardinalities and to validate
the obtained schema by adding classes or deleting redundant classes). The DW logical
schema and the LO schema can be used after that for the construction of an Ontology-
Based Data Warehouse (OBDW).

 DWOBS: Data Warehouse Design from Ontology-Based Sources 441

3 Demonstration

We demonstrate DWOBS using two OBDBs referenced by Cyc ontology (www.
cyc.com/opencyc). These OBDBs are stored in Postgres DBMS. We adapt a fragment
of this ontology to represent a domain of commercial transactions. The decisional
requirements used analyze transactions costs according to regions and customers and
analyze purchase costs by suppliers. DWOBS offers designers the possibility to explore
different classes of the ontology, and express their requirement on local ontology (LO)
(Fig. 2). By the means of useful interfaces, they may extend the LO, by specializing
some concepts. New requirements using the specialized concepts are also expressed.
Two fact tables and seven dimensions (with their measures and attributes)
corresponding to this scenario are visually shown (Fig. 3). Multidimensional stereotypes
are used to facilitate the readability of the schema. Once satisfied, the designer has the
possibility to save the generated schema and to enrich it if necessary. Due to the lack of
space, a video of our demonstration is given at this url: http://www.lisi.ensma.
fr/members/bellatreche/DASFAADEMO.

Fig. 2. Expressing Sparql query on the ontology Fig. 3. Generated multidimensional model

References

1. Bellatreche, et al.: Contribution of ontology-based data modeling to automatic integration of
electronic catalogues within engineering databases. Computers in Industry 57(8-9) (2006)

2. Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for conceptual data modeling.
Logics for Databases and Information Systems, 229–264 (1998)

3. Gašević, D., Kaviani, N., Milanović, M.: Ontologies and Software Engineering. In: Staab,
S., Studer, R. (eds.) Handbook on Ontologies, 2nd edn. Springer, Heidelberg (2009)

4. Jean, S., et al.: OntoDB: It is time to embed your domain ontology in your database. In:
Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007.
LNCS, vol. 4443, pp. 1119–1122. Springer, Heidelberg (2007)

5. Khouri, S., Bellatreche, L.: A methodology and tool for conceptual designing a data
warehouse from ontology-based sources. In: DOLAP 2010, pp. 19–24 (2010)

AUCWeb: A Prototype for Analyzing
User-Created Web Data

Weining Qian, Feng Chen, Juan Du, Weiming Zhang, Can Zhang, Haixin Ma,
Peng Cai, Minqi Zhou, and Aoying Zhou

Institute of Massive Computing, East China Normal University, Shanghai, P.R. China
{wnqian,mqzhou,ayzhou}@sei.ecnu.edu.cn

Abstract. In this demonstration, we present a prototype system, called
AUCWeb, that is designed for analyzing user-created web data. It has
novel features in that 1) it may utilize external resources for semantic
annotation on low-quality user-created content, and 2) it provides a de-
scriptive language for definition of analytical tasks. Both internal mech-
anism and the usage of AUCWeb for building advanced applications are
to be shown in the demonstration.

1 Introduction

User-created content is an important kind of resource on the Web. Along with the
growth of Web 2.0 applications, more and more information are generated and
spreaded via the user-created content. Meanwhile, traditional web applications,
such as online forums or news groups also contain a large number of pieces of
information that are created by users.

Thus, a natural question to ask is that how to utilize the information in user-
created content for advanced applications effectively and efficiently? However, a
little more study on this problem will show that this is not an easy task. There
are several challenges.

– First, user-created content are often informal in terms of representation.
Some pieces of information are short or just phrases instead of sentences.
Thus traditional natural language processing based methods may fail.

– Second, user-created content are more than web pages. For example, a web
page may contain posts from several users, while posts from one user may
be one several web pages. The content, along with the relationships between
pieces of information should be considered together in analytical tasks.

– Last but not the least, there may exist variant data analysis tasks on the
same data set, which may share some common analytical operators. How to
provide a easy-to-use yet effective tool that may reuse those operators and
existing analytical results is a big challenge.

In this demonstration, we present AUCWeb, a prototype system for user-
created web data analysis. AUCWeb has two novel features. First, it takes
a best-effort approach to data analysis. The raw data along with the analytical

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 442–445, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

AUCWeb: A Prototype for Analyzing User-Created Web Data 443

Fig. 1. AUCWeb architecture Fig. 2. A snapshot of Shanghai Expo 2010
microblog data analysis

results, including semantic annotations, discovered external links, and statistics
on term frequency, and etc. are all stored and managed. Further analysis can be
conducted both on raw data and partial results.

AUCWeb is not a closed system. It utilizes external web resources, e.g. news,
wikipedia, and online statistics, for semantic annotation, since user-created con-
tent are often of low quality and not self-contained.

The second feature of AUCWeb is that it provides a SQL-like descriptive
language for defining analytical tasks. The underlying data model of AUCWeb

is a graph with tags. It can be used to represent both content and relationships
between pieces of information. It can also be used to represent partial analytical
results. Analyzing tasks in descriptive language are translated to operators on
the graph, and executed by the query processing engine.

The demonstration contains two parts. First, the internal of the system, in-
cluding semantic annotation and analytical query translation are to be demon-
strated. In the second part, two applications based on AUCWeb are to be
presented to show how AUCWeb can be used for user-created content analysis.

2 System Overview

The architecture of AUCWeb is shown in Figure 1. It contains three modules:
Data Collector, Semantic Annotator, and Query Engine. Data Collector crawls
web pages containing user-created content, parses their structures and identifies
pagelets, which are pieces of information each of which is created by one user at
one moment. Furthermore, Data Collector identifies the relationships, such as
reply-to, or comment, or following, etc. between pagelets.

Semantic Annotator identifies semantic entities in user-created content. There
are several differences between this module and a traditional information extrac-
tion module. First, not all types of semantic entities are predefined. Thus events
or emerging hotspots that are previous unknown can be identified. Second, each
semantic entity is tagged with a set of attributes and keywords, so that its rela-
tionships to other entities are defined. Last but not the least, external resources
are used in annotation. Since it is expensive to access external resources in terms
of latency, this module only visits them when semantics cannot be determined.

444 W. Qian et al.

The Query Engine accepts user queries, transforms them into internal query
plans, and execute them via operators. Design and implementation details are
introduced in [2]. We give a brief introduction to the implementation here.

2.1 Data Collecting and Preparation

Data Collector is actually a customized crawler. It is different to traditional
web crawlers in that it crawls web pages while analyzing them. Thus, just after
a web page is crawled, pagelets are extracted based on the structure of the
page, and stored in XML forms, in which author, timestamp, title, content,
and relationships to other pagelets are tagged. Meanwhile, the linkage pool is
updated. The techniques for pagelet extraction are introduced in [3]. Since this
is not the focus of our demonstration, we omit the details here.

2.2 Semantic Annotation with External Resources

Semantic Annotator is in responsible for identifying semantic entities. A seman-
tic entity is a term with fixed context in different appearances. Context means
people, location, time, and terms that are highly related to a specific term.

Semantic Annotator first analyzes the linguistic and statistical features of
terms to identify semantic entities candidates [1]. Then, it generates a template
of the form: <term, time, location, people, related-term(s)> for each candidate.

Semantic Annotator tries to fill in the template by using information within
the pagelet. For those slots that cannot be filled in, Semantic Annotator auto-
matically generates a set of queries and send them to external resources, such
as online news sites, Wikipedia, and online statistics sites (e.g. Google Trends).
The results returned from external resources are used to fill in the template.

2.3 Data Analysis with Descriptive Language

AUCWeb uses a data model called Tagged Graph Model (TGM). A TGM
graph is a binary (V, E) in which V is a set of vertices and E is a set of edges.
Each vertex v ∈ V is of the form (id, {attri}). Here, id is the identifier of the
vertex, and attri’s are attributes. Each attri is a triple (name, type, value). Each
edge e ∈ E is of the form (ids, idd, {attri}), where ids and idd are source and
destination, and attri’s are attributes as those of vertices.

A SQL-like query language is defined on TGM. AUCWeb supports five types
of operators over the graph that implementing the query language. They are
wrappers, filters, merges, groupings, and Aggregations. Queries are translated
to a tree-structured query plans on operators. AUCWeb uses a column-bases
storage with indexing for management of TGM data.

3 Demonstration Outline

Our demonstration includes the following two parts:

AUCWeb: A Prototype for Analyzing User-Created Web Data 445

AUCWeb internals: We will show how user-created data are collected, orga-
nized, and managed in the system. There are three focuses on this part of
demonstration:
– We will show how the pagelets are analyzed and managed in the system,

so that pieces of information and their relationships can be handled.
– We will show the process of external-resource-based semantic annotation.

The external resources that are used and the templates that are filled by
data from those resources are to be shown.

– We will illustrate the process of analytical query processing. Queries in
descriptive language, their corresponding query plans on operators over
the graph, and query results are to be shown. Users are also encouraged
to pose their own queries to experience how AUCWeb works.

Applications on AUCWeb: In this part, we will show two applications built
on AUCWeb.
– The first application is an online forum trends analysis toolkit. User may

analyze trends of statistics on terms given query conditions on locality,
time, topic, people, and etc. This application will show how semantic
annotations can be used in advanced analytical tasks.

– The second application is for Expo 2010 micro-blog data visualization.
A snapshot is shown in Figure 2. We will show how various visualization
requirements are represented in our descriptive language. We will also
show how partial analytical results can be utilized to facilitate visual
data analysis in terms of effectiveness and efficiency.

The demonstration will be shown over real-life data, which are about hundreds
of gigabytes, on one server. We will crawl some and part of web sites, and use
these data as backups for offline scenario.

Acknowledgment

This work is partially supported by National Science Foundation of China un-
der grant number 60833003 and 61070051, and National Basic Research (973
program) under grant number 2010CB731402.

References

1. Cai, P., Luo, H., Zhou, A.: Semantic entity detection by integrating crf and svm.
In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp.
483–494. Springer, Heidelberg (2010)

2. Qian, W., Zhou, M., Zhou, A.: A best-effort approach to an infrastructure for chi-
nese web related research. In: Proceedings of the 1st International Workshop on
Intelligence Science and Intelligent Data Engineering, IScIDE 2010 (2010)

3. Zhang, C., Zhang, J.: Inforce: Forum data crawling with information extraction. In:
Proceedings of the 4th International Universal Communication Symposium, IUCS
2010 (2010)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 446–449, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Blending OLAP Processing with Real-Time Data Streams

João Costa1, José Cecílio2, Pedro Martins2, and Pedro Furtado2

1 Polytechnic of Coimbra
jcosta@isec.pt

2 University of Coimbra, Coimbra, Portugal
{jcecilio,pmon,pnf}@dei.uc.pt

Abstract. CEP and Databases share some characteristics but traditionally are
treated as two separate worlds, one oriented towards real-time event processing
and the later oriented towards long-term data management. However many real-
time data and business intelligence analysis do need to confront streaming data
with long-term stored one. For instance, how do current power consumption
and power grid distribution compare with last year’s for the same day?

StreamNetFlux is a novel system that recently emerged to the market
designed to integrate CEP and database functionalities. This blending allows the
processing of queries that need such capabilities with top efficiency and
scalability features.

1 Introduction

Lately, CEP engines have been gaining ground in commercial enterprises with event
processing needs, including the IBM System S[1] stream processing core that
provides scalable distributed runtime execution, a SPADE language and compiler[2]
for stream processing applications and both optimization and fault-tolerance
capabilities built-in; Tibco BusinessEvents[3] uses a UML-based state model, a rules
engine based on the industry-standard RETE protocol, and events capture and
processing functionality. Truviso[4] offers data analysis using standard SQL, and
results can trigger actions such as alerts to decision makers or events in other systems,
or be delivered to an end-user over a standard web browser. Queries are continuous
and the system can be run in a distributed fashion across many applications. Coral8
and Aleri [5] are an engine and platform, respectively, for streaming event data, with
an SQL extension to process data. The Coral8 Engine uses a Continuous Computation
Language (CCL), and the Aleri Streaming Platform has visual dataflow authoring,
event driven integration and implements scalability support. The StreamBase [6]
server is programmed with either a StreamSQL processing language or a visual query
language, and the engine offers a large number of operators to use on streams that
include merging, filtering, statistics computation, thresholding and pattern matching.
In Oracle CEP [7], applications are designed based on stream sources, processors
represented in XML with CQL-like queries, stream sink beans that process output
data and channels linking parts together. Esper [8] is a Java-based CEP that allows
users to re-use Java capabilities and add powerful event and pattern handling in an
event processing language syntax (EPL).

 Blending OLAP Processing with Real-Time Data Streams 447

Typically, CEP and databases are two distinct entities. This approach increases
complexity and creates performance problems in many practical applications when
data analyses require database data together with CEP streams.

2 Streamnetflux System

StreamNetFlux CEP-DB system, illustrated in figure 1, integrates both functionalities
into a single, scalable and efficient engine. StreamNetFlux users pose queries and
StreamNetFlux manages memory, machines, databases and CEP engines with top
efficiency and scalability.

STREAM NET FLUX

Continuous Result

DB functions:
- Persistency
- Long Queries
- ODBC/JDBC

SQL

Result

Query

Configuration

SNF-CQL

Business Rules

Customize code

CEP functions :
- Event base
- Event processing
- continuous Query

Parallelized / Distributed

Fig. 1. StreamNetFlux Architecture

StreamNetFlux implements common features of database systems, including
persistence, DB storage mechanisms, transaction management, recovery and also an
ODBC/JDBC interface. The persistent storage uses a hybrid memory-disk organization
and techniques to offer top efficiency and scalability. Complex event and stream
processing allows data analysis to be always up-to-date.

Users can pose StreamNetFlux statements and application code with embedded
StreamNetFlux statements. These include continuous StreamNetFlux queries and
customized data analysis code. By offering DB functionalities and user transparent
capabilities, StreamNetFlux allows applications to use the system without disrupting
regular application functionalities.

StreamNetFlux ease of use, real-time processing, scalability and efficiency was
evaluated with a massive volume of high-rate data produced by an energy power grid
infrastructure. Besides power grid data, it also processes data from energy producers,
from major energy enterprises and thousands of Micro-generation-producers (e.g.
producing from solar power or window turbine).

448 J. Costa et al.

The distribution of electricity requires that energy be produced as required by the
consumers, since it cannot be efficiently stored for later usage, except for a limited
and restricted time period. When required, some inactive power plants need to be
activated to produce additional energy to assure the energy consumption. To reduce
the energy lost, while electricity transverses the power lines and substations, this
additional energy should be produced from power plants nearby the consumers.

To prevent power blackouts, it’s crucial to have continuous monitorization of the
power grid infrastructure and the evaluation of the energy consumption, energy
generation and interconnecting links and power sub-stations capacity.

Fig. 2. Performance Summary

For operational purposes, it is important to monitor the usage of the transmission
lines, in order to assess when and where abnormal patterns occur and to take
preventive or corrective actions (e.g. add additional capacity). Marketing decisions
can also be made based on the available data. Alerts and actions may be triggered
when there is excess or shortage of some indicator. The scope of alerts, reports and
analysis may be drilled up, down, or across different perspectives. Sub-stations and
energy power plants capacity can also be monitored for detecting abnormal pattern
usage behavior.

StreamNetFlux, even under high-loads, delivers results in the ms range (figure 2),
whereas evaluated DBMS engines take too much time to obtain the same results,
returning them in a discrete manner and with a highly inefficient way to integrate new
data. Such result discretization (time lag between query re-execution against the data,
including the new recent one) is unacceptable for critical, high-demanding
applications, like energy power grid applications or telecommunications.

Stream engines, for real data analysis, can deliver fast performance results, but
only for a small subset of the recent data, limited by the window size. They are
unsuited for performing broader analysis, which requires not only recent data
contained within the window size limits, but also other data that relies outside the
window scope. Having a tool such as StreamNetFlux that allows users to use both
streaming and past data is a very important improvement.

StreamNetFlux was designed with easy-of-use considerations, with reduced time-
to-learn curve and a fast time to market. It allows users to specify operators and data
processors, to define computations, filters, data aggregations and dataflows between

 Blending OLAP Processing with Real-Time Data Streams 449

them. It also allows the definition of event based actions, or rules, triggering
conditions and actions to be performed.

3 Demonstration Roadmap

In the demonstration, we will be using a power grid data schema, with information
from the power grid infrastructure, from energy generators (including major energy
producers and micro-producers) and also information collected from power meters at
consumers, to evidence the main features of StreamNetFlux: ease of use, real-time
processing, scalability and efficiency.

The demonstration consists of the following steps:

• Setting up: using a power grid data schema, we show how to setup through a set
of simple drag and drop and dataflows steps. We also show how it can be setup
through a command line console.

• Running: we demonstrate how queries are seamlessly posed against Stream
NetFlux and how the engine executes business rules. We will demonstrate alerts,
reporting and analysis queries, some of those correlating streaming data with stored
persistent data. For instance, to: compute the national grid or the sub-station usage
and detect variations (e.g. > than) in comparison with the same week day of
previous years; trigger Alerts when the variation is greater than a given threshold;
raise Alarms when link usage falls below a certain level.

• Visualization: show how to explore and visualize data.

The StreamNetFlux is a disruptive product that works with streaming data and stored
data, while simultaneously providing scalability and unusual ease of programming
and querying. In this demo, we show how the system is able to do that. The
technology behind StreamNetFlux has already spurred patent requests and a spin-off
company dedicated to the developing of applications for industrial markets such as
telecommunications and energy efficiency.

References

[1] IBM Research Exploratory Stream Processing Systems,
http://domino.research.ibm.com/comm/research_projects.nsf/
pages/esps.index.html

[2] Gedik, B., Andrade, H., Wu, K., Yu, P.S., Doo, M.: SPADE: the system s declarative
stream processing engine. In: SIGMOD, pp. 1123–1134. ACM, Vancouver (2008)

[3] TIBCO Business Events, http://www.tibco.com/software/
[4] Truviso Data Analysis, http://truviso.com/products/
[5] Aleri & Coral8, http://www.aleri.com/products/aleri-cep
[6] Streambase, http://www.streambase.com/
[7] Complex Event Processing,

http://www.oracle.com/technologies/soa/complex-event-
processing.html

[8] Esper Complex Event Processing, http://esper.codehaus.org

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 450–453, 2011.
© Springer-Verlag Berlin Heidelberg 2011

AutoBayesian: Developing Bayesian Networks Based on
Text Mining

Sandeep Raghuram1, Yuni Xia1, Jiaqi Ge1, Mathew Palakal1, Josette Jones1,
Dave Pecenka2, Eric Tinsley2, Jean Bandos2, and Jerry Geesaman2

1 Indiana University - Purdue University Indianapolis, USA
2 My Health Care Manager, Inc.

Abstract. Bayesian network is a widely used tool for data analysis, modeling and
decision support in various domains. There is a growing need for techniques and
tools which can automatically construct Bayesian networks from massive text or
literature data. In practice, Bayesian networks also need be updated when new
data is observed, and literature mining is a very important source of new data after
the initial network is constructed. Information closely related to Bayesian network
usually includes the causal associations, statistics information and experimental
results. However, these associations and numerical results cannot be directly
integrated with the Bayesian network. The source of the literature and the
perceived quality of research needs to be factored into the process of integration.
In this demo, we will present a general methodology and toolkit called
AutoBayesian that we developed to automatically build and update a Bayesian
network based on the casual relationships derived from text mining.

1 Introduction

A Bayesian network (BN) is a directed acyclic graph whose arcs denote a direct
causal influence between parent nodes (causes) and children nodes (effects). A BN
is often used in conjunction with statistical techniques as a powerful data analysis
and modeling tool. While it can handle incomplete data and uncertainty in a domain,
it can also combine prior knowledge with new data or evidence [1].

There are two approaches to construct a BN: knowledge-driven and data-
driven. The knowledge-driven approach involves using an expert’s domain knowledge
to derive the causal associations; and the data driven approach derives the mappings
from data which can then be validated by the expert [2]. Data-driven approach has
gained much popularity in recent years due to its automated nature and its potential
to bring new insights to human being.

2 Demonstration

In this demo, we will show AutoBayesian, a data driven tool developed to build
Bayesian network based on the casual relationships derived from text mining [3]. It
was developed using Microsoft SQL Server 2009 Express edition and a Bayesian
network development tool called NETICA. AutoBayesian system has been tested in
geriatrics health care. Figure 1 shows a sample Bayesian network derived based on
the text mining data. This BN is for fall risk evaluation and management for senior

 AutoBayesian: Developing Bayesian Networks Based on Text Mining 451

Fig. 1. A Sample Bayesian Network Derived from Text

patients. In the demo, we will show step by step how AutoBayesian builds a Bayesian
network from text mining information and how it interactively updates the BN when
new evidences are observed.

2.1 Derive Confidence Measure

By using existing text mining techniques, causal associations can be extracted from
geriatrics health care literature. After the probabilities have been extracted and
assessed, we will determine how much confidence we have in the causal associations
mined from text. The confidence measure is a score we associate with every causal
mapping in the BN based on the confidence we have in asserting that relationship. It
quantifies the confidence placed in the causal relationship uncovered by automated
methods. In this respect, the two most important parameters we consider are the
journal’s influence measure and the evidence level of the causal relationship itself.
The confidence measure is then computed as a weighted average of the journal’s
influence measure and the evidence level of the evidence [4].

2.2 Integrate the Causal Mapping with Bayesian Network

Mapping the mined noun phrases to a node in the existing BN is a semantic
classification problem and can be solved using information retrieval and/or
classification techniques. Using K- nearest neighbor (K-NN) technique, the new
noun phrase can be searched in a space containing all the node names. Another
method involves use of vector representation of the names of the nodes in the BN.
The new noun phrases are also converted into a vector and compared to all the
existing vectors to find a match. For a domain which has a large training data,
machine learning techniques such as Weight-normalized Complement Naive Bayes
(WCNB) will be used. The process of mapping noun phrases to nodes in a BN

452 S. Raghuram et al.

has to be highly interactive. Therefore, we also provide an interface so that expert can
choose to build the mapping between noun phrases to nodes in a BN, as shown in
Figure 2. The system will show two lists, one contains the unmapped keywords and
the other contains the available nodes in the BN. The expert can manually build a
mapping by choosing a keyword and the corresponding mapping node in the BN and
then submit it.

Fig. 2. Mapping keywords to Nodes in Bayesian Network

Fig. 3. Evidence to be reviewed

Our system consolidates all the evidences and writes out the result into a database

table. It identifies all the unique triplets based on the nodes mapped to them and
computes the probability and confidence as discussed earlier. The nodes representing

 AutoBayesian: Developing Bayesian Networks Based on Text Mining 453

cause-effect relation are also written out with the result. If the evidence is new and
has no associated representation in the Bayesian Networks, then the triplet along with
its probability and confidence is written out as it is but the fields representing the
cause-effect nodes are left null to indicate that it is a new causal association. The
generated suggestions are then displayed on the screen for review by the expert. For
causal associations already existing in the BN, the previous probability and
confidence is displayed to facilitate comparison with the newer values. For causal
associations which induce loops in the BN, a message is displayed indicating the
same. Once the suggestions are generated and displayed on the screen, the expert can
choose to automatically accept the suggestions, or to review them by selecting the
interesting suggestion, as shown in Figure 3. The system then displays this suggestion
as part of the appropriate Bayesian Network. When both the nodes and the link
between them exist, only the conditional probability table needs to be updated.

Figure 4 demonstrates a case when both nodes exist in the network but are not
linked causally. The system will create the link if it does not induce any loops in the
network. Figure 4 shows the BN after applying the new evidence. As shown in the
Figure, the new evidence linking the client’s gender and arthritis is applied to the BN.

Fig. 4. Bayesian Network after Adding a New Link

References

1. Nadkarni, S., Shenoy, P.: A causal mapping approach to constructing bayesian
networks. Decision Support Systems 38, 259–281 (2004)

2. Heckerman, D.: Bayesian networks for data mining. Data Mining and Knowledge
Discovery (1996)

3. Raghuram, S., Xia, Y., Palakal, M., Jones, J., Pecenka, D., Tinsley, E., Ban-dos, J.,
Geesaman, J.: Bridging text mining and bayesian networks. In: Proc. of the
Workshop on Intelligent Biomedical Information Systems (2009)

4. Capezuti, E., Zwicker, D., Mezey, M., Fulmer, T.: Evidence-based geriatric
nursing protocols for best practice. Springer, Heidelberg (2008)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 454–457, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Classify Uncertain Data with Decision Tree

Biao Qin1, Yuni Xia1, Rakesh Sathyesh1, Jiaqi Ge1, and Sunil Probhakar2

1 Indiana University Purdue University Indianapolis
{biaoqin,yxia,sathyesr,jiaqge}@cs.iupui.edu

2 Purdue University West Lafayette
sunil@cs.purdue.edu

Abstract. This demo presents a decision tree based classification system for
uncertain data. Decision tree is a commonly used data classification technique.
Tree learning algorithms can generate decision tree models from a training data
set. When working on uncertain data or probabilistic data, the learning and pre-
diction algorithms need handle the uncertainty cautiously, or else the decision
tree could be unreliable and prediction results may be wrong. In this demo, we
will present DTU, a new decision tree based classification and prediction sys-
tem for uncertain data. This tool uses new measures for constructing, pruning
and optimizing decision tree. These new measures are computed considering
uncertain data probability distribution functions. Based on the new measures,
the optimal splitting attributes and splitting values can be identified and used in
the decision tree. We will show in this demo that DTU can process various
types of uncertainties and it has satisfactory classification performance even
when data is highly uncertain.

1 Introduction

Classification is one of the most important data mining techniques. It is used to pre-
dict group/class membership for data instances. In many applications, data contains
inherent uncertainty. A number of factors contribute to the uncertainty, such as the
random nature of the physical data generation and collection process, measurement
and decision errors, and data staling. As data uncertainty widely exists, it is important
to develop data mining techniques for uncertain and probabilistic data. In this demo,
we will show a tool called DTU – Decision Tree for Uncertain Data [1,2], which
generates decision-tree based classifier with uncertain data. In DTU, data uncertainty
model is incorporated into every step of the tree learning and prediction procedure to
achieve higher classification accuracy.

2 Demonstration

The DTU tool is implemented based on the open source data mining tool WEKA. We
have also extended the Arff Viewer in Weka so that it can display uncertain data in a
proper tabular format as shown in table 1.A dataset can have both uncertain numerical
attributes and uncertain categorical attributes. Table 1 shows such an example.
Among all the attributes, Ai is an Uncertain Numerical Attribute(UNA) whose precise

 Classify Uncertain Data with Decision Tree 455

Table 1. An uncertain dataset

ID Ai … Aj class
1 110-120 … (V1:0.3; V2:0.7) No
2 100-120 … (V1:0.3; V2:0.7) No
3 60-85 … (V1:0.3; V2:0.7) No
4 110-145 … (V1:0.3; V2:0.7) No
5 110-120 … (V1:0.3; V2:0.7) Yes
6 50-80 … (V1:0.3; V2:0.7) No
7 170-250 … (V1:0.3; V2:0.7) No
8 85-100 … (V1:0.3; V2:0.7) Yes
9 80-100 … (V1:0.3; V2:0.7) No
10 120-145 … (V1:0.3; V2:0.7) Yes
11 105-125 … (V1:0.3; V2:0.7) Yes
12 80-95 … (V1:0.3; V2:0.7) No

value is unavailable. We only know the range of the Ai of each tuple. Aj is an Uncertain
Categorical Attribute (UCA). It can be either V1or V2, each with associated probability.

2.1 Decision Tree for Uncertain Data

The core issue in a decision tree induction algorithm is to decide the method of
records being split. Each step of the tree-grow process needs to select an attribute test
condition to divide the records into smaller subsets. A decision tree algorithm must
provide a method for specifying the test condition for different attribute types as well
as an objective measure for evaluating the goodness of each test condition.

There are many measures that can be used to determine the best way to split the
records. These measures are usually defined in terms of the class distribution of the
records before and after splitting. Widely used splitting measures such as information
entropy and Gini index are all based on the purity of the nodes and choose the split
those results in the highest node purity. These measures are not applicable to uncertain
data. For example, for data in Table I, if the splitting condition is Ai < 115, it cannot be
determined whether instances 1, 2, 4, 5, and 11 belong to the left or right node. Our
approach is that when the cutting point of an attribute lies within the uncertain interval
of an instance, the instance is split into both branches and the weights of being in both
branches are calculated according to the probability distribution function f(x). When the
pdf (probability distribution function)f(x)is unavailable, we can use domain knowledge
to find the appropriate pdf or assume commonly used distribution such as uniform or
Gaussian distribution. An example of such a split is shown in figure 1.

Fig. 1. Uncertain numerical data split

456 B. Qin et al.

Fig. 2.An uncertain categorical Data

Splitting based on an UCA A is an n-ary split, assume attribute A has n possible
values ai, (1≤i≤ n), If an uncertain categorical attribute is identified as the best split-
ting attribute, a branch is created for each known value of the test attribute, and the
data are partitioned accordingly. For each value aI of the attribute, the instance is put
into all of the branches with the weight equal to the probability of the attribute to be
ai, as shown in figure 2.

Figure 3 shows the uncertain decision tree for an uncertain glass dataset and the
decision tree determines the type of glass based on the oxide content. In case an un-
certain data instance covers a test point, it is split into both branches according to the
cumulative probability distributions; our visualization routine highlights those leaf
nodes in red. The leaf nodes indicate the class type of the node Ci, followed by two
real values x/y. x is the total probabilistic cardinality of the node, that is, the total
number of instance fall in that node, and y is the number of false positives, that is, the
number of instance fall in that node but not in class Ci. Since both x and y are calcu-
lated according to probability distribution function, they are floating-point numbers
instead of integers, which is different from traditional decision tree. Detailed algo-
rithm for uncertain decision tree can be found in [1, 2].

Fig. 3. An uncertain decision tree

 Classify Uncertain Data with Decision Tree 457

Fig. 4. Rule-based Classifier for Uncertain Data

2.2 Comparison with Other Classifiers

In the demo, we will compare the DTU with the traditional decision tree. We will
show the difference in splitting condition selection and tree structures when applied to
uncertain data. We will also demonstrate that although DTU takes slightly more time
in training, it significantly outperforms the traditional decision tree in accuracy on
uncertain data sets.

We will also compare DTU with a rule based uncertain classifier uRule [5]. uRule
extracts a set of rules of the form R: Condition => y based on uncertain data. The rules
show the relationships between the attributes of a dataset and the class label, as shown
in figure 4. The red shade area highlights all the uncertain classification rules. We will
compare the performance of DTU and uRule on various uncertain data sets with
different distributions.

References

1. Qin, B., Xia, Y., Li, F.: DTU: A decision tree for uncertain data. In: Theeramun-
kong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS,
vol. 5476, pp. 4–15. Springer, Heidelberg (2009)

2. Tsang, S., Kao, B., Yip, K.Y., Ho, W.-S., Lee, S.D.: Decision treesfor uncertain
data. In: ICDE (2009)

3. Singh, S., Mayfield, C., Prabhakar, S., Shah, R., Hambrusch, S.: Indexing categor-
ical data with uncertainty. In: ICDE, pp. 616–625 (2007)

4. Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T.,
Widom, J.: Trio: A system for data, uncertainty, andlineage. In: VLDB (2006)

5. Qin, B., Xia, Y., Prabhakar, S., Tu, Y.: A rule-based classification algorithmfor
uncertain data. In: Proc. the IEEE Workshop on Managementand Mining of Un-
certain Data, MOUND (2009)

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 458–461, 2011.
© Springer-Verlag Berlin Heidelberg 2011

StreamFitter: A Real Time Linear Regression Analysis
System for Continuous Data Streams

Chandima Hewa Nadungodage1, Yuni Xia1, Fang Li2,
Jaehwan John Lee3, and Jiaqi Ge1

1 Department of Computer & Information Science, Indiana University-Purdue University,
Indianapolis, USA

{chewanad,yxia,jge}@cs.iupui.edu
2 Department of Mathematical Sciences, Indiana University-Purdue University,

Indianapolis, USA
fli@math.iupui.edu

3 Department of Electrical & Computer Engineering, Indiana University-Purdue University,
Indianapolis, USA

johnlee@iupui.edu

Abstract. In this demo, we present the StreamFitter system for real-time linear
regression analysis on continuous data streams. In order to perform regression
on data streams, it is necessary to continuously update the regression model
while receiving new data. In this demo, we will present two approaches for
on-line, multi-dimensional linear regression analysis of stream data, namely In-
cremental Mathematical Stream Regression (IMSR) and Approximate Stream
Regression (ASR). These methods dynamically recompute the regression mod-
el, considering not only the data records of the current window, but also the
synopsis of the previous data. Therefore, the refined parameters more accurate-
ly model the entire data stream. The demo will show that the proposed methods
are not only efficient in time and space, but also generate better fitted regression
functions compared to the traditional sliding window methods and well-adapted
to data changes.

Keywords: Linear regression, Data streams, Data modeling.

1 Introduction

With the emergence of network and sensor technology in recent times, there is a
growing need of data stream management and mining techniques for collecting, que-
rying, and analyzing data streams in real time [1]. Regression analysis is a widely
used technique for the modeling and analysis of the relationship between dependent
variables and independent variables [4]. In the recent years there is a focus on apply-
ing regression analysis techniques to model and predict the behavior of the stream
data. In this context, it is required to continuously update the regression model as new
data streams in, on the other hand, it is impossible to scan the entire data set multiple
times due to the huge volume of the data. Therefore, it is necessary to incrementally
reconstruct the regression model using one-scan algorithms. One widely used

 StreamFitter: A Real Time Linear Regression Analysis System 459

approach is to consider the current window of data to construct the regression model.
Although this approach is efficient in terms of time and space, it has poor perfor-
mance when accuracy of the model is considered [3].

In this demo, we will present StreamFitter system which will facilitate real-time
regression analysis on continuous data streams. It demonstrates two new methods for
on-line, multi-dimensional linear regression analysis of stream data namely IMSR
(Incremental Mathematical Stream Regression) and ASR (Approximate Stream Re-
gression). Both methods use a window based approach to prevent multiple scans of
the entire data set, nevertheless they are able to preserve the accuracy of the regres-
sion model by maintaining a synopsis of previous data.

2 Linear Regression Analysis on Data Streams

We implemented the StreamFitter System using C++ language. In this demo, we will
show and compare three regression approaches: IMSR regression, ASR regression
and the original Sliding Window (SW) regression approach, which only consider the
records of the current window. We will use real stream data such as the financial data
from Tokyo Stock Exchange (TSE) [5] and sea surface temperature (SST) data from
Tropical Atmosphere Ocean project (TAO) [6].

2.1 Incremental Mathematical Stream Regression (IMSR)

Assume the window size is n data records and the number of independent variables
(IVs) is p. Thus the values of IVs is a n*p matrix, denoted by X. Values of dependent
variable is a n*1 vector, denoted by y. Values of regression coefficients is p*1 vector,
denoted by β. This β can be calculated using Ordinary Least Squares (OLS) method as
β = (X′X)-1(X′y). Hence the regression parameters for the kth window will be calcu-
lated as βk = (Xk′Xk)

-1(Xk′yk). However, this calculation is based only on the records in
current window. In order to improve the accuracy of the model previous data records
should also be considered. Therefore, we should maintain an effective synopsis of
pervious data tuples which can be used later.

If values of the IVs for the 1st window is X1, values of the IVs for the 2nd window
is X2, and the total data set available so far is X, it can be proved that (X′*X) =
(X1′*X1 + X2′*X2). Furthermore, X′*X is always a matrix of p*p, which does not
increase in size as more data streams in. Similarly, if values of the dependent variable
for the 1st window is y1, values of the dependent variable for the 2nd window is y2,
and the total data set available so far is y, it can be proved that (X′*y) = (X1′*y1 +
X2′*y2). X′*y is always a vector of size p*1. Therefore to calculate refined β values
for a particular window, we only have to maintain the sum of X′X products for pre-
vious windows and sum of X′y products for previous windows. Let us refer the sum of
X′X products as M and sum of X′y products as V, then the refined parameter vector for
the kth window can be computed as ′ ′ .

Figure 1 shows IMSR on SST measurements gathered hourly from January 2000 to
December 2000, by a moored buoy located in the tropical pacific [6]. There were
around 8700 records and we used a window size of 1000 records. Data points are plot-
ted in yellow and IMSR regression line is plotted in blue. Figure 2 shows how IMSR
regression line has dynamically adjusted over the time, as the new data streamed in.

460 C.H. Nadungodage et al.

 Fig. 1. IMSR regression over SST data Fig. 2. Adjustment of IMSR regression

2.2 Approximate Stream Regression

The second regression method we will present is the approximate stream regression
(ASR), which refines the values of the parameter vector β for a particular window
considering the previous data records. The Brown's Simple Exponential Smoothing or
Exponential Weighted Moving Average (EWMA) [2] has been widely used method
for time series prediction for a long time. We use this EWMA method to refine the β
vector for the current window, considering the β vector calculated from the previous
windows. For example, suppose we know the values of the β vector for the (k-1)th

window, using that we can calculate the value of the β vector for the kth window as 1 ′ . 1 Expanding this equation we get, 1 ′ 1 . Refined value is a weighted combination of the
previous values and the current value. By varying the smoothing factor α, we can
adjust the importance of the historical data. The smaller α, the more weight is as-
signed to the current data and the less historical data will affect the regression func-
tion parameters.

In this demo, we will show that ASR performs well for non-stationary data when the
smoothing factor is adjusted to give more weight to the recent samples. Figures 3-5
show ASR regression on daily REIT index of TSE [5] from April 2003 - Feb 2010.
There were around 1700 records in this data set, we used a window size of 100 records.
Data points are plotted in yellow, and ASR regression line is plotted in green. It is visi-
ble how the ASR regression line has dynamically adjusted over the time, as the new
data streams in. As visible in figure 5, TSE REIT index has drastically dropped after
mid 2007. So the nature of the data stream has significantly changed. ASR is capable of
adjusting to this kind of fluctuations in the data stream as it gradually discards the his-
torical records. Here we used α = 0.25, therefore the historical records were rapidly
discarded favoring the recent samples. Figure 6 shows a comparison of IMSR and ASR
with traditional sliding window (SW) method. It is visible that both IMSR (blue) and
ASR (green) has produced better fitted regression lines compared to SW (red).

1 α – The smoothing factor, 0 ≤ α ≤1. β′k - Parameter vector for the kth window calculated

considering only the data records of kth window. βk-1 - Parameter vector for the (k-1)th win-
dow calculated considering all data records seen up to (k-1)th window. βk - Refined parameter
vector for the kth window calculated considering all data records seen up to kth window.

 StreamFitter: A Real Time Linear Regression Analysis System 461

 Fig. 3. ASR at time t Fig. 4. ASR at time t+3n

 Fig. 5. ASR at time t+kn Fig. 6. Comparison of IMSR, ASR, and SW

3 Conclusion

In the demo we will show StreamFitter, a real time linear regression analysis tool for
stream data. We will show how the data streams are loaded or received by StreamFit-
ter, how the regression functions are generated and how they are adjusted as new data
streams in. We will also compare and visualize various techniques in terms of func-
tion fitness and adaptiveness of concept drift.

References

[1] Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data
Stream Systems. In: PODS (March 2002)

[2] Brown, R.G., Meyer, R.F.: The fundamental theorem of exponential smoothing. Opera-
tions Research 9(5), 673–685 (1961)

[3] Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting Time Series: A Survey And Novel
Approach. In: Data Mining in Time Series Databases. World Scientific Publishing Com-
pany, Singapore (2004)

[4] Berk, R.A.: Regression Analysis: A Constructive Critique. Sage Publications, Thousand
Oaks (2004)

[5] Tokyo Stock Exchange,
http://www.tse.or.jp/english/market/topix/data/index.html

[6] Tropical Atmosphere Ocean project,
http://www.pmel.noaa.gov/tao/index.shtml

Challenges in Managing and Mining Large,
Heterogeneous Data

Haibo Hu1, Haixun Wang2, and Baihua Zheng3

1 Department of Computer Science, Hong Kong Baptist University,
Kowloon Tong, Hong Kong SAR, China

haibo@comp.hkbu.edu.hk
2 Microsoft Research Asia

Beijing Sigma Center, Hai Dian District, Beijing, China 100190
haixunw@microsoft.com

3 School of Information Systems, Singapore Management University,
80 Stanford Rd, Singapore 178902

bhzheng@smu.edu.sg

Abstract. Success in various application domains including sensor net-
works, social networks, and multimedia, has ushered in a new era of
information explosion. Despite the diversity of these domains, data ac-
quired by applications in these domains are often voluminous, hetero-
geneous and containing much uncertainty. They share several common
characteristics, which impose new challenges to storing, integrating, and
processing these data, especially in the context of data outsourcing and
cloud computing.

Some challenges include the following. First, autonomous data acqui-
sition gives rise to privacy and security issues. Therefore, data manage-
ment and mining must be elastic and privacy-conscious. Second, data
is often dynamic and the trend in the data is often unpredictable. This
calls for efficient incremental or cumulative algorithms for data manage-
ment and mining. Load balancing and other real-time technologies are
also indispensable for the task. Third, data repositories are distributed.
Thus, gathering, coordinating, and integrating heterogeneous data in
data management and mining will face unprecedented challenges.

This panel session gives researchers of different background and ex-
pertise an opportunity to address these challenging issues together. The
main topics of this panel session target the themes in the interdisciplinary
domains spreading across database, web, wireless data management, so-
cial networking, multimedia, and data outsourcing.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, p. 462, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Managing Social Image Tags: Methods and Applications

Aixin Sun and Sourav S. Bhowmick

School of Computer Engineering, Nanyang Technological University, Singapore
{axsun,assourav}@ntu.edu.sg

Abstract. Social tags describe images from many aspects including the visual
content observable from the images, the context and usage of images, user opin-
ions and others. We present an overview of a tutorial on social image tags man-
agement - an approach to solve the management of tags associated with social
images on the Web. Social image tags management defines a set of techniques
for measuring effectiveness of tags in describing its annotated resources, discov-
ering relationships between tags and how such knowledge is useful for various
tag-based social media management applications such as tag recommendation,
tag disambiguation and tag-based browsing systems. This tutorial offers an intro-
duction to these issues and a synopsis of the state-of-the-art.

1 Tutorial Overview

With the advances in digital photography and social media sharing web sites, a huge
number of multimedia content is now available online. Most of these sites enable users
to annotate web objects including images with free tags. A key consequence of the avail-
ability of such tags as meta-data is that it has created a framework that can be effectively
exploited to significantly enhance our ability to understand social images. Such under-
standing paves way to the creation of novel and superior techniques and applications
for searching and browsing social images contributed by common users. The objective
of this tutorial is to provide a comprehensive background on state-of-the-art techniques
for managing tags associated with social images. To the best of my knowledge, this
tutorial has not been presented in any major data management conference.

The tutorial is structured as follows. In the first part, we provide a comprehensive
understanding of social image tags. We present a brief survey on studies related to mo-
tivation behind tagging and impact of various tagging systems that are used by users
to create tags. We shall use Flickr as an example tagging system to illustrate various
concepts. In the second part, we shall describe state-of-the-art techniques for measur-
ing effectiveness of tags in describing its annotated resources (social images). Specif-
ically, we shall describe techniques that enable us to quantitatively measure a tag’s
ability to describe the image content of social images. Note that this issue is one of the
most fundamental problem in multimedia analysis, search, and retrieval. The third part
of the tutorial is devoted to describing state-of-the-art techniques for discovering rela-
tionships between tags and how such knowledge is useful for various tag-based social
media management applications such as tag recommendation, tag disambiguation and
tag-based browsing systems. We conclude by identifying potential research directions
in this area.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 463–464, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

464 A. Sun and S.S. Bhowmick

This tutorial is intended for both engineers and researchers. The former will learn
about solutions to use and hard problems to avoid. The latter will get a snapshot of the
research field and problems that are worth tackling next.

2 Full Description of the Tutorial

The tutorial consists of the following topics.

– Section 1: Tagging Motivation, Tag Types and Tagging System Taxonomy
In this section, we begin by presenting various motivation behind tagging and give
an overview of existing tagging systems that enable users to create tags. We discuss
different categories of tags and taxonomy of tagging systems, which helps us to
understand the impact of various dimensions in a tagging system on the resultant
tags associating with their annotated resources.

– Section 2: Measuring Effectiveness of Tags
This section focuses on quantitative measurement of effectiveness of tags in de-
scribing its annotated resource. We shall discuss it from two aspects, namely local
descriptiveness and global descriptiveness. Local descriptiveness quantifies how
effectively a tag describes its annotated resource. We use existing research on tag
relevance and re-ranking as reported in recent literature for our discussion on local
descriptiveness. Global descriptiveness, on the other hand, is used to discover im-
plicitly developed consensus on describing annotated resources from tags. We use
the concept of tag visual-representativeness as an example to illustrate this concept.

– Section 3: Tag Relationships and Applications
This section describes state-of-the-art techniques to discover various relationships
between tags (e.g., co-occurrence, Flickr distance, and others) and advanced so-
cial media data management applications that are mainly based on tag relation-
ships (e.g., tag recommendation, tag disambiguation, event detection, and ontology
induction). We shall also give a brief overview of resource browsing systems sup-
ported by tags. This will include a live demo of iAVATAR, a state-of-the-art tag-
based social images browsing system developed by us.

– Section 4: The Road Ahead
We expose potential research issues in analysis and managing social image tags.
We also throw some open questions for the audience to ponder about.

3 Speakers

Sourav S Bhowmick and Aixin Sun have published several papers in the area of social
image tags management. One of their papers was nominated for the best paper award
at the SIGMM Workshop on Social Media (in conjunction with ACM MM 2009). They
have also developed a state-of-the-art tag-based social image browsing system called
iAVATAR which was recently demonstrated in VLDB 2010 held at Singapore. Biogra-
phies of Sourav and Aixin can be found at www.ntu.edu.sg/home/assourav
and www.ntu.edu.sg/home/axsun/, respectively.

Web Search and Browse Log Mining:
Challenges, Methods, and Applications

Daxin Jiang

Microsoft Research Asia
djiang@microsoft.com

Abstract. Huge amounts of search log data have been accumulated in
various search engines. Currently, a commercial search engine receives
billions of queries and collects tera-bytes of log data on any single day.
Other than search log data, browse logs can be collected by client-side
browser plug-ins, which record the browse information if users’ permis-
sions are granted. Such massive amounts of search/browse log data, on
the one hand, provide great opportunities to mine the wisdom of crowds
and improve search results as well as online advertisement. On the other
hand, designing effective and efficient methods to clean, model, and pro-
cess large scale log data also presents great challenges.

In this tutorial, I will focus on mining search and browse log data for
search engines. I will start with an introduction of search and browse
log data and an overview of frequently-used data summarization in log
mining. I will then elaborate how log mining applications enhance the
five major components of a search engine, namely, query understanding,
document understanding, query-document matching, user understand-
ing, and monitoring and feedbacks. For each aspect, I will survey the
major tasks, fundamental principles, and state-of-the-art methods. Fi-
nally, I will discuss the challenges and future trends of log data mining.

Keywords: Search and browse logs, log data summarization, log mining
applications.

1 Tutorial Description

1. Introduction
(A) Introduction of search and browse logs: general formats of search and

browse logs, differences between the two types of logs;
(B) Overview of log mining applications: a taxonomy of log mining applica-

tions, five popular areas (query understanding, document understanding,
query-document matching, user understanding, and monitoring and feed-
backs) and important tasks;

(C) Frequently-used summarizations of search and browse logs: query his-
togram, click-through bipartite, click patterns, and session patterns; con-
struction algorithms, data pre-processing techniques.

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 465–466, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

466 D. Jiang

2. Query Understanding by Log Mining
(A) Similar Query Finding: query expansion, query substitution, and query

suggestion; using click-through data to cluster queries; using session data
to find similar queries;

(B) Query categorization: categorizing queries into navigational, informa-
tional, or transactional ones; classifying queries into a pre-defined set of
topics; identifying localizable queries.

3. Document Understanding by Log Mining
(A) Representing the content of documents: term-level annotation, query-

level annotation, URL annotation by tag data and query logs;
(B) Representing the importance of documents: leveraging user browse pat-

terns to identify pages/sites favored by users.

4. Query-Document Matching by Log Mining
(A) Mining preference pairs: observations from eye-tracking experiments, gen-

erating training examples from search log data for learning to rank search
results;

(B) Sequential click models: user clicks as implicit feedback, position bias
in user clicks for Web search, different assumptions about the user be-
havior on browsing search results, various click models, effectiveness and
efficiency.

5. User Understanding by Log Mining
(A) Personalization: different user profiles: click-based profiles, term-based

profiles, and topic-based profiles;
(B) Contextualization: summarizing context profiles from log data, models

for context-aware search.

6. Monitoring and feedbacks
(A) Monitoring search engine status: metrics to monitor the status of search

engines;
(B) Predicting user satisfaction: sequential patterns, Markov chain models,

layered Bayesian networks.

7. Summary: Challenges and Future directions. Three layers of a log min-
ing system, interpreting users’ search intent, specially designed programming
languages for log mining, privacy-preserving release of log data.

2 Short Biography

Daxin Jiang, Ph.D., Researcher, Microsoft Research Asia. Daxin Jiang’s
research focuses on information retrieval and log data mining. He received Ph.D.
in computer science from the State University of New York at Buffalo. He has
published extensively in prestigious conferences and journals, and served as a
PC member of numerous conferences. He received the Best Application Paper
Award of SIGKDD’08 and the Runner-up for Best Application Paper Award of
SIGKDD’04. Daxin Jiang has been working on development of Microsoft search
engines, including Live Search and Bing. Daxin Jiang’s publication list can be
found at http://research.microsoft.com/en-us/people/djiang/.

http://research.microsoft.com/en-us/people/djiang/

Searching, Analyzing and Exploring Databases

Yi Chen1, Wei Wang2, and Ziyang Liu1

1 Arizona State University
{yi,ziyang.liu}@asu.edu

2 University of New South Wales, Australia
weiw@cse.unsw.edu.au

1 Introduction

Keyword based search, analysis and exploration enables users to easily access databases
without the need to learn a structured query language and to study possibly complex
data schemas. Supporting keyword based search, analysis and exploration on databases
has become an emerging hot area in database research and development due to its sub-
stantial benefit. Researchers from different disciplines are working together to tackle
various challenges in this area.

This tutorial aims at outlining the problem space of supporting keyword based search,
analysis and exploration on databases, introducing representative and state-of-the-art
techniques that address different aspects of the problem, and discussing further chal-
lenges and potential future research directions. The tutorial will provide the researchers
and developers a systematic and organized view on the techniques related to this topic.

A tutorial with similar topic was given in SIGMOD 2009 [1]1, and was very well
received. Since the research interest in keyword search on structured data is ever in-
creasing and there are plenty of new techniques since then, this tutorial will be updated
to incorporate the new findings in this area, which covers query processing, type ahead
search, query suggestion, personalization, result comparison, faceted search, etc.

2 Tutorial Outline

2.1 Search Result Definition, Generation, Ranking and Evaluation

The first task in keyword search is to define query results which automatically gather
relevant information that is generally fragmented and scattered across multiple places.

Query Result Definition. A query result on a graph data model is commonly defined
as a subtree of the data graph where no node or edge can be removed without losing
connectivity or keywords contained in the subtree. Since finding the smallest result,
which is the group Steiner tree, is NP-hard, variations and relaxation of the definition
have been proposed in order to attain reasonable efficiency. For example, when the
data is modeled as a tree, lowest common ancestor (LCA) is a common form to define
the query results. Furthermore, besides the data that match query keywords, studies
have been performed on identifying data that do not match keywords or on the paths
connecting keyword nodes, but are implicitly relevant.

1 http://www.public.asu.edu/˜ychen127/keyword sigmod09 tutorial.pptx

J.X. Yu, M.H. Kim, and R. Unland (Eds.): DASFAA 2011, Part II, LNCS 6588, pp. 467–469, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

468 Y. Chen, W. Wang, and Z. Liu

Ranking Functions. It is almost always the case that not all results of a keyword
search are equally relevant to a user. Various ranking schemes have been proposed to
rank the results so that users can focus on the top ones, which are hopefully the most
relevant ones. Many ranking schemes are used in existing works, which consider both
the properties of data nodes (e.g., TF*IDF, node weight, and page-rank style ranking,
etc.) and the properties of the whole query result (e.g., number of edges, weights on
edges, size normalization, redundancy penalty, etc.).

Result Generation and Top-k Query Processing. Algorithms for query result
generation and efficient top-k query processing have been developed, and will be in-
troduced in this tutorial. For example, encoding, indexing schemes as well as material-
ized views have been exploited for processing keyword search on XML. For keyword
search on relational databases and graphs, many approaches are based on candidate
network (CN) generation, and there are also dynamic programming, heuristics-based
approaches (e.g., backward exploration), indexed search approaches, etc., for generat-
ing top-k query results.

Evaluation. We will present and discuss evaluation frameworks for keyword search
engines. One type of evaluation framework is based on empirical evaluation using
benchmark data, such as INEX (INitiative for the Evaluation of XML Retrieval), a
benchmark for XML keyword search. Another type of evaluation is evaluating an ap-
proach based on a set of axioms that capture broad intuitions.

2.2 Query Suggestion and Result Analysis

To improve search quality and users’ search experience, various techniques have been
proposed.

Result Snippets. Result snippets should be generated by most Web search engines
to compensate the inaccuracy of ranking functions. Generating snippets for structured
search results have also been studied. The principle of result snippets is orthogonal to
that of ranking functions: letting the user quickly judge the relevance of query results
by providing a brief quotable passage of each query result.

Result Clustering and Comparison. Since many keyword queries are ambiguous,
it is often desirable to cluster query results based on their similarity, so that the user
can quickly browse all possible result types choose the sets of results that are relevant.
Besides, techniques have been developed to automatically generate comparison tables
for user selected results to help users analyze and differentiate results and get useful
insight from the comparison.

Query Cleaning and Suggestion. User issued keyword queries may not be precise.
Query cleaning involves semantic linkage and spelling corrections of query keywords,
as well as segmentation of nearby query keywords so that each segment corresponds to
a high quality data term. Query suggestion is another way of helping user issue queries,
which is through suggesting related queries given the query initially submitted by the
user. Query suggestion when searching structured data has recently been studied.

Searching, Analyzing and Exploring Databases 469

2.3 Other Exploration Methods

Query Form Based Database Access. Since structured query languages are highly
expressive but difficult to learn, and keyword queries are easy to use but lack the expres-
sive power, a natural idea is to strike a good balance between the two. Existing attempts
include generating a large set of query forms and selecting the relevant forms based on
user’s keyword query, or directly generating a small set of query forms based on either
a sample query workload or properties of the schema and data, etc.

Faceted Navigation. A faceted navigation approach generates a navigation tree, ei-
ther based on the user’s keyword query or directly for the entire data collection, in which
each level is a classification of the query result. It helps user narrow down the browse
scope and find the relevant results quickly. The main challenge is to select the optimal
classification at each level of the tree to minimize the expected navigation cost.

2.4 Open Challenges and Future Directions

We will discuss open problems and possible directions for future research. For example,
there are many other types of structured data besides normal trees and graphs, whose
structures can be exploited to provide high-quality search results. There are many op-
portunities for supporting keyword search on data models like data warehouses, spatial
and multimedia databases, workflows, and probabilistic databases, as well as data ex-
tracted from text documents (e.g. parse tree databases). Furthermore, techniques that
enable users to seamlessly access vast collections of heterogeneous data sources are
also in demand.

Besides, few existing work on searching structured data connects the quality of
search results with user needs. In this aspect, there are much we can learn from the
Information Retrieval field. In particular, having user involvement during the search
process, such as analysis of query log and user click-through streams, will be helpful
to provide personalized search experience. Nonetheless keyword search on structured
data poses unique challenges on analyzing user preferences.

To summarize, this tutorial presents the state-of-the-art approaches for keyword based
search, analysis and exploration on databases with an emphasis on introducing the dif-
ferent modules of a keyword search engine, the research challenges and the state-of-the-
art of each module, as well as their relationships. We hope this tutorial will effectively
help the audience get a big picture of this research topic.

Acknowledgement

Yi Chen is supported by NSF CAREER award IIS- 0845647 and NSF grant
IIS-0740129, IIS-0915438 and IBM faculty award. Wei Wang is supported by ARC
Discovery Grants DP0987273 and DP0881779.

References

1. Chen, Y., Wang, W., Liu, Z., Lin, X.: Keyword Search on Structured and Semi-Structured
Data. In: SIGMOD Conference, pp. 1005–1010 (2009)

Author Index

Adaikkalavan, Raman I-341
Agrawal, Divyakant I-2
Amalfi, Maria II-225
Ansiaux, Arnaud II-388
Artale, Alessandro II-225
Assent, Ira I-138
Aufaure, Marie-Aude II-413
Augsten, Nikolaus II-31

Bandos, Jean II-450
Bandyopadhyay, Subhadip II-400
Bao, Zhifeng II-429
Bellatreche, Ladjel II-438
Bennamane, Amyn II-388
Bhowmick, Sourav S. I-511, I-543,

II-463
Bouguettaya, Athman II-321
Bressan, Stéphane I-570

Cagnati, Alain II-388
Cai, Peng II-442
Cal̀ı, Andrea II-225
Cazalens, Sylvie II-210
Cećılio, José II-446
Chakravarthy, Sharma I-341
Chang, Ya-Hui I-466
Chao, Kun-Mao I-466
Cheema, Muhammad Aamir II-58,

II-104
Chen, Arbee L.P. II-235
Chen, Feng II-442
Chen, Gang II-149
Chen, Ke II-149
Chen, Lei I-123, I-284
Chen, Ling I-496
Chen, Yi II-467
Cheng, Josephine I-1
Chester, Sean II-367
Choi, Byron I-543
Choi, Dong-Wan II-266
Chung, Chin-Wan I-38, II-266
Costa, João II-446
Cui, Bin I-53

Das, Sudipto I-2
Deng, Jintian I-543
Ding, Guohui II-179
Dobbie, Gillian I-16
Dominguez-Sal, David I-558
Doulkeridis, Christos II-280
Du, Juan II-442

El Abbadi, Amr I-2
Elmore, Aaron J. I-2

Fan, Ju II-47
Fujino, Kazuhisa II-119
Fujiwara, Yasuhiro I-311
Furtado, Pedro II-446

Gao, Ming I-326
Gao, Xiaofeng I-372, II-335
Gao, Yuan II-149
Ge, Jiaqi II-450, II-454, II-458
Geesaman, Jerry II-450
Giacometti, Arnaud I-153
Gopalkrishnan, Vivekanand I-138
Goyal, Vikram II-251
Gu, Yu II-134, II-434
Guo, Deke I-284
Guo, Na II-434

Hacid, Hakim II-388
Han, Jiawei I-389
Han, Qiaosha I-53
Hasan, Mahady II-104
He, Yukai I-168
Hitaka, Toshio II-352
Hlaing, Aye Thida II-119
Hsiao, Hui-Fang I-224
Htoo, Htoo II-119
Hu, Haibo II-462
Hu, Haiyang I-300
Hu, Hua I-300
Huang, Zi I-269, II-1

Jiang, Daxin II-465
Jiang, Guochang I-300
Jiang, Nan I-300

472 Author Index

Jin, Cheqing I-326
Jin, Tao II-164
Jones, Josette II-450

Kalnis, Panos I-93
Kang, Yong-Bin II-16
Kazimianec, Michail II-31
Keng Pung, Hung I-93
Khouri, Selma II-438
Kidawara, Yutaka I-418
Kim, Sangjae I-404
Kiran, R. Uday I-183
Kitsuregawa, Masaru I-311
Kiyoki, Yasushi I-418
Koehler, Henning II-429
Kotani, Naoya II-352
Krishnaswamy, Shonali II-16

Laha, Arijit II-400
Lamarre, Philippe II-210
Larriba-Pey, Josep L. I-558
Lee, Jaehwan John II-458
Lee, Ken C.K. I-78
Lee, Min-Joong I-38
Lee, Sang-goo II-296
Lee, Yoon Joon I-404
Lei, Po-Ruey I-193
Li, Chuanwen II-134, II-434
Li, Fang II-458
Li, Fangfang II-134
Li, Guoliang II-47
Li, Hongyan I-389
Li, Jianxin I-481
Li, Xiao-Li I-22
Li, Yujia I-68
Li, Zhoujun I-269
Lin, Qianlu II-58
Lin, Rung-Ren I-466
Lin, Xuemin I-434, II-104
Liu, Chengfei I-481, I-528
Liu, Hechen I-357
Liu, Hong-Cheu II-195
Liu, Jiajun II-1
Liu, Jixue I-481
Liu, Mengchi I-16
Liu, Xiaoling I-68
Liu, Ziyang II-467
Lu, Chun-Ta I-193
Lu, Xuesong I-570

Ma, Haixin II-442
Madria, Sanjay Kumar II-251
Maeda, Akira II-73
Marcel, Patrick I-153
Martins, Pedro II-446
Mathur, Devika II-400
Meng, Xiaofeng I-208
Mondal, Anirban II-251

Nadungodage, Chandima Hewa II-458
Nayak, Richi II-377
Ng, See-Kiong I-22
Ng, Wilfred I-254
Nguyen, Hoang Vu I-138
Ning, Bo I-528
Nørv̊ag, Kjetil II-280

Ohsawa, Yutaka II-119
Onizuka, Makoto I-311

Padhariya, Nilesh II-251
Palakal, Mathew II-450
Papadimitriou, Panagiotis I-93
Papapetrou, Odysseas I-496
Park, Jaehui II-296
Pecenka, Dave II-450
Peng, Wen-Chih I-193
Pitt, Ellen II-377
Prat-Pérez, Arnau I-558
Probhakar, Sunil II-454
Provetti, Alessandro II-225

Qian, Weining II-442
Qin, Biao II-454
Qin, Xiongpai II-306
Qu, Qiang I-389
Quiané-Ruiz, Jorge-Arnulfo II-210

Raghuram, Sandeep II-450
Räıssi, Chedy I-93
Rani, Pratibha II-400
Reddy, P. Krishna I-183
Reddy, Raghunath II-400
Rosenthaler, Lukas II-93
Ruan, Chun I-239
Ryeng, Norvald H. II-280

Sathyesh, Rakesh II-454
Schneider, Markus I-357
Schuldt, Heiko II-93
Sha, ChaoFeng I-108

Author Index 473

Shankar, Roshan II-251
Shen, Heng Tao I-269, II-1
Shi, Baile I-68
Shi, Yan I-372, II-335
Shie, Bai-En I-224
Shou, Lidan II-149
Soh, Kheng Hong I-511
Sonehara, Noboru II-119
Song, Inchul I-404
Soulet, Arnaud I-153
Su, Ing-Jiunn I-193
Subotic, Ivan II-93
Suga, Yoshiharu II-352
Sun, Aixin II-463

Tan, Aloysius I-22
Tan, Zijing I-450
Tanaka, Katsumi II-83
Tezuka, Taro II-73
Thollot, Raphaël II-413
Thomo, Alex II-367
Tian, XiuXia I-108
Tinsley, Eric II-450
Tseng, Vincent S. I-224

Valduriez, Patrick II-210
Varadharajan, Vijay I-239
Venkatesh, S. II-367
Vlachou, Akrivi II-280

Wang, En Tzu II-235
Wang, Guoren I-284, II-179
Wang, Haixun II-462
Wang, Huiju II-306
Wang, Jianmin II-164
Wang, Jianyong I-168
Wang, Junhu I-481
Wang, Shan II-306
Wang, Wei II-58, II-467
Wang, Wen-Chi II-235
Wang, XiaoLing I-108
Wang, Yazhe I-78
Wang, Yitong I-68
Wang, Zhanwei II-306
Wang Ling, Tok I-16, II-429
Wen, Lijie II-164

Whitesides, Sue II-367
Wu, Weili I-372, II-335

Xia, Yuni II-450, II-454, II-458
Xiao, Chuan II-58
Xie, Long I-78
Xu, Jianliang I-543
Xue, Mingqiang I-93

Yamamoto, Yusuke II-83
Yamamuro, Masashi II-352
Yamamuro, Takeshi II-352
Yan, Da I-254
Yan, Xifeng I-389
Yang, Kai I-372
Yao, Junjie I-53
Ye, Zhen II-321
Yu, Ge II-134, II-434
Yu, Philip S. I-22, I-224, I-389
Yuan, Chengxiang I-300
Yuan, Mingxuan I-123
Yuan, Ye I-284

Zaslavsky, Arkady II-16
Zettsu, Koji I-418
Zhang, Can II-442
Zhang, Ce I-53
Zhang, Liyong I-450
Zhang, Rong I-418
Zhang, Weiming II-442
Zhang, Wenjie I-434, II-104
Zhang, Xiaoming I-269
Zhang, Yansong II-306
Zhang, Ying I-434
Zheng, Baihua I-78, II-462
Zhong, Jiaofei I-372, II-335
Zhou, Aoying I-108, I-326, II-442
Zhou, Chunjie I-208
Zhou, Lizhu I-168, II-47
Zhou, Minqi II-442
Zhou, Rui I-481
Zhou, Xiaofang II-1, II-321, II-429
Zhou, Yanhong I-53
Zhu, Feida I-389
Zhu, Gaoping I-434
Zhu, Ke I-434
Zhuang, Yi I-300

	Title
	Preface
	Organization
	Table of Contents
	Similarity
	Efficient Histogram-Based Similarity Search in Ultra-High Dimensional Space
	Introduction
	Related Work
	Preliminaries
	LDP Histogram
	Histogram Similarity Measures

	Two-Tier Inverted File
	State Expansion
	Index Construction

	Query Processing
	Experiments
	Set Up
	Effect of
	Effect of k
	Effect of State Expansion
	Performance Comparison

	Conclusion
	References

	A Retrieval Strategy Using the Integrated Knowledge of Similarity and Associations
	Introduction
	Similarity-Based Retrieval and Its Main Problem
	Similarity Knowledge and Association Analysis
	Similarity Knowledge
	Association Analysis

	Modeling Association Knowledge and USIMSCAR
	Soft-Matching Class Association Rules (SCARS)
	The USIMSCAR Algorithm

	Evaluation
	Evaluation Methodology
	Results and Analysis

	Related Work
	Extension Schemes and Conclusion
	References

	PG-Skip: Proximity Graph Based Clustering of Long Strings
	Introduction
	Background
	Proximity Graph
	Cluster Border Detection and State-of-the-Art Algorithm
	The GPC Method

	Efficient Border Detection
	Prefix Pruning of the Proximity Graph
	The PG-Skip Algorithm
	The PG-Binary Algorithm

	Experiments
	Datasets and Experimental Setup
	Proximity Graph Computation
	Scalability Results on Synthetic Data
	Clustering Runtime and Quality

	Related Work
	Conclusions and Future Work
	References

	An Effective Approach for Searching Closest Sentence Translations from the Web
	Introduction
	Related Work
	Similarity Models for Sentence Matching
	High-Quality Phrase Selection
	High-Quality Phrases
	Generating High-Quality Phrases from a Sentence

	Experiments
	Effects of High-Quality Phrase Selection
	Effectiveness Comparisons

	Conclusion
	References

	Searching and Digital Preservation
	Finding the Sites with Best Accessibilities to Amenities
	Introduction
	Preliminaries
	Problem Definition
	All Nearest Neighbor Algorithm

	Main Algorithm Frameworks
	Separate-Tree Method
	One-Tree Method

	Optimizations on Existing Algorithms
	Break Ties in Priority Queues
	Early Check to Avoid Unnecessary Expansion
	Pre-update Temporary Results

	Experiments
	Experiment Setup
	Effect of Optimization
	Comparison with All Nearest Neighbor Algorithm
	Scalability against Data Sizes
	Index Sizes

	Related Work
	Conclusion
	References

	Audio Lifelog Search System Using a Topic Model for Reducing Recognition Errors
	Introduction
	Related Work
	Lifelog Search
	Speech Recognition for Conversation
	Global Semantic Context for Speech Recognition

	Method
	Topic Model
	Speech Recognition
	Term Ranking and Filtering
	Relevancy Measure between Term and Transcription

	Implementation
	Document Set
	Speech Recognition and Indexing
	Search Interface

	Evaluation
	Precision and Recall

	Conclusion
	References

	Towards Web Search by Sentence Queries: Asking the Web for Query Substitutions
	Introduction
	Related Work
	Method
	Searching for Paraphrases
	Searching for Sentence Substitutions
	Scoring of Sentence Substitutions

	Experiments and Results
	Performance of Searching for Sentence Substitutions
	Discussion

	Conclusion and Future Work
	References

	The DISTARNET Approach to Reliable Autonomic Long-Term Digital Preservation
	Introduction
	Distributed Digital Long-Term Preservation: Challenges
	DISTARNET
	DISTARNET Data Model
	DISTARNET Processes

	DISTARNET Maintenance and Recovery
	Maintenance
	Recovery

	Related Work
	Conclusion and Future Work
	References

	Spatial Queries
	A Unified Algorithm for Continuous Monitoring of Spatial Queries
	Introduction
	Background
	Preliminaries
	Related Work

	Problem Definition
	Versatile Top-k Queries
	Modeling Spatial Query to Top-k Query

	Technique
	Conceptual Grid Tree
	Unified Algorithm

	Experiments
	Conclusion
	References

	Real-Time Monitoring of Moving Objects Using Frequently Used Routes
	Introduction
	Moving Object Monitoring with FUR
	System Configuration
	Frequently Used Routes
	FUR Description

	Moving Object Tracking Algorithms
	Moving Object Tracking
	Moving Object Side Algorithm
	Server Side Algorithm

	Experimental Results
	Environments
	Position Monitoring

	Related Work
	Conclusions
	References

	wNeighbors: A Method for Finding k Nearest Neighbors in Weighted Regions
	Introduction
	Related Work
	Preliminary
	Problem Definition
	Basic Concepts

	The wNeighbors
	Characterization of Shortest Paths
	Data Structure
	WkNN Search Algorithm

	Experiments
	Experimental Setup
	Comparative Study of wNeighbors and Other Approaches
	wNeighbors under Different Parameters and Workloads

	Conclusion
	References

	Aggregate Farthest-Neighbor Queries over Spatial Data
	Introduction
	Related Work
	Algorithms for kNN Search on R-tree
	Aggregate Nearest Neighbor Queries

	Preliminaries
	AkFN Query Processing
	The Minimum Bounding Algorithm
	The Best First Algorithm
	Discussions

	Experimental Results
	Effect of k
	Effect of m
	Effect of n

	Conclusions
	References

	Query Processing I
	Querying Business Process Models Based on Semantics
	Introduction
	Preliminaries
	System Architecture and Query Language
	Index Construction and Query Processing
	Behavior Features Extraction
	Index Building and Query Processing
	Dealing with Label Similarity

	System Implementation and Experiments
	Behavior Features Extraction Performance Comparison
	Experiments on Synthetic Dataset
	Experiments on SAP Reference Models Dataset

	Related Work
	Conclusion and Future Work
	References

	Discovering Implicit Categorical Semantics for Schema Matching
	Introduction
	Preliminaries
	Data Model
	Traditional Schema Matching

	Finding Matches with Filtering Conditions
	Detecting Possible Categories of Source Instances
	Finding Categorical Attributes
	Associating Matches with Filtering Conditions
	Transforming Source Data

	Experimental Evaluation
	Related Work
	Conclusions
	References

	Expressive Power of Query Languages for Constraint Complex Value Databases
	Introduction
	Notations
	Constraint Complex Value Model and Query Languages for Constraint Complex Value Databases
	Constraint Complex Value Model
	Query Languages for Constraint Complex Value Databases
	Algebra Queries
	Calculus Queries
	Datalog Queries

	Expressive Power
	Finite and Infinite Query Safety
	Conclusion
	References

	Scaling Up Query Allocation in the Presence of Autonomous Participants
	Introduction
	Related Work

	Problem Definition
	VMbQA Overview: The Flow of Virtual Money
	VMbQA: Mediating Queries
	VMbQA: Bidding for Queries
	VMbQA: Communication Cost
	Experimental Validation
	Setup and Methodology
	Quality Results in Mono-mediator VOs
	Dealing with x-Redundant VOs

	Conclusion
	References

	Generating Preview Instances for the Face Validation of Entity-Relationship Schemata: The Acyclic Case
	Introduction
	Related Research
	Extended Entity Relationship

	Preview Instances
	Computational Complexity Issues
	From EER to Answer Set Programs
	Results
	Translation of the Example EER
	The Model Generation Phase

	Conclusions
	References

	Query Processing II
	Dynamic Skylines Considering Range Queries
	Introduction
	Related Works
	Preliminaries
	Problem Formulation
	Data Structures Used in Our Solution

	Dynamic Skyline Processing
	Principle of Pruning Strategies
	The MDS Algorithm

	Performance Evaluation
	Experiment Setup
	Experiment Results

	Conclusions
	References

	EcoTop: An Economic Model for Dynamic Processing of Top-k Queries in Mobile-P2P Networks
	Introduction
	Related Work
	EcoTop: An Economic Model for Dynamic Processing of Top-k Queries in M-P2P Networks
	Economic Schemes in EcoTop
	Performance Evaluation
	Conclusion
	References

	REQUEST: Region-Based Query Processing in Sensor Networks
	Introduction
	Related Work
	Region-Based Query Processing
	Region Construction
	Leader Selection
	Query-Initiated Routing Tree

	Experiments
	Experimental Environment
	Reliability
	Energy-Efficiency

	Conclusion
	References

	Efficient Distributed Top-k Query Processing with Caching
	Introduction
	Related Work
	Preliminaries
	ARTO Framework
	Answering Top-k Queries from Cache
	Basic Properties
	Cache Replacement Policy

	Remainder Queries
	Discussion
	Processing of Remainder Queries

	Server Selection
	Experiments
	Conclusion
	References

	Exploiting Correlation to Rank Database Query Results
	Introduction
	Related Work
	Attribute Value Correlation
	Basic Concepts
	Illustrative Examples
	Measures of the Correlations

	Probabilistic Ranking Model
	Bayesian Network Model for Probabilistic Ranking
	Problem Formulation
	Extending the Bayesian Network Model with the Limited Assumption of Value Dependency

	Experimental Evaluation
	Experimental Setup
	Retrieval Effectiveness
	Computational Efficiency

	Conclusion
	References

	Indexing and High Performance
	LinearDB: A Relational Approach to Make Data Warehouse Scale Like MapReduce
	Introduction
	Related Work
	Data Organization
	Decomposed Snowflake Schema
	Data Distribution Strategy

	The Transform – Reduce – Merge Execution Model
	An Overview of TRM Execution Model
	Transformer
	Reducer
	Merger

	Implementation and Optimization Issues
	Scan-Index: A Runtime Index
	Parallelizing Merge Operation on Modern Hardware

	Experiment
	Scalability Analysis
	Fault Tolerance Analysis
	Performance Evaluation
	Simulation of Merge

	Summary and Future Work
	References

	Genetic Algorithm Based QoS-Aware Service Compositions in Cloud Computing
	Introduction
	Preliminaries
	Service Compositions in Cloud Computing
	QoS Model
	Genetic Algorithms

	QoS-Aware Service Composition in Cloud Computing
	Genetic Algorithm Based Approach
	Handling Multiple Data Flow Graphs

	Experiment and Evaluation
	Creation of Experimental Scenarios
	Experiments Results

	Related Work
	Conclusion
	References

	Energy-Efficient Tree-Based Indexing Schemes for Information Retrieval in Wireless Data Broadcast
	Introduction
	Related Works
	System Symbols and Bucket Design
	System Symbols
	Bucket and Pointer Design

	B+-Tree Based Distributed Index
	Performance Analysis of B+-Tree Distributed Index

	Huffman-Tree Based Distributed Index
	Performance Analysis of Huffman-Tree Distributed Index

	Simulation
	Simulation Settings
	Simulation Results

	Conclusion
	References

	Buffer Cache De-duplication for Query Dispatch in Replicated Databases
	Introduction
	Problem Statement
	Query Dispatch Problem
	Query Characteristics in the Web
	Common Blocks between Queries

	Duplication-Free Query Dispatch
	The Look-Up Table for Query Dispatch
	Exception: Multiple Indices in a Relation

	Experimental
	Performance Evaluation

	Analysis
	Modeling
	Zipf-like Distribution

	Related Work
	Conclusion
	References

	Indexing for Vector Projections
	Introduction
	Preliminaries
	Caps, Baseplanes, and Range Searching
	The Cap of a Vector
	Venturing into the Dual Space

	An Index for Vector Projections
	An Index for Arbitrary Dimension
	A Logarithmic Query-Time Index for Two Dimensions
	Dynamic Thresholds

	Related Work
	Conclusion
	References

	Industrial Papers
	Assessment of Cardiovascular Disease Risk Prediction Models: Evaluation Methods
	Introduction
	The Proposed Cardiovascular Risk Prediction Method
	Pre-processing and Datasets
	Prediction Model Development

	Model Evaluation
	Misclassification Rate for Balanced and Unbalanced Data
	Area under ROC Curve in Balanced and Unbalanced Data
	Sensitivity, Specificity and Predictive Values
	Kappa Statistic in Unbalanced Data
	Discussion

	Conclusions
	References

	Visual Analysis of Implicit Social Networks for Suspicious Behavior Detection
	Introduction
	Related Work
	Example of a Scenario
	Social Networks Analysis
	Data Visualization

	A General Model for Communication Data Representation
	Data Model
	Operators for Visual Social Networks Analysis

	Prototype Implementation: SemanticXL
	Conclusion and Future Work
	References

	Compositional Information Extraction Methodology from Medical Reports
	Introduction
	Motivation
	Related Work
	Compositional Information Extraction Method
	Extracting Past Medical History Passages
	Follow Up Text Passage Extraction

	Experiments and Results
	Discussion

	Conclusion
	References

	A Framework for Semantic Recommendations in Situational Applications
	Introduction
	Recommender Systems: Web and Enterprise Perspectives
	Context-Awareness and Situational Applications
	Motivations of Our Work

	Situation Modeling
	Graph Repository
	Situation Statements

	Situation Platform
	Architecture Overview
	Business Events – Situation Dynamics
	Activation Rules
	Operators and Recommendations

	Experimentation
	Prototype Platform Implementation
	Text-To-Query: An Example of Recommendation Operator

	Related Work
	Context-Awareness and Situation Modeling
	Personalization and Recommender Systems

	Conclusion and Future Work
	References

	Demo Papers
	Storage and Use of Provenance Information for Relational Database Queries
	Introduction
	Provenance Tree Storage
	System Architecture
	System Features
	References

	MRQSim: A Moving Range Query Simulation Platform in Spatial Networks
	Introduction
	System Architecture
	System Demonstration
	Conclusion and Future Work
	References

	DWOBS: Data Warehouse Design from Ontology-Based Sources
	Introduction
	System Description
	Demonstration
	References

	AUCWeb: A Prototype for Analyzing User-Created Web Data
	Introduction
	System Overview
	Data Collecting and Preparation
	Semantic Annotation with External Resources
	Data Analysis with Descriptive Language

	Demonstration Outline
	References

	Blending OLAP Processing with Real-Time Data Streams
	Introduction
	Streamnetflux System
	Demonstration Roadmap
	References

	AutoBayesian: Developing Bayesian Networks Based on Text Mining
	Introduction
	Demonstration
	Derive Confidence Measure
	Integrate the Causal Mapping with Bayesian Network

	References

	Classify Uncertain Data with Decision Tree
	Introduction
	Demonstration
	Decision Tree for Uncertain Data
	Comparison with Other Classifiers

	References

	StreamFitter: A Real Time Linear Regression Analysis System for Continuous Data Streams
	Introduction
	Linear Regression Analysis on Data Streams
	Incremental Mathematical Stream Regression (IMSR)
	Approximate Stream Regression

	Conclusion
	References

	Panel
	Challenges in Managing and Mining Large, Heterogeneous Data

	Tutorials
	Managing Social Image Tags: Methods and Applications
	Tutorial Overview
	Full Description of the Tutorial
	Speakers

	Web Search and Browse Log Mining: Challenges, Methods, and Applications
	Tutorial Description
	Short Biography

	Searching, Analyzing and Exploring Databases
	Introduction
	Tutorial Outline
	Search Result Definition, Generation, Ranking and Evaluation
	Query Suggestion and Result Analysis
	Other Exploration Methods
	Open Challenges and Future Directions

	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

