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Abstract. We propose a framework for efficient OLAP on information networks
with a focus on the most interesting kind, the fopological OLAP (called “T-
OLAP”), which incurs topological changes in the underlying networks. T-OLAP
operations generate new networks from the original ones by rolling up a subset
of nodes chosen by certain constraint criteria. The key challenge is to efficiently
compute measures for the newly generated networks and handle user queries with
varied constraints. Two effective computational techniques, 7-Distributiveness
and T-Monotonicity are proposed to achieve efficient query processing and cube
materialization. We also provide a T-OLAP query processing framework into
which these techniques are weaved. To the best of our knowledge, this is the
first work to give a framework study for topological OLAP on information net-
works. Experimental results demonstrate both the effectiveness and efficiency of
our proposed framework.

1 Introduction

Since its introduction, OLAP (On-Line Analytical Processing) [[10/2l11] has been a
critical and powerful component lying at the core of the data warehouse systems. With
the increasing popularity of network data, a compelling question is the following: “Can
we perform efficient OLAP analysis on information networks?” A positive answer to
this question would offer us the capability of interactive, multi-dimensional and multi-
level analysis over tremendous amount of data with complicated network structure.

Example 1 (Academia Social Network Interaction). From an academic publication
database like DBLP, it is possible to construct a heterogeneous information network
as illustrated in Figure[Il There are four kinds of nodes each representing institutions,
individuals, research papers and topics. Edges between individuals and institutions de-
note affiliation relationship. Edges between two individuals denote their collaboration
relationship. A paper is connected to its authors, and also to its research topic.

OLAP operations could expose two kinds of knowledge that are hard to discover in the
original network.

1. Integrating knowledge from different parts of the network. As an example, users
could be interested in questions like “who are the leading researchers in the topic
of social network?”. This knowledge involves integrating information lying in two
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Fig. 1. A Heterogeneous Information Network

parts of the network: (1) the linkages between the individuals and papers, and (2)
the linkages between the papers and the topics. As shown in the example, for the
nodes representing papers, we can roll-up on them and group them by the same
topics, as shown in Figure 2l As the nodes are being merged, the original edges
between the papers and individuals would be aggregated accordingly, and the re-
sulting edges would denote the authors’ publication prominence in the research of
every topic.

2. Investigating knowledge embedded in different granularity levels of the network.
Besides synchronous drilling in traditional OLAP, many knowledge discovery tasks
in information networks may need asynchronous drilling. For example, in Figure[3]
users could be interested in the collaborative relationship between the Yahoo! Lab
and related individual researchers. For instance, such analysis could show strong
collaborations between AnHai Doan and researchers at both Yahoo! Lab by exam-
ining the corresponding edges. On the other hand, if the whole Wisconsin database
researchers be merged into a single node, it would be hard to discover such knowl-
edge since, collectively, there would be even stronger collaborations between Wis-
consin and other universities, which may shadow Doan’s link to Yahoo! Lab. Such
asynchronous drilling should be guided by what can be potentially found in knowl-
edge discovery, and thus leading to the concept of discovery-driven OLAP.

Based on the above motivating example, we propose a new framework for OLAP over
information networks. Under this framework, we assume nodes and edges of an infor-
mation network are associated with multiple hierarchical dimensions. OLAP (such as
dicing and drilling) on information network takes a given network as input data and
generates new networks as output. This is rather different from traditional OLAP which
takes facts in the base cuboid and generates aggregate measures at high-level cuboids.

The second major difference between our OLAP model from the traditional one is
the concept of asynchronous, discovery-driven OLAP. In the traditional data warehouse
systems, drilling is performed synchronously across all the data in a cuboid. However,
for OLAP in an information network, such synchronous drilling may fail to expose
some subtle yet valuable information for knowledge discovery.

The information network OLAP (i.e., InfoNet OLAP) poses a major research is-
sue: How to efficiently perform InfoNet OLAP? This paper answers this question by
proposing two general properties, T-distributiveness and T-monotonicity, for efficient
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computation of different measures in InfoNet OLAP. Our focus of this study is on effi-
cient T-OLAP, the OLAP operations that change the topological structure (such as node
merging) of the network. Moreover, we provide algorithms for computing the measures
discussed in our categorization. In particular, we also examine the monotonicity prop-
erty and their impact on efficient query processing. Our experiments on both real and
synthetic networks demonstrate the effectiveness and efficiency of the application of
our framework.

2 Problem Formulation

We study a general model of attributed networks, where both vertices and edges of a
network G could be associated with attributes. The attributes, depending on their se-
mantic meanings, could be either of categorical values or numeric ones. We use the
DBLP co-authorship network, referred to as “DBLP network from now on, as a run-
ning example for many illustrations in later discussions.

DBLP Network Example. In DBLP co-authorship network, each node v represents
an individual author, associated with attributes: Author Name, Affiliated Institution, and
Number of Papers Published. Each edge (u, v) between two authors u and v represents
their coauthor relationship for a particular conference in a particular year, with attributes
like Conference, Year, Number of Coauthored Papers. Evidently, there could be multiple
edges between two vertices in the DBLP network if two authors have coauthored papers
in different conferences. For instance, it could be found between two authors v and v
edges like (ICDE, 2007, 2) and (SIGMOD, 2008, 1) and so on.

A network is homogeneous if every edge and vertex represents the same kind of
entities and relationships, e.g. the DBLP network. Otherwise, it is heterogeneous.

We focus our discussion on homogeneous networks in this paper, and it should be
evident that most of the results apply to heterogeneous networks as well. As a conven-
tion, the vertex set of a network G is denoted by V(G) and the edge set by E(G). The
size of a network G is defined as the number of edges of G, written as |E(G)|. Let
Xi1<i<mandX%, 1<i<ndenote the sets of valid attribute values for vertices
and edges respectively.
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Definition 1. [Attributed Network Model] An attributed network is a triple (G, Ly,
Lg) inwhich G = (V(G),E(G)), Ly : V(G) — X, x X2 x ... x X and L C
V(G) x V(G) x XL x X% x ... x X% where m and n are numbers of attribute
dimensions for vertices and edges respectively.

In InfoNet OLAP, the underlying data for a measure is now a network, instead of iso-
lated numerical values, thus measures could in this case take the form of a network.
Given an attributed network G and a measure 6, we use 6(G) to denote the measure ¢
computed on the network G.

In general, given G and 6, a query in InfoNet OLAP could be represented as ”’SE-
LECT G FROM G WHERE [-(0(G’),d) = 17 in which G’ C G and fc() is a
boolean function taking as input a constraint C, a measure 6(G’) computed on G’ and a
user-defined threshold d, such that f(6(G’), §) = 1if and only if 0(G’), J satisfies con-
straint C'. For example, given a network G, suppose the measure 6 is “diameter”, then a
corresponding constraint C' could be “0(G’) <= §”. Then fc(0(G’),d) =1,G' C G
if and only if the diameter of G’ is at most d.

Such queries can be issued for the original data network in which every node can be
considered as a data cuboid. However, for T-OLAP on InfoNet, these kind of queries
could more likely be issued for some summarized network generated from the original
one by merging or rolling up certain subgraphs as illustrated in Figure 2] and Bl For
efficient OLAP in traditional data warehouse, data cube computation has been playing
an important role with many algorithms developed. However, for InfoNet OLAP, mate-
rialization of information network “cubes” may not be realistic due to the huge number
of possible flexible “cubes” that have to be precomputed, considering drilling may not
even be “synchronized” (i.e., rolling all the network nodes up to the same level) as
one may like to perform selective drilling for effective discovery-driven OLAP. On the
other hand, it is often the case that we already have some partially materialized cubes
as a result of preceding queries on some summarized level. Then the central question is
the following: Can we make use of the partially materialized cubes to more efficiently
answer a new coming query? If yes, how?

3 Techniques and Framework

We propose two constraint-pushing techniques based on the unique characteristics of
InfoNet OLAP, T-Distributiveness and T-Monotonicity. The framework taps the pow-
erful techniques in traditional OLAP on data cube and extends them further into the
information network setting. We use a simple motivating example to introduce the two
techniques.

DBLP Query Example. Given the DBLP author network, suppose the measure ¢ of
interest is the total number of publications”, i.e., for a given node v, denoted as 6(v)
its total number of publications. Depending on the level of network to which v belongs,
v could represent an individual researcher, a research group, or an institution. A user
could then submit queries asking to return all researchers v such that 6(v) > §”.

The measure in the above example is in fact the "Degree Centrality”. We use C'p(v) to
denote this measure, Degree Centrality, for a node v. To formally represent the concept
of networks at different levels, we need a definition of OLAP network hierarchy
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Definition 2. [OLAP Network Hierarchy] Given a network G(V, E) and a partition
IT of V(G) such that Il = {V1,Va,..., Vin},m < |V(G)|. A network G' is called a
higher-level network of G if G’ is obtained by merging each'V; € Ilg,1 < i < mintoa
higher-level node v} and the edges accordingly. G is then called a lower-level network
of G’ and denoted by G < G'. For each v € V(Q), v: is called the higher-level node of
vifv € V;, which is denoted as v <y v;

Notice that topological OLAP operations could be asynchronous. A higher-level net-
work can be obtained by merging portions of a lower-level one, leaving the rest un-
changed.

3.1 T-Distributiveness

Suppose we have three levels of networks where nodes represent individuals, research
groups and institutions in each network respectively. Instead of individuals, users could
query about the institutions with the total number of publications beyond a certain
threshold 4. The straightforward way is to construct the network G’ at the institution
level by merging the constituent author nodes for each institution from the original net-
work G, and compute the measure by summing up over each. For large institutions,
the computation could be costly. Now suppose we have already computed the measure
for the network G’ at the research group level, can we exploit this partial result to im-
prove efficiency? It turns out we can do that in this case due to the distributiveness of
this measure function. Basically, the measure value of an institution can be correctly
obtained by summing up over the measure values already computed for the research
groups. Consider any set of vertices S = {v1, va, ..., v} and a partition ITg of S such
that ITg = {51, 52,...,Sm},m < k. Each S; € ITg is merged to a new vertex v; and
the whole set S is merged to a new vertex v” by a T-OLAP roll-up operation. We also

overload the notation to denote ITg = {v}, v}, ...,v,,}. Itis easy to verify that
Cp(v") = (Z CD(w)> — 2| Es|
v, €S
= % (3 coto - i) - 25
1<i<m \v;€S;

> Co() | - 2lEmns|

v;GHs

where Eg is the set of edges with both end vertices in .S. It is clear that, since addition
and subtraction are commutative, distributive and associative, the result of computing
by definition from the bottom-level network is the same as the result of computing from
the intermediate-level one. Figure Ml is an illustration of the computation. Cp(v”) is a
total of 4+ 2+ 5+ 3 = 14 from G”. We can get this measure directly from the original
network G by the given formula ), o Cp(vi) —2|Es| = 3 +8+3+7+10 +
11+7+5+6)—-22+3+3+1+2+4+1+2+4+1) = 14. We can also
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Fig. 4. T-Distributiveness for Degree Centrality ~ Fig. 5. T-Distributiveness for Shortest Path

use partial measure results computed for the intermediate network G’ and compute by
Zv;eﬂs Cp(v))—2|Ems| = (84+12414)—2(3+1+6) = 14. The computational cost
is reduced to O(m + |E,|). This example shows that the computation cost is greatly
reduced by taking advantage of partial measure results already computed. This kind of
distributiveness of a measure function is termed 7-Distributiveness in this topological
OLAP setting.

We now give the formal definition of T-Distributiveness.

Definition 3. [T-Distributiveness] Given a measure 0 and three attributed networks G,
G’ and G" obtained by T-OLAP operations such that G < G' < G”, suppose we have
available 0(G) and 6(G"), then 0 is T-Distributive if there exists a function g such that
0(G") = g(0(G")) = g(6(G)).

Although this example of ”Degree Centrality” may seem simple, it is interesting to note
that other more complicated measures, even those involving topological structures, are
also T-distributive. For instance, it can be shown that the measure of ”Shortest Path” is
also T-distributive. Shortest path computation is a key problem underlying many cen-
trality measures, such as Closeness Centrality and Betweenness Centrality, as well as
important network measures like Diameter.

T-Distributiveness for Shortest Paths. It is well-known that the shortest path problem
has the property of optimal substructures. In fact, shortest-path algorithms typically rely
on the property that a shortest path between two vertices contains other shortest paths
within it. Formally, we have the following lemma, the proof of which is omitted and
readers are referred to [6].

Lemma 1. Given an attributed network G with a weight attribute on edges given by
Sunctionw : E(G) — R, let p = (v1,v2,...,v) be a shortest path from vertex vy to
vertex vy, and, for any i and j such that 1 < i < j <k, let p;; = (vi, viy1,...,v;) be
the sub-path of p from vertex v; to vertex vj. Then, p;; is a shortest path from v; to v;.

Rationale. The significance of the optimal substructure property of the shortest path
problem is that it means the measure is T-distributive, thus providing an efficient way
to compute the measure for T-OLAP roll-up operations.

We show our algorithm in Algorithm 2. The main algorithm is Algorithm 1 in which
we show that, instead of computing from scratch from the lowest network G, we are
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actually able to compute the measure network 6(G"") for G” from the measure network
6(G") already computed for an intermediate network G'.
In Algorithm 1, in Line 3, we first compute all shortest paths from the single source
" to all other vertices. From Lines 4 to 7, we update the shortest path between each
pair of vertices (u, v) by picking the smaller-weight one between the existing shortest
path between them and the one which passes through the new vertex v”. In Algorithm
2,in Lines 1 and 2, we first set the shortest path weight between v” and other vertices to
be a maximum weight value. From lines 3 to 6, we calculate the shortest paths between
v" and every other vertex u by picking the one with the minimum weight among all the
shortest paths between vertices in S’ and w. It is easy to verify that the time complex-
ity of computational cost of ShortestPath Local is O(\S’\ [V(G) \ S]). The time
complexity of the entire algorithm is therefore O(|V (G)|?).

The correctness of the entire algorithm can be seen from the observation that for any
pair of vertices w and v, if the final shortest path p,, ,, in G” does not pass through the
new vertex v”/, then it should also be the shortest path between u and v in the lower-level
network G’. Therefore, the final shortest path p,,, in G must be the smaller-weight
one between the existing shortest path between them in G’ and the new shortest path
passing through v”’. By the optimal substructure property in Lemmal[l] the new shortest
path passing through v”" must be the union of the two shortest paths, one between u
and v”, and the other between v” and v. When computing the shortest paths between

" and other vertices, we do not use standard single source shortest path algorithms.
Instead, Algorithm Shortest Path Local harness the T-distributiveness of the shortest
path measure.

Theorem 1. Given an attributed network G with edge weights, G" is obtained by merg-
ing a set of vertices S = {v1,v2,...,v:}, S C V(G) in a T-OLAP roll-up operation
to a new vertex v"', and G’ is obtained by partitioning S by IT = {S1,Sa, ..., Si} and
merging the vertices in each S; into v € S',1 < i < k, then given the shortest path
measure network 0(G"), Shortest Path Local computes the shortest paths between v"
and all vertices in V(G) \ S.

Proof. The proof is omitted due to the limitation of space.

Algorithm 1. ShortestPath Main Algorithm 2. ShortestPath Local
Input: ', G and 6(G") Input: &', G and 0(G")

Output: 6(G") Output: §(G")

1:60(G") < 6(¢") l:foreachu e V(G)\ '

2: Merge S’ into v and add v’ to G
3:0(G") « ShortestPath Local(S’,G,0(G"));
4: for each v € V(G"),u # v"

20 wpyry) — o0,
3:foreachu € V(G)\ S’

5. foreachv € V(G"),v # 0" 4: for e‘flch ves

6: if W(puy) > W(Puy) + W(Pyro) 3: if w(pyu) <w(pyra)
T w(puv) — w(puv’) + w(pu/v) 6: w(pv”u) - w(pvu);
8:return 0(G"); T:return 6(G");
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3.2 T-Monotonicity

Suppose the user queries for all pairs of collaborating researchers with the number of
joint publications above a threshold §. The observation is that the total number of pub-
lications of an institution is at least as large as that of any of its constituent individual.
This simple monotone property could help prune unnecessary data search space sub-
stantially in the query processing: Given the threshold d, any institution node pairs with
its measure value less than d could be safely dropped without expanding to explore
any of its constituent nodes at lower level networks. The monotonicity of a constraint
like this is termed T-Monotonicity in this topological OLAP setting. The definition of
T-Monotonicity is as follows.

Definition 4. [T-Monotonicity] Given a measure 6 and a constraint C, let G and G’
be two networks such that G < G', C'is T-Monotone if fc(P1) =1 — fo(P) =1
forall P, CG, P, C G and P, < Ps.

It is not just simple and common measures like the example above that are T-monotone,
in fact, it can be shown that many complicated and important measures which involve
network structures are also T-monotone. Interestingly, ”Shortest Path” is again a good
case in point.

T-Monotonicity for Shortest Paths. For shortest path, it turns out the corresponding
constraints have the property of T-monotonicity. The intuition is that when nodes from
a lower-level network are merged to form nodes in a higher-level network, the shortest
paths between any pair of nodes in the higher-level network cannot be elongated, which
is proved as follows.

Theorem 2. Given two networks G1 and G5 such that G1 = G, for any two nodes
u,v € V(Gy), let u',v' € V(G2) be the corresponding higher-level nodes such that
u 3y u and v <y v'. Then we have Dist(u’,v") < Dist(u,v).

Proof. Denote w(u,v) as the weight of edge (u,v). Let one of the shortest paths be-
tween u and v in G; be p = (vg, v1, . . ., V) where vg = v and vy, = v. Since G1 < Ga,
there exists some % and d such that vertices v;, v;11, ..., Vit+d, 0 < 2,d < k of p are
merged into a single vertex w in Gs. Then the weight of the shortest path between v’
and v’ in G2 will have

S/, v') =8/, w) + 6(w,v") < D wvj,v) + Y w(vg,vi41) < 6w, v)
0<j<i i+d<j<k

We give a summary of some common network measures in Figure[6l

3.3 T-OLAP Query Processing Framework

Both T-distributiveness and T-monotonicity would be pushed into the framework for
processing T-OLAP queries. The framework of T-OLAP query processing consists of
the following stages:

Pre-computation: Given a network GG and the measure 6 to be computed, the query
algorithm first computes the base cuboids to be materialized.
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Constraints SUM MIN, Min Degree, Density Bridging Degree Closeness Betweenness Diameter Structural Containment

MAX Max Degree Capital Centrality Centrality ~Centrality Cohesion
T-Monotonicity Yes Yes No No No No Yes No Yes No No
T-Distributiveness Yes  Yes Yes No Yes Yes Yes Yes Yes No No

Fig. 6. A General Picture of Typical InfoNet OLAP Constraints

Query Processing:

1. Abstraction Level Processing:
Given the OLAP abstraction level from the user query, the algorithm locates the
most immediate higher-level and lower-level networks whose corresponding cubes
have been partially materialized.

2. Measure Computation:
Given the constraint C' from the user query, the higher-level network will be used
to prune search space by applying T-monotonicity whenever available. Lower-level
network will be used for more efficient measure computation for the required ab-
straction level by applying T-distributiveness whenever available.

4 Experimental Results

4.1 Synthetic Data

All the experiments are conducted on a Pentium(R) 3GHz with 1G RAM running Win-
dows XP professional SP2.

T-Distributiveness. We perform experiments for two measures, Degree Centrality and
Closeness Centrality on synthetic data to demonstrate the power of T-distributiveness.

Since our aim is to provide studies on measures for InfoNet OLAP in general, our
synthetic data networks are not confined to specific types and statistical properties. Our
synthetic data networks are generated in a random fashion such that (1) the entire net-
work is connected, (2) the vertices have an average degree of d and (3) the edges have
an average weight of w.

Given a network G, users can choose a subset .S of vertices to roll-up into a single
vertex v’ and compute the measure network for the new network G’. Such an OLAP
operation is called a user OLAP request. We give a model for incoming user OLAP
requests as follows. For a network GG, we recursively partition G into 7 connected non-
overlapping components of equal number of vertices, until each resulting component is
of a predefined minimum number of vertices, i.e., suppose |V (G)| = 1024 and 7 = 4,
we first partition GG into 4 connected subgraphs each with 256 vertices, and recursively
partition the 4 subgraphs. The partition process identifies a sequence 7' of connected
subgraphs of the original network GG. Now we reverse the sequence 7" and let the result-
ing sequence be T”. Consequently, observe that, for any subgraph () in sequence 7", all
the subgraphs of () appear before (). We model the sequence of incoming user OLAP
requests as the subgraph sequence 77, i.e., the i-th user OLAP request would take the
original network G and choose to merge the i-th subgraph in 7" into a single vertex and
thus obtain a higher-level network G’. The task then is to compute the measure network
0(G") for G'.
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Our baseline algorithm for comparison is denoted as NaiveOLAP. For each user
OLAP request, the naive algorithm would first merge the corresponding subgraph into a
single vertex and then compute the measure network for the new graph directly from the
original network G. Our approach, called T-distributiveOLAP (or TD-OLAP for short),
would take advantage of the T-distributiveness of the measure and take the measures
already computed for 7 lower level networks as input to compute the new measure
network. In other words, if put in traditional OLAP terminology, we are considering the
best scenario here in which, when computing the measure for a cuboid, all the cuboids
immediately below have already been materialized.

Degree Centrality. The measure of Degree Centrality has the nice property of T-
distributiveness. TD-OLAP could therefore make use of the measures computed for
the lower-level networks and gain significant efficiency boost than the NaiveOLAP.
The average vertex degree is set to d = 5. The partition size 7 is set as 4 such that each
high level vertex has 4 lower-level children vertices.

Figure [7] shows the running time comparison for the two approaches as the number
of vertices for the original network increases. In this case, the original network G is re-
cursively partitioned for a recursion depth of two with a partition size of 4. The running
time is the result of summing up the computation cost for all the user OLAP requests
in T”. It can be observed that with T-distributiveness the measure network computation
cost increases much slower than the NaiveOLAP approach.

Figure [8] shows that, when the total number of vertices of the network G is fixed
to 4096 and the average vertex degree is set to 5, how the granularity of T-OLAP op-
erations can affect the running time of both approaches. As the number of partitions
increases, the size of the set of vertices to be merged in the T-OLAP roll-up get smaller,
which means the user is examining the network with a finer granularity. Since the mea-
sure of degree centrality has a small computational cost, both approaches have in this
case rather slow increase in the running time. However, notice that the TD-OLAP still
features a flatter growth curve compared with the NaiveOLAP approach.

Closeness Centrality. The measure of Closeness Centrality has the nice property of T-
distributiveness. As such, TD-OLAP would use the algorithms as shown in Algorithm 1
to assemble the measures computed for the lower-level networks and save tremendous
computational cost than the NaiveOLAP which simply merge subsets of vertices and
run costly shortest path algorithm to compute the new measure network from scratch.
In this example, the average degree is set to d = 5 and the average weight on edges is
set as w = 10. The partition size 7 is set as 4 such that each high level vertex has 4
lower-level children vertices.

Figure [9] shows the running time comparison for the two approaches as the number
of vertices for the original network increases. In this case, the original network G is
recursively partitioned for a recursion depth of two with a partition size of 4. The run-
ning time is the result of summing up the computation cost for all the 20 user OLAP
requests in 7”. It is clear that, by harnessing T-distributiveness, the measure networks
can be computed much more efficiently, almost in time linear to the size of the original
data network, than the naive OLAP approach.
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Figure [I0] shows how the granularity of the T-OLAP roll-up can impact the running
time for both approaches. As the number of partitions increases, the original network is
partitioned into components of increasingly smaller sizes. The figure shows the average
cost for computing the new measure network for one OLAP request as users choose
to merge smaller set of vertices in the T-OLAP operations. The network in this case
contains 1024 vertices. As shown in the figure, for TD-OLAP, the granularity hardly
affects the computational cost since the complexity of the function to combine the mea-
sures of lower-level networks to obtain the new one is in general very low compared
with the function to compute the measure itself. As the partition size only affects the
number of lower-level vertices to taken into consideration, the running time therefore
remains steady. On the other hand, as fewer vertices are merged with increasing num-
ber of partitions, the NaiveOLAP has to compute the measure network with an input
network of greater size. Hence the increasing running time for the NaiveOLAP.

T-Monotonicity. We perform experiments on the measure of Shortest Distance to
demonstrate the power of T-monotonicity. The number of nodes is set to 1024. The av-
erage node degree is set to 5 and the average weight on edges is set to 5. The T-OLAP
scenario is the following. The user would perform T-OLAP operations on the underly-
ing network G in the same fashion as in the experiment settings for T-distributiveness.
We obtain a higher-level network G’ with 7 partitions, each becoming a higher-level
node. Then the user would present queries in an asynchronous T-OLAP manner as fol-
lows. Two partitions (nodes) of G’ will be expanded into their constituent lower-level
nodes while the rest partitions remain as higher-level nodes, thus generating a new net-
work G‘l such that G < G‘l < G’'. We can then choose another two partitions of G’,
proceed likewise and obtain another network Gs. For a number of partitions 7, we can

obtain (g) networks Gl, Gg, oG () by the sequence of asynchronous T-OLAP op-
2

erations. In the process, the user would query for the shortest distance for every pair
of lower-level nodes « and v in CATQ forl <1 < (g) such that v and v are expanded
out of different higher-level nodes, under the constraint that the minimum of all these
shortest distances is smaller than a threshold ¢. It is easy to see that the naive way
would have to compute all-pair shortest distances for each G to find the minimum. Due
to the T-monotonicity of shortest distance, we can prune data search space as follows.
If we pre-compute the shortest distances between every pair of higher-level nodes in
G’, then if the shortest distance between two nodes v’ and v’ of G’ is greater than 4,
then for any pair of nodes u and v expanded out of u’ and v’ respectively, the short-
est distance between v and v in the corresponding network G must be greater than 9.
Therefore there is no need to expand v’ and v’ for all-pair shortest distance computa-
tion, thus reducing computational cost. Figure[IT] shows how much running time we are
able to save for a successful pruning by T-monotonicity as the number of partitions m
increases. The curve well illustrates the cost saving which is proportional to the size of
the OLAP-generated network G upon which the naive method would need to compute
all-pair shortest distances. It is not monotone since the size of G first decreases and
then increases as the number of partitions 7 increases. Figure [12] shows the situation
where 7 is set to be 64 and the average edge weight is 500. User queries in this case
also ask to return the shortest distances between all lower-level nodes for all CA;'Z but with
the constraint that the shortest distance is smaller than a threshold §. Figure [12] shows
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the running time for the query processing as the user-defined threshold § increases. It
clearly shows that as § increases, the pruning power weakens since when 6 — oo, it
means all shortest distances need to be returned to the user.

4.2 Real Data

Based on the DBLP data, we can semi-automatically construct a heterogeneous net-
work as illustrated in Figure Edges between different types of entities could carry
different attributes. For instance, edges connecting researchers and topics could have the
relevant publication on this topic by this author; edges between two researchers could
carry the publications co-authored by them; edges between a researcher and an institu-
tion could carry those researchers from the institution who have collaborations with this
researcher, etc.. Wider edges indicate stronger relationships in terms of greater quanti-
ties. By performing discovery-driven, asynchronous T-OLAP operations, users would
be able to examine, analyze and discover knowledge in a multi-dimensional and multi-
level fashion, uncovering hidden information which is previously hard to be identified
in traditional data warehouse scenario. For example, Figure 13 shows a snapshot of the
network after a sequence of discovery-driven T-OLAP operations. One can easily ob-
serve that while Michael Stonebraker, Jennifer Widom and Rajeev Motwani all work on
the topic of “stream data”, they also have their own separate heavily-involved research
topics of “C-Store”, “Uncertainty” and “Web” respectively.
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Fig.13. A Snapshot Of A Portion Of A Real Heterogeneous Network

5 Related Work

Social network analysis, including Web community mining, has attracted much atten-
tion in recent years. Abundant literature has been dedicated to the area of social network
analysis, ranging from the network property, such as power law distribution [18] and
small world phenomenon [[15]], to the more complex network structural analysis such
as [8]], evolution analysis [[16], and statistical learning and prediction [[13]. The static
behavior of large graphs and networks has been studied extensively with the derivation
of power laws of in- and out- degrees, communities, and small world phenomena. This
work is not to study network distribution or modeling but to examine a general analyt-
ical process, with which users can easily manipulate and explore massive information
networks to uncover interesting patterns, measures, and subnetworks.

OLAP (On-Line Analytical Processing) was studied extensively by researchers in
database and data mining communities [10]. Major research themes on OLAP and data
cube include efficient computation of data cubes [2]], iceberg cubing [7]], partial materi-
alization and constraint “pushing” [20].

Although OLAP for the traditional form of spreadsheet data has been extensively
studied, there are few studies on OLAP on information networks although information
networks have been emerging in many real-world applications. One interesting study
that puts graphs in a multi-dimensional and multi-level OLAP framework is in [5].
However, it focuses on informational OLAP in which the rolling/drilling operations
only merge multiple edges between the same pair of nodes. As there is no merging of
nodes, there is no change in the underlying network structure. As such, [5] only covers
a rather limited subset of all the possible OLAP operations on information networks,
whereas topological OLAP (T-OLAP), the more powerful ones for knowledge discov-
ery, has not yet been systematically explored.

InfoNet OLAP provides users with the ability to analyze the network data from any
particular perspective and granularity. The T-OLAP operation of rolling-up delivers a
summarized view of the underlying network. Therefore, from the perspective of gener-
ating summarized views of graph data, different aspects of the problem has been exam-
ined in one form or another such as compression, summarization, and simplification.
[2143] study the problem of compressing large graphs, especially Web graphs. Yet they
only focus on how the Web link information can be efficiently stored and easily ma-
nipulated to facilitate computations like PageRank and authority vectors. [4] develops
statistical summaries that analyze simple graph characteristics like degree distributions



402 Q. Quetal.

and hop-plots. While these papers studied effective summarization of graph data, they
did not aim to give a comprehensive study of multi-dimensional and multi-granularity
network analysis with OLAP operations.

Similar aspects have also been explored by the graphics community under the topic
of graph simplification. [26{1/17]], aim to condense a large network by preserving its
skeleton in terms of topological features. Works on graph clustering (to partition sim-
ilar nodes together), dense subgraph detection (for community discovery, link spam
identification, etc.) and graph visualization include [[19]], [9.22], and [12], respectively.
The visualization and summarization of cohesive subgraphs has been studied in [24].
These studies provide some kind of summaries, but the objective and results achieved
are substantially different from those of this paper.

Summarizing attributed networks with OLAP-style functionalities is studied in [23]].
It introduces an operation called SNAP, which merges nodes with identical labels, com-
bines corresponding edges, and aggregates a summary graph that displays relationships
for such “generalized” node groups. There have been recent works examining certain
particular network measures in great detail such as shortest paths [25] and reachability
[[14]. However, all these work are not aimed to study measure computation in T-OLAP
setting in general and offer common constraint properties for a general query processing
framework.

6 Conclusion

In this paper we have performed a framework study for topological InfoNet OLAP.
In particular, we propose two techniques in a constraint-pushing framework, 7-
Distributiveness and T-Monotonicity, to achieve efficient query processing and cube
materialization. We put forward a query processing framework incorporating these two
techniques. Our experiments on both real and synthetic data networks have shown the
effectiveness and efficiency of the application of our techniques and framework to the
measures.

References

1. Archambault, D., Munzner, T., Auber, D.: TopoLayout: Multilevel graph layout by topolog-
ical features. IEEE Trans. Vis. Comput. Graph. 13(2), 305-317 (2007)

2. Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cubes. In:
SIGMOD Conference, pp. 359-370 (1999)

3. Boldi, P, Vigna, S.: The WebGraph framework I: Compression techniques. In: WWW, pp.
595-602 (2004)

4. Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Com-
put. Surv. 38(1) (2006)

5. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: Towards online analytical pro-
cessing on graphs. In: Proc. 2008 Int. Conf. Data Mining (ICDM) (2008)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (eds.): Introduction to Algorithms.
MIT Press, Cambridge (2001)

7. Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J.D.: Computing ice-
berg queries efficiently. In: VLDB, pp. 299-310 (1998)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

Efficient Topological OLAP on Information Networks 403

. Flake, G., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization and identification of web

communities. IEEE Computer 35, 6671 (2002)

. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs.

In: VLDB, pp. 721-732 (2005)

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F.,
Pirahesh, H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab,
and sub totals. Data Min. Knowl. Disc. 1(1), 29-53 (1997)

Gupta, A., Mumick, I.S. (eds.): Materialized Views: Techniques, Implementations, and Ap-
plications. MIT Press, Cambridge (1999)

Herman, I., Melangon, G., Marshall, M.S.: Graph visualization and navigation in information
visualization: A survey. IEEE Trans. Vis. Comput. Graph. 6(1), 24-43 (2000)

Jensen, D., Neville, J.: Data mining in networks. In: Papers of the Symp. Dynamic Social
Network Modeling and Analysis. National Academy Press, Washington DC (2002)

Jin, R., Xiang, Y., Ruan, N., Wang, H.: Efficiently answering reachability queries on very
large directed graphs. In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 595-608. ACM, New York (2008)
Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The web as a
graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano,
S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1-17. Springer, Heidelberg
(1999)

Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: Densification laws, shrinking
diameters and possible explanations. In: Proc. 2005 ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD 2005), Chicago, IL, pp. 177-187 (August 2005)
Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In:
SIGMOD Conference, pp. 419-432 (2008)

Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167—
256 (2003)

Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In:
NIPS, pp. 849-856 (2001)

Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimiza-
tions of constrained association rules. In: SIGMOD Conference, pp. 13-24 (1998)
Raghavan, S., Garcia-Molina, H.: Representing web graphs. In: ICDE, pp. 405-416 (2003)
Sun, J., Xie, Y., Zhang, H., Faloutsos, C.: Less is more: Sparse graph mining with compact
matrix decomposition. Stat. Anal. Data Min. 1(1), 6-22 (2008)

Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summarization. In:
SIGMOD Conference, pp. 567-580 (2008)

Wang, N., Parthasarathy, S., Tan, K.-L., Tung, A.K.H.: CSV: visualizing and mining cohesive
subgraphs. In: SIGMOD Conference, pp. 445-458 (2008)

Wei, F.: Tedi: efficient shortest path query answering on graphs. In: SIGMOD 2010: Pro-
ceedings of the 2010 International Conference on Management of Data, pp. 99-110. ACM,
New York (2010)

Wu, AY., Garland, M., Han, J.: Mining scale-free networks using geodesic clustering. In:
KDD, pp. 719-724 (2004)



	Efficient Topological OLAP on Information Networks
	Introduction
	Problem Formulation
	Techniques and Framework
	T-Distributiveness
	T-Monotonicity
	T-OLAP Query Processing Framework

	Experimental Results
	Synthetic Data
	Real Data

	Related Work
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




